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Preface

1. A lot of books and papers are concerned with the spectrum of linear op-
erators but deal mainly with the asymptotic distributions of the eigenvalues.
However, in many applications, for example, in numerical mathematics and
stability analysis, bounds for eigenvalues are very important, but they are in-
vestigated considerably less than asymptotic distributions. The present book
is devoted to the spectrum localization of linear operators in a Hilbert space.
Our main tool is the estimates for norms of operator-valued functions. One
of the first estimates for the norm of a regular matrix-valued function was
established by I. M. Gel’fand and G. E. Shilov in connection with their inves-
tigations of partial differential equations, but this estimate is not sharp; it is
not attained for any matrix. The problem of obtaining a precise estimate for
the norm of a matrix-valued function has been repeatedly discussed in the lit-
erature. In the late 1970s, I obtained a precise estimate for a regular matrix-
valued function. It is attained in the case of normal matrices. Later, this
estimate was extended to various classes of nonselfadjoint operators, such as
Hilbert-Schmidt operators, quasi-Hermitian operators (i.e., linear operators
with completely continuous imaginary components), quasiunitary operators
(i.e., operators represented as a sum of a unitary operator and a compact
one), etc. Note that singular integral operators and integro-differential ones
are examples of quasi-Hermitian operators.

On the other hand, Carleman, in the 1930s, obtained an estimate for
the norm of the resolvent of finite dimensional operators and of operators
belonging to the Neumann-Schatten ideal. In the early 1980s sharp estimates
for norms of the resolvent of nonselfadjoint operators of various types were
established, that supplement and extend Carleman’s estimates. In this book,
we present the mentioned estimates and, as it was pointed out, systematically
apply them to spectral problems.

2. The book consists of 19 chapters. In Chapter 1, we present some well-
known results for use in the next chapters.

Chapters 2-5 of the book are devoted to finite dimensional operators and
functions of such operators.

In Chapter 2 we derive estimates for the norms of operator-valued func-
tions in a Euclidean space. In addition, we prove relations for eigenvalues of
finite matrices, which improve Schur’s and Brown’s inequalities.



VI Preface

Although excellent computer softwares are now available for eigenvalue
computation, new results on invertibility and spectrum inclusion regions for
finite matrices are still important, since computers are not very useful, in par-
ticular, for analysis of matrices dependent on parameters. But such matrices
play an essential role in various applications, for example, in the stability
and boundedness of coupled systems of partial differential equations. In ad-
dition, the bounds for eigenvalues of finite matrices allow us to derive the
bounds for spectra of infinite matrices. Because of this, the problem of find-
ing invertibility conditions and spectrum inclusion regions for finite matrices
continues to attract the attention of many specialists. Chapter 3 deals with
various invertibility conditions. In particular, we improve the classical Levy-
Desplanques theorem and other well-known invertibility results for matrices
that are close to triangular ones. Chapter 4 is concerned with perturbations
of finite matrices and bounds for their eigenvalues. In particular, we derive
upper and lower estimates for the spectral radius. Under some restrictions,
these estimates improve the Frobenius inequalities. Moreover, we present
new conditions for the stability of matrices, which supplement the Rohrbach
theorem.

Chapter 5 is devoted to block matrices. In this chapter, we derive the in-
vertibility conditions, which supplement the generalized Hadamard criterion
and some other well-known results for block matrices.

Chapters 6-9 form the crux of the book. Chapter 6 contains the estimates
for the norms of the resolvents and analytic functions of compact operators
in a Hilbert space. In particular, we consider Hilbert-Schmidt operators and
operators belonging to the von Neumann-Schatten ideals.

Chapter 7 is concerned with the estimates for the norms of resolvents and
analytic functions of non-compact operators in a Hilbert space. In partic-
ular, we consider so-called P-triangular operators. Roughly speaking, a P-
triangular operator is a sum of a normal operator and a compact quasinilpo-
tent one, having a sufficiently rich set of invariant subspaces. Operators
having compact Hermitian components are examples of P-triangular opera-
tors.

In Chapters 8 and 9 we derive the bounds for the spectra of quasi-
Hermitian operators.

In Chapter 10 we introduce the notion of the multiplicative operator in-
tegral. By virtue of the multiplicative operator integral, we derive spectral
representations for the resolvents of various linear operators. That represen-
tation is a generalization of the classical spectral representation for resolvents
of normal operators. In the corresponding cases the multiplicative integral is
an operator product.

Chapters 11 and 12 are devoted to perturbations of the operators of the
form A = D + W, where D is a normal boundedly invertible operator and
D~'W is compact. In particular, estimates for the resolvents and bounds for
the spectra are established.
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Chapters 13 and 14 are concerned with applications of the main results
from Chapters 7-12 to integral, integro-differential and differential operators,
as well as to infinite matrices. In particular, we suggest new estimates for
the spectral radius of integral operators and infinite matrices. Under some
restrictions, they improve the classical results.

Chapter 15 deals with operator matrices. The spectrum of operator ma-
trices and related problems have been investigated in many works. Mainly,
Gershgorin-type bounds for spectra of operator matrices with bounded oper-
ator entries are derived. But Gershgorin-type bounds give good results in the
cases when the diagonal operators are dominant. In Chapter 15, under some
restrictions, we improve these bounds for operator matrices. Moreover, we
consider matrices with unbounded operator entries. The results of Chapter
15 allow us to derive bounds for the spectra of matrix differential operators.

