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Introduction

Le but de ce texte est de donner un survol de techniques permettant le cal-
cul de la cohomologie non ramifiée de certaines variétés projectives homogènes
en poids ≤ 3. Bien que la cohomologie non ramifiée soit un invariant biration-
nel des variétés propres et lisses (cf. théorème 3.3), ces techniques exigent la
donnée d’un modèle projectif lisse explicite.

Dans les §§1, 2 et 3, on rappelle les bases de la théorie : suite spectrale
de coniveau, complexes de Cousin, complexes de Gersten, conjecture de Gers-
ten. Ces rappels, essentiellement fondés sur l’article [6], sont formulés pour
une « théorie cohomologique à supports » quelconque qui satisfait à certains
axiomes convenables. Des exemples de telles théories sont donnés au §4.

À partir du §6, on choisit comme théorie cohomologique la cohomo-
logie motivique étale à coefficients entiers et on suppose que les variétés
considérées sont lisses et géométriquement cellulaires (c’est-à-dire admettent
une décomposition cellulaire sur la clôture algébrique) : c’est le cas par
exemple des variétés projectives homogènes. On introduit le complément in-
dispensable aux suites spectrales de coniveau : les suites spectrales dites «des
poids», cf. [13]. La construction de ces suites spectrales repose sur la théorie
des motifs triangulés de Voevodsky [44], ce qui oblige pour l’instant à supposer
que le corps de base k est de caractéristique zéro.

Si X est une k-variété projective homogène, on souhaite calculer le noyau
et le conoyau des homomorphismes

Hn+2(k, Z(n)) → Hn+2
nr (X, Z(n)), n ≥ 0. (*)

La méthode est de considérer ensemble la suite spectrale de coniveau et la
suite spectrale des poids, chacune en poids n : elles convergent toutes les deux
vers la cohomologie motivique de poids n de X. La cohomologie non ramifiée
faisant partie du terme E2 de la première suite spectrale et le terme E2 de la
seconde étant en grande partie calculable, on peut espérer étudier (*) de cette
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manière. Des exemples sont donnés dans les §§6 à 10 : la plupart concernent
l’étude de (*) pour les quadriques et pour n ≤ 3, faite en collaboration avec
Rost et Sujatha. Un bref aperçu de l’application de ces techniques aux groupes
SK1 et SK2 des algèbres centrales simples est également donné au §9.

1 Partie non ramifiée d’une théorie cohomologique

Définition 1.1 (pour ce mini-cours). a) Soit k un anneau de base (nœ-
thérien régulier). Nous utiliserons la catégorie P/k suivante :

– Les objets de P/k sont les couples (X, Z), où X est un schéma régulier
de type fini sur k et Z est un fermé (réduit) de X.

– Un morphisme f : (X′, Z′) → (X, Z) est un morphisme f : X′ → X tel
que f−1(Z) ⊂ Z′.

b) Une théorie cohomologique (à supports) sur P/k est une famille de foncteurs

(hq : (P/k)o → Ab)q∈Z

(X, Z) �→ hq
Z(X)

vérifiant la condition suivante : pour tout triplet (Z ⊂ Y ⊂ X) avec (X, Y ),
(X, Z) ∈ P/k, on a une longue suite exacte

· · · → hq
Z(X) → hq

Y (X) → hq
Y −Z(X − Z) → hq+1

Z (X) → . . .

fonctorielle en (X, Y, Z) en un sens évident.
On note hq(X) = hq

X(X) et on remarque que hq
∅(X) = 0 pour tout (q, X).

Définition 1.2. La théorie hq vérifie l’excision Zariski (resp. Nisnevich) si
elle est additive :

hq
Z�Z′(X 
 X′) = hq

Z(X) ⊕ hq
Z′(X′)

et si f∗ : hq
Z(X) ∼−→ hq

Z′(X′) lorsque f : (X′, Z′) → (X, Z) est donnée par une
immersion ouverte (resp. par un morphisme étale) tel que Z′ = f−1(Z) et
f : Z′ ∼−→ Z.

Si h∗ vérifie l’excision Zariski, pour tout recouvrement ouvert X = U ∪ V
on a une longue suite exacte de Mayer–Vietoris :

· · · → hq(X) → hq(U) ⊕ hq(V ) → hq(U ∩ V ) → hq+1(X) → . . .

Si h∗ vérifie l’excision Zariski, on peut construire des complexes de Cousin
et une suite spectrale de coniveau (Grothendieck) :

A) Soit �Z = (∅ ⊂ Zd ⊂ Zd−1 ⊂ · · · ⊂ Z0 = X) une châıne de fermés. Les
suites exactes

· · · → hp+q
Zp+1

(X) ip+1,q−1

−−−−−→ hp+q
Zp

(X)
jp,q

−−→ hp+q
Zp−Zp+1

(X − Zp+1)
kp,q

−−→ hp+q+1
Zp+1

(X) → . . .
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définissent un couple exact

Dp+1,q−1 ip+1,q−1
�� Dp,q

jp,q

�����
��

��
��

Ep,q

kp,q

�����������

(où kp,q est de degré (0, +1)), avec Dp,q = hp+q
Zp

(X), Ep,q = hp+q
Zp−Zp+1

(X −
Zp+1). Cela donne une suite spectrale de type cohomologique qui converge
vers D0,n = hn(X), la filtration associée étant

F phn(X) = Im
(

hn
Zp

(X) → hn(X)
)

avec
Ep,q

1 = Ep,q, dp,q
1 = kj.

B) On suppose X équidimensionnel de dimension d et on ne s’intéresse
qu’aux �Z tels que codimX Zp ≥ p. On passe à la limite sur ces �Z : on obtient
un nouveau couple exact, avec

Dp,q = lim−→
�Z

hp+q
Zp

(X) =: hp+q
≥p (X)

Ep,q = lim−→
�Z

hp+q
Zp−Zp+1

(X − Zp+1).

En utilisant l’excision Zariski, on trouve un isomorphisme

lim−→
�Z

hp+q
Zp−Zp+1

(X − Zp+1) �
⊕

x∈X(p)

hp+q
x (X)

où X(p) = {x ∈ X | codimX {x} = p} et

hp+q
x (X) := lim−→

U�x
U ouvert

hp+q

{x}∩U
(U)

(groupe de cohomologie locale), ce qui donne la forme classique du terme E1

de la suite spectrale de coniveau :

Ep,q
1 =

⊕

x∈X(p)

hp+q
x (X) ⇒ hp+q(X). (1)

La filtration à laquelle elle aboutit est la filtration par la codimension du
support

Nphn(X) =
⋃

codimX Z≥p

Im
(

hn
Z(X) → hn(X)

)

=
⋃

codimX Z≥p

Ker
(

hn(X) → hn(X − Z)
)

.
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Définition 1.3. a) Le complexe de Cousin en degré q de h sur X est le
complexe des termes E1 de la suite spectrale :

0 →
⊕

x∈X(0)

hq
x(X)

d0,q
1−−→

⊕

x∈X(1)

h1+q
x (X)

d1,q
1−−→ . . .

dp−1,q
1−−−−→

⊕

x∈X(p)

hp+q
x (X)

dp,q
1−−→ . . .

b) La cohomologie non ramifiée de h sur X (en degré q) est le groupe

E0,q
2 = Ker

(
⊕

x∈X(0)

hq
x(X)

d
0,q
1−−→

⊕

x∈X(1)

h1+q
x (X)

)

=: hq
nr(X).

Si X = X1 
 · · · 
 Xr, on a hq
ηi

(X) = hq
ηi

(Xi) = lim−→U⊂Xi
hq(U), où ηi est

le point générique de Xi : ce groupe ne dépend que de ηi et nous le noterons
habituellement hq(ηi) ou hq(Ki) si ηi = Spec Ki. On a hq

nr(X) =
⊕

i hq
nr(Xi).

Pour X connexe, on a donc

hq
nr(X) = Ker

(

hq(η) →
⊕

x∈X(1)

h1+q
x (X)

)

.

2 Pureté ; complexes de Cousin et complexes de Gersten

On se donne une théorie cohomologique graduée

h∗ : (X, Z) �→ hq
Z(X, n), q, n ∈ Z.

(L’entier n s’appelle le poids.)
Définition 2.1. h∗ est pure si, pour tout (X, Z) ∈ P/k avec X régulier et Z
régulier purement de codimension c dans X, on s’est donné des isomorphismes

πX,Z : hq−2c(Z, n − c) ∼−→ hq
Z(X, n)

contravariants en les (X, Z) comme au-dessus (à c fixé).
(On dit que h∗ est faiblement pure si la pureté n’est exigée que pour X

et Z lisses sur k : si k est un corps parfait, cela revient au même.) Si k
est raisonnable (par exemple un corps ou SpecZ), cette condition entrâıne
l’excision Nisnevich : c’est évident pour des couples comme dans la définition,
et en général on s’y ramène par récurrence nœthérienne en considérant le lieu
non régulier de Z, qui est fermé et différent de Z.

Si h∗ est pure, la suite spectrale (1) prend la forme peut-être plus familière

Ep,q
1 =

⊕

x∈X(p)

hq−p(κ(x), n − p) ⇒ hp+q(X). (2)
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En particulier, les complexes de Cousin deviennent des complexes de Gers-
ten (on suppose X connexe pour simplifier) :

0 → hq(κ(X), n) →
⊕

x∈X(1)

hq−1(κ(x), n− 1) →
⊕

x∈X(2)

hq−2(κ(x), n − 2) . . .

et on retrouve une définition plus familière de hnr :

hq
nr(X, n) = Ker

(

hq(κ(X), n) →
⊕

x∈X(1)

hq−1(κ(x), n− 1)
)

.

Remarque 2.2. Dans certains cas, on n’a la pureté qu’à isomorphisme près ;
pour obtenir des isomorphismes de pureté canoniques, on doit introduire des
variantes de la théorie h, à coefficients dans des fibrés en droites. C’est le cas
notamment pour les groupes de Witt triangulaires de Barge–Sansuc–Vogel,
Pardon, Ranicki et Balmer–Walter ([3], voir aussi [39]).

3 Conjecture de Gersten

Définition 3.1. Pour tout (p, q), on note Ep,q
1 le faisceau associé au préfaisceau

Zariski
U �→ Ep,q

1 (U) =
⊕

x∈U (p)

hp+q
x (U).

On a ainsi pour tout q un complexe de faisceaux

0 → Hq → E0,q
1 → E1,q

1 → · · · → Ep,q
1 → . . .

avec les Ep,q
1 flasques pour la topologie de Zariski, où Hq est le faisceau associé

au préfaisceau U �→ hq(U).

Définition 3.2. On dit que h vérifie la conjecture de Gersten sur X si ce
complexe est exact pour tout q.

Si c’est le cas, le complexe

0 → E0,q
1 → E1,q

1 → · · · → Ep,q
1 → . . .

définit une résolution flasque de Hq, et on peut écrire le terme E2 de la suite
spectrale de coniveau

Ep,q
2 = Hp

Zar(X,Hq).

Théorème 3.3 (Gabber [8], essentiellement). Supposons que k soit un
corps infini. Alors, pour que h vérifie la conjecture de Gersten sur tout X lisse
sur k, il suffit que les deux conditions suivantes soient vérifiées :

(1) h vérifie l’excision Nisnevich.
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(2) Lemme clé. Pour tout n, pour tout ouvert V de A
n
k , pour tout fermé F ⊂ V

et pour tout q ∈ Z, le diagramme de gauche est commutatif :

hq
A1

F
(A1

V ) hq
P1

F
(P1

V )j∗
��

s∗
∞

��
hq

F (V )
π∗

������������

A
1
V

j ��

π
����

��
��

��
P

1
V

π̃

��
V

s∞

��

où s∞ est la section à l’infini.
La condition (2) est vérifiée dans chacun des cas suivants :
(3) h est invariante par homotopie : pour tout V lisse, h∗(V ) ∼−→ h∗(A1

V ) (il
suffit que ce soit vrai pour V comme en (2)).

(4) h est « orientable» : il existe une théorie cohomologique e et, pour tout
(X, Z) ∈ Pk, une application

Pic(X) → Hom(e∗Z(X), h∗
Z(X))

naturelle en (X, Z), d’où (pour (X, Z) = (P1
V , P

1
Z)) un homomorphisme

αV,F

e∗
P1

F
(P1

V ) [O(1)]−[O] �� h∗
P1

F
(P1

V )

e∗F (V )

π̃

��

αV,F

���������������

et, pour (V, F ) comme en (2), l’application

hq
F (V ) ⊕ eq

F (V )
(π∗,αV,F )−−−−−−→ hq

P1
F
(P1

V )

est un isomorphisme.

Preuve. Voir [6]. Pour k fini, on s’en tire en supposant l’existence de transferts
sur h (pour des revêtements étales provenant d’extensions du corps de base).

��

Conséquences pour la cohomologie non ramifiée

Théorème 3.4. Sous les hypothèses (1) et (2) du théorème 3.3, pour toute
variété X lisse sur k :
a) hq

nr(X) � H0
Zar(X,Hq) � H0

Nis(X,Hq), où H∗
Nis désigne la cohomologie de

Nisnevich (ceci s’étend à tous les termes E2 de la suite spectrale de coniveau,
et ne sera pas utilisé ici).
b) Si X est de plus propre, hq

nr(X) est un invariant birationnel.
c) Soient X, Y lisses et intègres et p : X → Y un morphisme propre. Sup-
posons que la fibre générique de p soit k(Y )-birationnelle à l’espace projectif

P
d
k(Y ). Alors, hq

nr(X) p∗

−→ hq
nr(Y ) est un isomorphisme.
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Preuve. [6]. ��
Par conséquent, sous (1) et (2), X �→ hq

nr(X) est un invariant birationnel
stable pour les k-variétés propres et lisses. On le notera souvent hq

nr(k(X)/k),
ou simplement hq

nr(k(X)).

Définition 3.5. Pour K/k un corps de fonctions (ayant un modèle propre et
lisse), on note ηq

K,h l’application

hq(k) → hq
nr(K/k).

Si K/k est stablement rationnelle (K(t1, . . . , tr)/k est transcendante pure
pour r assez grand), ηq

K,h est un isomorphisme pour tout q. On s’intéressera
principalement à l’étude de ηq

K,h quand K/k est géométriquement stablement
rationnelle.

4 Exemples de bonnes théories cohomologiques

Les exemples ci-dessous vérifient tous l’excision Nisnevich et sont inva-
riants par homotopie. (4.2) vérifie un théorème de pureté, (4.1) et (4.4)
vérifient un théorème de pureté faible ; quant à (4.3), seul un théorème de pu-
reté pour un support de dimension zéro est actuellement démontré (il s’agit
d’ailleurs d’un théorème de pureté « tordu», la théorie n’étant pas orien-
table) : il est suffisant pour les applications.

(4.1) Cohomologie étale. hq
Z(X, n) = Hq

Z(Xét, µ
⊗n
N ), (N, car k) = 1.

Variantes : Hq
Z(Xét, (Q/Z)′(n)), où (Q/Z)′(n) = lim−→(N,car k)=1

µ⊗n
N ,

Hq
Z(Xét, Ql/Zl(n)), où Ql/Zl(n) = lim−→µ⊗n

lν pour l premier �= car k, etc.
Le cas particulier le plus intéressant pour nous est q = n + 1.

(4.2) K-théorie algébrique. hq
Z(X) = KZ

q (X) � K′
q(Z) (Quillen).

(4.3) Les groupes de Witt triangulaires de P. Balmer. [3, 2]

(4.4) Cohomologie motivique, Zariski ou étale. Suslin et Voevodsky ont
défini dans [42] des complexes de faisceaux Z(n) sur (Sm/k)Zar (catégorie
des k variétés lisses munie de la topologie de Zariski). On prend

hq
Z(X, n) = H

q
Z(XZar, Z(n))

ou
hq

Z(X, n) = H
q
Z(Xét, α

∗
Z(n))

où α est la projection du site étale (Sm/k)ét sur (Sm/k)Zar. Variantes :
on prend Z(l)(n) := Z(n) ⊗ Z(l), etc. (Si on est en caractéristique p,
H

q
Z(Xét, α

∗
Z(n)) ne devient invariant par homotopie et ne vérifie un

théorème de pureté qu’après avoir inversé p ; toutefois, cette théorie a
les propriétés (1) et (4) du théorème 3.3 même avant d’inverser p, donc
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vérifie la conjecture de Gersten.) Dans la suite, on notera en général les
groupes de cohomologie motivique avec H plutôt que H.
On a :

Hq
(

(Spec k)Zar, Z(n)
)

=

{

0 si q > n

KM
n (k) si q = n ;

en caractéristique 01 et sous la conjecture de Bloch–Kato (par exemple
pour l = 2 ou pour n ≤ 2) :

Hn
(

(Spec k)ét, Z(l)(n)
)

= KM
n (k) ⊗Z(l)

Hn+1
(

(Spec k)ét, Z(l)(n)
)

= 0 («Hilbert 90»).

Enfin, on a une longue suite exacte, pour l �= car k :

. . .Hq(Xét, Z(l)(n)) → Hq(Xét, Q(n)) → Hq(Xét, Ql/Zl(n))
∂−→ Hq+1(Xét, Z(l)(n)) → . . .

où les groupes à coefficients Ql/Zl sont ceux de (4.1). Pour X = Spec k,
on a Hq(X, Q(n)) = 0 pour q > n, donc ∂ est un isomorphisme dès que
q ≥ n + 1. Le cas qui nous intéresse est q = n + 1.

5 Cohomologie non ramifiée finie et divisible

Soient X une variété lisse sur k et m un entier premier à car k. On dispose
des homomorphismes de comparaison

ηi
m : Hi(k, µ⊗(i−1)

m ) → Hi
nr(X, µ⊗(i−1)

m )

ηi : Hi(k, Q/Z(i − 1)) → Hi
nr(X, Q/Z(i − 1))

et d’homomorphismes

Ker ηi
m → Ker ηi, Coker ηi

m → Coker ηi.

Soit δ le pgcd de car k et des degrés des points fermés de X : alors Ker ηi
m

et Ker ηi sont annulés par δ (argument de transfert). On suppose que δ | m.
Supposons la conjecture de Bloch–Kato vraie en degré i − 1 pour tous les

facteurs premiers de m. Alors la suite

0 → Hi(k, µ⊗(i−1)
m ) → Hi(k, i − 1) m−→ Hi(k, i − 1)

est exacte. On en déduit que Ker ηi
m

∼−→ Ker ηi.
1 Le travail de Geisser et Levine [9] et le fait que la cohomologie motivique de

Spec k cöıncide avec ses � groupes de Chow supérieurs� [46] impliquent que cette
restriction n’est pas nécessaire.
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Pour les conoyaux, supposons pour simplifier que δ = 2 (on trouvera un
énoncé général dans [17, §7]). Sous la conjecture de Milnor en degré i − 1, on
a alors une suite exacte

0 → (Ker ηi
2)0 → Coker ηi

2 → Coker ηi (3)

avec (Ker ηi
2)0 = {x ∈ Ker ηi

2 | (−1) · x = 0} [17, prop. 7.4]). De plus, la flèche
de droite est surjective si µ2∞ ⊂ k [18, th. 1].

6 Suite spectrale des poids

6.1 Construction de suites spectrales

Soit T une catégorie triangulée, et soit X ∈ T : une filtration sur X est
une suite de morphismes

· · · → Xn−1 → Xn → · · · → X.

