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A Course In Commutative Algebra

Robert B. Ash

Preface

This is a text for a basic course in commutative algebra, written in accordance with the
following objectives.

The course should be accessible to those who have studied algebra at the beginning
graduate level. For general algebraic background, see my online text “Abstract Algebra:
The Basic Graduate Year”, which can be downloaded from my web site

www.math.uiuc.edu/∼ r-ash

This text will be referred to as TBGY.

The idea is to help the student reach an advanced level as quickly and efficiently as
possible. In Chapter 1, the theory of primary decomposition is developed so as to apply to
modules as well as ideals. In Chapter 2, integral extensions are treated in detail, including
the lying over, going up and going down theorems. The proof of the going down theorem
does not require advanced field theory. Valuation rings are studied in Chapter 3, and
the characterization theorem for discrete valuation rings is proved. Chapter 4 discusses
completion, and covers the Artin-Rees lemma and the Krull intersection theorem. Chapter
5 begins with a brief digression into the calculus of finite differences, which clarifies some
of the manipulations involving Hilbert and Hilbert-Samuel polynomials. The main result
is the dimension theorem for finitely generated modules over Noetherian local rings. A
corollary is Krull’s principal ideal theorem. Some connections with algebraic geometry
are established via the study of affine algebras. Chapter 6 introduces the fundamental
notions of depth, systems of parameters, and M -sequences. Chapter 7 develops enough
homological algebra to prove, under approprate hypotheses, that all maximal M -sequences
have the same length. The brief Chapter 8 develops enough theory to prove that a regular
local ring is an integral domain as well as a Cohen-Macaulay ring. After completing
the course, the student should be equipped to meet the Koszul complex, the Auslander-
Buchsbaum theorems, and further properties of Cohen-Macaulay rings in a more advanced
course.
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Chapter 0

Ring Theory Background

We collect here some useful results that might not be covered in a basic graduate algebra
course.

0.1 Prime Avoidance

Let P1, P2, . . . , Ps, s ≥ 2, be ideals in a ring R, with P1 and P2 not necessarily prime,
but P3, . . . , Ps prime (if s ≥ 3). Let I be any ideal of R. The idea is that if we can avoid
the Pj individually, in other words, for each j we can find an element in I but not in Pj ,
then we can avoid all the Pj simultaneously, that is, we can find a single element in I that
is in none of the Pj . We will state and prove the contrapositive.

0.1.1 Prime Avoidance Lemma

With I and the Pi as above, if I ⊆ ∪s
i=1Pi, then for some i we have I ⊆ Pi.

Proof. Suppose the result is false. We may assume that I is not contained in the union
of any collection of s − 1 of the Pi’s. (If so, we can simply replace s by s − 1.) Thus
for each i we can find an element ai ∈ I with ai /∈ P1 ∪ · · · ∪ Pi−1 ∪ Pi+1 ∪ · · · ∪ Ps. By
hypothesis, I is contained in the union of all the P ’s, so ai ∈ Pi. First assume s = 2, with
I �⊆ P1 and I �⊆ P2. Then a1 ∈ P1, a2 /∈ P1, so a1 + a2 /∈ P1. Similarly, a1 /∈ P2, a2 ∈ P2,
so a1 + a2 /∈ P2. Thus a1 + a2 /∈ I ⊆ P1 ∪ P2, contradicting a1, a2 ∈ I. Note that P1

and P2 need not be prime for this argument to work. Now assume s > 2, and observe
that a1a2 · · · as−1 ∈ P1 ∩ · · · ∩ Ps−1, but as /∈ P1 ∪ · · · ∪ Ps−1. Let a = (a1 · · · as−1) + as,
which does not belong to P1 ∪ · · · ∪ Ps−1, else as would belong to this set. Now for all
i = 1, . . . , s−1 we have ai /∈ Ps, hence a1 · · · as−1 /∈ Ps because Ps is prime. But as ∈ Ps,
so a cannot be in Ps. Thus a ∈ I and a /∈ P1 ∪ · · · ∪ Ps, contradicting the hypothesis. ♣

It may appear that we only used the primeness of Ps, but after the preliminary reduc-
tion (see the beginning of the proof), it may very well happen that one of the other Pi’s
now occupies the slot that previously housed Ps.
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2 CHAPTER 0. RING THEORY BACKGROUND

0.2 Jacobson Radicals, Local Rings, and Other Mis-
cellaneous Results

0.2.1 Lemma

Let J(R) be the Jacobson radical of the ring R, that is, the intersection of all maximal
ideals of R. Then a ∈ J(R) iff 1 + ax is a unit for every x ∈ R.

Proof. Assume a ∈ J(R). If 1 + ax is not a unit, then it generates a proper ideal, hence
1+ax belongs to some maximal idealM. But then a ∈M, hence ax ∈M, and therefore
1 ∈ M, a contradiction. Conversely, if a fails to belong to a maximal ideal M, then
M + Ra = R. Thus for some b ∈ M and y ∈ R we have b + ay = 1. If x = −y, then
1 + ax = b ∈M, so 1 + ax cannot be a unit (else 1 ∈M). ♣

0.2.2 Lemma

Let M be a maximal ideal of the ring R. Then R is a local ring (a ring with a unique
maximal ideal, necessarily M) if and only if every element of 1 +M is a unit.

Proof. Suppose R is a local ring, and let a ∈ M. If 1 + a is not a unit, then it must
belong toM, which is the ideal of nonunits. But then 1 ∈M, a contradiction. Conversely,
assume that every element of 1+M is a unit. We claim thatM⊆ J(R), henceM = J(R).
If a ∈M, then ax ∈M for every x ∈ R, so 1+ax is a unit. By (0.2.1), a ∈ J(R), proving
the claim. If N is another maximal ideal, thenM = J(R) ⊆M∩N . ThusM⊆ N , and
since both ideals are maximal, they must be equal. Therefore R is a local ring. ♣

0.2.3 Lemma

Let S be any subset of R, and let I be the ideal generated by S. Then I = R iff for every
maximal idealM, there is an element x ∈ S \M.

Proof. We have I ⊂ R iff I, equivalently S, is contained in some maximal ideal M. In
other words, I ⊂ R iff ∃M such that ∀x ∈ S we have x ∈ M. The contrapositive says
that I = R iff ∀M ∃x ∈ S such that x /∈M. ♣

0.2.4 Lemma

Let I and J be ideals of the ring R. Then I + J = R iff
√

I +
√

J = R.

Proof. The “only if” part holds because any ideal is contained in its radical. Thus assume
that 1 = a + b with am ∈ I and bn ∈ J . Then

1 = (a + b)m+n =
∑

i+j=m+n

(
m + n

i

)
aibj .

Now if i + j = m + n, then either i ≥ m or j ≥ n. Thus every term in the sum belongs
either to I or to J , hence to I + J . Consequently, 1 ∈ I + J . ♣
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0.3 Nakayama’s Lemma

First, we give an example of the determinant trick ; see (2.1.2) for another illustration.

0.3.1 Theorem

Let M be a finitely generated R-module, and I an ideal of R such that IM = M . Then
there exists a ∈ I such that (1 + a)M = 0.

Proof. Let x1, . . . , xn generate M . Since IM = M , we have equations of the form
xi =

∑n
j=1 aijxj , with aij ∈ I. The equations may be written as

∑n
j=1(δij − aij)xj = 0.

If In is the n by n identity matrix, we have (In − A)x = 0, where A = (aij) and x is a
column vector whose coefficients are the xi. Premultiplying by the adjoint of (In − A),
we obtain ∆x = 0, where ∆ is the determinant of (In−A). Thus ∆xi = 0 for all i, hence
∆M = 0. But if we look at the determinant of In −A, we see that it is of the form 1 + a
for some element a ∈ I. ♣

Here is a generalization of a familiar property of linear transformations on finite-
dimensional vector spaces.

0.3.2 Theorem

If M is a finitely generated R-module and f : M → M is a surjective homomorphism,
then f is an isomorphism.

Proof. We can make M into an R[X]-module via Xx = f(x), x ∈ M . (Thus X2x =
f(f(x)), etc.) Let I = (X); we claim that IM = M . For if m ∈ M , then by the
hypothesis that f is surjective, m = f(x) for some x ∈M , and therefore Xx = f(x) = m.
But X ∈ I, so m ∈ IM . By (0.3.1), there exists g = g(X) ∈ I such that (1 + g)M = 0.
But by definition of I, g must be of the form Xh(X) with h(X) ∈ R[X]. Thus (1+g)M =
[1 + Xh(X)]M = 0.

We can now prove that f is injective. Suppose that x ∈M and f(x) = 0. Then

0 = [1 + Xh(X)]x = [1 + h(X)X]x = x + h(X)f(x) = x + 0 = x. ♣

In (0.3.2), we cannot replace “surjective” by “injective”. For example, let f(x) = nx on
the integers. If n ≥ 2, then f is injective but not surjective.

The next result is usually referred to as Nakayama’s lemma. Sometimes, Akizuki and
Krull are given some credit, and as a result, a popular abbreviation for the lemma is
NAK.

0.3.3 NAK

(a) If M is a finitely generated R-module, I an ideal of R contained in the Jacobson
radical J(R), and IM = M , then M = 0.

(b) If N is a submodule of the finitely generated R-module M , I an ideal of R contained
in the Jacobson radical J(R), and M = N + IM , then M = N .
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Proof.
(a) By (0.3.1), (1 + a)M = 0 for some a ∈ I. Since I ⊆ J(R), 1 + a is a unit by (0.2.1).
Multiplying the equation (1 + a)M = 0 by the inverse of 1 + a, we get M = 0.
(b) By hypothesis, M/N = I(M/N), and the result follows from (a). ♣

Here is an application of NAK.

0.3.4 Proposition

Let R be a local ring with maximal ideal J . Let M be a finitely generated R-module, and
let V = M/JM . Then
(i) V is a finite-dimensional vector space over the residue field k = R/J .
(ii) If {x1 + JM, . . . , xn + JM} is a basis for V over k, then {x1, . . . , xn} is a minimal
set of generators for M .
(iii) Any two minimal generating sets for M have the same cardinality.
Proof.
(i) Since J annihilates M/JM , V is a k-module, that is, a vector space over k. Since M
is finitely generated over R, V is a finite-dimensional vector space over k.
(ii) Let N =

∑n
i=1 Rxi. Since the xi +JM generate V = M/JM , we have M = N +JM .

By NAK, M = N , so the xi generate M . If a proper subset of the xi were to generate
M , then the corresponding subset of the xi + JM would generate V , contradicting the
assumption that V is n-dimensional.
(iii) A generating set S for M with more than n elements determines a spanning set for
V , which must contain a basis with exactly n elements. By (ii), S cannot be minimal. ♣

0.4 Localization

Let S be a subset of the ring R, and assume that S is multiplicative, in other words,
0 /∈ S, 1 ∈ S, and if a and b belong to S, so does ab. In the case of interest to us, S will
be the complement of a prime ideal. We would like to divide elements of R by elements
of S to form the localized ring S−1R, also called the ring of fractions of R by S. There
is no difficulty when R is an integral domain, because in this case all division takes place
in the fraction field of R. We will sketch the general construction for arbitrary rings R.
For full details, see TBGY, Section 2.8.

0.4.1 Construction of the Localized Ring

If S is a multiplicative subset of the ring R, we define an equivalence relation on R × S
by (a, b) ∼ (c, d) iff for some s ∈ S we have s(ad− bc) = 0. If a ∈ R and b ∈ S, we define
the fraction a/b as the equivalence class of (a, b). We make the set of fractions into a ring
in a natural way. The sum of a/b and c/d is defined as (ad + bc)/bd, and the product of
a/b and c/d is defined as ac/bd. The additive identity is 0/1, which coincides with 0/s for
every s ∈ S. The additive inverse of a/b is −(a/b) = (−a)/b. The multiplicative identity
is 1/1, which coincides with s/s for every s ∈ S. To summarize:

S−1R is a ring. If R is an integral domain, so is S−1R. If R is an integral domain and
S = R \ {0}, then S−1R is a field, the fraction field of R.
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There is a natural ring homomorphism h : R → S−1R given by h(a) = a/1. If S
has no zero-divisors, then h is a monomorphism, so R can be embedded in S−1R. In
particular, a ring R can be embedded in its full ring of fractions S−1R, where S consists
of all non-divisors of 0 in R. An integral domain can be embedded in its fraction field.

Our goal is to study the relation between prime ideals of R and prime ideals of S−1R.

0.4.2 Lemma

If X is any subset of R, define S−1X = {x/s : x ∈ X, s ∈ S}. If I is an ideal of R, then
S−1I is an ideal of S−1R. If J is another ideal of R, then
(i) S−1(I + J) = S−1I + S−1J ;
(ii) S−1(IJ) = (S−1I)(S−1J);
(iii) S−1(I ∩ J) = (S−1I) ∩ (S−1J);
(iv) S−1I is a proper ideal iff S ∩ I = ∅.
Proof. The definitions of addition and multiplication in S−1R imply that S−1R is an
ideal, and that in (i), (ii) and (iii), the left side is contained in the right side. The reverse
inclusions in (i) and (ii) follow from

a

s
+

b

t
=

at + bs

st
,

a

s

b

t
=

ab

st
.

To prove (iii), let a/s = b/t, where a ∈ I, b ∈ J, s, t ∈ S. There exists u ∈ S such that
u(at− bs) = 0. Then a/s = uat/ust = ubs/ust ∈ S−1(I ∩ J).

Finally, if s ∈ S ∩ I, then 1/1 = s/s ∈ S−1I, so S−1I = S−1R. Conversely, if
S−1I = S−1R, then 1/1 = a/s for some a ∈ I, s ∈ S. There exists t ∈ S such that
t(s− a) = 0, so at = st ∈ S ∩ I. ♣

Ideals in S−1R must be of a special form.

0.4.3 Lemma

Let h be the natural homomorphism from R to S−1R [see (0.4.1)]. If J is an ideal of
S−1R and I = h−1(J), then I is an ideal of R and S−1I = J .

Proof. I is an ideal by the basic properties of preimages of sets. Let a/s ∈ S−1I, with
a ∈ I and s ∈ S. Then a/1 = h(a) ∈ J , so a/s = (a/1)(1/s) ∈ J . Conversely, let a/s ∈ J ,
with a ∈ R, s ∈ S. Then h(a) = a/1 = (a/s)(s/1) ∈ J , so a ∈ I and a/s ∈ S−1I. ♣

Prime ideals yield sharper results.

0.4.4 Lemma

If I is any ideal of R, then I ⊆ h−1(S−1I). There will be equality if I is prime and disjoint
from S.

Proof. If a ∈ I, then h(a) = a/1 ∈ S−1I. Thus assume that I is prime and disjoint from
S, and let a ∈ h−1(S−1I). Then h(a) = a/1 ∈ S−1I, so a/1 = b/s for some b ∈ I, s ∈ S.
There exists t ∈ S such that t(as − b) = 0. Thus ast = bt ∈ I, with st /∈ I because
S ∩ I = ∅. Since I is prime, we have a ∈ I. ♣



6 CHAPTER 0. RING THEORY BACKGROUND

0.4.5 Lemma

If I is a prime ideal of R disjoint from S, then S−1I is a prime ideal of S−1R.

Proof. By part (iv) of (0.4.2), S−1I is a proper ideal. Let (a/s)(b/t) = ab/st ∈ S−1I,
with a, b ∈ R, s, t ∈ S. Then ab/st = c/u for some c ∈ I, u ∈ S. There exists v ∈ S such
that v(abu − cst) = 0. Thus abuv = cstv ∈ I, and uv /∈ I because S ∩ I = ∅. Since I is
prime, ab ∈ I, hence a ∈ I or b ∈ I. Therefore either a/s or b/t belongs to S−1I. ♣

The sequence of lemmas can be assembled to give a precise conclusion.

0.4.6 Theorem

There is a one-to-one correspondence between prime ideals P of R that are disjoint from
S and prime ideals Q of S−1R, given by

P → S−1P and Q→ h−1(Q).

Proof. By (0.4.3), S−1(h−1(Q)) = Q, and by (0.4.4), h−1(S−1P ) = P . By (0.4.5), S−1P
is a prime ideal, and h−1(Q) is a prime ideal by the basic properties of preimages of sets.
If h−1(Q) meets S, then by (0.4.2) part (iv), Q = S−1(h−1(Q)) = S−1R, a contradiction.
Thus the maps P → S−1P and Q → h−1(Q) are inverses of each other, and the result
follows. ♣

0.4.7 Definitions and Comments

If P is a prime ideal of R, then S = R \ P is a multiplicative set. In this case, we write
RP for S−1R, and call it the localization of R at P . We are going to show that RP is
a local ring, that is, a ring with a unique maximal ideal. First, we give some conditions
equivalent to the definition of a local ring.

0.4.8 Proposition

For a ring R, the following conditions are equivalent.

(i) R is a local ring;
(ii) There is a proper ideal I of R that contains all nonunits of R;
(iii) The set of nonunits of R is an ideal.

Proof.
(i) implies (ii): If a is a nonunit, then (a) is a proper ideal, hence is contained in the
unique maximal ideal I.
(ii) implies (iii): If a and b are nonunits, so are a + b and ra. If not, then I contains a
unit, so I = R, contradicting the hypothesis.
(iii) implies (i): If I is the ideal of nonunits, then I is maximal, because any larger ideal J
would have to contain a unit, so J = R. If H is any proper ideal, then H cannot contain
a unit, so H ⊆ I. Therefore I is the unique maximal ideal. ♣
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0.4.9 Theorem

RP is a local ring.
Proof. Let Q be a maximal ideal of RP . Then Q is prime, so by (0.4.6), Q = S−1I
for some prime ideal I of R that is disjoint from S = R \ P . In other words, I ⊆ P .
Consequently, Q = S−1I ⊆ S−1P . If S−1P = RP = S−1R, then by (0.4.2) part (iv), P
is not disjoint from S = R \ P , which is impossible. Therefore S−1P is a proper ideal
containing every maximal ideal, so it must be the unique maximal ideal. ♣

0.4.10 Remark

It is convenient to write the ideal S−1I as IRP . There is no ambiguity, because the
product of an element of I and an arbitrary element of R belongs to I.

0.4.11 Localization of Modules

If M is an R-module and S a multiplicative subset of R, we can essentially repeat the
construction of (0.4.1) to form the localization of M by S, and thereby divide elements
of M by elements of S. If x, y ∈M and s, t ∈ S, we call (x, s) and (y, t) equivalent if for
some u ∈ S, we have u(tx − sy) = 0. The equivalence class of (x, s) is denoted by x/s,
and addition is defined by

x

s
+

y

t
=

tx + sy

st
.

If a/s ∈ S−1R and x/t ∈ S−1M , we define

a

s

x

t
=

ax

st
.

In this way, S−1M becomes an S−1R-module. Exactly as in (0.4.2), if M and N are
submodules of an R-module L, then

S−1(M + N) = S−1M + S−1N and S−1(M ∩N) = (S−1M) ∩ (S−1N).



Chapter 1

Primary Decomposition and
Associated Primes

1.1 Primary Submodules and Ideals

1.1.1 Definitions and Comments

If N is a submodule of the R-module M , and a ∈ R, let λa : M/N → M/N be mul-
tiplication by a. We say that N is a primary submodule of M if N is proper and for
every a, λa is either injective or nilpotent. Injectivity means that for all x ∈M , we have
ax ∈ N ⇒ x ∈ N . Nilpotence means that for some positive integer n, anM ⊆ N , that is,
an belongs to the annihilator of M/N , denoted by ann(M/N). Equivalently, a belongs to
the radical of the annihilator of M/N , denoted by rM (N).

Note that λa cannot be both injective and nilpotent. If so, nilpotence gives anM =
a(an−1M) ⊆ N , and injectivity gives an−1M ⊆ N . Inductively, M ⊆ N , so M = N ,
contradicting the assumption that N is proper. Thus if N is a primary submodule of M ,
then rM (N) is the set of all a ∈ R such that λa is not injective. Since rM (N) is the radical
of an ideal, it is an ideal of R, and in fact it is a prime ideal. For if λa and λb fail to be
injective, so does λab = λa ◦ λb. (Note that rM (N) is proper because λ1 is injective.) If
P = rM (N), we say that N is P -primary.

If I is any ideal of R, then rR(I) =
√

I, because ann(R/I) = I. (Note that a ∈
ann(R/I) iff aR ⊆ I iff a = a1 ∈ I.)

Specializing to M = R and replacing a by y, we define a primary ideal in a ring R
as a proper ideal Q such that if xy ∈ Q, then either x ∈ Q or yn ∈ Q for some n ≥ 1.
Equivalently, R/Q �= 0 and every zero-divisor in R/Q is nilpotent.

A useful observation is that if P is a prime ideal, then
√

Pn = P for all n ≥ 1. (The
radical of Pn is the intersection of all prime ideals containing Pn, one of which is P . Thus√

Pn ⊆ P . Conversely, if x ∈ P , then xn ∈ Pn, so x ∈
√

Pn.)

1
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1.1.2 Lemma

If
√

I is a maximal idealM, then I is M-primary.

Proof. Suppose that ab ∈ I and b does not belong to
√

I =M. Then by maximality of
M, it follows thatM+Rb = R, so for some m ∈M and r ∈ R we have m+ rb = 1. Now
m ∈ M =

√
I, hence mk ∈ I for some k ≥ 1. Thus 1 = 1k = (m + rb)k = mk + sb for

some s ∈ R. Multiply by a to get a = amk + sab ∈ I. ♣

1.1.3 Corollary

IfM is a maximal ideal, thenMn is M-primary for every n ≥ 1.

Proof. As we observed in (1.1.1),
√
Mn =M, and the result follows from (1.1.2). ♣

1.2 Primary Decomposition

1.2.1 Definitions and Comments

A primary decomposition of the submodule N of M is given by N = ∩r
i=1Ni, where the

Ni are Pi-primary submodules. The decomposition is reduced if the Pi are distinct and
N cannot be expressed as the intersection of a proper subcollection of the Ni.

We can always extract a reduced primary decomposition from an unreduced one, by
discarding those Ni that contain ∩j �=iNj and intersecting those Ni that are P -primary
for the same P . The following result justifies this process.

1.2.2 Lemma

If N1, . . . , Nk are P -primary, then ∩k
i=1Ni is P -primary.

Proof. We may assume that k = 2; an induction argument takes care of larger values.
Let N = N1∩N2 and rM (N1) = rM (N2) = P . Assume for the moment that rM (N) = P .
If a ∈ R, x ∈M, ax ∈ N , and a /∈ rM (N), then since N1 and N2 are P -primary, we have
x ∈ N1 ∩N2 = N . It remains to show that rM (N) = P . If a ∈ P , then there are positive
integers n1 and n2 such that an1M ⊆ N1 and an2M ⊆ N2. Therefore an1+n2M ⊆ N , so
a ∈ rM (N). Conversely, if a ∈ rM (N) then a belongs to rM (Ni) for i = 1, 2, and therefore
a ∈ P . ♣

We now prepare to prove that every submodule of a Noetherian module has a primary
decomposition.

1.2.3 Definition

The proper submodule N of M is irreducible if N cannot be expressed as N1 ∩N2 with
N properly contained in the submodules Ni, i = 1, 2.
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1.2.4 Proposition

If N is an irreducible submodule of the Noetherian module M , then N is primary.
Proof. If not, then for some a ∈ R, λa : M/N →M/N is neither injective nor nilpotent.
The chain kerλa ⊆ ker λ2

a ⊆ ker λ3
a ⊆ · · · terminates by the ascending chain condition, say

at kerλi
a. Let ϕ = λi

a; then kerϕ = kerϕ2 and we claim that kerϕ ∩ im ϕ = 0. Suppose
x ∈ ker ϕ ∩ im ϕ, and let x = ϕ(y). Then 0 = ϕ(x) = ϕ2(y), so y ∈ ker ϕ2 = kerϕ, so
x = ϕ(y) = 0.

Now λa is not injective, so kerϕ �= 0, and λa is not nilpotent, so λi
a can’t be 0 (because

aiM �⊆ N). Consequently, imϕ �= 0.
Let p : M → M/N be the canonical epimorphism, and set N1 = p−1(kerϕ), N2 =

p−1(im ϕ). We will prove that N = N1 ∩ N2. If x ∈ N1 ∩ N2, then p(x) belongs to
both kerϕ and imϕ, so p(x) = 0, in other words, x ∈ N . Conversely, if x ∈ N , then
p(x) = 0 ∈ ker ϕ ∩ im ϕ, so x ∈ N1 ∩N2.

Finally, we will show that N is properly contained in both N1 and N2, so N is reducible,
a contradiction. Choose a nonzero element y ∈ ker ϕ. Since p is surjective, there exists
x ∈ M such that p(x) = y. Thus x ∈ p−1(kerϕ) = N1 (because y = p(x) ∈ ker ϕ), but
x /∈ N (because p(x) = y �= 0). Similarly, N ⊂ N2 (with 0 �= y ∈ im ϕ), and the result
follows. ♣

1.2.5 Theorem

If N is a proper submodule of the Noetherian module M , then N has a primary decom-
position, hence a reduced primary decomposition.
Proof. We will show that N can be expressed as a finite intersection of irreducible sub-
modules of M , so that (1.2.4) applies. Let S be the collection of all submodules of M
that cannot be expressed in this form. If S is nonempty, then S has a maximal element
N (because M is Noetherian). By definition of S, N must be reducible, so we can write
N = N1 ∩ N2, N ⊂ N1, N ⊂ N2. By maximality of N , N1 and N2 can be expressed
as finite intersections of irreducible submodules, hence so can N , contradicting N ∈ S.
Thus S is empty. ♣

1.3 Associated Primes

1.3.1 Definitions and Comments

Let M be an R-module, and P a prime ideal of R. We say that P is an associated prime
of M (or that P is associated to M) if P is the annihilator of some nonzero x ∈M . The
set of associated primes of M is denoted by AP(M). (The standard notation is Ass(M).
Please do not use this regrettable terminology.)

Here is a useful characterization of associated primes.

1.3.2 Proposition

The prime ideal P is associated to M if and only if there is an injective R-module homo-
morphism from R/P to M . Therefore if N is a submodule of M , then AP(N) ⊆ AP(M).
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Proof. If P is the annihilator of x �= 0, the desired homomorphism is given by r+P → rx.
Conversely, if an injective R-homomorphism from R/P to M exists, let x be the image of
1 + P , which is nonzero in R/P . By injectivity, x �= 0. We will show that P = annR(x),
the set of elements r ∈ R such that rx = 0. If r ∈ P , then r + P = 0, so rx = 0, and
therefore r ∈ annR(x). If rx = 0, then by injectivity, r + P = 0, so r ∈ P . ♣

Associated primes exist under wide conditions, and are sometimes unique.

1.3.3 Proposition

If M = 0, then AP(M) is empty. The converse holds if R is a Noetherian ring.

Proof. There are no nonzero elements in the zero module, hence no associated primes.
Assuming that M �= 0 and R is Noetherian, there is a maximal element I = annR x in
the collection of all annihilators of nonzero elements of M . The ideal I must be proper,
for if I = R, then x = 1x = 0, a contradiction. If we can show that I is prime, we have
I ∈ AP(M), as desired. Let ab ∈ I with a /∈ I. Then abx = 0 but ax �= 0, so b ∈ ann(ax).
But I = annx ⊆ ann(ax), and the maximality of I gives I = ann(ax). Consequently,
b ∈ I. ♣

1.3.4 Proposition

For any prime ideal P , AP(R/P ) = {P}.
Proof. By (1.3.2), P is an associated prime of R/P because there certainly is an R-
monomorphism from R/P to itself. If Q ∈ AP(R/P ), we must show that Q = P .
Suppose that Q = ann(r + P ) with r /∈ P . Then s ∈ Q iff sr ∈ P iff s ∈ P (because P is
prime). ♣

1.3.5 Remark

Proposition 1.3.4 shows that the annihilator of any nonzero element of R/P is P .

The next result gives us considerable information about the elements that belong to
associated primes.

1.3.6 Theorem

Let z(M) be the set of zero-divisors of M , that is, the set of all r ∈ R such that rx = 0
for some nonzero x ∈ M . Then ∪{P : P ∈ AP(M)} ⊆ z(M), with equality if R is
Noetherian.

Proof. The inclusion follows from the definition of associated prime; see (1.3.1). Thus
assume a ∈ z(M), with ax = 0, x ∈ M, x �= 0. Then Rx �= 0, so by (1.3.3) [assuming R
Noetherian], Rx has an associated prime P = ann(bx). Since ax = 0 we have abx = 0, so
a ∈ P . But P ∈ AP(Rx) ⊆ AP(M) by (1.3.2). Therefore a ∈ ∪{P : P ∈ AP(M)}. ♣

Now we prove a companion result to (1.3.2).
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1.3.7 Proposition

If N is a submodule of M , then AP(M) ⊆ AP(N) ∪AP(M/N).
Proof. Let P ∈ AP(M), and let h : R/P → M be a monomorphism. Set H = h(R/P )
and L = H ∩N .
Case 1: L = 0. Then the map from H to M/N given by h(r + P ) → h(r + P ) + N is
a monomorphism. (If h(r + P ) belongs to N , it must belong to H ∩ N = 0.) Thus H
is isomorphic to a submodule of M/N , so by definition of H, there is a monomorphism
from R/P to M/N . Thus P ∈ AP(M/N).
Case 2: L �= 0. If L has a nonzero element x, then x must belong to both H and N , and
H is isomorphic to R/P via h. Thus x ∈ N and the annihilator of x coincides with the
annihilator of some nonzero element of R/P . By (1.3.5), annx = P , so P ∈ AP(N). ♣

1.3.8 Corollary

AP(
⊕
j∈J

Mj =
⋃
j∈J

AP(Mj).