Chapters 16-18 are devoted to Hille-Tamarkin integral operators and ma-
trices, as well as integral operators with bounded kernels.

Chapter 19 is devoted to applications of our abstract results to the theory
of finite order entire functions. In that chapter we consider the following
problem: if the Taylor coefficients of two entire functions are close, how close
are their zeros? In addition, we establish bounds for sums of the absolute
values of the zeros in the terms of the coefficients of its Taylor series. They
supplement the Hadamard theorem.

3. This is the first book that presents a systematic exposition of bounds
for the spectra of various classes of linear operators in a Hilbert space. It
is directed not only to specialists in functional analysis and linear algebra,
but to anyone interested in various applications who has had at least a first
year graduate level course in analysis. The functional analysis is developed
as needed.

I was very fortunate to have had fruitful discussions with the late Profes-
sors 1.S. Iohvidov and M.A. Krasnosel’skii, to whom I am very grateful for
their interest in my investigations.

Michael 1. Gil’
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1. Preliminaries

In this chapter we present some well-known results for use in the next chap-
ters.

1.1 Vector and Matrix Norms

Let C™ be an n-dimensional complex Euclidean space. A function
v:C" = [0,00)

is said to be a norm on C™ (or a vector norm), if v satisfies the following
conditions:

v(z) =0 iff x =0,v(ax) = |alv(z), v(z+y) <v(z)+v(y) (1.1)

for all z,y € C", a € C. Usually, a norm is denoted by the symbol ||.|.
That is, v(z) = ||z||. The following important properties follow immediately
from the definition:

[ =yl = [lz|| = [lyll and [lz]| = {| = =[|.

There are an infinite number of norms on C™. However, the following norms
are most commonly used in practice:

n
lzllp = [) laxP1V? (1< p < 00) and ||z = max |y
k=1

.....

for an x = (x) € C™. The norm ||z||2 is called the Euclidean norm.
Throughout this chapter ||z|| means an arbitrary norm of a vector x. We
will use the following matrix norms: the operator norm and the Frobenius

M.I. Gil’: LNM 1830, pp. 1-9, 2003.
(© Springer-Verlag Berlin Heidelberg 2003



2 1. Preliminaries

(Hilbert-Schmidt) norm. The operator norm of a matrix (a linear operator
in C") Ais

A
zeCn Hx”

The relations
Al >0 (A#0), [AA] = [Al|A] (A € C),
[AB| < [A[[|B]], and [|A + B[l < ||Al + [|B]

are valid for all matrices A and B. The Frobenius norm of A is

Here ajj, are the entries of matrix A in some orthogonal normal basis.
The Frobenius norm does not depend on the choice of an orthogonal normal
basis. The relations

N(A) > 0 (A#0); NM) = NIN(4) (A € ©),
N(AB) < N(A)N(B) and N(A + B) < N(A) + N(B)

are true for all matrices A and B.

1.2 Classes of Matrices

For an n x n-matrix A, A* denotes the conjugate matrix. That is, if a;; are
entries of A, then ag; (j,k =1,...,n) are entries of A*. In other words

(Az,y) = (z,A%y) (z,y € C).
The symbol (.,.) = (.,.)on» means the scalar product in C". We use I to
denote the unit matrix in C”.
Definition 1.2.1 A matriz A = (a;)} _; is
1. symmetric (Hermitian) if A* = A;
2. positive definite (negative definite ) if it is Hermitian and
(Ah,h) 2 (<) 0 (h e C");
3. unitary if A*A=AA*=1;
4. normal if AA* = A*A;
5. nilpotent if A™ = 0.
Let A be an arbitrary matrix. Then the matrices
A =(A—A%)/2i and Agr = (A+ A¥)/2

are the imaginary Hermitian component and the real Hermitian one of A,
respectively. A matrix A is dissipative if its real Hermitian component is
negative definite. By A~! the matrix inverse to A is denoted: AA™' =
AT1A=1T.
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1.3 Eigenvalues of Matrices

Let A be an arbitrary matrix. Then if for some A € C, the equation Ah = Ah
has a nontrivial solution, A is an eigenvalue of A and h is its eigenvector. An
eigenvalue A has the (algebraic) multiplicity r if

dim(Ul_ ker(A — AXI)*) = r.
Here ker B denotes the kernel of a mapping B.
Let Ap(A) (k = 1,...,n) be the eigenvalues of A, including with their
multiplicities. Then the set o(A) = { A\, (A)}}_; is the spectrum of A.
All the eigenvalues of a Hermitian matrix A are real. If, in addition, A

is positive (negative) definite, then all its eigenvalues are non-negative (non-
positive). Furthermore,

is the spectral radius of A. Denote

a(A) = kiﬂlé.}.{nRe/\k (4), B(A) = k:nlnn ReAi(A).

A matrix A is said to be a Hurwitz matriz if all its eigenvalues lie in the open
left half-plane, i.e., a(A) < 0.

A complex number M is a reqular point of A if it does not belong to the
spectrum of A, i.e., if A # A\g(A) for any k=1,...,n.

The trace of A is sometimes denoted by Tr (A):

Trace (A) =Tr (A) =Y M(A).
k=1

So the Frobenius norm can be defined as
N2(A) = Trace (A*A) = Trace (AA*).

