
1 Introduction and Content

1.1 Motivations

This book deals with several related topics:

– Geometry of real semialgebraic and tame sets (i.e. sets definable in some o-
minimal structure on (R,+, .)), with the stress on “metric” characteristics:
lengths, volumes in different dimensions, curvatures etc...

– Behaviour of these characteristics under polynomial mappings.
– Integral geometry, especially the so-called Vitushkin variations, with the

stress on applications to semialgebraic and tame sets.
– Geometry of critical and near critical values of differentiable mappings.

Some fractal geometry naturally arising in this context.

Below we give a short description of each of these topics, their mutual
dependance and logical order. Motivation for the type of question asked in
this book, comes from several different sources: the main ones are Differen-
tial Topology, Singularity Theory, Smooth Dynamics, Control, Robotics and
Numerical Analysis.

One of the main analytic results, underlying most basic constructions of
Differential Analysis, Differential Topology, Differential Geometry, Differen-
tial Dynamics, Singularity Theory, as well as nonlinear Numerical Analysis,
is the so-called Sard (or Morse-Sard, or Morse-Morse-Sard, see [Morse 1,2],
[Mors], [Sar 1-3]) theorem. It asserts that the set of critical values of a suffi-
ciently smooth mapping has measure zero. Mostly this theorem appears as an
assumption, that the set Y (c) of solutions of an equation f(x) = c is a smooth
submanifold of the domain of x, for almost any value c of the right hand side
(in the semialgebraic or tame case, an asymptotic version of the Morse-Sard
theorem (see [Rab], [Kur-Orr-Sim]) shows that f induces a fibration over the
connected components of the “good values” c).

Another typical appearence of the Morse-Sard theorem is in the form of
various transversality statements: by a small perturbation of the data we can
always achieve a situation where all the submanifolds of interest intersect
one another in a transversal way. Fig. 1.1 shows a non-transversal (a) and
transversal (b, c) intersections of two plane curves.
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Fig. 1.1.

Technically, the Morse-Sard theorem is a rather subtle fact. It is well
known since the classical examples of Whitney [Whi 1], that the geometry of
the critical points and of the critical values of a differentiable function can
be very complicated. In particular, the requirement that the function must
have at least the same number of derivatives as the dimension of the domain,
cannot be relaxed. And usually analytic facts that incorporate in an essential
way the existence and the properties of the high order derivatives, are deep,
both conceptually and technically.

However, in classical applications the Morse-Sard theorem appears as a
background fact, as a default assumption, that all the transversality and
regularity properties required can be achieved by small perturbations of the
data. The interplay between the high order analytic structure of the mappings
involved and their geometry rarely becomes apparent. The main reason is
that the classical Morse-Sard theorem is basically qualitative. Its conclusion
appears as an “existential” fact and it provides no quantitative information
on the solutions, submanifolds etc... in question.

A very natural quantitative setting of the problems, covered by the Morse-
Sard theorem, is possible. In the case of transversality, the question is: given
a maximal size of perturbations allowed, how strong a transversality of the
perturbed submanifolds can be achieved? (For plane curves the transversality
can be measured just by the angle between the curves at their intersection
points. Fig. 1.1c presents a strong transversality, in contrast to a weak one in
Fig. 1.1b).

Concerning the set Y (c) of solutions of the equation f(x) = c, a natural
quantitative question is: How much of the complexity of Y (c) (geometric or
topological) can be eliminated by a perturbation of c within the allowed range?
What is the average complexity (with respect to c) of Y (c)?

In nonlinear Numerical Analysis, a typical conclusion, provided by the
classical Morse-Sard theorem, is that with probability one certain determi-
nants do not vanish. However, to organize computations in a stable way it is
necessary to get a quantitative information: how big are these determinants
usually ?

The importance of this sort of quantitative information has been realized
during the last decades in many fields. In the study of the complexity of
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algorithms (especially, in the work of Shub and Smale on complexity of the
Newton type algorithms [Shu-Sma 1-7], [Sma 3,4]), quantitative considera-
tions of the above type appear as one of the main tools (although mainly in
situations where a direct treatment without Morse-Sard’s theorem is possi-
ble).

In a recent study of high order numerical algorithms ([Eli-Yom 1-5], [Bri-
Yom 6], [Bri-Eli-Yom], [Bic-Yom], [Wie-Yom], [Yom 24], [Y-E-B-S]) it became
apparent that Quantitative Morse-Sard theorem and quantitative transver-
sality may be crucially important in efficient organization of a high order
data and in its efficient processing. We discuss this issue in some detail in
Section 1.1.3, Chapter 1, and in Section 10.1.4, Chapter 10 below.

In Differential Dynamics, a number of “quantitative” problems have been
posed by M. Gromov in the early eighties.

These concerned a quantitative behavior of periodic points, estimates for
the volume growth and entropy etc... (See [Gro 1-4]). A “Quantitative Kupka-
Smale theorem”, bounding a typical quantitative behavior of periodic points
and conjectured by M. Gromov, has been obtained in [Yom 4]. Very recently
striking results in this direction have been obtained by Kaloshin [Kal 1-
4] (some of these dynamical results are briefly discussed in Section 10.1.3,
Chapter 10 below).

Important applications of quantitative transversality in symplectic geome-
try appeared recently in S. K. Donaldson’s papers ([Don 1-3], see also [Sik]).
These results have been further extended in [Aur], [Ibo] and other publica-
tions.

As for the Morse-Sard theorem itself, its sharpest quantitative version,
concerning entropy dimension, has been obtained in [Yom 1]. Further appli-
cations, answering, in particular, a part of the quantitative questions above,
appeared in [Yom 3,4,7,10,17,18,20]. More recently additional geometric and
analytic information, related to different versions of the Morse-Sard theo-
rem, concerning Hausdorff measure and dimension, has been obtained in [Bat
1-6], [Bat-Mor], [Bat-Nor], [Com 1], [Nor 1-4], [Nor-Pug], [Roh 1-3], [Yom
13-15,19], culminating in [Mor], in which the sharpest possible statement is
given. Concerning singular values at infinity and the so-called Malgrange con-
dition, one can see [Kur-Orr-Sim] for the semialgebraic case and [D’Ac] for
the o-minimal case.

One of the main goals of this book is to give a proof and an “explanation”
of the quantitative Morse-Sard theorem and related results. This is done via
the study of the same questions first for polynomial (or tame) mappings. In-
deed, while the classical Morse-Sard theorem is trivial for polynomials (criti-
cal values always form a semialgebraic set of a dimension smaller than that of
the ambient space, and thus have Lebesgue measure zero), the quantitative
questions above turn out to be nontrivial and highly productive. They are
answered in this book by a combination of the methods of Real Semialgebraic
and Tame Geometry and Integral Geometry.
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One of the important advantages of this approach is that it allows one to
separate the role of high differentiability and that of algebraic geometry in
a smooth setting: all the geometrically relevant phenomena appear already
for polynomial mappings. The geometric properties obtained are “stable with
respect to approximation”, and so can be imposed on smooth functions via
polynomial approximation. The only role of high differentiability is to control
the rate of this approximation. (In fact, the high order differentiability turns
out to be not relevant at all in this circle of problems ! It is the rate of
approximation by semialgebraic functions, that really counts. See Section 10.2
below).

Now the study of metric Semialgebraic Geometry with the above appli-
cations in view, essentially forces us to extend the tools beyond the usual
lengths, areas etc... It is explained in detail below why using metric entropy
(the minimal number of balls of a prescribed radius, covering a given set) and
multidimensional variations (the average number of connected components
in plane crossections of different dimensions) is most natural and rewarding
in our setting.

In conclusion, let us express our hope that the results and methods pre-
sented in this book form only a beginning of the future “Quantitative Singu-
larity Theory”. The ultimate need for this theory is by now realized in many
fields of mathematics. Quantitative Sard theorem, Quantitative Transversal-
ity and “Near Thom-Boardman Singularities” treated in this book definitely
belong to this future theory, whose possible contours are discussed in some
detail in Section 10.3.7 below.

1.2 Content and Organization of the Book

In the next section of this introduction we explain the main ideas of the
semialgebraic part of the book, using a rather instructive example of the
motion control problem in robotics. In the last section of the introduction
we give an accurate proof of the simplest version of the generalized Sard
theorem. This proof illustrates in a simple and transparent form (and without
technicalities, unavoidable in a general setting) a good part of the ideas and
methods developed below.

Chapter 2 is devoted to a precise introduction and a rather detailed study
of the metric entropy of subsets of Euclidean spaces. We believe that the
“transversality” results of Proposition 2.2 and Corollary 2.3, as well as a
geometric interpretation of the entropy dimension, given by Theorem 2.9,
are new.

In Chapter 3 we recall the theory of multidimensional variations, develo-
ped by A. G. Vitushkin ([Vit 1,2]), L.D. Ivanov ([Iva 1,2]), and others.
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In general, to handle multidimensional variations is not an easy task. Most
of the results for which this theory was initially developed (in particular,
restrictions on composition representability of smooth functions [Vit 3]), had
been later obtained by different (easier) methods. As a result, today it is not
easy to find a presentation of this theory, especially in English. We believe
that multi-dimensional variations, as applied to semialgebraic sets, give a
very convenient and adequate geometric tool. Indeed, by definition, the i-
th variation of A ⊆ R

n, Vi(A), is the average of the number of connected
components of the section A∩P over all the (n− i)-dimensional affine planes
P in R

n. For A-semialgebraic, the number of connected components of A∩P
is always bounded in terms of the diagram of A (i.e. of the degrees of the
defining polynomials and of their set-theoretic formula), and hence to bound
variations we need just to estimate the size of various projections of A.

On the other hand, the following basic inequality relates multidimensional
variations with metric entropy: For any A ⊆ R

n,

M(ε, A) �C(n)
n∑

i=1

Vi(A)(
1
ε

)i .

We give in Section 1.3 a rather detailed introduction to the theory of varia-
tions, in particular providing a complete proof of the above inequality for a
general subset A ⊆ R

n (following [Zer]). We hope that this section, together
with Section 5, where variations of semialgebraic sets are studied, can fill to
some extent the gap in the literature on this subject.

In Chapter 4 we give some generalities on semialgebraic and tame sets,
and prove explicitly (and with explicit bounds) the properties required in the
rest of the book: bounds on the number of connected components, “covering
theorems” (such as Theorem 1.3 stated below), etc...

Chapter 5 is devoted to variations of semialgebraic and tame sets. We
stress the properties which are not true in general: comparison of variations
of two tame sets, close to one another in the Hausdorff metric, in particular, of
a set and its δ-neighborhood, correlations between variations of the same set,
in different dimensions (in general, Vi(A) for different i are “independent”),
bounds on the radius of a maximal ball, contained in a δ-neighborhood of a
set, etc...

Chapter 6 has a somewhat technical character. To study the behavior
of tame and semialgebraic sets under mappings (in the same category), we
have to measure properly the size of the first differential of the mappings.
Roughly, we use as the “sizes” of a linear mapping (in different dimensions)
the semiaxes of the ellipsoid, which is the image of the unit ball under this
mapping. This leads to some exterior algebra (sometimes not completely
trivial, especially as we want to deal with plane sections and integration).
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Chapter 7 contains the main results of this book, as far as the tame
(semialgebraic) sets and mappings are concerned. Basically they have the
following form: assuming that the size of the differential Df of f is bounded
(in one sense or another) on a set A, we estimate variations (and hence metric
entropy) of the image f(A) (Theorems 7.1 and 7.2). We deduce from the result
the quantitative Morse-Sard theorem in the polynomial case (Theorem 7.5).
In particular, we obtain, as a special case, Theorem 1.6 below.

Chapter 8 continues the line of Chapter 7, with somewhat more special re-
sults, related to “quantitative transversality” on one side, and to the behavior
of mappings on more complicated singularities.

Finally, in Chapter 9 we apply the results of Chapters 7 and 8 to map-
pings of finite smoothness. The main tool is a Taylor approximation of the
mappings; then we use appropriate “semialgebraic” results. Since these re-
sults “survive under approximation”, it remains to count the total number of
Taylor polynomials in the approximation. Consequently, the results have the
form of the corresponding “semialgebraic” estimate with a “remainder term”,
taking into account a finite smoothness (Quantitative Morse-Sard theorem,
Theorem 9.2). Considered from the point of view of Differential Analysis
and Topology, the results of Chapter 9 give far-reaching improvements and
generalizations of the usual Morse-Sard theorem.

In Chapter 10 we give a short overview of some additional applications
of the results and methods presented in this book, and of some directions of
their further development. The applications include:

– Maxima of smooth families
– Further applications in differential topology
– Smooth Dynamics
– Numerical Analysis

In some details the Semialgebraic Complexity of functions is defined and
discussed.

We discuss briefly the following directions of further development:

– Asymptotic critical values
– Morse-Sard theorem in Sobolev spaces
– Real equisingularity
– “Ck-resolution” of semialgebraic sets and mappings
– Bernstein type inequalities for algebraic functions
– Polynomial Control problems
– Quantitative Singularity Theory
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1.3 The Motion Planing Problem
in Robotics as an Example

Probably the most natural example, where many of the results of this book
have immediate and direct interpretation, is provided by various aspects of
the so-called “Motion Planning Problem” in Robotics. This example allows
one to understand the power of the methods discussed in this book, as well as
their limitations. Moreover, we shall try to show in this example what should
be done in general in order to transform the enormous analytic power of high
order analytic and geometric methods into efficient computational tools.

The problem of motion planning is real, important and difficult, and it
may be analyzed and (in principle) solved completely in the framework of
Semialgebraic Geometry (although, as we explain below, to deliver its full
power, Semialgebraic geometry must be combined with Singularity Theory
and with a clever data representation). The main objects of this book, like
“effective curves selection” inside semialgebraic sets, covering of semialgebraic
sets via polynomial mappings, critical and near-critical points and values
of polynomial mappings, – become directly visible in motion planning. The
equations arising in the simplest examples are of reasonable degrees, and they
can be explicitely solved and analyzed on popular symbolic algebra packages.
On the other hand, such practical experiments show immediately the (very
narrow) limits of a direct applicability of algebro-geometric methods.

All this justifies, in our view, a rather detailed presentation of the motion
planning problem, given below. This presentation follows mostly [Sch-Sha],
[Eli-Yom 3], [Tan-Yom] and [Sham-Yom].

Let B be a system comprising a collection of rigid subparts, some of which
might be attached to each other at certain joints, while others might move
independently. Suppose B has a total of � degrees of freedom, that is, each
placement of B can be specified by � real parameters, each representing some
relationship (orientation, displacement, etc...) between certain subparts of B.
Suppose further that B is free to move in a two- or three-dimensional space
amidst a collection of obstacles O whose geometry is known. Typical values
of � range from 2 (for a rigid object translating on a planar floor without
rotating) to 6 (the typical number of joints for a manipulator arm). The
values can also be much larger – for example, when we need to coordinate
the motion of several independent systems in the same workspace.

Let P ⊆ R
� denote the space of the parameters of our problem.

The motion-planning problem for B is: given an initial placement Z1
and a desired target placement Z2 of B, determine whether there exists a
continuous obstacle-avoiding motion of B from Z1 to Z2, and, if so, plan
such a motion.

Let us consider two examples. The first one is shown in Fig. 1.2. This is
a plane “robotic manipulator”, consisting of two bars b1 and b2. The bar b1
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has its endpoint e1 fixed at the origin, and the endpoint of b2 is fixed at the
second endpoint e2 of b1. Both b1 and b2 can rotate freely at e1 and e2.

O1, O2 and O3 denote the obstacles, and the initial placement Z1 and
the desired target placement Z2 are shown on the picture. Taking as free
parameters the angles ϕ1 and ϕ2 shown in Fig. 1.2, we get the space P of
parameters as the square [0, 2π] × [0, 2π] in R

2 (or rather a torus T 2 – this
more accurate topological representation sometimes helps).

Fig. 1.2.

Another example of a motion-planning problem is represented in Fig. 1.3.
We have to move the plane rectangle B from the initial position Z1 into

the target position Z2 avoiding the obstacles O1, . . . , Oz. (One can consider
this task as a version of a well-known geometric problem: what is the minimal
possible area of a plane domain, inside which we can turn a length 1 needle
180 degrees (see [Tao]))?

Fig. 1.3.
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Here we have 3 degrees of freedom; as the parameters can be taken to
be the coordinates (x, y) of the barycenter b of B and the rotation angle ϕ.
Probably a direct examination of these problems will not provide a definite
answer (at least for most readers). However, the solution will be greatly
simplified if we pass to the so-called “free configuration space” of the problem.
Generally the free configuration space of the moving system B denoted FP
is the �-dimensional parametric space of all free placements of B (the set of
placements of B in which B does not intersect any obstacle). Each point z in
FP is a �-tuple giving the values of the parameters controlling the � degrees
of freedom of B at the corresponding placement. Clearly, finding a motion
from a placement Z1 represented by Z1 ∈ P , to Z2 represented by Z2, is
equivalent to joining Z1 and Z2 by a continuous path in FP .

The free configuration space FP of the first problem is shown in Fig. 1.4,
together with the initial and target configurations Z1, Z2.

Fig. 1.4.

Now one sees immediately that the solution exists, since Z1 and Z2 be-
long to the same connected component of FP . Three of the “control (or
configuration) trajectories” joining Z1 and Z2 are shown in Fig. 1.4, and the
corresponding evolution of the manipulator is given in Fig. 1.5.

This figure shows one of the three solutions, represented on Fig. 1.4,
namely ρ1. It consists of 4 rotations (3 of them are consecutive, illustrated
by arcs 1, 1′, 2 and 3).

Thus the main difficulty in solving the motion planning problem consists
in the construction of the free configuration space. This construction is non-
trivial already in the first example considered. In the second example the free
configuration space FP is fairly complicated: it looks like a spiralled worm-
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Fig. 1.5.

hole in the three-dimensional cube, and we do not show it here. However, the
solution turns out to exist, and is shown in Fig. 1.6.

Fig. 1.6.

Now the basic fact is that if each part of the system B and each obsta-
cle O are semialgebraic (i.e., representable by a finite number of polynomial
equations, inequalities and set-theoretic operations), then the free configura-
tion space FP is semialgebraic, and can be computed effectively from B and
O.

There exists also an effective procedure to decide whether two given points
belong to the same connected component of a given semialgebraic set. Con-
sequently, for semialgebraic data (which is a very natural assumption) the
motion planning problem can be effectively solved. See [Sch-Sha] for details.

Important remark. “Effectively” does not mean “efficiently”! The com-
plexity of the algorithms, based on the direct approach as above and using
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symbolic computations with semialgebraic sets, is known to be extremely
high. It becomes prohibitive in practical applications even for rather simple
motion planning tasks.

The reason is that the maximal possible complexity of semialgebraic sets of
a given degree is indeed very high – it grows at least as the degree to the power
of the dimension. For example, let us take as the complexity measure the
number of connected components of a semialgebraic set (this characteristic
is intensively used below). Easy examples (also given below) show that this
number can be as high as prescribed for very simple defining equations and
inequalities.

A straightforward symbolic computation must take into account the
“worst case”, so it has to process each connected component separately. In-
side this processing further ramifications appear, with the same number of
choices as above, and so on. For the degrees of order 10 and the dimension
6, like in simplest practical applications, all this together is too much.

However an adaptive approach, which follows a natural “hierarchy of sin-
gularities” in the problem, reduces dramatically the complexity of computa-
tions. Indeed, in most cases we can expect our equations to be non-degenerate,
in an appropriate sense (this is a virtue of the Morse-Sard theorem !). But a
zero set of a non-degenerate system of equations is a regular manifold, and
locally it has exactly one component.

Next after the non-degenerate case, we have to consider degenerations
of “codimension one” in the sense of Singularity Theory (see [Arn-Var-Gus],
[Boa], [Gol-Gui], ...). These degenerations are much less probable than the
regular situation, but their explicit consideration is important, especially tak-
ing into account, that we have to treat not exactly singular, but rather “near-
singular” cases. The local complexity of the solutions for systems of equations
and inequalities with a degeneration of codimension one is still rather small.

Next we continue to the codimension two singularities, and so on. In gen-
eral, we follow the “hierarchy of singularities” in our specific problem (as it is
explained above, essentially this problem is to describe the free configuration
space FP of the motion). Some initial steps in this hierarchy are described
in [Eli-Yom 1-3].

There are several basic problems in this approach: first, what is the “local-
ity size” which guarantees the expected low complexity of the small codimen-
sion singularities ? Second, where to stop in the hierarchy of singularities ?
Third, how to treat “near-singular” situations ?

We hope that the answer to these questions can be provided by the future
“Quantitative Singularity Theory”. The “Quantitative Sard Theorem” and
the “Quantitative Transversality” considered in this book form the first steps
in this direction. See Section 10.3.7.
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However, one can develop practical algorithms, based on a high order ap-
proximation and on hierarchy of singularities, before the theoretical founda-
tions have been completed. Simple empirical procedures in most cases provide
a reasonable answer to the problems above. As far as the motion planning
is concerned, such an algorithm has been developed and initially tested (see
[Eli-Yom 1-3]). It is based on an approximation of the free space FP on a
certain grid, while at each gridpoint a semialgebraic representation as above
is used. However, the hierarchy of the allowed degenerations at each grid-
point is restricted in such a way that the overall complexity of computations
remains strictly bounded. More degenerate situations are treated (within the
prescribed accuracy) simply by an appropriate subdivision of the grid. The
efficiency of this algorithm confirms (in very limited cases, as of today) our
theoretical expectations.

Of course, the discussion above is applicable not only to the Motion Plan-
ning problem. A combination of a high order approximation of the data, its
further structuring and organization along the hierarchy of singularities in the
problem, and its analytic processing, present a powerful computational ap-
proach in many important problems. The “Quantitative Singularity Theory”
will form a theoretical basis of this approach. We discuss it in more detail
(including, in particular, some specific implementations) in Section 10.1.4 of
Chapter 10 below.

This is the place to say that we do claim that various theorems in semi-
algebraic geometry given below are (or may be) useful in motion planning
and other applications, but only when combined with a clever data approx-
imation, with an analysis of the hierarchy of singularities of the problem,
and with an appropriate scheme of numerical computations. It is not the
purpose of this book to develop these methods (see however [Eli-Yom 1-5],
[Bri-Yom 6], [Bri-Eli-Yom], [Bic-Yom], [Wie-Yom], [Yom 24], [Y-E-B-S] and
Section 10.1.4 of Chapter 10 below). Consequently, all the examples of “ap-
plications” given in this book are pure illustrations of mathematical results,
and any attempt of their straightforward application in computations is in
our opinion completely hopeless.

After this warning we return to the description of our approach to the
example of a motion planning problem.

There are two general and well-known principles in real semialgebraic
geometry (although their specific implementation can be rather nontrivial or
impossible).

The first says that any reasonable operation with semialgebraic data leads
to a semialgebraic “output”, with a combinatorial complexity (i.e. the degrees
of the polynomials and the set theoretic formula in a representation – below
we call these data the diagram of the set) depending only on that of the input.

The second principle claims that any reasonable metric characteristic of a
semialgebraic set of a given combinatorial complexity inside a ball of a given



1.3 The Motion Planing Problem in Robotics as an Example 13

radius, can be bounded in terms of the complexity and the radius of the ball.
A good part of this book is devoted to various specific manifestations of these
general principles.

The simplest, but rather useful, example where both these principles work,
is the following result (see Theorem 4.12, Chapter 4 below; see also [Den-Kur],
[Har], [Kur], [Tei 1], [Yom 1,5], and [D’Ac-Kur] for an explicit value of the
bound K(D) of Theorem 1.1).

Theorem 1.1. Let A ⊆ R
n be a semialgebraic set with a given diagram D.

Then for the ball BR of radius R, centered at the origin of R
n, any two points

z1 and z2, belonging to the same connected component of A ∩ BR, can be
joined inside A ∩ BR by a semialgebraic curve �, such that the diagram of �
depends only on D, and the length of � does not exceed K(D) · R, with the
constant K(D) depending only on D.

Corollary 1.2. If a solution to a motion planning problem with semialge-
braic data exists, it can be given by a semialgebraic path in the parameter
space, whose complexity and length depend only on the combinatorial com-
plexity of the data.

In this book we mostly study not just semialgebraic sets, but rather their
behavior under polynomial (or, more generally, semialgebraic – i.e. those with
a semialgebraic graph) mappings. In the context of a motion planning prob-
lem, an important and highly nontrivial such mapping appears very naturally.
This is the so-called “kinematic mapping” ϕ of the manipulator; it associates
to any given values of the control parameters the position of the “tooling de-
vice” (or of a prescribed point, or of any prescribed part of the manipulator).

The kinematic mapping of a manipulator (as described above) is always
semialgebraic, assuming that the controls are properly parametrized. Now,
the main practical problem that appears in the programming of industrial
robots, is the so-called “inverse kinematic problem”:

For a given trajectory s of the tooling device in the workspace, find a
corresponding trajectory σ in the space of controls (i.e. such that s = ϕ(σ),
where ϕ, as above, is the kinematic mapping). The initial motion-planning
is a part of the inverse kinematic problem, since the manipulator in the pro-
cess of motion is naturally assumed to avoid collisions. The inverse kinematic
problem is usually redundant, since the number � of the degrees of freedom
of the manipulator is normally chosen to be bigger than the dimension of the
configuration space of the tooling device (to provide a flexibility in program-
ming).

There are various approaches to the inverse kinematic problem, mostly
dealing with one or another way to eliminate the above-mentionned redun-
dancy. One of these approaches is given in [Sha-Yom], together with some
literature on the subject. Usually the redundancy is eliminated by introduc-
ing a certain distribution in the parameter space, transversal to the fibers
of the kinematic mapping (and of a complementary dimension). Any motion
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of the tooling device can be now lifted to the parameter space, in a locally
unique way.

Without additional restrictions this lifting is not semialgebraic. Moreover,
it is not easy to combine this lifting with the requirement of the collision
avoidance. We consider a combination of the redundancy elimination with the
semialgebraic motion planning (as shortly presented below) a very important
problem.

The following results provide a semialgebraic solution of bounded com-
plexity to the inverse kinematic problem:

Theorem 1.3. (see Theorem 4.10 below) Let f : A → B be a semial-
gebraic mapping between two semialgebraic sets. Then for any semialgebraic
curve s in f(A) ⊆ B there exists a semialgebraic curve σ in A, such that
f(σ) = s. The diagram of σ depends only on the diagrams of f , A, B and s.

Corollary 1.4. For any semialgebraic trajectory s of the tooling device in
its workspace, there exists a semialgebraic control trajectory σ, such that
s = ϕ(σ). If a solution without collisions exists, σ can be chosen to be non-
colliding. The combinatorial complexity and the length of σ are bounded in
terms of the complexity of the data.

In fact, Theorem 1.3 is a special case of the following general “covering the-
orem” (see Theorem 4.10, Chapter 4 below):

Theorem 1.5. For f : A → B as above, and for S a semialgebraic set in
f(A) ⊆ B, there exists a semialgebraic set Σ ⊆ A, with dimΣ = dimS, such
that f(Σ) = S. The diagram of Σ (and hence the bounds on its geometry)
depends only on the diagrams of f , A, B and S.

Obviously, this result has a natural interpretation in terms of control of a
manipulator, whose tooling device has to cover a surface S in the workspace.

The next topic, which is central for this book, is the geometry of critical
and near-critical values of semialgebraic (and later smooth) mappings. The
near-critical points of f are those where the differential Df is “almost singu-
lar” (in an appropriate sense – see below). The near critical values are values
of f at the near-critical points.

As applied to the kinematic mappings ϕ of a manipulator, these notions
become quite relevant: near-critical points of ϕ are those, where some of the
controls do not affect the position of the tooling device. Near critical values
are the positions which we can get with such “bad” control. There are obvious
reasons (especially as the dynamics of the motion is incorporated) to avoid
such positions.

First of all, let us see what the critical set and the critical image look like
in the first example above (with the “tooling device” just the endpoint of the
manipulator). One can easily see that critical positions of the manipulator
correspond exactly to ϕ2 = 0 and ϕ2 = π (see Fig. 1.7).

In both these configurations the controls ϕ1 and ϕ2 do not affect the
distance of the endpoint from the origin. For ϕ2 near 0 or near π an easy
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Fig. 1.7.

computation gives for the distance r of the endpoint from the origin (assuming
|b1| > |b2|):

r ∼ |b1| + |b2| − cϕ2
2 ,

or
r ∼ |b1| − |b2| − c′(π − ϕ2)2 .

Hence the set of near-critical points of the kinematic mappings, where

| ∂r
∂ϕ2

| �γ (
∂r

∂ϕ1
≡ 0), consists of two strips, |ϕ2| � γ

2c
and |π − ϕ2| � γ

2c′
.

The corresponding set of critical values consists of two rings,

|b1| + |b2| − γ2

4c
�r �|b1| + |b2|

and

|b1| − |b2| �r �|b1| − |b2| +
γ2

4c′

(see Fig. 1.7). Notice that the singularities of the kinematic mappings φ in
this example are of the “fold” type, according to the Whitney classification
(see [Whi 3], [Boa], [Gol-Gui]). After an appropriate coordinate change it can
be locally written in the form

{ y1 = x1
y2 = x2

2 .

(Up to a distorsion of the change of coordinates, our definitions of near-
critical points and values are invariant, so we can perform computations using
Whitney normal forms).

Let us consider briefly one additional example of a manipulator. It consists
of a bar b, which can slide in a frame F , which in turn slides along an ellipse
E (see Fig. 1.8). Thus b always remains orthogonal to E, but can slide freely
in this direction.
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Fig. 1.8.

The “tooling device” once more is the endpoint e of b, and the kinematic
mapping associates to the control parameters (position of the frame F on
the ellipse E and the position of the bar b inside F ) the endpoint e on
the plane. Direct computations here are somewhat more involved. However,
this example is well studied in Singularity Theory (see [Gol-Gui]). The set
of critical values here is the curve Γ , shown in Fig. 1.8. It consists of the
endpoint positions, as the distance of e from F is equal to the curvature
radius of the ellipse E at F .

All the points on this curve Γ are folds, except the four vertices, at which
the kinematic mapping has a “cusp” singularity, according to Whitney’s clas-
sification ([Whi 3]). In a properly chosen system of local coordinates it can
be written as { y1 = x1

y2 = x3
2 − x1x2 .

As the γ-near-critical values are concerned, so here they form a strip around
Γ of width of order γ2 near the fold-points. At cusps the situation is more
complicated.

In all these examples we see that the γ-critical values of φ form a “small”
set: as γ tends to zero, the area of ∆(φ) tends to zero. This is a general fact,
and in this book we study the “size” of near-critical values in detail. However,
the “area” is not convenient to measure this size. Instead, we bound the metric
entropy of near critical values. For a compact X, the ε-entropy M(ε,X) is
the minimal number of ε-balls that cover X. Let us give a couple of reasons
why metric entropy is better for our purposes. Other reasons are given in
Section 1.3 and scattered all over the book.

To keep this introduction to a reasonable size, we do not give here formal
definitions of the metric entropy, near-critical values etc., but rather short
explanations of these notions. Accurate definitions of all the notions related



1.3 The Motion Planing Problem in Robotics as an Example 17

to metric entropy are given in Chapter 2. For near critical points and values
this is done in Chapters 6 and 7.

First of all, in the motion planning context we would like to avoid not only
the set of critical values, but a certain neighborhood. The fact that “area” of
a set is small does not imply restrictions on its δ-neighborhood (it can consist
of a dense collection of curves of very small length, etc...). Ultimately, the set
of rational points in R

n has Lebesgue measure 0, while its δ-neighborhood
for any δ > 0 is all the space R

n.
On the contrary, metric entropy is stable with respect to taking neighbor-

hoods: if certain balls of radius ε cover X, the balls of radius ε + δ, centred
at the same points, cover the δ-neighborhood Xδ.

Another reason is that in many cases we would like to restrict ourselves
to a certain grid and to find “good points” in this grid. Once more, a small
Lebesgue measure of a “bad” set does not guarantee that we can find good
points in any prescribed grid (take once more all the rational points).

It is easy to show (see Chapter 2 below) that if metric entropy of a bad
set is small, then in any sufficiently dense grid most of the points are good.
Thus metric entropy is a stronger and more convenient geometric invariant
for our purposes.

The third reason to work with it is that it is also much more natural
for the problems treated in this book. For semialgebraic sets and mappings
the behavior of the metric entropy reflects in a very transparent way their
geometry in different dimensions. For smooth mappings, robustness of the
entropy allows for a direct application of semialgebraic results via polynomial
approximation. Moreover, for mappings of finite smoothness, metric entropy
(and a related notion of block or entropy-dimension) turns out to be the
correct geometric invariant: sets of critical values of Ck mappings can be
characterized in such terms.

Let us make a more accurate definition of γ-critical sets and values: x is a
γ-critical point of f if the differentialDf(x) maps the unit ball into an ellipsoid
with the smallest semiaxis �γ. The set of γ-critical points of f is denoted
by Σ(γ, f), and the set of γ-critical values of f is ∆(γ, f) = f(Σ(γ, f)).

Now we are ready to state one of our main results:

Theorem 1.6. (Theorem 7.5, Chapter 7) Let f : A → R
m be a

semialgebraic mapping of two semialgebraic sets, with diam(A) = R and
rank(Df|A) �q and the norm of Df(x) bounded by 1 for any x in A. Then
for each γ ≥ 0, ε ≥ 0. the ε-entropy of the set of γ-critical values ∆(γ, f)
satisfies

M(ε,∆(γ, f)) �C0 + C1(
R

ε
)q−1 + C2γ(

R

ε
)q ,

where the constants C0, C1, C2 depend only on the diagrams of f and A. In
particular, the q-dimensional Lebesgue measure of ∆(γ, f) does not exceed
C3R

qγ.
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This result can be interpreted in terms of the kinematic mapping as fol-
lows:

Corollary 1.7. For a kinematic mapping ϕ of a manipulator, the set of γ-bad
positions ∆(γ, ϕ) has a volume at most Cγ, with the constant C depending
only on the diagrams and the size of the manipulator. Moreover, for γ small,
most of the points in any sufficiently dense grid in the workspace of the
manipulator are “γ-good”.

Now we can combine Corollary 1.4 and Corollary 1.7 and produce a semial-
gebraic solution to motion planning and inverse kinematic problems, which
in addition avoids γ-bad positions for a prescribed sufficiently small γ. More-
over, in principle, this solution can be constructed explicitly, using the meth-
ods of this book. A part of the way from here to the efficient motion planning
algorithm has been discribed above.

1.4 A Proof of the Morse-Sard Theorem
in the Simplest Case

In this last section of the introduction we give an accurate proof of the sim-
plest version of the generalized Sard theorem. It deals with a Ck-function from
a certain ball in Rn to R (and not with a mapping into a higher-dimensional
space).

This proof illustrates in a simple and transparent form (and without tech-
nicalities, unavoidable in a general setting) a good part of the ideas and
methods developed below.

Let f : R
n → R be a C1-function. For γ ≥ 0, let Σ(f, γ) = {x/‖gradf(x)‖

� γ}. Let Bn
r ⊆ R

n be some ball of radius r. We denote Σ(f, γ) ∩ Bn
r by

Σ(f, γ, r) and f(Σ(f, γ, r)) ⊆ R by ∆(f, γ, r). Σ(f, γ, r) and ∆(f, γ, r) are
the set of γ-critical points and γ-critical values of f on Bn

r , respectively. For
γ = 0 we get the usual critical points and values.

First of all, we consider the case of f a polynomial.

Theorem 1.8. Let f : R
n → R be a polynomial of degree d. Then for any

γ ≥ 0 the set ∆(f, γ, r) can be covered by N(n, d) intervals of length γr. The
constant N(n, d) here depends only on n and d.

Proof. The set Σ = Σ(f, γ, r) of γ-critical points of f inside the closed ball
Bn

r is a semialgebraic set (defined by ‖gradf‖2 �γ2). Hence the number of
connected components of Σ does not exceed N1(n, d). For each connected
component Σi of Σ its image f(Σi) is an interval ∆i.

Let us take two points x1
i and x2

i in Σi, such that y1
i = f(x1

i ) and yi =
f(x2

i ) are the end points of the interval ∆i. By Theorem 1.1 above, x1
i and

x2
i can be joined inside Σi by a (semialgebraic) curve s of length at most
K(n, d) · r. Now |∆i| = |y2

i − y1
i | = |

∫
s

gradf · ds|. But the norm of gradf(x)
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for x in Σ does not exceed γ, and hence the last integral is bounded by
γ.length(s) �K(n, d) · γ · r. Therefore, each ∆i can be covered by at most
K(n, d) intervals of length γr, and ∆ = ∪∆i can be covered by N1(n, d) ·
K(n, d) = N(n, d) such intervals. 
�

In the proof proposed above, a possible bound for N1(n, d) can be pro-
duced, via Bézout’s Theorem. Following Theorem 4.9, Chapter 4, we have:
N1(n, d) �d(2d−1)n−1 (because the polynomial ||grad(f)||2 −γ2 is of degree
2(d − 1)). The difficult point concerns in fact the obtaining of a bound for
K(n, d).

We can modify a little bit the proof of Theorem 1.8 in the following way.
We consider s a semialgebraic set of Σ of dimension �1, not necessarily
connected, (s being 0-dimensional in the case ∆ is itself 0-dimensional), such
that f(s) = ∆. Such a set s is given by Theorem 4.10, and in this construction
the diagram of s depends only on n and d. Let us consider now a connected
component ∆i of ∆ which is not a point. We can find a semialgebraic set
si ⊂ s such that f(si) = ∆i and such that the sj are disjoint. The same
arguments as in the proof of Theorem 1.8 show that the total length of

⋃

i

∆i

is less than γ ·
∑

i

length(si) �γ · length(s). But we have by Lemma 4.13:

length(s) �K ′(n, d) · r. Considering that the number of connected compo-
nents of ∆ which are points is less than the number of connected components
of Σ, which, in turn, is less than d(2d− 1)n−1, we obtain that we can cover
∆ by d(2d− 1)n−1 +K ′(n, d) intervals of length γ.r.

This bound is better than the one given in the proof of Theorem 1.8,
because the product has been replaced by a sum. Nevertheless, the point is
again to evaluate K ′(n, d).

Remark. In [D’Ac-Kur], it is shown that a possible bound for K(n, d) is:

2 · c(n, 1) · ((6d− 4)n−1 + 2(6d− 3)n−2),

where the constant c(n, 1) = Γ (1/2)Γ ((n + 1)/2)/Γ (n/2) is introduced in
Chapter 3 (Γ being the Euler function). In addition in [D’Ac-Kur] ([D’Ac-
Kur], Theorem 10.1), it is shown that a possible bound for the constant
N(n, d) is:

d(2d− 1)n−1 + 2 · c(n, 1) · ((6d− 4)n−1 + 2(6d− 3)n−2.

Now the property given by Theorem 1.8 is compatible with approxima-
tions. Let g : Bn

r → R be a k times differentiable function, and let P be the
Taylor polynomial of degree k − 1 of g at the center of Bn

r . We have

maxx∈Bn
r
|g(x) − P (x)| �Rk(g)
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maxx∈Bn
r
‖dg(x) − dP (x)‖ �k

r
Rk(g) ,

where Rk(g) =
1
k!

max‖dkg‖ · rk is the remainder term in the Taylor formula.
Hence, the critical points of g are at most γ0-critical for P , where

γ0 =
k

r
Rk(g), i.e. Σ(g, 0) ⊆ Σ(P, γ0, r). Hence ∆(g, 0) = g(Σ(g, 0, r)) ⊆

g(Σ(P, γ0, r)). Finally, since |g − P | �Rk(g), g(Σ(P, γ0, r)) is contained in a
Rk(g)-neighborhood of P (Σ, γ0, r)) = ∆(P, γ0, r).

Now by Theorem 1.8, ∆(P, γ0, r) can be covered by at most N(n, k−1) in-
tervals of length γ0r = k·Rk(g), and hence by k·N(n, k−1) intervals of length
Rk(g). Thus the Rk(g)-neighborhood of ∆(P, γ0, r), and hence ∆(g, 0, r) can
be covered by the same number of intervals of length 3Rk(g), or by triple the
number of Rk(g)-intervals. We proved the following result:

Theorem 1.9. Let g : Bn
r → R be a k times differentiable function. Then

the set ∆(g, 0, r) of the critical values of g on the ball Bn
r can be covered by

at most N2(n, k) intervals of length Rk(g), where

N2(n, k) = 3 · k ·N(n, k − 1) depends only on n and k .

�

This result can be considered as a “Taylor formula” for the property of
polynomials, given by Theorem 1.8.

Let us continue a little bit in this direction, considering the following
question: for an arbitrary ε > 0, how many intervals of length ε do we need
to cover ∆(g, 0, r)? To answer this question we first find r′ such that the
remainder term of g on any ball of radius r′ is at most ε:

1
k!

max‖dkg‖ · (r′)k = Rk(g) · (
r′

r
)k = ε , i.e. r′ = r · [

ε

Rk(g)
]1/k .

Now we cover Bn
r by subballs of radius r′. We need at most C(n)( r

r′ )n =

C(n)[Rk(g)
ε ]n/k such balls.

Theorem 1.9 guarantees that critical values of g on each small ball can be
covered by at most N2(n, k) ε-intervals, and to cover all the critical values of

g we need therefore at most N2(n, k) · C(n) · [
Rk(g)
ε

]n/k such intervals. We
proved:

Theorem 1.10. For g as above and for any ε, 0 < ε �Rk(g), the set of critical

values of g can be covered by N3(n, k)[Rk(g)
ε ]n/k intervals of length ε. 
�

Corollary 1.11. (Morse-Sard Theorem) If g ∈ Ck with k > n, then the
measure of the critical values of g is zero.

Proof. For any ε the measure of the critical values of g is bounded by ε times
the number of ε-intervals covering our set. Hence
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m(∆) � lim
ε→0

ε · C · (
1
ε

)n/k = lim
ε→0

Cε1−n/k = 0 for
n

k
< 1 .


�

Concluding this section, let us discuss again the problem of finding the
explicit (and optimal) constants in the inequalities above, and throughout the
book. In principle, an application of the methods of Chapter 4 below allows
one to get an explicit estimate for each of the “algebraic” constants. Let us
illustrate our principle with the constant N(n, d) of Theorem 1.8, although
the following lines do not give a general proof, but rather a description of a
general philosophy (see [D’Ac-Kur] for a rigourous proof of the obtaining of
this bound):
we approximate the boundary of Σ(f, γ, r) by a smooth semialgebraic set
Z = {p = ||grad(f)||2 − γ2 = δ}. Then we fix a generic linear form � on R

n

and define the curve S of all the critical points of � on Z ∩{f = t}. Assuming
that Z ∩ {f = t} is smooth and compact, we obtain explicit equations for S.
Performing a linear change of variables in R

n, we can assume that �(x) = xn.
Hence S consists of the points x in Z where the vector (0, · · · , 0, 1) is a linear
combination of grad(p)(x) and grad(f)(x). This condition is given by the
equations:

∂f

∂x1

∂p

∂xi
− ∂p

∂x1

∂f

∂xi
= 0, i = 2, · · · , n− 1,

each of degree (2d−3)(d−1), the equation defining Z being of degree 2d−2.
We find, using Corollary 4.9, that the number of connected components

k(n, d) of S in generic hyperplane section is less than:

1/2(2d−2 + (2d−3)(d−1)(n−2) + 2)(2d−2 + (2d−3)(d−1)(n−2) + 1)n−2

= 1/2(2d+ (2d− 3)(d− 1)(n− 2))(2d+ (2d− 3)(d− 1)(n− 2) − 1)n−2

Finally, following the proof of Theorem 1.8, and considering that Z = Zδ is
a uniform approximation of Σ(f, γ, r) we obtain:

N(n, d) �d(2d− 1)n−1 + c(n, 1) · k(n, d)

However, in most of the results in this book we do not give such explicit es-
timates. The reason on one side is that their producing is rather lengthy. On
the other side, in all the applications in Smooth Analysis, considered in this
book, the explicit estimates of the constants are not crucial. So just present-
ing explicit estimates of numerous constants below would not be especially
instructive.

On the other hand, in applications in Numerical Analysis, discussed in
Section 10.1.4, Chapter 10, accurate estimates of the algebraic constants are
crucial. Producing such accurate estimates is not an easy task. In some cases
even the asymptotics is not known. We consider this as an important open
problem. On these questions, we can at least refer to [And-Brö-Rui], [Hei-
Rec-Roy], [Hei-Roy-Sol 1,2,3,4], [Ren 1, 2, 3] (and of course to references
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contained in these papers), where complexity and effectiveness for classi-
cal problems (quantifier elimination, piano’s mover problem, constructing
Whithney stratifications...) are given and discussed.



2 Entropy

Abstract. We define in this chapter the entropy dimension of a set. We
also recall the definition of Hausdorff measures and we compare the entropy
and the Hausdorff dimensions, showing that the first one is bigger than the
second one.

In Chapter 1 we have already considered the number of ε-intervals one needs
to cover a given set. This metric invariant is very convenient in our ap-
proximation approach, in particular, because of its “stability”: knowing this
number for a set, we easily compute it for the ε-neighborhood of this set. Of
course, the usual measure does not share this property. On the other hand,
it turns out that in terms of this number we can formulate rather delicate
properties, relevant in the study of smooth functions.

Definition 2.1. Let X be a metric space, A ⊂ X a relatively compact subset.
For any ε > 0, denote by M(ε, A) the minimal number of closed balls of radius
ε in X, covering A (note that this number does exist because A is relatively
compact). The real number Hε(A) = log2M(ε, A) is called the ε-entropy of
the set A.

Fig. 2.1.

This terminology, introduced in [Kol-Tih], reflects the fact that Hε(A) is
the amount of information we need to describe a point in A with the accuracy

Y. Yomdin and G. Comte: LNM 1834, pp. 23–32, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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ε (or digitally memorize A with accuracy ε). Thus, the behavior of M(ε, A) for
various ε reflects not only “massiveness” of the set A, but also its geometry
in X. A detailed study of metric entropy can be found in [Kol-Tih]. See also
[Lor 2] and [Tri].

A subset Z of X is called an ε-net for A, if for any y ∈ A there is z ∈ Z
with d(z, y) �ε. Consequently, M(ε, A) coincides with the minimal number of
elements in ε-nets for A (these elements being the centres of covering balls).

On the other hand, call the set W ⊂ A ε-separated, if for any distinct
w1, w2 ∈ W , d(w1, w2) > ε. Denoting by M ′(ε, A) the maximal number of
elements in ε-separated subsets of A, we have easily: M ′(2ε, A) �M(ε, A) �
M ′(ε, A). Indeed, if x1, . . . xM ′(2ε,A) are in a 2ε-separated subset of A, every
ε-ball containing xj does not contain xk, for k = j and thus one needs at least
M ′(2ε, A) ε-balls to cover A, and if x1, . . . , xM ′(ε,A) are ε-separated points in
A, by definition of M ′(ε, A), there exists no y ∈ A such that d(y, xj) > ε
for all j ∈ {1, . . . ,M ′(ε, A)}, thus the balls B(xj , ε) cover A, showing that
M(ε, A) is less than M ′(ε, A).

The proof of the following properties of M(ε, A) is immediate.

(1) A ⊂ B ⇒ M(ε, A) �M(ε, B).

(2) M(ε, Ā) = M(ε, A), Ā the closure of A.

(3) M(ε1, A) ≥ M(ε2, A), for ε1 �ε2.

(4) M(ε, A ∪ B) �M(ε, A) + M(ε, B), and if inf
x∈A,y∈B

d(x, y) = δ > 0, then

for ε < δ/2, M(ε, A ∪B) = M(ε, A) +M(ε, B).

(5) Let Aη denote the η-neighborhood of A. If for a given ε �η, µ(ε, η) ∈
N ∪ {∞} denotes the supremun of M(ε, B) over all the η-balls B in X,
then:

M(ε, Aη) �µ(ε, 2η).M(η,A).

Indeed if some η-balls cover A, the 2η-balls centred at the same points
cover Aη. Of course we have µ(2ε, 2ε) = 1, and thus in particular:

M(2ε, Aε) �M(ε, A).