Proof. By (1.3.2), the right side is contained in the left side. The result follows from
(1.3.7) when the index set is finite. For example,

AP(M1 ⊕M2 ⊕M3) ⊆ AP(M1) ∪AP(M/M1)
= AP(M1) ∪AP(M2 ⊕M3)
⊆ AP(M1) ∪AP(M2) ∪AP(M3).

In general, if P is an associated prime of the direct sum, then there is a monomorphism
from R/P to ⊕Mj . The image of the monomorphism is contained in the direct sum of
finitely many components, as R/P is generated as an R-module by the single element
1 + P . This takes us back to the finite case. ♣

We now establish the connection between associated primes and primary decomposi-
tion, and show that under wide conditions, there are only finitely many associated primes.

1.3.9 Theorem

Let M be a nonzero finitely generated module over the Noetherian ring R, so that by
(1.2.5), every proper submodule of M has a reduced primary decomposition. In particular,
the zero module can be expressed as ∩r

i=1Ni, where Ni is Pi-primary. Then AP(M) =
{P1, . . . , Pr}, a finite set.
Proof. Let P be an associated prime of M , so that P = ann(x), x �= 0, x ∈M . Renumber
the Ni so that x /∈ Ni for 1 ≤ i ≤ j and x ∈ Ni for j + 1 ≤ i ≤ r. Since Ni is Pi-primary,
we have Pi = rM (Ni) (see (1.1.1)). Since Pi is finitely generated, Pni

i M ⊆ Ni for some
ni ≥ 1. Therefore

(
j⋂

i=1

Pni
i )x ⊆

r⋂
i=1

Ni = (0)
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so ∩j
i=1P

ni
i ⊆ ann(x) = P . (By our renumbering, there is a j rather than an r on the left

side of the inclusion.) Since P is prime, Pi ⊆ P for some i ≤ j. We claim that Pi = P ,
so that every associated prime must be one of the Pi. To verify this, let a ∈ P . Then
ax = 0 and x /∈ Ni, so λa is not injective and therefore must be nilpotent. Consequently,
a ∈ rM (Ni) = Pi, as claimed.

Conversely, we show that each Pi is an associated prime. Without loss of generality, we
may take i = 1. Since the decomposition is reduced, N1 does not contain the intersection
of the other Ni’s, so we can choose x ∈ N2∩· · ·∩Nr with x /∈ N1. Now N1 is P1-primary, so
as in the preceding paragraph, for some n ≥ 1 we have Pn

1 x ⊆ N1 but Pn−1
1 x �⊆ N1. (Take

P 0
1 x = Rx and recall that x /∈ N1.) If we choose y ∈ Pn−1

1 x \N1 (hence y �= 0), the proof
will be complete upon showing that P1 is the annihilator of y. We have P1y ⊆ Pn

1 x ⊆ N1

and x ∈ ∩r
i=2Ni, so Pn

1 x ⊆ ∩r
i=2Ni. Thus P1y ⊆ ∩r

i=1Ni = (0), so P1 ⊆ ann y. On the
other hand, if a ∈ R and ay = 0, then ay ∈ N1 but y /∈ N1, so λa : M/N1 →M/N1 is not
injective and is therefore nilpotent. Thus a ∈ rM (N1) = P1. ♣

We can now say something about uniqueness in primary decompositions.

1.3.10 First Uniqueness Theorem

Let M be a finitely generated module over the Noetherian ring R. If N = ∩r
i=1Ni is a

reduced primary decomposition of the submodule N , and Ni is Pi-primary, i = 1, . . . , r,
then (regarding M and R as fixed) the Pi are uniquely determined by N .

Proof. By the correspondence theorem, a reduced primary decomposition of (0) in M/N
is given by (0) = ∩r

i=1Ni/N , and Ni/N is Pi-primary, 1 ≤ i ≤ r. By (1.3.9),

AP(M/N) = {P1, . . . , Pr}.

But [see (1.3.1)] the associated primes of M/N are determined by N . ♣

1.3.11 Corollary

Let N be a submodule of M (finitely generated over the Noetherian ring R). Then N is
P -primary iff AP(M/N) = {P}.
Proof. The “only if” part follows from the displayed equation above. Conversely, if P is
the only associated prime of M/N , then N coincides with a P -primary submodule N ′,
and hence N(= N ′) is P -primary. ♣

1.3.12 Definitions and Comments

Let N = ∩r
i=1Ni be a reduced primary decomposition, with associated primes P1, . . . , Pr.

We say that Ni is an isolated (or minimal) component if Pi is minimal, that is Pi does not
properly contain any Pj , j �= i. Otherwise, Ni is an embedded component (see Exercise 5
for an example). Embedded components arise in algebraic geometry in situations where
one irreducible algebraic set is properly contained in another.
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1.4 Associated Primes and Localization

To get more information about uniqueness in primary decompositions, we need to look at
associated primes in localized rings and modules. In this section, S will be a multiplicative
subset of the Noetherian ring R, RS the localization of R by S, and MS the localization
of the R-module M by S. Recall that P → PS = PRS is a bijection of C, the set of prime
ideals of R not meeting S, and the set of all prime ideals of RS .

The set of associated primes of the R-module M will be denoted by APR(M). We
need a subscript to distinguish this set from APRS

(MS), the set of associated primes of
the RS-module MS .

1.4.1 Lemma

Let P be a prime ideal not meeting S. If P ∈ APR(M), then PS = PRS ∈ APRS
(MS).

(By the above discussion, the map P → PS is the restriction of a bijection and therefore
must be injective.)
Proof. If P is the annihilator of the nonzero element x ∈ M , then PS is the annihilator
of the nonzero element x/1 ∈ MS . (By (1.3.6), no element of S can be a zero-divisor,
so x/1 is indeed nonzero.) For if a ∈ P and a/s ∈ PS , then (a/s)(x/1) = ax/s = 0.
Conversely, if (a/s)(x/1) = 0, then there exists t ∈ S such that tax = 0, and it follows
that a/s = at/st ∈ PS . ♣

1.4.2 Lemma

The map of (1.4.1) is surjective, hence is a bijection of APR(M) ∩ C and APRS
(MS).

Proof. Let P be generated by a1, . . . , an. Suppose that PS is the annihilator of the
nonzero element x/t ∈ MS . Then (ai/1)(x/t) = 0, 1 ≤ i ≤ n. For each i there exists
si ∈ S such that siaix = 0. If s is the product of the si, then saix = 0 for all i, hence
sax = 0 for all a ∈ P . Thus P ⊆ ann(sx). On the other hand, suppose b annihilates sx.
Then (b/1)(x/t) = bsx/st = 0, so b/1 ∈ PS , and consequently b/1 = b′/s′ for some b′ ∈ P
and s′ ∈ S. This means that for some u ∈ S we have u(bs′ − b′) = 0. Now b′, hence ub′,
belongs to P , and therefore so does ubs′. But us′ /∈ P (because S ∩P = ∅). We conclude
that b ∈ P , so P = ann(sx). As in (1.4.1), s cannot be a zero-divisor, so sx �= 0 and the
proof is complete. ♣

1.4.3 Lemma

Let M be a finitely generated module over the Noetherian ring R, and N a P -primary
submodule of M . Let P ′ be any prime ideal of R, and set M ′ = MP ′ , N ′ = NP ′ . If
P �⊆ P ′, then N ′ = M ′.
Proof. By (1.4.1) and (1.4.2), there is a bijection between APRP ′ (M/N)P ′ (which coin-
cides with APRP ′ (M

′/N ′)) and the intersection APR(M/N) ∩ C, where C is the set of
prime ideals contained in P ′ (in other words, not meeting S = R \P ′). By (1.3.11), there
is only one associated prime of M/N over R, namely P , which is not contained in P ′ by
hypothesis. Thus APR(M/N) ∩ C is empty, so by (1.3.3), M ′/N ′ = 0, and the result
follows. ♣
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At the beginning of the proof of (1.4.3), we have taken advantage of the isomorphism
between (M/N)P ′ and M ′/N ′. The result comes from the exactness of the localization
functor. If this is unfamiliar, look ahead to the proof of (1.5.3), where the technique is
spelled out. See also TBGY, Section 8.5, Problem 5.

1.4.4 Lemma

In (1.4.3), if P ⊆ P ′, then N = f−1(N ′), where f is the natural map from M to M ′.
Proof. As in (1.4.3), APR(M/N) = {P}. Since P ⊆ P ′, we have R \ P ′ ⊆ R \ P . By
(1.3.6), R \ P ′ contains no zero-divisors of M/N , because all such zero-divisors belong to
P . Thus the natural map g : x → x/1 of M/N to (M/N)P ′

∼= M ′/N ′ is injective. (If
x/1 = 0, then sx = 0 for some s ∈ S = R \ P ′, and since s is not a zero-divisor, we have
x = 0.)

If x ∈ N , then f(x) ∈ N ′ by definition of f , so assume x ∈ f−1(N ′). Then f(x) ∈ N ′,
so f(x)+N ′ is 0 in M ′/N ′. By injectivity of g, x+N is 0 in M/N , in other words, x ∈ N ,
and the result follows. ♣

1.4.5 Second Uniqueness Theorem

Let M be a finitely generated module over the Noetherian ring R. Suppose that N =
∩r

i=1Ni is a reduced primary decomposition of the submodule N , and Ni is Pi-primary,
i = 1, . . . , r. If Pi is minimal, then (regarding M and R as fixed) Ni is uniquely determined
by N .
Proof. Suppose that P1 is minimal, so that P1 �⊇ Pi, i > 1. By (1.4.3) with P =
Pi, P ′ = P1, we have (Ni)P1 = MP1 for i > 1. By (1.4.4) with P = P ′ = P1, we have
N1 = f−1[(N1)P1 ], where f is the natural map from M to MP1 . Now

NP1 = (N1)P1 ∩ ∩r
i=2(Ni)P1 = (N1)P1 ∩MP1 = (N1)P1 .

Thus N1 = f−1[(N1)P1 ] = f−1(NP1) depends only on N and P1, and since P1 depends
on the fixed ring R, it follows that N1 depends only on N . ♣

1.5 The Support of a Module

The support of a module M is closely related to the set of associated primes of M . We
will need the following result in order to proceed.

1.5.1 Proposition

M is the zero module if and only if MP = 0 for every prime ideal P , if and only if MM = 0
for every maximal idealM.
Proof. It suffices to show that if MM = 0 for all maximal ideals M, then M = 0.
Choose a nonzero element x ∈M , and let I be the annihilator of x. Then 1 /∈ I (because
1x = x �= 0), so I is a proper ideal and is therefore contained in a maximal ideal M. By
hypothesis, x/1 is 0 in MM, hence there exists a /∈ M (so a /∈ I) such that ax = 0. But
then by definition of I we have a ∈ I, a contradiction. ♣
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1.5.2 Definitions and Comments

The support of an R-module M (notation SuppM) is the set of prime ideals P of R such
that MP �= 0. Thus SuppM = ∅ iff MP = 0 for all prime ideals P . By (1.5.1), this is
equivalent to M = 0.

If I is any ideal of R, we define V (I) as the set of prime ideals containing I. In
algebraic geometry, the Zariski topology on SpecR has the sets V (I) as its closed sets.

1.5.3 Proposition

SuppR/I = V (I).

Proof. We apply the localization functor to the exact sequence 0→ I → R→ R/I → 0 to
get the exact sequence 0 → IP → RP → (R/I)P → 0. Consequently, (R/I)P

∼= RP /IP .
Thus P ∈ SuppR/I iff RP ⊃ IP iff IP is contained in a maximal ideal, necessarily PRP .
But this is equivalent to I ⊆ P . To see this, suppose a ∈ I, with a/1 ∈ IP ⊆ PRP . Then
a/1 = b/s for some b ∈ P, s /∈ P . There exists c /∈ P such that c(as − b) = 0. We have
cas = cb ∈ P , a prime ideal, and cs /∈ P . We conclude that a ∈ P . ♣

1.5.4 Proposition

Let 0 → M ′ → M → M ′′ → 0 be exact, hence 0 → M ′P → MP → M ′′P → 0 is exact.
Then

SuppM = SuppM ′ ∪ SuppM ′′.

Proof. Let P belong to SuppM \ SuppM ′. Then M ′P = 0, so the map MP → M ′′P is
injective as well as surjective, hence is an isomorphism. But MP �= 0 by assumption, so
M ′′P �= 0, and therefore P ∈ SuppM ′′. On the other hand, since M ′P is isomorphic to a
submodule of MP , it follows that SuppM ′ ⊆ SuppM . If MP = 0, then M ′′P = 0 (because
MP →M ′′P is surjective). Thus SuppM ′′ ⊆ SuppM . ♣

Supports and annihilators are connected by the following basic result.

1.5.5 Theorem

If M is a finitely generated R-module, then SuppM = V (annM).

Proof. Let M = Rx1 + · · ·+Rxn, so that MP = (Rx1)P + · · ·+(Rxn)P . Then SuppM =
∪n

i=1 SuppRxi, and by the first isomorphism theorem, Rxi
∼= R/ annxi. By (1.5.3),

SuppRxi = V (annxi). Therefore SuppM = ∪n
i=1V (annxi) = V (annM). To justify

the last equality, note that if P ∈ V (annxi), then P ⊇ annxi ⊇ annM . Conversely, if
P ⊇ annM = ∩n

i=1 annxi, then P ⊇ annxi for some i. ♣

And now we connect associated primes and annihilators.
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1.5.6 Proposition

If M is a finitely generated module over the Noetherian ring R, then
⋂

P∈AP(M)

P =
√

annM.

Proof. If M = 0, then by (1.3.3), AP(M) = ∅, and the result to be proved is R = R.
Thus assume M �= 0, so that (0) is a proper submodule. By (1.2.5) and (1.3.9), there is
a reduced primary decomposition (0) = ∩r

i=1Ni, where for each i, Ni is Pi-primary and
AP(M) = {P1, . . . , Pr}.

If a ∈
√

annM , then for some n ≥ 1 we have anM = 0. Thus for each i, λa : M/Ni →
M/Ni is nilpotent [see (1.1.1)]. Consequently, a ∈ ∩r

i=1rM (Ni) = ∩r
i=1Pi. Conversely, if

a belongs to this intersection, then for all i there exists ni ≥ 1 such that aniM ⊆ Ni. If
n = max ni, then anM = 0, so a ∈

√
annM . ♣

1.5.7 Corollary

If R is a Noetherian ring, then the nilradical of R is the intersection of all associated
primes of R.
Proof. Take M = R in (1.5.6). Since annR = 0,

√
annR is the nilradical. ♣

And now, a connection between supports, associated primes and annihilators.

1.5.8 Proposition

Let M be a finitely generated module over the Noetherian ring R, and let P be any prime
ideal of R. The following conditions are equivalent:
(1) P ∈ SuppM ;
(2) P ⊇ P ′ for some P ′ ∈ AP(M);
(3) P ⊇ annM .
Proof. Conditions (1) and (3) are equivalent by (1.5.5). To prove that (1) implies (2),
let P ∈ SuppM . If P does not contain any associated prime of M , then P does not
contain the intersection of all associated primes (because P is prime). By (1.5.6), P does
not contain

√
annM , hence P cannot contain the smaller ideal annM . This contradicts

(1.5.5). To prove that (2) implies (3), let Q be the intersection of all associated primes.
Then P ⊇ P ′ ⊇ Q = [by (1.5.6)]

√
annM ⊇ annM . ♣

Here is the most important connection between supports and associated primes.

1.5.9 Theorem

Let M be a finitely generated module over the Noetherian ring R. Then AP(M) ⊆
SuppM , and the minimal elements of AP(M) and SuppM are the same.
Proof. We have AP(M) ⊆ SuppM by (2) implies (1) in (1.5.8), with P = P ′. If P is
minimal in SuppM , then by (1) implies (2) in (1.5.8), P contains some P ′ ∈ AP(M) ⊆
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SuppM . By minimality, P = P ′. Thus P ∈ AP(M), and in fact, P must be a minimal
associated prime. Otherwise, P ⊃ Q ∈ AP(M) ⊆ SuppM , so that P is not minimal
in SuppM , a contradiction. Finally, let P be minimal among associated primes but not
minimal in SuppM . If P ⊃ Q ∈ SuppM , then by (1) implies (2) in (1.5.8), Q ⊇ P ′ ∈
AP(M). By minimality, P = P ′, contradicting P ⊃ Q ⊇ P ′. ♣

Here is another way to show that there are only finitely many associated primes.

1.5.10 Theorem

Let M be a nonzero finitely generated module over the Noetherian ring R. Then there is
a chain of submodules 0 = M0 < M1 < · · · < Mn = M such that for each j = 1, . . . , n,
Mj/Mj−1

∼= R/Pj , where the Pj are prime ideals of R. For any such chain, AP(M) ⊆
{P1, . . . , Pn}.
Proof. By (1.3.3), M has an associated prime P1 = annx1, with x1 a nonzero element
of M . Take M1 = Rx1

∼= R/P1 (apply the first isomorphism theorem). If M �= M1,
then the quotient module M/M1 is nonzero, hence [again by (1.3.3)] has an associated
prime P2 = ann(x2 + M1), x2 /∈M1. Let M2 = M1 + Rx2. Now map R onto M2/M1 by
r → rx2 + M1. By the first isomorphism theorem, M2/M1

∼= R/P2. Continue inductively
to produce the desired chain. (Since M is Noetherian, the process terminates in a finite
number of steps.) For each j = 1, . . . , n, we have AP(Mj) ⊆ AP(Mj−1)∪{Pj} by (1.3.4)
and (1.3.7). Another inductive argument shows that AP(M) ⊆ {P1, . . . , Pn}. ♣

1.5.11 Proposition

In (1.5.10), each Pj belongs to SuppM . Thus (replacing AP(M) by {P1, . . . , Pn} in the
proof of (1.5.9)), the minimal elements of all three sets AP(M), {P1, . . . , Pn} and SuppM
are the same.

Proof. By (1.3.4) and (1.5.9), Pj ∈ SuppR/Pj , so by (1.5.10), Pj ∈ SuppMj/Mj−1. By
(1.5.4), SuppMj/Mj−1 ⊆ SuppMj , and finally SuppMj ⊆ SuppM because Mj ⊆M . ♣

1.6 Artinian Rings

1.6.1 Definitions and Comments

Recall that an R-module is Artinian if it satisfies the descending chain condition on
submodules. If the ring R is Artinian as a module over itself, in other words, R satisfies
the dcc on ideals, then R is said to be an Artinian ring. Note that Z is a Noetherian ring
that is not Artinian. Any finite ring, for example Zn, is both Noetherian and Artinian,
and in fact we will prove later in the section that an Artinian ring must be Noetherian.
The theory of associated primes and supports will help us to analyze Artinian rings.

1.6.2 Lemma

If I is an ideal in the Artinian ring R, then R/I is an Artinian ring.
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Proof. Since R/I is a quotient of an Artinian R-module, it is also an Artinian R-module.
In fact it is an R/I module via (r + I)(x + I) = rx + I, and the R-submodules are
identical to the R/I-submodules. Thus R/I is an Artinian R/I-module, in other words,
an Artinian ring. ♣

1.6.3 Lemma

An Artinian integral domain is a field.

Proof. Let a be a nonzero element of the Artinian domain R. We must produce a
multiplicative inverse of a. The chain of ideals (a) ⊇ (a2) ⊇ (a3) ⊇ · · · stabilizes, so for
some t we have (at) = (at+1). If at = bat+1, then since R is a domain, ba = 1. ♣

1.6.4 Proposition

If R is an Artinian ring, then every prime ideal of R is maximal. Therefore, the nilradical
N(R) coincides with the Jacobson radical J(R).

Proof. Let P be a prime ideal of R, so that R/I is an integral domain, Artinian by (1.6.2).
By (1.6.3), R/P is a field, hence P is maximal. ♣

One gets the impression that the Artinian property puts strong constraints on a ring.
The following two results reinforce this conclusion.

1.6.5 Proposition

An Artinian ring has only finitely many maximal ideals.

Proof. Let Σ be the collection of all finite intersections of maximal ideals. Then Σ is
nonempty and has a minimal element I =M1 ∩ · · · ∩Mr (by the Artinian property). If
M is any maximal ideal, thenM⊇M∩I ∈ Σ, so by minimality of I we haveM∩I = I.
But thenM must contain one of theMi (becauseM is prime), henceM =Mi (because
M andMi are maximal). ♣

1.6.6 Proposition

If R is Artinian, then the nilradical N(R) is nilpotent, hence by (1.6.4), the Jacobson
radical J(R) is nilpotent.

Proof. Let I = N(R). The chain I ⊇ I2 ⊇ I3 ⊇ · · · stabilizes, so for some i we have
Ii = Ii+1 = · · · = L. If L = 0 we are finished, so assume L �= 0. Let Σ be the collection of
all ideals K of R such that KL �= 0. Then Σ is nonempty, since L (as well as R) belongs
to Σ. Let K0 be a minimal element of Σ, and choose a ∈ K0 such that aL �= 0. Then
Ra ⊆ K0 (because K0 is an ideal), and RaL = aL �= 0, hence Ra ∈ Σ. By minimality of
K0 we have Ra = K0.

We will show that the principal ideal (a) = Ra coincides with aL. We have aL ⊆ Ra =
K0, and (aL)L = aL2 = aL �= 0, so aL ∈ Σ. By minimality of K0 we have aL = K0 = Ra.

From (a) = aL we get a = ab for some b ∈ L ⊆ N(R), so bn = 0 for some n ≥ 1.
Therefore a = ab = (ab)b = ab2 = · · · = abn = 0, contradicting our choice of a. Since the
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assumption L �= 0 has led to a contradiction, we must have L = 0. But L is a power of
the nilradical I, and the result follows. ♣

We now prove a fundamental structure theorem for Artinian rings.

1.6.7 Theorem

Every Artinian ring R is isomorphic to a finite direct product of Artinian local rings Ri.

Proof. By (1.6.5), R has only finitely many maximal idealsM1, . . . ,Mr. The intersection
of the Mi is the Jacobson radical J(R), which is nilpotent by (1.6.6). By the Chinese
remainder theorem, the intersection of the Mi coincides with their product. Thus for
some k ≥ 1 we have (

∏r
1Mi)k =

∏r
1Mk

i = 0. Powers of the Mi still satisfy the
hypothesis of the Chinese remainder theorem, so the natural map from R to

∏r
1 R/Mk

i

is an isomorphism. By (1.6.2), R/Mk
i is Artinian, and we must show that it is local. A

maximal ideal of R/Mk
i corresponds to a maximal ideal M of R with M ⊇Mk

i , hence
M ⊇ Mi (because M is prime). By maximality, M = Mi. Thus the unique maximal
ideal of R/Mk

i is Mi/Mk
i . ♣

1.6.8 Remarks

A finite direct product of Artinian rings, in particular, a finite direct product of fields,
is Artinian. To see this, project a descending chain of ideals onto one of the coordinate
rings. At some point, all projections will stabilize, so the original chain will stabilize.
A sequence of exercises will establish the uniqueness of the Artinian local rings in the
decomposition (1.6.7).

It is a standard result that an R-module M has finite length lR(M) if and only if M
is both Artinian and Noetherian. We can relate this condition to associated primes and
supports.

1.6.9 Proposition

Let M be a finitely generated module over the Noetherian ring R. The following conditions
are equivalent:
(1) lR(M) <∞;
(2) Every associated prime ideal of M is maximal;
(3) Every prime ideal in the support of M is maximal.

Proof.
(1) ⇒ (2): As in (1.5.10), there is a chain of submodules 0 = M0 < · · · < Mn = M ,
with Mi/Mi−1

∼= R/Pi. Since Mi/Mi−1 is a submodule of a quotient M/Mi−1 of M , the
hypothesis (1) implies that R/Pi has finite length for all i. Thus R/Pi is an Artinian
R-module, hence an Artinian R/Pi-module (note that Pi annihilates R/Pi). In other
words, R/Pi is an Artinian ring. But Pi is prime, so R/Pi is an integral domain, hence
a field by (1.6.3). Therefore each Pi is a maximal ideal. Since every associated prime is
one of the Pi’s [see (1.5.10)], the result follows.
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(2) ⇒ (3): If P ∈ SuppM , then by (1.5.8), P contains some associated prime Q. By
hypothesis, Q is maximal, hence so is P .
(3) ⇒ (1): By (1.5.11) and the hypothesis (3), every Pi is maximal, so R/Pi is a field.
Consequently, lR(Mi/Mi−1) = lR(R/Pi) = 1 for all i. But length is additive, that is, if
N is a submodule of M , then l(M) = l(N) + l(M/N). Summing on i from 1 to n, we get
lR(M) = n <∞. ♣

1.6.10 Corollary

Let M be finitely generated over the Noetherian ring R. If lR(M) < ∞, then AP(M) =
SuppM .
Proof. By (1.5.9), AP(M) ⊆ SuppM , so let P ∈ SuppM . By (1.5.8), P ⊇ P ′ for some
P ′ ∈ AP(M). By (1.6.9), P and P ′ are both maximal, so P = P ′ ∈ AP(M). ♣

We can now characterize Artinian rings in several ways.

1.6.11 Theorem

Let R be a Noetherian ring. The following conditions are equivalent:
(1) R is Artinian;
(2) Every prime ideal of R is maximal;
(3) Every associated prime ideal of R is maximal.
Proof. (1) implies (2) by (1.6.4), and (2) implies (3) is immediate. To prove that (3)
implies (1), note that by (1.6.9), lR(R) <∞, hence R is Artinian. ♣

1.6.12 Theorem

The ring R is Artinian if and only if lR(R) <∞.
Proof. The “if” part follows because any module of finite length is Artinian and Noethe-
rian. Thus assume R Artinian. As in (1.6.7), the zero ideal is a finite productM1 · · ·Mk

of not necessarily distinct maximal ideals. Now consider the chain

R =M0 ⊇M1 ⊇M1M2 ⊇ · · · ⊇ M1 · · ·Mk−1 ⊇M1 · · ·Mk = 0.

Since any submodule or quotient module of an Artinian module is Artinian, it follows
that Ti = M1 · · ·Mi−1/M1 · · ·Mi is an Artinian R-module, hence an Artinian R/Mi-
module. (Note thatMi annihilatesM1 · · ·Mi−1/M1 · · ·Mi.) Thus Ti is a vector space
over the field R/Mi, and this vector space is finite-dimensional by the descending chain
condition. Thus Ti has finite length as an R/Mi-module, hence as an R-module. By
additivity of length [as in (3) implies (1) in (1.6.9)], we conclude that lR(R) <∞. ♣

1.6.13 Theorem

The ring R is Artinian if and only if R is Noetherian and every prime ideal of R is
maximal.
Proof. The “if” part follows from (1.6.11). If R is Artinian, then lR(R) <∞ by (1.6.12),
hence R is Noetherian. By (1.6.4) or (1.6.11), every prime ideal of R is maximal. ♣
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1.6.14 Corollary

Let M be finitely generated over the Artinian ring R. Then lR(M) <∞.
Proof. By (1.6.13), R is Noetherian, hence the module M is both Artinian and Noetherian.
Consequently, M has finite length. ♣



Chapter 2

Integral Extensions

2.1 Integral Elements

2.1.1 Definitions and Comments

Let R be a subring of the ring S, and let α ∈ S. We say that α is integral over R if α
is a root of a monic polynomial with coefficients in R. If R is a field and S an extension
field of R, then α is integral over R iff α is algebraic over R, so we are generalizing a
familiar notion. If α is a complex number that is integral over Z, then α is said to be an
algebraic integer For example, if d is any integer, then

√
d is an algebraic integer, because

it is a root of x2 − d. Notice that 2/3 is a root of the polynomial f(x) = 3x − 2, but f
is not monic, so we cannot conclude that 2/3 is an algebraic integer. In a first course in
algebraic number theory, one proves that a rational number that is an algebraic integer
must belong to Z, so 2/3 is not an algebraic integer.

There are several conditions equivalent to integrality of α over R, and a key step is
the following result, sometimes called the determinant trick.

2.1.2 Lemma

Let R, S and α be as above, and recall that a module is faithful if its annihilator is 0. Let
M be a finitely generated R-module that is faithful as an R[α]-module. Let I be an ideal
of R such that αM ⊆ IM . Then α is a root of a monic polynomial with coefficients in I.
Proof. let x1, . . . , xn generate M over R. Then αxi ∈ IM , so we may write αxi =∑n

j=1 cijxj with cij ∈ I. Thus

n∑
j=1

(δijα− cij)xj = 0, 1 ≤ i ≤ n.

In matrix form, we have Ax = 0, where A is a matrix with entries α − cii on the main
diagonal, and −cij elsewhere. Multiplying on the left by the adjoint matrix, we get
∆xi = 0 for all i, where ∆ is the determinant of A. But then ∆ annihilates all of M , so
∆ = 0. Expanding the determinant yields the desired monic polynomial. ♣

1
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2.1.3 Remark

If αM ⊆ IM , then in particular, α stabilizes M , in other words, αM ⊆M .

2.1.4 Theorem

Let R be a subring of S, with α ∈ S. The following conditions are equivalent:
(1) α is integral over R;
(2) R[α] is a finitely generated R-module;
(3) R[α] is contained in a subring R′ of S that is a finitely generated R-module;
(4) There is a faithful R[α]-module M that is finitely generated as an R-module.

Proof.
(1) implies (2): If α is a root of a monic polynomial over R of degree n, then αn and all
higher powers of α can be expressed as linear combinations of lower powers of α. Thus
1, α, α2, . . . , αn−1 generate R[α] over R.

