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Notes to typeset-
ter/copyeditor/publisher

1. There is some trouble with bold greek fonts. My macro

\BGx

for example, does not seem to produce bold ξ (nor does

\mathbf{\xi}

which gives ξ, the same as the ordinary ξ). There is a smiliar problem
with σ.

2. I need a nice curly D for the space of distributions on page 141.

3. I also need bold calligraphic font for vector distributions on page 149.

4. I would appreciate help with Fig 15.1.

5. Need to think about separating the ‘colemanballs’ from the end of the
preceding exercises, maybe a line or a bit of graphics?

6. The table in exercise 1 of ‘Other exercises’ in Ch 2 has a missing vertical
line, I do not know why.

7. I try to be sparing with commas.
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Preface

This book is born out of my fascination with applied mathematics as a place
where the physical world meets the mathematical structures and techniques
that are the cornerstones of most applied mathematics courses. I am interested
largely in human-sized theatres of interaction, leaving cosmology and particle
physics to others. Much of my research has been motivated by interactions
with industry or by contact with scientists in other disciplines. One immediate
lesson from these contacts is that it is a great asset to an interactive applied
mathematician to be open to ideas from any direction at all. Almost any physical
situation has some mathematical interest, but the kind of mathematics may vary
from case to case. We need a strong generalist streak to go with our areas of
technical expertise.

Another thing we need is some expertise in numerical methods. To be honest,
this is not my strong point. That is one reason why the book does not contain
much about these methods. (Another is if it had, it would have been half as long
again and would have taken 5 more years to write.) In the modern world, with its
fast computers and plethora of easy-to-use packages, any applied mathematician
has to be able to switch into numerical mode as required. At the very least, you
should learn to use packages such as Maple and Matlab for their data display and
plotting capabilities, and for the built-in software routines for solving standard
problems such as ordinary differential equations. With more confidence, you
can write your own programs. In many cases, a quick and dirty first go can
provide valuable information, even if it is not the finished product. Explicit
finite differences (remember to use upwind differencing for first derivatives) and
tiny time steps will get you a long way.

Who should read this book? Many people, I hope, but there are some
prerequisites. I assume that readers have a good background in calculus up to
vector calculus (grad, div, curl) and elementary mechanics of particles. I also
assume that they have done an introductory (inviscid) fluid mechanics course,
and a first course in partial differential equations, enough to know the basics of
the heat, wave and Laplace equations (where they come from, how to solve them
in simple geometries). Linear algebra, complex analysis and probability put in
an occasional appearance. High-school physics is an advantage. But the most
important prerequisite is an attitude: to go out and apply your mathematics,
to see it in action in the world around you, and not to worry too much about
what you can and can’t do.

Another way to assess the technical level of the book is to position it relative
to the competition. From that point of view it can be thought of as a precursor

11
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to the books by Tayler [55] and Fowler [18], while being more difficult than, say,
Fowkes & Mahoney [17] or Fulford & Broadbridge [21]. The edited collection [37]
is another book at the same general level, but it is organised along different lines.

Organisation. The book is organised, roughly, along mathematical lines.
Chapters are devoted to mathematical techniques, starting in Part I with some
ideas about modelling, moving on in Part II to differential equations and distri-
butions, and concluding with asymptotic (systematic approximation) methods
in Part III. Interspersed among the chapters are case studies, descriptions of
problems that illustrate the techniques; they are necessarily rather open-ended
and invite you to develop your own ideas. The case studies run as strands
through the book. You can ignore any of them without much impact on the
rest of the book, although the more you ignore the less you will benefit from the
remainder. There are long sections of exercises at the ends of the chapters; they
should be regarded as an integral part of the book, and at least read through if
not attempted.

Conventions. I use ‘we’, as in ‘we can solve this by a Laplace transform’,
to signal the usual polite fiction that you, the reader, and I, the author, are
engaged on a joint voyage of discovery. ‘You’ is mostly used to suggest that you
should get your pen out and work though some of the ‘we’ stuff, a good idea
in view of my fallible arithmetic, or do an exercise to fill in some details. ‘I’ is
associated with authorial opinions and can mostly be ignored if you like.

I have tried to draw together a lot of threads in this book, and in writing it
I have constantly wanted to point out connections with something else, or make
a peripheral remark. However, I don’t want to lose track of the argument. As
a compromise, I have used marginal notes and footnotes1 with slightly differentMarginal notes are usually di-

rectly relevant to the current
discussion, often being used to
fill in details or point out a fea-
ture of a calculation.

purposes.

Acknowledgements. I have taken examples from many sources. Some ex-
amples are very familiar and I do not apologise for this: the old ones are often
the best. Much the same goes for the influence of books; if you teach a course
using other people’s books and then write your own, some impact is inevitable.
Among the books that have been especially influential are those by Tayler [55],
Fowler [18], Hinch [26] and Keener [32]. Even more influential has been the
contribution of colleagues and students. Many a way of looking at a problem
can be traced back to a coffee-time conversation or a Study Group meeting.2

There are far too many of these collaborators for me to attempt the invidious
task of thanking them individually. Their influence is pervasive. At a more
local level, I am immensely grateful to the OCIAM students who got me out of
computer trouble on various occasions and found a number of errors in drafts of

1Footnotes are more digressional and can, in principle, be ignored.
2Study Groups are week-long intensive meetings at which academics and industrial re-

searchers get together to work on open problems from industry, proposed by the industrial
participants. Over the week, heated discussions take place involving anybody who is inter-
ested in the problem, and a short report is produced at the end. The first UK Study Group
was held in Oxford in 1968, and they have been held every year since, in Oxford and other
UK universities. The idea has now spread to more than 15 countries on all the habitable
continents of the world. Details of forthcoming events, and reports of problems studied at
past meetings, can be found on their dedicated website www.mathematics-in-industry.org.
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the book. Any remaining errors are quite likely to have been caused by cosmic
ray impact on the computer memory, or perhaps by cyber-terrorists. I will be
happy to hear about them.

The book began when I was asked to give some lectures at a summer school
in Siena, and was continued at a similar event a year later in Pisa. I am most
grateful for the hospitality extended to me during these visits. I would like
to thank the editors and technical staff at Cambridge University Press for their
assistance in the production of the book. Lastly I would like to thank my family
for their forbearance, love and support while I was locked away typing.

Colemanballs At the end of each section of exercises is what would normally
be a wasted space. Into each of these I have put a statement made by a real
live applied mathematician in full flow. In the spirit of scientific accuracy, they
are wholly unedited. They are mostly there for their intrinsic qualities (and it
would be a miserable publisher who would deny me that extra ink), but they
make a point. Interdisciplinary mathematics is a collaborative affair. It involves
discussions and arguments, the less inhibited the better. We all have to go out
on a limb, in the interests of pushing the science forwards. If we are wrong, we
try again. And if the mind runs ahead of the voice, our colleagues won’t take
it too seriously (nor will they let us forget it). Here is one to be going on with,
from the collection [28] of the same title:

“If I remember rightly, cos π
2 = 1.”

Oxford, May 2004.
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Chapter 1

The basics of modelling

1.1 Introduction

This short introductory chapter is about mathematical modelling. Without
trying to be too prescriptive, we discuss what we mean by the term modelling,
why we might want to do it, and what kind of models are commonly used.
Then, we look at some very standard models which you have almost certainly
met before, and we see how their derivation is a blend of what are thought of as
universal physical laws, such as conservation of mass, momentum and energy,
with experimental observations and, perhaps, some ad hoc assumptions in lieu
of more specific evidence.

One of the themes that run through this book is the applicability of all kinds
of mathematical ideas to ‘real-world’ problems. Some of these arise in attempts
to explain natural phenomena, for example models for water waves. We will
see a number of these models as we go through the book. Other applications
are found in industry, which is a source of many fascinating and non-standard
mathematical problems, and a big ‘end-user’ of mathematics. You might be sur-
prised to know how little is known of the detailed mechanics of most industrial
processes, although when you see the operating conditions — ferocious temper-
atures, inaccessible or minute machinery, corrosive chemicals — you realise how
expensive and difficult it would be to carry out detailed experimental investi-
gations. In any case, many processes work just fine, having been designed by
engineers who know their job. If it ain’t broke, don’t fix it: so where does math-
ematics come in? Some important uses are in quality control and cost control
for existing processes, and simulation and design of new ones. We may want to
understand why a certain type of defect occurs; or what is the ‘rate-limiting’
part of a process (the slowest ship, to be speeded up); how to improve efficiency,
however marginally; or whether a novel idea is likely to work at all and if so,
how to control it.

It is in the nature of real-world problems that they are large, messy and
often rather vaguely stated. It is very rarely worth anybody’s while producing
a ‘complete solution’ to a problem which is complicated and whose desired
outcome is not necessarily well specified (to a mathematician). Mathematicians
are usually most effective in analysing a relatively small ‘clean’ subproblem
where more broad-brush approaches run into difficulty. Very often, the analysis

17



18 CHAPTER 1. THE BASICS OF MODELLING

complements a large numerical simulation which, although effective elsewhere,
has trouble with this particular aspect of the problem. Its job is to provide
understanding and insight in order to complement simulation, experiment and
other approaches.

We begin with a chat about what models are and what they should do for
us. Then we bring together some simple ideas about physical conservation laws,
and how to use them together with experimental evidence about how materials
behave to formulate closed systems of equations; this is illustrated with two
canonical models for heat flow and fluid motion. There are many other models
embedded elsewhere in the book, and we deal with these as we come to them.

1.2 What do we mean by a model?

There is no point in trying to be too precise in defining the term mathematical
model: we all understand that it is some kind of mathematical statement about
a problem that is originally posed in non-mathematical terms. Some models are
explicative: that is, they explain a phenomenon in terms of simpler, more basic
processes. A famous example is Newton’s theory of planetary motion, whereby
the whole complex motion of the solar system was shown to be a consequence of
‘force equals mass times acceleration’ and the inverse square law of gravitation.
However, not all models aspire to explain. For example, the standard Black–
Scholes model for the evolution of prices in stock markets, used by investment
banks the world over, says that the percentage difference between tomorrow’s
stock price and today’s is a normal random variable. Although this is a great
simplification, in that it says that all we need to know are the mean and variance
of this distribution, it says nothing about what will cause the price change.

All useful models, whether explicative or not, are predictive: they allow us
to make quantitative predictions (whether deterministic or probabilistic) which
can be used either to test and refine the model, should that be necessary, or
for use in practice. The outer planets were found using Newtonian mechanics
to analyse small discrepancies between observation and theory,1 and the Moon
missions would have been impossible without this model. Every day, banks make
billions of dollars worth of trades based on the Black–Scholes model; in this case,
since model predictions do not always match market prices, they may use the
latter to refine the basic model (here there is no simple underlying mechanism
to appeal to, so adding model features in a heuristic way is a reasonable way to
proceed).

Most of the models we discuss in this book are based on differential equa-
tions, ordinary or partial: they are in the main deterministic models of con-
tinuous processes. Many of them should already be familiar to you, and they
are all accessible with the standard tools of real and complex analysis, partial
differential equations, basic linear algebra and so on. I would, however, like to
mention some kinds of models that we don’t have the space (and, in some cases
I don’t have the expertise) to cover.

1This is a very early example of an inverse problem: assuming a model and given ob-
servations of the solution, determine certain model parameters, in this case the unknown
positions of Uranus and Neptune. A more topical example is the problem of constructing an
image of your insides from a scan or electrical measurements from electrodes on your skin.
Unfortunately, such problems are beyond the scope of this book; see [14].
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• Statistical models.

Statistical models can be both explicative and predictive, in a probabilistic
sense. They deal with the question of extracting information about cause and
effect or making predictions in a random environment, and describing that ran-
domness. Although we touch on probabilistic models, for a full treatment see a
text such as [49].

• Discrete models of various kinds.

Many, many vitally important and useful models are intrinsically discrete: think,
for example of the question of optimal scheduling of take-off slots from LHR,
CDG or JFK. Discrete mathematics is a vast area with a huge range of tech-
niques, impinging on practically every other area of mathematics, computer
science, economics and so on. Space (and my ignorance) simply don’t allow me
to say any more.

• ‘Black box’ models such as neural nets or genetic algorithms, and ‘lumped
parameter’ models.

The term ‘model’ is often used for these techniques, in which, to paraphrase, a
‘black box’ is trained on observed data to predict the output of a system given
the input. The user need never know what goes on inside the black box (usually
some form of curve fitting and/or optimisation algorithm), so although these
algorithms can have some predictive capacity they can rarely be explicative.
Although often useful, this philosophy is more or less orthogonal to that behind
the models in this book, and if you are interested see [22]. Lumped parameter
models are somewhat in the same spirit; a complex system is represented by
a much simpler set of ad hoc descriptions, as for example when a complicated
mechanical system is modelled by a simple spring-dashpot combination.

1.3 Principles of modelling: physical laws and
constitutive relations

Many models, especially ones based on mechanics or heat flow (which includes
most of those in this book), are underpinned by physical principles such as
conservation of mass, momentum, energy and electric charge. We may have to
think about how we interpret these ideas, especially in the case of energy which
can take so many forms (kinetic, potential, heat, chemical, . . . ) and be converted Work is heat and heat is work:

the First Law of
Thermodynamics, in
mnemonic form.

from one to another. Although they are in the end subject to experimental
confirmation, the experimental evidence is so overwhelming that, with care in
interpretation, we can take these conservation principles as assumptions.2

However, this only gets us so far. We can do very simple problems such as
mechanics of point particles, and that’s about it. Suppose, for example, that
we want to derive the heat equation for heat flow in a homogeneous, isotropic,
continuous solid. We can reasonably assume that at each point x and time t

2So we are making additional assumptions that we are not dealing with quantum effects, or
matter on the scale of atoms, or relativistic effects. We deal only with models for human-scale
systems.
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there is an energy density E(x, t) such that the internal (heat) energy inside
any fixed volume V of the material is

∫

V

E(x, t) dx.

We can also assume that there is a heat flux vector q(x, t) such that the rate of
heat flow across a plane with unit normal n is

q · n
per unit area. Then we can write down conservation of energy for V in the form

d

dt

∫

V

E(x, t) dx +
∫

∂V

q(x, t) · n dS = 0,

on the assumption that no heat is converted into other forms of energy. Next,
we use Green’s theorem on the surface integral and, as V is arbitrary, the ‘usual
argument’ (see below) gives us

∂E

∂t
+∇ · q = 0. (1.1)

At this point, general assumptions fail us, and we have to bring in some exper-
imental evidence. We need to relate both E and q to the temperature T (x, t),
by what are called constitutive relations. For many, but not all, materials, the
internal energy is directly proportional to the temperature, written

E = ρcT,

where ρ is the density and c is a constant called the specific heat capacity. Like-
wise, Fourier’s law states that the heat flux is proportional to the temperature
gradient,Ask yourself why there is a

minus sign. The Second Law
of Thermodynamics in
mnemonic form: heat cannot
flow from a cooler body to a
hotter one.

q = −k∇T.
Putting these both into (1.1), we have

ρc
∂T

∂t
= k∇2T

as expected. The appearance of material properties such as c and k is a sure
sign that we have introduced a constitutive relation, and it should be stressed
that these relations between E, q and T are material-dependent and experimen-
tally determined. There is no a priori reason for them to have the nice linear
form given above, and indeed for some materials one or other may be strongly
nonlinear.3

Another set of models where constitutive relations pay a prominent role is
models for solid and fluid mechanics.

1.3.1 Example: inviscid fluid mechanics

Let us first look at the familiar Euler equations for inviscid incompressible fluid‘Oiler’, not ‘Yewler’.

3It is an experimental fact that temperature changes in most materials are proportional to
energy put in or taken out. However, both c and k may depend on temperature, especially if
the material gradually melts or freezes, as for paraffin or some kinds of frozen fish. Such ma-
terials lead to nonlinear versions of the heat equation; fortunately, many common substances
have nearly constant c and k and so are well modelled by the linear heat equation.
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motion,

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p, ∇ · u = 0.

Here u is the fluid velocity and p the pressure, both functions of position x and
time t, and ρ is the fluid density. The first of these equations is clearly ‘mass ×
acceleration = force’, bearing in mind that we have to calculate the acceleration
following a fluid particle (that is, we use the convective derivative), and the
second is mass conservation (now would be a good moment for you to do the
first two exercises if this is not all very familiar material).

The constitutive relation is rather less obvious in this case. When we work
out the momentum balance for a small material volume V , we want to encap- Remember a material volume

is one whose boundary moves
with the fluid velocity, that is,
it is made up of fluid particles.

sulate the physical law

convective rate of change of momentum in V = forces on V .

On the left, the (convective) rate of change of momentum in V is
∫

V

ρ

(
∂u
∂t

+ u · ∇u
)
dV.

We then say that this is equal to the force on V , which is provided solely by the
pressure and acts normally to ∂V . This is our constitutive assumption: that
the internal forces in an inviscid fluid are completely described by a pressure
field which acts isotropically (equally in all directions) at every point. Then,
ignoring gravity, the force on V is

∫

∂V

−pn dS = −
∫

V

∇p dV

by a standard vector identity, and for arbitrary V we do indeed retrieve the
Euler equations.

1.3.2 Example: viscous fluids

Things are a little more complicated for a viscous fluid, namely one whose
‘stickiness’ generates internal forces which resist the motion. This model will
be unfamiliar to you if you have never looked at viscous flow. If this is so, you
can

(a) Just ignore it: you will then miss out on some nice models for thin fluid
sheets and fibres in chapter 20, but that’s about all;

(b) Go with the flow: trust me that the equations are not only believable (an
informal argument is given below, and in any case I am assuming you
know about the inviscid part of the model) but indeed correct. As one so
often has to in real-world problems, see what the mathematics has to say
and let the intuition grow;

(c) Go away and learn about viscous flow; try the books [43] or [2].

Viscosity is the property of a liquid that measures its resistance to shearing,
which occurs when layers of fluid slide over one another. In the configuration of
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U

h

Figure 1.1: Drag on two parallel plates in shear, a configuration known as
Couette flow. The arrows indicate the velocity profile.

n = (nj)

F = (Fi)

Figure 1.2: Force on a small surface element.

Figure 1.1, the force per unit area on either plate due to viscous drag is found
for many liquids to be proportional to the shear rate U/h, and is written µU/h
where the constant µ is called the dynamic viscosity. Such fluids are termed
Newtonian.

Our strategy is again to consider a small element of fluid and on the left-hand
side, work out the rate of change of momentum

∫

V

ρ
Du
Dt

dV,

while on the right-hand side we have
∫

∂V

F dS,

the net force on its boundary. Then we use the divergence theorem to turn the
surface integral into a volume integral and, as V is arbitrary, we are done.

Now for any continuous material, whether a Newtonian fluid or not, it can be
shown (you will have to take this on trust: see [43] for a derivation) that there is
a stress tensor, a matrix σ, [***NB want to get a bold greek font here, this one
is not working***] with entries σij , having the property that the force per unit

We are using the summation
convention, that repeated
indices are summed over from
1 to 3; thus for example

σii = σ11 + σ22 + σ33.

Is it clear that

∇ · u = ∂ui/∂xi,

and that

∇ · σ =
∂σij

∂xj
?

area exerted by the fluid in direction i on a small surface element with normal
nj is σ · n = σijnj (see Figure 1.2). It can also be shown that σ is symmetric:
σij = σji. In an isotropic material (one with no built-in directionality), there
are also some invariance requirements with respect to translations and rotations.

Thus far, our analysis could apply to any fluid. The force term in the
equation of motion takes the form

∫

∂V

σ · n dS =
∫

∂V

σijnj dS
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which by the divergence theorem is equal to
∫

∂V

∇ · σ dS =
∫

∂V

∂σij

∂xj
dS,

and so we have the equation of motion

D(ρu)
Dt

= ∇ · σ. (1.2)

We now have to say what kind of fluid we are dealing with. That is, we have
to give a constitutive relation to specify σ in terms of the fluid velocity, pressure
etc. For an inviscid fluid, the only internal forces are those due to pressure,
which acts isotropically. The pressure force on our volume element is

∫

∂V

−pn dS

with a corresponding stress tensor

σij = −pδij
where δij is the Kronecker delta. This clearly leads to the Euler momentum- Which matrix has entries δij?

Interpret δijvj = vi in matrix
terms.

conservation equation

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p.

When the fluid is viscous, we need to add on the contribution due to viscous
shear forces. In view of the experiment of Figure 1.1, it is very reasonable
that the new term should be linear in the velocity gradients, and it can be
shown, bearing in mind the invariance requirements mentioned above, that the
appropriate form for σij is

σij = −pδij + µ

(
∂ui

∂xj
+
∂uj

∂xi

)
.

For future reference we write out the components of σ in two dimensions:

σij =




−p+ 2µ
∂u

∂x
µ

(
∂u

∂y
+
∂v

∂x

)

µ

(
∂u

∂y
+
∂v

∂x

)
−p+ 2µ

∂v

∂y


 . (1.3)

Substituting this into the general equation of motion (1.2), and using the in-
compressibility condition ∇ · u = ∂ui/∂xi = 0, it is a straightforward exercise The emphasis mean you

should do it.to show that the equation of motion of a viscous fluid is

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p+ µ∇2u, ∇ · u = 0. (1.4)

These equations are known as the Navier–Stokes equations. The first of them
contains the corresponding inviscid terms, i.e.the Euler equations, with the new
term µ∇2u, which represents the additional influence of viscosity. As we shall
see later, this term has profound effects.
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1.4 Conservation laws

Perhaps we should elaborate on the ‘usual argument’ which, allegedly, leads to
equation (1.1). Whenever we work in a continuous framework, and we have a
quantity that is conserved, we offset changes in its density, which we call P (x, t)
with equal and opposite changes in its flux q(x, t). Taking a small volume V ,
and arguing as above, we have

d

dt

∫

V

P (x, t) dx +
∫

∂V

q · n dS = 0,

the first term being the time-rate-of-change of the quantity inside V , and the
second the net flux of it into V . Using Green’s theorem on this latter integral,4

we have ∫

V

∂P

∂t
+∇ · q dx = 0.

As V is arbitrary, we conclude that

∂P

∂t
+∇ · q = 0,

a statement which is often referred to as a conservation law.5

In the heat-flow example above, P = ρcT is the density of internal heat
energy and q = −k∇T is the heat flux. Another familiar example is conservation
of mass in a compressible fluid flow, for which the density is ρ and the mass flux
is ρu, so that

∂ρ

∂t
+∇ · (ρu) = 0.

When the fluid is incompressible and of constant density, this reduces to ∇·u =This is not as silly as it
sounds: a fluid may be
incompressible and have
different densities in different
places, the jargon being
stratified.

0 as expected.

1.5 Conclusion

There are, of course, many widely used models that we have not described in
this short chapter. Rather than give a long catalogue of examples, we’ll move
on, leaving other models to be derived as we come to them. We conclude with
an important general point.

As stressed above, the construction of a model for a complicated process
involves a blend of physical principles and (mathematical expressions of) exper-
imental evidence; these may be supplemented by plausible ad hoc assumptions
where direct experimental evidence is unavailable, or as a ‘summary’ model of a
complicated system from which only a small number of outputs is needed. How-
ever, the initial construction of a model is only the first step in building a useful
tool. The next task is to analyse it: does it make mathematical sense? Can
we find solutions, whether explicit (in the form of a formula), approximate or
numerical, and if so how? Then, crucially, what do these solutions (predictions)
have to say about the original problem? This last step is often the cue for an

4Needless to say, this argument requires q to be sufficiently smooth, which can usually be
verified a posteriori ; in Chapter 7 we shall explore some cases where this smoothness is not
present.

5Sometimes this term is reserved for cases in which q is a function of P alone.
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iterative process in which discrepancies between predictions and observations
prompt us to rethink the model. Perhaps, for example, certain terms or effects
that we thought were small could not, in fact, safely be neglected. Perhaps
some ad hoc assumption we made was not right. Perhaps, even, a fundamental
mechanism in the original model does not work as we assumed it does (a nega-
tive result of this kind can often be surprisingly useful). We shall develop all of
these themes as we go on.

1.6 Exercises

1. Conservation of mass. A uniform incompressible fluid flows with ve-
locity u. Take an arbitrary fixed volume V and show that the net mass
flux across its boundary ∂V is

∫

∂V

u · n dS.

Use Green’s theorem to deduce that ∇ · u = 0. What would you do if the
fluid were incompressible but of spatially-varying density (see §1.4)?

2. The convective derivative. Let F (x, t) be any quantity that varies
with position and time, in a fluid with velocity u. Let V be an arbitrary
material volume, moving with the fluid, so that points on ∂V move with
velocity u. Show that

d

dt

∫

V

F dV =
∫

V

∂F

∂t
dV +

∫

∂V

Fu · n dS,

where the second term is there because the boundary of V moves. When Draw a picture of V (t) and
V (t+ δt) to see where it comes
from.

the fluid is incompressible, use Green’s theorem to deduce the convective
derivative formula

dF

dt
=
∂F

∂t
+ u · ∇F.

Derive this another way by considering the total time-derivative of F (x(t), t),
where dx/dt = u. Apply the convective derivative to the fluid velocity u
to verify that the left-hand side of the Euler momentum equation

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p

is the acceleration following a fluid particle.

3. Waves on a membrane. A membrane of density ρ per unit area lying
close to the (x, y) plane is stretched to tension T . Its displacement in the
normal direction is u(x, y, t). Take a small element A of it and derive the
force balance ∫∫

A

ρ
∂2u

∂t2
dA =

∫

∂A

T
∂u

∂n
ds

Deduce the equation of motion

∂2u

∂t2
= c2∇2u,

where c2 = T/ρ is the wave speed.
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4. Fick’s law of diffusion. A substance diffuses in an inert medium. Its
concentration, which is small, is c(x, t). Fick’s law says that the flux
of the substance is −D∇c, where D is a constant called the (molecular)
diffusivity. Show that c(x, t) satisfies the diffusion equation

∂c

∂t
= D∇2c.

The substance is additionally consumed by a reaction which eats it up at
a rate proportional to c. How is the diffusion equation modified?

“A sphere being squeezed on 6 of its sides. . . ”



Chapter 2

Units, dimensions and
dimensional analysis

2.1 Introduction

This chapter and the next cover some simple ideas to do with dimensional analy-
sis. They can be very helpful in understanding the basic physical mechanisms on
which we will build mathematical models, but they are primarily the first step
towards our main objective, to build up a systematic framework within which
to assess such models of complex problems. Real-world situations, arising in
industry or elsewhere, almost always involve many coupled physical processes.
We may be able to write down models for each of them individually, and so
for the whole, but faced with the resulting pages of equations, what then? Can
we say anything about the ‘structure’ of the problem? What are the pivotal
points? Are all the mechanisms we have put in equally significant? If not, how
do we know, and which should we keep? Is it safe to put the equations on a
computer? If there are many input physical parameters, what is the best way
to explore the space of solutions?

We start with some basic material on dimensions and units; in the following
chapter we move on to see how scaling reveals dimensionless parameters which,
if small (or large) can point the way to useful approximation schemes. Along the
way, we’ll see gentle introductions to some of the models that we use repeatedly
in later chapters. Almost all of these deal with reasonably familiar material and
will not trouble you too much; the only possible exception is the material on
electrostatics, and we don’t have to do too much of that.

2.2 Units and dimensions

There is just one simple idea underpinning this section. If an equation models
a physical process, then all the terms in it that are separated by +, − or =
must have the same physical dimensions. If they did not, we would be saying
something obviously ludicrous like

apples + lawnmowers = light bulbs + whisky.

27
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This is the most basic of the many consistency (error-correcting) checks which For example, is the answer
real/positive/. . . when it
obviously should be? Is it
about the right size? If we
expect the temperature to
increase when we increase the
input heat flux does our
formula do what it should? Do
the accelerations point in the
same direction as the forces?

you should build into your mathematics.
To quantify this idea, we’ll use a standard notation for the dimensions of

quantities, denoted by square brackets: all units will be written in terms of
the primary quantities mass [M], length [L], time [T], electric current [I] and
temperature [Θ].1 Once a specific set of unit has been chosen (we use the
SI units here), these general quantities become specific; the SI units for our
primaries are kg for kilogram, m for metre, s for second, A for ampere, K for
kelvin (or we may use ◦C).2

Given the primary quantities, we can derive all other secondary quantities
from them. Sometimes this is a matter of definition: for a velocity u we have

[u] = [L][T]−1.

In other cases we may use a physical law, as in

force F = mass × acceleration, so [F ] = [M][L][T]−2;

the SI unit is the newton, N. Other instances of secondary quantities are

pressure P = force per unit area, so [P ] = [M][L]−1[T]−2,

whose SI unit is the pascal, Pa;

energy E = force × distance moved, so [E] = [M][L]2[T]−2,

the SI unit being the joule, J;

power = energy per unit time,

giving the watt, W= J s−1, and so on. The idea extends in an obvious way to
physical parameters and properties of materials. For example,

density ρ = mass per unit volume, so [ρ] = [M][L]−3.

2.2.1 Example: heat flow

We are going to see a lot of heat-flow problems in this book (I assume that
you have already met the heat equation in an introductory course). Let’s begin
by working out the basic dimensions of thermal conductivity k. The heat flux,
which means the energy flow in a material per unit area per unit time, has units

[q] = [energy][L]−2[T]−1 = [M][T]−3.

By Fourier’s law (an experimental fact), the heat flux is proportional to tem-
perature gradient:Consistency check: why is

there a minus sign? q = −k∇T.
Thus, noting that differentiation with respect to a spatial variable brings in aWhat does integration do?

1There are two more primary quantities, amount of a substance (SI unit the mole) and
luminous intensity (the candela), but we don’t need them in this book.

2You might imagine that it should not be necessary to stress the importance of choosing,
and sticking to, a standard set of units for the primary quantities, and of stating what units are
used. Examples such as the imperial/metric cock-up (one team using imperial units, another
using metric ones) which led to the failure of the Mars Climate Orbiter mission in 1999 prove
this wrong. How can any scientist seriously use feet and inches in this day and age?
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length scale on the bottom,

[q] = [k][Θ][L]−1.

Combining these two versions of [q], we find that

[k] = [M][L][T]−3[Θ]−1.

The usual SI units of k, W m−1 K−1, are chosen to be descriptive of what this
parameter measures. It is an exercise now to check that the heat equation

ρc
∂T

∂t
= k∇2T, (2.1)

in which c is the specific heat capacity with SI units J kg−1 K−1, is dimensionally
consistent.

Note also, for future reference, that the combination

κ =
k

ρc
,

known as the thermal diffusivity, has the dimensions [L]2[T]−1. The higher κ,
the faster the material conducts heat: that is, heat put in is conducted more
and absorbed less; you can see this because κ is the ratio of heat conduction
(k) to absorption as internal energy (ρc). By way of examples, water with its
large specific heat has κ = 1.4× 10−7 m2 s−1, while for the much less dense air
κ = 2.2 × 10−5 m2 s−1. Amorphous solids such as glass (κ = 3.4 × 10−7 m2

s−1conduct less well than crystalline solids such as metals: for gold (an extreme
and expensive example), κ = 1.27× 10−4 m2 s−1.

Given a length L, we can construct a time L2/κ, which can be interpreted
as the order of magnitude of the time it takes for you to notice an abrupt Of course, the heat equation,

being parabolic, has an infinite
speed of propagation. What I
mean by ‘notice’ is that the
temperature change is not
small. See Exercise 5 on
page 36.

temperature change a distance L away. Conversely, during a specified time t,
the abrupt temperature change propagates ‘noticeably’ a distance of order of
magnitude

√
κt.

2.3 Electric fields and electrostatics

Several of the problems we look at in this book involve electromagnetic effects.
We only need a small subset of the wonderful edifice of electromagnetism, and
most of what we use is a reminder of school physics, but written in more math-
ematical terms.

Models for electricity bring with them a stack of potentially confusing units.
A good place to start is Coulomb’s (experimental) observation that, in a vacuum,
the force between two point charges q1, q2 is inversely proportional to the square
of the distance r between them. We need a unit for charge, and as the relevant
fundamental unit is the ampere,3 A, which measures the flow of electric charge
per unit time down a wire, we find that it is one A s, known as the coulomb, C.
So, the force is

F =
q1q2

4πε0r2
,

3See Exercise 4 for the definition of the ampere.
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q1

r

q2
F−F

Figure 2.1: Force between two charges.

with a sign convention consistent with ‘like charges repel’, as in Figure 2.1 in
which q1 and q2 have the same sign. The constant ε0 is known as the (electric)
permittivity of free space, and the 4π is inserted to save a lot of occurrences of
this factor in other formulae. Thus,Notice that 4π, being a

number, is omitted from this
dimensional balance.

[ε0] =
([I][T])2

[L]2 · [M][L][T]−2
= [M]−1[L]−3[T]4[I]2,

a combination which in SI is called one farad per metre (F m−1) for a reason
which will become clear if (when) you do Exercise 2 on page 32. The numerical
value of ε0 is approximately 8.85 × 10−12 F m−1, from which we see that one
coulomb is a colossal amount of free charge. The attractive force between oppo-
site charges of 1 C separated by 1 m is (4πε0)−1; this is more than 108 N, and
it would take two teams of 2,000 large elephants, each pulling their bodyweight,
to drag the charges apart.

Suppose we regard charge 1 as fixed at the origin and charge 2 as a movable
‘test charge’ at the point x. The force on it, now regarded as a vector, is

F = q2E

whereOf course, x̂ is a unit vector
along x and r = |x|. E =

q1x̂
4πε0r2

=
q1x

4πε0r3
(2.2)

is known as the electric field due to charge 1. Since ∇ ∧ E = 0 for x 6= 0, andIf you didn’t know that
∇∧ (x/r3) = 0, check it using
the formula

∇∧ (φv) = ∇φ ∧ v + φ∇∧ v

for scalar φ(x) and vector
v(x).

R3 \ {0} is simply connected, there is an electric potential

φ =
q1
ε0r

with E = −∇φ

(the minus sign is conventional). Because ∇ ·E = 0 away from x = 0, we have

Check this too:
∇ · (φv) = ∇φ · v + φ∇ · v.

∇2φ = 0, x 6= 0.

Instead of point charges, we may have a distributed charge density ρ(x), which
we can think of (in a loose way for now) as some sort of limit of a large number
of point charges. Then we find that

∇2φ = − ρ

ε0
.

We will see a justification for this equation in Chapter 10 (see also Exercise 1
on page 32).4

4In fact it is rather unusual to have ρ 6= 0, that is not to have charge neutrality, in the
bulk of a material. The reason is that if the material is even slightly conducting, any excess
charge moves (by mutual repulsion) to form a surface layer or, if it can escape elsewhere, it
does so. If the material is a good insulator the charge cannot get into the interior anyway. In
the next chapter we describe a situation where charge neutrality does not hold.
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We have strayed somewhat from our theme of units and dimensions. Re-
turning to E, we find from (2.2) that

[E] = [M][L][T]−3[I]−1;

it is measured in volts per metre, V m−1, from which the units for φ are volts.
Perhaps more usefully, since q2E is a force, the formula

work done = force× distance moved

tells us that the electric potential is the energy per unit charge expended in
moving against the electric field:

q [φ]BA = −
∫ B

A

qE · dx,

a formula which serves as a definition of φ.5

Thinking now of the rate at which work is done against the electric field (or
just manipulating the definitions), we see that

1 volt× 1 ampere = 1 watt,

and hence the dimensional correctness of the formula

P = V I

for the power dissipated when a current I flows across a potential difference V .
When a current is carried by free electrons through a solid, the electric field
forces the free electrons through the more-or-less fixed array of solid atoms, and
the work done against this resistance is lost as heat at the rate V I. In many
cases, the current is proportional to the voltage, giving the linear version of
Ohm’s law

V = IR,

from which the primary units of resistance R (SI unit the ohm, Ω) can easily The only SI unit that is not a
Roman letter?be found. There are also many nonlinear resistors, for example diodes, in which

R depends on I.

Sources and further reading

Barenblatt’s book [4] has a lot of material about dimensional analysis, and is
the source of the exercises on atom bombs and rowing. For electromagnetism
I suggest the book by Robinson [51] if you can get hold of it, as his physical
insight was unrivalled; failing this, try [30]. McMahon’s book [40] has a very
interesting chapter on the dimensional analysis of animal locomotion.

5This is just the same idea as gravitational potential energy as a measure of the work done
per unit mass against the gravitational field. If you have ever studied the Newtonian model
for gravitation, which is also governed by the inverse square law, you will see the immediate
analogy between electric field and gravitational force field, charge density and matter density,
and electric and gravitational potentials. The major difference is of course that there are two
varieties of charge, whereas matter apparently never repels other matter.
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2.4 Exercises

The first set of exercises is about electromagnetism. If you have never seen this
topic before, do what you can, at least to get practice in working out units.
But I hope that they will induce to learn more about this wonderful subject.
Exercises on the rest of the chapter follow, on page 35.

Electromagnetism

1. Gauss’ flux theorem. Consider the electric field of a point charge q
at the origin (see Section 2.3). Take a volume V , with boundary ∂V ,
enclosing the sphere |x| = ε. Integrate ∇ · E over the annular region VεNote: ε is not to be confused

with ε0! between ∂V and |x| = ε and let ε→ 0, to show that
∫

∂V

E · n dS =
q

ε0
;

note the absence of 4π from this formula.

Generalise to a finite number of charges. Explain informally why the result
is consistent with the continuous charge density equation ∇2φ = −ρ/ε0,
where E = −∇φ.

2. Capacitance. A capacitor is a circuit device which stores charge. The
archetypal capacitor consists of two parallel conducting plates, each of
area A and separated by a distance d. If one of the plates is earthed and
the other raised to a voltage V , it is found that there is a proportional
charge Q on it (think of the current trying to get round the circuit and
piling up on one of the plates). The constant of proportionality is called
the capacitance C, so C = Q/V , measured in coulombs per volt, known
as farads (F).

Work out the dimensions of the farad in terms of primary quantities. Show
that the formula

C =
ε0A

d

is dimensionally plausible. Check (for consistency) that it does what it
should as A and d vary. Thinking of A as fixed and d as varying, explain
why the units of ε0 are F m−1. (In fact ε0 ≈ 8.85 × 10−12 F m−1.) How
big is a 1 µF (quite a large value) capacitor if d = 1 mm? How big would
a 1 F capacitor be? (In practice, capacitors are bulky objects which are
made smaller by rolling them up, and by filling the space between the
plates with a material of higher permittivity than ε0.)

Based solely on this dimensional analysis, make an order of magnitude
guess at the capacitance of (a) an elephant (assumed conducting); (b)
a homemade parallel-plate capacitor made from two ten-metre rolls of
kitchen foil 30 cm wide separated by cling-film.

If you walk across a nylon carpet you may become charged with static
electricity, to a voltage of say 30 kV. (The charge appears on your shoes
because of friction with the carpet. It is easily transported around you,
because your body is quite a good conductor, to form a surface layer.)
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Estimate how much charge you accumulate. Given that air loses its in-
sulating property and breaks down into an ionised gas at electric fields of
around 3 MV m−1, how far is your finger from the door handle when you
discharge?

It is quite easy to work out the capacitance of a sphere of radius a. The
electrostatic potential φ satisfies ∇2φ = 0 for r > a, where r is distance
from the centre of the sphere. If the sphere is raised to a voltage V relative
to a potential of zero at infinity, we have φ = V on r = a and φ → 0 as
r → ∞. We (you) can write down φ immediately. Now use Gauss’ flux
theorem, aka the divergence theorem, on a sphere r = a+ to show that The notation r = a+ means do

it for r = a+ ε and let ε ↓ 0.the total charge on the sphere is

−ε0
∫∫

r=a

∂φ

∂r
dS

and deduce that the capacitance of the sphere is 4πε0a.

A capacitor with capacitance C is charged up to voltage V and discharged
to earth (voltage 0) through a resistor of resistance R. If the charge on
the capacitor is Q and the current to earth is I, explain why

Q = V C, I =
dQ

dt
and V = IR.

Find I(t) and confirm that RC has the dimensions of time; interpret this
time physically and explain why it increases with both R and C.

3. Slow electrons. The charge on an electron is approximately 1.6× 10−19

C. In copper, there are about 8.5×1028 free electrons per cubic metre (this
calculation is based on Avogadro’s number, the density and atomic weight
of copper, and one free electron per atom). What is the mean speed of the
electrons carrying 1 A of current down a wire of diameter 1 mm? Does
the answer surprise you?

4. Forces between wires. It is another experimental observation that the
force F per unit length between long straight parallel wires in a vacuum,
carrying currents I1, I2, is inversely proportional to the distance r between
them, and directly proportional to each of the currents. This is written

F =
µ0I1I2
2πr

; (2.3)

the factor 2π is again for convenience elsewhere. The constant µ0 is Can you think why line
currents get a factor 2π but
point charges get a factor 4π?

known as the permeability of free space; what are its fundamental units?
The SI units are henrys per metre, H m−1.

Now recall that we have not yet defined the unit of current, the ampere.
Because µ0 and the currents in (2.3) are multiplied, there is a degree of
indeterminacy in their scales (multiply the currents by α and divide µ0 by
α2). We exploit this by arbitrarily (in fact it is a cunning choice from the
practical point of view) setting

µ0 = 4π × 10−7H m−1
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and then defining the ampere as the current that makes F exactly equal
to 2× 10−7 N m−1 when the wires are infinitely long.

A current generates a magnetic field, denoted by B. The Lorenz force law Remember iron filings
experiments to show the
magnetic fields of bar magnets
or wires? The filings line up in
the direction of B.

states that the force on a charge q moving with velocity v in an electric
field E and magnetic field B is

F = q(E + v ∧B).

Deduce the fundamental units of B (SI unit the tesla, T). Interpreting
the currents as moving line charges, show that (2.3) is consistent with a
magnetic field

B =
µ0I

2πr
eθ

for a wire carrying current I along the z–axis of cylindrical polar coordi-
nates (r, θ, z). How would iron filings on a plane normal to the wire line
up in this case?

Show that, like the coulomb and farad, the tesla is an inconveniently
large unit by working out the current required to give a field of 1 T at a
distance of 1 m. How many 1 kW toasters would this current power at
250 V? (Ans: 1.25 million.) Why are electromagnets made of coils? The
most powerful superconducting magnets, using coils to reinforce the field,
have only recently broken the 10 T barrier.

5. The speed of light. Show that

c = (ε0µ0)
− 1

2

is a speed, and work out its numerical value.

6. Electromagnetic waves. OK, the result of the previous exercise is not
a coincidence. We don’t have the space to derive Maxwell’s famous equa-
tions for E and B, but here they are: in a vacuum, E and B satisfy

•
∇ ∧E = −∂B

∂t
.

This is Faraday’s law of induction which says that time-varying mag-
netic fields generate electric fields.

•
1
µ0
∇∧B = ε0

∂E
∂t

+ j.

When there are currents present they appear as a source term j,
the current density, on the right-hand side of this equation, which is
revealed as the model for generation of magnetic fields by currents.
The term ε0∂E/∂t is Maxwell’s inspiration, the displacement current.

•
∇ ·B = 0, ∇ ·E = 0.

The first of these says that there are no ‘magnetic monopoles’ (mag-
netic fields are only generated by currents, and magnetic lines of
force have no ends), and the second is a special case of ∇ ·E = ρ/ε0,
showing the generation of electric fields by charges.
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Take these equations on trust and cross-differentiate them to show that E
and B satisfy wave equations:

∂2B
∂t2

= c2∇2B,
∂2E
∂t2

= c2∇2E

where c2 = (ε0µ0)−
1
2 as above. You may need the vector identity6

∇∧∇ ∧ v = ∇ (∇ · v)−∇2v.

7. Planck’s constant and the fine structure constant. This book is
not the place for an account of quantum mechanics. We can, however,
note that underpinning it all is Schrödinger’s equation

~
i

∂ψ

∂t
− ~2

2m
∇2ψ = V ψ

for the wave function ψ of a particle of mass m moving in a potential V
(ψ is complex-valued and |ψ|2 is the probability density of the particle’s
location). Find the dimensions of ~ (Planck’s constant is h = 2π~) and
V . Show that the combination

e2

2ε0hc
,

where e is the charge on an electron, is dimensionless. Such dimensionless
ratios of fundamental constants are not coincidences, and this one, called
the fine structure constant, plays an important role in quantum electro-
dynamics. It gets its name from its influence on the fine structure of the
spectrum of light emitted by a glowing gas; crudely speaking it is the ratio
of the speed an electron would have if it were to orbit a hydrogen nucleus
in a circle (which it does not) to the speed of light. Its numerical value
is very close to 1/137, a source of some fascination to numerologists. For
more, see its own website www.fine-structure-constant.org.

Other exercises

1. cgs units An alternative system of units to SI is the cgs system, in which
the unit of mass is the gramme (g) and the unit of length is the centimetre.
Establish the following conversion table (which is really here for your
reference), and construct the reverse table to turn SI into cgs.

cgs SI

Velocity 1 cm s−1 10−2 m s−1

Density 1 g cm−3 103 kg m−3

Dynamic viscosity 1 poise 10−1 kg m−1s−1

Kinematic viscosity 1 cm2 s−1 10−4 m2 s−1

Pressure 1 dyne cm−2 10−1 Pa
Energy 1 erg 10−7 J
Force 1 dyne 10−5 N
Surface tension 1 dyne cm−1 10−3 N m−1

6Curl Curl is the name of an Australian beach-town, latitude 33◦46′ S, longitude 151◦17′
E. It is near the promontory Dee Why Head; what a pity there is no Dee Exe Head.
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2. Imperial to metric. Establish the quite useful relation

1 mph ≈ 0.447 m s−1.

Using the Web or other sources for the definitions, show thatBtu=British thermal unit, a
measure of energy; kilocalories
are worried about by dieters.
One calorie is the amount of
energy needed to heat one
gramme of water by 1 ◦C.

1 Btu = 1 calorie,

a result which might be of use if you are interested in central heating.

3. Atom bombs. An essentially instantaneous release of an amount E of
energy from a very small volume (see the title of the exercise) creates a
rapidly expanding high pressure fireball bounded by a very strong thin
spherical shock wave across which the pressure drops abruptly to atmo-
spheric. The pressure inside the fireball is so great that the ambient at-
mospheric pressure is negligible by comparison, and the only property of
the air that determines the radius r(t) of the fireball is its density ρ. Show
dimensionally, by identifying the only possible combination of E, t and ρ,
that

r(t) ∝ E
1
5 t

2
5 ρ−

1
5 .

This result is due to GI Taylor, a colossus of British applied mathematics
in the last century; whatever branch of fluid mechanics you look at, you
will find that ‘GI’ wrote a seminal paper on it.7 It can be used to deduce
E from observations of r(t); Taylor’s publication of this observation [56]
apparently caused considerable embarrassment in US military scientific
circles where it was regarded as top secret.

4. Rowing. A boat carries N similar people, each of whom can put power
P into propelling the boat. Assuming that they each require the same
volume V of boat to accommodate them, show that the wetted area of
the boat is A ∝ (NV )

2
3 (here, as so often, the cox is ignored). Assuming

inviscid flow, why might the drag force be proportional to ρU2A, where
U is the speed of the boat and ρ the density of water? (In saying this,
we are ignoring drag due to waves created by the boat.) Deduce that the
rate of energy dissipated by a boat travelling at speed U is proportional
to ρU3A, and put the pieces together to show that

U ∝ N
1
9P

1
3 ρ−

1
3V −

2
9 .

If we suppose, very crudely, that P and V are both proportional to body
mass, is size an advantage to a rower?

This example is based on a paper by McMahon [39], described in his
book [40]; the theory agrees well with observed race times.

5. Similarity solution to the heat equation. Show that the problem

∂T

∂t
= κ

∂2T

∂x2
, x > 0, t > 0,

with
T (x, 0) = 0, T (0, t) = T0 > 0,

7Is it necessary to mention that the Taylor of Taylor’s theorem was several hundred years
earlier? One never knows these days.
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which corresponds to instantaneous heating of a cold half-space from its
boundary at x = 0, has a similarity solution

T = T0F

(
x√
κt

)

and find F in terms of the error function erf ξ = (2/
√
π)

∫ ξ

0
e−s2

ds. Sketch
F and interpret this solution in the light of the discussion at the end of
Section 2.2.1.

6. Firewalking. Returning to the problem of Exercise 5, calculate the heat
flux (per unit area) into the boundary x = 0 as a function of t, showing
that it is proportional to T0(ρckt)

1
2 .

Firewalkers happily walk on a bed of glowing wood embers at a tempera- According to my father, who
recently did this, it feels like
walking over crushed bark.

ture about 1000◦C greater than that of their feet. Estimate the heat flux
per unit area into their feet during a half-second step (for wood, ρ ≈ 800,
c ≈ 400, k ≈ 0.15 in SI units, varying with species). If all this heat is
confined to a layer of foot 1 mm deep, calculate the resulting tempera-
ture increase, assuming that the material properties of feet are similar to
those of water (c = 4200, ρ = 1000 in SI units). Carry out a more accu-
rate calculation by looking for a similarity solution to the heat conduction
equation for −∞ < x <∞ as well as 0 < x <∞, with different values of
the material parameters in the two half-spaces, and with T and k∂T/∂x
continuous at x = 0.

The point is, of course, that the low conductivity, specific heat capacity
and density of wood mean that not much heat is available to burn the feet.
What answer would you get if the wood were replaced by steel (ρ = 7860,
c = 420, k = 63), and to which material parameter(s) is the difference
due?

“The pressure in the inlet is maintained at a given temperature, which is
usually around 5 atmospheres.”
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Chapter 3

Scaling and
non-dimensionalisation

3.1 Nondimensionalisation and dimensionless pa-
rameters

Like its predecessor, this chapter has one simple theme, but one with far-
reaching repercussions. The key idea is this. Any equation we write down
for a physical process models balances between physical mechanisms. Not all of
these may be equally important; experience shows that we can count ourselves
unlucky if more than two are in balance at once. We can begin to assess how
important they are by scaling all the variables with ‘typical’ values — values of
the size we expect to see, or dictated by the geometry, boundary conditions etc
— so that the equation becomes dimensionless. Instead of a large number of
physical parameters and variables, all with dimensional units, we are left with
an equation written in dimensionless variables. All the physical parameters
and typical values are collected together into a smaller number of dimensionless
parameters (or dimensionless groups) which, when suitably interpreted, should
tell us the relative importance of the various mechanisms.

All of this is much easier to see by working through an example than by waffly
generalities. So here’s a selection of three relatively simple physical situations
where we can see the technique in action.

3.1.1 Example: advection-diffusion

We’ll start with a combination of two very familiar models, heat conduction
and fluid flow. When you stand in front of a fan to cool down, two mechanisms
come into play: heat is conducted (diffuses) into the air, and is then carried
away by it. The process of heat transfer via a moving fluid is called advection,
as distinct from convection, which is hot-air-rises heat transfer due to density
changes.1 Both advection and convection are major mechanisms for heat trans-

1The usage is changing in the loose direction; convection is often used for both processes,
subdivided where necessary into forced convection for advection, and natural convection for
buoyancy-driven heat transport. A lot of the heat lost by a hot person in still air is by
(natural) convection.

39
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fer in systems such as the earth’s atmosphere, oceans and molten core; almost
any industrial process (think of cooling towers as a visible example); car engines;
computers; you name it. Their analysis is of enormous practical importance.

It is often easier to analyse advection because we can usually decouple the
question of finding the fluid flow from the heat-flow problem. In convection,
the buoyancy force that drives the flow is strongly temperature-dependent —
indeed, without it there would be no flow — and the problem correspondingly
more difficult. For our first example, we’ll consider two-dimensional flow of
an incompressible liquid with a given (that is, we can calculate it separately)
velocity u past a circular cylinder of radius a, with a free-stream velocity at
large distances of (U, 0). This is a simple model of, for example, the cooling of
a hot pipe.

For the moment, it doesn’t matter too much what we take for u. Let’s just
use the standard inviscid flow model u = ∇φ, where

φ = U

(
r cos θ +

a2 cos θ
r

)

in plane polar coordinates. We need to generalise the heat conduction equation
to include the advection. This needs us to recognise that when we write down
conservation of energy in the form

rate of change of energy of a particle + net heat flux into it = 0,

we have to do this following a particle. Thus, the time derivative ∂ /∂t in the
usual heat equation (2.1) is replaced by the material (convective) derivative
∂ /∂t+ u · ∇, givingIf you don’t quite believe this

argument, do Exercise 1 on
page 51. ρc

(
∂T

∂t
+ u · ∇T

)
= k∇2T. (3.1)

Lastly we need some boundary conditions. The simplest ones are to have
one constant temperature at infinity and another on the cylinder,2 so

T → T∞ as r →∞, T = T0 on r = a.

The problem is summarised in Figure 3.1.
In order to see the relative importance of advection (the left-hand side

of (3.1)) and diffusion (the right-hand side), we scale all the variables with
‘typical’ values. The obvious candidate3 for the length scale is a; then we can
scale u with U and time with a/U , the order-of-magnitude residence time of a
fluid particle near the cylinder. So, we write

x = ax′, u = Uu′, t = (a/U)t′.

Only T has not yet been scaled. Using the two datum points T0 and T∞ we can
write

T (x, t) = T∞ + (T0 − T∞)T ′(x′, t′).

2The conditions on the cylinder are not especially realistic: a Newton condition of the form
−k∂T/∂n+ h(T − T0) = 0 would be better; see the exercises on page 53.

3If the cross-section of the cylinder is another shape, we can use any measure of its ‘di-
ameter’, although you can see an obvious difficulty here if it is, say, a long thin ellipse. We
return to this point later.
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ρc
ş

∂T
∂t

+ u · ∇T
ť

= k∇2T

T → T∞ at infinity

a

u

u → (U, 0) at infinity

T = T0 on r = a

Figure 3.1: Advection-diffusion of heat from a cylinder.

This gives
ρcU

a

(
∂T ′

∂t′
+ u′ · ∇′T ′

)
=

k

a2
∇′2T ′. (3.2)

Now comes a key point. All the terms in the original equation have the same
physical dimensions. All our ‘primed’ quantities have no dimensions: they are
just numbers. Thus, if we divide through (3.2) by one of the (still dimensional)
quantities multiplying a ‘primed’ term, we will be left with a dimensionless term.
Then, all the other terms in the equation must be dimensionless as well: and
so, the physical parameters (a, ρ, etc) must now occur in combinations which
are dimensionless too.

So, divide through (3.2) by k/a2 to get

ρcUa

k

(
∂T ′

∂t′
+ u′ · ∇′T ′

)
= ∇′2T ′.

We see that there is just one dimensionless combination in this problem,

Pe =
ρcUa

k
=
Ua

κ
,

known as the Peclet number. There is no dimensionless parameter in the bound- What would have happened if
we had used the Newton
condition?

ary conditions because they scale linearly, to become

T ′ → 0 as r′ →∞, T ′ = 1 on r′ = 1.

There several things to say about this analysis. The first is the simple It is worth noting that there
may be more than one possible
choice for some of the scales,
and iteration may be needed
to find the most appropriate
one for a given problem. In
our example, there are two
other possible length scales,
whose consequences are
explored in Exercise 2 on
page 52. Usually, the obvious
choice is the best.

observation that, whereas the original problem has a large ‘parameter space’
consisting of the 7 parameters U , a, ρ, c, k, T∞, T0, the reduced problem
contains the single dimensionless parameter Pe. That’s quite a reduction; and
if you think it is obvious, there are still plenty of mathematical subjects almost
untouched by the idea (economics, for example).

Next, all problems with the same value of Pe can be obtained by solving
one canonical scaled problem for that value of Pe. So, if we want to make an
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experimental analogue of a very large physical set-up, we can do it in a smaller
setting as long as we achieve the same Peclet number.4

Next, and probably most important, the size of any dimensionless numbers
in a problem tells us a great deal about the balance of the physical mechanisms
involved, and about the behaviour of solutions. In our example, we can write

Pe =
ρcUa

k

=
ρcU(T − T∞)
k(T − T∞)/a

≈ advective heat flow
conductive heat flow

.

If Pe is large, advection dominates conduction, and vice versa if Pe is small. A
10 cm radius hot head in an air stream (ρ ≈ 1.3 kg m−3, c ≈ 993 J kg−1 K−1,
k ≈ 0.24 W m−1 K−1) moving at 1 m s−1 from a fan has a Peclet number of
about 500, undeniably large (large Peclet numbers are more common than small
ones).

Any problem with a parameter equal to 500 must surely offer scope for
judicious approximation: after all, 1

500 is tiny, and we may hope to cross out
the terms it multiplies without losing too much. If we do this in our equation

∂T ′

∂t′
+ u′ · ∇′T ′ =

1
Pe
∇′2T ′,

we see that the convective derivative of T ′ is zero. That is, as we follow a particle
its temperature does not change, and since all particles start far upstream at
x = −∞, T ′ everywhere has its upstream value of 0. Which is fine, until we
realise that we can’t satisfy T ′ = 1 on the cylinder. We shall have to wait until
we have looked at asymptotic expansions before we can see how to get out of
this jam.

A last remark is that one soon gets tired of writing primes on all scaled
variables. As soon as the scalings have been introduced, it’s usual to write the
new dimensionless equations in the original notation, a pedantically incorrect
but universal practice signalled by the phrase ‘dropping the primes’.

3.1.2 Example: the damped pendulum

Sometimes the correct scales for one or more variables can only be deduced
from the equations, as in the following example. The basic model for a lin-
early damped pendulum which is displaced an angle θ from the vertical (see
Figure 3.2) is

l
d2θ

dt2
+ k

dθ

dt
+ g sin θ = 0,

and let us suppose that the initial angle and angular speed are prescribed:

θ = α0,
dθ

dt
= ω0 at t = 0.

Here k is the damping coefficient (the damping is proportional to the velocity)
and g the acceleration due to gravity; their units areCheck that these units are

consistent with the equation;
remember that θ is a number.

4We also have to ensure that the fluid velocity scales correctly. This may not be so easy
given that it has its own equations of motion which may not behave properly. In our example,
it is clear that the potential flow model does scale correctly, because it is linear.
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O

θ

−kθ̇

mg

T

Figure 3.2: Motion of a simple pendulum.

[k] = [L][T]−1, [g] = [L][T]−2.

Combining the dimensional parameters l, k, g and ω0, it is easy to see that there
are three timescales built into the parameters of this problem:

t1 =

√
l

g
, t2 =

l

k
, t3 =

1
ω0
.

The first is the period of small undamped oscillations (linear theory). The
second is the time over which the damping has an effect The third is prescribed Solve

du/dt = −ku = −u/t2
and see that u decreases by a
fraction 1/e in each time
interval t2.

by us: it tells us how long it takes the pendulum to cover one radian at its initial
angular speed if no other forces act.

Let’s scale time with t1 =
√
l/g, which we do if we are expecting to see

small-amplitude oscillatory behaviour. Then, writing

t = t1t
′,

we have the dimensionless model

d2θ

dt′2
+
t1
t2

dθ

dt′
+ sin θ = 0,

with

θ = α0,
dθ

dt′
=
t1
t3

at t′ = 0.

It contains two obviously dimensionless parameters,

γ =
t1
t2

=

√
k2

gl
and β0 =

t1
t3

=

√
ω2

0l

g
.

The first of these, γ, is the ratio of the time over which the system responds
to the physical mechanism of gravity (the period for small oscillations) to the
timescale for damping. The second, β0, is the ratio of the initial speed of the
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pendulum to the speed changes induced by gravity. There is a third dimension-
less group, α0, as angles are automatically dimensionless, and so, dropping the
primes, the dimensionless model is

d2θ

dt2
+ γ

dθ

dt
+ sin θ = 0,

with

θ = α0,
dθ

dt
= β0 at t = 0.

We can make some immediate statements about the behaviour of the system
just by looking at the sizes of our dimensionless parameters. For example, if γ
is small, we expect the damping to have its effect over many cycles. If β and α0

are both small, we hope that linearised theory will be valid; and so on. Later,
in Chapter 13, we’ll see how to quantify some of these ideas.

3.1.3 Example: beams and strings

We all know that the motion of a string made of a material with density ρ
(mass per unit volume, [ρ] = [M][L]−3), of length L and cross-sectional area A,
stretched to tension T , can be modelled by the equation5(a) What are the dimensions

of T? (b) Show that
p
T/ρA

is a speed. (c) Show that the
wave speed is exactly
c =

p
T/ρA (with no

numerical prefactor) by
substituting in a solution of
the form y(x, t) = f(x− ct).

ρA
∂2y

∂t2
− T

∂2y

∂x2
= 0, 0 < x < L,

where y(x, t) is the amplitude of small transverse displacements.6

In the string model, the restoring force is provided by the component of the
tension normal to the string, T ∂y/∂x. If, on the other hand, we have a stiff
beam or rod, the restoring force is caused by its resistance to bending which,
as we shall see in Chapter 4, can be shown to be proportional to −∂3y/∂x3. If
in addition there is a force perpendicular to the wire of magnitude F per unit
length, we get the equationWhat is the wavespeed?

ρA
∂2y

∂t2
+ EAk2 ∂

4y

∂x4
= F.

Here A is the cross-sectional area of the beam, while k is a constant with the
dimensions of length known as the radius of gyration of the cross-section of the
beam. In this model, k encapsulates the effect of the shape of the beam; for a
fixed cross-sectional area, k is smallest for a circular cross-section, while for a

5You may have seen this in the form

ρ̃
∂2y

∂t2
− T

∂2y

∂x2
= 0, 0 < x < L,

in which ρ̃ is the mass per unit length, or line density.
6Note the engineering rule of thumb

wavespeed =

r
stiffness

inertia
,

which applies very generally to non-dissipative linear systems.
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standard I-beam it is large.7 A derivation of this model is given in Section 4.1.
The constant E is a property of the material from which the beam is made

known as the Young’s modulus. The larger it is, the more the material resists
being bent or sheared (bending leads to shearing). Lastly, ρ is again the under-
lying material density, which we use in preference to the line density because
this model takes into account not just the cross-sectional area of the beam but
also its shape.

If the force F is due to gravity and y is measured vertically upwards, we
have

F = −ρAg.
But we might consider other forces, such as the drag from a fluid flowing past the
beam, for example wind drag on a skyscraper, flagpole, car radio aerial or hair
(see the next chapter); water drag on a reed bending in a stream; or the drag of
gas escaping through a brush seal in a jet engine. For inviscid flows, the pressure
in the liquid has typical magnitude ρlU

2
l , where ρl is the liquid density and Ul a

measure of its speed (think of Bernoulli’s equation for steady irrotational flow,
p+ 1

2ρ|u|2 = constant). Because the flow about a cylinder (even a circular one)
is not symmetrical in a real (as opposed to ideal) flow,8 there is a net pressure
force on the cylinder, and its magnitude is roughly proportional to ρU2.

So, it is reasonable that the drag per unit length on an isolated cylinder in
a flow with free stream velocity Ul can be well approximated by

F = geometric factor× pressure× perimeter

= Cd × ρlU
2
l × k.

Here the drag coefficient Cd depends on the fluid speed and the shape and
orientation of the cylinder (when we work out the drag force, we resolve the
pressure, which acts normally to the surface, in the direction of the free stream
and integrate over the perimeter; all this information is lumped into the drag What other length might we

have used? Why is k probably
better?

coefficient), and we have used k as a measure of the length of the cross-sectional
perimeter.

To summarise, we have

ρA
∂2y

∂t2
+ EAk2 ∂

4y

∂x4
= CdρlU

2
l k

as the equation for a beam (flagpole, reed) subject to a fluid drag force.
This model has a huge number of physical parameters, but we can get a lot

of information from some simple scaling arguments. It is an exercise for you to
do this:

1. Make the model dimensionless using the length of the beam L to scale x
and to-be-determined scales y0 and t0 for y and t.

7The definition of k is: in a cross-sectional plane, take coordinates (ξ, η) with origin at the
centre of mass of the cross-section. Then,

Ak2 =

ZZ

cross-section
ξ2 + η2 dξ dη.

That is, Ak2 is the moment of inertia of the cross-section.
8D’Alembert’s paradox says that there is no drag on a cylinder in irrotational inviscid

(potential) flow! In real life, even a very small viscosity has a profound effect, leading to
completely different flows from the ideal ones. We’ll get an idea why later on.
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2. Verify that the units of E are [M][L]−1[T]−2.

3. Roughly how big is the steady-state displacement?

4. If the drag force is switched on suddenly at t = 0, over what timescale
does the beam initially respond?

5. What is the timescale for free oscillations?

We will return to versions of this model at several places later in the book.

3.2 The Navier–Stokes equations and Reynolds
numbers

Recall from Chapter 1 that the flow of an incompressible Newtonian viscous
fluid is governed by the Navier–Stokes equations

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p+ µ∇2u, ∇ · u = 0, (3.3)

where u is the fluid velocity and p the pressure, both functions of position x
and time t, while the physical parameters of the fluid are its density ρ and its
dynamic viscosity µ.

Let us now look at how we should nondimensionalise the Navier–Stokes
equations. We begin by noting that it is often useful to combine µ and ρ to
form the kinematic viscosity

ν =
µ

ρ
.

Note the units of dynamic and kinematic viscosity: since, as in Figure 1.1,

force/area = µU/h,

we have
[µ] = [M][L]−1[T]−1

(the SI unit is the pascal-second, Pa s), and soMnemonic: acres per annum;
the acre is one of the old
English units of area. Hectares
per megasecond?

[ν] = [L]2[T]−1.

Suppose we have flow past a body of typical size L, with a free-stream
velocity Ue1. As in the advection-diffusion problem, we scale all distances with
L, time with L/U and velocities with U , writing

x = Lx′, t = (L/U)t′, u = Uu′.

Only p has not yet been scaled, and in the absence of any obvious exogenous
scale we let the equations tell us what the possibilities are. For now, let’s write

p = P0p
′

and substitute all these into the momentum equation (clearly the mass conser-
vation just becomes ∇′ · u′ = 0). This gives

ρU2

L

(
∂u′

∂t′
+ u′ · ∇′u′

)
= −P0

L
∇′p′ + µU

L2
∇′2u′. (3.4)
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Now we can divide through by one of the coefficients to leave a dimensionless
term; because all the other terms must also be dimensionless, that will tell us
the pressure scale. For example, divide through by ρU2/L, leaving the equation

∂u′

∂t′
+ u′ · ∇′u′ = − P0

ρU2
∇′p′ + µ

ρUL
∇′2u′.

It is now clear that we can choose the ‘inviscid’ pressure scale

P0 = ρU2

and when we do this we get the dimensionless equation in the form

∂u′

∂t′
+ u′ · ∇′u′ = −∇′p′ + 1

Re
∇′2u′, (3.5)

where the dimensionless combination

Re =
ρUL

µ
=
UL

ν

is known as the Reynolds number after the British hydrodynamicist Osborne
Reynolds.

So what does this tell us? The most important conclusion is that if viscous
effects are all we have to worry about,9 then all flows with the same Reynolds
number are scaled versions of each other. This is the idea of the wind tunnel.
We don’t need to build full scale prototype aeroplanes or cars to test for lift and
drag, we can use a scale model as long as we get the Reynolds number right.
Furthermore, by forming dimensionless groups, we reduce the dimensionality of
our parameter space as far as possible. In our example above, instead of the
4 physical parameters ρ, µ, L and U , we have the single combination Re. So
for a given shape of body, in principle all we need to do is sweep through the
Reynolds numbers from 0 to ∞ to find all the possible flows past a body of that
shape.

Thinking now of the dimensionless parameters as encapsulating the compet-
ing (or balancing) physical mechanisms that led to our original equation, we
can write the Reynolds number as

Re =
ρUL

µ

=
ρU2

µU/L
.

The top of the last fraction is clearly a measure of the pressure force per unit
area due to fluid inertia on a surface, while as we saw above, the bottom is a
measure of viscous shear forces. So, the Reynolds number tells us the ratio of
inertial forces to viscous ones. When it is large, the inertial forces dominate,
while for small Re it is viscosity that wins.

In the former case, it is tempting to cross out the term multiplied by 1/Re
in the dimensionless equation (3.5); this leaves us with the Euler equations

∂u
∂t

+ u · ∇u = −∇p, ∇ · u = 0

9For example, we don’t take account of temperature changes due to viscous dissipation,
which may themselves affect the viscosity or density of the fluid.
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(we have dropped the primes), for which there is a large class of exact solutions
when the flow is irrotational so that ∇∧ u = 0. In this case, there is a velocity
potential φ which satisfies Laplace’s equation

∇2φ = 0

in the fluid. However, we must be very careful in making this approximation.
One obvious reason is that for most viscous fluids we should apply the no-slip
condition on rigid boundaries: this says that the fluid velocity at the boundary
must equal the velocity of the boundary itself, so the fluid particles at the
boundary stick to it. Most solutions of the Euler equations do not satisfy this
condition, and the reconciliation of the two ideas led to boundary layer theorySee Exercise 11 on page 55

where this is proved for
potential flows.

and the theory of matched asymptotic expansions, the latter being a triumph of
twentieth-century applied mathematics which we look at briefly in Chapter 16.
A second reason for proceeding with caution is the everyday observation that
very fast (very large Reynolds number) flows are turbulent and so intrinsically
unsteady. For these reasons one may worry that the inviscid model is one
that exists in theory but is never seen in practice, but that would be unduly
pessimistic. Boundary layer theory helps, and in many interesting flows either
the Reynolds number is large but not enormous, or the flow takes place on a
short timescale, so that turbulence does not have time to become a nuisance.