(6) Define the Hausdorff distance between A1, A2 ⊂ X as follows:

dH(A1, A2) = max
(

sup
x∈A1

d(x,A2); sup
y∈A2

d(y,A1)
)
.

Then, if d(A1, A2) �ε, we have A1 ⊂ A2,ε, A2 ⊂ A1,ε, and by the last
inequality we obtain:

M(2ε, A1) �M(ε, A2) and

M(2ε, A2) �M(ε, A1).
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Another “effectivity” property of ε-entropy is the following:

(7) For any 2ε-separated set W in X, the intersection W ∩ A contains at
most M(ε, A) points. Indeed if we consider a covering of A by M(ε, A)
ε-balls, and N points in A with N > M(ε, A), necessarily two of these
points are in the same ε-ball, thus these points are not in a 2ε-separated
set of A.
This means that knowing M(ε, A) to be small, we can find effectively
points not in A. In fact most of the points in any regular net in R

n will
be out of A, for A ⊂ R

n having small ε-entropy. Also this property is
not shared by the usual measure, e.g. the measure of the rational points
is zero, but in numerical analysis we can work only with rational points.

The behavior of metric entropy under mappings with known metric prop-
erties can be easily described:

(8) Let f : X → Y be an Hölderian mapping, i.e. such that there exist two
reals K > 0 and α such that, for all x, y ∈ X,

dY (f(x); f(y)) �K
(
dX(x; y)

)α
.

Then the image by f of a covering of A ⊂ X by sets with diameter less
than ε is a covering of f(A) ⊂ Y by sets with diameter less than Kεα.
Consequently, for A ⊂ X and any ε > 0,

M(Kεα, f(A)) �M(ε, A),

and of course if f is a Lipschitzian mapping with Lipschitz constant K,
then:

M(Kε, f(A)) �M(ε, A).

The following properties give the simplest version of the quantitative
transversality theorem. We state them in a rather abstract form.

(9) Let X,Y be two metric spaces and let for each t ∈ Y , ft : X → X be
a homeomorphism. Let for any A1, A2 ∈ X, Σ(A1, A2) ⊂ Y denote the
set of t ∈ Y , for which ft(A1) ∩A2 = ∅.

Notation. For a given ε > 0, define η(ε) as follows: 2η(ε) is the supremum,
over all pairs of balls B1, B2 of radius ε in X, of the diameter of Σ(B1, B2).

In general, η(ε) measures the “nondegeneracy” of the action of the param-
eter t on X. Our main example is the following: X = Y = R

n, ft(x) = t+ x.
Then clearly η(ε) = 2ε, since the set of t for which t+ B1 ∩ B2 = ∅ is a ball
of radius 2ε in R

n.

Proposition 2.2. Let A1, A2 ⊂ X. Then for any ε > 0 and ξ = η(2ε), we
have:
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M(ξ,Σ(A1,ε, A2,ε))Y �M(ε, A1).M(ε, A2).

Proof. We cover the ε-neighborhoodsA1,ε andA2,ε byM(ε, A1) andM(ε, A2)
2ε-balls Bi and B′

j , respectively. Then the set of t ∈ Y for which ft(A1,ε) in-

tersects A2,ε is contained in the union
⋃

i,j

Σ(Bi, B
′
j). But each of these sets is

contained in some ball of radius ξ = η(2ε) in Y, by definition of η(2ε). Thus
one needs less than M(ε, A1).M(ε, A2) ξ-balls to cover Σ(A1,ε, A2,ε). 
�
Corollary 2.3. Let A1, A2 ⊂ R

n be bounded subsets. Assume that

M(ε, A1) �K1(
1
ε

)α and M(ε, A2) �K2(
1
ε

)β ,

with α + β < n. Then for any ε > 0 there is a point t in any ball of radius
r > C(n)(K1.K2)

1
n ε1− α+β

n , such that t+A1,ε does not intersect A2,ε.

Proof. By proposition 2.2, the set Σ of all t for which t+A1,ε intersects A2,ε

satisfies:
M(4ε,Σ) �M(ε, A1).M(ε, A2) �K1.K2(

1
ε

)α+β .

On the other hand, for a ball Br of radius r in R
n, M(4ε, Br) is not smaller

than C ′(n)( r
ε )n (for ε �r, and where C ′(n) is a constant which only depends

on n). Hence if K1.K2( 1
ε )α+β < C ′(n)( r

ε )n, i.e. for r > (K1.K2
C′(n) )

1
n ε1− α+β

n , we
have:

M(4ε,Σ) < M(4ε, Br).

Thus by property (1), we cannot have Br ⊂ Σ. We conclude that any r-ball
contains points which are not in Σ. 
�

Using (7) above we can give a more “effective” version of this corollary:

Corollary 2.4. Let A1, A2,K1,K2, α, β be as above. Then for any ε > 0,
in any 2ε-separated set in R

n containing more than K1.K2( 2
ε )α+β elements,

there is a t such that (t+A1,ε) ∩A2,ε = ∅.

Proof. By (7), any 2ε-separated set of Σ = Σ(A1,ε, A2,ε) does not contain
more than M(ε,Σ) points. The proof of corollary 2.3 shows that we have

M(ε,Σ) �K1.K2(
2
ε

)α+β .

Hence if a 2ε-separated set of Σ contains more than K1.K2( 2
ε )α+β elements,

we have a contradiction. 
�
Notice that the number of elements of a regular 2ε-net, say in a δ-

cube in R
n, which is ( δ

2ε )n, becomes greater than K1.K2( 2
ε )α+β , if ε <

[ δn

K1.K22n−α−β ]
1

n−α−β (since n > α+ β), and hence we can find the required t
in this specific net.
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Notice also that in principle the statement of Corollary 2.4 allows defi-
nite verification by computations with bounded accuracy and time. Indeed,
we must check only a finite number of points t in the net, and for each ver-
ify the fact of nonintersecting, say, the ε

2 -neighborhood of A1 and A2. But
it is enough to make computations with accuracy ε

3 to establish this fact
definitively.

(10) For subsets in R
n, we can compare M(ε, .) with the Hausdorff measure.

Definition 2.5. For a (bounded) set A ⊂ R
n and β ≥ 0, the β-dimensional

spherical Hausdorff measure Sβ is defined as Sβ(A) = lim
ε→0

Sβ
ε , where Sβ

ε is

the lower bound of all the sums of the form
∞∑

i=0

rβ
i , where ri �ε are the radii

of the balls Bi, i = 1, . . . , and A ⊂
∞⋃

i=0

Bi.

For more details about Hausdorff measures, see [Fed 2] or [Fal]. Remark
that the usual β-dimensional Hausdorff measure Hβ is defined in the same
way, but with the Bi’s being arbitrary sets with diameter less than ε, in the
above definition. When A is an (Hm,m)-rectifiable subset of R

n, we have
Hm = Sm ([Fed 2], 3.2.26).

Notice that S0
ε = M(ε, A), but S0 is equal to the number of points in A.

For any set A ∈ R
n, and for a suitable constant c(n), c(n)Sn(A) is equal to

the Lebesgue measure of A.

Proposition 2.6. For any bounded A ⊂ R
n, and β ≥ 0, we have:

Sβ(A) � lim inf
ε→0

εβM(ε, A).

Proof. The proof follows easily from the definitions. We have Sβ
ε =

inf{
∞∑

i=0

rβ
i ;A ⊂

∞⋃

i=0

Bi } �M(ε, A).εβ , hence we obtain the desired inequality:

Sβ(A) = lim
ε→0

Sβ
ε � lim inf

ε→0
εβM(ε, A). 
�

For the usual Lebesgue measure m on R
n, we have a similar inequality:

Proposition 2.7. For A a bounded subset in R
n, we have the following

inequality: m(A) �Vn inf
ε>0

εnM(ε, A), where Vn is the volume of the unit ball

in R
n.

Proof. Let A ⊂
M(ε,A)⋃

i=0

Bi, where Bi is an ε-ball. Hence we have: m(A) �

M(ε,A)∑

i=0

m(Bi) =
M(ε,A)∑

i=0

Vnε
n = Vnε

nM(ε, A). 
�
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(11) Hausdorff and entropy dimensions

Let 0 �α < β < γ �n be three real numbers. For every A ∈ R
n, every

ε > 0, and every covering
∞⋃

i=0

Bi of A by balls of radius �ε, we have:

εβ−γ
∞∑

i=0

rγ
i �

∞∑

i=0

rβ
i �εβ−α

∞∑

i=0

rα
i ,

It follows easily that for any bounded A ⊂ R
n, there exists 0 �β �n such

that Sα(A) = ∞ and Sγ(A) = 0, for all α and γ such that 0 �α < β < γ �n.
This β = inf{γ; Sγ(A) = 0} = sup{α; Sα(A) = ∞} is called the Hausdorff
dimension of A, and is denoted dimH(A).

Although Hβ(A) and Sβ(A) may differ, it is a simple exercise to check
that the Hausdorff dimensions defined by S and H are the same: for instance,
if β is a real number bigger than the Hausdorff dimension of A defined by the
measures Hη, we have Hβ(A) = 0, and for sufficiently small δ, Hβ

δ (A) < 1. So

let (Ei) be a covering of A, such that diam(Ei) �δ and
∞∑

i=0

diam(Ei)β < 2.

Each Ei is contained in a ball Bi of radius diam(Ei), which is less than δ, thus

we have Sβ
δ �

∞∑

i=0

diam(Ei)β < 2. It follows that Sβ(A) �2, proving that the

Hausdorff dimension of A defined by the spherical Hausdorff measures Sη is
less than β, and finally less than the Hausdorff dimension of A defined by the
Hausdorff measures Hη. The opposite inequality can be proved in the same
way.

Among the properties of the Hausdorff dimension, one has the following:

(a) For A a smooth m-dimensional submanifold in R
n, dimH(A) = m.

(b) dimH(
∞⋃

i=1

) = sup
i

dimH(Ai).

The entropy dimension of A reflects the asymptotic behavior of M(ε, A)
as ε → 0. In many cases it characterizes the set A much more precisely than
the Hausdorff dimension.

Definition 2.8. The entropy dimension dime(A) is defined as:

dime(A) = lim sup
ε→0

logM(ε, A)
log( 1

ε )
.

Thus dime(A) is the infinum of β for which M(ε, A) �(
1
ε

)β , for sufficiently
small ε.
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Clearly, for A a compact smooth m-dimensional manifold in R
n and for

ε → 0, M(ε, A) ∼ c(m).V olm(A).(
1
ε

)m, hence dime(A) = m = dimH(A).
On the other hand in many cases these dimensions are quite different. For

instance, by the property (2) of M(ε, A) above, we have: dime(A) = dime(Ā).
But for A = Q ∩ [0; 1], dimH(A) = 0 (A being countable) and dimH(Ā) = 1.
In fact we can easily see that we always have:

dimH(A) � dime(A).

This inequality follows from Proposition 2.6: let β be a real such that

M(ε, A) �(
1
ε

)β (for small ε). Proposition 2.6 allows us to write:

Sβ � lim inf
ε→0

εβM(ε, A) �1.

Thus dimH(A) �β, and finally dimH(A) � dime(A).

As an exercise, let us compute these two dimensions for the classical
Cantor set C 1

3
⊂ [0; 1]. This set is obtained by removing from [0; 1] the in-

terval [13 ; 2
3 ]: one obtains two intervals C1 and C2. We then proceed in the

same way with these two intervals, and we construct a sequence Ci1,i2,...,in ,
ik ∈ {1, 2}, k ∈ {1, . . . , n}, of intervals such that diam(Ci1,i2,...,in) = ( 1

3 )n,
Ci1,i2,...,in,in+1 ⊂ Ci1,i2,...,in , dH(Ci1,i2,...,in,1;Ci1,i2,...,in,2) = ( 1

3 )n+1. We de-
fine C 1

3
as the set consisting of all the points

⋂

n∈N

Ci1,i2,...,in (see Fig. 2.2).

Fig. 2.2.

We can construct C 1
k

, with k > 2, by considering intervals of length 1
kn

instead of 1
3n at the step n. Notice that C 1

3
is obtained from C̃1 = C 1

3
∩C1 by a

homothety with centre the origin and ratio 3. Thus if d = dimH(C 1
3
), we have

Sd(C 1
3
) = 3dSd(C̃1). Furthermore, C̃1∪C̃2 = C 1

3
and by symmetry Sd(C 1

3
) =

2Sd(C̃1). Now, as 3dSd(C̃1) = 2Sd(C̃1), assuming that 0 < Sd(C 1
3
) < ∞, we

have:



30 2 Entropy

dimH(C 1
3
) =

log(2)
log(3)

( and similarly dimH(C 1
k

) =
log(2)
log(k)

)

(for a rigorous proof see [Fal]).

Let us now compute dime(C 1
3
). For

1
2.3n+1 �ε < 1

2.3n
, we have M(ε,

C 1
3
) = 2n+1, hence:

(n+ 1) log(2)
log(2) + (n+ 1) log(3)

�
log(M(ε, C 1

3
))

log( 1
ε )

� (n+ 1) log(2)
log(2) + n log(3)

.

This proves that:

dime(C 1
3
) =

log(2)
log(3)

= dimH(C 1
3
)

and similarly dime(C 1
k

) =
log(2)
log(k)

= dimH(C 1
k

).

For A = {1, 1
2 ,

1
3 , . . .}, dime(A) = 1/2 (see below), while the Hausdorff

dimension of this countable set is of course 0.
The entropy dimension of sets in R may be defined in many different ways

(see [Tri]).

Theorem 2.9. (A. S. Besicovitch, S. J. Taylor) Let A ⊂ [a; b] be a
closed subset.

(i) If m(A) > 0, then dime(A) = 1

(ii) Let m(A) be zero, i.e A = [a; b] \
∞⋃

i=1

Vi, with Vi open disjoint intervals

and
∞∑

i=1

αi = b− a, where αi is the length of Vi. Then:

dime(A) = inf{β;
∞∑

i=1

αβ
i < ∞}.

For example, for A = {1, 1
2a ,

1
3a , . . .}, αi ∼ 1

ia+1 , and hence dime(A) =
1

a+ 1
.

This theorem allows us to compute again dime(C 1
3
): for 2n−1 �i < 2n,

αi = (
1
3

)n, thus
∞∑

i=1

αβ
i =

1
3

∞∑

i=1

(
2
3β

)i−1, and this sum is convergent if and

only if β > dime(A) =
log(2)
log(3)

.

The following construction ([Yom 13]) generalizes Theorem 2.9 to higher
dimensions:
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Definition 2.10. Let A ⊂ R
n be a bounded subset. For a given β > 0, points

x1, . . . , xp ∈ A, and a connected tree T with vertices xi, ρβ(x1, . . . , xp, T )
is the sum

∑

e∈T

|e|β , where for an edge e in T connecting xi and xj , |e| =

d(xi;xj). Let ρβ(x1, . . . , xp) be the inf ρβ(x1, . . . , xp, T ) over all the trees T
connecting x1, . . . , xp. Finally, let Vβ(A) = sup

p,x1,...,xp∈A
ρβ(x1, . . . , xp).

One can easily see that in the situation of Theorem 2.9, Vβ(A) =
∞∑

i=1

αβ
i .

Theorem 2.11. For any bounded A ⊂ R
n, we have the following charac-

terization of dime: dime(A) = inf{β; Vβ(A) < ∞}.
The invariant Vβ presents some interesting features. For instance the proof

we have for the following property: for any A ⊂ Bn, Vn(A) < ∞, is nontriv-
ial, although of course elementary. Vβ turns to be intimately related to the
properties of critical values of differentiable functions. In fact the Morse-
Sard theorem (see [Fed 2], [Com 1]) claims that for a Ck-smooth function
f : Bn → R, H n

k (∆(f)) = 0 (furthermore, this bound is the sharpest one, as
proved in [Com 1]) and thus dimH(∆(f)) �n

k . Our Theorem 1.10 above im-
plies immediately a much stronger result: dime(∆(f)) �n

k (again this is the
sharpest bound by [Com 1]). In particular the set {1, 1

2a ,
1
3a , . . . , 0} cannot be

the set of critical values of f , if k > n(a+ 1), while the Morse-Sard theorem
gives no restrictions for countable sets to be sets of critical values.

However, the necessary and sufficient conditions for a given set to be the
set of critical values, are given just in terms of Vβ :

Theorem 2.12. ([Yom 13], [Bat-Nor]) The compact set A ⊂ R is con-
tained in ∆(f) for some Ck-smooth function f : Bn → R if and only if
Vn

k
(A) < ∞.

The rest of this book presents many examples of computation (or esti-
mation) of M(ε, A). Usually we are interested not only in the asymptotic
behavior of M(ε, A) as ε → 0, but in estimating M(ε, A) for any ε. The
following example illustrates the problems which can arise here.

Let A be a compact surface in R
3. For ε → 0, M(ε, A) ∼ c.H2(A).( 1

ε )2,
with c some absolute constant. However, this expression does not bound
M(ε, A) for ε relatively big: indeed, taking our surface to be very “thin” and

“long”, we can get H2(A) → 0, but M(ε, A) ∼ 1
ε

length(A) .

On the other side, taking the surface with a fixed number of connected
components and with the area and the “length” tending to zero, we see that
the number of connected components of A should also enter the upper bound
expression (see Fig. 2.3).

Indeed the correct bound has the following form (see [Iva 1], [Leo-Mel]
and theorems 3.5 and 3.6 below):



32 2 Entropy

Fig. 2.3.

M(ε, A) �Ṽ0(A) + C1Ṽ1(A)
1
ε

+ C2Ṽ2(A)
1
ε2
,

where Ṽ0(A) is the number of connected components of A, Ṽ2(A) = H2(A),

and Ṽ1(A) =
∫

A

(k1 + k2) dH2, where k1 and k2 are the absolute values of

the mean curvatures of A.
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Abstract. We define in this chapter the multidimensional variations,
study their properties and show how the ε-entropy of a subset A of R

n

can be bounded in terms of variations of A. This form one of the main
technical tools used in this book.

In this chapter we present part of the theory of multidimensional variations,
developed by A. G. Vitushkin ([Vit 1], [Vit 2]), L. D. Ivanov ([Iva 1]) and
others ([Leo-Mel], [Zer]...). Although in general to handle multidimensional
variations is not an easy task, we will use them only for “tame sets” (alge-
braic, semialgebraic, analytic, semianalytic, subanalytic: see [�Loj] or [Den-
Sta], definable in o-minimal structures: see Chapter 4 for a brief introduction
or [Dri-Mil], [Shi], or [Dri]). In this case variations present a very convenient
tool.

Our main goal is to bound M(ε, A) for a given A. As the last example
of Chapter 2 suggests, the likely form of the required upper bound is (for
A ⊂ R

n):

M(ε, A) �C(n)
n∑

i=0

Vi(A)(
1
ε

)i,

where V0(A) should be the number of connected components of A, Vn(A) its
volume, and Vi(A) should reflect the i-dimensional “size” of A. It turns out
that the Vitushkin variations Vi(A) provide the required inequality.

Let Gk
n denote the space of all the k-dimensional linear subspaces in R

n.
We have on the orthogonal group On(R) of R

n a unique invariant probability
measure. Taking the image of this Haar measure under the action of On(R)
on Gk

n, we obtain the standard probability measure γk,n (denoted dP for
simplicity) on Gk

n. This measure is of course invariant under the action of
On(R) on Gk

n.
Let now Ḡk

n denote the space of all the k-dimensional affine subspaces in
R

n. Representing elements P̄ of Ḡn−k
n by pairs (x, P ) ∈ R

n × Gn−k
n , where

x ∈ P , and P̄ = P̄x is the k-dimensional affine subspace of R
n, orthogonal to

P at x, we have the standard measure on Ḡn−k
n : γ̄n−k,n = m⊗ γk,n (m being

Y. Yomdin and G. Comte: LNM 1834, pp. 33–45, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



34 3 Multidimensional Variations

the Lebesgue measure on P , identified with R
n−k). We will denote m by dx

and γ̄n−k,n by dP̄ , for simplicity; thus we have: dP̄ = dx⊗ dP .

Definition 3.1. Let A be a bounded subset of R
n. Define V0(A) as the

number of connected components of A. For i = 1, 2, . . . , n, define the i-th
variation of A, Vi(A), as:

Vi(A) = c(n, i)
∫

P̄∈Ḡn−i
n

V0(A ∩ P̄ ) dP̄ .

Here the coefficient c(n, i) is choosen in such a way that Vi(Qi) = 1, where
Qi = [0, 1]i is the unit i-dimensional cube in R

n. In the above notations we
can also represent Vi(A) as follows:

Vi(A) = c(n, i)
∫

P∈Gi
n

( ∫

x∈P

V0(A ∩ P̄x) dx
)
dP or as:

Vi(A) = c(n, i)
∫

P∈Gi
n

( ∫

x∈P

V0(A ∩ π−1
P (x)) dx

)
dP,

where πP is the orthogonal projection of R
n onto the i-dimensional linear

subspace P .

Fig. 3.1.

Remark. Of course when A is a tame set, it is easy to see that the function
P̄ �→ V0(A∩ P̄ ) is measurable. More generally, if A is a closed set of R

n, this
function is still measurable (see [Vit 1,2], [Zer]).
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The following properties of Vi can be proved more or less directly
(see [Iva 1 ] ) :

(1) By definition, V0(A) is the number of connected components of A, and
Vn(A) = m(A) (because V0(A ∩ π−1

Rn(x)) is 1A(x), the characteristic
function of the set A).

(2) For A a smooth �-dimensional submanifold of R
n, Vi(A) = 0, i > �,

because a generic (n − �)-plane does not encounter A, by the clas-
sical Sard Theorem. Furthermore, by the classical so-called Cauchy-
Crofton formula in integral geometry (see [Buf]; [Cau]; [Cro]; [Fav];
[Leb]; [Fed 1], 5.11; [Fed 2], 2.10.15; [San]; [Lan 1,2]), we have: V�(A) =
Cte · H�(A) = Cte · V ol�(A). But, because c(n, �) is chosen in such
a way that V�([0, 1]�) = 1, we obtain that c(n, �) is the constant
figuring in the Cauchy-Crofton fomula, i.e. (see [Fed 2]) c(n, �) =

Γ ( 1
2 )Γ (n+1

2 )/Γ ( �+1
2 )Γ (n−�+1

2 ), where Γ (x) =
∫

s∈[0,+∞]
e−ssx−1 ds is

the classical Euler function, satisfaying Γ (
1
2

) =
√
π and Γ (x + 1) =

xΓ (x). An easy computation allows us to find again this expression of
c(n, �). For instance, for � = n− 1, by the Cauchy-Crofton formula:

V ol�(S�) = c(�+ 1, �)
∫

P∈G�
�+1

( ∫

x∈P

V0(S� ∩ π−1
P (x)) dx

)
dP

= c(� + 1, �)2V ol�(B�), hence we obtain: c(� + 1, �) =
V ol�(S�)

2V ol�(B�)
=

�

2
V ol�(S�)

V ol�−1(S�−1)
=
�

2
√
π

Γ (�/2)
Γ ((�+ 1)/2)

.

(3) If Vi(A) = 0, then Vj(A) = 0 for j ≥ i.

(4) For a convex subset A in R
n, Vi(A) = Wi(A,Bn), where Wi denotes the

Minkowski mixed volume, and Bn ⊂ R
n is the unit ball. (see (10) for

more details on this point.)

(5) Vi(A) are invariants of the isometries of R
n.

(6) Homogeneity property: For λ ∈ R, Vi(λA) = λiVi(A).

(7) Vi(A ∪B) �Vi(A) + Vi(B). If Ā ∩ B̄ = ∅ we have the equality.

(8) Inductive formula for variations:

Vi(A) = c(n, i, j)
∫

P̄∈Ḡn−j
n

Vi−j(A ∩ P̄ ) dP̄ .

In this formula, A ∩ P̄ is a subset of P̄ = R
n−j , thus we have in this

formula: Vi−j(A ∩ P̄ ) = c(n− j, i− j)
∫

P̄⊃Q̄∈Ḡi−j
n−j

V0(A ∩ P̄ ∩ Q̄) dQ̄.
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It is an exercise to compute the constant c(n, i, j); for instance when i = n−1
and j = 1 we have:

Vn−1(A) = c(n, n− 1, 1)
∫

P̄∈Ḡn−1
n

Vn−2(A ∩ P̄ ) dP̄ .

Taking A = Bn−1, the unit (n − 1)-ball of R
n, we obtain: Vn−1(Bn−1) =

V oln−1(Bn−1) = c(n, n− 1, 1)
∫

P̄∈Ḡn−1
n

V oln−2(Bn−1 ∩ P̄ ) dP̄ . Now the hy-

perplane P̄ is given by (x = sin(θ), ξ), where ξ is a unit vector of R
n, and

θ ∈ [0, π/2]. If the angle of ξ with (Bn−1)⊥ is α ∈ [0, π/2], the (n − 2)-ball

Bn−1 ∩ P̄ has radius

√

1 − sin2(θ)
sin2(α)

=

√

1 − x2

sin2(α)
, hence:

V oln−1(Bn−1)
V oln−2(Bn−2)

=
2c(n, n− 1, 1)
V oln−1(Sn−1)

∫

ξ∈ 1
2 Sn−1

∫ sin(α)

x=0

(
1 − x2

sin2(α)

)n−2
2
dxdξ

=
2c(n, n− 1, 1)
V oln−1(Sn−1)

∫

ξ∈ 1
2 Sn−1

sin(α)
∫ π

2

u=0
cosn−1(u)dudξ.

Let us denote In =
∫ π

2
u=0 cosn(u)du =

∫ π
2

u=0 sinn(u)du, and let us recall that

In =
π

2
· n!

2n(n
2 !)2

, when n is even, and In =
2(n−1)[(n−1

2 )!]2

n!
, when n is odd.

We obtain1:

On−2/(n− 1)
On−3/(n− 2)

=
2c(n, n− 1, 1)

On−1
On−2

∫ π
2

α=0
sinn−1(α)In−1dα.

And finally c(n, n− 1, 1) =
(n− 2) ·On−1

2.I2
n−1.(n− 1) ·On−3

·

(9) The variations of different orders of a set are independent ([Vit 1,2], 22,
Theorem 1): given any numbers ρ > 0 and 0 �Ai � + ∞, i = 0, . . . , n,
with A0 an integer and An < ρn, one can construct a closed set A lying
in the cube [0, ρ]n such that:

Vi(A) = Ai i = 1, . . . , n.

1 We denote On the n-volume of the n-unit sphere Sn. Let us recall that
∫

ξ∈Sn Ψ(ξ) dξ =
∫

α1
. . .
∫

αn
Ψ(ϕ(α1, . . . , αn))

n∏

j=1

sinj−1(αj) dα1 . . . dαn, for Ψ :

Sn → R, where ξ = ϕ(α1, . . . , αn) are the spherical coordinates.
In particular, we get: On = On−1

∫ π

α=0
sinn−1(α) dα = 2π(n+1)/2

Γ ((n+1)/2) .
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(10) The variations Vi(A), defined as the mean value of the number of con-
nected components of the slices P̄ ∩A are constructed in the same way
as a lot of invariants in integral geometry. For instance, instead of the
number V0(A∩ P̄ ) of connected components of P̄ ∩A, one may consider
the Euler-Poincaré characteristic χ(P̄ ∩A), and the mean value:

Λi(A) = c(n, i)
∫

P̄∈Ḡn−i
n

χ(A ∩ P̄ ) dP̄

over all (n − i)-dimensional affine planes of R
n. One obtains the so-

called Lipschitz-Killing curvature Λi(A) of the set A (see [Bla], [Ste],
[Wey] for the emergence of these invariants and for instance [Brö], [Brö-
Kup], [Kla], [Kup], [Sch], [Sch-McM], for a complete overview on this
subject. See also [Fu] for a generalization of these curvatures via the
so called “normal cycle”). These curvatures are characterized by the
following property: assume that A is smooth, then the n-volume of
the ε-neighborhood Aε of A is a polynomial function in ε: V oln(Aε) =

n∑

j=0

Λn−j(A) · µj · εj (here µj is the j-volume of the j-dimensional unit

ball). In the general case (i.e. A may have singularities) we have to

consider the generalized volume VA(ε) =
∫

x∈Rn

χ(A ∩ Bn
ε ) dx instead

of V oln, in order to get VA(ε) =
n∑

j=0

Λn−j(A) · µj · εj .

Furthermore, note that Vi(A) = Λi(A)(= Wi(A,Bn), see (4)) in the
case A is convex, since in this situation V0(A ∩ P̄ ) = χ(A ∩ P̄ ) = 1,
and Vi(A) = Λi(A) in the case dim(A) = i, since in this situation
V0(A ∩ P̄ ) = χ(A ∩ P̄ ). The Lipschitz-Killing curvatures Λi are deeply
connected with the (generalized) volume growth of the ε-neighborhood
of A; the main result of this chapter (Theorem 3.5) is to show how the
multidimensional variations Vi are connected with the ε-entropy of A.

The philosophy is the following: contrary to the Euler-Poincaré characteristic,
the number of connected components is not an additive function, we thus
cannot expect equality in formulas, but only inequalities.

To relate variations with the ε-entropy, we need the following modification:

Definition 3.2. Let B be a subset of R
n. We denote by V0(A,B) the num-

ber of connected components of A lying strictly in B. The higher variations
Vi(A,B) of A in B are defined respectively by:

Vi(A,B) = c(n, i)
∫

P̄∈Ḡn−i
n

V0(A ∩ P̄ , B) dP̄ .

Remark. We also have an inductive formula for the relative variations, as
in property (8):
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Vi(A,B) = c(n, i, j)
∫

P̄∈Ḡn−j
n

Vi−j(A ∩ P̄ , B ∩ P̄ ) dP̄

c(n, i, j)c(n− j, i− j)
∫

P̄∈Ḡn−j
n

∫

P̄⊃Q̄∈Ḡi−j
n−j

V0(A ∩ Q̄, B ∩ Q̄) dQ̄dP̄ .

Proposition 3.3. If B1, . . . , Bk are disjoint sets, then for any set A ⊂ R
n

and for all i = 0, . . . , n, Vi(A) ≥
n∑

j=0

Vi(A,Bj).

Proof. The inequality is immediate for i = 0, and since the Vi’s are defined
by integration of V0, it follows for Vi, i > 0. 
�

Now the main property of variations, distinguishing them among the
usual metric invariants, is the following ([Iva 1], Theorem II.5.1; [Vit 1,2],
21, Lemma 1; [Zer], Theorem 2):

Theorem 3.4. There exists a constant c(n), depending only on n, such that,
for any nonempty A ⊂ R

n, and Br a ball of radius r centered at x ∈ A, we
have:

n∑

i=0

1
ri
Vi(A,Br) ≥ c(n). (∗)

Remarks. Notice that the expected lower bound c(n) for the sum of all the
variations of sets A in B1 is necessarily less than 1, because on one hand, by
(9) the reals Vi(A), i = 0, may be as small as we want, and Vi(A,B1) �Vi(A)
by Proposition 3.3, and because on the other hand, 1 is the minimal number
of connected components of a nonempty set (i.e. V0(A) ≥ 1)! Of course,
the important point of the theorem is that the centre of the ball Br lies
in the set A: as mentioned in property (9) above, one can construct a set
of arbitrary small variations in B1, with no connected component inside B1
(V0(A,B1) = 0). This set will certainly not contain the center of B1 but will
necessarily be very close to the boundary of B1.

The proof of this theorem is rather tricky and complicated, so let us give
the main idea of the proof.

First of all, by the homogeneity property (property (6) above) of vari-
ations it is enough to prove (∗) for r = 1. Assume now for simplicity that
n = 2 and A is a tame set (see Definiion 4.17).

Let A0 be the connected component of A containing x, the center of the
ball B with radius 1.

If A0 ⊂ B, then already V0(A,B) ≥ 1 (Fig. 3.2a).
If A0 ∩ (R2 \B) = ∅, we can find a tame (and thus rectifiable) curve Γ in

A, connecting x with the boundary of B. The length of Γ ∩Br is at least r,
for any r ∈ [0, 1]. Hence by a classical integral geometry argument, the affine
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Fig. 3.2.

lines � intersecting Γ ∩B1/2 are in a set E ⊂ Ḡ1
2 of measure M (M does not

depend on A). (It is a direct consequence of the Cauchy-Crofton formula: if
� intersects [x; y], where y = Γ ∩B1/2, � also intersects Γ ∩B1/2, and by the

Cauchy-Crofton formula, we have: c(2, 1)
∫

�∈E

d� = c(2, 1).M ≥ V1([x; y]) =

1
2

. Hence M ≥ 1
2c(2, 1)

.)

If for half of these lines the component of A ∩ � containing Γ ∩ � lies in
B, then V1(A,B) is bigger than 1

2M (Fig. 3.2b).
Finally if for more than half of the lines � intersecting Γ ∩B1/2 the com-

ponent of A∩ � containing Γ ∩ � hits also the boundary of B, than the length
of this component is bigger than 1

2 , and an by integral geometry argument
(Fubini’s Theorem) we see that the area of A ∩ B, i.e. V2(A,B), is bigger
than a constant depending only on M (Fig. 3.2c).

Considering this draft of proof of Theorem 3.4, we see that the sum of
the variations of A in B is in fact related to the depth of embedding of A in
B, i.e. the real ρ = sup

x∈A
d(x,R2 \ B). One can actually prove (see [Vit 1,2],

[Zer]) that, for any ball B of R
n (not necessarily centered at a point lying in

A) and of radius at most 1, we have:

n∑

i=0

Vi(A,B) ≥ c(n)ρn. (∗∗)

In fact to prove (∗∗), it is enough to suppose that B is a ball centered at
a point of A and of radius ρ (by proposition 3.3), and by the homogeneity
property, it is enough to assume that ρ = 1. Finally, to prove both (∗) and
(∗∗), it is enough to prove that:

n∑

i=0

Vi(A,B1) ≥ c(n), (∗ ∗ ∗)
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where B1 is a ball centered at a point of A and of radius 1.

Proof of Theorem 3.4. As noticed above, it is enough to prove (∗ ∗ ∗) to
obtain (∗) and (∗∗). Of course, if the connected component of A containing
0 lies in B = B1, we have V0(A,B) ≥ 1 and the theorem is proved. In what
follows we thus assume that this connected component hits the boundary of
B. We will follow [Zer], Theorem 2, and prove (∗ ∗ ∗) by induction on n, the
dimension of the ambient space R

n. If n = 1, one of the intervals [0, 1], [−1, 0]
is contained in A, thus V1(A,B) ≥ 1.

We now suppose that n > 1 and that the theorem (in fact (∗∗)) is proved
for m < n, i.e. that we have:

∑m
i=0 Vi(A′, B′) ≥ c(m)ρm for any set A′ ⊂ R

m

with depth of embedding ρ in B′, a ball of radius less than one.
An affine hyperplane P̄ of R

n is given by (x, P ) (see the notations at the
beginning of this chapter) or by (sin(θ), ξ), with θ ∈ [0, π

2 ] and ξ ∈ S, the
unit (n − 1)-sphere. Let us denote by Tρ(θ) the set of ξ ∈ S such that the
depth embedding of P̄(sin(θ),ξ) ∩A in P̄ ∩B is at least ρ. We remark that the
radius of the ball P̄ ∩ B is cos(θ). Let θ be such that cos(θ) > ρ, then there
exist ξ ∈ S and y ∈ A ∩ P̄(sin(θ),ξ) such that d(y, P̄ ∩ S) = ρ

(if such ξ and y do not exist, then for all ξ in S, the sphere in P̄ (sin(θ), ξ)
of centre 0 and radius cos(θ) − ρ does not have common points with A, thus
A does not have points in some sphere Sr=r(θ,ρ), which is impossible because
A connects 0 to S).

Fig. 3.3.

This implies that ξ ∈ Tρ(θ). If ω is the angle between ξ and
y

||y|| we

have (see Fig. 3.3) sin(θ) = ||y|| cos(ω) (⇐⇒ y ∈ P̄ ), and d(y, P̄ ∩ S) =
cos(θ) − ||y|| sin(ω), thus ω = ω(θ, ρ) is given by:

d(y, P̄ ∩ S) =
cos(θ + ω)

cos(ω)
= ρ.
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Now by symmetry, Tρ(θ) contains the sphere of center
y

||y|| and radius ω =

ω(θ, ρ).
Let K(s,||y||) be the connected component of A containing y in the closure

of B||y|| \ Bs for (s < ||y||) and K̃(θ,ρ) the image of K(sin(θ), sin(θ)
cos(ω(θ,ρ)) )

by the

map z �→
( z

||z|| , arccos
sin(θ)
||z||

)
; K̃(θ,ρ) is connected in S × [0, ω(θ, ρ)].

Furthermore, if (ξ′, ω′) ∈ K̃(θ,ρ) then Tρ(θ) contains the sphere of center

ξ′ and radius ω′; indeed (ξ′, ω′) ∈ K̃(θ,ρ) ⇐⇒ sin(θ)
cos(ω′)

ξ′ ∈ A, and then the

sphere of center ξ′ and radius ω′ is contained in Tρ′(θ), with ρ′ =
cos(θ + ω′)

cos(ω′)
,

but now ρ′ ≥ ρ implies Tρ′(θ) ⊂ Tρ(θ).
Notice that y may be choosen such that K(s,||y||), the connected compo-

nent of A containing y in the closure of B||y||\Bs, hits the boundary of Bs, for
all s ∈ [0, ||y||]. Consequently we easily check that K(sin(θ), sin(θ)

cos(ω(θ,ρ)) )
contains

points of norm s, for all s ∈ [sin(θ), ||y|| =
sin(θ)

cos(ω(θ, ρ))
].

Finally we have proved that there exists a connected set K̃(θ,ρ) in S ×
[0, ω(θ, ρ)], such that for all (ξ′, ω′) in K̃(θ,ρ), Tρ(θ) contains the sphere of

center ξ′ and radius ω′, and that there exist ξ0 and ξω(θ,ρ) =
y

||y|| with

(ξω(θ,ρ), ω(θ, ρ)), (ξ0, 0) ∈ K̃(θ,ρ). We conclude that Tρ(θ) necessarily contains
a ball of radius ω(θ, ρ), and thus that the measure A(ρ, θ) of the set of
hyperplanes P(sin(θ),ξ) of R

n, with ξ ∈ Tρ(θ), is such that (see Footnote 1 on
Page 36):

A(ρ, θ) ≥ 1
In−1

∫ ω(θ,ρ)

ν=0
sinn−2(ν) dν, (�)

with In−1 =
∫ π

ν=0
sinn−1(ν) dν.

Now we have by the inductive formula for relative variations:

n∑

i=0

Vi(A,B) =
n∑

i=1

Vi(A,B)

=
n∑

i=1

c(n, i, 1)
∫

P̄∈Ḡn−1
n

Vi−1(A ∩ P̄ , B ∩ P̄ ) dP̄ .

Let us denote mini∈{1,...,n}(c(n, i, 1)) by µ(n). It follows that:

n∑

i=0

Vi(A,B) ≥ µ(n)
∫

P̄∈Ḡn−1
n

n−1∑

i=0

Vi−1(A ∩ P̄ , B ∩ P̄ ) dP̄
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and thus by the induction hypothesis:

n∑

i=0

Vi(A,B) ≥ µ(n)c(n− 1)
∫

P̄∈Ḡn−1
n

δn−1
A (P̄ ) dP̄ ,

where δn−1
A (P̄ ) is the depth of embedding of A ∩ P̄ in B ∩ P̄ .

We have:
∫

P̄∈Ḡn−1
n

δn−1
A (P̄ ) dP̄ =

∫ π
2

θ=0

∫ cos(θ)

ρ=0
ρn−1 d[−A(ρ, θ)]d[sin(θ)],

and after an integration by parts:

∫

P̄∈Ḡn−1
n

δn−1
A (P̄ ) dP̄ =

∫ π
2

θ=0

∫ cos(θ)

ρ=0
cos(θ)A(ρ, θ) d[ρn−1]dθ.

Using (�), we find: ∫

P̄∈Ḡn−1
n

δn−1
A (P̄ ) dP̄ ≥

1
In−1

∫ π
2

θ=0

∫ cos(θ)

ρ=0
cos(θ)

∫ ω(θ,ρ)

ν=0
sinn−2(ν) dνd[ρn−1]dθ.

By Fubini’s theorem, we obtain:
∫

P̄∈Ḡn−1
n

δn−1
A (P̄ ) dP̄ ≥

1
In−1

∫ π
2

θ=0
cos(θ)

∫ π
2 −θ

ν=0

cosn−1(θ + ν) sinn−2(ν)
cosn−1(ν)

dνdθ

=
1

In−1

∫ π
2

ν=0

sinn−2(ν)
cosn−1(ν)

∫ π
2 −ν

θ=0
cosn−1(θ + ν) cos(θ) dθdν

=
1

In−1

∫ π
2

ν=0

sinn−2(ν)
cosn−1(ν)

∫ π
2

ζ=ν

cosn−1(ζ) cos(ζ − ν) dζdν

=
1

In−1

∫ π
2

ν=0

sinn−2(ν)
cosn−1(ν)

∫ π
2

ζ=ν

(
cosn(ζ) cos(ν)+cosn−1(ζ) sin(ζ) sin(ν)

)
dζdν

≥ 1
In−1

∫ π
2

ν=0

sinn−1(ν)
cosn−1(ν)

∫ π
2

ζ=ν

cosn−1(ζ) sin(ζ) dζdν =
1

n2In−1
.

Finally, we have proved:
n∑

i=0

Vi(A,B) ≥ µ(n)c(n− 1)
n2In−1

= c(n). 
�
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Now we are ready to prove the inequality bounding ε-entropy in terms of
variations.

Theorem 3.5. ([Iva 1], p. 246) Let A be a bounded subset of R
n. Then

for any ε > 0,

M(ε, A) �C(n)
n∑

i=0

1
εi
Vi(A),

where C(n) =
2n

c(n)
and c(n) is the constant of Theorem 3.4

Proof. We recall that if M ′(ε, A) is the maximal number of points xj in A

such that d(xi, xj) > ε, for i = j, then A ⊂
M ′(ε,A)⋃

j=1

B(xj ,ε) (see the beginning

of Chapter 2). Thus M(ε, A) �M ′(ε, A), and the balls B(xj ,ε/2) are disjoint.
Now let x1, . . . , xq, be some ε-separated set in A, with q = M(ε, A). Con-

sider the balls Bj of radius ε/2, centered at xj , for j ∈ {1, . . . , q}. These balls

are disjoint, and hence, by proposition 3.3, Vi(A) ≥
q∑

j=1

Vi(A,Bj). Multiply-

ing these inequalities by (
2
ε

)i and adding them for i = 0, 1. . . . , n, we get by
theorem 3.4:

n∑

i=0

Vi(A)(
2
ε

)i ≥
q∑

j=1

n∑

i=1

(
2
ε

)iVi(A,Bj) ≥ 2n

q∑

j=1

c(n) = 2nqc(n).

Thus:

M(ε, A) = q � 2n

c(n)

n∑

i=1

1
εi
Vi(A)

�C(n)
n∑

i=1

1
εi
Vi(A), where C(n) =

2n

c(n)
.


�

In general, computation of variations is probably not easier than the direct
computation of the ε-entropy. Many properties of Vi’s are not yet understood
enough, e.g. the behavior Vi under nonlinear transformations of R

n. On the
other hand, in many cases Vi can be estimated or computed quite effectively.

For a bounded Ck-smooth submanifold A of dimension � in R
n, the Vi’s

are known to be finite for k > k0 = 2 − 2
�− i+ 2

([Leo-Mel]).

For a C2-smooth submanifold A in R
2, Vi(A) can be bounded (and for

A convex, exactly computed) in terms of curvature integrals ([Leo-Mel]). We
give here the computation of [Leo-Mel] in the case when A is a surface in R

3.
Then V0(A) = B0(A), V2(A) = V ol2(A) and it remains to bound V1(A). We
have:
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V1(A) = c(3, 1)
∫

l∈RP2

∫

x∈l

V0(A ∩ P̄x) dxdl.

Now, by Sard’s theorem, for all l ∈ RP
2 there exists Ωl in πl(A) with m(A \

Ωl) = 0, such that for all x ∈ Ωl, S = A∩Px is a smooth curve (of Px). We ob-

tain V0(S) � 1
2π

∫

s∈S

k(s) ds, where k is the absolute value of the curvature.

(Notice that for S convex we can integrate the curvature itself, and we have an

equality). Thus V1(A) � 1
2π
c(3, 1)

∫

l∈RP2

∫

x∈l

∫

s∈A∩Px

k(s) dsdxdl. Now

k(s) =
1

sin(θ)
k(y, l), where k(y, l) is the mean curvature of A at y ∈ A in the

direction of the plane passing through y and orthogonal to l (Fig. 3.4).

Fig. 3.4.

But
dx

sin(θ)
ds = dy. Therefore:

V1(A) � 1
2π
c(3, 1)

∫

l∈RP2

∫

y∈A

k(y, l) dy dl

=
1

2π
c(3, 1)

∫

y∈A

∫

l∈RP2
k(y, l) dl dy.

Finally,
∫

l∈RP2
k(y, l) dl �c′(k1(y) + k2(y)), by the Euler formula, where

k1(y) and k2(y) are the absolute values of the main curvatures of A at y ∈ A.
Thus we’ve proved the following.

Theorem 3.6. ([Leo-Mel]) For A a compact C2 surface in R
3,
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V1(A) �C
∫

y∈A

(k1(y) + k2(y))dy.

Via theorem 3.4 this proves also the formula for M(ε, A), given in the end
of Chapter 2. We mention also the following result: if Ak −−−→

n→∞ A in the

Hausdorff metric, and Vi(Ak) are uniformly bounded, i = 0, 1, . . . , n, then
lim

k→∞
Vi(Ak) ≥ Vi(A) ([Iva 1], theorem II.6.1).

For semialgebraic sets see results of Chapter 5 below.



4 Semialgebraic and Tame Sets

Abstract. We prove in this chapter a classical result: the number of con-
nected components of a plane section P ∩ A of a semialgebraic set A is
uniformly bounded with respect to P. An explicit bound is given in terms
of the diagram of A and the dimension of P. We give a construction which
provides a semialgebraic section of bounded complexity for any polynomial
mapping of semialgebraic sets. In particular, any two points in a connected
semialgebraic set can be joined by a semialgebraic curve of bounded com-
plexity. We also give the definition of an o-minimal structure on the real
field and show that in such a category the uniform bound for the number
of connected components of plane sections holds.

Definition 4.1. A set A ⊂ R
n is called semialgebraic, if it can represented

in a form A =
p⋃

i=1

Ai, with Ai =
ji⋂

j=1

Aij , where each Aij has the form

{(x1, . . . , xn) ∈ R
n; pij(x1, . . . , xn) > 0},

{(x1, . . . , xn) ∈ R
n; pij (x1, . . . , xn) ≥ 0 },

pij being a polynomial (of degree dij).

Of course a representation of A in the above form is not unique.

As an exercise one can prove that the semialgebraic sets of R are the finite
unions of points and intervals.

Definition 4.2. The set of data:
(
n, p, j1, . . . , jp, (dij) i=1,...,p

j=1,...,ji

)
is called the

diagram D of (the representation of) the set A.

The properties of semialgebraic sets are studied in detail, e.g. in [Arn],
[Ben-Ris], [Boc-Cos-Roy], [Cos], [Har 3], [�Loj], [Mil], [Pet-Ole], [Tho 1]. We
recall briefly the most important of these properties:

Proposition 4.3. Let A ⊂ R
n be a semialgebraic set. Then the set π(A),

where π : R
n → R

m is the canonical projection, is also semialgebraic, and
the diagram of π(A) depends only on the diagram of A (Tarski-Seidenberg
theorem). As a consequence, the sets Ā, ∂A, and each connected component

Y. Yomdin and G. Comte: LNM 1834, pp. 47–58, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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of A are semialgebraic, and the diagram of these sets depends only on the
diagram of A (see [Ben-Ris], [Cos], [Har 3], [�Loj]).

Proposition 4.4. Any semialgebraic set admits semialgebraic stratification
(i.e. a partition into smooth submanifolds (Ai)i∈I of R

n- the strata, that are
semialgebraic sets of R

n, such that the family (Ai)i∈I is locally finite and
verifies the following property, called the frontier property: if Āi

⋂
Aj = ∅

then Aj ⊂ Āi. See Fig. 4.1 for an example of strafication), with the number
of strata and their diagrams depending only on the diagram of the initial set
(see [�Loj]). The same is true for triangulations (see [Cos], [Har 3], [�Loj]).