(2) implies (3): Take R′ = R[α].

(3) implies (4): Take M = R′. If y ∈ R[α] and yM = 0, then y = y1 = 0.

(4) implies (1): Apply (2.1.2) with I = R. ♣

We are going to prove a transitivity property for integral extensions, and the following
result will be helpful.

2.1.5 Lemma

Let R be a subring of S, with α1, . . . , αn ∈ S. If α1 is integral over R, α2 is integral
over R[α1], . . . , and αn is integral over R[α1, . . . , αn−1], then R[α1, . . . , αn] is a finitely
generated R-module.

Proof. The n = 1 case follows from (2.1.4), part (2). Going from n − 1 to n amounts
to proving that if A, B and C are rings, with C a finitely generated B-module and B a
finitely generated A-module, then C is a finitely generated A-module. This follows by a
brief computation:

C =
r∑

j=1

Byj , B =
s∑

k=1

Axk, so C =
r∑

j=1

s∑
k=1

Ayjxk. ♣

2.1.6 Transitivity of Integral Extensions

Let A, B and C be subrings of R. If C is integral over B, that is, every element of C is
integral over B, and B is integral over A, then C is integral over A.

Proof. Let x ∈ C, with xn + bn−1x
n−1 + · · · + b1x + b0 = 0. Then x is integral over

A[b0, . . . , bn−1]. Each bi is integral over A, hence over A[b0, . . . , bi−1]. By (2.1.5),
A[b0, . . . , bn−1, x] is a finitely generated A-module. By (2.1.4), part (3), x is integral
over A. ♣



2.1. INTEGRAL ELEMENTS 3

2.1.7 Definitions and Comments

If R is a subring of S, the integral closure of R in S is the set Rc of elements of S that
are integral over R. Note that R ⊆ Rc because each a ∈ R is a root of x− a. We say that
R is integrally closed in S if Rc = R. If we simply say that R is integrally closed without
reference to S, we assume that R is an integral domain with fraction field K, and R is
integrally closed in K.

If the elements x and y of S are integral over R, then just as in the proof of (2.1.6), it
follows from (2.1.5) that R[x, y] is a finitely generated R-module. Since x + y, x− y and
xy belong to this module, they are integral over R by (2.1.4), part (3). The important
conclusion is that

Rc is a subring of S containing R.

If we take the integral closure of the integral closure, we get nothing new.

2.1.8 Proposition

The integral closure Rc of R in S is integrally closed in S.
Proof. By definition, Rc ⊆ (Rc)c. Thus let x ∈ (Rc)c, so that x is integral over Rc. As in
the proof of (2.1.6), x is integral over R. Thus x ∈ Rc. ♣

We can identify a large class of integrally closed rings.

2.1.9 Proposition

If R is a UFD, then R is integrally closed.
Proof. Let x belong to the fraction field K of R. Write x = a/b where a, b ∈ R and a and
b are relatively prime. If x is integral over R, there is an equation of the form

(a/b)n + an−1(a/b)n−1 + · · ·+ a1(a/b) + a0 = 0

with ai ∈ R. Multiplying by bn, we have an + bc = 0, with c ∈ R. Thus b divides an,
which cannot happen for relatively prime a and b unless b has no prime factors at all, in
other words, b is a unit. But then x = ab−1 ∈ R. ♣

A domain that is an integral extension of a field must be a field, as the next result
shows.

2.1.10 Proposition

Let R be a subring of the integral domain S, with S integral over R. Then R is a field if
and only if S is a field.
Proof. Assume that S is a field, and let a be a nonzero element of R. Since a−1 ∈ S,
there is an equation of the form

(a−1)n + cn−1(a−1)n−1 + · · ·+ c1a
−1 + c0 = 0

with ci ∈ R. Multiply the equation by an−1 to get

a−1 = −(cn−1 + · · ·+ c1a
n−2 + c0a

n−1) ∈ R.



4 CHAPTER 2. INTEGRAL EXTENSIONS

Now assume that R is a field, and let b be a nonzero element of S. By (2.1.4) part (2),
R[b] is a finite-dimensional vector space over R. Let f be the R-linear transformation on
this vector space given by multiplication by b, in other words, f(z) = bz, z ∈ R[b]. Since
R[b] is a subring of S, it is an integral domain. Thus if bz = 0 (with b �= 0 by choice of b),
we have z = 0 and f is injective. But any linear transformation on a finite-dimensional
vector space is injective iff it is surjective. Therefore if b ∈ S and b �= 0, there is an
element c ∈ R[b] ⊆ S such that bc = 1. Consequently, S is a field. ♣

2.1.11 Preview

Let S be integral over the subring R. We will analyze in great detail the relation between
prime ideals of R and those of S. Suppose that Q is a prime ideal of S, and let P = Q∩R.
(We say that Q lies over P .) Then P is a prime ideal of R, because it is the preimage
of Q under the inclusion map from R into S. The map a + P → a + Q is a well-defined
injection of R/P into S/Q, because P = Q∩R. Thus we can regard R/P as a subring of
S/Q. Moreover, S/Q is integral over R/P . To see this, let b + Q ∈ S/Q. Then b satisfies
an equation of the form

xn + an−1x
n−1 + · · ·+ a1x + a0 = 0

with ai ∈ R. But b + Q satisfies the same equation with ai replaced by ai + P for all i,
proving integrality of S/Q over R/P . We can now invoke (2.1.10) to prove the following
result.

2.1.12 Proposition

Let S be integral over the subring R, and let Q be a prime ideal of S, lying over the prime
ideal P = Q∩R of R. Then P is a maximal ideal of R if and only if Q is a maximal ideal
of S.

Proof. By (2.1.10), R/P is a field iff S/Q is a field. ♣

2.1.13 Remarks

Some results discussed in (2.1.11) work for arbitrary ideals, not necessarily prime. If R
is a subring of S and J is an ideal of S, then I = J ∩ R is an ideal of R. As in (2.1.11),
R/I can be regarded as a subring of S/J , and if S is integral over R, then S/J is integral
over R/I. Similarly, if S is integral over R and T is a multiplicative subset of R, then
ST is integral over RT . To prove this, let α/t ∈ ST , with α ∈ S, t ∈ T . Then there is an
equation of the form αn + cn−1α

n−1 + · · ·+ c1α + c0 = 0, with ci ∈ R. Thus

(
α

t
)n + (

cn−1

t
)(

α

t
)n−1 + · · ·+ (

c1

tn−1
)
α

t
+

c0

tn
= 0

with cn−j/tj ∈ RT .
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2.2 Integrality and Localization

Results that hold for maximal ideals can sometimes be extended to prime ideals by the
technique of localization. A good illustration follows.

2.2.1 Proposition

Let S be integral over the subring R, and let P1 and P2 be prime ideals of S that lie over
the prime ideal P of R, that is, P1 ∩R = P2 ∩R = P . If P1 ⊆ P2, then P1 = P2.
Proof. If P is maximal, then by (2.1.12), so are P1 and P2, and the result follows. In the
general case, we localize with respect to P . Let T = R\P , a multiplicative subset of R ⊆ S.
The prime ideals Pi , i = 1, 2, do not meet T , because if x ∈ T ∩Pi, then x ∈ R∩Pi = P ,
contradicting the definition of T . By the basic correspondence between prime ideals in a
ring and prime ideals in its localization, it suffices to show that P1ST = P2ST . We claim
that

PRT ⊆ (P1ST ) ∩RT ⊂ RT .

The first inclusion holds because P ⊆ P1 and RT ⊆ ST . The second inclusion is proper,
for otherwise RT ⊆ P1ST and therefore 1 ∈ P1ST , contradicting the fact that P1ST is a
prime ideal.

But PRT is a maximal ideal of RT , so by the above claim,

(P1ST ) ∩RT = PRT , and similarly (P2ST ) ∩RT = PRT .

Thus P1ST and P2ST lie over PRT . By (2.1.13), ST is integral over RT . As at the
beginning of the proof, P1ST and P2ST are maximal by (2.1.12), hence P1ST = P2ST . ♣

If S/R is an integral extension, then prime ideals of R can be lifted to prime ideals of
S, as the next result demonstrates. Theorem 2.2.2 is also a good example of localization
technique.

2.2.2 Lying Over Theorem

If S is integral over R and P is a prime ideal of R, there is a prime ideal Q of S such that
Q ∩R = P .
Proof. First assume that R is a local ring with unique maximal ideal P . If Q is any
maximal ideal of S, then Q ∩R is maximal by (2.1.12), so Q ∩R must be P . In general,
let T be the multiplicative set R \ P . We have the following commutative diagram.

R −−−−→ S

f

�
�g

RT −−−−→ ST

The horizontal maps are inclusions, and the vertical maps are canonical (f(r) = r/1 and
g(s) = s/1). Recall that ST is integral over RT by (2.1.13). If Q′ is any maximal ideal
of ST , then as at the beginning of the proof, Q′ ∩RT must be the unique maximal ideal
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of RT , namely PRT . By commutativity of the diagram, f−1(Q′ ∩ RT ) = g−1(Q′) ∩ R.
(Note that if r ∈ R, then f(r) ∈ Q′ ∩ RT iff g(r) ∈ Q′.) If Q = g−1(Q′), we have
f−1(PRT ) = Q∩R. By the basic localization correspondence [cf.(2.2.1)], f−1(PRT ) = P ,
and the result follows. ♣

2.2.3 Going Up Theorem

Let S be integral over R, and suppose we have a chain of prime ideals P1 ⊆ · · · ⊆ Pn

of R, and a chain of prime ideals Q1 ⊆ · · · ⊆ Qm of S, where m < n. If Qi lies
over Pi for i = 1, . . . , m, then there are prime ideals Qm+1, . . . , Qn of S such that
Qm ⊆ Qm+1 ⊆ · · · ⊆ Qn and Qi lies over Pi for every i = 1, . . . , n.

Proof. By induction, it suffices to consider the case n = 2, m = 1. Thus assume P1 ⊆ P2

and Q1 ∩R = P1. By (2.1.11), S/Q1 is integral over R/P1. Since P2/P1 is a prime ideal
of R/P1, we may apply the lying over theorem (2.2.2) to produce a prime ideal Q2/Q1 of
S/Q1 such that

(Q2/Q1) ∩R/P1 = P2/P1,

where Q2 is a prime ideal of S and Q1 ⊆ Q2. We claim that Q2∩R = P2, which gives the
desired extension of the Q-chain. To verify this, let x2 ∈ Q2 ∩ R. By (2.1.11), we have
an embedding of R/P1 into S/Q1, so x2 + P1 = x2 + Q1 ∈ (Q2/Q1) ∩ R/P1 = P2/P1.
Thus x2 + P1 = y2 + P1 for some y2 ∈ P2, so x2 − y2 ∈ P1 ⊆ P2. Consequently, x2 ∈ P2.
Conversely, if x2 ∈ P2 then x2 + P1 ∈ Q2/Q1, hence x2 + P1 = y2 + Q1 for some y2 ∈ Q2.
But as above, x2 + P1 = x2 + Q1, so x2 − y2 ∈ Q1, and therefore x2 ∈ Q2. ♣

It is a standard result of field theory that an embedding of a field F in an algebraically
closed field can be extended to an algebraic extension of F . There is an analogous result
for ring extensions.

2.2.4 Theorem

Let S be integral over R, and let f be a ring homomorphism from R into an algebraically
closed field C. Then f can be extended to a ring homomorphism g : S → C.

Proof. Let P be the kernel of f . Since f maps into a field, P is a prime ideal of R. By
(2.2.2), there is a prime ideal Q of S such that Q ∩ R = P . By the factor theorem, f
induces an injective ring homomorphism f : R/P → C, which extends in the natural way
to the fraction field K of R/P . Let L be the fraction field of S/Q. By (2.1.11), S/Q is
integral over R/P , hence L is an algebraic extension of K. Since C is algebraically closed,
f extends to a monomorphism g : L → C. If p : S → S/Q is the canonical epimorphism
and g = g ◦ p, then g is the desired extension of f , because g extends f and f ◦ p|R = f .
♣

In the next section, we will prove the companion result to (2.2.3), the going down
theorem. There will be extra hypotheses, including the assumption that R is integrally
closed. So it will be useful to get some practice with the idea of integral closure.
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2.2.5 Lemma

Let R be a subring of S, and denote by R the integral closure of R in S. If T is a
multiplicative subset of R, then (R)T is the integral closure of RT in ST .

Proof. Since R is integral over R, it follows from (2.1.13) that (R)T is integral over RT .
If α/t ∈ ST (α ∈ S, t ∈ T ) and α/t is integral over RT , we must show that α/t ∈ (R)T .
There is an equation of the form

(
α

t
)n + (

a1

t1
)(

α

t
)n−1 + · · ·+ an

tn
= 0

with ai ∈ R and ti, t ∈ T . Let t0 =
∏n

i=1 ti, and multiply the equation by (tt0)n to
conclude that t0α is integral over R. Therefore t0α ∈ R, so α/t = t0α/t0t ∈ (R)T . ♣

2.2.6 Corollary

If T is a multiplicative subset of the integrally closed domain R, then RT is integrally
closed.

Proof. Apply (2.2.5) with R = R and S = K, the fraction field of R (and of RT ). Then
RT is the integral closure of RT in ST . But ST = K, so RT is integrally closed. ♣

Additional results on localization and integral closure will be developed in the exercises.
The following result will be useful. (The same result was proved in (1.5.1), but a slightly
different proof is given here.)

2.2.7 Proposition

The following conditions are equivalent, for an arbitrary R-module M .
(1) M = 0;
(2) MP = 0 for all prime ideals P of R;
(3) MP = 0 for all maximal ideals P of R.

Proof. It is immediate that (1)⇒ (2)⇒ (3). To prove that (3)⇒ (1), let m ∈M . If P is
a maximal ideal of R, then m/1 is 0 in MP , so there exists rP ∈ R \P such that rP m = 0
in M . Let I(m) be the ideal generated by the rP . Then I(m) cannot be contained in
any maximal ideal M, because rM /∈ M by construction. Thus I(m) must be R, and
in particular, 1 ∈ I(m). Thus 1 can be written as a finite sum

∑
P aP rP where P is a

maximal ideal of R and aP ∈ R. Consequently,

m = 1m =
∑
P

aP rP m = 0. ♣

2.3 Going Down

We will prove a companion result to the going up theorem (2.2.3), but additional hy-
potheses will be needed and the analysis is more complicated.
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2.3.1 Lemma

Let S be integral over the subring R, with I an ideal of R. Then
√

IS is the set of all
s ∈ S satisfying an equation of integral dependence sm + rm−1s

m−1 + · · ·+ r1s + r0 = 0
with the ri ∈ I.
Proof. If s satisfies such an equation, then sm ∈ IS, so s ∈

√
IS. Conversely, let sn ∈

IS, n ≥ 1, so that sn =
∑k

i=1 risi for some ri ∈ I and si ∈ S. Then S1 = R[s1, . . . , sk]
is a subring of S, and is also a finitely generated R-module by (2.1.5). Now

snS1 =
k∑

i=1

risiS1 ⊆
k∑

i=1

riS1 ⊆ IS1.

Moreover, S1 is a faithful R[sn]-module, because an element that annihilates S1 annihilates
1 and is therefore 0. By (2.1.2), sn, hence s, satisfies an equation of integral dependence
with coefficients in I. ♣

2.3.2 Lemma

Let R be an integral domain with fraction field K, and assume that R is integrally closed.
Let f and g be monic polynomials in K[x]. If fg ∈ R[x], then both f and g are in R[x].
Proof. In a splitting field containing K, we have f(x) =

∏
i(x−ai) and g(x) =

∏
j(x−bj).

Since the ai and bj are roots of the monic polynomial fg ∈ R[x], they are integral over R.
The coefficients of f and g are in K and are symmetric polynomials in the roots, hence
are integral over R as well. But R is integrally closed, and the result follows. ♣

2.3.3 Proposition

Let S be integral over the subring R, where R is an integrally closed domain. Assume
that no nonzero element of R is a zero-divisor of S. (This is automatic if S itself is an
integral domain.) If s ∈ S, define a homomorphism hs : R[x]→ S by hs(f) = f(s); thus
hs is just evaluation at s. Then the kernel I of hs is a principal ideal generated by a
monic polynomial.
Proof. If K is the fraction field of R, then IK[x] is an ideal of the PID K[x], and IK[x] �= 0
because s is integral over R. (If this is unclear, see the argument in Step 1 below.) Thus
IK[x] is generated by a monic polynomial f .
Step 1 : f ∈ R[x].
By hypothesis, s is integral over R, so there is a monic polynomial h ∈ R[x] such that
h(s) = 0. Then h ∈ I ⊆ IK[x], hence h is a multiple of f , say h = fg, with g monic in
K[x]. Since R is integrally closed, we may invoke (2.3.2) to conclude that f and g belong
to R[x].
Step 2 : f ∈ I.
Since f ∈ IK[x], we may clear denominators to produce a nonzero element r ∈ R such
that rf ∈ IR[x] = I. By definition of I we have rf(s) = 0, and by hypothesis, r is not a
zero-divisor of S. Therefore f(s) = 0, so f ∈ I.
Step 3 : f generates I.
Let q ∈ I ⊆ IK[x]. Since f generates IK[x], we can take a common denominator and
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write q = q1f/r1 with 0 �= r1 ∈ R and q1 ∈ R[x]. Thus r1q = q1f , and if we pass to
residue classes in the polynomial ring (R/Rr1)[x], we have q1f = 0. Since f is monic, the
leading coefficient of q1 must be 0, which means that q1 itself must be 0. Consequently,
r1 divides every coefficient of q1, so q1/r1 ∈ R[x]. Thus f divides q in R[x]. ♣

2.3.4 Going Down Theorem

Let the integral domain S be integral over the integrally closed domain R. Suppose we
have a chain of prime ideals P1 ⊆ · · · ⊆ Pn of R and a chain of prime ideals Qm ⊆ · · · ⊆ Qn

of S, with 1 < m ≤ n. If Qi lies over Pi for i = m, . . . , n, then there are prime ideals
Q1, . . . , Qm−1 such that Q1 ⊆ · · · ⊆ Qm and Qi lies over Pi for every i = 1, . . . , n.
Proof. By induction, it suffices to consider n = m = 2. Let T be the subset of S consisting
of all products rt, r ∈ R \ P1, t ∈ S \ Q2. In checking that T is a multiplicative set,
we must make sure that it does not contain 0. If rt = 0 for some r /∈ P1 (hence r �= 0)
and t /∈ Q2, then the hypothesis that r is not a zero-divisor of S gives t = 0, which is a
contradiction (because 0 ∈ Q2). Note that R \P1 ⊆ T (take t = 1), and S \Q2 ⊆ T (take
r = 1).

First we prove the theorem under the assumption that T ∩ P1S = ∅. Now P1ST is
a proper ideal of ST , else 1 would belong to T ∩ P1S. Therefore P1ST is contained in a
maximal idealM. By basic localization theory,M corresponds to a prime ideal Q1 of S
that is disjoint from T . Explicitly, s ∈ Q1 iff s/1 ∈M. We refer to Q1 as the contraction
of M to S; it is the preimage of M under the canonical map s → s/1. With the aid of
the note at the end of the last paragraph, we have (R \ P1) ∩ Q1 = (S \ Q2) ∩ Q1 = ∅.
Thus Q1 ∩R ⊆ P1 and Q1 = Q1 ∩ S ⊆ Q2. We must show that P1 ⊆ Q1 ∩R. We do this
by taking the contraction of both sides of the inclusion P1ST ⊆M. Since the contraction
of P1ST to S is P1S, we have P1S ⊆ Q1, so P1 ⊆ (P1S) ∩R ⊆ Q1 ∩R, as desired.

Finally, we show that T ∩ P1S is empty. If not, then by definition of T , T ∩ P1S
contains an element rt with r ∈ R \P1 and t ∈ S \Q2. We apply (2.3.1), with I = P1 and
s replaced by rt, to produce a monic polynomial f(x) = xm + rm−1x

m−1 + · · ·+ r1x + r0

with coefficients in P1 such that f(rt) = 0. Define

v(x) = rmxm + rm−1r
m−1xm−1 + · · ·+ r1rx + r0.

Then v(x) ∈ R[x] and v(t) = 0. By (2.3.3), there is a monic polynomial g ∈ R[x] that
generates the kernel of the evaluation map ht : R[x] → S. Therefore v = ug for some
u ∈ R[x]. Passing to residue classes in the polynomial ring (R/P1)[x], we have v = u g.
Since ri ∈ P1 for all i = 0, . . . , m − 1, we have v = rmxm. Since R/P1 is an integral
domain and g, hence g, is monic, we must have g = xj for some j with 0 ≤ j ≤ m. (Note
that r /∈ P1, so v is not the zero polynomial.) Consequently,

g(x) = xj + aj−1x
j−1 + · · ·+ a1x + a0

with ai ∈ P1, i = 0, . . . , j − 1. But g ∈ ker ht, so g(t) = 0. By (2.3.1), t belongs to the
radical of P1S, so for some positive integer l, we have tl ∈ P1S ⊆ P2S ⊆ Q2S = Q2, so
t ∈ Q2. This contradicts our choice of t (recall that t ∈ S \Q2). ♣



Chapter 3

Valuation Rings

The results of this chapter come into play when analyzing the behavior of a rational
function defined in the neighborhood of a point on an algebraic curve.

3.1 Extension Theorems

In Theorem 2.2.4, we generalized a result about field extensions to rings. Here is another
variation.

3.1.1 Theorem

Let R be a subring of the field K, and h : R → C a ring homomorphism from R into an
algebraically closed field C. If α is a nonzero element of K, then either h can be extended
to a ring homomorphism h : R[α] → C, or h can be extended to a ring homomorphism
h : R[α−1]→ C.

Proof. Without loss of generality, we may assume that R is a local ring and F = h(R) is
a subfield of C. To see this, let P be the kernel of h. Then P is a prime ideal, and we can
extend h to g : RP → C via g(a/b) = h(a)/h(b), h(b) �= 0. The kernel of g is PRP , so
by the first isomorphism theorem, g(RP ) ∼= RP /PRP , a field (because PRP is a maximal
ideal). Thus we may replace (R, h) by (RP , g).

Our first step is to extend h to a homomorphism of polynomial rings. If f ∈ R[x] with
f(x) =

∑
aix

i, we take h(f) =
∑

h(ai)xi ∈ F [x]. Let I = {f ∈ R[x] : f(α) = 0}. Then
J = h(I) is an ideal of F [x], necessarily principal. Say J = (j(x)). If j is nonconstant,
it must have a root β in the algebraically closed field C. We can then extend h to
h : R[α]→ C via h(α) = β, as desired. To verify that h is well-defined, suppose f ∈ I, so
that f(α) = 0. Then h(f) ∈ J , hence h(f) is a multiple of j, and therefore h(f)(β) = 0.
Thus we may assume that j is constant. If the constant is zero, then we may extend h
exactly as above, with β arbitrary. So we can assume that j �= 0, and it follows that
1 ∈ J . Consequently, there exists f ∈ I such that h(f) = 1.

1
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This gives a relation of the form

r∑
i=0

aiα
i = 0 with ai ∈ R and ai = h(ai) =

{
1, i = 0
0, i > 0

(1)

Choose r as small as possible. We then carry out the same analysis with α replaced by
α−1. Assuming that h has no extension to R[α−1], we have

s∑
i=0

biα
−i = 0 with bi ∈ R and bi = h(bi) =

{
1, i = 0
0, i > 0

(2)

Take s minimal, and assume (without loss of generality) that r ≥ s. Since h(b0) = 1 =
h(1), it follows that b0 − 1 ∈ ker h ⊆ M, the unique maximal ideal of the local ring R.
Thus b0 /∈ M (else 1 ∈ M), so b0 is a unit. It is therefore legal to multiply (2) by b−1

0 αs

to get

αs + b−1
0 b1α

s−1 + · · ·+ b−1
0 bs = 0 (3)

Finally, we multiply (3) by arα
r−s and subtract the result from (1) to contradict the

minimality of r. (The result of multiplying (3) by arα
r−s cannot be a copy of (1). If so,

r = s (hence αr−s = 1)and a0 = arb
−1
0 bs. But h(a0) = 1 and h(arb

−1
0 bs) = 0.) ♣

It is natural to try to extend h to a larger domain, and this is where valuation rings
enter the picture.

3.1.2 Definition

A subring R of a field K is a valuation ring of K if for every nonzero α ∈ K, either α or
α−1 belongs to R.

3.1.3 Examples

The field K is a valuation ring of K, but there are more interesting examples.
1. Let K = Q, with p a fixed prime. Take R to be the set of all rationals of the form
prm/n, where r ≥ 0 and p divides neither m nor n.
2. Let K = k(x), where k is any field. Take R to be the set of all rational functions
prm/n, where r ≥ 0, p is a fixed polynomial that is irreducible over k and m and n
are arbitrary polynomials in k[x] not divisible by p. This is essentially the same as the
previous example.
3. Let K = k(x), and let R be the set of all rational functions f/g ∈ k(x) such that
deg f ≤ deg g.
4. Let K be the field of formal Laurent series over k. Thus a nonzero element of K looks
like f =

∑∞
i=r aix

i with ai ∈ k, r ∈ Z, and ar �= 0. We may write f = arx
rg, where

g belongs to the ring R = k[[x]] of formal power series over k. Moreover, the constant
term of g is 1, and therefore g, hence f , can be inverted (by long division). Thus R is a
valuation ring of K.

We now return to the extension problem.
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3.1.4 Theorem

Let R be a subring of the field K, and h : R → C a ring homomorphism from R into an
algebraically closed field C. Then h has maximal extension (V, h). In other words, V is a
subring of K containing R, h is an extension of h, and there is no extension to a strictly
larger subring. In addition, for any maximal extension, V is a valuation ring of K.
Proof. Let S be the set of all (Ri, hi), where Ri is a subring of K containing R and hi

is an extension of h to Ri. Partially order S by (Ri, hi) ≤ (Rj , hj) if and only if Ri is a
subring of Rj and hj restricted to Ri coincides with hi. A standard application of Zorn’s
lemma produces a maximal extension (V, h). If α is a nonzero element of K, then by
(3.1.1), h has an extension to either V [α] or V [α−1]. By maximality, either V [α] = V or
V [α−1] = V . Therefore α ∈ V or α−1 ∈ V . ♣

3.2 Properties of Valuation Rings

We have a long list of properties to verify, and the statement of each property will be
followed immediately by its proof. The end of proof symbol will only appear at the very
end. Throughout, V is a valuation ring of the field K.
1. The fraction field of V is K.
This follows because a nonzero element α of K can be written as α/1 or as 1/α−1.
2. Any subring of K containing V is a valuation ring of K.
This follows from the definition of a valuation ring.
3. V is a local ring.
We will show that the setM of nonunits of V is an ideal. If a and b are nonzero nonunits,
then either a/b or b/a belongs to V . If a/b ∈ V , then a + b = b(1 + a/b) ∈ M (because
if b(1 + a/b) were a unit, then b would be a unit as well). Similarly, if b/a ∈ V , then
a + b ∈ M. If r ∈ V and a ∈ M, then ra ∈ M, else a would be a unit. Thus M is an
ideal.
4. V is integrally closed.
Let α be a nonzero element of K, with α integral over V . Then there is an equation of
the form

αn + cn−1α
n−1 + · · ·+ c1α + c0 = 0

with the ci in V . We must show that α ∈ V . If not, then α−1 ∈ V , and if we multiply
the above equation of integral dependence by α−(n−1), we get

α = −cn−1 − cn−2α
−1 − · · · − c1α

n−2 − c0α
n−1 ∈ V.

5. If I and J are ideals of V , then either I ⊆ J or J ⊆ I. Thus the ideals of V are totally
ordered by inclusion.
Suppose that I is not contained in J , and pick a ∈ I \ J (hence a �= 0). If b ∈ J , we
must show that b ∈ I. If b = 0 we are finished, so assume b �= 0. We have b/a ∈ V (else
a/b ∈ V , so a = (a/b)b ∈ J , a contradiction). Therefore b = (b/a)a ∈ I.
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6. Conversely, let V be an integral domain with fraction field K. If the ideals of V are
partially ordered by inclusion, then V is a valuation ring of K.

If α is a nonzero element of K, then α = a/b with a and b nonzero elements of V . By
hypothesis, either (a) ⊆ (b), in which case a/b ∈ V , or (b) ⊆ (a), in which case b/a ∈ V .

7. If P is a prime ideal of the valuation ring V , then VP and V/P are valuation rings.

First note that if K is the fraction field of V , it is also the fraction field of VP . Also, V/P
is an integral domain, hence has a fraction field. Now by Property 5, the ideals of V are
totally ordered by inclusion, so the same is true of VP and V/P . The result follows from
Property 6.

8. If V is a Noetherian valuation ring, then V is a PID. Moreover, for some prime p ∈ V ,
every ideal is of the form (pm), m ≥ 0. For any such p, ∩∞m=1(p

m) = 0.

Since V is Noetherian, an ideal I of V is finitely generated, say by a1, . . . , an. By Property
5, we may renumber the ai so that (a1) ⊆ (a2) · · · ⊆ (an). But then I ⊆ (an) ⊆ I, so
I = (an). In particular, the maximal ideal M of V is (p) for some p, and p is prime
because M is a prime ideal. If (a) is an arbitrary ideal, then (a) = V if a is a unit, so
assume a is a nonunit, that is, a ∈M. But then p divides a, so a = pb. If b is a nonunit,
then p divides b, and we get a = p2c. Continuing inductively and using the fact that V
is a PID, hence a UFD, we have a = pmu for some positive integer m and unit u. Thus
(a) = (pm). Finally, if a belongs to (pm) for every m ≥ 1, then pm divides a for all m ≥ 1.
Again using unique factorization, we must have a = 0. (Note that if a is a unit, so is p, a
contradiction.)