Returning to the theme of nondimensionalisation, what if Re is small, for
slow viscous flow? Is is safe to say that since ∇′2u′ is divided by Re, we simply
set it equal to zero? No, it is not. If we do this, we are saying that pres-
sure forces are not important, and it is common experience that they are. In
such a situation, we should check whether there is an alternative scaling of the
equations. It is not hard to see that there is a second possible pressure scale,This is obvious from the

definition of the
(dimensionless) Re: why? P̃0 =

µU

L
,

and it is an exercise to show that scaling p in this way leads to an alternative
version of (3.5),10

Re
(
∂u′

∂t′
+ u′ · ∇′u′

)
= −∇p′ +∇′2u′.

If Re is small, maybe we can neglect the convective derivative (inertial) terms
on the left to get the Stokes Flow model for slow flow:

0 = −∇p+∇2u, ∇ · u = 0.

As we continue, we shall see how we might justify dropping terms in this way
(and why it might go wrong).

3.2.1 Water in the bathtub

We really should do this problem; even your auntie has heard of it. Is it true
that water flows out of the bathtub with an anticlockwise swirl in the northern
hemisphere and a clockwise swirl south of the equator?

Answer: only under very carefully controlled circumstances. Here’s why.
Remember the Coriolis theorem about transferring the equations of motion toThere is nothing difficult

about this: it is just the chain
rule in disguise.

10Pedantically speaking, note that the p′ in this equation is not the same as the p in the
other dimensionless version of Navier–Stokes (3.5), as it has been scaled differently. . .
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a rotating coordinate system: if v is a vector, and we want its time derivative
as measured in a frame rotating with angular velocity Ω, then

dv
dt

∣∣∣∣
fixed

=
dv
dt

∣∣∣∣
rotating

+ Ω ∧ v.

The Navier–Stokes equations in a rotating frame are then The origin is at the centre of
the earth, and the Ω ∧Ω ∧ r
term is incorporated into the
gravitational body force to
give the ‘apparent gravity’.

ρ

(
∂u
∂t

+ 2Ω ∧ u + u · ∇u
)

= −∇p+ µ∇2u + ρ (g−Ω ∧ (Ω ∧ r)) ,

where in this case Ω is the angular velocity of the earth, equal to 2π per 24
hours, about 7.3× 10−5 radians per second, in the direction of the earth’s axis
of rotation. Now consider water moving at 1 m s−1 in a bath of size about 1
m. If we scale the variables with representative values based on these figures
(all of which are 1 in SI units), the ratio of the Coriolis term 2Ω ∧ u to An exercise which you should

carry out. . .the other acceleration terms is about twice the numerical value of |Ω| in SI
units, i.e.about 10−4. That is, the rotation effect is tiny. In practice, other
effects such as residual swirl from the way the water was put into the bath, or
asymmetry in the plughole or the way the plug is pulled out, completely swamp
the Coriolis effect unless the experiment is carried out under very carefully
controlled conditions. On the other hand, if we look at rotating air masses on
the scale of a hurricane or typhoon, the much greater length scale means that
the Coriolis effect is enormously important. As air masses leave the equator
and travel north or south, they carry their angular momentum (whose direction
is along the earth’s axis of rotation) with them. As they move north or south
round the curve of the earth this angular momentum is transformed into rotatory
motion in the tangent (locally horizontal) plane; but that is another story.

3.3 Buckingham’s Pi-theorem

Let’s take a short detour to state the only quasi-rigorous result in the area of
dimensional analysis: the Buckingham Pi-theorem.

Suppose we have n independent physical variables and parameters Q1, . . . , Qn

(x, t, µ etc. above), and the solution of a mathematical model gives us one of
these in terms of the others:

Qn = f(Q1, . . . , Qn−1).

Suppose also that there are r independent basic physical dimensions ([M], [L], [T]
etc.).

Then there are k = n− r dimensionless11 combinations Πi(Qj) and a func-
tion g such that

Πk = g(Π1, . . . ,Πk−1).

The proof is a counting exercise.

11And eponymous.
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Example: the drag on a cylinder

Suppose a cylinder of length L and radius a is held in viscous fluid moving with
far-field velocity U normal to the axis of the cylinder. How does the drag force
depend on the parameters of the problem? What happens as L→∞?

There are 6 independent physical quantities in this problem:

• L and a, which are properties of the cylinder and both have dimensions
[L];

• µ and ρ, which are properties of the fluid and have dimensions [M][L]−1[T]−1,
[M][L]−3 respectively;

• The force F on the cylinder ([M][L][T]−2) and the free stream velocity U
([L][T]−1). This is an output (dependent) variable, and we aim to express
it in terms of the inputs.

In this case, r = 3 (for [M], [L] and [T]), and so there must be k = n− r = 3
dimensionless quantities. One natural choice is the aspect ratio L/a, which we
call Π1 and another is the Reynolds number Re = Ua/(µ/ρ) = Ua/ν = Π2. ForIn choosing a as the length to

appear in Re, we are looking
ahead to when we let L→∞.

the third, a little experimentation shows that something of the form

F

ρU2[L]2

will do, and we need to choose which lengths to use to replace [L]2. Here it helps
to think what physical balance is expressed by this parameter. The top, F , is a
force, while the bottom is the inviscid pressure scale ρU2 multiplied by an areaRemember pressure = force

per unit area. Hence it makes sense to use aL, which is a measure of the surface area of the
cylinder, and our third dimensionless parameter is thus Π3 = F/(ρU2aL).

Putting this all together, we have Π3 = g(Π1,Π2); that is, on dimensional
grounds we have shown that the drag force is related to the other parameters
by an equation of the form

F = ρU2aL× g(Re, L/a)

for some function g.
If we further assume that our cylinder is very long, so that we have trans-

lational invariance along it, then instead of F and L as independent physical
quantities, we only have the force per unit length F ′ (dimensions [M][T]−2).
Then, we get

F ′ = ρU2aCd(Re)

for some function Cd(Re), which is just what we called a drag coefficient earlier
in the chapter.

There is clearly some indeterminacy in the choice of the parameters and
the representation of the drag coefficient. For example, we could have written
the Reynolds number as UL/ν, or we could have introduced more convoluted
parameters such as UL2/νa, equal to L/a times our definition above, but this
would not have had such clear physical implications. It helps to make the choices
of parameters to correspond as closely as possible with the physical situation,
although we can’t always hope to get it right first time. Moreover, there are
often genuine alternatives. In our example, we chose ρU2 as our measure of
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the fluid pressures; this says that we expect inertia to be significant, and is
the clearest way of writing the drag when the flow has large Reynolds number.
However, as we saw earlier, we could have chosen µU/a for the pressure scale,
and this would have led to

F ′ = µUC̃d(Re),

which might be more convenient if we are looking at slow flow. Of course, the
drag coefficient is uniquely determined12 as a function of the Reynolds number,
so this is merely a relabelling exercise: it is easy to see that C̃d(Re) = ReCd(Re).

Onwards

We haven’t done anything very technical in this chapter. This whole business of
scaling is a combination of experience and plain common sense. The main point
is that sensible scalings should reveal the primary balances between physical
mechanisms in equations, leaving the remaining terms as smaller corrections, at
least at first sight (it often happens that what we thought was a small correction
later on rises up and hits us between the eyes: but that’s all part of the expe-
rience). If we have the wrong scalings, it usually becomes apparent fairly soon.
In later chapters we give an introduction to asymptotic analysis, a framework
which allows us to make the idea of approximate solution more systematic.

Sources and further reading

Acheson’s book From Calculus to Chaos [1] has a lot more on the pendulum.
The flagpole problem was lifted from the book of Fowkes & Mahoney [17], where
many more details will be found. It is here partly as an exercise in scaling, but
also as an introduction to the beam equation.

3.4 Exercises

1. Advection-diffusion. If T (x, t) is the temperature in an incompressible
fluid which is moving with velocity u, explain why the heat flux is

ρcTu− k∇T.
Take an arbitrary small volume V fixed in space, write energy conservation
in the form

d

dt

∫

V

ρcT dV +
∫

∂V

(ρcTu− k∇T ) · n dS = 0,

then use the divergence theorem and ∇ ·u = 0 to derive (3.1). [Note that
in the derivation on page 40 we used incompressibility to say that the
density in the material volume remains constant. If the fluid is compress-
ible, we have to worry about what we mean by the specific heat, because
the density changes. That is, we have to think carefully about the ther-
modynamics of the problem. Fortunately, for most liquids the density

12At large Reynolds number the flow is turbulent and so unsteady; the drag coefficient must
be interpreted as a time average.
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change with temperature is small enough to be neglected in the convec-
tive derivative (although not necessarily in the buoyancy body force). In
gas dynamics, two specific heats are considered, one at constant pressure
and one at constant volume.]

2. Peclet numbers. Consider the advection-diffusion problem of Figure 3.1
on page 41. Show that other possible length scales are

κ

U
,

k(T∞ − T0)
ρU3

.

If we use the first, what happens to the boundary r = a, and why might
this be inconvenient? Explain why the denominator of the second is a
kinetic energy flux and hence why it is an inappropriate length scale for
this problem.

3. The Boussinesq transformation. Consider the steady-state dimen-
sionless advection-diffusion problem

Pe
(
u
∂T

∂x
+ v

∂T

∂y

)
= ∇2T,

in which the velocity is given by potential flow past a two-dimensional
body (not necessarily a circular cylinder) with potential φ and stream-
function ψ:

u =
∂φ

∂x
=
∂ψ

∂y
, v =

∂φ

∂y
= −∂ψ

∂x
, ∇2φ = ∇2ψ = 0.

Switch from (x, y) to (φ, ψ) as independent variables, so that

∂

∂x
=
∂φ

∂x

∂

∂φ
+
∂ψ

∂x

∂

∂ψ
= u

∂

∂φ
− v

∂

∂ψ

etcetera,13 to show that the problem becomesNote that the left-hand side is
the directional derivative of T
along streamlines, which are
orthogonal to the
equipotentials (why?).

Pe
∂T

∂φ
=
∂2T

∂φ2
+
∂2T

∂ψ2

in the (φ, ψ) plane. If the flow is symmetric, what are to the boundary
conditions in the new variables? (This problem can be solved by the
Wiener–Hopf technique, but it is a complicated business.)

4. The Kirchhoff transformation. Suppose that the thermal conductivity
of a material depends on the temperature. Show that the steady heat
equation

∇ · (k(T )∇T )) = 0

can be transformed into Laplace’s equation for the new variable u =∫ T
k(s) ds.

13A shortcut: because φ+ iψ is an analytic (holomorphic) function w(z) of z = x+ iy, the
Cauchy–Riemann equations let us simplify the Laplacian operator to

∂2

∂x2
+

∂2

∂y2
=

ŕŕŕŕ
dw

dz

ŕŕŕŕ
2 ţ

∂2

∂φ2
+

∂2

∂ψ2

ű
.
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5. Newton’s law of cooling and Biot numbers. The process of cooling
a hot object is a complicated one. In addition to conduction to the sur-
roundings, it may involve both forced and natural convection if the body
is immersed in a liquid or gas; there may be boiling, or thermal radiation.
A very widely used model lumps all these effects into a single linear law,
known as Newton’s law of cooling : the heat flux per unit area from the
body is given by

−k ∂T
∂n

∣∣∣∣
boundary

= h(T − T∞),

where h is the heat transfer coefficient and T∞ is a measure of the ambient
temperature. What are the units of h? Explain in general terms why this
law is reasonable (including the minus sign).

There are many empirical laws giving h in specific circumstances. For the
specific example of black-body radiative transfer, it can be derived from
more basic thermodynamics. Recall that the Stefan–Boltzmann law says
that the heat flux is

KT 4 −KT 4
∞,

where T is the absolute temperature and K is a constant (what are its
units?). Show that the Newton law is a good approximation if T is not
too far from T∞ and find h in this case.

If the body has typical temperature T0 and size L, write the Newton law
in dimensionless form as

−∂T
′

∂n′
= BiT ′

where Bi = hL/k is known as a Biot number. How is T ′ related to T?

6. Coffee time. Alphonse takes milk in his coffee and he has to carry the
cup a long way from the machine to his desk. He wants the coffee to be
as hot as possible when he gets there. Make a simple model to decide
whether it is better to add the (cold) milk to the coffee at the machine or
at his desk.

Still on the subject of coffee, Bérénice takes sugar in hers. At time t = 0
she puts a lump in. If V (t) is the volume and A(t) the surface area of the
undissolved lump, and the coffee is well-mixed, explain (on dimensional
grounds) why a crude model for the evolution is

dV

dt
∝ −A, A ∝ V

2
3 .

Solve the model and show that V reaches zero in finite time.

Now solve the differential equation

dV

dt
= V

2
3 , t > 0; V (0) = 0.

I hope you found all the solutions:

V (t) =

{
0, 0 < t < t0,(

1
3 (t− t0)

)3
, t ≥ t0,
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for any t0 ≥ 0; the nonuniqueness arises because the right-hand side V
2
3 Your opportunity to review

the Picard theorem on
existence and uniqueness for
first-order differential
equations.

is not Lipschitz in V . (The solution V ≡ 0 of the differential equation is
tangent to all the solutions V =

(
1
3 (t− t0)

)3.)

Hercule asks the question: if I observe the state of the sugar in Bérénice’s
coffee, can I deduce when she put it in? Show that he can do this if the
lump is only partly dissolved but he can’t if it is wholly gone. Hence give
a physical interpretation of the non-uniqueness result immediately above.
(Ivar Stakgold told me this example. I am happy to return the favour by
recommending his book on Green’s functions etc.; see page 134.)

7. Boiling an egg. A spherical homogeneous (ie purely mathematical) egg
of radius a is placed in cold water at temperature T0, the egg being initially
at this temperature too. Over a time t0 the water temperature Tw is
increased linearly to T1, where it remains. The temperature T in the egg
is modelled by the heat conduction equation

ρc
∂T

∂t
= k∇2T,

where ρ is the density, c the specific heat capacity and k the thermal
conductivity of the egg, all assumed constant, with the Newton boundary
condition

−k ∂T
∂r

∣∣∣∣
r=a

= h(T − Tw).

Make the model dimensionless and identify the dimensionless parameters.
What possible regimes might there be and how can you see this by looking
at the size of your dimensionless parameters?

Is there any difference in your analysis if the egg is boiled by the traditional
method of putting it into boiling water (assume the water temperature
remains constant) and leaving it there while you sing your national anthem
or a song of the right duration (in England, the hymn Onward Christian
Soldiers is traditional for this purpose)?

8. Flagpole in an earthquake. Suppose a flagpole is in still air, but that
its base y = 0 is oscillated horizontally by an earthquake, so that the
condition y(0, t) = 0 is replaced by

y(0, t) = a cosωt, (3.6)

the other boundary conditions remaining as

yx(0, t) = 0, yxx(L, t) = yxxx(L, t) = 0. (3.7)

Nondimensionalize the unsteady unforced flagpole (beam) equation

ρAytt + EAk2yxxxx = 0 (3.8)

using the timescale 1/ω implicit in the boundary condition (3.6). What is
the appropriate scale for y?

What is the radius of gyration of a circular cylinder of radius a?
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A circular pole is 10 m high, and has a radius of 10 cm. It is made of
steel for which Es = 2.0 × 107 kg m−1 s−2, ρs = 7.8 × 103 kg m−3, and
the oscillations are at a frequency of 1 Hz. What is ω? It is desired to
simulate the behaviour of this pole using a wooden model of radius 1 cm
and with the same value of ω. Given that Ew ≈ Es/20, ρw ≈ ρs/13, how
long should the model be?

9. Flagpole under gravity. Show from a vertical force balance that a
vertical flagpole is subject to a compressive force C(x) which satisfies

dC

dx
= −Aρg

(g is the acceleration due to gravity), with C(L) = 0. Hence find C; what
is its value at x = 0, why?

It can be shown (see Section 4.1) that the effect of gravity is to modify
the flagpole equation to

ρAytt + (Cyx)x + EAk2yxxxx = 0

(the new term is just like the tension in the equation for waves on a string,
but it is on the other side of the equation because C is a compression =
negative tension). What is the dimensionless parameter that measures the
relative importance of gravity for the pole of question 1? How big is it in
that situation?

10. Normal modes of strings and flagpoles. A string with mass density
ρ per unit length is stretched between x = 0 and x = L to tension T . The
end x = L is held fixed, while the end x = 0 is oscillated transversely at
frequency ω so that its displacement there is y(0, t) = a cos(ωt). Find the
time-periodic solution y(x, t) = f(x) cos(ωt); does it exist for all ω and if
not, what happens at the exceptional value(s)?

Show that the dimensionless unsteady flagpole equation of question 8 has
solutions of the form eiωt×cos / sinαx×cosh / sinhαx and find α. (Strictly
voluntary, because rather hard work: find the time-periodic solution; you
may want to use a symbolic manipulator such as Maple.)

11. Potential flow has slip. Suppose that a potential flow of an inviscid
irrotational flow satisfies the no-slip condition u = ∇φ = 0 at a fixed
boundary. Show that the tangential derivatives of φ vanish at the surface
so that φ is a constant (say zero) there. Show also that the normal deriva-
tive of φ vanishes at the surface and deduce from the Cauchy–Kowalevskii
theorem (see [42]) that φ ≡ 0 so the flow is static. (In two dimensions, you
might prefer to show that ∂φ/∂x − i∂φ/∂y is analytic (= holomorphic),
vanishes on the boundary curve, hence vanishes everywhere.)

12. A layer of viscous fluid flowing on a surface. A uniform layer of
viscous fluid, of thickness h, flows down a plane inclined at an angle θ
to the horizontal, so that the acceleration due to gravity down the plane
is g sin θ. Show on dimensional grounds that the flux (per unit length
‘into the page’) is proportional to h3g sin θ/ν, where ν is the kinematic
viscosity.
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Explain (in terms of a force balance) why appropriate conditions at the
free surface y = h are σijnj = 0, where σij is the stress tensor.

Take coordinates x downhill along the plane and y normal to it. Show
that there is a solution u = (u(y), 0, 0) and that the free surface conditions
reduce to p = 0, ∂u/∂y = 0. Find u(y) and verify the dimensional analysis
for Q =

∫ h

0
u(y) dy. Show also that this solution corresponds to one half

of the Poiseuille flow of question 14 (see Figure 20.2 on page 250).

13. Dimensional analysis of Poiseuille flow. In a Poiseuille flow down
a pipe, a Newtonian viscous fluid is forced down a circular tube of cross-
sectional area A (or radius a) and length L by a pressure drop ∆P . Con-
firm that there are the following 6 independent physical quantities in this
problem, and state their dimensions: L and a (or

√
A), which are prop-

erties of the pipe; µ and ρ, which are properties of the fluid; the input or
output variables (specify one and find the other), ∆P and either a volume
flux Q or an average velocity U . How is U related to Q and A?

Use Buckingham to show that there are 3 independent dimensionless quan-
tities and find them in their most useful forms. If this problem has aObviously you can take

products etc., but try to single
out the best combinations.

steady solution show that they are related by an equation of the form

∆P = ρU2F (Re, L/a)

Re being the Reynolds number Ua/ν.

If we further assume that our pipe is very long so that we have translational
invariance along it, then instead of ∆P and L as independent physical
quantities, we only have the pressure gradient P ′. Show that

P ′ =
ρU2

a
φ(Re)

for some function φ.14

Using the information in the footnote, find relations between the volume
flux and the pressure drop (a) for slow flow (b) for fast flow with Re <
2000. How does the flux depend on the radius in each case?

Why does water come out of the tap (or a garden hose) in a thin but very
fast jet when you put your finger over the end, but not when you take it
away? If your WC is refilling, and you turn on a cold tap connected to
the same water supply, why does the cistern stop making that sshh noise?

14. Poiseuille flow: exact solution. Consider the two-dimensional version
of the flow of the previous exercise, in which a viscous liquid flows in

14As Re → 0, we have the analytical result (see Exercise 14) that φ ∼ (8Re)−1. Even
though the flow from which this is derived is an exact solution of the Navier–Stokes equations
for all Re, it is unstable. The effective drag for large Reynolds numbers is derived from mea-
surements of time averages of much more complicated unsteady flows. This leads to empirical
approximations such as φ ≈ 32/Re for Re < 2000, and for Re > 3000 φ is approximately half
the root of

1√
Φ

= 2 log10

ş
Re
√

Φ
ť
− 0.8.
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the x–direction between two parallel plates at y = ±a under a pressure
gradient P ′. Assuming that

∂

∂x
(everything except p) = 0,

∂p

∂x
= P ′,

show that there is an exact steady solution of the Navier–Stokes equations
in which the velocity is (u(y), 0) where

µ
∂2u

∂y2
= P ′.

Applying the no-slip condition at y = ±a, find u(y) and hence the flux
per unit length in the x–direction. Repeat the calculation for a circular
pipe, using cylindrical polar coordinates with the z axis along the pipe.
You should verify that, when the flow is radially symmetric with velocity
(0, 0, w(r)), the Navier–Stokes equations reduce to

∂2w

∂r2
+

1
r

∂w

∂r
=
P ′

µ
.

“It’s constant for all time.”
“What, the same constant?”
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Chapter 4

Case studies: hair
modelling and cable laying

In the next three chapters, we look at three ‘real-world’ problems, which all
arose in industry. There are three reasons for presenting these case studies.
One is simply to give some examples of modelling in action (the only way to get
good at it is to do it). Another is to illustrate the techniques of the previous
chapter in a less academic setting. Finally, we shall use these case studies, and
others presented later in the book, to illustrate the techniques we develop later,
although we do not have room to give full details of all that has been done on
these problems (much of which is, ultimately, numerical). References to the
literature are given at the end of the chapter.

You can skip these chapters and still read much of this book. Although
you won’t have wasted your money entirely, you will miss out on some nice
applications of the methodology we describe later.

Both the models of this chapter are based on the Euler–Bernoulli beam
equation for the bending of a slender elastic beam. This is such a common
model (we have already seen it in the context of flagpoles) that it merits its own
section, following which I have included a short section on the topical problem
of modelling of hair. Then we turn to the problem of building a model for cable
laying.

4.1 The Euler–Bernoulli model for a beam

We wrote down the Euler–Bernoulli model for the displacement of a slender
nearly straight beam in Section 3.1.3. In fact there is no requirement for the
beam to be straight, but it must be slender for a crucial assumption in the
following model to hold. Let us therefore consider a beam, or slender elastic
rod, lying along the curve r = (x(s), y(s)) in the plane (the equations are much
more complicated in three dimensions). Here s is arclength, and if we let θ(s)
be the angle between the curve and the x–axis, we have

dx

ds
= cos θ,

dy

ds
= sin θ,

dθ

ds
= κ,

where κ is the curvature.

59
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M(s)

fy δs

Fy(s+ δs)

Fx(s+ δs)

fx δs

Fy(s)

Fx(s)

M(s+ δs)

Figure 4.1: Forces and moments on an element of a beam.

Now look at Figure 4.1, which shows a small element of the beam, of length
δs. The forces acting on the boundary of the element are the internal elasticIf the beam is nearly straight

and lies along the x–axis, you
can think of Fx as a
tension/compression.

forces acting on its ends (there are no forces on the curved side), and there is
also a body force with components (fx, fy) per unit length. We write the elastic
forces at the ends as (Fx(s), Fy(s)) and (Fx(s+ δs), Fy(s+ δs)) respectively. In
equilibrium the difference between these must cancel the body force (fx, fy)δs,
and taking δs→ 0 we find the force balance equations

dFx

ds
+ fx = 0,

dFy

ds
+ fy = 0.

Now, unlike a string, a beam resists being bent, by generating an internal bend-
ing moment M(s) to balance the moment of the internal forces. This leads to a
net moment on the element of M(s+ δs)−M(s). Balancing this by the result
of resolving the internal forces normal to the beam and taking moments about
the left-hand end of our element, we find the equation

dM

ds
− Fx sin θ + Fy cos θ = 0.

Let us pause for a moment and count equations and unknowns. The un-
knowns are θ (from which we can find x and y by integration), Fx, Fy and
M , and we have three equations. However, we haven’t yet said anything about
the material the beam is made from: we need a constitutive relation to tell us
something about how the forces and displacements are related. For a beam that
started off straight and is bent into a curve, a good model is that

M = b
dθ

ds
,

that is, the bending moment is proportional to the curvature (stop and think
why this is reasonable). A systematic derivation of this condition starting from
the equations of linear elasticity is surprisingly difficult, but it can be done by
the methods of Chapter 20. At any rate, it can be shown that the constant of
proportionality b, known as the bending stiffness, is equal to EAk2 where, as
before, E is the Young’s modulus, A the cross-sectional area of the beam, and
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k the radius of gyration of that cross-section. The missing equation is thus

dM

ds
= EAk2 dθ

ds
.

It is easy to eliminate M , so we find the system

dFx

ds
+ fx = 0,

dFy

ds
+ fy = 0, EAk2 d

2θ

ds2
− Fx sin θ + Fy cos θ = 0 (4.1)

for Fx, Fy and θ. It is then straightforward to show that when the beam is
straight and nearly along the x–axis, so that θ ≈ dy/dx, we recover the system

EAk2 d
4y

dx4
− d

dx

(
Fx

dθ

dx

)
− fy = 0,

dFx

dx
+ fx = 0,

which is a generalisation of the flagpole equations to include body forces in both
directions.

4.2 Hair modelling

One of the fastest growing customers for mathematical modelling is the en-
tertainment industry. The main drivers are the demand for realistic real-time
simulation in computer games, and the trend towards photo-realistic animated
characters. Long hair and clothes are notoriously difficult to model; for example
in the 2001 film Final Fantasy, about 20% of the production time was devoted
to the 60,000 strands of lead character Aki’s hair.1 In this short section we look
at a very simple model for hair, in which each strand is treated individually
and does not interact with its neighbours. This is only one of several possible
models for hair, and at the time of writing this is a wide-open research area.

The idea is to treat the hair as an elastic rod of cross-sectional area A and
density ρ, under gravity. Thus we just use the model of the previous section,
with gravity providing the body force:

dFx

ds
= 0,

dFy

ds
− ρgA = 0, b

d2θ

ds2
− Fx sin θ + Fy cos θ = 0,

with the constitutive relation M = b dθ/ds. Now the hair has a free end, at
which Fx = Fy = 0, so measuring s from there we can easily find Fx and Fy,
leaving the equation

b
d2θ

ds2
+ ρgAs cos θ = 0

for θ. Appropriate boundary conditions are quite easy in this case, as we can
expect to prescribe θ where the hair enters the head (say normally), and we’ll
have dθ/ds = 0 at s = 0 because that end of the hair is free. This is a relatively
straightforward two-point boundary value problem to solve numerically using
any of a variety of packages, although because this nonlinear system may have

1Water, with its longer mathematical pedigree, has been more successfully treated, a fa-
mous example being the ocean in Titanic, much of which was computer generated. It is said
that a mathematician pointed out that the algorithm for waves did not conserve mass, and
received the Hollywood mogul’s reply, “I don’t give a flying fish [actually, he used another
word] if it loses mass, so long as it looks good”. Ho hum.
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h
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F
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θ

Figure 4.2: Cable laying from a ship.

bifurcations the software must be able to handle these. Solutions of this equation
do indeed do more or less what real hair does, although the neglect of hair-
hair interactions is a serious defect of the model. See the exercises for further
properties of this problem.

4.3 Undersea cable-laying.

Cables and pipelines have been laid under the sea since the first electric tele-
graphs; nowadays they often hold optical fibres. Several factors compete in
the design of cables: for example, strength and durability dictate large cables,
while expense and speed of laying dictate thin ones. The process of laying is a
dangerous time in the life of a cable, and very precise control of the operation
is necessary to avoid damage while maximising the laying speed. In this case
study, which recurs in Chapter 16, we look at a model of the process of laying a
cable from a ship, as shown in Figure 4.2. We consider the steady-state model,
as a first step towards developing a dynamic model to enable real-time control
of the operation.

As the ship moves forward the cable is unreeled from a large drum and passes
through a ‘tensioner’, shown as a box above the stern of the ship. This has the
effect of prescribing the angle at which the cable leaves the ship. The ship exerts
a force F on the cable, which also experiences buoyancy forces as it sinks to
the sea bed. Our objective is to set up a model which allows us to calculate
the shape of the cable (where does it feel the greatest stresses?) and the thrust
needed from the ship.

4.4 Modelling and analysis

Taking an origin at the point where the cable touches the sea bed, a distance h
below the surface, we denote its position by (x(s), y(s)) for 0 < s < L, where
the wetted length L is as yet unknown. (For simplicity we are going to ignore
the small length of cable in the air astern of the ship.) The angle between the
cable and the horizontal is θ, as before, and the unit tangent and normal to the
curve are t = (cos θ, sin θ) and n = (− sin θ, cos θ) respectively.

We are going to solve the beam system (4.1), and the main difficulty is in
writing down the external forces fx and fy. There are three forces on the cable:
one is its weight, a second is buoyancy, and a third is is drag from the water.
The weight of the cable is easy, just contributing a term −ρcgA to the equation
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ρwgAδs sin θ

ρwgAδs cos θ

θ

θ

ρwgAδs

Figure 4.3: Hydrostatic force on a cylinder.

for Fy, where ρc is the density of the cable. We will focus on the buoyancy (the
drag is dealt with in an exercise). Having completed the model, we then need
to decide what boundary conditions to apply at s = 0 and s = L. The solution
of the resulting two-point boundary value problem for a system of ordinary
differential equations will almost inevitably be carried out numerically, again
using a two-point boundary value problem solver, although in Chapter 16 we
also look at an approximation for cables with low bending stiffness.

The buoyancy force (Bx, By) per unit length on the cable is entirely due to
hydrostatic pressure, and rather surprisingly it is not just the usual ‘weight of
water displaced’, but instead has two constituents. They both stem from the Old chestnut, claims new

victims every year: you are in
a boat on a lake, and you
throw a brick over the side.
Does the water level rise, fall
or stay the same?

ordinary Archimedes force, but we have to be careful in evaluating it. Con-
sider a cylindrical element as in Figure 4.3. If the ends of the cylinder were
exposed to the water, the buoyancy force would be equal to the weight of the
water displaced, namely ρwgA per unit length, acting vertically upwards (see
Exercise 4 to prove this). Remembering that the pressure acts normally to the
surface, and resolving along and normal to the cylinder, what remains after we
have subtracted the contribution from the ends is a force per unit length of
ρwgA cos θ along the normal.

However, our cylinder is not quite straight. As shown in Figure 4.4, the
surface area on the ‘outside’ of a bend is bigger than that on the ‘inside’, and
so if a pressure p, here the hydrostatic pressure ρwg(h − y), acts on a curved
cylinder like this (but not on its endpoints), there is a net force in the normal
direction. It is fairly clear that this extra force is proportional to the curvature
— the area surplus/deficit is proportional to the rate of change of θ with s —
and it can be shown (see Exercise 5) that the magnitude of this contribution
to the buoyancy force is pAκ per unit length, so the total buoyancy force is
ρwgA cos θ + pAκ along n.

Substituting Bx and By into the beam model, we finally have

dFx

ds
+Bx = 0,

dFy

ds
+By − ρcgA = 0, EAk2 d

2θ

ds2
− Fx sin θ + Fy cos θ = 0,

(4.2)
where

(Bx, By) =
(
ρwgA cos θ + pA

dθ

ds

)
(− sin θ, cos θ). (4.3)
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Figure 4.4: Normals on a slightly bent cylinder.

4.4.1 Boundary conditions

We need four boundary conditions for this system in order to fix Fx, Fy and
θ (there are two first-order equations and one second-order one). Having done
this, we will integrate dx/ds = cos θ, dy/ds = sin θ from s = 0 to s = L, with
the initial conditions x(0) = y(0) = 0. Then the condition y(L) = h will tell us
L and x(L) will tell us the horizontal distance between touchdown of the cable
and the ship. Of course, these integrations must be carried out numerically, and
on the face of it the equations are even more nonlinear than the hair model; but
read on.

Let us first think about the conditions at s = 0. We expect the cable to
leave the sea bed smoothly, so we impose

θ = 0,
dθ

ds
= 0 (4.4)

at s = 0. The second of these conditions says that the bending moment is
continuous at this point. As we shall see in Section 9.5.2, only a point force
could cause a discontinuity in M .

Nothing else obvious can be applied at s = 0, so let us look at s = L. Here we
know the angle at which the cable leaves the ship, and we know the horizontalIn the language of beam

equations, we are imposing
‘clamped’ boundary
conditions.

force Fx:
θ = θ∗, Fx = F (4.5)

at s = L. These complete the boundary conditions.

4.4.2 Effective forces and nondimensionalisation

Before we scale equations (4.2)–(4.5), we note a potentially serious difficulty, and
a neat extrication from it. Because p is hydrostatic, we have p = ρwg(h − y).
But this means that the p in (4.3) depends on y, and our scheme of only solving
for y after finding θ looks doomed: it seems that the system is fully coupled.
However, there is a deus ex machina. We first note that dp/ds = −ρwg dy/ds =
−ρwg sin θ. Then, we define effective horizontal and vertical forces by

F e
x = Fx + pA cos θ, F e

y = Fy + pA sin θ,

so that
dF e

x

ds
=
dFx

ds
− pA sin θ

dθ

ds
+A cos θ

dθ

ds
,
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and similarly for dF e
y /ds. When we substitute in (4.3), all the terms involving

p vanish, and as F e
x = Fx at y = 0 where p = 0, there is no problem in applying

the boundary condition (4.5). (The variables Fx and Fy are only steps on the
way to θ, which is what we really need; so there is no loss in our not calculating
them.)

Carrying out this simplification, we arrive at the system

dF e
x

ds
= 0,

dFy

ds
= ρcgA, EAk2 d

2θ

ds2
− F e

x sin θ + F e
y cos θ = 0,

with the boundary conditions

θ = 0,
dθ

ds
= 0

at s = 0, and
θ = θ∗, F e

x = F

at s = L.
We scale x, y and s with h, and choose to scale F e

x , F e
y with ρcgAL. Im- Consistency: check that the

scale for F e
x is indeed a force.

It is probably slightly
preferable to use this scale
rather than F because F may
be an unknown.

mediately dropping the primes, we have the dimensionless model

dF e
x

ds
= 0,

dFy

ds
= 1, ε

d2θ

ds2
− F e

x sin θ + F e
y cos θ = 0, (4.6)

with the boundary conditions

θ = 0,
dθ

ds
= 0 (4.7)

at s = 0, and
θ = θ∗, F e

x = F ∗ (4.8)

at s = λ, where the three dimensionless parameters are

ε =
Ek2

ρcgh3
, F ∗ =

F

ρcgA
, λ = L/h;

note that λ is unknown.
We can do a little better still: we can find F e

x and F e
y explicitly, and substi-

tuting into the equation for θ we have

ε
d2θ

ds2
− F ∗ sin θ + (F0 + s) cos θ = 0, (4.9)

in which F0 = F e
y (0) is an unknown constant. Although this is a second-order

equation, there three boundary conditions for this equation, namely the relevant
parts of (4.7), (4.8), and so we have an extra equation to tell us this unknown
constant F0.

We return to this problem in Chapter 16, where we show how to construct an
approximate solution when ε is, as its name suggests, small, as is the case when
the cable is heavy or the water is deep (it is clear that ε measures the relative
importance of bending stiffness and cable weight). This kind of boundary value
problem, with a small parameter multiplying the highest derivative, is often
known as ‘stiff’ in a numerical context, and there are many specialised ‘stiff Even though the beam is

anything but stiff!solvers’ to handle these problems.
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F F

Figure 4.5: The Euler strut.

Sources and further reading

The cable-laying problem was proposed by British company BICC; it is a sim-
plified version of more complicated three-dimensional ‘upwinding’ problems to
do with the winding of wire onto a reel (the twist, or torsion, of the wire plays
an important role in these situations).

4.5 Exercises

1. The Euler strut (i). A thin rod of length L and bending stiffness b is
clamped at each end and is compressed by a force F , as in Figure 4.5.
Adapt the analysis of Section 4.1 to derive the dimensionless boundary
value problem

d2θ

ds2
+ α2 sin θ = 0, θ(0) = θ(1) = 0,

for the angle between the rod and the x axis, where α2 = FL2/b. Show
that θ = 0 is always a solution; what does it represent?

Now suppose that θ is small. Assuming that sin θ ≈ θ (we will do this
in more detail in Exercise 7 of Chapter 13), write down an approximate
linear two-point boundary value problem for θ, and show that its only
solution is θ = 0 unless α = nπ for integral n. Deduce that as F is
increased from zero, it is first possible to have a non-trivial solution (θ 6= 0)
when FL2/b = π2 and sketch the resulting solution. What happens when
FL2/b = 4π2?

This appearance of a non-trivial solution as a parameter varies is known
as a bifurcation. This one is easy to illustrate in practice with, say, a
plastic ruler. On a larger scale, when putting up a modern tent with a
carbon fibre pole, you have to bend the pole to fit it into its sockets. As
you do so by bringing the ends together, starting with a straight pole,
you initially go through the first buckling mode α = π. You may also see
the second mode if the pole is long enough. (Do not try to put your tent
up in a thunderstorm. If you were struck by lightning, why would it be
more likely to hit the end of the pole than the middle, even if the latter
is higher?)

Buckling can also occur when the pole is held vertically, so the gravity
supplies the compression, as the next example shows.

2. Groan. Take the hair model

b
d2θ

ds2
+ ρgs cos θ = 0

with the boundary conditions θ = θ0 (given) at s = 0 and dθ/ds = 0 at
s = L; explain what these conditions model. Look for a solution for a
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Figure 4.6: The Airy functions. Ai(0) = 3−
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nearly vertical hair. That is, write θ = ±π
2 + φ and derive two versions

(related by ξ ↔ −ξ) of the Airy equation That’s ’orrible.

d2φ

dξ2
± ξφ = 0, 0 < ξ < ξ0 = L

√
ρg/b

where ξ is a suitably scaled version of s. Which of ± is for upward-pointing
hair and which for downward-pointing?

Taking the − sign for the standard definition, Airy’s equation has linearly
independent solutions Ai(ξ), Bi(ξ), which for ξ < 0 both oscillate with
an amplitude that decays as |ξ|− 1

4 (in Chapter 23 we see why), while for
ξ > 0 one grows rapidly and one decays, as in Figure 4.6. What sort of Compare y′′ + λy = 0 for

λ > 0, λ < 0.solutions do you expect to see for (a) upwards (b) downwards pointing
hair?

Show that as ξ0 varies an upward-pointing hair can buckle via a bifurcation
away from the vertical solution, and find the shortest length at which it
does so in terms of Ai and Bi. Using the fact that, for x > 0, Ai(x)
is decreasing and Bi(x) is increasing, show that downward-pointing hairs
cannot buckle away from the vertical solution.

3. Waving hair and unsteady beams. Consider an unsteady version of
the Euler–Bernoulli beam model, in which the beam is parametrised as
(x(s, t), y(s, t)). Justify the model

∂Fx

∂s
+fx = ρA

∂2x

∂t2
,

∂Fy

∂s
+fy = ρA

∂2y

∂t2
,

dM

ds
−Fx sin θ+Fy cos θ = 0,

provided that the rate of change of angular momentum of the element can
be ignored. Show that for a straight beam under constant tension the
equation of motion for small displacements is

ρA
∂2y

∂t2
+ b

∂4y

∂x4
− T

∂2y

∂x2
= 0,

where T is the tension (that is, Fx) and gravity has been ignored.
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4. Eureka! Dot both sides with a constant vector and use the divergence
theorem to show the identity

∫

∂V

Φn dS =
∫

V

∇Φ dV

for sufficiently regular scalar functions Φ and volumes V . Put

Φ = ρwg(constant− y)

to derive Archimedes’ principle: the buoyant force on a body immersed
in water of density ρw is equal to the weight of the water displaced. Well
worth jumping out of the bath for.

Inspect the first term on the right-hand side of formula (4.3) for the buoy-
ant force on an element of a submerged cable. What happens if θ = π

2 ?
Do you believe this? Would a cylindrical stick held vertically in water rise
when let go? Resolve the apparent paradox.

Calculate the total moment of the pressure forces on the body by inte-
grating r ∧ (−pn) over its surface, and deduce that the couple they exert
is the same as if the buoyancy force acts through the centre of mass of the
body (assuming it to have uniform density). You will need to prove the
vector identity

∫∫

∂V

φx ∧ n dS =
∫∫∫

V

x ∧∇φdV

for sufficiently smooth vectors x and scalars φ.

5. Hydrostatic force on a bent cylinder. Consider the cylinder of fig-
ure 4.4, and suppose that arclength measured along the centreline is s0
at the left-hand end and s0 + δs at the right-hand end. Suppose that
the centreline has position r0(s) = (x(s), y(s), 0) and that the cylinder is
circular in each plane normal to this line, with radius ε. Suppose thatThe correction due to

hydrostatic variation in
pressure over the element
vanishes when δs→ 0.

a constant pressure p acts normally to the curved surface of the cylinder
(but not the ends).

Show that the tangent vector to the centreline is t(s) = (cos θ(s), sin θ(s), 0)
and the normal (in the (x, y) plane) is n = (− sin θ, cos θ, 0). Show that t,
n and b = t ∧ n = (0, 0, 1) are orthonormal. Show that a point on theThis will be familiar if you

have done the Serret–Frenet
formulae from differential
geometry.

surface can be written in the form

r = r0(s) + ε cosφn(s) + ε sinφb(s), s0 < s < s0 + δs, 0 ≤ φ < 2π.

Explain why
∂r
∂φ

∧ ∂r
∂s

is normal to the surface and why the unit normal to the surface and surface
area element are

N = n cosφ+ b sinφ, dS =
∣∣∣∣
∂r
∂φ

∧ ∂r
∂s

∣∣∣∣ dφds = ε(1− εκ cosφ) dφ ds,
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where κ = dθ/ds is the curvature of the centreline. Deduce that
∫

S

pN dS = πε2n δs,

and hence confirm formula (4.3).

6. Water drag on a cylinder. If a cylinder of radius a with axis in the (x, y)
plane, lying along a line making an angle θ with the x–axis, is placed in a
nearly inviscid fluid moving with far-field speed (U, 0, 0), explain why it is
reasonable that the drag per unit length on it is ρwU

2aCd(cos θ, sin θ, 0)
(see Chapter 3). Incorporate this force into the cable-laying model when
the ship moves forward with speed U , and identify the new dimensionless
parameter which tells you the relative importance of drag and buoyancy.

“If 10 corresponds to 23, then 23 is half of 45.”
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Chapter 5

Case study: the thermistor
(1)

5.1 Heat and current flow in thermistors

A thermistor is a temperature-dependent resistor. A typical thermistor is a
penny-shaped piece of a special ceramic material, about 1 mm thick and with
a radius of 5 mm, and with metal contacts on the flat faces. The kind we are
interested in becomes more resistive as it gets hotter, so it can be used as a fuse:
if the current through the thermistor surges for any reason, the resulting Ohmic
(I2R) heating increases the resistance and so cuts the current. The beauty
of this is that when the current surge goes away, the thermistor just cools
down and normal operation can resume without anybody having to replace a
fuse. Televisions have dozens of thermistors in them, and so do hairdryers as
a protection against overheating, which is why they switch themselves off for a
while if they get too hot.

There are various reasons for wanting to analyse the heat and current flow in
thermistors. One is the obvious question of design: how do the characteristics,
such as the switch-off time in response to a current surge, depend on the phys-
ical parameters? Another is an issue of quality control: some thermistors can
crack because rapid thermal expansion caused by large temperature gradients
stresses the material too much. The full analysis of cracking requires a model
for thermoelasticity, which is beyond the scope of this book; however, even an
order of magnitude estimate of the temperature gradients could be used as an
input to an ‘engineering’ rule of thumb for the likelihood of cracking.

5.1.1 A black box model

We can start by treating the thermistor as a single unit, all of which is at
the same temperature T (t) which depends on time alone. That is, we entirely
neglect the details of any heat flow within the component. We can then assign
a temperature-dependent resistance R(T ) to the thermistor; for the thermistors
we consider, R(T ) increases with T .

Suppose that we apply a constant voltage V0 across the device. By Ohm’s law
the current I(t) is V0/R(t), and the heat generated by this current is V 2

0 /R(t).

71
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0

V0

Figure 5.1: A thermistor: shaded regions are good (metallic) conductors.

Let us also suppose that heat loss to the environment can be represented by
an increasing function H(T ) which vanishes when T is equal to the ambient
temperature Ta (for Newton cooling, H(T ) is proportional to T − Ta). Then
the overall energy balance for a thermistor of mass m and specific heat capacity
c is

mc
dT

dt
=

V 2
0

R(T )
−H(T ),

an ordinary differential equation which can easily be solved, either numerically
or by separating the variables if the forms of R(T ) andH(T ) allow us to evaluate
the resulting integrals. Moreover, a simple graphical argument in which the two
functions on the right-hand side are plotted on the same graph shows that there
is always a steady state, and that it is unique.

This is alright as far as it goes, but it tells us nothing about the temperature
distribution within the thermistor. Moreover, it misses the important fact that
for some resistivity-temperature laws there may be no solution to a model in
which the temperature varies spatially, even though the ‘black box’ model above
always has a unique solution.

5.1.2 A simple model for heat flow

We now discuss a simple model for a thermistor on its own, with a voltage
V0 applied across it at t = 0; then we extend this to a thermistor in a simple
circuit. We need first to think about how electric current flows through a solid.
That is, we need a generalisation of Ohm’s law I = V/R for a resistor. This is
straightforward. We assume that there is a local version of Ohm’s law relating
the current density j (units A m−2) to the electric field E (V m−1) linearly:

j = σ(T )E

where σ(T ) is a material property called the conductivity, whose dependence onYou may be more familiar
with this as the resistivity
ρ(T ) = 1/σ(T ). What are its
units?

temperature T , which is intrinsic to the proper working of the device, is shown
explicitly. Now remember that there is an electric potential φ with E = −∇φ,
and that current is conserved, so that ∇· j = 0. Putting these together, we have

j = −σ(T )∇φ, ∇ · (σ(T )∇φ)) = 0.
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We can also easily write down boundary conditions for the potential. If, as
in Figure 5.1, the top and bottom of the thermistor are coated in an excellent
conductor, the potential is very nearly constant on each, while there is no current
through the sides. Thus, for t > 0, we have

φ = V0 on z = H, φ = 0 on z = 0

and
∂φ

∂n
= 0 on r = a

where (r, θ, z) are cylindrical polar coordinates with origin at the centre of the
bottom face, while H is the thickness and r the radius of the cylinder.

Now we need to write down a model for the heat generation and conduction.
That means we have to find a local version of the law for the power generated in
a resistor, V I = I2R = V 2/R. In a bulk flow, the local rate of heat production
(volumetric heating) is See the discussion of energy

and work on page 31. You
should check that the units are
correct at W m−3.

j ·E = σ|∇φ|2.
This appears as a source term in the heat equation for the temperature T (x, t),

Consistency: the heating term
is positive so it acts to make T
increase in time.

ρc
∂T

∂t
= k∇2T + σ|∇φ|2.

Boundary conditions for the heat equation are often problematical. The
isothermal or perfectly insulated conditions beloved of exam question setters
are rarely strictly applicable. It is safest to write down a Newton cooling law
(see page 53)

−k∂T
∂n

= h(T − Ta)

on the sides of the thermistor, where Ta is the ambient temperature and h
the heat transfer coefficient. Taking some liberties, we may hope to model the
cooling effect of the conducting top and bottom surfaces, together with the
connecting wire and its solder, by a similar condition but with a larger value of
h. Finally, because the heat equation is forward parabolic, we need an initial
condition, for example

T (x, 0) = Ta(x).

5.2 Nondimensionalisation

This problem is not too hard to nondimensionalise. In the first instance, let us
scale r and z with the thickness H, and time with the heat conduction scale
H2/κ, where κ = ρc/k is the thermal diffusivity and ρ, c and k are the density,
specific heat capacity and thermal conductivity respectively. Let us now think
about the temperature scale. The conductivity must change noticeably as the
temperature varies, or the device would be pointless, and we should be able to
identify a temperature change ∆T over which it does so. Let us, therefore, use
that as the temperature scale, writing T − Ta = ∆T u(x′, t′). Lastly we’ll use
the external voltage V0 as the scale for φ and the ‘cold’ value of the conductivity,
σ0, for σ(T ). (Notice that we have to scale known functions of T as well as T
itself.)
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Scaling and immediately dropping the primes, we have the dimensionless
equations

∇ · (σ∇φ) = 0,
∂u

∂t
−∇2u = γσ(u)|∇φ|2

for 0 < z < 1, 0 ≤ r < α = a/H. The boundary conditions are

φ = 0, 1 on z = 0, 1 respectively,
∂φ

∂r
= 0 on r = α,

and
∂u

∂n
+ β(x)u = 0

on the boundary, where the x–dependence of β models the difference between
the top/bottom and the side, β taking different values in the two cases.

There are now just three dimensionless parameters:

α =
a

H
, β =

hH

k
and γ =

σ0V
2
0

k∆T
.

Of these, α measures the aspect ratio, β the heat transfer, and γ the competition
between heat generation and conduction. When we put in typical physical
values, namely

ρ = 5.6× 103 kg m−3, c = 540 J kg−1 K−1, k = 2 W m−1 K−1,

σ0 = 2 Ω−1 m−1, ∆T = 100K,

V0 = 250V, r = 5× 10−3 m, H = 10−3 m,
h = 10 (sides) to 102 (top) W m−2 K−1,

we find that

α = 5, β = 10−2 (sides) to 10−1 (top), γ = 625.

Already we have learned a lot. We know that there are just three dimension-
less parameters, and that two are large and one is small. The large aspect ratio
α suggests that a one-dimensional model should perform well, and this notion
is reinforced by the fact that β is especially small at the sides of the device:
most of the heat generated will be lost through the top and bottom. The fact
that γ is very large suggests that we may have chosen the wrong timescale, at
least for the initial heating-up stage. However, the device does work, so the de-
crease of the conductivity as the temperature increases must eventually switch
the heating term off, large though it appears to be. If we rescale time by writing
t = γ−1τ , we find that

∂u

∂τ
= σ(u)|∇φ|2 +

1
γ
∇2u,

and with luck we can neglect the last term to simplify the problem considerably.
However, it is not likely that we can explain spatial variations in the temperature
without the last term, so there must be more to it than this. The full story is
outlined in Chapter 23.
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Thermistor

Switch

0
R0

V0

Figure 5.2: A thermistor in a circuit. The switch is closed at t = 0.

5.3 A thermistor in a circuit

In practice, our thermistor is likely to be part of a circuit, as shown in Figure 5.2,
where the rest of the circuit is represented by a resistor of resistance R0. This
introduces some minor complications, as we no longer know the voltage drop
across the thermistor, but instead we just have a relationship between this
voltage and the current through the device. The model inside the thermistor is
much as before, and there is no need to repeat the equations for T and φ. On
the top and bottom of the thermistor, though, we have

φ = 0, z = 0, φ = V (t), z = H,

where V (t) is not yet known. However, we can use Ohm’s law for the resistor
to say that the voltage drop across it is I(t)R0, where I(t) is the current in the
circuit, and then we have

V0 = I(t)R0 + V (t)

by whichever of Kirchhoff’s laws it is that says that the voltages round a closed
circuit sum to zero.1 We also have an expression for I(t), as it is equal to the
current flowing through the thermistor, namely Exercise: show from the

equations that this is the same
as the current density
integrated over the top face.

∫∫

z=H

σ(T )∇φ · n dS,

which is just the current density integrated over the bottom face. Thus, in this
case, the boundary condition for φ on z = H is

φ = V0 − 2πR0

∫ a

0

σ(T )
∂φ

∂z

∣∣∣∣
z=H

r dr.

The effect of the external resistance in the dimensionless model is to bring
in another parameter, from the boundary condition for φ. It is left to you to
show that, with the same scales as above, the dimensionless model is

∇ · (σ∇φ) = 0,
∂u

∂t
−∇2u = γσ(u)|∇φ|2

for 0 < z < 1, 0 ≤ r < α = a/H. The boundary conditions are

φ = 0 on z = 0,
∂φ

∂r
= 0 on r = α,

1See Exercise 2 on page 77.
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and
∂u

∂n
+ β(x)u = 0

as before, with the new conditionCan you see why α2 is
separated out, and why we put
the 2 in?

φ = 1− 2
δα2

∫ α

0

σ(u)
∂φ

∂z

∣∣∣∣
z=1

r dr,

where the 2 is for later convenience, and the new dimensionless parameter is

δ =
2

πHR0σ0α2
.

A typical value for this parameter, given R0 = 400 Ω, is 10−1, which is quite
small; note that formally setting δ = ∞ we retrieve the problem with no external
resistance.

5.3.1 The one-dimensional model

As we saw earlier, the large value of α and the small value of β on the sides of
the thermistor suggest that a one-dimensional model should be a good approx-
imation (we will have to wait until later in the book to see how to justify this).
In such a model, φ and u are independent of r, and so we have the simpler
problem

∂

∂z

(
σ
∂φ

∂z

)
= 0,

∂u

∂t
− ∂2u

∂z2
= γσ(u)

∣∣∣∣
∂φ

∂z

∣∣∣∣
2

for 0 < z < 1, while the boundary conditions are

φ = 0 on z = 0,

φ = 1− 1
δ
σ(u)

∂φ

∂z

∣∣∣∣
z=1

,

and
∂u

∂n
+ βu = 0 on z = 0, 1.

Notice that we can integrate the equation for φ(z, t) once: can you see the
physical interpretation of the result?

Some rather mathematical properties of this model are developed in the
Exercises, and we return to this case study in Chapter 17. In the meantime, we
move on to another case study with an electrical flavour.

5.4 Sources and further reading

The thermistor problem was brought to the Oxford Study Groups with industry
by the British company STC, and has provoked a large mathematical literature
for which [19] is a starting point.
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Exercises

1. Zero-dimensional thermistor in a circuit. Write down a model for
a thermistor in a circuit under the assumption that the temperature in
the thermistor is a function of time only. Does the resulting ordinary
differential equation always have a unique steady state solution?

2. Thermistor in a circuit; validity of Kirchhoff’s law. Strictly speak-
ing, adding together voltages in our circuit is not valid because the chang-
ing current generates a magnetic field which in turn generates a ‘back
emf’, a voltage which opposes the current change. Show that the the
back emf is small in our thermistor case study, as follows. (You may want
to refer back to the exercises in Chapter 2.) If the circuit has typical
length L, show that it is reasonable that a typical magnetic field strength
is B0 = µ0I0/(2πL) and that the current has size I0 = V0/R0. If E is the
electric field strength, the typical back emf magnitude is L times the scale
for E. Show from Maxwell’s equation

∇∧E =
∂B
∂t

that the back emf scale works out as µ0I0L/(2πt0), where t0 is the timescale
for changes in I(t). If, say, L = 10 cm, V0 = 250V and R0 = 500 Ω, this
is 10−8/t0; verify that t0 is a lot bigger than the timescale of 100/10−8

seconds necessary for the back emf to have magnitude 100 V. We can thus
neglect ∂B/∂t, so that ∇∧E ≈ 0; show that the change in voltage round
the circuit due to ∂B/∂t is

∮
E · ds ≈ 0.

3. One-dimensional thermistors. Consider the steady-state version of the
one-dimensional thermistor problem, with the (not very realistic) bound-
ary conditions that T = Ta on z = 0,H and with no external resistance.
Show that the dimensionless model is

∂

∂z

(
σ
∂φ

∂z

)
= 0,

∂2u

∂z2
= −γσ(u)

(
∂φ

∂z

)2

for 0 < z < 1, with

φ = 0, 1, u = 0 on z = 0, 1 respectively.

Explain why φ = 1
2 , ∂u/∂z = 0 on z = 1

2 . Integrate the equation for φ
once to show that

σ(u)
∂φ

∂z
= I

where I is a constant (what is its physical interpretation?). Substitute for
σ∂φ/∂z in the equation for u to show that

∂u

∂z
= −γ(φ− 1

2 )I,

and then substitute for (∂φ/∂z)2 in the same equation to show that

1
2γ(φ− 1

2 )2 =
∫ um

0

ds

σ(s)
,
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where um = u( 1
2 ) is the largest value of u, attained at z = 1

2 (why?).
Deduce that there can only be a steady solution if σ(u) is such that

∫ ∞

0

ds

σ(s)
<
γ

8
,

restate this inequality in dimensional terms, and interpret it physically.
Give an example of a function σ(u) for which it does not hold. What
do you think happens to the solution of an initial-value problem if the
inequality does not hold? Would we be more or less likely to have existence
of a steady state with Newton cooling conditions for u?

4. Thermistors and conformal mapping. Consider the steady-state
thermistor equations

∇ · (σ(u)∇φ) = 0, ∇2u = −σ(u)|∇φ|2

in two space dimensions but not necessarily in a rectangle. Suppose that
the boundary of the thermistor has two conducting segments, on which
u = 0 and φ = 0, 1 respectively, separated by two insulating segments on
which ∂u/∂n = 0, ∂φ/∂n = 0.

Show that this system remains invariant under conformal maps ξ + iη =Use the chain rule and the
Cauchy–Riemann equations. f(x+iy) for analytic (holomorphic) f . Given that it is possible to map the

thermistor region onto a certain rectangle with an obvious correspondence
of boundary parts, show that the restriction on existence derived in the
previous question holds irrespective of the geometry. (Note: the Riemann
mapping theorem guarantees that the thermistor can be mapped onto any
rectangle we choose, and that we can map three specified boundary points
onto three specified points on the boundary of the rectangle. For example,
we can map three of the ‘changeover’ points where the boundary conditions
switch onto three corners of the rectangle. However, we can only map
the fourth changeover point onto the fourth corner if the rectangle has a
specific aspect ratio. For more on conformal mapping see [6, 12] or, for
Matlab users, the Schwarz–Christoffel Toolbox of that package.)

“We need the decrease of a constant sphere. . . [Muttering]
. . . no, when the sphere is constant we need it to be decreasing. . . . . . slowly, I

mean.”



Chapter 6

Case study: electrostatic
painting

6.1 Electrostatic painting

Many paints are based on organic solvents which, after application, evaporate
and contribute to air pollution and global warming, and so they are coming un-
der increasing regulatory pressure. A more environmentally friendly alternative
for painting a metal object (workpiece) is to cover it with a layer of very small
resin paint particles which, when the workpiece is put into an oven, melt and
flow into into a smooth coating. (A similar process is used in ‘flocking’: here
an object is coated in glue and then covered with short lengths of charged fibre.
The charge makes the fibres stand on end, which is crucial to the final grass-like
effect.) The particles are ejected from a gun which gives them an electric charge,
and a potential difference is maintained between the gun and the workpiece, so
the particles feel an electrostatic force which moves them towards the workpiece.
On the other hand, they are also blown about by air currents, both imposed
and generated by their own drag on the air.

We would like to know something about the controlling parameters of this
process. In particular, we would like to get most of the particles to hit the
workpiece and not to be carried away by the air flow (which must of course go
round it). Do the particles influence the air flow, or are they passive? How thick
is the final layer of resin? An attractive feature of this method of painting is that

Gun

u

V

Workpiece

Figure 6.1: Electrostatic painting of an earthed metal workpiece.
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the electric field is strong, and so particles are especially attracted, at outward-
pointing corners, which are hard to cover well with traditional methods. A less
attractive feature is that it is very hard to see what is happening in the cloud
of paint particles. A mathematical model may help to answer some of these
questions.

6.2 Field equations

In this section, we begin to build a model of the painting process, by writing
down ‘field equations’ to describe the fluid velocity. In this problem, it helps to
start with some data, as that points to a reasonable model for the fluid/particle
interaction. The workpiece has a typical size L ≈ 1 m, and the observed air
velocities have size Ug ≈ 1 m s−1. The air density and dynamic viscosity are
ρg ≈ 1.3, µg ≈ 1.8× 10−5 in SI units (the kinematic viscosity νg is thus about
1.4 × 10−5 m2 s−1). The particles are tiny: they have radius a ≈ 10−5 m and
their mass is mp ≈ 10−12 kg. There is an enormous number of them, a repre-
sentative number density being n0 ≈ 109 per cubic metre of air. Lastly, turning
to the electrical aspects, each particle carries a charge qp of about 10−15 C, and
the applied voltage is V0 ≈ 105 V.

Now because the number density of particles is so large, the average particle
separation, 10−3 m, is very small compared with the workpiece dimension L but
very large compared with their mean radius a. It is reasonable to consider them
as isolated particles when we work out the force on them, but when we work
on larger length scales, we hope to get away with averaging their effects. We
therefore consider the evolution of their local number density, which we think
of as a continuous function n(x, t) representing the number of particles per unit
volume measured over a small volume whose diameter is much bigger than the
mean separation but much smaller than L. We proceed similarly in assuming
that there is a local average particle velocity vp(x, t), and when we calculate
the force exerted by the particles on the air: this is plausible if we can convince
ourselves that neighbouring particles all feel very similar influences from the
fluid, and all all have a similar effect on it.

We now start to write down some equations. The first is conservation of
particles:

∂n

∂t
+∇ · (nvp) = 0. (6.1)

Next, we think about the particle equation of motion. Unlike flagpoles or cables,
the particles feel a fairly slow flow past them. The ‘local’ Reynolds number for
flow at 1 m s−1 past a ten-micron radius spherical particle is

Reparticle =
Uga

νg

≈ 0.7,

and this is a considerable over-estimate since we should really use the relative
(slip) velocity, which is likely to be smaller than 1 m s−1. Now the force on a
spherical particle in slow flow can be shown to beSee any good book on viscous

flow.

−6πaµg (vp − vg)
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where vg is the ‘local’ gas velocity, many particle radii away (but not so far as
to be near neighbouring particles). Our particles are not spherical, but we’ll
still assume that they feel a force proportional to the slip velocity; we’ll call it

−K (vp − vg)

where, on the basis of near-spherical particles, we expect that K ≈ 10−9 kg s−1.
Lastly we need to include the the gravitational force mpg and the electrostatic
force qpE, where E is the electric field. Then, assuming that all neighbouring
particles feel the same slip velocity, and have the same particle velocity, we can
write down an equation of motion for the particles: Note that D/Dt here is the

convective (total) derivative.

mp
Dvp

Dt
= −K (vp − vg) +mpg + qpE. (6.2)

Correspondingly, we have momentum and mass1 conservation equations for
the gas (let’s keep things simple by writing down an inviscid model, leaving
gravity out as it merely generates hydrostatic pressure):

ρg
dvg

dt
= −∇p+ nK (vp − vg) , ∇ · vg = 0. (6.3)

The only potentially unfamiliar term here is the body force (force per unit
volume) on the gas due to the particles. Whereas the particle equation of
motion is for individual particles, and thence for the averaged-out particles
because of our assumption that all nearby particles behave similarly, the force
by the particles on the gas is just the force K(vp − vg) on one representative
particle, multiplied by the number density n.

It only remains to write down Poisson’s equation

∇ · (εgE) = nqp (6.4)

for the averaged electric field (here εg ≈ 10−11 in SI units is the permittivity of
air; it is very close to ε0), and we have collected all the field equations of the
model.2

6.3 Boundary conditions

For the sake of completeness, we should briefly discuss the boundary conditions
for our model, although we aren’t going to use them much. The main issue we
should address is the question of how to deal with the thin layer of particles
on the workpiece. There is little doubt that it is very thin — we don’t want
a centimetre-thick coating of paint! — and as far as the fluid is concerned we
can assume that the workpiece forms a rigid boundary to complement whatever
inflow conditions we impose at the gun. The particles satisfy the first-order
equation (6.1), whose characteristics are the particle paths (see Chapter 7).

1Another simplification I’ve slipped in is that, because the volume fraction of particles is
so small, I’ve taken the gas volume fraction to equal 1. Technically, we should write down a
two-phase model and a later exercise, on page 193, justifies our approximation.

2Caveat: we haven’t dealt properly with the thin layer of paint on the workpiece, as shown
in Figure 6.1. Clearly the particles cannot move freely in this layer and we need to treat it
separately; see the next section and the exercises.
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This dictates that we impose an initial condition at the gun, and that is all we
need.

Lastly, consider the electric potential. We can impose φ = V0 on the gun
with a clear conscience, and likewise φ = 0 at the workpiece, but we may
worry that charge building up in the paint layer on the workpiece will alter the
‘effective boundary condition’ felt by φ. This depends to a large extent on the
details of what happens in this layer. For example, if the charge can ‘leak off’
the particles to the workpiece (or electrons can move onto the particles if their
charge is positive), the layer should be relatively passive and we can ignore it.
On the other hand, if the charges remain in situ, we can still ignore the effect of
this layer as long as the total charge it contains is small enough (see Exercise 1
on page 83). Later in the book, we shall see how we can make this kind of ad
hoc approximation more systematic.

6.4 Nondimensionalisation

We have made great progress in producing a useful model. However, the result
is undeniably complicated. Do we really need all the terms in these equations?
Obviously we’re going to have to solve it numerically, and for this reason if no
other we should do what we can to check that the model is robust and suitable
for a numerical attack.

Let’s scale all the variables with typical values as before. Scale x with L, t
with L/Ug, vg and vp with Ug, p with ρgU

2
g , and n with n0. We have two choices

for the scale for E: one is the applied voltage V0, while the other, qpn0L/εg, isCheck this scaling.

derived from the Poisson equation (6.4) once all other scalings in it are fixed.
It so happens that both are about the same size, 105 V m−1, so let’s save ink
and use V0.

Start with the particle equation of motion (6.2). Scaling and immediatelyIt’s obvious that the
conservation of particle mass
equation (6.1) isn’t changed.

dropping the primes, we get

mpU
2
g

L

dvp

dt
= −KUg (vp − vg)−mpgk +

qpV0

L
E,

and, dividing by KUg,

mpUg

KL

dvp

dt
= − (vp − vg) +

qpV0

KUgL
E− mpg

KUg
k. (6.5)

We see that the dimensionless quantity

mpUg

KL
≈ 10−3

is very small. With luck, we can neglect the term it multiplies, the particle
acceleration: apart from an initial transient as they get up to speed near the gun,
inertial forces on them are dominated by viscous drag. The second dimensionless
parameter,

mpg

KUg
≈ 2× 10−2,

is also small. It decides the competition between gravity and viscous forces in
favour of the latter: these particles fall slowly compared to the rate at which
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they are dragged about by the air. The third dimensionless parameter,

qpV0

KUgL
≈ 10−1, (6.6)

compares the electrostatic forces with the drag forces. It too is small, though
larger than the other two; we shall see some consequences of this in Chapter 13.

This simple analysis has told us quite a lot. The scaled equation says that the
particles follow the gas quite closely, with a small influence from the electrostatic
force, and very minor contributions from gravity and inertia.3 We can get a good
approximation to the particle motion if we write

vp = vg +
qpV0

KUgL
ṽp, (6.7)

where, from (6.5), Remember that this is a
dimensionless equation: we are
not directly equating a
velocity to an electric field.

ṽp = E + smaller terms.

A preliminary conclusion from this analysis is that the device is not working
terribly well: the particles are being swept along too much by the air.

Now let’s look at the gas momentum equation. After scaling, this becomes

dvg

dt
= −∇p+

n0KL

ρgUg
n (vp − vg) .

On the face of it, the dimensionless quantity

n0KL

ρgUg
≈ 1

is not small, indicating that the particles exert a body force on the air which is
not small. However, remember that we decided above that the slip velocity vp−
vg (which this dimensionless parameter multiplies) is small. So, the particles
do after all have a small effect on the gas, confirming that it would be a good
idea to try to slow the air down to improve performance. We return to this
problem in Chapter 13.

Sources and further reading

Electrostatic painting was also a Study Group problem, from Courtaulds plc,
and is documented further in [3].

6.5 Exercises

1. Paint layer. Suppose that a thin layer of paint particles, deposited elec-
trostatically as in the text, is growing on y = 0, and that its thickness
is y = h(x, t). Show that the normal velocity of the layer boundary is
(1 + h2

x)
1
2 ht, and relate this to vp ·n at the interface. How thick will the Subscripts indicate partial

derivatives.
3If the parameter in (6.6) had been large, not small, that would have told us that we had

chosen a wrong scaling somewhere. There is no reason for E to be large — it has a perfectly
good equation of its own in which there are no large parameters — and so we would have an
equation with one large term in it and nothing to balance it. When the parameter (6.6) is
small, we do have the a priori plausible approximation (6.7).
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layer grow in 10 seconds? Justify the approximate boundary condition

∂h

∂t
= vp · n

on the workpiece (we discuss this ‘linearisation’ of boundary conditions in
Chapter 13).

Derive an order of magnitude estimate for the potential drop across the
layer, assuming that the potential approximately satisfies

∂2φ

∂y2
= − ρ

ε0
,

where ρ is the density of charge in the layer. Assuming a reasonably close
packing for the particles, express this order of magnitude in terms of the
average particle radius a and charge qp, and hence assess how thick the
layer needs to be before the potential drop across it rivals the applied
voltage.