Fig. 4.1.

We define dim(A) as the maximal dimension of the strata in some strati-
fication of A.

Proposition 4.5. Let A ⊂ R
n be a semialgebraic set. Then all the Betti

numbers bi(A), i = 1, . . . , n, are bounded by constants Bi(D) depending only
on the diagram D(A). In particular, the number of connected components of
A is bounded by B0(D).

This follows from Proposition 4.4 or can be obtained directly (see [Arn],
[Ben-Ris], [Boc-Cos-Roy], [Mil], [Pet-Ole 1,2], [Tho] ).

Since we need an explicit bound for B0(D), this last result we prove below.

In most constructions in this chapter we try to use only “direct” meth-
ods, avoiding e.g. the use of projections and hence of the theorem of Tarski-
Seidenberg. The bounds are obtained by reduction to the case, where Bezout’s
theorem is applicable. We recall this theorem, in the real case, beelow. How-
ever we mention again, as in Chapter 1, references concerning effectiveness of
algorithm involving Tarski-Seidenberg’s principle: [And-Brö-Rui], [Hei-Rec-
Roy], [Hei-Roy-Sol 1,2,3,4], [Ren 1, 2, 3] etc...
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Proposition 4.6. (Bezout’s theorem, see e.g. [Ben-Ris]) Let

p1 = p2 = . . . = pn = 0 (∗)

be a system of polynomial equations in R
n, of degrees d1, d2, . . . , dn, respec-

tively. Then the number of nondegenerate real solutions of (∗) (x is such a

solution if the rank of
( ∂pi

∂xj
(x)
)

j=1,...,n

i=1,...,n

equals n) is bounded by
n∏

i=1

di.

Proof. Consider the complexification of equations (∗) on C
n and notice that

a nondegenerate real zero x of (∗) is also a nondegenerate solution of the
complexified system. Hence the inequality follows from the complex Bezout
theorem (see [Ben-Ris] for instance). 
�
Remark. The above inequality is not true in general for isolated, but possibly
degenerate, solutions of (∗). For instance, let us consider the following system:

f1(x1, . . . , xn−1) = 0 deg d
...

...
fn−1(x1, . . . , xn−1) = 0 deg d

and let this system have dn−1 nondegenerate solutions. Now consider the
system in R

n:
g = f2

1 + . . .+ f2
n−1 = 0 deg 2d

xn = 0 deg 1
...

...
xn = 0 deg 1

Clearly this system has dn−1 isolated (of course degenerate) solutions. But
the product of degrees is 2d < dn−1, for d sufficiently big and n ≥ 3.

The reason is that a degenerate isolated zero of a real system (∗) can lie
on a higher-dimensional component of zeros of the complexification of (∗).

Definition 4.7. For any finite sequence D of integers of diagram type D =
(
n, p, j1, . . . , jp, (dij) i=1,...,p

j=1,...,ji

)
define B0(D) as

1
2

p∑

i=1

di(di − 1)n−1, where di =

ji∑

j=1

dij . For a semialgebraic set A, define B̂0(A) as the infimum of B0(D) over

the diagrams D of all representations of A.

Theorem 4.8. For any semialgebraic set A ⊂ R
n, the number of bounded

connected components of A, B̃0(A), is bounded by B̂0(A).

Proof. We follow the proof of [Mil], [War].

Obviously, it is enough to prove that the number of connected components

of A =
q⋂

j=1

{pj
>
≥

0}, deg pj = dj , is at most
1
2
d(d− 1)n−1, d =

q∑

j=1

dj .
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We may assume that only the inequalities ≥ define A, and hence that A
is closed. Indeed, let us choose a point xα in each (not necessarily bounded)
connected components Aα of A. The number of connected component Aα,
and hence of xα is finite (see e.g. [Mil], [Whi 2]).

If one of the inequalities defining A has the form {pj > 0}, let us denote
minα(pj(xα)) = δ > 0. Hence if we replace in the definition of A this

inequality by {pj − δ

2
≥ 0}, we obtain a new set A′ ⊂ A. Of course any

connected components of A′ lies in exactly one connected component of A,
and all the points xα are still in A′, therefore B̃0(A′) ≥ B̃0(A).

We may assume that each component of A has a nonempty interior. In-

deed, A =
q⋂

j=1

{pj ≥ 0} is closed, hence the minimal distance between the

components Aα of A (inside a ball B containing all the bounded compo-
nents of A) is ρ > 0. Let U be the open

ρ

3
-neighborhood of A, and let

ξ = max
x∈B\U

min
1 �j �q

pj(x). We have ξ < 0, because the continuous func-

tion min
1 �j �q

pj reaches its maximun on the compact set B \ U . Defining

A′ =
q⋂

j=1

{pj − 1
2
ξ ≥ 0}, we have A ⊂ A′ ⊂ U , because ξ <

ξ

2
< 0. By the

choice of ρ, we also have B̃0(A) = B̃0(U)( �B̃0(A′)). Now any connected
component of A′ containing a component of A has a nonempty interior, in-
deed if it is not the case one can find a sequence of points xn with limit x ∈ A

such that pj(xn) <
1
2
ξ (for some j ∈ {1, . . . , q}); which is a contradiction. We

conclude that the number of bounded connected components of A′ having a
nonempty interior is greater than B0(A). The diagram of A and A′ being the
same, it suffices to prove the theorem for connected components with non
empty interior.

Thus we may assume A =
q⋂

j=1

{pj ≥ 0}, with each bounded component of

A having a nonempty interior (we assume that A has bounded components

of course). Let p =
q∏

j=1

pj , deg(p) =
q∑

j=1

deg(pj) = d.

Any bounded connected component of A contains at least a component of
q⋂

j=1

{pj > 0}, because a component of
q⋂

j=1

{pj = 0} cannot have a nonempty

interior. Hence any bounded connected component of A contains at least a
component of {p > 0} and finally: B̃0(A) �B̃0({p > 0}).
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The components of {p > 0} are open, hence the image by p of such a
component is a non trivial interval of the type ]0, C[ or ]0, C] (C ∈ R+∪{∞}).
By Sard’s theorem, let η > 0 be a sufficiently small regular value of p such
that in each bounded component of {p > 0} there is at least one component
Zα of the regular hypersurface {p = η} = Z.

Now take a generic linear form l on R
n. We may assume all the critical

points of l on Z to be nondegenerate, and on each Zα there are at least two
critical points of l – the minimum and the maximum. But the critical points
of l on Z are defined by the following system of equations (assuming l = x1):

p− η = 0 deg d
∂p

∂x2
= 0 deg d− 1

∂p

∂x3
= 0 deg d− 1

...
...

∂p

∂xn
= 0 deg d− 1

By proposition 4.6, the number of critical points is at most d(d− 1)n−1, and
therefore:

B̃0(A) �B̃0(Z) �1
2
d(d− 1)n−1. 
�

Corollary 4.9. Let A ⊂ R
n be a semialgebraic set with diagram

(
n, p, j1, . . . ,

jp, (dij) i=1,...,p

j=1,...,ji

)
. Then:

– the number of connected components of the intersection of A with any ball

Br in R
n is bounded by

1
2

p∑

i=1

(di + 2)(di + 1)n−1, where di =
ji∑

j=1

dij ,

– the number of bounded connected components of A ∩ P , where P is a

�-plane of R
n, is bounded by

1
2

p∑

i=1

(di + 2)(di + 1)�−1.

– In particular the number of connected components of A ∩ P itself is also

bounded by
1
2

p∑

i=1

(di + 2)(di + 1)�−1.

Proof. For the first bound, we add to the inequalities defining A the inequal-

ity r2 −
n∑

i=1

x2
i ≥ 0 of degree 2, and for the second bound we substitute n− �

variables in the equations by the others. The bound
1
2

p∑

i=1

di(di − 1)�−1 does
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not depend on the radius of the ball, but only the degrees, thus it also bounds
the number of connected components of A ∩ P itself. 
�

We need also the following construction, concerning polynomial mappings
of semialgebraic sets (see the proof of Theorem 7.1). In the o-minimal case,
this result is called “definable choice”.

Theorem 4.10. Let f : R
n → R

m be a polynomial mapping of degree d,
and let A be a compact semialgebraic set in R

n. Let B be a semialgebraic
subset in f(A) ⊂ R

m. Then there exists a semialgebraic subset C ⊂ A with
dim(C) = dim(B), such that f(C) = B, and the diagram D(C) depends only
on D(A), D(B), n, m and d.

Proof. It follows immediately by using, say, the stratification of the mapping
f|A on B (see [Har 3]). We give here a more direct proof, assuming A to be
compact.

Indeed, in this case for each y ∈ B, f−1(y)∩A is a compact semialgebraic
subset in R

n. Take x(y) to be the maximal point in f−1({y}) ∩A, according
to the lexicographic order in R

n. Then clearly the set C ⊂ A, formed by all
the points x(y), y ∈ B is semialgebraic, with the diagram depending only on
the required data, and f|C : C → B is one-to-one. 
�

This proof was suggested by A. Tannenbaum. But of course the definition
of the semialgebraic set C is given by means of projections (because we
define maximal points), and thus involve the theorem of Tarski-Seidenberg.
Consequently on one hand the complexity (of a diagram) of C, which of
course depends only on the complexity of the diagrams of A and B, may be
big, and on the other hand in both proofs above it is difficult to write down
some specific representation of C. Therefore we state below a weaker result,
which we can prove, however, in a more constructive way.

Exercise 4.11. Let f = (f1, . . . , fm) : R
n → R

m, n ≥ m be a polynomial
mapping, deg(fj) = dj . Let A be a semialgebraic set inside some ball Bn

r ⊂
R

n. Then for any ξ > 0 there exists a semialgebraic set C (depending on ξ)
with the following properties:

1. C ⊂ Aξ, the ξ-neighborhood of A.
2. The Hausdorff distance between f(C) and f(A) is at most Kξ, with K a

Lipschitz constant of f on Bn
r .

3. dim(C) �m.
4. Any �-dimensional plane in R

n intersects C in at most ν connected com-
ponents, where ν is explicit in terms of m,n, � , dk and d̄ij ,, assuming that

A is given as
p⋃

i=1

q⋂

j=1

{pij ≥ 0} and deg(pj) = d̄ij .

Hint. Find explicit equations for the α-neighborhood of the boundary of
A, for the boundary of the α-neighborhood of A, and use the polar variety
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of these neighboroods relative to a convenient projection, to obtain the set
C (see [Lê-Tei], [Hen-Mer] or [Hen-Mer-Sab] for the general theory of polar
varieties).

Another result of the same type is the following. We have already stated
this result in Chapter 1 (Theorem 1.1).

Theorem 4.12. Let A ⊂ R
n be a semialgebraic set, Bn

r a ball of radius r.
Then any two points x, y, in the same connected component of A ∩Bn

r , can
be joined in A ∩ Bn

r by a by a piecewise smooth connected curve of length
�K · r, where K depends only on D(A).

Proof. (see [D’ac-Kur], [Den-Kur], [Har 3], [Kur], [Kur-Orr-Sim], [Tei 1],
[Yom 1], [Yom 5]). We can assume that A is compact because it suffices to

show the theorem for semialgebraic sets of the type:
p⋃

i=1

ji⋂

j=1

Aij , where each

Aij has the form {(x1, . . . , xn) ∈ R
n; pij(x1, . . . , xn) ≥ 0}. Indeed, two points

x and y in the same connected component of A may be joined by a curve s
(this is a direct consequence of the triangulability of semialgebraic sets [Har
1], [Hir 2]), and if pij > 0 is an inequality defining A, since s is compact, we
have pij |s ≥ δ > 0. Thus it suffices to prove the theorem for each set Aδ ⊂ A,
where the inequalities {pij > 0} are replaced {pij ≥ δ} in the definition of
Aδ (of course D(Aδ) = D(A)).

Fig. 4.2.

We propose proof by induction on the dimension of A (see Fig. 4.2) For
this proof we do not need Theorem 4.10.

Lemma 4.13 is the first step of the induction. We assume A ⊂ Bn
r . Now

take x and y in the same connected component of A, and let π : A → R be the
restriction of the standard projection R

n → R. In the connected component
of x in the fiber π−1(π(x)) there exists a point x′ of the boundary ∂A of A
and in the same way in the connected component of y in the fiber π−1(π(y))
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there exists a point y′ of the boundary of A. Now by induction hypothesis x
and x′ may be joined by an algebraic curve of length less than K1 ·r, x′ and y′

by an algebraic curve of length less than K2 ·r (because dim(∂A) < dim(A)),
and y and y′ by an algebraic curve of length less than K3 ·r. Now the Theorem
is a consequence of the following Lemma. 
�

Remark. Of course finding an explicit diagram of the boundary of a con-
nected component of a given semialgebraic set is not an easy task (because
Tarski-Seidenberg’s principle is involved)! Consequently producing an explicit
bound for the length of the curve provided by the proposed proof of Theorem
4.12 is, in general, a difficult problem, and the bound obtained, for sure, will
not be sharp. We can find such an explicit bound in [D’Ac-Kur], for A the
γ-critical set of f . We also propose an alternative method to produce such a
bound in Chapter 1.

Lemma 4.13. Let Γ be a (H�, �)-rectifiable set in Bn
r ⊂ R

n (ie H� almost
of Γ is contained in the union of some countable family of �-dimensional
submanifolds of class 1 of R

n) such that the number of points of Γ ∩ P ,
where P is a generic (n− �)-plane in R

n, is bounded by B ∈ N. The �-volume
of Γ is �C ·B · r�, with C a constant depending only on n and �.
In particular, the length of a semialgebraic curve of bounded complexity in
Bn

r is bounded by K · r.

Proof. The Lemma is a direct consequence of the Cauchy-Crofton formula

for the volume: V ol�(Γ ) = c

∫

P∈G�
n

∫

y∈πP (Γ )
card(π−1

P (y) ∩ Γ ) dP , where

πP is the orthogonal projection of R
n onto the �-dimensional linear plane

P of R
n, and c depends only on n and � (see Chapter 2). Hence we have:

V ol�(Γ ) �c.B
∫

P∈G�
n

V ol�(πP (Γ )) dP . But Γ ⊂ Bn
r , thus πP (Γ ) ⊂ B�

r, and

V ol�(πP (Γ )) �C ′.r�, with C ′ = V ol�(B�
1). 
�

Let us compare the statement of theorem 4.12 with another metric result
on semialgebraic sets.

Theorem 4.14. ([Har 3], [�Loj]) For any compact semialgebraic set, there
are constants K and α > 0, such that any x and y belonging to the same
component of A, can be joined in A by a curve of length �K||x− y||α.

Consider, for example, curves of degree 2 in the plane. For any such
curve,the biggest exponent α in this theorem is 1: take x tending to y in
A; the ratio dA(x, y)/||x− y||α, where dA(x, y) is the distance from x to y
in A, is bounded only for α �1. Furthermore, for any curve of degree 2 in
the plane, there obviously exists a constant K such that any x and y in A
can be joined by a curve in A of length �K||x − y||. But the constant K
strongly depends on the concrete curve, as it is illustrated in Fig. 4.3. This
is in contrast with the conclusion of Theorem 4.12: any two points on any
parabola in B2

r can be joined by a curve of length �C · r.
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Fig. 4.3.

The fact that all the coefficients in our inequalities depend only on degrees,
and not on a specific choice of the polynomials, is essential in our approach
(see for instance the proof of Corollary 4.9).

More generally we say that a closed set A has the Whitney property (with
exponent α), if for each a ∈ A there exists a neighbourhood U of a and two
positive constants K and α such that any points x and y in U can be joined
by a curve of length �K.||x− y||α.

It has been proved that each closed subanalytic set has the Whitney prop-
erty in [Sta] (see also [Kur], in which the author proves that any subanalytic
set A admits an analytic stratification such that each stratum has the Whit-
ney property with α = 1). For questions concerning the Whitney property of
the geodesic distance see [Kur-Orr], and for questions concerning the suban-
alyticity or the regularity of the sub-Riemannian dictance see [Agr1], [Agr2]
for instance.

The property mentioned in corollary 4.9 is classically called the Gabrielov
property (see [Gab 4]). More precisely, we will say that a set A has the local
Gabrielov property if for any a ∈ A ⊂ R

n there exists a neighbourhood U of
a and an integer B(= B(a, U)) such that for any �-dimensional affine plane
P of Ḡ�

n, the number of connected components of U ∩A∩P is bounded by B.
If we can take U = R

n in the above definition, we will say that A has the
global Gabrielov property

The Corollary 4.9 says that any semialgebraic set has the Gabrielov prop-
erty (with explicit bound B depending only on � and the degrees of the
polynomials in the definitions of A).

However not only semialgebraic sets, but a very large class of sets has the
Gabrielov property. Let us give two definitions:

Definition 4.15. ([Dri-Mil]) An analytic-geometric category C is the datum
for each real analytic manifoldM of the collection C(M) of sets ofM such that
the five following conditions are satisfied (for each real analytic manifold N):
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AG1 C(M) is a boolean algebra (for ∪,∩) of subsets of M and M ∈ C(M).

AG2 If A ∈ C(M), then A× R ∈ C(M × R).

AG3 If f : M → N is a proper real analytic map and A ∈ C(M), then
f(A) ∈ C(N).

AG4 If A ⊂ M and (Ui)i∈I is an open covering of M , then A ∈ C(M) if and
only if A ∩ Ui ∈ C(M) for all i ∈ I.

AG5 Every bounded set in C(R) has finite boundary.

Let us note that the subanalytic sets of any real analytic manifold M
(ie sets which locally are projections of relatively compact semianalytic sets.
The term subanalytic was introduced by Hironaka in [Hir 1], but the notion
has been first considered by Thom in [Tho 2] and �Lojasiewicz [�Loj]. See for
instance [Bie-Mil 5] or [Den-Sta]) form an analytic-geometric category, which
is the smallest analytic-geometric category.

Because in AG3 we allow analytic functions, and AG5 concerns only
bounded sets of C(R), the behaviour at infinity of sets in analytic-geometric
categories is not controlled, and these sets are not as globally nice as semial-
gebraic sets. For globally nice sets we have the following categories:

Definition 4.16. ([Dri], [Dri-Mil]) A structure on the real field (R,+, .)
is a sequence (Sn)n∈N such that for each n ∈ N:

S1 Sn is a boolean algebra of subsets of R
n, with R

n ∈ Sn.

S2 Sn contains the diagonal {(x1, . . . , xn) ∈ R
n;xi = xj} for 1 �i < j �n.

S3 If A ∈ Sn, then A× R and R ×A belong to Sn+1.

S4 If A ∈ Sn+1 then π(A) ∈ Sn, where π : R
n+1 → R

n is the standard
projection.

S5 S3 contains the graphs of addition and multiplication.

The structure is said to be o-minimal if it satisfies the following additional
axiom:

S6 (o-minimal axiom) S1 consists of the finite unions of intervals of all
kinds.

Roughly speaking, each analytic-geometric category gives rise to an o-
minimal structure, after compactification (see [Dri-Mi]).

The smallest structure S(R,+, .) on (R,+, .) consists of the semialgebraic
sets defined over Q (the pij ’s are in Q[X1, . . . , Xn] in the Definition 4.1).

We can construct structures satisfying axioms S1 to S5 in the following
way: we consider a family of functions (fj)j∈J and the smallest structure on
(R,+, .) containing the graphs of the fj ’s. When fj = j ∈ R, the constant
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function which equals j, we obtain the family of semialgebraic sets (this is
nothing else than the Tarski-Seidenberg theorem).

When fj ranges over all restrictions of analytic functions on closed balls
of R

n, we obtain the family of globally subanalytic sets, denoted S(Ran).
If we consider in addition the function x �→ ex, we obtain the so-called

Log-Analytic structure, denoted S(Ran,exp).
Of course we have: S(R,+, .) ⊂ S(Ran) ⊂ S(Ran,exp). It has been proved

in [Wil] that the structure S(Ran,exp) is o-minimal (so are the structures
S(Ran), S(R,+, .) and the structure consisting of all semialgebraic sets).

See also [Shi], for an interesting and slightly different (actually, a more
general) viewpoint.

Definition 4.17. We will say that a set belonging to an analytic-geometric
category or to an o-minimal structure is a tame set (see [Tei 2]).

We have the following general result:

Theorem 4.18. Every tame set has the local Gabrielov property (the global
Gabrielov property if the set is in an o-minimal structure).
Proof. We first prove the local property, hence we suppose that the tame
set A ⊂ R

n lies in a closed ball Bn
r of radius r > 0. We denote by Ḡ�

n(r) the
subset of affine �-dimensional planes of R

n which encounter the ball Br, this
set is compact, and we denote by B�

r the closed ball of radius r centered at
the origin of R

�. We suppose that � < n, because for � = n the Gabrielov
property just says that A has a finite number of connected components, which
is true as an easy consequence of Axiom S6.

Let us consider the partition E∪F of the compact set Ḡ�
n(r)×B�

r, where:

E = {(P, x) ∈ Ḡ�
n(r) ×B�

r; x ∈ A ∩ P}

F = {(P, x) ∈ Ḡ�
n(r) ×B�

r; x /∈ A ∩ P},
and finally let us denote π : Ḡ�

n(r) ×B�
r :→ Ḡ�

n(r) the standard projection.
Now, A being in an analytic-geometric category or in an o-minimal cate-

gory, the proper map π (its graph) lies in the same category, and thus admits
a Whitney stratification (see [Dri-Mil], [Loi]): there exists a tame stratifica-
tion Σ of Ḡ�

n(r)×B�
r compatible with the family (E,F ) (E and F are unions

of strata) and a tame stratification Σ′ of Ḡ�
n(r) such that for each stratum

σ′ ∈ Σ′, π−1(σ′) is a union of strata and the restriction of π to each of these
strata is a submersion over σ′ (of course this property does not require the
Gabrielov property!).

The first isotopy lemma of Thom-Mather ([Tho 2], theorem 1G1; [Ma],
proposition 3.11) gives us a local topological trivialisation of π over each
stratum σ′ ∈ Σ′, furthermore this trivialisation is compatible with Σ. The
stratification Σ′ being locally finite and Ḡ�

n(r) being compact, Σ′ is finite.
Let us write Σ′ = {σ′

1, . . . , σ
′
s}. For any q ∈ {1, . . . , s} and any P, P ′ ∈ σq,

the fibers π−1(P ) and π−1(P ′) are homeomorphic, and the homeomorphism
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preserves the sets E and F . In particular the number of connected compo-
nents of A∩P and A∩P ′ is the same, and of course this number is finite for
tame sets by Axiom S6, as mentionned above. Consequently the number of
connected components of A ∩ P is uniformly bounded with respect to P .

If A lies in an o-minimal structure, the standard (semialgebraic) compact-
ification of A in Sn (for instance) is also o-minimal, thus we can take r = ∞
in the proof above. 
�

This proof is short, but it uses two deep results: the existence of Whitney
stratifications of a proper tame map and the first isotopy lemma of Thom-
Mather. Of course, as mentionned in the proof, these results do not require
the Gabrielov property (at least for planes = R

n). For the semialgebraic
case, we may refer to [Har 2], that do not requires the firts isotopy lemma
and provides a method without integration of vector fields.

In what follows we will use the global Gabrielov property.
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Abstract. We study here multidimensional variations of semialgebraic and
tame sets, partly following [Vit 1], [Iva 1]. The stress is lain on properties
which distinguish tame sets, in particular, correlations between variations
of ε-neighborhood, comparison of variations of two sets with a small Haus-
dorff distance etc...

The property which makes computation of variations of a semialgebraic or
an o-minimal set A tractable, is that the number of connected components of
A, as well as of its sections, is uniformly bounded (in terms of the diagram of
A, if A is semialgebraic). We call this property the global Gabrielov property
(see Chapter 4, Theorem 4.18). We recall the bound given for semialgebraic
sets by Corollary 4.9:

• For a semialgebraic set A ⊂ R
n with diagram:

(
n, p, j1, . . . , jp, (dij) i=1,...,p

j=1,...,ji

)
,

the number of connected components of A∩P , where P is a �-plane of R
n

(1 �� �n), is bounded by B0,�(A), the infimum over all representations of

A of the numbers
1
2

p∑

i=1

(di +2)(di +1)�−1, with di =
ji∑

j=1

dij (Corollary 4.9).

• For a tame set A in an o-minimal structure, we denote also by B0,�(A) the
uniform bound of the number of connected components of A∩P , for P an
�-plane of R

n (Theorem 4.18).

Now we can prove the first among the specific properties of variations for
global tame sets.

Theorem 5.1. Let A ⊂ R
n be a tame set, B ⊂ R

n a bounded and closed
set. If A ⊂ B, then Vi(A) �B0,n−i(A).Vi(B) (for all i ∈ {0, . . . , n}).

Proof. The assumption that B is closed implies that V0(B) is a measurable
function (see [Zer]); since A ⊂ B is tame and B is bounded, A is in fact
globally tame. We have:

Vi(A) = c(n, i)
∫

P∈Gi
n

∫

x∈P

V0(A ∩ Px) dx dP

Y. Yomdin and G. Comte: LNM 1834, pp. 59–73, 2004.
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�c(n, i)B0,n−i(A)
∫

P∈Gi
n

∫

x∈P

1πP (A)(x) dx dP,

where 1πP (A) is the indicator function of the projection πP (A) of A onto P .
But since A ⊂ B, for any P ∈ Gi

n, 1πP (A) �1πP (B) , and we can continue our
inequalities:

Vi(A) �c(n, i)B0,n−i(A)
∫

P∈Gi
n

∫

x∈P

1πP (B)(x) dx dP

�c(n, i)B0,n−i(A)
∫

P∈Gi
n

∫

x∈P

V0(B ∩ Px) dx dP = B0,n−i(A)Vi(B),

�

Remark. Of course no inequality of this type holds for nontame sets: e.g.,
we can take as A a curve of infinite length in the unit square B in R

2 and
then V1(A) = ∞, V1(B) �c(2, 1)

√
2 =

π√
2

.

We find again 4.13, as a corollary of 5.1:

Corollary 5.2. Let A ⊂ R
n be a tame set of dimension �. Then for any ball

Bn
r of radius r in R

n,

V ol�(A ∩Bn
r ) = V�(A ∩Bn

r ) �V ol�(B�
1) . c(n, k) ·B0,n−�(A) . r�.


�
Remark. The Corollary shows that a semialgebraic subset A ⊂ Bn

1 of given
complexity, does not have too big volume, or conversely that a semialgebraic
subset A ⊂ Bn

1 of big volume has big complexity.

When A is a bounded tame set of dimension �, the projection πP (A) of
A onto the �-dimensional vector plane P splits into a finite number of tame
domains, say KP

1 , . . . ,K
P
nP

, such that A covers each KP
j with the multiplicity

EP
j ∈ N and the numbers nP and EP

j are uniformly bounded as P ranges
over all elements of G�

n, by the same arguments as in 4.18. The function:

sP =
nP∑

j=1

EP
j 1KP

j
is a tamely constructible function (there exists a (finite)

tame stratification of P such that sP is constant on each stratum).
The representation of this function, of course, is not unique, but by ad-

ditivity, its volume defined as V ol(sP ) =
∑nP

j=1E
P
j V ol�(K

P
j ) is well defined.

Now by definition of the �-variation of A, we have

V�(A) = c(n, �)
∫

P∈G�
n

V ol(sP ) dP,

and the classical Cauchy-Crofton formula ([Fed 1], 5.22 or [Fed 2], 2.10.15)
gives:

V ol�(A) = V�(A) = c(n, �)
∫

P∈G�
n

V ol(sP ) dP.
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Instead of considering bounded tame sets, one can consider germs of tame
sets (at the origin, for simplicity). Let us denote the germ of A by A0.

Note that the projection of such a germ onto a given �-dimensional vector
plane P is not well defined (for instance the projection (in some chart) onto
R

2 of the germ at a point (a, 0) ∈ P
1 × R

2 of the blowing-up of the plane
R

2 at the origin depends on the chosen representation of the germ. Following
the terminology of Thom, this mapping is not “sans éclatement”). However,
the projection of A0 is well defined for generic directions, the transverse
directions, namely projections onto planes P such that P⊥ ∩ C0A0 = {0},
where C0A0 is the tangent cone of A0 at the origin (the tangent cone of the
germ A0 is the semi-cone of R

n consisting of all limit secants to A0 at the
origin).

It follows that a generic projection πP (A0) of the germ A0 splits into a
finite number of germs of tame domains kP

1 , . . . , k
P
νP

, such that A0 covers
the germ kP

j with multiplicity eP
j ∈ N. With the same arguments as in 4.18

(the generic local topological triviality provided by the first isotopy lemma
of Thom) one can show that the numbers νP and eP

j are uniformly bounded
as P ranges over all elements of G�

n (in fact one can easily see that νP �nP

and eP
j �EP

j �B0,n−�(A), for any bounded set A that represents A0).
Now we can define, as above, a tamely constructible function-germ σP =∑νP

j=1 e
P
j 1kP

j
, which is the “localization” of sP . The volume of σP makes no

sense, but one can define the “localisation of the volume of σP ”: the density
Θ�(σP ) (or the Lelong number) of σP by the following formulas:

Θ�(σP ) =
νP∑

j=1

eP
j Θ�(kP

j ),

where the density at the origin Θ�(B0) of a tame germ B0 is by definition

the limit when r tends to 0, of the ratio:
V ol�(B ∩Bn

r )
V ol�(B�

r)
, (this limit exists for

tame sets, by [Kur-Rab]), for any set B which represents the germ B0.
One can prove the following “localized” version of the Cauchy-Crofton

formula for the volume (see [Com 2], [Com 3]):

Θ�(A0) =
∫

P∈G�
n

Θ�(σP ) dP.

Notice that the measure that occurs in this formula is the probability mea-
sure dP on G�

n, and not c(n, �) dP as in the Cauchy-Crofton formula for the
volume.

Actually, one has a more general result:

Theorem 5.3. ([Com 2], [Com 3]) Let A0 be a germ at the origin of a
tame set of dimension � in R

n, G ⊂ G�
n a tame set, G < On(R) a group

acting transitively on G and µ a G-invariant measure on G. Suppose that
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the tangent spaces of C0A0 are in G, that there exists P 0 ∈ G such that
{g ∈ G; g.P 0 = P 0} acts transitively on P 0, and that µ(G) = µ(G∩T A0) = 1
(where T A0 is the set of all transverse projections to A0). Then we have:

Θ�(A0) =
∫

P∈G
Θ�(σP ) dµ(P ).

In particular, when A0 is the germ of a complex analytic set A in C
n ∼

R
2n, the function σP is a function that almost everywhere equals e(A, 0), the

local multiplicity of A at the origin (see [Whi 4]), for generic P in the complex
Grassmann manifold G̃�

n ⊂ G2�
2n. Taking µ = dP̃ the invariant probability

measure on G̃�
n in Theorem 5.3, we obtain a theorem of Draper, which states

that the Lelong number of a complex analytic set is its multiplicity:

Theorem 5.4. ([Dra], [Dem]) With the above notations, we have:

Θ2�(A0) = e(A, 0).


�
Remarks.

• These results illustrate a general principle: global data on algebraic sets,
such as the number of connected components in a plane subspace of the
ambient space, uniform bounds for these numbers, Betti numbers, etc...
are related to the degree, whereas the localization of these data, or local
invariants, are related to the multiplicity.

• It is a direct consequence of Corollary 5.2 and of the definition of the
density, that a semialgebraic subset A ⊂ R

n has its density bounded by its
complexity, namely:

Θ�(A0) �c(n, k)B0,n−�.

However, one can obtain a better bound for the density of A in terms of
complexity, by using the Cauchy-Crofton formula for the density (Theo-
rem 5.3):

Theorem 5.5. Let A0 be a germ of a tame set of dimension � at the origin
of R

n. The following upper bound for the density Θ�(A0) of A0 holds:

Θ�(A0) �B0,n−�.

Proof. We just notice that Θ�(σP ) �B0,n−�. 
�
Remark. We can find a better bound for Θ�(A0), say Θ�(A0) �β0,n−�, where
β0,n−� has the same nature as B0,n−�, the multiplicity mij of the polynomi-
als pij replacing the degrees dij . We just have to prove the local version of
Bezout’s theorem, which only involves the multiplicity mij .
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Now let us go back to the study of the entropy of tame sets.
In general, the fact that the measure m(A) is small says nothing about

M(ε, A) – take A to be the set of rational points in [0; 1]. But for semialgebraic
and tame sets, if the volume is small, the contribution to the ε-entropy of its
“geometric complexity” is bounded by the algebraic complexity of this set
(by its diagram in the semialgebraic case).

Proposition 5.6. Let A ⊂ Bn
r ⊂ R

n be a tame set. Then:

M(ε, A) � C(n)V oln(A).(
1
ε

)n

+C(n).(
1
ε

)n−1
n−1∑

j=0

B0,n−j(A).V olj(Bj
1).rj .εn−j−1

� C(n)V oln(A).(
1
ε

)n + C[1 + (
r

ε
)n−1],

where C(n) is given by 3.4 and 3.5, and C depends only on D(A) in the
semialgebraic case .

Proof. By Theorem 3.5 we have:

M(ε, A) � C(n)
n∑

i=0

1
εi

· Vi(A) �C(n) · V oln(A) · (
1
ε

)n

+C(n)
n−1∑

j=0

B0,n−j(A) · V olj(Bj
1) · (

r

ε
)j ,

the last inequality being a consequence of 5.2. But the last term of this sum
is bounded by:

C(n) ·B(A)
n−1∑

j=0

(
r

ε
)j �n · C(n) ·B(A)(1 + (

r

ε
)n−1),

where B(A) = maxj∈{1,...,n−1}
(
B0,n−j(A) · V olj(Bj

1)
)
, which proves the last

inequality with C = n · C(n) ·B(A). 
�

If we know a priori that our semialgebraic set has dimension less than n,
we get nontrivial bounds on its ε-entropy without any specific information,
except its algebraic complexity:

Corollary 5.7. Let A ⊂ R
n be a tame set of dimension � < n. Then for any

ball Bn
r ⊂ R

n :

M(ε, A ∩Bn
r ) �C(n)

�∑

j=0

B0,n−j(A)V olj(Bj
1)(

r

ε
)j �C[(

r

ε
)� + 1],
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where C depends only on the diagram D(A) of A in the semialgebraic case.

Proof. It follows immediately from Proposition 5.6, taking into account that
Vj(A) = 0, for j > �. 
�

Thus semialgebraic sets of fixed algebraic complexity and of dimension
less than n, cannot be “too dense” inside the ball Bn

r .

In the same way, when a semialgebraic set A ⊂ R
n approaches a given set

B ⊂ R
n, the dimension of A and the complexity of A cannot be too small.

More precisely, we have:

Proposition 5.8. (see also [Zer]) Let A ⊂ Bn
1 ⊂ R

n be a semialgebraic
set, B ⊂ R

n and 1 > η > 0 such that B ⊂ Aη (Aη being the η-neighborhood
of A). Then we have:

M(η,B) �(
4
η

)kC(n).ν(k).α(n),

where k is the dimension of A, C(n) is given by Theorem 3.5, ν(k) =
k∑

i=0

c(n, i).V oli(Bi
1), and α(n) =

1
2

p∑

i=1

(di + 2)(di + 1)n−1, assuming that

A has a diagram
(
n, p, j1, . . . , jp, (dij) i=1,...,p

j=1,...,ji

)
.

Proof. Let us write M = M(4η,B), and let x1, . . . , xM , let be M points in
B such that d(xi, xj) > 4η, for i = j. By assumption, there exist y1, . . . , yM

in A with d(xj , yj) < η. The balls Bj of center yj and radius η are disjoint,
thus we have, by Proposition 3.3:

Vi(A) ≥
M∑

j=1

Vi(A,Bj), for all i = 0, . . . , k.

It follows that:
k∑

i=0

Vi(A)
ηi

≥
M∑

j=1

k∑

i=0

Vi(A,Bj)
ηi

≥ M.c(n), (by Theorem 3.4).

On the other hand, by Theorem 5.2,

Vi(A) �c(n, i).α(n− i).V oli(Bi
1),

hence:

M(4η,B) � 1
c(n)

.
k∑

i=0

c(n, i).α(n− i)
V oli(Bi

1)
ηi

� 1
c(n)

.α(n)
k∑

i=0

c(n, i).V oli(Bi
1)

ηk
. 
�

Remarks.



5 Variations of Semialgebraic and Tame Sets 65

• Proposition 5.8 implies that when M(ε, B) is big, k and the degrees dij

cannot be too small.
• If for all ε > 0, there exists a semialgebraic set Aε of dimension k such

that B ⊂ (Aε)ε, and if the complexity of Aε is uniformly bounded, then
dime(B) �k.

The properties of the ε-entropy allow us easily to get bounds also for the
volume of η-neighborhoods of tame sets.

Theorem 5.9. Let A be a tame set of dimension � < n. Then for any ball
Bn

r ⊂ R
n and for any η > 0, the volume of the η-neighborhood of A ∩Bn

r is
bounded as follows:

V oln
(
(A ∩Bn

r )η

)
�C ′(n)

�∑

j=0

B0,n−j(A) · rj · ηn−j �C ′ · [r�ηn−� + ηn],

with C ′ depending only on D(A) in the semialgebraic case.

Proof. We have: V oln((A∩Bn
r )η) �V oln(Bn

2η)·M(η,A∩Bn
r ), since M(η,A∩

Bn
r ) balls of radius 2η cover the η-neighborhood of A∩Bn

r . Applying the result
of Corollary 5.7, we obtain the required inequality. 
�

Naturally, this expression is quite similar to the Weyl or Steiner formula
for volume of tubes (see [Wey], [Ste]).

Turning back to variations, we notice that in general if two sets are closed
in the Hausdorff metric, their variations may be quite different: take once
more A = [0; 1], and B = Q ∩ A. Then dH(A,B) = 0, but V1(A) = 1,
V1(B) = 1 and V0(A) = 1, V0(B) = ∞. Another example is the following:
take A = [0; 1] and B a spiral in A × [0; ε] of infinite length. Then V0(A) =
V0(B) = 1, but V1(A) = 1 and V1(B) = ∞.

However, for semialgebraic sets of a fixed algebraic complexity, or for tame
sets, the situation is different:

Theorem 5.10. Let A,B ⊂ Bn
r be two tame sets. If dH(A,B) = δ, then

|V oln(A)−V oln(B)| �C(δrn−1 + δn), with C depending only on the bounds
B0,j(∂A) and B0,j(∂B), and thus on D(A) and D(B), when A and B are
semialgebraic. In particular, |V oln(A) − V oln(B)| −−−−→

δ→0
0.

Proof. The hypothesis dH(A,B) = δ implies that (A \ B) ∪ (B \ A) ⊂
(∂A ∪ ∂B)δ. Hence

|V oln(A) − V oln(B)| �V oln(A \B) + V oln(B \A) �V oln
(
(∂A ∪ ∂B)δ

)
.

But ∂A and ∂B are tame sets of dimension less than n − 1 (with diagrams
depending only on D(A) and D(B), in the semialgebraic case), hence by
Theorem 5.9, we have:

|V oln(A) − V oln(B)| �C[rn−1δ + δn].
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�

Also taking the δ-neighborhoods for tame sets does not change variations
too much:

Theorem 5.11. Let A ⊂ Bn
r be a tame set. Then, for all i ∈ {1, . . . , n}:

Vi(Aδ) �Vi(A) + Ĉ(δri−1 + δi), V0(Aδ) �V0(A),

where the constant Ĉ depends only on constants of the type B0,n−j , and thus
in the semialgebraic case, only on D(A). In particular lim

δ→0
Vi(Aδ) �Vi(A).

(For A closed, in fact lim
δ→0

Vi(Aδ) = Vi(A))

Proof. We denote below C, C ′ etc..., the constants of type B0,n−j (depending
only on D(A) in the semialgebraic case). We have:

Vi(Aδ) = c(n, i)
∫

P∈Gi
n

∫

x∈P

V0(Aδ ∩ Px)dx dP.

Let us estimate the inner integral. Let πP denote the orthogonal projection
onto P . Of course, we have π(A) ⊂ π(Aδ) ⊂ π(A)δ. By theorem 5.9:

V oli(πP (Aδ) \ πP (A)) �C(δri−1 + δi).

We have: ∫

x∈P

V0(Aδ ∩ Px)dx =

∫

x∈πP (Aδ)\πP (A)
V0(Aδ ∩ Px)dx+

∫

x∈πP (A)
V0(Aδ ∩ Px)dx.

Since Aδ is tame, we have the global Gabrielov property: there exists C ′ such
that V0(Aδ ∩ Px) �C ′, and consequently the first integral is bounded by:

C ′C(δri−1 + δi).

Now let Σ ⊂ πP (A) be the set of x ∈ P , for which V0(Aδ ∩Px) > V0(A∩Px).
Let us prove the following lemma:

Lemma 5.12. Let Σ ⊂ ∆δ, where ∆ is the set of critical values of πP :
A → P . (Of course, the singular points of A are included in the set of critical
points of πP : A → P ).

Proof of Lemma 5.12. If for some x ∈ Σ there is a component of Aδ ∩Px,
not containing points of A ∩ Px, then at a distance at most δ from this
component, there is a point y ∈ A, at which the distance to Px achieves its
local minimum. Clearly y is a critical point of πP |A. Thus πP (y) ∈ ∆, and
d(x, πP (y)) �δ. 
�

Now:
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∫

x∈πP (A)
V0(Aδ∩Px)dx =

∫

x∈∆δ

V0(Aδ∩Px)dx+
∫

x∈πP (A)\∆δ

V0(Aδ∩Px)dx.

But dim(∆) < i (by Sard’s theorem), hence: V oli(∆δ) �C ′′[δri−1 + δi], by
theorem 5.8, and once more:

∫

x∈∆δ

V0(Aδ ∩ Px)dx �C ′C ′′(δri−1 + δi).

Furthermore:
∫

x∈πP (A)\∆δ

V0(Aδ ∩ Px)dx �
∫

x∈πP (A)\∆δ

V0(A ∩ Px)dx

�
∫

x∈πP (A)
V0(A ∩ Px)dx.

Combining these estimates, we get:
∫

x∈P

V0(Aδ ∩ Px)dx �
∫

x∈P

V0(A ∩ Px)dx+ C̄(δri−1 + δi),

which substituting into the integral over Gi
n gives:

Vi(Aδ) �Vi(A) + Ĉ(δri−1 + δi). 
�

Of course, nothing of this type holds for non-tame sets: for A = Q∩ [0; 1],
Aδ = [−δ; 1 + δ], and V1(Aδ) = 1 + 2δ, V1(A) = 0.

As an easy consequence of Theorem 5.11 we obtain the following extension
of Theorem 5.10 to lower variations:

Theorem 5.13. Let A,B ⊂ Bn
r be tame sets. Then if dH(A,B) = δ,

Vi(A) �C̃
(
Vi(B) + δri−1 + δi

)

Vi(B) �C̃
(
Vi(A) + δri−1 + δi

)
,

where C̃ depends only on constants of the type B0,j , and thus only on D(A)
and D(B) when A and B are semialgebraic. In particular, if dH(A,B) → 0,
then lim supVi(A) �C̃Vi(B) and lim supVi(B) �C̃Vi(A).

Proof. We have A ⊂ Bδ and B ⊂ Aδ and applying Theorem 5.11 and
Theorem 5.1, we obtain the required inequality.

The following easy example shows that for lower variations Vi, i < n, the
constant C̃ in the bounds of Theorem 5.13 cannot be eliminated.

Take A,B ⊂ R
2, A = B2

1 ∩ {y2 = 0}, B = B2
1 ∩ {y2 = δ2}.
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Fig. 5.1.

Then:

dH(A,B) = δ, V1(A) = 1, V1(B) −→
δ→0

2. (see Fig. 5.1)

In fact, for tame sets, ε-entropy and variations are equivalent in the fol-
lowing sense:

Theorem 5.14. For A a bounded tame set of dimension �, we have:

C1

�∑

i=0

Vi(A).(
1
ε

)i �M(ε, A) �C2

�∑

i=0

Vi(A).(
1
ε

)i,

where C1 and C2 depend only on constants of the type B0,j , and thus only
on D(A) in the semialgebraic case.

Proof. The upper bound is given in 3.5; it remains to prove the lower bound.

We have: A ⊂
q⋃

j=1

Bj , with q = M(ε, A) and Bj some balls of radius ε.

Hence, by the property (7) of variations,

Vi(A) �
q∑

j=1

Vi(Bj ∩A).

But by Theorem 5.1: Vi(Bj ∩A) �c(n, i).B0,n−i(A∩Bj).V oli(Bi
1).εi = C.εi,

hence:
Vi(A) �qC.εi or M(ε, A) = q ≥ 1

C
Vi(A).

1
εi
.

Adding all these inequalities for i = 0, . . . , �, we obtain:

M(ε, A) ≥ C1

�∑

i=1

Vi(A).
1
εi
.


�
Remark. While the upper bound for ε-entropy in terms of variations is
valid for any set, the lower holds only for “simple” ones. For instance for
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A = [0; 1] ∩ Q, the set of rational points in [0; 1], V0(A) = ∞, but M(ε, A) =

M(ε, [0; 1]) = [
1
ε

] + 1.

Another property of variations, which distinguish tame sets among more
complicated ones, is the following:

Theorem 5.15. Let A be a tame set. Then for each i ≥ 0 and 0 �j �i:

Vi(A) �C.Vj(A).Vi−j(A),

where C depends only on constants of the type B0,k, and thus only on D(A)
in the semialgebraic case.

Proof. By the inductive formula for variations (property 8 of Chapter 3), we
have:

Vi(A) = c(n, i, j)
∫

P̄∈Ḡn−j
n

Vi−j(A ∩ P̄ ) dP̄ .

Now by Theorem 5.1, Vi−j(A ∩ P̄ ) �B0,i−j(A ∩ P̄ )Vi−j(A). Hence:

Vi(A) �c(n, i, j).B0,i−j(A ∩ P̄ ).Vi−j(A)
∫

P̄∈Ḡn−j
n

1P̄∩A dP̄

�c(n, i, j).B0,i−j(A ∩ P̄ ).Vi−j(A)
∫

P̄∈Ḡn−j
n

V0(P̄ ∩A) dP̄

=
c(n, i, j)
c(n, j)

.B0,i−j(A ∩ P̄ ).Vi−j(A).Vj(A) = C.Vi−j(A).Vj(A).

�

Remark. Theorem 7.6 below generalizes this property for mappings of semi-
algebraic sets.

Corollary 5.16. Let A ⊂ Bn
r be a tame set. Then for any i = 0, 1, . . . , n and

0 �j �i,
Vj(A) ≥ C

ri−j
· Vi(A).

Proof. By Theorem 5.1, Vi−j(A) �C̃.ri−j . 
�

Remark. Theorem 5.15 and Corollary 5.16 show that there exist strong cor-
relations among the variations of a tame set, or semialgebraic sets of fixed
complexity. In general, variations are independent (property (9) of Chap-
ter 3). Let us give here an example, contradicting Corollary 5.16, for sets
of unbounded complexity. Let S be a curve in B2

1 ⊂ R
2 of infinite length.

Let à be the set in R
3 defined by A = (S × [0; 1]) ∪ (B2

1 × ({0} ∪ {1})).
Then one can easily check that any plane cuts A in a connected set. Hence
V1(A) �V1([0; 1]3) = 1, while V2(A) �V ol2([0; 1]3) = ∞.
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As a consequence we obtain the following important property of semial-
gebraic and tame sets:

Theorem 5.17. Let A ⊂ Bn
r be a tame set. There are constants C0, . . . , Cn

depending only on constants of the type B0,j , and thus only on D(A) in the
semialgebraic case, such that if for some ε, M(ε, A) is strictly greater than

q∑

i=0

Ci(
r

ε
)i, then:

Vq+1(A) ≥ C ′εq+1.(
n−q∑

i=0

(
r

ε
)i)−1.[M(ε, A) −

q∑

i=0

Ci(
r

ε
)i].