Recall that Tr(AB) = Tr(BA) and Tr(A+ B) = Tr(A) + Tr(B) for all
matrices A and B. In addition, det(A) means the determinant of A:

det(A) = ﬁ Ai(A).
k=1

The polynomial
n
p(N) = det(\ — A) = [T (A = A (4))

k=1
is said to be the characteristic polynomial of A. All the eigenvalues of A are
the roots of its characteristic polynomial. The algebraic multiplicity of an
eigenvalue of A coincides with the multiplicity of the corresponding root of
the characteristic polynomial. A polynomial is said to be a Hurwitz one if all
its roots lie in the open left half-plane. Thus, the characteristic polynomial
of a Hurwitz matrix is a Hurwitz polynomial.
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1.4 Matrix-Valued Functions

Let A be a matrix and let f(\) be a scalar-valued function which is analytical
on a neighborhood M of o(A). We define the function f(A) of A by the
generalized integral formula of Cauchy

1

2mi

f(A) = - / FOVRA(A)dN, (4.1)

where I' C M is a closed smooth contour surrounding o(A), and
Ra(A) = (A= AD)~!

is the resolvent of A. If an analytic function f(\) is represented in some
domain by the Taylor series

FO) =Dk,
k=0

and the series
oo
> et
k=0

converges in the norm of space C", then
oo

FA) =) cpAr.
k=0

In particular, for any matrix A,

S k
AN A
Kk

k=0

Example 1.4.1 Let A be a diagonal matriz:

ai O 0
A= 0 a9 0
0 O an
Then
f(a1) 0 0
F(A) = 0 fla2) 0
0 e 0 flan)

Example 1.4.2 If a matriz J is an n X n-Jordan block:
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M 1 0 0
0 X 1 0
J = ,
0 O N 1
0 0 Xo
then ) )
f()\o) f (1/!\0) f (nfl())!\O)
0 f(ho)
fJ) =
0 f(Xo) L (1/1\0)
0 0 f(Xo)

1.5 Contour Integrals

Lemma 1.5.1 Let My be the closed convex hull of points xg,x1,...,z, € C
and let a scalar-valued function f be reqular on a neighborhood D1 of M.
In addition, let ' C Dy be a Jordan closed contour surrounding the points
T, L1y ey L. Then

] F(\)dA 1 .,
Pl e <L sup 17O

% —xo)(/\—mn) N xeMy

Proof: First, let all the points be distinct: x; # xy for j # k (j,k =
0,...,n), and let Dy(zo,1,...,x,) be a divided difference of function f at
points xzg, x1, ..., z,. The divided difference admits the representation

1 F)dA
Df(Io,l‘l,...,l‘n) = %\/F ()\_CUO)()\—.’L'n) (51)

(see (Gel’fond, 1967, formula (54)). But, on the other hand, the following
estimate is well-known:

1
| Df(x(hxh 7xn) | < M sup |f(n)(/\)|
. xeMy
(Gel’fond, 1967, formula (49)). Combining that inequality with relation (5.1),
we arrive at the required result. If x; = x;, for some j # k, then the claimed
inequality can be obtained by small perturbations and the previous reason-

ings. O
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Lemma 1.5.2 Let g < 27 < ... < x,, be real points and let a function f
be regular on a neighborhood Dy of the segment [xo,xy]. In addition, let
I' € Dy be a Jordan closed contour surrounding [xo,x,]. Then there is a
point 1 € [xg, T,], such that the equality

1 F(N)dA
27t Jp (A —x0)e.(A — xp)

1
_ = f(n)
s true.

Proof: First suppose that all the points are distinct: xg < 1 < ... < Ty,
Then the divided difference D(x¢, 1, ..., ) of f in the points xg, z1, ..., Tn
admits the representation

1
Tl

F™ ()

Df('rwalv 71'77,)

with some point 1 € [zg, z,] (Gel’fond, 1967, formula (43)), (Ostrowski, 1973,
page 5 ). Combining that equality with representation (5.1), we arrive at the
required result. If x; = x, for some j # k, then the claimed inequality can
be obtained by small perturbations and the previous reasonings. O

1.6 Algebraic Equations

Let us consider the algebraic equation
n—1 ]
2" = P(z) (n>1), where P(z) = Z cjz" I (6.1)
j=0

with non-negative coefficients ¢; (j =0,...,n — 1).

Lemma 1.6.1 The extreme right-hand root zy of equation (6.1) is non-
negative and the following estimates are valid:

z < [P()]Y™ if P(1) <1, (6.2)

and
1<z <P(1) if P(1)>1. (6.3)

Proof: Since all the coefficients of P(z) are non-negative, it does not de-
crease as z > 0 increases. From this it follows that if P(1) <1, then zg < 1.
So zj < P(1), as claimed.
Now let P(1) > 1, then due to (6.1) zp > 1, because P(z) does not
decrease. It is clear that
P(z0) < 27 'P(1)

in this case. Substituting this inequality in (6.1), we get (6.3). O
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Setting z = ax with a positive constant a in (6.1), we obtain

n—1
n __ —j—1, n—j—1
= E cja x . (6.4)
=0
Let
a=2 max  JtY/c;.
§=0,.on—1 J
Then

n—1

n—1
et <y 2t =2 <
=0 =0

Let xg be the extreme right-hand root of equation (6.4), then by (6.2) we
have x¢ < 1. Since zy = axg, we have derived