9. Let R be a subring of the field K. The integral closure R of R in K is the intersection
of all valuation rings V of K such that V ⊇ R.

If a ∈ R, then a is integral over R, hence over any valuation ring V ⊇ R. But V is
integrally closed by Property 4, so a ∈ V . Conversely, assume a /∈ R. Then a fails to
belong to the ring R′ = R[a−1]. (If a is a polynomial in a−1, multiply by a sufficiently
high power of a to get a monic equation satisfied by a.) Thus a−1 cannot be a unit in
R′. (If ba−1 = 1 with b ∈ R′, then a = a1 = aa−1b = b ∈ R′, a contradiction.) It follows
that a−1 belongs to a maximal idealM′ of R′. Let C be an algebraic closure of the field
k = R′/M′, and let h be the composition of the canonical map R′ → R′/M′ = k and
the inclusion k → C. By (3.1.4), h has a maximal extension to h : V → C for some
valuation ring V of K containing R′ ⊇ R. Now h(a−1) = h(a−1) since a−1 ∈ M′ ⊆ R′,
and h(a−1) = 0 by definition of h. Consequently a /∈ V , for if a ∈ V , then

1 = h(1) = h(aa−1) = h(a)h(a−1) = 0,

a contradiction. The result follows.

10. Let R be an integral domain with fraction field K. Then R is integrally closed if and
only if R = ∩αVα, the intersection of some (not necessarily all) valuation rings of K.

The “only if” part follows from Property 9. For the “if” part, note that each Vα is
integrally closed by Property 4, hence so is R. (If a is integral over R, then a is integral
over each Vα, hence a belongs to each Vα, so a ∈ R.) ♣
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3.3 Discrete Valuation Rings

3.3.1 Definitions and Comments

An absolute value on a field K is a mapping x → |x| from K to the real numbers, such
that for every x, y ∈ K,
1. |x| ≥ 0, with equality if and only if x = 0;
2. |xy| = |x| |y|;
3. |x + y| ≤ |x|+ |y|.
The absolute value is nonarchimedean if the third condition is replaced by a stronger
version:
3′. |x + y| ≤ max(|x|, |y|).
As expected, archimedean means not nonarchimedean.

The familiar absolute values on the reals and the complex numbers are archimedean.
However, our interest will be in nonarchimedean absolute values. Here is where most of
them come from.

A discrete valuation on K is a surjective map v : K → Z ∪ {∞}, such that for every
x, y ∈ K,
(a) v(x) =∞ if and only if x = 0;
(b) v(xy) = v(x) + v(y);
(c) v(x + y) ≥ min(v(x), v(y)).

A discrete valuation induces a nonarchimedean absolute value via |x| = cv(x), where c
is a constant with 0 < c < 1.

3.3.2 Examples

We can place a discrete valuation on all of the fields of Subsection 3.1.3. In Examples
1 and 2, we take v(prm/n) = r. In Example 3, v(f/g) = deg g − deg f . In Example 4,
v(

∑∞
i=r aix

i) = r (if ar �= 0).

3.3.3 Proposition

If v is a discrete valuation on the field K, then V = {a ∈ K : v(a) ≥ 0} is a valuation
ring with maximal idealM = {a ∈ K : v(a) ≥ 1}.
Proof. The defining properties (a), (b) and (c) of 3.3.1 show that V is a ring. If a /∈ V ,
then v(a) < 0, so v(a−1) = v(1) − v(a) = 0 − v(a) > 0, so a−1 ∈ V , proving that V is a
valuation ring. Since a is a unit of V iff both a and a−1 belong to V iff v(a) = 0, M is
the ideal of nonunits and is therefore the maximal ideal of the valuation ring V . ♣

3.3.4 Definitions and Comments

Discrete valuations do not determine all valuation rings. An arbitrary valuation ring
corresponds to a generalized absolute value mapping into an ordered group rather than
the real numbers. We will not consider the general situation, as discrete valuations will
be entirely adequate for us. A valuation ring V arising from a discrete valuation v as in
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(3.3.3) is said to be a discrete valuation ring, abbreviated DVR. An element t ∈ V with
v(t) = 1 is called a uniformizer or prime element. A uniformizer tells us a lot about the
DVR V and the field K.

3.3.5 Proposition

Let t be a uniformizer in the discrete valuation ring V . Then t generates the maximal
idealM of V , in particular,M is principal. Conversely, if t′ is any generator ofM, then
t′ is a uniformizer.

Proof. Since M is the unique maximal ideal, (t) ⊆ M. If a ∈ M, then v(a) ≥ 1, so
v(at−1) = v(a)− v(t) ≥ 1− 1 = 0, so at−1 ∈ V , and consequently a ∈ (t). Now suppose
M = (t′). Since t ∈M, we have t = ct′ for some c ∈ V . Thus

1 = v(t) = v(c) + v(t′) ≥ 0 + 1 = 1,

which forces v(t′) = 1. ♣

3.3.6 Proposition

If t is a uniformizer, then every nonzero element a ∈ K can be expressed uniquely as
a = utn where u is a unit of V and n ∈ Z. Also, K = Vt, that is, K = S−1V where
S = {1, t, t2, . . . }.
Proof. Let n = v(a), so that v(at−n) = 0 and therefore at−n is a unit u. To prove
uniqueness, note that if a = utn, then v(a) = v(u) + nv(t) = 0 + n = n, so that n, and
hence u, is determined by a. The last statement follows by Property 1 of Section 3.2 and
the observation that the elements of V are those with valuation n ≥ 0. ♣

A similar result holds for ideals.

3.3.7 Proposition

Every nonzero ideal I of the DVR V is of the form Mn, where M is the maximal ideal
of V and n is a unique nonnegative integer. We write v(I) = n; by convention,M0 = V .

Proof. Choose a ∈ I such that n = v(a) is as small as possible. By (3.3.6), a = utn, so
tn = u−1a ∈ I. By (3.3.5), M = (t), and therefore Mn ⊆ I. Conversely, let b ∈ I, with
v(b) = k ≥ n by minimality of n. As in the proof of (3.3.6), bt−k is a unit u′, so b = u′tk.
Since k ≥ n we have b ∈ (tn) = Mn, proving that I ⊆ Mn. The uniqueness of n is a
consequence of Nakayama’s lemma. IfMr =Ms with r < s, thenMr =Mr+1 =MMr.
ThusMr, hence M, is 0, contradicting the hypothesis that I is nonzero. ♣

We may interpret v(I) as the length of a composition series.

3.3.8 Proposition

Let I be a nonzero ideal of the discrete valuation ring R. Then v(I) = lR(R/I), the
composition length of the R-module R/I.
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Proof. By (3.3.7), we have R ⊃M ⊃M2 ⊃ · · · ⊃ Mn = I, hence

R/I ⊃M/I ⊃M2/I ⊃ · · · ⊃ Mn/I = 0.

By basic properties of composition length, we have, with l = lR,

l(R/I) = l(
R/I

M/I
) + l(M/I) = l(R/M) + l(

M/I

M2/I
) + l(M2/I).

Continuing in this fashion, we get

l(R/I) =
n−1∑
i=0

l(Mi/Mi+1).

Since M is generated by a uniformizer t, it follows that ti +Mi+1 generates Mi/Mi+1.
SinceMi/Mi+1 is annihilated byM, it is an R/M-module, that is, a vector space, over
the field R/M. The vector space is one-dimensional because the Mi, i = 0, 1, . . . , n, are
distinct [see the proof of (3.3.7)]. Consequently, l(R/I) = n. ♣

We are going to prove a characterization theorem for DVR’s, and some preliminary
results will be needed.

3.3.9 Proposition

Let I be an ideal of the Noetherian ring R. Then for some positive integer m, we have
(
√

I)m ⊆ I. In particular (take I = 0), the nilradical of R is nilpotent.
Proof. Since R is Noetherian,

√
I is finitely generated, say by a1, . . . , at, with ani

i ∈ I.
Then (

√
I)m is generated by all products ar1

1 · · · art
t with

∑t
i=1 ri = m. Our choice of m

is

m = 1 +
t∑

i=1

(ni − 1).

We claim that ri ≥ ni for some i. If not, then ri ≤ ni − 1 for all i, and

m =
t∑

i=1

ri < 1 +
t∑

i=1

(ni − 1) = m,

a contradiction. But then each product ar1
1 · · · art

t is in I, hence (
√

I)m ⊆ I. ♣

3.3.10 Proposition

Let M be a maximal ideal of the Noetherian ring R, and let Q be any ideal of R. The
following conditions are equivalent:
1. Q is M-primary.
2.
√

Q =M.
3. For some positive integer n, we have Mn ⊆ Q ⊆M.
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Proof. We have (1) implies (2) by definition of M-primary; see (1.1.1). The implication
(2)⇒ (1) follows from (1.1.2). To prove that (2) implies (3), apply (3.3.9) with I = Q to
get, for some positive integer n,

Mn ⊆ Q ⊆
√

Q =M.

To prove that (3) implies (2), observe that by (1.1.1),

M =
√
Mn ⊆

√
Q ⊆

√
M =M. ♣

Now we can characterize discrete valuation rings.

3.3.11 Theorem

Let R be a Noetherian local domain with fraction field K and unique maximal ideal
M �= 0. (Thus R is not a field.) The following conditions are equivalent:
1. R is a discrete valuation ring.
2. R is a principal ideal domain.
3. M is principal.
4. R is integrally closed and every nonzero prime ideal is maximal.
5. Every nonzero ideal is a power ofM.
6. The dimension ofM/M2 as a vector space over R/M is 1.
Proof.
(1)⇒ (2): This follows from (3.3.7) and (3.3.5).
(2) ⇒ (4): This holds because a PID is integrally closed, and a PID is a UFD in which
every nonzero prime ideal is maximal.
(4) ⇒ (3): Let t be a nonzero element of M. By hypothesis, M is the only nonzero
prime ideal, so the radical of (t), which is the intersection of all prime ideals containing
t, coincides with M. By (3.3.10), for some n ≥ 1 we have Mn ⊆ (t) ⊆ M, and we
may assume that (t) ⊂ M, for otherwise we are finished. Thus for some n ≥ 2 we have
Mn ⊆ (t) but Mn−1 �⊆ (t). Choose a ∈ Mn−1 with a /∈ (t), and let β = t/a ∈ K. If
β−1 = a/t ∈ R, then a ∈ Rt = (t), contradicting the choice of a. Therefore β−1 /∈ R.
Since R is integrally closed, β−1 is not integral over R. But then β−1M �⊆ M, for if
β−1M ⊆ M, then β−1 stabilizes a finitely generated R-module, and we conclude from
the implication (4) ⇒ (1) in (2.1.4) that β−1 is integral over R, a contradiction.

Now β−1M ⊆ R, because β−1M = (a/t)M ⊆ (1/t)Mn ⊆ R. (Note that a ∈ Mn−1

andMn ⊆ (t).) Thus β−1M is an ideal of R, and if it were proper, it would be contained
in M, contradicting β−1M �⊆ M. Consequently, β−1M = R, hence M is the principal
ideal (β).
(3) ⇒ (2): By hypothesis, M is a principal ideal (t), and we claim that ∩∞n=0Mn = 0.
Suppose that a belongs to Mn for all n, with a = bntn for some bn ∈ R. Then bntn =
bn+1t

n+1, hence bn = bn+1t. Thus (bn) ⊆ (bn+1) for all n, and in fact (bn) = (bn+1) for
sufficiently large n because R is Noetherian. Therefore bn = bn+1t = ctbn for some c ∈ R,
so (1− ct)bn = 0. But t ∈ M, so t is not a unit, and consequently ct �= 1. Thus bn must
be 0, and we have a = bntn = 0, proving the claim.

Now let I be any nonzero ideal of R. Then I ⊆ M, but by the above claim we
have I �⊆ ∩n=0Mn. Thus there exists n ≥ 0 such that I ⊆ Mn and I �⊆ Mn+1. Choose
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a ∈ I\Mn+1; sinceMn = (t)n = (tn), we have a = utn with u /∈M (because a /∈Mn+1).
But then u is a unit, so tn = u−1a ∈ I. To summarize, I ⊆Mn = (tn) ⊆ I, proving that
I is principal.
(2) ⇒ (1): By hypothesis, M is a principal ideal (t), and by the proof of (3) ⇒ (2),
∩∞n=0Mn = 0. Let a be any nonzero element of R. Then (a) ⊆M, and since ∩∞n=0Mn = 0,
we will have a ∈ (tn) but a /∈ (tn+1) for some n. Thus a = utn with u /∈ M, in other
words, u is a unit. For fixed a, both u and n are unique (because t, a member ofM, is a
nonunit). It follows that if β is a nonzero element of the fraction field K, then β = utm

uniquely, where u is a unit of R and m is an integer, possibly negative. If we define
v(β) = m, then v is a discrete valuation on K with valuation ring R.
(1)⇒ (5): This follows from (3.3.7).
(5) ⇒ (3): As in the proof of (3.3.7), M �= M2. Choose t ∈ M \M2. By hypothesis,
(t) =Mn for some n ≥ 0. We cannot have n = 0 because (t) ⊆ M ⊂ R, and we cannot
have n ≥ 2 by choice of t. The only possibility is n = 1, hence M = (t).
(1)⇒ (6): This follows from the proof of (3.3.8).
(6)⇒ (3): By hypothesis,M �=M2, so we may choose t ∈M\M2. But then t+M2 is a
generator of the vector spaceM/M2 over the field R/M. Thus R(t+M2)/M2 =M/M2.
By the correspondence theorem, t +M2 = M. Now M(M/(t)) = (M2 + (t))/(t) =
M/(t), so by NAK,M/(t) = 0, that is,M = (t). ♣.

Let us agree to exclude the trivial valuation v(a) = 0 for every a �= 0.

3.3.12 Corollary

The ring R is a discrete valuation ring if and only if R is a local PID that is not a field.
In particular, since R is a PID, it is Noetherian.
Proof. The “if” part follows from (2) implies (1) in (3.3.11). For the “only if” part, note
that a discrete valuation ring R is a PID by (1) implies (2) of (3.3.11); the Noetherian
hypothesis is not used here. Moreover, R is a local ring by Property 3 of Section 3.2. If R
is a field, then every nonzero element a ∈ R is a unit, hence v(a) = 0. Thus the valuation
v is trivial, contradicting our convention. ♣

3.3.13 Corollary

Let R be a DVR with maximal idealM. If t ∈M \M2, then t is a uniformizer.
Proof. This follows from the proof of (5) implies (3) in (3.3.11). ♣



Chapter 4

Completion

The set R of real numbers is a complete metric space in which the set Q of rationals
is dense. In fact any metric space can be embedded as a dense subset of a complete
metric space. The construction is a familiar one involving equivalence classes of Cauchy
sequences. We will see that under appropriate conditions, this procedure can be general-
ized to modules.

4.1 Graded Rings and Modules

4.1.1 Definitions and Comments

A graded ring is a ring R that is expressible as ⊕n≥0Rn where the Rn are additive
subgroups such that RmRn ⊆ Rm+n. Sometimes, Rn is referred to as the nth graded
piece and elements of Rn are said to be homogeneous of degree n. The prototype is a
polynomial ring in several variables, with Rd consisting of all homogeneous polynomials
of degree d (along with the zero polynomial). A graded module over a graded ring R is a
module M expressible as ⊕n≥0Mn, where RmMn ⊆Mm+n.

Note that the identity element of a graded ring R must belong to R0. For if 1 has a
component a of maximum degree n > 0, then 1a = a forces the degree of a to exceed n,
a contradiction.

Now suppose that {Rn} is a filtration of the ring R, in other words, the Rn are additive
subgroups such that

R = R0 ⊇ R1 ⊇ · · · ⊇ Rn ⊇ · · ·
with RmRn ⊆ Rm+n. We call R a filtered ring. A filtered module

M = M0 ⊇M1 ⊇ · · · ⊇ · · ·
over the filtered ring R may be defined similarly. In this case, each Mn is a submodule
and we require that RmMn ⊆Mm+n.

If I is an ideal of the ring R and M is an R-module, we will be interested in the I-adic
filtrations of R and of M , given respectively by Rn = In and Mn = InM . (Take I0 = R,
so that M0 = M .)

1
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4.1.2 Associated Graded Rings and Modules

If {Rn} is a filtration of R, the associated graded ring of R is defined as

gr(R) =
⊕
n≥0

grn(R)

where grn(R) = Rn/Rn+1. We must be careful in defining multiplication in gr(R). If
a ∈ Rm and b ∈ Rn, then a + Rm+1 ∈ Rm/Rm+1 and b + Rn+1 ∈ Rn/Rn+1. We take

(a + Rm+1)(b + Rn+1) = ab + Rm+n+1

so that the product of an element of grm(R) and an element of grn(R) will belong to
grm+n(R). If a ∈ Rm+1 and b ∈ Rn, then ab ∈ Rm+n+1, so multiplication is well-defined.

If M is a filtered module over a filtered ring R, we define the associated graded module
of M as

gr(M) =
⊕
n≥0

grn(M)

where grn(M) = Mn/Mn+1. If a ∈ Rm and x ∈Mn, we define scalar multiplication by

(a + Rm+1)(x + Mn+1) = ax + Mm+n+1

and it follows that

(Rm/Rm+1)(Mn/Mn+1) ⊆Mm+n/Mm+n+1.

Thus gr(M) is a graded module over the graded ring gr(R).

It is natural to ask for conditions under which a graded ring will be Noetherian, and
the behavior of the subring R0 is critical.

4.1.3 Proposition

Let R = ⊕d≥0Rd be a graded ring. Then R is Noetherian if and only if R0 is Noetherian
and R is a finitely generated R0-algebra.

Proof. If the condition on R0 holds, then R is a quotient of a polynomial ring R0[X1, . . . , Xn],
hence R is Noetherian by the Hilbert Basis Theorem. Conversely, if R is Noetherian, then
so is R0, because R0

∼= R/I where I is the ideal ⊕d≥1Rd. By hypothesis, I is finitely
generated, say by homogeneous elements a1, . . . , ar of degree n1, . . . , nr respectively. Let
R′ = R0[a1, . . . , ar] be the R0-subalgebra of R generated by the ai. It suffices to show
that Rn ⊆ R′ for all n ≥ 0 (and therefore R = R′). We have R0 ⊆ R′ by definition of
R′, so assume as an induction hypothesis that Rd ⊆ R′ for d ≤ n − 1, where n > 0. If
a ∈ Rn, then a can be expressed as c1a1 + · · · + crar, where ci (i = 1, . . . , r) must be a
homogeneous element of degree n − ni < n = deg a. By induction hypothesis, ci ∈ R′,
and since ai ∈ R′ we have a ∈ R′. ♣

We now prepare for the basic Artin-Rees lemma.
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4.1.4 Definitions and Comments

Let M be a filtered R-module with filtration {Mn}, I an ideal of R. We say that {Mn}
is an I-filtration if IMn ⊆ Mn+1 for all n. An I-filtration with IMn = Mn+1 for all
sufficiently large n is said to be I-stable. Note that the I-adic filtration is I-stable.

4.1.5 Proposition

Let M be a finitely generated module over a Noetherian ring R, and suppose that {Mn}
is an I-filtration of M . The following conditions are equivalent.

1. {Mn} is I-stable.

2. Define a graded ring R∗ and a graded R∗-module M∗ by

R∗ =
⊕
n≥0

In, M∗ =
⊕
n≥0

Mn.

Then M∗ is finitely generated.

Proof. Let Nn = ⊕n
i=0Mi, and define

M∗n = M0 ⊕ · · · ⊕Mn ⊕ IMn ⊕ I2Mn ⊕ · · ·

Since Nn is finitely generated over R, it follows that M∗n is a finitely generated R∗-module.
By definition, M∗ is the union of the M∗n over all n ≥ 0. Therefore M∗ is finitely generated
over R∗ if and only if M∗ = M∗m for some m, in other words, Mm+k = IkMm for all k ≥ 1.
Equivalently, the filtration {Mn} is I-stable. ♣

4.1.6 Induced Filtrations

If {Mn} is a filtration of the R-module M , and N is a submodule of M , then we have
filtrations induced on N and M/N , given by Nn = N ∩Mn and (M/N)n = (Mn + N)/N
respectively.

4.1.7 Artin-Rees Lemma

Let M be a finitely generated module over the Noetherian ring R, and assume that M
has an I-stable filtration {Mn}, where I is an ideal of R. Let N be a submodule of M .
Then the filtration {Nn = N ∩Mn} induced by M on N is also I-stable.

Proof. As in (4.1.5), let R∗ = ⊕n≥0I
n, M∗ = ⊕n≥0Mn, and N∗ = ⊕n≥0Nn. Since R

is Noetherian, I is finitely generated, so R∗ is a finitely generated R-algebra. (Elements
of R∗ can be expressed as polynomials in a finite set of generators of I.) By (4.1.3), R∗ is
a Noetherian ring. Now by hypothesis, M is finitely generated over the Noetherian ring
R and {Mn} is I-stable, so by (4.1.5), M∗ is finitely generated over R∗. Therefore the
submodule N∗ is also finitely generated over R∗. Again using (4.1.5), we conclude that
{Nn} is I-stable. ♣
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4.1.8 Applications

Let M be a finitely generated module over the Noetherian ring R, with N a submodule of
M . The filtration on N induced by the I-adic filtration on M is given by Nm = (ImM)∩N .
By Artin-Rees, for large enough m we have

Ik((ImM) ∩N) = (Im+kM) ∩N

for all k ≥ 0.

There is a basic topological interpretation of this result. We can make M into a
topological abelian group in which the module operations are continuous. The sets ImM
are a base for the neighborhoods of 0, and the translations x + ImM form a basis for the
neighborhoods of an arbitrary point x ∈ M . The resulting topology is called the I-adic
topology on M . The above equation says that the I-adic topology on N coincides with
the topology induced on N by the I-adic topology on M .

4.2 Completion of a Module

4.2.1 Inverse Limits

Suppose we have countably many R-modules M0, M1, . . . , with R-module homomor-
phisms θn : Mn → Mn−1, n ≥ 1. (We are restricting to the countable case to simplify
the notation, but the ideas carry over to an arbitrary family of modules, indexed by a
directed set. If i ≤ j, we have a homomorphism fij from Mj to Mi. We assume that the
maps can be composed consistently, in other words, if i ≤ j ≤ k, then fij ◦ fjk = fik.)The
collection of modules and maps is called an inverse system.

A sequence (xi) in the direct product
∏

Mi is said to be coherent if it respects the
maps θn in the sense that for every i we have θi+1(xi+1) = xi. The collection M of all
coherent sequences is called the inverse limit of the inverse system. The inverse limit is
denoted by

lim
←−

Mn.

Note that M becomes an R-module with componentwise addition and scalar multiplica-
tion of coherent sequences, in other words, (xi) + (yi) = (xi + yi) and r(xi) = (rxi).

Now suppose that we have homomorphisms gi from an R-module M ′ to Mi, i =
0, 1, . . . . Call the gi coherent if θi+1 ◦ gi+1 = gi for all i. Then the gi can be lifted to a
homomorphism g from M ′ to M . Explicitly, g(x) = (gi(x)), and the coherence of the gi

forces the sequence (gi(x)) to be coherent.
An inverse limit of an inverse system of rings can be constructed in a similar fashion,

as coherent sequences can be multiplied componentwise, that is, (xi)(yi) = (xiyi).

4.2.2 Examples

1. Take R = Z, and let I be the ideal (p) where p is a fixed prime. Take Mn = Z/In and
θn+1(a + In+1) = a + In. The inverse limit of the Mn is the ring Zp of p-adic integers.
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2. Let R = A[x1, . . . , xn] be a polynomial ring in n variables, and I the maximal ideal
(x1, . . . , xn). Let Mn = R/In and θn(f + In) = f + In−1, n = 1, 2, . . . . An element of
Mn is represented by a polynomial f of degree at most n−1. (We take the degree of f
to be the maximum degree of a monomial in f .) The image of f in In−1 is represented
by the same polynomial with the terms of degree n− 1 deleted. Thus the inverse limit
can be identified with the ring A[[x1, . . . , xn]] of formal power series.

Now let M be a filtered R-module with filtration {Mn}. The filtration determines a
topology on M as in (4.1.8), with the Mn forming a base for the neighborhoods of 0. We
have the following result.

4.2.3 Proposition

If N is a submodule of M , then the closure of N is given by N = ∩∞n=0(N + Mn).
Proof. Let x be an element of M . Then x fails to belong to N iff some neighborhood of x
is disjoint from N , in other words, (x+Mn)∩N = ∅ for some n. Equivalently, x /∈ N +Mn

for some n, and the result follows. To justify the last step, note that if x ∈ N + Mn,
then x = y + z, y ∈ N, z ∈ Mn. Thus y = x − z ∈ (x + Mn) ∩ N . Conversely, if
y ∈ (x + Mn) ∩N , then for some z ∈Mn we have y = x− z, so x = y + z ∈ N + Mn. ♣

4.2.4 Corollary

The topology is Hausdorff if and only if ∩∞n=0Mn = {0}.
Proof. By (4.2.3), ∩∞n=0Mn = {0}, so we are asserting that the Hausdorff property is
equivalent to points being closed, that is, the T1 condition. This holds because separating
distinct points x and y by disjoint open sets is equivalent to separating x− y from 0. ♣

4.2.5 Definition of the Completion

Let {Mn} be a filtration of the R-module M . Recalling the construction of the reals from
the rationals, or the process of completing an arbitrary metric space, let us try to come up
with something similar in this case. If we go far out in a Cauchy sequence, the difference
between terms becomes small. Thus we can define a Cauchy sequence {xn} in M by
the requirement that for every positive integer r there is a positive integer N such that
xn − xm ∈ Mr for n, m ≥ N . We identify the Cauchy sequences {xn} and {yn} if they
get close to each other for large n. More precisely, given a positive integer r there exists
a positive integer N such that xn − yn ∈ Mr for all n ≥ N . Notice that the condition
xn − xm ∈ Mr is equivalent to xn + Mr = xm + Mr. This suggests that the essential
feature of the Cauchy condition is that the sequence is coherent with respect to the maps
θn : M/Mn → M/Mn−1. Motivated by this observation, we define the completion of M
as

M̂ = lim
←−

(M/Mn).

The functor that assigns the inverse limit to an inverse system of modules is left exact,
and becomes exact under certain conditions.
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4.2.6 Theorem

Let {M ′n, θ′n}, {Mn, θn}, and {M ′′n , θ′′n} be inverse systems of modules, and assume that
the diagram below is commutative with exact rows.

0 �� M ′n+1

θ′n+1

��

fn+1 �� Mn+1

θn+1

��

gn+1 �� M ′′n+1

θ′′n+1

��

�� 0

0 �� M ′n
fn �� Mn

gn �� M ′′n �� 0

Then the sequence

0→ lim
←−

M ′n → lim
←−

Mn → lim
←−

M ′′n

is exact. If θ′n is surjective for all n, then

0→ lim
←−

M ′n → lim
←−

Mn → lim
←−

M ′′n → 0

is exact.
Proof. Let M =

∏
Mn and define an R- homomorphism dM : M → M by dM (xn) =

(xn − θn+1(xn+1)). The kernel of dM is the inverse limit of the Mn. Now the maps (fn)
and (gn) induce f =

∏
fn : M ′ =

∏
M ′n → M and g =

∏
gn : M → M ′′ =

∏
M ′′n . We

have the following commutative diagram with exact rows.

0 �� M ′
f ��

dM′

��

M
g ��

dM

��

M ′′ ��

dM′′

��

0

0 �� M ′
f �� M

g �� M ′′ �� 0

We now apply the snake lemma, which is discussed in detail in TBGY (Section S2 of the
supplement). The result is an exact sequence

0→ ker dM ′ → ker dM → ker dM ′′ → coker dM ′ ,

proving the first assertion. If θ′n is surjective for all n, then dM ′ is surjective, and conse-
quently the cokernel of dM ′ is 0. The second assertion follows. ♣

4.2.7 Corollary

Suppose that the sequence

0 �� M ′
f �� M

g �� M ′′ �� 0

is exact. Let {Mn} be a filtration of M , so that {Mn} induces filtrations {M ′∩f−1(Mn)}
and {g(Mn)} on M ′ and M ′′ respectively. Then the sequence

0→ (M ′)̂→ M̂ → (M ′′)̂→ 0
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is exact.

Proof. Exactness of the given sequence implies that the diagram below is commutative
with exact rows.

0 �� M ′/(M ′ ∩ f−1(Mn+1)) ��

θ′n+1

��

M/Mn+1
��

θn+1

��

M ′′/g(Mn+1) ��

θ′′n+1

��

0

0 �� M ′/(M ′ ∩ f−1(Mn)) �� M/Mn
�� M ′′/g(Mn) �� 0

Since θn is surjective for all n, (4.2.6) allows us to pass to the inverse limit. ♣

4.2.8 Remark

A filtration {Mn} of an R-module M induces in a natural way a filtration {N ∩Mn}
on a given submodule N , and a filtration {(N + Mn)/N} on the quotient module M/N .
We have already noted this in (4.2.7) (with f the inclusion map and g the canonical
epimorphism), but the point is worth emphasizing.

4.2.9 Corollary

Let {Mn} be a filtration of the R-module M . Let M̂n be the completion of Mn with
respect to the induced filtration on Mn [see (4.2.8)]. Then M̂n is a submodule of M̂ and
M̂/M̂n

∼= M/Mn for all n.