Une tour de sommet X est une suite de morphismes

X → · · · → Xn → Xn−1 → . . .

On ne s’intéresse qu’aux filtrations et aux tours finies, c’est-à-dire telles
que Xn → X (ou X → Xn) soit un isomorphisme pour n assez grand et que
Xn = 0 pour n assez petit.

Si on se donne une filtration, on note Xn/n−1 « le» cône de Xn−1 → Xn :
rappelons qu’il est défini à isomorphisme non unique près. Pour Y ∈ T , on a
de longues suites exactes de groupes abéliens

· · · → Hom(Y, Xq−1[n]) → Hom(Y, Xq [n]) → Hom(Y, Xq/q−1[n])
→ Hom(Y, Xq−1[n + 1]) → . . .

d’où, comme au §1, un couple exact et une suite spectrale fortement conver-
gente de type cohomologique

Ep,q
2 = Hom(Y, Xq/q−1[p + q]) ⇒ Hom(Y, X[p + q]).

(La numérotation choisie ici est telle qu’on obtient un terme E2 et non pas
un terme E1.)

Si on se donne une tour, on obtient de même une suite spectrale fortement
convergente de type homologique, aboutissant à Hom(X[p + q], Y ).
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6.2 La catégorie DMeff
gm(k) de Voevodsky [44]

C’est une catégorie triangulée tensorielle munie d’un foncteur M : Sm/k →
DMeff

gm(k), vérifiant entre autres
– Mayer–Vietoris : Si X = U ∪ V est un recouvrement ouvert, on a un

triangle exact

M(U ∩ V ) → M(U) ⊕ M(V ) → M(X) → M(U ∩ V )[1].

– Invariance par homotopie : M(A1
X) ∼−→ M(X).

Ceci permet de montrer une décomposition canonique (qui définit Z(1))

M(P1) = Z ⊕ Z(1)[2]

où l’on a posé Z := M(Spec k). (Voir §1 de l’article de Vishik dans ces
comptes rendus.)

– Pureté : si Z ⊂ X est un couple lisse de pure codimension c, on a un
triangle exact

M(X − Z) → M(X) → M(Z)(c)[2c] → M(X − Z)[1]

où M(Z)(c) := M(Z) ⊗ Z(1)⊗c.
Sous la résolution des singularités, il y a aussi un foncteur M c : Sch/k →

DMeff
gm(k), où Sch/k est la catégorie des schémas de type fini sur k, covariant

pour les morphismes propres, contravariant pour les morphismes étales, et
vérifiant :

– Localisation : si Z
i−→ X est une immersion fermée, d’immersion ouverte

complémentaire X − Z
j−→ X, on a un triangle exact

M c(Z) i∗−→ M c(X)
j∗

−→ M c(X − Z) → M c(Z)[1].

– Il existe un morphisme M(X) → M c(X) qui est un isomorphisme si X
est propre.

– Dualité de Poincaré : si X est lisse de dimension d, on a un isomorphisme

M(X)∗ � M c(X)(−d)[−2d]

où M(X)∗ est le dual de M(X) dans la catégorie rigide DMgm(k), ob-
tenue à partir de DMeff

gm(k) en inversant l’objet de Tate Z(1).

Définition 6.1. a) Une variété réduite X ∈ Sch/k de dimension n est cellu-
laire (définition récursive) si elle contient un ouvert U isomorphe à A

n
k et tel

que X − U soit cellulaire.
b) X ∈ Sch/k est géométriquement cellulaire si X̄ := X ⊗K k̄ est cellulaire,
où k̄ est une clôture algébrique de k.
Exemple 6.2. L’exemple principal de variétés géométriquement cellulaires pro-
jectives et lisses est celui des variétés projectives homogènes X, c’est-à-dire
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vérifiant X̄ � G/P où G est un groupe réductif (défini sur k) et P est un
sous-groupe parabolique de G (non nécessairement défini sur k). Cas parti-
culiers : espaces projectifs, quadriques, variétés de Severi–Brauer, produits
assortis d’iceux et icelles. . .

Supposons k de caractéristique 0, et soit X une variété géométriquement
cellulaire. Dans [13], en utilisant une filtration convenable, on construit pour
tout n ≥ 0 une suite spectrale

Ep,q
2 (X, n) = Hp−q

ét (k, CHq(X̄) ⊗ Z(n − q)) ⇒ Hp+q (4)

munie de morphismes Hp+q → Hp+q
ét (X, Z(n)) bijectifs pour p + q ≤ 2n et

injectifs pour p+q = 2n+1. Ces suites spectrales ont des propriétés standard :
fonctorialité, produits. . . Nous les appellerons (sans justifier cette expression)
suites spectrales des poids.

Si X est projective homogène, les cycles de Schubert généralisés fournissent
des Z-bases canoniques bq des groupes CHq(X̄), permutées par l’action de Ga-
lois. En particuler, CHq(X̄) est canoniquement un Gk-module de permutation.
À bq correspond une k-algèbre étale Eq, et on peut récrire le terme E2, grâce
au lemme de Shapiro :

Ep,q
2 (X, n) = Hp−q

ét (Eq , Z(n− q)). (5)

7 Poids 0, 1, 2

On dispose de deux familles de suites spectrales convergeant vers la co-
homologie motivique étale d’une variété géométriquement cellulaire lisse X :
les suites spectrales de coniveau (2) et les suites spectrales des poids (4). La
méthode utilisée ici pour obtenir des renseignements sur la cohomologie non
ramifiée de X est de «mélanger» les informations fournies par ces deux suites
spectrales. Dans cette section, nous examinons les cas particuliers des poids
0, 1 et 2 : le cas de poids 3 sera traité dans la section 8.

7.1 Poids 0 et 1

On peut montrer que, pour toute k-variété lisse X, on a des isomorphismes
canoniques

Hq
ét(X, Z(0)) � Hq

ét(X, Z)

Hq
ét(X, Z(1)) � Hq−1

ét (X, Gm)

où Gm est le groupe multiplicatif. En particulier, Hq
ét(X, Z(0)) = 0 pour q < 0

et Hq
ét(X, Z(1)) = 0 pour q ≤ 0 (cas triviaux de la conjecture de Beilinson–

Soulé motivique). Le cas de Z(0) est peu intéressant. . . Pour Z(1), la suite
spectrale des poids fournit une suite exacte (tous les groupes de cohomologie
sont étales)
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0 → H2
ét(X, Z(1)) → CH1(X)Gk

d1,1
2 (1)−−−−→ H3(k, Z(1)) → H3(X, Z(1)) (6)

qui s’identifie à la suite exacte bien connue

0 �� Pic(X) �� Pic(X)Gk �� Br(k) �� Br(X)


��

H0
Zar

(

X,H2(Q/Z(1))
)

où l’isomorphisme vertical provient de la suite spectrale de coniveau.
À partir de maintenant, pour alléger les notations nous écrirons Hq(X, n)

à la place de Hq
ét(X, Q/Z(n)) ; de même Hq(n) := Hq

ét(Q/Z(n)). On suppose
que X est une variété projective homogène.

7.2 Poids 2

En utilisant (2), (4) et (5), on obtient un diagramme commutatif [13, 5.3] :

0

��
H1

Zar(X,K2)
∼ �� H3(Z, Z(2))

��
E∗

1

d2,1
2 (2)

��
H3(k, 2)

��

η3

		������������

0 �� CH2(X) ��

ξ3

		�����������
H4(X, Z(2))

��

�� H0(X,H3(2))

��
H5(X, Z(2)) H4(k, 2)�� CH2(Xs)Gk

d2,2
3 (2)��

d2,2
2 (2)

��

0

Br(E1).

Dans ce diagramme, d2,2
3 (2) n’est définie que sur le noyau de d2,2

2 (2) ; les
flèches η3 et ξ3 sont les flèches de fonctorialité évidentes. La suite horizon-
tale est exacte (cf. aussi [12]). La suite verticale est exacte, sauf peut-être en
CH2(Xs)Gk . On en déduit des expressions de Ker η3 et Coker η3 en fonction
de ξ3 ; plus précisément, une suite exacte
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0 → H1
Zar(X,K2) → E∗

1

d2,1
2 (2)−−−−→ Ker η3 → CH2(X)tors → 0 (7)

due originellement à Merkurjev–Peyre [26, 33] et un complexe

0 → Coker η3 → Coker ξ3 d2,2
2 (2)−−−−→ Br(E1)

qui est exact sauf peut-être en Coker ξ3. En particulier, Coker η3 est fini
puisque Coker ξ3 l’est.
Exemple 7.1. X est la variété de Severi–Brauer d’une algèbre à division D.
On a Eq = k pour tout q et on peut montrer que, pour tout n ≥ 0,

dp,q
2 (n)(x) = q[D] · x (8)

avec [D] ∈ Br(k) = H3(k, Z(1)) [13, th. 7.1]. La suite exacte et le complexe
ci-dessus deviennent donc respectivement :

0 → H1
Zar(X,K2) → k∗ [D]−−→ Ker η3 → CH2(X)tors → 0,

0 → Coker η3 → Coker ξ3 2[D]−−−→ Br(k).

Supposons par exemple 2[D] = 0. En revenant au diagramme ci-dessus,
on obtient une suite exacte

0 → Coker η3 → Coker ξ3 d2,2
3 (2)−−−−→ H4(k, 2).

Le groupe Coker ξ3 s’identifie à Z/N , avec

N =









1 si ind(D) = 2,
2 si ind(D) = 4,
4 si ind(D) ≥ 8,

([24], [7, lemma 9.4]).
La nullité ou non de d2,2

3 (2) dépend peut-être de l’arithmétique de k : cette
différentielle est évidemment nulle si cd2(k) ≤ 3, mais j’ignore ce qu’il en est
en général. (Est-il vrai que d2,2

3 (2)(1) = i([D]2), où i est l’homomorphisme
canonique H4(k, Z/2) → H4(k, Q/Z(2)) ?)

Le groupe CH2(X)tors a été étudié en grand détail par Karpenko dans le
cas des variétés de Severi–Brauer [21].
Exemple 7.2. Supposons que X soit une quadrique de dimension N , définie
par une forme quadratique de dimension N + 2. Alors

– Si N est impair, Eq = k pour tout q.
– Si N = 2m, Eq = k pour q �= m et Em = E := k[t]/(t2 − d) où

d ∈ k∗/k∗2 = H1(k, Z/2) est le discriminant à signe de q.
On aura aussi besoin de l’invariant de Clifford c(q) : c’est, selon que N

est pair ou impair, la classe dans Br(k) de l’algèbre de Clifford de q ou de sa
partie paire. Nous ne l’utiliserons que quand il ne dépend pas du choix de q
(N impair ou N pair, d = 1) : nous le noterons alors c(X).



14 Bruno Kahn

On a le résultat général suivant [13, cor. 8.6] :
Théorème 7.3. Pour tout n ≥ 0,
a) Si N �= 2q − 2, 2q − 1, 2q, on a dp,q

2 (X, n) = 0.
b) Si N = 2q, alors pour tout x ∈ Ep,q

2 (X, n) = Hp−q(E, Z(n − q)), on a
dp,q
2 (X, n)(x) = CoresE/k(x · c(XE)) ∈ Hp−q+3(k, Z(n − q + 1)).

c) Si N = 2q − 1, alors pour tout x ∈ Ep,q
2 (X, n) = Hp−q(k, Z(n− q)), on a

dp,q
2 (X, n)(x) = x · c(X) ∈ Hp−q+3(k, Z(n− q + 1)).

d) Si N = 2q − 2, alors pour tout x ∈ Ep,q
2 (X, n) = Hp−q(k, Z(n− q)), on a

dp,q
2 (X, n)(x) = xE · c(XE) ∈ Hp−q+3(E, Z(n− q + 1)).

Dans b), c) et d), le cup-produit (par exemple par c(XE)) est calculé en iden-
tifiant (par exemple) Br(E) avec H3(E, Z(1)).

Ce théorème donne en particulier

d2,1
2 (X, 2)(x) =









0 si N > 2,
CoresE/k(x · c(XE)) si N = 2,
x · c(X) si N = 1.

Le groupe CH2(X)tors a été entièrement calculé par Karpenko [20] : il
trouve

CH2(X)tors =

{

Z/2 si q est voisine d’une 3-forme de Pfister,
0 sinon.

On en déduit en particulier :
Corollaire 7.4. On a

Ker η3 =









0 si N > 6,
Z/2 si 2 < N ≤ 6 et q est une voisine de Pfister,
0 si 2 < N ≤ 6 et q n’est pas une voisine de Pfister.

On retrouve ainsi des résultats dûs originellement à Arason [1]. Par cette
méthode, on obtient d’autres résultats pour N ≤ 2, certains également connus
antérieurement. En particulier,
Corollaire 7.5. Pour toute quadrique X, Ker η3

2 est engendré par ses sym-
boles.

Passons maintenant à Coker η3. On peut supposer q anisotrope (sinon,
k(X)/k est transcendante pure et ηi est bijective pour tout i). Le calcul de
Coker ξ3 est facile : on trouve

Coker ξ3 =



















0 si N > 4,
0 si N = 4, d �= 1,
Z/4 si N = 4, d = 1,
Z/2 si N = 2, 3,
0 si N = 1.
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D’autre part :

d2,2
2 (2)(x) =



















0 si N > 4,
CoresE/k(x · c(XE)) si N = 4,
x · c(X) si N = 3,
xE · c(XE) si N = 2,
0 si N = 1.

Cela donne Coker η3 = 0, sauf peut-être si N = 4, d = 1 (quadrique dite
d’Albert). Dans ce cas, on trouve une suite exacte :

0 → Coker η3 → Z/2
d2,2
3 (2)−−−−→ H4(k, 2).

En fait, d2,2
3 (2) = 0 dans ce cas, donc Coker η3 = Z/2. Exhibons-en un

générateur : soit K = k(X). On peut écrire qK ∼ aπ, avec a ∈ K∗ et π une
2-forme de Pfister. Alors (a) · c(π) ∈ H3(K, Z/2) est non ramifié et ne dépend
que de X : c’est le générateur de Coker η3.

Le calcul ci-dessus de Coker η3 a été fait originellement dans [17] par des
méthodes plus compliquées mais plus élémentaires ; en particulier, il est aussi
valable en caractéristique positive. Je ne connais pas de démonstration directe
que d2,2

3 (2) = 0 dans le cas d’une quadrique d’Albert : la seule méthode que
je connaisse est de démontrer directement que l’élément (a) · c(π) ci-dessus
est non nul dans Coker η3. C’est fait essentiellement dans [11] (voir aussi [16,
Th. 6.4 c)]), en utilisant entre autres le théorème de réduction d’indice de
Merkurjev. . .

8 Poids 3

Dans cette section, k est de caractéristique 0. On utilise la conjecture de
Milnor en poids 3 prouvée par Rost et Merkurjev–Suslin [36, 30], la conjec-
ture de Bloch–Kato en poids 3 pour un nombre premier impair étant tou-
jours ouverte à l’heure actuelle.2 Pour cette raison, tous les groupes apparais-
sant dans cette section sont localisés en 2. En particulier, pour toute exten-
sion K de k, on a Hi+1(K, Z(i)) = 0 pour i ≤ 3 (théorème 90 de Hilbert
généralisé). Rappelons également les isomorphismes KM

i (K) � Hi(K, Z(i))
(i ≤ 3), K3(K)ind � H1(K, Z(2)).

On se donne une variété projective homogène X et on garde les notations
des sections précédentes. Pour plus de détails sur les calculs fournissant les
diagrammes ci-dessous, on pourra se référer à [13, 5.1].
2 Dans [38], M. Rost annonce que la conjecture générale de Bloch–Kato résulte

de la conjonction d’un énoncé de Voevodsky dont la démonstration n’a pas été
rédigée [14, th. 9.2] et de deux énoncés dont il donne un aperçu partiel de la
démonstration.
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0

��
H1(X,KM

3 ) ∼ �� H4(X, Z(3))

��
K2(E1)

d3,1
2 (3)

��
H4(k, 3)

��

η4



�����������

0 �� H2(X,KM
3 ) ��

ξ4



												
H5(X, Z(3)) ��

��

H0(X,H4(3)) �� CH3(X)

��
H5(k, 3)

��

E∗
2

d3,2
3 (3)��

d3,2
2 (3)

��

H6(X, Z(3))

H6(X, Z(3)) H3(E1, 2)

(9)

D’après [31, prop. 11.11], Hi(X,KM
3 ) → Hi(X,K3) est un isomorphisme

pour i = 1, 2, 3. Par fonctorialité, l’homomorphisme ξ4 s’identifie à l’homo-
morphisme

H2(X,K3) → H2(X,K3)Gk .

Dans ce diagramme, d3,2
3 (3) n’est définie que sur le noyau de d3,2

2 (3). La
suite verticale est exacte, sauf peut-être en E∗

2 . La suite horizontale qui fourche
vers le bas est exacte. On en déduit une suite exacte :

0 → H1
Zar(X,K3) → K2(E1)

d3,1
2 (3)−−−−→ Ker η4 → Ker ξ4 → 0 (10)

et un complexe

0 → Coker η4 → CH3(X)tors → Coker d3,2
2 (3). (11)

Soit K une extension régulière de k (k est algébriquement fermé dans K).
D’après Suslin [40, th. 3.6], K2(E1) → K2(K ⊗k E1) est injectif. On déduit
de ceci et de (10) une injection

H1
Zar(X,K3) ↪→ H1

Zar(XK ,K3). (12)

Nous allons appliquer ces résultats généraux à l’étude de deux problèmes :
la norme réduite pour les algèbres centrales simples et la cohomologie non
ramifiée des quadriques en degré 4.



Cohomologie non ramifiée des quadriques 17

9 Exemple : norme réduite

Soit A une k-algèbre centrale simple de degré d. On a des applications
norme réduite

Nrd: Ki(A) → Ki(k) (i ≤ 2).

Pour i = 0, 1, leur définition est classique. Pour i = 2 elle est due à
Suslin [40, cor. 5.7]. Elles peuvent se décrire uniformément de la manière
suivante : soit X la variété de Severi–Brauer de A. D’après Quillen [34], on a
un isomorphisme

d−1
⊕

r=0

Ki(A⊗r) ∼−→ Ki(X)

pour tout i ≥ 0. La norme réduite est alors donnée par la composition

Ki(A) → Ki(X) → H0(X,Ki)
∼←− Ki(k).

Dans cette composition, l’isomorphisme de droite est évident pour i = 0, 1
et est dû à Suslin [40, cor. 5.6] pour i = 2. On définit

SKi(A) = Ker
(

Ki(A) Nrd−−→ Ki(k)
)

(i = 1, 2).

Un argument de transfert montre que eSKi(A) = 0, où e est l’indice de
A : comme SKi(A) est Morita-invariant, c’est clair quand e = 1. En général,
on peut supposer que A est un corps, donc que d = e. Choisissons un sous-
corps commutatif maximal E de A : on a [E : k] = e. Comme AE est neutre,
SKi(AE) = 0 et donc ex = CoresE/k ResE/k x = 0 pour tout x ∈ SKi(A).
Théorème 9.1 (Wang [47]). Si l’indice de A est sans facteur carré,
SK1(A) = 0.