Corollary 1.6.2 The extreme right-hand root zy of equation (6.1) is non-
negative. Moreover,

20 <2 max  iRYc;.
§=0,...,n—1 J

1.7 The Triangular Representation
of Matrices
Let B(C™) be the set of all linear operators (matrices) in C™. A subspace

M C C™ is an invariant subspace of an A € B(C"), if the relation h € M
implies Ah € M. If P is a projector onto an invariant subspace of A, then

PAP = AP. (7.1)

By Schur’s theorem (Marcus and Minc, 1964, Section 1.4.10.2 ), for a linear
operator A € B(C™), there is an orthogonal normal basis {ex}, such that A
is a triangular matrix. That is,

k
Aey, = Zajkej with aj;, = (Aeg,ej) (j=1,...,n), (7.2)

j=1

where (.,.) is the scalar product. This basis is called Schur’s basis of the

operator A. In addition,
ajj = Aj(A),

where \;(A) are the eigenvalues of A. According to (7.2),
A=D+V (7.3)
with a normal (diagonal) operator D defined by
Dej = \j(A)ej (j=1,...,n)
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and a nilpotent (upper-triangular) operator V' defined by
k—1
Vek = Zajkej (k‘ = 2, ,n)
j=1

We will call equality (7.3) the triangular representation of matrix A. In
addition, D and V will be called the diagonal part and the nilpotent part of
A, respectively.

Put _
J
P, = (Lerer (j=1,..,n), Pp=0.
k=1
Then
OcpPC*cC..cP,C"=C".
Moreover,

APk = PkAPk, Vpk,1 = PkVPk; DPk = D_Pk (k = ]., 7n) (74)
So A,V and D have the same chain of invariant subspaces.

Lemma 1.7.1 Let Q,V € B(C™) and let V' be a nilpotent operator. Suppose
that all the invariant subspaces of V' and of Q are the same. Then VQ and
QV are nilpotent operators.

Proof: Since all the invariant subspaces of V' and ) are the same, these
operators have the same basis of the triangular representation. Taking into
account that the diagonal entries of V' are equal to zero, we easily determine
that the diagonal entries of QV and V@ are equal to zero. This proves the
required result. O

1.8 Notes

This book presupposes a knowledge of basic matrix theory, for which there
are good introductory texts. The books (Bellman, 1970), (Gantmaher, 1967),
( Marcus and Minc, 1964) are classical. For more details about the notions
presented in Sections 1.1-1.4 also see (Collatz, 1966) and (Stewart and Sun,
1990).

Estimates for roots of algebraic equations similar to Corollary 1.6.2 can
be found in (Ostrowski, 1973, page 277).
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2. Norms of
Matrix-Valued Functions

In the present chapter we derive estimates for the norms of operator-valued
functions in a Euclidean space. In addition, we prove relations for eigenvalues
of “nite matrices, which improve Schures and Brownes inequalities.

2.1 Estimates for the Euclidean Norm of the
Resolvent

Throughout the present chapter . means the Euclidean norm That is,
. = ., (see Section 1.1).
Let A = (&) be ann x n-matrix (n > 1). The following quantity plays
a key role in the sequel

n
g(A)=(N?3(A)S | (A2 (1.2)

k=1
Recall that | is the unit matrix, N (A) is the Frobenius (Hilbert-Schmidt)
norm of A, and ((A) (k = 1,...,n) are the eigenvalues taken with their

multiplicities. Since
n

| k(A)? | Trace A%,
k=1
we get
g’(A)  NZ(A)S|Trace A?|. (1.2)

In Section 2.2 we will prove the relations

g’(A) %NZ(A S A) (1.3)

M.I. Gil’: LNM 1830, pp. 11-34, 2003.
(© Springer-Verlag Berlin Heidelberg 2003
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and .
g(e' A+ zl)= g(A) 1.4)
for all R and z C. To formulate the result, for a natural n > 1
introduce the numbers
- &(k:l...nél)andnozl.
' (nS1) T '
Here L
Ck.. = (nS 1)
NS (nS kS 1)k!

are binomial coe cients. Evidently, for all n> 2,

, _(nS1H(nS2)...nSk) 1 g
nk — (n é l)kk| E (k = 1,2,...,nS 1) (15)

Thevoremv2.1.1 Let A be a linear operator inC". Then its resolventR (A) =
(AS | )>! satis“es the inequality

S1
K gk (A) nk

R (A) SI(A )

for any regular point  of A,
k=0

where (A, )=minyk=1_..n| S «(A)l

The proof of this theorem is divided into a series of lemmas which are pre-
sented in Sections 2.3-2.6.
Theorem 2.1.1 is exact: if A is a normal matrix, then g(A) =0 and

1 .
R (A) = B for all regular points  of A.
Let A be an invertible n x n-matrix. Then by Theorem 2.1.1,
3 nS1 )
AS 9(A) 1 oy
<=0 57 (A)

where o(A) = (A, 0) is the smallest modulus of the eigenvalues oA:

Moreover, Theorem 2.1.1 and inequalities (1.5) imply
Corollary 2.1.2 Let A be a linear operator in C". Then

g“(A)
k1 k+1 (A, )

nS1
R (A) for any regular point  of A.

k=0

An independent proof of this corollary is presented in Section 2.6.
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2.2 Examples
In this section we present some examples of calculations gfA).