Proof. By Theorem 5.1:

M(ε, A) �
n∑

i=0

Vi(A)(
1
ε

)i �
q∑

i=0

Ci(
r

ε
)i +

n∑

i=q+1

Vi(A)(
1
ε

)i.

Hence
n∑

i=q+1

Vi(A)(
1
ε

)i ≥ M(ε, A) −
q∑

i=0

Ci(
r

ε
)i.

By Corollary 5.16, Vi(A) �Cri−q−1Vq+1(A), i ≥ q + 1, i.e.:

n∑

i=q+1

Vi(A)(
1
ε

)i � CVq+1(A)
n∑

i=q+1

ri−q−1.(
1
ε

)i

= CVq+1(A).
1

rq+1

n∑

i=q+1

(
r

ε
)i

= CVq+1(A).(
r

ε
)q+1.

1
rq+1

n−q∑

i=0

(
r

ε
)i.


�

This theorem shows, in particular, that if A contains a “too dense” grid,
then it must have components of high dimension.

Corollary 5.18. If for some ε > 0 and for some ε-separated set Z ⊂ Bn
r ,

A ∩ Z contains p ≥
q∑

i=0

Ci(
r

ε
)i points, then:

Vq+1(A) ≥ C ′εq+1(
n−q∑

i=0

(
r

ε
)i)−1(p−

q∑

i=0

Ci(
r

ε
)i)

≥ C ′′ εn

rn−q−1 .(p−
q∑

i=0

Ci(
r

ε
)i) > 0.
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In particular, dim(A) ≥ q + 1. 
�
The following example shows that in general the degree εn in the expres-

sion cannot be improved.
Let A be the ball Bn

r itself and q < n. Then for ε small, M(ε, A) ∼ ( r
ε )n,

and the expression in Theorem 5.17 gives Vq+1(Bn
r ) ≥ C

εn

rn−q−1M(ε, A) =

Crq+1, the sharp bound, up to coefficients.
However, if we know a priori that dim(A) �n, we get the following:

Corollary 5.19. If under the assumptions of Corollary 5.17 we have in ad-
dition � = dim(A), q + 1 �� �n, then:

Vq+1(A) ≥ C ′′ ε�

r�−q−1 (p−
q∑

i=0

Ci(
r

ε
)i) > 0.

In particular, for � = q + 1,

Vq+1(A) ≥ C ′′εq+1(p−
q∑

i=0

Ci(
r

ε
)i) > 0.

Proof. We replace, in the proof of Theorem 5.17 the inequality:

M(ε, A) �
n∑

i=0

Vi(A)(
1
ε

)i

by the inequality:

M(ε, A) �
�∑

i=0

Vi(A)(
1
ε

)i.


�
Remark. Results of Theorem 5.17 and Corollaries 5.18 and 5.19 can be con-
sidered as the generalization of the following fact: if the polynomial vanishes
at “too many” points, then it vanishes identically. Indeed, these results can be
formulated as follows: if the semialgebraic set A contains more “separated”
points than is prescribed for the sets of dimension �q and of the same com-
plexity, than its dimension is at least q+ 1 and the (q+ 1)-volume is not too
small.

Theorem 5.20. Let A ⊂ R
n be a tame set. Then for each i = 0, 1, . . . , n,

there exists a tame set Ci ⊂ A, with dim(Ci) = i and Vi(Ci) ≥ λVi(A).
When A is semialgebraic, Ci is also semialgebraic and the diagram of Ci and
λ depend only on the diagram of A.

Proof. We have:

Vi(A) = c(n, i)
∫

P∈Gi
n

∫

x∈P

V0(A ∩ Px) dx dP
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�c(n, i)B0,n−i

∫

P∈Gi
n

V oli(πP (A)) dP

In particular, for some P ∈ Gi
n, V oli(πP (A)) ≥ λVi(A). Now by Theorem

4.10 (this result being valid for tame sets, because one can stratify a tame
map), there is an i-dimensional set C ⊂ A of large enough i-dimensional
measure, such that dim(C) = i, and πP (C) = πP (A). Thus we get:

Vi(C) = V oli(C) ≥ V oli(πP (C)) = V oli(πP (A)) ≥ λVi(A).

�

Another simple but important property of semialgebraic sets of fixed al-
gebraic complexity or of bounded tame sets is the following:

Theorem 5.21. Let A be a set in an o-minimal structure (or a bounded
tame set), dim(A) �n−1. Then for each η > 0, the maximal radius for a ball
contained in the η-neighborhood Aη of A, is at most Cη, where C depends
only on constants of the type B0,j , and consequently, only on the diagram of
A in the semialgebraic case.

Proof. Assume that the ball Bn
r ⊂ Aη. Let Bn

2r be the ball of radius 2r,
centred at the same point. Then for η �r, Aη ∩Bn

r ⊂ (A∩Bn
2r)η. By theorem

5.8,
V oln

(
(A ∩Bn

2r)η

)
�C ′[r�ηn−� + ηn] �C ′′r�ηn−�,

where � = dim(A) < n. Thus V oln(Aη ∩ Bn
r ) �C ′′r�ηn−�. But by the as-

sumption, Aη ∩Bn
r = Bn

r , i.e. V oln(Bn
1 )rn �C ′′r�ηn−�. Hence:

V oln(Bn
1 ).rn−� �C ′′ηn−�, or r �Cη, where C = (

C ′′

V oln(Bn
1 )

)
1

n−� .


�
Of course, nothing of this sort is true for non-tame sets: take A to be the

set of rational points in [0; 1].

Remark. The property given by Theorem 5.21 is much more precise than
the similar conclusion one can obtain by comparison of “global volumes”.
Indeed, the volume of an η-neighborhood of A ⊂ Bn

1 , dim(A) = �, is of order
ηn−�. Comparing this with the volume of the ball of radius r, V oln(Bn

1 )rn,
we obtain only V oln(Bn

1 )rn �ηn−�, or r �Cη1− 1
n , instead of r �Cη

Theorem 5.20 may be generalized in the following way: if a tame set B
lies in the η-neighborhood of an �-dimensional tame set, then the variations
Vj(B), j > �, are bounded in terms of lower variations of B and η.

Theorem 5.22. Let A ⊂ Bn
r be a tame set, dim(A) = � < n. Let η > 0 be

fixed. Then if another tame set B ⊂ Bn
r is contained in the η-neighborhood

Aη of A, its variations satisfy the following inequality:

for any j > � Vj(B) �C̄ · V0(B) · ηj + C̄ ·
�∑

i=1

[Vi(B) + ηri−1 + ηi]ηj−i,
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where C̄ depends only on constants of the type B0,j , and consequently, only
on the diagram of A and B, in the semialgebraic case.

Proof. If B ⊂ Aη, then also B ⊂ (A ∩Bη)η. Now by Theorem 5.11,

Vi(Bη) �C · Vi(B) + Ĉ(ηri−1 + ηi).

Hence by Theorem 5.1:

Vi(A ∩Bη) �C · Vi(Bη) �C[Vi(B) + Ĉ(ηri−1 + ηi)],

for i = 1, . . . , �, V0(A∩Bη) �C · V0(B) and Vi(A∩Bη) = 0, for i > �. Let us
prove the following proposition, in order to finish the proof of Theorem 5.22.

Proposition 5.23. Let A ⊂ R
n be a bounded tame set of dimension � < n.

Then for η ≥ 0 and for j > �,

Vj(Aη) �C1

�∑

i=0

Vi(A)ηj−i.

Proof. As usual, it is enough to bound the j-volume of the projections
πP (Aη) on j-dimensional subspaces P of R

n. But πP (Aη) ⊂
(
πP (A)

)
η
, and

Vi(πP (A)) �Vi(A). Hence

V olj
(
πP (A)

)
η

�cηjM(η, πP (A)) �C1η
j

�∑

i=0

Vi(A)(
1
η

)i = C1

�∑

i=0

Vi(A)ηj−i.


�

Applying Proposition 5.21 in our situation, it follows that for j > �:

Vj(B) � C ′Vj

(
(A ∩Bη)η

)
�C ′C1

�∑

i=0

Vi(A ∩Bη)ηj−i

� C ′C1Ĉ

�∑

i=1

[Vi(B) + ηri−1 + ηi]ηj−i + C ′C1ĈV0(B)ηj

= C2

�∑

i=0

Vi(B)ηj−i + C3

�∑

i=0

ri−1ηj−i+1 + C4η
j .


�



6 Some Exterior Algebra

Abstract. We give in this chapter some basic definitions and well-known
results in exterior algebra, in order to get a convenient definition of a size
for differentials of mappings. The behaviour of this size under projections
and restrictions to subspaces (as required by the variations approach) is
studied.

In the next chapter we describe variations of the images and the preimages
of polynomial mappings (generally speaking, on semialgebraic sets). This de-
scription is given in terms of (as usual) “algebraic complexity” of the sets and
mapping involved, and it requires some metric information on the mapping.
Usually this information concerns upper or lower bounds for the first differen-
tial (but our approach allows one to encounter also more delicate properties:
e.g., the presence of higher Thom-Boardman singularities, as in Theorem 8.10
below).

The bounds on variations, obtained in this chapter, being restated in term
of ε-entropy, form a part of our main results in the algebraic category: the
quantitative Morse-Sard theorem and the quantitative transversality theo-
rem.

First of all, to describe quantitatively the behavior of the differential of
a considered mapping, we need some results from exterior algebra (for com-
plements see, for instance, [Bou], Algèbre, Chap. 3), and for the sake of
non-familiar readers we develop below some very basic results in this area.

Of course the well-informed reader can immediately go to Lemma 6.2.
Let

⊗
i R

n = R
n⊗ . . .

⊗
R

n denote, as usual, the tensor product of
R

n, . . . ,Rn (i times). We recall that this vector space is formally defined as the
quotient E/F , where E is the vector space of real valued functions on (Rn)i

that vanish outside finite sets (1[{(v1,...,vi)}] being denoted by v1 ⊗ . . . ⊗ vi)
and F is the subspace of E generated by elements of the type:

(v1 ⊗ . . .⊗ vj−1 ⊗ x⊗ vj+1 ⊗ . . .⊗ vi)
+(v1 ⊗ . . .⊗ vj−1 ⊗ y ⊗ vj+1 ⊗ . . .⊗ vi)
−(v1 ⊗ . . .⊗ vj−1 ⊗ (x+ y) ⊗ vj+1 ⊗ . . .⊗ vi)

and

Y. Yomdin and G. Comte: LNM 1834, pp. 75–82, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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v1 ⊗ . . .⊗ vj−1 ⊗ λx⊗ vj+1 ⊗ . . .⊗ vi

−λ(v1 ⊗ . . .⊗ vj−1 ⊗ x⊗ vj+1 ⊗ . . .⊗ vi),

for all x, y ∈ R
n, all λ ∈ R and all j ∈ {1, . . . , i}.

We also denote by v1 ⊗ . . .⊗ vi the class of v1 ⊗ . . .⊗ vi in
⊗

i R
n.

Now let us consider the subspace G of
⊗

i R
n generated by all elements

of the type:
v1 ⊗ . . .⊗ vj−1 ⊗ x⊗ x⊗ vj+2 ⊗ . . .⊗ vi.

The vector space
⊗

i R
n/G, denoted by

∧
i R

n, is by definition the i-th
exterior product of R

n. The class of v1 ⊗ . . . ⊗ vi in
∧

i R
n is denoted by

v1 ∧ . . . ∧ vi.
Of course we have:

v1 ⊗ . . .⊗ vj−1 ⊗ x⊗ y ⊗ vj+2 ⊗ . . .⊗ vi

+v1 ⊗ . . .⊗ vj−1 ⊗ y ⊗ x⊗ vj+2 ⊗ . . .⊗ vi

= v1 ⊗ . . .⊗ vj−1 ⊗ (x+ y) ⊗ (y + x) ⊗ vj+2 ⊗ . . .⊗ vi

−(v1 ⊗ . . .⊗ vj−1 ⊗ x⊗ x⊗ vj+2 ⊗ . . .⊗ vi)
−(v1 ⊗ . . .⊗ vj−1 ⊗ y ⊗ y ⊗ vj+2 ⊗ . . .⊗ vi) ∈ G,

and in particular:

v1 ∧ . . . ∧ vj ∧ vj+1 . . . ∧ vi = −(v1 ∧ . . . ∧ vj+1 ∧ vj . . . ∧ vi).

If (e1, . . . , en) denotes a basis of R
n, elements of the type eJ = ej1 ∧

. . . ∧ eji give a basis of
∧

i R
n, where J = {j1 < . . . < ji} ⊂ {1, . . . , n}, and

consequently the dimension of
∧

i R
n is Ci

n.
We define on

∧
i R

n the following scalar product, by defining it for homo-
geneous elements of the type w = v1 ∧ . . . ∧ vi:

(w,w′) = det
(

(vk, v
′
j)
)
, k, j = 1, . . . , i.

If (e1, . . . , en) is an orthonormal basis of R
n, then (eI)I∈Λ(n,i), where

Λ(n, i) is the set of all subsets I = {j1 < . . . < ji} ⊂ {1, . . . , n}, is an
orthonormal basis of

∧
i R

n, and in particular if we write w =
∑

I∈Λ(n,i)

ξIeI ,

w′ =
∑

I∈Λ(n,i)

ξ′
IeI , with ξI , ξ′

I ∈ R, we obtain:

(w,w′) =
∑

I∈Λ(n,i)

ξI .ξ
′
I .

We can naturally define a product ∧ :
∧

i R
n ×

∧
j R

n →
∧

i+j R
n, by the

equality: (v1 ∧ . . . ∧ vi) ∧ (v′
1 ∧ . . . ∧ v′

j) = v1 ∧ . . . ∧ vi ∧ v′
1 ∧ . . . ∧ v′

j .
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It is then immediate to check that

||v1 ∧ . . . ∧ vi ∧ v′
1 ∧ . . . ∧ v′

j ||i+j �||v1 ∧ . . . ∧ vi||i.||v′
1 ∧ . . . ∧ v′

j ||j .

It is an easy exercice to check that the volume of a parallelepiped Πk =
Πk(v1, . . . , vk) spanned by k vectors v1, . . . , vk in R

n is given by the following
induction on k:

• V olk(Πk) = 0 if the vi’s are dependant ,
• V ol1(Π1) = ||v1||, and
V olj+1(Πj+1(v1, . . . , vj+1)) = |(vj+1, νj+1)|.V olj(Πj(v1, . . . , vj)),

for all j ∈ {1, . . . , k − 1}, where νj is a unit normal vector, in the (j + 1)-
dimensional vector space spanned by v1, . . . , vj+1, to the j-dimensional vector
space spanned by v1, . . . , vj .

From these formulas, one can prove easily by induction on k that, geo-
metrically, the norm of a homogeneous element w = v1 ∧ . . . ∧ vn, which is

||w|| =
√

det
(

(vk, vj)
)

, is nothing else than the volume of the parallelepiped

Πk = Πk(v1, . . . , vk) spanned by the k vectors v1, . . . , vk in R
n.

Let now L : R
n → R

m be a linear mapping. This mapping induces, for
each i, the linear mapping Li :

∧
i R

n →
∧

i R
m, defined on homogeneous

elements by:
Li(v1 ∧ . . . ∧ vi) = L(v1) ∧ . . . ∧ Li(vi).

This linear mapping has a norm, induced by the scalar products on
∧

i R
n

and
∧

i R
m respectively.

Notations. For i = 1, . . . ,min(n,m), let us denote

• ||Li|| = max
||w||=1,w∈∧iRn

||Li(w)|| by wi(L), and w0(L) = 1.

• λi(L), i = 1, . . . ,min(n,m), the semiaxes of the ellipsoid L(Bn
1 ) ⊂ R

m, in
a decreasing order: λ1(L) ≥ λ2(L) ≥ . . . ≥ λq(L), with q = min(n,m).
λ0(L) = 1.

The proposition says that wi(L) is the maximun i-dimensional volume of
the image under L of a unit i-dimensional cube of R

n, when i = min(n,m),
wi(L) equals the square root of the determinant of tLL, and thus wi(L) equals
det(L), for i = m = n.

Proposition 6.1. Let L : R
n → R

m be a linear map, and i ∈ {1, . . . , q =
min(n,m)}. then:

wi(L) = λ0(L)λ1(L) . . . λi(L),

and this number equals the maximun i-dimensional volume of the image
under L of a unit i-dimensional cube of R

n.
More precisely, there exist orthonormal bases e1, . . . , en and e′

1, . . . , e
′
m of

R
n and R

m, respectively, such that:

Administrator
ferret



78 6 Some Exterior Algebra

• L(ej) = λj(L)e′
j , for j ∈ {1, . . . , q}, and L(ej) = 0, for j > q (if n > m).

• The norm wi(L) = ||Li|| = max
||w||=1,w∈∧iRn

||Li(w)|| is attained on the homo-

geneous w = e1∧. . .∧ei, and hence is equal to λ0(L) . . . λi(L). In particular,
this norm is equal to the maximal expansion of the i-dimensional volume
by L.

Proof. The statements of this proposition are well known and their proof is
an exercise in linear algebra. For sake of completeness we give it here.

Consider the symetric bilinear nonnegative form ω on R
n given by

ω(u, v) = (Lu,Lv) = tv(tLL)u.

Let e1, . . . , en be an orthonormal basis of R
n in which ω has a diagonal

form: if u =
n∑

j=1

αjej , v =
n∑

j=1

βjej , we have ω(u, v) =
n∑

j=1

λ2
jβjαj , with

λ1 ≥ λ2 ≥ . . . ≥ λk > 0, λk+1 = . . . = λn = 0 and k =rank(L) =rank(ω).

Let e′
j =

1
λj

L(ej), for j = 1, . . . , k. Of course we have (e′
j , e

′
l) = δj,l, and

hence e′
j form a part of an orthonormal basis e′

j , j = 1, . . . ,m in R
m (we

can suppose that L(ej) = 0, for i ≥ k). Now if u =
n∑

j=1

αjej , is such that

n∑

j=1

α2
j �1, we have L(u) =

k∑

j=1

αjλjL(ej) =
k∑

j=1

xje
′
j , and

x2
1

λ2
1

+ . . .+
x2

k

λ2
k

�1.

Hence, the numbers λ1, . . . , λk are the semiaxes of the ellipsoid L(Bn
1 ), which

is given by
x2

1

λ2
1

+ . . .+
x2

k

λ2
k

�1, xk+1 = . . . = xm = 0.

This proves the first part of the proposition.
Now let us define the following symmetric bilinear form ωi on

∧
i R

n:

ωi(w1, w2) =
(
Li(w1),Li(w2)

)
.

This form is diagonal on the basis (eI)I∈Λ(n,i). Indeed:

Li(ej1 ∧ . . . ∧ eji) = λj1 . . . λji(e
′
j1 ∧ . . . ∧ e′

ji
), and (e′

I , e
′
J) = δI,J .

Hence wi(L) = ||Li|| is the maximal eigenvalue of ωi, which is λ1 . . . λi, since
λ1 ≥ . . . ≥ λq > 0. Thus this norm is attained on the homogeneous elements
e1 ∧ . . . ∧ ei and is consequently the i-volume of the parallelepiped (in fact
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the cube) spanned by L(e1), . . . ,L(ei) in R
m. But any unit i-cube in R

n is
spanned by some ej1 , . . . , eji (up to an isometry) and the i-volume of its
image under L is less than V oli

(
Πi(L(e1), . . .L(ei))

)
= λ1 . . . λi. 
�

Remark. The statement of Proposition 6.1 is in fact equivalent to the repre-
sentation of L as the composition of an orthogonal and a symmetric mapping.

Below we express our assumptions on the differentials of the mappings
considered in terms of λi(df) and wi(df).

Lemma 6.2. For L1,L2 : R
n → R

m, two linear mappings, we have:

wi(L1 + L2) �k(n,m, i)
i∑

j=0

wj(L1)wi−j(L2), i = 0, . . . ,min(n,m).

Proof. Let w = v1 ∧ . . . ∧ vi ∈
∧

i R
n be the element on which the norm

wi(L1 + L2) = ||L1 + L2|| is attained. Then:

(L1 + L2)i(w) = (L1(v1) + L2(v2)) ∧ . . . ∧ (L1(vi) + L2(vi))

=
∑

I⊂{1,...,i}
+
−

(
∧

j∈I
L1(vj)

)
∧
(

∧
k∈Ī

L2(vk)
)
.

Hence:

wi(L1 + L2) = ||(L1 + L2)i(w)|| �
∑

I⊂{1,...,i}
|| ∧

j∈I
L1(vj)||.|| ∧

k∈Ī
L2(vk)||

�
∑

I⊂{1,...,i}
||(L1)|I|||.||(L2)i−|I||| �k(n,m, i)

i∑

j=0

wj(L1)wi−j(L2).

�

The next lemma will be used in the proof of the “quantitative transver-
sality” theorem below. A general structure of transversality results is the
following: we have a mapping F : N × T → M , where T is the space of
parameters. We assume that the parameters act non-degenerately, i.e. that
F|{∗}×T : {∗} × T → M is non degenerate. The desirable conclusion is that
for a generic value of parameters t0 ∈ T , ft = FN×{t0} : N × {t0} → M is in
some sense nondegenerate. The following lemma gives a linear version of this
statement; R

q in this lemma serving both as T and M .
Consider the product R

p × R
q, and let

π1 : R
p × R

q → R
p, π2 : R

p × R
q → R

q

be the natural projections.
For a linear mapping L : R

p×R
q → R

q denote by L′ and L′′ the restrictions

L′ = L|Rp×{0} : R
p × {0} → R

q
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L′′ = L|{0}×Rq : {0} × R
q → R

q.

Then L = L′ ◦ π1 + L′′ ◦ π2. Let T ⊂ R
p × R

q be a linear subspace, π̃i = πi|T
(i = 1, 2), L̃ = L|T. Then L̃ = L′ ◦ π̃1 + L′′ ◦ π̃2.

We assume also that L′′ is regular, i.e. that (L′′)−1 : R
q → R

q exists.

Lemma 6.3. Under the above assumptions,

wi(π̃2) �k.wi(L′′−1)
i∑

j=0

wj(L̃).wi−j(L′),

i = 1, . . . , D = min
(
q,dim(P )

)
. Here the constant k depends only on p, q,

dim(T).

Remark. In the special case, where T = ker(L), we obtain dim(T) = p,
wD(π̃2) �k.wD(L′′−1)wD(L′) (since only w0(L̃) is not zero). Thus if L′ is
degenerate, also π2 : T → R

q is degenerate. This last statement is used in
standard reduction of the transversality theorem to the Sard theorem. So
lemma 6.3 can be considered as a quantitative version of this simple state-
ment.

Proof. We have:
π̃2 = L′′−1 ◦ (L̃ − L′ ◦ π̃1).

Hence for all i ∈ {1, . . . , D}:

wi(π̃2) �wi(L′′−1)wi(L̃ − L′ ◦ π̃1) �k.wi(L′′−1)
i∑

j=0

wj(L̃)wi−j(L′),

by lemma 6.2, since of course, wi−j(L′ ◦ π̃1) �wi−j(L′). 
�
The last algebraic lemma we need has a technical character.
Let L : R

n → R
m be a linear mapping. Let i �m and let Gi

m denote
as usual the Grassmann manifold of all the i-dimensional linear subspaces
P of R

m. For P ∈ Gi
m, let πP : R

m → P denote the orthogonal projection
onto P and πker (πP ◦L ) : R

n → ker(πP ◦ L) the orthogonal projection onto
ker(πP ◦ L).

Let, for a Euclidean space V , ωV denote the volume form on V . For any
P ∈ Gi

m define an n-form ω(P ) on R
n as follows:

ω(P ) = [(πker(πP ◦L))∗ωker(πP ◦L)] ∧ [(πP ◦ L)∗ωP ],

and the n-form
∫

P∈Gi
m

ω(P ) dP by the following formula:

[
∫

P∈Gi
m

ω(P ) dP ](u1, . . . , un) =
∫

P∈Gi
m

ω(P )(u1, . . . , un) dP,
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for all (u1, . . . , un) ∈ (Rn)n.
Of course, if rank(L) < i, we have rank(πP ◦ L) < i and the i-form

[(πP ◦L)∗(ωP )] is identically equal to 0. Thus we suppose that k =rank(L) ≥ i
and rank(πP ◦ L) = i.

Lemma 6.4. With the notations above, we have:
∫

P∈Gi
m

ω(P ) dP �wi(L) · ωRn �C ·
∫

P∈Gi
m

ω(P ) dP,

where C2 depends only on n,m and i.

Proof. Clearly:

(πP ◦ L)∗(ωP ) = (πP ◦ L ◦ πker⊥(πP ◦L))
∗(ωP )

�wi(πP ◦ L).(πker⊥(πP ◦L))
∗ωker⊥(πP ◦L) �wi(L).(πker⊥(πP ◦L))

∗ωker⊥(πP ◦L).

Hence:

ω(P ) �wi(L).[(πker(πP ◦L))∗ωker(πP ◦L)] ∧ [(πker⊥(πP ◦L))
∗ωker⊥(πP ◦L)]

= wi(L).ωRn .

Integrating over Gi
m, we obtain the left-hand side inequality.

We recall (see Proposition 6.1) that we denote by e1, . . . , ek, ek+1, . . . , en

an orthonormal basis of R
n such that ker(L) =< ek+1, . . . , en >, e′

1 =
L(e1)
λ1(L)

, . . . , e′
k =

L(ek)
λk(L)

is a part of an orthonormal basis of R
m, and

λ1(L) ≥ . . . ≥ λk(L) > 0 are the positive eigenvalues of the nonnegative
symmetric form tLL.

Now on the other hand, we have:

(πP ◦ L)∗ωP ≥ wi(L).JL(P ).(πker⊥(πP ◦L))
∗ωker⊥(πP ◦L), (∗)

where JL(P ) = J(π:<e′
1,...,e′

i
>→P ) and where J(π:<e′

�1
,...,e′

�i
>→P ) is the Jacobian

of the projection onto P of the i-dimensional subspace of R
n spanned by

e′
�1
, . . . , e′

�i
.

For linearity reasons, to prove (∗) it suffices to prove that the inequality
(∗) holds for every (e�1 , . . . , e�i), �1, . . . , �i ∈ {1, . . . , k}, because of course we
have ker⊥(πP ◦ L) ⊂< e1, . . . , ek >.

The following equality holds:

[(πP ◦ L)∗ωP ](e�1 , . . . , e�i) = ωP (λ�1(L).πP (e′
�1), . . . , λ�i(L).πP (e′

�i
))

= ε.λ�1(L) . . . λ�i(L).J(π:<e′
�1

,...,e′
�i

>→P ), (1)

where ε = +1 or −1.
But we have also:
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[(πker⊥(πP ◦L))
∗ωker⊥(πP ◦L)](e�1 , . . . , e�i) = ε.| det(πker⊥(πP ◦L))|. (2)

It follows from (1) and (2) that:

[(πP ◦ L)∗ωP ](e�1 , . . . , e�i
) ≥

λ�1(L) . . . λ�i
(L) · J(π:<e′

�1
,...,e′

�i
>→P ) · [(πker⊥(πP ◦L))

∗ωker⊥(πP ◦L)](e�1 , . . . , e�i
),

for all �1, . . . , �i ∈ {1, . . . , k}. Now considering that there exists a constant k
such that:

[(πP ◦ L)∗ωP ] = k · [(πker⊥(πP ◦L))
∗ωker⊥(πP ◦L)],

we obtain that:
k · [(πker⊥(πP ◦L))

∗ωker⊥(πP ◦L)] ≥

λ�1(L) . . . λ�i(L) · J(π:<e′
�1

,...,e′
�i

>→P ).[(πker⊥(πP ◦L))
∗ωker⊥(πP ◦L)],

for all �1, . . . , �i ∈ {1, . . . , k}. Taking �1 = 1, . . . , �i = i, it follows in particular
that:

k ≥ wi(L) · J(π:<e′
1,...,e′

1>→P ),

and this inequality proves (∗).
Now from (∗) we obtain:

ω(P ) ≥ wi(L) · JL(P ) · [(πker(πP ◦L))∗ωker(πP ◦L)] ∧ [(πker⊥(πP ◦L))
∗ωker⊥(πP ◦L)]

= wi(L) · JL(P ) · ωRn ,

and integrating over Gi
m, we deduce that:

∫

P∈Gi
m

ω(P ) dP ≥ wi(L) ·
∫

P∈Gi
m

JL(P ) dP · ωRn ,

which proves the right-hand side inequality of lemma 6.4, with the constant

C equal to 1/
∫

P∈Gi
m

JL(P ) dP , and of course by the homogeneity of Gi
m,

this constant does not depend on L, but only on m and i. 
�



7 Behaviour of Variations
under Polynomial Mappings

Abstract. We study here the multidimensional variations of the image
under a polynomial mapping of a semialgebraic set. We bound from above
the i-th variation of the image by the i-th variation of the set and by
the i-th Jacobian. This allows us to prove the quantitative Sard theorem
for polynomial functions. We also define and study the “variations” of a
polynomial mapping, and we finally bound from below the variation of the
image.

Let f : N → M be a differentiable mapping of the manifolds N and M of
dimensions respectively n and m, with n �m. Then the behavior of the n-
volume under f is quite regular. It is described by the so-called area formula
in geometric measure theory (see [Fed 2]). For any Hn-measurable set A ∈ N ,
we have:

∫

y∈M

N(f|A, y) dHn(y) =
∫

x∈A

wn(Df(x)) dHn(x),

where N(f|A, y) is �(f−1({y})∩A), the number of points of the set f−1({y})∩
A and wn(Df(x)) is defined in the preceding chapter. In particular, the char-
acteristic function of f(A), 1f(A)(y) �N(f|A, y), and thus we obtain the fol-
lowing inequality, showing that the n-dimensional volume under f is bounded
by the integration of the Jacobian:

Hn(f(A)) �
∫

x∈A

wn(Df(x)) dHn(x).

It follows that when A is a critical set for f (for all x ∈ A, Df(x) = 0),
then the n-volume of f(A) is null.

However, when n > m the situation is much more complicated; e.g. the
function f of Whitney (see [Whi 1]) is Cn−1 smooth on Bn

1 , but f(A) = [0; 1],
although A is a connected set of critical points of f (see also the references
of [Bat] and [Nor] for examples of functions with dense critical values set).

In the case n > m, we have the so-called coarea formula:
∫

y∈M

Hn−m(A ∩ f−1({y})) dHm(y) =
∫

x∈A

wm(Df(x)) dHn(x),

Y. Yomdin and G. Comte: LNM 1834, pp. 83–98, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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which says that, for A a subset of critical points, and Hm-almost all critical
values y of f , the fiber A ∩ f−1({y}) is Hn−m-null.

Our first result in this chapter shows that for polynomial mappings of
semialgebraic sets of different dimensions, but of fixed algebraic complexity,
the formula of integration with the Jacobian is still valid in some sense, for
variations.

Theorem 7.1. Let f : R
n → R

m be a polynomial mapping, f = (f1, . . . , fm),
deg(fj) = d̄j , for j ∈ {1, . . . ,m}. Let A ⊂ R

n be a semialgebraic subset.
Assume that at each x ∈ A and for any i-dimensional affine space P̄ ⊂ R

n

tangent1 to A at x, wi(Df(x)|P̄ ) �γ. Then:

Vi(f(A)) �C.γ.Vi(A),

with the constant C depending only on d̄1, . . . , d̄m, m,n and D(A), the dia-
gram of A.

Remark. We do not know whether or not the constant C in the above
inequality really depends on the degrees d̄1, . . . , d̄m.

Proof. By definition,

Vi(f(A)) = c(m, i)
∫

P∈Gi
m

∫

x∈P

V0(f(A) ∩ P̄x) dx dP.

Obviously we have: V0(f(A) ∩ P̄x) �V0(A ∩ f−1(P̄x)). Let us estimate the
integer V0(A ∩ f−1(P̄x)) with Corollary 4.9.

There exist L1, . . . , Li : R
m → R, i affine linear forms in general position

such that P̄x = L−1
1 ({0}) ∩ . . . ∩ L−1

i ({0}). The algebraic set f−1(Px)) is

thus given by
i⋂

j=1

Bj , where Bj = {x ∈ R
n; (Lj ◦ f)(x) = 0}. The degree

of Lj ◦ f is less than µ = maxj∈{1,...,i}d̄j . Now A ∩ f−1(P̄x)) is given by
p⋃

k=1

(
jk⋂

j=1

Akj

i⋂

j=1

Bj), where Akj = {x ∈ R
n; pkj(x) ? 0} and ? is one of the

symbols: >,≥, and deg(pkj) = d̄kj . By Corollary 4.9, we obtain:

V0(A∩f−1(P̄x)) �C ′ =
1
2

p∑

k=1

(d̄k +iµ+2)(d̄k +iµ+1)n−1, with d̄k =
jk∑

j=1

d̄kj .

We thus have:

Vi(f(A)) �c(m, i).C ′
∫

P∈Gi
m

V oli([πP ◦ f ](A)) dP, (∗)

1 The affine space P̄ ⊂ R
n is tangent to A at x ∈ A if every direction ν of P̄ is a

tangential direction of A, that is to say there exists a smooth curve α in A with
α(0) = x and α′(0) = ν ∈ P̄ .
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where πP : R
m → P is the orthogonal projection.

It remains to estimate the i-size of πP (f(A)). For this we cannot imme-
diately use the area formula for πP ◦ f : A0 → P (A0 being the nonsingular
locus of A), because the interesting case is dim(A) ≥ i. But Theorem 4.10
will allow us to use this formula: there exists a semialgebraic subset C ⊂ A,
such that dim(C) = dim(πP (f(A))), πP (f(A)) = πP (f(C)), and the diagram
D(C) only depends on D(A).

Of course we want to estimate Vi(f(A)) for i � dim(f(A)), and for generic
P ∈ Gi

m we have dim(C) = dim(πP (f(A))) = dim(f(A)); it implies that
generically dim(C) = i.

Now we can use the area formula for πP ◦ f : C0 → P :

V oli([πP ◦ f ](A)) �
∫

x∈C0
Jac((πP ◦ f)|C0)(x) dHi(x).

But by our assumptions

Jac((πP ◦ f|C0))(x) = wi(D(πP ◦ f|C0)(x)) �wi(Df(x)| TxC0) �γ,

where TxC
0 is the tangent space of C0 at x. Hence, by Theorem 5.1:

V oli([πP ◦ f ](A)) �γV oli(C) = γVi(C) �γ.C ′′.Vi(A),

and finally

Vi(f(A)) �c(m, i).C ′.C ′′.γ.Vi(A)
∫

P∈Gi
m

dP = C.γ.Vi(A).

�

The proof above is based on Theorem 4.10, which gives no explicit bound
on the complexity of the covering set C. Below we prove a little bit weaker
result, which however uses Exercise 4.11 instead of Theorem 4.10, and hence
gives an explicit bound for the coefficient in the inequality. We also use a
stronger, but easier to verify, condition wi(Df(x)) �γ, instead of requiring
this inequality only on i-dimensional subspaces tangent to A.

Theorem 7.2. Let f : R
n → R

m be a polynomial mapping, f = (f1, . . . , fm),
deg(fj) = d̄j , for j ∈ {1, . . . ,m}. Let A ⊂ R

n be a bounded semialgebraic
subset. Assume that at each x ∈ A, wi(Df(x)) �γ. Then:

Vi(f(A)) �C̃.γ.Vi(A),

where

C̃ =
1
4
c(m, i).

( p∑

k=1

(dk + iµ+ 2)(dk + iµ+ 1)n−1)κ,

µ = maxj∈{1,...,i}d̄j , dk =
jk∑

j=1

dkj ,



86 7 Behaviour of Variations under Polynomial Mappings

and κ only depends on dk, d̄j , n, i, assuming that A is given by
p⋃

k=1

(
jk⋂

j=1

Akj),

where Akj = {x ∈ R
n; pkj(x) ? 0} and ? is one of the symbols: >,≥, and

deg(pkj) = dkj .

Proof. We proceed exactly as in the proof of theorem 7.1. We obtain the
inequality (∗):

Vi(f(A)) �c(m, i).C ′
∫

P∈Gi
m

V oli([πP̄ ◦ f ](A)) dP, (∗)

where C ′ =
1
2

p∑

k=1

(dk +iµ+2)(dk +iµ+1)n−1, µ = maxj∈{1,...,i}d̄j and dk =

jk∑

j=1

dkj . To estimate V oli(πP (f(A))) we use Exercise 4.11, applied to the

polynomial πP ◦ f : R
n → P ∈ Gi

m, instead of Theorem 4.10. It provides
for any ξ > 0 a semialgebraic set C, such that C is contained in the ξ-
neighborhood of A, dH(πP (f(C);πP (f(A)))) �Kξ, for all P ∈ Gi

m, where K
is a Lipschitz constant of f on a bounded subset of R

n containing A, and
dim(C) �i. We obtain by Theorem 5.9:

V oli(πP (f(A))) = lim
ξ→0

V oli(πP (f(C))).

And since we can assume that wi(πP ◦ f)|C0 �γ+ η(ξ), with η(ξ) arbitrarily
small as ξ → 0, we obtain by the area formula:

V oli(πP (f(A))) = lim
ξ→0

V oli(πP (f(C))) �γ.V oli(C) = γ.Vi(C).

Furthermore by Theorem 5.1, we have Vi(C) �B0,n−i(C).Vi(Aξ), where
B0,n−i(C) is a bound for the number of connected components of C ∩ Q,
for any Q ∈ Ḡn−i

n . Now, by Theorem 5.11, lim
ξ→0

Vi(Aξ) �Vi(A). But again by

Exercise 4.11 we can take B0,n−i(C) depending only on dk, d̄j , n, i, and we
get from (∗) the desired inequality:

V oli(f(A)) �c(m, i).C ′.B0,n−i(C).γ.Vi(A).

�

Remark. In the rest of this chapter we prove the results requiring “covering”
subsets C, using Theorem 4.10 to simplify the arguments. However, in any
of these results, Theorem 4.11 could be used exactly as in the proof above.
This allows us to obtain the explicit expressions for the coefficients below.

Definition 7.3. Let Λ = (λ1, . . . , λq), with λ1 ≥ λ2 ≥ . . . ≥ λq ≥ 0, be
given.
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For any differentiable f : R
n → R

m, with q = min(n,m), define Σ(f, Λ)
as the set {x ∈ R

n; λi(Df(x)) �λi, i = 1, 2, . . . q}, where λi(Df(x)) is defined
in Chapter 6. The set Σ(f, Λ) is the set of points x such that Df(x) : R

n →
R

m transforms Bn
1 into an ellipsoid in R

m with semiaxes (in decreasing order)
smaller than λ1, . . . , λq, respectively.

For a semialgebraic set A we denote by Σ(f, Λ,A) the set Σ(f, Λ) ∩ A,
and by ∆(f, Λ,A) the set f(Σ(f, Λ,A)) ⊂ R

m.

Corollary 7.4. Let f : R
n → R

m be a polynomial mapping, f =
(f1, . . . , fm), deg(fj) = dj , and A a bounded semialgebraic set of R

n.
Then:

Vi(∆(f, Λ,A)) �C.λ0λ1 . . . λi.Vi(A),

where λ0 = 1 by definition, and C depends only on d1, . . . , dm, n, m and
D(A).

In particular, when A = Bn
(a,r), we get:

Vi(∆(f, Λ,Bn
(a,r))) �C.λ0λ1 . . . λi.r

i,

where C depends only on d1, . . . , dm, n and m.

Proof. We just have to apply Theorem 7.2 to the set Σ(f, Λ,A), which is
semialgebraic with diagram depending only on d1, . . . , dm, n, m and D(A).
We have wi(Df(x)) �γ = λ0λ1 . . . λi for all x ∈ Σ(f, Λ,A). Hence we obtain:

Vi(∆(f, Λ,A)) �C ′.λ0λ1 . . . λi.Vi(Σ(f, Λ,A)).

But by Theorem 5.1, Vi(Σ(f, Λ,A)) �C ′.Vi(A).
In particular, when A = Bn

(a,r), we get:

Vi(∆(f, Λ,Bn
(a,r))) �C ′′.λ0λ1 . . . λi.r

i.

�

As an immediate consequence we obtain one of the main results of this
section - the quantitative Morse-Sard theorem for polynomial mappings:

Theorem 7.5. Let f : R
n → R

m be a polynomial mapping, f =
(f1, . . . , fm), deg(fj) = dj and A a bounded semialgebraic set in R

n. Then
for any Λ = (λ1, . . . , λq), λ1 ≥ λ2 ≥ . . . ≥ λq ≥ 0, q = min(n,m),

M(ε,∆(f, Λ,A)) �C
q∑

i=0

λ0 . . . λi · Vi(A) · (
1
ε

)i,

where C depends only on d1, . . . , dm, n, m and D(A). In particular, for A =
Bn

(a,r), we obtain:

M(ε,∆(f, Λ,Bn
(a,r))) �C

q∑

i=0

λ0 . . . λi · (
r

ε
)i.
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Proof. It is a direct consequence of Theorem 3.5 and Corollary 7.4. 
�

Now let us consider the set ∆0
f = {x ∈ R

n; Df(x) = 0}. Clearly ∆0
f =

∆(f, Λ,Bn
(a,r)), for Λ = (0, . . . , 0). Hence we get:

Corollary 7.6. For f : R
n → R

m a polynomial mapping, with f =
(f1, . . . , fm), deg(fj) = dj .

M(ε,∆0
f ) �C,

where C = C(n, d1, . . . , dm) depends only on d1, . . . , dm, n and m. 
�

Clearly this result recovers the simple fact that the critical values of rank
0 of a polynomial mapping form a finite set with a number of points bounded
by the degrees (once we know that one can stratify a semialgebraic set with
a number of connected strata depending only on the degrees, this fact is
obvious).

Let us consider now ∆ε
f = ∆(f, Λ,Bn

(a,r)), for Λ = (
ε

r
, . . . ,

ε

r
). We can

now prove an extended version of Theorem 1.8:

Theorem 1.8. (extended) Let f : R
n → R

m be a polynomial map-
ping, with f = (f1, . . . , fm), deg(fj) = dj . Then for any ε > 0 the set
∆0

f can be covered by N(n,m, d1, . . . , dm) balls of radius ε. The constant
N(n,m, d1, . . . , dm) depends only on d1, . . . , dm, n and m.

In particular the set ∆0
f of rank-0 critical values of f|Bn

r
contains at most

N(n,m, d1, . . . , dm) points, for any r > 0, hence the number of critical values
of f is bounded by N(n,m, d1, . . . , dm).

Proof. The proof follows directly from Theorem 7.5. 
�

Remarks.

• We notice that, as a consequence of Theorem 7.5 and its smooth counter-
part, some “rigidity” results for smooth functions can be obtained: if the
function has inside a given ball “too many” critical points, with the values
at these points “too separated”, its high order derivatives must be “big”.
We do not touch these questions here (see [Yom 1], Theorem 3.9, Corollary
3.10 and Theorem 3.11.)

• Obviously Theorem 7.1, Theorem 7.2, Corollary 7.4, Theorem 7.5, Corol-
lary 7.6 and Theorem 1.8 are true for f : R

n → R
m a mapping definable in

some o-minimal structure (i.e. a mapping whose graph is a definable set in
some o-minimal structure). The constants that appear in these statements
depending only on the set A and the mapping f (the notions of degree and
diagram making no more sense in o-minimal structures).

Theorem 7.2 gives an upper bound for the variations of the images of
the polynomial mapping, in terms of the uniform upper bounds for the first
derivatives of the mapping.
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The following example shows that the uniform lower bounds for the
derivatives do not allow one to bound variations of the image from below.

Let A ⊂ R
2 be the rectangle [0; δ] × [0; 1] and f = π1 : (x, y) �→ x (see

Fig. 7.1).

Fig. 7.1.

Then w1(f) = 1, V1(A) ≥ 1 (because for instance an affine line that
encounters I = {0}× [0; 1] also encounters A, and by choice of the coefficient

c(2, 1), the measure of the set of affine lines that encounter I is
1

c(2, 1)
),

although f(A) = [0; δ], and V1(f(A)) = δ can be arbitrarily small.
If we use the integral norms of the derivatives, the situation is the oppo-

site: in general we can bound variations of the image from below, but not
from above.

In the results below, we assume that dim(A) = s for a semialgebraic set
A ⊂ R

n, and then we integrate on A with respect to the s-dimensional Haus-
dorff measure Hs of A. The regular part A0 of A having the same measure as
A, it is the same to integrate on A0, and thus one can integrate the volume
form on A0 (there exists Z ⊂ A0 such that dim(Z) < dim(A0) and A0 \ Z is
orientable.)

Theorem 7.7. Let f : R
n → R

m be a polynomial mapping, f =
(f1, . . . , fm), deg(fj) = dj , and let A ⊂ R

n be a semialgebraic set with
dim(A) = s, i �s. Then

∫

x∈A

wi(D[f|A0 ](x)) dHs(x) �C · Vi(f(A)) · Vs−i(A),

where the constant C depends only on d1, . . . , dm, n,m and D(A).

Proof. Let Gi
m denote, as usual, the grassmannian of all the i-dimensional

linear spaces of R
m. Let x ∈ A0 and TxA

0 be the tangent space of A0 at
x, TxA

0 ∼ R
s. We consider the linear mapping Df|A0(x) : TxA

0 → R
m as
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Df|A0(x) : R
s → R

m, and for each P ∈ Gi
m we define an s-form on TxA

0,
ω(P ), as in lemma 6.4 above, by:

ω(P ) = [(πker(πP ◦Df|A0(x)))
∗ωker(πP ◦Df|A0(x))] ∧ [(πP ◦ f|A0)∗ωP ],

where ωV denotes the volume form on the Euclidean space V .
By Lemma 6.4:

wi(Df|A0(x)) · ωA �C ·
∫

P∈Gi
m

ω(P ) dP �C
∫

P∈Gi
m

ω(P ) dP,

where ωA is the volume form on A0.
Hence:

∫

x∈A0
wi(Df|A0(x)) dHs(x) =

∫

x∈A0
wi(Df|A0(x)) ωA

�C ·
∫

x∈A0
[
∫

P∈Gi
m

ω(P ) dP ]

= C ·
∫

P∈Gi
m

[ ∫

x∈A0
[(πker(πP ◦Df|A0(x)))

∗ωker(πP ◦Df|A0(x))]

∧[(πP ◦ f|A0)∗ωP ]
]
dP

= C ·
∫

P∈Gi
m

[ ∫

ξ∈(πP ◦f)(A)

[ ∫

x∈(πP ◦f)−1(ξ)
ω(πP ◦f)−1(ξ)(x)

]
ωP (ξ)

]
dP.

The integral
∫

x∈(πP ◦f)−1(ξ)
ω(πP ◦f)−1(ξ)(x), for ξ a regular value of πP ◦ f , is

simply the integral of the volume form on the fiber (πP ◦ f)−1(ξ), and hence
is equal to V ols−i((πP ◦ f)−1(ξ)). In turn, this volume is equal to the (s− i)-
variation of (πP ◦f)−1(ξ), and it is bounded by C̃.Vs−i(A) (by Theorem 5.1),
since (πP ◦ f)−1(ξ) is a semialgebraic subset of A, with diagram depending
only on D(A) and d1, . . . , dm.

We can assume that for almost all P ∈ Gi
m, almost all the values ξ ∈ (πP ◦

f)(A) ⊂ P are regular for πP ◦f , because if it is not the case, wi(Df|A0(x)) = 0
for all x ∈ A0. Hence:
∫

x∈A0
wi(Df|A0(x)) dHs(x) �C · C̃.Vs−i(A)

∫

P∈Gi
m

[
∫

ξ∈(πP ◦f)(A)
ωP (ξ)] dP

�C · C̃ · Vs−i(A)
∫

P∈Gi
m

[
∫

x∈P

V0(f(A) ∩ Px) dx] dP

= C · C̃ · Vs−i(A) · 1
c(m, i)

Vi(f(A)) = C ′ · Vi(f(A)) · Vs−i(A)

�
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Remark. As an immediate corollary we obtain again the result of Theorem
5.15: Vj(A) �c · · ·Vi(A)Vj−i(A), for all j ∈ {0, . . . , n} and all i �j.