Preuve. On se réduit d’abord au cas où l’indice de A est un nombre premier
p, puis (par un argument de transfert) à celui où toute extension finie de k
est de degré une puissance de p. Soit x ∈ A tel que Nrd(x) = 1. Si x est
radiciel sur k, on a Nrd(x) = xp, donc x = 1. Si x est séparable, l’hypothèse
sur k implique que E = k(x) est cyclique sur k. Soit g un générateur de
Gal(E/k). Par le théorème 90 de Hilbert, on peut écrire x = gy/y pour un
y ∈ E∗ convenable. Par le théorème de Skolem–Noether, g se prolonge en un
automorphisme intérieur de A, donc x est un commutateur dans A∗. ��
Corollaire 9.2. Pour toute algèbre centrale simple A d’indice e, on a

e�
pi

SK1(A) = 0, où les pi décrivent l’ensemble des facteurs premiers de e.

Preuve. On se réduit encore au cas où A est un corps, e est une puissance d’un
nombre premier p et toute extension finie de k est de degré une puissance de p.
Choisissons un sous-corps commutatif maximal séparable E de A. L’hypothèse
sur k implique que E possède un sous-corps L de degré e/p sur k. Alors l’indice
de AL est égal à p, donc SK1(AL) = 0 par le théorème de Wang. On conclut
par un autre argument de transfert. ��
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En ce qui concerne SK2 , les résultats sont plus maigres. On a :
Théorème 9.3 (Rost [35], Merkurjev [25]). Pour toute algèbre de qua-
ternions A, on a SK2(A) = 0.

Preuve. Soit X la variété de Severi–Brauer de A : c’est une conique. La suite
spectrale de Brown–Gersten–Quillen fournit donc dans ce cas une suite exacte
courte :

0 → H1(X,K3) → K2(X) → H0(X,K2) → 0

d’où une injection SK2(A) ↪→ H1(X,K3). Le théorème résulte donc de (12).
��

On comparera cette démonstration à celles de [35] et [25]. Malheureuse-
ment, même en admettant la conjecture de Bloch–Kato en poids 3, elle ne
s’étend pas de manière évidente aux algèbres simples de degré p, p premier
> 2. Je suis parvenu avec Marc Levine à démontrer le résultat correspondant
pour p = 3, par une méthode entièrement différente (travail en préparation).

Exactement comme dans le corollaire 9.2, on déduit du théorème 9.3 que
si l’indice e de A est pair, alors e

2SK2(A) = 0.
Un problème important est de donner une interprétation cohomologique

de SKi(A) pour i = 1, 2 (Pour i = 0, K0(A) et K0(k) sont isomorphes à Z
et Nrd s’identifie à la multiplication par l’indice e de A.) En particulier, on
recherche des homomorphismes de SK1(A) et SK2(A) vers des groupes de
cohomologie galoisienne convenables. Ceci a été fait pour SK1 par Suslin [41],
et par Rost (resp. Merkurjev) lorsque A est une algèbre de biquaternions (resp.
une algèbre de degré 4 quelconque) [27, 29]. Citons notamment le théorème
de Rost :
Théorème 9.4 (Rost [27, th. 4]). Si A est une algèbre de biquaternions,
on a une suite exacte

0 → SK1(A) → H4(k, Z/2) → H4(k(Y ), Z/2)

où Y est la quadrique définie par une forme d’Albert associée à A.
Un résultat analogue a été démontré par Baptiste Calmès pour SK2, en

utilisant entre autres les méthodes exposées ici :
Théorème 9.5 (Calmès [4, 5]). Supposons que k soit de caractéristique zéro
et contienne un corps algébriquement clos. Alors, avec les mêmes notations,
on a une suite exacte

Ker
(

A0(Z, K2) → K2(k)
)

→ SK2(A) → H5(k, Z/2) → H5(k(Y ), Z/2)

où Z est une section hyperplane de Y .

(Pour SK1, le groupe correspondant Ker
(

A0(Z, K1) → K1(k)
)

est nul
d’après un autre théorème de Rost [37].)

On trouvera dans [15] des simplifications et généralisations de ces construc-
tions : elles utilisent les techniques développées ici, mais leur exposition
dépasserait le cadre de ce minicours.
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10 Exemple : quadriques

Soit X une quadrique de dimension N . Commençons par Ker η4
2 . D’après

le théorème 7.3, on a :

d3,1
2 (X, 3)(x) =









0 pour N > 2,
CoresE/k(x · c(XE)) pour N = 2,
x · c(X) pour N = 1.

On en déduit
Ker η4 ∼−→ Ker ξ4 pour N > 2,

résultat dû à Rost [27]. En fait, on a :
Théorème 10.1 ([17, 18]). Pour toute quadrique X, Ker η4

2 est engendré
par ses symboles. Pour N > 6, Ker η4

2 � Z/2 si X est définie par une voisine
d’une 4-forme de Pfister, et Ker η2

4 = 0 sinon.
Quelques indications sur la démonstration : le cas N ≤ 2 nécessite un

traitement spécial [18]. Le cas le plus difficile est celui d’une quadrique de
dimension 2 et de discriminant non trivial : nous utilisons des lemmes de [25]
pour traiter ce cas. A. Vishik a démontré indépendamment que pour une telle
quadrique, Ker η∗

2 est engendré par ses symboles [43].
Pour N ≥ 3, tout élément de Ker η4

2 est en fait un symbole. Pour le voir,
on se réduit d’abord à N = 3, et on calcule alors dans le groupe de Clifford
spécial [17]. ��

Passons maintenant à Coker η4
2 et Coker η4. Nous avons besoin de décrire

plus précisément l’homologie de (11) :
– en Coker η4 :

Ker
(

Ker
(

Coker ξ4 d3,2
2 (X,3)−−−−−−→ H3(E1, 2)

) d3,2
3 (X,3)−−−−−−→ H5(k, 3)

)

.

– en CH3(X)tors : s’injecte dans Coker d3,2
3 (X, 3).

Le groupe Coker ξ4 « s’attrape » à l’aide du cup-produit CH2(X) ⊗ k∗ →
H2(X,K3). On trouve

Coker ξ4 =









0 pour N > 4 [17],
des choses calculables pour N = 2, 3, 4 [18],
0 pour N = 1 (évident).

En particulier, on a :
Théorème 10.2 (cf. [18, §3.1]). Pour N = 2, 3, la suite

H2(X,K3)
ξ4

−→ k∗ d3,2
2 (X,3)−−−−−−→ H3(E1, 2)

est exacte.
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Corollaire 10.3. On a Coker η4 = 0 pour N < 4. Pour N > 4, Coker η4

s’injecte dans CH3(X)tors.

Ce corollaire rend particulièrement pertinent le théorème suivant de Kar-
penko :

Théorème 10.4 ([20, 22, 23]). Pour toute quadrique X, le groupe
CH3(X)tors est d’ordre 1 ou 2. De plus, on a CH3(X)tors = 0 pour N > 10.

En particulier (cf. (3) et le théorème 10.1) :
Corollaire 10.5. Coker η4 = 0 pour N > 10 et Coker η4

2 = 0 pour N > 14.

Le cas manquant dans le corollaire 10.3 est N = 4. Pour cette dimension,
il y a quatre types de quadriques anisotropes X (on garde les notations de
l’exemple 7.2) :

a) Voisine : d �= 1, XE hyperbolique.

b) Intermédiaire : d �= 1, XE isotrope, non hyperbolique.
c) Albert : d = 1.

d) Albert virtuelle : d �= 1, XE anisotrope.

Théorème 10.6 ([18]). Soit φ une forme quadratique définissant X (avec
dimX = 4).

– Dans les cas a) et b), Coker η4 = 0.
– Dans le cas c), Coker η4 � k∗/Sn(X), où Sn(X) est le sous-groupe de

k∗ engendré par les φ(x)φ(y). Cet isomorphisme est induit par le cup-
produit par le générateur de Coker η3 (cf. §7).

– Dans le cas d), on a une suite exacte

Coker η4
E

CoresE/k−−−−−−→ Coker η4 → PSO(φ, k)/R → 0

où R est la R-équivalence de Manin.
Notons que le cas d) est le «premier» où le groupe PSO(φ, k)/R peut

être non trivial [28]. Ce cas est beaucoup plus dur à traiter que tous les autres
réunis !

Pour N ≥ 7, Coker η4 a été calculé partiellement dans [19] et complètement
par Izhboldin dans [10] : dans [19], nous obtenons aussi des cas particuliers
en dimensions 5 et 6, non couvertes par Izhboldin. Les méthodes d’Izhboldin
sont «meilleures» que celles de [19], sauf pour la démonstration de :

Théorème 10.7 ([19, 10]). L’application Coker η4 → CH3(X)tors est bi-
jective pour N ≥ 7, sauf si X est définie par une forme quadratique du type
π ⊥ 〈a〉 où π est une 3-forme de Pfister.

Citons pour terminer une résultat qui se démontre par les méthodes de
[45], qui sortent donc du cadre de ce mini-cours (opérations de Steenrod en
cohomologie motivique, etc.) :
Théorème 10.8 ([19]). a) Coker ηn = 0 pour tout n ≥ 0 si car k = 0 et X

est définie par une voisine de Pfister.
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b) Sous les mêmes hypothèses, l’application Ink → In
nr(k(X)/k) est surjective

pour tout n ≥ 0.
La méthode de démonstration de ce théorème fournit d’ailleurs une

démonstration de la conjecture de Milnor « quadratique» purement par les
techniques de [45] (rappelons que cette conjecture est démontrée dans [32]),
cf. [19, Remark 3.3].
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33. Peyre, E. : Corps de fonctions de variétés homogènes et cohomologie galoi-
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June 26–28, 2000. However, some extra material is added. I tried to make
the material more accessible for the reader. So, complicated technical proofs
are presented in a separate section. Applications are discussed in the last two
sections. In particular, splitting patterns of quadratic forms of odd dimension
≤ 21 or of even dimension ≤ 12 are determined in the last section.

Acknowledgement. Part of this text was written while I was visiting the Max-Planck
Institut für Mathematik, and I would like to express my gratitude to this institution
for the support and excellent working conditions. The support of CRDF award No.
RM1-2406-MO-02 and RFBR grants 02-01-01041 and 02-01-22005 is also gratefully
acknowledged.

Contents

1 Grothendieck Category of Chow Motives . . . . . . . . . . . . . . . . . . 26

2 The Motive and the Chow Groups of a Hyperbolic Quadric 28

3 General Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Indecomposable Direct Summands in the Motives of
Quadrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.1 Proof of Theorem 3.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2 Proof of Proposition 3.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3 Proof of Theorem 3.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

J.-P. Tignol (Ed.): LNM 1835, pp. 25–101, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



26 Alexander Vishik

5.4 Proof of Theorem 3.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.5 Proof of Proposition 4.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.6 Proof of Corollary 4.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.7 Proof of Proposition 4.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.8 Proofs of Theorem 4.13 and Corollary 4.14 . . . . . . . . . . . . . . . . . . . . . 57
5.9 Proofs of Theorem 4.17 and Theorem 4.15 . . . . . . . . . . . . . . . . . . . . . . 60

6 Some Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.1 Higher Forms of the Motives of Quadrics . . . . . . . . . . . . . . . . . . . . . . . 61
6.2 Dimensions of Anisotropic Forms in In . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.3 Motivic Decomposition and Stable Birational Equivalence of

7-dimensional Quadrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7 Splitting Patterns of Small-dimensional Forms . . . . . . . . . . . . 71

7.1 The Tools We Will Be Using . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.2 Splitting Patterns of Odd-dimensional Forms . . . . . . . . . . . . . . . . . . . 76
7.3 Splitting Patterns of Even-dimensional Forms . . . . . . . . . . . . . . . . . . . 92
7.4 Some Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

1 Grothendieck Category of Chow Motives

Let k be any field, and SmProj(k) the category of smooth projective varieties
over k. We define the category of correspondences C (k) in the following way:
the set Ob

(

C (k)
)

is identified with the set Ob
(

SmProj(k)
)

(the object corres-
ponding to X will be denoted by [X]), and if X = 
iXi is the decomposition
into a disjoint union of connected components, then

HomC(k)([X], [Y ]) :=
⊕

i

CHdim Xi(Xi × Y ),

where CHdim Xi (Xi × Y ) is the Chow group of dimXi-dimensional cycles on
Xi × Y . The composition of morphisms is defined as follows: if X, Y and
Z are smooth projective varieties over k, and ϕ ∈ HomC(k)([X], [Y ]), ψ ∈
HomC(k)([Y ], [Z]), then ψ ◦ ϕ ∈ HomC(k)([X], [Z]) is defined by the formula

ψ ◦ ϕ := πXZ∗
(

π∗
XY (ϕ) ∩ π∗

Y Z(ψ)
)

,

where

πXY : X × Y × Z → X × Y, πY Z : X × Y × Z → Y × Z,

πXZ : X × Y × Z → X × Z

are the partial projections. C (k) is naturally a tensor additive category, where
[X] ⊕ [Y ] := [X 
 Y ] and [X] ⊗ [Y ] := [X × Y ]. There is a natural functor
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SmProj(k) → C (k), which sends X to [X] and every algebro-geometric morph-
ism f : X → Y to the class of the graph Γf ⊂ X × Y .

Now one can define the category of effective Chow motives Choweff(k) as
the pseudo-abelian envelope of the category C (k). In other words, the set
Ob

(

Choweff(k)
)

consists of pairs ([X], pX), where X is a smooth projective
variety over k, and pX ∈ HomC(k)(X, X) is a projector (pX ◦ pX = pX);
HomChow eff(k)

(

([X], pX), ([Y ], pY )
)

is identified with the subgroup

pY ◦ HomC(k)([X], [Y ]) ◦ pX ⊂ HomC(k)([X], [Y ]),

and the composition ◦ is induced from the category C (X). The category
Choweff(k) inherits the structure of tensor additive category from C (k). We
have the natural functor of tensor additive categories C (k) → Chow eff(k)
sending [X] to the pair ([X], idX). The composition SmProj(k) → C (k) →
Choweff(k) will be called the motivic functor X �→ M(X).

It appears that the object M(P1) ∈ Choweff(k) is decomposable into a
nontrivial direct sum

M(P1) = ([P1], p1) ⊕ ([P1], p2),

where p1 is defined by the cycle P
1 × pt ⊂ P

1 × P
1 and p2 by the cycle

pt×P
1 ⊂ P

1×P
1. It is easy to see that ([P1], p1) is isomorphic to M

(

Spec(k)
)

;
this object is called the trivial Tate motive and will be denoted by Z. And the
complementary direct summand ([P1], p2) is called the Tate motive Z(1)[2].
So,

M(P1) = Z ⊕ Z(1)[2].

For any nonnegative m, one can define Z(m)[2m] := (Z(1)[2])⊗m. The tensor
product by the object Z(i)[2i] defines the additive functor U �→ U(i)[2i] :=
U ⊗ Z(i)[2i]. It is not difficult to show that

M(Pm) = Z ⊕ Z(1)[2]⊕ · · · ⊕ Z(m)[2m].

The category of Chow motives Chow(k) can now be defined as follows:
Ob

(

Chow(k)
)

consists of pairs (A, l), where A ∈ Ob
(

Chow eff(k)
)

and l ∈ Z;

HomChow (k)

(

(A, l), (B, m)
)

:=

lim
n≥max(−l,−m)

HomChoweff(k)

(

A(l + n)[2l + 2n], B(m + n)[2m + 2n]
)

.

The natural functor Choweff(k) → Chow(k) sending A to the pair (A, 0) is
a full embedding, since the tensor product with Z(1)[2] defines an isomorph-
ism HomChow eff(k)(A, B) ∼= HomChow eff(k)

(

A(1)[2], B(1)[2]
)

. The composition
SmProj(k) → Chow eff(k) → Chow(k) will also be called the motivic functor
and denoted by M .

If X and Y are smooth projective varieties (connected, for simplicity),
then HomChow(k)

(

M(X), M(Y )
)

is naturally identified with CHdim X(X×Y ),
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and HomChow(k)

(

M(X), M(Y )(i)[2i]
)

with CH(dim X)−i(X × Y ) (i here can
be any integer). In particular, HomChow(k)

(

Z(i)[2i], M(X)
)

= CHi(X) and
HomChow (k)

(

M(X), Z(i)[2i]
)

= CHi(X).

2 The Motive and the Chow Groups of a Hyperbolic
Quadric

From this point on we will assume that our base field k has characteristic
different from 2.

Suppose the quadratic form q is isotropic, i.e. q = H ⊥ p for some quadratic
form p, where H is the hyperbolic plane. Then the projective quadric Q with
equation q = 0 has a k-rational point x, and the projective quadric of lines
on Q passing through x is isomorphic to P , the quadric with equation p = 0.
This has the following consequence for the structure of the motive of Q.

Proposition 2.1 (M. Rost [23]). Let q = H ⊥ p. Then

M(Q) ∼= Z ⊕ M(P )(1)[2]⊕ Z(n)[2n],

where n = dimQ.

Proof. Let z, z′, u be k-rational points such that z, z′ ∈ Q, u ∈ P(Vq) \ Q
and z, z′, u are colinear. Consider the cycle Φz ∈ CHn(Q × Q) defined as
{(x, y) | x, y, z are colinear}. In the same way, the cycle Φu is defined.

We have Φu = [∆Q] + [ΓTu], where ∆Q is the diagonal and ΓTu is the
graph of the reflection Tu from O(q) with center u. On the other hand, Φz =
[∆Q] + Ω2 + Ω3 + Ω4, where Ω2 = [Q × z], Ω3 = [z × Q], and Ω4 = {(x, y) |
x, y ∈ TQ,z ∩ Q; x, y, z are colinear}. Let τu, ω2, ω3, ω4 ∈ EndChow(k) M(Q)
be the corresponding endomorphisms.

Since Φz, Φu belong to an algebraic family of cycles parametrized by P
1 =

l(z, z′, u), they are rationally equivalent. So, τu = ω2 + ω3 + ω4. The maps ω2

and ω3 are projectors, giving direct summands Z and Z(n)[2n] of M(Q), and
all three ωi are mutually orthogonal. So, id = τ◦2

u = ω2 + ω3 + ω◦2
4 , and ω◦2

4

is a projector too. Thus, M(Q) = Z ⊕ Z(n)[2n]⊕ ([Q], ω◦2
4 ).

The quadric P can be identified with the intersection TQ,z ∩TQ,z′ ∩Q ⊂ Q
and also with the projective quadric of lines on Q passing through z (or
through z′). We get the cycle Ψ ∈ CHn−1(Q × P ): {(x, l) | x ∈ l}. It defines
maps ψ : M(Q) → M(P )(1)[2] and ψ∨ : M(P )(1)[2] → M(Q).

Then, ω4 = ψ∨ ◦ψ, and ψ◦τu◦ψ∨ = idM(P). But ψ and ψ∨ are orthogonal
to ω2 and ω3. Thus, idM(P) = ψ◦τu◦ψ∨ = ψ◦(ω2+ω3+ω4)◦ψ∨ = ψ◦ω4◦ψ∨ =
ψ ◦ψ∨ ◦ψ ◦ψ∨. On the other hand, ψ∨ ◦ψ ◦ ψ∨ ◦ ψ = ω◦2

4 . Thus, the maps ψ
and ψ∨ ◦ψ◦ψ∨ define an isomorphism between ([Q], ω◦2

4 ) and M(P )(1)[2]. ��

Applying Proposition 2.1 inductively we get the following.
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Proposition 2.2 (M. Rost [23]). Let Q be a completely split quadric of
dimension n. Then

M(Q) =

{
∑n

i=0 Z(i)[2i] if n is odd;
(∑n

i=0 Z(i)[2i]
)

⊕ Z(n/2)[n] if n is even.