Example 2.2.1 Consider the matrix

a a
A= 11 a12
dy1  ax

where ayc (j,k =1,2) are real numbers.
First, consider the case ofnonreal eigenvalues ,(A) = 1(A). It can be
written
det(A) = 1(A) 1(A)= | 1(A)?

and
| 1(A)|2 + | 2(A)|2 = 2| 1(A)|2 = 2det(A) = 2[ aj1an? S a21a12].
Thus,
2 - 2 S 2 & 2
g°(A)= N“(A) S| 1(A)I°S| 2A)° =
a3, + a3, + a3, + a3, S 2[ajnaxn S axna).
Hence,

g(A) = (anr S ax)?2+ (a1 + a)?. (2.1)

Let n = 2 and a matrix A have real entries again, but now theeigenvalues
of A are real. Then

| 1(A)>+ | 2(A)> = Trace A%,
Obviously,

2
ag; + apan: ay1a12 + agpaye

A% =
axiaiy + aziap a%2 + apias

We thus get the relation
| (AP + ] 2(A)? = ad; + 21080 + a5,
Consequently,
g’(A) = N?(A) S| 1(A)PS| 2(A)? =

2 2 2 2 & (.2 2
ap +aj, + ay + ay S(ag; +2apax + ay).

Hence,
g(A) = |aiz S azl. (2.2)

Example 2.2.2 Let A be an upper-triangular matrix:
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ajp A2 ... ain
A= 0 a1 ... aon
0 0 am
Then
n kS1
9(A) = lajk 12, (2.3)
k=1 j=1

since the eigenvalues of a triangular matrix are its diagonal elements.

Example 2.2.3 Consider the matrix

Sa; ... Says; Sa,
A= 1 0 0
0 1 0

with complex numbers ax. Such matrices play a key role in the theory of
scalar ordinary di erential equations. Take into account that

a?Sa ... mas1Sa aay,

Sa; ... Sanss Sa,

A? = 1 0 0
0 0 0

Thus, we obtain, Trace A% = a2 S 2a,. Therefore

n

g’(A) N?(A)S|Trace A= nS1S|aZS 2ay|+  |axl°. (2.4)

k=1

Now let ax be real. Then (2.4) gives us the inequality

g’(A) nS1+2a+ ) az. (2.5)
k=2
2.3 Relations for Eigenvalues
Theorem 2.3.1 For any linear operator A in C",
g*(A) = N*(A) S n | K(A)?=2N?(A))S 2 n IIm (AP (3.1)

k=1 k=1

where (A) are the eigenvalues ofA with their multiplicities and A, =
(ASA)2i.
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To prove this theorem we need the following two lemmas.

Lemma 2.3.2 For any linear operator A in C",

NZ(V)= g?(A) N2%A)S | k(AP
k=1

whereV is the nilpotent part of A (see Section 1.7).

Proof: Let D be the diagonal part of A. Then, due to Lemma 1.7.1 both
matricesV D and D V are nilpotent. Therefore,

Trace(D V)=0and Trace(V D)=0. (3.2)

It is easy to see that
Trace(D D) = | (A% (3.3)

Since
A=D+V, (3.4)

due to (3.2) and (3.3)
N2(A)= Trace(D + V) (V+ D)= Trace(V V+ D D)=

n
N2(V)+ | k(AP (3.5)
k=1
and the required equality is proved.

Lemma 2.3.3 For any linear operator A in C",

N2(V)=2N?(A)) S 2 n IIm k(A
k=1
whereV is the nilpotent part of A.
Proof:  Clearly,
S4A)2=(ASA )’ =AASAA SAA+AA.
But due to (3.2) and (3.4)
Trace(AS A )?>=Trace(V+ DSV SD )%=

Trace[(VSV )2+(VSV )(DSD )+
(DSD )VSV )+(DSD )?=
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Trace(V SV )?>+ Trace(D SD )2

Hence,
N2(A;) = N%(V)+ N?(D)), (3.6)

where
Vi =(VSV)/2andD, =(DSD )/2i.

It is not hard to see that

1 n mS1 1
NZ(VI): 5 |akm |2: éNz(V),
m=1 k=1

where &, are the entries ofV in the Schur basis. Thus,
N2(V)=2N?2(A)S 2N?(D)).
But
n

N* D)= [Im «(A)P
k=1

Thus, we arrive at the required equality.

The assertion of Theorem 2.3.1 follows from Lemmas 2.3.2 and 2.3.3

The inequality (1.3) follows from Theorem 2.3.1

Furthermore, take into account that the nilpotent parts of the matrices
Ae' and Ae' + z| with a real number and a complex onez, coincide.
Hence, due to Lemma 2.3.2 we obtain the following

Corollary 2.3.4  For any linear operator A in C", a real number , and a
complex onez, relation (1.4) holds.