Proof. We apply (4.2.7) with M ′ = Mn and M ′′ = M/Mn, to obtain the exact sequence

0→ M̂n → M̂ → (M/Mn)̂→ 0.

Thus we may identify M̂n with a submodule of M̂ , and

M̂/M̂n
∼= (M/Mn)̂ = (M ′′)̂.

Now the mth term of the induced filtration on M ′′ is

M ′′m = (Mn + Mm)/Mn = Mn/Mn = 0

for m ≥ n. Thus M ′′ has the discrete topology, so Cauchy sequences (and coherent
sequences) can be identified with single points. Therefore M ′′ is isomorphic to its com-
pletion, and we have M̂/M̂n

∼= M/Mn for every n. ♣

4.2.10 Remarks

Two filtrations {Mn} and {M ′n} of a given R-module are said to be equivalent if they
induce the same topology. For example, under the hypothesis of (4.1.8), the filtrations
{InN} and {N ∩ InM} of the submodule N are equivalent (Problem 5). Since equivalent
filtrations give rise to the same set of Cauchy sequences, it follows that completions of a
given module with respect to equivalent filtrations are isomorphic.
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4.3 The Krull Intersection Theorem

4.3.1 Definitions and Comments

Recall from (4.1.1) and (4.1.8) that the I-adic topology on the R-module M is the topology
induced on M by the I-adic filtration Mn = InM . The completion of M with respect to
the I-adic filtration is called the I-adic completion.

There is a natural map from a filtered module M to its completion M̂ given by
x→ {x + Mn}. The kernel of this map is ∩∞n=0Mn, which is ∩∞n=0I

nM if the filtration is
I-adic. The Krull intersection theorem (4.3.2) gives precise information about this kernel.

4.3.2 Theorem

Let M be a finitely generated module over the Noetherian ring R, I an ideal of R, and
M̂ the I-adic completion of M . Let N be the kernel of the natural map M → M̂ . Then
N is the set of elements x ∈ M such that x is annihilated by some element of 1 + I. In
fact, we can find a single element of 1 + I that works for the entire kernel.
Proof. Suppose that a ∈ I, x ∈M , and (1 + a)x = 0. Then

x = −ax = −a(−ax) = a2x = a2(−ax) = −a3x = a4x = · · · ,
hence x ∈ InM for all n ≥ 0. Conversely, we must show that for some a ∈ I, 1 + a
annihilates everything in the kernel N . By (4.1.8), for some n we have, for all k ≥ 0,

Ik((InM) ∩N) = (In+kM) ∩N.

Set k = 1 to get

I((InM) ∩N) = (In+1M) ∩N.

But N ⊆ In+1M ⊆ InM , so the above equation says that IN = N . By (0.3.1), there
exists a ∈ I such that (1 + a)N = 0. ♣

4.3.3 Corollary

If I is a proper ideal of the Noetherian integral domain R, then ∩∞n=0I
n = 0.

Proof. The intersection of the In is the kernel N of the natural map from R to R̂. By
(4.3.2), 1 + a annihilates N for some a ∈ I. If 0 �= x ∈ N then (1 + a)x = 0, and since R
is a domain, 1 + a = 0. But then −1, hence 1, belongs to I, contradicting the hypothesis
that I is proper. ♣

4.3.4 Corollary

Let M be a finitely generated module over the Noetherian ring R. If the ideal I of R is
contained in the Jacobson radical J(R), then ∩∞n=0I

nM = 0. Thus by (4.2.4), the I-adic
topology on M is Hausdorff.
Proof. Let a ∈ I ⊆ J(R) be such that (1 + a) annihilates the kernel N = ∩∞n=0I

nM
of the natural map from M to M̂ . By (0.2.1), 1 + a is a unit of R, so if x ∈ N (hence
(1 + a)x = 0), we have x = 0. ♣
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4.3.5 Corollary

Let R be a Noetherian local ring with maximal ideal M. If M is a finitely generated
R-module, then ∩∞n=0MnM = 0. Thus the M-adic topology on M , in particular the
M-adic topology on R, is Hausdorff.
Proof. SinceM = J(R), this follows from (4.3.4). ♣

4.4 Hensel’s Lemma

Let A be a local ring with maximal ideal P , and let k = A/P be the residue field.
Assume that A is complete with respect to the P -adic topology, in other words, every
Cauchy sequence converges. In algebraic number theory, where this result is most often
applied, A is a discrete valuation ring of a local field. But the statement and proof of the
algebraic number theory result can be copied, as follows.

If a ∈ A, then the coset a + P ∈ k will be denoted by a. If f is a polynomial in A[X],
then reduction of the coefficients of f mod P yields a polynomial f in k[X]. Thus

f(X) =
d∑

i=0

aiX
i ∈ A[X], f(X) =

d∑
i=0

aiX
i ∈ k[X].

Hensel’s lemma is about lifting a factorization of f from k[X] to A[X]. Here is the precise
statement.

4.4.1 Hensel’s Lemma

Assume that f is a monic polynomial of degree d in A[X], and that the corresponding
polynomial F = f factors as the product of relatively prime monic polynomials G and H
in k[X]. Then there are monic polynomials g and h in A[X] such that g = G, h = H and
f = gh.
Proof. Let r be the degree of G, so that deg H = d − r. We will inductively construct
gn, hn ∈ A[X], n = 1, 2, . . . , such that deg gn = r, deg hn = d− r, gn = G, hn = H, and

f(X)− gn(X)hn(X) ∈ Pn[X].

Thus the coefficients of f − gnhn belong to Pn.
The basis step: Let n = 1. Choose monic g1, h1 ∈ A[X] such that g1 = G and h1 = H.
Then deg g1 = r and deg h1 = d− r. Since f = g1h1, we have f − g1h1 ∈ P [X].
The inductive step: Assume that gn and hn have been constructed. Let f(X)−gn(X)hn(X) =∑d

i=0 ciX
i with the ci ∈ Pn. Since G = gn and H = hn are relatively prime, for each

i = 0, . . . , d there are polynomials vi and wi in k[X] such that

Xi = vi(X)gn(X) + wi(X)hn(X).

Since gn has degree r, the degree of vi is at most d− r, and similarly the degree of wi is
at most r. Moreover,

Xi − vi(X)gn(X)− wi(X)hn(X) ∈ P [X]. (1)
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We define

gn+1(X) = gn(X) +
d∑

i=0

ciwi(X), hn+1(X) = hn(X) +
d∑

i=0

civi(X).

Since the ci belong to Pn ⊆ P , it follows that gn+1 = gn = G and hn+1 = hn = H. Since
the degree of gn+1 is at most r, it must be exactly r, and similarly the degree of hn+1 is
d− r. To check the remaining condition,

f − gn+1hn+1 = f − (gn +
∑

i

ciwi)(hn +
∑

i

civi)

= (f − gnhn −
∑

i

ciX
i) +

∑
i

ci(Xi − gnvi − hnwi)−
∑
i,j

cicjwivj .

By the induction hypothesis, the first grouped term on the right is zero, and, with the
aid of Equation (1) above, the second grouped term belongs to PnP [X] = Pn+1[X]. The
final term belongs to P 2n[X] ⊆ Pn+1[X], completing the induction.
Finishing the proof. By definition of gn+1, we have gn+1 − gn ∈ Pn[X], so for any
fixed i, the sequence of coefficients of Xi in gn(X) is Cauchy and therefore converges.
To simplify the notation we write gn(X) → g(X), and similarly hn(X) → h(X), with
g(X), h(X) ∈ A[X]. By construction, f − gnhn ∈ Pn[X], and we may let n → ∞ to get
f = gh. Since gn = G and hn = H for all n, we must have g = G and h = H. Since
f, G and H are monic, the highest degree terms of g and h are of the form (1 + a)Xr and
(1 + a)−1Xd−r respectively, with a ∈ P . (Note that 1 + a must reduce to 1 mod P .) By
replacing g and h by (1 + a)−1g and (1 + a)h, respectively, we can make g and h monic
without disturbing the other conditions. The proof is complete. ♣



Chapter 5

Dimension Theory

The geometric notion of the dimension of an affine algebraic variety V is closely related
to algebraic properties of the coordinate ring of the variety, that is, the ring of polynomial
functions on V . This relationship suggests that we look for various ways of defining
the dimension of an arbitrary commutative ring. We will see that under appropriate
hypotheses, several concepts of dimension are equivalent. Later, we will connect the
algebraic and geometric ideas.

5.1 The Calculus of Finite Differences

Regrettably, this charming subject is rarely taught these days, except in actuarial pro-
grams. It turns out to be needed in studying Hilbert and Hilbert-Samuel polynomials in
the next section.

5.1.1 Lemma

Let g and G be real-valued functions on the nonnegative integers, and assume that ∆G =
g, that is, G(k + 1)−G(k) = g(k) for all k ≥ 0. (We call ∆G the difference of G.) Then

b∑
k=a

g(k) = G(k)|b+1
a = G(b + 1)−G(a).

Proof. Add the equations G(a + 1)−G(a) = g(a), G(a + 2)−G(a + 1) = g(a + 1), . . . ,
G(b + 1)−G(b) = g(b). ♣

5.1.2 Lemma

If r is a positive integer, define k(r) = k(k−1)(k−2) · · · (k−r+1). Then ∆k(r) = rk(r−1).
Proof. Just compute:

∆k(r) = (k + 1)(r) − k(r) = (k + 1)k(k − 1) · · · (k − r + 2)− k(k − 1) · · · (k − r + 1)

= k(k − 1) · · · (k − r + 2)[k + 1− (k − r + 1)] = rk(r−1). ♣

1
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5.1.3 Examples

∆k(2) = 2k(1), so
∑n

k=1 k = [k(2)/2]|n+1
1 = (n + 1)n/2.

k2 = k(k − 1) + k = k(2) + k(1), so

n∑
k=1

k2 = [k(3)/3]|n+1
1 + (n + 1)n/2 = (n + 1)n(n− 1)/3 + (n + 1)n/2

= n(n + 1)(2n + 1)/6.

k(3) = k(k − 1)(k − 2) = k3 − 3k2 + 2k, so k3 = k(3) + 3k2 − 2k. Therefore

n∑
k=1

k3 = [k(4)/4]|n+1
1 + 3n(n + 1)(2n + 1)/6− 2n(n + 1)/2.

The first term on the right is (n + 1)n(n− 1)(n− 2)/4, so the sum of the first n cubes is

[n(n + 1)/4][n2 − 3n + 2 + 2(2n + 1)− 4]

which simplifies to [n(n + 1)/2]2.

In a similar fashion we can find
∑n

k=1 ks for any positive integer s.

5.1.4 Definitions and Comments

A polynomial-like function is a function f from the natural numbers (nonnegative integers)
N to the rational numbers Q, such that f eventually agrees with a polynomial g ∈ Q[X].
In other words, f(n) = g(n) for all sufficiently large n (abbreviated n >> 0). The degree
of f is taken to be the degree of g.

5.1.5 Lemma

Let f : N → Q. Then f is a polynomial-like function of degree r if and only if ∆f is a
polynomial-like function of degree r− 1. (We can allow r = 0 if we take the degree of the
zero polynomial to be -1.)

Proof. This follows from (5.1.1) and (5.1.2), along with the observation that a function
whose difference is zero is constant. (The analogous result from differential calculus that
a function with zero derivative is constant is harder to prove, and is usually accomplished
via the mean value theorem.) ♣

5.2 Hilbert and Hilbert-Samuel Polynomials

There will be two polynomial-like functions of interest, and we begin preparing for their
arrival.
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5.2.1 Proposition

Let R = ⊕n≥0Rn be a graded ring. Assume that R0 is Artinian and R is finitely generated
as an algebra over R0. If M = ⊕n≥0Mn is a finitely generated graded R-module, then
each Mn is a finitely generated R0-module.
Proof. By (4.1.3) and (1.6.13), R is a Noetherian ring, hence M is a Noetherian R-
module. Let Nn be the direct sum of the Mm, m ≥ n. Since M is Noetherian, Nn is
finitely generated over R, say by x1, . . . , xt. Since Nn = Mn ⊕ ⊕m>nMm, we can write
xi = yi +zi with yi ∈Mn and zi ∈ ⊕m>nMm. It suffices to prove that y1, . . . , yt generate
Mn over R0. If y ∈ Mn, then y is of the form

∑t
i=1 aixi with ai ∈ R. But just as we

decomposed xi above, we can write ai = bi + ci where bi ∈ R0 and ci ∈ ⊕j>0Rj . Thus

y =
t∑

i=1

(bi + ci)(yi + zi) =
t∑

i=1

biyi

because the elements bizi, ciyi and cizi must belong to ⊕m>nMm. ♣

5.2.2 Corollary

In (5.2.1), the length lRo(Mn) of the R0-module Mn is finite for all n ≥ 0.
Proof. Apply (5.2.1) and (1.6.14). ♣

We will need the following basic property of composition length.

5.2.3 Additivity of Length

Suppose we have an exact sequence of R-modules 0 → A1 → A2 → · · · → An → 0, all
with finite length. Then we have additivity of length, that is,

l(A1)− l(A2) + · · ·+ (−1)n−1l(An) = 0.

This is probably familiar for a short exact sequence 0→ N →M →M/N → 0, where the
additivity property can be expressed as l(M) = l(N)+ l(M/N). (See TBGY, Section 7.5,
Problem 5.) The general result is accomplished by decomposing a long exact sequence
into short exact sequences. (“Long” means longer than short.) To see how the process
works, consider an exact sequence

0 �� A
f �� B

g �� C
h �� D

i �� E �� 0.

Our first short exact sequence is

0→ A→ B → coker f → 0.

Now coker f = B/ im f = B/ ker g ∼= im g (= kerh), so our second short exact sequence is

0→ im g → C → coker g → 0.

As above, coker g ∼= im h (= ker i), so the third short exact sequence is

0→ im h→ D → coker h→ 0.
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But coker h ∼= im i = E, so we may replace the third short exact sequence by

0→ im h→ D → E → 0.

Applying additivity for short exact sequences, we have

l(A)− l(B) + l(coker f)− l(im g) + l(C)− l(coker g) + l(im h)− l(D) + l(E) = 0.

After cancellation, this becomes

l(A)− l(B) + l(C)− l(D) + l(E) = 0

as desired.

5.2.4 Theorem

Let R = ⊕n≥0Rn be a graded ring. Assume that R0 is Artinian and R is finitely generated
as an algebra over R0, with all generators a1, . . . , ar belonging to R1. If M is a finitely
generated graded R-module, define h(M, n) = lR0(Mn), n ∈ N. Then h, as a function of
n with M fixed, is polynomial-like of degree at most r− 1. Using slightly loose language,
we call h the Hilbert polynomial of M .
Proof. We argue by induction on r. If r = 0, then R = R0. Choose a finite set
of homogeneous generators for M over R. If d is the maximum of the degrees of the
generators, then Mn = 0 for n > d, and therefore h(M, n) = 0 for n >> 0. Now
assume r > 0, and let λr be the endomorphism of M given by multiplication by ar. By
hypothesis, ar ∈ R1, so λr(Mn) ⊆ Mn+1. if Kn is the kernel, and Cn the cokernel, of
λr : Mn →Mn+1, we have the exact sequence

0 �� Kn
�� Mn

λr �� Mn+1
�� Cn

�� 0.

Let K be the direct sum of the Kn and C the direct sum of the Cn, n ≥ 0. Then
K is a submodule of M and C a quotient of M . Thus K and C are finitely generated
Noetherian graded R-modules, so by (5.2.1) and (5.2.2), h(K, n) and h(C, n) are defined
and finite. By (5.2.3),

h(K, n)− h(M, n) + h(M, n + 1)− h(C, n) = 0

hence ∆h(M, n) = h(C, n) − h(K, n). Now ar annihilates K and C, so K and C are
finitely generated T -modules, where T is the graded subring of R generated over R0 by
a1, . . . , ar−1. (If an ideal I annihilates an R-module M , then M is an R/I-module;
see TBGY, Section 4.2, Problem 6.) By induction hypothesis, h(K, n) and h(C, n) are
polynomial-like of degree at most r − 2, hence so is ∆h(M, n). By (5.1.5), h(M, n) is
polynomial-like of degree at most r − 1. ♣

5.2.5 Definitions and Comments

Let R be any Noetherian local ring with maximal idealM. An ideal I of R is said to be
an ideal of definition if Mn ⊆ I ⊆ M for some n ≥ 1. Equivalently, R/I is an Artinian
ring. [See (3.3.10), and note that

√
I =M if and only if every prime ideal containing I

is maximal, so (1.6.11) applies.]
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5.2.6 The Hilbert-Samuel Polynomial

Let I be an ideal of definition of the Noetherian local ring R. If M is a finitely generated
R-module, then M/IM is a finitely generated module over the Artinian ring R/I. Thus
M/IM is Artinian (as well as Noetherian), hence has finite length over R/I. With the I-
adic filtrations on R and M , the associated graded ring and the associated graded module
[see (4.1.2)] are given by

grI(R) = ⊕n≥0(In/In+1), grI(M) = ⊕n≥0(InM/In+1M).

If I is generated over R by a1, . . . , ar, then the images a1, . . . , ar in I/I2 generate grI(R)
over R/I. (Note that by definition of a graded ring, RiRj ⊆ Ri+j , which allows us to
produce elements in Rt for arbitrarily large t.) By (5.2.4),

h(grI(M), n) = lR/I(InM/In+1M) <∞.

Again recall that if N is an R-module and the ideal I annihilates N , then N becomes an
R/I-module via (a + I)x = ax. It follows that we may replace lR/I by lR in the above
formula. We define the Hilbert-Samuel polynomial by

sI(M, n) = lR(M/InM).

Now the sequence

0→ InM/In+1M →M/In+1M →M/InM → 0

is exact by the third isomorphism theorem. An induction argument using additivity of
length shows that sI(M, n) is finite. Consequently

∆sI(M, n) = sI(M, n + 1)− sI(M, n) = h(grI(M), n).

By (5.2.4), h(grI(M), n) is polynomial-like of degree at most r−1, so by (5.1.5), sI(M, n)
is polynomial like of degree at most r.

The Hilbert-Samuel polynomial sI(M, n) depends on the particular ideal of definition
I, but the degree d(M) of sI(M, n) is the same for all possible choices. To see this, let t be a
positive integer such thatMt ⊆ I ⊆M. Then for every n ≥ 1 we haveMtn ⊆ In ⊆Mn,
so sM(M, tn) ≥ sI(M, n) ≥ sM(M, n). If the degrees of these polynomial are, from right
to left, d1, d2 and d3, we have O(dn

1 ) ≤ O(dn
2 ) ≤ O(dn

3 ), with d3 = d1. Therefore all three
degrees coincide.

The Hilbert-Samuel polynomial satisfies a property analogous to (4.1.7), the additivity
of length.

5.2.7 Theorem

Let I be an ideal of definition of the Noetherian local ring R, and suppose we have an
exact sequence 0→M ′ →M →M ′′ → 0 of finitely generated R-modules. Then

sI(M ′, n) + sI(M ′′, n) = sI(M, n) + r(n)
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where r(n) is polynomial-like of degree less than d(M), and the leading coefficient of r(n)
is nonnegative.
Proof. The following sequence is exact:

0→M ′/(M ′ ∩ InM)→M/InM →M ′′/InM ′′ → 0.

Set M ′n = M ′ ∩ InM . Then by additivity of length,

sI(M, n)− sI(M ′′, n) = lR(M ′/M ′n)

hence lR(M ′/M ′n) is polynomial-like. By the Artin-Rees lemma (4.1.7), the filtration
{M ′n} is I-stable, so IM ′n = M ′n+1 for sufficiently large n, say, n ≥ m. Thus for every
n ≥ 0 we have M ′n+m = M ′ ∩ In+mM ⊇ In+mM ′, and consequently

In+mM ′ ⊆M ′n+m = InM ′m ⊆ InM ′,

which implies that

lR(M ′/In+mM ′) ≥ lR(M ′/M ′n+m) ≥ lR(M ′/InM ′).

The left and right hand terms of this inequality are sI(M ′, n + m) and sI(M ′, n) respec-
tively, and it follows that sI(M ′, n) and lR(M ′/M ′n) have the same degree and the same
leading coefficient. Moreover, sI(M ′, n)− lR(M ′/M ′n) = r(n) is polynomial-like of degree
less than deg lR(M ′/M ′n) ≤ deg sI(M, n), as well as nonnegative for n >> 0. The result
now follows upon adding the equations

sI(M, n)− sI(M ′′, n) = lR(M ′/M ′n)

and

r(n) = sI(M ′, n)− lR(M ′/M ′n). ♣

5.2.8 Corollary

Let M ′ be a submodule of M , where M is a finitely generated module over the Noetherian
local ring R. Then d(M ′) ≤ d(M).
Proof. Apply (5.2.7), noting that we can ignore r(n) because it is of lower degree than
sI(M, n). ♣

5.3 The Dimension Theorem

5.3.1 Definitions and Comments

The dimension of a ring R, denoted by dimR, will be taken as its Krull dimension, the
maximum length n of a chain P0 ⊂ P1 ⊂ · · · ⊂ Pn of prime ideals of R. If there is no
upper bound on the length of such a chain, we take n = ∞. An example of an infinite-
dimensional ring is the non-Noetherian ring k[X1, X2, . . . ], where k is a field. We have
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the infinite chain of prime ideals (X1) ⊂ (X1, X2) ⊂ (X1, X2, X3) ⊂ · · · . At the other
extreme, a field, and more generally an Artinian ring, has dimension 0 by (1.6.4).

A Dedekind domain is a Noetherian, integrally closed integral domain in which every
nonzero prime ideal is maximal. A Dedekind domain that is not a field has dimension 1.
Algebraic number theory provides many examples, because the ring of algebraic integers
of a number field is a Dedekind domain.

There are several other ideas that arise from the study of chains of prime ideals. We
define the height of a prime ideal P (notation htP ) as the maximum length n of a chain
of prime ideals P0 ⊂ P1 ⊂ · · · ⊂ Pn = P . By (0.4.6), the height of P is the dimension of
the localized ring RP .

The coheight of the prime ideal P (notation cohtP ) is the maximum length n of a
chain of prime ideals P = P0 ⊂ P1 ⊂ · · · ⊂ Pn. It follows from the correspondence
theorem and the third isomorphism theorem that the coheight of P is the dimension of
the quotient ring R/P . (If I and J are ideals of R with I ⊆ J , and S = (R/I)/(J/I),
then S ∼= R/J , so S is an integral domain iff R/J is an integral domain, and J/I is a
prime ideal of R/I iff J is a prime ideal of R.)

If I is an arbitrary ideal of R, we define the height of I as the infimum of the heights
of prime ideals P ⊇ I, and the coheight of I as the supremum of the coheights of prime
ideals P ⊇ I.

5.3.2 The Dimension of a Module

Intuitively, the dimension of an R-module M , denoted by dimM , will be measured by
length of chains of prime ideals, provided that the prime ideals in the chain contribute
to M in the sense that they belong to the support of M . Formally, we define dimM =
dim(R/ annM) if M �= 0, and we take the dimension of the zero module to be −1.

We now assume that M is nonzero and finitely generated over the Noetherian ring R.
By (1.3.3), M has at least one associated prime. By (1.5.5), P ⊇ annM iff P ∈ SuppM ,
and by (1.5.9), the minimal elements of AP(M) and SuppM are the same. Thus

dimM = sup{coht P : P ∈ SuppM} = sup{cohtP : P ∈ AP(M)}.

By (1.6.9), the following conditions are equivalent.
1. dimM = 0;
2. Every prime ideal in SuppM is maximal;
3. Every associated prime ideal of M is maximal;
4. The length of M as an R-module is finite.

We make the additional assumption that R is a local ring with maximal ideal M.
Then by (1.5.5),

Supp(M/MM) = V (ann(M/MM))

which coincides with {M} by Problem 2. By the above equivalent conditions, lR(M/MM)
is finite. Since M is finitely generated, we can assert that there is a smallest positive
integer r, called the Chevalley dimension δ(M), such that for some elements a1, . . . , ar

belonging toM we have lR(M/(a1, . . . , ar)M <∞. If M = 0 we take δ(M) = −1.
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5.3.3 Dimension Theorem

Let M be a finitely generated module over the Noetherian local ring R. The following
quantities are equal:
1. The dimension dimM of the module M ;
2. The degree d(M) of the Hilbert-Samuel polynomial sI(M, n), where I is any ideal of
definition of R. (For convenience we take I =M, the maximal ideal of R, and we specify
that the degree of the zero polynomial is -1.);
3. The Chevalley dimension δ(M).

Proof. We divide the proof into three parts.

1. dimM ≤ d(M), hence dimM is finite.

If d(M) = −1, then sM(M, n) = lR(M/MnM) = 0 for n >> 0. By NAK, M = 0 so
dimM = −1. Thus assume d(M) ≥ 0. By (1.3.9) or (1.5.10), M has only finitely many
associated primes. It follows from (5.3.2) and (5.3.1) that for some associated prime P
we have dim M = cohtP = dimR/P . By (1.3.2) there is an injective homomorphism
from R/P to M , so by (5.2.8) we have d(R/P ) ≤ d(M). If we can show that dimR/P ≤
d(R/P ), it will follow that dimM = dimR/P ≤ d(R/P ) ≤ d(M).

It suffices to show that for any chain of prime ideals P = P0 ⊂ · · · ⊂ Pt in R, the
length t of the chain is at most d(R/P ). If t = 0, then R/P �= 0 (because P is prime),
hence d(R/P ) �= −1 and we are finished. Thus assume t ≥ 1, and assume that the
result holds up to t − 1. Choose a ∈ P1 \ P , and consider prime ideals Q such that
Ra + P ⊆ Q ⊆ P1. We can pick a Q belonging to AP(R/(Ra + P )). [Since Ra + P ⊆ Q,
we have (R/(Ra+P ))Q �= 0; see Problem 3. Then choose Q to be a minimal element in the
support of R/(Ra+P ), and apply (1.5.9).] By (1.3.2) there is an injective homomorphism
from R/Q to R/(Ra+P ), so by (5.2.8) we have d(R/Q) ≤ d(R/(Ra+P )). Since the chain
Q ⊂ P2 ⊂ · · · ⊂ Qr is of length t−1, the induction hypothesis implies that t−1 ≤ d(R/Q),
hence t− 1 ≤ d(R/(Ra + P )). Now the sequence

0→ R/P → R/P → R/(Ra + P )→ 0

is exact, where the map from R/P to itself is multiplication by a. (The image of the map
is Ra + P .) By (5.2.7),

sM(R/P, n) + sM(R/(Ra + P ), n) = sM(R/P, n) + r(n)

where r(n) is polynomial-like of degree less than d(R/P ). Thus d(R/(Ra+P )) < d(R/P ),
and consequently t− 1 < d(R/P ). Therefore t ≤ d(R/P ), as desired.

2. d(M) ≤ δ(M).

If δ(M) = −1, then M = 0 and d(M) = −1. Assume M �= 0 and r = δ(M) ≥ 0, and let
a1, . . . , ar be elements of M such that M/(a1, . . . , ar)M has finite length. Let I be the
ideal (a1, . . . , ar) and let P be the annihilator of M ; set Q = I + P .

We claim that the support of R/Q is {M}. To prove this, first note that M/IM ∼=
M ⊗R R/I. (TBGY, subsection S7.1 of the supplement.) By Problem 9 of Chapter 1,
SuppM/IM = SuppM∩SuppR/I, which by (1.5.5) is V (P )∩V (I) = V (Q) = SuppR/Q.
(Note that the annihilator of R/I is I and the annihilator of R/Q is Q.) But the support
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of M/IM is {M} by (1.6.9), proving the claim. (If M/IM = 0, then M = 0 by NAK,
contradicting our assumption.)

Again by (1.6.9), AP(R/Q) = {M}, so by (1.3.11), Q is M-primary. By (5.2.5) and
(3.3.10), Q is an ideal of definition of R.

Let R = R/P , Q = Q/P , and consider M as an R-module. Then R is a Noetherian
local ring and Q is an ideal of definition of R generated by a1, . . . , ar, where ai = ai + P .
By (5.2.6), the degree of the Hilbert-Samuel polynomial sQ(M, n) is at most r. But by
the correspondence theorem, lR(M/Q

n
M) = lR(M/QnM), hence sQ(M, n) = sQ(M, n).

It follows that d(M) ≤ r.
3. δ(M) ≤ dimM .
If dimM = −1 then M = 0 and δ(M) = −1, so assume M �= 0. If dimM = 0, then by
(5.3.2), M has finite length, so δ(M) = 0.

Now assume dim M > 0. (We have already noted in part 1 that dimM is finite.) Let
P1, . . . , Pt be the associated primes of M whose coheight is as large as it can be, that is,
cohtPi = dimM for all i = 1, . . . , t. Since the dimension of M is greater than 0, Pi ⊂M
for every i, so by the prime avoidance lemma (0.1.1),

M �⊆ ∪1≤i≤tPi.

Choose an element a inM such a belongs to none of the Pi, and let N = M/aM . Then

SuppN ⊆ SuppM \ {P1, . . . , Pt}.

To see this, note that if NP �= 0, then MP �= 0; also, NPi
= 0 for all i because a /∈ Pi,

hence division by a is allowed. Thus dimN < dimM , because dim M = cohtPi and we
are removing all the Pi. Let r = δ(N), and let a1, . . . , ar be elements of M such that
N/(a1, . . . , ar)N has finite length. But

M/(a, a1, . . . , ar)M ∼= N/(a1, . . . , ar)N

(apply the first isomorphism theorem) , so M/(a, a1, . . . , ar)M also has finite length.
Thus δ(M) ≤ r + 1. By the induction hypothesis, δ(N) ≤ dimN . In summary,

δ(M) ≤ r + 1 = δ(N) + 1 ≤ dimN + 1 ≤ dimM. ♣

5.4 Consequences of the Dimension Theorem

In this section we will see many applications of the dimension theorem (5.3.3).