“α = α if α < 1, α = 1 if α > 1.”
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Chapter 7

Partial differential
equations

This chapter is a short overview of partial differential equations, with applica-
tions in view. The emphasis is largely on first-order quasilinear equations, for
which many standard textbooks don’t provide much in the way of real-life exam-
ples; we’ll see applications to e-mail and, in a case study, to traffic. We also take
a brief look at the fully nonlinear case, with an eye to using it in Chapter 23 to
see, among other things, why we say that light travels in straight lines. Last, we
have a brief run through the standard theory of second order linear equations in
two variables, for which the canonical examples of the wave equation, the heat
equation and Laplace’s equation, and their physical interpretations, are so well
known that we don’t need to give examples here.

7.1 First-order quasilinear partial differential equa-
tions: theory

We begin with a review of the elementary theory for the equation1

a(x1, x2, u)
∂u

∂x1
+ b(x1, x2, u)

∂u

∂x2
= c(x1, x2, u),

where a, b and c are given smooth functions, with initial values given in para-
metric form on a curve Γ; that is, u = u0(s) on x1 = x10(s), x2 = x20(s). This
should be familiar material. As illustrated in Figure 7.1, the partial differential
equation written in the form

(a, b, c) ·
(
− ∂u

∂x1
,− ∂u

∂x2
, 1

)
= 0

shows that (a, b, c) is orthogonal to (−∂u/∂x1,−∂u/∂x2, 1), which itself is nor-
mal to the solution surface u − u(x1, x2) = 0. It follows that if we solve the
characteristic equations Remember the c has to be on

the right-hand side of the
equation, or you will get an
extraneous minus sign.

1Here x1 and x2 are generic independent variables: sometimes they will be x and y,
sometimes x and t.

87
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u

Γ

t
(a, b, c)

x2

(−ux1 ,−ux2 , 1)

s

x1

Figure 7.1: Solution of a first-order quasilinear equation by characteristics. Sub-
scripts indicate partial derivatives.

dx1

dt
= a(x1, x2, u),

dx2

dt
= b(x1, x2, u),

du

dt
= c(x1, x2, u),

where t is a parameter along the characteristics, with the initial values

x1(0) = x10(s), x2(0) = x20(s), u(0) = u0(s),

the curves so generated, known as characteristics, are tangent to the solution
surface at each point. Glueing the characteristics together gives the solution
surface, written in the parametric form

(x1, x2, u) =
(
x1(s, t), x2(s, t), u(s, t)

)
,

and in principle we are done, at least near Γ. We see immediately the central
role of characteristics (or their projections down onto the (x1, x2) plane, known
as characteristic projections or occasionally as characteristic traces). They are
curves along which information propagates: indeed, the left-hand side of the
partial differential equation is just the directional derivative of u along the char-
acteristic projections, so in this direction the partial differential equation reduces
to an ordinary one.

There are several caveats to make about this procedure. One is that, as is
clear from the geometrical point of view, the initial curve must not be tangent
to a characteristic; for if it is, near the point of tangency we expect more than
one value of u at each point (x1, x2). This is easily seen by noting that if there is
one characteristic projection through such a point, in general there is another,
carrying a different value of u. This insight is confirmed by a calculation in
which we try to find all the partial derivatives of u at a point on Γ with the aim
of constructing its Taylor series at that point. We know by differentiating u0(s)
along Γ that

dx10

ds

∂u

∂x1
+
dx20

ds

∂u

∂x2
=
du0

ds
,
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and that

a(x10, x20, u0)
∂u

∂x1
+ b(x10, x20, u0)

∂u

∂x2
= c(x10, x20, u0);

regarding these as equations for ∂u/∂x1 and ∂u/∂x2, there is a unique solution
provided that the determinant of coefficients

∣∣∣∣∣
a b

dx10

ds

dx20

ds

∣∣∣∣∣ 6= 0,

and if it does vanish, so that there is no unique Taylor series, we get precisely
the first two characteristic equations. Thus, if we require a unique solution u, Exercise: if it does vanish,

show that the consistency
condition for there to be a
solution, albeit non-unique, is
the third characteristic
equation.

Γ cannot be a characteristic.
The second caveat concerns the region of existence of the solution. It is an

obvious remark that if Γ has ends, we can only hope to find the solution in a
region between the characteristics through those endpoints. Furthermore, by
standard Picard theory, the characteristic equations have a unique solution for
at least small t, that is in a small strip near Γ. How far we can go beyond
this strip depends on two things. First, the local solution must not blow up,
which it might well do for nonlinear equations. Secondly, and of more practical
importance, we must (in principle) be able to find s and t uniquely from the
solution of the first two characteristic equations in order to calculate u uniquely.
That means that the Jacobian

∣∣∣∣
∂(x1, x2)
∂(s, t)

∣∣∣∣

must not vanish or become infinite. That in turn means that the characteristic
projections are not allowed to cross, for if they did the different values of u
propagated along the different characteristic projections would lead to many
values of u at a single point. So even though we may have a perfectly good
parametric solution of the form above, it does not correspond to a single-valued
solution u(x1, x2). In general, one can think of this coinciding with some kind of
‘folding over’ of the parametrised surface in (x1, x2, u) space, as in Figure 7.4 on
page 94. We return to the question of what to do if this happens in Section 7.3.

The third caveat is the degree of smoothness of the solution. At first sight,
we expect the solution to have single-valued first partial derivatives, so that
the partial differential equation makes sense. However, it is possible to extend
our idea of solution by joining together smooth solution surfaces at curves at
which the first partial derivatives have jumps. Such a solution surface might
look like a sheet slung over a rope and pulled out on either side, or like a
curved roof with a ridge, as in Figure 7.2. Such a discontinuity can only occur
across a characteristic. We can see this by noting that when we showed that
we can find the first partial derivatives of u uniquely unless they are given on
a characteristic, we were in effect showing that jumps in these derivatives can
only occur across a characteristic. That is, smooth solution surfaces intersect
in characteristics. Alternatively, if (x1(t), x2(t), u(t)) is a curve in the solution
surface along which u is continuous but there are jumps in it derivatives, from
left to right, then we can differentiate the statement

[u] = 0
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u

x1

Γ

x2

Figure 7.2: Solution of a first-order quasilinear equation with a gradient discon-
tinuity.

along the curve, where [·] means the jump across the curve, to get
[
du

dt

]
=

[
∂u

∂x1

]
dx1

dt
+

[
∂u

∂x2

]
dx2

dt
= 0.

We also have the partial differential equation on either side of the curve, and
taking the difference of this across the curve givesRemember [u] = 0 so the

coefficients a, b, c are
continuous.

a

[
∂u

∂x1

]
+ b

[
∂u

∂x2

]
= 0.

These two homogeneous equations for [∂u/∂x1] and [∂u/∂x2] only have a nonzero
solution if the determinant of coefficients

∣∣∣∣∣
dx1

dt

dx2

dt
a b

∣∣∣∣∣

vanishes, and this is precisely the condition for (x1(t), x2(t)) to be a character-
istic projection.

We see that characteristics are curves along which gradient discontinuities
propagate from the initial curve. However, this does not let us deal with the
blow-up described above, which can happen even with perfectly smooth initial
data. In Section 7.3, we shall see how to do that by introducing solutions that
are themselves discontinuous, so-called shocks.

7.2 Example: Poisson processes

First-order equations are often found in connection with various generating func-
tions in probability. Many of these have their roots in the Poisson process, which
is often used as a model for the number of occurrences in a given time of inde-
pendent random events such as e-mails arriving in your inbox or calls coming to
a telephone exchange. (I hesitate to propose the model for the arrival of London
buses as there are good reasons for them to arrive in pairs or even threes.)

Suppose that we say that in a short time δt, there is a probability λ δt that
an e-mail arrives, a probability 1− λ δt that none arrive, and a negligible prob-
ability that two or more arrive at once. The constant λ, known as the intensity,
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measures your popularity (spam or otherwise). Starting with an empty inbox,
and staying online, define the Poisson counter N(t) as the number of e-mails
you have at time t, with N(0) = 0. Thus,

N(t+ δt) =

{
N(t) with probability 1− λ δt,

N(t) + 1 with probability λ δt.

What is the probability distribution of N(t)? Define

pn(t) = P (N(t) = n) .

There are two, and only two, ways that N(t+ δt) can equal n: either N(t) = n
and no new message arrives, or N(t) = n − 1 and one message arrives. These
events are disjoint and so we have

P (N(t+ δt) = n) = pn(t+ δt)
= P (N(t) = n)P (no new message)

+ P (N(t) = n− 1)P (1 new message)
= pn(t)(1− λ δt) + pn−1(t)λ δt.

Expanding pn(t+ δt) in the Taylor series

pn(t+ δt) = pn(t) + δt
dpn(t)
dt

+ · · ·

and taking δt→ 0, we get the system of differential equations

dpn

dt
= −λ (pn − pn−1) , n = 1, 2, 3, . . . ,

while separately
dp0

dt
= −λp0.

The initial conditions are p0(0) = 1, pn(0) = 0 for n > 0. Although one can, in
principle, solve the equations sequentially, it’s easier to define

GN (x, t) =
∞∑

n=0

xnpn(t).

multiplying the nth differential equation by xn and summing over n,

∂GN

∂t
= −λ(1− x)GN ,

whence

GN (x, t) = e−λteλtx =
∞∑

n=0

e−λt (λt)
n

n!
xn.

That is, the probabilities are those of the Poisson distribution with mean λt.
This generating function only satisfies an ordinary differential equation, but

now suppose that a virus is doing the rounds, spread by e-mail. Let V (t) be
the number of computers infected, and suppose that the probability of a new
infection over the next δt is λV (t) δt, that is, proportional to the number of
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infected computers. With pn(t) = P (V (t) = n) as before (but now n measures
the number of infected computers, rather than e-mails, now for n = 1, 2, . . . and
with p1(0) = 1 to model one source of infection), we find

dpn

dt
= −λ (npn − (n− 1)pn−1) , n = 1, 2, 3, . . .

(here p0 = 0). Then, following the calculation above, the generating function
GV (x, t) satisfies

∂GV

∂t
+ λx(1− x)

∂GV

∂x
= 0

with GV (x, 0) = x. The solution is easily found to beNote the consistency check
G(1, t) = 1 for both these
examples: the probabilities
sum to 1. GV (x, t) =

xe−λt

1− x (1− e−λt)

=
∞∑

n=1

xne−λt
(
1− e−λt

)n−1
.

The mean of this distribution,

∞∑
n=1

npn(t) =
∂GV

∂x
(1, t) = eλt,

grows exponentially in t, as we would expect.

7.3 Shocks

We started our analysis of quasilinear equations by considering smooth solution
surfaces with a unique normal at each point. Then, we realised that we can
extend our class of solutions by allowing gradient discontinuities, as long as they
occur across (propagate along) characteristics. However, blow-up still occurs
when characteristic projections cross, because then we may get several values
of u at the same place.

To see this in action consider the equation

Du

Dt
=
∂u

∂t
+ u

∂u

∂x
= 0.

This equation is known as a kinematic wave equation and if we think of u(x, t)
as the speed of a particle moving along the x axis, it says that the speed of any
given particle remains constant because its derivative following that particle is
zero. It is easy to solve by characteristics with initial data u(x, 0) = u0(x), say,
corresponding to a snapshot at t = 0 of the speeds all along the x axis. The
characteristic equations are

dt

dτ
= 1,

dx

dτ
= u,

du

dτ
= 0,

so u remains constant along a characteristic whose projection has slope dx/dt =
u. This simply repeats that the particles move along characteristics with con-
stant speed u. So, to construct the solution, we simply draw all the characteristic



7.3. SHOCKS 93

t

u

x

Figure 7.3: Solution of the kinematic wave equation with increasing initial data
1
2 (1+tanhx). The steep rise in u0(x) moves to the right and spreads out. Mesh
lines correspond to characteristics.

projections through the initial line t = 0, and read off the value of u at any point
x and later time t. This procedure works fine if u0(x) is increasing, since then
the characteristics spread out as in Figure 7.3.

But if u0(x) is decreasing, we inevitably have a collision of characteristic
projections — and particles — after a finite time, as in Figure 7.4. It has an
obvious physical interpretation that fast particles have caught up with slow ones
and are trying to occupy the same space.

We could take the defeatist view that the solution ceases to exist at the
moment when the characteristic projections first cross, and that is the end of the
matter. On the other hand, we may try to extend our notion of what constitutes
a solution, to allow not only gradient discontinuities but also discontinuities in
u itself. That is, there may be a curve (or curves) x = S(t) across which u has
a jump. These jumps are called shocks. Famous physical examples include tidal By ‘physical example’ we

mean a physical situation that
can be modelled by equations,
here the shallow water
equations and the equations of
gas dynamics, that have shock
solutions.

bores2 and the shock waves created by Concorde (RIP) flying supersonically.

As one might expect, a drastic step like this is fraught with dangers. It does
indeed turn out that we have generalised a bit too far, because we can have
non-uniqueness of solutions with shocks. The ideas needed to deal with this
are rather delicate and we refer to [42] for a fuller discussion. However, when
the partial differential equation is a conservation law, we can give a heuristic
derivation of a necessary condition at a shock, which in practice is sometimes
sufficient as well.

2A tidal bore is an abrupt change in water level that propagates upstream from the river
mouth, often appearing as a continually breaking wave. Prerequisites for them to form are a
large tidal range and a slowly convergent estuary. Examples include the Severn bore and the
Trent Aegir in the UK, and the Hooghly bore in India.
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x

u

Figure 7.4: Solution of the kinematic wave equation with decreasing initial data
1
2 (1− tanhx). The steep fall in u0(x) gets steeper until, when the characteristic
projections cross, it is vertical.

7.3.1 The Rankine–Hugoniot conditions

Suppose that a quasilinear partial differential equation is in the conservation
form (see Chapter 1)

∂P

∂t
+
∂Q

∂x
= 0,

where P (x, t, u) is the density and Q(x, t, u) the flux of a conserved quantity
(usually they depend only on u). Now suppose that there is a curve x = S(t)
across which u(x, t) has a discontinuity (jump). That means that P and Q also
have jumps across this curve. However, we assume that overall the quantity,
whatever it is (stuff, say), is conserved. Let us do a simple-minded ‘box’ argu-
ment to see what this implies for the jumps in P and Q. Figure 7.5 sets theCompare this with the (in

some ways more subtle)
argument of Section 1.4.

scene.

S(t+ δt) = S(t) +
dS

dt
δtS(t)

δx

density P−
flux Q−

density P+

flux Q+

Figure 7.5: Derivation of the Rankine–Hugoniot condition.

In a small time δt, the shock moves by a small distance

δx ≈ dS

dt
δt.

The net flux into the region crossed by the shock is Q+ − Q− in an obvious
notation, + referring to x > S(t). Hence the amount of stuff flowing into this
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small ‘box’ is (Q+ − Q−)δt = [Q]+− δt. The amount of stuff in the box before
the shock arrives is P+ δx, and afterwards it is P− δx. The difference must be
accounted for by the net flux; thus,

[
P

]+
− δx =

[
Q

]+
− δt.

Eliminating δx/δt ≈ dS/dt, we arrive at

dS

dt
=

[
Q

]+
−[

P
]+
−
.

This relation between the two jumps is known as the Rankine–Hugoniot condi-
tion. It is necessary, but not sufficient, to give a unique solution with a shock, as
shown in Exercise 6. Further discussion of this situation moves to Exercises 5–7,
and is dealt with in more detail in [42].

7.4 Fully nonlinear equations: Charpit’s method

Rather remarkably, it is possible to extend the method of attack described above
to solve fully nonlinear first-order equations of the form

F (x, y, u, p, q) = 0

where, to fit in with common notation, we are using (x, y) as independent vari-
ables, and

p =
∂u

∂x
, q =

∂u

∂y
.

To reduce the density of the formulae, we occasionally use the subscript notation
for partial derivatives.

What we do looks wildly optimistic. We differentiate the equation F = 0
with respect to x, to get

Fx + pFu + Fppx + Fqqx = 0.

Then we use the fact that qx = py to get The mixed partial derivatives
are equal.

Fp
∂p

∂x
+ Fq

∂p

∂y
= −Fx − pFu,

which we regard as a quasilinear equation for p, with characteristics

dx

dt
= Fp,

dy

dt
= Fq,

dp

dt
= −Fx − pFu.

Of course, the coefficients in this equation may depend on q and u, which we do
not yet know. However, if we repeat the whole procedure, but now differentiate
with respect to y, we have the corresponding equation

Fp
∂q

∂x
+ Fq

∂q

∂y
= −Fy − qFu,
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with characteristics

dx

dt
= Fp,

dy

dt
= Fq,

dq

dt
= −Fy − qFu

(note that the equations for x and y are the same as those from the equation
for p). Lastly, differentiation along the curves thus found gives

du

dt
= p

dx

dt
+ q

dy

dt
= pFp + qFq.

Because two equations were duplicated, we are left with a 5 × 5 system of
ordinary differential equations, summarised as

dx

dt
= Fp,

dy

dt
= Fq,

dp

dt
= −Fx−pFu,

dq

dt
= −Fy−qFu,

du

dt
= pFp+qFq.

These are known as Charpit’s equations (the name of Lagrange is also sometimes
found in this context) and their solution curves are called rays. They are the
analogue of the three characteristic equations for a quasilinear equation, and
rays are the generalisation of characteristics in that case. They are solved with
initial data

x = x0(s), y = y0(s), u = u0(s)

just as in the quasilinear case, from which the initial values of p and q, p0 and
q0, can be found from the two equations

du0

ds
= p0

dx0

ds
+ q0

dy0
ds

, F (x0, y0, u0, p0, q0) = 0;

note that this prescription may, unlike in the quasilinear case, lead to more than
one ray through each point on the initial curve, because of the nonlinearity of
F .

Where is the catch? It is certainly true that Charpit’s equations, with suit-
able initial data, have a unique solution, by the usual Picard argument. The
missing step is rather subtle. If we find the solution to Charpit’s equations in the
parametric form x = x(s, t), y = y(s, t), u = u(s, t), p = p(s, t) and q = q(s, t),
how do we know that p = ∂u/∂x and q = ∂u/∂y, when s and t are eliminated?
After all, these derivatives undoubtedly involve differentiation in the s direction,
which is notably absent from our argument above. The manoeuvres needed to
establish this are rather intricate, and are described in any good book on partial
differential equations (such as [42], [34], where the geometric interpretation of
the Charpit approach is also described). We content ourselves with accepting
that the result holds, and looking at some examples.

Example. Solve the equation

∂u

∂x

∂u

∂y
= u with u = 1 on xy = 1.

Here F (x, y, u, p, q) = pq − u, so Charpit’s equations are

dx

dt
= q,

dy

dt
= p,

du

dt
= 2pq = 2u,

dp

dt
= p,

dq

dt
= q.
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The initial curve is

x0(s) = s, y0(s) = 1/s, u0(s) = 1,

from which we find
p0(s)− 1

s2
q0(s) = 0

which, with p0(s)q0(s) = 1, gives

p0(s) = ±1
s
, q0(s) = ±s

(note that there are two solutions). The solutions are, in order of calculation,

p = ±1
s
et, q = ±set, x = s± s(et − 1), y =

1
s
± 1
s
(et − 1), u = e2t.

The plus signs give the solution u = xy, and the minus signs lead after a short
calculation to u =

(
2−√xy)2. (If alert, you may have spotted the possibility

of looking for u(x, y) as a function of xy alone.)

Example: sand piled on a table. Here is a nice realisation of a nonlinear
first order equation. Suppose we take a table, and pour dry sand onto it until we
can pour no more. A very simple modelling approach3 says that the particle is in
limiting equilibrium. This means that the frictional force on it, F , is as large as
it can be (otherwise we could pile more sand on and make the slope steeper), and
furthermore it is proportional to the normal reaction N (see Figure 7.6). That
is, F = µN where µ is called the coefficient of friction. Resolving horizontally,
we have N sin θ = F cos θ, where θ is as shown, and hence tan θ = µ. If the
height of the sandpile is given by z = h(x, y) we know that cos θ = (0, 0, 1) · n,
where

n =
∇ (z − h(x, y))
|∇ (z − h(x, y)) |

is the unit normal to the surface. From this, it is easy to show that

(
∂h

∂x

)2

+
(
∂h

∂y

)2

= µ2, (7.1)

a famous equation usually known as the eikonal equation. We shall see a lot
more of this equation in Chapter 23. For now, we just note that it is very easy
to solve by Charpit’s method as the rays are straight, and that, when h(x, y) is
required to be a single-valued function, the solutions typically form ‘ridgelines’
like the roof of a house, where the slope of the pile changes discontinuously.

Example: spray forming. Many industrial processes involve building up or
carving away a solid object, layer by layer, by spraying or otherwise adding
material at a known rate, or by removing it. One example is the production of
large aluminium billets from a controlled spray of tiny droplets of liquid metal;

3Real sandpiles are more complicated; they are continually subject to sandslides of all sizes,
and have been much studied by physicists as an example of what is called a self-organised
critical system.
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θ mg

N F

Figure 7.6: A particle in limiting equilibrium on a sandpile.

on a much smaller scale, components in semiconductor chips are built up by
vapour deposition, or can be etched away. The new three-dimensional printers
are another example. In all these processes, the key to a high-quality finished
product is precise control of the deposition. And to do that, we need to know
how to formulate (and solve) the direct problem: given a deposition rate, how
does the solid grow?

This is easy to state in words: the object grows so that the normal velocity
of its boundary is equal to the deposition rate. Suppose that the boundary of
the solid is given by the equation f(x, t) = 0, and the deposition rate is a known
flux q(x, t) (that is, at each point there is a mass flux of |q| in the direction of
q). The unit normal to the boundary is

n =
∇f
|∇f | ,

and the mass flux normal to the interface, the deposition rate, is then q ·n. By
a simple conservation of mass argument (compare with the Rankine–Hugoniot
conditions), this is equal to ρVn, where ρ is the density of the solid and Vn is the
normal velocity of the interface. Our only remaining task is to write Vn in terms
of the derivatives of f(x, t). To do this, consider a point (x(t)) which is fixed in
the boundary. Its velocity is v = dx/dt, which in general has components both
normal and tangential to the moving boundary. However, by the chain rule,

d

dt
f(x(t), t) =

∂f

∂t
+ v · ∇f = 0. (7.2)

Now v·∇f/|∇f | is simply the component of the velocity v along the unit normal
n, namely Vn. Hence, dividing both sides of (7.2) by |∇f |, we find that

Vn = −∂f
∂t

/
|∇f |

or, putting the pieces together,

∂f

∂t
+ |∇f |q · n = 0.

This equation can, in principle, be treated by the Charpit method, although the
details tend to be complicated.
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deposition

f(x, y, t) = 0

n

Figure 7.7: Growth by deposition.

7.5 Second-order linear equations in two vari-
ables

All mathematics courses with any applied component cover the basics of second-
order linear equations in two variables, because they occur so very frequently in
practice. This section contains a very brief executive summary, for the sake of
completeness. Any standard text has more details.

The kind of equation we consider is one of the form

a(x, y)
∂2u

∂x2
+ 2b(x, y)

∂2u

∂x∂y
+ c(x, y)

∂2u

∂y2
= terms linear in u,

∂u

∂x
,
∂u

∂y
,

where a, b and c are given functions. One starting point is to ask whether there
are any curves across which the second derivatives of u can have jump discon-
tinuities, thereby generalising the ‘third caveat’ argument starting on page 89.
Repeating that argument, the continuity of ∂u/∂x and ∂u/∂y along such a curve
(x(t), y(t)), together with the fact that the original partial differential equation
holds on either side of it, leads to the equations

ẋ

[
∂2u

∂x2

]
+ẏ

[
∂2u

∂x∂y

]
= 0,

ẋ

[
∂2u

∂x∂y

]
+ẏ

[
∂2u

∂y2

]
= 0,

a

[
∂2u

∂x2

]
+b

[
∂2u

∂x∂y

]
+c

[
∂2u

∂y2

]
= 0,

where ˙ = d /dt. These homogeneous equations only have a non-trivial solution
if ∣∣∣∣∣∣

ẋ ẏ 0
0 ẋ ẏ
a b c

∣∣∣∣∣∣
= 0,

that is, if Note the minus sign and the
ẏ’s in front of the coefficient of
the second x derivative, and
vice versa for the second y
derivative.

aẏ2 − 2bẏẋ+ cẋ2 = 0.

This is the characteristic equation for our second-order equation. We distinguish
three cases, depending on whether it has two real roots for dy/dx = ẏ/ẋ, no
roots, or a repeated root.
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Two real roots: hyperbolic equations

When there are two real roots, the equation is called hyperbolic; hyperbolic
equations are the closest relatives to the quasilinear equations we studied earlier.
There are two distinct families of characteristics and it is possible to reduce the
equation to canonical form

∂2u

∂ξ∂η
= terms involving lower order derivatives

by changing to variables ξ, η which are constant on the characteristics. A typical
well-posed problem for this equation requires both u and its normal derivative
to be given on an initial curve which is nowhere tangent to a characteristic
(and so, in particular, cannot be closed). Discontinuities can propagate along
characteristics and the solution cannot be expected to be any smoother than
the initial data: it continues to jangle forever (possibly with some damping).

In addition to use of characteristic variables, solution methods include sepa-
ration of variables (especially when the coefficients are independent of time and
the equation contains ∂2u/∂t2, when solutions proportional to e−iωt are sought
as part of a normal modes calculation), transform methods and the Riemann
function.

The quintessential hyperbolic equation is the wave equation

∂2u

∂t2
− c2

∂2u

∂x2
= 0,

for which we can take ξ = x− ct, η = x+ ct; the canonical form is

∂2u

∂ξ∂η
= 0,

revealing immediately the general solution as f(x− ct) + g(x+ ct) for arbitrary
functions f and g.

No real roots: elliptic equations

Equations with no real characteristics are called elliptic. It is still possible to
reduce them to a canonical form, in this case

∂2u

∂ξ2
+
∂2u

∂η2
= terms involving lower order derivatives,

where ξ and η are such that the roots of the characteristic equation are ξ ± iη.
Now the typical problem asks for a single piece of information about u, for
example u itself, or some combination of u and its normal derivative, to be given
on a closed curve containing the region of interest. If the domain is infinite, a
careful description of the behaviour of u at infinity must also be given. As we see
in Exercise 12, there are various possible degrees of existence and/or uniqueness
of the solution, but one thing that all the solutions share is that they are smooth
functions of x and y inside the domain: discontinuities in the boundary data
cannot propagate into the interior.4

4They can, however, be generated by discontinuities in the coefficients of the equation; this
is hardly surprising.
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Solution methods include separation of variables and transform methods
as above, Green’s functions (the equivalent of Riemann functions), and use of
complex variables when the equation is Laplace’s equation, the eminence grise
of elliptic equations.

Double roots: parabolic equations

Between elliptic and hyperbolic equations lies a debatable ground when the
characteristics are real and coincident. These are called parabolic equations. Complex characteristics

cannot coincide: why?Some parabolic equations are just ordinary differential equations in disguise5

but genuinely parabolic equations include the heat equation

∂u

∂t
=
∂2u

∂x2

and many variants on it. As we know, these equations are ubiquitous in real-
world models, because the world is full of processes that run on heat. The fact Cooking, to name but one.

that linear diffusion also leads to the heat (or, indeed, diffusion) equation adds
extensively to the list of applications.

The characteristics of the heat equation are t = constant twice, which shows
straightaway that the solution may have discontinuities in t (that is, across
characteristics) but should be expected to be smooth in x. That is reasonable:
the equation itself tells us that, as heat flows from hot to cold, places where the
graph of u has large positive curvature are pulled up, and vice versa for negative
curvature, so that the solution becomes smoother (draw a picture to see this).
However, it also says that if we are finding the temperature in a bar we can feel
the effect of changing the end value of the temperature immediately, which may
be a little too quickly for some.6 At any event, a typical well-posed problem has You might think of this as

being one initial condition
corresponding to the single
time derivative, plus two
spatial conditions
corresponding to the elliptic
part ∂2u/∂x2 — remember
that in more dimensions the
heat equation is

∂u

∂t
= ∇2u.

u given at t = 0 (even though this is a characteristic) and on spatial boundaries,
say at x = 0 and x = 1; other problems frequently involve radiation boundary
conditions, modelling heat transfer to an exterior medium.

Further reading

See [36] for an accessible introduction to Poisson processes. The spray-forming
of an aluminium billet is described in [20].

5Try, for example,

∂2u

∂x2
− 2

∂2u

∂x∂y
+
∂2u

∂y2
=

ţ
∂

∂x
− ∂

∂y

ű2

u = 0;

the change of variables ξ = x − y, η = x + y reduces it to ∂2u/∂ξ2 = 0. It is argued in [42]
that equations like this should be regarded as almost hyperbolic.

6It is possible to amend the equation so that it is ‘very slightly’ hyperbolic, with a large
but finite speed of propagation; see the paper [33] for a readable account. Note also that, as
we see in Chapter 9, the effect of any change in a boundary condition decays very rapidly as
we move away from that boundary.
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7.6 Exercises

1. Solution blow-up. Consider the equation

∂u

∂t
+ u

∂u

∂x
= 0.

Show that the general solution is given implicitly by u(x, t) = f(x −
tu(x, t)) for arbitrary smooth f . Consider the initial value problem in
which u = u0(x) on t = 0. Show that the parametric form of the solution
is

t = τ, x = τu0(s) + s, u = f(s).

Deduce that u is constant on the characteristic projections dx/dt = u,
which are thus straight lines.

Draw the characteristic projections and sketch the solution surface for the
two kinds of initial data

u0±(x) = ± tan−1
(x
ε

)
.

Which solution remains single-valued?

Now suppose that the partial differential equation is

∂u

∂t
+ u

∂u

∂x
= −cu

where c is a positive constant, and that initially

u(x, 0) = A tanhx.

Show that, if A > −c, |∂(x, t)/∂(s, τ)| 6= 0 for all s, τ . Deduce that the
solution exists for all t for this range of A. (In this example, the tendency
of the characteristic projections to cross is counteracted by the exponential
decay of u along them: how is this manifested geometrically?)

2. General solution of a quasilinear equation. Given the quasilinear
equation

a(x1, x2, u)
∂u

∂x1
+ b(x1, x2, u)

∂u

∂x2
= c(x1, x2, u),

suppose that we can find two first integrals of the characteristic equations
in the form f(x1, x2, u) = C1, g(x1, x2, u) = C2, where C1 and C2 are
arbitrary constants of integration. Show that the general solution of the
original partial differential equation is given by F (C1, C2) = 0, where F
is an arbitrary function of two variables.

Euler’s theorem on homogeneous functions says that a function u(x1, x2)
that is homogeneous of degree n (that is, u(tx1, tx2) = tnu(x1, x2) for all
real t) satisfies the equation

x1
∂u

∂x1
+ x2

∂u

∂x2
= nu.

Show that the general solution of this equation is

u(x1, x2) = xn
1G(x2/x1),

where G is an arbitrary function.
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Figure 7.8: Standard and log-linear plots of the inter-arrival time frequencies
for a stock market.

3. Waiting times for a Poisson process. Suppose we start a Poisson
process at time 0. What is the distribution of T , the time until the first
event (clearly this is the same as the distribution of the interval between
any two events)? We find it as follows. Let FT (t) = P (T < t). Explain
why

FT (t+ δt) = (1− λδt)FT (t)

and deduce that T has the negative exponential distribution with density
fT (t) = dFT (t)/dt = λe−λt, t > 0. Figure 7.8 shows a histogram of the
inter-arrival times of trades in the S&P 500 futures contract in Chicago
(an open outcry market) with normal and log scales for the frequency;
the latter is a good approximation to a straight line except for very short
times between trades (thanks to Rashid Zuberi for these plots).

4. Viral antidote. Suppose that N computers are infected with a virus and,
at time t = 0, I send them all an antidote which will cure the problem
as soon as they open their inbox. Also assume that if n users are still
infected at time t, then in the short time interval (t, t+ δt) one and only
one user will log on, with probability µnpn(t)δt. Why is this a reasonable
model?

If pn(t) is the probability that there are still n infected computers at time
t, use the decomposition into disjoint events

P (n infected at t+ δt) = P (n+ 1 at t and one logs on)
+ P (n at t and none log on)

to show that

pn(t+ δt) = µ(n+ 1)pn+1(t)δt+ (1− µn δt)pn(t).
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Letting δt→ 0, show that the generating function GA(x, t) =
∞∑

n=0
pn(t)xn

satisfies
∂GA

∂t
+ µ(x− 1)

∂GA

∂x
= 0.

Show that if there are N victims initially, the solution is

GA(x, t) =
(
1 + (x− 1)e−µt

)N
.

What is the mean of this distribution?

Modify the argument to allow for both infection and cure.

5. A shock in the kinematic wave equation. Consider the equation

∂u

∂t
+
∂( 1

2u
2)

∂x
= 0,

equivalent to the kinematic wave equation

∂u

∂t
+ u

∂u

∂x
= 0.

Show that the shock speed is

dS

dt
= 1

2 (u+ + u−) .

Show that if

u(x, 0) =

{
1 x < 0,
0 x > 0,

there is a solution with a shock on x = 1
2 t.

6. Rankine–Hugoniot is not enough. Consider the kinematic wave equa-
tion of the previous question and show that it can be written in conserva-
tion form ∂P/∂t+∂Q/∂x in infinitely many ways (start by taking P = u,
then try P = u2, finding the corresponding Q in each case). Conclude that
the Rankine–Hugoniot relation is not sufficient to determine the shock
structure uniquely for the initial value problem in which u(x, 0) is given
on t = 0.

Even if we have good physical reasons for choosing a particular P and Q,
Rankine–Hugoniot may still be insufficient. Consider the kinematic wave
equation above with

u(x, 0) =

{
0 x < 0,
1 x > 0.

Taking P (u) = u, show that there is a solution with S(t) = 1
2 t, and

u(x, t) =

{
0 x < S(t),
1 x > S(t).
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Show that there is another solution

u(x, 0) =





0 x < v1t,

α v1t < x < v2t

1 x > v2t,

where 0 < v1 < v2 <
1
2 , and find the necessary relations between α, v1

and v2. How might you find still further solutions?

Show that there are also solutions of the form u(x, t) = f(x/t) and hence
find a solution that is continuous everywhere, but has gradient discontinu-
ities across the characteristic projections x = 0 and x = t. (Note that on
these characteristics dx/dt = 0, 1, which are the limiting values of u(x, 0)
as x→ 0 from below and above.) This solution is known as an expansion
fan.

Now do the next exercise.

7. Causality. The situation of the previous exercise is throughly unsatis-
factory. One way to resolve it is through the idea of causality, which is
a combination of two ideas: ‘information flows along characteristics in a
forward direction (as measured by time, if that is one of the variables)’
and ‘number of equations must equal number of unknowns’. We think of
information as propagating along characteristics, starting from the initial
data; in particular, the value of u evolves along a characteristic. Now
think about what happens at a shock. In order to determine the shock
path, we need to know the value of u on either side, in order to implement
the Rankine–Hugoniot condition. That means that, at each point on the
shock, we need two incoming characteristics that emanate from the initial
data, each of which carries its own value of u. Such a solution is called
causal. If any of the characteristics at the shock are outgoing, that is they
do not intersect the initial data, the solution is not causal and is rejected
on physical grounds. Often (but not always), the causal solution is unique.

Draw the characteristic diagram for Exercise 5 and show that the shock
in it is causal.

Draw a characteristic diagram for the single-shock solution of Exercise 6
with the x axis horizontal, making sure that you have a characteristic
through each point. Draw arrows on the characteristics to indicate the
direction of time flow (upwards). Deduce that this solution is not causal.
(For this problem, the only causal solution is the expansion fan.)

8. Practice at Charpit. Solve xp+ yq = pq with u(x, 0) = 1
2x.

9. Shortest distance to a curve. Let C be a curve, and let D(x, y) be the
shortest distance from the point (x, y) to C. Take coordinates (n, s) with
origin at (x, y) and measure n along the normal to C from (x, y), s parallel
to the tangent at the foot of this normal. Show that ∂D/∂s = 0 at the
point (x, y), and that |∇D|2 = (∂D/∂n)2. Deduce from the invariance of
the gradient under rotation of the axes that

(
∂D

∂x

)2

+
(
∂D

∂y

)2

= 1, D = 0 on C.
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10. Sandpiles. Calculate the shape of a limiting sandpile on a square table
(a) by common sense; (b) by solving Charpit’s equations for (7.1) on
page 97. Where are the ridgelines? Repeat for a circular table and then
an elliptical one (the last is harder).

11. Curvature flows. A plane curve moves so that its normal velocity Vn

is equal to its curvature κ, the sign being chosen so that a circle shrinks.
Noting that κ = dθ/ds, where s is arclength and θ is the angle between
the tangent to the curve and the x axis, show that the area inside a simple
closed curve decreases at the rate 2π and deduce that the curve eventually
vanishes.

If a curve moving in this way is described by y = f(x, t), show that f
satisfies

ft =
fxx

1 + f2
x

,

where ft = ∂f/∂t etc. Find the travelling-wave shapes, where f(x, t) =
F (x− Ut) for constant U .

12. Boundary-value problems for elliptic equations. Give a physical
interpretation in terms of heat flow for Poisson’s equation

∇2u(x) = F (x)

in a region V bounded by a smooth curve ∂V . When u is prescribed to be
equal to a given function f(x) on ∂V (the Dirichlet problem), show that
the solution (if it exists) is unique, by considering

∫

V

∇ · (v∇v) dV,

where v(x) is the difference between two solutions with the same boundary
values.

Now suppose that ∂u/∂n is prescribed to be equal to g(x) on ∂V (the
Neumann problem). Show that there is only a solution if

∫

V

F (x) dx =
∫

∂V

g(x) dS

and interpret this physically. Given this condition, show that the solution
is only unique up to addition of a constant (this is an example of the
Fredholm Alternative).

Lastly show that uniqueness is to be expected for the Robin problem, in
which

∂u

∂n
+ h(x)u = q(x)

is given on ∂V , only if h(x) > 0. Again, interpret physically.

“The stagnation point might go half way to infinity and then stop.”



Chapter 8

Case study: traffic
modelling

8.1 Simple models for traffic flow

Mathematicians and physicists have long been interested in the problem of traf-
fic, and the area is one of active research. A variety of models have been
suggested with a view to understanding, for example, how and why traffic jams
form, how to maximise carrying capacity of roads, or how best to use signals,
speed limits and other controls to reduce journey times (the feedback effect
whereby quicker journeys encourage more people to take to the roads is strangely
absent from these analyses). Some models are based on discrete simulations of
the movement of individual cars; as you may imagine, such models can be very
large and complicated, and indeed they fall into the trendy area of Complex
Systems. There is, however, a strand of traffic research which treats the cars
as a continuum with a local number density and velocity which are more or
less smooth functions of space and time, much as in the treatment of charged
particles in the case study of Chapter 6. Models of this kind are unlikely ever
to forecast the fine details of gridlock in New York City or indeed Oxford; but
on the other hand they offer insights into the way in which traffic can behave,
and they can to some extent be calibrated to (or at least compared with) obser-
vations. On the scale from parsimony (as few parameters and mechanisms as
possible) to complexity, they are very much at the parsimonious end; the cost,
a lack of realism, is balanced by a gain in understanding. They fit in well with
my recommended philosophy of always trying to do the easiest problem first.

Let us, then, start with a toy model for cars travelling in one direction
down a single-lane road (no overtaking) that is long and straight. Suppose
that x measures distance along the road, and that we work on a large enough
lengthscale, or we look from far enough away, that the cars can be treated as a
continuum with number density ρ(x, t) (cars per kilometre) and speed u(x, t).
Supposing further that no cars join or leave the road, we immediately write
down ‘conservation of cars’ in the form

∂ρ

∂t
+
∂(ρu)
∂x

= 0,

as the flux of cars is equal to ρu.

107
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Given the continuum assumption, this equation is uncontroversial; but it
is only one equation for two unknowns. We need some kind of ‘constitutive
relation’ to close the system.

Blinkered drivers

One very simple model would be to say that, as they enter the road, drivers
choose the constant speed they want to drive at, and then they drive at that
speed no matter what happens. Of course, this is ludicrously unrealistic, but
let’s see what features it predicts. If the speed u of an individual car is constant,
then the derivative of u following that car is zero:

Du

Dt
=
∂u

∂t
+ u

∂u

∂x
= 0.

This kinematic wave equation is easy to solve by characteristics with initial data
u(x, 0) = u0(x), say, corresponding to a snapshot at t = 0 of the speeds all along
the road. The characteristic equations are

dt

dτ
= 1,

dx

dτ
= u,

du

dτ
= 0,

so u remains constant along a characteristic whose projection has slope dx/dt =
u. This simply says that the cars move along characteristics with constant
speed u. So, to construct the solution, we simply draw all the characteristic
projections through the initial line t = 0, and read off the value of u at any
point x and later time t. This procedure works fine if u0(x) is increasing, since
then the characteristics spread out as in Figure 7.3 on page 93. But if u0(x)
is decreasing, we inevitably have a collision of characteristic projections — and
cars — after a finite time, as in Figure 7.4 on page 94. This is an example of the
solution blow-up we discussed in Chapter 7, and here it has an obvious physical
interpretation that fast cars have caught up with slow ones and are trying to
occupy the same bit of road. That is, the model predicts that cars with different
speeds will end up in the same place. Clearly, this model is inadequate as a
description of how real traffic behaves. Its predictions are realistic within its
severe limitations, but they are so far off the mark that we need to do something
more sophisticated.

Local speed-density laws

In our quest for greater realism, we should try to describe how drivers respond
to the traffic around them. A simple way to do this is to propose a (constitutive)
relation between the speed of cars at a point x and their density there. That is,
we assume that

u = U(ρ)

for a suitable function U . This function should be determined experimentally
from observations of local speed and density, or at least written down in a
parametric form and the parameters calibrated (fitted) to observations of global
features of the traffic flow (an example of an inverse problem). Before going too
far down this road, let us see what happens when we put a simple U into the
model. As heavy traffic generally moves more slowly than light traffic, we want
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U(ρ) to be a decreasing function of ρ. We may assume a maximum car speed
umax, and it is reasonable to assume that cars drive at this speed on an emptyAlmost certainly umax is

greater than the speed limit. . . road, when ρ = 0. Conversely, we can assume a maximum bumper-to-bumper
density ρmax at which the traffic comes to a complete halt, so u = 0. This
suggests that the speed-density law It is another assumption of the

model that all drivers behave
in the same way, and that
they all drive as fast as is
consistent with the ambient
traffic density.

u = umax

(
1− ρ

ρmax

)

should be a reasonable qualitative description.
We can make an immediate and interesting observation. The flux of cars is

Q = uρ = umaxρmax

(
1− ρ

ρmax

)
ρ

ρmax
,

and it is greatest when ρ = 1
2ρmax, so that u = 1

2umax. In this model the free-
market individual desire of drivers to minimise their journey time by always
driving as fast as possible does not necessarily deliver the maximum-flux solution
for drivers as a whole.

Leaving this aside, let us see whether we still have blow-up. Making the
trivial scalings u = umaxu

′, ρ = ρmaxρ
′, with suitable scalings for x and t, and

dropping the primes, we have the dimensionless equation

∂ρ

∂t
+

∂

∂x
(ρ(1− ρ)) =

∂ρ

∂t
+ (1− 2ρ)

∂ρ

∂x
= 0 (8.1)

(this is, of course, just a conservation law). The characteristic equations are Note that the characteristic
speed, dx/dt = 1− 2ρ, is not
equal to the car speed — that
is u = 1− ρ. Information
always propagates more slowly
than the cars and can indeed
move backwards, if ρ > 1

2
.

dt

dτ
= 1,

dx

dτ
= 1− 2ρ,

dρ

dτ
= 0,

so the characteristics are again straight, as ρ is constant on them. However,
bearing in mind that 0 < ρ < 1, we see that we can easily prescribe initial data
for ρ that will again lead to finite-time blow-up: the characteristic projections
can have slopes of either sign and they can easily cross. Indeed, the substitution
v = 1− 2ρ reduces (8.1) to ∂v/∂t+ v∂v/∂x, so blow-up is inevitable.

Clearly, we must either further tinker with the model so that blow-up is
forbidden, or we must face up to the fact that it will happen in realistic models,
and decide what to do about it.

8.2 Traffic jams and other discontinuous solu-
tions

Red lights and shocks

We saw in Section 7.3 that the notion of a solution to the conservation law
∂ρ

∂t
+
∂Q

∂x
= 0

can be extended to allow jump discontinuities across curves x = S(t) provided
that S(t) satisfies the Rankine–Hugoniot relation

dS

dt
=

[Q]+−
[ρ]+−

.
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Shocks can originate spontaneously, when characteristic projections cross, but
a situation in which it is easy to see them is if a stream of traffic with speed u0

and density ρ0 is brought to a halt by a traffic light at, say, x = 0 and at time
t = 0.

First, let us look at the cars that did not get through the light, the ones that
are in x < 0 at t = 0; their density is ρ(x, t) which satisfies (8.1). At the moment
the light goes red, they are all travelling towards the light with speed u0 and
density ρ0. These cars therefore see the initial condition ρ(x, 0) = ρ0, x < 0.
Because u = 0 at x = 0, the density there is its maximum value, so ρ(0, t) = 1.
There are two families of characteristics to consider. Those starting from theRemember that dx/dt is one

over the gradient in the (x, t)
plane.

initial data on t = 0 have characteristic speed 1− 2ρ0 (which may be negative),
and they carry the value ρ = ρ0. Those starting from the light at x = 0 have
speed 1 − 2 = −1 and carry the value ρ = 1. The two families therefore cross
immediately and, as shown in Figure 8.1(a), a shock must originate at x = 0,
t = 0. Its speed is given by

dS−
dt

=
[ρ(1− ρ)]+−

[ρ]+−

=
0− ρ0(1− ρ0)

1− ρ0

= −ρ0

So, for x < 0 there is a shock on x = −ρ0t which propagates backwards into the
oncoming traffic, bringing it to a halt.

Now consider the traffic that gets through the light before it turns red. We
expect these cars to continue on their way at speed u0, leaving a stretch of
empty road behind them. The density satisfies (8.1) for x > 0, t > 0, with

ρ(x, 0) = ρ0, ρ(0, t) = 0.

As shown in Figure 8.1(b), the characteristics starting from the lights at x = 0
all have dx/dt = 1 and they carry the value ρ = 0, while those starting from the
initial data on t = 0 all have dx/dt = 1 − 2ρ0 < 1 and ρ = ρ0. Again, a shock
must originate at x = 0, t = 0. Its speed is given by

dS+

dt
=

[ρ(1− ρ)]+−
[ρ]+−

= 1− ρ0.

This is just the speed of the last car to get through the lights, and our intuition
is confirmed. (Note that both our shocks are causal, as defined in Exercise 7 on
page 105.)

Green lights and expansion fans

What happens when the light turns green and a queue of stationary traffic
(ρ = 1) moves off? In this case the initial data ρ(x, 0) is discontinuous, being
equal to 1 for x < 0 and 0 for x > 0. If we were to smooth this discontinuity off,
say with a tanh function, we would see characteristics with all speeds between
−1 (corresponding to ρ = 1) and +1 (corresponding to ρ = 0 as in Figure 7.3
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(c)

(a) (b)

x = S−(t) x = S+(t)

t

x = S+(t)

x x

ρ

x = S−(t)

x

t

Figure 8.1: (a) Shock formation in traffic arriving at a red light. (b) Shock in
traffic ahead of a red light. (c) Traffic density profile after the light turns red.
In all three cases ρ0 = 2

3 .

on page 93. This motivates the idea of an expansion fan: a collection of char-
acteristic projections all emanating from a single point as shown in Figure 8.2.
It allows the solution to make a continuous transition from ρ = 1 to ρ = 0.

For our problem, the characteristic projections are all straight and ρ is con-
stant along them. That means that ρ is a function of x/t alone (a similarity
solution). On any characteristic, ρ is a constant equal to α, say, where 0 < α < 1, In general, the characteristic

projections are only locally
straight and the fan curves
over.

and the equation of the characteristic projection is x = (1− 2α)t. We can write
this as ρ = 1

2 (1− β) on x = βt, or explicitly as

ρ(x, t) =





1 x < −t,
1
2 (1− x/t) −t ≤ x ≤ t,

0 x > t.

Notice that discontinuities in the derivative of ρ propagate along the character-
istics x = −t, ρ = 1 and x = t, ρ = 0.

It is, in principle, possible to construct the solution for most initial value
problems using a mixture of shocks and expansion fans, but it can become
complicated, as we see in Exercise 3.

8.3 More sophisticated models

The models above have their appeal, but they are rather limited in ambition
and realism. We may indeed see fairly abrupt changes in traffic density, but
never true jumps. Moreover, the drivers in these models are very myopic: they
do not look ahead at all to anticipate future traffic developments.
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x = −t

t

x

ρ

x = t
x

Figure 8.2: Expansion fan at a green light: characteristic projections and density
profile.

There are several things we could do about this. One way to go is to intro-
duce a non-local speed-density law, so that u(x, t) depends on ρ(x+h, t) as well
as ρ(x, t), where h is the distance ahead that the driver looks.1 A special case
of this law is the model

u = 1− ρ− ε
∂ρ

∂x
,

where ε is a small positive constant. This says that drivers take into account
whether traffic density is increasing or decreasing, and slow down if it is increas-
ing. Putting this into ∂ρ/∂t+ ∂Q/∂x = 0 leads to the equation

∂ρ

∂t
+

∂

∂x
(ρ(1− ρ)) = ε

∂

∂x

(
ρ
∂ρ

∂x

)
,

a nonlinear diffusion equation with some interesting properties. Because it is
parabolic when ε > 0, albeit nonlinear (and degenerate because the ‘diffusion
coefficient’ ερ vanishes when ρ = 0), its solutions may be smoother than is the
case when ε = 0. In Exercise 5 you are asked to show that travelling-wave
solutions of this equation are consistent with the Rankine–Hugoniot conditions
that apply when ε = 0.

Further models involve an evolution equation for u, rather than just a con-
stitutive equation. For example, we might replace u = U(ρ) by an equation
like

∂u

∂t
+ u

∂u

∂x
= −u(ρ, t)− U(ρ)

τ
,

which says that the rate of change of u following a car is proportional to the
difference between u and the ‘equilibrium’ speed U ; here τ represents the time
over which a driver changes speed to reach equilibrium. To this we might also
add an anticipatory term −ε ∂ρ/∂x, modelling drivers’ tendency to speed up if

1One could also introduce a ‘reaction time’ delay in the t variable.
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they see light traffic ahead, and slow down if the traffic is getting worse. All
these, and many more possibilities, have been discussed in the traffic literature
(see [24] for more details). Roughly speaking, many of the models do a good
job in describing generic features such as jams and abrupt changes in traffic
density, but they are less successful in forecasting the evolution of traffic from
a given starting density (which is, of course, the big question). Only recently
has reliable empirical data, gathered by induction loops buried in roads, become
available, and I have no doubt that there are many interesting developments to
come.

Sources and further reading

The kinematic wave model for traffic flow is usually attributed to Whitham
and Lighthill. An excellent survey of a huge variety of approaches to traffic
modelling can be found in [24]; see also www.trafficforum.org.

8.4 Exercises

1. Blinkered cars. Consider the kinematic wave equation

∂u

∂t
+ u

∂u

∂x
= 0.

with u(x, 0) = u0(x) a smooth decreasing function of x. Find the solution
in parametric form. Look at the relevant Jacobian to show that the earliest
time at which the characteristics cross is

tmin = − 1
min−∞<x<∞ u′0(x)

.

Show that the rate at which neighbouring cars get closer to each other is
∂u/∂x and interpret the blow-up result above in this light.

2. Traffic jams. Consider the traffic model

∂ρ

∂t
+
∂(uρ)
∂x

= 0,

where u = 1− ρ for 0 ≤ ρ ≤ 1.

(a) A tractor is travelling along the road at a quarter of the maximum
speed and a very long queue of cars travelling at the same speed has built
up behind it. At time t = 0 the tractor passes the origin x = 0 and
immediately turns off the road. Sketch the characteristic diagram; show
that there is an expansion fan for ρ centred at x = 0, t = 0 and find ρ(x, t)
for t > 0.

(b) A queue is building up at a traffic light at x = 1 so that, when the
light turns to green at t = 0,

ρ(x, 0) =

{
0 for x < 0 and x > 1,
x for 0 < x < 1.
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Show that the characteristics, labelled by s and starting from (s, 0), are
given by t = τ and

x− s = τ in x < τ and x > τ + 1, on which ρ = 0,
x− s = (1− 2s)τ in τ < x < 1− τ , on which ρ = s,

x− 1 = (1− 2ρ0)τ in 1− τ < x < 1 + τ , on which ρ = ρ0 = (τ − x+ 1)/(2τ)

(these last ones are an expansion fan starting from the light). Draw the
characteristic projections in the (x, t) plane; show that all those starting
with 0 < s < 1 pass through one point and deduce that a collision first
occurs at x = 1/2 at t = 1/2.

Harder: show that thereafter there is a shock x = S(t) starting from ( 1
2 ,

1
2 )

where
dS

dt
=
S + t− 1

2t
.

Write S(t) = 1 + S̃(t) to reduce this equation to one homogeneous in S̃
and t, and hence solve it.

3. Red light, green light. Continue the solution of Section 8.2 as follows.
Suppose that the light turns green after time T . Move the time origin to
this moment and neglect the traffic that has already passed the light and
is in x > 0. Find the solution of (8.1) with the initial data (at the new
time origin)

ρ(x, 0) =





ρ0 x < −ρ0T

1 −ρ0T < x < 0
0 x > 0.

Show that the shock that is initially at x = −ρ0T continues to propagate
at speed ρ0 until it is caught up by the characteristic projection x = −t, at
time t = ρ0T/(1− ρ0). Show that thereafter there is a shock at x = S(t)
whereSwitching to the variable

v = ρ− 1
2

helps you to spot
the simplification. dS

dt
=

1
4 (1− S2/t2) + ρ0(1− ρ0)

1
2 (1− S/t)− ρ0

=
(ρ0 − 1

2 )t+ S

2t
.

Solve this equation by the substitution S(t) = ts(t).

Harder: show that the shock initially propagates to the right if ρ0 <
1
2

and to the left if ρ0 >
1
2 . Calculate ρ for x = S(t)+ and show that the

jump in ρ across the shock is equal to (ρ0(1− ρ0))
1
2 (T/t)

1
2 , and hence

decreases as t increases.

4. Two-lane traffic. Explain why the one-lane model above might be ex-
tended to at two-lane model in the form

∂ρ1

∂t
+

∂

∂x
(ρ1u1) = F12(ρ1, ρ2, u1, u2),

∂ρ2

∂t
+

∂

∂x
(ρ2u2) = −F12(ρ1, ρ2, u1, u2),
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and explain where F12 comes from. What general properties should F12

have, in your opinion? How would it differ for the American freeway in
which overtaking is allowed on the inside lane, as compared to the British
case in which (in principle if not in practice) it is not?

5. Smoothed traffic equation. Consider the equation

∂ρ

∂t
+

∂

∂x
(ρ(1− ρ)) = ε

∂

∂x

(
ρ
∂ρ

∂x

)
,

a model for anticipatory drivers. Suppose we look for a solution ρ =
f(x− V t), −∞ < x <∞, with ρ→ ρ± as x→ ±∞. Show that

V =
[ρ(1− ρ)]∞−∞

[ρ]∞−∞
.

Compare this with the Rankine–Hugoniot condition. What do you think
happens as ε→ 0? We return to this issue in Chapter 16.

Carry out the same procedure for the smoothed kinematic wave equation

∂u

∂t
+ u

∂u

∂x
= ε

∂2u

∂x2
,

known as Burgers’ equation. [Amazingly, it can be reduced to the heat
equation by the Cole–Hopf transformation u = −2∂ log v/∂x, taking ε = 1
without loss of generality: try it!]

“The mass of this thing is about 1 kilometre.”
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Chapter 9

The delta function and
other distributions

9.1 Introduction

In this chapter we give a very informal introduction to distributions, also called
generalised functions. We do two rather amazing things: we see how to differ-
entiate a function with a jump discontinuity, and we develop a mathematical
framework for point forces, masses, charges, sources etc. Furthermore, we find
that these two ideas find their expression in the same mathematical object: the
Dirac delta function.

When I learned proper real analysis for the first time, we spent ages agonising
about continuity, left and right limits, one- and two-sided derivatives, and so on.
The result was a lingering fear of pathological functions (continuous everywhere
differentiable nowhere, that sort of thing) and associated technicalities. It came
as a great relief to find (much later on, alas) that by getting away from the
pointwise emphasis of introductory analysis one can give a beautifully consistent
and holistic definition of the derivative of the Heaviside function1

H(x) =

{
1 x > 0,
0 x ≤ 0.

In pointwise mode, the best we can do with this function is to talk about the
left and right limits of its derivative at the origin. Both these are equal to zero,
but the function nevertheless gets up from 0 to 1. There must be something
behind this!

The Heaviside function and its derivative, the delta function (or distribu-
tion), are ubiquitous in whole swathes of linear applied mathematics, not to
mention discrete probability. They, and other distributions, are invaluable in
developing an intuitive framework for modelling and its interaction with math-
ematics. Don’t be inhibited about using them: your mistakes are unlikely to
do worse than lead to inconsistencies (which I hope you are constantly on the
look out for) and plainly wrong answers, rather than the deadly ‘plausible but
fallacious’ solution.

1The value H(0) = 0 has been assigned for consistency with probability, as we shall see;
but for reasons that will shortly become clear it really doesn’t matter what value we take.

117
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x

1

Figure 9.1: The Heaviside function H(x). Its derivative vanishes for all x 6= 0
but it still gets up from 0 to 1. How?

9.2 A point force on a stretched string; impulses

Tension T

y

x

force F

x = L

x = a

Figure 9.2: A string with a point force.

Let’s start with a couple of motivating physical examples. We have all at
some time worked out the displacement of a stretched string under the influence
of a point force, as sketched in Figure 9.2. Under the standard assumptions that
the string is effectively weightless, and that the force F (measured upwards, in
the same direction as y) can be considered as acting at a point x = a and
only causes a small deflection, the equilibrium displacement y(x) of the string
satisfies

d2y

dx2
= 0, 0 < x < a, a < x < L, (9.1)

with the force balance conditionConsistency check on the
signs: F > 0 and dy/dx is
negative to the right of a,
positive to the left.

[
T
dy

dx

]x=a+

x=a−
= −F. (9.2)

Notice the implicit assumption that y itself is continuous at x0 although its
derivative is not.

Now we might ask, can we somehow put the force on the right-hand side
of (9.1), and have the equilibrium conditions hold at x = a as well? After all, if
we have a distributed force per unit length f(x) on the string, the usual force
balance on a small element (see Figure 9.3) gives the equation2

T
d2y

dx2
= −f(x), 0 < x < L.

2You might wonder why there is a minus sign on the right. If we were to consider the
unsteady motion of the string, Newton’s Second Law in the form

mass× acceleration = force
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T

force f δx

T

δx

Figure 9.3: Force on an element of a string.

For example, when f = −ρg, the gravitational force on a uniform wire of line
density ρ, the displacement is a parabola (the small-displacement approximation
to a catenary).

Can we devise some limiting process in which all the force becomes concen- Question expecting the answer
yes.trated near x = a, with the total force

∫ L

0
f(x) dx tending to F? A possible way

to do this would be to take

f(x) =

{
F/2ε a− ε < x < a+ ε,

0 otherwise,

and then to let ε → 0. But would we get the same answer if we took the limit
of some other concentrated force density, and in any case how, exactly, are we
to interpret the result of this limiting process?

In a very similar vein, recall the concept of an impulse in mechanics. In
one-dimensional motion, the velocity v of a particle under a force f(t) satisfies
Newton’s equation

m
dv

dt
= f(t),

from which

v(t) = v(0) +
1
m

∫ t

0

f(s) ds.

If the force is very large but only lasts for a short time, say

f(t) =

{
I/ε 0 < t < ε,

0 otherwise,

then we can integrate the equation of motion from t = 0 to t = ε to find

v(ε) =
1
m

∫ ε

0

I

ε
dt =

I

m
.

gives

ρ
∂2y

∂t2
= T

∂2y

∂x2
+ f,

leading to the minus sign in question. Many mathematicians, writing the wave equation as

ρ
∂2y

∂t2
− T

∂2y

∂x2
= f,

would write the equilibrium equation for the string as

−T d
2y

dx2
= f(x).

Note the absence of minus signs in the impulse example that follows.
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y

ε3 ε2 ε1

x

Figure 9.4: Three approximations to the delta function; ε1 > ε2 > ε3 > 0.

Letting ε → 0, we have the result of an impulse I: the velocity v changesNotice that the wire slope has
a jump discontinuity at a
point force.

discontinuously from 0 to I/m. Again, we can ask the question, can we put
the limiting impulse directly into the equation of motion, rather than having to
smooth it out and take a limit?

9.3 Informal definition of the delta and Heavi-
side functions

Obviously the answer to all our questions above is yes. The powerful and elegant
theory of distributions allows us to model point forces and much more (dipoles,
for example). However, the intuitive view of a point force (mass, charge, . . . ) as
the limit of a distributed force turns out to be technically very cumbersome, and
nowadays a more concise and general, but physically less intuitive, treatment
is preferred. This oblique approach requires some groundwork, and we defer a
brief self-contained description until Chapter 10. You will survive if you don’t
read it, although I recommend that you do: it is not technically demanding or
complex.

In this chapter we concentrate on the intuitive approach to the delta function.
Although this is not how the theory is nowadays developed, it absolutely is how
to visualise this central part of it. Taking the examples of the previous section
and stripping away the physical background, consider the functions

fε(x) =

{
1/2ε −ε < x < ε,

0 otherwise.
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They are shown in Figure 9.4 for various values of ε. The following facts are
obvious:

•
∫ ∞

−∞
fε(x) dx = 1 for all ε > 0;

• for x 6= 0, fε(x) → 0 as ε→ 0.

The limiting ‘function’ is very strange indeed. It has a ‘mass’, or ‘area under
the graph’, of 1, but that mass is all concentrated at x = 0. This is just what
we need to model a point force, and even though we don’t quite know how to
interpret it rigorously, we provisionally christen the limit as the delta function,
δ(x).

Two extremely useful properties of the delta function are now at least plau-
sible. Firstly, as ε→ 0,

∫ x

−∞
fε(s) ds→

{
1 x > 0,
0 x < 0,

and the right-hand side is the Heaviside function H(x) with its jump disconti- For now, let’s not worry what
its value is at x = 0.nuity at x = 0. So, we should have

∫ x

−∞
δ(s) ds = H(x),

at least for x 6= 0. Furthermore, fingers crossed and appealing to the Funda-
mental Theorem of Calculus, we should conversely have

d

dx
H(x) = δ(x).

That is, delta functions let us differentiate functions with jump discontinuities.
The Heaviside function has a jump up of 1 at x = 0, and its derivative is δ(x),
and by an obvious extension, the derivative of a function with a jump of A at
x = a contains a term Aδ(x− a).

The second vital attribute of δ(x) is its ‘sifting’ property. Intuitively, for A proof is requested in the
exercises.sufficiently smooth functions φ(x),

∫ ∞

−∞
fε(x)φ(x) dx→ φ(0) as ε→ 0,

simply because all the mass of fε(x), and hence of the product fε(x)φ(x), be-
comes concentrated at the origin. So, we conjecture that we can make sense of
the statement ∫ ∞

−∞
δ(x)φ(x) dx = φ(0) (9.3)

and, by a simple change of variable,
∫ ∞

−∞
δ(x− a)φ(x) dx = φ(a)

for any real a.
These assertions are eminently plausible. However, if you stop to think how

you might make them mathematically acceptable, difficulties start to appear.
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Would we get the same results if we used a different approximating sequence
gε(x)? Do we need to worry about the value of H(0)? Having differentiated For example,

gε(x) =
1

ε
√

2π
e−

1
2 x2/ε2 ,

as discussed in Section 9.4.2.

H(x), can we define dδ/dx? Clearly this last runs a big risk of being very
dependent on the approximating sequence we use.

For all these reasons, and more, the theory is best developed slightly differ-
ently, without the ‘epsilonology’.3 The clue lies in the sifting property. Using
the fact that integration is a smoothing process, we can get away from the
‘pointwise’ view of functions which is so troublesome, and instead define distri-
butions via averaged properties. An example is the integral (9.3), which leads
to the definition of δ(x).4 Before looking at this idea in more detail, we consider
some examples.

9.4 Examples

9.4.1 A point force on a wire revisited

All our discussion suggests that we should model the point force F acting at
x = a by a term Fδ(x − a) in the equilibrium equation for the displacement,
and assume that the latter now holds for all x, so that

T
d2y

dx2
= −Fδ(x− a), 0 < x < L.

We now know that this means that the left-hand side is the derivative of aAssuming we believe that
differentiation still makes
sense.

function which jumps by F at x = a. But the left-hand side is also the derivative
of T dy/dx. Thus, putting the delta function into the equilibrium equation leads
automatically to the force balance

[
T
dy

dx

]a+

a−
= −F,

and there is no need to state this separately.

9.4.2 Continuous and discrete probability.

We can interpret each of the approximations fε(x) of Figure 9.4 as the probabil-
ity density of a random variable Xε whose value is uniformly distributed on the
interval (−ε, ε). The mean of this distribution is 0 and its standard deviation
is ε/

√
3. As ε→ 0, the random variable becomes equal to 1 with certainty, be-

cause its standard deviation tends to zero, and any random variable with zero
standard deviation must be a constant. This suggests that we can interpret the
delta function as the probability density ‘function’ of a variable whose prob-
ability of being equal to zero is 1. Likewise, the cumulative density function
(distribution function) FXε(x) = P (Xε < x) tends to the Heaviside function.5

3See [42] page 97 for this neologism.
4The process of generalisation by looking at a weaker (smoother) definition using an inte-

gral, rather than a pointwise definition, is common in analysis. A famous example in applied
mathematics is the definition of weak solutions to hyperbolic conservation laws, which leads
to the Rankine–Hugoniot relations for a shock.

5In this case the strict inequality in the definition of FXε suggests that we should take
H(0) = 0. Looking in the books on my shelf, I find that there is no consensus in the probability
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y

x

Figure 9.5: Cumulative density functions for the distributions of Figure 9.4.

In a similar vein, we can take approximations

gε(x) =
1

ε
√

2π
e−

1
2 x2/ε2 ,

which are the density functions of normal random variables with mean zero and
standard deviation ε. These also clearly tend to the delta function as ε→ 0.

Now suppose we have a coin-toss random variable X taking values ±1 with
equal probability 1

2 . As X can only equal 1 or −1, all its probability mass
is concentrated at these values: its density function is zero for x 6= ±1. The
density of this random variable is What is its distribution

function?

fX(x) = 1
2 (δ(x+ 1) + δ(x− 1)) .

In this way, we can unify continuous and discrete probability — at least when
the number of discrete events is finite. The extension to infinitely many discrete
events is much more difficult, and may require the tools of measure theory.

9.4.3 The fundamental solution of the heat equation

If we set ε = 2t in the functions gε of the previous section, we get the function

g(x, t) =
1

2
√
πt
e−x2/4t.

Direct differentiation shows that g(x, t) satisfies the heat equation. As we saw
above, as t ↓ 0, g(x, t) → δ(x). In summary, g(x, t) satisfies the initial value
problem

∂g

∂t
=
∂2g

∂x2
, t > 0, −∞ < x <∞,

g(x, 0) = δ(x).

This solution represents the evolution of a ‘hot spot’, a unit amount of heat Note the infinite propagation
speed of the heat: t = 0 is a
(double) characteristic of the
heat equation. Note also the
very rapid decay in the
solution as |x| increases.

world whether to use P (X < x) or P (X ≤ x) to define the distribution function (no wonder
I can never remember). It is a matter of convention only, and would lead to corresponding
conventional definitions of H(0). Another highly plausible definition is H(0) = 1

2
, on the

grounds that any Fourier series or transform inversion integral for a function with a jump
converges to the average of the values on either side. This sort of hair splitting is one reason
why the pointwise view of distributions is not really workable.
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which at t = 0 is concentrated at x = 0.
With this solution, we can solve the more general initial value problem

∂u

∂t
=
∂2u

∂x2
, t > 0, −∞ < x <∞,

u(x, 0) = u0(x).

We first note that the initial data u0(x) can be written as

u0(x) =
∫ ∞

−∞
u0(ξ)δ(x− ξ) dξ

by the picking-out property of the delta function. Now the evolution of a solution
with initial data δ(x−ξ) is just g(x−ξ, t) where g is as above. The integral over
ξ amounts to superposing the initial data for these solutions, so that each point
contributes a delta function weighted by u0(ξ) dξ. Because the heat equation is
linear, we can superpose for t > 0 as well, so we haveConfirm that u(x, t) satisfies

the heat equation by
differentiating under the
integral sign. u(x, t) =

∫ ∞

−∞
u0(ξ)g(x− ξ, t) dξ

=
1

2
√
πt

∫ ∞

−∞
u0(ξ)e−(x−ξ)2/4tdξ.