In particular, we see that the motive of the smooth odd-dimensional com-
pletely split projective quadric is isomorphic to the motive of the projective
space of the same dimension.

Because CHi

(

Spec(k)
)

= 0 for i �= 0, and CH0

(

Spec(k)
) ∼= Z, we get that

HomChow (k)(Z(i)[2i], Z(j)[2j]) ∼=
{

0 if i �= j;
Z if i = j.

(*)

Thus, we can compute the Chow groups of a completely split quadric.

Observation 2.3. Let Q be a completely split quadric of dimension n. Then

CHr(Q) =









0 if r < 0 or r > n;
Z if 0 < r < n, and r �= n/2;
Z ⊕Z if r = n/2.

In the situation of a completely split quadric the natural basis for CHr(Q)
is given by hn−r, the class of a plane section of codimension n− r in the case
r > n/2, by lr , the class of a projective subspace of dimension r if r < n/2,
and by l1n/2, l2n/2, the classes of n/2-dimensional projective subspaces from the
two different families for r = n/2.

Definition 2.4. Let k be an algebraic closure of k. For an arbitrary quadric
Q we define the linear function

degQ : CH∗(Q|k) → Z/2

by the rule that it takes the value 1 on each of the canonical generators
described above.

Remark. Clearly, the particular choice of generators is important only in the
case where rank CHr(Q|k) = 2, i.e. r = n/2.

If for some smooth projective variety X, the motive M(X) is a direct sum
of Tate motives, then the pairing

(

EndChow(k) M(X)
)

⊗ CHr(X) → CHr(X)

defines a natural identification

EndChow(k) M(X) =
∏

r

EndZ CHr(X).
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(This follows from (*).) In particular, since over an algebraically closed field
every quadric is completely split, we get item (2) of the following Proposition.
In the same way, since CHi(P ) = 0 for i < 0 and for i > dimP , we get item
(1). Item (2) can be also obtained via an inductive application of (1).

Proposition 2.5 (M. Rost [24]).

(1) Let q = H ⊥ p, then

EndM(Q) = Z ×
(

End M(P )
)

× Z,

where the first Z is identified with EndZ CH0(Q), and the last Z with
EndZ CH0(Q).

(2) EndM(Q|k) =
∏

r EndZ CHr(Q|k).

We will also need the converse of Proposition 2.1.

Proposition 2.6. Suppose q is a quadratic form such that M(Q) contains
Z(l)[2l] as a direct summand. Let m = min(l, (dimQ) − l). Then

q = (m + 1) × H ⊥ q′

for some quadratic form q′.

Proof. If M(Q) contains Z(l)[2l] as a direct summand, then it also contains
Z(dimQ − l)[2 dimQ − 2l] (if pr ∈ CHdim Q(Q × Q) is the corresponding
projector, then we can consider the dual one pr∨, obtained by switching the
factors in Q × Q). So, we can assume that m = l ≤ (dimQ)/2.

We have maps ϕ : M(Q) → Z(l)[2l] and j : Z(l)[2l] → M(Q) such that
ϕ ◦ j = idZ(l)[2l] . Via the identifications Hom(M(Q), Z(l)[2l]) = CHl(Q) and
Hom

(

Z(l)[2l], M(Q)
)

= CHl(Q) our maps ϕ and j correspond to cycles
A ∈ CHl(Q) and B ∈ CHl(Q). Then ϕ ◦ j ∈ Hom(Z(l)[2l], Z(l)[2l]) =
CH0

(

Spec(k)
)

= Z is given by the degree of the intersection A∩B ∈ CH0(Q).
So, deg(A ∩ B) = 1. This implies that if l < (dimQ)/2, then deg B is odd,
and if l = (dimQ)/2 then at least one of deg A, deg B is odd. Now, everything
follows from:

Lemma 2.7. Let 0 ≤ l ≤ (dimQ)/2, and suppose Q has an l-dimensional
cycle of odd degree. Then q = (l + 1) × H ⊥ q′ for some quadratic form q′.

Proof. If l = 0 then, by Springer’s Theorem (see [19, VII, Theorem 2.3]), we
get a rational point on Q. So, q is isotropic.

Suppose the statement is proven for any quadratic form p, and for any 0 ≤
a < l. By taking the intersection of A with the plane section of codimension l,
we get a zero-cycle of odd degree on Q. So, q is isotropic, q = H ⊥ q′ for some
quadratic form q′. Let x be any rational point on Q \ A (the set of rational
points on an isotropic quadric is dense), then Q′ can be identified with the
projective quadric of lines on Q passing through x. The union of all lines on
Q passing through x is the cone over a quadric Q′ with vertex x, and it is
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just the intersection R := Q ∩ Tx, where Tx is the tangent space to Q at x.
We have the natural projection π : R \ x → Q′. Then π∗(A ∩ Tx) will be an
(l − 1)-cycle of odd degree on Q′. By induction, q′ is l times isotropic. So, q
is (l + 1) times isotropic. The lemma is proven. ��

Proposition 2.6 is proven. ��

Let us finish this section with the definition of the higher Witt indices
and the splitting pattern of a quadric. Since this notion plays an important
role throughout the paper, I should emphasize that the definition of splitting
pattern I use somewhat deviates from the common usage. To make it explicit,
let k be a field of characteristic different from 2 and let q a quadratic form
defined over k. We construct a sequence of fields and quadratic forms in the
following way. Set k0 := k, i0(q) := iW (q), the Witt index of q, and q0 := qan,
the anisotropic kernel of q. Now if we have the field kj and an anisotropic
form qj defined over kj, we set

kj+1 := kj(Qj), the function field of the projective quadric qj = 0;
ij+1(q) := iW (qj |kj+1);

qj+1 := (qj |kj+1)an.

Since dim qj+1 < dim qj, this process will stop at some step h, namely, when
dim qh ≤ 1. This number h is called the height of q. As a result, we get a
tower of fields k = k0 ⊂ k1 ⊂ · · · ⊂ kh, called the generic splitting tower of
M. Knebusch (see [16, §5]), and a sequence of natural numbers i0(q), i1(q),
. . . , ih(q). The number ij(q) is called the j-th higher Witt index of q, and the
set i(q) := (i1(q), . . . , ih(q)) will be called the (incremental) splitting pattern
of the quadric Q. Note that ij(q) ≥ 1 for each j ≥ 1. This definition of
splitting pattern is not the one commonly used, since usually the set {i1, i1 +
i2, . . . , i1 + · · ·+ ih} is called by this name. But it seems that many properties
of quadratic forms are much more transparent when we see the higher Witt
indices rather than iW (q|kt). I hope the reader will agree with me after looking
at the tables in Sect. 7. For this reason, in the current article we will stick to
our nonstandard terminology.

3 General Theorems

Let now Q be an arbitrary smooth projective quadric. The following theorem,
which will be called Rost Nilpotence Theorem in the sequel (RNT for short),
gives a very important tool in the study of the motive of Q. As above, we
denote by k an algebraic closure of k.

Theorem 3.1 (M. Rost [24]). Let ϕ ∈ EndM(Q).

(1) If ϕ|k = 0, then ϕ is nilpotent.
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(2) If ϕ|k is an isomorphism then ϕ is an isomorphism.

As an immediate corollary we get

Corollary 3.2 ([25, Lemma 3.12]). Let ξ ∈ EndM(Q) be some map such
that ξ|k is a projector. Then, for some d, ξ2d

is a projector.

Proof. Let x := ξ2 − ξ ∈ End M(Q) = CHm(Q × Q). Since ξ|k is a projector,
x|k = 0. In particular, 2s · x = 0 for some s, since Q is hyperbolic over some
Galois extension F/k of degree 2s, and TrF/k ◦jF/k(x) = [F : k] · x (here jF/k

and TrF/k are the restriction and corestriction maps on Chow groups). By
Theorem 3.1, we have xt = 0 for some t.

That means that for some large d

(

2d

j

)

· xj = 0 for all j > 0.

From the equality ξ2 = ξ + x (and the fact that ξ and x commute), we get

ξ2d+1
=

∑

0≤j≤2d

(

2d

j

)

ξ2d−j · xj = ξ2d

.

So, ξ2d

is a projector. ��

Also we get:

Corollary 3.3. If N is a direct summand of M(Q) such that N |k = 0, then
N = 0.

We call a direct summand N of M(Q) indecomposable if it cannot be
decomposed into a nontrivial direct sum N = N1 ⊕ N2. Since M(Q|k) is a
direct sum of 2[(dimQ)/2] + 2 indecomposable Tate motives, we get in the
light of Corollary 3.3:

Corollary 3.4. Any direct summand of M(Q) is a direct sum of finitely many
indecomposable direct summands.

For a direct summand N of M(Q) we will denote by jN : N → M(Q)
and ϕN : M(Q) → N the corresponding natural morphisms, and by pN ∈
EndM(Q) the corresponding projector jN ◦ ϕN . We can define

CHr(N) := pN ·CHr(Q) ⊂ CHr(Q),

where pN acts on CHr(Q) via the pairing

CHdim Q(Q × Q) ⊗ CHr(Q) → CHr(Q).

In other words, CHr(N) = Hom(Z(r)[2r], N).
N |k being a direct summand of M(Q|k) is isomorphic to a direct sum of

Tate motives. In particular, CHr(N |k) is a free abelian group of rank ≤ 2,
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and if rank CHr(N |k) = 2, then r = (dimQ)/2 (in particular, dimQ is even),
and the natural embedding CHr(N |k) → CHr(Q|k) is an isomorphism.

Also, the pairing Hom(Z(r)[2r], N) ⊗ Hom(N, N) → Hom(Z(r)[2r], N)
defines an isomorphism

EndChow(k)(N |k) →
∏

r

EndZ CHr(N |k).

For a given morphism ψ ∈ EndN we denote by ψ(r) ∈ EndZ CHr(N |k) the
r-th component of ψ|k in this decomposition.

Let us choose some basis for CH(N |k). In the case rank CHr(N |k) = 1, we
choose an arbitrary generator of this group (so, it is canonical up to sign),
and in the case rank CHr(N |k) = 2, we take ϕN(l1(dim Q)/2) and ϕN(l2(dim Q)/2)
as basis elements. Now we can represent ψ(r) as a square matrix of size ≤ 2.

Define the canonical linear function

degN : CH(N |k) → Z/2

by the rule that it takes the value 1 on each basis element.

Proposition 3.5. Let N be an indecomposable direct summand in M(Q),
and ψ ∈ End N be an arbitrary morphism. Then either

degN ◦ψ = degN , or degN ◦ψ = 0.

In particular, to show that M(Q) is decomposable it is sufficient to exhibit
a morphism ψ ∈ End M(Q) such that degQ �= degQ ◦ψ �= 0.

The proof of Proposition 3.5 is in Sect. 5.2.
Examples. (1) Suppose the form q is isotropic: q = q′ ⊥ H, i.e. the projective
quadric Q has a rational point z. Then the cycle Q × z ⊂ Q × Q defines a
morphism ρ ∈ EndM(Q) such that ρ(0) = 1 and ρ(r) = 0, for all r �= 0.
So, degQ ◦ρ coincides with degQ on the group CH0(Q|k) and is zero on the
other Chow groups. Thus, M(Q) is decomposable. Actually, ρ is a projector,
defining the direct summand Z in the decomposition

M(Q) = Z ⊕ M(Q′)(1)[2]⊕ Z(m)[2m]

(as usual, m := dimQ).
(2) Let q = 〈〈a, b〉〉 be a two-fold Pfister form, and C be the conic defined by

the form 〈1,−a,−b〉. It is not difficult to show that Q = C×C as an algebraic
variety. In particular we get a (algebro-geometric!) map Q

pr1→ C
∆→ Q. It

induces a motivic map ψ ∈ EndM(Q). Clearly, ψ(0) = 1 and ψ(2) = 0.
So, M(Q) is decomposable. Actually, ψ is the projector defining the direct
summand M(C) in the Rost decomposition M(Q) = M(C) ⊕ M(C)(1)[2].

Using Proposition 3.5 we can show that the existence of reasonable
maps between indecomposable motives N1 and N2 implies their isomorph-
ism. Namely, we have:
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Theorem 3.6 (cf. [25, Lemma 3.25]). Let N1 and N2 be indecompos-
able direct summands in M(Q1)(d1)[2d1] and M(Q2)(d2)[2d2] respectively, for
some d1, d2. Suppose there exist morphisms α : N1 → N2 and β : N2 → N1

such that the map degN1
◦β◦α : CH(N1|k) → Z/2 is nonzero. Then N1

∼= N2.

The proof is given in Sect. 5.3.

Corollary 3.7. Let Q be a smooth projective quadric of dimension m, and
N1, N2 be indecomposable direct summands of M(Q). If for some r �= m/2,
Z(r)[2r] is a direct summand of N1|k and N2|k, then N1

∼= N2.

Proof. Under our assumptions, rank CHr(Q|k) = 1 and the natural embed-
dings CHr(N1|k) → CHr(Q|k) ← CHr(N2|k) are isomorphisms. Then the
composition

degN1
◦(ϕN1 ◦ jN2) ◦ (ϕN2 ◦ jN1) : CHr(N1|k) → Z/2

is nonzero. According to Theorem 3.6, N1
∼= N2. ��

Theorem 3.8 ([25, Lemma 3.26]). Let Q1, Q2 be some smooth projective
quadrics, and

α ∈Hom(M(Q1)(d1)[2d1], M(Q2)(d2)[2d2]),
β ∈Hom(M(Q2)(d2)[2d2], M(Q1)(d1)[2d1])

be morphisms such that the composition

degQ1
◦β ◦ α : CHr(M(Q1)(d1)[2d1]|k) → Z/2

is nonzero for some r. Then there exist indecomposable direct summands N1 of
M(Q1)(d1)[2d1] and N2 of M(Q2)(d2)[2d2] such that N1 � N2, and Z(r)[2r]
is a direct summand in Ni|k.

See Sect. 5.4 for a proof. Here are two important cases of such a situation.

Corollary 3.9. Let Q1, Q2 be smooth projective quadrics such that Q1|k(Q2)

and Q2|k(Q1) are isotropic (in other words, there exist rational maps Q1 ���
Q2 and Q2 ��� Q1). Then there are indecomposable direct summands N1 of
M(Q1) and N2 of M(Q2) such that N1

∼= N2 and N1|k contains Z as a direct
summand.

Proof. The rational maps Q1 ��� Q2 and Q2 ��� Q1 define motivic maps
α : M(Q1) → M(Q2) and β : M(Q2) → M(Q1) such that (β ◦α)(0) = 1. Now
we need only to apply Theorem 3.8. ��

The next statement makes use of the higher Witt index i1 defined at the
end of Sect. 2.
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Corollary 3.10. Let Q be a smooth anisotropic projective quadric, and N be
an indecomposable direct summand of M(Q) such that N |k contains Z as a
direct summand. Then for all 0 ≤ i < i1(Q), N(i)[2i] is isomorphic to a direct
summand of M(Q).

Proof. Let 0 ≤ i < i1(Q). Then the quadric Q|k(Q) has a projective subspace L

of dimension i. Let A ⊂ Q×Q be the closure of L ⊂
(

Spec k(Q)
)

×Q ⊂ Q×Q.
We have dimA = dimQ + i, so A defines a map α : M(Q)(i)[2i] → M(Q).
Let now ρi : M(Q) → M(Q)(i)[2i] be the map defined by a plane section
of codimension i embedded diagonally into Q × Q. It is easy to see that
(ρi ◦ α)(i) = 1. Hence, deg ◦hi ◦ α : CHi(M(Q)(i)[2i]) → Z/2 is nonzero and,
by Theorem 3.8, M(Q)(i)[2i] contains an indecomposable direct summand
N1, and M(Q) contains an indecomposable direct summand N2 such that
N1

∼= N2 and Z(i)[2i] is a direct summand of N1|k. But, on the other hand,
N(i)[2i] is an indecomposable direct summand of M(Q)(i)[2i] and Z(i)[2i]
is a direct summand of N(i)[2i]|k. By Corollary 3.7, N1

∼= N(i)[2i] (we can
clearly assume that dim Q > 0, so that the Chow group in question will not
be the middle one). Thus, M(Q) contains a direct summand isomorphic to
N(i)[2i]. ��

Theorem 3.11. Let N1, . . . , Ns be non-isomorphic indecomposable direct
summands of M(Q). Then ⊕s

i=1Ni is isomorphic to a direct summand of
M(Q).

The proof is in Sect. 5.1.
Example. Let α = {a1, . . . , an} be a pure symbol in KM

n (k)/2, and Qα be
the Pfister quadric corresponding to the form 〈〈a1, . . . , an〉〉. We can use the
results above to get the Rost decomposition of M(Qα).

Theorem 3.12 (M. Rost [24]). Let Qα be anisotropic. Then

M(Qα) ∼=
2n−1−1
⊕

i=0

Mα(i)[2i] = Mα ⊗ M(P2n−1−1),

where Mα is an indecomposable motive, and Mα|k = Z⊕Z(2n−1 − 1)[2n − 2].

Proof. Let Mα be an indecomposable direct summand of M(Qα) such that Z

is a direct summand of Mα|k. Then, by Corollary 3.10, Mα(i)[2i] is isomorphic
to a direct summand of M(Q), for any 0 ≤ i < i1(qα) = 2n−1. Clearly, for
i �= j, Mα(i)[2i] is not isomorphic to Mα(j)[2j] (since they are not isomorphic
even over k). By Theorem 3.11, ⊕2n−1−1

i=0 Mα(i)[2i] is a direct summand of
M(Q). We will need the following easy Lemma.

Lemma 3.13. Let Q be a smooth projective quadric, and L be a direct sum-
mand of M(Q) such that L|k = Z. Then Q is isotropic.
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Proof. Let A ⊂ Q × Q be the cycle representing the projector

pL ∈ EndM(Q) = CHdim Q(Q × Q).

Then A|k must be rationally equivalent to Q × pt. In particular, [A ∩ A∨|k]
represents the class of a rational point on Q×Q|k. So, the degree of the 0-cycle
[A∩ A∨] is 1 and, by Springer’s theorem, Q is isotropic. ��

Lemma 3.13 implies that Mα|k consists of at least two Tate motives. Then
⊕2n−1−1

i=0 Mα(i)[2i]|k contains at least as many Tate motives as M(Qα)|k does.
By Corollary 3.3, M(Q) ∼= ⊕2n−1−1

i=0 Mα(i)[2i]. Clearly, Mα|k = Z ⊕ Z(r)[2r],
and r = 2n−1 − 1. ��

The motive Mα is called a Rost motive. For n = 1, M{a} = M
(

k(
√

a)
)

,
and for n = 2, M{a,b} = M(C{a,b}), where C{a,b} is the conic corresponding
to the form 〈1,−a,−b〉.

4 Indecomposable Direct Summands in the Motives of
Quadrics

In this section we will present some results on the structure of indecomposable
direct summands of the motives of quadrics.