5.4.1 Proposition

Let R be a Noetherian local ring with maximal ideal M. If M is a finitely generated
R-module, then dimM <∞; in particular, dimR <∞. Moreover, the dimension of R is
the minimum, over all ideals I of definition of R, of the number of generators of I.
Proof. Finiteness of dimension follows from (5.3.3). The last assertion follows from the
definition of Chevalley dimension in (5.3.2). In more detail, R/I has finite length iff (by
the Noetherian hypothesis) R/I is Artinian iff [by (5.2.5)] I is an ideal of definition. ♣
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5.4.2 Proposition

Let R be a Noetherian local ring with maximal ideal M and residue field k = R/M.
Then dimR ≤ dimk(M/M2).

Proof. Let a1, . . . , ar be elements of M such that a1, . . . , ar form a k-basis of M/M2,
where ai = ai +M. Then by (0.3.4), a1, . . . , ar generate M. Since M itself is an ideal
of definition (see (5.2.5)), we have dimR ≤ r by (5.4.1). (Alternatively, by (5.4.5), the
height ofM is at most r. Since htM = dimR, the result follows.) ♣

5.4.3 Proposition

Let R be Noetherian local ring with maximal ideal M, and R̂ its M-adic completion.
Then dimR = dim R̂.

Proof. By (4.2.9), R/Mn ∼= R̂/M̂n. By (5.2.6), sM(R, n) = sM̂(R̂, n). In particular, the
two Hilbert-Samuel polynomials must have the same degree. Therefore d(R) = d(R̂), and
the result follows from (5.3.3). ♣

5.4.4 Theorem

If R is a Noetherian ring, then the prime ideals of R satisfy the descending chain condition.

Proof. We may assume without loss of generality that R is a local ring. Explicitly, if P0 is
a prime ideal of R, let A be the localized ring RP0 . Then the chain P0 ⊃ P1 ⊃ P2 ⊃ . . . of
prime ideals of R will stabilize if and only if the chain AP0 ⊃ AP1 ⊃ AP2 ⊃ · · · of prime
ideals of A stabilizes. But if R is local as well as Noetherian, the result is immediate
because dim R <∞. ♣

5.4.5 Generalization of Krull’s Principal Ideal Theorem

Let P be a prime ideal of the Noetherian ring R. The following conditions are equivalent:
(a) ht P ≤ n;
(b) There is an ideal I of R that is generated by n elements, such that P is a minimal
prime ideal over I. (In other words, P is minimal subject to P ⊇ I.)

Proof. If (b) holds, then IRP is an ideal of definition of RP that is generated by n
elements. (See (3.3.10), and note that if P is minimal over I iff

√
I = P .) By (5.3.1) and

(5.4.1), ht P = dimRP ≤ n. Conversely, if (a) holds then dimRP ≤ n, so by (5.4.1) there
is an ideal of definition J of RP generated by n elements a1/s, . . . , an/s with s ∈ R \ P .
The elements ai must belong to P , else the ai/s will generate RP , which is a contradiction
because J must be proper; see (5.2.5). Take I to be the ideal of R generated by a1, . . . , an.
Invoking (3.3.10) as in the first part of the proof, we conclude that I satisfies (b). ♣

5.4.6 Krull’s Principal Ideal Theorem

Let a be a nonzero element of the Noetherian ring R. If a is neither a unit nor a zero-
divisor, then every minimal prime ideal P over (a) has height 1.
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Proof. It follows from (5.4.5) that ht P ≤ 1. Thus assume ht P = dimRP = 0. We claim
that RP �= 0, hence P ∈ SuppR. For if a/1 = 0, then for some s ∈ R \P we have sa = 0,
which contradicts the hypothesis that a is not a zero-divisor. We may assume that P is
minimal in the support of R, because otherwise P has height 1 and we are finished. By
(1.5.9), P is an associated prime of R, so by (1.3.6), P consists entirely of zero-divisors,
a contradiction. ♣

The hypothesis that a is not a unit is never used, but nothing is gained by dropping
it. If a is a unit, then a cannot belong to the prime ideal P and the theorem is vacuously
true.

5.4.7 Theorem

Let R be a Noetherian local ring with maximal ideal M, and let a ∈ M be a non zero-
divisor. Then dimR/(a) = dimR− 1.

Proof. We have dimR > 0, for if dimR = 0, then M is the only prime ideal, and as
in the proof of (5.4.6), M consists entirely of zero-divisors, a contradiction. In the proof
of part 3 of the dimension theorem (5.3.3), take M = R and N = R/(a) to conclude
that dimR/(a) < dimR, hence dim R/(a) ≤ dimR − 1. To prove equality, we appeal
to part 2 of the proof of (5.3.3). This allows us to find elements a1, . . . , as ∈ M, with
s = dimR/(a), such that the images ai in R/(a) generate an M/(a)-primary ideal of
R/(a). Then a, a1, . . . , as generate an M-primary ideal of R, so by (5.4.1) and (3.3.10),
dimR ≤ 1 + s = 1 + dimR/(a). ♣

5.4.8 Corollary

Let a be a non zero-divisor belonging to the prime ideal P of the Noetherian ring R. Then
ht P/(a) = ht P − 1.

Proof. In (5.4.7), replace R by RP and R/(a) by (RP )Q, where Q is a minimal prime
ideal over (a). ♣

5.4.9 Theorem

Let R = k[[X1, . . . , Xn]] be a formal power series ring in n variables over the field k.
Then dimR = n.

Proof. The unique maximal ideal is (X1, . . . , Xn), so the dimension of R is at most n.
On the other hand, the dimension is at least n because of the chain

(0) ⊂ (X1) ⊂ (X1, X2) ⊂ · · · ⊂ (X1, . . . , Xn)

of prime ideals. ♣
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5.5 Strengthening of Noether’s Normalization Lemma

5.5.1 Definition

An affine k-algebra is an integral domain that is also a finite-dimensional algebra over a
field k.

Affine algebras are of great interest in algebraic geometry because they are the coor-
dinate rings of affine algebraic varieties. To study them we will need a stronger version
of Noether’s normalization lemma. In this section we will give the statement and proof,
following Serre’s Local Algebra, page 42.

5.5.2 Theorem

Let A be a finitely generated k-algebra, and I1 ⊂ · · · ⊂ Ir a chain of nonzero proper ideals
of A. There exists a nonnegative integer n and elements x1, . . . , xn ∈ A algebraically
independent over k such that the following conditions are satisfied.
1. A is integral over B = k[x1, . . . , xn]. (This is the standard normalization lemma.)
2. For each i = 1, . . . , r, there is a positive integer h(i) such that Ii ∩B is generated (as
an ideal of B) by x1, . . . , xh(i).
Proof. It suffices to let A be a polynomial ring k[Y1, . . . , Ym]. For we may write A = A′/I ′0
where A′ = k[Y1, . . . , Ym]. If I ′i is the preimage of Ii under the canonical map A′ → A′/I ′0,
and we find elements x′1, . . . , x′n ∈ A′, relative to the ideals I ′0 ⊂ I ′1 ⊂ · · · ⊂ I ′r, then the
images of x′i−h(0) in A, i > h(0), satisfy the required conditions. The proof is by induction
on r.

Assume r = 1. We first consider the case in which I1 is a principal ideal (x1) = x1A
with x1 /∈ k. By our assumption that A is a polynomial ring, we have x1 = g(Y1, . . . , Ym)
for some nonconstant polynomial g with coefficients in k. We claim that there are positive
integers ri(i = 2, . . . , m) such that A is integral over B = k[x1, . . . , xm], where

xi = Yi − Y ri
1 , i = 2, . . . , m.

If we can show that Y1 is integral over B, then (since the xi belong to B, hence are integral
over B) all Yi are integral over B, and therefore A is integral over B. Now Y1 satisfies
the equation x1 = g(Y1, . . . , Ym), so

g(Y1, x2 + Y r2
1 , . . . , xm + Y rm

1 )− x1 = 0.

If we write the polynomial g as a sum of monomials
∑

cαY α, α = (a1, . . . , am), cα �= 0,
the above equation becomes∑

cαY a1
1 (x2 + Y r2

1 )a2 · · · (xm + Y rm
1 )am − x1 = 0.

To produce the desired ri, let f(α) = a1 + a2r2 + · · ·+ amrm, and pick the ri so that all
the f(α) are distinct. For example, take ri = si, where s is greater than the maximum of
the aj . Then there will be a unique α that maximizes f , say α = β, and we have

cβY
f(β)
1 +

∑
j<f(β)

pj(x1, . . . , xm)Y j
1 = 0
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so Y1 is integral over B, and as we noted above, A = k[Y1, . . . , Ym] is integral over
B = k[x1, . . . , xm]. Since A has transcendence degree m over k and an integral extension
must be algebraic, it follows that x1, . . . , xm are algebraically independent over k. Thus
the first assertion of the theorem holds (in this first case, where I1 is principal). If we
can show that I1 ∩B = (x1) = x1B, the second assertion will also hold. The right-to-left
inclusion follows from our assumptions about x1, so let t belong to I1 ∩B. Then t = x1u
with u ∈ A, hence, dividing by x1, u ∈ A ∩ k(x1, . . . , xm). Since B is isomorphic to a
polynomial ring, it is a unique factorization domain and therefore integrally closed. Since
A is integral over B, we have u ∈ B. Thus x1A∩B = x1B, and the proof of the first case
is complete. Note that we have also shown that A ∩ k(x1, . . . , xm) = B = k[x1, . . . , xm].

Still assuming r = 1, we now consider the general case by induction on m. If m =
0 there is nothing to prove, and we have already taken care of m = 1 (because A is
then a PID). Let x1 be a nonzero element of I1, and note that x1 /∈ k because I1 is
proper. By what we have just proved, there are elements t2, . . . , tm ∈ A such that
x1, t2, . . . , tm are algebraically independent over k, A is integral over the polynomial ring
C = k[x1, t2, . . . , tm], and x1A ∩ C = x1C. By the induction hypothesis, there are
elements x2, . . . , xm satisfying the conditions of the theorem for k[t2, . . . , tm] and the
ideal I1 ∩ k[t2, . . . , tm]. Then x1, . . . , xm satisfy the desired conditions.

Finally, we take the inductive step from r−1 to r. let t1, . . . , tm satisfy the conditions
of the theorem for the chain of ideals I1 ⊂ · · · ⊂ Ir−1, and let s = h(r − 1). By the
argument of the previous paragraph, there are elements xs+1, . . . , xm ∈ k[ts+1, . . . , tm]
satisfying the conditions for the ideal Ir ∩ k[ts+1, . . . , tm]. Take xi = ti for 1 ≤ i ≤ s. ♣

5.6 Properties of Affine k-algebras

We will look at height, coheight and dimension of affine algebras.

5.6.1 Proposition

Let S = R[X] where R is an arbitrary ring. If Q ⊂ Q′, where Q and Q′ are prime ideals
of S both lying above the same prime ideal P of R, then Q = PS.

Proof. Since R/P can be regarded as a subring of S/Q, we may assume without loss of
generality that P = 0. By localizing with respect to the multiplicative set R \ {0}, we
may assume that R is a field. But then every nonzero prime ideal of S is maximal, hence
Q = 0. Since PS is also 0, the result follows. ♣

5.6.2 Corollary

Let I be an ideal of the Noetherian ring R, and let P be a prime ideal of R with I ⊆ P .
Let S be the polynomial ring R[X], and take J = IS and Q = PS. If P is a minimal
prime ideal over I, then Q is a minimal prime ideal over J .

Proof. To verify that Q is prime, note that R[X]/PR[X] ∼= R[X]/P [X] ∼= (R/P )[X], an
integral domain. By modding out I, we may assume that I = 0. Suppose that the prime
ideal Q1 of S is properly contained in Q. Then Q1 ∩ R ⊆ Q ∩ R = PS ∩ R = P . (A
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polynomial belonging to R coincides with its constant term.) By minimality, Q1∩R = P .
By (5.6.1), Q1 = PS = Q, a contradiction. ♣

5.6.3 Proposition

As above, let S = R[X], R Noetherian, P a prime ideal of R, Q = PS. Then htP = htQ.
Proof. Let n be the height of P . By the generalized Krull principal ideal theorem
(5.4.5), there is an ideal I of R generated by n elements such that P is a minimal prime
ideal over I. By (5.6.2), Q = PS is a minimal prime ideal over J = IS. But J is
also generated over S by n elements, so again by (5.4.5), htQ ≤ htP . Conversely, if
P0 ⊂ P1 ⊂ · · · ⊂ Pn = P ⊂ R and Qi = Pi[X], then Q0 ⊂ Q1 ⊂ · · · ⊂ Qn = Q, so
htQ ≥ htP . ♣

We may now prove a major result on the dimension of a polynomial ring.

5.6.4 Theorem

Let S = R[X], where R is a Noetherian ring. Then dimS = 1 + dimR.
Proof. Let P0 ⊂ P1 ⊂ · · · ⊂ Pn be a chain of prime ideals of R. If Qn = PnS, then by
(5.6.3), htQn = htPn. But the Q sequence can be extended via Qn ⊂ Qn+1 = Qn + (X).
(Note that X cannot belong to Qn because 1 /∈ Pn.) It follows that dimS ≥ 1 + dimR.
Now consider a chain Q0 ⊂ Q1 ⊂ · · · ⊂ Qn of prime ideals of S, and let Pi = Qi ∩ R
for every i = 0, 1, . . . , n. We may assume that the Pi are not all distinct (otherwise
dimR ≥ dimS ≥ dimS−1). Let j be the largest index i such that Pi = Pi+1. By (5.6.1),
Qj = PjS, and by (5.6.3), htPj = htQj ≥ j. But by choice of j,

Pj = Pj+1 ⊂ Pj+2 ⊂ · · · ⊂ Pn

so ht Pj + n− j − 1 ≤ dimR. Since the height of Pj is at least j, we have n− 1 ≤ dimR,
hence dim S ≤ 1 + dimR. ♣

5.6.5 Corollary

If R is a Noetherian ring, then dimR[X1, . . . , Xn] = n + dimR. In particular, if K is a
field then dimK[X1, . . . , Xn] = n.
Proof. This follows from (5.6.4) by induction. ♣

5.6.6 Corollary

Let R = K[X1, . . . , Xn], where K is a field. Then ht(X1, . . . , Xi) = i, 1 ≤ i ≤ n.
Proof. First consider i = n. The height of (X1, . . . , Xn) is at most n, the dimension of R,
and in fact the height is n, in view of the chain (X1) ⊂ (X1, X2) ⊂ · · · ⊂ (X1, . . . , Xn).
The general result now follows by induction, using (5.4.8). ♣

If X is an affine algebraic variety over the field k, its (geometric) dimension is the
transcendence degree over k of the function field (the fraction field of the coordinate
ring). We now show that the geometric dimension coincides with the algebraic (Krull)
dimension. We abbreviate transcendence degree by tr deg.
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5.6.7 Theorem

If R is an affine k-algebra, then dimR = tr degk Frac R.
Proof. By Noether’s normalization lemma, there are elements x1, . . . , xn ∈ R, alge-
braically independent over k, such that R is integral over k[x1, . . . , xn]. Since an integral
extension cannot increase dimension (see Problem 4), dimR = dim k[x1, . . . , xn] = n by
(5.6.5). Let F = Frac R and L = Frac k[x1, . . . , xn]. Then F is an algebraic extension
of L, and since an algebraic extension cannot increase transcendence degree, we therefore
have tr degkF = tr degkL = n = dimR. ♣

It follows from the definitions that if P is a prime ideal of R, then htP + cohtP ≤
dimR. If R is an affine k-algebra, there is equality.

5.6.8 Theorem

If P is a prime ideal of the affine k-algebra R, then htP + cohtP = dimR.
Proof. By Noether’s normalization lemma, R is integral over a polynomial algebra. We
can assume that R = k[X1, . . . , Xn] with htP = h. (See Problems 4,5 and 6. An integral
extension preserves dimension and coheight, and does not increase height. So if height
plus coheight equals dimension in the larger ring, the same must be true in the smaller
ring.) By the strong form (5.5.2) of Noether’s normalization lemma, along with (5.6.6),
there are elements y1, . . . , yn algebraically independent over k such that R is integral
over k[y1, . . . , yn] and Q = P ∩ k[y1, . . . , yn] = (y1, . . . , yh) Since k[y1, . . . , yn]/Q ∼=
k[yh+1, . . . , yn], it follows from (5.3.1) and (5.6.5) that cohtQ = dim k[yh+1, . . . , yn] =
n− h. But cohtQ = cohtP (Problem 5), so htP + cohtP = h + (n− h) = n = dimR. ♣



Chapter 6

Depth

6.1 Systems of Parameters

We prepare for the study of regular local rings, which play an important role in algebraic
geometry.

6.1.1 Definition

Let R be a Noetherian local ring with maximal idealM, and let M be a finitely generated
R-module of dimension n. A system of parameters for M is a set {a1, . . . , an} of elements
of M such that M/(a1, . . . , an)M has finite length. The finiteness of the Chevalley
dimension (see (5.3.2) and (5.3.3) guarantees the existence of such a system.

6.1.2 Example

Let R be a Noetherian local ring of dimension d. Then any set {a1, . . . , ad} that generates
an ideal of definition is a system of parameters for R, by (5.4.1). In particular, if R =
k[[X1, . . . , Xn]] is a formal power series ring over a field, then X1, . . . , Xn form a system
of parameters, since they generate the maximal ideal.

6.1.3 Proposition

Let M be finitely generated and of dimension n over the Noetherian local ring R, and let
a1, . . . , at be arbitrary elements of the maximal idealM. Then dim(M/(a1, . . . , at)M) ≥
n − t, with equality if and only if the ai can be extended to a system of parameters for
M .

Proof. Let a be any element ofM, and let N = M/aM . Choose b1, . . . , br ∈M such that
N/(b1, . . . , br)N has finite length, with r as small as possible. Then M/(a, b1, . . . , br)M
also has finite length, because

(M/aM)/(b1, . . . , br)(M/aM) ∼= M/(a, b1, . . . , br)M.

1
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It follows that the Chevalley dimension of M is at most r + 1, in other words,

δ(M/aM) ≥ δ(M)− 1.

The proof will be by induction on t, and we have just taken care of t = 1 as well as the
key step in the induction, namely

dim(M/(a1, . . . , at)M) = dim(N/a1N)

where N = M/(a2, . . . , at)M . By the t = 1 case and the induction hypothesis,

dim(N/a1N) ≥ dimN − 1 ≥ dimM − (t− 1)− 1 = dimM − t

as asserted. If dim(M/(a1, . . . , at)M) = n − t with n = dimM , then we can choose a
system of parameters at+1, . . . , an for N = M/(a1, . . . , at)M . Then

N/(at+1, . . . , an)N ∼= M/(a1, . . . , at, at+1, . . . , an)M

has finite length. Thus a1, . . . , an form a system of parameters for M . Conversely, if
a1, . . . , at can be extended to a system of parameters a1, . . . , an for M , define N =
M/(a1, . . . , at)M . Then N/(at+1, . . . , an)N ∼= M/(a1, . . . , an)M has finite length, hence
dimN ≤ n− t. But dimN ≥ n− t by the main assertion, and the proof is complete. ♣

6.2 Regular Sequences

We introduce sequences that are guaranteed to be extendable to a system of parameters.

6.2.1 Definition

Let M be an R-module. The sequence a1, . . . , at of nonzero elements of R is an M -
sequence, also called a regular sequence for M or an M -regular sequence, if (a1, . . . , at)M 
=
M and for each i = 1, . . . , t, ai is not a zero-divisor of M/(a1, . . . , ai−1)M .

6.2.2 Comments and Examples

We interpret the case i = 1 as saying that a1 is not a zero-divisor of M , that is, if x ∈M
and a1x = 0, then x = 0. Since (a1, . . . , at)M 
= M , M 
= 0 and the ai are nonunits.

It follows from the definition that the elements a1, . . . , at form an M -sequence if
and only if for all i = 1, . . . , t, a1, . . . , ai is an M -sequence and ai+1, . . . , at is an
M/(a1, . . . , ai)M -sequence.

1. If R = k[X1, . . . , Xn] with k a field, then X1, . . . , Xn is an R-sequence.

2. (A tricky point) A permutation of a regular sequence need not be regular. For example,
let R = k[X, Y, Z], where k is a field. Then X, Y (1−X), Z(1−X) is an R-sequence, but
Y (1−X), Z(1−X), X is not, because the image of Z(1−X)Y is zero in R/(Y (1−X)).
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6.2.3 Theorem

Let M be a finitely generated module over the Noetherian local ring R. If a1, . . . , at is
an M -sequence, then {a1, . . . , at} can be extended to a system of parameters for M .
Proof. We argue by induction on t. Since a1 is not a zero-divisor of M , we have
dimM/a1M = dimM − 1 by (5.4.7). (Remember that the ai are nonunits (see (6.2.2))
and therefore belong to the maximal ideal of R.) By (6.1.3), a1 is part of a system of
parameters for M . If t > 1, the induction hypothesis says that a1, . . . , at−1 is part of a
system of parameters for M . By (6.1.3), dimM/(a1, . . . , at−1)M = n − (t − 1), where
n = dimM . Since at is not a zero-divisor of N = M/(a1, . . . , at−1)M , we have, as in the
t = 1 case, dim N/atN = dimN − 1. But, as in the proof of (6.1.3),

N/atN ∼= M/(a1, . . . , at)M,

hence

dimM/(a1, . . . , at)M = dimN/atN = dimN − 1 = n− (t− 1)− 1 = n− t.

By (6.1.3), a1, . . . , at extend to a system of parameters for M . ♣

6.2.4 Corollary

If R is a Noetherian local ring, then every R-sequence can be extended to a system of
parameters for R.
Proof. Take M = R in (6.2.3). ♣

6.2.5 Definition

Let M be a nonzero finitely generated module over the Noetherian local ring R. The
depth of M over R, written depthRM or simply depth M , is the maximum length of an
M -sequence. We will see in the next chapter that any two maximal M -sequences have
the same length.

6.2.6 Theorem

Let M be a nonzero finitely generated module over the Noetherian local ring R. Then
depth M ≤ dimM .
Proof. Since dimM is the number of elements in a system of parameters, the result follows
from (6.2.3). ♣

6.2.7 Proposition

Let M be a finitely generated module over the Noetherian ring R, and let a1, . . . , an be an
M -sequence with all ai belonging to the Jacobson radical J(R). Then any permutation
of the ai is also an M -sequence.
Proof. It suffices to consider the transposition that interchanges a1 and a2. First let
us show that a1 is not a zero-divisor of M/a2M . Suppose a1x = 0, where x belongs
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to M/a2M . Then a1x belongs to a2M , so we may write a1x = a2y with y ∈ M . By
hypothesis, a2 is not a zero-divisor of M/a1M , so y belongs to a1M . Therefore y = a1z
for some z ∈M . Then a1x = a2y = a2a1z. By hypothesis, a1 is not a zero-divisor of M ,
so x = a2z, and consequently x = 0.

To complete the proof, we must show that a2 is not a zero-divisor of M . If N is the
submodule of M annihilated by a2, we will show that N = a1N . Since a1 ∈ J(R), we can
invoke NAK (0.3.3) to conclude that N = 0, as desired. It suffices to show that N ⊆ a1N ,
so let x ∈ N . By definition of N we have a2x = 0. Since a2 is not a zero-divisor of
M/a1M , x must belong to a1M , say x = a1y with y ∈M . Thus a2x = a2a1y = 0. But a1

is not a zero-divisor of M , hence a2y = 0 and therefore y ∈ N . But x = a1y, so x ∈ a1N ,
and we are finished. ♣

6.2.8 Corollary

Let M be a finitely generated module over the Noetherian local ring R. Then any per-
mutation of an M -sequence is also an M -sequence.
Proof. By (6.2.2), the members of the sequence are nonunits, hence they belong to the
maximal ideal, which coincides with the Jacobson radical. ♣

6.2.9 Definitions and Comments

Let M be a nonzero finitely generated module over a Noetherian local ring R. If the
depth of M coincides with its dimension, we call M a Cohen-Macaulay module. We say
that R is a Cohen-Macaulay ring if it is a Cohen-Macaulay module over itself. To study
these rings and modules, we need some results from homological algebra. The required
tools will be developed in Chapter 7.



Chapter 7

Homological Methods

We now begin to apply homological algebra to commutative ring theory. We assume as
background some exposure to derived functors and basic properties of Ext and Tor. In
addition, we will use standard properties of projective and injective modules. Everything
we need is covered in TBGY, Chapter 10 and the supplement.

7.1 Homological Dimension: Projective and Global

Our goal is to construct a theory of dimension of a module M based on possible lengths
of projective and injective resolutions of M .

7.1.1 Definitions and Comments

A projective resolution 0 → Xn → · · · → X0 → M → 0 of the R-module M is said to
be of length n. The largest such n is called the projective dimension of M , denoted by
pdR M . (If M has no finite projective resolution, we set pdR M =∞.)

7.1.2 Lemma

The projective dimension of M is 0 if and only if M is projective.
Proof. If M is projective, then 0→ X0 = M →M → 0 is a projective resolution, where
the map from M to M is the identity. Conversely, if 0 → X0 → M → 0 is a projective
resolution, then M ∼= X0, hence M is projective. ♣

7.1.3 Lemma

If R is a PID, then for every R-module M , pdR M ≤ 1. If M is an abelian group whose
torsion subgroup is nontrivial, then pdR M = 1.
Proof. There is an exact sequence 0 → X1 → X0 → M → 0 with X0 free and X1, a
submodule of a free module over a PID, also free. Thus pdR M ≤ 1. If pdR M = 0, then
by (7.1.2), M is projective, hence free because R is a PID. Since a free module has zero
torsion, the second assertion follows. ♣

1



2 CHAPTER 7. HOMOLOGICAL METHODS

7.1.4 Definition

The global dimension of a ring R, denoted by gldimR, is the least upper bound of pdR M
as M ranges over all R-modules.

7.1.5 Remarks

If R is a field, then every R-module is free, so gldim R = 0. By (7.1.3), a PID has
global dimension at most 1. Since an abelian group with nonzero torsion has projective
dimension 1, gldimZ = 1.

We will need the following result from homological algebra; for a proof, see TBGY,
subsection S5.7.

7.1.6 Proposition

If M is an R-module, the following conditions are equivalent.

(i) M is projective;
(ii) Extn

R(M, N) = 0 for all n ≥ 1 and all R-modules N ;
(iii) Ext1R(M, N) = 0 for all R-modules N .

We can now characterize projective dimension in terms of the Ext functor.

7.1.7 Theorem

If M is an R-module and n is a positive integer, the following conditions are equivalent.

1. pdR M ≤ n.
2. Exti

R(M, N) = 0 for all i > n and every R-module N .
3. Extn+1

R (M, N) = 0 for every R-module N .
4. If 0 → Kn−1 → Xn−1 → · · · → X0 → M → 0 is an exact sequence with all Xi

projective, then Kn−1 is projective.

Proof. To show that (1) implies (2), observe that by hypothesis, there is a projective
resolution 0 → Xn → · · · → X0 → M → 0. Use this resolution to compute Ext, and
conclude that (2) holds. Since (3) is a special case of (2), we have (2) implies (3). If (4)
holds, construct a projective resolution of M in the usual way, but pause at Xn−1 and
terminate the sequence with 0→ Kn−1 → Xn−1. By hypothesis, Kn−1 is projective, and
this gives (4) implies (1). The main effort goes into proving that (3) implies (4). We
break the exact sequence given in (4) into short exact sequences. The procedure is a bit
different from the decomposition of (5.2.3). Here we are proceeding from right to left,
and our first short exact sequence is

0 �� K0
i0 �� X0

ε �� M �� 0
where K0 is the kernel of ε. The induced long exact sequence is

· · · → Extn
R(X0, N)→ Extn

R(K0, N)→ Extn+1
R (M, N)→ Extn+1

R (X0, N)→ · · ·



7.2. INJECTIVE DIMENSION 3

Now if every third term in an exact sequence is 0, then the maps in the middle are
both injective and surjective, hence isomorphisms. This is precisely what we have here,
because X0 is projective and (7.1.6) applies. Thus Extn+1

R (M, N) ∼= Extn
R(K0, N), so as

we slide from right to left through the exact sequence, the upper index decreases by 1.
This technique is referred to as dimension shifting.

Now the second short exact sequence is

0 �� K1
i1 �� X1

d1 �� K0
�� 0.

We can replace X0 by K0 because im d1 = ker ε = K0. The associated long exact sequence
is

· · · → Extn
R(X1, N)→ Extn

R(K1, N)→ Extn+1
R (K0, N)→ Extn+1

R (X1, N)→ · · ·
and dimension shifting gives Extn

R(K0, N) ∼= Extn−1
R (K1, N). Iterating this procedure, we

get Extn+1
R (M, N) ∼= Ext1R(Kn−1, N), hence by the hypothesis of (3), Ext1R(Kn−1, N) = 0.

By (7.1.6), Kn−1 is projective. ♣

7.1.8 Corollary

gldim R ≤ n if and only if Extn+1
R (M, N) = 0 for all R-modules M and N .