Corollary 2.3.5  For arbitrary commuting linear operators A,B in C",
g(A+B) g(A)+ g(B).
In fact, A and B have the same Schur basis. This clearly forces
Va+g = Va + Vs,

whereVa:g,Va and Vg are the nilpotent parts of A + B, A and B, respec-
tively. Due to Lemma 2.3.2 the relations

g(A) = N(Va), 9(B)= N(V&), g(A+ B) = N(Va+B)

are true. Now the property of the norm implies the result.
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Corollary 2.3.6 For any n x n matrix A and real numberst, the equality
n
NZ(Ae' SA )8 |ét (A)S ST (A =
k=1
n
N2(Aet SA )8  |é ((A)SE (AP
k=1
is true.

The proof consists in replacingA by Ae' and Ae' and using Theorem 2.3.1.
In particular, take t =0and = / 2. Due to Corollary 2.3.6,

n n
N2(A)S  lIm «(A)P=N*ArR)S |Re k(A)?
k=1 k=1

with Ag = (A+ A )/2.

2.4 An Auxiliary Inequality

Lemma 2.4.1 For arbitrary positive numbers a;,...,a, andm =1, ...,n, we

have
n

a, ...a, n°MCM[ a]". (4.1)
1 ki<ko<.<k ,, n k=1

Proof:  Consider the following function of n positive variablesys, ..., yn:

Rm (Y1, s Yn) Yy Yko -+ Yk, -

1 ki<k o<.<k ,, n

Let us prove that under the condition

n
Y« =nb 4.2)
k=1

where b is a given positive number, function R, has a unique conditional
maximum. To this end denote
R
By (1, yn)  omOLindn),
Yi
Obviously, F;j(y1,...,y¥n) does not depend ony;, symmetrically depends on
other variables, and monotonically increases with respect to each of its vari-
ables. The conditional extremums ofR,, under (4.2) are the roots of the

equations
n

Fi(ys,.n¥n) S — ¥ =0(j =1,..,n),
Yia
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where is the Lagrange factor. Therefore,

Fi(yi,...yn)= ( =1,...n).

SinceF; (y1, ..., ¥n) does not depend ory; , and Fi (Y1, ..., ya) does not depend
on yk, equality
F] (yly ---yYn) = Fk(yl! ---y)/n) =

for all k = j is possible if and only ify; = yx. Thus Ry, has under (4.2) a
unigue extremum when
y1=Y¥2=..=¥n= b (4.3)

But
Rm(b,...5=b0" 1=p"C]. (4.4)

1 ki<k o<.<k ,, n
Let us check that (4.3) gives us the maximum. Letting
y1 nbandyy O0(k=2,..,n),

we get
Rm(yly---yYn) O

Since the extremum (4.3) is unique, it is the maximum. Thus, under (4.2)
Rm(Y1,..Yn) B"CI (yx O, k=1,..,n).
Take y; = g and

a.1+ ..t a.n
n .

b=

Then
n
Rm(ai,...,an) CMnS™[  a ™.
k=1

We thus get the required result.

2.5 Euclidean Norms of Powers
of Nilpotent Matrices

Theorem 2.5.1 For any nilpotent operator V in C", the inequalities
A nk NK(V) (k=1,...,n51)

are valid.
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Proof:  SinceV is nilpotent, due to the Shur theorem we can represent it
by an upper-triangular matrix with the zero diagonal:

V = (ak)jk=1 with ax =0 (j k).
Denote

X m = ( Ixk|?)Y 2 for m<n,
k=m
where x, are coordinates of a vectorx. We can write
nS1 n
Vx 2 = | ak xk|> forallm nS 1.
j=m k=j+1

Now we have (by Schwarzes inequality) the relation

nS1
VX2 hj x 2, (5.1)
j=m
where
n
hy = lag > (i <n).
k=j+1
Further, by Schwarzes inequality
nS1 n nS1
V2X ﬁq = | ajk (VX)|<|2 hj V X 1-2+1.
j=m k=j+1 j=m

Here (V x)k are coordinates ofV x. Taking into account (5.1), we obtain

2, 2 2 _ 2
AV m hj he X K+1 — hj he X K+1 -
j=m  k=j+1 m j<k nS1
Hence,
V2 2 h; h.
1 j<k nS1

Repeating these arguments, we arrive at the inequality

VP 2 h, ...
1 ki<k 2<..<k , nS1

(5.2)
Therefore due to Lemma 2.4.1,

vk 2o s
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But .

nS1
hy  N2(V).

i=1

We thus have derived the required result.

Theorem 2.5.1 and (1.5) imply

Corollary 2.5.2  For any nilpotent operator V in C", the inequalities

N (V)

A = (k=1,...,nS1)

are valid.

An independent proof of this corollary can be found in (Gile, 1995, p. 50,
Lemma 2.3.1).

2.6 Proof of Theorem 2.1.1

Let D andV be the diagonal and nilpotent parts of A, respectively. According
to Lemma 1.7.1,R (D)V is a nilpotent operator. So by virtue of Theorem
251,

(R D)V)¥  NK¥R (D)V) ok (k=1,..,nS1). (6.1)
SinceD is a normal operator, we can write down R (D) = S(D, ). It
is clear that

N(R (D)V) N(V) R (D) = N(V) (D, ). (6.2)

According to (3.4),
AS1 =D+VS 1 =(DS 1)1 +R (D)V).
We thus have
3 nS1
R (A)=(l +R (D)V)>'R (D)= (R (D)V)XR (D). (6.3)
k=0
Now (6.1) and (6.2) yield the inequality
nS1 o
R (A) N (V) nx S*HD, ).
k=0
This relation proves the stated result, sinceA and D have the same eigen-
values andN (V) = g(A), due to Lemma 2.3.2.