Indeed, for j = s = dim(A), applying Theorem 7.7 to the inclusion map-
ping of A into R

n, we have for all i �j, wi(Df|A0(x)) = 1, thus:
∫

x∈A0
wi(Df|A0(x)) dHj(x) = V olj(A) = Vj(A) �CVi(A)Vj−i(A).

Now for j �s = dim(A), by Theorem 5.20 there exists a semialgebraic
set Cj ⊂ A, with dim(Cj) = j, D(Cj) depending only on D(A), such that
Vj(Cj) ≥ λVj(A), λ depending only on D(A). Applying Theorem 7.7 and the
same remarks as above to Cj , we have:

Vj(A) � 1
λ
Vj(Cj) �C

λ
Vi(Cj)Vj−i(Cj) �C

λ
Vi(A)Vj−i(A).

(The last inequality being a consequence of Theorem 5.1.)
In fact, Theorem 7.7 can be formulated in a stronger form, if we introduce

the notion of variations of functions and mappings, following more or less
[Iva 1].

Definition 7.8. Let A ⊂ R
n be a compact subset, and let f : A → R

m be
a continuous mapping. For i = 0, 1, . . . , n and � = 0, 1, . . . ,m, the variation
Vi,�(f) is defined as follows:

Vi,�(f) = c(i, �, n,m)
∫

P̄∈Ḡm−�
m

Vi(f−1(P̄ )) dP̄ ,

with c(i, �, n,m) a well-chosen constant depending only on i, �, n and m.
The following properties of Vi,�(f) are immediate:

(1) Vi,0(f) = Vi(A), if we choose c(i, 0, n,m) = 1.

(2) Vi,m(f) = c(i,m, n,m)
∫

ξ∈Rm

Vi(f−1(ξ)) dξ.

(3) V0,�(f) ≥ V�(f(A)), if we choose c(0, �, n,m) = c(�,m). Indeed V0,�(f) =

c(0, �, n,m)
∫

P̄∈Ḡm−�
m

V0(f−1(P̄ )) dP̄ , but clearly the number of con-

nected components of f(A) ∩ P = f(f−1(P )) is less than the number of
connected components of f−1(P ), and hence:

V0,�(f) ≥ c(0, �, n,m)
∫

P̄∈Ḡm−�
m

V0(f(A) ∩ P̄ ) dP̄ = V�(f(A)).

(4) Inductive formula for variations of mappings. For j �i, we have:

Vi,�(f) = c̃(j, i, �, n,m)
∫

P̄∈Ḡn−j
n

Vi−j,�(f|A∩P̄ ) dP̄ .
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In particular, for j = i we obtain:

Vi,�(f) = c̃(i, i, �, n,m)
∫

P̄∈Ḡn−i
n

V0,�(f|A∩P̄ ) dP̄ .

Combining (3) and (4), we obtain:

(5) Vi,�(f) ≥ c̃(i, i, �, n,m)
∫

P̄∈Ḡn−i
n

V�(f(A ∩ P̄ )) dP̄ .

There is an important special case, where the equality holds in (3) and (5):

(6) If f : A → R
m is an embedding, then:

V0,�(f) = V�(f(A)),

Vi,�(f) = c̃(i, i, �, n,m)
∫

P̄∈Ḡn−i
n

V�(f(A ∩ P̄ )) dP̄ .

Indeed in this case, V0(f−1(P̄ )) = V0(f(A) ∩ P̄ ) .

More generally, we have the following:

(7) If f : A → f(A) is a tame finite mapping of multiplicity at most q, then

V0,�(f) �q.V�(f(A)),

Vi,�(f) �q.c̃(i, i, �, n,m)
∫

P̄∈Ḡn−i
n

V�(f(A ∩ P̄ )) dP̄ .

Indeed, under our assumption, over the complement of a set of dimen-
sion < dim(A) in f(A), f is a q-covering. Hence over each connected
component of f(A)∩ P̄ , we have at most q components of f−1(P̄ ). Thus:

V0,�(f) = c(0, �, n,m)
∫

P̄∈Ḡm−�
m

V0(f−1(P̄ )) dP̄

�c(0, �, n,m)
∫

P̄∈Ḡm−�
m

q.V0(f(A) ∩ P̄ ) dP̄ = qV�(f(A)).

There is one special situation, where the variations are reduced to the
usual integral-geometric invariant and hence can be computed in “closed
form”. Namely, for i + � = n and f : R

n → R
m smooth and semialgebraic,

we have:
Vi,�(f) = c(i, �, n,m)

∫

P̄∈Ḡm−�
m

Vi(f−1(P̄ )) dP̄

= c(i, �, n,m)
∫

P̄∈Ḡm−�
m

V oli(f−1(P̄ )) dP̄ ,
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since by Sard’s theorem there exists a smooth semialgebraic set Y ⊂ f(Rn),
such that codim(f(Rn) \ Y ) ≥ 1 and f : R

n → Y is a submersion. Thus
for a generic P̄ ∈ Ḡm−�

m , dim(Y ∩ P̄ ) = dim(Y ) − �, and dim(f−1(P̄ )) =
n− codimY (Y ∩ P̄ ) = n− � = i.

To compute these variations, we need some additional constructions in
linear algebra.

Definition 7.9. Let L : R
n → R

m be a linear mapping. For i �q =
min(n,m), we define ωi(L) as follows:

ωi(L) =
1
Vi

∫

P∈Gi
m

V oli
(
[πP ◦ L](Bn

1 )
)
dP,

where Bn
1 is as usual the unit ball centered at the origin of R

n, and Vi is the
volume of the unit i-dimensional ball.

Remark. If rank(L) = i, dim(L(Bn
1 )) = i, and the Cauchy-Crofton formula

for the volume gives:

ωi(L) =
1

Vi.c(m, i)
c(m, i)

∫

P∈Gi
m

V oli
(
πP (L(Bn

1 ))
)
dP

=
V oli(L(Bn

1 ))
Vi.c(m, i)

=
λ1(L) . . . λi(L)

c(m, i)
=

wi(L)
c(m, i)

.

In the notations of lemma 6.4 above, we have now the following:

Lemma 7.10. For P ∈ Gi
m and for

ω(P ) = [(πker(πP ◦L))∗ωker(πP ◦L)] ∧ [(πP ◦ L)∗ωP ],

we have: ∫

P∈Gi
m

ω(P ) dP = ωi(L).ωRn .

Proof. We clearly have:

[(πP ◦ L)∗ωP ] = λ1(πP ◦ L) . . . λi(πP ◦ L)(πker⊥(πP ◦L))
∗ωker⊥(πP ◦L).

Of course we suppose that rank(L) ≥ i, and thus that for generic P ∈ Gi
m,

rank(πP ◦ L) = i (if it is not the case, each side of the equality we want to
prove is 0).

Now λ1(πP ◦ L) . . . λi(πP ◦ L).V oli(Bi
1) = V oli([πP ◦ L](Bn

1 )), and
∫

P∈Gi
m

ω(P )dP =
1
Vi

[(πker(πP ◦L))∗ωker(πP ◦L)] ∧ [(πker⊥(πP ◦L))
∗ωker⊥(πP ◦L)]×
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∫

P∈Gi
m

V oli([πP ◦ L](Bn
1 ))dP

= ωi(L).ωRn . 
�

Now Lemma 6.4 can be rewritten as follows:

Lemma 7.11. Let L : R
n → R

m be a linear mapping. For i �q = min(n,m),
we have:

ωi(L) �wi(L) �C · ωi(L),

where C depends only on n,m and i. 
�

Remark. By the remark following Definition 7.9, the equality holds in

Lemma 7.11, when rank(L) = i. In this case we have: ωi(L) =
wi(L)
c(m, i)

.

Theorem 7.12. Let A be a compact smooth s-dimensional submanifold of
R

n and f : A → R
m be a smooth mapping. We have:

Vs−i,i(f) = c(s− i, i, n,m)
∫

x∈A

ωi(Df|A0(x)) dHs(x).

Proof. By definition

Vs−i,i(f) = c(s− i, i, n,m)
∫

P̄∈Ḡm−i
m

Vs−i(f−1(P̄ )) dP̄

= c(s− i, i, n,m)
∫

P∈Gi
m

∫

ξ∈P

Vs−i([πP ◦ f ]−1(ξ)) dξ dP.

For all P ∈ Gi
m, almost all the points ξ ∈ P are regular values of (πP ◦ f)|A0 ,

by the classical Sard theorem, hence [πP ◦ f ]−1(ξ) = YP,ξ is empty or is a
smooth submanifold in A0 of dimension s− i. We obtain:

Vs−i,i(f) = c(s− i, i, n,m)
∫

P∈Gi
m

∫

ξ∈P

V ols−i(YP,ξ) dξ dP

= c(s− i, i, n,m)
∫

P∈Gi
m

∫

ξ∈P

∫

YP,ξ

ωYP,ξ
dξ dP = c(s− i, i, n,m)

∫

P∈Gi
m

[ ∫

x∈A0
[(πker(πP ◦Df|A0(x)))

∗ωker(πP ◦Df|A0(x))] ∧ [(πP ◦ f|A0)∗ωP ]
]
dP

= c(s− i, i, n,m)
∫

P∈Gi
m

[
∫

x∈A0
ωP (x)] dP

= c(s− i, i, n,m)
∫

x∈A0
[
∫

P∈Gi
m

ωP (x) dP ]
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= c(s− i, i, n,m)
∫

x∈A0
ωi(Df|A0(x)) ωA0

= c(s− i, i, n,m)
∫

x∈A

ωi(Df|A0(x)) dHs(x). 
�

Now we turn back to semialgebraic sets and their polynomial mappings.
The following theorem shows that, as above, variations of semialgebraic sets
and mappings, are equivalent, up to coefficients, to their “integral-geometric”
invariants - average volume of projections.

Theorem 7.13. Let A ⊂ R
n be a bounded semialgebraic set, f = (f1, . . . ,

fm) : A ⊂ R
n → R

m be a polynomial mapping, with deg(fj) = dj . Then:

(1) For i = 0, . . . , n; � = 0, . . . ,m: Vi,�(f) �C1.Vi(A).V�(f(A)).

(2) For A ⊂ Bn
r1

, f(A) ⊂ Bm
r2

: Vi,�(f) �C2.r
i
1.r

�
2.

(3) Vi,m(f) �C3.Vm(f(A)).Vi(A).

(4) V0,�(f) �C4.V�(f(A)).

(5) Vi,�(f) �C5.

∫

P∈Gn−�
n

V�(f(A ∩ P )) dP .

All the constants here depend only on D(A), m, n, d1, . . . , dm.

Proof. (1). We have:

Vi,�(f) = c(i, �, n,m)
∫

P̄∈Ḡm−�
m

Vi(f−1(P̄ )) dP̄ ,

and by Theorem 5.1,

Vi(f−1(P̄ )) �B0,n−i(f−1(P̄ )).Vi(A) �B0,n−i(f−1(P̄ )).Vi(A).V0(f(A) ∩ P̄ ).

Now, we have shown in the proof of Theorem 7.1 that there exists C ′, a
constant depending only on D(A), such that: V0(f−1(P̄ )) �C ′. It follows
that:

Vi,�(f) �c(i, �, n,m).C ′.Vi(A)
∫

P̄∈Ḡm−�
m

V0(f(A) ∩ P̄ ) dP̄

= c(i, �, n,m).C ′.Vi(A).V�(f(A)).

Inequalities (2), (3) and (4) follow immediately from (1). Inequality (5)
is a consequence of inequality (4) and of property (4) of Vi,�(f) listed above.


�
Combining Lemma 7.10, Theorem 7.11, and Theorem 7.12.(1), we obtain:

Corollary 7.14. Let A ⊂ R
n be a semialgebraic set of dimension s, f =

(f1, . . . , fm) : A ⊂ R
n → R

m be a polynomial mapping, with deg(fj) = dj .
Then:
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C1 · Vs−i,i(f) �
∫

x∈A

wi(Df|A0(x)) dHs(x)

�C2 · Vs−i,i(f) �C3 · Vs−i(A) · Vi(f(A)),

where C1, C2 and C3 depend only on D(A), m, n, d1, . . . , dm. 
�

Remark. Theorem 7.12.(1), Theorem 7.11 and Lemma 7.8, or directly Corol-
lary 7.14 give again Theorem 7.7, for a semialgebraic set of dimension s:

Vi(f(A)) ≥ C

Vs−i(A)

∫

x∈A

wi(Df|A0(x)) dHs(x).

From Theorem 7.2 and corollary 7.14 (or Theorem 7.7), we have, for A
a semialgebraic set of R

n of dimension s and f : R
n → R

m a polynomial
mapping such that wi(Df(x)) �γ on A:

C

σi.Vs−i(A)
.

∫

x∈A

wi(Df|A0(x)) dHs(x) �Vi(f(A)) �C ′.γ.Vi(A). (∗∗)

Fig. 7.2.

We have shown (example of Fig. 7.2) that it is not possible in general to
obtain uniform lower bounds for Vi(f(A)) in terms of lower bounds for Df
(one needs to integrate wi(Df) on A to obtain such a bound). Clearly, it is
also impossible, in general, to give an upper bound for Vi(f(A)) in terms of∫

x∈A

ωi(Df(x)) dHs(x).

For instance, let A be [0; 1] × [0; δ] ⊂ R
2, f(x, y) = x, w1(f) = 1, V1(f(A)) =

1, but
∫

x∈A

wi(Df(x)) dHs(x) = δ → 0 (see Fig. 7.2).

To have upper bounds for the variations of the images in integral terms
we need some assumptions, providing the fibers of f are big:

Theorem 7.15. Let A ⊂ R
n be a semialgebraic set of dimension s, f =

(f1, . . . , fm) : R
n → R

m be a polynomial mapping, with deg(fj) = dj , and
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assume that for each P ∈ Gm−i
m with P ∩ f(A) = ∅, Vs−i(f−1(P )) ≥ K.

Then:

Vi(f(A)) � C̃

K

∫

x∈A

wi(Df|A0(x)) dHs(x),

where the constant C̃ only depends on D(A), m, n, d1, . . . , dm .

Proof. We have, from Corollary 7.14:
∫

x∈A

wi(Df|A0(x)) dHs(x) ≥ C1.Vs−i,i(f)

= C1.c(s− i, i, n,m)
∫

P̄∈Ḡm−i
m

Vs−i(f−1(P̄ )) dP̄ .

But by assumption:
∫

P̄∈Ḡm−i
m

Vs−i(f−1(P̄ )) dP̄ ≥ K

∫

P̄∈Ḡm−i
m

χ̄[f(A)](P ) dP̄ ,

where χ̄[f(A)](P ) = 1 when P ∩f(A) = ∅ and χ̄[f(A)](P ) = 0 when P ∩f(A) =
∅. We also have:

Vi(f(A)) = c(m, i)
∫

P̄∈Ḡm−i
m

V0(f(A) ∩ P̄ ) dP̄

�c(m, i).B0,m−i(f(A))
∫

P̄∈Ḡm−i
m

χ̄[f(A)](P ) dP̄ .

Finally, we get:

Vi(f(A)) �c(m, i).B0,m−i(f(A))
C1.c(s− i, i, n,m).K

∫

x∈A

wi(Df|A0(x)) dHs(x).

�

Under similar assumptions we can give also the lower bounds for the vari-
ations of the image in terms of the uniform lower bound of wi(Df|A0(x)), as a
consequence of the inequality in the remark (∗∗) that follows Corollary 7.14.

Theorem 7.16. Let A ⊂ R
n be a semialgebraic set of dimension s,

f = (f1, . . . , fm) : R
n → R

m be a polynomial mapping, with deg(fj) = dj ,
satisfying wi(Df|A0(x)) ≥ Γ (i �s), then:

Vi(f(A)) ≥ C.Γ

Vs−i(A)
V ols(A) =

C.Γ

Vs−i(A)
V ols(A)
Vi(A)

Vi(A),

where C is a constant depending only on D(A), m, n, d1, . . . , dm. 
�
When Γ �wi(Df|A0(x)) �γ, we thus obtain, from (∗∗):

C.Γ

Vs−i(A)
V ols(A) �Vi(f(A)) �C ′.γ.Vi(A).
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Remark. The assumption
V ols(A)
Vi(A)

≥ K means that the sections of A in

the directions orthogonal to its maximal i-dimensional section, are at least
K-big.

K has the physical dimension of Vs−i(A), but of course, if Vs−i(A) is
big, K may be small: A = [0; δ] × [0; 1], s = 2, i = s − i = 1, V1(A) ≥ 1,
V ol2(A) = δ.

From Theorem 7.16 we obtain:

Corollary 7.17. Let A ⊂ Bn
r ⊂ R

n be a semialgebraic set of dimension s,
f = (f1, . . . , fm) : R

n → R
m be a polynomial mapping, with deg(fj) = dj ,

satisfying wi(Df|A0(x)) ≥ Γ > 0 (i �s), then for any ball Bm
δ ⊂ R

m:

V ols(f−1(Bm
δ ) ∩A) � c

Γ
δi.rs−i,

where c is a constant depending only on D(A), m, n, d1, . . . , dm.

Proof. From Theorem 7.16 we have

V ols(Ã) � σi

C.Γ
Vs−i(Ã).Vi(f̃(Ã)),

where f̃ = f|A∩f−1(Bm
δ

) : Ã = A ∩ f−1(Bm
δ ) → Bm

δ . But Vs−i(Ã) �c1.rs−i,

since Ã ⊂ Bn
r , and Vi(f(A)) �c2.δi (by Theorem 5.1). 
�



8 Quantitative Transversality
and Cuspidal Values

Abstract. We consider families of polynomial mappings ft, and we study
the set of parameters t for which ft has a near-critical point with value
near the origin (it is well-known that general transversality results can be
reduced to this situation). The variations of this critical set are bounded by
its level of degeneracy. We also apply similar methods to Thom-Boardman
singularities.

A general transversality result asserts that by a small perturbation any two
given submanifolds can be brought into a “general position”: at each intersec-
tion point their tangent spaces span the ambient space. In the introduction
a quantitative question of this sort has been posed: how big a transversal-
ity can be achieved by a perturbation of a prescribed size? In this chapter
we answer this question in a polynomial case, in theorem 8.1 and corollary
8.3 below. Technically, the transversality question is usually reduced to the
case where one of the manifolds is just the origin. This is done by composing
the imbedding mapping of the first manifold with the projection along the
second one inside its tubular neighborhood. To reduce technicalities we start
below with such a situation: we consider a mapping of the product of two
euclidean spaces (the second representing the parameters) into the third one,
and define the set ∆ of those parameters, for which the mapping on the first
factor is not transversal to the origin. Being quantitative, this definition in
fact involves situations, close to non-transversal, and not only to the origin,
but to any point, close to the origin.

A different result, based on a similar technique, is given by theorem 8.10
and corollary 8.11. It shows that the set of special critical values, attained by
the mapping at “higher order” singular points, is smaller than the set of all
the critical values.

Let f = (f1, . . . , fm) : R
n × R

m → R
m be a polynomial mapping, with

deg(fj) = dj , for j = 1, . . .m. For some fixed r > 0, we consider the restriction
f : Bn

r × Bm
r → R

m, that we will also denote f . We will consider t ∈ Bm
r

as a parameter, and as in the usual transversality theorem, our aim is to
show, that for a typical value of t, the mapping ft = f(., t) : Bn

r → R
m is

Y. Yomdin and G. Comte: LNM 1834, pp. 99–107, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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nondegenerate, in some sense1. To achieve this, a necessary assumption is,
at least, that the parameters act nondegenerately. Hence we assume that for
any (x, t) ∈ Bn

r ×Bm
r , the linear mapping Dtf(x,t) : R

m → R
m is onto, where

Dtf(x,t) (resp. Dxf(x,t) ) denotes the restriction of Df(x,t) : R
n × R

m → R
m

to {0}×R
m (resp. to R

n ×{0}). We thus have, for any (x, t) ∈ Bn
r ×Bm

r and
any i = 1, . . . ,m, λi(Dtf(x,t)) = 0. But by compactness of B̄n

r × B̄m
r , we can

assume the following:

(∗) There exist ρ1 ≥ ρ2 ≥ . . . ρm > 0, such that for any (x, t) ∈ Bn
r ×

Bm
r , and for i = 1, . . . ,m: λi(Dtf(x,t)) ≥ ρi > 0.

Now for Λ = (λ1, . . . , λm), with λ1 ≥ λ2 ≥ . . . ≥ λm ≥ 0, and δ > 0, let
Σ(f, Λ, δ) be the set defined as follows:

Σ(f, Λ, δ) =

{(x, t) ∈ Bn
r ×Bm

r ; λi(Dxf(x,t)) �λi,∀i = 1, . . . ,m and ||f(x, t)|| �δ}.
We denote also by ∆(f, Λ, δ) ⊂ Bn

r the set π2(Σ(f, Λ, δ)), where the
projection π2 : R

n × R
m → R

m is the standard projection.
Thus ∆(f, Λ, δ) consists of those parameters t ∈ Bm

r for which there exists
x ∈ Bn

r with λi(Dxf(x,t)) �λi, i = 1, . . . ,m, and ft(x) ∈ Bm
δ ⊂ R

m.

Theorem 8.1. With the notations above, we have, for s = 0, 1, . . . ,m:

Vs(∆(f, Λ, δ)) � c.M

ρm . . . ρm−s+1

s∑

j=0

λ0 . . . λjr
jδs−j ,

with c depending only on n,m, d1, . . . , dm, and M bounding above wj(Df),
on Bn

r ×Bm
r , for j = 0, . . . , s.

Proof. As usual, it is enough to bound the s-volume of the projections of
∆(f, Λ, δ) on various s-dimensional subspaces P ∈ Gs

m, because

Vs(∆(f, Λ, δ)) = c(m, s)
∫

P∈Gs
m

∫

x∈P

V0(∆(f, Λ, δ) ∩ P ) dx dP

�c(m, s).B0,m−s(∆(f, Λ, δ))
∫

P∈Gs
m

V ols(πP (∆(f, Λ, δ))) dP.

Let P ∈ Gs
m be fixed. By Theorem 4.10 there exists a semialgebraic

set C ⊂ Σ(f, Λ, δ), such that D(C) depends only on n,m, d1, . . . , dm,
πP (∆(f, Λ, δ)) = (πP ◦π2)(Σ(f, Λ, δ)) = (πP ◦π2)(C), dim(C) = dim(πP (∆(f,
Λ, δ))) = s (of course we consider only variations Vs(∆(f, Λ, δ)) for s �
dim(∆(f, Λ, δ))).
1 Here “nondegenerate” means “volume-nondegenerate”, i.e. at least the maximal

m-volume of the image by Dft (x,t) of a unit cube of R
n is not too small, say

bigger than λ, and “typical” means that the bad parameters t lie within a set of
small variations depending on λ.
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Now by the area formula (see Chapter 7) we have:

V ols((πP ◦ π2)(Σ(f, Λ, δ))) �
∫

x∈C0
ws((πP ◦ π2)|TxC0) dHs(x)

�
∫

x∈C0
ws(π2|TxC0) dHs(x).

Thus let us bound ws(π2|TxC0).
For this, we apply Lemma 6.3, with T = TxC

0, L′ = Dxf(x,t), L′′ =
Dtf(x,t) and L̃ = D(f|C0)(x,t) = (Df(x,t))|TxC0 . We have:

ws(π2|TxC0) � k.ws([Dtf(x,t)]−1)
s∑

j=0

wj(D(f|C0)(x,t)).ws−j(Dxf(x,t))

� k

ρm . . . ρm−s+1

s∑

j=0

wj(D(f|C0)(x,t)).λ0 . . . λs−j ,

by assumption on Dtf and since (x, t) ∈ Σ(f, Λ, δ). The constant k, defined
in lemma 6.3, depends only on combinatorial data.

It follows that:
V ols((πP ◦ π2)(Σ(f, Λ, δ))) �

k

ρm . . . ρm−s+1

s∑

j=0

λ0 . . . λs−j

∫

x∈C0
wj(D(f|C0)(x,t)) dHs(x)

� k

ρm . . . ρm−s+1

s∑

j=0

λ0 . . . λs−j .C3.M.Vs−j(C).Vj(f(C)),

the last inequality being a consequence of Corollary 7.14, and M being a
constant such that wj(D(f|C0)(x,t)) �M , for all j ∈ {0, . . . , s}.

Finally we have: C ⊂ Bn
r ×Bm

r and f(C) ⊂ Bm
∆ , thus by Theorem 5.1 we

have Vs−j(C) �c.rs−j and Vj(f(C)) �c′.δj , and thus:

V ols((πP ◦ π2)(Σ(f, Λ, δ))) � k.C3.M.c.c′

ρm . . . ρm−s+1

s∑

j=0

λ0 . . . λs−jr
s−jδj .


�

As we can expect, the bound of Theorem 8.1 shows that for λi and δ
small, variations of the set of “bad” parameters are small.

We can consider now some special cases of this theorem.

Corollary 8.2. With the same notations as above,

Vs(∆(f, Λ, 0)) � c.M

ρm . . . ρm−s+1
λ0 . . . λsr

s.


�
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This formula is very similar to the bound given in Corollary 7.4. In fact
this Corollary is a special case of Theorem 8.1. Indeed, for a given polynomial
mapping f : R

n → R
m, let us consider the mapping F : Bn

r × Bm
r → R

m

defined by F (x, t) = f(x)+t. We have ρ1 = . . . = ρm = 1, and from Theorem
8.1 we obtain:

Vs(∆(F,Λ, 0)) �c.M.λ0 . . . λsr
s.

But ∆(F,Λ, 0) is the set of values f(x) = t such that x ∈ Bn
r , λi(Df(x)) �λi,

for i = 0, . . . ,m, and thus is ∆(f, Λ,Bn
r ), in the notation of Corollary 7.4.

Let us return to the general case. If t /∈ ∆(f, Λ, δ), then for any x ∈ Bn
r

such that ||f(x, t)|| �δ, at least one of the quantities λi(Dxf(x,t)) is greater
than λi.

If we want to guarantee that for each i, λi(Dxf(x,t)) ≥ λi, we can proceed
as follows:

Assume that everywhere on Bn
r ×Bm

r , we have:

λm(Dxf) � . . . �λ2(Dxf) �λ1(Dxf) �K.

Then for Λi = (K, . . . ,K, λi, λi, . . . , λi) (λi being located at the ith place), we
have t /∈ ∆(f, Λi, δ) and ||f(x, t)|| �δ implies for all x ∈ Bn

r : λi(Dxf(x,t)) ≥
λi.

Hence if we denote by ∆̄(f, Λ, δ) the union
m⋃

i=1

∆(f, Λi, δ), we have: t /∈

∆̄(f, Λ, δ) and ||f(x, t)|| �δ imply for all x ∈ Bn
r , and for all i ∈ {1, . . . ,m}:

λi(Dxf(x,t)) ≥ λi.
But by Theorem 8.1, we have the following:

Vs(∆(f, Λi, δ)) � c.M

ρm . . . ρm−s+1
[
i−1∑

j=0

Kjrjδs−j +Ki−1
s∑

j=i

λj−i+1
i rjδs−j ].

Adding all these expressions, for i from 1 to m, we get a bound for ∆̄(f, Λ, δ),
as follows:

Vs(∆̄(f, Λ, δ)) �C1
s · (λ1 + . . .+ λs) + C2

s · δ.
Thus for λ1, . . . , λm and δ tending to 0 all the variations of the set ∆̄(f, Λ, δ)
tend to 0. Consequently, for most of values of the parameters t, if ||f(x, t)|| �δ,
then for each i, λi(Dxf(x,t)) ≥ λi.

Now we consider another generalization of Theorem 8.1. Let A ⊂ R
m and

define Σ(f, Λ,A, δ) as the set:

Σ(f, Λ,A, δ) =

{(x, t) ∈ Bn
r ×Bm

r ; λi(Dft (x)) �λi, i = 1, . . . ,m, and ft(x) ∈ Aδ},
and
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∆(f, Λ,A, δ) = π2
(
Σ(f, Λ,A, δ)

)
.

The set ∆(f, Λ,A, δ) is the set of those parameters t ∈ Bm
r for which there

exists x ∈ Bn
r with λi(Dft(x)) �λi for all i ∈ {1, . . . ,m}, and there exists

a ∈ A with ||f(x, t) − a|| �δ.
Corollary 8.3. With the notations above, we have, for all s ∈ {1, . . . ,m}:

Vs

(
∆(f, Λ,A, δ)

)
� c̃.M.M(δ, A)
ρm . . . ρm−s+1

s∑

j=0

λ0 . . . λjr
j .δs−j ,

where c̃ depends only on n,m, d1, . . . , dm, andM bounds wj(Df) on Bn
r ×Bm

r

for j = 0, . . . , s.

Proof. We cover the δ-neighbourhood Aδ of A by M(δ, A) balls of radius 2δ,
and to each of them we apply Theorem 8.1. 
�

By Theorem 3.5, we obtain:

Corollary 8.4. With the notations above, we have:

M
(
ε,∆(f, Λ,A, δ)

)
�

C.M̃.M(δ, A)
m∑

s=0

1
ρm . . . ρm−s+1

(
1
ε

)s
s∑

j=0

λ0 . . . λjr
j .δs−j ,

where C depends only on n,m, d1, . . . , dm, and M̃ bounds wj(Df) on Bn
r ×

Bm
r for j = 0, . . . ,m. 
�

Substituting here ε = δ, we get:

Corollary 8.5. With the notations above:

M
(
ε,∆(f, Λ,A, ε)

)
�C · C̃ · M̃ ·M(ε, A)

m∑

j=0

λ0 . . . λj(
r

ε
)j ,

where C depends only on n,m, d1, . . . , dm, M̃ bounds from above wj(Df) on
Bn

r ×Bm
r for j = 0, . . . ,m, and C̃ depends only on ρ1, . . . , ρm. 
�

Assume now that λj = 0, for j ≥ p, then:

M(ε,∆(f, Λ,A, ε)) ∼ c̃.M̃ .M(ε, A)(
1
ε

)p.

Hence we obtain the following:

Corollary 8.6. With the notations above, and for Λ = (λ1, . . . , λp, 0, . . . , 0),

dime(∆(f, Λ,A, 0)) � dime(A) + p.
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Proof. We have ∆(f, Λ,A, 0) ⊂ ∆(f, Λ,A, ε), thus there exists a constant ĉ

such that for all ε > 0, M(ε,∆(f, Λ,A, 0)) �ĉ.M(ε, A)(
1
ε

)p. It follows that

M(ε,∆(f, Λ,A, 0)).εβ+p is bounded for all ε > 0, and for all β > dime(A).
Finally dime(∆(f, Λ,A, 0)) � dime(A) + p. 
�

In particular, for A ⊂ R
msuch that dime(A) < m − p, we have:

dime(∆(f, Λ,A, 0)) < m, hence for a generic t ∈ Bm
r , ft(Σ(f, Λ, r)) ∩A = ∅.

In other words, for a generic t, if f(x, t) ∈ A, then the rank of Dxf(x,t) is
greater than p.

Our next goal is to give a relative version of Corollary 7.4.
Let f : Bn

r → R
m and g : Bn

r → R
q, q �n, be two polynomial mappings.

Let δ ≥ 0 be fixed. We assume that at each point x ∈ g−1(Bq
δ ), the

mapping g is nondegenerate, for instance, we assume that:

λi(Dg(x)) ≥ ρi > 0, i = 0, 1, . . . , q, (ρ0 = 1).

For ΛΛ′ = (λ1, . . . , λq, λ
′
1, . . . , λ

′
min(n−q,m)), λ1 ≥ . . . ≥ λq ≥ 0, λ′

1 ≥ . . . ≥
λ′

min(n−q,m) ≥ 0, (λ0 = λ′
0 = 1), we denote by Σ(f, g, ΛΛ′, δ) the set:

Σ(f, g, ΛΛ′, δ) = {x ∈ Bn
r ; λi(Df(x)|(ker(Dg(x))⊥) �λi, i = 1, . . . , λq,

λj(Df(x)|kerDg(x)
) �λ′

j , j = 1, . . . ,min(n− q,m), and ||g(x)|| �δ}.

As usual, ∆(f, g, ΛΛ′, δ) denotes the set f(Σ(f, g, ΛΛ′, δ)).

Theorem 8.7. With the notations above, we have, for s = 0, 1, . . . ,m.2:

Vs(∆(f, g, ΛΛ′, δ)) �K.Ĉ
s∑

j=0

λ0λ1 . . . λs−j

ρ0ρ1 . . . ρs−j
λ′

0λ
′
1 . . . λ

′
j .r

j .δs−j ,

where K bounds from above σs−j(Dg(x)|T), for all x ∈ Σ(f, g, ΛΛ′, δ), all
T ∈ Gs

n and all j ∈ {0, . . . , s} (σs−j being defined in Theorem 7.7.)

Proof. As in the proof of Theorem 8.1, it suffices to bound the s-volume of
the projections πP (∆(f, g, ΛΛ′, δ)) ⊂ P , where P is a s-dimensional linear
subspace of R

m. Let P be a fixed plane in Gs
m. By Theorem 4.10 there exists

a semialgebraic set C ⊂ Σ(f, g, ΛΛ′, δ), such that D(C) depends only on
D(Σ(f, g, ΛΛ′, δ)),

[πP ◦ f ](C) = [πP ◦ f ](Σ(f, g, ΛΛ′, δ)) = πP (∆(f, g, ΛΛ′, δ)),

and
dim(C) = dim(πP (∆(f, g, ΛΛ′, δ))) = s

2 The convention here is that for j>q, λj = 0, for j>min(n-q,m) , λ′
j = 0, and for

j> q , ρj = 1.
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(we consider only variations Vs(∆(f, g, ΛΛ′, δ)) for s � dim(∆(f, g, ΛΛ′, δ)).)
By the area formula, we have:

V ols(πP (∆(f, g, ΛΛ′, δ))) �
∫

x∈C0
ws([πP ◦Df(x)]|TxC0) dHs(x)

�
∫

x∈C0
ws(Df(x)|TxC0) dHs(x).

It remains to estimate ws(Df(x)|TxC0). By Lemma 6.2, with T = TxC
0,

π1 : T → ker(Dg(x)), π2 : T → (ker(Dg(x)))⊥, L1 = Df(x)|ker(Dg(x)) ◦ π1,
L2 = Df(x)|(ker(Dg(x)))⊥ ◦ π2, L1 + L2 = Df(x)|T, we get:

ws(Df(x)|TxC0) �k(s,m, s)
s∑

j=0

wj(L1).ws−j(L2).

Now by assumption, wj(L1) �λ′
0λ

′
1 . . . λ

′
j , for all j ∈ {0, . . . ,min(n− q,m)},

and ws−j(L2) �λ0λ1 . . . λs−j �
ws−j(Dg(x))
ρ0ρ1 . . . ρs−j

λ0λ1 . . . λs−j , for all j ∈ {0, . . . ,

q}. We thus have:

ws(Df(x)|TxC0) �k(s,m, s)
s∑

j=0

λ0λ1 . . . λs−j

ρ0ρ1 . . . ρs−j
λ′

0λ
′
1 . . . λ

′
jws−j(Dg(x))

V ols(πP (∆(f, g, ΛΛ′, δ))) �
∫

x∈C0
ws(Df(x)|TxC0) dHs(x)

�k(s,m, s)
s∑

j=0

λ0λ1 . . . λs−j

ρ0ρ1 . . . ρs−j
λ′

0λ
′
1 . . . λ

′
j

∫

x∈C0
ws−j(Dg(x)) dHs(x)

�σs−j(g|C0).C.k(s,m, s)
s∑

j=0

λ0λ1 . . . λs−j

ρ0ρ1 . . . ρs−j
×

λ′
0λ

′
1 . . . λ

′
jVs−j(g(C0).Vs−(s−j)(C0)

The last inequality being a consequence of Theorem 7.7. By assumption,
σs−j(g|C0) �K, C ⊂ Bn

r , g(C) ⊂ Bq
δ , hence by Theorem 5.1:

V ols(πP (∆(f, g, ΛΛ′, δ))) �

K.C.k(s,m, s)
s∑

j=0

λ0λ1 . . . λs−j

ρ0ρ1 . . . ρs−j
λ′

0λ
′
1 . . . λ

′
j .r

j .δs−j .

�

First of all, we see that Corollary 7.4 is a special case of Theorem 8.7.
Indeed, for g : Bn

r → Bn
r being the identity mapping, δ = r, we have

ker(Dg(x)) = 0, λ′
0 = λ′

min(n−n,m) = 1, ρ0 = . . . = ρn = 1,K = 1, and
∆(f, g, ΛΛ′, r) = ∆(f, Λ,Bn

r ), hence the only term remains:
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Vs(∆(f, Λ,Bn
r )) �Ĉ.λ0λ1 . . . λs.r

s.

In the next corollary we assume f to be the identity, λ0 = . . . = λq = 1,
λ′

0 = . . . = λ′
min(n−q,m) = 1 . Hence ∆(f, g, ΛΛ′, δ) is just the tube

T δ = g−1(Bq
δ ) around the fiber Yδ = g−1({0}). In this case, considering

the convention (See Footnote 2 on Page 104) of Theorem 8.7, we see that to

have the term
λ0λ1 . . . λs−j

ρ0ρ1 . . . ρs−j
λ′

0λ
′
1 . . . λ

′
j .r

j .δs−j = 0, we must have s − j �q
and j �min(n− q, n) = n− q. Thus we obtain:

Corollary 8.8. With the above notations, for all s ∈ {0, . . . ,m}:

Vs(T δ) �K.Ĉ
n−q∑

j=s−q

1
ρ0ρ1 . . . ρs−j

rj .δs−j .


�

In particular, for the volume of T δ we have the following bound:

Corollary 8.9. With the above notations:

V oln(T δ) �K.Ĉ. 1
ρ0ρ1 . . . ρq

rn−q.δq.


�

Theorem 8.1 also can be obtained as a special case of Theorem 8.7.

The main application of Theorem 8.7 we give here concerns the “high
order critical values”, i.e. the values of the mapping on the “near-Thom-
Boardman”singularities (see [Boa] or [Gol-Gui] for basic definitions). Al-
though by our methods the general Thom-Boardman singularities can be
treated, the expressions are very complicated. Thus we consider here only
the simplest situation: let f : Bn

r → R
n be a polynomial mapping, let J

denote the Jacobian of f , and let δ ≥ 0 be given.
If we assume that for any x with |J(x)| �δ, ||∇J(x)|| ≥ γ > 0, the set

J−1({x}), x ∈ B1
δ , is a submanifold of dimension n − 1 of R

n. In particular
we can restrict f to Σ1(f) = J−1({0}), and consider the singularities of
f|Σ1(f) : Σ1(f) → R

n. The set of points x of Σ1(f) such that the map f|Σ1(f)
drops rank s > 0 (i.e. rank(Df(x)|Σ1(f)) �n− 1 − s) is denoted Σ1,s(f) (one
can of course define in the same way the sets Σr,s(f), and so Σr,s,t,...(f)). The
points of the Σr,s,t,...(f)’s are called Thom-Boardman singularities of f (see
[Boa], or [Gol-Gui]). Now for Λ = (λ1, . . . , λn−1), we denote by Σ1(f, Λ, δ)
the following set:

Σ1(f, Λ, δ) =

{x ∈ Bn
r ; |J(x)| �δ and λi(Df(x)|ker(DJ(x))) �λi, i = 1, . . . , λn−1}.

Clearly, for λi and δ small (which is the case we usually have in mind),
Σ1(f, Λ, δ) is the set of points which are near Thom-Boardman singularities
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of type Σ1,s(f), for all s ∈ {1, . . . , n − 1}. For instance, for δ = 0 and
λn−s = . . . = λn−1 = 0, we obtain Σ1,s.

As usual we denote by ∆1(f, Λ, δ) the image f(Σ1(f, Λ, δ)).

Theorem 8.10. For s �n−1, we have (with the convention (See Footnote 2
on Page 104 ):

Vs(∆1(f, Λ, δ)) �Ĉ.K[
M

γ
.λ0 . . . λs−1.r

s−1.δ + λ0 . . . λs.r
s],

and for s = n : Vn(∆1(f, Λ, δ)) � Ĉ.K
γ

.λ0 . . . λn−1.r
n−1.δ,

where K bounds above σs−j(DJ(x)| T), for all x ∈ Σ1(f, Λ, δ), all T ∈ Gs
n,

and all j ∈ {s− 1, s}, and where M is an upper bound for

λ1(Df(x)|(ker(DJ(x)))⊥),

for all x ∈ Σ1(f, Λ, δ).

Proof. We remark that Σ1(f, Λ, δ) = Σ(f, J, ΛΛ′, δ) (with the notations of
Theorem 8.7), when ΛΛ′ = (M,λ1, . . . , λn−1). We thus can apply Theorem
8.7 with g = J , λ1 = M , λ′

j = λj for j = 1, . . . , n− 1, and ρ1 = γ. 
�

In particular, for n = 2, we have Λ = λ, and thus:

Corollary 8.11. With the notations above:

V0(∆1(f, Λ, δ)) � C0

V1(∆1(f, Λ, δ)) � C1 ·K(λ · r +
M

γ
δ)

V2(∆1(f, Λ, δ)) � C2 ·KM

γ
λ · r · δ.


�
Thus for λ and δ small, the area V2 of the “near-cuspidal” values

∆1(f, Λ, δ) is of order λ · δ, and not of order λ, as one expects for generic
rank 1 near-critical values of f .



9 Mappings of Finite Smoothness

Abstract. We prove the quantitative Morse-Sard theorem for Ck mappings
with n variables, i.e. we bound the ε-entropy of near-critical values. In
particular, we give, for the entropy dimension of the rank-ν set of critical
values, a bound depending only on n, ν and k. We then give examples
showing that our statement is the best possible. We also give the Ck version
of the polynomial quantitative transversality of Chapter 8.

In this chapter we investigate the properties of the set of Λ-critical values of
a given Ck-mapping, k ≥ 1, f : Bn

r → R
m 1.

In what follows, k is not necessarily an integer. Let us write, for k > 1,
k = p + α, with p ∈ N \ {0} and α ∈]0; 1]; we say that f is a Ck = Cp+α-
mapping (of Hölder smoothness class Ck) when f is p-times differentiable and
there exists a constant K > 0 such that for every x, y ∈ Bn

r , ||Dpf(x) −
Dpf(y)|| �K||x− y||α 2. A C1-mapping is just a differentiable mapping with
continuous derivative x → Df(x).

Let us notice that a Ck-mapping, with k ∈ N \ {0, 1}, is a (k − 1)-times
differentiable mapping such that: x �→ Dk−1f(x) is Lipschitz.

We denote by Rk(f) the following quantity:

Rk(f) =
K

p!
.rk=p+α.

For Λ = (λ1, . . . , λq), q = min(n,m), the set Σ(f, Λ,Bn
r ) of Λ-critical points

and the set ∆(f, Λ,Bn
r ) of Λ-critical values are defined as above:

Σ(f, Λ,Bn
r ) = {x ∈ Bn

r ; λi(Df(x)) �λi, i = 1, . . . , q},

∆(f, Λ,Bn
r ) = f(Σ(f, Λ,Bn

r )).

Proposition 9.1. With the notations above, for any ε ≥ Rk(f), we have:
1 As usual, a Ck-mapping on Bn

r is a mapping which can be extended to a Ck-
mapping on some open neighborhood of Bn

r ⊂ R
n.

2 The norm of the p-th differential is of course the Euclidean norm on the corre-
sponding space of multilinear mappings. As an easy exercice, one can check for
instance that x → xk, for k> 1 is a Ck-smooth mapping and that x → xk sin(1/x),
for k> 2 is a Ck/2-smooth mapping.

Y. Yomdin and G. Comte: LNM 1834, pp. 109–130, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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M(ε,∆(f, Λ,Bn
r )) �c

i=q∑

i=0

λ0λ1 . . . λi(
r

ε
)i,

where the constant c only depends on n,m and k.

Proof. Let Pp be the Taylor polynomial of f of degree p at 0 ∈ Bn
r . We write

ϕ(x) = f(x)−Pp(x) = f(x)−
p∑

j=0

1
j!
Djf(0).x

j . For all j ∈ {1, . . . , p}, we have

Djϕ(0) = 0, and Dpϕ(x) = Dpf(x) −Dpf(0).
We have by the Taylor formula, for any x ∈ Bn

r :

ϕ(x) = f(x) − Pp(x) =
p−1∑

j=0

1
j!
Djϕ(0)x

j +
∫ t=1

t=0

(1 − t)p−1

(p− 1)!
Dpϕ(tx).x

p dt.

Thus:

||f(x) − Pp(x)|| = ||
∫ t=1

t=0

(1 − t)p−1

(p− 1)!
Dpϕ(tx).x

p dt||

�
∫ t=1

t=0

(1 − t)p−1

(p− 1)!
||Dpϕ(tx)||.||x||p dt

=
∫ t=1

t=0

(1 − t)p−1

(p− 1)!
||Dpf(tx) −Dpf(0)||.||x||p dt

�
∫ t=1

t=0

(1 − t)p−1

(p− 1)!
.K.||tx− 0||α.||x||p dt,

and finally, we obtain:

||f(x) − Pp(x)|| �K
p!
rk = Rk(f) �ε. (1)

The same argument for Dϕ gives us:

||Df(x) −DPp(x)|| � K

(p− 1)!
rk−1 =

p

r
Rk(f) �p

r
ε. (2)

Hence if we denote by λ′
i the numbers λi +

pε

r
, for i ≥ 1 and λ′

0 = 1, and put

Λ′ be (λ′
1, . . . , λ

′
q), by inequality (2), we have Σ(f, Λ,Bn

r ) ⊂ Σ(Pp, Λ
′, Bn

r ).
Now ∆(f, Λ,Bn

r ) ⊂ f
(
Σ(Pp, Λ

′, Bn
r )
)

⊂
[
∆(Pp, Λ

′, Bn
r )
]
ε
, by (1).

Therefore we can write:

M(2ε,∆(f, Λ,Bn
r )) �M(2ε,

[
∆(Pp, Λ

′, Bn
r )
]
ε
) �M(ε,∆(Pp, Λ

′, Bn
r )),

and by Theorem 7.5:

M(2ε,∆(f, Λ,Bn
r )) �C

q∑

i=0

λ′
0 . . . λ

′
i(
r

ε
)i,
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or equivalently:

M(ε,∆(f, Λ,Bn
r )) �C̃

q∑

i=0

λ′
0 . . . λ

′
i(
r

ε
)i,

with C̃ depending only on p, n and m.
But for any i ∈ {1, . . . , q},

λ′
0 . . . λ

′
i =

i∏

j=1

(λj +
pε

r
) = c′

i∑

�=0

∑

i1>...>i�∈{1,...,i}
λi1 . . . λi�

(
ε

r
)i−�.

We have λi1 . . . λi�
�λ1 . . . λ�, because λ1 ≥ . . . ≥ l�, and thus:

λ′
0 . . . λ

′
i �c̃

i∑

�=0

λ1 . . . λ�(
ε

r
)i−�.

We conclude that:

M(ε,∆(f, Λ,Bn
r )) � C̃.c̃

q∑

i=0

i∑

�=0

λ0λ1 . . . λ�(
r

ε
)�−i(

r

ε
)i

� c

q∑

i=0

λ0 . . . λi(
r

ε
)i.


�

Thus for ε ≥ Rk(f), we have for Ck-smooth f exactly the same expression
as for polynomials. This fact is one of many effects of “near-polynomiality”,
which can be described roughly as follows: if we consider a C(k=p+α)-smooth
function with accuracy ε ≥ Rk(f), that is to say with accuracy “not too
small”, we cannot distinguish it from its Taylor polynomial of degree p, not
only in the C0-norm, but also in the structure of critical points and values.

The next result is the main result of this chapter, and one of the main
results of the book: the Quantitative Morse-Sard Theorem. It bounds for any
ε > 0 the entropy of the set of near-critical values of f (parametrised by
λ1, . . . , λq), in terms of ε, λi, r and the only data on f - its remainder term
Rk(f).

Theorem 9.2. Let f : Bn
r → R

m be a Ck=p+α-smooth mapping on Bn
r . Then

for Λ = (λ1, . . . , λq=min(n,m)) and for ε > 0, we have:

M(ε,∆(f, Λ,Bn
r )) � c

q∑

i=0

λ0λ1 . . . λi(
r

ε
)i, for ε ≥ Rk(f),

M(ε,∆(f, Λ,Bn
r )) � c̃

q∑

i=0

λ0λ1 . . . λi(
r

ε
)i

(
Rk(f)
ε

)n−i
k

, for ε �Rk(f),
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where c and c̃ depend only on n,m and k.