Proof. By the definition (7.1.4) of global dimension, gldim R ≤ n iff pdR M for all M iff
(by (1) implies (3) of (7.1.7)) Extn+1

R (M, N) = 0 for all M and N . ♣

7.2 Injective Dimension

As you might expect, projective dimension has a dual notion. To develop it, we will need
the analog of (7.1.6) for injective modules. A proof is given in TBGY, subsection S5.8.

7.2.1 Proposition

If N is an R-module, the following conditions are equivalent.

(i) N is injective;
(ii) Extn

R(M, N) = 0 for all n ≥ 1 and all R-modules M ;
(iii) Ext1R(M, N) = 0 for all R-modules M .

We are going to dualize (7.1.7), and the technique of dimension shifting is again useful.

7.2.2 Proposition

Let 0 → M ′ → E → M ′′ → 0 be an exact sequence, with E injective. Then for all
n ≥ 1 and all R-modules M , we have Extn+1

R (M, M ′) ∼= Extn
R(M, M ′′). Thus as we slide

through the exact sequence from left to right, the index of Ext drops by 1.
Proof. The given short exact sequence induces the following long exact sequence:

· · · → Extn
R(M, E)→ Extn

R(M, M ′′)→ Extn+1
R (M, M ′)→ Extn+1

R (M, E)→ · · ·
By (7.2.1), the outer terms are 0 for n ≥ 1, hence as in the proof of (7.1.7), the map in
the middle is an isomorphism. ♣
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7.2.3 Definitions and Comments

An injective resolution 0 → N → X0 → · · · → · · ·Xn → 0 of the R-module N is said
to be of length n. The largest such n is called the injective dimension of M , denoted by
idR M . (If N has no finite injective resolution, we set idR M = ∞.) Just as in (7.1.2),
idR N = 0 if and only if N is injective.

7.2.4 Proposition

If N is an R-module and n is a positive integer, the following conditions are equivalent.

1. idR N ≤ n.

2. Exti
R(M, N) = 0 for all i > n and every R-module M .

3. Extn+1
R (M, N) = 0 for every R-module M .

4. If 0→ N → X0 → · · · → Xn−1 → Cn−1 → 0 is an exact sequence with all Xi injective,
then Cn−1 is injective.

Proof. If (1) is satisfied, we have an exact sequence 0→ N → X0 → · · · → Xn → 0, with
the Xi injective. Use this sequence to compute Ext, and conclude that (2) holds. If we
have (2), then we have the special case (3). If (4) holds, construct an injective resolution
of N , but pause at step n − 1 and terminate the sequence by Xn−1 → Cn−1 → 0. By
hypothesis, Cn−1 is injective, proving that (4) implies (1). To prove that (3) implies (4),
we decompose the exact sequence of (4) into short exact sequences. The process is similar
to that of (5.2.3), but with emphasis on kernels rather than cokernels. The decomposition
is given below.

0→ N → X0 → K0 → 0, 0→ K0 → X1 → K1 → 0, . . . ,

0→ Kn−2 → Xn−1 → Cn−1 → 0

We now apply the dimension shifting result (7.2.2) to each short exact sequence. If the
index of Ext starts at n + 1, it drops by 1 as we go through each of the n sequences, and
it ends at 1. More precisely,

Extn+1
R (M, N) ∼= Ext1R(M, Cn−1)

for any M . The left side is 0 by hypothesis, so the right side is also 0. By (7.2.1), Cn−1

is injective. ♣

7.2.5 Corollary

The global dimension of R is the least upper bound of idR N over all R-modules N .

Proof. By the definition (7.1.4) of global dimension, gldim R ≤ n iff pdR M ≤ n for all
M . Equivalently, by (7.1.7), Extn+1

R (M, N) = 0 for all M and N . By (7.2.4), this happens
iff idR N ≤ n for all N . ♣
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7.3 Tor and Dimension

We have observed the interaction between homological dimension and the Ext functor,
and this suggests that it would be profitable to bring in the Tor functor as well. We will
need the following result, which is proved in TBGY, subsection S5.6.

7.3.1 Proposition

If M is an R-module, the following conditions are equivalent.

(i) M is flat.

(ii) TorR
n (M, N) = 0 for all n ≥ 1 and all R-modules N .

(iii) TorR
1 (M, N) = 0 for all R-modules N .

In addition, if R is a Noetherian local ring and M is finitely generated over R, then M is
free if and only if M is projective, if and only if M is flat. See Problems 3-6 for all the
details.

7.3.2 Proposition

Let R be Noetherian local ring with maximal ideal M and residue field k. Let M be
a finitely generated R-module. Then M is free (⇐⇒ projective ⇐⇒ flat) if and only if
TorR

1 (M, k) = 0.
Proof. The “only if” part follows from (7.3.1). To prove the “if” part, let {x1, . . . , xn}
be a minimal set of generators for M . Take a free module F with basis {e1, . . . , en}
and define an R-module homomorphism f : F → M via f(ei) = xi, i = 1, . . . , n. If K
is the kernel of f , we have the short exact sequence 0 → K → F → M → 0. Since
TorR

1 (M, k) = 0, we can truncate the associated long exact sequence:

0 = TorR
1 (M, k)→ K ⊗R k → F ⊗R k →M ⊗R k → 0

where the map f : F⊗R k →M⊗R k is induced by f . Now f is surjective by construction,
and is injective by minimality of the generating set [see (0.3.4) and the base change device
below]. Thus K ⊗R k = ker f = 0. But (TBGY, subsection S7.1)

K ⊗R k = K ⊗R (R/M) ∼= K/MK

so K =MK. By NAK, K = 0. Therefore f is an isomorphism of F and M , hence M is
free. ♣

7.3.3 Theorem

Let R be a Noetherian local ring with maximal ideal M and residue field k. If M is a
finitely generated R-module, the following conditions are equivalent.

(i) pdR M ≤ n.

(ii) TorR
i (M, N) = 0 for all i > n and every R-module N .
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(iii) TorR
n+1(M, N) = 0 for every R-module N .

(iv) TorR
n+1(M, k) = 0.

Proof. If (i) holds, then M has a projective resolution of length n, and if we use this
resolution to compute Tor, we get (ii). There is no difficulty with (ii) =⇒ (iii) =⇒ (iv),
so it remains to prove (iv) =⇒ (i). Let 0 → Kn−1 → Xn−1 → · · · → X0 → M → 0
be an exact sequence with all Xi projective. By (7.1.7), it suffices to show that Kn−1

is projective. Now we apply dimension shifting as in the proof of (7.1.7). For example,
the short exact sequence 0 → K1 → X1 → K0 → 0 [see(7.1.7)] induces the long exact
sequence · · · → TorR

n (X1, k) → TorR
n (K0, k) → TorR

n−1(K1, k) → TorR
n−1(X1, k) → · · ·

and as before, the outer terms are 0, which implies that the map in the middle is an
isomorphism. Iterating, we have TorR

1 (Kn−1, k) ∼= TorR
n+1(M, k) = 0 by hypothesis. By

(7.3.2), Kn−1 is projective. ♣

7.3.4 Corollary

Let R be a Noetherian local ring with maximal ideal M and residue field k. For any
positive integer n, the following conditions are equivalent.

(1) gldimR ≤ n.

(2) TorR
n+1(M, N) = 0 for all finitely generated R-modules M and N .

(3) TorR
n+1(k, k) = 0.

Proof. If (1) holds, then pdR M ≤ n for all M , and (2) follows from (7.3.3). Since (3) is
a special case of (2), it remains to prove that (3) implies (1). Assuming (3), (7.3.3) gives
TorR

n+1(k, N) = TorR
n+1(N, k) = 0 for all R-modules N . Again by (7.3.3), the projective

dimension of any R-module N is at most n, hence gldimR ≤ n. ♣

7.4 Application

As promised in (6.2.5), we will prove that under a mild hypothesis, all maximal M -
sequences have the same length.

7.4.1 Lemma

Let M and N be R-modules, and let a1, . . . , an be an M -sequence. If an annihilates N ,
then the only R-homomorphism h from N to M ′ = M/(a1, . . . , an−1)M is the zero map.

Proof. If x is any element of N , then anh(x) = h(anx) = h(0) = 0. Since an is not a
zero-divisor of M ′, the result follows. ♣

7.4.2 Proposition

Strengthen the hypothesis of (7.4.1) so that each ai, i = 1, . . . , n annihilates N . Then
Extn

R(N, M) ∼= homR(N, M/(a1, . . . , an)M).
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Proof. The short exact sequence 0 → M → M → M/a1M → 0, with the map
from M to M given by multiplication by a1, induces the following long exact sequence:

Extn−1
R (N, M) �� Extn−1

R (N, M/a1M) δ �� Extn
R(N, M)

a1 �� Extn
R(N, M)

where the label a1 indicates multiplication by a1. In fact this map is zero, because a1

annihilates N ; hence δ is surjective. By induction hypothesis, Extn−1
R (N, M) is isomor-

phic to homR(N, M/(a1, . . . , an−1)M = 0 by (7.4.1). (The result is vacuously true for
n = 1.) Thus δ is injective, hence an isomorphism. Consequently, if M = M/a1M ,
we have Extn−1

R (N, M) ∼= Extn
R(N, M). Again using the induction hypothesis, we have

Extn−1
R (N, M) ∼= homR(N, M/(a2, . . . , an)M = homR(N, M/(a1, . . . , an)M). ♣
We prove a technical lemma to prepare for the main theorem.

7.4.3 Lemma

Let M0 be an R-module, and I an ideal of R. Then homR(R/I, M0) �= 0 if and only if
there is a nonzero element of M0 annihilated by I. Equivalently, by (1.3.1), I is contained
in some associated prime of M0. (If there are only finitely many associated primes, for
example if R is Noetherian [see (1.3.9)], then by (0.1.1), another equivalent condition is
that I is contained in the union of the associated primes of M0.)

Proof. If there is a nonzero homomorphism from R/I to M0, it will map 1+I to a nonzero
element x ∈M0. If a ∈ I, then a + I is mapped to ax. But a + I = 0 + I since a ∈ I, so
ax must be 0. Conversely, if x is a nonzero element of M0 annihilated by I, then we can
construct a nonzero homomorphism by mapping 1 + I to x, and in general, r + I to rx.
We must check that the map is well defined, but this follows because I annihilates x. ♣

7.4.4 Theorem

Let M be a finitely generated module over the Noetherian ring R, and I an ideal of R
such that IM �= M . Then any two maximal M -sequences in I have the same length,
namely the smallest nonnegative integer n such that Extn

R(R/I, M) �= 0.

Proof. In (7.4.2), take N = R/I and let {a1, . . . , an} be a set of generators of I. Then

Extn
R(R/I, M) ∼= homR(R/I, M0)

where M0 = M/(a1, . . . , an)M . By (7.4.3), Extn
R(R/I, M) = 0 if and only if I is not

contained in the union of all associated primes of M0. In view of (1.3.6), this says that
if a1, . . . , an is an M -sequence in I, it can be extended to some an+1 ∈ I as long as
Extn

R(R/I, M) = 0. This is precisely the statement of the theorem. ♣

7.4.5 Remarks

Under the hypothesis of (7.4.4), we call the maximum length of an M -sequence in I the
grade of I on M . If R is a Noetherian local ring with maximal idealM, then by (6.2.2),
the elements ai of an M -sequence are nonunits, hence belong to M. Thus the depth of
M , as defined in (6.2.5), coincides with the grade ofM on M .
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Again let M be finitely generated over the Noetherian local ring R. By (7.4.4), the
depth of M is 0 if and only if homR(R/M, M) �= 0. By (7.4.3) and the maximality ofM,
this happens iff M is an associated prime of M . Note also that by (6.1.1) and (6.2.3), if
a1, . . . , ar is an M -sequence of maximal length, then the module M/(a1, . . . , ar)M has
finite length.



Chapter 8

Regular Local Rings

In algebraic geometry, the local ring of an affine algebraic variety V at a point P is the set
O(P, V ) of rational functions on V that are defined at P . Then P will be a nonsingular
point of V if and only if O(P, V ) is a regular local ring.

8.1 Basic Definitions and Examples

8.1.1 Definitions and Comments

Let (R,M, k) be a Noetherian local ring. (The notation means that the maximal ideal is
M and the residue field is k = R/M.) If d is the dimension of R, then by the dimension
theorem [see (5.4.1)], every generating set ofM has at least d elements. IfM does in fact
have a generating set S of d elements, we say that R is regular and that S is a regular
system of parameters. (Check the definition (6.1.1) to verify that S is indeed a system of
parameters.)

8.1.2 Examples

1. If R has dimension 0, then R is regular iff {0} is a maximal ideal, in other words, iff R
is a field.

2. If R has dimension 1, then by (3.3.11), condition (3), R is regular iff R is a discrete
valuation ring. Note that (3.3.11) assumes that R is an integral domain, but this is not
a problem because we will prove shortly that every regular local ring is a domain.

3. Let R = K[[X1, . . . , Xd]], where K is a field. By (5.4.9), dimR = d, hence R is regular
and {X1, . . . , Xd} is a regular system of parameters.

4. Let K be a field whose characteristic is not 2 or 3, and let R = K[X, Y ]/(X3 − Y 2),
localized at the maximal ideal M = {X − 1, Y − 1}. (The overbars indicate calculations
mod (X3 − Y 2).) It appears that {X − 1, Y − 1} is a minimal generating set for M,
but this is not the case (see Problem 1). In fact M is principal, hence dimR = 1 and
R is regular. (See Example 2 above, and note that R is a domain because X3 − Y 2 is
irreducible, so (X3 − Y 2) is a prime ideal.)

1
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5. Let R be as in Example 4, except that we localize at M = (X, Y ) and drop the
restriction on the characteristic of K. Now it takes two elements to generate M, but
dimR = 1 (Problem 2). Thus R is not regular.

Here is a convenient way to express regularity.

8.1.3 Proposition

Let (R,M, k) be a Noetherian local ring. Then R is regular if and only if the dimension
of R coincides with dimkM/M2, the dimension ofM/M2 as a vector space over k. (See
(3.3.11), condition (6), for a prior appearance of this vector space.)

Proof. Let d be the dimension of R. If R is regular and a1, . . . , ad generateM, then the
ai +M2 span M/M2, so dimkM/M2 ≤ d. But the opposite inequality always holds
(even if R is not regular), by (5.4.2). Conversely, if {a1 +M2, . . . , ad +M2} is a basis for
M/M2, then the ai generate M. (Apply (0.3.4) with J = M =M.) Thus R is regular.
♣

8.1.4 Theorem

A regular local ring is an integral domain.

Proof. The proof of (8.1.3) shows that the associated graded ring of R, with the M-
adic filtration [see (4.1.2)], is isomorphic to the polynomial ring k[X1, . . . , Xd], and is
therefore a domain. The isomorphism identifies ai with Xi, i = 1, . . . , d. By the Krull
intersection theorem, ∩∞n=0Mn = 0. (Apply (4.3.4) with M = R and I = M.) Now let
a and b be nonzero elements of R, and choose m and n such that a ∈ Mm \Mm+1 and
b ∈ Mn \Mn+1. Let a be the image of a in Mm/Mm+1 and let b be the image of b in
Mn/Mn+1. Then a and b are nonzero, hence a b �= 0 (because the associated graded ring
is a domain). But a b = ab, the image of ab in Mm+n+1, and it follows that ab cannot
be 0. ♣

We now examine when a sequence can be extended to a regular system of parameters.

8.1.5 Proposition

Let (R,M, k) be a regular local ring of dimension d, and let a1, . . . , at ∈ M, where
1 ≤ t ≤ d. The following conditions are equivalent.

(1) a1, . . . , at can be extended to a regular system of parameters for R.
(2) a1, . . . , at are linearly independent over k, where ai = ai modM2.
(3) R/(a1, . . . , at) is a regular local ring of dimension d− t.

Proof. The proof of (8.1.3) shows that (1) and (2) are equivalent. Specifically, the ai

extend to a regular system of parameters iff the ai extend to a k-basis of M/M2. To
prove that (1) implies (3), assume that a1, . . . , at, at+1, . . . , ad is a regular system of
parameters for R. By (6.1.3), the dimension of R = R/(a1, . . . , at) is d− t. But the d− t
elements ai, i = t + 1, . . . , d, generate M =M/(a1, . . . , at), hence R is regular.

Now assume (3), and let at+1, . . . , ad be elements of M whose images in M form a
regular system of parameters for R. If x ∈ M, then modulo I = (a1, . . . , at), we have
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x −
∑d

t+1 ciai = 0 for some ci ∈ R. In other words, x −
∑d

t+1 ciai ∈ I. It follows
that a1, . . . , at, at+1, . . . , ad generate M. Thus R is regular (which we already know by
hypothesis) and a1, . . . , at extend to a regular system of parameters for R. ♣

8.1.6 Theorem

Let (R,M, k) be a Noetherian local ring. Then R is regular if and only if M can be
generated by an R-sequence. The length of any such R-sequence is the dimension of R.
Proof. Assume that R is regular, with a regular system of parameters a1, . . . , ad. If
1 ≤ t ≤ d, then by (8.1.5), R = R/(a1, . . . , at) is regular and has dimension d − t. The
maximal idealM of R can be generated by at+1, . . . , ad, so these elements form a regular
system of parameters for R. By (8.1.4), at+1 is not a zero-divisor of R, in other words,
at+1 is not a zero-divisor of R/(a1, . . . , at). By induction, a1, . . . , ad is an R-sequence.
(To start the induction, set t = 0 and take (a1, . . . , at) to be the zero ideal.)

Now assume that M is generated by the R-sequence a1, . . . , ad. By repeated appli-
caion of (5.4.7), we have dimR/M = dimR − d. But R/M is the residue field k, which
has dimension 0. It follows that dimR = d, so R is regular. ♣

8.1.7 Corollary

A regular local ring is Cohen-Macaulay.
Proof. By (8.1.6), the maximal idealM of the regular local ring R can be generated by an
R-sequence a1, . . . , ad, with (necessarily) d = dimR. By definition of depth [see(6.2.5)],
d ≤ depth R. But by (6.2.6), depth R ≤ dimR. Since dimR = d, it follows that
depthR = dimR. ♣



1

List of Symbols

J(R) Jacobson radical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0-2
λa multiplication by a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1
rM (N) radical of annihilator of M/N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1
AP(M) associated primes of M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3
z(M) zero-divisors of M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-4
MS localization of M by S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6
SuppM support of M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-8
V (I) set of prime ideals containing I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-8
N(R) nilradical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-12
lR(M) length of the R-module M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-13

Rc integral closure of R in a larger ring. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-3
RT localized ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5√

I radical of an ideal I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8

V valuation ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3
|x| absolute value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5
v discrete valuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5

{Rn} filtration of a ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1
{Mn} filtration of a module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1
gr(R) associated graded ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2
gr(M) associated graded module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2
lim←Mn inverse limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4
M̂ completion of a module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5

∆G difference of G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1
k(r) analog of xr in the calculus of finite differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-1
n >> 0 for sufficiently large n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2
l length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3
h(M, n) Hilbert polynomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4
sI(M, n) Hilbert-Samuel polynomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5
d(M) degree of the Hilbert-Samuel polynomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5
dim dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6
ht height . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-7
coht coheight. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-7
δ(M) Chevalley dimension of the module M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-7
tr deg transcendence degree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-14

pdRM projective dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1
gldim R global dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-2
Ext Ext functor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-2
idRN injective dimension. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7-4
Tor Tor functor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-5
I-depth maximum length of an M -sequence in I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7-7



2

(R,M, k) local ring with maximal idealM and residue field k . . . . . . . . . . . . . . . . . . . 8-1



1

Index

absolute value, 3-5
archimedean, 3-5
nonarchimedean, 3-5

additivity of length, 5-3
affine k-algebra, 5-12
Artin-Rees lemma, 4-3
Artinian ring, 1-11
associated graded rings and modules, 4-2
associated primes, 1-3
calculus of finite differences, 5-1
Chevalley dimension, 5-7
coheight, 5-7
Cohen-Macaulay rings and modules, 6-4, 8-3
coherent sequences and homomorphisms, 4-4
completion of a module, 4-5
contraction, 2-9
decomposing a long exact sequence into short exact sequences, see (5.2.3), (7.1.4)
Dedekind domain, 5-7
degree, 4-1
depth, 6-3
determinant trick, 0-3, 2-1
dimension, 5-1, 5-6ff.

homological, 7-1ff.
dimension shifting, 7-3, 7-4, 7-6
dimension theorem, 5-8

consequences of, 5-9ff.
discrete valuation, 3-5
discrete valuation ring (DVR), 3-5, 3-6
embedded component, 1-6
equivalent filtrations, 4-7
extension theorems, 3-1, 3-3
faithful module, 2-1
filtered ring and module, 4-1
filtration, 4-1
first uniqueness theorem, 1-6
flat module, 7-5
formal power series, 5-11
global dimension, 7-2
going down, 2-7, 2-9
going up, 2-6
grade, 7-7
graded module, 4-1
graded piece, 4-1,
graded ring, 4-1,



2

Hausdorff topology, 4-5
height, 5-7
Hensel’s lemma, 4-10
Hilbert polynomial, 5-4
Hilbert-Samuel polynomial, 5-5
homogeneous elements, 4-1
homological dimension, 7-1ff.
I-adic completion, 4-8
I-adic filtration, 4-1
I-adic topology, 4-4
I-filtration, 4-3
I-stable filtration, 4-3
ideal of definition, 5-4
injective dimension, 7-4
integral closure, 2-3
integral elements, extensions, 2-1
integrally closed, 2-3
inverse limit, 4-4
inverse system, 4-4
irreducible submodule, 1-2
isolated component, 1-6
Jacobson radical, 0-2, 1-12
Krull dimension, 5-6
Krull intersection theorem, 4-8
Krull’s principal ideal theorem, 5-10

generalization, 5-10
Laurent series, 3-2
length of a module, 1-13
local ring, 0-2, 0-4
lying over, 2-4, 2-5
M -sequence, 6-2 minimal component, 1-6
Nakayama’s lemma (NAK), 0-3
Noether’s normalization lemma, 5-11
nilradical, 1-12
polynomial-like function, 5-2
primary decomposition, 1-2

existence of, 1-3
reduced, 1-2
uniqueness of, 1-6, 1-8

primary ideal, 1-1
primary submodule, 1-1
prime element, 3-6
P -primary submodule, 1-1
prime avoidance lemma, 0-1
projective dimension, 7-1
regular local ring, 8-1



3

regular sequence, 6-2
regular system of parameters, 8-1
residue field, 0-4
second uniqueness theorem, 1-8
stabilizing a module, 2-2
support of a module, 1-8
system of parameters, 6-1
transcendence degree, 5-14
transitivity of integral extensions, 2-2
UFD (unique factorization domain), 2-3
uniformizer, 3-6
valuation ring, 3-2
Zariski topology, 1-8
zero-divisors, 1-4



Exercises

Chapter 1

1. What are the primary ideals of Z?
2. Let R = k[x, y] where k is a field. Show that Q = (x, y2) is P -primary, and identify

P .
3. Continuing Problem 2, show that Q is not a power of a prime ideal.
4. Let R = k[x, y, z]/I where I = (xy − z2). Let x = x + I, y = y + I, z = z + I. If

P = (x, z), show that P
2

is a power of a prime ideal and its radical is prime, but it
is not primary.

5. Let R = k[x, y] where k is a field, and let P1 = (x), P2 = (x, y), Q = (x2, y), I =
(x2, xy). Show that I = P1 ∩ P 2

2 and I = P1 ∩Q are both primary decompositions of
I.

6. Let M and N be finitely generated modules over a local ring R. Show that M⊗RN = 0
if and only if either M or N is 0.

7. Continuing Problem 6, show that the result fails to hold if R is not local.
8. Let S be a multiplicative subset of R, and MS = S−1M . Use base change formulas

in the tensor product to show that (M ⊗R N)S
∼= MS ⊗RS

NS as RS-modules.
9. If M and N are finitely generated R-modules, show that Supp(M ⊗R N) = SuppM ∩

SuppN .

In Problems 10-13, we consider uniqueness in the structure theorem (1.6.7) for Ar-
tinian rings.

10. Let R =
∏r

1 Ri, where the Ri are Artinian local rings, and let πi be the projection of
R on Ri. Show that each Ri has a unique prime ideal Pi, which is nilpotent. Then
show thatMi = π−1

i (Pi) is a maximal ideal of R.

11. Let Ii = kerπi, i = 1, . . . , r. Show that
√

Ii =Mi, so by (1.1.2), Ii is Mi-primary.
12. Show that ∩r

1Ii is a reduced primary decomposition of the zero ideal.
13. Show that in (1.6.7), the Ri are unique up to isomorphism.
14. Let M be finitely generated over the Noetherian ring R, and let P be a prime ideal

in the support of M . Show that lRP
(MP ) <∞ if and only if P is a minimal element

of AP(M).

1
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Chapter 2

1. Let R = Z and S = Z[i], the Gaussian integers. Give an example of two prime ideals
of S lying above the same prime ideal of R. (By (2.2.1), there cannot be an inclusion
relation between the prime ideals of S.)

2. Let R = k[X, Y ]/I, where k is a field and I is the prime ideal (X2 − Y 3). Write the
coset X + I simply as x, and Y + I as y. Show that α = x/y is integral over R, but
α /∈ R. Thus R is not integrally closed.

3. Suppose we have a diagram of R-modules

M ′
f−−−−→ M

g−−−−→ M ′′

with im f ⊆ ker g. Show that the following conditions are equivalent.
(a) The given sequence is exact.
(b) The sequence

M ′P
fP−−−−→ MP

gP−−−−→ M ′′P

is exact for every prime ideal P .
(c) The localized sequence of (b) is exact for every maximal ideal P .

4. Let f : M → N be an R-module homomorphism. Show that f is injective [resp.
surjective] if and only if fP is injective [resp. surjective] for every prime, equivalently
for every maximal, ideal P .

5. Let R be an integral domain with fraction field K. We may regard all localized rings
RP as subsets of K. Let M be the intersection of all RP for maximal ideals P . If S is
any multiplicative subset of R, show that

S−1M ⊆
⋂

P∈max R

S−1RP

where max R is the set of maximal ideals of R.
6. Continuing Problem 5, if Q is any maximal ideal of R, show that MQ ⊆ RQ.
7. Continuing Problem 6, show that the intersection of all RP , P prime, coincides with

the intersection of all RP , P maximal, and in fact both intersections coincide with R.
8. If R is an integral domain, show that the following conditions are equivalent:

(a) R is integrally closed;
(b) RP is integrally closed for every prime ideal P ;
(c) RQ is integrally closed for every maximal ideal Q.

9. Let P be a prime ideal of R. Show that the fields RP /PRP and Frac R/P are isomor-
phic. Each is referred to as the residue field at P .

Chapter 3

Let R and S be local subrings of the field K, with maximal ideals MR and MS respec-
tively. We say that S dominates R, and write (R,MR) ≤ (S,MS), if R is a subring of S
and R ∩MS =MR.
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1. If V is a valuation ring of K, show that (V,MV ) is maximal with respect to the partial
ordering induced by domination.

Conversely, we will show in Problems 2 and 3 that if (V,MV ) is maximal, then V is
a valuation ring. Let k be the residue field V/MV , and let C be an algebraic closure
of k. We define a homomorphism h : V → C, by following the canonical map from V
to k by the inclusion map of k into C. By (3.1.4), it suffices to show that (V, h) is a
maximal extension. As in (3.1.1), if (R1, h1) is an extension of (V, h), we may assume
R1 local and h1(R1) a subfield of C. Then kerh1 is the unique maximal idealMR1 .

2. Show that (R1,MR1) dominates (V,MV ).

3. Complete the proof by showing that (V, h) is a maximal extension.

4. Show that every local subring of a field K is dominated by at least one valuation ring
of K.

Chapter 4

1. Let R be the formal power series ring k[[X1, . . . , Xn]], where k is a field. Put the
I-adic filtration on R, where I is the unique maximal ideal (X1, . . . , Xn). Show that
the associated graded ring of R is the polynomial ring k[X1, . . . , Xn].

2. Let M and N be filtered modules over the filtered ring R. The R-homomorphism
f : M → N is said to be a homomorphism of filtered modules if f(Mn) ⊆ Nn for
all n ≥ 0. For each n, f induces a homomorphism fn : Mn/Mn+1 → Nn/Nn+1 via
fn(x + Mn+1) = f(x) + Nn+1. We write grn(f) instead of fn. The grn(f) extend to
a homomorphism of graded gr(R)-modules, call it gr(f) : gr(M)→ gr(N). We write

gr(f) =
⊕
n≥0

grn(f).

For the remainder of this problem and in Problems 3 and 4, we assume that gr(f) is
injective. Show that Mn ∩ f−1(Nn+1) ⊆Mn+1 for all n ≥ 0.

3. Continuing Problem 2, show that f−1(Nn) ⊆Mn for all n ≥ 0.

4. Continuing Problem 3, show that if in addition we have ∩∞n=0Mn = 0, then f is
injective.

5. Show that in (4.2.10), the two filtrations {InN} and {N ∩ InM} are equivalent.

6. If we reverse the arrows in the definition of an inverse system [see (4.2.1)], so that
maps go from Mn to Mn+1, we get a direct system. The direct limit of such a system
is the disjoint union

∐
Mn, with sequences x and y identified if they agree sufficiently

far out in the ordering. In other words, θn(xn) = θn(yn) for all sufficiently large n.

In (4.2.6) we proved that the inverse limit functor is left exact, and exact under an
additional assumption. Show that the direct limit functor is always exact. Thus if

M ′n
fn �� Mn

gn �� M ′′n is exact for all n, and

M = lim
−→

Mn
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is the direct limit of the Mn (similarly for M ′ and M ′′), then the sequence

M ′
f �� M

g �� M ′′ is exact. (The maps f and g are induced by the fn and

gn.)