This solution has a physical interpretation as the superposition of elementary
‘packets’ of heat evolving independently.6

9.5 ‘Balancing the most singular terms’

If we have an equation involving ‘ordinary’ functions, and there is a singularity
on one side, there must be a balancing singularity somewhere else. For example,
we could never find coefficients an such that

1
sinx

= a0 + a1x+ a2x
2 + · · ·

because the left-hand side clearly has a 1/x (simple pole) singularity at x = 0.
On the other hand there is an expansionThis is just the Laurent

expansion.

1
sinx

=
a−1

x
+ a0 + a1x+ a2x

2 + · · · ,

and furthermore we know that a−1 = 1 because 1/ sinx ∼ 1/x as x→ 0. Thus,
both sides have this singularity in their leading-order behaviour as x→ 0.

This is a simple but powerful idea, and it applies to distributions as well. In
our naive approach, a delta function is a ‘function’ with a particular singularity
at x = 0. Thus, if part (for example the right-hand side) of an equation contains
a delta function as its ‘most singular’ term, there must be a balancing term
somewhere else. For instance, when we write

dv

dt
=

I

m
δ(t),
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for the motion of a particle subject to a point force, there must be another
singularity to balance the delta function. It can only be in dv/dt, so weGo back and look at the point

force on a string in this light. know straightaway that v has a jump at t = 0; furthermore, we know that the
magnitude of the jump is I/m, by ‘comparing coefficients’ of the delta functions.
In this case it is trivial to find the balancing term, because there is only one
candidate. Suppose, though, that the equation has a linear damping term:

m
dv

dt
= −mkv + Iδ(t),

where k > 0 is the damping coefficient. The balancing singularity is still in
the derivative dv/dt, simply because dv/dt always has worse singularities than
v itself. Going back, we can check: if dv/dt has a delta, then v has a jump, Differentiation makes matters

worse, integration makes them
better.

which is indeed less singular.

9.5.1 The Rankine–Hugoniot conditions

In Chapter 7 we looked briefly at the Rankine–Hugoniot conditions for a first
order conservation law

∂P

∂t
+
∂Q

∂x
= 0

where, for example, P is the density ρ of traffic and Q the flux uρ. We saw that
we can construct solutions in which P and Q have jump discontinuities across
a shock at x = S(t), provided that

dS

dt
=

[Q]
[P ]

.

We can interpret this condition as a balance of delta functions. If P has a (time-
dependent) jump of magnitude [P ](t) at x = S(t), we can (very informally) write

P (x, t) = [P ](t)H (x− S(t)) + smoother part,

and similarly for Q(x, t). Differentiating, we find

∂P

∂t
= −[P ](t)δ (x− S(t))

dS

dt
+ less singular terms,

∂Q

∂x
= [Q](t)δ (x− S(t)) + less singular terms.

Adding these and balancing the coefficients of the delta functions, the Rankine–
Hugoniot condition drops out.

9.5.2 Case study: cable-laying

In Chapter 4, we wrote down the model

dFx

ds
= −Bx,

dFy

ds
= −By + ρcgA = 0, (9.4)

EAk2 d
2θ

ds2
− Fx sin θ + Fy cos θ = 0, (9.5)

6There is also an interpretation in terms of random walkers following Brownian Motion:
see Exercise 9 on page 137.



126 CHAPTER 9. DISTRIBUTIONS

where

(Bx, By) =
(
ρwgA cos θ + pA

dθ

ds

)
(− sin θ, cos θ). (9.6)

for a cable being laid on a sea bed, where θ is the angle between the cable
and the horizontal. We stated, on a rather intuitive basis, that the boundary
conditions at s = 0 are θ = 0 (no worries about this one) and dθ/ds = 0,
namely continuity of θ and dθ/ds, since θ = 0 for s < 0. We can now see why
this is necessary. If dθ/ds is not continuous, then d2θ/ds2 has a delta function
discontinuity at s = 0. But then there is no balancing term in (9.5) since, loosely,Because there is a reaction

force between the sea bed and
the cable, and maybe some
friction, we do not expect the
right-hand sides of (9.4) to be
continuous at s = 0.

(9.4) shows that both Fx and Fy are at least as continuous as Bx and By, and
so from (9.6) they are no worse than dθ/ds with its assumed-for-a-contradiction
jump discontinuity; we have duly obtained said contradiction.

9.6 Green’s functions

9.6.1 Ordinary differential equations

The two-point boundary value problem7

Lxy(x) =
d

dx

(
p(x)

dy

dx

)
+ q(x)y = f(x), 0 < x < 1, (9.7)

y(0) = y(1) = 0, (9.8)

is standard. often arising in a separation of variables calculation in an exotic
coordinate system. As a matter of terminology, we call the combination of Lx,
the interval on which it is applied, and the boundary conditions at the ends
of this interval, the differential operator for this problem. Changing any of
these changes the differential operator. The operator (9.7), (9.8) above is called
self-adjoint, a term that will be made clearer later.

One of the first things that one does with problems of this kind is to show
that they can be solved with the help of a Green’s function. Provided that
the homogeneous problem (f(x) ≡ 0) has no non-trivial solutions, the Green’s
function is the function G(x, ξ) that satisfies

LξG(x, ξ) = 0, 0 < ξ < x, x < ξ < 1, (9.9)
G(x, 0) = G(x, 1) = 0, (9.10)

with some rather opaque-seeming conditions at ξ = x:

[G]ξ=x+
ξ=x− = 0,

[
p(ξ)

dG

dξ

]ξ=x+

ξ=x−
= 1

(
or

[
dG

dξ

]ξ=x+

ξ=x−
=

1
p(x)

)
. (9.11)

If we can solve this problem, then we have a representation for y(x) as

y(x) =
∫ 1

0

G(x, ξ)f(ξ) dξ.

The elementary proof of this is by direct construction of the Green’s function
via variation of parameters, assuming the existence of appropriate solutions of
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the homogeneous equation, and we do not describe it here. The point is that weJust like inverting a matrix A
to solve Ax = b; see
Exercise 7.

need only calculate G once, and then we have the solution whatever we take for
f(x).8 In this way, we can think of the operation of multiplying by the Green’s
function and integrating as the inverse of the differential operator L.

This is all very well, but I don’t think it gives a good intuitive feel for what
the Green’s function really does. Suppose, though, that we take the solution

y(x) =
∫ 1

0

G(x, ξ)f(ξ) dξ (9.12)

and apply Lx to it. Assuming that we can differentiate under the integral, we
get

Lxy(x) =
∫ 1

0

LxG(x, ξ)f(ξ) dξ

= f(x).

We recognise this: it is the sifting property. Whatever f we take, when we
multiply f(ξ) by LxG(x, ξ) and integrate, we get f(x). Thus, as a function
(actually, a distribution) of x, G(x, ξ) satisfies

LxG(x, ξ) = δ(x− ξ),

that is
d

dx

(
p(x)

dG

dx

)
+ q(x)G = δ(x− ξ).

Also, the boundary conditions y(0) = y(1) = 0 mean that we need to take

G(0, ξ) = G(1, ξ) = 0,

so that (9.12) satisfies the boundary conditions whatever f(x) we take. In sum-
mary, as a function of x, the Green’s function satisfies the differential equation
with a delta-function on the right-hand side, and with the homogeneous version
of the original boundary conditions.

This calculation tells us several things. Thinking physically, it tells us that
the Green’s function is the response of the system to a point stimulus (force,
charge, . . . ) at x = ξ. The solution (9.12) is then just the response to f(x), re-
garded as a superposition of point stimuli (the delta function at x = ξ) weighted
by f(ξ) dξ.

7The subscript to L tells you which variable to use. Strictly speaking, in much of the
discussion to follow all the derivatives should be partial, but it seems to be conventional to
stick to ordinary derivatives.

8A very common use of the Green’s function is to turn a differential equation into an integral
equation as a prelude to an iteration scheme to prove existence, uniqueness and regularity.
Often the equation has a linear part and some nonlinearity as well, and we use the Green’s
function for the linear part. A simple example of this procedure is Picard’s theorem for local
existence and uniqueness of the solution to dy/dx = f(x,y), y(0) = y0 for a set of first-order
equations, where the first step is to write

y(x) = y0 +

Z x

0
f(ξ,y(ξ)) dξ;

the only modification needed is to adapt the Green’s function methodology to cater for initial
value problems, as described in Exercise 4.
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Looking more mathematically, if we expand LxG(x, ξ) as

LxG(x, ξ) = p(x)
d2G

dx2
+ lower order derivatives,

we see by balancing the most singular terms (the highest derivatives) that
d2G/dx2 must have a delta function, scaled by p(x), at x = ξ. That is,

[G]x=ξ+
x=ξ− = 0,

[
p(x)

dG

dx

]x=ξ+

x=ξ−
= 1

(
or

[
dG

dx

]x=ξ+

x=ξ−
=

1
p(ξ)

)
.

This should ring a bell. It is the same as the ‘opaque’ jump conditions (9.11),
except that it refers to the x–dependence of G(x, ξ) instead of the ξ–dependence.
Indeed, comparing the original definition of G given in (9.9)–(9.11) and recalling
that G(0, ξ) = G(1, ξ) = 0, we see that the two formulations are identical except
that x and ξ are swapped. That is, we have established that, for self-adjoint
problems,Note that

δ(x− ξ) = δ(ξ − x). G(x, ξ) = G(ξ, x)

and that
LξG(x, ξ) = δ(ξ − x).

We are now in a position to tie together the x and ξ dependence of G(x, ξ).
Consider the integral

∫ 1

0

y(ξ)LξG(x, ξ)−G(x, ξ)Lξy(ξ) dξ.

Inserting the right-hand sides of the differential equations for G and y, we get
∫ 1

0

y(ξ)LξG(x, ξ)−G(x, ξ)Lξy(ξ) dξ =
∫ 1

0

y(ξ)δ(ξ − x)−G(x, ξ)f(ξ) dξ

= y(x)−
∫ 1

0

G(x, ξ)f(ξ) dξ.

On the other hand, integrating the same expression by parts, we get
∫ 1

0

y(ξ)LξG(x, ξ)−G(x, ξ)Lξy(ξ) dξ =
∫ 1

0

y(ξ)
(
d

dξ

(
p(ξ)

dG

dξ

)
+ q(ξ)G(x, ξ)

)

−G(x, ξ)
(
d

dξ

(
p(ξ)

dy

dξ

)
+ q(ξ)y(ξ)

)
dξ

=
[
y(ξ)p(ξ)

dG

dξ
−G(x, ξ)p(ξ)

dy

dξ

]1

0

−
∫ 1

0

p(ξ)
dy

dξ

dG

dξ
− p(ξ)

dG

dξ

dy

dξ
dξ

= 0.

Thus we retrieve the solution

y(x) =
∫ 1

0

G(x, ξ)f(ξ) dξ.
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This calculation is really the key to the whole procedure. It tells us that theAs a function of x the
differential equation for G is
still LxG = 0 with the same
boundary conditions as those
for y.

differential equation and boundary conditions (that is, the differential operator)
for G as a function of ξ must be such that we can integrate by parts and get
zero (so in the second line of our calculation, we must have zero multiplying
dy/dx, about which we know nothing at the endpoints).

Non-self-adjoint problems

For a self-adjoint problem, such as those discussed thus far, G is symmetric and
the two operators, for y and G, are the same. Now suppose that we have a more
general problem, such as

Lxy(x) = a(x)
d2y

dx2
+ b(x)

dy

dx
+ c(x)y = f(x),

with the boundary conditions (sometimes called primary boundary conditions

α0y(0) + β0y
′(0) = 0, α1y(1) + β1y

′(1) = 0.

(to save ink, y′ = dy/dx). We aim to find a differential operator for G which
allows us to follow the calculation above as closely as possible. That is, we want
to find a combination of derivatives L∗ such that, as a function of ξ, G(x, ξ)
satisfies

L∗ξG(x, ξ) = δ(x− ξ),

with appropriate boundary conditions. We can then integrate by parts as above;
and provided that

∫ 1

0

y(ξ)L∗ξG(x, ξ)−G(x, ξ)Lξy(ξ) dξ = 0,

we have the answer

y(x) =
∫ 1

0

G(x, ξ)f(ξ) dξ.

For the general operator just introduced, the new operator, called the adjoint
operator, is given by

L∗v(x) =
d2

dx2
(a(x)v(x))− d

dx
(b(x)v(x)) + c(x)v(x),

with the adjoint boundary conditions

a(0)
(
α0v(0) + β0v

′(0)
)

+ β0

(
a′(0)− b(0)

)
v(0) = 0,

a(1)
(
α1v(1) + β1v

′(1)
)

+ β1

(
a′(1)− b(1)

)
v(1) = 0,

as you will find out by doing Exercise 5.
You might very reasonably ask why we bother with the adjoint when all we

need to do is differentiate the answer

y(x) =
∫ 1

0

G(x, ξ)f(ξ) dξ
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under the integral sign to show that

Lxy =
∫ 1

0

LxG(x, ξ)f(ξ) dξ

= f(x),

so that
LxG(x, ξ) = δ(x− ξ)

with no mention of adjoints at all. An aesthetic reason is the mathematical
structure uncovered (compare vector spaces and their duals), but a compelling
practical reason is that if the primary boundary conditions are inhomogeneous,
for example y(0) = y0 6= 0, y(1) = y1 6= 0, then only the adjoint calculation
works (try it!).

One can take all this a great deal further, both making it more rigorous
and looking at more general problems. I recommend reading the relevant parts
of [32] or [54] if you want to do this; we are moving on to a brief look at partial
differential equations.

9.6.2 Partial differential equations

Much of the theory we have just seen can be generalised to linear partial differ-
ential equations. This is so much vaster a topic that it is only feasible to discuss
one example in detail, the Green’s function for Poisson’s equation, which is
probably the closest in spirit to the two-point boundary value problems we have
been discussing so far. We then briefly mention two other canonical problems,
for the heat equation and the wave equation.

We first have to generalise the delta function. In our informal style, this is
easy: we just say that for x ∈ Rn, the delta function δ(x) is such that

∫

Rn

δ(x)φ(x) dx = φ(0)

for all smooth functions φ(x). As before, we can think of this as a limiting
process in which the delta function is the limit of a family of functions whose
mass becomes more and more concentrated near the origin.9 Thinking about
how the integral is calculated, say in two dimensions with dx = dx dy, we may
also write

δ(x) = δ(x)δ(y),

and similarly in three or more variables.
Now suppose that we have to solve the problemThink of some physical

interpretations for u, and then
for the Green’s function G. Lxu(x) = ∇2u(x) = f(x)

in some region D, with the homogeneous Dirichlet boundary condition

u(x) = 0 on ∂D.

We choose the Green’s function to satisfyThe Laplacian is self-adjoint
(L = L∗) . . .

9They might, but need not, be radially symmetric; we might, but won’t, worry about how
to define integrals in n dimensions.
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LξG(x, ξ) = δ(ξ − x)

and look at the integral
∫

D

u(ξ)LξG(x, ξ)−G(x, ξ)Lξu(x) dξ =
∫

D

u(ξ)∇2
ξG(x, ξ)−G(x, ξ)∇2

ξu(x) dξ

=
∫

D

u(ξ)δ(ξ − x)−G(x, ξ)f(ξ) dξ

= u(x)−
∫

D

G(x, ξ)f(ξ) dξ.

On the other hand, using Green’s theorem, we have . . . because u∇2G−G∇2u is a
divergence and can be
integrated (a generalisation of
integration by parts).

∫

D

u(ξ)∇2G(x, ξ)−G(x, ξ)∇2u(x) dξ (9.13)

=
∫

∂D

u(ξ)n · ∇ξG(x, ξ)−G(x, ξ)n · ∇ξu(x) dSξ

= 0, (9.14)

provided that we take G(x, ξ) = 0 for ξ ∈ ∂D, where we do not know the normal
derivative of u. Putting these together, we have

u(x) =
∫

D

G(x, ξ)f(ξ) dξ.

It is an easy generalisation to account for nonzero Dirichlet data u(x) = g(x)
on ∂D: we just get an extra known term in (9.14).

Two more things should be said about this calculation. The first is that we
have not yet said anything about the nature of the singularity of G(x, ξ) at x = ξ
(in one space dimension, as we saw above, the first derivative of G has a jump
and G itself is continuous). Knowing as we do that line (in two dimensions) or
point (in three) charges generate electric fields which are solutions of Laplace’s Or line/point masses and their

gravitational potentials, fluid
sources and their velocity
potentials, or heat sources and
their steady-state temperature
fields.

equation, we should not be surprised to see logs in two dimensions and inverse
distances in three. This is confirmed by a simple version of the calculation we
have just done.10 In R3 for example, take ξ = 0 and suppose that

∇2G = δ(x) (9.15)

in the whole space. Clearly, then, G is radially symmetric: G = G(r) where
r = |x|. That means that

G(r) = A+
B

r

and if we want G → 0 as r → ∞, we take A = 0. Now use the divergence
theorem on the left-hand side of (9.15), integrating over a sphere of radius r
centred at x = 0. The left-hand side gives a surface integral equal to −4πB/r
and the volume integral of the delta function on the right is equal to 1. We
conclude that the singular behaviour of G(x, ξ) near x = ξ is The meaning of ∼ and O(1) is

explained in Chapter 12.

G(x, ξ) ∼ − 1
4π|x− ξ| +O(1),
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and in two dimensions the corresponding result is Can you now answer the
marginal question after
equation (4) on page 33?

G(x, ξ) ∼ 1
2π

log |x− ξ|+O(1).

The second point to make about the Green’s function for the Laplacian
is that it has a natural physical interpretation. The singular part we have just
discussed gives us the electric potential due to a point charge (or whatever) with
no boundaries. The remaining part, G+ 1/(4π|x− ξ|), is known as the regular
part of the Green’s function and it gives the potential due to the image charge
system induced by the boundary condition G = 0 on ∂D. Indeed, almost all
the Green’s functions for which explicit formulas are available are constructed
by the method of images (possibly with the help of conformal maps).

The heat and wave equations

To round off, let’s look quickly at two other equations, the heat and wave equa-You can safely ignore this
section, but have a look if you
have seen the classical
treatments of these problems.

tions in two space variables. Let us look at the simplest initial-value problem
for the heat equation, on the whole line, namely

Lx,tu =
∂u

∂t
− ∂2u

∂x2
= 0, −∞ < x <∞, t > 0,

u(x, 0) = u0(x).

By any of a variety of methods (for example, the Fourier transform in x), we
obtain the solution in the form

u(x, t) =
1

2
√
πt

∫ ∞

−∞
u0(ξ)e−(x−ξ)2/4t dξ.

It is no surprise that this is closely related to the Green’s function. The adjoint
to the forward heat equation is the backward heat equation, and as a function
of ξ and τ (the analogue here of ξ above), G(x, t; ξ, τ) satisfies

L∗ξ,τG =
∂G

∂τ
+
∂2G

∂ξ2
= δ(ξ − x)δ(τ − t),

and, remembering the fundamental solution of the forward heat equation (see
Exercise 8 and reversing time,Two minus signs from the

exponent cancel.

G(x, t; ξ, τ) =
1

2
√
π(t− τ)

e−(x−ξ)2/4(t−τ).

The usual integration in the form
∫ ∞

−∞

∫ t

0

uLξ,τG−GLξ,τu dτ dξ

then yields precisely the solution we derived earlier. It is an exercise to generalise
this result to the heat equation with a source term, Lu = f(x, t); you will get a

10In the more classical treatment of Green’s functions, you see essentially this calculation
when you integrate u∇2G − G∇2u over a region consisting of D with a sphere of radius ε
around x = ξ removed. There, the singular behaviour of G is prescribed (and looks mysterious:
why this form?), whereas here it emerges naturally.
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A
(x, y)

y

B

Γ

x

Figure 9.6: Domain of integration for the Riemann function for the wave equa-
tion.

double integral involving the product of G and f which has the simple physical
interpretation of being a superposition of solutions of initial value problems
starting at different times. Do it and see.

For the inhomogeneous wave equation in the canonical form

Lu =
∂2u

∂x∂y
= f(x, y),

with Cauchy data u and ∂u/∂n given on a non-characteristic curve Γ, we proceed
in the same spirit but differently in detail. One of the differences of detail is
that the the Green’s function is now usually called a Riemann function, and we
denote it by R(x, y; ξ, η). The differential operator ∂2 /∂x∂y is self-adjoint, but
we have to consider the direction of information flow carefully (see Figure 9.6).
When we solve

L∗R =
∂2G

∂ξ∂η
= δ(ξ − x)δ(η − y),

we look for a solution valid for ξ < x, η < y. Then the ‘usual’ integral
∫
uL∗R−RLu

is taken over the characteristic triangle shaded in Figure 9.6, and after use of
Green’s theorem yields the solution in terms of an integral along Γ from A to
B and an integral over the shaded triangle.

The Riemann function for the wave operator is particularly simple: Differentiate it and see.

R(x, y; ξ, η) = H(x− ξ)H(y − η),

i.e. it is equal to 1 in the quadrant ξ < x, η < y and zero elsewhere. It yields
the familiar D’Alembert solution (see [42]). Unfortunately this is a rare explicit
example. Although it is not hard to prove that the Riemann function exists,
only for a very few hyperbolic equations can it be found in closed form.
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Sources and further reading

The material on Green’s functions is just a small step into Sturm–Liouville and
Hilbert–Schmidt theory and eigenfunction expansions/transform methods. If
you want to explore further, [25] gives a straightforward account of the theory
for ordinary differential equations, [42] present an informal introduction to the
corresponding material for partial differential equations, and the excellent [54]
contains a more thorough account.

9.7 Exercises

1. Truncated random variables. Suppose that X is a continuous random
variable taking values in (−∞,∞), for example Normal. The truncated
variable Y is defined by

Y =

{
X if X < a

a if X ≥ a.

What are its distribution and density functions?

2. A useful identity. Interchange the order of integration (draw a picture
of the region of integration) to show that

∫ x

0

∫ ξ

0

f(s) ds dξ =
∫ x

0

(x− ξ)f(ξ) dξ.

Generalise to reduce an n–fold repeated integral of a function of a single
variable to a single integral.

3. Green’s function for a stretched string. Integrate twice to find the
solution of the two-point boundary value problem

d2y

dx2
= f(x), 0 < x < 1, y(0) = y(1) = 0

in the form

y(x) =
∫ 1

0

G(x, ξ)f(ξ) dξ.

Verify that if you differentiate twice under the integral sign and use the
jump conditions at ξ = x you recover the original problem.

4. Green’s function for an initial value problem. Use the result of
Exercise 2 to show that the solution of the initial value problem

d2y

dx2
= f(x), 0 < x < 1, y(0) =

dy

dx
(0) = 0 (9.16)

is
y(x) =

∫ x

0

(x− ξ)f(ξ) dξ.

Now pick X > x and write this answer in the form

y(x) =
∫ X

0

G(x, ξ)f(ξ) dξ;
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what is G? Show that G satisfies

d2G

dξ2
= δ(x− ξ), 0 < ξ < X, G =

dG

dξ
= 0 at x = X.

Verify by differentiating under the integral sign that your answer satisfies
the original problem. What is the adjoint problem (differential equation
and boundary conditions) to the original problem (9.16)?

This kind of Green’s function is the ordinary differential equation analogue
of the Riemann function for a hyperbolic equation.

5. Adjoint of a differential operator. Suppose that

Lxy = a(x)
d2y

dx2
+ b(x)

dy

dx
+ c(x)y,

with
α0y(0) + β0y

′(0) = 0, α1y(1) + β1y
′(1) = 0.

Show that the adjoint is

L∗xv =
d2

dx2
(a(x)v)− d

dx
(b(x)v) + c(x)v

with

a(0)
(
α0v(0) + β0v

′(0)
)

+ β0

(
a′(0)− b(0)

)
v(0) = 0,

a(1)
(
α1v(1) + β1v

′(1)
)

+ β1

(
a′(1)− b(1)

)
v(1) = 0,

in either or both of the following ways.

(a) Show that yL∗xv − vLxy can be integrated by parts as in the text; The easy way if you know the
answer.(b) Write

What you might do if you
didn’t know the answer and
couldn’t guess it.

L∗xv = A(x)
d2v

dx2
+B(x)

dv

dx
+ C(x)v

and hack away at the integration by parts (start by integrating the highest
derivatives) until everything has been integrated. Whenever terms crop
up that can’t be integrated up, set them equal to zero to find A, B and
C, and similarly determine the adjoint boundary conditions.

Hence verify that, for self-adjoint operators, Lxy is of the form

Lxy =
d

dx

(
p(x)

dy

dx

)
+ q(x)y

for some functions p(x) and q(x), while the boundary conditions are as
above. Also show that periodic boundary conditions, y(0) = y(1), y′(0) =
y′(1), give a self-adjoint operator as long as p(0) = p(1).

What is the adjoint operator if Ly = d2y/dx2, 0 < x < 1, and the
boundary conditions for y are y(0) = y(1) + y′(1), y′(0) = 0?

6. The Fredholm Alternative: linear algebra and two-point bound-
ary value problems. Suppose that A is an n× n matrix, and we want
to solve the linear equations

Ay = f



136 CHAPTER 9. DISTRIBUTIONS

for the vector y given f. Show that, if y1 and y2 are two solutions, then
their difference is an eigenvector of A with eigenvalue 0.

We know that if the rank of A is n, then A is invertible, its determinant
(equal to the product of the eigenvalues) is nonzero, and the solution y
exists and is unique. Suppose now that the rank of A is n − 1, so that
the null space of A has dimension 1 and precisely one eigenvalue of A is
zero. That is, there are vectors v and w, unique up to multiplication by
a scalar, such thatIf A is symmetric, then v = w.

Av = 0, w>A = 0>;

they are the right and left eigenvectors of A with eigenvalue 0. Put another
way, the corresponding homogeneous system Ay = 0 has the nontrivial
solution cv for any scalar c.

Premultiply Ay = f by w> to show that

• Either w>f = 0, in which case the solution exists but is only unique
up to addition of scalar multiples of v;

• Or w>f 6= 0, in which case no solution exists at all.

Illustrate by finding the value of f2 for which the equations
(

1 −1
2 −2

)(
y1
y2

)
=

(
1
f2

)

have any solution at all; interpret geometrically.

This result is known as the Fredholm Alternative. It applied, mutatis
mutandis, to two-point boundary value problems. For example, consider

Lxy =
d2y

dx2
+ α2y = f(x), 0 < x < 1, y(0) = y(1) = 0 (9.17)

(the analogue of Ay = f). Show that the corresponding homogeneous
problem Lxy = 0 has only the trivial solution y = 0 unless α = mπ for
integral m (the analogue of A having zero for an eigenvalue). Find the
corresponding eigenfunctions (analogous to v and w, here equal as Lx is
self-adjoint). Suppose that α = π. Multiply (9.17) by the corresponding
eigenfunction and integrate by parts to show that there is only a solution
to (9.17) if ∫ 1

0

f(x) sinπx dx = 0,

the analogue of w>f = 0. Generalise to the case of any (not necessarily
self-adjoint) second order differential operator.

Of course, this is not a coincidence. One could take a two-point boundary
value problem and discretise it using finite difference approximations to
the derivatives; the result would be a set of linear equations whose solv-
ability or otherwise should, as n→∞, be the same as that of the original
continuous problem.

7. Matrix inversion. In this question, we develop the matrix analogue of
the calculation of Section 9.6.1 involving the Green’s function for a two-
point boundary value problem for an ordinary differential equation. For
clarity, we use the summation convention (see page 22) throughout.
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Suppose that the matrix equation Ay = f (in which A is not necessarily
symmetric) is written in component form as

Aijyj = fi (identify this with Lxy = f).

Let the inverse matrix A−1 have components (A−1)ij = Gij , so that from
y = A−1f we have

yi = Gijfj (identify with y(x) =
∫ 1

0

G(x, ξ)f(ξ) dξ).

Let δij be the Kronecker delta, the discrete analogue of the delta function. That is, δij = 0 if i 6= j,
δij = 1 if i = j. What is δii?Show that A−1A = I and AA−1 = I are written

GijAjk = δik (identify with LxG = δ(x− ξ)),
AijGjk = δik.

Take the transpose of the last equation to identify it with L∗ξG = δ(ξ−x). Note that, just as
δ(x− ξ) = δ(ξ − x), so
δij = δji.

Lastly, take the dot product with the vector (yk) to show that

0 = AijGjkyk −GijAjkyk = yi −Gijfj ;

identify this with the calculation involving
∫
yL∗G−GLy.

8. The fundamental solution of the heat equation. Show that the
heat equation

∂u

∂t
=
∂2u

∂x2

has similarity solutions of the form u(x, t) = tαf(x/
√
t) for all α and find

the ordinary differential equation satisfied by f . Show that
∫ ∞

−∞
u(x, t) dx

is independent of t when α = − 1
2 , use the result of Exercise 1 of the

next chapter to show that in this case u(x, 0) ∝ δ(x), and hence find the
fundamental solution of the heat equation.

9. Brownian Motion. A particle performs the standard drunkard’s random
walk on the real line, in which in timestep i, of length δt, it moves by
Xi = ±δx with equal probability 1

2 . It starts from the origin and the
increments are independent. Define

Wn =
n∑
1

Xi.

Show that E[Wn] = 0, var[Wn] = nδx2/δt. Now let n → ∞ with nδt = t This scaling is the simplest
that allows proper time
variation yet keeps the
variance of the limit finite.

fixed and δx =
√
δt. Call the limiting process (assuming it exists!) Wt.

Use the Central Limit Theorem to show that

• For each t > 0, Wt has the Normal distribution with mean zero and
variance t.
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Show also that

• W0 = 0.

• For each 0 ≤ s < t, Wt −Ws is independent of Ws.

The resulting stochastic process is called Brownian Motion and it is central
to modern analysis of financial markets. Give a heuristic argument that
the sample paths (realisations, graphs of the random walk) are continuous
in t but not differentiable.

Now let p(x, t) be the probability density function of many such random
walks (as a function of position x for each t). Go back to the discrete
random walk and, as in the discussion of Poisson processes in Chapter 7,
condition on one step to write down

p(x, t+ δt) = 1
2 (p(x− δx, t) + p(x+ δx, t)) .

Expand the right-hand side in a Taylor series and use δx =
√
δt to show

that
∂p

∂t
=

1
2
∂2p

∂x2
.

Explain why p(x, 0) = δ(x) and hence find p(x, t) (see Exercise 8).

The 1
2 in front of the second derivative in the heat equation is a diagnostic

feature for a probabilist as distinct from a ‘physical’ applied mathemati-
cian.

10. Regular part of the Green’s function for the Laplacian. A hori-
zontal membrane stretched over a region D is stretched to tension T and
a normal force f per unit area is then applied. The displacement (which,
like the force, is measured vertically upwards) is zero on the boundary
∂D. Show that the displacement u(x, y) of the membrane satisfies

T∇2u = −f in D, u = 0 on ∂D.

Suppose that f(x, y) = δ(x− ξ) where x = (x, y) and ξ = (ξ, η) is known.Do not worry about the
infinite displacement! How is u(x, y; ξ, η) related to the Green’s function for the Laplacian in D?

Now suppose that the force is due to a very heavy ball which is free to
roll around, and that it is in equilibrium at ξ. Suppose that we model its
effect by that of a point force. Take a small square centred on x = ξ andCan you find a dimension-

less parameter to quantify this
modelling assumption?

resolve forces in the x– and y–directions to show that the gradient of the
regular part of G vanishes at x = ξ. Do you think there is always just one
such equilibrium point? If not, when might you have one and when more
than one?

“What’s the word beginning with D which means distribution? Oh,
distribution.”



Chapter 10

Theory of distributions

The time has come to look at the theoretical underpinning of the delta function
and its relatives. You may choose not to read this chapter, but I promise that
it is not complex or technically demanding. We begin with a few (as few as we
can get away with) necessary definitions.

10.1 Test functions

We noted earlier that the proper way to approach δ(x) was by thinking of the
result of multiplying a suitably smooth function φ(x) and integrating to get
φ(0). The first step in setting up a robust framework is to define a class of
‘suitably smooth’ functions, called test functions. We say that φ(x) is a test
function if

• φ(x) is a C∞ function. That is, it has derivatives of all orders at each Because every derivative of φ
is itself differentiable, the
derivatives are all continuous
and bounded.

point x ∈ R.

• φ(x) has compact support : that is, it vanishes outside some interval (a, b).
(The support is the closure of the set where φ is non-zero.)

The first of these requirements makes these functions very smooth indeed.1 This
high degree of regularity guarantees a trouble-free ride for the theory, the reason
being that if φ(x) is a test function, then so are all its derivatives.

We should note that test functions do exist (and that we never need to know
much more than this: they are a background tool). The easiest way to see this is
to construct one, using the famous example of a function which has derivatives
of all orders, and hence a Taylor series, at x = 0, but which is not equal to the
sum of its Taylor series. That is, look at See Exercise 5 on page 148.

Perhaps those pathological
real-analysis examples were
more useful than I thought.Φ(x) =

{
0 x ≤ 0,
e−1/x x > 0,

which vanishes for x ≤ 0, is positive for x > 0, and is C∞. The only thing
wrong with this function is that it does not have compact support. To fix this

1Roughly speaking, only real analytic functions (defined as equal to the sum of a convergent
Taylor series) are smoother, and they can never be test functions because they cannot have
compact support (why not?).

139
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up, just multiply by, say, Φ(1− x):

φ(x) = Φ(x)Φ(1− x)

is a perfectly good test function with support on the interval (0, 1).
We also need a definition of convergence for a sequence of test functions

{φn(x)}. We say that φn(x) → 0 as n→∞ if

• φn(x) and all its derivatives φ(m)
n (x) tend to zero, uniformly in both x and

m;

• There is an interval (a, b) containing the support of all the φn.

The first of these is an incredibly strong form of convergence: the φn have no
room to wriggle at all. The second stops them from running away to infinity as
n increases.

The only other thing to say about test functions is that we shall denote them
by lower case Greek letters, usually φ or ψ.

10.2 The action of a test function

Suppose that f(x) is an integrable2 function (we denote such functions by lower
case Roman letters f , g, etc.). We define the action of f on a test function φ(x)
by

〈f, φ〉 =
∫ ∞

−∞
f(x)φ(x) dx.

So, this action is a kind of weighted average of f(x). If we know the action ofIt’s also a bit like an inner
product: but note that f and
φ lie in different spaces.

f on all test functions, we should know all about f itself (a bit like recovering a
probability distribution from its moments). The action, regarded as a map from
the space of test functions to R, satisfies the usual linearity properties, such as

〈f, aφ+ bψ〉 = a〈f, φ〉+ b〈f, ψ〉,

for real constants a, b. Also, if φn(x) → 0 in the sense defined above, then
〈f, φn〉 → 0 as a sequence of real numbers.

10.3 Definition of a distribution

In defining distributions, we use the very mathematical idea of taking things
we already know about, here functions, and dropping some of their properties
while retaining others in order to obtain something broader or more general.
In this way, we see that distributions are indeed ‘generalised functions’, despite
the inexplicable reluctance of some to use the term.

As foreshadowed above, the properties that we want to keep are those to do
with the action of a function on a test function; that is, we keep the ‘smoothing’
idea of averaging while quietly dropping all worries about pointwise definition.
We do this is such a way that all the properties of distributions are consis-
tent with the corresponding properties of (say) piecewise continuous functions.Measurable functions would be

better, but that requires too
much machinery. 2We sidestep the question of what we mean by this, exactly. Piecewise continuous will do

for now, or locally Lebesgue integrable.
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Then, all such functions are subsumed within the larger class of distributions.
The two properties that we keep are those we reached at the end of the

previous section: linearity and continuity. We define: a distribution D is a
continuous linear map from the space of test functions to R, denoted by

D : φ 7→ 〈D, φ〉 ∈ R.

The result of the map, 〈D, φ〉, is known as the action of D on φ. We say that
two distributions are equal if their action is the same for all test functions.

The properties of linearity and continuity are as above:

〈D, aφ+ bψ〉 = a〈D, φ〉+ b〈D, ψ〉,

for real constants a, b, and

if φn(x) → 0 as n→∞, then 〈D, φn〉 → 0.

Evidently any piecewise continuous function f(x) corresponds to a distribution
Df with the obvious action 〈Df , φ〉 = 〈f, φ〉. Indeed, we normally don’t bother
to write Df , but just use f itself. This is an example of the consistency referred
to above.

We shall mostly use the letter style of D, H to denote distributions, unless
they already have a name. The set of test functions is often called [script D, need
typeface for this] and the set of distributions is then written [script D prime].
Sometimes we write D(x) to emphasise the dependence on x; the dependence
is of course in the test functions, but it’s quite OK, and indeed a good idea, to
think of distributions as depending on x as well.

Example: the delta function. There could be no better example than the
delta distribution, δ or δ(x). It is defined as a distribution by its action on a
test function φ(x): We could also have written

〈δ(x), φ(x)〉 = φ(0).〈δ, φ〉 = φ(0).

You should check carefully that this action does indeed define a distribution
satisfying the properties above. Again, it is OK, and indeed a good idea, to
think intuitively of the action of the delta function as

〈δ, φ〉 =
∫ ∞

−∞
δ(x)φ(x) dx.

However, you should always use the formal definition to prove anything about
δ(x) or any other distribution.

10.4 Further properties of distributions

If our distributions are to be useful, we need to give them some more properties.
We assume that, if D and E are distributions, a is a real constant, φ(x) is a test
function and Φ(x) is a C∞ function (not necessarily a test function), then there
are new distributions D + E , aD, D(x− a) and D(ax) such that

• 〈D + E , φ〉 = 〈D, φ〉+ 〈E , φ〉;
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• 〈aD, φ〉 = a〈D, φ〉;

• 〈D(x− a), φ(x)〉 = 〈D(x), φ(x+ a)〉; Note how we slip in and out of
stating the x–dependence
explicitly.• 〈D(ax), φ(x)〉 =

1
|a| 〈D, φ(x/a)〉.Watch out for the modulus

sign.

• 〈Φ(x)D(x), φ(x)〉 = 〈D(x),Φ(x)φ(x)〉.
Note that Φ(x)φ(x) is a test
function even if Φ(x) is not.

You should check all these when D corresponds to an integrable function f(x);
it will give you intuition as to why the definitions have been made in this way.
Note in particular that from the third definition, we have

〈δ(x− a), φ(x)〉 = 〈δ(x), φ(x+ a)〉
= φ(a).

As expected, we have recovered the sifting property of the delta function.

10.5 The derivative of a distribution

One more idea completes our introduction to the distributional framework. If
we want to make sense of ideas such as d2y/dx2 = δ(x− ξ), we had better have
a definition of the derivative of a distribution. Again, consistency with ordinary
functions provides the way in. If f(x) is differentiable, with derivative f ′(x),
then integrating by parts we calculate the action of f ′(x):What properties of test

functions do we use here?

〈f ′(x), φ(x)〉 =
∫ ∞

−∞
f ′(x)φ(x) dx

= f(x)φ(x)
∣∣∞
−∞ −

∫ ∞

−∞
f(x)φ′(x) dx

= −〈f(x), φ′(x)〉.

Notice how the compact support of the test function takes care of f(x)φ(x)|∞−∞.
We define the derivative D′ of a distribution D in terms of its action by

〈D′, φ〉 = −〈D, φ′〉

(note that φ′(x) is also a test function). The point is that although we do not
know about D′, we do know about D, so we can calculate 〈D, φ′〉 and hence
〈D′, φ〉.

For example, let us show that H′(x) = δ(x). We define the Heaviside func-
tion H(x) by its action:

〈H, φ〉 =
∫ ∞

0

φ(x) dx;

this is entirely consistent with our view of H(x) as the unit step function since

H(x)φ(x) =

{
0 x ≤ 0,
φ(x) x > 0.
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Now consider the action of H′(x):

〈H′(x), φ(x)〉 = −〈H(x), φ′(x)〉

= −
∫ ∞

0

φ′(x) dx

= φ(0)
= 〈δ(x), φ(x)〉.

Since their actions are identical, we conclude that H′(x) = δ(x) (as distribu-
tions).

We can extend this definition recursively, to give action of the m–th deriva-
tive of D as

〈D(m)(x), φ(x)〉 = (−1)m〈D, φ(m)(x)〉
for m = 1, 2, 3, . . .. Because every derivative of a test function is a test function,
we see that distributions have derivatives of all orders too, an example of the
technical simplicity of this theory.

10.6 Extensions of the theory of distributions

We conclude with an overview (a glimpse, really) of two vital extensions of the
theory just outlined.

10.6.1 More variables

It is a very straightforward business to define distributions in the context of
functions of several variables. We first define test functions to have compact
support and to be C∞ in all their arguments. Then, we define distributions as
continuous linear maps from this space of test functions to R. In particular, the
delta function satisfies

〈δ(x), φ(x)〉 = φ(0).

The partial derivatives of a distribution D(x) are defined recursively using
the formula

〈 ∂D
∂xi

, φ〉 = −〈D, ∂φ
∂xi

〉.

Again, D has derivatives of all orders, and because the mixed partial derivatives
of the test functions are always equal, so are the mixed partials of D. Thus,
identities such as ∇ ∧ ∇D ≡ 0 are automatically true for distributions. The
whole theory is splendidly robust, and we need have no qualms at all about
writing down equations such as ∇2G = δ(x− ξ).

10.6.2 Fourier transforms

Space does not permit a full description of the theory of Fourier transforms
of distributions in one or more variables. Nevertheless, here is an outline. For
technical reasons, we use a slightly different class of test functions, which are still
C∞ but no longer have compact support. Instead, they and all their derivatives
decay faster than any power of x as x → ±∞. In principle, this defines a
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different class of distributions (known as tempered distributions — the compact
support ones are Schwartz3 distributions), but we won’t notice the difference.

The new test functions can be shown to have the nice property that if φ(x)See Exercise 12 on page 150 to
see why this would not be so
for compact support test
functions.

is a test function then so is its Fourier transform; this is why we use this class
of test functions. We write the transform as4

φ̂(k) =
∫ ∞

−∞
φ(x)eikxdx.

This is just the usual Fourier transform; we write the inverse transform as

ψ̌(x) =
1
2π

∫ ∞

−∞
ψ(k)e−ikxdk,

and we recall the standard results

d̂φ

dx
= −ikφ̂, x̂φ = −idφ̂

dk
,

the first of which is established by integration by parts and the second by dif-
ferentiation under the integral sign.

Let’s see what the action of the Fourier transform of an ordinary function is
on a test function. The Fourier transform of a tempered distribution D is then
defined to be consistent with this; as ever, we look at its action and transfer the
work to the test function. A formal calculation givesYou might want to write this

out, swapping the dummy
variables x and k in the
second line. 〈f̂ , φ〉 =

∫ ∞

−∞

(∫ ∞

−∞
f(x)eikxdx

)
φ(k) dk

=
∫ ∞

−∞

(∫ ∞

−∞
φ(k)eikxdk

)
f(x) dx

= 〈f, φ̂〉.

We therefore define
〈D̂, φ〉 = 〈D, φ̂〉,

and similarly we define the inverse byCheck this one for an ordinary
function.

〈Ď, φ〉 = 〈D, φ̌〉.

Notice how important it is that φ̂ should be a test function too. If it were not,
we could not be confident that some of these actions are defined at all. Notice
too that the factors of 2π don’t appear here: they are all hidden in the inverse
of φ.

Using these deceptively simple formulas, we can prove that the Fourier trans-
form of the derivative D′ = dD/dx is −ikD̂:Line 1 is the definition of the

transform; line 2 is the
distributional derivative; line 3
is a standard identity; in line 4
we swap x for k and shift it to
the first argument of the
action.

3Rather to my surprise, Schwartz, who invented the theory in 1944, died as recently as
the time of writing. A fearless opponent of political and military oppression and a great
mathematician, his support was the interval (1915, 2002).

4Beware: notations differ, both in the signs in the exponent and in the placement of the 2π
which can appear in the exponent, or symmetrically as 1/

√
2π multiplying both the transform

and its inverse. The definition here is probably the commonest among applied mathematicians.
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〈D̂′, φ〉 = 〈D′, φ̂〉
= −〈D, dφ̂/dk〉
= −〈D, îxφ〉
= 〈−ikD̂, φ〉

as required. It is an exercise for you to prove that the transform of xD is
−idD̂/dk.

We end this section by finding the transforms of δ(x) and 1. (Yes, 1 has
a Fourier transform in this theory; so do x, |x|, etc.).5 The transform of δ(x)
must surely be 1: informally, Very informally, because eikx

is not a test function, although
one could ‘truncate’ it by
multiplying by a test function
which is small for |x| > R and
taking R→∞.

∫ ∞

−∞
δ(x)eikxdx = eik0 = 1.

Formally,

〈δ̂, φ〉 = 〈δ, φ̂〉
= φ̂(0)

=
∫ ∞

−∞
φ(x) dx

= 〈1, φ〉

so we do indeed have
δ̂(k) = 1.

For the inverse, we have

δ̌ =
1
2π

∫ ∞

−∞
δ(k)e−ikxdk

=
1
2π
,

so taking the transform of both sides, remembering that (δ̌)̂ = δ, we get

1̂(k) = 2πδ(k).

You may like to show this from the formal definitions alone, using the fact that
for test functions 〈1, φ̌〉 = 2π〈1, φ̂〉.

The heat equation

We conclude with an example: it’s one we have seen before but we do it in a
different way. Consider the initial value problem for the heat equation

∂u

∂t
=
∂2u

∂x2
, −∞ < x <∞, t > 0,

u(x, 0) = δ(x).

5The transforms of sums of delta functions are the characteristic functions of discrete
random variables.
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This time we’ll take a Fourier transform in x. The equation for û(k, t) is

∂û

∂t
= −k2û, −∞ < k <∞, t > 0,

u(x, 0) = δ̂(k) = 1.

The solution is
û(k, t) = e−k2t,

and inversion by any of a number of methods (see Exercise 14 on page 150)
yields the answer

u(x, t) =
1

2
√
πt
e−x2/4t.

Sources and further reading

The theory of distributions in its modern form was developed by Schwartz [53];
the epsilonological approach is exemplified by Lighthill’s book [38]. My descrip-
tion of the modern theory is heavily based on the very approachable book by
Richards & Youn [50] (my main quibble with that book is the intrusive 2π in
the exponent of the Fourier Transform).If the idea of extending our

definition of functions to make
sense of the result

Z 1

−1

dx

x2
= −2

appeals to you then you
should definitely read [50].

10.7 Exercises

1. Constructing delta functions from continuous functions I: by the
Lebesgue Dominated Convergence Theorem. Suppose that f(x) ∈
L1 is continuous and

∫∞
−∞ f(x) dx = 1. Take a test function φ(x) and

show that, as ε→ 0,

Iε =
∫ ∞

−∞

1
ε
f

(x
ε

)
φ(x) dx→ φ(0),

as follows. First show that

Iε =
∫ ∞

−∞
f(s)φ(εs) ds.

Next, show that
|f(s)φ(εs)| < M |f(s)|

for some constant M > 0, that if f(s) ∈ L1 then f(s)φ(εs) ∈ L1, and that,
for each s, f(s)φ(εs) → f(s)φ(0) as ε → 0. Deduce from the Dominated
Convergence Theorem that you can justify interchanging the limit and the
integral:

lim
ε→0

∫ ∞

−∞
f(s)φ(εs) ds = φ(0).

2. Constructing delta functions from continuous functions II: by
splitting the range of integration. If you don’t know about Lebesgue
integration, derive the following slightly weaker result. Suppose that f(x)
is any continuous function with

∫ ∞

−∞
f(x) dx = 1,

∫ ∞

−∞
|f(x)| dx <∞,

∫ ∞

−∞
|xf(x)| dx <∞.
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Take a test function φ(x) and show that, as ε→ 0,

Iε =
∫ ∞

−∞

1
ε
f

(x
ε

)
φ(x) dx→ φ(0),

as follows. First write x = εs in the integral and split the range of inte-
gration up to get

Iε =
∫ −1/

√
ε

−∞
+

∫ 1/
√

ε

−1/
√

ε

+
∫ ∞

1/
√

ε

f(s)φ(εs) ds.

Noting that |φ(x)| is bounded and using the idea that if |h| < c, | ∫ gh| ≤∫ |gh| ≤ c
∫ |g|, show that the first and third integrals tend to zero as

ε→ 0 because f is integrable. For the inner integral, expand φ(εs) using
Taylor’s theorem to get

∫ 1/
√

ε

−1/
√

ε

f(s)
(
φ(0) + εsφ′ (ξ(s))

)
ds

where ξ(s) lies between 0 and s. Show that the first term in this integral
tends to what we want and, noting that |φ′| is bounded, that the second
tends to zero as ε→ 0.

3. Delta sequences. Consider the functions

fn(x) =
n

π (1 + n2x2)
and gn(x) =

sinnx
πx

.

Sketch them and show that fn(x) tends to δ(x) as n → ∞, in the distri-
butional sense, so for any test function φ(x),

〈fn, φ〉 → φ(0)

as n→∞. Use the method of Exercise 3, but be careful when estimating
the integrals as fn(x) does not satisfy all the conditions of that question.
Repeat for gn(x).

This might suggest that if δn(x) is a sequence tending to δ(x) then δn(0) →
∞. Construct a piecewise constant example to show that this is false.

4. Discrete and continuous sources. Suppose that u(x) is a classical so-
lution of ∇2u = f(x) in Rn, n ≥ 2, where f(x) is smooth and has compact
support, and appropriate growth conditions at infinity are assumed. Let
φ(x) be a test function. Use Green’s theorem in the form

∫

D

v∇2w − w∇2v =
∫

∂D

v
∂w

∂n
− w

∂v

∂n
, (10.1)

where D is a region containing the support of f , to show that

〈u,∇2φ〉 = 〈f, φ〉.
Now suppose that we approximate f(x) by delta functions, defining the
sequence of distributions

Fn =
n∑
1

αnδ(x− xn)
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and taking the limit n→∞ in such a way that all the weights αn tend to
zero but

〈Fn, φ〉 → 〈f, φ〉
for all test functions φ. Also let un be the solution of ∇2un = Fn. Show
that

〈un,∇2φ〉 = 〈Fn, φ〉,
and deduce that un → u (as a distribution). Interpret this result in
terms of the gravitational potential due to a finite mass distribution (or
in electrostatic terms).

5. The function e−1/x. Consider

Φ(x) =

{
0 x ≤ 0,
e−1/x x > 0.

Show that for x > 0 its n–th derivative Φ(n)(x) is a polynomial in 1/x
times e−1/x, and hence that limx↓0 Φ(n)(x) = 0. Deduce that the TaylorRemember that Xne−X → 0

as X →∞ for all N . coefficients of this function are all zero. Does the complex function e−1/z

have a Taylor series at z = 0? If not, what does it have?

6. The distribution δ(ax). Show from the interpretation as an integral
that

δ(ax) =
1
|a|δ(x).

7. Derivatives of the delta function. Show carefully, using the definition
of a distributional derivative, that, if Ψ(x) is a smooth (C∞) function and
D a distribution, then (DΨ)′ = D′Ψ +DΨ′ (Leibniz). Deduce that

xnδ(m)(x) =





0 m < n,
(−1)nm!
(m− n)!

δ(m−n)(x) m ≥ n

(δ(m) = mth derivative). What is xδ(x)? Show that δ(x) = −xδ′(x).
8. Convergence of series of distributions. We say that a sequence {Dn}

of distributions converges to D if

〈Dn, φ〉 → 〈D, φ〉

for all test functions φ(x). This is an incredibly tolerant form of conver-
gence, because our definition of convergence of a sequence of test functions
is so stringent: show that if Dn → D, then the same applies to all the
derivatives, so that D(m)

n → D(m). Show also that you can differentiate a
convergent series of distributions term by term.

Find the Fourier series of the sawtooth function

f(x) =





1
2
− x

2π
0 < x < π,

−1
2
− x

2π
−π < x < 0.
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Now differentiate both sides, noting that the jumps of 1 in f(x) at x = 2nπ
contribute delta functions δ(x− 2nπ), to establish the result

∞∑
n=−∞

δ(x− 2nπ) =
1
2π

∞∑
m=−∞

cosmx,

an identity which makes classical nonsense but perfect distributional sense.

Note: it can be shown that every distribution D is the distributional limit
of a sequence of test functions (which are C∞). So the set of distributions
is not unboundedly diverse.

9. Derivative of a distribution. Let D(x) be a distribution. Show (by
considering its action) that Remember that

〈D(x+h), φ(x)〉 = 〈D(x), φ(x−h)〉.
D′(x) = lim

h→0

D(x+ h)−D(x)
h

.

Use the right-hand side of this equation to confirm (again by considering
the action) that δ(x) = H′(x).

10. Dipoles. The derivative of the delta function, δ′(x), is known as a (one-
dimensional) dipole, which you can think of as the limit as ε → 0 of
a positive delta function at x = ε and a negative one at x = 0 (see
Exercise 9). What is its action on a test function ψ(x)?

In hydrodynamics, a mass dipole aligned with the x–axis is obtained as the
limit of point (in two dimensions, line) sources of strength q at (±ε, 0, 0),
keeping the product m = 2εq constant as ε→ 0. Explain why the velocity
potential for inviscid irrotational flow with a point source at the origin
satisfies Notation clash! φ is not a test

function here.∇2φ = qδ(x)

and deduce that if there is a dipole as above at the origin, the potential
satisfies

∇2φ = m
∂δ

∂x
.

(The right-hand side may also be written as δ′(x)δ(y)δ(z) in three di-
mensions, or δ′(x)δ(y) in two.) Hence calculate the potential for a dipole
and sketch the streamlines in two dimensions. Show that the potential
U(r cos θ + a2 cos θ/r) for flow past a cylinder consists of a uniform flow
plus a dipole.

Interpret these results in terms of electric charges. (Whereas point charges
generate electric fields, because there are no magnetic monopoles, the
basic generator of magnetic fields is the infinitesimal current loop, giving
a dipole field with lines of force similar to those of a bar magnet. Higher-
order derivatives, called multipoles, are important in, for example, the
analysis of the far field of radio transmitters.)

11. Vector distributions. [NEED BOLD CALLiGRAPHIC FONT HERE
for the vector distributions, and bold for the vector φ in (b).] Develop the
following two ways of defining vector-valued distributions in R3. In both
cases aim to establish the identities ∇·∇∧D ≡ 0, ∇∧∇D ≡ 0 for vector



150 CHAPTER 10. THEORY OF DISTRIBUTIONS

and scalar distributions D and D respectively. You will need to establish
variants of Green’s theorem in order to define the action of the operators
div and curl by integration by parts.

(a) Take scalar test functions φ(x) and define their action on a vector
function v(x) as the vector

〈v, φ〉 =
∫

R3
v(x)φ(x) dx.

Then define a vector-valued distribution D as a continuous linear map
from the space of test functions to R3 consistently with this action.

(b) Use vector test functions φ and the action

〈v, φ〉 =
∫

R3
v · φdx.

12. Open support test functions. To get an idea why compact support
test functions do not lead to a good theory for the distributional Fourier
transform, work out the Fourier transform ofIt’s not hard: just integrate.

f(x) =

{
1 −1 < x < 1,
0 otherwise,

and observe that, unlike f(x), f̂(k) does not have compact support. (Al-
though f(x) is not a test function, a similar result would hold if it were.)
Now look at the definition of the Fourier transform to see why compact
support test functions are not useful here.

13. Commutation of the Fourier transform and its inverse. Show di-
rectly from the definitions that ifD is a distribution with Fourier transform
D̂, then

(D̂)̌ = (Ď)̂ = D,
assuming that this holds for test functions.

14. The inverse of e−k2t. Find the inverse of û(k, t) = e−k2t in the following
two ways.

(a) Write down the inversion integral and complete the square in the ex-
ponent; then, thinking of the integral as a contour integral in the complex
k–plane, move the integration contour to the line Im k = −x/2t (check
that the endpoint contributions vanish) and evaluate a standard real in-
tegral, using the result

∫∞
−∞ e−s2

ds =
√
π.

(b) Show that ∂û/∂k = −2ktû, then use the standard identities for the
transforms of ∂u/∂x and xu to obtain a similar ordinary differential equa-
tion for u; solve this and choose the ‘constant of integration’ (which is
actually a function of t) to set

∫∞
−∞ u(x, t) dx = 1 for all t (which is easy

to show from the original problem).

15. The pseudofunction 1/x. Obviously, 1/x is defined for x 6= 0 as an
ordinary function. Its definition for all x ∈ R is achieved by defining its
action on a test function φ(x):

〈1/x, φ(x)〉 = lim
ε→0

〈1/x, φ(x)〉ε,
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where

〈1/x, φ(x)〉ε =
∫ −ε

−∞
+

∫ ∞

ε

φ(x)
x

dx;

the limiting integral, denoted by

−
∫ ∞

−∞

φ(x)
x

dx,

is called a Cauchy principal value integral. Note that the small interval
(−ε, ε) that we remove before integrating and taking the limit ε → 0 is
symmetric about x = 0.

Show that the limit exists for all test functions φ(x). Show directly from
the distributional definitions that

1
x

=
d

dx
log |x|;

that is, show that

〈d log |x|/dx, φ(x)〉 = −〈1/x, dφ/dx〉

by considering the same statement with 〈·, ·〉 replaced by 〈·, ·〉ε and letting
ε→ 0.

Show also (for future reference) that

−
∫ 1

−1

dx

x
= 0. (10.2)

16. The Fourier transform of H(x). A distribution D(x) is called odd if
the result of its action gives D(−x) = −D(x), and even if D(−x) = D(x).
Show that δ(x) is even. Show also that xδ(x) = 0. If H(x) is the Heaviside
function, show that H̃(x) = H(x)− 1

2 is odd.

Show that the Fourier transform of a real-valued odd function is a purely
imaginary odd function of k, and deduce (or assert) that the same applies
to distributions.

Since H′(x) = δ(x), taking the Fourier transform gives

−ikĤ = δ̂ = 1.

However, before dividing through by k, we must realise that we can add
ckδ(k) (= 0) to the right-hand side, where c is an as yet unspecified
complex constant. By considering instead the transform of the odd distri-
bution H̃(x), and recalling that 1̂ = 2πδ(k), show that

Ĥ(k) = − 1
ik

+ πδ(k).

Note that Ĥ requires the definition of 1/k introduced in the previous
exercise.
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17. The Fourier transform of H(x) again. Here are two more ways of
calculating Ĥ(k).

(i) Consider ∫ 1/ε

0

eikxdx = − 1
ik

+
eik/ε

ik
.

The first part is already in the answer, so the second part must tend to
πδ(k) as ε→ 0. Write

eik/ε

ik
=

sin(k/ε)
k

− i
cos(k/ε)

k

and note that the real part has been shown (in Exercise 3) to give πδ(k).
It remains to show that the principal value integral

−
∫ ∞

−∞

cos(k/ε)φ(k)
k

dk → 0

as ε → 0 for any test function φ. Write φ as the sum of its even and
odd parts and note that we need only consider the odd part of φ as theThey are 1

2
(φ(k)± φ(−k));

show that both of these are
test functions.

integral of the even part vanishes by symmetry. Now proceed as in earlier
exercises, splitting the range of integration into |k| > √

ε and |k| < √
ε

Use the decay properties of
the test function to justify use
of the Riemann–Lebesgue
lemma for the outer integrals,
and expand φ in a Taylor
series for the inner one.

and dealing with each separately. Alternatively, don’t bother with the
odd/even split, and just use (10.2) for the inner integral.

(ii) Consider the Fourier transform of

Hε(x) = H(x)e−εx,

which clearly exists for ε > 0; show that it isNote that this ‘does the right
sort of thing’ as ε→ 0: it
tends to −1/ik for k 6= 0, and
to infinity for k = 0. Ĥε(k) =

1
ε− ik

.

Writing
1

ε− ik
+

1
ik

=
ε

ε2 + k2
− iε2

k(ε2 + k2)
,

show that as ε → 0 the action of the right-hand side on a test function
tends to that of πδ(k). (You will need to interpret the second term as a
principal value integral; use the results of Exercise 3.)

18. More Fourier transforms. What are the Fourier transforms ofRemember that
d(xf) = −idf̂/dk.

x, xn, |x|,

for integral n > 0?

“You can always make infinity smaller by multiplying by h.”



Chapter 11

Case study: the pantograph

11.1 What is a pantograph?

In the late 1960s, British Rail was planning a new generation of high speed
electric trains. One question was flagged as a potential problem area: could the
waves generated in the overhead cable by the current-collecting device, which
is called a pantograph,1 build up and cause interruptions in the current flow,
in particular when the train passes a support? At about the same time the
US Air Force developed a facility in which a rocket slung from a taut cable
was accelerated along the cable, to allow flight characteristics to be tested and
to enable precise targeting for impact tests. In one such test, the rocket was
accelerated to 1.04 times the wavespeed in the wire, with the dramatic result
sketched in Figure 11.1.

Figure 11.1: A rocket slung from a cable and accelerated to 1.04 times the
wavespeed in the cable. Sketch based on an indistinct photograph in [52]; the
cable is fairly accurately reproduced but the rest of the diagram is schematic.

The pantograph problem was one of the first to be discussed at an Oxford
Study Group with Industry and has become a minor classic of mathematical

1From the Greek, ‘universal writer’. The original pantograph was a mechanical device
whereby a series of linkages allowed a drawing to be copied exactly. The theory of linkages
was at one time intensively studied because of their importance in machinery, the prototype
problem being how to transform the up-and-down motion of a piston into circular motion of
a wheel. It is related to Ptolemy’s epicycle model of the heavens, in which the apparently
irregular motion of the planets was accounted for by the assumption that they move around
the earth in an arrangement of small circular orbits mounted on larger ones, much like various
fairground rides (teacups, waltzer, cyclone). Alas, light pollution is such that fewer and fewer
readers will have seen the planets except when they are very bright.

153
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Figure 11.2: A locomotive and its power supply.

modelling since the original paper [45]. As so often with industrial problems, it
provoked a strand of theoretical research, into the so-called pantograph equa-
tion, which is still active.

11.2 The model

Suppose, then, that a locomotive moves with constant speed U below a cable
stretched to tension T between supports at x = 0,±L,±2L, . . ., as in Fig-
ure 11.2. We can distinguish three main parts of the system that we should
model: the motion of the cable, the dynamics of the pantograph, and the dy-
namics of the supports. Some modelling assumptions are immediately reason-
able:

• The cable can be modelled as a uniform string of line density ρ, because
(based on typical values) its bending stiffness is small. Also its displace-
ment from equilibrium is small. Thus, apart from the static displacement
due to gravity, the vertical wire displacement y(x, t) satisfies the wave
equation away from the pantograph and the supports. (In a more sophis-
ticated treatment, we may have to reconsider this assumption near to the
pantograph and supports.)

• The contact area between the pantograph and the wire is small compared
with L. This means that we can represent the effect of the pantograph by
a point force at the position x = Ut, with a suitable choice of time origin.

We also make some simplifying assumptions, which can be relaxed at the cost
of some complications:

• Although the supports can be surprisingly complex (see [45]), we assume
that the wire is rigidly attached to them. This has the great advantage
that what happens in one span of the cable does not affect what happens
in the others. In our discussion below, we focus on the span 0 < x < L,
into which the train enters at t = 0.

• The pantograph itself can be modelled as a linear system, so that the force
F (t) that it exerts on the wire depends linearly on its vertical displacement
Y (t) = y(Ut, t). More specifically, we may expect

– A spring force, intended to keep the pantograph in contact with the
wire. For a linear spring this would contribute a term

F0 − F1Y (t)



11.2. THE MODEL 155

to the force F (t); here both F0 and F1 are positive and we expect
that the combination F0 − F1Y is also positive for reasonable values
of Y .

– A damping force, which in the linear case has the form

−F2
dY

dt
.

In the case of a rocket, a separate calculation of its dynamics adds a term
proportional to d2F/dt2; see Exercise 8.

Just as in our earlier examples, the point force is modelled by a delta func-
tion; the difference now is that it is moving. The motion of the wire is described
by the inhomogeneous wave equation

ρ
∂2y

∂t2
− T

∂2y

∂x2
= F (t)δ(x− Ut)− ρg,

where the last term models the gravitational force. With both spring and damp-
ing forces, the pantograph dynamics are modelled by

F (t) = F0 − F1Y (t)− F2
dY

dt
,

where Y (t) = y(t, t). As for initial and boundary conditions, the wire starts
at rest in its equilibrium shape y0(x) = −ρgx(L− x)/2T , and its displacement
vanishes at x = 0, L.

Let us make this problem dimensionless. There are two velocities, U and the
wavespeed c =

√
T/ρ, and we use the latter for scaling purposes, which with It hardly matters which we

use. The choice of c is
governed by some obscure
aesthetic considerations of my
own.

the length scale L for x gives a timescale L/c; also, we write U = cu (you might
think of u as a Mach number for the train). In order to scale y, we can either use
the maximum wire displacement under gravity, y∗ρgL2/8T , or we can use the
displacement caused by a typical pantograph force. As we want to focus on the
pantograph, let us use the latter and scale y with F ∗L/T , where F ∗ is a typical
size for the pantograph force (it might, for example, be equal to the constant
force F0). With these scalings, you should check that, the primes having been
dropped, the dimensionless problem is In doing the scalings,

remember that
δ(ax) = |a|−1δ(x).∂2y

∂t2
− ∂2y

∂x2
= f(t)δ(x− ut)− α, 0 < x < 1, (11.1)

where, retaining the notation Y (t) = y(ut, t), the dimensionless force has the
form An exercise to work out the

dimensionless coefficients f0
etc in terms of their
dimensional parents.

f(t) = f0 − f1Y − f2
dY

dt
(11.2)

and α = ρgL/F ∗ is a dimensionless parameter measuring the ratio of the weight
of the wire to the force exerted by the pantograph.

11.2.1 What happens at the contact point?

Looking ahead to calculating the displacement of the wire, we are clearly going
to rely heavily on the general solution of the wave equation in the usual form.
That means that we will need to join solutions of this type up across the train
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path x = ut, so we need to know what happens to the gradient of y across this
line. We should proceed with caution when we see something unfamiliar like We started this chapter by

writing down jump conditions
on the (static) wire slope and
went from there to the delta
function; now the boot is on
the other foot as we are
confident that the delta
function should be there but
we don’t know how to
interpret it!

δ(x − ut): it is not immediately obvious what it means. One fairly safe way
to proceed is to change coordinates to reduce it to rest. That is, we replace x
by ξ = x − ut and use ξ and tb as independent variables. When we do this, a
straightforward chain rule calculation shows that (11.1) becomesAs the right-hand side of this

equation is a distribution, so is
the left-hand side. However,
the chain rule still applies for
smooth coordinate changes.

∂2y

∂t2
− 2u

∂2y

∂ξ∂t
− (1− u2)

∂2y

∂ξ2
= f(t)δ(ξ)− α.

Now we are in a position to balance the most singular terms. We know that
y is continuous at ξ = 0 and assuming smoothness in t, ∂2y/∂t2 should alsoAt least for U < c; Figure 11.1

suggests otherwise for U > c! be continuous. The finger points at ∂2y/∂ξ2 as the most singular term, and
we see that this has for its leading order singular behaviour a delta function of
magnitude −f(t)/(1− u2). That is, ∂y/∂ξ, which is the same as ∂y/∂x, has aPlease check for consistency

that the singular behaviour of
the mixed partial derivative is
further down the line.

jump of this magnitude:

Consistency check: we expect
the pantograph to push the
cable up, giving a negative
jump in ∂y/∂x; this is fine if
u < 1.

[
∂y

∂x

]x=ut+

x=ut−
= − 1

1− u2
f(t), (11.3)

which is the time-dependent generalisation of the static condition (9.2) on
page 118. A physical derivation of this condition is given in Exercise 1.

11.3 Impulsive attachment for an undamped pan-
tograph

The simplest situation to consider is one in which gravity is neglected (α = 0)
so that the cable is initially straight, and at t = 0 the train attaches to the
cable impulsively at x = 0. In this case we expect disturbances to propagate
ahead of and behind the train with (dimensionless) speed 1 so that the cable
displacement is only nonzero for −t < x < t as shown in the characteristic
diagram of Figure 11.3.

Our strategy is to join together general solutions of the wave equation, of
the form g(t − x) + h(t + x), finding the arbitrary function involved from theYou may usually write

g(x− t); I do. It turns out
that g(t− x) is more
convenient later, as we don’t
then get negative arguments
for the function g1.

conditions at the pantograph. Clearly the wire displacement is identically zero
except in the regions 1, ut < x < t and 2, −t < x < ut, shown in Figure 11.3.
Otherwise, information would have to travel faster than the wavespeed. Across
the characteristics x = ±t, we expect to see a discontinuity in the derivatives of
y, as we know that these can only propagate along characteristics.

Bearing in mind that all the information comes from the train, the solution
must have the form

y(x, t) =

{
g1(t− x) in region 1
h2(t+ x) in region 2,

representing forward and backward travelling waves respectively. The functions
g1 and h2 are as yet unknown, except that we can say that g1(0) = h2(0) = 0.

At the train x = ut, we first express the continuity of the cable:

g1(t− ut) = h2(t+ ut). (11.4)
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y ≡ 0y ≡ 0

t

1

x = ut x = tx = −t

x

2

Figure 11.3: Characteristic diagram for impulsive attachment.