Let Q be a smooth projective quadric of dimension m. By Proposition 2.2,
M(Q|k) is a direct sum of Tate motives. Let us choose this decomposition in
some fixed way. If l �= m/2, then the direct summand Z(l)[2l] of M(Q|k) is
defined uniquely. And for l = m/2, we choose the corresponding projectors as

(l2m/2 − l1m/2) × l2m/2 ⊂ (Q × Q)|k and l1m/2 × (l2m/2 + l1m/2),

where

2 =

{

2 if m ≡ 0 (mod 4),
1 if m ≡ 2 (mod 4).

We call the corresponding motives Llo
∼= Z(m/2)[m] and Lup ∼= Z(m/2)[m]

the lower and the upper motives, respectively. In particular, the restriction
degQ : CHm/2(Lup) → Z/2 is zero, and the restriction degQ : CHm/2(Llo) →
Z/2 is surjective.

Let us denote the set of fixed Tate-motivic summands specified above as
Λ(Q). It follows from Definition 5.5 and Theorem 5.6 that for an arbitrary
direct summand N of M(Q), there exists a direct summand N ′ isomorphic to
N such that N ′|k being a summand of M(Q)|k is a direct sum of some part
of these fixed Tate motives.

For the direct summand N of M(Q) let us denote by Λ(N) the subset of
Λ(Q) consisting of fixed Tate motives from the decomposition of N ′|k.
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Lemma 4.1. Let Q be a smooth non-hyperbolic projective quadric. Then the
subset Λ(N) ⊂ Λ(Q) does not depend on the choice of N ′, and so, is well
defined and depends only on the isomorphism class of N .

Proof. Suppose that N ′ ∼= N ∼= N ′′, and the sets of fixed Tate motives in the
decomposition of N ′|k and N ′′|k are different. Let Z(l)[2l] be some fixed Tate
motive from the decomposition of N ′|k which is not in N ′′|k. Then l = m/2
(because in all other degrees there is only one Tate motive available, and N ′ ∼=
N ′′). Also, N ′|k and N ′′|k should contain only one Tate motive of the type
Z(m/2)[m] each. So, we assume that N ′|k contains Lup, and N ′′|k contains
Llo. Now we can assume that N is indecomposable. If Q is not hyperbolic,
then (by Lemma 3.13) both N ′|k and N ′′|k should contain at least one more
(this time, common) Tate motive Z(r)[2r], where r �= m/2. Then the map

degN′ ◦(ϕN′ ◦ jN′′ ) ◦ (ϕN′′ ◦ jN′ ) : CHr(N ′|k) → Z/2

is nonzero. By Proposition 3.5,

degN′ ◦(ϕN′ ◦ jN′′ ) ◦ (ϕN′′ ◦ jN′ ) : CHm/2(N ′|k) → Z/2

should be nonzero as well. But the map (ϕLlo ◦ jLup) : Lup → Llo is zero:
contradiction. ��

Clearly, in the hyperbolic case, there is a problem only with the middle-
dimensional part.

We can now state the more precise version of Corollary 3.7.

Lemma 4.2. Let Q be a smooth non-hyperbolic projective quadric, and N , M
be non-isomorphic indecomposable direct summands of M(Q). Then Λ(N) ∩
Λ(M) = ∅.

Proof. Suppose Z(i)[2i] ∈ Λ(N)∩Λ(M). By Corollary 3.7, i = m/2. Without
loss of generality, we may assume

rank CHm/2(M |k) ≤ rank CHm/2(N |k).

Then the map degM ◦(ϕM ◦ jN ) ◦ (ϕN ◦ jM ) : CHi(M |k) → Z/2 is nonzero,
so, by Theorem 3.6, M must be isomorphic to N , a contradiction. ��

Lemma 4.2 evidently implies:

Theorem 4.3. Let Z(i)[2i] and Z(j)[2j] be some elements of Λ(Q). The fol-
lowing conditions are equivalent:

(1) For any direct summand N of M(Q) the conditions Z(i)[2i] ∈ Λ(N) and
Z(j)[2j] ∈ Λ(N) are equivalent.

(2) There exists an indecomposable direct summand N such that Z(i)[2i] ∈
Λ(N) and Z(j)[2j] ∈ Λ(N).
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If these conditions are satisfied we say that Z(i)[2i] and Z(j)[2j] are connec-
ted. Clearly, this is an equivalence relation.

Let Z(Q) be the set of isomorphism classes of indecomposable direct sum-
mands of M(Q), and Nz be a representative of the class z. We have the
following:

Corollary 4.4. Let Q be a non-hyperbolic quadric. Then

(1) Λ(Q) =
∐

z∈Z(Q) Λ(Nz),
(2) M(Q) ∼= ⊕z∈Z(Q)Nz.

The Λ(Nz) for z ∈ Z(Q) are exactly the connected components of Λ(Q).

We can visualize this decomposition by denoting each Tate motive from
Λ(Q) by a •, and connecting the •’s for which Tate motives are connected.
Example. M(Q{a1,a2,a3}) looks like

•

• • • • • •

•

(here we put Lup above Llo, and the degrees of Tate motives are increasing
from left to right).

We already saw (Lemma 3.13) that the direct summand L of an anisotropic
quadric cannot be a form of a Tate motive, that is, L|k consists of at least two
Tate motives. It appears that L|k is always the direct sum of an even number
of Tate motives, and we can provide some restrictions on their degrees.

The following result is basic here. Recall that i1 denotes the first higher
Witt index defined at the end of Sect. 2.

Proposition 4.5 (cf. [26, proof of Statement]). Let Q be an anisotropic
quadric of dimension m with i1(q) = 1. Let N be a direct summand of M(Q)
such that N |k contains Z. Then N contains Z(m)[2m].

In other words, if i1(q) = 1, then Z is connected to Z(m)[2m].

The proof is given in Sect. 5.5.

Definition 4.6. Let Q be a smooth projective quadric and N be some direct
summand of M(Q). Define

a(N) := min(r | CHr(N |k) �= 0);
b(N) := max(r | CHr(N |k) �= 0);

size N := b(N) − a(N).

Clearly, a
(

M(Q)
)

= 0, b
(

M(Q)
)

= dimQ and size M(Q) = dimQ.
We can reformulate Proposition 4.5 as follows: If i1(Q) = 1, then for every

direct summand N of M(Q), the condition a(N) = 0 is equivalent to the
condition b(N) = dimQ.

From Proposition 4.5 it is not difficult to deduce:
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Corollary 4.7. Let Q be a smooth anisotropic projective quadric, and N be
an indecomposable direct summand of M(Q) such that a(N) = 0. Then

size N = dim Q − i1(q) + 1.

The proof is in Sect. 5.6.

Proposition 4.8. Let Q be a smooth anisotropic projective quadric of dimen-
sion m, and N be a direct summand of M(Q) such that the map

degQ : CHa(N |k) → Z/2

with 0 ≤ a ≤ i1(q) is nonzero (in other words, Zlo(a)[2a] belongs to Λ(N)).
Then N |k contains Z(a)[2a]⊕ Z(b)[2b] as a direct summand, where

b = m − i1(q) + 1 + a.

See Sect. 5.7 for a proof.

Corollary 4.9 ([26, Corollary 3]). Let P and Q be smooth anisotropic
quadrics over the field k.

(1) If q|k(P) and p|k(Q) are isotropic, then

dim q − i1(q) = dim p − i1(p).

(2) If P ⊂ Q is a subquadric such that p|k(Q) is isotopic, then

codim(P ⊂ Q) < i1(q).

(3) In the situation of (2), i1(p) = i1(q) − codim(P ⊂ Q).

Proof. (1) Since q|k(P) and p|k(Q) are isotropic, by Corollary 3.9, there exist
isomorphic direct summands N of M(Q), and M of M(P ) such that a(N) = 0.
By Corollary 4.7, size N = dimQ− i1(q)+ 1, and sizeM = dimP − i1(p)+ 1.
Since N � M , we get the equality.

(2) and (3) follow from (1), taking into account that i1(p) ≥ 1. ��

Let k = F0 ⊂ F1 ⊂ · · · ⊂ Fh(q) be the generic splitting tower of fields for
the quadric Q (see the end of Sect. 2). Recall that iW denotes the Witt index.
Applying Proposition 4.8 to the form qt := (q|Ft)an, we get:

Proposition 4.10 ([26, Statement]). Let Q be a smooth anisotropic quad-
ric of dimension m, and N be a direct summand of M(Q) such that the
map degQ : CHa(N |k) → Z/2 is nonzero for some integer a such that
iW (q|Ft) ≤ a < iW (q|Ft+1). Then N |k contains Z(a)[2a]⊕ Z(b)[2b] as a direct
summand, where

b = m − iW (q|Ft) − iW (q|Ft+1) + 1 + a.
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Proposition 4.10 shows that all Tate motives in M(Q|k) come in pairs,
and the structure of these pairs is determined by the splitting pattern of the
quadric.
Example. For the motive of a quadric Q with splitting pattern1 (3, 1, 3) we
have the following necessary connections (not to be confused with the decom-
position into connected components):

• • • • • • • • • • • • • •

Corollary 4.11. Let Q be a smooth anisotropic quadric, and N be a direct
summand of M(Q). Then N |k consists of an even number of Tate motives.

Certainly, the binary connections specified in Proposition 4.10, in gen-
eral, are not all the existing connections among the elements of Λ(Q). For
example, if Q is the generic quadric (given by the form 〈x1, . . . , xn〉 over the
field k(x1, . . . , xn)), then M(Q) is indecomposable, and so, all the elements of
Λ(Q) are connected. Nevertheless, we have a situation where all indecompos-
able direct summands are binary.
Example. Let Q be an excellent quadric (see [17, Definition 7.7]). Then, by a
result of M. Rost ([23, Proposition 4]), M(Q) is a direct sum of binary Rost
motives. For example, if

q = (〈〈a, b, c, d〉〉 ⊥ −〈〈a, b, c〉〉 ⊥ 〈〈a, b〉〉 ⊥ −〈1〉)an,

then M(Q) looks like

•

M{a,b,c,d}

•

M{a,b,c,d}(1)[2]

•

M{a,b,c,d}(2)[4]

•

M{a,b,c}(3)[6]

•
M{a,b}(4)[8]

• • • • •

Hypothetically, the excellent quadrics should be the only ones having this
property.

Conjecture 4.12. Let Q be a smooth anisotropic projective quadric. The
following two conditions are equivalent:

(1) M(Q) consists of binary motives,
(2) Q is excellent.

At the same time, we have some results which guarantee that particular
elements of Λ(Q) are not connected. Namely, Corollary 3.10 together with
Lemma 4.2 shows that the Tate motives Z, Z(1)[2], . . . , Z(i1(q)−1)[2i1(q)−2]
all belong to different connected components of Λ(Q). Here is a generalization
of this result.
1 The (incremental) splitting pattern of a quadratic form or a quadric is defined at

the end of Sect. 2
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Theorem 4.13 ([26, Corollary 2]). Let Q be a smooth projective quadric,
and N be an indecomposable direct summand of M(Q) such that iW (q|Ft) ≤
a(N) < iW (q|Ft+1). Then for each iW (q|Ft) ≤ j < iW (q|Ft+1), the motive
N(j − a(N))[2j − 2a(N)] is isomorphic to a direct summand of M(Q).

The proof is given in Sect. 5.8.

Theorem 4.13 implies that if there exists a direct summand N of M(Q)
such that iW (q|Ft) ≤ a(N) < iW (q|Ft+1), then the Tate motives Z(j)[2j], for
different j with iW (q|Ft) ≤ j < iW (q|Ft+1), are not connected. In particular,
the binary connections specified above will be the only connections among
the elements of Λ(Q) if and only if, for arbitrary 1 ≤ t ≤ h(q), there exists a
direct summand Nt of M(Q) such that iW (q|Ft) ≤ a(Nt) < iW (q|Ft+1).

Combining Theorem 4.13 with Proposition 4.10 and Corollary 3.7, we get

Corollary 4.14 ([26, Statement]). Let Q be a smooth projective anisotropic
quadric, and N be an indecomposable direct summand of M(Q) such that
iW (q|Ft) ≤ a(N) < iW (q|Ft+1). Then

size N = dimQ − iW (q|Ft) − iW (q|Ft+1) + 1.

In particular, iW (q|Ft) ≤ dim Q − b(N) < iW (q|Ft+1).

Corollary 4.14 shows that the size of the indecomposable direct summand
is determined by the place where it starts and the splitting pattern of the
quadric. See Sect. 5.8 for a proof.

The following statement provides a sufficient condition for the existence
of a direct summand L with a(L) = l.

Theorem 4.15 ([26, Proposition 1]). Let Q and P be smooth projective
quadrics, and l ∈ N. Suppose that for every field extension E/k the conditions
iW (p|E) > 0 and iW (q|E) > l are equivalent. Then M(Q) has an indecompos-
able direct summand L and M(P ) has an indecomposable direct summand N
such that a(L) = l, a(N) = 0, and L ∼= N(l)[2l].

The proof is given in Sect. 5.9.

The natural question arises: is the converse true as well?

Question 4.16 ([26, Question 1]). Are the following conditions equivalent?

(1) Q contains a direct summand L with a(L) = l,
(2) There exists a quadric P/k such that for every field extension E/k the

conditions iW (p|E) > 0 and iW (q|E) > l are equivalent.

The following stronger version of Theorem 4.15 is often useful.

Theorem 4.17. Let Q and P be smooth projective quadrics, and n, m ∈ N.
Suppose that for every field extension E/k the conditions iW (p|E) > n and
iW (q|E) > m are equivalent. Suppose M(P ) has an indecomposable direct
summand N such that a(N) = n. Then M(Q) has an indecomposable direct
summand M ∼= N(m − n)[2m− 2n]. In particular, a(M) = m.
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See Sect. 5.9 for a proof. As a corollary we get the criterion of motivic
equivalence for quadrics.

Theorem 4.18 ([25, Theorem 1.4.1], see also [13]). Let P and Q be
smooth projective quadrics of the same dimension. Then the following condi-
tions are equivalent:

(1) M(P ) ∼= M(Q),
(2) for every field extension E/k, iW (p|E) = iW (q|E).

Proof. (1) ⇒ (2): By Proposition 2.1 and Proposition 2.6, iW (p|E) is equal to
half of the number of Tate motives which split from M(P |E). Since M(P |E) ∼=
M(Q|E), we get the desired equality.

(2) ⇒ (1): We can clearly assume that both of our quadrics are non-
hyperbolic. Then, by Corollary 4.4, M(Q) ∼=

⊕

z∈Z(Q) Nz and M(P ) ∼=
⊕

y∈Z(P) My, where Z(Q) and Z(P ) are the sets of isomorphism classes of in-
decomposable direct summands of M(Q) and M(P ) respectively. By Theorem
4.17, for each z ∈ Z(Q) there exists y(z) ∈ Z(P ) such that My(z)

∼= Nz, and
vice-versa, for each y ∈ Z(P ) there exists z(y) ∈ Z(Q) such that Nz(y)

∼= My.
This gives a bijection Z(Q) = Z(P ), and an isomorphism M(Q) ∼= M(P ). ��

Another restriction on the structure of the indecomposable direct sum-
mands comes from the fact that such motives are symmetric with respect
to flipping over. That is, N∨ ∼= N(j)[2j] for some j (here N∨ is the direct
summand dual to N).

Theorem 4.19 ([26, Corollary 1]). Let Q be a smooth projective aniso-
tropic quadric of dimension m and N be an indecomposable direct summand
of M(Q). Then

N∨ ∼= N(r)[2r], where r = m− a(N) − b(N).

Proof. It is clear that proving the statement for N is equivalent to proving it
for N∨. So, we can assume that either a(N) = b(N) = m/2, or b(N) ≥ m/2.
In the former case,

N |k = Z(m/2)[m] ⊕ Z(m/2)[m] = N∨|k

(since it should consists of at least two Tate motives), and so N ∼= N∨ by
RNT. So, we can assume that b(N) ≥ m/2. On the other hand, by Corol-
lary 4.14, there exists 1 ≤ t < h(Q) such that iW (q|Ft) ≤ a(N),

(

m−b(N)
)

<
iW (q|Ft+1). By Theorem 4.13, for r = m−a(N)−b(N), N(r)[2r] is isomorphic
to a direct summand of M(Q), and a(N(r)[2r]) = m − b(N) = a(N∨). By
Corollary 3.7, N∨ ∼= N(r)[2r]. ��

As we saw above, if N is an indecomposable direct summand of the motive
of an anisotropic quadric, then N |k consists of an even number of Tate motives.
In the case when N |k is binary, we have severe restrictions on its size.
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Theorem 4.20 ([9, Theorem 6.1]). Let Q be a smooth anisotropic pro-
jective quadric, and N be a direct summand of M(Q) such that N |k =
Z(a)[2a]⊕ Z(b)[2b]. Then size N = 2r − 1 for some r.

The proof of Theorem 4.20 uses the techniques developed by V. Voevodsky
for the proof of Milnor’s conjecture (see [29]). In particular, one has to work
in the bigger triangulated category of mixed motives DMeff(k) (see [28]) and
use the motivic cohomological operations of V. Voevodsky.
Remark. Originally, Theorem 4.20 was proven under the assumption that
char k = 0, since at that time the technique of V. Voevodsky required such an
assumption. Hopefully, due to the new results of V. Voevodsky ([30]), we can
now just assume that char k �= 2.

One can notice that the sizes of binary motives take the same values as
the sizes of Rost motives. Moreover, we can state:

Conjecture 4.21 ([5, Conjecture 3.2], [27, Conjecture 2.8]). Let Q be
a smooth anisotropic quadric, and N be a binary direct summand of M(Q).
Then there exists r ∈ N, and a pure symbol α ∈ KM

r (k)/2 such that N ∼=
Mα(j)[2j] for some j.

It is not difficult to show that Conjecture 4.21 implies Conjecture 4.12.
Moreover, Theorem 4.20 shows that if M(Q) consists of binary motives, then
the splitting pattern of Q coincides with the splitting pattern of any excel-
lent quadric of the same dimension. It gives some ground for the following
important conjecture on the decomposition of the motive of a quadric. Let Q
and P be some anisotropic quadrics of the same dimension. Then Λ(Q) can
be naturally identified with Λ(P ).

Conjecture 4.22. Let Q be a smooth anisotropic quadric, and P be an ex-
cellent quadric of the same dimension. Let Λ(Q)

ϕ
= Λ(P ) be the natural iden-

tification. Then ϕ(λ) connected to ϕ(µ) ⇒ λ connected to µ.

Conjecture 4.22 says that aside from binary connections, corresponding to
the splitting pattern of Q (Proposition 4.10), we should have binary connec-
tions corresponding to the excellent splitting pattern. Moreover, we get not
just one additional set of binary connections, but h(Q) such sets, since we can
apply Conjecture 4.22 to qt := (q|Ft)an, for 1 ≤ t ≤ h(Q). In particular, the
more the splitting pattern of Q differs from the excellent splitting pattern,
the less decomposable M(Q) should be.

5 Proofs

We start with some preliminary results.

Corollary 5.1. Let N be a direct summand in M(Q) and ψ ∈ Hom(N, N).

(1) If ψ|k = 0, then ψn = 0 for some n.
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(2) If ψ|k is a projector, then ψn is a projector for some n.
(3) If ψ|k is an isomorphism, then ψ is an isomorphism.

Proof. Let M(Q) = N ⊕M . It is enough to consider ϕ =
(

ψ 0
0 ρ

)

, where ρ = 0

in cases (1) and (2), and ρ = idM in case (3). In case (1) apply Theorem 3.1(1),
in case (2) Corollary 3.2, in case (3) Theorem 3.1(2). ��

Lemma 5.2. Let L and N be direct summands in M(Q) such that

pL|k ◦ pN |k = pN |k ◦ pL|k = pL|k.