Proof. For ε ≥ Rk(f) the result follows from Proposition 9.1.
Let ε �Rk(f). We cover Bn

r by balls of radius r′ < r, where r′ is chosen

in such a way that Rk(f|Bn
r′ ) �ε. We can take for r′,

K

p!
(r′)k = ε, or:

r′ = r.

(
ε

Rk(f)

) 1
k

.

The number of such balls we need to cover Bn
r is at most:

N = C(
r

r′ )
n = C.

(
Rk(f)
ε

)n
k

.

We apply Proposition 9.1 to the restriction of f to each of the N balls Bn
(xj ,r′),

hence we obtain:

M(ε,∆(f, Λ,Bn
r )) �

N∑

j=1

M(ε,∆(f|Bn
(xj,r′)

, Λ,Bn
(xj ,r′)))

M(ε,∆(f, Λ,Bn
r )) � C.

(
Rk(f)
ε

)n
k

.c

q∑

i=0

λ0 . . . λi(
r′

ε
)i

= c̃

(
Rk(f)
ε

)n
k

q∑

i=0

λ0 . . . λi(
r

ε
)i(
r′

r
)i.

Thus:

M(ε,∆(f, Λ,Bn
r )) �c̃

q∑

i=0

λ0 . . . λi(
r

ε
)i

(
Rk(f)
ε

)n−i
k

. 
�
Let us stress the fact that for ε ≥ Rk(f) the expression of Theorem 9.2 is

the same as in the polynomial case. So in a resolution coarser than the Taylor
remainder term one cannot distinguish between the geometry of the critical
values of f and of its Taylor polynomial approximation. In finer resolution
a correction appears, expressed in terms of the remainder Rk(f). In fact,
Theorem 9.2, as well as most of the results of Chapter 9, can be considered
as a “generalized Taylor formula” for the property in question: they contain
a “polynomial term” and a correction, expressed through Rk.

Let us denote now:

Σν
f = {x ∈ Bn

r ; rank(Df(x)) �ν}

and
∆ν

f = f(Σν
f ),

respectively the rank-ν set of critical points and of critical values. The closed
ball Bn

r being compact, there exist λ1 ≥ . . . . . . λq ≥ 0 such that for all
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x ∈ Bn
r and for all i ∈ {1, . . . , q}, λi(Df(x)) �λi. Therefore we have ∆ν

f ⊂
∆(f, Λ,Bn

r )), for Λ = (λ1, . . . , λν , 0, . . . , 0), and thus by Theorem 9.2:

M(ε,∆ν
f ) �M(ε,∆ν

f ⊂ ∆(f, Λ,Bn
r ))) �c̃

ν∑

i=0

λ0 . . . λi

(r
ε

)i
(
Rk(f)
ε

)n−i
k

,

so

M(ε,∆ν
f ) � c̃

ν∑

i=0

λ0 . . . λi

(r
ε

)i
(
K.rk

p!ε

)n−i
k

= c̃

ν∑

i=0

λ0 . . . λi

(K
p!
)n−i

k .rn.
(1
ε

)i+ n−i
k .

Finally we have bounded M(ε,∆ν
f ) by a polynomial of degree ν +

n− ν

k
in

(1
ε

)
, hence by definition the entropy dimension of ∆ν

f is less than ν +
n− ν

k
,

and so is the Hausdorff dimension of ∆ν
f (by the inequality dimH � dime of

Chapter 2). We have proved:

Theorem 9.3. (Entropy Morse-Sard Theorem [Yom 1]) Let f : Bn
r →

R
m be a Ck=p+α-mapping on Bn

r . Then:

dimH(∆ν
f ) � dime(∆ν

f ) �ν +
n− ν

k
.


�

Comments.

• First of all, let us stress that the bound on the entropy dimension may be
much more restrictive than that for the Hausdorff dimension. Many examples
of this sort are given in Chapter 2. In particular, for ν = 0, i.e. for critical
values of rank 0, by Theorem 9.3 their entropy dimension is at most n/k.
This implies for instance that the sequences {1, 1/2β , . . . , 1/nβ , . . .} cannot be

contained among these critical values for β <
k

n
+1. Of course, the Hausdorff

dimension of any countable set is zero.
• Theorem 3.4.3 of [Fed 2] gives, for f a k-times continuously differen-
tiable mapping (k ∈ N \ {0}), Hν+ n−ν

k (∆ν
f ) = 0. In particular, it implies

dimH(∆ν
f ) �ν+

n− ν

k
. Theorem 9.3 shows that the assumption k-times con-

tinuously differentiable can be weakened to Ck−1+1, that is to say, f is (k−1)-
times differentable and Dk−1f is Lipschitz.
• In terms of entropy (as well as in terms of Hausdorff) dimension, The-
orem 9.3 cannot be sharpened: we can construct a family of functions
fβ : [0; 1]2 → [0; 1], with β ∈]2; ∞[, such that fβ is C 2 ln 3

ln β -smooth, ∆0
fβ

= I 1
3
,
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the classical Cantor set of I = [0; 1] of entropy (and Hausdorff) dimension
ln 2/ ln 3 ([Com 1]).

In this case, Theorem 9.3 gives us: (ln 2/ ln 3 = dimH(∆0
fβ

) =) dime(∆0
fβ

)
� lnβ/ ln 3, and β is as close as we want to 2.

The function fβ is constructed in the following way.
First of all we consider the classical Cantor set Cβ on the square I2 ⊂ R

2:
C1, C2, C3, C4 are the squares of I2 with side of length 1/β and centred
respectively at (1/4; 1/4), (3/4; 1/4), (3/4; 3/4), (1/4; 3/4). As for the classical
Cantor set of I, constructed in Chapter 2, we iterate this construction of
squares in order to obtain a sequence of squares: (Ci1,i2,...,in), with ik ∈
{1, 2, 3, 4}, k ∈ {1, . . . , n}. The set Cβ is defined as the set consisting of all
the points of I2 of the type

⋂

n∈N

Ci1,i2,...,in .

Now let us consider f0 : I2 → R a C∞-smooth mapping, such that f0|∂I2 ≡
0, Dkf0(ξ) −→ 0 for ξ converging to a point of ∂I2, f0|Ci ≡ 9

8
+ bi, for

i ∈ {1, 2, 3, 4} and b1 = 0, b2 = 2/9, b3 = 2/3, b4 = 8/9. The function f0 allows
us to construct a function f1 : I2 → R such that f0|I2\∪4

i=1Ci = f1|I2\∪4
i=1Ci ,

as follows: if we denote by τi : Ci → R
2 the translation which centres Ci at

(1/2; 1/2), πβ : I2 → R
2 defined by πβ(ξ) = β.ξ, and π1/9 : R → R defined

by π1/9(t) = t/9, we set f1 = f0 +
4∑

i=1

π1/9 ◦ f0 ◦ πβ ◦ τi.

By induction we obtain in the same way functions fk, and finally, as a limit
of fk, a function fβ : I2 → R, such that: for all x ∈ I 1

3
(the classical Cantor

set of I constructed with the ratio 3), fβ(x) =
∑

k≥0

1
9k

(8/9+ξk) = 1+
∑

k≥0

ξk
9k

,

where ξk = bj if x =
⋂

n∈N

Ci1,i2,...,in and ik = j.

In particular fβ gives a bijection between I 1
3

and Cβ . It is not difficult to

prove that fβ is a C 2 ln 3
ln β -smooth mapping, with critical locus I 1

3
, for 2 < β <

9
1
3 (see [Com 1]).

Let us notice that if we had considered, in the above construction, the
classical Cantor set I 1

α
of I, constructed with the ratio 1/α instead of 1/3, one

would have obtained a C 2 ln α
ln β -smooth function fβ,α, for 2 < β < (α2)1/E(2 ln α

ln β ),
hence as α −→ ∞, fβ,α can be as regular as desired.

Let us notice that by [Yom 13], Theorem 5.6, for functions f : Bn
r → R,

the condition dime(A) �n
k is almost a sufficient condition for the set A to be

a set of critical values of a Ck-smooth function f : given a bounded set A ⊂ R

such that dime(A) < n
k , there exists a Ck-smooth function f : Bn

r → R, with
A ⊂ ∆0

f . Consequently, given I 1
3

as in the example above, dime(I 1
3
) = ln 2

ln 3 <
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ln β
ln 3 , for β ∈]2,∞[, formally implies that there exists fβ , C2 ln 3

ln β -smooth, such
that I 1

3
⊂ ∆0

fβ
.

• Unlike the Federer theorem, Theorem 9.3, tells nothing about Hν+ n−ν
k (∆ν

f ):
we do not know from 9.3 for instance, whether or not

Hν+ n−ν
k (∆ν

f ) = 0. (∗)

Of course, by [Com 1], equality (∗) would be the best quantitative result in
terms of Hausdorff measure.
• Equality (∗) has been first proved in two particular cases:

(i) For k = (n−ν)/(m−ν), that is to say: if f : R
n → R

m is a C
n−ν
m−ν -smooth

mapping, then Hm(∆ν
f ) = 0 ([Bat 1]).

(ii) For ν = 0, that is to say: if f : R
n → R

m is a Ck-smooth mapping, than
H n

k (∆0
f ) = 0 ([Com 1]).

One can prove the classical Morse-Sard theorem (concerning the Hm-nullity
of ∆ν

f , see [Sar 1,2], [Bat 1], [Nor 1]) by induction on ν, starting from ν = 0,
and using Fubini’s theorem. Unfortunately Fubini’s theorem does not hold
anymore for non-integral Hausdorff measures (see [Fal]), thus one cannot
prove (∗) from (ii) as it is done in the classical case. One can only prove in
this way that for any point a ∈ ∆ν

f there exists an open subset U of R
m

containing a, such that U ∩∆ν
f is Hν ⊗ H

n−ν
k -null, where Hν measures R

ν

and H
n−ν

k measures R
m−ν (in some suitable Ck-coordinate system for U),

but in general, as mentioned above, Hν ⊗ H
n−ν

k = Hν+ n−ν
k (on this question

see [Fal], [Fed 2], [Nor 2] or for a counterexample see [Sar 3]).

• However if f : R
n → R

m is a C(p+α)+-smooth mapping (it means that
there exists for every a ∈ R

n, a ball Bn
(a,r), and a function εa : R → R

such that: εa(t) −→
t→0

0 and ||Dpf(x) −Dpf(y)|| �εa(||x− y||)||x− y||α, for all

x, y ∈ Bn
(a,r)), the proof of theorem 3.4.3 of [Fed 2] gives (∗): Hν+ n−ν

p+α (∆ν
f ) =

0. Finally, let us note that the proof of theorem 3.4.3 of [Fed 2] gives also:

dimH(∆ν
f ) �ν +

n− ν

k
, because if f : R

n → R
m is a Ck-smooth mapping,

it is also a C�+-smooth mapping, for any 1 �� < k, and thus one has by
[Fed 2], Theorem 3.4.3: Hν+ n−ν

� (∆ν
f ) = 0, for every 1 �� < k, showing that

dimH(∆ν
f ) �ν +

n− ν

k
.

• Finally it has been proved in [Mor] by Carlos Gustavo T. de A. Moreira
that Ck-regularity for f implies equality (∗). The difficulty mentioned above
concerning the use of Fubini’s theorem has been overcome by a “careful de-
composition of the critical set, combined with a parametrized strong version
of the so-called A. P. Morse lemma.

Let us give Moreira’s statement:
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Theorem ([Mor]). Let f : U ⊂ R
n → R

m be a Ck=p+α-smooth mapping,
where U is an open subset of R

n . We have:

Hν+ n−ν
k (∆ν

f ) = 0.

Remark. This result, which concerns the Hausdorff dimension of ∆ν
f , as

well as Theorem 9.3, which concerns the entropy dimension of ∆ν
f , cannot be

sharpened, as it is indicated in comments above. Examples may be also find
in [Mor].

The next example of applications of semialgebraic results in a smooth
category concerns the following question: what additional information do
the high smoothness assumptions give in situations where the Morse-Sard
theorem is true a priori for C1-mappings, say if n �m.

We start with the case n < m. Here assuming f : Bn
r → R

m is C1, we
get immediately M(ε, f(Bn

r )) ∼ c.(
r

ε
)n, since f , being Lipschitzian, preserves

the ε-entropy.
Applying this situation in Theorem 9.2, we can assume that λ1 = . . . = λq

bound λi(Df(x)), for each x ∈ Bn
r and each i ∈ {1, . . . , q}. We obtain the

bound:

M(ε, f(Bn
r )) �c′

i=q=n∑

i=0

(
r

ε
)i

(
Rk(f)
ε

)n−i
k

,

and for k ≥ 1, i �n, the degree of
1
ε

in each term is i+
n− i

k
= n−(n−i)(1−

1
k

) �n, and for i = n this degree is exactly n, for any k. Thus Theorem 9.2
gives no additional informations for k > 1. Of course, in the global setting
of Theorem 9.2, the above bound is the best possible even for f a linear
mapping, since the ε-entropy of the n-dimensional subspace in R

m is of order

(
1
ε

)n.

However, if we ask another question of a more local nature, we find once
more that the high smoothness of f strongly influences its behavior. The
question is: how far should we move a given point in R

m to put it out of the
ε-neighborhood of f(Bn

r )? In other words, what is the maximal radius of the
ball, entirely contained in the ε-neighborhood of f(Bn

r )?

We recall that we have defined, for k > 1, Rk(f) =
K

p!
.rk=p+α, where K

is defined by: ||Dpf(x) −Dpf(y)|| �K||x− y||α, for all x, y ∈ Bn
r .

Now we define R1(f) = r. sup
ζ∈Bn

r

||Df(ζ)||, Df being continuous.

Theorem 9.4. Let f : Bn
r → R

m, n < m, be a Ck-smooth mapping. Then
for ε > 0, the maximal radius of a ball contained in the ε-neighborhood of
f(Bn

r ) is:
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c.min
(
ε
(Rk(f)

ε

) n
k(m−n)

, ε
(R1(f)

ε

) n
m

)
,

where c depends only on n, m and k.

Actually we prove the following more precise result:

Theorem 9.5. Let f : Bn
r → R

m, n < m, be a Ck-smooth mapping, and Bm
δ

be some ball of radius δ in R
m. Then for δ ≥ ε > 0:

M(ε, f(Bn
r ) ∩Bm

δ ) �c′.min
((R1(f)

ε

)n

,
(δ
ε

)n(Rk(f)
ε

)n
k

)
,

where c′ depends only on n, m and k.
Of course Theorem 9.4 is a trivial consequence of Theorem 9.5: if Bm

δ is
a ball contained in f(Bn

r ), we have by 9.5:

M(ε, f(Bn
r ) ∩Bm

δ ) = M(ε, Bm
δ ) = C.(

δ

ε
)m �

�min
((R1(f)

ε

)n

,
(δ
ε

)n(Rk(f)
ε

)n
k

)
,

Thus:

δ �c.min
(
ε
(Rk(f)

ε

) n
k(m−n)

, ε
(R1(f)

ε

) n
m

)
.

Proof of Theorem 9.5. The inequality:

M(ε, f(Bn
r ) ∩Bm

δ ) �M(ε, f(Bn
r )) �c′.

(R1(f)
ε

)n

follows from Property 2.8 of ε-entropy, since the Lipschitz constant of f is

R1(f)/r on Bn
r . To prove that M(ε, f(Bn

r ) ∩ Bm
δ ) �c′.

(δ
ε

)n(Rk(f)
ε

)n
k

, we

cover Bn
r by balls of radius r′ = r

( ε

Rk(f)

) 1
k

. For any such ball Bn
r′ , and Pp

the Taylor polynomial for f of degree p at the centre of Bn
r′ , we have:

||f(x) − Pp(x)|| �K
p!
r′k =

K

p!
rk.

ε

Rk(f)
= ε, for any x ∈ Bn

r′ .

Hence:
f(Bn

r′) ∩Bm
δ ⊂

[
Pp(Bn

r′)
]
ε
∩Bn

δ .

We thus get:

M(2ε, f(Bn
r′) ∩Bm

δ ) �M(2ε,
[
Pp(Bn

r′)
]
ε
∩Bn

δ ) �M(2ε,
[
Pp(Rn)

]
ε
∩Bn

δ )
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�M(2ε,
[
Pp(Rn) ∩Bn

δ+ε

]
ε
) �M(ε, Pp(Rn) ∩Bn

δ+ε) �c̃.
(ε+ δ

ε

)n �2nc̃.
(δ
ε

)n
,

since Pp(Rn) is a semialgebraic set of fixed complexity and of dimension
�n(< m) in Bm

ε+δ, and since we assume here that ε �δ. (see Corollary 5.7).

Finally, the number of balls Bn
r′ one needs to cover Bn

r is C.
( r
r′
)n that is

to say C ′(Rk(f)
ε

)n
k , completing the proof. 
�

Remark. Notice that the latter quantity in Theorem 9.5 is smaller than the

first one only if ε ≥ Rk(f)
( δ

R1(f)
)k. Since the bounds for the ε-entropy of the

subsets of Bm
δ are meaningful only if ε < δ, we see that, at least as δ −→ 0, for

any k > 1, we have the range of values of ε, namely δ ≥ ε ≥ Rk(f)
( δ

R1(f)
)k,

where our bounds for the ε-entropy of f(Bn
r′) ∩ Bm

δ are strictly better than
for C1-mappings.

The bound of Theorem 9.5 is “almost sharp”. Below we give correspond-
ing examples. Let us start with a mapping, given by an explicit analytic
formula (but providing roughly twice lower smoothness than in the optimal
construction.) Consider the following C k

2 -smooth mapping g : [0; 1]n → R
2n,

where k > 2:

g(t1, . . . , tn) = (tk1 , . . . , t
k
n, t

k
1 sin(

1
t1

), . . . , tkn sin(
1
tn

)).

We have:

V oln(g([0; 1]n) ∩B2n
δ ) ≥

(
2(

√
n)

1
k −1

2kπ(k − 1)

)n

δn.
(1
δ

)n
k +

( δ√
n

)n
. (∗∗)

Indeed, on one hand for (t1, . . . , tn) ∈ [0; δ
1
k ]n, g(t1, . . . , tn) ⊂ [0; δ]2n ⊂

B2n
δ
√

n
, thus V oln(g([0; 1]n)∩B2n

δ
√

n
) ≥ V oln(g([0; δ

1
k ]n), and on the other hand

V oln(g([0; δ
1
k ]n) =

(
V ol1(γ)

)n, because g([0; δ
1
k ]n) = γn ⊂ (R2)n, where

γ = {(tk, tk sin(
1
t
)) ∈ R

2; t ∈ [0; δ
1
k ]}. Now let us show that V ol1(γ) ≥

2
2kπ(k − 1)

δ.
(1
δ

) 1
k + δn. We have:

V ol1({(tk, tk sin(
1
t
)); t ∈ [

1
π(p+ 1)

;
1
πp

]}) ≥
(

1
π(p+ 1

2 )

)k

.

Thus one gets:

V ol1(γ) ≥ 1
πk

+∞∑

p=p0

1
(p+ 1

2 )k
+ δ,
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where p0 is the smallest integer satisfying: p0 ≥ 1
πδ

1
k

. We obtain:

V ol1(γ) ≥ 1
πk

∫ +∞

1
πδ1/k

+1

dt

(t+ 1
2 )k

+ δ ≥ 2
2k(k − 1)π

(
1
δ

) 1
k −1

+ δ

which proves (∗∗). Consequently we have the following lower bound, for ε → 0:

M(ε, g([0; 1]n) ∩B2n
δ ) ≥ c.(

1
ε

)nV oln(g([0; 1]n) ∩B2n
δ )

≥ c.

(
2(

√
n)

1
k −1

2kπ(k − 1)

)n(δ
ε

)n
.
(1
δ

)n
k + c.

( δ√
nε

)n
,

where c depends only on n. More accurate analysis of the geometry of
g([0; 1]n) ∩ B2n

δ allows one to show that this lower bound becomes valid
starting with ε ∼ δ1+1/k and smaller. The upper bound given by Theorem

9.5 being c′.
(δ
ε

)n( 1
ε2
)n

k (g is a Ck/2-smooth mapping), we obtain:

c.

(
2(

√
n)

1
k −1

2kπ(k − 1)

)n(δ
ε

)n
.
(1
δ

)n
k + c.

( δ√
nε

)n �M(ε, g([0; 1]n) ∩B2n
δ )

�c′.
(δ
ε

)n( 1
ε2
)n

k .

Hence the ratio of the lower and the upper bound is:

1 ≥ c

c′
.

(
2(

√
n)

1
k −1

2kπ(k − 1)

)n(ε2
δ

)n
k +

c

c′(
√
n)n

(ε2)
n
k

≥ c

c′
.

(
2(

√
n)

1
k −1

2kπ(k − 1)

)n(1
δ

)n
k + 2n

k2 ,

for ε = δ1+
1
k .

Additional results in this direction are given below.
Comparing the two expressions in Theorem 9.4, we see that the first one

(the one which gives the best bound for highly differentiable functions) is
better than the second (asymptotically, as ε −→ 0), if:

n

k(m− n)
<
n

m
, or k >

m

m− n
.

Once more, this bound is virtually sharp.
Consider the mapping g : [0; 1]n → R

2n, built above: g(t1, . . . , tn) =
(tk1 , . . . , t

k
n, t

k
1 sin( 1

t1
), . . . , tkn sin( 1

tn
)). Its image is contained in the part of

R
2n, defined by |xn+i| �|xi|, i = 1, . . . , n. But taking 2n such mappings,

we “cover” all the space. Thus it is enough to assume that the coordinates
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of the considered points satisfy: |xn+i| �|xi|, for all i ∈ {1, . . . , n}. So let a
point x = (x1, . . . , xn, xn+1, . . . , x2n) ∈ R

2n be given, with |xn+i| �|xi|. We
claim that the distance d(x, g([0; 1]n)) is at most ||x||1+ 1

k . Indeed, we can find
ξi, such that:

1

x
1
k
i

� 1
ξi

� 1

x
1
k
i

+ 2π and sin(
1
ξi

) =
xn+i

xi
∈ [−1; 1].

We thus have:

0 �xi−ξk
i �xi−

1
( 1

x
1
k
i

+ 2π)k
�xi

[
(1+2πx

1
k
i )k−1

]
�xi(2kπx

1
k
i (1+2πx

1
k
i )k−1)

and finally:
|xi − ξk

i | �c.x1+ 1
k

i , (3)

where c depends only on k. Now, of course, we also have:

0 �|xn+i − ξk sin(
1
ξi

)| = |xi sin(
1
ξi

) − ξk sin(
1
ξi

)| �|xi − ξk
i | �c.x1+ 1

k
i . (4)

Inequalities (3) and (4) show that d(x, g([0; 1]n) �c̃.||x||1+ 1
k , where c̃ depends

only on k and n. Therefore, if we take ε = c̃.δ1+
1
k , the ball of radius δ centred

at the origin is contained in the ε-neighborhood of g([0; 1]n). Thus the lower
bound for the maximal radius of a ball, contained in

(
g([0; 1]n)

)
ε
, is c′.ε1− 1

k+1 .
The upper bound, given by theorem 9.4 is c.ε1− n

(k/2)(2n−n) = c.ε1− 2
k .

Examples in the same spirit can be given for any m and n, n < m, and
with an essentially maximal possible differentiability:
Let Ψ : Bn

1 → R
n be a C∞-mapping with the following properties:

– Ψ|Bn
1 \Bn

1/2
≡ 0,

– Bn
1 ⊂ Ψ(Bn

1/4).

We assume that m > n and consider, for any s > 0 in R
m−n, the following

net Zs = {Zs
α}: on each sphere Sm−n−1

1/Ns , the points Zs
α form an

1
Ns+1 -net,

N ∈ N \ {0}, and the number of Zs
α on Sm−n−1

1/Ns is c.
[

1/Ns

1/Ns+1

]m−n−1

=

c.Nm−n−1, where c only depends on n and m.

Now for each α and N , such that Zs
α ∈ Sm−n−1

1/Ns , let rα = (
1
N

)
s
k , where

k(= p + β) ∈ R. For any r′
α �rα, the mapping:

1
Ns

Ψ(
1
r′
α

x) is a Ck-smooth

mapping, such that all its derivatives up to order p, as well as the Hölder
constant K of order β of DpΨ (see the very beginning of this chapter for the
definition of K) are bounded by a constant not depending on N , s, etc...
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(but depending on the ratio r′
α/rα.), and such a mapping is zero off Bn

r′
α

. It
follows that when the balls Bn

r′
α

centred at certain points xα are contained in
Bn

1 and disjoint, and all the ratios r′
α/rα are uniformly bounded with respect

to α, the mapping
∑

α

1
Ns

Ψ(
1
r′
α

(x− xα)) is a Ck-mapping.

Now let Φ : Bn
r → R be a C∞-function with the following properties:

– Φ|Bn
1 \Bn

1/2
≡ 0,

– Φ|Bn
1/4

≡ 1.

If the sum
∑

α

rn
α converges, we can find balls Bn

r′
α

, contained in Bn
1 ,

disjoint, and with
r′
α

rα
≥ c, c not depending on α (see [Iva 1]). Let us take as

xα the centers of Bn
r′

α
.

Thus if we define g : Bn
1 → R

m as follows:

g(x) =
∑

α

(
1
Ns

Ψ(
1
r′
α

(x− xα)), Zs
α.Φ(

1
r′
α

(x− xα))
)

∈ R
n × R

m−n = R
m,

g is a Ck-smooth mapping of Bn
1 .

By construction the sets g(Bn
1 ) form an ε-net of the cone ||y1|| �||y2|| in

R
m = R

n × R
m−n = {(y1, y2) ∈ R

n × R
m−n}, intersected with the ball Bδ,

where ε = δ
s+1

s . Indeed, for δ =
1
Ns

, ε =
1

Ns+1 = δ
s+1

s . Now by construc-

tion, the image under g of the ball of radius
r′
α

4
, centred at xα, is the ball

(Bn
1

Ns
, Zs

α) ⊂ R
n ×R

m−n = R
n. Thus Bm

δ is contained in the ε-neighborhood

of g(Bn
1 ), for δ = ε1− 1

s+1 . It remains to determine the allowed values for s: the

condition
∑

α

rn
α < ∞ means that

∞∑

N=1

Nm−n−1(
1
N

)
sn
k =

∞∑

N=1

Nm−n−1− sn
k <

∞, ie s >
k(m− n)

n
.

Finally the lower bound for δ = δ(ε) in our example, is ε1− n
n+k(m−n) , while

Theorem 9.4 gives an upper bound which is ε1− n
k(m−n) . In particular, for

k −→ ∞, this bound is asymptotically sharp.
Estimation of the ε-entropy in this last example allows one to show es-

sential sharpness (as k → ∞) also of the bounds in Theorem 9.5.
Exactly the same arguments as in Theorem 9.5 can be applied in more

general situations. For instance:

Theorem 9.6. Let f : Bn
r → R

m be a Ck-smooth mapping, q = min(n,m),
Λ = (λ1, . . . , λq), Bm

δ be some ball of radius δ in R
m, and ε �δ. Then we

have:
M(ε,∆(f, Λ,Bn

r ) ∩Bm
δ ) �
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�c.
(
Rk(f)
ε

)n
k

q∑

i=0

min
(
λ0 . . . λi(

r

ε
)i(

ε

Rk(f)
)

i
k , (

δ

ε
)i

)
.

Proof. The main argument in the proof of Theorem 9.5, consists in the ap-

proximation of f by its Taylor polynomial on balls of radius r′ = r

(
ε

Rk(f)

) 1
k

.

As applied to ∆(f, Λ,Bn
r ), it becomes the same as the argument in the

proof of Theorem 9.2, thus we obtain the same bound: M(ε,∆(f, Λ,Bn
r ) ∩

Bm
δ ) �c̃.

(
Rk(f)
ε

)n
k

q∑

i=0

λ0 . . . λi(
r

ε
)i(

ε

Rk(f)
)

i
k .

Let us now prove that: M(ε,∆(f, Λ,Bn
r ) ∩ Bm

δ ) �c′.
(
Rk(f)
ε

)n
k

q∑

i=0

(
δ

ε
)i.

As in the proof of Theorem 9.5, we cover the ball Bn
r by C ′(

Rk(f)
ε

)
n
k balls of

radius r′ = r

(
ε

Rk(f)

) 1
k

. Then approximating f on each of these small balls,

by Pp, its Taylor polynomial of degree p, we obtain (cf. the proof of Theorem
9.5):

M(2ε,∆(f, Λ,Bn
r ) ∩Bm

δ ) �M(ε, Pp(Rn) ∩Bm
δ+ε) �M(ε, Pp(Rn) ∩Bm

2δ).

Now by Theorem 3.5: M(ε, Pp(Rn)∩Bm
2δ) �C(m)

m∑

i=0

Vi(Pp(Rn) ∩Bm
2δ)

εi
. But

Pp(Rn) ∩ Bm
2δ is a semialgebraic set of Bm

2δ of dimension less than q, and of
fixed complexity, hence by Corollary 5.2, we obtain: Vi(Pp(Rn)∩Bm

2δ) �C.δi,
for i �q, and Vi(Pp(Rn) ∩Bm

2δ) = 0, for i > q, completing the proof. 
�

We shall consider in detail only the following special case of Theorem
9.6.: let ν < m be given. As usual, we denote by ∆ν

f the image by f of
Σν

f = {x ∈ Bn
r ; rank(Df(x)) �ν}. Considering Λ = (λ1, . . . λν , 0, . . . , 0) such

that λi(Df(x)) �λi, for all x ∈ Bn
r and all i ∈ {1, . . . , ν}, we have ∆ν

f =
∆(f, Λ,Bn

r ). We get by Theorem 9.6:

M(ε,∆ν
f ∩Bm

δ ) �c.
(
Rk(f)
ε

)n
k

(
δ

ε
)ν .

But of course we also have:

M(2ε, [∆ν
f ]ε ∩Bm

δ ) �M(2ε, [∆ν
f ∩Bm

δ+ε]ε) �M(ε,∆ν
f ∩Bm

δ+ε).

We conclude that:

M(ε, [∆ν
f ]ε ∩Bm

δ ) �c′.M(ε,∆ν
f ∩Bm

δ+ε) �c̃.
(
Rk(f)
ε

)n
k

(
δ + ε

ε
)ν �
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�C̃.
(
Rk(f)
ε

)n
k

(
δ

ε
)ν .

Now if a ball Bm
δ is contained in the ε-neighborhood of ∆ν

f , we get:

M(ε, [∆ν
f ]ε ∩Bm

δ ) = M(ε, Bm
δ ) �C̃.

(
Rk(f)
ε

)n
k

(
δ

ε
)ν

Comparing this with M(ε, Bm
δ ) = C.(

δ

ε
)m, we obtain the following corol-

lary:

Corollary 9.7. Let f : Bn
r → R

m be a Ck-smooth mapping. The maximal

radius of a ball contained in [∆ν
f ]ε is c.ε

(
Rk(f)
ε

) n
k(m−ν)

. 
�

Examples of the type considered above show that this bound is virtually
sharp:

For instance, let us consider ϕ : R → [0; 1], a C∞-smooth function, such

that ϕ(
1
2

) = 1, ϕ(x) = 0, for all x ∈ R \ [0; 1] and |ϕ′(x)| �2, for all x ∈ R.
If we denote by f the function defined as follows:

f(x) =
∞∑

p=1

1
pk
.ϕ(

(2p− 1)(2p+ 1)
2

x− 2p− 1
2

),

we obtain a C k
2 -smooth function with ∆0

f = {0, 1,
1
2k
, . . . ,

1
pk
, . . .}. Now [∆0

f ]ε

contains an interval of length δ(ε) = ε+
1
pk

, for ε =
1
pk

− 1
(p+ 1)k

. It follows,

after an easy computation, that δ(ε) = ε1− 1
k+1 (

1

(k + η( 1
p ))

k
k+1

+ ε
1

k+1 ), where

η(
1
p

) is a function tending to 0 as p tends to ∞. Finally, δ(ε) ≥ c.ε1− 1
k+1 ,

with c depending only on k.

Under these asumptions, Corollary 9.7 gives δ(ε) �c.ε
(
Rk(f)
ε

) 2
k

=

c′ε1− 2
k .

Exercise. Find sequences αp → 0, βp → ∞, for which the function f(x) =
∞∑

p=1

1
pk
ϕ(βp(x− αp)) is Cγ , with γ arbitrarily close to k.

A more general example is the following: assume n �m and represent R
m

as R
ν ×R

m−ν . We build g : Bn
1 → R

m exactly as the mapping g above, taking
Ψ : Bn

1 → R
ν to be the mapping covering the unit ball in R

ν . Thus the rank
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of Dg is ν on each ball of radius
1
4
r′
α, centred at xα. Therefore the ∆ν

g form

an ε-net in Bm
δ , ε = δ

s
s+1 and Bm

δ is contained in the ε-neighborhood of ∆ν
g ,

for δ = ε1− 1
s+1 and s >

k(m− ν)
n

. Thus the lower bound for δ = δ(ε) in this

example is ε1− n
n+k(m−ν) , while Corollary 9.7 gives: δ(ε) �c.ε1− n

k(m−ν) , showing
that this bound is asymptotically sharp, as k −→ ∞.

Our next result concerns quantitative transversality. As usual, we assume
that the domain and the image of our mappings are the Euclidean balls.
Moreover, we assume actually (although the statement of the Theorem 9.8
below is more general), that the submanifold in the image, to which our
mapping should be transversal, is the origin. (The general situation is reduced
to this special case by composing our mapping with the projection along the
submanifold to its normal plane).

So let f = (f1, . . . , fm) : Bn
r × Bm

r → R
m be a Ckmapping. We assume

the following:

– For any (x, t) ∈ Bn
r × Bm

r , λm(Dtf(x,t)) ≥ ρ > 0. By compactness of
Bn

r ×Bm
r , this assumption is of course equivalent to the following:

Dtf(x,t) : R
m → R

m

is onto.

From this assumption, it follows that, for any x ∈ Bn
r , the Ck-smooth mapping

f(x, .) : Bm
r → R

m is locally invertible. If furthermore we assume that:

– For any x ∈ Bn
r , f(x, .) : Bm

r → R
m is injective,

then f(x, .) : Bm
r → R

m is globally invertible and f−1(x, .) satisfies the
Lipschitz condition with some constant L.

(This second assumption is technically convenient, but it can be easily
avoided.)

Now let, A1 ⊂ Bn
r , A2 ⊂ R

m, δ > 0 and Λ = (λ1, . . . , λm), with λ1 ≥
. . . ≥ λm ≥ 0 be given. We define Σ(f, Λ,A1, A2, δ) as the following set:

Σ(f, Λ,A1, A2, δ)
= {(x, t) ∈ A1 ×Bm

r ;λi(Dxf(x,t)) �λi, 1 �i �m, f(x, t) ∈ [A2]δ}.

The set ∆(f, Λ,A1, A2, δ) is finally defined as π2(Σ(f, Λ,A1, A2, δ)), where
π2 : Bn

r × Bm
r → Bm

r is the restriction of the standard projection. Thus
∆(f, Λ,A1, A2, δ) consists of those parameters t ∈ Bm

r , for which there exists
x ∈ A1, with λi(Dxf(x,t)) �λi for all i ∈ {1, . . . ,m} and ft(x) ∈ [A2]δ. We
have the following Theorem:

Theorem 9.8 . With the notations above, for any ε, 0 < ε <
ρr

2k
, we have:
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M(ε,∆(f, Λ,A1, A2, δ)) �c1
M(δ, A2)
ρm

m∑

j=0

λ0 . . . λj(
r

ε
)j(1+

δ

ε
+. . .+(

δ

ε
)m−j),

if ε ≥ Rk(f), and we have

M(ε,∆(f, Λ,A1, A2, δ)) �

c1.c2
ρm

M(r′, A1)M(δ, A2)(1 +
δ

r′ )
m×

m∑

j=0

λ0 . . . λj(
r

ε
)j(

ε

Rk(f)
)

j
k (1 +

δ

ε
+ . . .+ (

δ

ε
)m−j),

if ε �Rk(f), where c2 = c2
(

max
(x,t)∈Bn

r ×Bm
r

(||f(x, t)||, ||Df(x,t)||, 1),L
)

and

r′ = r(
ε

Rk(f)
)

1
k .

Proof. We can assume that A2 is a point (the origin in R
m). Indeed, we

can cover [A2]δ by M(δ, A2) balls of radius 2δ, thus ∆(f, Λ,A1, A2, δ) is the
union of M(ε, A2) sets of type ∆(f, Λ,A1, {0}, 2δ), and its entropy is at most
M(ε, A2) times the entropy of ∆(f, Λ,A1, {0}, 2δ).

Let us consider first the case Rk(f) �ε �ρr

2k
. We denote by Pp the Taylor

polynomial of degree p of f at the origin of R
n × R

m, where k = p + α,
α ∈]0; 1]. We have established in the proof of Theorem 9.1 the two following
inequalities:

||f(x, t) − Pp(x, t)|| �Rk(f) �ε, for any (x, t) ∈ Bn
r ×Bm

r (5)

||Df(x,t) −DPp(x,t)|| �pRk(f)
r

�p
r
ε, for any (x, t) ∈ Bn

r ×Bm
r (6)

Thus, by (6), for any (x, t) ∈ Bn
r × Bm

r , λm(DtPp(x,t)) ≥ ρ − pε

r
≥ ρ

2
, since

by assumptions, ε �ρr

2k
�ρr

2p
.

On the other hand, for any (x, t) ∈ Σ(f, Λ,A1, {0}, δ), ||Pp(x, t)|| �δ + ε,
by (5), and λi(DxPp(x,t)) �λ′

i = λi +
p

r
ε, i ∈ {1, . . . ,m},by (6).

Therefore, if Λ′ = (λ′
1, . . . , λ

′
m), then:

Σ(f, Λ,A1, {0}, δ) ⊂ Σ(Pp, Λ
′, A1, {0}, δ + ε),

and
∆(f, Λ,A1, {0}, δ) = π2(Σ(f, Λ,A1, {0}, δ))

⊂ π2(Σ(Pp, Λ
′, A1, {0}, δ + ε)) = ∆(Pp, Λ

′, A1, {0}, δ + ε).
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Now we use the following simplified version of Corollary 8.4: if in the
assumptions of Corollary 8.4, ρ1 ≥ . . . ≥ ρm ≥ ρ > 0, then assuming A = {0},
we have:

M(ε,∆(Pp, Λ
′, A1, {0}, δ + ε))

� C

ρm

m∑

j=0

λ′
0 . . . λ

′
j(
r

ε
)j(1 +

δ + ε

ε
+ . . .+ (

δ + ε

ε
)m−j)

� Ĉ

ρm

m∑

j=0

λ′
0 . . . λ

′
j(
r

ε
)j
(
1 +

δ

ε
+ . . .+ (

δ

ε
)m−j

)
.

It follows that:

M(ε,∆(f, Λ,A1, {0}, δ)) �M(ε,∆(Pp, Λ
′, A1, {0}, δ + ε))

�C1

ρm

m∑

j=0

(λ0 +
kε

r
) . . . (λj +

kε

r
)(
r

ε
)j(1 +

δ

ε
+ . . .+ (

δ

ε
)m−j)

=
C1

ρm

m∑

j=0

(1 +
δ

ε
+ . . .+ (

δ

ε
)m−j)

∑

0 �j1 �... �j� �j

λj1 . . . λj�
(
kε

r
)j−�(

r

ε
)j

�C2

ρm

m∑

j=0

(1 +
δ

ε
+ . . .+ (

δ

ε
)m−j)

j∑

�=0

λ0 . . . λ�(
r

ε
)� ( since λ1 ≥ . . . ≥ λm)

=
C2

ρm

m∑

�=0

λ0 . . . λ�(
r

ε
)�

m∑

j=�

(1 +
δ

ε
+ . . .+ (

δ

ε
)m−j)

� c1
ρm

m∑

�=0

λ0 . . . λ�(
r

ε
)�(1 +

δ

ε
+ . . .+ (

δ

ε
)m−�),

This completes the proof of Theorem 9.8 in the case ε ≥ Rk(f).
If ε �Rk(f), we define, as above, r′ by r′ = r(

ε

Rk(f)
)

1
k . Hence on each

subball Br′ of radius r′, we have: Rk(f|Br′ ) = ε. It remains to cover the set
Σ(f, Λ,A1, {0}, δ) by some balls of radius r′ and to apply the first part of the
Theorem to the retriction of f on these balls.

To count the number of r′-balls we need, first we cover A1 ⊂ Bn
r by

M(r′, A1) r′-balls Bn
r′ in R

n. Then we count the number of r′-balls we need
to cover the set {(x, t) ∈ Bn

r′ ×Bm
r ; f(x, t) ∈ Bm

δ }, which contains of course
the set Σ(f, Λ,A1, {0}, δ) ∩Bn

r′ ×Bm
r .

Lemma 9.9. The set {(x, t) ∈ Bn
r′ × Bm

r ; f(x, t) ∈ Bm
δ } can be cov-

ered by at most C3
(
M1(f).L

)m(1 +
δ

r′ )
m r′-balls in Bn

r × Bm
r , where

M1(f) = max
(x,t)∈Bn

r ×Bm
r

(||f(x, t)||, ||Df(x,t)||, 1).
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Proof of Lemma 9.9. It is enough to show that this set is contained in
Bn

r′ ×Bm
δ′ , with δ′ = L(2δ +M1(f)r′).

If (x0, t0) ∈ {(x, t) ∈ Bn
r′ ×Bm

r ; f(x, t) ∈ Bm
δ }, we have for any x1 ∈ Bn

r′ :

||f(x0, t0) − f(x1, t0)|| �M1(f).r′,

hence, if (x1, t1) is also in {(x, t) ∈ Bn
r′ ×Bm

r ; f(x, t) ∈ Bm
δ }:

||f(x1, t1) − f(x1, t0)|| �||f(x1, t1) − f(x0, t0)|| + ||f(x0, t0) − f(x1, t0)||

�2δ +M1(f).r′

and by the Lipschitz condition on f−1(x1, .), we obtain:

||t1 − t0|| = ||f−1(x1, .)[f(x1, t1)] − f−1(x1, .)[f(x1, t0)]||

�L(2δ +M1(f).r′). 
�
Finally, the total number of r′-balls we need to cover Σ(f, Λ,A1, {0}, δ)

is at most:
M(r′, A1).C3(M1(f) · L)m.(1 +

δ

r′ )
m,

and thus:
M(ε,∆(f, Λ,A1, {0}, δ)

�c1 · c2
ρm

M(r′, A1)(1+
δ

r′ )
m

m∑

j=0

λ0 . . . λj(
r

ε
)j(

ε

Rk(f)
)

j
k (1+

δ

ε
+ . . .+(

δ

ε
)m−j).

Theorem 9.8 is proved. 
�
The expression of Theorem 9.8 is rather complicated, so we will give below

some simplified versions of this inequality.
First of all, substituting δ = 0, we obtain the following result (assuming

of course A2 = {0} ∈ R
m):

Corollary 9.10. The set ∆(f, Λ,A1, {0}, 0) of parameters t ∈ Bm
r , for which

there exists x ∈ A1, such that ft at x is Λ-not-transversal to 0 ∈ R
m, satisfies:

M(ε,∆(f, Λ,A1, {0}, 0)) �c.M(r′, A1)
m∑

j=0

λ0 . . . λj(
r

ε
)j(

ε

Rk(f)
)

j
k ,

where c depends on M1(f), L and ρ. 
�
In particular, for A1 = Bn

r , we get:
Corollary 9.11. The set ∆(f, Λ,A1, {0}, 0) of parameters t ∈ Bm

r , for which
there exists x ∈ Bn

r , such that ft at x is Λ-not-transversal to 0 ∈ R
m, satisfies:

M(ε,∆(f, Λ,Bn
r , {0}, 0)) �c̃.

m∑

j=0

λ0 . . . λj(
r

ε
)j(
Rk(f)
ε

)
n−j

k ,

where c̃ depends on M1(f), L and ρ. 
�
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This last expression is identical to the expression of Theorem 9.2. Thus if
the “quantitativeness” of our transversality theorem is restricted to the mea-
sure of transversality of a given submanifold (but not of its δ-neighborhood),
the conclusion is the following: the set of Λ-bad parameters t behaves exactly
as the set of Λ-critical values in the quantitative Sard theorem. Of course,
this is a “quantitavization” of a well-known relation, used in the standard
proofs of the transversality theorem.

We give only one more result in this direction.

Corollary 9.12. With the notations above, and for λm = 0:

dimH(∆(f, Λ,Bn
r , {0}, 0)) � dime(∆(f, Λ,Bn

r , {0}, 0)) �m− 1 +
n−m+ 1

k
.

That is to say, the set of parameters t ∈ Bm
r , for which there exists x ∈ Bn

r

such that ft(x) = 0 and rank(Dft(x)) �m − 1, has Hausdorff and entropy
dimension < m, provided k > n−m+ 1. 
�

Now we consider some cases where δ = 0. First of all, assuming k = 1 (in
this special case f is a differentiable mapping with continuous derivative and
R1(f) = K.r, where K is such that for all (x0, t0) and (x1, t1) in Bn

r × Bm
r ,

||Df(x0,t0) −Df(x1,t1)|| �K), and substituting ε = δ, we obtain the following
result, generalizing Proposition 2.2. The difference is that now we do not
assume that parameters act independently of x, as translations of R

m.

Corollary 9.13. With the notations above, and for λj such that λj(Dxf(x,t))
�λj , for all (x, t) ∈ Bn

r ×Bm
r :

M
(
ε,∆(f, Λ,A1, A2, ε)

)
�c′.M(ε, A1)M(ε, A2).

That is to say: the set of parameters t ∈ Bm
r , for which there exists x in A1

such that ft(x) ∈ [A2]ε, has its ε-entropy bounded by c′.M(ε, A1)M(ε, A2),
where c′ only depends on M1(f), L, ρ.

Proof. It suffices to put λj = max
(x,t)∈Bn

r ×Bm
r

||Df(x,t)||, ε = δ, and to apply

Theorem 9.8. 
�
In general the substitution ε = δ in Theorem 9.8 gives a quite precise

result, when the λj ’s are not bigger than max
(x,t)∈Bn

r ×Bm
r

||Df(x,t)||:

Corollary 9.14. With the notations above:

M
(
δ,∆(f, Λ,A1, A2, δ)

)
�c′.M(r′, A1)M(δ, A2)

m∑

j=0

λ0 . . . λj(
1
δ

)j− j
k .


�
Let us assume now that A1 = Bn

r and A2 = {0}. Then M(r′, A1), for

ε = δ is of order (
1
δ

)
n
k , and we get:
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M
(
δ,∆(f, Λ,Bn

r , {0}, δ)
)

�c′
m∑

j=0

λ0 . . . λj(
1
δ

)j+ n−j
k .

Furthermore, we have m − j − n− j

k
≥ 1 − n−m+ 1

k
, for j �m − 1 and

k ≥ 1, thus for j �m− 1 and k ≥ n−m+ 1 we obtain:

m− j − n− j

k
≥ 1 − n−m+ 1

k
≥ 0.

It follows from Corollary 9.14 and Proposition 2.6 that for any δ > 0:

Hm
(
∆(f, Λ,Bn

r , {0}, δ)
)

�Sm
(
∆(f, Λ,Bn

r , {0}, δ)
)

�δmM
(
δ,∆(f, Λ,Bn

r , {0}, δ)
)

�c′′.(δ1− n−m+1
k + γδ− n−m

k ) = µ(δ, γ), (7)

where c′′ depends only on M1(f), ρ,L,m,, assuming λ1 = . . . = λm−1 =
M1(f) and λm = γ.