Next, from (11.3), we have

−g′1(t− ut)− h′2(t+ ut) = − 1
1− u2

f(t).

Using (11.2) to express f(t) in terms of Y (t) = g1(t − ut) and eliminating
h2(t+ ut) by differentiating (11.4), we have

g′1(t− ut) =
1

2(1− u)
f(t)

=
1

2(1− u)
(
f0 − f1g1(t− ut)− (1− u)f2g′1(t− ut)

)
.

That is, g1(ξ) satisfies the ordinary differential equation

(1− u)(2 + f2)
dg1
dξ

+ f1g1 − f0 = 0,

whose solution is easily found as a constant plus a decaying exponential. (The
large-time behaviour has the pantograph displacement tending to the value
f0/f1 at which the spring force vanishes; in practice this would be very large
and a support would intervene before it was reached.)

11.4 Solution near a support

A rather more surprising thing happens when we look at what happens shortly
after the train passes a rigid support. As the characteristic diagram Figure 11.4
shows, there are again only two regions where the cable displacement is not
zero. Let us again neglect the static displacement of the cable (this is even
more realistic near a support where it is small). The difference between this
configuration and impulsive attachment is that waves can be reflected off the
rigid support, in region 2. Thus the cable displacement has the form

y(x, t) =

{
g1(t− x) in region 1
g2(t− x) + h2(t+ x) in region 2.

Continuity of the cable at x = ut now gives

g1(t− ut) = g2(t− ut) + h2(t+ ut), (11.5)
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and the pantograph force balance is

−g′1(t− ut)+g′2(t− ut)− h′2(t+ ut) (11.6)

= − 1
1− u2

f(t)

= − 1
1− u2

(f0 − f1g1(t− ut)− f2(1− u)g′1(t− ut)) . (11.7)

Lastly, we have the rigid support condition

g2(t) + h2(t) = 0.

y ≡ 0

12

x = tx = ut

t

x

Figure 11.4: Characteristic diagram for the train passing a support.

With three equations for three unknown functions, we proceed confidently.
We first eliminate h2 to find

g1(t− ut) = g2(t− ut)− g2(t+ ut)

from (11.5), and

−g′1(t− ut) + g′2(t− ut)+g′2(t+ ut) =

− 1
1− u2

(f0 − f1g1(t− ut)− (1− u)f2g′1(t− ut))

from (11.7). Then we observe that we can eliminate g1(t − ut) throughout, to
give (after tidying up)

(1 + u)(2 + f2)g′2(t+ ut)+f1g2(t+ ut)
= −f0 + f1g2(t− ut) + (1− u)f2g′2(t− ut).

(11.8)

If we can solve this equation, we will have g2 and hence g1 and the force on the
pantograph. The left-hand side of (11.8) is as expected, but the right-hand side
is not. Because it contains the function g2 evaluated at an earlier time than
on the left-hand side, we have arrived not at an ordinary differential equation
but at a kind of delay differential equation for g2. This kind of equation has
come to be known as a pantograph equation and has given rise to a substantial
literature in the last two decades.
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Let us consider (11.8) in the special case f1 = 0. It can then immediately
be integrated once, to give

(2 + f2)g2(t+ ut) = −f0t+ f2g2(t− ut).

Writing τ = t(1 + u) and

µ =
1− u

1 + u
< 1,

we have
(2 + f2)g2(τ) = − f0

1 + u
τ + f2g2(µτ).

We spot the particular solution g2(τ) = aτ where a is easily found, and we claim
that this is the only solution. To show this, consider the difference between two
solutions, which satisfies the homogeneous equation

g(τ) =
f2

2 + f2
g(µτ), g(0) = 0;

note that the fraction on the right is less than 1. Suppose that for a fixed
τ , g(τ) = g0 6= 0. That means that g(µτ) is bigger in modulus than g0 and,
iterating, that

g(µnτ) =
(

2 + f2
2

)n

g0.

But as n→∞, µnτ → 0 and |g(µnτ)| → ∞, a contradiction. Hence g0 = 0 and
the solution is unique.

It is possible to transform (11.8) to a delay differential equation with a
constant time lag by making an exponential substitution; see Exercise 4.

11.5 Solution for a whole span

Let us look briefly at the cable motion in a whole span. This is the case we
really need to analyse, because of the possibility that the solution will ‘pile up’
at the far end of the span x = 1. The characteristic diagram is now much more
complicated, as indicated in Figure 11.5. The initial disturbance propagates
as a gradient discontinuity across the characteristic x = t, as in the previous
section, but then it reflects off the support at x = 1. We therefore have a
reflected characteristic, x = 2− t, with another gradient discontinuity; and this
in turn is reflected off the train path and so on, to generate an infinite series of
characteristics separating regions in which the solution is smooth.

We have already looked at the regions near the first support, and we know
from the previous section that when the pantograph force is a constant plus a
linear damping term, the pantograph displacement Y (t) = y(ut, t) is linear in
t. This solution holds up until the time t1 = 2/(1 + u) at which the reflection
(x = 2 − t) of the leading characteristic (x = t) meets the train path. It is a
reasonable guess that the pantograph displacement is a piecewise linear function
of t at later times, and we can show that this is the case.

We adopt a slightly different, and more sophisticated approach to the wave
equation than simply writing down its general solution. In Figure 11.6, we see
the train path with its images in the supports. We intend to extend the domain
of definition from 0 < x < 1 to the whole real line in the usual way so as to
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x = 1

t

x

Figure 11.5: Characteristic diagram for a whole span. If, as here, 1
3 < u < 1,

no reflections of characteristics from x = 0 reach the train.

satisfy the conditions at the support; this means that the (fictitious) pantograph
force from alternate, downward-sloping, parts of the image train path is minus
that from the upward-sloping parts, and so is the pantograph displacement. The
extended train path is shown in Figure 11.6, which also shows a characteristic
triangle, which we call 4, for a point P above the reflection of the leading
characteristic (recall that we already know the solution below this line).

P

P4

P1

P3
x

x = 1

t

P2

Figure 11.6: A characteristic triangle for t > 2/(1 + u). The dotted lines are
characteristics; the dashed line is the leading characteristic and its reflection.
The thick solid line is the train path with its images in the supports.

Now suppose that we integrate the wave equation (11.1) (again with α = 0
for simplicity) over the interior of the characteristic triangle 4, in the spirit of
Exercise 6. We has better be careful about the jumps across the train path, so
for safety we integrate separately over each of the polygons that make up the
triangle and consider integrals along both sides of the train path. Using Green’s
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theorem, this gives
∫

4

∂y

∂x
dt+

∂y

∂t
dx+

∫

train path

[
∂y

∂x

]
dt+

[
∂y

∂t

]
dx = 0,

where as before the square brackets denote the jump in their contents. The first
integral gives us 2y(P ) = 2y(x, t). On the train path, we know that y itself has
no jump, so [

±u∂y
∂x

+
∂y

∂t

]
= 0,

with + on the upward-sloping parts of the path and − on the others. This
lets us eliminate [∂y/∂t], and then to use the fact that dx = ±u dt and the
pantograph jump condition to show that A factor of 1− u2 cancels.

2y(P ) =
∫

train path

±f(s) ds,

where again the ± takes account of the image forces.
The next step is to let P approach the train path, and to calculate the

t-coordinate of the points P2, P3 and P4 (P1 coincides with P ). This results in

2y(ut, t) = 2Y (t)

= −
∫ µt

0

+
∫ t

0

−
∫ t/µ−2/(1−u)

0

+
∫ t−2/(1+u)

0

f(s) ds,

where µ = (1 − u)/(1 + u) is as above. If we differentiate this with respect
to t, we can eliminate dY/dt on the left-hand side in favour of the pantograph
force, using (11.2) (without the linear spring term: otherwise we get a genuine
pantograph differential equation). This gives us

2(f0 − f(t))
f2

= −µf(µt) + f(t)− 1
µ
f

(
t

µ
− 2

1− u

)
+ f

(
t− 2

1 + u

)
, (11.9)

again a delay equation, but now with three delays.
Fortunately, there is some structure to the solution. It is easy to show that

the points at which the reflected characteristics in Figure 11.5 meet the train
path are

t = tn =
1
u

(1− µn).

These are the only places at which any sort of discontinuity in f(t) can occur.
Furthermore, for n > 1,

tn − 2
1 + u

= µtn−1,
tn
µ
− 2

1− u
= tn−1.

So, if t in (11.9) is equal to one of the tn, then all the terms on the right-hand
side occur in the same equation at t = tn or t = tn−1. With all this going for
us, we need only look for piecewise smooth functions between these points, and
join them up across t = tn, using (11.9) to relate the discontinuity at tn to that
at tn−1. Simply writing (11.9) at t = tn± and subtracting the two, When you write out the

right-hand side, you’ll get f
evaluated at tn−1±, at µtn±
and µtn−1±. Only in
exceptional cases could µtn be
equal to tm for some m < n,
so f is continuous at these
points and contributes nothing
to the jump.

[
f(t)

]tn+

tn− =
f2

µ(2 + f2)
[
f(t)

]tn−1+

tn−1−,
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and differentiating (11.9) gives the corresponding relation

[
df

dt

]tn+

tn−
=

f2
µ2(2 + f2)

[
df

dt

]tn−1+

tn−1−
.

These are enough to determine a piecewise linear solution for values of t between
the tn, and it shows that the solution is well-behaved as n→∞ provided that
f2/(µ(2 + f2)) < 1.

Sources and further reading

The description of the pantograph problem closely follows that of [55], but be
careful: the notation is slightly different.

11.6 Exercises

1. Conservation of momentum. A string of line density ρ and tension T
is pulled with speed U < c =

√
T/ρ through a small frictionless ring as

shown in Figure 11.7. Remembering that

force = rate of change of momentum,

show that for small displacements the force on the ring is

F = −ρ(c2 − U2)
[
∂y

∂x

]+

−
.

α1 α2
U

Figure 11.7: Conservation of momentum.

2. Removing the static displacement. Show that if we calculate the
static displacement ys(x) of the cable and subtract it from y(x, t), the
difference ȳ(x, t) satisfies the α = 0 version of the problem but with an
additional known time-dependent term in the force relation (11.2).

3. Impulsive attachment of a point force. A wire of density ρ is
stretched to tension T . At time t = 0, the wire is straight and motionless;
a constant point force is implied impulsively at x = 0 and thereafter it
moves with speed U < c. Draw a characteristic diagram, show that of
the four regions in it, the wire displacement is only non-zero in region
1 (Ut < x < ct) and region 2 (−ct < x < Ut), and that the displace-
ment there is of the form g1(t − x/c), h2(t + x/c) respectively. Apply
the pantograph conditions (with a constant force) at x = Ut to find these
functions; sketch the wire displacement at a later time t. Repeat for U > c
and comment on the results.
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Repeat the exercise in the case that the wire is also subject to gravity, so
that its initial (static) displacement is ys(x) = 1

2ρgx
2. (Of course the wire

is held up by distant supports.)

4. Delay differential equations. Consider the equation

y′(t) = α0 − α1y(t− τ), t > 0,

where τ > 0 is a constant, with the initial condition y = 0 for −τ ≤ t < 0
(this generalises the ‘point’ initial equation with no delay). Show that,
with this initial condition, the Laplace transform of y(t − τ) is e−pτ ȳ(p).
Hence show that

ȳ(p) =
α0

p(p+ α1e−pτ )
.

Put the right-hand side into partial fractions to deduce that the solution
can be found as a constant plus a series of exponentials in t, involving the
roots of p + α1e

−pτ = 0 (when α1 > 0 it can be shown that these have
negative real parts so the associated exponentials decay). Confirm (for
quality control) that you get the expected answer when τ = 0.

Show that the substitution t = es reduces the pantograph equation (11.8)
to a more complicated constant-delay equation, defined on the whole real
line.

5. The solution for one span. Complete the details of the solution of
Section 11.5, finding the coefficients in the linear expression for f(t) in
each interval tn < t < tn+1. Include the static displacement of the wire
(this generates a particular solution of the delay equation which you can
subtract out).

6. D’Alembert’s solution to the wave equation. Consider the initial
value problem

∂2y

∂t2
− ∂2y

∂x2
= G(x, t),

with initial conditions

y(x, 0) = y0(x),
∂y

∂t
(x, 0) = v0(x), −∞ < x <∞.

Write the left-hand side of the wave equation in divergence form and
integrate over a characteristic triangle to derive the D’Alembert solution

y(x, t) = 1
2 (y0(x− t) + y0(x+ t)) + 1

2

∫ x+t

x−t

v0(s) ds+ 1
2

∫∫
G(ξ, τ) dξ dτ,

where the double integral is taken over the characteristic triangle.

Show that this solution is unique by considering the energy

E(t) = 1
2

∫ ∞

−∞

(
∂y

∂x

)2

+
(
∂y

∂t

)2

dx.
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7. Pantograph with variable velocity.

(a) Suppose that a point force moves along the wire at x = X(t), so that
there is a jump in ∂y/∂x given by

[
∂y

∂x

]
= − 1

1− (X ′(t))2
f(t).

Bearing in mind that y is continuous, what is the corresponding jump in
∂y/∂t? Modify the argument of Exercise 6 to show that if the wire is
initially at rest,

y(x, t) =
1
2

∫
f(τ)

1− (
X ′(τ)

)2

1− (X ′(τ))2
dτ,

where the integral is along the part of x = X(t) lying inside the charac-
teristic triangle. (Thank you, Claudia. I know that the fraction is equal
to 1. It’s written like that because the two bits of it come from different
places.)

Why is this solution not valid if X ′(t) > 1?

(b) If X = 1
2at

2 and f(t) = 1, show that for 0 < t < 1/a, there is a region
of the (x, t) plane in which

y(x, t) = t∗(x, t)/2,

where t∗(x, t) is the appropriate root of

x+ (t− t∗) = 1
2at

∗2.

(c) Define a distribution D(x, y) = δ(x)f(y), where f(y) is smooth. Ex-
plain why it is reasonable that

∫ 1

0

∫ 1

0

D(x, y) dx dy =
∫ 1

0

f(y) dy.

How do you generalise this to D(x, y) = f(y)δ(ax− by) for constant a and
b, if the integral is over a general region? Use these ideas and Exercise 6 to
derive the result of (a) from the equation of motion with a delta-function
on the right-hand side.

8. Dynamics of a rocket. Consider a rocket of mass m slung from a long
horizontal cable in the pantograph framework. Let its horizontal position
be x = X(t). Ignoring the static displacement of the cable, derive the
dimensional model

ρ
∂2y

∂t2
− T

∂2y

∂x2
= F (t)δ(x−X(t)), 0 < x <∞,

y(0, t) = 0, y(x, 0) =
∂y

∂t
(x, 0) = 0,

where

F (t) = −mg −m
d2Y

dt2
, Y (t) = y(t, t).
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In the case X(t) = Ut where U is constant, derive and solve an equation
for the rocket displacement. When the rocket accelerates at a constant
rate a, draw the characteristic diagram, indicating all the significant char-
acteristics.

“One side of a triangle is always shorter than the sum of the other three sides.”
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Part III

Asymptotic techniques
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Chapter 12

Asymptotic expansions

12.1 Introduction

The rest of this book deals with systematic procedures to exploit small or large
parameters in a dimensionless problem, a collection of ideas grouped together
under the umbrella of asymptotic analysis. In this chapter, we open proceedings
with the basics of what an asymptotic approximation is, following which we look
at a selection of common techniques.

We start with a very simple example. Consider the quadratic

εx2 + x− 1 = 0, (12.1)

where ε is a fixed very small positive number, say 0.0000001. Forget for the
moment that we know how to solve quadratics exactly: can we exploit the fact
that ε is small to find approximate values for the roots?

If ε = 0, we have x = 1, and furthermore if we put x = 1 into the equation
for small positive ε, the error, namely what remains on the left-hand side, is
small; here it is ε. So, a natural first try is to write

x = x0 + εx1 + ε2x2 + · · ·
where, obviously, x0 = 1 (but it is reassuring to know that, as we see below,
we can show this systematically). This kind of assumed form for an expansion
is known as an ansatz ; here we are assuming that ε crops up only in positive
integral powers. We substitute this in:

ε
(
x0 + εx1 + ε2x2 + · · · )2

+ x0 + εx1 + ε2x2 + · · · − 1 = 0,

then collect terms by powers of ε:

x0 − 1 + ε
(
x1 + x2

0

)
+ ε2 (x2 + 2x0x1) + · · · = 0.

Now we equate coefficients of successive powers of ε to zero. From ε0,

x0 − 1 = 0,

so x0 = 1 as expected. From ε1,

x1 + x2
0 = 0,

169
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so x1 = −1; from ε2,
x2 + 2x0x1 = 0,

so x2 = 2, and so on. We have found x0, x1, x2 recursively, giving us the
approximation

x = 1− ε+ 2ε2 + · · · .
It is clear that we can carry on in this way to find as many terms as we like (and
you can check the answer we get against the small–ε expansion of the quadratic
formula).

But hold on! Don’t quadratics have two roots? Where did we lose the other
one? Well, one way to see is to look at what we did when we calculated x0.
In effect, we simply put ε = 0 in (12.1), and so we lost the x2 term which, of
course, being the term of highest degree, tells us how many roots there are. Put
another way, we said that the terms x and −1 must balance each other, leaving
εx2 as a small correction, which we use to improve our solution iteratively. But
is that the only possible balance? We can enumerate the other candidates:

• We might balance all three terms: this is on the face of it implausible, and
in any case it is ruled out by our analysis above.

• We might balance εx2 and −1, with x being smaller. This doesn’t look
so silly, but take it a bit further: if εx2 balances −1, then the size of |x|
is 1/

√
ε (which is large) plus a smaller correction. But then the term x,

which was supposed to be small relative to εx2 and −1, is in fact much
bigger than either. It stands head and shoulders above the other two, with
no counterbalance. We have not made the right choice.

• The only remaining possibility is to balance εx2 and x.

If, then, εx2 and x balance, we see that |x| is of size 1/ε. So we rescale,
writing

x =
1
ε
X,

after which the quadratic (12.1) becomes

X2 +X − ε = 0,

confirming immediately that the third term (which was −1 before) is indeed
small compared with the other two. We expand X as above:

X = X0 + εX1 + · · · ;

skipping the details (which you should work out), the lowest order terms give

X2
0 +X0 = 0,

with the two roots
X0 = −1 or X0 = 0.

One root (X0 = 0) reproduces the root we found earlier, while the root X0 = −1
is the first term in the expansion of the root we did not find. It is left to you
to calculate a couple more terms and verify that the expansions are correct by
comparison with the exact solution.

Our example is mathematically trivial. However, it illustrates some impor-
tant points about asymptotic approaches:
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• When we equate coefficients of powers of ε to zero, we are in effect em-
bedding our particular problem, with a given numerical value of ε, say
0.0000001, in a continuous set of problems for all ε in a small interval
[0, ε∗) containing 0.0000001. If, as we hope, the dependence of the roots
on ε has some smooth ‘structure’ as ε → 0, we should first be able to
extract their general behaviour for all small ε, and only then reinstate our
particular numerical value.

• Systematic approximation procedures start with the identification of the
dominant balance(s) in an equation. Physical and mathematical intuition
may both help in finding these balances as may iteration ideas (see Exer-
cise 2 on page 175); and once they are found, the remaining terms should
be smaller corrections. We can consider ourselves unlucky if more than
two or three mechanisms are simultaneously in balance.

• It may be necessary to rescale some of the dependent or independent
variables to achieve a balance.

Now it’s time for some definitions.

12.2 Order notation

It is useful to have a way of writing down the idea that two functions are ‘about
the same size’ near a point x0 (usually 0 or ∞) or ε0 (almost always 0, as ε is
almost always used to denote a small parameter). We say:

f(x) = O(g(x)) as x→ x0

if there is a constant A such that

|f(x)| ≤ A |g(x)|

for all x sufficiently near x0. So, for example,

3x+ x2 = O(x) as x→ 0;

here any A > 3 will do. In our quadratic equation example, the roots x(1) and
x(2) satisfy

x(1)(ε) = O(1) and x(2)(ε) = O(1/ε)

as ε→ 0. Successively more precise estimates for x(1) are

x(1)(ε) = 1 +O(ε) and x(1)(ε) = 1− ε+O(ε2).

If we want a more specific estimate of the size of f(x), we may try to find a
function g(x) whose ‘leading order’ behaviour is the same as that of f(x). We
write ∼ is pronounced “twiddles”,

by me at any rate.f(x) ∼ g(x) as x→ x0

if

lim
x→x0

f(x)
g(x)

= 1.
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So, 3x+ x2 ∼ 3x as x→ 0, and

x(1)(ε) ∼ 1− ε+ 2ε2 as ε→ 0.

Lastly there is a compact notation for the idea that one function is much
smaller than another. We write

f(x) = o(g(x)) as x→ x0

if

lim
x→x0

f(x)
g(x)

= 0;

this is often written f(x) ¿ g(x). So, for example,

e−x = o(x−1) as x→∞
and, for any n,

xn ¿ ex as x→∞.

In our quadratic example,

x(1)(ε) = 1− ε+ o(ε) as ε→ 0.

The order notation is most often used to quantify the error in an approx-
imation, so that we know when we can safely use it. A good example is the
remainder of the Taylor approximation (series). If we take n+1 terms of a Tay-
lor series for f(x) about x0, the error is o(x− x0)n, and usually O(x− x0)n+1.
For n = 0,

f(x) = f(x0) +O(x− x0) (or o(1));

for n = 1,
f(x) = f(x0) + (x− x0)f ′(x0) +O(x− x0)2

(the error is also o(x− x0)), and for n = 2,

f(x) ∼ f(x0) + (x− x0)f ′(x0) + 1
2 (x− x0)2f ′′(x0)

with an error of O(x− x0)3 (or o(x− x0)2).

12.2.1 Asymptotic sequences and expansions

Suppose we are looking at a function of ε as ε → 0 (or any other limit point).
We may aim to write its asymptotic behaviour in this limit in terms of simple
functions of ε such as powers. A well-known example here is a power series
in ε, if one exists, and we note that increasing powers of ε have an important
property: each one is smaller than its predecessor, so that εn+1 = O(εn) as
ε→ 0. Less specifically, we may have non-integral powers, logs and so on, so we
generalise this idea of using powers of ε by saying that a set of gauge functions
{φn(ε)}, n = 0, 1, 2, . . ., is an asymptotic sequence as ε→ 0 if

φn+1(ε) = o (φn(ε))

for all n. For example, {εn}, {
ε

n
2
}

are asymptotic sequences as ε → 0, while
{e−nx} is an asymptotic sequence as x→∞. Making the right choice of asymp-
totic sequence for a specific problem is something of an art, albeit one in which
common sense and simple iteration ideas play a large part.
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Once we have an asymptotic sequence, we can expand functions. We say
that f(ε) has an asymptotic expansion with respect to the asymptotic sequence
{φn(ε)} if there are constants ak such that, for each n,

f(ε) =
n∑

k=0

akφk(ε) + o (φn(ε)) ,

or

f(ε) ∼
n∑

k=0

akφk(ε)

as ε→ 0. In our quadratic equation example, we found the expansions

x(1)(ε) = 1− ε+ 2ε2 + o(ε2)

with respect to the sequence
{
1, ε, ε2, . . .

}
, and

x(2)(ε) = ε−1 + o(ε−1)

with respect to the sequence
{
ε−1, 1, ε, ε2, . . .

}
, although we only calculated one

term.
We very often have a function of several independent variables, here repre-

sented by a generic x, and a small parameter ε. In such a case, we may look for
an expansion in the form

f(x; ε) ∼
n∑

k=0

ak(x)φk(ε),

and we hope that the problem of calculating the ak (sequentially) will be easier
than finding f(x; ε) all at one go. This is usually the reason for trying an
asymptotic expansion in the first place.

12.3 Convergence and divergence

So what’s the big deal: haven’t we just found a straightforward generalisation
of Taylor series? Well, no, not exactly. The point of a Taylor series is that,
for a fixed value of ε, or whatever we’ve called the independent variable, as we
take more and more terms the sum of the series gets closer and closer to the
function it represents. That is, the series converges as the number of terms
in the partial sums, n, tends to infinity. All Taylor series are thus de facto
asymptotic expansions.

There are, however, two limiting processes going on when we write down an
an asymptotic expansion, n→∞ and ε→ 0, and they need not commute. When
we do a Taylor (or Laurent) series expansion, we first take the limit as n→∞,
and only then think what happens as ε varies. An asymptotic expansion, on
the other hand, is designed to provide an accurate approximation as ε → 0 for
each n, and many useful expansions don’t converge at all as n→∞.

A famous example is the incomplete exponential integral:1 evaluate

I(ε) =
∫ ∞

1/ε

x−1e−xdx.

1Approximation of integrals and special functions is a particularly happy hunting ground
for asymptoticists, although we shan’t be going that way (much).
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Repeated integration by parts shows that

I(ε) = εe−1/ε
(
1− 1!ε+ 2!ε2 + · · ·+ (−1)nn!εn

)
+Rn(ε), (12.2)

where Rn(ε) is easily shown to be asymptotically smaller than the last retained
term; see Exercise 3 on page 175.

It is quite clear that the series we have generated does not converge for anyWhat are the gauge functions?

ε > 0 because of the growth of the factorial. That isn’t the point, though.
What is important is that as ε → 0, with n fixed, the series should give us an
accurate description of the behaviour of the integral. That is, the smaller we
take ε, the smaller should be the relative error of the approximation. In fact
what happens is that, if we take a fixed value of ε, and take more and more
terms in the expansion, at first successive terms get smaller and smaller (as
they would for a convergent series); then, starting from values of n of O(1/ε),
they increase again. The best approximation is given by cutting the series off
at this optimal truncation point.2 Even for ε = 1/4, which is not particularlyThe figures are accurate to the

number of decimal places
given, always a good practice.

For another asymptotic
expansion which works well
even when the relevant
parameter, here n, is not
small, try putting n = 1 in
Stirling’s formula, which says

that n! ∼ nn+ 1
2 e−n/

√
2π as

n→∞.

small, truncation of the series after 4 terms gives the reasonable approximation
0.00401 . . . compared to 0.00378 . . . from numerical integration. When ε = 1/8,
8 terms of the series give 0.112434×e−8 = 0.000037717, compared with the true
value, 0.000037666. The relative error is less than 0.14%.

In most practically (as opposed to mathematically) generated asymptotic
problems, we are unable to calculate enough terms to decide whether the asymp-
totic series is divergent or not. Indeed, it’s usually next to impossible (or at
least a rather strenuous exercise in mathematical weightlifting) trying to prove
that the remainder after even one or two terms is small as it should be. We
have to live with these lacunae: we proceed knowing that experience tells us
that, mostly, things will work out.

Further reading

There are many excellent books on asymptotic expansions. A short but intensive
introduction is the book of Hinch [26], whose first chapter probably put the
quadratic example into my mind (if you think about it, εx2 + x − 1 = 0 is
the irreducible minimum of that kind of problem). Keener [32] is another good
source. If you are interested in ordinary differential equations try the book by
O’Malley [47]; for a more wide-reaching treatment, including partial differential
equations, see the books of Kevorkian & Cole [35] or Bender & Orszag [5].
Olver [46] is a good starting point for the analysis of special functions and, as
ever, Carrier, Krook & Pearson [6] is very well worth reading.

12.4 Exercises

1. Roots of equations. Find expansions for the roots of

εx3 + x− 1 = 0
2The location of the optimal truncation point is determined by the value n(ε) at which

successive terms have the same size. This series has a ‘factorial-power’ form for the terms in
the expansion, a very general phenomenon, and it is easy to calculate that successive terms
are closest in size when n is the integer part of 1/ε. The precise behaviour of the remaining
error, and how to deal with it, is part of the trendy subject of hyperasymptotics, also known
as asymptotics beyond all orders or exponential asymptotics.
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as ε → 0 with at least two and preferably three nonzero terms in each
expansion.

Repeat for the real roots of εx tanx = 1, and then for x tanx = ε. In the Draw graphs to see where the
roots are.latter case you will have to consider the first root separately, as well as

rescaling to get the large roots. In addition there is a range of roots you
can’t get approximations to; where is it?

2. Iteration. Show that x log x → 0 as x → 0; draw its graph. Suppose
we want to find an asymptotic expansion for the solution to x log x = −ε,
where 0 < ε ¿ 1. In this case, it is not obvious what gauge functions we
should use, so we find them by iteration. Write

x(ε) ∼ x0(ε) + x1(ε) + · · · ,

where all we know is that x0 À x1 À · · · . Take logarithms of the original
equation (a key manipulative step, because it replaces multiplication of
two small terms by addition of their (large) logarithms) and substitute
this in to find

log (x0 + x1 + · · · ) + log (− log (x0 + x1 + · · · )) = log ε. (12.3)

Now ignore x1 to show that taking x0 = ε gives a residual (left-hand side
− right-hand side) which is much smaller than the dominant terms. Put
x0 = ε back into (12.3) and expand the logarithms in powers of x1/ε,
which is small, to show that x1 = −ε/| log ε|. Finally calculate one more
term in the expansion.

Repeat the calculation after making the simplifying initial scaling x = εX
(which you might not spot first time round).

3. The exponential integral. Show that the expression (12.2) for the
incomplete exponential integral is indeed an asymptotic expansion as fol-
lows. Consider

I(ε) =
∫ ∞

1/ε

x−1e−xdx.

Integrate by parts n+ 1 times to show that

I(ε) = εe−1/ε
(
1− 1!ε+ 2!ε2 + · · ·+ (−1)nn!εn

)
+Rn(ε),

and now integrate by parts once more to get

Rn = εe−1/ε(−1)n+1(n+ 1)!εn+1 +R′n,

where a simple estimate using e−x ≤ e−1/ε for x ≥ 1/ε shows that R′n is
at most of the same order as the first term on the right-hand side of the
expression for Rn. Conclude that, as ε→ 0, Rn = o(εne−1/ε).

4. Stockmarket crashes and six-sigma quality control. The probabil-
ity density function for the standard normal distribution N(0, 1) is

fX(x) =
1√
2π
e−x2/2.
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Integrate by parts to find a one-term approximation for P (X < x) as
x → −∞ and show that it is asymptotically correct (see the previous
exercise).

‘Six-sigma standards’ in manufacturing demand that the probability that
an individual component is defective is less than the probability of being
6 or more standard deviations away from the mean of a standard normal
distribution. What is this probability, approximately? (e3 ≈ 20, 2π ≈ 25

4 .)
If the manufacturers use this standard, what is the probability that noneHint: which well-known limit

lets you work out an
approximation to (0.99)100?

of the 10,000 components in a computer or the 1,000,000 components in
an aeroplane is faulty?

In the standard Black–Scholes model for financial markets, daily percent-
age changes in, say, the FTSE–100 or S&P–500 index are independent
random variables which are approximately normal with very small mean
and standard deviation of about 1%. What is the probability of a fall of
10% or more in one day? What is the probability of two such falls on con-
secutive days? (In October 1987 the UK stock market fell by more than
10% on both Black Monday and the day after. There have been several
other changes of this magnitude in the (roughly) 25,000 days for which
stock indices have been calculated.)

“It’s a half-plane, so it probably goes on for quite a long distance.”



Chapter 13

Regular perturbation
expansions

13.1 Introduction

We begin our tour of asymptotic methods for simplifying complex problems with
the most straightforward idea, that of a regular asymptotic (or perturbation)
expansion. This is just the plain vanilla common-sense expansion you carry out
when it seems that the dominant-balance terms in your model do indeed reflect
the dominant physical mechanisms, and everything else is a small correction.
For example, the expansion

x(1)(ε) = 1− ε+ 2ε2 + o(ε2)

in the quadratic equation example of the previous chapter is beautifully regular.
In some problems, we can characterise a regular expansion by saying that it is
expected to be a uniformly valid approximation to the solution; for example,
when we consider the standard model for waves on a string, we hope that, for
all times and positions on the string, the wave equation is a good approximation
to the fully nonlinear model we could write down for displacements that are not
small. Having said this, there probably isn’t a watertight definition of when an
expansion is ‘regular’; it may be safest just to leave it as ‘any expansion that is
not one of singular, boundary layer, multiple-scale, . . . ’ and to let your sense
of the meaning of the term grow with experience.

In the models we look at later on, we’ll see a variety of scalings and transfor-
mations which help us to understand less straightforward situations; but after
all these contortions, we end up with a regular expansion. When we’ve got to a
regular expansion, nine times out of ten we’ve done as much simplifying as we
can with asymptotic approximations. As a simple example, to find the other
root x(2)(ε) of the quadratic, we first had to introduce the singular (as ε → 0)
scaling x = X/ε, and only then find a regular expansion for X.

There is really not much more to say of a general nature. The rest of the
chapter consists of a collection of examples of the regular perturbation tech-
nique in action. They are necessarily in order, because this is not a hypertext
document, but they are not rigidly so: wander as you will.

177
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13.2 Example: stability of a spacecraft in orbit

Many asymptotic techniques have their origin in astronomy. We begin with a
simple one: the stability of circular planetary orbits. In the classical Newtonian
model for motion of, say, a satellite or space station1 orbiting the earth, the
space station’s plane polar coordinates (r(t), θ(t)), with origin at the centre of
the earth, satisfy

r̈ − rθ̇2 = −GM
r2

,
1
r

d

dt

(
r2θ̇

)
= 0,

where ˙= d /dt, G is the universal gravitational constant and M is the mass of
the earth. Hence we retrieve Kepler’s second law“The radius vector sweeps out

equal areas in equal times”:
the element of area is 1

2
r2 dθ

(draw a diagram to see why).
r2θ̇ = h,

a constant equal to the angular momentum (per unit mass, to be pedantic).
A circular orbit is an obvious solution with

r = a, θ̇ = ω, where a3ω2 = GM,

the relation between a and ω being Kepler’s third law. Suppose a booster rocket
on the space station gives it a small radial velocity εv (note that this does not
change h). Is the orbit stable or will the space station plunge to earth or fly off
into the deeps of space?

Write

r(t) = a+ εr1(t) + · · · , θ̇(t) = ω + εθ̇1(t) + · · · , ε¿ 1,

so that

εr̈1 + · · · − (a+ εr1 + · · · )
(
ω + εθ̇1 + · · ·

)2

= − GM

(a+ εr1 + · · · )2 (13.1)

and
(a+ εr1 + · · · )2

(
ω + εθ̇1 + · · ·

)
= h = a2ω. (13.2)

Expand the right-hand side of (13.1) by the binomial theorem, remember
that a3ω2 = GM , and the O(ε) terms in (13.1), (13.2) give

r̈1 − ω2r1 − 2aωθ̇1 = 0, 2aωr1 + a2θ̇1 = 0;

that is,
r̈1 + ω2r1 = 0.

We see that r1 oscillates without growing or decaying, so it looks as if the system
is neutrally stable; this is not so surprising when we recall that the full system is
conservative. The period of oscillation is equal to the original period of orbital
rotation, and the perturbed orbit is slightly elliptical with the centre of the earth
at one focus; the furthest and nearest distances from earth (apogee and perigee)
occur 1

4 and 3
4 of an orbit after the initial thrust. Every half-orbit, the space

station will return to the original location relative to earth: if the astronauts
drop a spanner before applying the thrust, they will have two opportunities per
orbit to reach out and grab it.

1See www.heavens-above.com for predictions of when to see the International Space Station
and other satellites.
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13.3 Linear stability

Linear stability analysis, of which the orbiter problem is an example, is an
archetypal example of a regular perturbation. We take a solution u0 of a system,
often an equilibrium or a steady state such as a travelling wave, we perturb it
to u0 + εu1, write down a regular perturbation expansion to determine u1, and
then see whether εu1 is small, or (in a time-dependent problem) remains small.
The perturbation may be to the initial and/or boundary data of our problem,
or to the geometry, or it may be structural via changes to the parameters or
equations of the problem.

We say that a time-dependent system is linearly stable if a suitable norm
(measure of the size) of the perturbation decays, linearly unstable if the norm
grows, and (linearly) neutrally stable if it remains the same size.

In many systems the result of linearising about u0 is a linear evolution
problem in the form

∂u1

∂t
= Lu1

where L is a linear differential operator. Often, L has time-independent coeffi-
cients, and then the solution has the form

u1 = eλtU1

where U1, which is independent of t, is an eigensolution of L with eigenvalue λ:

LU1 = λU1

(we expect an eigenproblem because of the scaling invariance of a linear prob-
lem). This is all well illustrated by the very familiar phase-plane analysis we
now briefly review.

13.3.1 Stability of critical points in a phase plane

Phase-plane analysis of critical points is a classic example of linear stability You can do it in more than
two dimensions, but two
dimensions is much easier to
analyse, because the
dimension of the phase paths
is one less than the dimension
of the plane; in three or more
dimensions the extra degree(s)
of freedom make life much
more difficult.

analysis. Take a two-dimensional autonomous dynamical system

dx
dt

= f(x), x =
(
x
y

)
, f =

(
f1(x, y)
f2(x, y)

)
.

The critical points x0 = (x0, y0)> are equilibrium points satisfying f(x0) = 0.
In order to analyse their stability, we first write down a regular expansion for
x(t) about x0,

x ∼ x0 + εx1 + · · · .
Then, we expand f(x) in a Taylor series about x0: It is de facto an asymptotic

expansion provided that
|x− x0| = O(1) and f is
smooth.f(x0 + εx1 + · · · ) =

(
f1(x0 + εx1 + · · · , y0 + εy1 + · · · )
f2(x0 + εx1 + · · · , y0 + εy1 + · · · )

)

∼




0 + ε

(
x1
∂f1
∂x

+ y1
∂f1
∂y

)
+ · · ·

0 + ε

(
x1
∂f2
∂x

+ y1
∂f2
∂y

)
+ · · ·




= 0 + εJx1 + · · · ,



180 CHAPTER 13. REGULAR PERTURBATION EXPANSIONS

where J, a constant matrix, is the Jacobian

∂(f1, f2)
∂(x, y)

=



∂f1
∂x

∂f1
∂y

∂f2
∂x

∂f2
∂y




evaluated at x0.
At O(1) we have 0 = 0, and at O(ε) we find a linear equation for x1:

dx1

dt
= Jx1,

With a constant-coefficient equation, it is natural to look for a solution

x1 = eλtv1,

which reveals the eigenvalue equation

Jv1 = λv1.

The stability or otherwise of the fixed point is thus determined by the real
parts of the eigenvalues of J, as a positive real part for either eigenvalue leads
to exponential growth and hence instability. The details of the behaviour areHere is a use for the canonical

form reductions of linear
algebra: we see a differential
equation interpretation of the
difference between algebraic
and geometric multiplicity.

surprisingly complicated, largely because of special cases when the eigenvalues
are equal.2 When they are distinct, things are easier and we have the familiar
catalogue of possible behaviours: stable (unstable) nodes when both λ1 and λ2

are real and negative (positive); saddles for real eigenvalues of opposite signs;
stable (unstable) spirals for complex eigenvalues with negative (positive) real

The eigenvalues are a
conjugate pair: why?

parts; and lastly centres when the eigenvalues are pure imaginary. Care is needed
with the latter case which, unlike the rest, is clearly structurally unstable to
small changes in the entries of J, as the following digressionary example shows.

13.3.2 Example (side track): a system which is neutrally
stable but nonlinearly stable (or unstable)

Consider the two systems (one for +, one for −)

ẋ = y ± x
(
x2 + y2

)
, (13.3)

ẏ = −x± y
(
x2 + y2

)
. (13.4)

If we look for solutions near the obvious equilibrium point (0, 0), say with x(0) =
εξ0, y(0) = εη0, we can write x = εX, y = εY , and then expand

X ∼ X0 + ε2X2 + · · · , Y ∼ Y0 + ε2Y2 + · · ·
(fairly clearly the O(ε) terms vanish). Then,

Ẋ0 = Y0, Ẏ0 = −X0,

and we have neutral stability since X2
0 + Y 2

0 = ξ20 + η2
0 is constant. However, at

O(ε2) we find

Ẋ2 = ±X2

(
ξ20 + η2

0

)
, Ẏ2 = ±Y2

(
ξ20 + η2

0

)
,

2See [31].
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and the + system is plainly unstable at this order, while the − system is stable.
In fact this is in accordance with the exact result since x × (13.3) + y × (13.4)
gives

d

dt

(
x2 + y2

)
= ± (

x2 + y2
)2
,

and it is an exercise to solve this equation and show that there is finite-time
blow-up if we have the + sign and existence for all t with the − sign.

This example shows that linear stability analysis can be the the tip of the
iceberg. Nevertheless, although it is possible to construct examples which are
linearly stable and nonlinearly unstable, and vice versa, nonetheless as a general
rule it is a good guide to the overall behaviour.

13.4 Example: the pendulum

Let us have a look at the pendulum model we introduced in Chapter 3. Recall
that the dimensionless pendulum model, without the primes on t, is

d2θ

dt2
+ γ

dθ

dt
+ sin θ = 0,

with
θ = α0,

dθ

dt
= β0 at t = 0.

Of course, we can treat this equation via the phase plane (this relatively straight-
forward exercise is requested on page 188). However, the purpose of this chapter
is to see the modus operandi of regular perturbations, so let’s do this problem
from scratch.

Suppose that α0 is small, say α0 = εa0 where ε¿ 1, and β0 = 0, so that we
are releasing the pendulum from rest with only a small initial displacement.3

Can we retrieve linear theory, and how big is the error?
Write

θ ∼ θ0 + εθ1 + · · · . (13.5)

Then

d2θ

dt2
+ ε

d2θ1
dt2

+ · · ·+ γ

(
dθ

dt
+ ε

dθ1
dt

+ · · ·
)

+ sin(θ0 + εθ1 + · · · ) = 0, (13.6)

with the initial conditions

θ0 + εθ1 + · · · = εα0,
dθ0
dt

+ ε
dθ1
dt

+ · · · = 0 (13.7)

at t = 0.
Equating coefficients of powers of ε, at O(1) (equivalent to putting ε = 0)

we see immediately that θ0 = 0: it satisfies

d2θ0
dt2

+ γ
dθ0
dt

+ sin θ0 = 0,

3I could have chosen to expand in terms of α0, instead of writing α0 = εa0, and that might
have looked less contrived. However, for continuity of exposition I want the small parameter
to be called ε wherever possible.
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with
θ0 =

dθ0
dt

= 0 at t = 0,

and the solution θ0(t) = 0 is unique by standard Picard theory.
With more experience, we would have seen this straightaway, and accounted

for it by using the (regularly) scaled variable θ = εθ̃. However, let’s press on.
We now know that

θ ∼ εθ1 + o(ε),

and so
sin θ ∼ εθ1 + o(ε).

Putting these two into (13.6), and retaining only the terms of O(ε), we find that

d2θ1
dt2

+ γ
dθ1
dt

+ θ1 = 0,

while the O(ε) terms from the initial conditions (13.7) give

θ1 = a0,
dθ1
dt

= 0 at t = 0.

As promised, we have retrieved the linear theory.
As we noted in Chapter 12, what we have in effect done is to embed the

problem for our particular value of α0, say 0.001, in a family of problems
parametrised by ε, and we are looking for an expansion valid for all ε in an
interval containing (0, 0.001). We hope that the solution depends smoothly on
α0 (and hence on ε) when α0 is small, so that our procedure of expanding in
powers of ε is justified. Indeed, if the solution is differentiable with respect to ε at
ε = 0, then we are just identifying a function by its Taylor series. Even if this is
not the case, we hope that the asymptotic expansion gives a good approximation
to the solution as ε→ 0, the key requirement of such a representation.

13.5 Small perturbations of a boundary

In this section, we look at two problems in which the perturbation to a simple
solution is induced by a small irregularity in the boundary of the domain in
which we solve, rather than in the field equation itself.

13.5.1 Example: flow past a nearly circular cylinder

Suppose that we want to calculate two-dimensional potential flow, with velocity
(U, 0) at infinity, past the slightly elliptical cylinder whose equation in planeA focus-directrix

representation of an ellipse
with small eccentricity ε is

a/r = 1− ε cos θ,

and expanding to O(ε) gives
r = a(1 + ε cos θ) + o(ε).

polar coordinates is r = a(1 + ε cos θ), where ε¿ 1. The shape of this cylinder
is close to that of an ellipse with small eccentricity. The velocity potential φ
satisfies

∇2φ = 0, r > a(1 + ε cos θ), (13.8)

with the boundary conditions

∂φ

∂n
= n · ∇φ = 0, r = a(1 + ε cos θ) φ ∼ Ur cos θ + o(1), r →∞.

(13.9)
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We know the solution when ε = 0, namely

φ0 = U

(
r cos θ +

a2

r
cos θ

)
, (13.10)

and it seems very likely that the solution for 0 < ε¿ 1 is close to this. The only
obstacle is that for ε > 0 the boundary condition ∂φ/∂n = 0 is applied in an
inconvenient place. We deal with this by linearising it onto r = a: we replace
the exact boundary condition by an approximate one on the more convenient
location. This entails two steps. First, we expand the full condition n · ∇φ = 0
in powers of ε and then discard small terms. Next, we use a second expansion to
replace the resulting approximate condition at r = a(1+ε cos θ) by one on r = a.
Again, we discard small terms, and as long as we do so consistently we should
not degrade the accuracy of our approximation. I am going to go through this
process in excruciating detail, because this is an important technique and one
where it is easy to slip up.

Suppose that we want to calculate the solution correct to O(ε). That means
that as we go along we can discard any O(ε2) terms (as long as we are confident
they won’t get divided by ε later). The unit normal to r = a (1 + εf(θ)), for
any smooth function f(θ), is4 In polars,

∇ = er
∂

∂r
+

1

r
eθ

∂

∂θ
.

Note that a has dimensions of
length but n is dimensionless:
the a’s cancel in the second
line.

n =
∇(
r − a (1 + εf(θ))

)
∣∣∇(

r − a (1 + εf(θ))
)∣∣

=
er − εf ′(θ)

1 + εf(θ)
eθ

(
1 + ε2

(f ′(θ))2

(1 + εf(θ))2

) 1
2

= er − εf ′(θ)eθ +O(ε2).

So, we have

n · ∇φ|r=a(1+εf(θ)) =
(
er
∂φ

∂r
+

1
r
eθ
∂φ

∂θ

)∣∣∣∣
r=a(1+εf(θ))

=
(
∂φ

∂r
− ε

f ′(θ)
a

∂φ

∂θ

)∣∣∣∣
r=a(1+εf(θ))

+O(ε2). (13.11)

The next stage is to expand ∂φ/∂r and ∂φ/∂θ in (13.11) in Taylor series
about r = a. That is, we write

∂φ

∂r

∣∣∣∣
r=a(1+εf(θ))

=
∂φ

∂r

∣∣∣∣
r=a

+ εaf(θ)
∂2φ

∂r2

∣∣∣∣
r=a

+O(ε2), (13.12)

and, as hindsight shows we only need one term for ∂φ/∂θ,

∂φ

∂θ

∣∣∣∣
r=a(1+εf(θ))

=
∂φ

∂θ

∣∣∣∣
r=a

+O(ε). (13.13)

We can now substitute for ∂φ/∂r and ∂φ/∂θ from (13.12) and (13.13) in (13.11), Do you now see why we only
bother with one term for
∂φ/∂θ?

to find that

Check dimensions: all the
terms should have dimension
[φ]/[L], which they do.

4Note that the expansion may be invalid if f ′(θ) is large, specifically O(1/ε).
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∂φ

∂n

∣∣∣∣
r=a(1+εf(θ))

=
(
∂φ

∂r
+ εaf(θ)

∂2φ

∂r2
− ε

f ′(θ)
a

∂φ

∂θ

)∣∣∣∣
r=a

+O(ε2).

In our case, f(θ) = cos θ, and so instead of the exact problem (13.8)–(13.9),
we solve the approximate problem5

∇2φ = 0, r > a,

with the boundary conditions

∂φ

∂r
+ εa cos θ

∂2φ

∂r2
+ ε

sin θ
a

∂φ

∂θ
= 0, r = a, φ ∼ Ur cos θ + o(1), r →∞.

We have done the hard work. The approximate problem yields immediately
to a regular expansion

φ(r, θ) ∼ φ0(r, θ) + εφ1(r, θ) +O(ε2).

The leading order problem is just (as expected) the standard flow past a circular
cylinder with solution φ0 as given in (13.10). The problem for φ1 is then

∇2φ1 = 0, r > a, φ1 = o(1), r →∞,

with the approximate condition on r = a,More details for you to fill in.

∂φ1

∂r
= −a cos θ

∂2φ0

∂r2
− sin θ

∂φ0

∂θ

= −2U
(
cos2 θ − sin2 θ

)

= −2U cos 2θ.

We can look up φ1 in our (mental) library of separable solutions of Laplace’s
equation, and the solution to O(ε) is

φ(r, θ) = U

(
r cos θ +

a2

r
cos θ

)
+ εUa3 cos 2θ

r2
+O(ε2).

We can (should) run a couple of consistency checks on this solution. First, the
correction φ1 has the right dimensions, velocity × length. Second, look at the
velocity correction on the x–axis. Our cylinder sticks out beyond the circle
r = a near the downstream end θ = 0, and is inside near the upstream end
θ = π; the flow has stagnation points on the boundary at θ = 0, π. At theDraw a picture.

You can do the same argument
at the upstream stagnation
point, but you are more likely
to lose a minus sign because
you have to remember that
∂ /∂r = −∂ /∂x there.

downstream stagnation point, the leading order horizontal velocity ∂φ0/∂r is
small and positive because the leading order flow, which is overall left-to-right,
has a stagnation point just to the left. Thus, to get zero horizontal velocity
here, ∂φ1/∂r must be small and negative, which it is: we have got the right
signs.

5A pedant says: ‘This function φ is different from the original one, so you should use a
different notation for it.’ I reply: ‘Go away and leave me alone. There is too much unnecessary
notation in the world without adding to it.’
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13.5.2 Example: water waves

For our second example of a boundary perturbation, we look at the very classi-
cal problem of two-dimensional small-amplitude surface gravity waves on deep
water. The new feature of the problem is that the boundary that is perturbed is
itself unknown: it is called a free boundary or free surface. You may have done
this problem in an ad hoc way, ‘neglecting quadratic terms’. This can be viewed
formally as constructing the corresponding linearised problem, an extension of
the idea of the derivative in calculus as a locally linear operator that approxi-
mates a nonlinear function. Form our point of view, however, it can be looked
at as constructing an asymptotic expansion correct to O(ε), neglecting O(ε2).

Let us build in the fact that the amplitude is small by writing the water
surface as y = εh(x, t), where ε ¿ 1 and h = O(1) (and there is an implicit
assumption that derivatives of h are not large either). Then the full problem to
be solved for the velocity is

∇2φ = 0, y < εh(x, t),

for which the free surface conditions are the kinematic condition Particles in the surface stay
there, so the material
derivative of y − εh(x, t) is
zero. It also says that the
normal velocity of the water is
equal to the normal velocity of
the interface.

D

Dt

(
y − εh(x, t)

)
= 0,

namely
∂φ

∂y
= ε

(
∂h

∂t
+
∂φ

∂x

∂h

∂x

)
, y = εh(x, t), (13.14)

and the Bernoulli condition Woe to those who spell him
Bernouilli.

∂φ

∂t
+ 1

2 |∇φ|2 + gy = 0, y = εh(x, t). (13.15)

The unknown location of the surface makes this a formidably hard problem and
even after decades of effort there are many open questions. The first step on
the road, however, is easy.

We are aiming for an asymptotic expansion in powers of ε. A quick look at
the kinematic condition (13.14) shows immediately that there is no O(1) term
in the velocity potential, and so its expansion has the form Technically, we should expand

h(x, t) as well, but we only
need one term so we don’t
bother. If we want the O(ε2)
term as well, we have to do
this.

φ(x, y, t) ∼ εφ1(x, y, t) + · · · .

It is now clear that the leading order terms in the kinematic and dynamic
boundary conditions are

∂φ1

∂y
=
∂h

∂t
,

∂φ1

∂t
+ gh = 0, (13.16)

which apply on y = εh(x, t) and then, by a trivial linearisation, on y = 0 without
loss of accuracy to this order. The rest is history: taking a representative
wave6 h(x, t) = aei(kx−ωt) with wavenumber k and frequency ω, where a is the Waves with k > 0 travel to the

right, k < 0 to the left; |k| in φ
ensures decay as y → −∞. Of
course we take the real part of
h and φ for the physical
quantities.

constant amplitude, we have from Laplace’s equation and the first of (13.16)
that

φ1(x, y, t) = − iωa|k| e
|k|yei(kx−ωt),
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and then from the second of (13.16) we get the dispersion relation
Check the dimensions.

ω2 = g|k|

giving us the phase speed c = ω/|k| =
√
g/|k| in terms of the wavenumber.

This calculation can be viewed as a prototype of stability analyses of all sorts
of free boundary problems, ranging from fluid flow to solidification of ice or steel.
If we think of it in this light, it tells us that the surface of our water is neutrally
stable, because the fact that ω is purely real tells us that small disturbances
neither grow nor decay. If, on the other hand, we take g < 0, equivalent to havingFill a glass to the brim, slide a

piece of card across, and hold
it in place while you invert the
glass: it will stay there when
you take your hand away.
Why does this not work if
there is an air gap before you
put the card on?

the water above the air, ω is purely imaginary and the linearised problem always
has exponentially growing modes, because then e±iωt = e±|ω|t. Why does water
fall out of a glass if you turn it upside down, even though the atmospheric
pressure (about 10 m of water) is more than enough to hold it in?

13.6 Caveat expandator

Regular expansions don’t always work. Sometimes the reasons for this are ob-
vious: the procedure falls flat on its face early on. For example, consider the
very easy differential equation

ε
dy

dx
= y − 1, x > 0, y(0) = 0,

for small ε. A straightforward regular expansion in powers of ε gives y ∼ 1,
and all other term vanish. The regular expansion completely fails to satisfy the
initial condition, and in this case inspection of the exact solution, y = 1−e−x/ε,
shows that there is a boundary layer near x = 0, in which the solution changes
too rapidly to be describable by a regular expansion. We look at problems of
this type in Chapter 16. Another example where a regular expansion doesn’t
even get to first base is

ε2
d2y

dx2
+ y = 0,

whose solutions e±ix/ε oscillate very rapidly. We look at problems of this kind
in Chapter 23.

There are, however, some problems where what goes wrong is more sub-
tle. Let us return to the undamped small-displacement pendulum equation of
Section 13.4,

d2θ

dt2
+ sin θ = 0, θ(0) = εa0,

dθ

dt
= 0 at t = 0.

We showed that we could recover linear theory as the first term in an expansion

θ ∼ εa0 cos t+ ε2θ2 + ε3θ3 +O(ε4).

(I’ve kept two terms after θ1 because it very soon becomes clear that θ2 = 0.).Exercise.

If, encouraged by this success, we continue, the problem for θ3 is
How to do this:

e3it = cos 3t+ i sin 3t

= (eit)3

= (cos t+ i sin t)3;

expand the last and use
cos2 +sin2 = 1 to get

cos 3t = cos3 t− 4 cos t

from the real part.

6Representative because we can superpose these waves to solve any initial value problem,
equivalent to taking a Fourier transform in x.
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d2θ3
dt2

+ θ3 =
a3
0

6
cos3 t

=
a3
0

24
(3 cos t+ cos 3t) ,

with
θ3 =

dθ3
dt

= 0 at t = 0.

The solution is found after a small effort: Why no t cos t? Because the
forcing function on the
right-hand side is even, that’s
why: with a second derivative
and an undifferentiated term,
and zero initial derivative, we
are bound to get an even
solution. There’s no point in
making work for ourselves by
putting in odd terms. For
much the same reason there is
no sin t term either (which
makes fitting the initial zero
value for θ3 and dθ3/dt a
trivial business).

θ3 =
a3
0

16
t sin t− a3

0

192
(cos 3t− cos t) .

There’s just one problem with this solution. The term t sin t grows unboundedly
as t increases. Eventually, when ε3t sin t and ε cos t are of the same size, that
is when t = O(1/ε2), the expansion is no longer valid, because successive terms
are no longer decreasing in size. Terms like this are known as secular terms
(the word means ‘having an enormous duration’); the origin is in analysis of
planetary orbits and in particular the slowly-developing effect of one planet’s
gravitational field on the motion of another, which is how the outer planets were
found.

The nonuniformity arises because we are trying to describe a periodic func-
tion of t whose period is not quite the 2π of the base solution θ1. (Such nonuni-
formities are always lurking in problems with conserved quantities or similar
structure if the functions we use to approximate are not quite compatible with
the conserved quantities.) We take a brief look at problems of this kind in
Chapter 22.

13.7 Exercises

1. Space stations. The space station is in a circular orbit about the earth
at a distance a from the centre and with angular speed ω. Its tangential
speed is increased from aω to aω + εv where ε¿ 1. Carry out the linear
stability analysis of the orbit (remember that the angular momentum has
to be perturbed).

2. Phase planes. Referring back to Section 13.3.1, suppose that the Jaco-
bian J is real and symmetric at a critical point. Show that, by diagonal-
ising J, the linearised equations can be reduced to

d

dt

(
X
Y

)
=

(
λ1 0
0 λ2

)(
X
Y

)
,

where the axes of the coordinates Xi are along the eigenvectors of J.
Deduce that the orbits are locally given by the curves

|X|λ2 |Y |−λ1 = constant,

and they look roughly like hyperbolae when λ1λ2 < 0.

Show that when J is skew-symmetric, J = −J>, the critical point is a
centre.
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3. Pendulum phase planes. Consider the damped pendulum equation

lθ̈ + kθ̇ + g sin θ = 0, θ(0) = θ0, θ̇(0) = ω0,

made dimensionless with the timescale t0 =
√
l/g, so that it becomes

θ̈ + γθ̇ + sin θ = 0, θ(0) = α0, θ̇(0) = β0.

First suppose that γ = 0. Show that there are centres in the phase plane
at (θ, θ̇) = (2nπ, 0) and saddles at ((2n+ 1)π, 0). Sketch the phase plane,
indicating the direction of the trajectories. Indicate the curves for whichPut one arrow on at, say,

(α0, 0) and the rest follow by
continuity.

α0 = 0, β0 ¿ 1. Find a suitable scaling for θ to show that they are
approximately circles.

Still with γ = 0, indicate the curves for which β0 À 1. What is the
pendulum doing on one of these? Take α0 = 0 and rescale time by writing
t = t̃/β0; show that this gives

d2θ

dt̃2
+

1
β2

0

sin θ = 0, θ(0) = 0,
dθ

dt̃
= 1.

Now write
θ = θ0 +

1
β2

0

θ1 + · · · ,

and find θ0 and θ1 by equating terms of O(1) and O(1/β2
0) to zero sepa-

rately. Interpret these results.

Now suppose γ > 0. Show that the saddles remain saddles but the centres
become stable spirals for 0 < γ < 2. What happens for γ > 2? Sketch the
phase plane when (a) 0 < γ ¿ 1, (b) γ À 1.

4. Satellites. Investigate the linear stability of a satellite orbit using the
more general approach of Section 13.3.1 as follows. Write the equations
for motion of a satellite,

r̈ − rθ̇2 = −GM
r2

,
1
r

d

dt

(
r2θ̇

)
= 0,

as a first-order system ẋi = Fi(xj) for x1 = r, x2 = ṙ and x3 = θ̇.
Show that all points on the curve x3

1x
2
3 = GM , x2 = 0, are equilibrium

points. Taking a representative point (a, 0, ω) on this curve, show that the
Jacobian (∂Fi/∂xj) is




0 1 0
3ω2 0 2aω
0 −2ω/a 0


 .

Deduce from the trace and determinant of this matrix (which you can
evaluate without detailed calculation) the consistency check that at least
one of the eigenvalues vanishes, that the remaining ones sum to zero,
and so that just one vanishes and the other two are equal and opposite.
Confirm this by finding the eigenvalues as 0, ±iω.

Note the zero eigenvalue, which is due to the existence of a non-isolated
set of equilibrium points (why?). What would happen if you wrote the
equations as a 4× 4 system for r, ṙ, θ, θ̇?
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5. Motion under gravity near the earth. Absolutely everybody does
motion of projectiles early in their mathematical career: mr̈ = −mg,
r(0) = (0, 0, h), ṙ(0) = v. Expand in terms of ε = h/Re, where Re is
the radius of the earth, to reconcile this with the full Newtonian model in
which the force on a particle of mass m is m∇φ, in which the gravitational
potential φ = GMe/|R|, G being the universal gravitational constant, Me

the mass of the earth and R the position vector measured from the centre
of the earth. What restriction on v is necessary for your approximation
to be valid?

6. Flagpoles again. Look up your derivation of the dimensionless flagpole
equation oscillated at the base, and write it in the form

∂2y

∂t2
+ α4 ∂

4y

∂x4
= 0,

with the boundary conditions

yxx = yxxx = 0 at x = 1, y = cos t, yx = 0 at x = 0,

and a condition of periodicity in time. Suppose that α À 1, and write
ε = 1/α. Find the solution correct to O(ε) by a regular perturbation
method. What is happening physically in this regime?

7. The Euler strut (ii). Recall from Chapter 4 Exercise 1 that for the
Euler strut the angle θ between the strut and the x axis satisfies

d2θ

ds2
+ α2 sin θ = 0, θ(0) = θ(1) = 0,

where α2 = FL2/b is the bifurcation parameter. Show that if θ is small,
the procedure of that exercise is equivalent to finding the first term in a
regular expansion for θ.

Now suppose that α is just above the critical value π so that α2 = π2 + ε2

where ε is small. Seek a solution in which θ is small, so that θ = δφ, where
δ ¿ 1 (so far, we do not know how big δ should be). Show that

d2φ

ds2
+

(
π2 + ε2

) (
φ− δ2

φ3

6
+ · · ·

)
= 0, φ(0) = φ(1) = 0.

Conclude, provisionally, that a sensible choice for δ is δ = ε (we return to
this below).

Construct a regular expansion

φ ∼ φ0 + ε2φ1 +O(ε4),

show that φ0 = A sinπs for an as yet unknown constant A, and write
down the problem satisfied by φ1. Multiply by φ0 and integrate by parts This is the Fredholm

Alternative for a two-point
boundary value problem; see
Exercise 6 on page 135.

to show that it only has a solution if
∫ 1

0

(
π2φ0

6
− φ0

)
sinπs ds = 0,
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and conclude that φ1 only exists if A = 0,±2
√

2/π.

As α varies, define a measure Mθ(α) of the size of the solution θ(s;α) by

Mθ(α) = max
0≤s≤1

θ(s;α),

and show that for α near π, either Mθ(α) = 0 or

Mθ(α) = ±2
√

2
√
α2 − π2/π.

Plot the response diagram Mθ(α) against α and you will see why this
bifurcation is called a pitchfork bifurcation.

Finally, go back and convince yourself that other choices for the magnitude
of δ do not lead to sensible expansions. Also show (using the analysis
above) that if α is slightly below the critical value, the only solution is
φ = 0.

8. The forced logistic equation. Explain why the equation

du

dt
= ku(1− u)

is a crude model for population dynamics supported by a finite resource
(what happens to u if it is small, or just above/below 1?). Which term in
the equation corresponds to the size of the resource? Now suppose that
the resource fluctuates seasonally so that the population equation is

du

dt
= ku(1 + ε cos t− u)

Find a periodic solution u = 1+εu1(t)+ · · · correct to O(ε) (with an error
of O(ε2)).

Show that the equation can be solved exactly by putting u = 1/v. Does
this help matters?

9. Electric potential of a nearly circular cylindrical annulus. Find
the electric potential φ, satisfying ∇2φ = 0 between the two cylindersHere (r, θ) are plane polar

coordinates. r = a, on which φ = 0, and r = b > a, on which φ = V . Suppose that the
inner cylinder is perturbed to r = a(1 + ε sinnθ). Calculate φ correct to
O(ε); to build up your arithmetical strength, calculate it correct to O(ε2).
What restriction on n is necessary for your expansion to be valid?

“But I want to cross out all the terms!”



Chapter 14

Case study: electrostatic
painting (2)

14.1 Small parameters in the electropaint model

When we left this problem, we had a dimensionless model with a number of
small parameters in it. Let’s revisit it in the light of our discussion of regular
expansions.

Recall that we have a number density n of particles, with velocity vp, an
electric field E, and gas velocity vg and pressure p. There are several small
dimensionless parameters in the model, and we’ll leave them all out except the
least small, which we call

ε =
qpV0L

KUg

(and apologise for the use of ε for electrical permittivity as well). The numerical
value of ε is about 0.1. There is also one O(1) parameter

A =
n0KL

ρgUg

whose numerical value is about 1.
The model consists of an equation of motion for the particles1

vp − vg = εE (14.1)

and conservation of particles,

∂n

∂t
+∇ · (nvp) = 0; (14.2)

we have an equation for the electric field,

∇ ·E = n; (14.3)

1Now I really do need to apologise: how, to an applied mathematician of taste, could εE
be anything but D?

191
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and lastly we have the equation of motion and conservation of mass for the gas,

dvg

dt
= −∇p+An (vp − vg) , (14.4)

and

∇ · vg = 0. (14.5)

Now expandIf any of the following steps
are not clear, take a minute to
write them out. vp ∼ vp0 + εvp1 + · · · ,

with similar expansions for the other variables. It’s clear from (14.1) that

v0p = v0g,

which confirms that the particles follow the gas to leading order. If we use this
on the right-hand side of (14.4), we see that v0g just satisfies an ordinary fluid
flow problem with no body force from the particles. Let’s assume that we can
solve this, and carry on.

The next thing to do is to calculate the evolution of the number density n.
The leading order terms in (14.2) are

∂n0

∂t
+∇ · (n0vp0) = 0.

Bearing in mind that vp0 = vg0 and ∇ · vg0 = 0, this simplifies to

∂n0

∂t
+ vg0 · ∇n0 = 0,

a first-order hyperbolic equation2 whose characteristics are, not surprisingly, the
gas particle paths.

Having found n0, the last task is to find the leading order electric field as
the solution of

∇ ·E0 = n0.

We can now go round the cycle again, using the equations in the same order.
First, (14.1) tells us that

vp1 − vg1 = E0, (14.6)

then (14.4) and (14.5) are a linear system for vg1. Thus, we know the correction
to the particle velocity from (14.6); we we can also calculate n1 from (14.2) and
lastly E1 from (14.3). Notice how the asymptotic expansion suggests an order
in which to solve the equations, which might also be a sensible basis for an
iterative numerical scheme (at least in the steady case).

You can develop this problem further by doing the exercises on it.

2If you have only studied first-order partial differential equations in two independent vari-
ables, it is a relief to find that the extension to more independent variables is very straight-
forward; see [42], Chapter 1.
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14.2 Exercises

1. Electrostatic painting I. In the electrostatic painting model, we wrote
down conservation of number of particles,

∂n

∂t
+∇ · (nvp) = 0

and conservation of mass for the gas (assumed incompressible),

∇ · vg = 0.

(Remember that this is dimensionless, and n is scaled with a typical num-
ber density n0 ≈ 109 m−3; what is the average distance between the
particles?)

In fact that isn’t quite right, because this is a two-phase flow and gas
may be displaced by particles and vice-versa. If we take a small (but
large compared to the average particle separation) representative volume
V , show that we can nevertheless justify it as follows:

(a) Show that the proportion of V that is occupied by particles is εn,
where ε = 4πn0a

3/3 if all the particles are spherical with the same
radius a (a ≈ 10−5 m). Estimate the numerical size of ε.

(b) Deduce that the proportion of V occupied by gas is 1− εn.

(c) Using the general form

∂(density)
∂t

+∇ · (flux) = 0

for a conservation law, show that conservation of mass for the gas
(remember it’s incompressible so its density is constant) is

∂(1− εn)
∂t

+∇ · ((1− εn)vg) = 0.

Show also that the conservation of particles equation given above is
correct.

(d) Just to confirm, show that

∇ · (εnvp + (1− εn)vg) = 0,

and interpret this flux in physical terms.

(e) Expand n and vg in powers of ε, and show that the leading order
equations are those given above.

2. Electrostatic painting II. Complete the derivation of theO(ε) equations
for this problem, and verify that all the equations you obtain are linear in
vg1, n1 etc.

3. Electrostatic painting III. Consider steady-state solutions of the lead-
ing order (O(1)) equations for this problem. Show that vg0 · ∇n0 = 0.
If the flow is two-dimensional, with stream function ψ, deduce that n0 =
f(ψ) for some function f determined by the inlet conditions.
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4. Space charge. A variant of the electropainting problem occurs when
the charged particles are so small that they do not exert any significant
body force on the gas. The sort of physical situation that can be modelled
in this way is the motion of charged ions from a high-voltage DC power
cable, or the electrostatic scrubbers used to clean power station emissions.

If there is no imposed gas flow, briefly justify the model

vp = E,
∂n

∂t
+∇ · (nvp) = 0, ∇ ·E = n.

Given that we can write E = −∇Φ (since from Maxwell’s equations on
this time scale we have ∇∧E = 0), show that the system becomes

∂n

∂t
+ n2 −∇n · ∇Φ = 0, ∇2Φ = −n.