Then there exists a direct summand L̃ in N such that L̃ is isomorphic to L
and pL|k = pL̃|k.

Proof. Let jL : L → M(Q), jN : N → M(Q), ϕL : M(Q) → L, ϕN : M(Q) →
N be such that ϕL◦jL = idL, ϕN ◦jN = idN , and jL◦ϕL = pL, jN ◦ϕN = pN .

Take α := ϕL ◦ jN : N → L, and β = ϕN ◦ jL : L → N . If γ := α ◦β : L →
L, then γ|k = idL. By Corollary 5.1(2) and (1), γs = idL for some s. Consider
ψ := ϕN ◦ pL ◦ jN : N → N . Then ψs is a projector, ψs = β ◦ α̃, where
α̃ = α ◦ (β ◦ α)s−1, and α̃ ◦ β = idL. Then ψs defines a direct summand L̃ in
N , and for the corresponding projector in M(Q), pL̃ := jN ◦ψs ◦ϕN , we have
pL̃|k = pL|k. ��

Lemma 5.3 (cf. [25, Lemma 3.13]). Let N be a direct summand in M(Q),
dimQ = m.

(1) There exists κr,N ∈ End N such that (κr,N )(s) = 0 for all s �= r, and
(κr,N )(r) = 2 idCHr(N|k).

(2) If rank CHm/2(N |k) = 2, then there exists θm/2,N ∈ EndN such that
(θm/2,N)(m/2) = ( 1 1

1 1 ) and (θm/2,N)(r) = 0 for all r �= m/2.

Proof. (1) Take

κr,N :=
{

ϕN ◦ (hr × hm−r) ◦ jN if r �= m/2,
ϕN ◦ (2 idM(Q) −

∑

0≤i<m/2(h
i × hm−i + hm−i × hi)) ◦ jN if r = m/2.

(2) Take θm/2,N := ϕN ◦ (hm/2 × hm/2) ◦ jN . ��

Lemma 5.4. Let Ni be a direct summand of M(Qi). Suppose for some odd
number η and some ψ ∈ Hom(N1|k, N2|k) we have

η · ψ ∈ image
(

Hom(N1, N2) → Hom(N1|k, N2|k)
)

.

Then ψ ∈ image
(

Hom(N1, N2) → Hom(N1|k, N2|k)
)

.
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Proof. Let F/k be a Galois extension of degree 2n such that Ni|F is a sum
of Tate motives (for example, an extension which splits both quadrics com-
pletely). Then Hom(N1 |F , N2|F ) → Hom(N1|k, N2|k) is an isomorphism. Let
ψF be the corresponding element of Hom(N1|F , N2|F ).

Since η · ψF ∈ image
(

Hom(N1, N2) → Hom(N1|F , N2|F )
)

we have

η · (σ(ψF ) − ψF ) = 0 for all σ ∈ Gal(F/k).

Because Hom(N1|F , N2|F ) has no torsion, we get σ(ψF ) = ψF . Then

2n · ψF =
∑

σ∈Gal(F/k)

σ(ψF ) ∈ image
(

Hom(N1, N2) → Hom(N1|F , N2|F )
)

.

Since η · ψF , 2n · ψF ∈ image
(

Hom(N1, N2) → Hom(N1|F , N2|F )
)

, we
have ψF ∈ image

(

Hom(N1, N2) → Hom(N1 |F , N2|F )
)

, which implies ψ ∈
image

(

Hom(N1, N2) → Hom(N1|k, N2|k)
)

. ��

Definition 5.5. Let N and N ′ be indecomposable direct summands in M(Q).
We say that N ′ is a normal form of N if N ′ is isomorphic to N and either
m = dimQ is odd, or m is even and (pN′ )(m/2) is of one of the following types:

(1) 0; (2)
(

1 1
0 0

)

; (3)
(

0 −1
0 1

)

; (4) id .

Theorem 5.6 (cf. [25, proof of Lemma 3.21]). Each direct summand of
M(Q) has a normal form.

Proof. The case of odd-dimensional quadrics is trivial. So, we can assume that
m := dimQ is even.

(pN)(m/2) is an idempotent, and if rank(pN )(m/2) is 0 or 2, we get cases
(1) and (4), respectively. Now, we can assume that (pN)(m/2) is a projector in
Mat2×2(Z) of rank 1 (equivalently, det(pN )(m/2) = 0 and tr(pN)(m/2) = 1).

Sublemma 5.7. Let N be an indecomposable direct summand of M(Q) such
that (pN)(m/2) �= 0. Let ψ ∈ EndM(Q) be such that ψ|k ◦pN |k = pN |k ◦ψ|k =
ψ|k and tr(ψ(m/2)) is odd. Then

2 · EndM(Q|k) ⊂ image
(

End M(Q) → EndM(Q|k)
)

.

Proof. If q is hyperbolic, then the map EndM(Q) → EndM(Q|k) is an iso-
morphism. So, we can assume that q is not hyperbolic.

Let τ ∈ Hom
(

M(Q), M(Q)
)

= CHm(Q × Q) be the morphism given by
the graph of the “reflection” τx (with any (rational) center x ∈ P

m+1 \ Q).
Then τ2 = idM(Q). Also, τ(i) = 1, for any i �= m/2, and τ(m/2) = ( 0 1

1 0 ).
Let ψ(m/2) =

(

a b
c d

)

. Then deg ψ(hm/2) = a + b + c + d. Since hm/2 is
defined over k, we have that if a + b + c + d is odd, then on Q there is an
m/2-dimensional cycle of odd degree, which, by Lemma 2.7, implies that q is
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hyperbolic. So, we can assume that a + b + c + d is even. Then in each pair
(a, d), (b, c), one element is odd and another is even.

Changing ψ into ψ−
∑

i �=m/2[ψ(i)/2]·κi,Q, we can assume that ψ(i) is either
0 or 1, for all i �= m/2. Note that this new ψ still satisfies the conditions of
the sublemma. We have two cases:

(A) a and b, or c and d, are odd;
(B) a and c, or b and d, are odd.

Let ψ∨ be the dual morphism. Put

ψ̃ :=

{

ψ∨ if m ≡ 2 (mod 4);
τ ◦ ψ∨ ◦ τ if m ≡ 0 (mod 4).

Then ψ̃(m/2) = ( d b
c a ).

(A) Put ε := ψ ◦ ψ̃ − κm/2,Q ◦ (ad · id +ab · τ ).
(B) Put ε := ψ̃ ◦ ψ − κm/2,Q ◦ (ad · id+ac · τ ).
It is easy to see that ε(m/2) =

(
0 0

2(cd−ab) 0

)

in case (A), and
(

0 2(bd−ac)
0 0

)

in
case (B).

Clearly, ε(i) = ψ(i) · ψ∨
(i), for any i �= m/2. At the same time, ε2

(m/2) = 0.
Since ε(i) ∈ {0, 1}, ε2|k is a projector. By Corollary 5.1(2), ε2r is a pro-

jector. Since ε2r|k = ε2|k and ε2|k ◦ pN |k = pN |k ◦ ε2|k = ε2|k, by Lemma 5.2,
we get a direct summand L̃ in N such that pL̃|k = ε2|k. Since ε2

(m/2) = 0 and
(pN)(m/2) �= 0, we have N �= L̃. Since N is indecomposable, we have L̃ = 0.
In particular, ε2|k = pL̃|k = 0. This implies ε(i) = 0 for all i �= m/2.

Since (cd−ab) and (bd−ac) are odd in the respective cases, we have, using
ε, τ◦ε, ε◦τ , τ◦ε◦τ , and Lemma 5.4, that for any u ∈ 2·Mat2×2(Z), there exists
ϕ ∈ Hom

(

M(Q), M(Q)
)

such that ϕ(i) = 0 for all i �= m/2, and ϕ(m/2) = u.
Using also κi,Q := hi × hm−i for i �= m/2, we get the statement. ��

Changing pN into τ ◦ pN ◦ τ if necessary (which does not change the
isomorphism class of N), we can assume that in case (A) a and b are odd,
and in case (B) b and d are odd. Since (pN)(m/2) is an idempotent of rank 1,
we have (pN )(m/2) = γαγ−1 , where α, γ ∈ Mat2×2(Z), and α is of type (2) in
case (A), and of type (3) in case (B). Then it is easy to see that u := (γ − id)
is in 2 ·Mat2×2(Z).

That means that pN |k = f ◦ π ◦ f
−1

, where π(m/2) = α is of type (2) in
case (A), and of type (3) in case (B), and (f − id) ∈ 2 ·End M(Q|k).

Take ψ := pN , then tr(ψ(m/2)) = 1, and we can apply Sublemma 5.7.
From Sublemma 5.7 it follows that f is defined over k by some morphism ϕ.
Then f is an isomorphism, by Theorem 3.1(2), since it is so over k. The map
ρ := f−1 ◦pN ◦f is a projector (since pN is), so, ρ = pN′ for some N ′. Clearly,
f defines an isomorphism between N and N ′, and (pN′)(m/2) = α is of type
(2) or (3). ��
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5.1 Proof of Theorem 3.11

Lemma 5.8 (cf. [25, Lemma 3.21]). Let N1 and N2 be nonisomorphic in-
decomposable direct summands of M(Q). Let N ′

1 and N ′
2 be the corresponding

normal forms. Then

pN′
1
|k ◦ pN′

2
|k = pN′

2
|k ◦ pN′

1
|k = 0.

Proof. Let γ := pN′
1
◦ pN′

2
. Since N ′

i is a normal form, γ(m/2) is a projector in
Mat2×2(Z), and γ(m/2) · (pN′

i
)(m/2) = (pN′

i
)(m/2) · γ(m/2) = γ(m/2).

That means γ|k is a projector and γ|k ◦ pN′
i
|k = pN′

i
|k ◦ γ|k = γ|k.

By Corollary 5.1, γs is a projector for some s, and if γs = pL for some L,
then by Lemma 5.2 L is isomorphic to a direct summand in N ′

i . Since Ni is
indecomposable, we have that either L is isomorphic to N ′

i , or L = 0. Since
N ′

1 is not isomorphic to N ′
2, we have L = 0. This implies

pN′
1
|k ◦ pN′

2
|k = γ|k = γs|k = 0.

In the same way, considering δ := pN′
2
◦ pN′

1
, we get pN′

2
|k ◦ pN′

1
|k = 0. ��

Lemma 5.9. Let L and N be direct summands of M(Q) such that pL|k =
pN |k. Then L is isomorphic to N .

Proof. Consider α := ϕN ◦ jL, and β := ϕL ◦ jN . Then (β ◦ α)|k = idN|k and
(α ◦ β)|k = idL|k . By Corollary 5.1(3), L is isomorphic to N . ��

Lemma 5.10. Let L1, L2 be direct summands of M(Q) such that

pL1 |k ◦ pL2|k = pL2 |k ◦ pL1 |k = 0.

Then there exists a direct summand M of M(Q) such that M is isomorphic
to L1 ⊕ L2 and pM |k = pL1 |k + pL2 |k.

Proof. Consider π := pL1 + pL2 . Then π|k is a projector and by Corollary 5.1
πr is a projector for some r, i.e. there exists a direct summand M of M(Q)
such that πr = pM .

By Lemma 5.2, there exists a direct summand L̃1 in M such that L̃1 is
isomorphic to L1, and pL̃1

|k = pL1 |k. Then, for the complementary projector
pL̃2

:= pM − pL1 , we have pL̃2
|k = pL2 |k. By Lemma 5.9, L̃2 is isomorphic to

L2, and so, M � L1 ⊕ L2. ��

Now we can prove Theorem 3.11.
Let N ′

1, . . . , N ′
s be normal forms of N1, . . . , Ns. The statement follows

from Lemma 5.8 and an inductive application of Lemma 5.10. ��
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5.2 Proof of Proposition 3.5

Sublemma 5.11. Let N be a direct summand of M(Q) and ψ ∈ End N .
Then either there exists an idempotent ε ∈ EndN such that (ε − ψ)|k ∈
{2 · End(N |k) + θm/2,N · Z}, or Q is (even-dimensional) hyperbolic.

Proof. Let ψ(r,Z/2) ∈ End(CHr(N |k)/2) be the map induced by ψ.
If rank CHr(N |k) = 1, then ψ(r,Z/2) is always a projector.
If rank CHr(N |k) = 2, then r = m/2, and either deg ψ(hm/2) = 1, or one

of ψ(m/2,Z/2), (ψ + θm/2,N)
(m/2,Z/2)

is a projector. In the former case, Q is

hyperbolic, by Lemma 2.7, since ψ(hm/2) ∈ CHm/2(Q) has odd degree.
Since any idempotent from End(N |k) ⊗ Z/2 can be lifted to some idem-

potent of End(N |k), we get: if Q is not hyperbolic, then there exists an idem-
potent ε ∈ End(N |k) such that (ψ|k − ε) ∈ {2 · End(N |k) + θm/2,N · Z}.

Suppose there exists r (equal to m/2, certainly) with rank CHr(N |k) = 2.
Changing ψ into ψ+θm/2,N if necessary, we can assume that ψ|k ≡ ε (mod 2).
Then either (1) tr(ψ(m/2)) is odd, or (2) ψ(m/2,Z/2) = id.

(1) In this case, by Sublemma 5.7, there exists ε ∈ EndN such that ε|k = ε.
(2) In this case, trψ(m/2) is even and det ψ(m/2) is odd. Take

ε′ := −ψ ◦ (ψ − (tr ψ(m/2)) · idN) − ((det ψ(m/2)) − 1) · idN ∈ End N,

then (ε′)(m/2) = id, and (ψ − ε′)(r) ∈ 2 · End CHr(N |k), for r �= m/2.
If rank CHr(N |k) ≤ 1 for all r, take ε′ := ψ.
Put ε := ε′ −

∑

r �=m/2([ε
′
(r)/2] · κr,N ), then ε|k = ε. ��

Let ε ∈ EndN be an idempotent from Sublemma 5.11. Since N is in-
decomposable, ε is either 0 or idN , which implies that either degN ◦ε = degN ,
or degN ◦ε = 0. Then the same is true for ψ. The hyperbolic case is evident.

��

5.3 Proof of Theorem 3.6

Sublemma 5.12. In the situation of Theorem 3.6, for γ := β ◦ α ∈ End N1,
we have γ|k ∈ {idN1|k +2 · End(N1|k) + θm1/2,N1 |k ·Z}.

Proof. Let ε ∈ EndN1 be a projector from Sublemma 5.11 such that

(ε − γ)|k ∈ {2 · End(N1|k) + θm1/2,N1 · Z}.

Clearly, degN1
◦ε = degN1

◦γ �= 0. Hence, ε �= 0. Since N1 is indecomposable,
we get ε = idN1 . ��

As an evident consequence of Sublemma 5.12, we get:
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Sublemma 5.13. In the situation of Theorem 3.6, the map

(β ◦ α)|k : CH(N1|k)/2 → CH(N1|k)/2

is an isomorphism.

��
Sublemma 5.14. In the situation of Theorem 3.6, degN1

(

β ◦ α(y)
)

=
degN1

(y) for all y ∈ CH(N1|k), and degN2
(α ◦ β(z)) = degN2

(z) for all
z ∈ CH(N2|k). In particular, the conditions of Theorem 3.6 are symmetric
with respect to N1 and N2.

Proof. From Sublemma 5.12 it follows that degN1

(

β ◦ α(y)
)

= degN1
(y).

Since (β ◦ α)|k : CH(N1|k)/2 → CH(N1 |k)/2 is an isomorphism (by Sub-
lemma 5.13), we have that α ◦ β(CH(N2|k)/2) = (α ◦ β)2(CH(N2|k)/2) is iso-
morphic to CH(N1|k)/2. Let ε ∈ End N2 be a projector from Sublemma 5.11
such that (ε− α ◦ β)|k ∈ {2 ·End(N2|k) + θm2/2,N2 ·Z}. Since N2 is indecom-
posable, ε is either 0 or idN2 .

If ε = 0, then (α ◦ β)2|k ∈ 2 · End(N2|k), and CH(N1|k)/2 = 0, which
clearly contradicts the assumptions of Theorem 3.6. So, ε = idN2 . Then

degN2

(

α ◦ β(z)
)

= degN2
(z)

for all z ∈ CH(N2|k). ��

Sublemma 5.15. In the situation of Theorem 3.6,

rank CHr(N1 |k) = rank CHr(N2 |k) for all r.

Proof. This follows from Sublemma 5.13, and the fact that the conditions of
Theorem 3.6 are symmetric with respect to N1 and N2 (Sublemma 5.14). ��

Sublemma 5.16. In the situation of Theorem 3.6,

degN2
◦α = degN1

: CH(N1|k) → Z/2,

and

degN1
◦β = degN2

: CH(N2|k) → Z/2.

Proof. By Sublemma 5.14, it is enough to show that if degN1
(y) = 0, then

degN2

(

α(y)
)

= 0, and if degN2
(z) = 0, then degN1

(

β(z)
)

= 0.
Ker(degN1

) ⊂ CH(N1|k) is generated by {2 · ew}w∈Ω1 and l1m1/2 + l2m1/2 =
hm1/2. Consequently, if for some y ∈ CH(N1|k), we have degN1

(y) = 0 and
degN2

(

α(y)
)

= 1, then rankCHm1/2(N1|k) = 2 and degN2

(

α(hm1/2)
)

= 1. By
Sublemma 5.15, rank CHm1/2(N2|k) = 2, which implies that m1 = m2 and
degN2

: CHm2/2(N2|k) → Z/2 coincides with the usual degree mod 2. Then
on Q2 there is an m2/2-dimensional cycle of odd degree. By Lemma 2.7, Q2

is hyperbolic. Then any indecomposable direct summand in M(Q2) is a Tate
motive, which contradicts the fact that rank CHm2/2(N2|k) = 2. ��



50 Alexander Vishik

Sublemma 5.17. In the situation of Theorem 3.6, if u ∈ Hom(N1, N2) then
either degN2

◦u = degN1
, or degN2

◦u = 0. The same holds for any v ∈
Hom(N2, N1).

Proof. If degN2
◦u �= 0, then, by Sublemma 5.16, the pair (u, β) satisfies the

conditions of Theorem 3.6. Applying Sublemma 5.16 again, we get the state-
ment. ��

Sublemma 5.18. Let rank CHr(N1|k) = 2. Suppose α and β are as in
Theorem 3.6. Then there exist α′, β′ such that β′

(r) = λ · β(r), where λ is
odd, det(α′

(r)) = det(β′
(r)), (β′ ◦ α′)(r) = l · idCHr(N1|k), where l is odd, and

(α′ − α)(r) ∈ {2 · Mat2×2(Z) + ( 1 1
1 1 ) ·Z}.

Proof. Let rank CHr(N1|k) = 2. Then, by Sublemma 5.12,

γ(r) ∈ {id +2 · Mat2×2(Z) + ( 1 1
1 1 ) · Z}.

This implies that det γ(r) = µ is odd, and tr γ(r) is even.
In End CHr(N1 |k) we have the equality

−γ(r) ◦
(

γ(r) − tr(γ(r))
)

= µ · idCHr(N1|k) .

Take α′′ := −α ◦ (β ◦ α − tr(γ(r)) · idN1). It is easy to see that (β ◦ α′′)(r) =
µ · idCHr(N1|k).