An additional proof of Corollary 2.1.2: Corollary 2.5.2 implies
k
(R (D)V)k LI%D)V) (k=1,..,nS1).

Now the required result follows from (6.2) and (6.3), sinceN (V) = g(A) due
to Lemma 2.3.2.
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2.7 Estimates for the Norm
of Analytic Matrix-Valued Functions

Recall that g(A) and ,k are de“ned in Section 2.1, andB (C") is the set of
all linear operators in C".

Theorem 2.7.1 Let A B(C") and letf be a function regular on a neigh-
borhood of the closed convex hutlo(A) of the eigenvalues ofA. Then

nS1
f(A) sup [f M9()|gh(A) =< (7.1)
k=0 co(A) k!

The proof of this theorem is divided into a series of lemmas, which are
presented in the next section.
Theorem 2.7.1 is exact: if A is a nhormal matrix and

sup [f ()= sup [F ()
co(A) (A)

then we have the equality f(A) =sup (a)If( ). Theorem 2.7.1 and
inequalities (1.5) yield

Corollary 2.7.2 Let A B(C") and letf be a function regular on a neigh-
borhood of the closed convex hutlo(A) of the eigenvalues ofA. Then

nS1 Kk
A)
f(A sup |f 00 ) LA

(7.2)

An additional proof of this corollary is presented in the next section.

Example 2.7.3 For a linear operator A in C", Theorem 2.7.1 and Corollary
2.7.2 give us the estimates

nS1 nS1

k k
exp(At) e (At gk(A)tkl%k e 9 (|'°~3)/t2 t 0
k=0 : k=0 (k1)
where (A) =maxy=1 .., Re (A). In addition,
A migATSiA) T mig Ay
o (m S Kk)Ik! o (MSKI(KH¥?2 e

whererg(A) is the spectral radius. Recall that ¥ (m S k)! =0 if m<k.
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2.8 Proof of Theorem 2.7.1

Lemma 2.8.1 Let {dc} be an orthogonal normal basis inC", Aq,..., A
n x n-matrices and (ky, ..., Kj+1) a scalar-valued function of arguments

kl, ,kJ 1 = 1121 w NG J <n.

De“ne projectors Q(k) by Q(k)h = (h,di)d (h C", k=1,...,n), and set

T= (Ka, s K41 )Q(KDALQ(K2) - .. A QKj 1 ).

1 kl ..... kj+1 n
Then T  a( ) [AallAz]...|Aj| , where

a( )= L mall(x n| (K1, .o, Kj+2 )l

and |Ax| (k=1,...,j) are the matrices, whose entries i d¢} are the absolute
values of the entries ofAy in {dk}.

Proof: For any entry Tgm = (Tds,dm) (s,m =1,...,n) of operator T we
have _

Tem = (s, ki m)aly . .al)
1

koK i N

where .(f() = (Aidg, d;) are the entries of A;. Hence,

(€ (1)

[Tsm| a( ) lag, s Bm |-
1 k2""’k1 n
This relation and the equality
n
Tx 2= [(Tx)j[>(x CM),

j=1

where (); means the j-th coordinate, imply the required result.

Furthermore, let |V| be the operator whose matrix elements in the or-
thonormed basis of the triangular representation (the Schur basis) are the
absolute values of the matrix elements of the nilpotent partV of A with
respect to this basis. That is,

n kS1

V|= lagk 1(. &),
k=1 j=1

where { &} is the Schur basis anday = (Ae, g ).
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Lemma 2.8.2 Under the hypothesis of Theorem 2.7.1, the estimate

nS1
f(A) sup |f ()]
k=0  Co(A)

|V
k!
is true, where V is the nilpotent part of A.
Proof:  Itis not hard to see that the representation (3.4) implies the equality
R(A) (ASI1)S1=(D+V§1)St=

(1 + R (D)V)5'R (D)

for all regular . According to Lemma 1.7.1R (D)V is a nilpotent operator
becauseV and R (D) have common invariant subspaces. Hence,

(R (D)V)" =0.
Therefore, )
nS1
R (A)= (R (D)V)*(S1)*R (D). (8.1)
k=0

Due to the representation for functions of matrices

nS1
f()R (A)d = Cy, (8.2)
k=0

f(A)= S

=
—_

where
C= (8D - f( )R (DV)R (D)d.

Here is a closed contour surrounding (A). Since D is a diagonal ma-
trix with respect to the Schur basis {e} and its diagonal entries are the
eigenvalues ofA, then

n

Qj
R (D)= —
where Qx = (., &)ex. We have
n n n
Ck = lev szv"'v ij|j1j2---j k1t
ji=1 j2=1 jk=1
Here .
_ (Sykn f()d

I ) - . _ — .
J1) k41 2| (JlS )(Jk+1s )
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Lemma 2.8.1 gives us the estimate

Cx max | | VI]¥

1 j1 o kg1 N J1ed 41

Due to Lemma 1.5.1

(k)
aup MOOI

Ly
! H co(A) k!

This inequality and (8.2) imply the result.
Proof of Theorem 2.7.1 : Theorem 2.5.1 implies

b NV (k=1,..,n & 1).