In the steady state, show that the characteristics of the first of these
equations have tangent −∇Φ. Deduce that they are orthogonal to the
equipotentials, and parametrising them by τ , derive the ordinary differen-
tial equation

dn

dτ
+ n2 = 0

along them. Show also how to model a point source of charged particles
by allowing n→∞ as τ → 0.

Now suppose that there is an imposed gas flow which is irrotational, so that
there is a velocity potential φ with vg = ∇φ, where ∇2φ = 0 (potential
flow is often a very reasonable model upstream of an obstacle, less so
downstream where the effects of boundary layers, separation and so on
are felt). Show that there are parameter ranges where the model

vp = Avg + E,
∂n

∂t
+∇ · (nvp) = 0, ∇ ·E = n.

is valid with A an O(1) constant. Show that the results of the previous
paragraph hold but with the characteristics derived from the modified
potential Φ−Aφ.

5. Paint layer again. Suppose that a thin layer of paint particles, deposited
electrostatically as in the text, is growing on y = 0, and that its thickness
is y = h(x, t). If ε = H/L ¿ 1, where H and L are a typical thickness
of the layer and length scale of the workpiece respectively, justify the
approximate boundary condition

∂h

∂t
= vp · n

on the workpiece (see the exercise on this topic in Chapter 6).

“That means it’s the outer end of the length.”
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Case study: piano tuning

15.1 The notes of a piano: the tonal system of
Western music

This section contains a short description of the mathematical structure of the
tonal system used for a piano. It can be omitted by those not interested.

The particular sound of a given note of a piano or other musical instrument
is characterised reasonably well by its fundamental frequency and a variety of
higher harmonics (damping rates also play a role). These harmonics are often
(approximately — as we shall see, that is the point of this case study) integer
multiples of the fundamental frequency f1. On stringed instruments this is
because the normal frequencies of a vibrating string are integer multiples of the
fundamental, and wind instruments either have regular vibrating cavities (for
example an organ tube) with the same integer harmonic ratios or, like a French
horn, they are carefully (and expensively) made to sound this way. See Exercise 5 on page 202 for

why a cymbal or gong sounds
harsh.

When two or more notes are played together, their fundamentals and har-
monics all interact. The tonal system of Western music has been strongly in-
fluenced by the features of this interaction; the mathematical construction we
now outline goes back at least to the Pythagoreans of Ancient Greece. Suppose
we play a note, called for example A, with fundamental frequency fA

1 ; we hear
frequencies fA

1 , fA
2 = 2fA

1 , fA
3 = 3fA

1 and so on. We might expect the note A′,
with fundamental frequency fA′

1 = 2fA
1 equal to twice that of A, to sound good

with A′, because its fundamental coincides with the first harmonic of A. It does
indeed sound good, and the interval between the two, created by doubling the
lower frequency, is called an octave. In a similar way, the note with fundamen-
tal frequency 3fA

1 , also produces a harmonious blend with A, and so does the
note an octave below it, whose frequency is 3

2f
A
1 . This note is called E, and the

interval corresponding to a frequency ratio of 3
2 is called a fifth. When a violinist tunes up by

playing the A and E strings
together and eliminating beats
by turning a tuning peg, the
beats that are eliminated are
probably those between the
second harmonic of the A
string and the first harmonic
of the E string. See below for
a discussion of beats.

The next note to be constructed is the fourth, with frequency 4
3f

A
1 , called D.

Its frequency ratio is 4
3 , and we notice that since 3

2 × 4
3 = 2, the interval from E

to A′ is also a fourth. Following this, we have the major and minor thirds, with
ratios 5

4 and 6
5 respectively. These are the most important intervals and they

And, corresponding to the
major and minor thirds, the
minor and major sixths, with
rations 8

5
and 5

3
respectively.

make up, for example, the harmonious-sounding chords you hear at the ends of
pieces of music.

It is apparent that we can continue this process of interval construction

195
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Figure 15.1: A section of a piano keyboard.

indefinitely, until we have notes with all rational multiples of fA
1 ; this might

be plausible in the context of a ‘continuous’ instrument like a violin or the
human voice but it is clearly impractical for a piano. Moreover, given that the
amplitude of the harmonics of a note decreases as we go to higher harmonics,
it would be pointless because we could never hear the interactions. In practice,
therefore, the process is truncated, and Western music is built around a tonal
system consisting of 12 notes, separated by intervals called semitones, two of
which make a tone. These notes contain the fifth (7 semitones), the fourth (5
semitones) and the major and minor thirds (4 and 3 semitones respectively).
For reasons lost in history, only 7 letters are used to denote notes (these are the
‘white notes’ on a piano), the remaining ones being described with the help of
two operators, ] (pronounced ‘sharp’) and [ (‘flat’) which, when placed after a
note move it up by a semitone for a sharp and down for a flat.1

The sequence of notes can be written

. . . ,A,A] = B[,B,C,C] = D[,D,D] = E[,E,F,F] = G[,G,G] = A[,A, . . .

repeated up and down the piano in octaves.
If we look at this scheme more closely, we see that there is a contradiction

in it. One manifestation of the inconsistency is that an octave should consist of
three consecutive major thirds of four semitones each, for example A–C]–F–A.
However, this gives a frequency ratio of ( 5

4 )3 = 125
64 < 2, whereas it should give

2 exactly. Similarly the octave should be four consecutive minor thirds; but
( 6
5 )4 = 1296

625 > 2. Another famous illustration of the inconsistency is obtained
by constructing the ‘circle of fifths’, in which we go up by fifths, dropping down
an octave as convenient:

A → E → B → F] → C] = D[ → A[

(this is the ‘furthest removed’ note from A)
→ E[ → B[ → F → C → G → D → A.

The frequency of the last A, ( 3
2 )12, isn’t a power of 2 as it should be. It’s slightly

sharp: 531441/4096 ≈ 129.746 > 27 = 128.

1For musical reasons, other notations such as C[ (= B) or even G[[ (= F) are possible, but
they are irrelevant here.
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As a consequence of the inconsistency in construction, we can never tune an
instrument so that all the intervals on it are perfectly in tune. For example, if
we tune the fifths to be perfect, moving away from A in both directions, we get
two different values for the furthest removed note, A[. Going up, we get ( 3

2 )6,
going down we get ( 2

3 )6, whose ratio is not a power of 2. Any other interval gives
a similar result. How, then, are we to choose the fundamental frequencies of our
twelve notes? The sound of two notes played together depends very strongly
on the their interaction. Harmonics that are close together can give unpleasant
sounding beats and sound out of tune, especially on an instrument like an organ
in which the volume does not decay after a note is sounded. What compromise
system should we use?

This question of temperament caused a great deal of trouble in the past, and
I don’t want to go into great detail about it here; literally hundreds of solutions
have been proposed (see [29] for a popular history and [23] for a more technical
derivation of some popular temperaments). The currently accepted solution2

is to insist that each interval of a semitone corresponds to the same frequency
ratio, which must therefore be 2

1
12 ≈ 1.0595. With this compromise, called equal

temperament, all notes and intervals are slightly wrong but at least no one note
is more wrong than any other.

15.2 Tuning an ideal piano

The upshot of the previous section is that the goal of tuning a piano is to
obtain certain frequency ratios between the fundamental frequencies of pairs of
notes. Because the harmonics of an ideal piano string are integer multiples of
the fundamental, they too are to be tuned in specified ratios. Moreover, these
ratios are close to, but (apart from the octave) not exactly equal to, integer
ratios. For example, the equal-temperament fifth has a ratio 2

7
12 ≈ 1.4983.

The easiest intervals to tune are the octaves. If we use a tuning fork (me-
chanical or electronic) to tune one note of our piano, say the A above middle
C, to its standard frequency of 440 Hz, then we can tune all the other As on
our instrument to frequencies of 2±k×440 Hz by eliminating beats between the
fundamentals and the first harmonics of notes an octave apart. Then we can
tune other notes by using intervals such as fifths, listening to the calculable (and
measurable) beat rates on the appropriate harmonics (see Exercise 2).

Interlude: beats. How would we tune a note on a piano to be the same as
a standard tone? The standard way is to play them together, and listen for the
beats. Suppose they have the same amplitude a and phase (see Exercise 1 on
page 200 for when they are not the same), but have slightly different frequencies
ω and ω + ε where ε is small. The sum of the signals is

a cosωt+ a cos(ω + ε)t = 2a cos(ω + 1
2ε)t cos 1

2εt.

This is a modulated wave: it oscillates at the fast frequency ω + 1
2ε, which is

very close to ω, and its amplitude is modulated at the slow beat frequency ε. Not 1
2
ε: we hear two

amplitude peaks for each cycle
of cos 1

2
εt.2Some composers are returning to ‘microtonal’ music.
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So the aim in tuning is to get the beat frequency to zero (or another specified
rate) by tightening or loosening the piano strings (a very skilled business).3

15.3 A real piano

Now let’s look at a real piano string. An ideal string satisfies the wave equation

ρA
∂2y

∂t2
− T

∂2y

∂x2
= 0, 0 < x < L,

y = 0 at x = 0, L.

and it’s a piece of classical applied mathematics to show that the normal modes
areThese are of course angular

frequencies: the frequencies in
Hz are
fn = ωn/(2π) = nc/(2L), so
that 1/fn is the time taken for
a signal travelling at the wave
speed c to travel from one end
of the string and back n times.

yn = e−iωnt sin
nπx

L

where ωn = nπc/L and c2 = T/(Aρ).
For later convenience, we give the dimensionless versions of these results.

Scaling x with L and t with L/c and immediately dropping the primes, the
equation is

∂2y

∂t2
− ∂2y

∂x2
= 0, 0 < x < 1,

with
y = 0 at x = 0, 1,

the normal modes are
yn = eiΩnt sinnπx

and the dimensionless frequencies are

Ωn = nπ.

However, a real piano string has a small bending stiffness. A combination
of the string model above and the beam models we used earlier (see Exercise 3
on page 67) gives us the dimensionless equation

ρA
∂2y

∂t2
− T

∂2y

∂x2
+ EAk2 ∂

4y

∂x4
= 0

for the string displacement. We can assess the size of the fourth-derivative term
by scaling x and t as above, to get the dimensionless equation

∂2y

∂t2
− ∂2y

∂x2
+ ε

∂4y

∂x4
= 0,

3Irrelevant digression: how loud do n instruments of an orchestra sound compared to
one on its own? Answer:

√
n times as loud, because the phases of the instruments are

random. The sound signal from the whole orchestra is
P

i ai cos(ωit + φi) where ai are the
individual amplitudes, ωi the frequencies and φi the phase shifts. Even if all the ai are the
same, the φi are in practice randomly distributed and independent so the root mean square
amplitude (standard deviation) of the sum is

√
n times an individual amplitude (the variances

of independent random variables add up). This is one reason why the concerto can succeed as
an art form (of course, skillful writing by composers may have something to do with it too).
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where

ε =
Ek2

ρL2c2
=
EAk2

TL2
.

Note the very sensitive dependence on the string thickness, as the fourth power
of the radius since k ∝ a and A ∝ a2.

Now for a circular string of radius a, k2 = 1
2a

2, so if a = 1 mm, k2 = 1
2×10−6

m2. If the string is made of steel, it has E ≈ 2× 1011 and ρ = 7800 in SI units.
Suppose that the string is 1 m long and has a tension of 1 000 N (this is quite
typical: the combined force of all the strings on a grand piano is several tonnes How many newtons in a tonne

weight?worth). Then

ε =
EAk2

TL2
=

2× 1011 × π × 10−6 × 1
2 × 10−6

103 × 12
≈ 3.1× 10−4,

which is small indeed, but nevertheless has a noticeable effect, as we shall see.
The frequency of this string, c/(2L), is about 280 Hz, close to the D above
middle C.

Now let’s calculate the normal modes of a string. In order to do this we need
boundary conditions, two at each end. The simplest are that y = 0 (obviously)
and that ∂2y/∂x2 = 0, so-called simply supported conditions, which are proba-
bly not a bad approximation to the truth as the string passes over a ‘bridge’ at
each end. We shortcut the process of finding normal modes, which you would
usually do by looking for separable solutions yn(x, t) = e−iΩntYn(x), by noting
that with our choice of boundary conditions, there are solutions

yn = e−iΩnt sinnπx

provided that
Ω2

n = n2π2 + εn4π4.

So, the normal frequencies are

Ωn = nπ
(
1 + εn2π2

) 1
2

∼ nπ
(
1 + 1

2εn
2π2 + o(ε)

)
.

The fundamental frequency of our string is thus

Ω1 ∼ π
(
1 + 1

2επ
2
)

and so the (n− 1)th harmonic has frequency

Ωn ∼ nπ
(
1 + 1

2εn
2π2

)

∼ nΩ1

1 + 1
2εn

2π2

1 + 1
2επ

2

∼ nΩ1

(
1 + 1

2επ
2
(
n2 − 1

))
,

using the binomial expansion to simplify the fraction.
We see that the higher harmonics have slightly larger frequencies than the

theoretical integer multiples of the fundamental, a property known as inhar-
monicity. So, if we tune the string A′, one octave above our A, by eliminating
beats between its fundamental and the first harmonic of the lower A string, the
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fundamental frequency of the higher string will be 2(1 + 3
2επ

2) times that of
the lower one, not the theoretical twice. This phenomenon is known as octave
stretch; over the 8 octaves of a piano, making the very crude assumption that
the inharmonicities of the strings are all the same, the stretch is by a factor

(1 + 3
2επ

2)7 ∼ 1 +
21
2
επ2

≈ 1.033.

This may not look much, but it is more than half a semitone; in fact the
inharmonicities on pianos can add up to as much as a whole semitone (the
higher strings especially are very short and so have larger values of ε, and there
are other effects due to the ends of the strings). It is not at all well known,
even among pianists, that the treble strings of a piano are this much sharp of
‘theoretical’ values; fortunately there are no other instruments with a similar
range that might accompany it. In Exercise 6 on page 203 you can work out how
to deduce the inharmonicity by measuring beat rates, a first step in calculating
the optimal tuning for a given instrument.

Sources and further reading

This case study describes joint work in progress with Paul Duggan, who tunes
my piano while I do the calculations. There is a huge amount of fascinating
stuff about musical instruments in [16]. The book [15] describes a variety of ap-
plications of mathematics to music and has an article on beats and consonance.

15.4 Exercises

1. Beats. Suppose that we combine two signals

a cos(ωt+ φ1), a cos(ωt+ ε+ φ2).

Show that the beats analysis is unaffected.

Now combine signals with different amplitudes:

a1 cosωt, a2 cos(ω + ε)t.

Show that the output consists of a constant-amplitude signal at frequency
ω, together with a signal that beats at frequency ε. To see this in detail,
suppose a1 > a2 and write the combined signal as

(a1 − a2) cosωt+ 2a2 cos
(
ω + 1

2ε
)
t cos 1

2εt.

Then work out the average of the squared amplitude over a ‘moving win-
dow’ time interval which is large compared with the period of the fast
oscillation at frequency ω, but small compared with the period of the slow
modulation at frequency ε. [Making the substitution εt = τ , you should
get an integral something like

∫ τ+δ

τ

[
(a1 − a2) cos

(
ωτ ′

ε

)
+ 2a2 cos

(
ω

ε
+

1
2

)
τ ′ cos

1
2
τ ′

]2

dτ ′
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Figure 15.2: Beats generated by sin 30t+ sin 61t.

where ε¿ δ ¿ 1. The squares of the first and second terms in the brack-
ets average over many periods to a constant and a modulated amplitude
respectively, and after a bit of diddling around the cross term is found to
average to zero. Try it and see; use the Riemann–Lebesgue lemma if you
want to be more rigorous.]

Now investigate the signal sin 2ωt + sin(ω + ε)t as shown in Figure 15.2.
Show that the difference between this signal and that with ε = 0 is a
modulated wave. (The beats are clearly visible in the figure and would
be clearly audible.) Plot other waveforms to visualise chords consisting of
two notes a fifth, or other interval, apart..

For more about beats see [15], including a brief discussion of the way in
which the ear-brain combination can perceive low frequencies even when
there is very little energy in them.

2. Equal temperament. Assume for this question that the harmonics of
a string are integer multiples of the fundamental. A piano tuner tunes
concert A at 440 Hz, and wishes to tune the E a fifth above, using equal
temperament. This is to be done by counting the beat rate between the
second harmonic of the A and the first harmonic of the E (in practice, it
might be done with the sixth and fourth harmonics). Find the theoretical
frequencies of these harmonics, deduce a formula for the required beat
rate and evaluate it numerically. Repeat for the sixth/fourth pair.

3. Pianos and harpsichords. Suppose that you have a solution y(x, t) of
the wave equation

∂2y

∂t2
= c2

∂2y

∂x2
, 0 < x < L,

that is periodic in time with period T . Assuming sufficient smoothness,
show that

∫ T

0

∫ L

0

c2
(
∂y

∂x

)2

dx dt =
∫ T

0

∫ L

0

(
∂y

∂t

)2

dt dx

and interpret this statement in terms of energy. If the solution to a general
initial value problem for this string is expanded in a Fourier series in x, in
the form

y(x, t) =
∞∑
1

(an cos(nπct/L) + bn sin(nπct/L)) sin(nπx/L),

what is the ratio of the energy in each harmonic to that in the fundamen-
tal?
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A piano string is set in motion by a hammer which imparts an instanta-
neous velocity V to the small segment x0 < x < x0 + h, the remainder
of the string string being initially at rest. Approximating this initial ve-
locity distribution by a delta function, calculate the energy in each mode
relative to the fundamental. Repeat for a harpsichord (or guitar) which is
plucked by being let go from the piecewise linear static displacement you
get when you displace the point x0 normally to the string (note, to make
the calculation easy, that ∂2y/∂x2 is a delta function at t = 0, so you can
work out n2an easily). Comment on the results.

(The sound you hear is considerably modified by the soundboard and other
parts of the instrument.)

4. Waves on a circular membrane. Recall from the exercises of Chapter 1
that waves on a circular membrane of radius a and density ρ per unit area,
stretched to tension T , satisfy

∂2u

∂t2
= c2∇2u,

where c2 = T/ρ is the wave speed.

Show that there are solutions

u(r, θ, t) = e−iωteimθR(r)

where
d2R

dr2
+

1
r

dR

dr
+

(
k2 − m2

r2

)
R = 0.

Putting x = kr = ωr/c, reduce this to Bessel’s equation of order m,

d2R

dx2
+

1
x

dR

dx
+

(
1− m2

x2

)
R = 0.

Perform a local (Frobenius-style) analysis near x = 0 to show that thereOr just look for a solution
R ∼ xα as x→ 0 and find
possible values of α by
balancing the most singular
terms.

is only one solution that is bounded at x = 0; it is called Jm(x). Deduce
that the normal frequencies for a membrane clamped at its edges are ωm,n

where n labels the roots of Jm(ωm,na/c) = 0. (It can be shown that there
are infinitely many roots of Jm(x) = 0 and that they are asymptotic
to (n + 1

4 )π as n → ∞. However, the low harmonics are far from being
integer multiples of the fundamental.) Sketch some nodal lines (lines where
R = 0) for low values of m and n. Timpani (kettledrums) are much more
complicated than this membrane because of the coupling with the air
chamber.)

5. Cymbals and gongs. A simple model for a cymbal or gong is to treat
it as a circular elastic plate. It can be shown that the equation of motion
for small displacements u(x, t) of such a plate is

ρ
∂2u

∂t2
+

Eh2

12(1− ν)2
∇4u = 0,

where ρ is the density, E is the Young’s modulus, h the thickness; the
parameter ν, called Poisson’s ratio, is a material property whose numerical
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value is often about 1
3 . Compare this equation with that of a beam and

convince yourself that it is plausible (Poisson’s ratio appears because the
geometry of a plate is different from that of a beam).

To save real estate, define

cL =

√
E

ρ(1− ν)2
,

which is the wavespeed for longitudinal waves in a plate. Show that time-
periodic solutions u(x, t) = e−iωtU(x) satisfy

∇4U − 12ω2

h2c2L
U = ∇4U − k4U = 0.

Deduce that one-dimensional waves for which u = ei(kx−ωt) are dispersive,
with wavenumber and frequency related by Check the dimensions.

ω =
cLhk

2

√
12

.

Now consider a circular plate and look for a solution

U(r, θ, t) = R(r) cosmθ.

Noting that ∇4−k4 = (∇2−k2)(∇2 +k2), show that the general bounded
solution for R(r) is

R(r) = AJm(kr) +BIm(kr)

where Im(kr) = i−mJm(ikr) is sometimes called a modified Bessel func-
tion of order m (see Exercise 4).

Write down (but do not attempt to solve) the normal frequency equa-
tion when the plate is clamped at its edges (u = 0 and ∂u/∂r = 0). It
is fairly clear that the roots are not in a harmonic progression, so the
higher harmonics will clash with the fundamental. It is possible (but not
recommended, on account of the heavy arithmetic) to find the normal fre-
quencies for the more realistic case of free edges, with a similar lack of
harmonicity.

This model is also useful in analysing flat-panel loudspeakers.

6. Piano tuning. Suppose we don’t know the properties of the piano strings,
but we believe that the frequencies of the harmonics (in Hz) of string k
are given approximately by the formula

fk,n = nfk,1

(
1 + εk(n2 − 1)

)
,

where the inharmonicity coefficient εk may vary from string to string. A
good piano tuner can hear the beats not just between the fundamental
of one string, but also between pairs of harmonics. For example, if we
have strings A, E, A′, where A′ is an octave above A and E is in between,
the beats between fA,3 and fE,2 can be used to tune the E relative to the
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A, and then the beat rate between fA,6 and fE,4 can be measured. Show
how to take measurements between pairs of harmonics (at most two per
string) to determine the inharmonicity coefficients. (In practice, A and
E are taken in the middle of the piano, and the beat rate between fA,3

and fE,2 is set to be ‘narrow’ by about 1 Hz in order to achieve equal
temperament. That is, the frequency of the higher string is lowered from
the beat-free 3

2 times that of the lower string until beats occur at 1 per
second; see Exercise 2.)

“A rigid pulsating cylinder. . . ”



Chapter 16

Boundary layers

16.1 Introduction

When might we not be able to construct a regular perturbation expansion for
a function in terms of a parameter ε → 0? Or, if we have one, where might it
not be valid? One thing that might go wrong is that either the function we are
approximating, or the approximation itself, may have singularities. Another is
that the approximation may slowly drift away from the true solution, as we saw
for the second term of the small-amplitude regular expansion for the pendulum.
A third possibility is that our function oscillates very rapidly, with a period
of, say, O(ε): we look at this case in Chapter 23. A fourth possibility is that
the function changes rapidly in a very small layer, say of width O(ε), but is
smooth elsewhere. Such a small layer is known as a boundary layer if attached
to the boundary of the solution interval or domain, and an interior layer if it
is internal; see Figure 16.1.

16.2 Functions with boundary layers; matching

Some functions come with built-in boundary layers. A prototype example, which
crops up all over the place in applications, is

f(x; ε) = e−x/ε for 0 < x < 1, ε→ 0.

x x

Figure 16.1: A function with a boundary layer at the origin, and one with an
internal layer.

205
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0 0.5 1
0

1

x

Figure 16.2: The function e−x/ε, ε = 0.02.

This function starts off with a value of 1 at x = 0, and becomes negligibly small,
certainly smaller than any power of ε, by the time x À O(ε). All its effort is
concentrated in a boundary layer of thickness O(ε) near the origin. This example
is rather trivial, but it is fairly clear that if f is a bit more complicated, say

f(x; ε) = e−x/εg(x) + h(x),

where g(x) and h(x) are O(1) functions, then we don’t need to know all the
details of g and h to have a pretty good idea of what f does. When x = O(1),
the term e−x/ε is so small that we can usually forget about it, and we have the
outer expansion

f(x; ε) ∼ h(x) + exponentially small correction

(the exponentially small correction often goes by the catch-all name of transcen-
dentally small terms). On the other hand, when x is small, we expect g(x) andNotice that the limit as x→ 0

of the outer solution, h(0), is
not in general equal to f(0; ε).
It is the job of the boundary
layer to accommodate this
discrepancy.

h(x) to be close to their initial values g(0) and h(0), so that

f(x; ε) ∼ g(0)e−x/ε + h(0),

although here it is not quite so obvious how big the error is.
The real point of this discussion is not to tell us how to expand functions

which we already know. It is that we can often describe a function with a
boundary layer with two expansions, one outer expansion valid away from the
boundary layer, and one inner expansion valid in the boundary layer. In an
application, the full function may be the solution of some horrendously difficult
problem;1 but if we can identify where the boundary layers are we may be able
to formulate simpler problems for the inner and outer expansions, and thereby
get a good description of the full solution without actually having to find it.

Before we plunge into a series of examples, we should first look a bit more
closely at the question of how we ‘join up’, or match, the inner and outer ex-
pansions. We’ll do this first assuming we know the full function, so that we
just verify that we can do it. Later, we use the matching to convey information
between the two regions so as to complete the solution. For example, we may
have undetermined constants as the result of solving a differential equation, and
we fix these by matching.

1The Navier–Stokes equations spring to mind: the viscous boundary layer in high Reynolds
number flow is an early and classic example of the technique in action.
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16.2.1 Matching

There are various ways of joining together inner and outer expansions, and it
is in the nature of the subject that none is universal: there are examples for
which any method fails. However, the Van Dyke rule, which we now discuss, is
as robust as any, and it certainly works for all the problems in this book.2

Let us return to the example we have just discussed, but with a slightly more I strongly suggest that you
work through the details.complicated function

f(x; ε) = e−x/εg(x; ε) + h(x; ε)

where g(x; ε) and h(x; ε) have regular expansions

g(x; ε) ∼ g0(x) + εg1(x) + · · · , h(x; ε) ∼ h0(x) + εh1(x) + · · · ,
valid in the whole domain, say the interval [0, 1]. For example, take

f(x; ε) = e−x/ε(1 + x) + x+ eεx,

so that here

g(x; ε) = 1 + x, h(x; ε) = x+ eεx ∼ 1 + x+ εx+ 1
2ε

2x2 + · · · .
This function is plotted as the solid curve in Figure 16.3. Now for any fixed
value of x > 0, the exponential term e−x/ε tends to zero so fast as ε → 0 that
we can neglect it by comparison with any power of ε. The outer expansion for
this example is therefore

f(x; ε) ∼ 1 + x+ εx+ 1
2ε

2x2 + · · · ,
and it is valid provided that xÀ O(ε). However, it does not give a good picture This is an example of the

failure of the limits x→ 0 and
ε→ 0 to commute.

of what happens near x = 0; and indeed, its limit as x → 0, which is 1, is not
equal to f(0, ε) = 2. This is the dashed curve in Figure 16.3.

We can investigate the behaviour near the origin more closely by rescaling
x in the boundary layer, writing x = εX; the variable X is often known as a
boundary layer or inner variable. This gives

f(x; ε) = F (X; ε)

= g(εX)e−X + h(εX).

Now it should be safe to construct a regular expansion of g(εX) and h(εX), to
give

F (X; ε) ∼ e−X (g(0) + εXg′(0) + · · · ) + h(0) + εXh′(0) + · · · .
∼ F0(X) + εF1(X) + · · · .

This is the inner expansion. For our example, we have

F (X; ε) = e−X(1 + εX) + εX + eε2X

∼ 1 + e−X + ε(Xe−X +X) + ε2X + · · · .
This is the dotted curve in Figure 16.3.

How should we interpret the articulation between the inner and outer ex-
pansions?

2A popular alternative is matching via an ‘intermediate region’ between the boundary layer
and the outer solution; see Exercise 3 on page 217. Much cruder is ‘patching’, in which we
simply equate the values of the inner and outer expansions at a set value of (say) x: this
cannot inform us about the structure of the problem but it can be a useful part of a numerical
attack.
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Figure 16.3: Solid line: e−x/ε(1 + x) + x+ eεx, ε = 0.02. Dashed line: 1 + x+
εx + 1

2ε
2x2. Dotted line: the inner expansion 1 + e−X + ε(Xe−X + X) + ε2X

plotted on the outer scale.

Van Dyke’s matching principle

Van Dyke’s matching rule is a way of achieving the joining up. It is stated as
follows:

The m-term inner [expansion] of the n-term outer
matches with

the n-term outer of the m-term inner.

What on earth does this tell us to do? It says to do the following:

• Construct n terms of the outer expansion in terms of the outer variable
x. That is, expand up to the first n of the gauge functions (for example,
powers of ε).

• Rewrite this expansion in terms of the inner variable X.

• Expand again in terms of the gauge functions for the inner expansion.
(These are often, but not always, the same as the outer gauge functions.)

• Retain the first m terms.

This constructs the first line of the matching principle above. Then, repeat the
other way round:

• Construct m terms of the inner expansion in terms of the inner variable
X.

• Rewrite this expansion in terms of the outer variable x.

• Expand again in terms of the gauge functions for the outer expansion.

• Retain the first n terms.

That gives the third line of Van Dyke. Finally, these two expansions should
match: that is, they should represent the same function. Notice that you simply
swap the positions of ‘m-term inner’ and ‘n-term outer’ in stating the two parts
of the rule, so it does express a kind of commutativity.
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Let’s see how this works for the example above. Recall that the outer ex-
pansion is

f(x; ε) ∼ f(x; ε) ∼ 1 + x+ εx+ 1
2ε

2x2 + · · · ,
and the inner expansion is

F (X; ε) ∼ 1 + e−X + ε(Xe−X +X) + ε2X + · · · .

Start, as always, with the easiest problem.

One-term outer and inner: m = n = 1. The one-term (n = 1) outer
expansion is

1 + x.

In inner variables, this is
1 + εX.

Expanded to one term (m = 1), which means that we truncate it by leaving out
all smaller terms, we have

1.

Going the other way, the one-term (n = 1) inner expansion is

1 + e−X .

In outer variables, this is
1 + e−x/ε

which, expanded to one term, is
1,

because the exponential is small.
Let’s do two terms in each expansion: Exercise: do the cases m = 1,

n = 2, and m = 2, n = 1.
Then do m = n = 3.1 + x+ εx two-term outer . . .

1 + εX + ε2X2 . . . in inner variables. . .
1 + εX . . . expanded to two terms;

1 + e−X + ε(Xe−X +X) two-term inner. . .
1 + e−x/ε + x(1 + e−x/ε) . . . in outer variables. . .

1 + x . . . expanded to two terms.

Again, the two sides of Van Dyke agree.

16.3 Examples from ordinary differential equa-
tions

For most of us, the first encounter with boundary layers comes via an ordinary
differential equation, and there are many fascinating problems arising in this
area. Boundary layers commonly occur when a small parameter in a problem
multiplies the highest derivative, because then that derivative can become large
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without imbalancing the equation. Typically, the outer expansion, in which the
higher derivative term is neglected, fails to satisfy one or more of the boundary
conditions. Rescaling in the boundary layer allows us to rectify this situation
(and should lead to a simpler ‘inner’ problem). A rather similar situation was
discussed earlier in the context of the quadratic equation εx2 +x−1 = 0, where
dropping the term of highest degree lost us one of the roots.

Our first example is a first-order differential equation where, having con-
structed the inner and outer expansions, they match automatically. In the
second example, a second-order equation, we have to go through the matching
in order to determine some of the constants in the solution, so it plays a vital
role.

A first-order equation. Consider the first-order equation

ε
dy

dx
+ y = sinx, x > 0, y(0) = 1.

It is easy enough to solve by an integrating factor:Or a sensible guess.

y =
sinx− ε cosx

1 + ε2
+

ε

1 + ε2
e−x/ε,

and this solution can be used to verify all the results of the approximate expan-
sion. For the outer expansion, we try a regular perturbation

y ∼ y0 + εy1 + · · · ,

to find that

ε

(
dy0
dx

+ ε
dy1
dx

+ · · ·
)

+ y0 + εy1 + · · · = sinx.

Successive terms are just read off:

at O(1), y0 = sinx;

at O(ε), y1 = −dy0
dx

= − cosx,

and so on. However, this expansion does not satisfy the initial condition, the
danger signal being the ε multiplying the highest derivative, as a consequence
of which we never have to solve a differential equation, but merely need to
differentiate functions that are already known.

Now for the inner expansion. We don’t, at this stage, know how big it should
be, although we can have a pretty good guess, as it will be determined by aε.

balance between the omitted highest derivative and some other term. Still,
suppose that it is a region of size O(δ) near x = 0, where δ ¿ 1. So, writeI am not going to do this

procedure in any of the other
examples, leaving it to you. x = δX, y(x) = Y (X).

Then the rescaled (inner) problem is

ε

δ

dY

dX
+ Y = sin(εX), X > 0, Y (0) = 1.



16.3. EXAMPLES FROM ORDINARY DIFFERENTIAL EQUATIONS 211

Now in the rescaled differential equation, the term Y is a priori O(1) and
sin(εX) is O(ε). So the only way to get a balance is to take δ = ε, leaving

dY

dX
+ Y = sin(εX)

∼ εX − · · · .

Solving this by a regular expansion, the first two terms in the inner expansion
are

Y ∼ e−X + ε(X − 1 + e−X) + · · · .
Now for matching, beginning with the one-term outer. This is sinx, which

in inner variables is sin(εX) ∼ 0 +O(ε). So, the one-term inner of the one-term
outer is zero. Now dig out the the one-term inner, which is e−X = e−x/ε in outer
variables. The one-term outer is also zero and matching works at this order. The n-term outer of the

one-term inner is zero for all n
if the gauge functions are εn:
why?

If we take two terms, the two-term outer is sinx − ε cosx, which to two terms
in the inner variable is ε(X − 1) and matches with what is left of the two-term
inner (e−X + ε(X − 1 + e−X)) after it has been written in outer variables and
expanded to two terms (so the exponentials both go). Higher-order matching
can be carried out in a similar fashion.

A second-order equation. In second-order problems, the matching can con-
vey useful information from the outer expansion to the inner one or vice versa.
Suppose for example that

ε
d2y

dx2
+
dy

dx
=

1
1 + x2

,

with y(0) = 0 and y → 1 as x → ∞: a two-point boundary value problem
on an infinite interval. We can, with some work, solve it explicitly but this is
weightlifting.

Expanding in powers of ε, the leading-order outer problem is

dy0
dx

=
1

1 + x2
,

from which
y0 = tan−1 x+ c0

where c0 is a constant. Now, we can satisfy the boundary condition at infinity
by choosing 1 = π

2 + c0, so c0 = 1 − π
2 , but then y does not vanish at x = 0.

However, rescaling x = εX near x = 0 gives the inner problem Check that this is the correct
scaling by looking at the
possible balances in the
equation.

d2Y

dX2
+
dY

dX
=

ε

1 + ε2X2
,

with Y (0) = 0. The leading order solution is

Y0(X) = C0(1− e−X)

where C0 is still unknown. However, matching with the outer solution is
achieved at this order if C0 = y0(0) = c0 = 1− π

2 : the matching was essential to
specify the inner solution fully. Higher order terms in the expansion will throw
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up further undetermined constants, which will be determined by higher-order
matching.

An important practical point to note is that the inner problem is effectively
solved on an infinite domain. Suppose that the outer problem has a boundary
condition specified at x = 1, say y(1) = 1. In inner variables, this translatesThis translates into replacing

π
2

by π
4

above. into a condition at X = 1/ε. However, that is at infinity for all practical
purposes, and the condition at the far end X = 1/ε is replaced by a matching
condition at infinity (in the inner region).

We have just scratched the surface of the many fascinating examples that
have been devised and investigated for ordinary differential equations alone. For
more details, see books such as [26, 32, 35, 47]. We now return to an earlier
case study, before moving on to look at some partial differential equations.

16.4 Case study: cable laying

Recall that in our case study of laying an undersea cable (see Section 4.3), we
wrote down a model in which the angle θ between the cable and the horizontal
satisfies

ε
d2θ

ds2
− F ∗ sin θ + (F0 + s) cos θ = 0,

in which F0 is an unknown constant (equal to the dimensionless vertical force
on the sea bed at the point where the cable touches down), F ∗ is a known
dimensionless constant, and ε is a small dimensionless constant measuring the
relative importance of cable rigidity and cable weight. The boundary conditions
for the problem are

θ = 0,
dθ

ds
= 0 at s = 0,

and θ is prescribed at s = λ.
This problem is ideally suited to a boundary layer expansion, with a small

parameter multiplying the highest derivative. The leading order outer solution
θ0(s) satisfies

tan θ0 =
s+ F0

F∗ ,

and it does not satisfy the conditions at s = 0. Before investing too much energy
in it, let us look at the possibility of a boundary layer near s = 0. Clearly θ
is small in such a layer, and a little playing around, starting with the obvious
guess that the boundary layer is for s = O(ε

1
2 ), suggests the scalings

s = ε
1
2 ξ, θ = ε

1
2φ, F0 = ε

1
2 f0,

following which the leading order term in a regular expansion for φ satisfies

d2φ0

dξ2
− F ∗φ0 + s+ f0 = 0.

Because there can be no exponentially growing term, the two boundary condi-
tions at ξ = 0 tell us both φ0 and f0:

φ0(ξ) =
ξ

F ∗
− 1

(F ∗)
3
2

(
1− e−ξ(F∗)

1
2

)
, f0 = − 1

(F ∗)
1
2
. (16.1)
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It is easy to see that this matches with the outer solution, since substituting for
F0 and writing s = ε

1
2 ξ in our expression for θ0, we see that the inner limit of

the outer solution is
ε
1
2
ξ + f0
F ∗

,

which is just the same as the outer limit of the inner solution, obtained by
neglecting the exponential term in (16.1).

We have also learned that F0 is small, so away from the boundary layer the
outer solution satisfies

tan θ0 =
s

F ∗
.

See the exercises for a demonstration that the solution of this equation is a
catenary, as we might expect if bending stiffness is negligible.

16.5 Examples for partial differential equations

Although ordinary differential equations lead to many interesting boundary lay-
ers, the technique has its greatest impact when applied to partial differential
equations, simply because they are so much more difficult. The original bound-
ary layer was Prandtl’s analysis of high Reynolds number flow of a viscous fluid
past a flat plate, and fluid mechanics remains a prolific source of these prob-
lems. However, we use simpler examples from heat flow and potential theory to
illustrate the ideas involved.

16.5.1 Large Peclet number heat flow past a flat plate

Suppose that a liquid flows with velocity (U, 0) past a flat plat along the positive
x axis, that the temperature at infinity is zero, and that the plate is heated to
a temperature T (x). Finding the heat transfer from the plate to the fluid is a
prototype problem for many practical situations. Recall from Chapter 3 that
the relevant dimensionless model for the temperature u(x, y) is

Pe
∂u

∂x
=
∂2u

∂x2
+
∂2u

∂y2
,

with the boundary condition

u(x, 0) = T (x), y = 0, x > 0,

and the condition that u → 0 at infinity. By symmetry, we need only solve for
y > 0.

Suppose that the Peclet number is large (advection-dominated heat transfer),
so that we can write Note the preference for writing

a large parameter (Pe) in
terms of a small one. The
square of ε is for convenience,
to avoid square roots of 1/Pe.

Pe =
1
ε2
,

where 0 < ε¿ 1. Thus,

∂u

∂x
= ε2

(
∂2u

∂x2
+
∂2u

∂y2

)
,

with
u(x, 0) = T (x), y = 0, x > 0, u→ 0 at infinity.
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What is the structure of the problem?
First we try a regular expansion u ∼ u0 + εu1 + · · · in powers of ε. The

lowest order equation is
∂u0

∂x
= 0

which, with the fact that u vanishes at upstream infinity, means that u0 = 0.
This in turn means that there can be no ‘source’ term for u1, and it too vanishes
identically, as do all the higher-order terms in the expansion. As in the ordinary
differential equation examples, the regular perturbation expansion fails to satisfy
both boundary conditions (at infinity and on the x axis). The danger signal is,
as before, that the small parameter ε2 multiplies the highest derivatives in the
advection-diffusion equation.

We rectify this situation with a boundary layer near the plate; it is known
as a thermal boundary layer. The scaling we need is to write y = εY , u(x, y) =
U(x, Y ), leading directly to

∂U

∂x
= ε2

∂2U

∂x2
+
∂2U

∂Y 2
.

The first term in a regular perturbation, U0(x, Y ), satisfies

∂U0

∂x
=
∂2U0

∂Y 2
, U0(x, 0) = T (x), U0(x, Y ) → 0 as Y →∞

(the last condition is a simple matching condition with the outer solution: again,
note how the matching replaces a boundary condition far away from the bound-
ary in the inner region). This is a parabolic equation for U0, in which x (which
measures distance along the plate) plays the role of time, and Y is the space
variable. With the initial condition U(0, Y ) = 0, also obtained by matching
back to the outer expansion, its solution can be written down as an integral
using Duhamel’s principle. When T (x) = 1, there is a similarity solution
U0(x, Y ) = F (Y/

√
2x), where

d2F

dz2
+ z

dF

dz
= 0, z =

Y√
2x
,

so that
U0(x, Y ) =

∫ ∞

Y/
√

2x

e−s2/2 ds.

This formula (and the Duhamel solution for non-constant plate temperature)
shows that the thermal boundary layer grows as the square root of distance
down the plate.

Further aspects of this problem, including a direct comparison with the
exact solution when T (x) = 1, are dealt with in Exercise 7 on page 219. A more
complicated example, large-Peclet-number flow past a cylinder, is the subject of
Exercise 8; it explains how a balance between conduction and advection leads
to the amplification of conduction known as wind-chill.

16.5.2 Traffic flow with small anticipation

In Chapter 8 we looked at the simple model

∂ρ

∂t
+
∂(ρU(ρ))

∂x
= 0 (16.2)
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for the density ρ(x, t) of traffic travelling along a road. We saw that shocks,
described by curves x = S(t), can form, and that their speed is given by the
Rankine–Hugoniot relation

dS

dt
=

[ρU(ρ)]+−
[ρ]+−

.

We also suggested that if drivers anticipate the traffic density, rather than simply
responding to its local value, the model

∂ρ

∂t
+
∂(ρU(ρ))

∂x
= ε

∂

∂x

(
ρ
∂ρ

∂x

)
, (16.3)

might be appropriate. In Exercise 5 on page 115 you showed that travelling
waves of this equation moving with speed V , in which ρ changes from ρ− at
ξ = x−V t = −∞ to ρ+ at ξ = ∞, also lead to the Rankine–Hugoniot condition
in the form

V =
[ρU(ρ)]∞−∞

[ρ]∞−∞
.

We can now tie these results together using matched expansions for (16.3) rather
than Rankine–Hugoniot for (16.2).

The idea is to treat the shock as an interior layer — a boundary layer that
is not fixed onto a boundary — for equation (16.3). A regular expansion of
the solution to (16.3) away from the shock (the outer expansion) simply leads
to (16.2) at leading order. There will be a shock at an as yet unknown location
x = S(t).3 Near this location, introduce the inner variable The scaling has to be

determined: try x = S(t) + δX
and show that the sensible
choice is δ = ε.x = S(t) + εX, so that

∂

∂x
↔ 1

ε

∂

∂X
,

∂

∂t
↔ ∂

∂t
− 1
ε

dS

dt

∂

∂X
.

With ρ(x, t) = R(X, t), the inner problem is

ε
∂R

∂t
− dS

dt

∂R

∂X
+
∂(RU(R))

∂X
=

∂

∂X

(
R
∂R

∂X

)
.

Once again, in the spirit of matched expansions, we solve this equation for
−∞ < X < ∞, with matching conditions at X = ±∞. When we construct
the leading order term R0 in a regular expansion, the time derivative does not
feature. That is, time only appears as a parameter, through dS/dt; the solution
is ‘slowly-varying’ in t on the inner scale, although on the outer (O(1)) scale it
is fully involved.

The final piece of the jigsaw is the matching: we need to impose R0 → ρ±
as X → ±∞, where ρ± are the limiting (leading order) outer values of ρ on
either side of the shock. Putting the whole lot together, this gives precisely the
Rankine–Hugoniot condition for dS/dt: we see that we can interpret the inner
layer as a smoothed-out shock.

3Technically, we should expand S(t) in terms of ε, but we are not going to calculate to the
order of accuracy that would warrant this step.
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Figure 16.4: Inner regions for a thin ellipse in a uniform electric field.

16.5.3 A thin elliptical conductor in a uniform electric
field

Sometimes it is the geometry of the solution domain, rather than the differen-
tial equation itself, that leads to a matched expansion problem. As a simple
example, suppose that, in two dimensions, a perfect conductor in the shape of
the ellipseThe 2 is for later convenience.

x2 +
y2

2ε2
= 1

is placed in a uniform electric field (E, 0), for which the potential (without the
ellipse) is φ(x, y) = −Ex. We want to calculate the electric potential when the
ellipse is present.

The problem to solve is ∇2φ = 0 outside the ellipse, with φ = 0 on the ellipse
and φ ∼ −Ex + O(1) at infinity. As it happens, it can be solved explicitly by
conformal maps, but suppose that we did not know this. What can we do when
ε¿ 1?

What do we expect? When ε = 0, the ellipse is a conducting plate from
(−1, 0) to (1, 0). In this case, we should see the field lines bent towards it,
because it is a short circuit for the field, and in particular the field should be
very high (indeed, singular) at the ends. In short, the plate acts as a lightning
conductor does, collecting the field at one end and ejecting it at the other.4

When the ellipse is thin but not a plate, we expect to see something similar.
First, construct a regular expansion valid away from the ellipse, and in par-

ticular away from its tips x = ±1. The leading order problem in this expansion
is to solve ∇2φ0 away from the slit from (−1, 0) to (1, 0), with φ0 = 0 on this slit
and φ0 → −Ex at infinity. The solution is found by standard complex variableNote that the condition φ = 0

on the ellipse has been
linearised onto the x axis, just
as in water wave problems.

methods to be

φ0(x, y) = −E< (
z2 − 1

) 1
2 ,

where z = x+ iy and the branch cut for the square root is taken along the slit,
so that

(
z2 − 1

) 1
2 ∼ z at infinity. This is a splendid approximation (it is the

exact potential for a zero-thickness conductor) but it is singular at x = ±1. For
example, as z → 1, φ ∼ −E√2<(z − 1)

1
2 , and E = −∇φ is infinite.

To investigate further, look near the right-hand end by setting x = 1 + ε2X,
y = ε2Y ; see Figure 16.4. In these inner variables, the tip of the ellipse becomes,You should derive these by

putting x = 1 + δX, y = δY
and looking for balances in the
equation of the ellipse. Note
that x and y are scaled in the
same way so that Laplace’s
equation is not altered: there
is no reason for it to be
changed. Only a long-thin
geometry, or some other
external reason for differential
scaling, would have that effect.

approximately, the parabola Y 2 = −4X (this 4 is the reason for the 2 in the
equation of the ellipse). The inner problem for Φ(X,Y ) = φ(x, y) is to solve
Laplace’s equation outside this curve, with Φ = 0 on the approximate parabola
and, from matching, Φ ∼ −E√2<Z 1

2 + o(1) at infinity, where Z = X + iY .
This latter is a matching condition with the inner limit of the outer solution
φ0. There are various ways to solve this problem; use of parabolic coordinates

4Aeroplanes have small spikes in strategic places to help lightning on its way after it has
struck the fuselage. Passengers inside are protected by the Faraday cage effect of the metal
skin of the aircraft.
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as introduced for heat transfer from a flat plate is one, and conformal mapping
is another. They all lead to the solution

Φ0(X,Y ) = −E
√

2
(
<(Z + 1)

1
2 − 1

)

and we see that the apparent singularity is indeed resolved by the inner region,
as the branch-point for (Z + 1)

1
2 is safely inside the conductor.

Notice that this procedure would work for any conductor whose shape is
y2 = ε2f(x), provided that the ends are approximately parabolic. We only see
the effect of the details of the shape at O(ε) in the outer expansion. Expanding
to this order also brings in eigensolutions with (z2−1)−

1
2 singularities at z = ±1.

Although ostensibly worrying, they simply tell us that the outer expansion has
breaks down near the tips, the symptom being that when |z2 − 1| = O(ε) the
second term in the outer expansion, which is O(ε(z2 − 1)−

1
2 ), is the same size

as the first term −E(z2 − 1)
1
2 . There is no contradiction, and the constants

that multiply the eigensolutions can be determined by matching with the inner
region.

16.6 Exercises

1. A simple expansion near a singularity. Consider the function

f(x; ε) =
1

x+ ε

as ε→ 0. If x = O(1), expand by the binomial theorem to show that Of course, the series in powers
of x/ε does not converge if
|x| < ε (what is the correct
series representation in this
case?), but pretend we don’t
know this.

f(x; ε) ∼ 1
x
− ε

x2
+ · · · .

Clearly this expansion is invalid near x = 0, as the first term is singular
and the second term is larger than the first. Rescale x = εX to find a
valid approximation for small x. (This technique is useful for integrals of
the form

∫ 1

0
g(x)/(x+ ε) dx.)

2. Expanding a function. Find inner and outer expansions, correct to
O(ε2), for the function

f(x; ε) =
e−x/ε

x
+

sin εx
x

− εcoth(εx).

3. Matching by intermediate regions. The idea behind this matching
principle is to choose a range of values of the independent variable(s) that
is large compared with the boundary layer but small compared with the
outer region. For example, in the problem described in Section 16.2.1,
the intermediate region might be x = O(ε

1
2 ). Then both inner and outer

expansions are written in terms of an intermediate variable x = ε
1
2 ξ, re-

expanded as asymptotic series in this new variable, and compared: they
should be the same. Carry out this procedure for the example of Sec-
tion 16.2.1,

f(x; ε) = e−x/ε(1 + x) + x+ eεx,
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for which the outer expansion is

f(x; ε) ∼ 1 + x+ εx+ 1
2ε

2x2 + · · · ,
and the inner expansion is

F (X; ε) ∼ 1 + e−X + ε(Xe−X +X) + ε2X + · · · .
Set x = ε

1
2 ξ, X = ε−

1
2 ξ, and show that the intermediate expansion of

both functions is
1 + ε

1
2 ξ + ε

3
2 ξ + · · · .

4. A two-point boundary value problem. Use matched asymptotic ex-
pansions to find an approximate solution to the two-point boundary value
problem

ε
d2y

dx2
+ x

dy

dx
+ y = 0, 1 < x < 2, y(1) = 0, y(2) = 1, 0 < ε¿ 1.

How can you tell that there is a boundary layer at x = 1 but not at x = 2?
What happens if ε is small and negative?

5. An artificial example. Find an approximate solution to

εu′′ + u′ =
u+ u3

1 + 3u2
, u(0) = 0, u(1) = 1.

First find the outer solution: which boundary condition will it satisfy, and
why? Then do the boundary layer near x = 0 and carry out the matching.
(The right-hand side of this example is selected (a) so that it gives an easyYou may need to convince

yourself by drawing a graph
that the equation u+ u3 = a
has a unique real root for each
a.

solution to the outer problem and (b) is uniformly Lipschitz in u, so there
is no question of blow-up. I very much doubt that the full equation can be
solved explicitly, but the approximation tells you all about the structure
of the solution.)

6. Cable laying with small bending stiffness. In Section 16.4, we de-
rived the equation

tan θ0 =
s

F ∗
.

for the leading order gradient of a cable with small bending stiffness.
Remembering that tan θ0 = dy/dx = y′ and that

ds

dx
=

(
1 + (y′)2

) 1
2 ,

show that the solution consistent with y(0) = 0 and y′(0) = 0 (because
θ0(0) = 0) is

y = F ∗ (cosh(x/F ∗)− 1) .

Deduce that the ship’s dimensionless position is at

x∗ = F ∗ cosh−1(1 + 1/F ∗)

and that the tensioner angle θ∗ and dimensionless thrust F ∗ are related
by

tan2 θ∗ =
1 + 2F ∗

(F ∗)2
.
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7. Large Peclet number flow past a flat plate heated to a constant
temperature. Suppose that u(x, y) satisfies

∂u

∂x
= ε2

(
∂2u

∂x2
+
∂2u

∂y2

)
,

with
u(x, 0) = 1, y = 0, x > 0, u→ 0 at infinity.

Introducing parabolic coordinates ξ, η satisfying What is the associated
conformal map? Show that it
maps the right-hand half plane
ξ > 0 onto the flow domain.
Because it is a conformal
change of variables, the
Laplacian transforms nicely:
how?

x+ iy = −(ξ + iη)2, ξ > 0, −∞ < η <∞,

show that the curves ξ = constant are parabolae wrapped around the
positive x axis, that curves η = constant are parabolae wrapped around
the negative x axis, and that the two families of curves are orthogonal.
Show that the problem becomes

−ξ ∂u
∂ξ

+ η
∂u

∂η
= ε2

(
∂2u

∂ξ2
+
∂2u

∂η2

)
, ξ > 0,

with u(0, η) = 1 and u → 0 at infinity. Show that the solution takes the
form u(ξ, η) = f(ξ) and find f . When ε is small, eliminate η to show that
ξ ∼ εy/2

√
x and hence confirm the correctness of the thermal boundary

layer solution of Section 16.5.1.

Now return to the problem of Section 16.5.1, with u = T (x) on y = 0,
x > 0, where T (x) is smooth and T (0) 6= 0. Show that, in addition to
the thermal boundary layer described in the text, there is a small region
centred at the tip of the plate (0, 0), in which both x and y are O(ε), and
in which the leading order problem is a version of the first part of this
question.

8. Wind-chill. Consider the large Peclet number version of the advection-
diffusion problem of Section 3.1.1, steady heat transfer from a circular
cylinder in a potential flow with velocity u, with Pe = 1/ε2, ε ¿ 1. In
plane polar coordinates r, θ, we have u = ∇ cos θ(r− 1/r), and the scaled
temperature T (r, θ) satisfies

cos θ
(

1− 1
r2

)
∂T

∂r
− sin θ

r

(
1 +

1
r2

)
∂T

∂θ
= ε2

(
∂2T

∂r2
+

1
r

∂T

∂r
+

1
r2
∂2T

∂θ22

)

with T = 1 on r = 1 and T → 0 at infinity.

Show that the only solution for the first term in a regular expansion in the
outer region (away from the cylinder) that is consistent with the condition
at infinity is T0 = 0. Deduce that there must be a boundary layer on the
cylinder. Define an inner variable R by r = 1 + δR, where δ is small.
Show that a consistent balance can be achieved in the partial differential
equation if δ = ε.

With this scaling, write u(r, θ) = U(R, θ) in the boundary layer, and show
that the first term U0(R, θ) of the inner expansion satisfies Note that there is no 1/r in

front of ∂U0/∂θ: r is nearly
constant in the boundary
layer.2R cos θ

∂U0

∂R
− 2 sin θ

∂U0

∂θ
=
∂2U0

∂R2
,
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with U0(0, θ) = 1 and U0 → 0 as R→∞.

Show that there is a similarity solution in the form

U0(R, θ) = F (Rg(θ))

and, by finding the differential equation that it satisfies, that

g(θ) =
sin θ√

1 + cos θ
.

Show also that F ′′ + zF ′ = 0, and find F .

Notes: (i) The differential equation for g(θ) is first-order and its solution
contains an arbitrary constant, so that 1 + cos θ is replaced by c + cos θ.
The choice c = 1 is motivated by matching with an O(ε) × O(ε) region
around the upstream stagnation point in which the full problem must be
solved (but in a simplified geometry): it says that as we approach this
point, the solution depends on Y/

√
2X in coordinates x = 1+ εX, y = εY

centred there.

(ii) There is also a small region near the downstream stagnation point in
which the full problem must be solved. This is succeeded by a thin wake
of hot liquid that carries the heat away from the cylinder.

(iii) The total heat transfer from the cylinder is, in dimensionless terms,
O(1)×O(1/ε) (length × heat flux). This is large: wind-chill!

9. Potential outside an ellipse. Show that the conformal map z = ζ+1/ζ
maps circles |ζ| = r, r ≥ 1, into ellipses in the z plane, that |ζ| = 1 maps to
the slit from −1 to 1 along the real axis, and that ζ ∼ z at infinity. ShowCompare with

Milne-Thomson’s circle
theorem for potential flow.

also that the real part ofW (ζ) = −E(ζ−1/ζ) is a harmonic function which
vanishes on |ζ| = 1 and tends to −Eξ at infinity, where ζ = ξ+ iη. Hence
find the exact solution to the problem of a conducting ellipse in a uniform
electric field. Also, find the circle that maps onto the thin ellipse of the
text, and hence confirm the accuracy of the asymptotic approximation
given there.

10. Logarithms. Logarithms pose considerable difficulties in matching. The
following example shows why.

Let
f(x; ε) = 1 +

log x
log ε

, x > 0.

Show that its one-term outer expansion for x = O(1) is f ∼ 1.

Write x = εX to see the boundary layer near x = 0. Show that the one-
term inner expansion for F (X; ε) = f(x; ε) is F ∼ 2. Deduce that Van
Dyke’s matching rule fails when matching the one-term inner and outer
expansions.

Show that the rule works if we take terms involving log ε with those of
O(1).

(The practical cure for this failure is exactly as in the exercise, to take log ε
together with O(1) terms when matching. After all, what is log(105)?)

“Instead of considering 10 as large, let’s consider 10 as small.”



Chapter 17

Case study: the thermistor
(2)

The thermistor problem was introduced in Chapter 5. In that chapter, we wrote
down a one-dimensional model for the heat and current flow in such a device, in
which the dimensionless temperature u(z, t), measured from room temperature,
and potential φ(z, t) satisfy

∂

∂z

(
σ(u)

∂φ

∂z

)
= 0,

∂u

∂t
− ∂2u

∂z2
= γσ(u)

∣∣∣∣
∂φ

∂z

∣∣∣∣
2

for 0 < z < 1. When a constant voltage is applied across the thermistor, the
boundary conditions are

φ = 0 on z = 0, φ = 1 on z = 1,

and
∂u

∂n
+ βu = 0 on z = 0, 1.

Here β and γ are dimensionless parameters representing the heat transfer coef-
ficient (this may be small) and the heating rate for a cold thermistor (large).

In this short chapter we introduce the crucial new feature that the electrical
conductivity σ(u) varies very dramatically as u increases from 0 to 1. It is
reasonable to write σ(u) in the form

σ(u) = e−f(u)/ε,

where the choice f(0) = 0 ensures that σ(0) = 1, which is its dimensionless
value at room temperature u = 0. The parameter ε is small, a value of 10−1

being typical. In this way, the very rapid decrease of σ(u) with u is translated
into an O(1) change in f(u), and the parameter ε quantifies the magnitude of
the change. This kind of rewriting of a rapidly varying function is common
in combustion theory, where it goes by the name of large activation energy
asymptotics. The crucial feature of this formulation is that if f(u) (and hence
u) changes by O(ε), σ(u) changes by O(1). If f(u) changes by more than O(ε),
the change in σ(u) is very large. This is exactly the same behaviour as we saw
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Room temperature Room temperature +100◦ C

log σ(T )

T

σ = 2Ω−1m−1

σ = 2× 10−6Ω−1m−1

Figure 17.1: Conductivity of a thermistor, on a log scale. The units are dimen-
sional but the graph indicates the shape of the dimensionless form of σ(u).

in boundary layers, and we can analogously hope that we only have to consider
the behaviour of σ(u) in small regions. As we see below, this hope is realised.

Let us assume for the moment that the heat transfer coefficient β is O(1),
and let us look at the steady-state operation of the device, assuming that the
applied voltage is sufficient to drive the temperature well above u = 0. thus
u(z, t) and φ(z, t) are functions of z alone, which we still call u(z) and φ(z).
The equation for φ(z) can be integrated once to give

dφ

dz
=

I

σ(u(z))
= Ief(u(z))/ε,

where the constant I is the current through the device. A second integration
gives

φ(z) = I

∫ z

0

ef(u(s))/ε ds,

and the boundary condition at z = 1 fixes the constant I, so that

φ(z) =

∫ z

0
ef(u(s))/ε ds∫ 1

0
ef(u(s))/ε ds

.

Then the equation for u(z) is

d2u

dz2
+

γef(u)/ε

(∫ 1

0
ef(u(s))/ε ds

)2 = 0, 0 < z < 1,
∂u

∂n
+ βu = 0 on z = 0, 1.

(17.1)
with the interesting feature that it is nonlocal.

Let us pause to think what the structure of the solution may be. If there is
a hot region, it is near the centre of the device, and σ(u) is small in it. That
means that the term ef(u)/ε (= 1/σ(u)) is large. Now if the hot region is of size
O(1), so that most of the thermistor runs hot, the integral in the denominator
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of the last term in (17.1) is both large and comparable to ef(u)/ε; because it is
squared, the result is that d2u/dz2 is small and u is nearly uniform. However,
the boundary conditions for u only allow this to happen if u itself is small, that
contradicts the assumption that u is significantly above zero.1 We conclude
that the hot region must be small, and a little experimentation shows that it
should have extent O(ε). Furthermore, the temperature u needs to change only
by O(ε) in this region, as larger changes mean that the numerator in (17.1) is
exponentially negligible. As a consequence, all the resistance is concentrated in
a thin hot layer.

Let us, then, write u(1
2 ) = u∗, say, for the maximum achieved value of u,

and The reason for dividing w by
f ′(u∗) appears very shortly. . .z = 1

2 + εξ, u = u∗ + εw(ξ)/f ′(u∗),
so that we have an inner expansion in a region of size O(ε) near the middle of
the thermistor. The first task is to find u∗, at least to an accuracy of O(1). Let
us write λ∗ = ef(u∗)/ε, the maximum value of σ(u) (which is large). Then we
write . . . as we then don’t have to

carry the constant f ′(u∗) in
the exponents for the rest of
the calculation.

ef(u)/ε = e(f(u∗)+εw+··· )/ε

∼ λ∗ew,

so that (17.1) becomes Some details to check; note
especially the limits on the
integral.d2w

dξ2
+
γf ′(u∗)
ελ∗

ew

(∫∞
−∞ ew(ξ′)dξ′

)2 = 0.

We conclude from this equation that we should choose u∗ to be the root of We could use any other O(1)
constant, but 1 is simplest.

γf ′(u∗)
ελ∗

= 1,

that is
εe−f(u∗)/εf ′(u∗)/ε = γ

or, rearranging,
dσ

du
= − 1

γ
.

This simple equation tells us the approximate operating point of the thermistor.
It remains to find the inner and outer solutions, and to match them. With

our choice of u∗, the inner equation is

d2w

dξ2
+ c2ew = 0,

where c
∫∞
−∞ ew(ξ′) dξ′ = 1. By symmetry, dw/dξ = 0 at ξ = 0, and we expect

linear behaviour as ξ → ±∞ in order to match with the outer expansion, which
is the solution of d2u/dz2 = 0 (as explained above, the exponential term is
negligible in the outer region). The details of the solution are requested in
Exercise 1.

We could go much further with this problem; in particular, we could look at
the effect of adding an external resistance, and we could look at the unsteady
approach to the steady solution described above. These are both interesting
problems, and we refer to the paper [19] for more details.

1The case in which β is small is different, and is dealt with in Exercise 2.
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17.1 Exercises

1. The inner equation. Consider the equation

d2w

dξ2
+ c2ew = 0,

where c
∫∞
−∞ ew(ξ′) dξ′ = 1. Take w = w0 (which gives the O(ε) correction

to u∗) and dw/dξ = 0 at ξ = 0. Explain why w ≤ w0. Integrate once to
show that

1
2

(
dw

dξ

)2

+ c2 (ew − ew0) = 0.

Writing dξ′ = dw/(dw/dξ′) in the integral that defines c, find a relation
between w0 and c.

Integrate once more to find a relation between w and ξ. Hence show that
w ∼ ∓Kξ as ξ → ±∞ and find the constant K.

Finally calculate the outer solution for 1
2 < z < 1 with ∂u/∂z + βu = 0

on z = 1, and match it with the inner solution (assume that β = O(1)).

2. The case of small β. Suppose that β and ε are approximately the same
size, and write β = εb. Show that the steady solution is of the form

u(z) = u∗ + εw(z)/f ′(u∗)

where u∗ is as before, but now the approximation holds for all z, ie there
is no thin hot layer. Find the equation and boundary conditions satisfied
by w.

What is the corresponding system of partial differential equations for φ
and w (again, u = u∗ + εw/f ′(u∗)) for a two-dimensional model?

“We’ve just got to number the integers right.”



Chapter 18

‘Lubrication theory’
analysis in long thin
domains

18.1 ‘Lubrication theory’ approximations: slen-
der geometries

We now turn to a class of approximation which derives its name from the clas-
sical theory of lubricated bearings in machinery, associated with Reynolds (the
end of the 19th century was a great time to be a hydrodynamicist: there were
indeed giants on the earth in those days). The distinguishing feature of prob-
lems to which it can be applied is that the physical domain is ‘long and thin’
in at least one direction, like a plate or rod. One might think of a lubrication
solution as being ‘all boundary layer’; moreover, the geometry tells us where
the boundary layer is. The key technical step is to scale the coordinate(s) in
the ‘thin’ direction differently from the rest, and thereby hope to formulate a
simpler problem by exploiting the smallness of the slenderness parameter

ε =
typical thickness
typical length

.

Indeed, the full problem is usually very hard if not impossible to solve either
explicitly or numerically, and even if we could solve it we would not necessarily
gain understanding. As so often, it is usually very difficult even to prove that
the lubrication approximation converges to the full solution in the appropriate
limit (one variety of ‘rigorous asymptotics’).

This chapter is longer than most in the book. You can find excellent de-
scriptions of most of the earlier material in other standard texts, but although
lubrication expansions are common in practice and in research papers, they
don’t feature prominently in textbooks. We’ll see applications to sheets and
jets of fluids, as well as the original Reynolds problem, but we’ll start with some
simple problems in heat flow.

225



226 CHAPTER 18. ‘LUBRICATION THEORY’ ANALYSIS:

18.2 Heat flow in a bar of variable cross-section

We start with a very simple example: heat flow in a bar of variable cross-
section, with insulated sides. Only in very rare cases can this problem be solved
exactly, and a geometry of this kind does not lend itself very readily to a simple
numerical discretisation. However, we can find a very good approximation to
the solution with relatively little effort.

Consider steady heat flow in the domain 0 < x < L, −h(x) < y < h(x),
where

ε =
H0

L
¿ 1,

in which H0 is a ‘typical size’ for the bar thickness h(x); this means that we can
write

h(x) = H0H(x/L)

for some O(1) function H. Let us also impose a temperature drop from T = Ti

at the inlet x = 0 to T = 0 at x = L, and have perfectly insulated sides. The
temperature T satisfies

∂2T

∂x2
+
∂2T

∂y2
= 0, 0 < x < L, −h(x) < y < h(x),

with
T (0, y) = Ti, T (1, y) = 0,

and
n · ∇T =

∂T

∂n
= 0 on y = ±h(x).

Let us first see what the answer is, by a physical argument. Then we’ll derive
it more mathematically. We argue as follows:

1. The heat flux is approximately unidirectional, along the bar, because no
heat is lost through the sides. Thus, T (x, y) is approximately independent
of y (that is, it is approximately equal to its average across the bar), and
we write T (x, y) ≈ T0(x).

2. The heat flux Q(x) across any line x = constant is exactly equal to

∫ h(x)

−h(x)

−k∂T
∂x

dy.

Because ∂T/∂y ≈ 0, we have

Q(x) ≈ −2hk
∂T

∂x
, that is Q(x) ≈ −2hk

dT0

dx
.

3. Heat is conserved, so dQ/dx = 0, that is

d

dx

(
h(x)

dT0

dx

)
≈ 0,

and the solution of this ordinary differential equation, with T0(0) = Ti,
T0(L) = 0, gives the ‘leading order’ behaviour of T (x, y).
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There is nothing at all wrong with this excellent argument. However, we
would like to be able to do a bit better. We would like to know how big the
error is, when the approximation is valid and, most of all, how to attack more
complicated long-thin problems where the physical argument is less clear-cut.
This is what lubrication theory, in its general sense, does.

The crux of the lubrication approach is to exploit the slenderness by scaling
x and y differently. We write

x = LX, y = H0Y ;

that is, we scale each variable with its own natural length scale. This is the
distinctive feature of the lubrication approach. Making the trivial scaling of T
with Ti and dropping the prime on it, we find that Recall that h(x) = H0H(X).

ε2
∂2T

∂X2
+
∂2T

∂Y 2
= 0, 0 < X < 1, −H(X) < Y < H(X),

with
T = 1 on X = 0, T = 0 on X = 1.

The conditions on y = ±h(x) take a little more work to scale. We have

n =
(−h′(x),±1)

(1 + (h′(x))2)
1
2

for y = ±h(x) respectively,

and so n · ∇T = 0, namely ± ∂T/∂y − h′(x) ∂T/∂x = 0, becomes

± ∂T
∂Y

− ε2H ′(X)
∂T

∂X
= 0 on Y = ±H(X).

Notice that in the new variables the solution domain isO(1)×O(1), but the small
parameter ε has been moved into the field equation and boundary conditions.

Let us try writing It is relatively easy to see that
the expansion is only in
powers of ε2. But you may
want to write it all out to get
a feel for how it works.

T (X,Y ) ∼ T0(X,Y ) + ε2T1(X,Y ) + · · · .