7. Let M be an R-module, and let M̂ [resp. R̂] be the I-adic completion of M [resp.
R]. Note that M̂ is an R̂-module via {an} {xn} = {anxn}. Define an R-module
homomorphism hM : R̂⊗R M → M̂ by (r, m)→ r m. If M is finitely generated over
R, show that hM is surjective.

8. In Problem 7, if in addition R is Noetherian, show that hM is an isomorphism. Thus
if R is complete (R ∼= R̂), then M is complete (M ∼= M̂).

9. Show that the completion of M is always complete, that is, ˆ̂
M ∼= M̂ .

10. Let R̂ be the I-adic completion of the Noetherian ring R. Show that R̂ is a flat
R-module.

11. If M is complete with respect to the filtration {Mn}, show that the topology induced
on M by {Mn} must be Hausdorff.

In Problems 12-16, R̂ is the I-adic completion of the ring R. In Problems 12-14, R is
assumed Noetherian.

12. Show that Î ∼= R̂⊗R I ∼= R̂I.

13. Show that (Î)n ∼= (In)̂.

14. Show that In/In+1 ∼= (Î)n/(Î)n+1.

15. Show that Î is contained in the Jacobson radical J(R̂).

16. Let R be a local ring with maximal ideal M. If R̂ is the M-adic completion of R,
show that R̂ is a local ring with maximal ideal M̂.

Chapter 5

1. In differential calculus, the exponential function ex is its own derivative. What is the
analogous statement in the calculus of finite differences?

2. Let M be nonzero and finitely generated over the local ring R with maximal idealM.
Show that V (ann(M/MM)) = {M}.

3. If I is an arbitrary ideal and P a prime ideal of R, show that (R/I)P �= 0 iff P ⊇ I.

In Problems 4-7, the ring S is integral over the subring R, J is an ideal of S, and
I = J ∩R. Establish the following.

4. dimR = dimS.

5. coht I = coht J .

6. ht J ≤ ht I.

7. If R and S are integral domains with R integrally closed, then ht J = ht I.

If P is a prime ideal of R, then by definition of height, coheight and dimension, we have
ht P+ coht P ≤ dimR. In Problems 8 and 9 we show that the inequality can be strict,
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even if R is Noetherian. Let S = k[[X, Y, Z)]] be a formal power series ring over the field
k, and let R = S/I where I = (XY, XZ). Define X = X + I, Y = Y + I, Z = Z + I.

8. Show that the dimension of R is 2.
9. Let P be the prime ideal (Y ,Z) of R. Show that P has height 0 and coheight 1, so

that ht P+ coht P < dimR.

Chapter 6

1. Let R be a Noetherian local ring with maximal idealM, and suppose that the elements
a1, . . . , at are part of a system of parameters for R. If the ideal P = (a1, . . . , at) is
prime and has height t, show that htP + cohtP = dimR.

2. let S = k[[X, Y, Z]] be a formal power series ring over the field k, and let R = S/I,
where I = (XY, XZ). Use an overbar to denote cosets mod I, for example, X =
X + I ∈ R. Show that {Z,X + Y } is a system of parameters, but Z is a zero-
divisor. On the other hand, members of a regular sequence (Section 6.2) cannot be
zero-divisors.

Chapter 7

1. Let Z4 = Z/4Z, a free Z4-module. Define f : Z4 → Z4 by 0→ 0, 1→ 2, 2→ 0, 3→ 2,
i.e., f(x) = 2x mod 4. Let M = 2Z4

∼= Z2 (also a Z4-module), and define g : Z4 →M
by 0→ 0, 1→ 1, 2→ 0, 3→ 1, i.e., g(x) = x mod 2. Show that

· · · �� Z4
f �� Z4

f �� Z4
f �� Z4

g �� M �� 0 is a free, hence projective,
resolution of M of infinite length.

2. Given an exact sequence

· · · �� Cn+1
∂n+1 �� An

fn �� Bn
gn �� Cn

∂n �� An−1
fn−1 �� Bn−1

gn−1 �� Cn−1
�� · · ·

Show that if the maps fn are all isomorphisms, then Cn = 0 for all n.

Let R be a Noetherian local ring with maximal idealM and residue field k = R/M. Let
M be a finitely generated R-module, and define uM :M⊗R M →M via uM (a⊗x) =
ax, a ∈M, x ∈M . We are going to show in Problems 3,4 and 5 that if uM is injective,
then M is free. If M is generated by x1, . . . , xn, let F be a free R-module with basis
e1, . . . , en. Define a homomorphism g : F → M via ei → xi, 1 ≤ i ≤ n. We have an
exact sequence 0→ K → F → M → 0, where f : K → F, g : F → M , and K = ker g.
The following diagram is commutative, with exact rows.

M⊗K ��

uK

��

M⊗ F ��

uF

��

M⊗M

uM

��

�� 0

0 �� K �� F �� M
Applying the snake lemma, we have an exact sequence

keruM
δ �� coker uK

f∗ �� coker uF
g∗ �� coker uM .
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3. Show that cokeruM
∼= k ⊗R M , and similarly cokeruF

∼= k ⊗R F .

4. Show that cokeruK = 0.

5. Show that g is injective. Since g is surjective by definition, it is an isomorphism, hence
M ∼= F , and M is free.

6. Let M be a finitely generated module over the Noetherian local ring R. Show that M
is free if and only if M is projective, if and only if M is flat.

7. Show that in (7.2.1), M can be replaced by R/I, I an arbitrary ideal of R.

8. Show that the global dimension of a ring R is the least upper bound of pdR(R/I),
where I ranges over all ideals of R.

9. Let f : R → S be a ring homomorphism, and let M be an R-module. Prove that the
following conditions are equivalent.
(a) TorR

1 (M, N) = 0 for all S-modules N .
(b) TorR

1 (M, S) = 0 and M ⊗R S is a flat S-module.

Chapter 8

1. In (8.1.2), Example 4, show that X − 1 and Y − 1 are associates.

2. Justify the assertions made in Example 5 of (8.1.2).

Let (R,M, k) be a Noetherian local ring, and let grM(R) be the associated graded
ring with respect to theM-adic filtration [see(4.1.2)]. We can define a homomorphism
of graded k-algebras ϕ : k[X1, . . . , Xr] → grM(R) via ϕ(Xi) = ai +M2, where the
ai generate M. (See Chapter 4, Problem 2 for terminology.) In Problems 3-5, we
are going to show that ϕ is an isomorphism if and only if the Hilbert polynomial
h(n) = h(grM(R), n) has degree r − 1. Equivalently, the Hilbert-Samuel polynomial
sM(R, n) has degree r.

3. Assume that ϕ is an isomorphism, and let An be the set of homogeneous polynomials
of degree n in k[X1, . . . , Xr]. Then An is isomorphic as a k-vector space to I =
(X1, . . . , Xr). Compute the Hilbert polynomial of grM(R) and show that it has degree
r − 1.

4. Now assume that ϕ is not an isomorphism, so that its kernel B is nonzero. Then
B becomes a graded ring ⊕n≥0Bn with a grading inherited from the polynomial ring
A = k[X1, . . . , Xr]. We have an exact sequence

0→ Bn → An →Mn/Mn+1 → 0.

Show that

h(n) =
(

n + r − 1
r − 1

)
− lk(Bn).

5. Show that the polynomial-like functions on the right side of the above equation for
h(n) have the same degree and the same leading coefficient. It follows that the Hilbert
polynomial has degree less than r − 1, completing the proof.
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6. Let (R,M, k) be a Noetherian local ring of dimension d. Show that R is regular if
and only if the associated graded ring grM(R) is isomorphic as a graded k-algebra to
k[X1, . . . , Xd].



Solutions to Problems

Chapter 1

1. The primary ideals are (0) and (pn), p prime.

2. R/Q ∼= k[y]/(y2), and zero-divisors in this ring are of the form cy + (y2), c ∈ k, so
they are nilpotent. Thus Q is primary. Since r(Q) = P = (x, y), Q is P -primary.

3. If Q = Pn
0 with P0 prime, then

√
Q = P0, so by Problem 2, P0 = (x, y). But x ∈ Q

and x /∈ Pn
0 for n ≥ 2, so Q �= Pn

0 for n ≥ 2. Since y ∈ P0 but y /∈ Q, we have Q �= P0

and we reach a contradiction.

4. P is prime since R/P ∼= k[y], an integral domain. Thus P
2

is a prime power and
its radical is the prime ideal P . But it is not primary, because x y = z2 ∈ P

2
, x /∈

P
2
, y /∈ P .

5. We have I ⊆ P1 ∩ P 2
2 and I ⊆ P1 ∩ Q by definition of the ideals involved. For the

reverse inclusions, note that if f(x, y)x = g(x, y)y2 (or f(x, y)x = g(x, y)y), then
g(x, y) must involve x and f(x, y) must involve y, so f(x, y) is a polynomial multiple
of xy.
Now P1 is prime (because R/P1

∼= k[y], a domain), hence P1 is P1-primary. P2 is
maximal and

√
P 2

2 =
√

Q = P2. Thus P 2
2 and Q are P2-primary. [See (1.1.1) and

(1.1.2). Note also that the results are consistent with the first uniqueness theorem.]

6. Let M be the maximal ideal of R, and k = R/M the residue field. Let Mk =
k ⊗R M = (R/M) ⊗R M ∼= M/MM . Assume M ⊗R N = 0. Then Mk ⊗k Nk =
(k⊗RM)⊗k (k⊗RN) = [(k⊗RM)⊗kk]⊗RN = (k⊗RM)⊗RN = k⊗R(M⊗RN) = 0.
Since Mk and Nk are finite-dimensional vector spaces over a field, one of them must
be 0. [kr ⊗k ks = (k ⊗k ks)r because tensor product commutes with direct sum, and
this equals (ks)r = krs.] If Mk = 0, then M =MM , so by NAK, M = 0. Similarly,
Nk = 0 implies N = 0.

7. We have Z/nZ⊗Z Z/mZ ∼= Z/(n, m)Z, which is 0 if n and m are relatively prime.

8. (M⊗RN)S
∼= RS⊗R(M⊗RN) ∼= (RS⊗RM)⊗RN ∼= MS⊗RN ∼= (MS⊗RS

RS)⊗RN ∼=
MS ⊗RS

(RS ⊗R N) ∼= MS ⊗RS
NS .

9. By Problem 8, (M⊗R N)P
∼= MP ⊗RP

NP as RP -modules. Thus P /∈ Supp(M⊗R N)
iff MP ⊗RP

NP = 0. By Problem 6, this happens iff MP = 0 or NP = 0, that is,
P /∈ SuppM or P /∈ SuppN .

1



2

10. The first assertion follows from (1.6.4) and (1.6.6). Since the preimage of a prime
ideal under a ring homomorphism is prime, the second assertion follows from (1.6.4).

11. Say Pn
i = 0. Then x ∈ Mi iff πi(x) ∈ Pi iff πi(xn) = 0 iff xn ∈ Ii, and the result

follows.

12. Since Ii consists of those elements that are 0 in the ith coordinate, the zero ideal is the
intersection of the Ii, and Ii �⊇ ∩j �=iIj . By Problem 11, the decomposition is primary.
Now Ii ⊆

√
Ii =Mi, and Ii + Ij = R for i �= j. Thus Mi +Mj = R, so the Mi are

distinct and the decomposition is reduced.

13. By Problem 12, the Mi are distinct and hence minimal. By the second uniqueness
theorem (1.4.5), the Ii are unique (for a given R). Since Ri

∼= R/Ii, the Ri are unique
up to isomorphism.

14. By (1.6.9), the length lRP
(MP ) will be finite iff every element of APRP

(MP ) is
maximal. Now RP is a local ring with maximal ideal PRP . By the bijection of
(1.4.2), lRP

(MP ) < ∞ iff there is no Q ∈ AP(M) such that Q ⊂ P . By hypothesis,
P ∈ SuppM , so by (1.5.8), P contains some P ′ ∈ AP(M), and under the assumption
that lRP

(MP ) is finite, P must coincide with P ′. The result follows.

Chapter 2

1. Let Q1 = (2 + i), Q2 = (2− i). An integer divisible by 2 + i must also be divisible by
the complex conjugate 2− i, hence divisible by (2 + i)(2− i) = 5. Thus Q1 ∩ Z = (5),
and similarly Q2 ∩ Z = (5).

2. We have x2 = y3, hence (x/y)2 = y. Thus α2 − y = 0, so α is integral over R. If
α ∈ R, then α = x/y = f(x, y) for some polynomial f in two variables with coefficients
in k, Thus x = yf(x, y). Written out longhand, this is X + I = Y f(X, Y ) + I, and
consequently X − Y f(X, Y ) ∈ I = (X2, Y 3). This is impossible because there is no
way that a linear combination g(X, Y )X2 + h(X, Y )Y 3 can produce X.

3. Since the localization functor is exact, we have (a) implies (b), and (b) implies (c) is
immediate. To prove that (c) implies (a), consider the exact sequence

0 −−−−→ im f
i−−−−→ ker g

π−−−−→ ker g/ im f −−−−→ 0

Applying the localization functor, we get the exact sequence

0 −−−−→ (im f)P
iP−−−−→ (ker g)P

πP−−−−→ (ker g/ im f)P −−−−→ 0

for every prime ideal P . But by basic properties of localization,

(ker g/ im f)P = (ker g)P /(im f)P = ker gP / im fP ,

which is 0 for every prime ideal P , by (c). By (1.5.1), ker g/ im f = 0, in other words,
ker g = im f , proving (a).

4. In the injective case, apply Problem 3 to the sequence

0 −−−−→ M
f−−−−→ N,
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and in the surjective case, apply Problem 3 to the sequence

M
f−−−−→ N −−−−→ 0.

5. This follows because S−1(∩Ai) ⊆ ∩iS
−1(Ai) for arbitrary rings (or modules) Ai.

6. Taking S = R \Q and applying Problem 5, we have the following chain of inclusions,
where P ranges over all maximal ideals of R:

MQ = (∩P RP )Q ⊆ ∩P (RP )Q ⊆ (RQ)Q = RQ.

7. Since R is contained in every RP , we have R ⊆M , hence RQ ⊆MQ for every maximal
ideal Q. Let i : R → M and iQ : RQ → MQ be inclusion maps. By Problem 6,
RQ = MQ, in particular, iQ is surjective. Since Q is an arbitrary maximal ideal, i is
surjective by Problem 4, so R = M . But R ⊆ ∩PprimeRP ⊆M , and the result follows.

8. The implication (a) implies (b) follows from (2.2.6), and (b) immediately implies (c).
To prove that (c) implies (a), note that if for every i, K is the fraction field of Ai, where
the Ai are domains that are integrally closed in K, then ∩iAi is integrally closed. It
follows from Problem 7 that R is the intersection of the RQ, each of which is integrally
closed (in the same fraction field K). Thus R is integrally closed.

9. The elements of the first field are a/f + PRP and the elements of the second field are
(a + P )/(f + P ), where in both cases, a, f ∈ R, f /∈ P . This tells you exactly how to
construct the desired isomorphism.

Chapter 3

1. Assume that (V,MV ) ≤ (R,MR), and let α be a nonzero element of R. Then either α
or α−1 belongs to V . If α ∈ V we are finished, so assume α /∈ V , hence α−1 ∈ V ⊆ R.
Just as in the proof of Property 9 of Section 3.2, α−1 is not a unit of V . (If b ∈ V and
bα−1 = 1, then α = αα−1b = b ∈ V .) Thus α−1 ∈ MV = MR ∩ V , so α−1 is not a
unit of R. This is a contradiction, as α and its inverse both belong to R.

2. 2. By definition of h, kerh =MV . Since h1 extends h, kerh = (kerh1) ∩ V , that is,
MV =MR1 ∩ V . Since R1 ⊇ V , the result follows.

3. By hypothesis, (V,MV ) is maximal with respect to domination, so (V,MV ) = (R1,MR1).
Therefore V = R1, and the proof is complete.

4. If (R,MR) is not dominated in this way, then it is a maximal element in the domination
ordering, hence R itself is a valuation ring.

Chapter 4

1. We have f ∈ Id iff all terms of f have degree at least d, so if we identify terms of degree
at least d + 1 with 0, we get an isomorphism between Id/Id+1 and the homogeneous
polynomials of degree d. Take the direct sum over all d ≥ 0 to get the desired result.

2. If x ∈Mn and f(x) ∈ Nn+1, then f(x) + Nn+1 = 0, so x ∈Mn+1.
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3. The result holds for n = 0 because M0 = M and N0 = N . If it is true for n, let
x ∈ f−1(Nn+1). Since Nn+1 ⊆ Nn, it follows that x belongs to f−1(Nn), which is
contained in Mn by the induction hypothesis. By Problem 2, the result is true for
n + 1.

4. Using the additional hypothesis and Problem 3, we have f−1(0) ⊆ f−1(∩Nn) =
∩f−1(Nn) ⊆ ∩Mn = 0.

5. By (4.1.8) we have

(Im+kM) ∩N = Ik((Im) ∩N) ⊆ IkN ⊆ (IkM) ∩N.

6. Since gn ◦ fn = 0 for all n, we have g ◦ f = 0. If g(y) = 0, then y is represented
by a sequence {yn} with yn ∈ Mn and gn(yn) = 0 for sufficiently large n. Thus for
some xn ∈ M ′n we have yn = fn(xn). The elements xn determine x ∈ M ′ such that
y = f(x), proving exactness.

7. Since R̂ ⊗R R ∼= R̂ and tensor product commutes with direct sum, hM is an iso-
morphism when M is free of finite rank. In general, we have an exact sequence

0 �� N
f �� F

g �� M �� 0
with F free of finite rank. Thus the following diagram is commutative, with exact
rows. R̂⊗R N ��

hN

��

R̂⊗R F ��

hF

��

R̂⊗R M ��

hM

��

0

0 �� N̂
f̂

�� F̂ ĝ
�� M̂ �� 0

See (4.2.7) for the last row. Since ĝ is surjective and hF is an isomorphism, it follows
that hM is surjective.

8. By hypothesis, N is finitely generated, so by Problem 8, hN is surjective. Since hF is
an isomorphism, hM is injective by the four lemma. (See TBGY, 4.7.2, part (ii).)

9. Take inverse limits in (4.2.9).

10. Consider the diagram for Problem 7, with M finitely generated. No generality is lost;
see TBGY, (10.8.1). Then all vertical maps are isomorphisms, so if we augment the
first row by attaching 0→ on the left, the first row remains exact. Thus the functor
R̂⊗R — is exact, proving that R̂ is flat.

11. Since M is isomorphic to its completion, we may regard M̂ as the set of constant
sequences in M . If x belongs to Mn for every n, then x converges to 0, hence x and
0 are identified in M̂ . By (4.2.4), the topology is Hausdorff.

12. I is finitely generated, so by Problem 8, hI : R̂⊗R I → Î is an isomorphism. Since R̂
is flat over R by Problem 10, R̂ ⊗R I → R̂ ⊗R R ∼= R̂ is injective, and the image of
this map is R̂I.

13. By Problem 12, (In)̂ ∼= R̂In = (R̂I)n ∼= (Î)n.

14. The following diagram is commutative, with exact rows.
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0 �� In/In+1 ��

��

R/In+1 ��

��

R/In ��

��

0

0 �� (Î)n/(Î)n+1 �� R̂/(Î)n+1 �� R̂/(Î)n �� 0

The second and third vertical maps are isomorphisms by (4.2.9), so the first vertical
map is an isomorphism by the short five lemma.

15. By (4.2.9) and Problem 9, R̂ is complete with respect to the Î-adic topology. Suppose
that a ∈ Î. Since an + an+1 + · · ·+ am ∈ (Î)n for all n, the series 1+ a+ a2 + · · ·+ an

converges to some b ∈ R̂. Now (1− a)(1 + a + a2 + · · ·+ an) = 1− an+1, and we can
let n approach infinity to get (1− a)b = 1. Thus a ∈ Î ⇒ 1− a is a unit in R̂. Since
ax belongs to Î for every x ∈ R̂, 1 + ax is also a unit. By (0.2.1), a ∈ J(R̂).

16. By (4.2.9), R/M ∼= R̂/M̂, so R̂/M̂ is a field, hence M̂ is a maximal ideal. By
Problem 15, M̂ is contained in every maximal ideal, and it follows that M̂ is the
unique maximal ideal of R̂.

Chapter 5

1. The function 2n is its own difference.

2. If P is a prime ideal containing ann(M/MM), then P ⊇ M, hence P = M by
maximality of M. Conversely, we must show that M ⊇ ann(M/MM). This will be
true unless ann(M/MM) = R. In this case, 1 annihilates M/MM , soMM = M . By
NAK, M = 0, contradicting the hypothesis.

3. Let S = R \ P . Then (R/I)P = 0 iff S−1(R/I) = 0 iff S−1R = S−1I iff 1 ∈ S−1I iff
1 = a/s for some a ∈ I and s ∈ S iff I ∩ S �= 0 iff I is not a subset of P .

4. By Going Up [see (2.2.3)], any chain of distinct prime ideals of R can be lifted to a
chain of distinct prime ideals of S, so dim S ≥ dimR. A chain of distinct prime ideals
of S contracts to a chain of prime ideals of R, distinct by (2.2.1). Thus dimR ≥ dimS.

5. Since S/J is integral over the subring R/I, it follows from (5.3.1) and Problem 4 that
coht I = dimR/I = dimS/J = coht J .

6. If J is a prime ideal of S, then I = J ∩ R is a prime ideal of R. The contraction of a
chain of prime ideals of S contained in J is a chain of prime ideals of R contained in
R, and distinctness is preserved by (2.2.1). Thus ht J ≤ ht I. Now let J be any ideal
of S, and let P be a prime ideal of R such that P ⊇ I and ht P = ht I. (If the height
of I is infinite, there is nothing to prove.) As in the previous problem, S/J is integral
over R/I, so by Lying Over [see (2.2.2)] there is a prime ideal Q containing J that lies
over P . Thus with the aid of the above proof for J prime, we have ht J ≤ ht Q ≤ ht
P = ht I.

7. First assume J is a prime ideal of S, hence I is a prime ideal of R. A descending chain
of distinct prime ideals of R starting from I can be lifted to a descending chain of
distinct prime ideals of S starting from J , by Going Down [see (2.3.4)]. Thus ht J ≥
ht I. For any ideal J , let Q be a prime ideal of S with Q ⊇ J . Then P = Q ∩R ⊇ I.
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By what we have just proved, ht Q ≥ ht P , and ht P ≥ ht I by definition of height.
Taking the infimum over Q, we have ht J ≥ ht I. By Problem 6, ht J = ht I.

8. The chain of prime ideals (X) ⊂ (X, Y ) ⊂ (X, Y , Z) gives dim R ≥ 2. Since XY (or
equally well XZ), belongs to the maximal ideal (X, Y, Z) and is not a zero-divisor, we
have dimR ≤ dimS/(XY ) = dimS − 1 = 2 by (5.4.7) and (5.4.9).

9. The height of P is 0 because the ideals (Y ) and (Z) are not prime. For example,
X /∈ (Y ) and Z /∈ (Y ), but X Z = 0 ∈ (Y ). Since R/P ∼= k[[X]] has dimension 1, P
has coheight 1 by (5.3.1).

Chapter 6

1. By (6.1.3), dimR/P = dimR− t = dimR− htP . By (5.3.1), dimR/P = cohtP , and
the result follows.

2. Let J be the ideal (Z, X + Y ). If M = (X, Y, Z) is the unique maximal ideal of S,
then M2

= (X
2
, Y

2
, Z

2
, Y Z) ⊆ J ⊆ M, so J is an ideal of definition. (Note that

X Y = X Z = 0, X(X + Y ) = X
2
, and Y (X + Y ) = Y

2
.) By (6.1.2), {Z, X + Y } is

a system of parameters. Since Z X = 0, Z is a zero-divisor.

Chapter 7

1. Note that ker f, im f , and ker g are all equal to {0, 2}.
2. We have im ∂n = ker fn−1 = 0 and ker gn = im fn = Bn. Thus gn is the zero map, so

ker ∂n = im gn = 0. Therefore ∂n is an injective zero map, which forces Cn = 0.

3. This follows from the base change formula R/I ⊗R M ∼= M/IM with I = M (see
TBGY, S7.1).

4. We have g∗ : 1⊗ei → 1⊗xi, which is an isomorphism. (The inverse is 1⊗xi → 1⊗ei.)
Thus im f∗ = ker g∗ = 0. Since f∗ is the zero map, δ is surjective. But keruM is 0 by
hypothesis, so δ = 0. This forces coker uK = 0.

5. By Problem 4, K =MK. Since M is a Noetherian R-module, K is finitely generated,
so by NAK we have K = 0. Thus 0 = im f = ker g, so g is injective.

6. Since free implies projective implies flat always, it suffices to show that flat implies
free. If M is flat, then the functor N → N ⊗R M is exact. If M is the maximal ideal
of R, then the map M⊗R M → R ⊗R M ∼= M via a ⊗ x → ax is injective. But this
map is just uM , and the result follows from Problems 3-5.

7. We have the short exact sequence 0 → I → R → R/I → 0, which induces, for any
R-module N , the exact sequence

HomR(R/I, N)→ HomR(R, N)→ HomR(I, N)→ Ext1R(R/I, N).

The last term is 0 by hypothesis, hence the map i∗ : HomR(R, N) → HomR(I, N) is
surjective. This says, by Baer’s criterion (TBGY 10.6.4), that N is injective.
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8. The left side is at least equal to the right side, so assuming that the right side is at
most n, it suffices to show that idRN ≤ n for all N . Given an exact sequence as
in (7.2.4) part 4, dimension shifting yields Extn+1

R (R/I, N) ∼= Ext1R(R/I, Cn−1). By
(7.1.7), Ext1R(R/I, Cn−1) = 0, so by (7.2.1) and Problem 7, Cn−1 is injective. By
(7.2.4), idRN ≤ n.

9. If (a) holds, only the second assertion of (b) requires proof. Apply Tor to the exact
sequence 0→ N ′ → N → N ′′ → 0 to get the exact sequence

0 = TorR
1 (M, N ′′)→M ⊗R N ′ →M ⊗R N →M ⊗R N ′′ → 0.

We may replace M ⊗R N by (M ⊗R S) ⊗S N , and similarly for the other two tensor
products. By exactness, M ⊗R S is flat. Now assuming (b), we have TorR

1 (M, F ) = 0
for every free S-module F , because Tor commutes with direct sums. If N is an arbitrary
S-module, we have a short exact sequence 0 → K → F → N → 0 with F free. The
corresponding (truncated) long exact sequence is

0 = TorR
1 (M, F )→ TorR

1 (M, N)→M ⊗R K →M ⊗R F →M ⊗R N → 0.

As before, we replace M⊗RK by (M⊗RS)⊗S K, and similarly for the other two tensor
products. The map whose domain is (M ⊗R S)⊗S K is induced by the inclusion of K
into F , and is therefore injective, because M ⊗R S is a flat S-module by hypothesis.
Thus the kernel of the map, namely TorR

1 (M, N), is zero.

Chapter 8

1. To ease the notation we will omit all the overbars and adopt the convention that all
calculations are mod (X3 − Y 2). We have (X2 + X + 1)(X − 1) = X3 − 1 = Y 2 − 1 =
(Y − 1)(Y + 1). Now X2 + X + 1 and Y + 1 are units in R because they do not vanish
when X = Y = 1, assuming that the characteristic of K is not 2 or 3. Thus X − 1 and
Y − 1 are associates.

2. The maximal ideal is not principal because X and Y cannot both be multiples of a single
polynomial. To show that dimR = 1, we use (5.6.7). Since K(Y ) has transcendence
degree 1 over K and K(X, Y )/(X3 − Y 2) is algebraic over K(Y ), (we are adjoining
a root of X3 − Y 2), it follows that the dimension of K[X, Y ]/(X3 − Y 2) is 1. By
(5.3.1), the coheight of (X3 − Y 2) is 1, and the corresponding sequence of prime
ideals is (X3−Y 2), (X, Y ). Thus localization at (X, Y ) has no effect on dimension, so
dimR = 1. (In general, prime ideals of a localized ring AP correspond to prime ideals
of A that are contained in P , so localization may reduce the dimension.)

3. By definition, the Hilbert polynomial is the composition length lk(In/In+1). Since
monomials of degree n in r variables form a basis for the polynomials of degree n, we
must count the number of such monomials, which is

(
n + r − 1

r − 1

)
=

(n + r − 1)(n + r − 2) · · · (n + 2)(n + 1)
(r − 1)!

This is a polynomial of degree r − 1 in the variable n.
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4. This follows from Problem 3 and additivity of length (5.2.3).

5. Fix a nonzero element b ∈ Bd. (Frequently, b is referred to as a homogeneous element
of degree d.) By definition of a graded ring, we have bAn ⊆ Bn+d for n ≥ 0. Then

lk(Bn+d) ≥ lk(bAn) = lk(An) ≥ lk(Bn).

Since lk(An) =
(
n+r−1

r−1

)
, the result follows.

6. If R is regular, we may define the graded k-algebra homomorphism ϕ of Problems
3-5 with r = d. Since the Hilbert polynomial has degree d, ϕ is an isomorphism.
Conversely, an isomorphism of graded k-algebras induces an isomorphism of first com-
ponents, in other words,

(k[X1, . . . , Xd])1 ∼=M/M2.

But the k-vector space on the left has a basis consisting of all monomials of degree 1.
Since there are exactly d of these, we have dimkM/M2 = d. By (8.1.3), R is regular.