Let α′ := µ · α′′, and β′ := det(α′′
(r)) · β. Then detα′

(r) = detβ′
(r), and

(β′ ◦ α′)(r) = (µ2 · det α′′
(r)) · idCHr(N1|k). Since degN2

◦α = degN1
, we have

α(r)◦( 1 1
1 1 ) ∈ {2·Mat2×2(Z)+( 1 1

1 1 ) ·Z}, and (α−α′)(r) ∈ {id+2·Mat2×2(Z)+
( 1 1

1 1 ) · Z}. ��

Sublemma 5.19. In the situation of Theorem 3.6,

(1) For any r such that rank CHr(N1|k) = 1, there exists a morphism κr,1→2 ∈
Hom(N1, N2) such that (κr,1→2)(r) = 2 and (κr,1→2)(s) = 0 for all s �= r.

(2) If for some r, rank CHr(Ni|k) = 2, then there exist morphisms θr,1→2 and
κr,1→2 ∈ Hom(N1 , N2) such that (θr,1→2)(r) = ( 1 1

1 1 ), (κr,1→2)(r) = ( 2 0
0 2 ),

and (θr,1→2)(s) = 0 = (κr,1→2)(s), for all s �= r.

Proof. (1) Let ei be a generator of CHr(Ni|k). We can assume that Ni is in
normal form (see Definition 5.5). Also, we can assume that Ni is not a Tate
motive.

Using hmi−r (and Sublemma 5.7 (with ψ = pNi), if r = mi/2), we get
2·CHr(M(Qi)|k) ⊂ image

(

CHr(M(Qi)) → CHr(M(Qi)|k)
)

. Since ϕNi ◦jNi =
idNi , we have 2 · CHr(Ni|k) ⊂ image

(

CHr(Ni) → CHr(Ni|k)
)

. In particular,
2 · ei ∈ image

(

CHr(Ni) → CHr(Ni|k)
)

. Let 2 · ei = gi.
degN2

(

α(e1)
)

= degN1
(e1) = 1, and, by Sublemma 5.15, degN1

(

β(e2)
)

=
degN2

(e2) = 1. That means: e1 ∈ image
(

CHr(N1) → CHr(N1|k)
)

if and only
if e2 ∈ image

(

CHr(N2) → CHr(N2|k)
)

. We have two cases:
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(A) ei is defined over k;
(B) ei is not defined over k.

Define morphisms u ∈ Hom(N1, Z(r)[2r]) and v ∈ Hom(Z(r)[2r], N2) in

the following way: u := hm1−r ◦ jN1 , and v :=

{

e2 in case (A),
g2 in case (B).

Since N1 is in normal form, jN1(e1) is either ±li or ±hm1−i. Moreover,
these cases correspond to (B) and (A), respectively (by Lemma 2.7, since N1

is not a Tate motive).
Define κr,1→2 := ±v◦u. Clearly, u(e1) (as a map from Z(r)[2r] to Z(r)[2r])

is equal to id times the degree of the intersection of jN1 (e1) and hm1−r. So,
it is ±2 in case (A), and ±1 in case (B). Then κr,1→2(e1) = 2 · e2, and
so, (κr,1→2)(r) = 2. Since Hom(Z(s)[2s], Z(r)[2r]) = 0 for s �= r, we have
u(CHs(N1|k)) = 0 and (κr,1→2)(s) = 0 for all s �= r.

(2) Let now rank CHr(Ni|k) = 2 for some r. Then m1 = m2, and we can
define θr,1→2 := ϕN2 ◦ (hm1/2 × hm1/2) ◦ jN1 . It is easy to see that θr,1→2 has
the needed properties.

To define κr,1→2, observe that if α′ and β′ are as in Sublemma 5.18, then
β′

(r) = λ · β(r) = λ ·
(

a b
c d

)

and α′
(r) = λ ·

(

d −b
−c a

)

.
If the pair (α, β) satisfies the conditions of Theorem 3.6, then the pair

(α, β + θr,2→1) satisfies them too (by Sublemma 5.17). Then there exists an
odd integer µ and α′′ ∈ Hom(N1, N2), β′′ ∈ Hom(N2, N1) such that β′′

(r) =
µ · (β + θr,2→1)(r), det α′′

(r) = detβ′′
(r), and (β′′ ◦ α′′)(r) = l′′ · idCHr(N1|k).

Take ε := λ · α′′ − µ · α′ + λµ · θr,1→2, then ε(r) = λµ · ( 2 0
0 2 ). The

composition degN2
◦ε : CHr(N1|k) → Z/2 is zero. By Sublemma 5.17,

degN2
◦ε : CHs(N1|k) → Z/2 is zero for all s. Thus, for s �= r, ε(s) ∈ Z is

even. Define ε′ := ε −
∑

s �=r(ε(s)/2) · κs,1→2. Then ε′(r) = ε(r), and ε′(s) = 0
for s �= r. By Lemma 5.4, there exists κr,1→2 ∈ Hom(N1 , N2) such that
λµ · κr,1→2|k = ε′|k. Clearly, κr,1→2 has the desired properties. ��

Sublemma 5.20. Suppose rank CHr(Ni) = 2 and α, β satisfy the conditions
of Theorem 3.6. Then there exists α2 ∈ Hom(N1, N2) such that (α −α2)(r) ∈
{2 · Hom(CHr(N1|k), CHr(N2|k)) + θr,1→2 · Z}, and (α2)(r) = η · A, where η
is odd and A : CHr(N1|k) → CHr(N2|k) is an isomorphism.

Proof. Since rank CHr(N1|k) = rank CHr(N2|k) = 2, we clearly have r =
m1/2 = m2/2.

For any morphism w ∈ Hom(Ni, Nj), we denote by w∨ the dual morphism
ϕNi ◦ (jNj ◦ w ◦ ϕNi)∨ ◦ jNj ∈ Hom(Nj , Ni).

Let us denote by w̃ ∈ Hom(Nj , Ni) the following morphism: w̃ := w∨, if
m is not divisible by 4, and := τi ◦ w∨ ◦ τj , if m is divisible by 4 (τi here is
the morphism corresponding to the reflection on Qi). If w(r) = ( x y

z t ), then
w̃(r) = ( t y

z x ).
Let β(r) =

(

a b
c d

)

, and α′ and β′ be as in Sublemma 5.18. In particular,
β′

(r) = λ ·
(

a b
c d

)

, and α′
(r) = λ ·

(
d −b
−c a

)

. Let f be the greatest common
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divisor of c − b and d − a, and f = u · (d − a) + v · (c − b). Then for ψ :=
(u − vτ2) ◦ α′ + (u + vτ2) ◦ ˜β′ − λ(ua + vb)κr,1→2, we have ψ(r) = λ ·

(

2f 0
0 0

)

.
Let α1 := α′ − ψ ◦ ([(d− a)/2f ] + [(c− b)/2f ] · τ1). Then α1 = λ ·

(
a1 b1
c1 d1

)

,
where (a1 − d1), (b1 − c1) ∈ {0, f}.

Thus, either (1) a1 = d1, or (2) b1 = c1, or (3) a1 − d1 = b1 − c1.
Considering α1 ◦ τ1 (and α2 ◦ τ1), we can reduce case (2) to case (1). So,

it is enough to consider cases (1) and (3).
(1) Take α2 := α1 − λ

(

(a1 − 1) · θr,1→2 − (b1 − a1 + 1)/2 · κr,1→2 ◦ τ1

)

.
Then (α2)(r) = λ · ( 1 0

∗ 1 ) (note that (b1 − a1 + 1) ≡ (b + d + 1) ≡ 0 (mod 2),
by Sublemma 5.16).

(3) Take α2 := α1 − λ · κr,1→2 ◦ ([(a1 + d1)/4] + [(b1 + c1)/4] · τ1). Then
(α2)(r) = λ

(
a2 b2
c2 d2

)

, where a2 − d2 = b2 − c2, (a2 + d2), (b2 + c2) ∈ {0, 2}, and
a2+b2+c2+d2 = 2 (by Sublemma 5.16, (a+b) ≡ (a+c) ≡ (b+d) ≡ (c+d) ≡ 1
(mod 2)).

Hence, in any case, det((α2)(r)/λ) = ±1. ��

Sublemma 5.21. In the situation of Theorem 3.6, there exist a morphism
α3 ∈ Hom(N1, N2) and some odd integer η such that for all s, (α3)(s) = η ·As,
where As is invertible.

Proof. If rank CHs(N1|k) ≤ 1 for all s, take α′′ := α and η := 1. If
rankCHr(N1|k) = 2 for some r, take α′′ := α2 and take η from Sublemma 5.20
(here α2, A are also from Sublemma 5.20).

In the light of Sublemma 5.20, degN2
◦α′′ : CHr(N1|k) → Z/2 is nonzero.

By Sublemma 5.17, for all s with rank CHs(N1|k) = 1, (α′′)(s) = λs is odd.
Define α3 := α′′ −

∑

(λs − η)/2 · κs,1→2, where the sum is taken over all s
such that rank CHr(N1|k) = 1, and κs,1→2 are elements from Sublemma 5.19.
Then, for any t, (α3)(t) = η · At, where At is invertible. ��

Now we can prove Theorem 3.6. We start with the case d1 = d2 = 0.
From Sublemma 5.21 and Lemma 5.4 it follows that, in the situation of

Theorem 3.6, there exists α4 ∈ Hom(N1 , N2) such that α4|k is an isomorphism.
Since the conditions of Theorem 3.6 are symmetric with respect to N1 and N2

(by Sublemma 5.14), we also have some β4 ∈ Hom(N2, N1) such that β4|k is an
isomorphism. Then β4 ◦α4 and α4 ◦β4 are isomorphisms, by Corollary 5.1(3).

Now the general case can be reduced to the case d1 = d2 = 0 since
M(Qi)(di)[2di] is a direct summand in M(Q′

i), where q′i := qi ⊥ di · H, by
Proposition 2.1. ��

5.4 Proof of Theorem 3.8

Sublemma 5.22. Suppose N and L are indecomposable direct summands of
M(Q) in normal form, and γ ∈ Hom(N, L) is a map such that the composition
degQ ◦jL ◦ γ : CH(N |k) → Z/2 is nonzero. Then N � L.
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Proof. Let degQ ◦jL ◦ γ : CHr(N |k) → Z/2 be nonzero for some r. In par-
ticular, CHr(N |k) �= 0 �= CHr(L|k). By Theorem 3.11, either N � L,
or r = (dimQ)/2 (since only for such r, rank CHr(M(Q)|k) = 2), and
rankCHr(N |k) = rank CHr(L|k) = 1.

If N is not isomorphic to L, then, in the notation of Definition 5.5, N and
L are of types (2) or (3). If L is of type (3), then degQ ◦jL : CHr(L|k) → Z/2
is zero (since in this case CHr(L|k) is generated by the class of hr). This
is clearly not the case, so L is of type (2). Since L is not isomorphic to N ,
and N , L are indecomposable direct summands in normal form, we have by
Lemma 5.8 that N is of type (3). But then the generator hr of CHr(N |k) is
defined over k. This implies that on Q there exists an r-dimensional cycle of
odd degree (namely, jL ◦γ(hr)). By Lemma 2.7, Q is hyperbolic. Then N and
L must be Tate motives. Since rankCHr(N |k) = rank CHr(L|k) = 1, we have
N � Z(r)[2r] � L. Contradiction. So, N � L. ��

Sublemma 5.23. Using the notation in Theorem 3.8, suppose N is an in-
decomposable direct summand of M(Q2)(d2)[2d2], and the maps

N
β �� M(Q1)(d1)[2d1]
α

��

are such that the composition degQ1
◦β ◦α : CH(M(Q1)(d1)[2d1]|k) → Z/2 is

nonzero. Then there exists a direct summand L of M(Q1)(d1)[2d1] isomorphic
to N .

Proof. Let M(Q1)(d1)[2d1] =
⊕

a∈Λ1
La, where La are indecomposable dir-

ect summands in normal form (by Theorem 3.11, we can always find such a
decomposition). Let αa := α ◦ jLa ∈ Hom(La, N), and βc := ϕLc ◦ β. We have
β ◦ α =

∑

a,c∈Λ1
(pLc ◦ β ◦ α ◦ pLa) =

∑

a,c∈Λ1
(jLc ◦ βc ◦ αa ◦ ϕLa).

Since the composition degQ1
◦β ◦ α : CH(M(Q1)(d1)[2d1]|k) → Z/2 is

nonzero we have that for some a, c the composition

degQ1
◦jLc ◦ βc ◦ αa : CH(La|k) → Z/2

is nonzero. By Sublemma 5.22, there exists an isomorphism ψ : Lc → La.
Take u := αa ◦ ψ ∈ Hom(Lc, N), and v := βc ∈ Hom(N, Lc). Then the map

degQ1
◦jLc ◦ v ◦ u : CHr(Lc|k) → Z/2

is nonzero. Since the composition

CHr(Lc|k)
jLc−−→ CHr(M(Q1)(d1)[2d1]|k)

degQ1−−−−→ Z/2

either coincides with degLc : CHr(Lc|k) → Z/2 or is zero, we get that
degLc ◦v ◦ u : CHr(Lc|k) → Z/2 is nonzero. By Theorem 3.6, Lc � N . ��
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Let M(Q2)(d2)[2d2] =
⊕

b∈Λ2
N b

2 , where N b are indecomposable direct
summands. Let αb := ϕNb ◦ α and βb := β ◦ jNb . We have

β ◦ α =
∑

b∈Λ2

(β ◦ pNb ◦ α) =
∑

b∈Λ2

(βb ◦ αb).

So, if degQ1
◦β ◦α : CHr(M(Q1)(d1)[2d1]|k) → Z/2 is nonzero, then for some

b ∈ Λ2, the map

degQ1
◦βb ◦ αb : CHr(M(Q1)(d1)[2d1]|k) → Z/2

is nonzero. By Sublemma 5.23, there exists some indecomposable direct sum-
mand L of M(Q1)(d1)[2d1] isomorphic to N b. Clearly, rank CHr(N b|k) �= 0,
so Z(r)[2r] is a direct summand in N b|k. Theorem 3.8 is proven. ��

5.5 Proof of Proposition 4.5

Argue by contradiction. Changing N into N∨, we have CHm(N |k) �= 0 and
CH0(N |k) = 0. The composition ν := (ϕN ⊗ id) ◦ ∆Q ◦ jN gives a section of
the natural projection π : N ⊗ M(Q) → N .

Let β0 ∈ Hom(Z(m)[2m], M(Q)) = CHm(Q) be the morphism correspond-
ing to the “generic cycle” on Q. Let

u := (ϕN ⊗ id) ◦ (β0 ⊗ id) ∈ Hom
(

M(Q)(m)[2m], N ⊗ M(Q)
)

and

v := ∆∨ ◦ (jN ⊗ id) ∈ Hom(N ⊗ M(Q), M(Q)(m)[2m]),

where ∆∨ ∈ Hom(M(Q×Q), M(Q)(m)[2m]) is dual to the “diagonal embed-
ding” ∆ via duality: CH∗(A × B) � CH∗(B × A).

Since jN ◦ ϕN ◦ β0 = β0 (since CHm(N |k) = Z, and hence jN ◦
ϕN : CHm(Q|k) → CHm(Q|k) is the identity map), we have v ◦ u = id ∈
End(M(Q)(m)[2m]). So, N ⊗ M(Q) = M(Q)(m)[2m] ⊕ X. Let ϕX ∈
Hom(N ⊗M(Q), X) and jX ∈ Hom(X, N ⊗M(Q)) be the corresponding pro-
jection and embedding. Thus, ϕX ◦ jX = idX , jX ◦ ϕX + u ◦ v = idN⊗M(Q),
and ϕX ◦ u = 0, v ◦ jX = 0.

In particular, π ◦ ν = (π ◦ jX) ◦ (ϕX ◦ ν) + (π ◦ u) ◦ (v ◦ ν). So, there exist
maps α1 : N → M(Q)(m)[2m], β1 : M(Q)(m)[2m] → N , and α2 : N → X,
β2 : X → N such that β1 ◦ α1 + β2 ◦ α2 = idN .

We can assume that m > 0. Then, for arbitrary maps α′
1 : M(Q) →

M(Q)(m)[2m], β′
1 : M(Q)(m)[2m] → M(Q), the composition

degQ ◦β′
1 ◦ α′

1 : CHm(Q|k) → Z/2

is zero. Really, such degree is equal to the degree of some 0-cycle on Q, and
Q is anisotropic. Since the maps degQ ◦jN and degN coincide on CHm(N |k),
we get that degN ◦β1 ◦ α1 : CHm(N |k) → Z/2 is zero.
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Consider E = k(Q). We have q|E = H ⊕ q′, where q′ is anisotropic
(since i1(q) = 1). By [23, Proposition 1] (Proposition 2.1), M(Q|E) =
Z ⊕ M(Q′)(1)[2] ⊕ Z(m)[2m]. And then N |E = Nan ⊕ Z(m)[2m], where Nan

is a direct summand of M(Q′)(1)[2] (since CHm(N |k) = Z, and CH0(N |k) =
0). Moreover, if j̃ : Z(m)[2m] → N |E and ϕ̃ : N |E → Z(m)[2m] are the
corresponding maps, then j̃ coincides with (ϕN ◦ β0)|E. Then the map
j̃⊗ idM(Q) : M(Q)(m)[2m]|E → N ⊗M(Q)|E coincides with u|E. This implies
that the complementary direct summand Nan ⊗ M(Q) (in

(

N ⊗ M(Q)
)

|E)
is isomorphic to X|E . Note that Nan ⊗ M(Q) is a direct summand in
M(Q′)(1)[2]⊗ M(Q). So, α2|E and β2 |E give us maps

α′
2 : N |E → M(Q′ × Q)(1)[2] and β′

2 : M(Q′ × Q)(1)[2] → N |E

such that β′
2 ◦ α′

2 = (β2 ◦ α2)|E.
If α′

2 ◦ j̃ ∈ Hom(Z(m)[2m], M(Q′ × Q)(1)[2]) = CHm−1(Q′ × Q) is rep-
resented by the cycle A, and ϕ̃ ◦ β′

2 ∈ Hom(M(Q′ × Q)(1)[2], Z(m)[2m]) =
CHm−1(Q′ × Q) is represented by the cycle B, then the composition

(ϕ̃ ◦ β′
2) ◦ (α′

2 ◦ j̃) ∈ End(Z(m)[2m]) = Z

is given by the degree of the 0-cycle A ∩ B ∈ CH0(Q′ × Q). Since Q′ is
anisotropic, this number is even, by Springer’s Theorem. Since j̃ and ϕ̃
are isomorphisms on CHm, the composition degN ◦β′

2 ◦ α′
2 = degN ◦β2 ◦

α2 : CHm(N |k) → Z/2 is zero. Since degN ◦β1 ◦ α1 : CHm(N |k) → Z/2 is
zero as well, we get a contradiction with β1 ◦ α1 + β2 ◦ α2 = idN . ��

5.6 Proof of Corollary 4.7

Sublemma 5.24. Let Q be an anisotropic quadric and L be an indecompos-
able direct summand of M(Q) such that a(L) = 0. Then for any subquadric
P ⊂ Q with dimP = dimQ − i1(q) + 1, we have

(1) M(P ) contains a direct summand isomorphic to L;
(2) p|k(Q) and q|k(P) are isotropic.