Then we find that
∂2T0

∂Y 2
= 0,

which, together with the leading order approximate boundary condition

∂T0

∂Y
= 0 on Y = ±H(X),

means that
T0 = T0(X),

a function of X which is as yet unknown. That is all the information we get
from the leading order equations and boundary conditions.

In order to find T0, we have to look at the problem for T1. This is
∂2T0

∂Y 2
+ ε2

∂2T0

∂X2

+ ε2
∂2T1

∂Y 2
+ · · · = 0.

∂2T1

∂Y 2
= −∂

2T0

∂X2
,
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whose symmetric solution is

T1(X,Y ) = − 1
2Y

2 ∂
2T0

∂X2
+ an arbitrary function of X.

The O(ε2) terms in the boundary conditions are Aide-arithmétique:

±
ţ
∂T0

∂Y
+ ε2

∂T1

∂Y

ű

−ε2H′ ∂T0

∂X
+ · · · = 0.

Notice that the arbitrary
function of X disappears; it is
only found at O(ε4).

±∂T1

∂Y
−H ′(X)

d2T0

dX2
= 0 on Y = ±H(X),

and putting these together we find that

−H(X)
d2T0

dX2
−H ′(X)

dT0

dX
= 0,

which is the same as
d

dX

(
H(X)

dT0

dX

)
= 0,

in confirmation of our intuitive argument. We have found out more, though:
we now know that the error is O(ε2) (and we could calculate it if we felt strong
enough). We also know that the expansion will not work if any of the terms
that we have assumed are O(1) are large. In particular, it is not guaranteed to
work if H ′(X) is large.

Note the following features of the analysis, which are very common in this
and other approximation schemes:

• The full problem (which here is an elliptic partial differential equation,
Laplace’s equation) has a unique solution.

• The leading-order approximate problem (here the ordinary differential
equation ∂2T0/∂Y

2 = 0) does not have a unique solution.

• We eliminate the non-uniqueness by going to higher order, O(ε2), in the ex-
pansion, and find a solvability condition which resolves the indeterminacy
in the lowest order solution. This condition is essentially the Fredholm
Alternative theorem. In Exercise 7 on page 237 you can see the the process
of introducing indeterminacy at one order in an expansion, then resolving
it at the next, for the very simple linear algebra problem

(
1 + ε ε
1− ε 2ε

)(
x
y

)
=

(
1
1

)
.

18.3 Heat flow in a long thin domain with cool-
ing

Let us more briefly look at a variation on this problem. Consider steady heat
flow in the rectangular domain 0 < x < L, −H0 < y < H0, where

H0

L
= ε¿ 1,
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again with a temperature drop from T = Ti at x = 0 to T = 0 at x = L, but
now with Newton cooling at the sides, with a background temperature of 0 and
heat transfer coefficient Γ. The temperature T (x, y) satisfies

∂2T

∂x2
+
∂2T

∂y2
= 0,

with
T (0, y) = Ti, T (L, y) = 0,

and
±k∂T

∂y
+ ΓT = 0 on y = ±H0.

We can solve this problem by an eigenfunction expansion (see Exercise 2 on
page 233). But in a more complicated problem we might not be so clever, so
let’s see what the lubrication approach has to say.

We first find the answer by an elementary physical argument. If the heat flux
is mostly in the x-direction (which is not quite so obvious as before, because heat
is lost through the sides), we can still work with the average of the temperature
across the bar. And if the heat loss is proportional to this average temperature,
a straightforward ‘box’ argument then shows that

gradient of heat flux = rate of cooling,

or, again writing T0(x) for the approximate temperature,

−kd
2T0

dx2
≈ ΓT0,

an ordinary differential equation for the approximate temperature, to be solved
with T0 = Ti at x = 0 and T0 = 0 at x = L. However, there is more prima
facie doubt about this argument: for example, it requires heat to flow out of the
bar, so ∂T/∂y cannot vanish, while maintaining that it is OK to work with the
averaged value of T . Is this consistent? We know that it works when Γ = 0, the
insulated case treated above, and it would be nice to know the other values of
the heat transfer coefficient for which this approximation is valid, and to know
the approximate temperature profile within the material (so we can verify that
it is indeed nearly one-dimensional).

As above, we write
x = LX, y = H0Y,

and scale T (x, y) with Ti, to find that

ε2
∂2T

∂X2
+
∂2T

∂Y 2
= 0, 0 < X < 1, −1 < Y < 1,

with
T (0, Y ) = 1, T (1, Y ) = 0,

and
∂T

∂Y
± γT = 0 on Y = ±1;

here γ = εLΓ/k is the dimensionless heat transfer coefficient, also called a Biot
number (see page 53).
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As the analysis below confirms, the most interesting case is when γ = O(ε2),
say γ = ε2α2, where α2 = O(1) and the square is for later convenience, so we
will proceed on that basis. If γ ¿ O(ε2) then there is no heat loss through
the sides y = ±H0 to leading order: that is, almost all the heat is conducted
linearly from X = 0 to X = 1. (The small correction can be calculated by a
regular perturbation expansion.) On the other hand, if γ À O(ε2), then almost
all the heat is lost in a small region near X = 0 (see Exercise 4 on page 234).

As above, we expand

T (X,Y ) ∼ T0(X,Y ) + ε2T1(X,Y ) + · · · .

Substituting in, we have

ε2
(
∂2T0

∂X2
+ ε2

∂2T1

∂X2
+ · · ·

)
+

(
∂2T0

∂Y 2
+ ε2

∂2T1

∂Y 2
+ · · ·

)
= 0

with
∂T0

∂Y
+ ε2

∂T1

∂Y
+ · · ·+ ε2α2

(
T0 + ε2T1 + · · · ) = 0

on Y = 1. As before,
T0 = T0(X),

as yet unknown. So, we move on to the problem for T1, which is

∂2T1

∂Y 2
= −d

2T0

dX2
, (18.1)

with
∂T1

∂Y
± α2T0(X) = 0 on Y = ±1. (18.2)

The solution of (18.1) is

T1(X,Y ) = − 1
2Y

2 d
2T0

dX2
+ an arbitrary function of X

and then from the boundary condition (18.2) we find an equation for T0(X):

−d
2T0

dX2
+ α2T0 = 0,

which, after undoing the scalings, is exactly what we derived by a physical
argument earlier. Incorporating the boundary conditions at X = 0 and X = 1,
we have

T0(X) =
sinhα(1−X)

sinhα
,

and we can of course construct higher order corrections if we want.

18.4 Advection-diffusion in a long thin domain

Let’s look at an extension of our previous examples, to include advection along
the domain. Suppose that the material of our domain 0 < x < L, −H0 < y < H0

is moving with speed U in the x-direction (think of modelling heat lost by hot
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water flowing through a radiator). The model for the steady temperature field
is

ρcU
∂T

∂x
= k∇2T,

and let’s take boundary conditions

T = Ti on x = 0,

modelling a specified inlet temperature,

T = 0 on y = ±H0,

modelling excellent heat transfer to the surroundings, and

∂T

∂x
= 0 at x = L.

This last condition is not in fact an insulating boundary condition (remember
the heat flux is ρcT (U, 0)−k∇T ), but rather a rough guess at a plausible outflow
condition; it’s always hard to know what to prescribe on an outflow boundary
of this kind. But in any case the message of our analysis below is that it doesn’t
much matter what we do at this downstream end. We can even impose the
condition T = 0, which is physically more or less impossible to realise, and
the solution upstream won’t be enormously affected (this case is dealt with in
Exercise 4 on page 234).

As in the previous examples, we scale x with L, y with H0 = εL, and T with
Ti, to get

ρcUH2
0

kL

∂T

∂X
=
∂2T

∂Y 2
+ ε2

∂2T

∂X2

with boundary conditions

T (0, Y ) = 1, T (X,±1) = 0, T (1, Y ) = 0.

The dimensionless number

Pe =
ρcUH2

0

kL

is a Peclet number, measuring the relative effects of advection in the x-direction
and conduction in the y-direction. We assume that it is O(1) and, just for
clarity, that it is equal to 1. As in the previous example, this is the only balance
for which interesting action happens over all the length of our domain. Put
another way, this is the balance for which the system can effectively transfer
heat from the interior to the exterior.

We could of course again use an eigenfunction expansion (see Exercise 5).
But again, this is messy. Instead, write

T (X,Y ) ∼ T0(X,Y ) + ε2T1(X,Y ) + · · · ,
and it soon emerges that the leading order problem is

∂T0

∂X
=
∂2T0

∂Y 2
, 0 < X < 1, (18.3)

with
T0 = 0 on Y = ±1.
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We now have to choose whether to impose T0 = 1 at X = 0 or ∂T0/∂X = 0
at X = 1. We can’t have both, as (18.3) is a parabolic equation with X as the
‘timelike’ direction. This gives us the clue: the equation is forward from X = 0
and backward from X = 1, and only the former gives us a well-posed problem.
So, we take T0 = 1 at X = 0.

The solution with T0(0, Y ) = 1 is found by standard separation-of-variables
methods in the form

T0(X,Y ) =
∞∑

n=0

2(−1)n

n+ 1
2

cos
(
(n+ 1

2 )πY
)
e−(n+ 1

2 )2π2X ,

and of course it does not satisfy the condition at X = 1. We deal with this by
introducing a boundary layer there. We want to rescale X − 1 so as to bring
back the neglected term ∂2T0/∂X

2. So, we write X − 1 = δξ, where ξ < 0 and
δ is still to be found, to give

1
δ

∂T0

∂ξ
=
ε2

δ2
∂2T0

∂ξ2
+
∂2T0

∂Y 2
.

The only plausible choice is to balance the first two terms, taking

δ = ε2

(so this boundary layer is very small and might not be easy to resolve numeri-
cally); then, writing Tb for the temperature in the boundary layer, we have

∂Tb

∂ξ
=
∂2Tb

∂ξ2
+ ε2

∂2Tb

∂Y 2
, ξ < 0,

with

Tb(ξ,±1) = 0,
∂Tb

∂ξ
(0, Y ) = 0.

The leading order term in a regular expansion in powers of ε2 is easily found to
beThe condition at ξ = 0 rules

out the exponential solution of
the differential equation.

Tb0(ξ, Y ) = A(Y ),

where all we know about the arbitrary function A is that A(±1) = 0. So how
do we find it?

We have not yet exploited the information coming into our boundary layer
from the main flow. That is, we have to match with the ‘outer’ solution. At
leading order, this is easy. We use the Van Dyke rule with one term in the inner
and outer expansions. This tells us that

A(Y ) = T0(1, Y ) =
∞∑

n=0

2(−1)ne−(n+ 1
2 )2π2

n+ 1
2

cos
(
(n+ 1

2 )πY
)
.

This is almost trivial, but perhaps counterintuitively it shows that the match-
ing at leading order is between the values of the temperature and not its gra-
dient, even though the boundary condition we have imposed is on the latter.
We have to go to higher order to see this matching too; this is requested in
Exercise 5, and here we just note that it is very plausible that the O(ε2) term
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in the inner expansion, ε2Tb(ξ, Y ) can match with an O(1) outer temperature
gradient because ε2∂ /∂ξ = ∂ /∂X.

Notice again that, where the full problem is elliptic, requiring boundary
conditions all round the domain, the approximate problem is parabolic and we
cannot impose a condition at x = L. The deficit is made up by the boundary
layer, which allows the outer solution to accommodate to whatever we want at
x = L. Again, the approximate analysis tells us a lot about the structure of the
problem, in both qualitative and quantitative terms.

18.5 Exercises

1. Heat flow in a bar of variable cross-section. In this exercise we
find an exact solution for steady heat flow in a long thin bar of variable
cross-section, exploiting the fact that Laplace’s equation is invariant under
conformal maps.

Consider the long thin rectangle 1 < ξ < e, −ε < η < ε, ε¿ 1. Show that
its image under the conformal map x+ iy = log(ξ + iη), with the branch
cut out of the way on the negative real axis, is very close to the region
between the curves y = ±εe−x, 0 < x < 1. Show that the solution for How big is the error?

steady heat flow in the rectangle, with T = 0 at ξ = 1, T = 1 at ξ = e,
and insulated sides, is T = (ξ − 1)/(e − 1). Writing this in terms of x
and y, verify that this exact solution is consistent with the approximate
solution derived in Section 18.2. Use other conformal maps to construct
similar examples.

2. Heat flow in a long thin domain. Consider eigenfunction expansion
solution to the problem

∂2T

∂x2
+
∂2T

∂y2
= 0, 0 < x < L, −H < y < H,

with
T (0, y) = 1, T (L, y) = 0,

and
±k∂T

∂y
+ ΓT = 0 on y = ±H.

Separate the variables to find eigenfunctions of the form

Tn(x, y) = cosαny sinhαn(L− x)

and show that the homogeneous boundary conditions on x = L, y = ±H
are all satisfied provided that

αn tan(αnH) = Γ/k

(note that αn is dimensional, 1/length). Verify that the eigenfunctions
are orthogonal in y, and hence use the condition on x = 0 to calculate the
coefficients in the expansion

T (x, y) =
∑

n

anTn(x, y).
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Verify that as H/L → 0, this solution is accurately approximated by the
‘lubrication’ model of the text; consider all cases for the size of Γ.

3. More heat flow in a long thin domain. Suppose that the domain of
the previous exercise is

0 < x < L, −H0 (1 + f(x/L)) < y < H0 (1 + f(x/L)) ,

where f(0) = 0, f(1) = 1, and f is smooth. Suppose that the heat transfer
boundary condition is

kn · ∇T + ΓT = 0

on the lateral boundaries, where n is the unit normal. Would you be able
to write down an eigenfunction expansion now? Show that the dimension-
less model is

ε2
∂2T

∂X2
+
∂2T

∂Y 2
= 0, 0 < X < 1, −1− f(X) < Y < 1 + f(X),

with
T = 1 on X = 0, T = 0 on X = 1

and

∂T

∂Y
∓ εf ′(X)

∂T

∂X
± ε2α2

(
1 + ε2f ′2(X)

) 1
2
T = 0 on Y = ± (1 + f(X))

(α is as defined in the text on page 229). Deduce that there is now a term
of O(ε) in the expansion for T and find the ordinary differential equation
for T0.

4. Still more heat flow in a long thin domain. Consider the model
above, but for a rectangular domain, namely

ε2
∂2T

∂X2
+
∂2T

∂Y 2
= 0, 0 < X < 1, −1 < Y < 1,

with
T = 1 on X = 0, T = 0 on X = 1

and
∂T

∂Y
± ε2α2T = 0 on Y = ±1.

Suppose that α2 = 1/δ, where ε2 ¿ δ ¿ 1, so that the heat transfer
coefficient is larger than in the example in the text. Show that scaling X
with ε via X = εξ leads to the problem

∂2T

∂ξ2
+
∂2T

∂Y 2
= 0, 0 < ξ < 1/ε, −1 < Y < 1,

with boundary conditions

T = 1 on X = 0, T = 0 on X = 1/ε

and
T ± δ

∂T

∂Y
= 0 on Y = ±1.
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Show that, for O(1) values of ξ, the leading order term in a regular ex-
pansion in powers of δ is the solution of

∂2T0

∂ξ2
+
∂2T0

∂Y 2
= 0, 0 < ξ <∞, −1 < Y < 1,

with boundary conditions

T0 = 1 on X = 0, T0 → 0 as X →∞
and

T0 = 0 on Y = ±1.

Solve this problem by conformal mapping, an eigenfunction expansion, or
a Fourier sine transform in ξ. Verify that the solution decays exponentially
as ξ →∞, thereby justifying the replacement of the condition at ξ = 1/ε
by one at ξ = ∞.

Show further that ∂T/∂Y becomes very large as ξ → 0 on Y = ±1. Deduce
that the expansion is not valid near the two corners (0,±1). Consider an
inner expansion near (0,−1): show that in coordinates

ξ = δξ̃, Y = −1 + δỸ

and, with T0(ξ, Y ) ∼ T̃0(ξ̃, Ỹ )+ · · · , the inner problem is to leading order

∂2T̃0

∂ξ̃2
+
∂2T̃0

∂Ỹ 2
= 0, 0 < ξ̃, Ỹ <∞,

with

T̃0 = 1 on ξ̃ = 0,
∂T̃0

∂Ỹ
− T̃0 = 0 on Ỹ = 0

and the matching condition

T̃0 → 2θ
π

as ξ̃2 + Ỹ 2 →∞,

where θ is the local polar angle. This problem is not easy to solve (the
Mellin transform may be best).

Repeat the calculation (with minor variations) when α = O(1).

The point of this exercise is that when the heat transfer coefficient id
large enough, all the action takes place near the end x = 0 of the rod, and
we can lose the geometrical complications associated with its finite length
(and, indeed, irregular shape).

5. Heat flow with advection in a long thin domain. Suppose that
T (x, y) satisfies

ρcU
∂T

∂x
= k

(
∂2T

∂x2
+
∂2T

∂y2

)
+Q, 0 < x < L, −H < y < H,

where Q is a constant, with the boundary conditions

T = 0 on x = 0 and on y = 0, h,
∂T

∂x
= 0 on x = L.
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What is being modelled here? Now suppose that H/L = ε¿ 1. Make the
equation dimensionless by scaling x with L and y with H, and suppose
that the Peclet number ρcUH2/kL turns out to be equal to 1. What is
the appropriate scale for T?

You should have arrived at the dimensionless equation

∂T

∂X
= ε2

∂2T

∂X2
+
∂2T

∂Y 2
+ 1 0 < X < 1, 0 < Y < 1,

with the boundary conditions

T = 0 on X = 0 and on Y = 0, 1,
∂T

∂X
= 0 on X = 1.

Is this equation elliptic, parabolic or hyperbolic? Briefly indicate how you
would find a separation-of-variables solution in the form

T (X,Y ) =
∑

ane
λnX sinnπY

where
ε2λ2

n − λn − n2 = 0.

For each O(1) value of n, find expressions for the positive and negative
roots of this equation as ε → 0. Find the leading order terms in an
approximate solution to the original problem, and explain why the positive
roots of the eigenvalue equation for λn correspond to the boundary layer
contribution to the approximate solution.

6. And still more on heat conduction in a long thin domain. Find
terms up to O(ε2) in the outer and inner expansions of the solution of

∂T

∂x
= ε2

∂2T

∂X2
+
∂2T

∂Y 2
, 0 < X < 1,

with boundary conditions

T (0, Y ) = 1, T (X,±1) = 0, T (1, Y ) = 0,
∂T

∂X
(1, Y ) = 0

(you will have to go to O(ε4) in the outer solution; save ink by writing bn
for the Fourier coefficients). Now carry out the matching to second order
using Van Dyke’s matching principle

2-term inner expansion of 2-term outer expansion =
2-term outer expansion of 2-term inner expansion.

That is, write the outer expansion in terms of the inner variable ξ = (X−
1)/ε2. Expand the result, keeping terms of O(ε2). Repeat this procedure
for the inner expansion (notice how terms involving eξ are neglected in
this expansion, being exponentially small). Compare the two expansions
to identify all the unknown functions in the inner expansion.

Repeat the whole problem for the (physically unrealistic) condition T = 0
at X = 1 (if you are feeling tired by now, just do the O(1) terms).

Can you see physically why we may have to do something different if we
try to impose a zero-heat-flux condition at x = L?
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7. Singular expansion for a linear algebra problem. Consider the
problem (

1 + ε ε
1− ε 2ε

)(
x
y

)
=

(
p
q

)
,

where 0 < ε¿ 1 and p, q are given. Draw the two lines whose intersection
is the solution of these equations (a) when p = q = 1, (b) when p = 1,
q = 2. What happens as ε → 0? Calculate the exact solution and verify
that it is consistent with your graphical analysis, and that it is large when
ε is small unless p = q +O(ε).

Write the problem as
Ax = b.

Recall the Fredholm Alternative theorem for the linear equations Ax = b
(page 135):

• If A is invertible (in particular if none of its eigenvalues vanishes,
so the homogeneous problem Ax = 0 has only the trivial solution
x = 0), the solution is unique.

• If, on the other hand, A is not invertible, then there is a vector
v such that Av = 0. That is, 0 is an eigenvalue of A and v the
corresponding (right) eigenvector. Assume for clarity that 0 is a
simple eigenvalue. Then there is also a nontrivial (left eigen) vector
w such that A>w = 0 and

– If w>b 6= 0, then there is no solution to the original problem;
– If on the other hand w>b = 0, there is a solution but it is not

unique: the difference between any two solutions is a multiple of
v.

Now find an asymptotic expansion for the solution of Ax = b. Write

A = A0 + εA1, x ∼ x0 + εx1 + · · · .

Show that A0 has 0 for an eigenvalue and calculate the corresponding right
and left eigenvectors v0 and w0. Deduce that the leading-order problem
A0x0 = p only has a solution if p− q = O(ε).

From now on, take p = q = 1. Write down the general solution of A0x0 =
p in the form ‘particular solution + complementary solution’, where the The analogy with linear

ordinary differential equations
suggested by this terminology
is exact: see Exercise 6 on
page 135.

latter is a multiple α of v0 which is not determined at this order in the
expansion. Write down the problem from the O(ε) terms in the expansion,
and use the Fredholm Alternative to show that it only has a solution if
α = 2. Noting that x0 is now uniquely determined, verify that it agrees
with the small-ε expansion of the exact solution.

“ . . . in a long thin spherical region.”
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Chapter 19

Case study: continuous
casting of steel

19.1 Continuous casting of steel

One way of producing a continuous bar, or ‘strand’, of steel is to cast it con-
tinuously. Molten steel is poured into a large ‘tundish’ from which it emerges
through a mould slot in the bottom. It is cooled by water pipes in the sides of
the mould and, once it has emerged, by water sprays and jets (see Figure 19.1).
When the steel emerges, it has a thin solid skin, which becomes thicker as the
steel moves down. Nevertheless, the liquid steel extends far down the strand.

It is important to be able to control the location of the solid-liquid boundary,
for safety reasons (the molten steel must not be allowed to spill out) and in order
to get the metallurgy right. The former involves a very complicated situation
near to the mould, which we do not attempt to model here. Instead, we write
down a simple two-dimensional model for the latter (we don’t tackle the problem
of controlling the heat fluxes to achieve a desired solidification rate).

This kind of model can also be used for other solidification processes such as
a Bridgeman crystal grower, in which a continuous strand of silicon is solidified
very slowly (in order to minimise defects) by being passed along a conveyor belt
and cooled from above and below.

Before proceeding, we remind ourselves of the Stefan model for solidification
of a pure material. It is an experimental observation that a fixed amount of
energy per unit mass is required to melt a pure1 solid without changing its
temperature, and the same amount of energy must be removed to solidify it.
This heat is supplied or removed by the difference between the heat fluxes into
and out of the solid-liquid interface. In one space dimension, we can carry out
a ‘box’ argument for the configuration of Figure 19.2, in which solid is to the
left of the interface.

If the interface moves a distance δx in time δt, the latent heat absorbed
(for melting, δx < 0) or released (for solidification, δx > 0) by that amount of
material in changing phase is

ρλ δx.

1In this case study, we are going to ignore the complication that steel is an alloy.

239
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Mould

Tundish

Strand

U

Figure 19.1: Continuous casting of steel

Liquid

Heat flux −k∂T
∂x

∣∣∣∣
L

Solid

Heat flux −k∂T
∂x

∣∣∣∣
S

Interface at t+ δt

δx

Interface at t

Figure 19.2: Derivation of the Stefan condition.

This must be balanced by the difference in heat fluxes over time δt,
[
−k∂T

∂x

]L

S

δt.

Hence we derive the Stefan condition for the speed of the interface,

ρλ
dx

dt
=

[
−k∂T

∂x

]L

S

.

The right-hand side of this condition is the net rate at which heat is supplied to
the interface, while the left-hand side is the rate at which it used up or produced
as the interface moves. In more dimensions, this argument is simply generalised
so that for an interface with unit normal n from solid to liquid, and normal
velocity Vn in that direction,

ρλVn = [−kn · ∇T ]LS .

If this brings the Rankine–Hugoniot condition to mind (it should), see Exercise 1
for more details.

We are now in a position to write down a model for steady heat flow in the
strand of steel. We straighten the strand out, modelling it by a rectangle, thus
assuming that the effects of curvature are small, as can be verified later. We
write U for the speed of the strand, and we immediately note that the Peclet
number is very small, so the temperature approximately satisfies Laplace’s equa-
tion. We make the further simplification that the liquid steel is exactly at its



19.1. CONTINUOUS CASTING OF STEEL 241

−k∂TS/∂y + Γ(TS − T∞) = 0

TL ≡ TM

k∂TS/∂y + Γ(TS − T∞) = 0

∇2TS = 0

TS = TM , −k∂TS/∂n = ρλU cos θ

θ

Figure 19.3: Model for continuous casting

melting temperature, so we only have to find the temperature in the solid (a one-
phase problem). We’ll also take Newton cooling with a background temperature
of T∞ as a crude model for the effect of the water cooling.

It is important to notice that the liquid-solid interface is unknown: we have
to find it as part of the solution. Let’s write it as y = ±f(x) (see Figure 19.3).
The solid temperature TS(x, y) satisfies

∂2TS

∂x2
+
∂2TS

∂y2
= 0

in the solid region, with

±k∂TS

∂y
+ Γ (TS − T∞) = 0

on the edges y = ±H.
On the liquid-solid interface y = ±f(x), we have

TS = Tm,

the melting/solidification temperature, and the Stefan condition in the form

−k∂TS

∂n
= ρλU cos θ,

where θ is the angle between the normal to the interface and the x–axis, so
that the normal velocity of the interface is U cos θ. This condition can also be Some details for checking.

written

−k
(
∂TS

∂y
− df

dx

∂TS

∂x

)
= −ρλU df

dx
.

For large x, we impose that TS → T∞, and we won’t be too specific about the
inlet conditions at this stage.

Now let’s make the problem dimensionless. Obviously we’ll scale y and f
with H, but the length scale L for x is less obvious. We could of course use
the length of the strand but a better idea is to derive the length scale from
the balance between latent heat release and cooling. This also has the merit of
telling us directly when our approximation is valid, and how long the molten
region is expected to be. So, we write x = LX and y = HY , where L is yet to
be found but as usual ε = H/L ¿ 1, and we write y = ±f(x) as Y = ±F (X).
We also need a scale for the temperature; this is built into the problem as

TS = TM + (TM − T∞)T (X,Y ).
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So, dropping the primes, we have the dimensionless model

∂2T

∂Y 2
+ ε2

∂2T

∂X2
= 0

in the solid, with the interface conditions

T = 0,
∂T

∂Y
+ εF ′(X)

∂T

∂X
= ελ̃F ′(X) (19.1)

on Y = ±F (X), where

λ̃ =
ρλU

k(TM − T∞)/H

is a dimensionless number which is written in this way to show that it measures
the balance between latent heat release from an interface moving with speed U
and conduction due to a temperature difference of TM −T∞ across a distance of
O(H). The factor ε on the right-hand side of (19.1) arises because the interface
only has a very small normal velocity.

Lastly the scaled cooling conditions are

∂T

∂Y
± α(T + 1) = 0 on Y = ±1, (19.2)

with α = ΓH (TM − T∞). Bearing in mind the previous examples, we need the
cooling rate to be small, so α ¿ 1, and we also need it to balance the rate of
latent heat loss. We therefore determine L by making the choice

ε = α,

and check later that is it consistent.
Let’s concentrate on the part of the strand where the liquid has not all

solidified, and expand

T (X,Y ) ∼ T0(X,Y ) + εT1(X,Y ) + · · · .
By symmetry, we need only focus on the top half of the strand. We easily haveDetails which should be

worked through.

T0 = A0(X) +B0(X)Y,

where from the cooling condition (19.2) at lowest order B(X) = 0, and then
from the melting temperature condition A(X) = 0 as well. So,

T (X,Y ) ∼ εT1(X,Y ) + · · · ,
telling us that the temperature is everywhere within O(ε) of the melting tem-
perature. Continuing, we haveAutomatically incorporating

the melting temperature,
much more economical than
grinding out T1 = A1Y +B1.

T1(X,Y ) = C1(X) (Y − F (X)) ,

and now the ‘1’ in the cooling condition (19.2) comes in to give

C1(X) = −1.

Lastly we use the hitherto unexploited latent heat condition (19.1) to find
that

F ′(X) = − 1
λ̃
,
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2

3

651 4

Figure 19.4: Regions for the continuous casting problem.

so that, if the interface starts off from Y = 1 at X = 0,

F (X) = 1− X

λ̃
.

We have thus predicted the length of the liquid region (Lλ̃) and the shape of
the interface to lowest order (linear).

Clearly this analysis is not valid near the tip of the strand, where the upper
and lower free surfaces meet, as the heat flow is obviously two-dimensional
there. In fact one can carry out a more detailed analysis involving at least 6
regions (see Figure 19.4). Region 1 is an inlet region, from which all we need
to know is a starting value for the interface. We have just analysed Region 2,
which matches into Region 3, centred on the tip of the liquid region. This is
essentially the problem of a half-line at temperature 0 with temperature of −1
on Y = ±1. Region 4 is necessary to resolve the singularity at the end of the
half-line, and it shows that the tip of the liquid region is parabolic. Returning to
Region 3, it matches into the intermediate Region 5, an intermediate region of
length O(H/ε

1
2 ), which enables the transition into Region 6 in which we finally

have an eigenfunction expansion decaying exponentially as x → ∞. Further
details are given in the exercises, and the problem is described in the paper [10].

Exercises

1. The Stefan condition and Rankine–Hugoniot. Think about the
internal energy in a material that can change phase from solid to liquid
and convince yourself that it can be written

H(T ) =

{
ρcT T < 0,
ρcT + L T > 0.

Express conservation of energy as

∂H

∂t
+

∂

∂x

(
−k∂T

∂x

)
= 0,

and then deduce the Stefan condition as a Rankine–Hugoniot condition
for this conservation law.

2. The other regions in the continuous casting problem. This exercise
brings together boundary layer and lubrication theory techniques. It is
probably the hardest in the book.

Look at Figures 19.5 and 19.4, which show the dimensionless model for
continuous casting and the regions in it. We have analysed region 2 in the
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∂T/∂Y + ε(T + 1) = 0

∂2T

∂Y 2
+ ε2

∂2T

∂X2
= 0T ≡ 0

θ

−∂T/∂Y + ε(T + 1) = 0

T = 0, −∂T/∂Y + εF ′(X)∂T/∂X = ελ̃F ′(X)

Figure 19.5: Model for continuous casting

text, where we showed that the tip of the molten region is approximately
at X = λ̃, and that the temperature in region 2 is

T (2) ∼ ε
(
1−X/λ̃− |Y |

)
+ o(ε), 1−X/λ̃ < |Y | < 1.

Start with region 6 for which X − λ̃ = O(1), far down the strand, and
show that in this region the solution has the form

T (6)(X,Y ) ∼ −1 +
∞∑

n=1

an cos knY e
−kn(X−λ̃)/ε,

where kn are the roots of kn tan kn = ε. The coefficients an are determined
by matching back towards the tip region. Show that the kn are all O(1)
except for k1 which is O(ε

1
2 ).

Because there is one small eigenvalue k1, we cannot match directly from
region 6 to region 3 (you can try, so as to see why it does not work).
Instead, we need the intermediate region 5, in which X − λ̃ = ε

1
2X5, and

∂2T (5)

∂Y 2
+ ε

∂2T (5)

∂X5
2 = 0.

Show that the leading order term in an expansion T (5) ∼ T
(5)
0 + · · · is

independent of Y . Calculate T
(5)
1 and use the boundary conditions at

Y = ±1 to show that the solution that matches with region 6 is

T
(5)
0 = −1 + a1e

X5 .

Note that we have to match with region 3 in which T (3) is small, hence
T

(5)
0 tends to zero as X5 → 0. Deduce that a1 = 1.

Now consider region 3, in which X3 = ε(X − λ̃). Show that the freeIn dimensional terms, this is
the O(H0)×O(H0) region
around the tip of the molten
region.

surface conditions can be linearised onto Y = 0, X3 < 0, and that T (3)

satisfies the problem
∂2T (3)
∂X3

2 +
∂2T (3)

∂Y 2
= 0

in the strip −1 < Y < 1, −∞ < X3 < ∞ with the negative X3–axisDraw a picture.

removed, and with

±∂T
(3)

∂Y
+ ε = 0 on Y = ±1,
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and
T (3) = 0 on Y = 0, X3 < 0.

Use the Van Dyke matching rule in the form ‘two-term inner of one-term
outer matches with one-term outer of two-term inner’ to show that for
large values of X3,

T (3) ∼ ε
1
2X3 + 1

2εX
2
3 + · · · .

Deduce that the expansion for T (3) proceeds in powers of ε
1
2 ,

T (3) ∼ ε
1
2T

(3)
1 + εT

(3)
2 + · · · ,

and confirm that matching with regions 2 and 4 is accomplished if

T
(3)
1 ∼ X3, T

(3)
2 ∼ 1

2
X2

3 , as X3 →∞,

T
(3)
1 → 0, T

(3)
2 ∼ −|Y | as X3 → −∞.

Write down the problems for T (3)
1 and T

(3)
2 . Show that the hodograph

variable
∂T

(3)
1

∂X3
− i

∂T
(3)
1

∂Y

is analytic, and either its real or imaginary part is known on all the bound-
ary of region 3. Draw the hodograph plane. Find the conformal mapping
from the hodograph plane to the physical plane to show that

∂T
(3)
1

∂X3
− i

∂T
(3)
1

∂Y
=

(
1− e−πZ3

)− 1
2 ,

where Z3 = X3 + iY , and find T
(3)
2 (note that its Z3– derivative satisfies

the same problem as T (3)
1 ).

Lastly note that this solution is clearly not valid near the tip Z3 = 0,
where the gradient of T (3)

1 is infinite. Show that a rescaling Z3 = ε
1
2Z4

leads to the full free boundary problem in an infinite region (you will need
to reinstate the full Stefan condition). Use parabolic coordinates or the
mapping Z4 = (ζ4 + c)2 to show that there is an explicit solution in which
the free boundary is Y 2

4 = −πX4/4 (the Ivantsov parabola which is a
famous exact solution of zero-specific-heat solidification).

“ They can curve as much as they like and still be linear.”
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Chapter 20

Lubrication theory for fluids

20.1 Thin fluid layers: classical lubrication the-
ory

In this chapter, we describe the lubrication theory analysis of a variety of thin
fluid flows. Having done the heat conduction problems of Chapter 18, we
shouldn’t have too much trouble with the original (eponymous) lubrication the-
ory model of flow of a viscous fluid in a thin bearing bounded by rigid surfaces.
Then we’ll generalise the approach to find equations for thin viscous sheets with
free surfaces.

The simplest configuration is that of a slider bearing, in which one rigid
surface slides over another as in Figure 20.1. These bearings are common in
machinery ranging from the head floating over the hard disc of a computer1 to
enormous pumps and other engines. When the bearing is wrapped round into
a circle, so that a rotating shaft can be supported, it is known as a journal
bearing. Knees and other joints are examples of natural-grown bearings.

We’ll look at two-dimensional flows only. Let us call the upper surface
y = H0H(x/L), where L is the length of the bearing and H0 a representative
value for the separation; as usual, ε = H0/L ¿ 1. Let us also take axes in
a frame in which the upper surface is stationary and the lower surface y = 0
moves to the right with velocity (U, 0). The idea behind this bearing is to
choose the shape H(x/L) of the upper surface so that fluid dragged into the
bearing (remember the no-slip condition on the lower surface) generates a high
load-bearing pressure as it is forced through the converging part of the gap.

1Nowadays the gap between the head and the disc is so small that it is not clear that
ordinary continuum models can safely be used for the fluid.

U

Figure 20.1: A slider bearing.

247
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We’ll start from the Navier–Stokes equations for the velocity u = (u, v) and
the pressure p:

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p+ µ∇2u, ∇ · u = 0,

with the no-slip boundary conditions

(u, v) = (U, 0) on y = 0,

(u, v) = (0, 0) on y = H0H(x/L).

Following our long-thin analysis above, and in contrast to our scaling when we
last used these equations, we’ll scale x and y differentially, x with L and y
with H0. When we come to the velocity u = (u, v), we have to scale its two
components differentially as well, or we will not conserve mass. In view of the
imposed motion of the lower plate and the no-slip condition, we want to scale
u with U , and since (in unscaled variables)

∂u

∂x
+
∂v

∂y
= 0,

we need to scale v with εU . In the absence of any forced unsteady motion of
the upper surface, the natural time scale is then L/U . Lastly, we need a scale P
for the pressure p. In the absence of any obvious ‘exogenous’ scale, we’ll work
this out from the equations.

As in the analysis of Chapter 18, we use X and Y for the scaled coordinates,
but we ‘drop the primes’ and stick with lower case letters for the dependent
variables. It’s a nasty hybrid notation, but capitals are so much harder to read,
and we’ll also be using dimensional equations later in the chapter so we want
to be able to distinguish them at a glance.

The X–component of the scaled momentum equation is

ρU2

L

(
∂u

∂T
+ u

∂u

∂X
+ v

∂u

∂Y

)
= −P

L

∂p

∂X
+
µU

H2
0

(
ε2
∂2u

∂X2
+
∂2u

∂Y 2

)
.

If viscous shear forces are to do their job in generating pressure,2 we have
to choose P to balance terms on the right-hand side of this equation. Thus,
P = µUL/H2

0 . We now have the back-of-the-envelope estimate LP = µUL3/H2
0Compare with the scaling

µU/L we used in deriving the
slow flow equations earlier:
here we have (1/ε2)µU/L,
indicating the effectiveness of
the long thin geometry in
generating high pressures.

for the load per unit distance in the z-direction that this bearing can support.
This scaling for p leaves one dimensionless parameter in the problem,

Re′ = ε2
UL

ν
= ε2Re,

known as the reduced Reynolds number. We’ll assume it is small; that is, the
model is valid when it is small. This means in particular that all the inertial
terms, some of which are nonlinear, are neglected.

Crossing off lots of small terms, our leading order model is thenExercise. . .

∂2u

∂Y 2
=

∂p

∂X
,

∂p

∂Y
= 0,

∂u

∂X
+
∂v

∂Y
= 0

2At the other end of the viscosity range, one can make a model of an inviscid surf-skimmer
held up over a thin layer of water by inertial forces only.
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for 0 < Y < H(X), with

u = 1, v = 0 on Y = 0, u = v = 0 on Y = H(X).

It is straightforward to integrate these equations, firstly noting that p =
p(X), then finding The flow is a combination of a

Couette shear (the first two
terms) and a Poiseuille flow
with pressure gradient dp/dX,
so with hindsight we could
have written this down.

u = 1− Y

H(X)
− 1

2
Y (H(X)− Y )

dp

dX
,

and lastly using the continuity equation integrated with respect to Y ,

d

dX

∫ H(X)

0

u(X,Y ) dY = 0,

to find Reynolds’ equation

d

dX

(
H3 dp

dX

)
= 6

dH

dX

for the pressure. Given H(X), we solve this with ambient-pressure conditions
at each end, and we can then calculate the load our bearing can support.

20.2 Thin viscous fluid sheets on solid substrates

For our next application of the lubrication theory approach, we’ll derive approx-
imate equations for the evolution of thin sheets and fibres of a viscous fluid.
These problems are a little more difficult, because the fluid has one or more free
surfaces, whose locations have to be determined as part of the solution of the
problem. We start with the case of a thin layer spreading out on a horizontal
surface, a situation which arises in applications ranging in lateral scale from
microns (layers of conductor applied in liquid form to a printed circuit board
before being baked solid) through centimetres (paint on a wall, honey spilled on
a table) to kilometres (magma flow from a volcano). We also briefly describe
the corresponding model for flow on a vertical surface before, in Section 20.3,
looking at free sheets, such as the glass sheets you would find when making a
bottle by blowing, or a window by the float glass process. Lastly we look more
briefly at manufacture of fibres, for example of glass (optical fibres) or polymer
(artificial fabrics).

20.2.1 Viscous fluid spreading horizontally under gravity:
intuitive argument

Imagine you spill a puddle of honey on a table. How does it spread out? Assume
that the depth is much smaller than the spread, and for now take the two-
dimensional situation sketched in Figure 20.2(a). Here is a physical argument,
in four steps (all variables are dimensional).

1. The flow is slow, so we use the Stokes equations (uncontroversial).
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(a)

(b)

y
y = h(x, t)

x

Figure 20.2: (a) Viscous layer spreading under gravity. (b) Velocity profile for
Poiseuille flow.

2. The flow is driven by hydrostatic pressure and resisted by viscous shear
forces (uncontroversial). The pressure is approximately hydrostatic, be-
cause vertical velocities are small enough that the viscous contribution to
the forces in that direction is small (not so obvious; believe it for now).
Thus

p(x, y, t) = ρg (h(x, t)− y) .

3. The horizontal velocity u is much greater than the vertical velocity v and
the free surface is almost horizontal. Moreover, on the free surface the
shear stress, which is approximately µ∂u/∂y, vanishes (uncontroversial,
although we might want to check later). We can also regard this as a
symmetry condition and thus, locally, the flow looks like the bottom half of
flow between two parallel plates separated by 2h under a pressure gradient
∂p/∂x (see Figure 20.2(b)). The velocity profile is therefore parabolic:

u(x, y, t) = − 1
2µ
y (2h(x, t)− y)

∂p

∂x
,

and the horizontal flux is

Q(x, t) =
∫ h(x,t)

0

u(x, y, t) dy

= − 1
3µ
h3 ∂p

∂x

= − ρg
3µ
h3 ∂h

∂x
.

4. Mass conservation (uncontroversial) in the form

∂h

∂t
+
∂Q

∂x
= 0,

gives us a nonlinear diffusion equation for h(x, t):

∂h

∂t
=
ρg

3µ
∂

∂x

(
h3 ∂h

∂x

)
. (20.1)
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Note that this dimensional equation tells us the timescale for the spreading
out. If x is scaled with L, h with a representative initial value H0, then the
timescale emerges immediately as µL2/(ρgH3

0 ). This looks reasonable: stickier
fluids (larger µ) spread out more slowly, as do thin layers or fluids in regions of
low g.

If, instead of gravity, surface tension at the interface drives the motion (as
would be appropriate for thin layers of paint or conductor on a PCB), a very
similar argument (see the exercises) shows that we get the fourth-order nonlinear
diffusion equation

∂h

∂t
+

γ

3µ
∂

∂x

(
h3 ∂

3h

∂x3

)
= 0. (20.2)

Not surprisingly, these equations with their evident structure have attracted a
lot of theoretical analysis; natural questions to ask include ‘if we start with a
solution that is positive, does it remain so?’ (yes for (20.1) and (20.2), but if
h3 in (20.2) had been h the answer would have been no) or ‘if we have a dry
patch where h = 0, what do we say at its edges?’ (conserving mass is not
too hard, but the extra condition for the fourth-order equation (20.2) is rather
more problematic). Suggestions for further reading are given at the end of the
chapter.

20.2.2 Viscous fluid spreading under gravity: systematic
argument

You may be convinced by the derivation just given (I think I am). However,
there are situations where a more precise approach is essential, so let’s warm up
for that by rederiving equation (20.1) by a systematic asymptotic approach.

Let’s start with the slow flow equations

∇2u = ∇p− ρg, ∇ · u = 0 (20.3)

for the velocity u = (u, v), for which we have the no-slip condition

u = v = 0 on y = 0.

The big new feature in this problem is the free surface y = h(x, t). It is unknown
— we have to find it as part of the solution — and the boundary conditions
applied on it are more complicated. The kinematic condition

v =
∂h

∂t
+ u

∂h

∂x
on y = h(x, t)

is easy enough,3 and the other conditions, which say that no stresses act at the
free surface, are written

σijnj = 0,

3Either think of this as
D

Dt
(y − h(x, t)) = 0

to express the fact that a particle in the surface remains there, or show that the normal
to any curve f(x, y, t) = 0 is n = ∇f/|∇f |, the normal velocity of a point on the curve is
−(∂f/∂t)/|∇f |, and equate this to n · u.
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where

n = (nj) =
(
−∂h
∂x
, 1

)/(
1 +

(
∂h

∂x

)2
) 1

2

is the unit normal to the surface and

σij = −pδij + µ

(
∂ui

∂xj
+
∂uj

∂xi

)

is the stress tensor for a Newtonian viscous fluid. We recall from Chapter 1 that
the components of σ are

σij =




−p+ 2µ
∂u

∂x
µ

(
∂u

∂y
+
∂v

∂x

)

µ

(
∂u

∂y
+
∂v

∂x

)
−p+ 2µ

∂v

∂y


 .

Thus, the two components of the zero-stress condition,

σ11n1 + σ12n2 = 0, σ12n1 + σ22n2 = 0,

are

−∂h
∂x

(
−p+ 2µ

∂u

∂x

)
+ µ

(
∂u

∂y
+
∂v

∂x

)
= 0, (20.4)

−µ
(
∂u

∂y
+
∂v

∂x

)
∂h

∂x
− p+ 2µ

∂v

∂y
= 0 (20.5)

Scale x = LX, y = H0Y = εLY as usual. Since we expect the flow to
be driven by hydrostatic pressure, scale p with ρgH0. Then the horizontal
component of the momentum, balancing µ∂2u/∂y2 with ∂p/∂x, tells us the
scale for u, namely U0 = ρgH3

0/µL, and the scale for v is εU0 so that mass
conservation is not violated (it never is). Lastly our timescale is L/U0 (or
H0/εU0). We get the equationsAgain in our hybrid notation

in which independent variables
are capitalised and dependent
ones lower case.

∂2u

∂Y 2
+ ε2

∂2u

∂X2
=

∂p

∂X
, (20.6)

ε2
∂2v

∂Y 2
+ ε4

∂2v

∂X2
=

∂p

∂Y
− 1, (20.7)

∂u

∂X
+
∂v

∂Y
= 0, (20.8)

(the −1 in (20.7) is gravity); the no-slip condition

u = v = 0 on Y = 0; (20.9)

and lastly the kinematic conditionNote that unlike, say, water
waves, our different scalings
for u and v mean that we keep
the term u ∂h/∂X.

v =
∂h

∂T
+ u

∂h

∂X
(20.10)

and the stress-free conditions

− ∂h

∂X

(
−p+ 2ε2

∂u

∂X

)
+
∂u

∂Y
+ ε2

∂v

∂X
= 0, (20.11)

−ε2
(
∂u

∂Y
+ ε2

∂v

∂X

)
∂h

∂X
− p+ 2ε2

∂v

∂Y
= 0, (20.12)
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both on Y = h(X,T ).
We’ve done the hard work. Now we expand u, v, p in regular expansions4

u ∼ u0 + ε2u1 + · · · , etcetera,

and we decide what order to solve the equations in. Clearly from (20.7) the
pressure is hydrostatic to leading order, and from (20.12) it vanishes on Y = h,
so we put a tick against those two equations, as we won’t use them again at this
order, and write down

p0 = h(X,T )− Y.

Now we find u0 using (20.6), with (20.9) and (20.11) for boundary conditions:

u0(X,Y, T ) = −1
2
∂h

∂X
Y (2h− Y ).

Next integrate (20.11) with respect to Y and use the other part of (20.9) to find
v0, and substitution into (20.10) gives, as promised, A quicker way to do this is to

note that the leading order
flux Q0(X,T ) is

Z h(X,T )

0
u0(X,Y, T ) dY,

and to leading order mass
conservation is

∂h

∂T
+
∂Q0

∂X
= 0.

∂h

∂T
=

1
3
∂

∂X

(
h3 ∂h

∂X

)
.

Undoing the non-dimensionalisation leads immediately to the equation derived
above.

The situation is rather different if the fluid is on a vertical surface, as we
now see.

20.2.3 A viscous fluid layer on a vertical wall

Suppose that the layer of fluid is on a vertical wall (or an inclined plane that is Think paint.

not almost horizontal). In this case gravity acts along the film, with the result
that it balances the shear forces directly, rather than being transmitted through
the pressure. The intuitive argument to derive the equation of motion is:

1. The flow is approximately unidirectional with velocity u(x, y, t) in the
x–direction, down the wall (y is measured out from the wall).

2. The pressure is everywhere very small (because of zero-stress on the free
surface y = h(x, t)). Instead, the body force ρg in the x–momentum
equation drives the flow.

3. Remembering that we have no-slip at y = 0, that is u = 0, and no-stress
at y = h(x, t), that is approximately ∂u/∂y = 0, the flow is the same as
half of a Poiseuille flow between y = 0 and y = 2h, driven by a pressure
gradient ρg.

4. The flux is therefore (standard calculation) ρgh3/3µ and conservation of
mass as above gives

∂h

∂t
+
ρg

µ
h2 ∂h

∂x
= 0.

A systematic derivation of this equation by scaling techniques is asked for in
Exercise 6 on page 260. Notice that the new equation is first-order, not second
order as for nearly horizontal flow.

4Strictly speaking, we should expand h as well, but as we only ever find the leading order
terms we won’t bother, sticking with h(X,T ).
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y = H(x, t)− 1
2h(x, t)

y = H(x, t) + 1
2h(x, t) y = H(x, t)

U

x

y

Figure 20.3: Drawing a thin sheet of viscous fluid.

20.3 Thin fluid sheets and fibres

For our last example in this series of models for of thin layers of a viscous fluid,
we consider the evolution of a long thin viscous sheet stretched from its ends
x = 0, L with a characteristic speed U . Now we have not one free surface
but two, which adds some complexity to the analysis, as we shall see. This
configuration is not very easy to realise, nor is it common in practice, although
pizza makers come close (not that dough is anything close to a Newtonian fluid).
The best example is probably the float glass process in which a layer of glass,
which may be some hundreds of metres long and tens of metres wide but only a
few millimetres thick, is floated on a bath of much less viscous molten tin. As it
travels from one end to the other, it should reach a state of absolutely smooth
pellucid perfection, so it is of vital importance to glass manufacturers to be able
to control this process and eliminate waves and wrinkles. The corresponding
axisymmetric situation of a thread or fibre of fluid, which has only one free
surface but still no fixed surfaces, is very common. Examples are manufacture
of optical fibres from glass and artificial fabric fibres from polymers, both of
which involve solidification of a liquid thread (so does making candy floss).5

There is a simple physical argument which leads to the correct answer (more
or less). Much of it is familiar:

1. The sheet is nearly flat and the velocity is approximately unidirectional,
in the x–direction (along the sheet).

2. The surfaces are stress-free so the x–velocity does not vary significantly
across the sheet: it has the form u(x, t).

3. The stretching is resisted by viscous stresses (force per unit area) which, forThis will be the σ11 stress
component, the force per unit
area in the x–direction across
a plane with normal in the
same direction.

a Newtonian fluid are proportional to the velocity gradient ∂u/∂x. Thus
the total force (per unit length perpendicular to the page) is proportional
to h∂u/∂x, where h(x, t) is the thickness of the sheet. As there are no
external forces, this must be constant along the sheet:

∂

∂x

(
h
∂u

∂x

)
= 0. (20.13)

4. The second equation for h and u is mass conservation:

∂h

∂t
+
∂(hu)
∂x

= 0,

5We should really include temperature-dependent viscosity in the model for both these
fibres, and non-Newtonian fluid effects for the polymer. We’ll keep things simple.
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and this completes the model. An identical argument holds for a thin
fibre, with h(x, t) replaced by the cross-sectional area A(x, t).

As ever, this analysis raises as many questions as it answers. In particular, it
says nothing about the constant of proportionality in the relationship between
the resistive stress and the velocity gradient. Clearly this constant is some sort
of viscosity, and indeed it has a name, the Trouton viscosity, but how is it related
to the usual dynamic viscosity µ? We don’t need to know this if no forces (such
as air drag) act at the surfaces of our sheet, because we cancel it from both
sides of the momentum balance equation (20.13), but it is crucial otherwise. In
any case, if we integrate (20.13) we find

h
∂u

∂x
∝ T (t),

where T (t) is the tension applied to our sheet, so we need the constant if we are Or, replacing h by A, fibre.

to calculate the total tension needed to stretch the sheet. Only a more detailed
analysis can tell us.

20.3.1 The viscous sheet equations by a systematic argu-
ment

Let us call the surfaces of the sheet y = h̄(x, t)± 1
2h(x, t), so that the centreline

of the sheet is at y = h̄(x, t): we don’t know a priori that it is symmetrical.
The dimensional equations that we must solve are very similar to those of the
previous section, but with gravity removed and the no-slip condition replaced
by zero-stress conditions on both surfaces. We have the slow flow equations

∇2u = ∇p, ∇ · u = 0

for the velocity u = (u, v), with the kinematic and dynamic (zero-stress) condi-
tions

v =
∂

∂t

(
h̄± 1

2h
)

+ u
∂

∂x

(
h̄± 1

2h
)
, σijnj = 0,

on y = h̄(x, t)± 1
2h(x, t).

The scaling of x with L, y, h̄ and h with a typical thickness H0, and u, v
with U , εU is much as before. It’s not so easy to see a pressure scale here, so This scale is O(ε2) smaller

than the slider bearing scale
because there are no solid
surfaces to generate high
pressures.

let’s use the standard slow flow scale µU/L as a first guess and let the equations
tell us how (if at all) that should be corrected. The scaled equations are pretty
much a cut-and-paste job too:

The ε’s crop in different places
because of our different
pressure scale, so you may
want to work through the
details, for which the margin
is too small.

∂2u

∂Y 2
+ ε2

∂2u

∂X2
= ε2

∂p

∂X
, (20.14)

∂2v

∂Y 2
+ ε2

∂2v

∂X2
=

∂p

∂Y
, (20.15)

∂u

∂X
+
∂v

∂Y
= 0, (20.16)

with the kinematic condition

v =
∂

∂T

(
h̄± 1

2h
)

+ u
∂

∂X

(
h̄± 1

2h
)

(20.17)
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on y = h̄± 1
2h. The stress-free conditions become

−ε2
(
−p+ 2

∂u

∂X

)
∂

∂X

(
h̄± 1

2h
)

+
∂u

∂Y
+ ε2

∂v

∂X
= 0, (20.18)

−
(
∂u

∂Y
+ ε2

∂v

∂X

)
∂

∂X

(
h̄± 1

2h
)− p+ 2

∂v

∂Y
= 0. (20.19)

Now we expand

u ∼ u0 + ε2u1 + · · · , v ∼ v0 + ε2v1 + · · · , p ∼ p0 + ε2p1 + · · · ,
h̄ ∼ h̄0 + ε2h̄1 + · · · , h ∼ h0 + ε2h1 + · · · ,

take a deep breath and insert.6

At O(1), equation (20.14) tells us that ∂2u0/∂Y
2 = 0, so

u0 = u0(X,T ),

and so to leading order the flow is unidirectional (extensional) as promised.
Looking through our equations, we see that (20.18) is also satisfied at this order,
and so we tick it off and move on to the continuity equation (20.16), which tells
us that

v0 = −Y ∂u0

∂X
+ V0(X,T ),

where V0 is found from the kinematic condition (20.17) as

V0(X,T ) =
∂

∂T

(
h̄0 ± 1

2h0

)
+

∂

∂X

(
u0

(
h̄0 ± 1

2h0

))
.

This is true for both + and − signs and so, subtracting, we find

∂h0

∂T
+
∂(u0h0)
∂X

= 0,

which is conservation of mass to leading order. Lastly we see from (20.15) that
∂p0/∂Y = 0, and so from (20.19) and the expression we have just found for v0,

p0(X,T ) = −2
∂u0

∂X
.

Let us pause and take stock. We have shown that, to leading order, the flow
is extensional, and that mass is conserved, but this is only one equation for u0,
h̄0 and h0. On the other hand, we have also shown that, in scaled terms,

(σ11)0 = −p0 + 2
∂u0

∂X
= 4

∂u0

∂X
,

and so we expect the leading order tension to be

(hσ11)0 = 4h0
∂u0

∂X
.

6Warning: in this problem we are going to go to O(ε2). If we are to be consistently
accurate, at each stage we have to remember to expand the location where the free surface
conditions are applied about the leading-order location Y = h̄0 ± 1

2
h0 (as in Section 13.5.1).

Fortunately, we don’t have to do that here.
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Thus, we anticipate that
∂

∂X

(
4h0

∂u0

∂X

)
= 0,

a second relation between h0 and u0, but not h̄0. In dimensional terms, this
says that

σ11 ∼ 4µ
∂u

∂x
and so the Trouton viscosity for a sheet is 4µ, a result we could never have
guessed. (For a slender fibre it is an even less likely 3µ.)

This is encouraging, so let us press on to the O(ε2) equations. We solve
them in the same order as the O(1) equations, namely (20.14) with (20.18),
then (20.16) with (20.17), and lastly (20.15) with (20.19). We have reached Hic opus, hic labor est.

the stage at which the arithmetical details become unedifying and are best dealt
with in private; here is a sketch.

From (20.14),
∂2u1

∂Y 2
= −3

∂2u0

∂X2
,

which, with (20.18) on Y = h̄0(X,T )± 1
2h0(X,T ), gives

∂u1

∂Y

∣∣∣∣
Y =h̄0+

1
2h0

Y =h̄0− 1
2h0

= −3Y
∂2u0

∂X2

∣∣∣∣
Y =h̄0+

1
2h0

Y =h̄0− 1
2h0

= a lot of terms involving u0, h̄0, h0.

After simplification, we do indeed find that

∂

∂X

(
4h0

∂u0

∂X

)
= 0. (20.20)

The other equations are integrated in a similar way and lead, eventually, to the
equation

∂

∂X

(
4h0

∂u0

∂X

∂h̄0

∂X

)
= 0.

Bearing in mind the equation (20.20) just found, this shows that

∂2h̄0

∂X2
= 0,

and so the sheet is, to lowest order, straight (the same applies to a fibre). This
should not be taken to mean that all viscous sheets and fibres are straight, but
rather that if they are being stretched on the timescale L/U of our analysis they
must be straight. If the ends of a curved sheet are pulled apart, another model
must be used, as they must when the sheet is being stretched so rapidly that
the slow flow assumption does not hold.

I cannot leave this topic without pointing out that the nonlinear equations
we have derived,

∂h0

∂T
+
∂(u0h0)
∂X

= 0,
∂

∂X

(
4h0

∂u0

∂X

)
= 0,

can be reduced to a linear system. You can find out about this by doing Exer-
cise 13 on page 265.
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Further reading

There is much more on the derivation of models for thin sheets and fibres in the
papers [27], [11]. For nonlinear diffusion equations, especially of higher order,
see the book [48].

20.4 Exercises

1. Tilting pad bearings. Calculate the pressure in a slider bearing of
(dimensionless) thickness H(X) = 1+αX. Write down an integral for the
load.

Now suppose that the upper surface of the bearing is pivoted freely at a
point X0 (0 < X0 < 1). Write down a moment condition for the bearing
to be in equilibrium, and deduce a relation between the load and the
angle α of the upper ‘tilting pad’. (Don’t try to simplify the integrals
without a symbolic manipulator such as Maple.) This kind of bearing is
self-adjusting: the pad tilts to accommodate whatever load is imposed.

2. Two-dimensional bearings. Extend the analysis of the slider bearing
to a rectangular upper surface above a flat lower surface, to derive a two-
dimensional version of Reynolds’ equation.

3. Squeeze films. Suppose that the upper surface of a slider bearing is time-
varying with characteristic frequency ω, for example by the imposition of
a periodic load, so that the gap is H(X,T ) in dimensionless variables, in
which t is scaled with 1/ω. Show that mass conservation is

∂

∂X

∫ H(X)

0

u(X,Y ) dY + σ
∂H

∂T
= 0,

where σ = ωL/U is a dimensionless parameter known as the bearing num-
ber, and that Reynolds’ equation becomes

∂

∂X

(
H3 ∂p

∂X

)
= 6

∂H

∂X
+ 12σ

∂H

∂T
.

Now suppose that U = 0 for the configuration of a slider bearing, but
that the upper surface is oscillated up and down with frequency ω and
amplitude a, thus forming a squeeze film. Scaling t with 1/ω and v with
aω, what are the appropriate scales for u and p? Show that the appropriate
version of Reynolds’ equation is

∂

∂X

(
H3 ∂p

∂X

)
= 12

∂H

∂T
.

Show that by oscillating a suitably-shaped upper surface normal to the
lower surface it is possible to generate a non-zero pressure (averaged over
one cycle of oscillation) even if U = 0. This effect is used to move silicon
chips around semiconductor plants on oscillating tracks with saw-tooth
shaped surfaces (asymmetry in the surfaces generates a longitudinal pres-
sure gradient which induces motion in that direction).
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Show that if a constant load is applied normal to two flat parallel plates
initially a distance H0 apart, they take an infinite time to make contact.
(In practice, no surface is absolutely flat, and small asperities in the sur-
faces make contact well before t = ∞. It is almost impossible to pull
apart two optically flat surfaces that have been put together, and it can
be surprisingly hard to lift a sheet of paper normal to a smooth surface.
The trick is of course to slide the optically flat surfaces, and to lift the
paper from the edge.)

4. Surface tension driven thin horizontal film. Consider the evolution
of a thin nearly flat horizontal fluid layer under the action of surface
tension. Assume that the effect of surface tension is to give a jump in the
normal stress across the fluid surface of

γ × curvature,

where γ is the surface tension coefficient. Show that the curvature of a What are the dimensions of γ?

nearly flat interface y = h(x, t) is approximately ∂2h/∂x2 and hence that
the pressure in the flow is If s measures arclength along

the curve y = f(x) and ψ is
the angle between the tangent
and the x–axis, then the
curvature is κ = dψ/ds, which
is equal to f ′′/(1 + (f ′)2)3/2.

p(x, y, t) ∼ γ
∂2h

∂x2
.

Deduce that the thickness satisfies

∂h

∂t
+

γ

3µ
∂

∂x

(
h3 ∂

3h

∂x3

)
= 0.

What is the timescale for the flow? What is the equation when we also
consider variations in the third (‘into the paper’) direction?

Repeat the systematic asymptotic derivation in this case, imposing the
stress conditions

σijninj = γκ, σijnitj = 0,

where κ is the curvature with the appropriate sign, and t = (ti) the unit
tangent to the free surface.,

5. Similarity solution for thin fluid layer. Show that the equation

∂h

∂t
=

1
3
∂

∂x

(
h3 ∂h

∂x

)

(the dimensionless version of (20.1)) has similarity solutions of the form

h(x, t) = t−αf(x/tα)

and find α and the ordinary differential equation satisfied by f(ξ), where
ξ = x/tα. Show further that this equation has solutions of the form

f(ξ) =

{
A(c2 − ξ)β , |ξ| < c,

0, |ξ| > c,

and find the constants A, c, β. (Although this solution, which has compact
support, does not have continuous derivatives at ξ = ±c, it represents the
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evolution of a blob of fluid whose extent is always finite; the mass flux at
x = ±ctα is bounded. This property is generated by the nonlinearity and
in particular the fact that the ‘diffusion coefficient’ (the h3 multiplying
∂2h/∂x2) vanishes at h = 0. A linear diffusion equation, or one whose
diffusion coefficient is bounded away from zero, could never produce such
a solution. Notice also that this solution tends to δ(x) as t→ 0. Although
the thin-film assumption is not valid if h is a delta function, one can still
think of this solution as being the large-time asymptotic behaviour of any
initial blob with compact support.)

6. Viscous liquid on an inclined plane. Give a careful asymptotic deriva-
tion of the equationNote that this is dimensional.

∂h

∂t
+
g sin θ
ν

h2 ∂h

∂x
= 0

for the spreading of a thin viscous fluid sheet down an inclined plane at an
angle θ to the horizontal. What model is appropriate if θ = O(ε), where
ε is the slenderness parameter of the sheet?

Harder: if the flow is over the surface z = f(x, y), show that the generali-
sation is

∂h

∂t
− g

3ν
F∇ · (h3F∇f)

= 0,

where F (x, y) = (1 + |∇f(x, y)|)− 1
2 and h(x, y, t) is the layer thickness

measured normal to the surface.

7. Liquid paint flow. A thin layer of viscous paint flows down a vertical
wall. Taking x downwards along the wall, write its thickness as y = h(x, t),
and work through the following alternative derivation of the equation for h.
Because the layer is thin, its velocity may be taken to be approximately
u(x, y, t) in the x–direction. Gravity is resisted by the viscosity of the
paint, resulting in a shearing force, which we assume to be approximately
equal to µ∂u/∂y, where µ is the viscosity of the fluid and ∂u/∂y is the
velocity gradient. Use a force balance on a small fluid element to show
that ∂2u/∂y2 = −ρg/µ. Using the boundary conditions u = 0 on y = 0
(no-slip) and ∂u/∂y = 0 on y = h(x, t) (no shear at the free surface),
deduce that

u =
ρg

2µ
y(2h− y).

Show that mass conservation requires that

∂h

∂t
+

∂

∂x

∫ h

0

u dy = 0,

that is,
∂h

∂t
+
ρg

µ
h2 ∂h

∂x
= 0.

You may want to refer back to
Exercise 12 on page 55 to
remind yourself of the
dimensional analysis of this
problem.

Assume a length scale L for variations in h, and a typical thickness H.
Make the equation dimensionless and write it in conservation form

∂h

∂t
+
∂( 1

3h
3)

∂x
= 0.



20.4. EXERCISES 261

Write down the characteristic equations and draw the characteristic pro-
jections in the (x, t) plane (a) when h(x, 0) = h0(x) is an increasing func-
tion of x, and (b) when it is decreasing. Interpret the results. Which flows
quicker, a thick layer or a thin one?

Antonio, Bruno and Carlo are cooking. They have a very small amount
of olive oil (a nice Newtonian fluid, unlike many liquids in the kitchen) in
the bottom of one of those square bottles. Carlo turns the bottle upside OK, a cylinder of square

cross-section. . .down and holds it vertically while Bruno holds it flat side down at an
angle to the horizontal. Assuming that the oil flows down the sides of the
bottle rather than simply falling to the neck, who will wait longer, and
why? Antonio, who has done the first part of this exercise, has a simple
twist on Bruno’s method which improves it significantly: what, and why?

Returning to the equation for h(x, t) on a vertical wall, show that there is
a similarity solution of the form h(x, t) = t−αf(x/tα) and find α (put this
form into the equation and show that it works.) Show that the total mass
of this solution is constant, and note that h(x, 0) = δ(x). Find f if we
assume that h(0, t) = 0 and only solve for x > 0. Show that if h is equal
to this similarity solution for 0 < x < S(t), and is zero elsewhere so that
there is a discontinuity (shock) at x = S(t), then the Rankine–Hugoniot
(shock) condition

dS

dt
=

[
1
3h

3
]

[h]

is satisfied provided that S = At1/3 for constant A. How should this
solution be interpreted?

Suppose now that the film thickness is nearly constant and look for small
perturbations by finding solutions of the dimensionless equation in the
form h = 1 + εei(kx+ωt) where ε ¿ 1 (like doing water waves). What is
the relation between k and ω? Which direction do these waves travel in?
(Note that there is only one direction of travel; water waves have two.)
What is their dimensional speed? Show that the only smooth travelling
wave solutions (i.e. solutions of the form h(x, t) = g(x− Ut) for constant
U) to the full equation are h = constant. However, the linearised solution
you have just found looks like a travelling wave. How do you reconcile
these facts?

8. Linear stability of thin films on horizontal surfaces. Investigate the
linear stability of thin films under gravity or surface tension, by writing

h(x, t) ∼ h0 + εeikxeλt

in the dimensional equations and finding λ in terms of k. Note how the
sign in front of the space derivatives changes when we go from second
order to fourth order and relate to the linear stability result.

9. Marangoni effects in a thin layer. Some flows are driven by variations
in the surface tension coefficient γ. This may be due to temperature
variations, or because there is a surfactant chemical in the fluid, or because
some other effect such as evaporation of a solvent changes γ. The net Paint drying, that riveting

example.effect is to induce a tangential (shear) stress at the interface which acts to



262 CHAPTER 20. LUBRICATION THEORY FOR FLUIDS

drag the fluid from low surface tension regions to those where it is high.
Foams are a particularly important practical example; the thin fluid sheets
that form the bubble faces are stabilised by surfactants which counteract
the tendency of the fluid to drain into the lower pressure regions where
fluid sheets meet (known as Plateau borders; the pressure is lower there
because of the curvature of the surface, as a sketch will show).

Suppose that we have a thin fluid layer as above and that the surface
tension coefficient γ(x) varies in a known way by an O(1) amount (i.e.
∆γ/γ = O(1)) over a horizontal distance L. Assuming that the Marangoni
force translates into the (dimensional) boundary condition

µ
∂u

∂y

∣∣∣∣
y=h(x,t)

=
dγ

dx
,

explain why the flow is locally equivalent to Couette flow with a linear
velocity profile, and derive the equation

∂h

∂t
+

1
2µ

∂

∂x

(
h2 dγ

dx

)
= 0.

What is the timescale of the motion? How small would the surface ten-
sion variation with x have to be for the normal force (surface tension ×
curvature) to be significant? What is the equation for h in this case?