But N(|V]) = N (V). Moreover, thanks to Lemma 2.3.2,N (V) = g(A). Thus

|V nk<(A) (k=1,..,nS 1)
Now the previous lemma vyields the required result.
An additional proof of Corollary 2.7.2: Corollary 2.5.2 implies
k
[V N %/) (k=1,..,n81)

Now the required result follows from Lemma 2.8.2, sinceN (V) = g(A) due
to Lemma 2.3.2.

2.9 The First Multiplicative Representation of
the Resolvent

Recall that B(C") is the set of linear operators inC", | is the unit operator.
Let P (k=1,...,n) be the maximal chain of the invariant projectors of an
A B(C"). Thatis, P are orthogonal projectors,

APy = PcAPy (k:1,...,n)

and
0=PeC" P,C" ... PyC"=cC".

Sodim Py =1. Here
P« = P SPcs1 (k=1,..,n).
We use the triangular representation

A=D+V. (9.1)
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(see Section 1.7). HereV/ is the nilpotent part of A and

n
D= k(A) Pk
k=1

is the diagonal part. For X1,X,,...,X, B(C") denote

Xk X1X2..Xph.
1 k n

That is, the arrow over the symbol of the product means that the indexes of
the co-factors increase from left to right.

Theorem 2.9.1 Forany A B(C"),

>

Pk

R (A)=S (|+w

1 k n

) ( (A)),

where Py, k =1,...,n is the maximal chain of the invariant projectors of A.

Proof: DenoteEy = | S Py. Since
A=(Ex+ PO)A(EK + P) forany k=1,...,n
and E;AP; =0, we get the relation
A = P;AE; + P;AP; + E;AE;.
Take into account that P; = P; and

PlAP]_ = 1(A) Pl-

Then
A = 1(A) Pl + P]_AE]_ + ElAEl =
1(A) P1+ AE]_ (92)
Now, we check the equality
R (A)=( ), (9.3)
where
P1 =« P1
- —AE1R (A)E1+ E1R (A)E;.
() —ays S ays AER WE+ER (AE:

In fact, multiplying this equality from the left by A S 1 and taking into
account equality (9.2), we obtain the relation

(AS1)( )= PSS P,AE:R (A)E1+(AS 1 )EiR (A)E;.
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But E;AE; = E;A and thus E;R (A)E; = E1R (A). l.e. we can write
(AS1)( )= P1+(S PiIA+ASI )ER (A)=
P1+ E1(AS1 )R (A)= Pi+E;=1.

Similarly, we multiply (9.3) by A S 1 from the right and take into account
(9.2). This gives|. Therefore, (9.3) is correct.
Due to (9.3)
| SAR (A)=

(03 (1(A)S )SIA P SAER (A)E,). (9.4)

Now we apply the above arguments to operatoAE ;. We obtain the following
expression which is similar to (9.4):

| S AE1R (A)E; =
(1S ( 2(A)S )STA Py)(I S AE2R (A)E2).
For any k < n, it similarly follows that
| S AEKR (A)Ey =

A Py
k+1 (A) S
Substitute this in (9.4), as long ask =1,2,...,n S 1. We have

(s )(I S AEk+1 R (A)Egq1).

| SAR (A)=

A Py g ) v
1k nSl(I ' w)(l S AEnsiR (A)Ensa). (9.5)

Itis clear that Ehg1 = P,. lLe,

< A P,
| SAELs1R (A)Epg1= | + ————.
S AEns1R (A)Ens: S A)
Now the identity
I SAR (A)= SR (A)
and (9.5) imply the result.
Let A be a normal matrix. Then
n
A= k(A) Pk.
k=1
Hence,A Py = «(A) Py. Since Py P; =0 for j = k, Theorem 2.9.1
gives us the equality

R (A)=8 (1+( 3 «(A)S (A) Py).
k=1
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But
n
| = Pk.
k=1
The result is
n ~
R (A)=S [1+( S «(A)° k(A)] Py =
k=1
n
. P,
S S kA
- k(A)
Or
n
Pk
R (A)= .
 K(A)S

We have obtained the well-known spectral representation for the resolvent of
a normal matrix.

Thus, Theorem 2.9.1 generalizes the spectral representation for the resol-
vent of a normal matrix.

2.10 The Second Multiplicative Representation
of the Resolvent

Lemma 2.10.1 LetV B(C") be a nilpotent operator andPy, k=1, ...,n,
be the maximal chain of its invariant projectors. Then

(1 38Vv)St= (+V Py). (10.1)
2 k n

Proof: In fact, all the eigenvalues ofV are equal to zero, andv P; = 0.
Now Theorem 2.9.1 gives us relation (10.1).

Relation (10.1) allows us to prove the second multiplicative representation
of the resolvent of A.

Theorem 2.10.2 Let D and V be the diagonal and nilpotent parts ofA
B(C"), respectively. Then

<

R (A)= R (D) [+ Pk

2 k n RIS LA (10.2)

where Py, k=1,...,n, is the maximal chain of invariant projectors of A.
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Proof: Due to (9.1)
R (A)=(AS 1)51=(D+VS1)51=R (D) + VR (D).
But VR (D) is a nilpotent operator. Take into account that
R (D) Pc=( «(A)S ) Pu.

Now (10.1) ensures the relation (10.2).

2.11 The First Relation between
Determinants a