In particular, for any k > n−m+ 1, µ(δ, γ) −→ 0 as δ and γ tend to 0,
and γ �δ n−m

k +ξ, ξ > 0.
Hence we have the following result:

Theorem 9.15. In any set E ⊂ Bm
r , with Hm(E) > η > 0, and for any δ, γ,

with µ(δ, γ) < η, there is a value t0 ∈ E of the parameter t, such that for any
xıBn

r , if ||ft0(x) �δ||, then λm(Dft0(x)) ≥ γ. 
�

Inequality (7) can be applied in various situations. We give here only the
following corollary:

Corollary 9.16. In any ball Bm
σ ⊂ Bm

r , there is t0 such that ft0 is δ-
transversal to 0 ∈ R

m (i.e. at each x where ||ft0(x)|| �δ, λj(Dft0(x)) ≥ δ, for

j ∈ {1, . . . ,m}), for δ =
(

Hm(Bm
1 )

2c′′

) k
k−n−m+1

σ
mk

k−n−m+1 .

Proof. Substituting γ = δ in inequality (7), we obtain:

µ(δ, δ) = c′′(δ1− n−m+1
k + δ1− n−m

k ) < 2c′′δ1− n−m+1
k ,

hence for δ=
(

Hm(Bm
1 )σm

2c′′

)1/(1− n−m+1
k )

, µ(δ, δ) < Hm(Bm
1 )σm =Hm(Bm

σ ).


�

The general expression of Corollary 9.14 gives an interesting information
for “small” sets A1. Roughly, the point here is that the entropy of A1 appears
in this expression for the radius r′ of covering balls (r′ ∼ ε

1
k ). We state

here the corresponding results only in the case of the Sard theorem, i.e. for
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f(x, t) = g(x)+t. Then ∆(f, Λ,A, {0}, 0) is exactly the set of Λ-critical values
of g on the set A, and we have:

Theorem 9.17. Let f : Bn
r → R

m be a Ck-smooth mapping, and ∆(f, Λ,A)
be the set of Λ-critical values of f on a subset A ⊂ Bn

r . Then for 0 <
ε �Rk(f):

M(ε,∆(f, Λ,A)) �c.M(ε
1
k , A)

m∑

j=0

λ0 . . . λj(
r

ε
)j(

ε

Rk(f)
)

j
k .


�

As a special case (for A = Bn
r ) we obtain once more the result of Theo-

rem 9.2.
In order to stress the difference, consider only the consequence, concerning

the entropy dimension. Assuming that A ⊂ Σν
f (the rank-ν set of critical

points of f , i.e. the set of x such that rank(Df(x)) �ν)), we get:

M(ε,∆ν
f ) �c.M(ε

1
k , A)(

1
ε

)ν(1− 1
k ),

generalizing to Ck-smooth mappings Corollary 8.5.

In particular, when M(ε, A) �(
1
ε

)α, M(ε,∆ν
f ) �c(1

ε
)

α
k +ν(1− 1

k ), and we

have proved the following result, which extends Corollary 8.6 to Ck-mappings:

Theorem 9.18. Let f : Bn
r → R

m be a Ck-smooth mapping. If A ⊂ Bn
r is

contained in Σν
f , then

dime(f(A)) �1
k

dime(A) + ν(1 − 1
k

).

In particular, for ν = 0:

dime(f(A)) �1
k

dime(A).


�

Remark. It has been proved, in [Com 1], that, if A ⊂ Σ0
f , Hs(A) = 0 im-

plies H s
k (f(A)) = 0, and thus that dimH(f(A)) �1

k
dimH(A). Consequently,

Theorem 9.18 has an analogue for Hausdorff dimension.

Theorem 9.19. Let f : Bn
r → R be a Ck-smooth function, if A ⊂ Bn

r is a
set of critical points, then:

dime(f(A)) �1
k

dime(A) and dimH(f(A)) �1
k

dimH(A).


�
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In this chapter we briefly describe some further applications of the results
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10.1 Applications of Quantitative Sard
and Transversality Theorems

10.1.1 Maxima of smooth families

Let h : Bn
r × Bm

s → R be a continuous function. The function h can be
considered as a family of functions hy : Bn

r → R, y ∈ Bm
s . The (pointwise)

maximum function mh of this family is defined as

mh(x) = maxy∈Bm
s
h(x, y) , x ∈ Bn

r .

Functions of this form arise naturally in many problems of calculus of varia-
tion, optimization, control, etc. If we assume h to be Ck or analytic, it does
not imply mh to be even once differentiable. (Notice, however, that for h a
polynomial or a semialgebraic function, mh is semialgebraic, for h analytic
mh is subanalytic and for h a tame function, mh is tame). Lipschitz constant
is preserved by taking maxima.

Understanding the analytic nature of maxima functions is an important
and mostly open problem. Besides its theoretical aspects, it presents a chal-
lenge in numerical applications: lack of smoothness of maxima functions
prevents using many standard algorithms and packages. See, for example,
[Roc], [Shap-Yom], where some partial results, questions and references can
be found.

Not surprisingly, critical and near critical points and values of the family h
can be traced in the structure ofmh. We give here a couple of examples, where
nontrivial geometric restrictions on mh are imposed by the Sard theorem.
(Maxima of smooth families can be naturally studied also in the framework
of Singularity Theory. Classification of their typical singularities can be found
in [Bry], [Dav-Zak], [Mat], [Yom 11,12,25]).

Let f be a convex function of n variables. It can be always represented as a
maximum function of a family of (supporting) linear functions. The question
is what restrictions on f are imposed by the assumption that these linear
functions smoothly depend on the parameter.

By the Alexandrov-Fenchel theorem, the graph of f has a well defined
second fundamental form W (x) at almost each of its points x. Denote by Si

the set of x for which the rank of W (x) is at most i, and by Di the image of
Si under the Gauss mapping (i.e. the set of the endpoints of the unit normal
vectors to the graph of f at the points of Si).

Theorem 10.1. For f representable as a maximum function of a k-smooth
m-parametric family of linear functions, the entropy dimension of Di does
not exceed i+ (n+m− i)/k.

In particular, for n = 1 and f having as a graph a convex polygon with
an infinite number of faces, the representation as above implies that the box
dimension of the normals to the faces in the unit circle does not exceed
(m+ 1)/k.
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These results can be found in ([Yom 8,9,14,15]).

Another approach is based on the study of critical points and values of
the maxima functions themselves. An important fact is that critical (and
near-critical) points and values can be defined for any Lipschitz function f ,
using the notion of Clarke’s generalized differential (see [Fed 2], [Cla 1,2]
and [Roc]). Assuming that f is representable as a maximum of a smooth
family, a version of the quantitative Sard theorem can be proved for f (see [
Yom 15,24] and [Roh 1-3]). We do not state here these results, mentionning
only that Theorem 4.2 of [Yom 24] implies that the entropy dimension of the
critical values of a maximum function f of an m-parametric k-smooth family
does not exceed (n+m)/k.

This provides another restriction on representability. For example, the
function xqcosine(1/x) cannot be represented as a maximum of any k-smooth
m-parametric family of functions for k greater than (q + 1)(m+ 1).

Undoubtedly, the examples above represent only the simplest manifes-
tations of the interplay between the singular geometry of families and the
analytic structure of their maxima functions. Much more can be conjectured
with various strength of evidence. Some of these conjectures and observations
can be found in ([Shap-Yom], [Yom 8,9,11,12,14-17,20,24]) and in Section 10.2
below.

10.1.2 Average topological complexity of fibers

Let f : Mm → Nn be a Ck mapping of compact manifolds. The following
implication of the usual Sard theorem is by far the most frequently used in
differential topology: for almost any y in N the fiber f−1(y) is a compact
smooth submanifold of M .

A natural question is then what is a typical topological complexity of such
a fiber (in particular, how many connected components may it have)? The
usual Sard theorem gives no information of this type. On the other hand, the
Quantitative Sard theorem, proved above, allows us to give explicit upper
bounds for an average of Betti numbers of the fibers.

Let for y in N , Bi(y) denote the i-th Betti number of the fiber f−1(y).
We assume that the smoothness k of f is greater than s = n−m+ 1. Then
by Sard’s theorem Bi(y) is finite almost everywhere in N .

Theorem 10.2. For any q between zero and k− s/n the average of (Bi(y))q

over N is finite.

The proof of this theorem is given in [Yom 3]. It is based on an estimate
of the average distance from a point in N to the set of critical values of f .
This estimate is provided by the Quantitative Sard theorem.

Many additional results of the same spirit are obtained in [Yom 3]: ex-
istence of “simple” fibers in any subset of N of a given positive measure,
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average bounds on volume of fibers etc. For M and N euclidean balls, ex-
plicit bounds are given in [Yom 3] for all the above quantities, in terms of
the bounds on the derivatives of f .

Also here, much more information can be presumably extracted by similar
methods: estimates for “bounded triangulations” of the fibers, more delicate
estimates of the geometry, including upper bounds for curvatures, estimates
for the spectrum of certain differential operators on these fibers (compare
Gromov’s paper [Gro 4]).

Till this point all the estimates in this section concerned a “typical” level
(fiber) of a mapping, or an “average” behavior of the fibers. There is another
important effect, related to all the level sets of “near-polynomial” differen-
tiable functions. It turns out that if a differentiable function f on the unit
ball Bn is sufficiently close to a polynomial of degree k − 1 (i.e. if its partial
derivatives of the order k are sufficiently small with respect to its C0-norm),
then all its level sets resemble algebraic varieties of degree k − 1.

More accurately, it was shown in [Yom 2] that for f on Bn k times
continuously differentiable, and with the C0-norm equal to 1, if the norm
of the k-th derivative of f in Bn is bounded by 2−k−1, then the set of zeroes
Y (f) of f is contained in a countable union of smooth hypersurfaces. “Many”
straight lines intersect Y (f) in at most k−1 points, and the n−1-dimensional
Hausdorff measure of Y (f) is bounded by a constant C(n, k), depending only
on n and k.

This is in a strict contrast with the fact that any closed set in Bn may be
the set of zeroes Y (f) of an infinitely differentiable f , if we do not assume
restrictions on the derivatives.

We hope that many of the results of this book, concerning the ε-entropy
of semialgebraic sets and its behavior under polynomial mappings, can be
extended to “near-polynomial” functions. This approach presumably can be
applied in one important problem in Analysis, namely, description of the
“Nodal Sets” of the eigenfunctions of elliptic operators (see [CBar 1,2], [Donn-
Fef 1,2], [Han-Har-Lin], [Har-Sim], [Hof-Hof-Nad]). Recently, the results of
[Yom 2] have been applied in this context in [CBar 1].

10.1.3 Quantitative Kupka-Smale Theorem

A theorem of Kupka and Smale ([Kup 1], [Sma 1]) asserts that all the periodic
points of a generic diffeomorphism, or closed orbits of a generic flow, are
hyperbolic (i.e. no eigenvalue of the linearization of the mapping along the
orbit sits on the unit circle). The proof consists in a (rather delicate, as many
things in dynamics) application of a transversality theorem.

Quantitative transversality, obtained above, was used in [Yom 4] to get a
much more precise result: estimates of hyperbolicity, and not only for closed,
but for “almost closed” orbits.
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More accurately, let f : Mm → Mm be a Ck diffeomorphism of a compact
smooth m-dimensional manifold M . Let d(x, y) be a certain distance on M .
The point x in M is called (n, δ)-periodic, for n a positive integer and a
certain positive real number δ, if d(x, fn(x)) �δ. The point x is called (n, γ)-
hyperbolic, if all the eigenvalues of the differential Dfn(x) are at a distance
at least γ from the unit circle.

Theorem 10.3. Let k ≥ 3. There is a dense subset W in the space of all Ck

diffeomorphisms of M with the following property:
For any g in W there are positive constants a and b, depending on g, such
that for any positive integer n any (n, anα

)-periodic point of g is (n, bn
α

)-
hyperbolic.
Here α = α(m, k) = log2(m2 +mk + k + 1).

Hyperbolicity implies local uniqueness of solutions of the equation fn(x) =
x. In turn, quantitative hyperbolicity provides a bound on the distance be-
tween any two solutions. We get:

Corollary 10.4. For any g in W there are positive constants c and C, such
that:

i− The distance d(x1, x2) between any two exactly periodic points x1, x2
of period n is not smaller than cn

α

.
ii− The number of n-periodic ponts of g does not exceed Cnα

.

In fact, one can prove that for any given Ck diffeomorphism f of M and
for any positive ε, there exists g ε-close to f in the Ck-norm, with properties
as above. The constants a, b, c and C are given explicitly in terms of the
bounds on the derivatives of f and ε.

These results give only the first step in understanding the quantitative
behaviour of periodic points under perturbations of a diffeomorphism. The
main open problem is whether one can replace the overexponential bounds
above by exponential ones. (Indeed, our α(m, k) above is always greater than
one. Its first values are α(1, 3) = 3.585..., α(2, 3) = 4.585... etc.).

On the other hand, the theorem of Artin and Mazur [Art-Maz] guarantees
the exponential growth of the number of periodic points with the period for
a dense set of diffeomorphisms (in fact, for polynomial ones, with respect to
a certain realization of M as a real algebraic manifold).

The main difficulty, which prevents obtaining exponential growth in the
proofs in [Yom 4] is of a dynamical nature: iterations of a periodic point
can come close to one another. This makes the control of the influence of
perturbations very difficult. (The same difficulty manifests itself in many
other dynamical questions, like the “Closing lemma”).

There are examples, showing that while the first order control in situations
as above is hopeless, it still may be regained in high order derivatives. A recent
result of Grigor’ev and Yakovenko [Gri-Yak] which provides a transversality
statement in a multijet situation, may also be relevant (as it indeed seems to
be in Kaloshin’s results).
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The understanding of all the situation around the behavior of periodic and
almost periodic points and trajectories was recently changed dramatically
by striking results of Kaloshin ([Ka 1-3], [Ka-Hun]), who showed that any
prescribed growth rate can occure generically on one hand, and that the
exponential bound holds for “prevalent” diffeomorphisms, on the other hand!

10.1.4 Possible Applications in Numerical Analysis

10.1.4.1 Summary. Virtually any numerical algorithm in Nonlinear Anal-
ysis requires for its proper work that some Jacobians be nonzero. The usual
Sard theorem essentially claims that this is the case for randomly chosen
data. Some popular numerical algorithms, such as continuation methods for
solving nonlinear systems of equations, explicitly involve a random choice
of parameters or of a starting point, appealing to the Sard theorem as a
justification (see, for example, [All], [Shu-Sma 1-7], [Sma 3,4]).

However, the role of this theorem is restricted to an a posteriori confirma-
tion of the efficiency (experimentally well known) of the algorithms. It gives
no specific recommendations on how to organize such algorithms or how to
optimize the choice of the parameters involved.

In an important special case of solving systems of nonlinear algebraic
equations, a thorough theoretical study of the efficience of the global Newton
method was given by M. Shub and S. Smale ([Shu-Sma 1-7]). It involved a
“quantitative” investigation of the degree of non-degeneracy of the data on
each step of the algorithm. Although this investigation has been performed
mostly without an explicit application of the Morse-Sard theorem, it stressed
the importance of the “quantitative” information on the distribution of sin-
gularities.

In most of non-linear algorithms Quantitative Sard theorem and Quanti-
tative Transversality results proved in Chapters 7–9 above allow us, at least
in principle, to give explicit recommendations on how to organize these algo-
rithms or how to optimize the choice of the parameters. In general, we believe
that the importance of “Quantitative Singularity Theory” in practical com-
putations, from Motion Planning and solving PDE’s to Image Processing and
Computational Biology, will grow. We hope that this field will become one of
important applications of the methods presented in the book. This justifies in
our view, a somewhat lengthy discussion of these topics in the Introduction,
section 1-3, in this section, and in Section 10.3.7 below.

10.1.4.2 How to Treat Singularities? The stability, accuracy and run-
ning time of any numerical algorithm is determined by its “well-posedness”,
i.e. by the separation from zero of the involved determinants. Consequently,
the overall running time, as well as the accuracy, of a non-linear numerical al-
gorithm involving “near-singularities” can be estimated in terms of the lower
bound on the near-degenerated Jacobians at these points. In turn, the Quan-
titative Sard theorem provides an explicit probability distribution for these
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Jacobians. Thus, if the numerical scheme involves an adaptation of the pa-
rameters, according to the degree of degeneracy of the data (this is a typical
case), the switching thresholds can be optimized to provide the best average
performance. A purely illustrative example of this sort was given in [Yom 18].

On the other hand, there are many examples of non-linear numerical
algorithms, where not only an adaptation of the parameters, according to the
degree of degeneracy of the data is performed, but rather a switching from
one algorithm to another, when singularities are encountered. Indeed, in most
of practical problems singularities of different degrees of degeneracy cannot
be avoided. Of course, these singularities can be treated just by increasing
resolution and accuracy of the processing (adaptation of the parameters).
However, a much more rewarding approach is to acknowledge the presence
of a singularity and to treat it explicitly, via the methods and tools provided
by an analytic study of the background problem. One of the most powerful
such tools is a “Normal Form” of a singularity.

10.1.4.3 Normal Forms. In each specific problem, the mathematical ob-
jects involved (functions, surfaces, differential equations) are usually consid-
ered up to a certain equivalence relation, provided by a certain group of
allowed transformations.

Normal Form is “the simplest” representative in each equivalence class of
objects (for example, containing the minimal possible number of free param-
eters).

In no way were normal forms invented in Singularity Theory. The idea
to bring a mathematical problem to its simplest possible form by changes of
variables and other permitted transformations is certainly one of the most
powerful and oldest discoveries in Analysis and in Mathematics in general.

Singularity Theory provides a general approach and techniques for finding
normal forms of singularities of smooth mappings and other related objects.
It stresses the importance of this notion in many theoretic and applied fields,
extending far beyond the classical examples. Moreover, Singularity Theory
provides a unified way to find in each specific problem its “hierarchy of sin-
gularities”, according to their degree of degeneracy, and the corresponding
hierarchy of normal forms. See [Tho 3], [Boa], [Arn-Gus-Var], [Gol-Gui], [Ma
1-8] for general methods of Singularity Theory and many specific results,
[Zh] for a description of the normal forms of differential 1-forms and Pfaffian
equations, [Bry], [Dav-Zak], [Mat], [Yom 26] for a description of the hierarchy
of singularities of maximum function, and [Guck], [Dam 1-4], [Rie 1,2] for a
treatment of singularities in solutions of PDE’s and in Imaging. We give only
a small fraction of the relevant literature.

One of the most important features of the normal form approach, espe-
cially relevant for numerical applications, is the following: while the processing
of singular data is usually ill-posed, bringing singularity to its normal form
and finding the corresponding normalizing transformations is usually well-
posed.
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Normal forms have been successfully applied in the process of computa-
tions in many numerical algorithms in various fields of applications. Much less
was done with normal forms of singularities, considered as the basic element
of data representation.

We believe that really efficient computational methods in many nonlinear
problems must be based on a coordinated use of the hierarchy of singular-
ities and of the corresponding hierarchy of their normal forms both in data
representation and in data processing.

10.1.4.4 Flexible High Order Discretization. A unified approach to
high-order data representation and processing, based on this principle, has
been proposed and initially tested in [Eli-Yom 1-5], [Bri-Eli-Yom], [Bic-Yom],
[Wie-Yom], [Koch-Seg-Yom 1-2], [Y-E-B-S], [Bri-Yom 6], [Yom 27,28]. We
have started discussing this approach (as related to motion planning in
robotics) in Section 1.1.4 of the Introduction. Let us give here a little bit
more general description of this framework, since we believe it presents an
important ground for application of the results and methods of the book.

Kolmogorov’s Representation of Smooth Functions

First of all, if we want to use analytic methods of Singularity Theory in the
process of computations, we have to provide a direct access to the high order
derivatives of the data. Indeed, all the computations in Singularity Theory,
related to the classification of singularities and to the procedure of bringing
them to their normal forms, use relatively high order Taylor polynomials
(“Jets”) of the functions involved.

Computing high order derivatives from the conventional grid represen-
tation (where only the value of the function is stored at each grid point)
is very unstable and unreliable. Consequently, we are forced to keep explic-
itly high order derivatives at each grid point. In an equivalent way, we say
that a Taylor polynomial of a prescribed degree k (or a k-jet) is stored at
each grid-point. This is a highly non-orthodox decision from the point ov
view of the traditional numerical analysis. Fortunately, it is supported by the
Kolmogorov theory of optimal representation of smooth functions (see [Kol],
[Kol-Tih], [Tih 2] and many other publications).

The question of an optimal representation of smooth functions has been
investigated by Kolmogorov in his work on ε-entropy of functional classes.
The problem can be shortly described as follows: How many bits do we need
to memorize a Ck-function of n variables up to a prescribed accuracy ε > 0?
Mathematically, this is exactly the question of computing (the logarithm of)
the ε-entropy of the class of Ck-functions, with respect to the C0-norm (see
Chapter 2 above).

It was shown in [Kol], [Kol-Tih] that asymptotically, the best way to
memorize a Ck-function up to the accuracy ε > 0 is to store the coefficients
of its k-th order Taylor polynomials at each point of some grid with the step
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h = O(ε1/(k+1)). The corresponding estimate for the ε-entropy of the class of
Ck-functions in the space C0 is a double exponent with the upper term of
order (1

ε )
n
k .

One of the main trade-offs in any numerical approach, based on a grid
representation of the data, is between the density of the grid versus the
processing complexity at each grid-point. Kolmogorov’s representation tends
to increase as far as possible the analytic power and flexibility of the local
data representation at each grid-point, strongly expanding in this way this
grid-point’s “covering area”.

As a result, a density of the grid can be strongly reduced, while preserving
the required approximation accuracy. This reduction may lead to a major
efficiency improvement, especially in the problems with the large number of
unknowns and parameters.

Let us give a simple (and purely illustrative) example. Assume we have
to approximate a function f of 10 variables on the unit cube Q, with the
accuracy of ε = 0.01. We use a uniform grid in Q with the step-size h and
a Tailor polynomial approximation at each grid-point. Assuming that the
derivatives of f up to the third order, are bounded by 100, we get according
to the Tailor remainder formula, that the accuracy of the first order Tailor
polynomial approximation within the distance h from the grid-point is 100h2,
while the accuracy of the third order approximation is 10h4. Hence to get a
required overall approximation accuracy of ε = 0.01, we must take h = 0.01 in
the first case and h = 0.16 in the second case. The size of the “covering area”
of each point increases more than ten times. Hence the number of the required
grid-points in the 10-dimensional cube Q drops 1010 times. On the other side,
the complexity of the local representation and processing at each grid-point
is roughly the number of the stored coefficients of the Taylor polynomial. For
the third degree Taylor polynomial it is of order 200, while for the first degree
Taylor polynomial it is 11. The 1:20 jump in local complexity is more than
compensated by the 1010 reduction in the number of grid-points.

Of course, one will try not to work neither with 10010 nor with 1010 grid-
points. It would be a clever decision also to avoid, if possible, a straightfor-
ward computation at each grid-point of a polynomial with 200 coefficients.
Certainly, in a practical treatment of any problem with a 10-dimensional
phase space all the attempts will be made to use methods not involving a
scanning over its total definition domain.

Still, scanning over some important areas in the phase-space may be un-
avoidable. This is especially true in the practically important problems of
the motion planning in robotics and in the qualitative-quantitative study of
large systems of ODE’s appearing in biology, with the goal to describe the
“dynamical” effects like closed (periodic) trajectories, attractors, influence of
the main parameters, etc. In each of these problems a clever use of the high
order representation may give potentially a major improvement in efficiency.
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So we suggest to use in practical computations the Kolmogorov represen-
tation of smooth functions. It is very compact, it allows for application at
each grid-point of analytic processing methods, and it is compatible with the
“Normal Form Representation”.

The main drawback of this representation is its very high sensitivity to
the noise in the numerical data. This is a major problem, but it can be solved
by the “multi-order” strategy, shortly discussed below in this section.

“Non Conforming” Representation

The following feature of the Kolmogorov representation is very important
in our approach. We assume that a required accuracy or tolerance ε > 0 is
given from the very beginning. We require the discretized data to represent
the “true” function up to this accuracy in a Ck-norm. But we do not re-
quire the discretized data to be itself a Ck-function. In particular, the Taylor
polynomials at the neighboring grid points may disagree up to ε.

This makes our representation very flexible. In particular, we make no
effort to subdivide the domain into pieces where each of the polynomials is
used or to adjust their values (and/or the values of their derivatives) at the
boundaries of such pieces.

(Notice that this subdivision and adjustment is by far the most compli-
cated part in many high order algorithms. Moreover, it introduces into the
solution process a rigid combinatorial-geometric structure, which has nothing
to do with the original problem to be solved).

In some applications, such as Computer Graphics and Engineering, it is
important to be able to produce ultimately a truly continuous or smooth
function from the discretized data. Mathematically, this is an interpolation
problem (or a problem of extending a Ck function from a given subset (grid)
to the whole space). As many other problems in high order processing, this
extension problem is not easy. It was studied by Whitney ([Whi 5,6]) and
others. Recently an important progress has been obtained in [Bie-Paw-Mi 2].
Also certain multivariate interpolation methods can be used (see, in partic-
ular, [Mic-Mi]). These ideas can be used to produce an efficient “numerical
smoothing” of the high order data in the Kolmogorov representation (see
[Bic-Yom], [Wie-Yom], [Yom 27]).

Absence of the rigid adjustment of the neighboring polynomials makes
the Kolmogorov representation relatively insensitive to the precise geometry
of the grid. The grid-points do not need to be the vertices of a regular parti-
tion of the domain. If necessary, they can “move” freely, just approximately
preserving the mesh-step. The precise geometry of the grid is involved only
in the computation of the optimal relaxation (or interpolation) coefficients,
which is performed once forever, before the actual data processing.

Also near the boundary no adjustment of the grid geometry is necessary.
Using the calculus of Taylor polynomials (“Jet calculus” – see below), we
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incorporate the boundary data into the structure of the Taylor polynomials
at the grid points near the boundary.

Processing of Functions in Kolmogorov’s Representation

An important requirement for a discretization scheme used in computations is
that any analytic operation or functional, as applied to a discretized function,
can be expressed (up to the prescribed accuracy ε) in terms of the discretiza-
tion data. Kolmogorov representation satisfies this requirement. Moreover,
many important analytic operations can be implemented much more effi-
ciently with the explicit high order data at each grid-point. This is because
having an access to the high-order derivatives allows for application of power-
ful analytic procedures, like the implicit function theorem, inversion of map-
pings, recurrent computation of Taylor coefficients, Runge-Kutta calculations
for solving ODE’s, and similar formulae in other problems. These operations
form a “Jet-calculus”, widely used in many areas of mathematics, but prob-
ably represented in the most coherent form in Singularity Theory (see, for
example, [Arn-Gus-Var], [Ma 1-8], [Gol-Gui], [Zh]). See also [Eli-Yom 1-5],
[Wie-Yom], [Bri-Eli-Yom], Bri-Yom 6] and [Yom 27] for some specific exam-
ples of applications of the “Jet-calculus”.

It is important to stress, that the operations and formulae in the Jet-
calculus play in our approach the same role as the standard arithmetic oper-
ations in the usual computations. They form a “Jet-calculus library” which is
assumed to ultimately include any important analytic operation, expressed
in a jet language. In any practical realization all the relevant Jet-calculus
operations and formulae should be implemented in the most efficient way,
exactly as the the standard arithmetic operations are implemented in the
computer processors.

Multi-Order Strategy

As it was mentioned above, the main drawback of the Kolmogorov represen-
tation is a very high sensitivity of the high order derivatives to the noise in
the numerical data. As a result, it is not easy to produce in a reliable way
such a representation in most of practical problems. Also computations with
the explicit high-order data are far from being robust. They involve a mixing
of several scales and as a result a division by high degrees of ε. This is a
major problem, and it is this problem that prevents a use of Kolmogorov-
like representations in the conventional numerical algorithms. However, the
advantages of this type of representations are so important, that in our opin-
ion they justify a development of the new methods which will allow one to
overcome the instability of the explicit high-order data processing.

The “multi-order” strategy in many cases solves the problem. It consists in
a successive processing of the data: from the lowest order to higher and higher
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ones. At each order the maximal possible for this order accuracy is achieved,
and then the next order data is included as a “correction” to the previous
step. In many important situations this approach separates the scales and
strongly reduces the stiffness of the equations to be solved. In particular, it
excludes a necessity to divide the data by high degrees of ε. See [Wie-Yom]
for one specific implementation of the multi-order approach in solving elliptic
PDE’s and [Yom 27] for its more general mathematical treatment.

As the processing of the noisy empirical data is concerned (like digital
images) it is difficult to expect an overall smoothness. Here the multi-order
strategy is used also in order to discover a “hidden regularity” in the data
(which is closely related to the presence of singularities and to their Normal
Form representation). Consequently, in the implementations related to noisy
empirical data (like in Image Processing), the multi-order approach includes
an additional ingredient: the higher order data is used not everywhere, but
only in cases we the lower order analysis predicts a reliability of the higher
order information. See [Bri-Eli-Yom] and [Bri-Yom 6].

10.1.4.5 Flexible High Order Discretization: a General Structure.
In general, we combine the Kolmogorov representation of the smooth compo-
nents of the data with the Normal Form representation of the singularities.
The “geometric support” Z of the singularities (or the critical set) is explic-
itly memorized (Z can be called also the singular set of the data). Next, at
each point of a certain grid in a vicinity of Z the following data is stored: the
normal form of the local singularity and the coordinate transformations, (or
other allowed transformations) which bring this singularity to its normal form
(the “normalizing transformations”). Notice that in most cases the list of the
normal forms used is simple: there are several discrete types of normal forms,
and for each type, a small number of free parameters. Let us remind once
more that while the processing of singular data is usually ill-posed, bringing
singularity to its normal form and finding the normalizing transformations is
well-posed. Besides the improved stability and accuracy in producing our rep-
resentation from a noisy data, this fact has another important consequence:
our data size is usually strongly reduced in comparison with the original data
size.

10.1.4.6 Implementation Examples. The proposed approach has been
experimentally tested in several directions. In addition to the specific pub-
lications mentioned below, we plan to present a general description of the
underlying theory, of implemented algorithms as well as the experimental
results in [Yom-Bri 6], [Yom 27]. Here we just mention shortly the main
investigated problems.

Solving PDE’s. Gromov’s h-homotopy as a Numerical Method

Our implementation of the general method described above to solving elliptic
PDE’s is based on Kolmogorov’s representation of smooth functions on the
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one hand, and on Gromov’s approach to solving PDE’s (differential relations,
h-homotopy – see [Gro 5]) on the other. This method has been proposed in
a general form in [Eli-Yom 1] and partially implemented in [Koch-Seg-Yom
1-2] and [Wie-Yom]. It consists of several steps.
1. All the functions involved (known and unknown) are represented by their
Taylor polynomials of a fixed degree k at all the nodes of a certain fixed grid.
2. The Taylor polynomials for the unknown functions (whose coefficients form
the basic set of the unknowns) are a priori parameterized to satisfy locally the
PDE to be solved. For example, for the equation ∆u = 0, harmonic polyno-
mials are used at each grid point. The boundary conditions are incorporated
into the parameterization of the Taylor polynomials at the grid points near
the boundary.

However, for the parameter values, picked at random, the above Tay-
lor polynomials satisfying the equation do not agree with one another. In
Gromov’s terminology [Gro 5], they form a nonholonomic section of a dif-
ferential relation and do not represent a true solution of the equation. Thus
the solution process consists of finding the values of the unknown parameters
which minimize the discrepancy between the neighboring Taylor polynomi-
als. This approach can be considered as a discretized realization of Gromov’s
h-homotopy. In such a terminology the standard methods use a true func-
tion which approximately satisfies the differential relation. Our method uses
objects which are not true functions but “satisfy” the differential relation
exactly at each grid-point.
3. We implement the last stage of the solution as a certain relaxation proce-
dure where the Taylor polynomial at each node is corrected according to the
neighboring ones. The mere presence of several Taylor coefficients at each
node (instead of the only one in standard schemes) allows one to find re-
laxation coefficients which “cancel” the discretization error of the solution
up to an order m which is much higher than k. For example, for ∆u = 0
for the second degree Taylor polynomials, we get for an internal node the
discretization error of order h10 where h is the step of the grid.
4. At the previous stage we got, at each grid point, a Taylor polynomial of
degree k which agrees with the Taylor polynomial of the true solution (at
this point) up to order m > k. It turns out that from this data one can
usually reconstruct at each grid point the m-th degree Taylor polynomial of
the true solution, with the same accuracy. For this reconstruction the same
neighboring nodes as those in the relaxation steps can be used.

We’ve achieved a very high order of the discretization error (10, for the
degree two Taylor polynomials and the Laplace equation), as compared to
the size of the processed data, while preserving a stability of the classical
methods. This is a general feature of the suggested algorithms. It is explained
by the following two facts:
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1. We use at each grid point jets which satisfy the initial differential equation.
This reduces strongly the number of free parameters. For example, for two
independent variables, general jets of degree k contain (k+1)(k+2)

2 parameters.
Jets of degree k, satisfying a linear PDE with constant coefficients of order
2, have 2k + 1 free parameters.

(Notice that the requirement for local representing elements to satisfy
the initial differential equation is usually not compatible with the precise
adjustment of the values and the derivatives for the neighboring elements
(since the last requirement leads to elements with compact support)).
2. We find a relaxation scheme (i.e., equations relating a Taylor polynomial
at each grid point with its neighboring polynomials) which provides a highest
order discretization error. Since we spend no degrees of freedom to provide
boundary adjustment of neighboring polynomials, enough degrees of freedom
remain to “cancel” the Taylor coefficients in a discretization error up to a
high order. The following rough computation shows what order of accuracy
can be expected

For a second order linear PDE and jets of degree k we have 2k+1 param-
eters at each grid point. Thus at four nearest neighboring points, we have
8k+4 parameters. Assuming that the systems that arise are solvable, we can
reconstruct (at the central point) a jet of degree 4k satisfying the equation,
or we can cancel the Taylor terms in the discretization error up to the same
degree. In particular, for ∆u = 0, for a regular grid and k = 2, the corre-
sponding equations are solvable up to degree 10 (and not only 8) because of
a symmetry in the problem.

Notice that wider neighborhood stencils can be involved in the relaxation
procedure. However, geometrically compact schemes have important compu-
tational advantages.

Initial investigation of the parabolic equations has been started in [Bic-
Yom]. It confirmed the results obtained in the elliptic case. Investigation
of equations, developing singularities (like Burgers equation) has also been
started.

Motion Planning; Inverse Kinematic problem

Motion planning in Robotics has been investigated in [Eli-Yom 1-3], [Sham-
Yom] and in [Tan-Yom]. In section 1.1.4 of the Introduction our approach to
the Motion planning has been described in some detail, so we do not repeat
this discussion here.

In the implemented algorithm for a plane Motion planning the piecewise-
linear approximation has been used at each grid-point, while the main effort
concentrated on the efficient treatment of singularities of the data (on the
boundary of the “configuration space”). A couple of additional important
features, inherently related to our approach, have been investigated. It is a
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parallel realization of the algorithms, and the organization of the information
flow. Both issues are governed (in our discretization scheme) by the mathe-
matical nature of the problem. We do not discuss these topics here, referring
the reader to [Eli-Yom 1-3] and [Yom 27].

Inversion of Mappings

For a given mapping of two Euclidean spaces its inversion is equivalent to
solving a system of non-linear equations for each given right-hand side: for
any y in the target we find all the preimages x under f of y.

The following specific problem has been considered: starting with an ex-
plicitly given direct mapping f , find a convenient representation of the inverse
mapping f−1. The construction of this representation may be mathematically
involved. However, once constructed, it should allow for a fast computing of
all the values of f−1(y) for each given y.

Such a statement of the problem has some practical justifications. In par-
ticular, in the “Ray tracing” procedure in the 3D Computer Graphics, certain
nonlinear mappings (projections of the surfaces of the 3D objects onto the
screen) must be inverted, in order to find a new color of each pixel on the
screen, as the illumination conditions change. This must be done dynamically
and in real time. This problem still presents a computational challenge even
for home computers, not speaking about portable devices.

An algorithm for a numerical inversion of nonlinear mappings, described
in [Eli-Yom 4], has been practically implemented only for mappings of the
plane to itself, so we restrict our discussion to this case.

We use as an input the Kolmogorov representation of the direct mapping
f (i.e. its approximation by the Taylor polynomials of degree k on a certain
grid in the source). The inverse mapping f−1 is also represented on a certain
grid in the target space. However, f−1 may have several branches over some
regions. Accordingly, at each grid-point f−1 is represented by one ore several
“models”. The models may be of the following three types:
1. A regular point. A model of this type is just a Taylor polynomial of degree
k, approximating the regular branch of the inverse mapping.
2. A fold. This model consists of the normal form “fold” (y1 = x1, y2 = x2

2),
and of the direct and the inverse coordinate transformations, bringing f to
its normal form. These coordinate transformations are given by their Taylor
polynomials of degree k − 1.
3. A cusp. This model consists of the normal form “cusp” (y1 = x1, y2 =
x3

2 − 3x1x2), and of the direct and the inverse coordinate transformations,
bringing f to its normal form. These coordinate transformations are given by
their Taylor polynomials of degree k−2. (The reduction in the degrees of the
Taylor polynomials for the normalizing coordinate transformations is caused
by the mathematical structure of the Whitney procedure ([Whi 2]), which in
turn reflects the natural “balance of the smoothness” in the problem).
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The inversion of the normal forms (the standard fold and cusp) is assumed
to be easily available. In practical realizations of the algorithm this inversion
is implemented in a special fast subroutine. Now to compute the inverse
function f−1(y) for any given y, we just substitute y into the corresponding
model. For a regular point the k-jet of the inverse mapping at the point y is
computed. For the fold (cusp) the point y is substituted into the k-jet of the
the normalizing coordinate transformation in the target. Then the inverse of
the standard fold (cusp) is applied. Finally, the result is substituted into the
k-jet of the the inverse coordinate transformation in the source. In any case,
the overall complexity of computations is comparable with that of computing
a polynomial of degree k at one point.

The logical structure of the algorithm is as follows:

The algorithm analyses the input Taylor polynomials of the direct map-
ping. According to the Whitney description of the singularities of the plane
to plane mappings, a decision is taken, whether the considered point is classi-
fied as a regular point, near-fold or near-cusp. In the first case the inverse jet
is obtained by the standard jet-inversion formulae from the “Jet-calculus”.
If the point has been classified as a near-fold (near-cusp), the normalizing
coordinate transformations are computed via a “jet implementation” of the
Whitney procedure ([Whi 2]).

(Notice that the construction of a numerically stable jet implementation
for the procedure of bringing a singularity to its normal form is not trivial.
It requires, in particular, a careful study of the “balance of the smoothness”
for this specific singularity. Sometimes it may be necessary to introduce ad-
ditional parameters to the normal form, in order to increase stability of com-
putations (see [Eli-Yom 4], [Yom 27]). However, as a stable and efficient “jet
normalization” has been constructed, it becomes one of the standard formulae
of the Jet calculus library).

The main problem in the implementation of the algorithm is in the classi-
fication of the points. Indeed, if the point has been classified as a near-fold, a
real fold must be somewhere nearby, and the normalizing coordinate transfor-
mations to the normal form of this fold must be effectively bounded together
with their derivatives (otherwise their computing will not be reliable enough).
To guarantee this we must to know that this nearby fold (cusp) is sufficiently
non-degenerate.

So we put a number of thresholds, determining the decision at each
branching point, and the algorithm operates according to the basic pattern
described above and to the chosen thresholds. Of course, as the step-size of
the greed decreases, the non-degeneracy assumptions can be relaxed.

If the non-degeneracy assumptions are not satisfied in a neighborhood of
a certain point, we either subdivide the grid or restrict the processing to a
rough low-order approximation of the inverse mapping.
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So one of the most important tasks in the practical implementation of the
algorithm is a proper tuning of the thresholds. It is exactly the point where
we expect a serious improvement via the “Quantitative Whitney theory” of
singularities of mappings of the plane to itself. In Section 10.3.7 below we
give a sketch of a possible form of this theory and its possible applications.

In the present realization of the algorithm the thresholds have been tuned
empirically, separately for each example ([Eli-Yom 4]).

The algorithm has been practically implemented for k = 2 ([Eli-Yom 4])
and preliminary tested.

Images Representation, Compression and Processing

The most advanced implementation of our approach till now has been
achieved in Image Processing. A nonlinear high-order approximation, to-
gether with the appropriate “Normal forms” capturing image singularities,
have been used to achieve a very compact representation of images and “syn-
thetic video” sequences ([Bri-Eli-Yom], [Eli-Yom 5], [Y-E-B-S], [Bri-Yom 6]).
The results have been intensively tested against various known methods, and
have been used in working practical applications.

We do not discuss here the details of this implementation. Such a dis-
cussion would go too far away from the mainstream of this book. Let us
notice only that we indeed use in image analysis a third and fourth order lo-
cal polynomial approximation, which would be impossible without a proper
application of the multi-order strategy. We use three types of normal forms
for singularities (edges, ridges and “patches”) and a low order Kolmogorov
representation for smooth parts of the image. Since most of the edges and
ridges in a typical image of the real world appear as the visible contours of
the 3D objects, we do believe, that the methods of this book will ultimately
help us to optimize our representation.

10.1.4.7 The Role of “Quantitative Singularity Theory”. As it was
explained above, our method applies normal forms of singularities already
on the level of the initial data structure, and then along all the route of
the processing. One of the main problems in this approach is a treatment of
near-singular situations, and switching from a regular to a singular represen-
tation. The cases, investigated in detail till now used an empiric approach
to this problem. Undoubtedly, a proper use of the Quantitative Sard and
Transversality theorems can provide a firm basis for an efficient realization
of this type of algorithms. Moreover, each of the algorithms described above
poses virtually the same mathematical problems, whose natural place is in
the framework of “Quantitative Singularity Theory”. Let us describe here two
of these problems. We shall return to them in Section 10.3.7 below, devoted
to this theory.
1. Identification of the “Organizing Center”
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This notion was introduced by R. Thom in [Tho 3]. In our interpretation
the problem is for a near-singular point to find a nearby “exact” singularity
and the normalizing transformations for this singularity, via efficient and
robust procedures.

This is one of the most tricky problems in construction of virtually any
algorithm involving an explicit treatment of singularities.
2. Finding probability distributions for the “degree of non-degeneracy” of
singularities.

This problem is closely related to the first one. The estimates which ap-
pear in finding the “Organizing Center” involve as the main parameter the
degree of non-degeneracy of the singularity to be found. Knowing a lower
bound for this degree of non-degeneracy implies the tuning of the thresholds
at the branching points of the algorithm.

The problem is to find the probability distributions of various parameters
of the singularities, responsible for the degree of their non-degeneracy. This
should be done with respect to the natural probability distribution on the input
data.

Having these distributions, we can optimize our tuning of the thresholds
in order to get the best average performance of the algorithm.

In Section 10.3.7 below we discuss these and other problems of Quantita-
tive Singularity Theory in more detail, describing, in particular, the solution
of the above problems in some special cases.

10.2 Semialgebraic Complexity of Functions

In Chapter 9 above it was shown how “stable” metric properties of semialge-
braic sets and mappings can be applied in smooth analysis, via approximation
of Ck-functions by their Taylor polynomials.

It turns out that exactly the same method can be applied to a much wider
class of functions than Ck-ones. In fact, what we need for the results of Chap-
ter 9 to be true, is not a regularity (Ck, Cω, etc.) of the functions considered,
but rather their “complexity”, measured as the rate of their best approxima-
tion by semialgebraic functions of given “combinatorial complexity”.

Investigation of semialgebraic complexity presents the most direct contin-
uation of the main lines of this book. Consequently, in this section we present
with somewhat more detail (but without proofs) some definitions and results
in this direction. Mostly we follow [Yom 16,17,20,24] and try to stress open
problems and promising investigation directions.

To simplify presentation, we always assume our functions to be continu-
ously differentiable, and as the main property under investigation we take the
one given by the Quantitative Sard Theorem. This restriction is not essential.
In fact, on one side, the approach can be generalized to Lipschitz functions
(see [Cla 1,2], [Yom 11,12,15]), and, on the other side, much more general
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“geometric complexity bounds” (in the spirit of the above sections of this
chapter) can be obtained for functions of bounded semialgebraic complexity.

10.2.1 Semialgebraic Complexity

Let f : Bn
r → R be a C1-function. Let g : Bn

r → R be a semialgebraic function.
We do not assume g to be differentiable or even continuous. However, g is
analytic on a complement of a semialgebraic subset S(g), dim S(g) < n.

Definition 10.5. For f, g as above, the deviation ||f − g||C1 is defined as:

||f − g||C1 = sup
x∈Bn

r \S(g)
(|f(x) − g(x)| + r‖∇f(x) − ∇g(x)‖),

where ‖ ‖ is the usual Euclidean norm of the gradients.

Now for any semialgebraic function g : Bn
r → R, let C(g) = C(D(g)),

where D(g) is the diagram of g, be the constant, defined in Theorem 7.5
above. This constant, essentially, bounds the entropy of near-critical values
of g. (Strictly speaking, theorem 7.5 must be extended from polynomial to
semialgebraic functions. However, such an extension is rather straightforward,
if we do not ask for the best constants).

Definition 10.6. Let f : Bn
r → R be a C1-function. A semialgebraic com-

plexity σs(f, ε), for any ε > 0, is defined as follows:

σs(f, ε) = inf C(g),

where the infinum is taken over all the semialgebraic functions g, such that:

||f − g||C1 � ε.

In other words, σs(f, ε) is the minimal “C(g)-complexity” of semialge-
braic functions g, ε-approximating f in C1-norm. Alternatively, we can define
a “semialgebraic approximation rate” Es(f, d) as the inf ||f−g||C1 over all the
semialgebraic g with C(g) �dn. These definitions are motivated by classical
Approximation Theory, where g are mostly taken to be polynomials (trigono-
metric polynomials, other orthogonal systems ...), and C(g) is the degree (see
[Ahi], [Lor 1-4], [War]). One of the most basic facts here is that the rate of
a polynomial approximation of a given function is completely determined by
its “regularity” in the usual sense: the number of continuous derivatives, in
the finite smoothness case, or the size of the complex domain, to which the
function can be extended, in the real analytic case.

More accurately, let us define the polynomial “complexity” and “approx-
imation rate” as:

σp(f, ε) = inf
p
C(p),

over all polynomials p with ||f − p||C1 �ε,
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Ep(f, d) = inf
p

||f − p||C1 ,

over all polynomials p with C(p) �dn. (Notice that above, C(p) = dn.) Writ-
ten as above, the definition shows that σp and Ep are constructed exactly as
σs and Es, only with a subclass of all semialgebraic functions. This proves
immediately that for any ε > 0 and d > 0,

σs(f, ε) �σp(f, ε),

Es(f, ε) �Ep(f, ε).

Now the classical Jackson’s and Bernstein’s theorems in Approximation
Theory can be reformulated in our case as follows (see, for example, [Ahi],
[Lor 1]):

Theorem 10.7. If f : Bn
r → R is Ck, then

σp(f, ε) �C1

(
1
ε

) n
k−1

,

Ep(f, d) �C2

(
1
d

)k−1

.

Conversely, if σp(f, ε) �C
( 1

ε

) n
k−1 (or, equivalently, Ep(f, d) �C ′ ( 1

d

)k−1),
then f is k times continuously differentiable on Bn

r .

For analytic functions the corresponding result is true, with:

σp(f, ε) ∼ | log ε|n,

Ep(f, d) ∼ qd , q < 1.

(We do not intend here to give accurate formulations of the results of
Approximation Theory. Consequently, some details, sometimes important,
are omitted).

Let us return to semialgebraic complexity. It is bounded by the polynomial
one, and one can show that for generic Ck or analytic functions σs and σp are
equivalent. On the other hand, we can see immediately, that semialgebraic
complexity can be small for functions, not regular in the usual sense. Indeed,
let f(x) be defined as:

f(x) =
{

0, −1 �x �0
x2, 0 �x �1 .

f is C1, but not C2 on [−1, 1], and since f is itself semialgebraic, σs(f, ε) �
const, and Es(f, d) = 0 for d big enough. The same is true for any (C1)
semialgebraic function f .
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Below we give many examples of functions, whose semialgebraic com-
plexity is better than their regularity prescribes. Then the following problem
becomes a central one for understanding the relationship between “regular-
ity” and “complexity properties”: Does low semialgebraic complexity imply
existence of the high order derivatives in a certain generalized sense?