10. Tides. Consider water waves in a basin 0 < x < L, −H < y < 0.
The velocity potential φ(x, y, t) and surface elevation η(x, t) for small-
amplitude waves satisfy

∂2φ

∂x2
+
∂2φ

∂y2
= 0, 0 < x < L, −H < y < 0,

with

∂φ

∂y
= 0 on y = −H, ∂φ

∂y
=
∂η

∂t
,

∂φ

∂t
+ gη = 0 on y = 0,

with suitable boundary conditions on x = 0, L. Make the problem nondi-
mensional, scaling x with L and y withH, and using the timescale

√
L2/gH,

show that in the dimensionless version of the problem φ(x, y, t) satisfies
the elliptic equation

∂2φ

∂y2
+ ε2

∂2φ

∂x2
= 0 in − 1 < y < 0,

with
∂φ

∂y
(x,−1, t) = 0,

∂φ

∂y
(x, 0, t) + ε2

∂2φ

∂t2
(x, 0, t) = 0.

Show that an expansion in which

φ ∼ φ0(x, y, t) + ε2φ1(x, y, t) + · · ·
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satisfies the equation and boundary condition up to terms of O(ε2) if φ0 =
φ0(x, t), where the O(ε2) equation shows that φ0 satisfies the hyperbolic
equation

∂2φ0

∂x2
− ∂2φ0

∂t2
= 0.

What (in dimensional terms) is the wavespeed?

This example, which is a very simple model for the tidal flows (it does not
even have the daily periodicity built in, nor the rotation of the earth!),
shows that the solution of an elliptic equation can sometimes be consis-
tently approximated by that of a hyperbolic equation. The development of
mathematical models for tide prediction preoccupied many famous minds
— Newton and Laplace among them — and is described in [7]. One ap-
proach was to expand the water depth (as a function of time) as a series
of harmonic terms, to reflect the periodic influence of the sun, moon etc.
The summation of such a series by hand was a tedious and error-prone
business, which was greatly facilitated by the invention by Lord Kelvin of
a mechanical analogue based on pulleys. These machines were used until
well into the twentieth century, and one of them can be seen in Liverpool
Museum.

11. Shallow water equations. There is no need only to consider sticky
fluids in thin layers. In this question we derive the famous shallow water
model for inviscid flow, starting with an intuitive derivation.

(a) Write down the two-dimensional Euler equations

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
= −∂p

∂x
,

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)
= −∂p

∂y
− ρg,

∂u

∂x
+
∂v

∂y
= 0.

for unsteady flow of an inviscid liquid under gravity.

(b) Assume that there is a base at y = 0 and a free surface at y = h(x, t),
that the layer is long and thin, and the flow fast enough that the
velocity is approximately unidirectional and independent of depth,
and hence of the form (u(x, t), 0).

(c) Assume further that the pressure is approximately hydrostatic; show
that

p(x, y, t) = ρg (h(x, t)− y) .

(d) Write down mass conservation.

(e) Put these assumptions into the Euler equations to derive

∂u

∂t
+ u

∂u

∂x
+ g

∂h

∂x
= 0,

∂h

∂t
+
∂(uh)
∂x

= 0.
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Linearise the system about the constant solution u = 0, h = h0 and find
the speed of propagation of small disturbances; compare with the previous
exercise.

This hyperbolic system can describe all sorts of phenomena such as the
Severn Bore or its less well known cousin the Trent Aegir (and a host of
other bores around the world); they appear as shocks in the solutions.
See [44] for lots more about the shallow water equations and their prop-
erties.

Now derive these equations by a lubrication scaling of the Euler equations,
to justify the (very reasonable) assumptions made above. Scaling x with
L, y with εL = H0, t with L/U and p with ερgL, you should get at lowest
order in ε

∂u0

∂T
+ u0

∂u0

∂X
+ v0

∂u0

∂Y
= − 1

F 2

∂p0

∂X
,

∂p0

∂Y
= −1,

∂u0

∂X
+
∂v0
∂Y

= 0,

together with the kinematic and dynamic free surface conditions on Y =
h(X,T ). Here F 2 = U2/gH0 is a dimensionless parameter called the
Froude (rhymes with crowd) number, measuring the inertia/gravity bal-
ance. Notice that the X-momentum equation is not quite the same as
the first of the shallow water equations as derived above, because of the
term v0∂u0/∂Y . Now make the additional assumption that ∂u0/∂Y = 0
at the inlet or beginning of the flow. Calculate p0 and deduce that
∂u0/∂Y = 0 throughout the flow. Write down the condition for irro-
tationality at leading order and compare; relate this to Kelvin’s theorem
in fully two-dimensional flow. Hence derive the shallow-water equations.

Harder: derive these equations starting from potential flow; you will not
now have to assume irrotationality.

12. Boussinesq flow in a porous medium. Suppose water flows in a
porous rock (an aquifer) under the action of gravity. The French sewage
engineer Darcy established the lawConsistency: why a minus

sign?

u = −K∇(p+ ρgy)

giving the fluid velocity u as proportional to the gradient of the pressure
(after subtracting off the hydrostatic head); here y is vertically upwards
and K is called the mobility. Assuming that water is incompressible,
show that this model is equivalent to potential flow with potential Φ =
−K(p+ ρgy).

A thin layer of water (called a water mound in the trade) lies above a
horizontal impermeable base at y = 0. Either intuitively, or by scaling, or
both, derive the nonlinear diffusion equation

∂h

∂t
= Kρg

∂

∂x

(
h
∂h

∂x

)
.

Find the similarity solution corresponding to a delta-function initial data.
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13. Linearising the viscous sheet equations. Take the viscous sheet equa-
tions in the form

∂h

∂t
+
∂(uh)
∂x

= 0,
∂

∂x

(
4h
∂u

∂x

)
= 0

and integrate to get

h
∂u

∂x
= f(t)

for some f(t) (proportional to the tension). Define

τ(t) =
∫ t

0

f(s) ds

and set u(x, t) = f(t)v(x, τ). Show that

h
∂v

∂x
= 1,

Dh

Dτ
= −1, where

D

Dτ
=

∂

∂τ
+ v

∂

∂x
.

Change the independent variables to h, τ (a partial hodograph transfor- Differentiate h = h(x, τ)
implicitly with respect to x
and τ to show that 1 = hxxh,
0 = hxxτ + hτ , then show that
v = xτ − xh, and differentiate
again with respect to x to get
vx.

mation) to show that x(h, τ) satisfies

∂2x

∂h∂τ
− ∂2x

∂h2
=

1
h

∂x

∂h
.

By solving this linear equation for ∂x/∂h, deduce that

∂x

∂h
= (hF (h+ τ))−1

for arbitrary F , and hence that

∂h

∂x
= hF (h+ τ).

Notice that F can now be determined from the initial data for h, so the
whole system can be solved explicitly.

“We approximate an irrational point by a sequence of increasingly irrational
rational points.”
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Chapter 21

Case study: turning of eggs
during incubation

21.1 Incubating eggs

This case study is based on a problem which was brought by Bristol Zoo to the
2003 Study Group meeting.1 The problem dealt with artificial incubation of
eggs of the African penguin, whose numbers are low enough that zoo breeding
programmes are important. In such programs it is vital that as many eggs as
possible survive to hatch. Early literature on incubation [9] was often directed
to the rearing of pheasants, destined to be shot (at) by the English moneyed
class (from the royal family down) and their guests.2 More recent literature has
been driven by conservation issues but as in many areas of biology or zoology, Rather than preservation, as

game-keeping is sometimes
called.

opportunities for mathematicians abound.
The specific question is this. In the wild, hen penguins lay one egg. In the

nest, they turn this egg by an appreciable fraction of a whole turn at intervals
of about 20 minutes. What advantage does this confer? Is it to equilibrate the
temperature within the egg or for some other purpose? The turning is especially
important in the first few days of incubation, and we focus on this period.

21.2 Modelling

We must first understand the structure of an egg. In presenting the model,
we are going to omit a large number of apparently inessential details of egg
composition (see [13] for more details). The minimum we need to consider in a
new egg is a yolk, a white (called albumen) and an embryo which develops into
the chick, as sketched in Figure 21.1. The yolk is contained in a membrane,
is more or less spherical, and is slightly less dense than the albumen. It floats
in the albumen, which has a layered structure that we describe in more detail

1See www.maths-in-industry.org for the reports on the problems presented at that meet-
ing; they ranged from artificial spider silk manufacture via sweaty feet and eggs to design of
a transport system for Cardiff.

2‘Up goes a guinea, bang goes sixpence, down comes half a crown.’ For younger readers, a
guinea was 21 shillings, now £1.05; sixpence equals 2 1

2
current pence, and half a crown was

two shillings and sixpence.
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below. Lastly, the embryo is contained in a small capsule attached to the surface
of the yolk, and it is less dense than either the yolk or the albumen.

Heat flow

Let us first see whether turning is a good way to maintain an even temperature
in the egg, counteracting the temperature gradient from a warm hen to a cold
nest floor. To do this, we calculate the thermal diffusion time (see page 29) for
an egg of radius R: this is R2/κ. For penguin eggs, R is about 2 cm and the
diffusivity κ is similar to that of water, about 1.4 × 10−7 m2 s−1. This gives
a thermal diffusion time td ≈ 3, 000 s, comparable to the turning interval. So
it plausible that turning maintains a roughly even temperature, although given
the comparability of the two time scales, the interior temperature must still
vary by an O(1) fraction of the top-to-bottom temperature difference; had the
turning interval been much less than the diffusion time, the interior temperature
would have been much more uniform.

However, it is observed that eggs in incubators, which have a uniform tem-
perature, also need to be turned in order to hatch successfully. There must be
some other effect of turning.

Fluid flow in the egg

Another possible effect of turning is to induce a fluid flow in the egg. Because
the yolk is less dense than the albumen, it will float to the top; also, the embryo,
which is even lighter, will make the yolk rotate until the embryo is also at the
top. The net effect is to bring the embryo rather close to the shell. It is possible
that turning counteracts these effects, and to see whether this is plausible we
need to work out the timescales on which they operate.

The first point to make is that, like many biological liquids and gels, the
albumen is not a Newtonian viscous fluid. A reasonable model is to treat it
as a material which behaves like an elastic solid when subject to rapid shears
or stresses, but on slower time scales behaves as a viscous fluid. This is a
particular case of what is called a viscoelastic fluid, the modelling of which isCrazy putty is an example.

You can roll it into a ball and
bounce it off the floor; but put
it in its pot and over a long
time it spreads out like a
viscous liquid.

a rather complex business. For our purposes, we just assume that the effect of
the elastic behaviour is to ensure that if the egg is turned reasonable quickly,
it rotates as a solid body. Subsequently, the relaxation is a slow viscous flow
driven by buoyancy forces due to density differences within the egg.

The next point is that the deformable part of the albumen forms a relatively
thin layer surrounding the yolk. The typical thickness of the albumen is up to
25% of the egg radius, and it is in three layers, as in Figure 21.1. There is a thin
layer of relatively low viscosity albumen surrounding the yolk, then a thicker
layer of relatively high viscosity albumen, and finally another layer of relatively
low viscosity albumen next to the shell (the viscosity ratio is more than 10 to 1,
and the yolk is more viscous still). The distance across each less viscous layer
latter layer is about 5% of the the radius of the egg, and the more viscous layer
is three times as far across. In view of the result of Exercise 1, it is reasonable
to treat the yolk and high viscosity albumen as a rigid body, and just to look
at the fluid flow in the outer layer.3

3A more sophisticated treatment would have flow in the inner low-viscosity layer as well.
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Yolk

Thick albumen

Shell

Thin albumen

Embryo

Figure 21.1: Schematic of an egg.

We can assume (or, if dubious, check after the fact) that lubrication theory
is a good model for the flow in the outer layer. There are two forces driving the
flow: the buoyancy of the yolk, which makes it rise, and the buoyancy of the
embryo. whose principal effect is to make the yolk rotate to bring the embryo
to the top. The densities of the embryo, yolk and albumen are very close to
that of water, ρw, and differ by about 0.5%. Thus the density differences are of
size ∆ρ = 0.005ρr. The buoyant force from a spherical yolk of radius Ry is

Fb = 4
3πr

3
yg∆ρ.

This drives the flow of the albumen, with viscosity µa, in a gap of thickness ha;
as we saw, ha is much smaller than the length of the gap, which is comparable
with ry. This is a squeeze-film flow, and adapting the result of Exercise 3 on
page 258, we can show the typical pressure generated in a flow of this kind is
of size µaVyr

2
y/h

3
a, where Vy is the typical size for vertical velocity of the yolk

(the velocity normal to the layer). Multiplying by r2y to get a typical size for the
pressure force, we can equate the result with the buoyancy force to see that Numerical constants such as 4

or π are dropped because we
are only doing an order of
magnitude argument.

r3yg∆ρ balances
µaVyr

4
y

h3
a

and so the order of magnitude estimate for Vy is h3
ag∆ρ/µary. Putting in the

values ha ≈ 10−3 m, µa ≈ 4 × 10−3 kg m−1 s−1, ∆ρ ≈ 5 kg m−3, we find
that V ≈ 6 × 10−4 m s−1. That is, the yolk takes a few seconds to float a
millimetre or two towards the top of the shell (of course, as the albumen layer
gets thinner and thinner, the yolk slows down markedly). This is much shorter
than the turning interval, and no amount of adjustment for the second layer
of thin albumen helps. We should also ask whether flow in the more viscous
albumen layer, which is two or three times as wide as the two less viscous layers,
will take place on the inter-turn timescale. As ha is three times bigger and µa

is 12 times bigger than for the less viscous layers, the typical vertical velocity
is 33/12 times that for the thin layers, and again the timescale of the motion is
less than we need. The details of the flow are described in Exercise 2.

Flotation is not the mechanism we require. Can rotation help?
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Rotation of the yolk

Let us now see how the yolk rotates back to a position in which the embryo is
at the top. In this motion, the off-centre buoyancy force of the embryo exerts
a torque on the yolk, the magnitude of which is ryg∆m, where ∆m is the
mass deficit of the embryo and is of O(r3e∆ρ), re being a typical size for the
embryo. This is balanced by a shear force µaryωy/ha per unit area, where ωyThe inertia of the yolk is

neglected. What is the small
parameter that justifies this?

is the angular speed of the yolk, and we multiply this by r2y to find an order
of magnitude for the viscous force, and again by ry to find the resistive torque.
All of this leads to the estimate

Check the dimensions!

1
ωy

≈ O

(
µar

3
y

hag∆m

)
,

which, with an embryo size of 1 mm and other parameter values as above, gives
a timescale of hundreds to thousands of seconds, which is exactly right.

But why should rotation be significant? One reason may be that, after
turning, the embryo rises to the top by rotation and, because the yolk has
already floated to the top on a faster timescale, it then finds itself uncomfortably
close to the shell. More turning returns it to a position at the side, and the
timescale of rotation determines that of turning. Another possibility is that
rotation enhances the supply of nutrients to the embryo, and we now explore
this further.

Diffusion

The albumen is not just a passive fluid. It contains nutrients and some antiseptic
agents that sustain and protect the embryo. But, in the early stages before the
embryo has developed a vascular system, these agents can only get to the embryo
by diffusion. Now with a typical molecular diffusivity Da of about 10−9 m2 s−1,
on a timescale τ of 1,000 s the size of the region depleted of nutrients is of order√
Dτ , about 1 mm. As time goes on, fresh nutrients have further and further

to travel to get to the embryo, and waste products have to diffuse further too.
But if the albumen is occasionally sheared, as would happen in a rotation of
the yolk, the picture changes. Now the depleted region is stretched out, as in
Figure 21.2, and there can be access for new nutrient from the upstream side
of the embryo. This is a version of what is called Taylor diffusion4 and it is
another plausible explanation for why eggs are turned.

This model is a very recent and tentative one. It is an example of a com-
plicated biological situation where mathematical analysis of key physical mech-
anisms can show, on quantitative grounds, that a proposed explanation is im-
plausible. Whether or not the conjectures above on the effects of turning are
correct needs further theoretical and experimental study.

4Yes, GI Taylor. This occurs when a substance (dye, say) is released into liquid flowing
along a pipe at a point. The velocity profile is parabolic and so the initial dose of dye is
stretched longitudinally by the flow, and diffuses laterally. The net effect is an apparent
longitudinal diffusion coefficient that is much larger than the molecular diffusivity. A similar
effect occurs when a contaminant is advected in a groundwater flow through porous rock: the
shearing that takes place in the flow through the pores greatly enhances diffusion.
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Shear flow
Access for fresh nutrient

Depleted zone

Figure 21.2: Shear-enhanced diffusion.

21.3 Exercises

1. Rigid body motion in Stokes flow. The Stokes flow equations are

µ∇2u = ∇p, ∇ · u = 0.

Show that rigid body motion

u = U(t) + Ω(t) ∧ x

satisfies these equations exactly, and that p = 0 (this does not mean that
there are no stresses in the fluid). This result is a consequence of the
neglect of inertia in the Stokes flow limit.

2. Rise of a buoyant yolk. Consider two-dimensional flow between two
rigid circular cylinders. The inner cylinder is free to move (both trans-
lation and rotation), and has radius R and centre (X(t), Y (t)); the outer
cylinder, which is fixed, has radius R(1 + ε) (0 < ε¿ 1) and centre (0, 0).
The inner cylinder is acted on by an upwards vertical force F . The gap is
filled by liquid of viscosity µ.

Take polar coordinates (r, θ) centred at the origin. Let φ(t) denote the
angle between a line fixed in the inner cylinder and the ray θ = 0. Scal-
ing all distances with R, and writing X = Rx, Y = Ry, show that the
thickness of the gap is

ε(1− x(t) cos θ − y(t) sin θ) = εh(θ, t), say.

Show that, in suitable dimensionless variables and making the lubrication
theory approximation, the pressure p(θ, t) satisfies

∂

∂θ

(
h3

12
∂p

∂θ

)
=
φ̇

2
∂h

∂θ
+
∂h

∂t
,

where φ̇ = dφ/dt.

Show that, neglecting the inertia of the inner cylinder, the force balance
on the inner cylinder is As part of the lubrication

analysis, you should explain
why the contribution to the
horizontal and vertical force
balance of the drag force from
the shearing of the fluid layer
is neglected.

∫ 2π

0

p(θ, t) sin θ dθ = 1,
∫ 2π

0

p(θ, t) cos θ dθ = 0,

where the ‘1’ is the dimensionless version of the vertical force F . Integrate
these equations by parts once and use the equation for p to show that they
reduce to equations of the form

A1(x, y)φ̇+A2(x, y)ẋ+A3(x, y)ẏ = 1,

B1(x, y)φ̇+B2(x, y)ẋ+B3(x, y)ẏ = 0,
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where Ai andBi are complicated integrals involving x and y as parameters.

Lastly calculate the velocity component uθ along the layer and hence the
shear force (neglected above). Assuming that the rotational inertia of the
inner cylinder is negligible, so that the net torque on it vanishes, show
that ∫ 2π

0

φ̇(t)
h(θ, t)

+
h(θ, t)

2
∂p

∂θ
dθ = 0,

which is the third equation to close the system.

Suppose that x(0) = 0, y(0) = y0, so that the cylinder rises vertically.
Show that x and φ are constant, that

ẏ =
(1− y2)

3
2

12
,

and solve this equation. What is the behaviour as y → 1?

3. Rotation of the yolk. Suppose that the inner cylinder of the previous
question is neutrally buoyant (F = 0) and centred at the origin, but that
it is acted on by a small couple equivalent to a vertical force f applied at a
fixed point on its perimeter. Adapt the analysis of the previous question to
find a solution in which h(θ, t) is constant and equal to 1, but φ(t) varies.
Find the relevant dimensionless scales and show that with a suitable choice
of origin for φ, φ(t) satisfies

cosφ = 2πφ̇

(the cosine on the left comes from taking the component of the vertical
force tangent to the cylinder). Solve this equation and analyse its large-
time behaviour.

“The square root of a circle is a flat plane.”



Chapter 22

Multiple scales and other
methods for nonlinear
oscillators

We end this book with two short chapters on other aspects of asymptotic expan-
sions. This chapter deals with nonlinear oscillators and similar problems (plan-
etary motion is an early example), and the final chapter covers the WKB/ray
approach to slowly-modulated linear systems which, although related to the
methods of this chapter, is important enough to deserve its own treatment.

Boundary layer techniques are designed to help when a regular expansion
goes wrong in a small layer near a boundary (or elsewhere). A quite different
situation arises for many nonlinear oscillator models. Here a regular expansion
works well for an order-one time, but it drifts away from the true solution as
small errors accumulate. A battery of methods has been devised to handle this
problem, and we look at one rather limited but easy one, the method of Poincaré
and Linstedt, and one very general technique, the method of multiple scales.

22.1 The Poincaré–Linstedt method

Let us recall our discussion of small-amplitude oscillations of a pendulum in
Section 13.6. We aim to solve

d2θ

dt2
+ sin θ = 0

with θ = εa0 and dθ/dt = 0 at t = 0. The smallness of ε guarantees the smallness Use an energy argument to
prove this.of the oscillations. We showed in Section 13.6 that a regular expansion leads to

a solution of the form

θ(t) ∼ εa0 cos t+ ε3θ3(t) + · · · ,

where θ3(t) contains a secular term proportional to t sin t. When t = O(1/ε2),
the combination ε3t sin t is the same size as the first term a0 cos t and the ex-
pansion is invalid. We need to sort this out.
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Let us first write θ(t) = εφ(t) as we should have done in the first place.
Then, the first two terms in the expansion of sinφ give

d2φ

dt2
+ φ =

ε2

6
φ3 + o(ε2),

or, writing δ = ε2/6 to save arithmetic,

d2φ

dt2
+ φ = δφ3 + o(δ),

with
φ = a0,

dφ

dt
= 0 at t = 0.

The trick here is to expand the period (or frequency) in powers of δ as well
as expanding φ. So, we seek a solution φ(t) such that

φ(t+ 2π/ω) = φ(t)

for all t, where φ and ω both have expansions

φ ∼ φ0 + δφ1 + · · · , ω ∼ ω0 + δω1 + · · · ;

obviously ω0 = 1 but we’ll derive this en route to more useful results.
We introduce a scaled time τ = ωt, so that we have 2π-periodicity in τ :

φ(τ + 2π) = φ(τ). This gives us

ω2 d
2φ

dτ2
+ φ = δφ3.

Substituting for the expansions for ω and φ and collecting terms of O(1) and
terms of O(δ), we get

ω2
0

d2φ0

dτ2
+ φ0 = 0,

so the periodicity gives ω0 = 1 and then φ0 = a0 cos τ : no surprises there. At
O(δ), we find

d2φ1

dτ2
+ φ1 = φ3

0 − 2ω1
d2φ0

dτ2

= a3
0 cos3 τ + 2ω1 cos τ

= 1
4a

3
0 cos 3τ +

(
3
4a

3
0 + 2ω1a0

)
cos τ.

This time, we can eliminate the secular terms, which arise from the resonance
between cos τ on the right-hand side, and cos τ which is also a solution of the
homogeneous equation. We just set its coefficient equal to zero, and so we take

ω1 = −3a2
0

8
.

The drift is illustrated in Figure 22.1. It’s then straightforward to show that

φ1 =
a3
0

32
(cos τ − cos 3τ) .

If you want, you can verify this result by integrating the full pendulum equation
exactly and then expanding the period for small initial amplitude.

This simple example illustrates the method, which consists simply in ex-
panding the frequency of oscillation in powers of ε. There are examples for
practice in the Exercises; we move on to greater things.
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Figure 22.1: Gradual drift of a solution of the linear pendulum equation (full
curve) from the full solution (dashed). Here the initial amplitude is 0.5. As
expected, the frequency of the full solution is slightly lower.

22.2 The method of multiple scales

The Poincaré–Linstedt method is rather limited in its applicability. Much more
powerful is the method of multiple scales, which is built around the recognition
that the solution changes in different ways over different timescales (or space
scales: it is a flexible method too). Thus, in the pendulum problem, the ba-
sic oscillation is on an O(1) time scale, while the phase drifts away from its
linearised-theory value on a scale of O(1/ε). The new idea of the method of
multiple scales is to introduce new independent variables, one to describe each
time scale, and to regard the solution as a function of this extended set of in-
dependent variables. This looks really weird until you get used to it, but it
works.

Consider, then, the pendulum problem in the form

d2φ

dt2
+ φ = δφ3 + o(δ),

with
φ = a0,

dφ

dt
= 0 at t = 0.

Introduce the new slow time
t1 = δt

which only varies by O(1) if t (the fast time) varies by O(1/δ). Then, regard
φ as a function Φ(t, t1) of both time variables. This entails replacing the time
derivative d /dt by a partial derivative: using the chain rule:

d

dt
(Φ(t, t1(t))) =

∂Φ
∂t

+
∂φ

∂t1

∂t1
∂t

=
∂φ

∂t
+ δ

∂Φ
∂t1

,

and so
d

dt
→ ∂

∂t
+ δ

∂

∂t1
.

Thus, we have

∂2Φ
∂t2

+ 2δ
∂2Φ
∂t∂t1

+ δ2
∂2Φ
∂t1

2 + Φ = δΦ3 + o(δ),
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with
Φ = a0,

∂Φ
∂t

= 0 at t = 0.

Now, we use a regular expansion Φ ∼ Φ0 + δΦ1 + · · · , to find, at leading order,

∂2Φ0

∂t2
+ Φ0 = 0, Φ0 = a0,

∂Φ
∂t

= 0 at t = 0.

The solution of this problem is

Φ0(t, t1) = A(t1) cos (t+ ψ(t1)) ,

where A(t1) and ψ(t1) are undetermined. All we know about these functions is
that A(0) = a0, ψ(0) = 0. Think about this: if t = 0, then certainly t1 = 0, and
indeed if t = O(1) then t1 is small. These conditions are effectively matching
conditions joining the initial ‘fast’ regime onto the subsequent ‘slow’ regime. Put
another way, while t is O(1), the leading order solution in a regular expansion
is just a0 cos t, consistent with A(0) = a0, ψ(0) = 0.

We have to go to O(δ) to find A(t1) and ψ(t1). We have

∂2Φ1

∂t2
+ Φ1 = −2

∂2Φ0

∂t∂t1
+ Φ3

0

= 2
(
dA

dt1
sin(t+ ψ) +A

dψ

dt1
cos(t+ ψ)

)

+
1
4
A3 (3 cos(t+ ψ) + cos 3(t+ ψ)) .

This is to be solved with Φ1 = ∂Φ1/∂t = 0 at t = 0. Inspecting the right-hand
side, we see that secular terms will appear in Φ1 unless we choose

dA

dt1
= 0, 2A

dψ

dt
+ 3

4A
3 = 0.

Thus, A is constant and equal to a0, while ψ = − 3
8a

2
0t1 = − 3

8a
2
0δt. This is

exactly the same result as we found using Poincaré–Linstedt.

There are several things to say about this calculation. The most important
is that, although the manipulation looks very similar to Poincaré–Linstedt, the
method of multiple scales is completely different in spirit and much more general
and powerful. Poincaré–Linstedt is essentially limited to analysis near periodic
orbits, while multiple scales can handle many other problems (see Exercises 3
and 4 for the contrast). In particular, the amplitude and phase of the oscillation
are allowed to drift by O(1) as functions of the slow time t1, rather than just
being close to their leading-order values. Multiple scales can also handle prob-
lems such as heat conduction in a medium with a thermal conductivity that
varies rapidly (on the fast scale), and many others.

The process of eliminating secular terms is, essentially, the Fredholm Alter-
native, in that it works by ensuring that the right-hand side of the equation for
Φ1 is orthogonal to the periodic solutions (‘eigensolutions’) of the differential
operator on the left. In this way, the apparent indeterminacy that is introduced
by replacing the single independent variable t by the pair t and t1, which man-
ifests itself in the unknown functions A and ψ, is resolved by the application
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of the Fredholm Alternative at the next order in the expansion; this is an idea
we see again in Chapter 18. If we had continued with the calculation above, we
would have found that Φ1 contained more arbitrary functions, which have to be
found by going to higher order. However, if we want to go to O(δ2), we have to
introduce a new, even slower, timescale t2 = δ2t (we also have to expand sin θ in
the original problem to higher order) and the complexity increases very rapidly.

22.3 Relaxation oscillations

In all the previous examples, we have looked at systems whose behaviour is, to
leading order, a linear spring system (simple harmonic motion), with a small
nonlinearity in the spring, damping or both. The primary balance is thus be-
tween acceleration and the spring force. Our final example of oscillatory be-
haviour is what is called a relaxation oscillator in which the inertia of the system
is small, and a priori the balance is between the spring and the damping, giving
a first order system with multiple states. The acceleration term only comes in
when the system has a rapid transition from one state of the first-order system
to another. A quick glance at an EEG trace strongly suggests that physiological
systems can show such behaviour, and boom-bust populations of various species
(lemmings, for example) suggest that they occur in population dynamics models
as well. Relaxation oscillators are used to model both kinds of system (see [41]).

For example, consider the following version of the FitzHugh–Nagumo system,
which has been used to model electrical activity in neurons. As the second-order
equation

ε
d2u

dt2
+
du

dt
(ε− f ′(u)) + u = 0, f(u) = u(1− u2), 0 < ε¿ 1,

it looks unpromising, but written in what is sometimes called Liénard form1 as
the first-order system

ε
du

dt
= f(u)− v, (22.1)

dv

dt
= u− v, (22.2)

some structure is apparent.

1Consider the differential equation

d2u

dt2
+ g(u)

du

dt
+ u = 0.

It can be written as a first-order system by putting du/dt = V , dV/dt = −g(u)V −u. However,
if g is not well-behaved, as might be for example in a model of stick-slip oscillations, this system
may not handle well numerically. Liénard’s idea was to write the original equation as

d

dt

ţ
du

dt
+G(u)

ű
+ u = 0;

then v = du/dt+G(u) leads to the system

du

dt
= v −G(u),

dv

dt
= −u.

Because integration is a smoothing operator, the new system should have better properties.
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Figure 22.2: Relaxation oscillations for the FitzHugh–Nagumo system. Bold
arrows indicate the stability of the curve v = f(u).

Consider Figure 22.2, which shows the graph of f(u) = u(1 − u2). If we
rewrite (22.1) as

du

dt
=

1
ε

(f(u)− v)) ,

we see that if we start the system off at any point in the (u, v) plane away
from v = f(u), consideration of the sign of f(u) − v on the right-hand side
of this equation shows that u immediately changes on a fast timescale of O(ε)
until the point (u(t), v(t)) lies on one of the outer parts of the curve v = f(u),
from u = −∞ to u = uQ = −1/

√
3 or from u = uP = 1/

√
3 to u = ∞. The

middle part of this curve is unstable. Moreover, during this rapid transition, vMake the change of variable
t = ετ to see that du/dτ is
O(1) but dv/dτ is O(ε).

remains approximately constant. Thus, after an initial fast horizontal transient,
the general idea is that ‘most of the time’, we can ignore the left-hand side
of (22.1), which therefore reduces to the algebraic relation v = f(u). Under
these slow dynamics, the solution travels along the curve v = f(u) according to
the equation

dv

dt
= f ′(u)

du

dt
= u− v = u− f(u).

On Q′P , f(u) < u and so v can only increase. However, it can only increase
until point P , where u = uP = 1/

√
3 and f ′(u) = 0. It then turns left and makesThe left turn can be analysed

as an inner region of size

O(ε
2
3 ), as can the region

around P ′.

a sudden transition, on a timescale of O(ε), to the point P ′ on the other stable
branch. During this transition, which is essentially an interior layer for the
system, v again remains approximately constant, and so P ′ is (−2/

√
3, 2/3

√
3).

Solving f(u) = f(1/
√

3), we
know there is a double root at
u = 1/

√
3 so the other root is

easy to find.

From here, the solution proceeds down the left-hand stable branch of v = f(u),
and makes another transit to the right-hand branch at Q. In this way, the
oscillation proceeds by a series of slow changes separated by rapid transitions
(relaxations). The period of oscillation is, to within O(ε), just twice the time
taken to go from P ′ to Q, namely

If the curve v = f(u) were not
odd-symmetric, we would have
to work out two integrals,
from P ′ to Q and Q′ to P .
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Figure 22.3: The FitzHugh–Nagumo system: evolution of u(t). Here ε = 0.02.
Matlab’s routine ode45 had no trouble even though ε is small enough to warrant
using a stiff solver.

2
∫ uQ

uP ′

f ′(u)
u− f(u)

du = 2
∫ −1/

√
3

−2/
√

3

1− 3u2

u3
du

= 6 log 2− 9
4

≈ 1.91.

Figure 22.3 shows a numerical solution of the equation with ε = 0.01 and u(0) =
0, v(0) = −1. The actual period is slightly greater than our prediction because
of the turn-round near P and Q.

22.4 Exercises

1. Exact pendulum. Multiply the undamped pendulum equation

d2θ

dt2
+ sin θ = 0

by dθ/dt and integrate, using the initial conditions θ = εa0 and dθ/dt = 0.
Separate the variables in this first order equation to get an expression for
half the period (if you want to look it up, it’s an elliptic integral). Expand
the integrand for small ε and integrate to confirm the Poincaré–Linstedt
result.

2. Precession of the perihelion of Mercury. Recall that under New-
tonian theory the planets move around the sun under the central force
−GM/r2 per unit mass, where M is the sun’s mass and G is the universal
gravitational constant (the forces due to other planets are ignored). Sup-
pose that when it is nearest the sun (perihelion), Mercury is at a distance
a from the sun and is travelling with speed v. Show that the equations of
motion in plane polar coordinates,

r̈ − rθ̇2 = −GM/r2, r2θ̇ = av,
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and the substitution u = 1/r, lead to

d2u

dθ2
+ u = GM/a2v2, with u = 1/a,

du

dθ
= 0 at θ = 0,

and show that u = A+B cos θ for some A and B which you should find.Why is there no sin θ term?

Note that the orbit is 2π–periodic in θ.

The theory of general relativity gives the modified equation

d2u

dθ2
+ u =

GM

a2v2

(
1 +

3v2a2

c2
u2

)
,

where c is the speed of light. Writing ε = v2/c2, find the solution up
to O(ε) with the same initial conditions, and show that it is not 2π-
periodic in θ. Show that the next perihelion (i.e the next value of θ at
which du/dθ = 0) occurs at θ ∼ 2π(1 + 3(GM/av2)2ε). (Note that if
u(θ; ε) ∼ u0(θ)+ εu1(θ)+ · · · , and u′0(θ0) = 0, then the value of θ at which
u′ = 0 is found by writing it as θ ∼ θ0 + εθ1 + · · · , and expanding the
equation u′0(θ0 + εθ1 + · · · ) + εu′1(θ0 + · · · ) = 0 to O(ε). Here θ0 = 2π.)

Confirm your analysis by carrying out the Poincaré–Linstedt expansion.
Then do the problem by multiple scales.

This result has been used as a test of general relativity. If a = 46 million
km, v ≈ 60 km/s, G = 6.6710−11 N m2 kg−1, how big is the shift per
(Mercury) year?

3. Van der Pol and Rayleigh, I. The Van der Pol equation is

d2x

dt2
+ ε(x2 − 1)

dx

dt
+ x = 0, ε > 0.

It was written down as a model for a spontaneously oscillating valve
circuit: by considering the damping term explain why this is plausible.
Where (for what values of x and dx/dt) is energy taken out and where is
it put in?

Rayleigh’s equation

d2x

dt2
+ ε

(
1
3

(
dx

dt

)2

− 1

)
dx

dt
+ x = 0

was written down in connection with a model for a violin string. Show that
it can be transformed into the Van der Pol equation by differentiation.

Take ε ¿ 1 in the Van der Pol equation, and show by Poincaré–LinstedtYou may need one or other of
the expressions
sin3 θ = 1

4
(3 sin θ − sin 3θ),

cos3 θ = 1
4
(3 cos θ + cos 3θ).

that the periodic solution of the form A cos τ + εu1(τ)+ · · · , where τ = ωt
and ω ∼ 1 + εω1 + · · · , is only possible if A = 2 and ω1 = 0.

Harder: draw the phase plane, noting the existence of this periodic solu-
tion (known as a limit cycle). This is shown in Figure 22.4.

4. Van der Pol and Rayleigh, II. The Van der Pol equation

d2x

dt2
+ ε(x2 − 1)

dx

dt
+ x = 0, 0 ¿ ε < 1
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x

ẋ

Figure 22.4: Two solutions of the Van der Pol equation, in the phase plane.
Here ε = 0.05. Both the dashed curve and the solid curve approach the limit
cycle as t→∞.

with x = 1, dx/dt = 0 at t = 0 is a standard example of the application
of multiple scales. Find a regular perturbation expansion correct to O(ε)
and show that it has secular terms. Show that a multiple scale expansion
in terms of t and t1 = εt gives a solution

X(t, t1) = A(t1) cos(t+ ψ (t1)) A(0) = 1, ψ(0) = 0,

at leading order, and from the O(ε) terms that

dA

dt1
= 1

8A(4−A2),
dψ

dt1
= 0.

Hence find A(t1). Compare with the result of Exercise 3. Use a package
such as Matlab to solve the equation numerically and plot the exact and
approximate solutions.

5. Relaxation oscillations for Van der Pol. Consider the ‘small-inertia’
Van der Pol equation

ε2
d2x

dt2
+ (x2 − 1)

dx

dt
+ x = 0, 0 ¿ ε < 1.

Write it in Liénard form as a first-order system and analyse relaxation
oscillations. Show that the period is approximately 3− 2 log 2.

6. Two slow time scales. Show that the solution of

d2x

dt2
+ 2ε

dx

dt
+ x = 0, x = 1,

dx

dt
= 0 at t = 0

(another standard example in the subject) is

x(t) = e−εt cos
(
t(1− ε2)

1
2

)
.
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Expand this for small ε with t fixed and O(1) to show that secular terms
arise. Carry out a multiple scale analysis with two slow times, t1 = εt and
t2 = ε2t, to retrieve the approximate solution

x(t) ∼ e−εt cos
(
t(1− 1

2ε
2)

)

in a systematic manner.

“
dy

dx
= ex . . . looks pretty nonlinear to me.”



Chapter 23

Ray theory and other
‘exponential’ approaches

23.1 Introduction

Consider the equation

ε2
d2y

dx2
+ y = 0, 0 < ε¿ 1,

whose solutions are
y(x; ε) = e±ix/ε.

These solutions oscillate rapidly, on a fast timescale of O(ε). Unlike the equation

ε2
d2z

dx2
− z = 0,

whose solutions are
z(x; ε) = e±x/ε,

which is typical of boundary layers with their spatially-limited zones of rapid
change, the function y(x; ε) changes rapidly everywhere. Although we can find
this function explicitly, we need to develop methods to solve common problems
such as

ε2
d2y

dx2
+ V (x)y = 0, 0 < ε¿ 1,

where V (x) is a smooth positive function varying on the O(1) time scale. A
good guess at the structure of the problem would be that the solution consists of
a slowly modulated rapid oscillation, and this turns out to be correct. Although
problems of this kind can, with some contortions, be handled by the multi-
ple scale method, a specialised battery of techniques with the general name of
WKB1 (for ordinary differential equations) or ray theory (for partial differential
equations) has grown up to deal with linear problems, and we now describe this.

1The letters stand for Wentzel, Kramers and Brillouin who were at least partially responsi-
ble for the theory, although other famous names such as Liouville and Green also contributed.
See [26] Section 7.5. Both multiple scales and WKB are special cases of Kuzmak’s method.

283
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23.2 Classical WKB theory

The equation2

ε2
d2y

dx2
+ V (x)y = 0, 0 < ε¿ 1, V (x) > 0,

occurs in many contexts, for example in quantum mechanics where it is derived
from Schrödinger’s equation and ε is proportional to Planck’s constant, or in
investigating the high-frequency eigenmodes of a vibrating system. The classical
WKB approach to it is motivated by the idea that the solution should be a rapid
oscillation, on a scale of O(ε), whose amplitude A and phase u both vary slowly,
on a scale of O(1). Thus, we pose an ansatz (an assumed for of the solution)3

y(x; ε) ∼ A(x; ε)eiu(x)/ε,

where the amplitude A(x; ε) may be expanded as a regular series in ε, although
one very rarely goes to the trouble of finding more than the first term. Differ-
entiating and substituting in, we have

ε2
(
− (u′)2

ε2
A+

i

ε
(Au′′ + 2A′u′) +A′′

)
eiu/ε + V (x)eiu/ε = 0,

where ′ = d /dx. We can now expand A(x, ε) ∼ A0(x)+ εA1(x)+ · · · and collect
terms, to find at leading order that

From O(1), (u′)2 = V (x)
From O(ε), A′′0u+ 2A′0u

′ = 0

The first of these equations is just an integral to evaluate, while the second can
be integrated once to show that

A2
0u
′ = constant, so A0 = constant× V −

1
4 .

Hence we have the two solutions in the approximate form

y(x; ε) ∼ (
V (x)

)− 1
4 e±

i
ε

R x(V (s))
1
2 ds.

Note immediately that this expansion cannot be expected to be valid if V (x)
vanishes at any point in the interval of interest. Points of this kind are known
as turning points and a separate boundary layer analysis, involving propertiesWhy Airy? If, say, V (0) = 0

then in general
V (x) ∼ ax+ · · · near x = 0
and the original equation is
approximated by Airy’s
equation.

of Airy functions, is necessary near them. The details are beyond the scope of
this book.

But speaking of Airy’s equation

d2Y

dX2
−XY = 0,

let us at least find the behaviour of its solutions for large X. Write X = x/δ
where δ is an artificial small parameter whose inverse measures the largeness of
X, and then with Y (X) = y(x) we get

δ3
d2y

dx2
− xy = 0.

2The ‘potential’ V may also depend on ε but this is a mere complication as long as it does
so in a regular-perturbation way.

3It is also possible to expand y ∼ eiu0/ε+u1+εu2+···, but this is more cumbersome.
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Reading off from the general WKB formula above, the approximate solutions
for x < 0 (for which V (x) = −x > 0) are proportional to

x−
1
4 e±

2
3 i(|x|/δ)−

3
2 ,

or, in original variables, two linearly independent solutions have asymptotic
behaviour

Y (X) ∼ X− 1
4 e±

2
3 i|X|− 3

2

as X → −∞. The same line of argument can be used to show that the behaviour
as X →∞ is

Y (X) ∼ X− 1
4 e±

2
3 X− 3

2 ,

showing that one solution decays rapidly and the other grows. These are in
fact Ai(X) and Bi(X) respectively (see Figure 4.6 on page 67), and a more so-
phisticated analysis involving integral representations for Ai and Bi is needed to
establish the so-called connection formulae that join up their behaviour for large
positive X to the oscillatory behaviour for large negative X. These formulae
are used to resolve the details of turning points as mentioned above, and they
lead on to the fascinating topic of Stokes lines, which are intimately involved
in the question of optimal truncation of asymptotic expansions, as mentioned
briefly in Chapter 12.

23.3 Geometric optics and ray theory: why do
we say light travels in straight lines?

It is natural to generalise the WKB analysis to equations of the form ε2∇2ψ +
V (x)ψ for a scalar function ψ of position x. This equation arises immediately
when we look for high-frequency time-periodic solutions of the wave equation

∂2φ

∂t2
= c2∇2φ.

Setting φ(x, t) = e−iωtψ(x) gives the Helmholtz equation

∇2ψ + k2ψ = 0,

where k = ω/c is the wavenumber, which we assume to be constant for now (that
is, the medium is homogeneous and isotropic). In many practical situations, the
wavelength of the field in question is much smaller than the length scale L of
the solution domain, and nondimensionalisation with the latter scale leads to Note: most treatments don’t

bother with the scaling with
L, and just use 1/k as the
small parameter.

ε2∇2ψ + ψ = 0,

where ε = 1/Lk ¿ 1 is a measure of the ratio of the wavelength to the size of
the domain. As an example, light waves have wavelengths between 400 nm and
700 nm, so for a domain of size 1 m, ε is smaller that 10−6.

Let us work in two dimensions — the generalisation to three is conceptually
easy but arithmetically more complicated. Motivated by the WKB analysis, we
try an approximation

ψ(x, y) ∼ A(x, y; ε)eiu(x,y)/ε,
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which gives us

ε2
(
−A |∇u|

2

ε2
+
i

ε

(
2∇A · ∇u+A∇2u

)
+∇2A

)
+A = 0.

As before, we expand A(x, y; ε) ∼ A0(x, y)+εA1(x, y)+ · · · and at leading order
we find

|∇u|2 = 1, (23.1)

2∇A0 · ∇u+A0∇2u = 0. (23.2)

Equations (23.1, 23.2) are known as the eikonal equation and the transport
equation respectively. The eikonal equation tells us how the phase u(x, y) varies,
and the transport equation determines the amplitude to leading order.

Let’s have a quick preview of the general structure of the solution.

• First, we solve the eikonal equation by Charpit’s method (see Chapter 7),
with suitable boundary data on given boundary curves. The rays it gives
are straight, and are directed along ∇u, so they are orthogonal to the
wavefronts (curves of constant phase, ie level curves of u). These are the
light rays.

• Then we turn to the transport equation. This is a first-order linear partial
differential equation and its characteristics are the rays (the ∇u ·∇A term
tells us this). The term ∇2u in the transport equation can be calculated
fairly easily, since u itself is determined using the same family of charac-
teristics. The upshot is that we can find A on each ray in terms of the
values of A and u (and the derivatives of u) on the boundary curve at the
beginning of that ray.

These two points together explain why we say that light travels in straight lines.
Firstly the rays are straight, and secondly the amplitude of the light on each
ray is determined only by what happens where it originates, and not by whatThe term ∇2u in the transport

equation notwithstanding. happens on neighbouring rays.
Now for some details. Let us suppose that we are given u = u0(s), A0 = a0(s)

on a curve x = x0(s), y = y0(s). Using t for the parameter along the rays,
Charpit’s equations for |∇u|2 = 1, that is p2 + q2 = 1, areWhere, as before,

p =
∂u

∂x
, q =

∂u

∂y
. dx

dt
= 2p,

dy

dt
= 2q,

dp

dt
=
dq

dt
= 0,

du

dt
= 2.

The substitution τ = 2t removes all the 2s above, leaving

dx

dτ
= p,

dy

dτ
= q,

dp

dτ
=
dq

dτ
= 0,

du

dτ
= 1.

These equations have the solution

p(s, τ) = p0(s), q(s, τ) = q0(s), u(s, τ) = u0(s) + τ,

x(s, τ) = x0(s) + τp0(s), y(s, τ) = y0(s) + τq0(s).

This shows immediately that the rays are straight (the second line above), and
that their direction is

(p0(s), q0(s)) = (p(s, τ), q(s, τ)) = ∇u.
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(The question of finding po(s) and q0(s) is more difficult, as we see below.)
Now we turn to the transport equation 2∇A0 · ∇u+A0∇2u = 0, which is

∂u

∂x

∂A0

∂x
+
∂u

∂y

∂A0

∂y
= − 1

2A0∇2u.

Written out like this, we see that the characteristics of the equation for A0

are the same as the rays for u. It remains, however, to find ∇2u and solve
this equation for A0. The details of this calculation are given in Exercise 2 on
page 292, and we skip to the result,

A0(s, τ) = a0(s)

√
T (s)

τ + T (s)
,

where T (s) = T (s) = (q0(s)x′0(s)− p0(s)y′0(s))/(q0(s)p
′
0(s)− p0(s)q′0(s)).

This is a very interesting formula, because the amplitude has the possibility
of blowing up if T (s) (whatever that may tell us) is negative. It is really an
energy conservation statement, relating A2

0 to its initial value a2
0 by a factor that

tells us, among other things, how the spreading out or convergence of the rays
dilutes or concentrates this energy. For the special case in which u0(s) = s and
a0(s) = 1, so that the whole initial curve oscillates with the same amplitude, it
can be shown (Exercise 2 on page 292) that

A2
0(s, τ) = a2

0(s)
1

κ0(s)τ + 1
,

where κ0(s) is the curvature of the initial curve at the starting point of the ray
labelled by s. The term κ0(s)τ is exactly the rate at which neighbouring rays
spread out or converge.

In interpreting this blow-up, we have to bear in mind that there is no re-
quirement that u(x, y) should be a single-valued function (unlike the eikonal
equation as a model for the height of a sandpile). It is perfectly possible to have
several rays of different families through a given point, and the total wavefield is
just the sum of the individual contributions. What causes blow-up in geometric
optics is that the rays form an envelope, known as a caustic, a curve to which all
the rays of a given family are tangent. It is this coincidence of rays that leads
to the build-up in amplitude. Common examples of caustics are the bright lines
you see at the bottom of a swimming pool in sunshine, and the nephroid curve
seen when a cup of milky coffee is illuminated by a parallel beam (we look at
this case below). Of course, the amplitude of the full Helmholtz problem does
not blow up. The singularity in A0 merely indicates that the approximation we
have made is not valid near the caustic. The discrepancy can be resolved by an
inner expansion on a smaller length scale, which also reveals that the field on
the ‘dark’ side of the caustic is exponentially small (the two side of the caustic
are linked via an Airy function), but the details are beyond the scope of this
book.

Let us now do two examples.

The parabolic reflector. Suppose that a constant amplitude parallel beam
along the vector (−1, 0) hits a perfectly conducting reflector in the shape of the



288CHAPTER 23. RAY THEORY AND OTHER ‘EXPONENTIAL’ APPROACHES

parabola y2 = 4x. We show the well known property that all the rays pass
through the focus (1, 0).

The incident wavefield is φi(x, y, t) = e−iω(t+x/c), and we write the whole
wavefield as φi +φr, the latter being the reflected field. Because the reflector is
a perfect conductor, the wavefield vanishes on it. When we make the geometric
optics approximation, this means that we need e−ix/ε + a0e

iu0/ε = 0 on the
reflector, where the second term is the initial value of the reflected field. Thus,
the initial values are

u0(s) = −x0(s), a0(s) = −1, on x = x0(s), y = y0(s).

The parabola can be parametrised as x0(s) = s2, y0(s) = 2s, and the next job
is to find p0(s) and q0(s). Since p2

0 + q20 = 1, it is convenient to write p0(s) =
cos θ(s), q0(s) = sin θ(s). If we differentiate the equation u0(s) = −x0(s) with
respect to s, we find

−x′0 = p0x
′
0 + q0y

′
0,

′ =
d

ds
.

Putting x′0(s) = 2s, y′0(s) = 2, we find the relation s = − tan 1
2θ between p0, q0

and s. The rays are then

x(s, τ) = x0(s) + τp0(s), y(s, τ) = y0(s) + τq0(s),

and they are in the direction (p0(s), q0(s)).
Before proceeding, note that the vector (x′0, y

′
0) is tangent to the reflector.

Its dot product with the unit vector (−1, 0) along the incident beam is −x′0,
while with the unit vector (p0, q0) along the ray it is x′0p0 + y′0q0. As these are
equal, we have showed that the angle of incidence equals the angle of reflection,
a result sometimes called specular reflection; it holds for any reflector shape.

Let us return to the parabola. Eliminating τ between the ray equations, we
find the family of curvesSome trigonometric identity

bashing to be done to show
this. x sin θ(s)− y cos θ(s) = s2 sin θ(s)− 2s cos θ(s)

= sin θ(s).

Thus, y cos θ = (x − 1) sin θ, and all the rays pass through the focus (1, 0) as
promised.

The nephroid. Let us consider a semicircular reflector x2 + y2 = 1, x < 0,
with a plane wave e−ikx incident from x = +∞. As above, we solve the ray
equations with u = −x on the circle (corresponding to a zero field on the
reflector). Parametrising the circle with its arclength s, the ray passing through
(cos s, sin s), π/2 < s < 3π/2, has direction (p0, q0), where a short calculation
shows that p0 = cos 2s, q0 = sin 2s, and this ray is therefore

x = cos s+ τ cos 2s, y = sin s+ τ sin 2s.

Eliminating τ , we have

x sin 2s− y cos 2s = sin s,
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Figure 23.1: Rays and the caustic inside a cup of coffee.

and differentiating this equation with respect to s we have two parametric equa-
tions for the envelope of the rays (see Exercise 4). After tidying up, we find the
envelope in the form

x = sin s sin 2s+ 1
2 cos s cos 2s, y = − sin s cos 2s+ 1

2 sin 2s cos s.

This curve is shown in Figure 23.1: when you put a mug of milky coffee in
the sun, you see a bright caustic in this shape. It is called a nephroid from its
resemblance to a kidney. There are 4 reflected rays through each point outside
the nephroid, and fewer inside.

Before we move on, let us return to the question of caustics. We stated above
that the apparent singularity can be resolved by an inner expansion near the
caustic. There are many other situations where local expansions of this kind are
necessary. One example is the shadow boundary between light and dark regions.
Another occurs when an incident field hits a sharp corner, or just grazes a body;
from these regions spring not only shadow boundaries but also ‘creeping rays’
which travel round onto the shadowed side along the body (for concave bodies
these rays give the whispering gallery effect) and ‘evanescent rays’ which leave
the body, taking with them an exponentially small field (so no shadow is truly
dark). This is an active field of research (a typical application, regrettably
military, is the calculation of any interference between airborne radar and the
receivers on the same aircraft), and we leave it with the thought that one can
contemplate complex solutions of the eikonal equation |∇u|2 = 1, giving growing
or decaying exponential fields to complement the oscillatory ones associated
with real solution, and giving a degree of the unification that is hinted at by
comparing the equations ε2d2y/dx2 + y = 0, ε2d2z/dx2 − z = 0 mentioned at
the beginning of the chapter. This theory of complex rays is in its infancy, but
a good place to read about it is [8].
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23.4 Kelvin’s ship waves

For our final example, we turn to a famous example from hydrodynamics. If
you feed the ducks, or if you watch a sailing boat from above, you will see a
prominent V-shaped wave patter behind any body moving with constant velocity
on the surface of the water. The pattern differs in detail from body to body,
but the outline is always the same: the wake is contained in a V whose angle
appears to be insensitive to the size of the body or the details of its shape,
method of propulsion etc. Why? In this section we show the remarkable result,
due to Lord Kelvin, that the far-field wave pattern is contained in a wedge of
half angle sin−1 1

3 ≈ 19◦28′.
Let us assume that the water is very deep and that we are far from the

shore, so that it can be taken to occupy the region z < 0, −∞ < x, y < ∞.
Suppose a ship is moving on the surface along the x axis with speed V . We
can do very well with the standard linear water waves model (see Section 13.5.2
with the obvious generalisation to three dimensions). The flow is inviscid and
irrotational, so the velocity potential φ(x, y, z, t) satisfies

∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
= 0 in the water z < 0,

with
|∇φ| → 0 as x2 + y2 + z2 →∞.

and the linearised kinematic and Bernoulli conditionsA small parameter measuring
the size of the elevation has
put in such a fleeting
appearance that it was never
written down. . .

∂φ

∂z
=
∂h

∂t
,

∂φ

∂t
+ gh = 0 on z = 0 away from the ship,

where h(x, y, t) is the surface elevation. Eliminating h, these can be combined
into

g
∂φ

∂z
+
∂2φ

∂t2
= 0 on z = 0 away from the ship,

Let us consider solutions which are steady in a coordinate system moving
with the ship, so that the velocity potential has the form φ(x − V t, y, z). Let
us also look for variations on a large horizontal scale and correspondingly large
time scales, so that x, y and t are scaled by

x− V t =
X

ε
, y =

Y

ε
, t =

T

ε

where ε¿ 1. This ε is an artificial small parameter which measures the largeness
of the distances we are looking on in comparison with the size of the ship. In
these coordinates, the problem for travelling wave solution of the form φ(x −
V t, y, z) = Φ(X,Y, z) is

ε2
(
∂2Φ
∂X2

+
∂2Φ
∂Y 2

)
+
∂2Φ
∂z2

= 0, z < 0, (23.3)

withRemember that ∂ /∂T is
replaced by −V ∂ /∂X for a
travelling wave. g

∂Φ
∂z

+ ε2V 2 ∂
2Φ

∂X2
= 0 (23.4)

on z = 0 away from the ship, which is now at X = 0.
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In the spirit of ray methods, we look a solution in the form

Φ(X,Y, z) ∼ A(X,Y, z)eiu(X,Y,z)/ε

as ε→ 0. Putting this into (23.3) gives

ε2

(
−A
ε2

(
∂u

∂X

)2

+ · · · − A

ε2

(
∂u

∂Y

)2

+ · · ·
)

− A

ε2

(
∂u

∂z

)2

+
i

ε

(
2
∂A

∂z

∂u

∂z
+A

∂2u

∂z2

)
+
∂2A

∂z2
= 0

(the · · · indicates smaller terms which do not contribute at this order). Ex-
panding A ∼ A0 +O(ε) as usual, we see from the O(ε−2) terms that

∂u

∂z
= 0,

and then it follows at O(1) that

∂2A0

∂z2
− (p2 + q2)A = 0, where p =

∂u

∂X
, q =

∂u

∂Y
.

This is an ordinary differential equation (the dependence on X and Y is para-
metric) whose solution that vanishes at z = −∞ is

A0(X,Y, z) = a0(x, y)ez(p2+q2)
1
2 .

Putting this into (23.4), we find that

V 4p4 = g2(p2 + q2).

We have arrived at a nonlinear equation for u(X,Y ). The ray (Charpit) equa-
tions for it are

dx

dt
= 4V 4p3 − 2gp = g

2p2 + q2

p
,

dy

dt
= −2gq,

dp

dt
=
dq

dt
= 0,

du

dt
= 4V 4p4 − 2gp2 − 2gq2 = 2V 4p4.

As p and q are constant on rays, the rays are straight and their slope is

dy

dx
= − pq

p2 + 2q2
= − λ

λ2 + 2
,

where λ = p/q. Now whatever values λ takes, elementary calculus shows that
the slope of the rays can never leave the interval (−1/2

√
2, 1/2

√
2). That is,

they are confined to a wedge whose half-angle is sin−1 1
3 ; remarkably, this result

is independent of V (and g). More work is needed solve Charpit’s equations to
establish the full ray pattern (the rays are curves u = constant), but roughly
speaking the lines Y = ±X/2√2 are lines of singularities at which the amplitude
of the wake is large, and in addition to rays emanating from the region near
the ship (which carry information about the details of its hull shape and other
features), there are rays which form arcs, bowed towards the ship, across its
line of travel, and these too can easily be seen. It is a major aim of designers
of high-speed sea transport to minimise energy loss to waves in the ship’s wake,
and the calculation we have just given is a part of that endeavour. Wave drag
is probably less of a problem for ducks, such as the two shown in Figure 23.2,
with which we end this chapter and indeed the book.
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Figure 23.2: Duck wakes. (Photos by Tom R. Laman.)

23.5 Exercises

1. An eigenvalue problem. Suppose that λ is an eigenvalue for the prob-
lemWe say λ is an eigenvalue

because there is always the
trivial solution y = 0, and a
non-trivial solution exists only
for certain values of λ.

−(1 + x2)
d2y

dx2
= λ2y, −∞ < x <∞, y(±∞) = 0.

Show that the large eigenvalues are of the form 2k, with an odd associated
eigenfunction, and 2k+1, with an even one, where k is a large positive or
negative integer, as follows.

Write λ = 1/ε¿ 1, and show that WKB solutions are proportional to

(1 + x2)
1
4 e±(i/ε) tan−1 x,

equivalent to

(1 + x2)
1
4 cos

(
tan−1 x

ε

)
, (1 + x2)

1
4 sin

(
tan−1 x

ε

)
.

Deduce that y can only vanish at ±∞ if π/2ε = (2k+1)π/2 for the cosine
solutions, and π/2ε = kπ for the sine solutions. Verify that the prefactor
(1 + x2)

1
4 does not prevent y from tending to zero at ±∞.

2. Solution of the transport equation. The rays for the eikonal equation
are

x(s, τ) = x0(s) + τp0(s), y(s, τ) = y0(s) + τq0(s), ′ =
d

ds
.

Define

J =
∂(x, y)
∂(s, τ)

=
(
x′0 + τp′0 y′0 + τq′0

p0 q0

)
.

Show that
detJ = (q0p′0 − p0q

′
0) (τ + T (s)) ,

where

T (s) = (q0(s)x′0(s)− p0(s)y′0(s))/(q0(s)p
′
0(s)− p0(s)q′0(s)).
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Show from the transport equation that

2
A0

∂A0

∂τ
= −∇2u.

Invert J and use the relation

∇2u =
∂p

∂x
+
∂q

∂y

= p′0(s)
∂s

∂x
+ q′0(s)

∂s

∂y

to show that ∇2u = J−1∂J/∂τ . Deduce that

∂

∂τ

(
A2

0J
)

= 0, ∇2u =
1

τ + T (s)
.

Finally show that

A0(s, τ) = a0(s)

√
T (s)

τ + T (s)
.

Suppose that u0(s) = s, a0(s) = 1 on the initial curve. Show that on each
ray

A0(s, τ) =

√
1

κ0(s)τ + 1
,

where κ0(s) is the curvature of the initial curve at the point at which
the ray leaves it. (It will help to take s to be arclength along Γ, so that
κ0(s) = y′′0x

′
0 − x′′0y

′
0.)

This last result shows explicitly how the spreading out or contracting of
the rays is determined by the curvature of the initial curve.

3. Snell’s law. The refractive index of a medium is defined as the ratio of
the speed of light in a vacuum to the speed of light in the medium. The
refractive index of a vacuum is thus 1. Show that the eikonal equation for
waves of frequency ω in a medium of refractive index n is |∇u|2 = n2.

The half-plane x < 0 is made of material of refractive index n1, and
x > 0 has refractive index n2. Light rays in x < 0 are along the vector
(cos θ1, sin θ1). Show from the eikonal equation, assuming that the phase
is continuous across x = 0, that in x > 0 they are along (cos θ2, sin θ2),
where (Snell’s law)

sin θ1
sin θ2

=
n2

n1
.

If n2 < n1, deduce that rays can only propagate into x > 0 if θ1 is such
that sin θ1 < n2/n1 (rays at larger angles are totally internally reflected).

4. Envelopes and string art. Suppose that a family of curves f(x, y; s) =
0, parametrised by s, all touch a curve F (x, y) = 0, called the envelope
of the family f(x, y; s) = 0. (For example, the curves y =

(
1
3 (x− s)

)3 of
Exercise 6 on page 53 are all tangent to the x axis, which is the singular
solution of dV/dx = −V 2

3 discussed there.)
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Draw a picture and explain why the tangency condition means that the
intersection of a given member of the family f(x, y; s) = 0 with F (x, y) =
0 is a double root. Hence show that F (x, y) is found by eliminating s
between

f(x, y; s) = 0,
∂f

∂s
(x, y; s) = 0.

(Alternatively, these equations give a parametric representation of the
solution with s as the parameter.)

Consider the family of lines generated by joining the point (s, 0) to (0, 1−
s). Find its envelope ((x − y)2 + 1 = 2(x + y); why is this obviously a
parabola?).

A rod of length 1 slides with one end on the y axis and the other on the x
axis. Use the angle it makes with one of the axes as a parameter to show
that the envelope of its positions is the astroid x

2
3 + y

2
3 = 1.

[There was a fortunately short-lived phase of ‘string art’ made by ham-
mering lines of nails into a board and stretching highly-coloured shiny
string between them, the endpoints of successive lengths of string being
related as in the examples above. The result was a complicated web with
(a discrete approximation to) an envelope, often in the shape of a sailing
boat or similar object. They can occasionally be seen in charity shops and
holiday cottages even now and will doubtless at some point become highly
collectable.]

5. Rays in an ellipse. Consider the ray equations for u2
x + u2

y = 1 inside
the ellipse x2/a2 + y2/b2 = 1, with u = 0 on its boundary (x0(s), y0(s)).
Show that the direction of a ray is (p0(s), q0(s)), and by differentiating
the condition u = 0 on the ellipse with respect to s, show that the rays
are normal to the boundary. Use the parametric form (a cos s, b sin s) for
the boundary to show that the normals are

ax sin s− by cos s = (a2 − b2) sin s cos s,

deduce that there is a caustic on the envelope of these curves, namely

x =
a2 − b2

a
cos3 s, y =

a2 − b2

b
sin3 s.

Sketch this curve (it is a scaled astroid). Note that the caustic itself can
have cusp singularities; they are associated with maximum and minimum
values of the curvature of the boundary. Note also the difference between
the geometric optics interpretation of the solution and the sand-pile in-
terpretation, in which there is a ridge line joining the foci of the ellipse.
Show that the rays intersect the ridgeline before they meet the caustic.

6. A string art nephroid. Show that the rays in the nephroid caustic
above have the equations x sin 2s − y cos 2s = sin s, and hence that they
meets the circle again at the point (cosα, sinα) where α = 3s− π. Hence
explain how to make a string art nephroid.

Find the envelope obtained by replacing 3 by 2 in the definition of α (that
is, the envelope of the lines from (cos s, sin s) to (cos(2s− π), sin(2s− π));
it is a cardioid, with one cusp, resembling a heart). What happens if you
replace 3 by 1?
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“It’s because the minuses are upside down.”
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ing ideas on egg incubation, ESGI report (2003). Available from
www.math-in-industry.org.

[14] Engl, H. Mathematics and its Applications: Regularization of Inverse Prob-
lems, Kluwer (2003).

[15] Fauvel, J, Flood, R & Wilson, R (eds), Music and Mathematics, Oxford
University Press (2003).

297



298 BIBLIOGRAPHY

[16] Fletcher, NH & Rossing, TD, The Physics of Musical Instruments,
Springer–Verlag, New York (1998).

[17] Fowkes, ND & Mahoney, JJ, An Introduction to Mathematical Modelling,
Wiley UK (1994).

[18] Fowler, AC, Mathematical Models in the Applied Sciences, Cambridge Uni-
versity Press (1997).

[19] Fowler, AC, Frigaard, I & Howison, SD, Temperature surges in current-
limiting circuit devices, SIAM. J. Appl. Math. 52, 998–1011 (1992).

[20] Frigaard, I & Scherzer, O, Spraying the perfect billet, SIAM J. Appl. Math.
57, 649–682 (1007).

[21] Fulford, GR & Broadbridge, P Industrial Mathematics, CUP (2002).

[22] Gershenfeld, N, The Nature of Mathematical Modeling, CUP (1999).

[23] Goldstein, AA, Optimal temperament, in [37], pp 242–251.

[24] Helbing, D, Traffic and related self-driven many-particle systems, Rev.
Mod. Phys. 73, 1067–1141 (2001).

[25] Hildebrand, FB, Methods of Applied Mathematics, Dover (1992).

[26] Hinch, EJ, Perturbation Methods, CUP (1991).

[27] Howell, PD, Models for thin viscous sheets, Europ. J. Appl. Math. 7, 321–
343 (1996).

[28] Howison, SD, If I remember rightly, cos π
2 = 1. Bull. Austr. Math. Soc.

19(5), 119–122 (1992).

[29] Isacoff, S, Temperament, Faber & Faber, London, (2002).

[30] Jackson, JD, Classical Electrodynamics, third edition, Wiley (1998).

[31] Jordan, D & Smith, P, Nonlinear Ordinary Differential Equations: an In-
troduction to Dynamical Systems, Oxford University Press (1999).

[32] Keener, JP, Principles of Applied Mathematics, Addison–Wesley, second
edition (1999).

[33] Keller, JB, Diffusion at finite speed and random walks, Proc. Nat. Acad.
Sci. 101, 1120–1122 (2004).

[34] Kevorkian, J, Partial Differential Equations Wadsworth & Brooks/Cole
1990.

[35] Kevorkian, J & Cole, JD Perturbation Methods in Applied Mathematics,
Springer (1981).

[36] Kingman, JFC, Poisson Processes, Oxford University Press (1993).

[37] Klamkin, M (ed.), Mathematical Modelling: Classroom Notes in Applied
Mathematics, SIAM, Philadelphia (1987).



BIBLIOGRAPHY 299

[38] Lighthill, MJ, Introduction to Fourier Analysis and Generalised Functions,
CUP (1958).

[39] McMahon, TA, Rowing: a similarity analysis, Science, 173, 349–351
(1971).

[40] McMahon, TA, Muscles, Reflexes and Locomotion, Princeton University
Press (1984).

[41] Murray, JD, Mathematical Biology, second edition. Springer New York
(1997).

[42] Ockendon, JR, Howison, SD, Lacey, AA & Movchan, AB, Applied Partial
Differential Equations, Oxford University Press (revised edition 2003).

[43] Ockendon, H & Ockendon, JR Viscous Flow, CUP (1995).

[44] Ockendon, H & Ockendon, JR Waves and Compressible Flow, Springer
New York (2004).

[45] Ockendon, JR & Tayler, AB, The dynamics of a current collection system
for an electric locomotive, Proc. Roy. Soc. A 322, 447–468 (1971).

[46] Olver, FWJ, Introduction to Asymptotics and Special Functions, Academic
Press (1974).

[47] O’Malley, RE, Thinking about Ordinary Differential Equations, Cambridge
University Press (1997).

[48] Peletier, LA, Spatial Patterns: Higher Order Models in Physics and Me-
chanics, Birkhauser (2001).

[49] Rice, JA, Mathematical Statistics and Data Analysis, Wadsworth (1988).

[50] Richards, JI & Youn, HK, Theory of Distributions, CUP (1990).

[51] Robinson, FNH, Electromagnetism, Oford University Press (1973).

[52] Rodeman, R, Longcope, DB & Shampine, LF, Response of a string to an
accelerating mass, J. Appl. Mech. 98, 675–680 (1976).
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