There are some partial results in this direction. A very important class of
nonsmooth functions with a low semialgebraic somplexity is given by maxima
of smooth families, discussed above. For a function f , representable as a
pointwise supremum of a bounded in C2-norm family of C2-smooth functions,
its generalized Laplacian ∆̃f (in the distribution sense) is shown in [Yom 8,9]
to be a measure with an explicitly bounded variation and singular part.

Question. Is a similar property true for f with σs(f, ε) ∼ (1/ε)n/2?

Another approach here is the following: A function f : R
n → R is said

to have a k-th Peano differential at x0 ∈ R
n, if there exists a polynomial

P : R
n → R of degree k, such that |f(x) − P (x)| = o(‖x− x0‖k). A classical

result in convex geometry - the Alexandrov-Fenchel theorem - claims that
any convex function has the second Peano differential almost everywhere.
Suprema of C2-families can be shown to admit a representation as a differ-
ence of two convex functions (see [Roc], [Shap-Yom]) and hence are almost
everywhere twice Peano differentiable.

Conjecture. If the semialgebraic complexity of a C1-function f : Bn
r → R

satisfies σ(f, ε) �C
( 1

ε

)n
k , then f has a k-th Peano differential almost every-

where.
This conjecture is strongly supported by the following result of Dolgenko

([Dol 1,2], see also [Iva 2] ): Define the rational complexity σr(f, ε) of f
exactly as in definition 10.2, but restricting the approximating functions to
the rational ones. Then, as shown in [Dol 1,2], the condition σr(f, ε) �C

( 1
ε

)n
k

does not imply even C2-smoothness of f . However, one of the main results
of [Dol 1,2] states that under this condition f has a k-th Peano differential
almost everywhere.

The proof in [Dol 1,2] seems to apply to semialgebraic complexity with
no essential modification.

Thus for a “Ck-type” behavior of the complexity (σ(f, ε) ∼
( 1

ε

)n/k) we
have some partial results and (hopefully) reasonable conjectures. The follow-
ing interesting problem then naturally arises:

What kind of “regularity” can be expected for functions with an “analytic-
type” behavior of complexity (σ(f, ε) ∼ | log ε|n)?

In particular, we can expect for such functions existence, at almost every
point of Peano differentials of any order.
Do the Taylor series, defined in this way, converge? What is their relation
with the original function?



152 10 Some Applications and Related Topics

10.2.2 Semialgebraic Complexity and Sard Theorem

The result of this section is that the geometry of the set of critical values
of the C1-function is determined by its semialgebraic complexity (and not
by its regularity, as it appears in standard settings of Sard-like results). So
let f : Bn

r → R be a C1-function, Σ(f) the set of its critical points, and
∆f = f(Σf ) the set of its critical values.

Theorem 10.8. For any ε > 0,

M(ε,∆f ) �σs(f, ε) ,

where σs(f, ε) is the semialgebraic complexity of f .

Proof. It is completely identical with the proof of Proposition 9.1 (with a
simplification, following from the fact that we consider only critical, and not
near-critical, values). For a given ε > 0, we find a semialgebraic function g,
such that ||f − g||C1 �ε. By definition of ||f − g||C1 in Section 10.2 above, it
follows that |f(x) − g(x)| �ε for any x ∈ Bn

r , and ‖∇f(x) − ∇(g)‖ �ε/r for
any x ∈ Bn

r , where g is smooth. Hence Σ(f) is contained in the set of ε/r-
critical points Σ(g, ε/r) of g. In turn, ∆f is contained in an ε-neighborhood
∆ε(g, ε/r). Therefore:

M(ε,∆f ) �M(ε,∆ε(g, ε/r)) �C(g) ,

by Theorem 7.5 of Chapter 7 above. Now taking the infimum over all the
semialgebraic g with ||f − g||C1 �ε, we get

M(ε,∆f ) � inf
g
C(g) = σs(f, ε) .

This completes the proof. 
�
The semialgebraic complexity σs(f, ε) is a “correct” property of functions

not only for the Sard Theorem itself, but for all the related properties, dis-
cussed in the above sections of this Chapter: transversality results, average
number of connected components of the fiber, etc. Also “computational com-
plexity” of most of the natural mathematical operations with f , is bounded
in terms of σs(f, ε). In particular, this is true for solving equations f = const
with a prescribed accuracy (see [Yom 20]).

A very important exclusion, however, is given by the dynamical results
around the Ck reparametrization theorem, shortly mentioned below in this
Chapter. To bound complexity of the iterations of a mapping f : M → M
(and, in particular, its entropy, volume growth, etc.), it is not enough to
assume that σ(f, ε) is small. The problem is that a piecewise-smooth structure
of f , to which σ(f, ε) is essentially insensible, in iterations can lead to an
exponential growth of the number of smooth pieces, and thus to the blow-
up of the complexity. Consequently, we consider the following problem as an
important one for understanding the nature of various complexity notions:
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Is it possible to replace the Ck or analyicity assumptions in “dynamical”
complexity bounds (like those discussed below) by weaker “complexity”-type
assumptions?

A natural candidate is provided by various types of lacunary series (in
particular, Bernstein’s quasianalytic classes), whose semialgebraic complexity
may be low, despite the lack of the usual regularity, and whose structure
excludes “pieces accumulation”, mentioned above.

The following main examples of functions, whose semialgebraic complex-
ity is better (sometimes much better) than their regularity prescribes, have
been investigated in [Yom 16,17,20,24]: maxima of smooth families, func-
tions, representable as compositions (see also [Vit 3]), lacunary series (in
particular, Bernstein’s quasianalytic classes) and certain functions on infinite-
dimensional spaces. Below we give only one example of the last type.

We believe that richness of mathematical structures, involved in these
examples, and their potential applicability to many important problems in
Analysis justifies further investigation of semialgebraic complexity.

10.2.3 Complexity of Functions on Infinite-Dimensional Spaces

The notion of semialgebraic complexity applies equally well to functions on
infinite-dimensional spaces. Moreover, it is in this setting that the difference
between the notions of complexity and regularity becomes apparent. This is
due to the fact that a “polynomial of an infinite number of variables” is not
a “simple function” (unless it satisfies some additional restrictions). Just a
regularity, which is also for functions of infinite number of variables roughly
equivalent to the rate of their global polynomial approximation, provides no
information on complexity (in contrast to the finite-dimensional case).

Let us start with an example of a polynomial on �2, which does not satisfy
the usual Sard theorem (it belongs to I. Kupka [Kup2]).

Let �2 = {x = {x1, . . . , xi, . . .), Σx2
i < ∞} be the standard Hilbert space.

We define a function f in the following way:

f : �2 → R

x → f(x) =
∞∑

i=1

1
2i
ϕ(ixi),

(1)

where ϕ is the polynomial of degree 3, such that ϕ(0) = ϕ′(0) = 0, ϕ(1) = 1
and ϕ′(1) = 0. Thus ϕ has exactly two critical points 0 and 1 with the
critical values 0 and 1 respectively. One can easily show that f is infinitely
differentiable (in any reasonable definition of differentiability on �2). In fact f
can be considered as a polynomial of degree 3 on �2. Now x = (x1, . . . , xi, . . .)
is a critical point of f if and only if for each i, ixi is a critical point of ϕ.
Thus

Σ(f) =
{(
a1,

a2

2
, . . . ,

ai

i
, . . .
)
, ai = 0, 1

}
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and ∆f =

{ ∞∑

i=1

1
2i
ai, ai = 0, 1

}
= [0, 1] .

Hence the critical values of a C∞-function f cover the interval:
the Sard theorem is no more valid on �2. (See also [Hai] for an example

of a function f : �2 → R, having [0, 1] for critical values and a critical set
of Hausdorff dimension 4) Notice that the function f can be approximated
by “simple” ones, namely by the polynomials, depending only on a finite
number of variables:

∑N
i=1 ϕ(ixi). Generalizing this remark, we show below

that f violates the Sard theorem since the rate of its approximation by these
“simple” polynomials is not high enough.

Kupka’s example shows that in order to apply the approach of this chapter
to an infinite-dimensional situation, we have first to find a good class of
“simple” approximating functions. This suggests the following generalization
of our main definition 10.2 :
Let V be a Banach space (of finite or infinite dimension) and let B ⊂ V be
the unit ball in V . We consider (Frechet) continuously differentiable functions
on B and with the standard C1 norm ‖ ‖C1 .

Now assume that some subclass Q of such functions is given, satisfying
the following condition (∗):
Fix any q ∈ Q. Then for any ε > 0, the set of ε-critical values of q on B,
∆(q, ε), can be covered by C(q) intervals of length ε, i.e. M(ε,∆(q, ε)) �C(q),
with C(q) depending only on q and not on ε.

Definition 10.9. For any C1-function f on B, the Q-complexity σQ(f, ε) is
defined as

σQ(f, ε) = inf
q∈Q,||f−q||C1 �ε

C(q).

Theorem 10.10. — For any ε > 0,

M(ε,∆f ) �σQ(f, ε).

The proof is identical to the proof of Theorem 10.8 above.
The main difficulty in the application of this result to specific functions on

infinite-dimensional spaces consists of a choice of the approximating class Q.
To understand Kupka’s example, we shall take Q consisting of polynomials,
depending on a finite number of variables, or more accurately, on a finite
number of linear functionals on V .

Proposition 10.11. Let V be a Banach space and let �1, . . . , �n be linear
functions on V . Let p(x1, . . . , xn) be a polynomial of degree d. Then for a
function p̃ : B → R, p̃(v) = p(�1(v), . . . , �n(v)), C(p̃) �n · (2d)n.

Here B ⊆ V denotes the unit ball in V , and C(p̃), as above, is the minimal
number of ε-intervals, covering the set of ε-critical values of p̃ onB. For V = �2

and �1, . . . , �n orthonormal, n can be omitted.
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Applying this proposition to the partial sums of the infinite series, we get,
after simple computations:

Theorem 10.12. For f =
∞∑

i=1

(
1
q

)ipi(x1, . . . , xi), deg pi = d, |pi| �1 on the

unit ball and q > 1, σQ(f, ε) �C(q, d)(
1
ε

)logq(2d). In particular, for q > 2d,

f satisfies the Sard theorem (i.e., m(∆f ) = 0).

Returning to the Kupka example above, we see that it occurs exactly on

the boundary: by Theorem 10.12, for any q > 6, functions f =
∞∑

i=1

1
qi
pi(x, . . . ,

xi) with deg pi = 3, satisfy the Sard theorem. In the specific form of the
function f in Kupka’s example above it is enough to take q > 2. By formal
analogy we can say that the complexity of the function f : �2 → R, f =
∞∑

i=1

1
qi
pi(x1, . . . , xi), deg pi = d, is the same as the complexity of Ck-functions

g : Bn → R, if n
k−1 = logq(2d) = β. In particular, the sequences of the form

1, 1/2s, 1/3s, . . . , 1/ks, . . ., may appear among the critical values of both f
and g only if 1/(s− 1) �β.

More results and discussions in this spirit can be found in [Yom 17,20,24].
See also [Sma 2], where an infinite dimensional version of Sard’s Theorem is
given. It is proved in [Sma 2] for nonlinear Fredholm mappings via reduction
to a finite dimensional case; one can expect that the complexity approach as
above will also work in this situation.

10.3 Additional Directions

10.3.1 Asymptotic Critical Values of Semialgebraic
and Tame Mappings

We’d like to briefly mention here some results concerning the singular be-
haviour of semialgebraic or tame mappings at infinity. To do this, let us
define the set K(f) of generalized critical values of a semialgebraic or a tame
mapping f : R

n → R
m, n > m:

K(f) = ∆f ∪K∞(f),

∆f being the classical set of critical values of f (i.e. ∆f = f(Σf ), with Σf

the set of points x ∈ R
n such that Df(x) is not onto) and K∞(f) being the

set of critical values at infinity or asymptotic critical values, defined by:

K∞(f) = {y ∈ R
m,∃xk ∈ R

n, |xk| → ∞, f(xk) → y, |xk| · λm(Df(xk)) → 0}.

Of course, when xk is a singular point, λm(Df(xk)) = 0, thus K∞(f) is the
union of adh(∆f ) (the closure of ∆f ) and of the set:
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{y ∈ R
m,∃xk ∈ R

n \Σf , |xk| → ∞, f(xk) → y, |xk| · λm(Df(xk)) → 0}.

The set K(f) has the following remarkable property (see [Rab] for a very
general context, or [Kur-Orr-Sim] for the semialgebraic case):

Theorem. ([Rab]) With the same notations as above, assuming that f is
a C2-semialgebraic mapping, then f : R

n \ f−1(K(f)) → R
m \ K(f) is a

fibration over each connected component of R
m \K(f).

The question of the size of the set of generalized critical values K(f) can
be seen as a Sard problem at infinity. Of course when f is semialgebraic (resp.
tame), K(f) is a semialgebraic (resp. tame) subset of R

m, and the question
of the size of K(f), is just the question of its dimension. This question has
been solved in [Kur-Orr-Sim], essentially with techniques similar to those
developped in [Yom 1] and in the present book.

Theorem. ([Kur-Orr-Sim]) With the same notations as above, assuming
that f is a C1-semialgebraic mapping, then the semialgebraic set K(f) is
closed and has dimension (strictly) less than m.

The fact that K(f) is a strict semialgebraic set of R, i.e. is a finite set,
for a polynomial function f : R

n → R, plays a crucial role in the proof of the
gradient conjecture of R. Thom (see [Kur-Mos], [Kur-Mos-Par]). We have an
extension of this result in the more general setting of tame categories (the
techniques of the proof are here quite different from the techniques of the
proof in the semialgebraic case):

Theorem. ([D’Ac]) Let f : R
n → R be a tame C1-mapping, with the same

notations as above, then the tame set K(f) is finite.

10.3.2 Morse-Sard Theorem in Sobolev Spaces

We essentially refer here to [Pas] (see [Eva-Gar] for the basic definifions).
The main theorem of this paper is the following, generalizing the classical
Morse-Sard Theorem for Sobolev functions.

Theorem. [Pas] Let n > m be two integers and let, for p > n, f ∈
Wn−m+1,p

�oc (Rn; R
m). Then Hm(∆f ) = 0.

The continuous representative f̃ of f is in Cn−m,α, for some α = α(p) < 1
(see [Eva-Gar]), and the quantitative Morse-Sard Theorem for f̃ shows that

the Hausdorff dimension of ∆
f̃

is at most min(m,m− 1 +
n−m+ 1
n−m+ α

) = m.

In other words, the classical Morse-Sard Theorem gives no information on the
dimension of ∆f , when f ∈ Wn−m+1,p

�oc (Rn; R
m). As pointed out in [Pas], this

is the effect of the existence of another weak derivative summable enough.
The idea of the proof is the following: we know that there exists, for

every ε > 0, a set Fε ⊂ R
n and a mapping fε ∈ Cn−m+1(Rn; R

m), such that
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f|Fε
≡ fε|Fε

and Hn(Rn \Fε) �ε. Let us notice that Σf =
⋃

n∈N

(Σf ∩F 1
n

)∪N ,

where Hn(N ) = 0, and that, by the classical Morse-Sard Theorem:

Hm(f(Σf ∩ F 1
n

)) = Hm(f 1
n

(Σf 1
n

∩ F 1
n

)) = 0.

The main point of [Pas] is then to prove that Hm(N ) = 0, i.e. for several sets
A ⊂ Σf , such that Hn(A) = 0, we have Hm(f(A)) = 0.

Classical examples show that this result cannot be sharpened.

10.3.3 From Global to Local: Real Equisingularity

We have indicated in Chapter 5, how to localize the �-variation of sets A ⊂ R
n

of dimension � (i.e. how to localize the �-volume of A), in order to obtain a
local invariant for the germ A0 (we assume that 0 ∈ A), called the density of
A0 and denoted Θ�(A, 0).

We can proceed in the same way for the variations Vi, with i = {1, . . . , n}
(see [Com-Gra-Mer]): let ε be a positive real number and let us denote Aε

the set
1
ε
.(A ∩ Bn

ε ) ⊂ Bn
1 . Now if we fix P̄ ∈ Ḡn−i

n , we remark that the sets

P̄ ∩Aε have the same topological type, for ε > 0 small enough, and that the
number of topological types of P̄ ∈ Ḡn−i

n , with respect to P̄ is finite. This
fact is a direct consequence of the first isotopy lemma of Thom-Mather; we
have to repeat the argument of Theorem 4.18:
let us denote [Ḡn−i

n ]1 the compact set of P̄ ∈ Ḡn−i
n such that P̄ ∩ Bn

1 = ∅,
and

E = {(P̄ , ε, x); P̄ ∈ [Ḡn−i
n ]1, ε ∈]0; 1], x ∈ Aε ∩ P̄},

F = {(P̄ , ε, x); P̄ ∈ [Ḡn−i
n ]1, , ε ∈]0; 1], x ∈ adh(Bn−i

(0,1)) \ (Aε ∩ P̄ )}.

We have: adh(E ∪ F ) = G = [Ḡn−i
n ]1 × [0; 1] × adh(Bn

(0,1)). The projection
p : G → [Ḡn−i

n ]1 × [0; 1] is a proper semialgebraic (or subanalytic in the
subanalytic case) morphism. One can stratify this morphism in the following
way: there exist a Whitney stratification Σ of G, compatible with E and
F , and a Whitney stratification Σ′ of [Ḡn−i

n ]1 × [0; 1] (which is of course
finite, since [Ḡn−i

n ]1 × [0; 1] is compact), such that the fibers of p−1({(P̄ , ε)})
and p−1({(Q̄, η)}) are homeomorphic with respect to E and F . In particular
the sets Aε ∩ P̄ = p−1({(P̄ , ε)}) ∩ E and Aε ∩ Q̄ = p−1({(Q̄, η)}) ∩ E are
homeomorphic.

This shows that:
– the number of topological types of Aε ∩ P̄ is finite,
– for a given P̄ ∈ [Ḡn−i

n ]1, the topological type of Aε ∩ P̄ does not depend
on ε, for ε > 0 small enough. In particular the integers V0(Aε ∩ P̄ ) and
χ(Aε ∩ P̄ ) (where χ is the Euler-Poincaré characteristic) do not depend on ε,
for ε > 0 small enough.
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We thus can define:

V �oc
i (A0) = lim

ε→0
c(n, i)

∫

P̄∈[Ḡn−i
n ]1

V0(Aε ∩ P̄ ) dP̄

= lim
ε→0

c(n, i)
εi

∫

P̄∈Ḡn−i
n

V0(A ∩Bn
ε ∩ P̄ ) dP̄

and
Λ�oc

i (A0) = lim
ε→0

c(n, i)
∫

P̄∈[Ḡn−i
n ]1

χ(Aε ∩ P̄ ) dP̄

= lim
ε→0

c(n, i)
εi

∫

P̄∈Ḡn−i
n

χ(A ∩Bn
ε ∩ P̄ ) dP̄ ,

the local i-th variation of the germ A0 and the local Lipschitz-Killing curva-
ture of A0 (the global Lipschitz-Killing curvatures have been introduced in
[Wey], see also [Kla], [Had], [Sch], [Sch-McM]).

Of course we have a uniform bound on P̄ , in the semialgebraic case, for
these invariants, in terms of the diagram of A.

One can study the relation between the geometry of a multigerm (Ay)y∈Y

along a smooth set Y and the variation of the invariants Λ�oc
i (Ay) and

V �oc
i (Ay) along Y . One can for instance prove that these invariants vary con-

tinuously along Y , when Y is a stratum of a Verdier stratification of adh(A)
(see [Com-Gra-Mer]).

10.3.4 Ck Reparametrization of Semialgebraic Sets

Assume we are given an algebraic (or a semialgebraic) set A ⊂ R
n. Its

reparametrization is a subdivision of A into semialgebraic pieces Aj together
with algebraic mappings ψj : Ij → Aj , where Inj is a unit cube in R

nj . We
assume additionally that ψj are onto and homeomorphic on the interiors of
Inj and Aj .

A relatively easy fact, which can be proved completely in the framework
of the methods presented above, is that for any compact semialgebraic set
there exists a finite reparametrization (with the number of pieces bounded
in terms of the diagram of A, i.e. in terms of the degrees and the number
of the equations and inequalities, defining A). In a sense this result can be
considered as a (strongly simplified) version of resolution of singularities of A.

Various “quantitative” questions can be asked in relation with repara-
metrizations of semialgebraic sets. Applications in dynamical systems moti-
vate the following specific problem: for A inside In (the unite cube in R

n),
is it possible to add the requirement that the norm ‖ψj‖Ck be bounded by 1
(then the reparametrization is called a Ck-one), and still to have for any such
A the number of pieces, bounded in terms of the diagram of A?
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The positive answer is rather straightforward for k = 1. However, for the
derivatives of order two and higher new techniques have to be applied, in par-
ticular, Markov inequalities for polynomials, estimates of the derivatives etc.
(Try to find such a reparametrization for k = 2 and the set A - a hyperbola
xy = ε, with the number of pieces not depending on ε).

The following result (in a weaker form) was obtained in [Yom 6,7] and in
a final form in [Gro 3]:

Theorem 10.13. For any natural k and for any semialgebraic A inside the
unit cube in R

n, there exists a Ck-reparametrization of A, with the number
of pieces, depending only on k and on the diagram of A.

This theorem, combined with approximation by Taylor polynomials,
proper rescalings and estimates of the derivatives of compositions, allows
one to bound the local complexity of iterations of Ck-smooth mappings. In
particular, this provides an inequality between the topological entropy and
the rate of the volume growth for such mappings ([Yom 6,7]).

As it was mentioned above, in these results Ck-smooth mappings cannot
be replaced by mappings of low semialgebraic complexity. Technically, the
reason is that if we restrict a Ck function to smaller and smaller neighborhoods
of the origin, and then rescale back to the unit ball, the derivatives tend to
zero. Properly understood “complexity” of these rescaled functions also tends
to zero, faster for larger k. This type of behavior is not shared by functions of
low semialgebraic complexity: they may have a “conic singularity” near the
origin, and then restriction to a smaller neighborhood and rescaling change
nothing.

Dynamical problems (in particular, the study of the semicontinuity mod-
ulus of the topological entropy in analytic families) lead to the same question
as above, where the Ck-norm of the reparametrizing mappings is replaced by
a certain analytic norm (see [Yom 21,23]).

Extension of the Ck-reparametrization theorem to the analytic case is
not straightforward. In dimension 1, it is roughly equivalent to the classical
Bernstein inequality for polynomials (see [Ber]). However, in higher dimen-
sions it requires a certain Bernstein-type inequality for algebraic functions
(discussed below), which was proved only recently ([Roy-Yom]). We plan to
present analytic reparametrization results in ([Yom 23]).

Recently Ck-reparametrization theorem has been applied in the study of
Anderson localization for Schrodinger operator on Z2 with quasi-periodic
potential ([Bou-Gol-Schl]). We hope that this rather unexpected application
will allow one to better understand the analytic consequenses of this theorem,
and possibly, of its sharpened version.

10.3.5 Bernstein-Type Inequalities for Algebraic Functions

Let DR denote the closed disk of radius R > 0, centered at the origin in C.
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Definition 10.14. Let R > 0, and K > 0 be given and let f be holomorphic
in a neighborhood of DR. We say that f belongs to the Bernstein class BR,K

if the maximum of the absolute value of f over DR is at most K times the
maximum over D 1

2 R. The constant K is called the Bernstein constant of f .

This definition is motivated by one of the classical Bernstein inequalities:
let p(x) be a polynomial of degree d. Then

maxx∈ER
||p(x)|| �Rdmax[−1,1]||p(x)||,

where ER is the ellipse in C with the focuses at −1, 1 and the semiaxes R
([Ber]).

A problem of computing Bernstein constants of algebraic functions has
recently appeared in several quite different situations.

In [Fef-Nar 1-3] this problem is investigated in relation with estimates of
a symbol of some pseudodifferential operators. In [B-L-M-T 1,2] and [Bru 1],
[Bar-Ple 1-3] (see also [Bos-Mi]) this problem is connected with some results
in Potential Theory and with a characterization of algebraic subsets.

In [Roy 1,2], [Roy-Yom], [Bri-Yom 5], [Fra-Yom 1,2], [Yak 1,2], [Yom 22]
and [Bru 2] Bernstein classes are used in counting zeroes in finite dimensional
families of analytic functions (this problem is closely related to the classical
problem of counting closed trajectories (limit cycles) of plane polynomial
vector-fields).

In [Yom 6,7], [Yom 21] and [Yom 23] various forms of Bernstein inequality
are used to prove results on a “Ck-reparametrization” of semialgebraic sets,
which, in turn allow one to control the complexity growth in iterations of
smooth mappings (see Section 10.3.4 above). It was exactly the absence of
the Bernstein inequality for algebraic functions, which restricted the results
of [Yom 21] to one and two dimensional dynamics only.

By a structural Bernstein inequality for a certain class of functions, de-
fined by algebraic data (algebraic functions, solutions of algebraic differential
equations, etc.) we understand an inequality bounding the Bernstein constant
of the function on a couple of concentric disks in terms of the degree and the
relative position of these concentric disks in the maximal concentric disk of
regularity only.

As the example of rational functions shows, in a sense, this is the best
possible inequality one can expect for functions with singularities.

Let y(x) be an algebraic function, given by an equation:

pd(x)yd + pd−1(x)yd−1 + · · · + p1(x)y + p0(x) = 0 ,

with pj(x) - polynomials in x of degree m. Let ỹ(x) be one of the branches
of y and assume that ỹ is regular over DR. (We can assume that DR is a
maximal disk of regularity of ỹ, so its boundary contains poles or branching
points of ỹ).



10.3 Additional Directions 161

Theorem 10.15. For any R1 < R, ỹ ∈ BR1,K , with K=[
4A(R+R1)
R−R1

]2m+2.

Here A is an absolute constant.

Theorem 10.15 provides a structural Bernstein inequality for algebraic
functions of one variable. It can be easily extended to algebraic functions of
several variables (see [Roy-Yom]).

One can restate this theorem (or, rather, its generalization to multivalued
functions) in a more geometric way: if an algebraic curve Y of degree d in C2

is contained, over the disk DR in the x-axis, in a tube of the size K, and it
does not blow up to infinity over the disk D3R, then it is contained in a tube
of the size C(d)K over the disk D2R.

One can hope that this last result admits for a generalization to higher di-
mensions and more complicated (semi)algebraic sets. There is also an impor-
tant problem of obtaining structural Bernstein inequalities for other classes
of analytic functions, beyond algebraic ones (in particular, for solutions of
algebraic differential equations and, hopefully, for their Poincare mappings).
Some initial results in this direction are given in [Roy 1,2], [Roy-Yom], [Fra-
Yom 1,2], [Bri-Yom 5], [Yom 22], [Bru 2].

In the next section we discuss shortly polynomial control problems, stress-
ing situations, where semialgebraic geometry underlines the dynamics of the
trajectories.

10.3.6 Polynomial Control Problems

A specific problem, related to the main topics of this book, and considered
in [Bri-Yom 1-4] is the validity of Sard’s theorem and its “quantitative” gen-
eralizations for an important class of nonlinear mappings, namely, input to
state mappings of nonlinear finite dimensional control problems of the type:

ẋ(t) = f(x(t), u(t)), x(0) = x0, t ∈ [0, T ], (2)

where x(t) is the state, and u(t) is the control, at time t.
Input-to-state mapping Jf of (2) associates to each control ũ the state

Jf (ũ), to which ũ steers the system from the initial state x0 in time T .
Mappings Jf for nonlinear f are known to be complicated. However, the

question of validity of Sard’s theorem for these mappings is important from
both the theoretical and computational points of view ([Sus], [Bri-Yom 1-4],
[Zel-Zh]. See also [Mon], where the question of the validity of Sard’s Theorem
is presented as one of the important open problems in the field). Let us
assume x and u to be one-dimensional. (Our methods work also in a multi-
dimensional situation).

Let v(t) be a perturbation of the control. Then the differential DJf (u)(v)
is given by the solution z(T ) of the linearized equation (2) along the trajectory
(x(t), u(t)):
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ż(t) = fz(x(t), u(t))z(t) + fu(x(t), u(t))v(t), z(0) = 0. (3)

In particular, a control u(t) is critical for Jf if and only if fu(x(t), u(t)) ≡ 0.
As we assume f to be a polynomial, this last equation fu(x, u) = 0 defines

an algebraic curve Y in the plane (x, u). It allows one to express u as a
(generally multivalued) function u(x) of x.

Choosing a certain univalued branch u(x) of this multivalued function and
substituting this expression into the original equation (2) we get an ordinary
differential equation:

ẋ = f(x, u(x)), x(0) = x0, t ∈ [0, T ], (4)

whose solution is uniquely defined on the all interval of existence.
Hence assuming that the control u(t) is critical (and that it is continuous,

i.e. does not jump from one branch of the algebraic curve Y to another) we
get only a finite number of possibilities for the control u and for the solution
x: at any double (multiple) point of the algebraic curve Y the control can
switch from one branch to another. Clearly, the total number of such choices
for u is bounded through the degree of the polynomial f .

This simple consideration shows that for the control problem (2) the num-
ber of critical values of the input-to-state mapping Jf (on the space of contin-
uous controls) is finite, and bounded through the degree of the polynomial f .
Assumption of continuity of the controls is not very natural in control (opti-
mal controls may jump infinitely often) but in some cases it can be verified. In
particular, the following result has been obtained in [Bri-Yom 1] using similar
considerations: let the variables x and u in (2) be now two-dimensional. We
assume that the possible values of the control u belong to a given compact
polygon U in the plane.

Denote by R(T,U) the time T reachable set of (2), i.e. the set of all the
state positions x(T ), to which various controls u(t) in U can drive the system
in time T .

Theorem 10.16. The number of the “outward” corners of the boundary of
the time T reachable set R(T,U) of the control problem (2) can be explicitly
bounded through the degree of f and the number of vertices of U .

Now let us return to one-dimensional x and u and consider near-critical
controls. If the differential of the input-to-state mapping Jf is small, the dif-
ferential equation (3) becomes a differential inequality, which leads to the
requirement that the absolute value of fu(x, u) be small. This condition de-
fines a semialgebraic set S in the plane. (All these objects of course depend
on the parameter, measuring the size of the differential of Jf ).

Therefore, near-critical trajectories (x(t), u(t)) lie in S. The complement
to S consists of a finite (and bounded through the degree of f) number of
“islands” Oi. Let us assume that x(t) is monotone in t on [0, T ]. (If a near
critical trajectory x(t) “turns back” at a certain moment t0, one can show that
it remains near the turning point x(t0)for the rest of the time). Then for each



10.3 Additional Directions 163

island Oi in the plane (x, u) the trajectory (x(t), u(t)) can pass either above
or below Oi. Now two trajectories, that pass on the same side of each of the
islands Oi, are “visible” one from another. Using properties of semialgebraic
sets, discussed in this book, one can join these trajectories inside S by paths
of controllable lengths, and estimate the difference of the derivatives of x(t).
As a result, we get a differential inequality, which, in turn, implies that the
endpoints of the two trajectories as above must be close to one another.

The following result is obtained in [Bri-Yom 2] by a detailed analysis on
the above lines:

Denote by WK the set of K-Lipschitz u on [0,1] with |u(t)| �1, and fix
the Lp-norm on the control space, p ≥ 1.

Theorem 10.17. Assume x0 = 0 in (1.1). Let f(x, u) be a polynomial of
degree d, satisfying |f(x, u)| �1 for |x| �1, |u| �1. Then for any γ ≥ 0 the
set of γ-critical values of Jf on WK can be covered by N(d) = dγ23(d+1)2

intervals of length δ = (qK)1/qγq/q+1. Here 1/p+ 1/q = 1.

In particular, the measure of the γ-critical values of Jf does not exceed
N(d)δ.

Thus, a quantitave Sard theorem is valid for the control problems as above.
On can apply the approach of “Semialgebraic Complexity” described in this
chapter, and extend the result to right-hand sides more complicated than
polynomials. However, since the growth of the estimate of theorem 10.17
in d is very fast, f above can be replaced only by analytic functions of a
very restricted growth. Using the same considerations as above, but with an
infinite number of the “islands” Oi, one can easily construct control problems
of the above form with f infinitely smooth and with critical values of J
covering the whole interval (see [Bri-Yom 3,4]).

The approach outlined above can be applied also in higher-dimensional
control problems. In higher dimension the relation between the dynamics of
near-critical trajectories and semi-algebraic geometry of the right hand side
polynomials remains especially transparent for the trajectories of “rank zero”:
those for which the norm of the differntial of the input to state mapping J is
small. (For near-critical trajectories of higher rank their behavior is governed
by a combination of semi-algebraic restrictions with the Pontryagin maximum
principle, and all the considerations become more delicate).

However, also for near-critical trajectories of “rank zero” a new important
dynamical problem enters: consider, for example, the case of two-dimensional
x and one-dimensional u. Here as above critical trajectories of rank zero must
lie in a semi-algebraic set S in a three-dimensional phase space (x, u), defined
by the condition that fu(x, u) be small, where f is a (vector) right hand side
of the equation (1.1). We can consider the complement of S as a set of islands
Oi, but now these islands are three-dimensional bodies, and in addition to
a possibility of passing above or under the island, the trajectory can rotate
around it. See [Bri-Yom 3,4] for a detailed discussion of this direction.
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The “combinatorial” bound on the behavior of near-critical trajectories
can be saved only if the possible rotation around semialgebraic bodies can be
bounded in algebraic terms. The bounds in this spirit exist, and they relate
the near-critical controls with the well-known problem of bounding oscilla-
tion of polynomial vector fields. We conclude this section, presenting a recent
result, obtained in [Gri-Yom]. (There exists a rich theory of nonoscillation
of trajectories of algebraic vector fields (see [Yak 1,2]), which provides simi-
lar conclusions. However, geometric methods of [Gri-Yom] are well suited to
extensions and applications in control).

For a Lipschitz vector field in R
n, angular velocity of its trajectories with

respect to any stationary point is bounded by the Lipschitz constant. The
same is true for a rotation speed around any integral submanifold of the field.
However, easy examples show that a trajectory of a C∞-vector field in R

3 can
make in finite time an infinite number of turns around a straight line. We
show that for a trajectory of a polynomial vector field in R

3, its rotation rate
around any algebraic curve is bounded in terms of the degree of the curve
and the degree and size of the vector field. As a consequence, we obtain a
linear in time bound on the number of intersections of the trajectory with
any algebraic surface.

For an algebraic vector field v in R
3 define its norm ‖v‖ as the sum of the

absolute values of the coefficients of the polynomials, defining this field.
Below we always assume that all the objects considered (trajectories of

the vectorfields, algebraic curves) are contained in the unit ball B1 in R
3.

Theorem 10.18. Rotation of any trajectory w(t) of an algebraic vector field
v in R

3 around an algebraic curve V , between the time moments t1 and t2,
is bounded by:

C1(d1, d2) + C2(d1, d2)‖v‖(t2 − t1).

(Here the constants C1(d1, d2) and C2(d1, d2) depend only on the degrees
d1, d2 of the field v and the curve V , respectively).

Theorem 10.19. For any trajectory w(t) of an algebraic vector field v, and
for any algebraic surface W in R

3, the number of intersection points of w(t)
with W between moments in time t1 and t2 is bounded by

C3(d1, d2) + C4(d1, d2)‖v‖(t2 − t1).

We conclude this chapter with a discussion of some natural extensions of
the Quantitative Sard theorem and Quantitative Transversality. These and
other similar extensions may ultimately form what we call “Quantitative
Singularity Theory”.
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10.3.7 Quantitative Singularity Theory

Quantitative Sard theorem, Quantitative Transversality and “Near Thom-
Boardman Singularities” treated in Chapters 7–9 of this book definitely be-
long to a much wider domain which can be called “Quantitative Singularity
Theory”. In this section we give some examples, illustrating the possible con-
tours of this future theory.

10.3.7.1 Quantitative Morse-Sard Theorem. Consider smooth func-
tions f : Bn → R. Probably, the first and the most basic result of Singularity
Theory is the Morse theorem ([Morse 1,2], [Mil 2]), describing typical singu-
larities of f . It states that “generically” f has the following properties:

i. All the critical points xi of f are nondegenerate (i.e. the Hessian H(f)
is non-degenerate at each xi). Consequently, the number of these critical
points is finite.

ii. All the critical values are distinct, i.e. f(xi) = f(xj) for i = j.
iii. Near each point xi there is a new coordinate system y1, ..., yn, centered

at this point, such that

f(y1, ..., yn) = y2
1 + y2

2 + ...+ y2
l − y2

l+1 − y2
l+2 − ...− y2

n + const.

In particular, for any given f0 we can perturb it by an arbitrarily small (in
C∞-norm) addition h, in such a way that f = f0 + h has the properties i, ii,
iii as above. Now a parallel result of Quantitative Singularity Theory in this

situation is the following:

Statement 1. Fix k ≥ 3. Let a Ck function f0 be given with all the deriva-
tives up to order k uniformly bounded by K. Then for any given ε > 0, we
can find h with ‖h‖Ck �ε, such that for f = f0 + h,

i. At each critical point xi of f , the smallest eigenvalue of the Hessian H(f)
at xi is at least ψ1(K, ε) > 0.

ii. The distance between any two different critical points xi and xj of f is
not smaller than d(K, ε). Consequently, the number of the critical points
xi does not exceed N(K, ε).

iii. For any i = j, the distance between the critical values f(xi) and f(xj)
is not smaller than ψ2(K, ε).

iv. For δ = ψ3(K, ε) > 0 and for each critical point xi of f , in a δ-
neighborhood Uδ of xi there is a new coordinate system y1, ..., yn, cen-
tered at xi and defined in Uδ, such that

f(y1, ..., yn) = y2
1 + y2

2 + ...+ y2
l − y2

l+1 − y2
l+2 − ...− y2

n + const.

The Ck−1-norm of the coordinate transformation from the original co-
ordinates to y1, ..., yn (and of the inverse transformation) does not exceed
M(K, ε).
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Here ψ1, ψ2, ψ3, d (tending to zero as ε → 0) and N,M (tending to infinity)
are explicitly given functions, depending only on K and ε. The neighborhoods
Uδ of the singular points xi play an important role in what follows. Let us
call them the controlled neighborhoods of the corresponding singular points
xi.

Sketch of the proof. Consider a mapping Df : Bn → R
n. The critical

points xi of f are exactly the preimages of zero under Df . If zero is a regular
value of Df then the Hessian H(f) is non-degenerate at each xi (being the
Jacobian of Df).

Now consider linear functions h : Bn → R. Zero is a γ-near singular value
of Df for f = f0 + h if and only if the point −Dh is a γ-near singular value
of Df0.

At this step we apply the Quantitative Sard theorem of Chapter 9. It
bounds the entropy of the near critical values of Df0. Its result can be easily
translated into the following form: For any r > 0 there are γ(K, r)-regular
values v of Df0, at a distance at most r from zero. Here γ(K, r) is an ex-
plicitely given function, tending to zero as r tends to zero (see [Yom 3] and
[Yom 18]).

For a given ε > 0 let us pick a certain γ(K, ε)-regular value v of Df0, at
a distance at most ε from zero, and let h be a linear function with Dh = −v.
Then all the critical points of f = f0 + h have the Hessian with the minimal
eigenvalue bounded from below by γ(K, ε). This proves the part i of the
statement.

Having this lower bound for the Hessian (and the upper bound K for all
the derivatives of f0 up to order k), we can produce the bounds in ii and iii
in a rather straightforward way. The part iv of the statement is obtained by
a careful “quantification” of the conventional normalization procedure. See
[Yom 28] for details.

Another typical result of the classical Singularity Theory is the “Stability
theorem”, which in the case of Morse singularities takes the following form: if
f satisfies conditions i, ii, iii than any small perturbation f1 of f is equivalent
to f via the diffeomeophisms of the source and the target.

(In this form the result is true for functions on compact manifolds without
boundary. In case of the functions defined on the unit ball, or on any other
manifold with boundary one has to care about singularities of f restricted to
the boundary).

A parallel result of Quantitative Singularity Theory is the following:

Statement 2. Let a Ck function f be given, with all the derivatives up to
order k uniformly bounded by K. Let f satisfy

a. At each critical point xi of f , the smallest eigenvalue of the Hessian H(f)
at xi is at least ψ1 > 0.
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b. For any i = j, the distance between the critical values f(xi) and f(xj) is
not smaller than ψ2 > 0.

Then there is ε0 > 0 (depending only on K,ψ1, ψ2) such that for any
given ε, ε0 > ε > 0, and for any f1 which is closer than ε to f in Ck-norm,
f1 is equivalent to f via the diffeomeophisms G and H of the source and
the target, respectively. G and H differ (in Ck−1-norm) from the identical
diffeomeorphisms not more than by s(K,ψ1, ψ2, ε). Here s(K,ψ1, ψ2, ε) tends
to zero as ε tends to zero. For the proof see [Yom 28]. The next “quantitative”

result has no direct analogy in the classical Singularity Theory. It claims that
for a generic mapping each its “near-singular” point belongs to a controlled
neighborhood of one of exact singular points (its “organizing center”).

A more accurate statement of this result is as follows:

Statement 3. Let a Ck function f be given, with all the derivatives up to
order k uniformly bounded by K. Then for any given ε > 0, we can find h
with ‖h‖Ck �ε, such that for f = f0 + h the conditions i-iv of Statement 1
are satisfied, as well as the following additional condition.

v. There is η(K, ε) > 0 such that for any point x if the norm of the gradf(x) is
smaller than η(K, ε) then x belongs to one of the controlled neighborhoods
of the singular points xi of f .

Sketch of the proof. As in the proof of Statement 1, we take h to be
a linear function. The bound on the entropy of the near critical values of
Df0, provided by the Quantitative Sard theorem of Chapter 9, implies the
following: For any r > 0 there are the points v in R

n, at a distance at most
r from zero, such that the entire ball B in R

n of radius η(K, r), centered
at v, consists of γ(K, r)-regular values of Df0. Here γ(K, r) and η(K, r) are
explicitely given functions, tending to zero as r tends to zero.

Now for a given ε > 0 let us pick a certain γ(K, ε)-regular value v of Df0,
at a distance at most ε from zero, with the property that the entire ball B
in R

n of radius η(K, ε), centered at v, consists of γ(K, ε)-regular values of
Df0. Let h be a linear function with Dh = −v. Then any point x with the
norm of the gradf(x) smaller than η(K, ε) satisfies Df0(x) ∈ B. Hense it is
a γ(K, ε)-regular point for Df0, i.e. the minimal eigenvalue of the Hessian
H(f) at x is bounded from below by γ(K, ε).

To complete the proof, we apply a “Quantitative Inverse Function The-
orem” (its various forms are scattered over the literature). It shows that
with our lower bound on the Hessian (and with the global bound on higher
derivatives) a certain neighborhood of x is mapped by Df onto the ball of
controlled radius in R

n. With a proper choice of the function η(K, ε) this
last ball contains the origin. This means that in a neighborhood of x there
is a true singular point xi of f . Once more, with a proper tuning of the in-
equalities, we get that x belongs to the controlled neighborhood of xi. This
completes the proof.
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The result of Statement 3 answers the problem posed in Section 10.1.4 of
this chapter (for the Morse singularities). It shows that (at least in principle)
we can relate each “near-singularity” to its “organizing center”. We believe
that this fact (extended to a wider range of singularities and supplemented
with effective and efficient estimates of the involved parameters) has a basic
importance for applications of Singularity Theory. In some very special ex-
amples this was explained in Section 10.1.4. In general one can hope that a
progress in this directions may transform some inspiring ideas and approaches
of [Tho 3] into theorems and working algorithms.

10.3.7.2 Quantitative Singularity Theory: a General Setting. The
next example, which presents some further main ideas and tools of Singu-
larity Theory, would be the Whitney theory of singularities of mapping of
the plane to itself. We believe that quantitative results in the spirit of State-
ments 1-3 above are still valid in this case, although the proofs become more
tricky. Presumably, the same concerns the main body of the modern Sin-
gularity Theory, as it was formed in [Whi 3], [Tho 2,3], [Ma 1-8], [Boa],
[Arn-Gus-Var] and many other publications. The main its tools include Sard
and Transverasity theorems, Division and Preparations theorems and highly
developed algebraic techniqies for classification and normalization of singu-
larities. All these ingredients are basically “quantitative”, so in principle one
can expect each result of the classical Singularity Theory to exist in an ex-
plicit quantitative form. We believe that obtaining such results will not be a
straightforward repetition of the existing proofs, but rather a discovery of a
variety of unknown inportant phenomena.

10.3.7.3 Probabilistic Approach. Another problem posed in Sec-
tion 10.1.4 of this chapter concerned a probabilistic distribution of singu-
larities. Let us illustrate this problem by some examples. We restrict the
discussion to the polynomial functions and mappings.

Let us remind Theorem 1.8, proved in the introduction to the book:

Theorem 1.8. Let f : R
n → R be a polynomial of degree d. Then for any

γ ≥ 0 the set ∆(f, γ, r) can be covered by N(n, d) intervals of length γr. The
constant N(n, d) here depends only on n and d.

This result can be easily reinterpreted in probabilistic terms. Let c be
picked randomly in the interval [a, b].

Statement 4. With probability p ≥ 1 − N(n,d)γ
b−a , c is a γ-regular value of f .

Equivalently, for fc = f − c, with probability p ≥ 1 − N(n,d)γ
b−a the following

is true: at any point x satisfying fc(x) = 0, the norm of the gradfc(x) is at
least γ.

Following the results of Chapters 7 and 8 one can produce rather accurate
probabilistic distributions of near critical values of polynomial mappings,
with repect to their “degree of degeneracy”. Indeed, most of the geometric
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estimates there are essentially sharp (up to constants) so as a result we get
not only inequalities, but actual distributions.

One can also include in consideration additional geometric parameters,
like distance of a certain point to the set of critical values (see [Yom 3] and
Section 10.1.2, Chapter 10). On the base of the results of Chapter 9 the
corresponding distributions for the case of finitely differentiable mappings
can be obtained.

Having the distributions of “near-regularity” we cane produce estimates
for the average complexity of the fibers of f , or for the expectation of this
complexity (see [Yom 3]). Already these results (treating only the nonsingular
objects, like fibers of a fixed mapping) may help in construction of certain
algorithms, like “fiber tracing” (see [Yom 18]).

However, we believe that also in the genuine territory of Singularity The-
ory (like Morse theory, Whitney theory of plane mappings, etc.) the proba-
bilistic distributions of the “degree of degeneracy” of various singularities can
be obtained. In the case of the Morse theorem this can be done essentially
in the lines of the application of the Quantitative Sard theorem, as described
above (see [Yom 28]). For the Whitney theorem the situation is much more
delicate, as one has to follow a geometry of the hierarchy of singularities.
Theorem 8.10 of Chapter 8 above, bounding the size of the “near-cuspidal”
values, provides one of the steps in this direction.

An important motivation for a probabilistic study of the distribution of
singularities is provided by deep results on the asymptotics of the oscillating
integrals (see, for example, [Arn-Gus-Var]). These results include, in particu-
lar, an important information on the asymptotics of the relative probabilities
of different types of singularities.

In conclusion, let us mention that many other results and approaches
extend the quantitative power of the analysis of singularities. In particular,
see [Bie-Mi 5] as the resolution of singularities is concerned, [Bie-Mi 3,4,6]
for the geometry of subanalytic sets, [Bie-Mi 1,2] and [Bie-Mi-Paw 1] for
composite differentiable functions, [Mi] for the division theorem, [Guck] and
[Dam 1-4] for singularities in PDE’s.
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de Morse-Sard. C. R. Acad. Sci. Paris 332, (2001), Série I, 13-17.

[Bat-Nor] S. M. Bates; A. Norton, On sets of critical values in the real line. Duke
Math J. 83, No. 2, (1996), 399-413.

[Ben-Ris] R. Benedetti; J. J. Risler, Real algebraic and semi-algebraic sets. Actu-
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[Cau] A. L. Cauchy, Mémoire sur la rectification des courbes et la quadrature des
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analytiques. C. R. Acad. Sci. Paris, t. 328, Série I, (1999), 505-508.
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variants locaux et conditions de régularité. In preparation.
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