Proof. For any field extension E/k, we have that p|E is isotropic if and only if
q|E is. In particular we get (2). So, we have rational (algebro-geometric) maps
f : Q ��� P , and g : P ��� Q. Let α ∈ CHdim P (Q×P ) = Hom

(

M(Q), M(P )
)

and β ∈ CHdim Q(P ×Q) = Hom
(

M(P ), M(Q)
)

be the closures of the graphs
of f and g, respectively. Clearly, α(l0) = l0 and β(l0) = l0. So, the composition
degQ ◦β ◦α : CH0(Q|k) → Z/2 is nonzero. By Theorem 3.8, M(P ) contains a
direct summand isomorphic to L (note that if M is an indecomposable direct
summand of M(Q) such that CH0(M) �= 0, then M � L, by Lemma 5.8). ��

Sublemma 5.25. Let Q be an anisotropic quadric and L be an indecompos-
able direct summand of M(Q) with a(L) = 0. Then there exists a subquadric
P ⊂ Q such that
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(1) i1(p) = 1;
(2) M(P ) contains a direct summand isomorphic to L;
(3) p|k(Q) and q|k(P) are isotropic.

Proof. Use induction on the dimension of Q. The case of dimQ = 0 is trivial.
Suppose the statement is true for all quadrics of dimension < dimQ. Consider
P from Sublemma 5.24. Either i1(q) = 1, in which case the statement is trivial,
or dimP < dimQ. Then there exists P ′ such that P ′ satisfies (1) and (2),
and p′|k(P), p|k(P ′) are isotropic. Since we also have that p|k(Q), q|k(P) are
isotropic, we get that P ′ satisfies (3) (since if q2|k(q1), q3|k(q2) are isotropic,
then q3|k(q1) is). ��

Now we can prove Corollary 4.7. Let us denote c(N) := dimQ − b(N) =
a(N∨). Let P be a quadric from Sublemma 5.25. Then L is also a direct
summand in M(P ). By Proposition 4.5, b(L) = dimP . In particular, by [23,
Proposition 1], (Proposition 2.1), L|k(P) contains Z and Z(dimP )[2 dimP ] as
direct summands.

Since Q is anisotropic, P is also anisotropic. If dim P = 0, then we have
rankCH0(L|k) = 2, hence m = 0 (since L is a direct summand in M(Q)).
In this case everything is evident. If b(L) = dimP > 0, then the map
CHb(L)(P ) → CHb(L)(P |k) is surjective, and CHb(L)(L|k) = CHb(L)(P |k). So,
the map CHb(L)(L) → CHb(L)(L|k) is surjective and degL : CHb(L)(L) → Z/2
is nonzero. If b(L) < m/2, then degL = degQ ◦jL : CHb(L)(L) → Z/2, and
we get a b(L)-dimensional cycle of odd degree on Q. By Lemma 2.7, Q is
isotropic, contradiction. So, b(L) ≥ m/2. Since L|k(P) contains Z(b(L))[2b(L)]
as a direct summand, L|k(Q) also contains Z(b(L))[2b(L)] as a direct sum-
mand, by Sublemma 5.25(3). Then b(L) > m − i1(q), by Proposition 2.6
(since b(L) ≥ m/2).

It follows from Corollary 3.10 that M(Q) contains a direct summand iso-
morphic to L(i1(q)− 1)[2i1(q)− 2]. This implies b(L) ≤ dimQ− i1(q)+ 1. So,
b(L) = dimQ − i1(q) + 1, and c(L) = i1(q) − 1. ��

5.7 Proof of Proposition 4.8

Let M be an indecomposable direct summand of N such that the map
degQ : CHa(M |k) → Z/2 is nonzero, and L be an indecomposable direct
summand of M(Q) such that a(L) = 0. Let us show that a(M) = a and
M � L(a)[2a].

By Corollary 3.10, L(a)[2a] is isomorphic to a direct summand of M(Q),
and both M |k and L(a)[2a]|k contain Z(a)[2a] as a direct summand.

If a < m/2, then by Corollary 3.7, M � L(a)[2a] and a(M) = a.
Suppose now a = m/2. Then i1(q) = m/2 + 1 (so, Q is a Pfister quad-

ric). Then all the motives L|k, L(a)[2a]|k, M |k contain Z(a)[2a] as a dir-
ect summand (use Corollary 4.7). By Theorem 3.11, L, L(a)[2a] and M
cannot be all pairwise nonisomorphic. Treating separately the evident case
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a = m = 0, we can assume that a > 0, and so, M is isomorphic either to L
or to L(a)[2a]. Let us show that the first opportunity is impossible. Really,
b(L(a)[2a]) = m, we have an equality CHm(L(a)[2a]|k) = CHm(Q|k), and
consequently the generator of CHm(L(a)[2a]|k) is defined over the base field
k. Hence, the generator of CHa(L|k) is defined over the base field. Thus, the
map degQ : CHa(L|k) → Z/2 should be trivial (otherwise, by Lemma 2.7,
q would be hyperbolic). This implies that Λ(L) does not contain Llo. And
so, M �� L by Lemma 4.1. Hence M � L(a)[2a] and a(M) = a. But
Z(a(M))[2a(M)] ⊕ Z(b(M))[2b(M)] is a direct summand of M |k, hence of
N |k, and b(M) = m− i1(q) + 1 + a by Corollary 4.7. ��

As a by-product we get the following

Corollary 5.26. Let Q be an anisotropic quadric of dimension m, and M
be an indecomposable direct summand of M(Q) such that 0 ≤ a(M) < i1(q).
Then sizeM = m− i1(q) + 1.

5.8 Proofs of Theorem 4.13 and Corollary 4.14

Let Q be a smooth projective quadric. We denote by Qi the variety of flags
π• = (π0 ⊂ π1 ⊂ · · · ⊂ πi), where πj ⊂ Q is a j-dimensional projective
subspace. For example, Q0 = Q. Clearly, Qi has a rational point if and only
if the form q is (i + 1)-times isotropic: q = (i + 1) · H ⊥ q′.

We have natural maps

fi : M(Qi)(i)[2i] → M(Q) and gj : M(Qj)⊗M(Q) → M(Qj+1)(j+1)[2j+2]

given by the cycles F ⊂ Qi × Q, and G ⊂ Qj ×Q×Qj+1, respectively, where
(π•, x) ∈ F ⇔ x ∈ πi, and (π•, x, ν•) ∈ G ⇔ ν≤j

• = π• and x ∈ νj+1.
The following result is very useful in the applications. For example, it is

used in the proof of the criterion of motivic equivalence for quadrics (see [25]
and Theorem 4.18).

Theorem 5.27. Let Q be a smooth projective quadric and N be a dir-
ect summand of M(Q) such that a(N) = i ≤ (dimQ)/2. Then there exist

maps N
α �� M(Qi)(i)[2i]
β

�� such that the composition β ◦ α : CHi(N |k) →

CHi(N |k) is the identity.

Proof. Let us prove by induction that for every 0 ≤ j ≤ i there exist maps

N
αj �� M(Qj)(j)[2j]
βj

�� such that the composition βj ◦ αj : CHi(N |k) →

CHi(N |k) is the identity.
(j = 0): We can take α0 := jN : N → M(Q), and β0 := ϕN : M(Q) → N .
(j → j + 1): Consider the following diagram:
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M(Qj)(j)[2j]
∆Qj (j)[2j]

�� M(Qj) ⊗ M(Qj)(j)[2j]

id⊗βj

��
N

αj

��

M(Qj) ⊗ N

id⊗jN

��

pr��

M(Q)

ϕN

��

M(Qj) ⊗ M(Q)

gj��

















pr��

M(Qj+1)(j + 1)[2j + 2]
τj+1◦fj+1

�����������������

where τ : M(Q) → M(Q) is the motive of a reflection in the orthogonal group
O(q).

Denote u := (id⊗βj) ◦ ∆Qj (j)[2j] ◦ αj. The composition pr ◦ u is equal
to βj ◦ αj, so the map pr ◦ u : CHi(N |k) → CHi(N |k) is the identity. But
a(N) = i, so CHs(N |k) = 0 for s < i, and pr : CHi(M(Qj |k) ⊗ N |k) →
CHi(N |k) is an isomorphism (the variety Qj |k is rational). In particular, the
group CHi(M(Qj|k)⊗N |k) is generated by the elements of the form l0⊗ϕN (li),
where l0 is the class of a rational point on Qj |k and li ∈ CHi(Q|k) is the class
of a plane of dimension i. Then u(ϕN(li)) = l0 ⊗ ϕN (li).

Clearly, the middle square of the diagram is commutative. Finally, if li =
[Ai], then fj+1 ◦ gj(l0 ⊗ li) = [Bi], where Bi is some plane of dimension
i on Q such that codim(Ai ∩ Bi ⊂ Ai) = j + 1. If i < (dim Q)/2, then
[Ai] = [Bi] = τ j+1([Bi]), and if i = (dimQ)/2, then [Ai] = τ j+1([Bi]). Thus,
τ j+1 ◦ fj+1 ◦ gj(l0 ⊗ li) = li = pr(l0 ⊗ li). So, if we denote

v := ϕN ◦ τ j+1 ◦ fj+1 ◦ gj ◦ (id⊗jN ),

then v ◦ u : CHi(N |k) → CHi(N |k) is the identity. It remains to put αj+1 :=
gj◦(id⊗jN)◦u, and βj+1 := ϕN ◦τ j+1◦fj+1. The induction step is proven. ��

Let k = F0 ⊂ F1 ⊂ · · · ⊂ Fh be the generic splitting tower of M. Knebusch
for Q (see the end of Sect. 2). We recall that the sequence of Witt indices
0 = iW (q|F0) < iW (q|F1) < · · · < iW (q|Fh) contains all possible values of
iW (q|E) for arbitrary field extensions E/k.

Sublemma 5.28 (cf. [25, Lemma 4.5]). Let iW (q|Ft) ≤ i < j < iW (q|Ft+1),
and let N be an indecomposable direct summand of M(Q) such that a(N) = i.
Then N(j − i)[2j − 2i] is isomorphic to a direct summand of M(Q).

Proof. By Theorem 5.27, we have a map αi : N → M(Qi)(i)[2i] such that
αi(ϕN (li)) = l0(i)[2i]. Since iW (q|Ft) ≤ i < j < iW (q|Ft+1), we have a rational
map Qi ��� Qj , which gives us a motivic map γ : M(Qi) → M(Qj) such that
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γ(l0) = l0 (l0 here is the class of a rational point). Consider the composition
ε := fj(i− j)[2i− 2j] ◦ γ(i)[2i] ◦ αi : N → M(Q)(i − j)[2i − 2j], and the map
η := ϕN ◦ ρj−i : M(Q)(i − j)[2i − 2j] → N , where the map ρj−i : M(Q)(i −
j)[2i − 2j] → M(Q) is defined by the plane section of codimension (j −
i) in Q, embedded diagonally into Q × Q. So, we have the pair of maps

N
ε �� M(Q)(i − j)[2i − 2j].
η

�� Since fj(l0(j)[2j]) = lj and ρj−i(lj(i−j)[2i−

2j]) = li, we get that the map degN ◦η ◦ ε : CHi(N |k) → Z/2 is nonzero. By
Sublemma 5.23, N is isomorphic to a direct summand of M(Q)(i − j)[2i −
2j]. ��

Sublemma 5.29. Let Q be a smooth anisotropic quadric of dimension m
and N be an indecomposable direct summand of M(Q). Then there exists
0 ≤ t < h(q) such that, for the fields Ft ⊂ Ft+1 from the generic splitting
tower of M. Knebusch for Q, we have iW (q|Ft+1) > a(N), c(N) ≥ iW (q|Ft),
and a(N) + c(N) ≤ iW (q|Ft) + iW (q|Ft+1) − 1.

Proof. Let t and s be such that iW (q|Ft) ≤ a(N) < iW (q|Ft+1) and iW (q|Fs) ≤
c(N) < iW (q|Fs+1). Then applying Proposition 4.10 to N and N∨ we get

c(N) ≤ iW (q|Ft) + iW (q|Ft+1) − a(N) − 1

and

a(N) ≤ iW (q|Fs) + iW (q|Fs+1 ) − c(N) − 1.

This implies t = s and a(N) + c(N) ≤ iW (q|Ft) + iW (q|Ft+1 ) − 1. ��

Now we can prove Theorem 4.13. Let Q, j, N be as in Theorem 4.13.
Denote i = a(N). If j > i, then everything is contained in Sublemma 5.28.

Let (i − j) > 0. Let F = Fr be a field in the generic splitting tower of
M. Knebusch, given by Sublemma 5.29. Then iW (q|Fr+1) > a(N) ≥ iW (q|Fr ).
By the conditions of Theorem 4.13, iW (q|Fr+1) > a(N) − (i − j) ≥ iW (q|Fr ).
Also, iW (q|Fr+1) > c(N) ≥ iW (q|Fr ). On the other hand, from Sublemma 5.29
it follows that iW (q|Fr+1) > c(N) + (i − j) ≥ iW (q|Fr ). That means that the
pair (i′, j′) := (c(N), c(N) + (i − j)) and the indecomposable direct sum-
mand N∨ (with a(N∨) = c(N)) satisfy the conditions of Sublemma 5.28.
By Sublemma 5.28, in M(Q) there exists a direct summand L isomorphic to
N∨(i−j)[2i−2j]. Then L∨ will be isomorphic to N(j−i)[2j−2i]. Theorem 4.13
is proven. ��

To prove Corollary 4.14, consider l := iW (q|Ft+1) − 1 − a(N). By Sub-
lemma 5.28, N(l)[2l] is isomorphic to a direct summand M of M(Q). Clearly,
a(M) = a(N) + l = iW (q|Ft+1) − 1, and c(M) = c(N) − l. Since a(M) ≥
iW (q|Ft), we have, by Sublemma 5.29, c(M) ≥ iW (q|Ft). This implies

a(N) + c(N) ≥ iW (q|Ft) + iW (q|Ft+1) − 1.

Combined with Sublemma 5.29, this gives the required result. ��
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5.9 Proofs of Theorem 4.17 and Theorem 4.15

Let k = F0 ⊂ . . . ⊂ Fh(q) be the generic splitting tower for q, and 0 ≤ t < h(q)
be an integer such that iW (q|Ft) ≤ m < iW (q|Ft+1). Let k = E0 ⊂ . . . ⊂ Eh(p)

be the generic splitting tower for p, and 0 ≤ s < h(p) be an integer such
that iW (p|Es) ≤ n < iW (p|Es+1). Denote by K the composite Ft ∗ Es of the
fields Ft and Es. Using Theorem 4.13, we can assume that m = iW (q|Ft) and
n = iW (p|Es). Denote q̃ := (q|K)an and p̃ := (p|K)an. By the condition of
the theorem, dim q̃ = dim(q|Ft)an and dim p̃ = dim(p|Es)an. Moreover, for an
arbitrary field extension G/K, the conditions iW (q̃|G) > 0 and iW (p̃|G) > 0
are equivalent.

Let us denote m′ := m + it+1(q) − 1 and n′ := n + is+1(p) − 1.
Because a(N) = n, by Theorem 5.27, we have the map αn : M(P ) →

M(Pn)(n)[2n], which sends the class ln to l0(n)[2n]. From the conditions of
the theorem we have rational maps Pn ��� Qm and P n ��� Qm′

, which give
us motivic maps λ : M(Pn) → M(Qm) and λ′ : M(Pn) → M(Qm′

) sending
the class of a rational point to the class of a rational point. Finally, we have the
maps fm : M(Qm)(m)[2m] → M(Q) and fm′ : M(Qm′

)(m′)[2m′] → M(Q).
Let ε : M(P )(m− n)[2m− 2n] → M(Q) be the composition

ε = fm ◦ λ(m)[2m] ◦ αn(m − n)[2m− 2n]

and ε′ : M(P )(m′ − n)[2m′ − 2n] → M(Q) be the composition

ε′ = fm′ ◦ λ′(m′)[2m′] ◦ αn(m′ − n)[2m′ − 2n].

Since p̃|K(q̃) is isotropic, there exists a morphism γ̃ : M(Q̃) → M(P̃ ) such
that γ̃ : CH0(Q̃|K) → CH0(P̃ |K) sends the class of a rational point to the
class of a rational point. Since M(Q̃)(iW (q|K))[2iW (q|K)] is a direct sum-
mand of M(Q|K) and M(P̃ )(iW (p|K))[2iW (p|K)] is a direct summand of
M(P |K) (by Proposition 2.1), the morphism ε|K provides us with the morph-
ism ε̃ : M(P̃ )(m)[2m] → M(Q̃)(m)[2m] (we recall that m = iW (q|Ft) =
iW (q|K) and n = iW (p|Es) = iW (p|K)), and the composition degP̃ ◦γ̃ ◦
ε̃(−m)[−2m] : CH0(P̃ |K) → Z/2 is nonzero. Let M̃ be an indecomposable
direct summand of M(Q̃) such that a(M̃) = 0, and Ñ be an indecomposable
direct summand of M(P̃ ) such that a(Ñ) = 0. By Theorem 3.6, M̃ � Ñ . In
particular, size M̃ = size Ñ . In the light of Corollary 4.7, we get the equality

dimQ − dimP + n − m = m′ − n′.

Denote this number as j.
Proposition 3.5, on its part, gives us that

degÑ ◦ϕÑ ◦ γ̃ ◦ ε̃(−m)[−2m] ◦ jÑ = degÑ : CH(Ñ |K) → Z/2.

In particular, degÑ ◦ϕÑ ◦ γ̃ ◦ ε̃(−m)[−2m] ◦ jÑ |CHb(Ñ)
�= 0. By Corollary 4.7,

b(Ñ) = dim P̃ − is+1(p) + 1. So,
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ε̃(−m)[−2m](h̃is+1(p)−1) = µ · h̃it+1(q)−1,

where µ is odd and h̃ is the class of a hyperplane section in P̃ and Q̃, respect-
ively. Then ε(hn′

(m− n)[2m− 2n]) = µ · hm′
, where µ is odd and h ∈ CH1 is

the class of a hyperplane section in P and Q, respectively.
Let ε∨ : M(Q) → M(P )(j)[2j] be the morphism dual to ε (the corres-

ponding cycle is obtained by switching the factors in P × Q). Denote by
(−,−) the natural composition pairings CHr M(Q) ⊗ CHr M(Q) → Z and
CHr(M(P )(j)[2j])⊗CHr(M(P )(j)[2j]) → Z. We have the tautological equal-
ity (ε∨(lm′ ), hn′

(m′ − n′)[2m′ − 2n′]) = (lm′ , ε(hn′
(m − n)[2m− 2n])). Thus,

ε∨(lm′ ) ≡ ln′(m′ − n′)[2m′ − 2n′] (mod 2).
Consider the diagram:

M(Q)
ε∨

��������������

M(P )(m′ − n)[2m′ − 2n]

ε′
��

M(P )(m′ − n′)[2m′ − 2n′]
ρis+1(p)−1

��

where ρis+1(p)−1 is given by the plane section of codimension is+1(p) − 1,
embedded diagonally into P × P .

Let ln ∈ CHn(P |k) be the class of a projective plane of dimension n on
P |k. By the construction of ε′, we have ε′(ln(m′ − n)[2m′ − 2n]) = lm′ ∈
CHm′(Q|k). And we know that ε∨(lm′ ) ≡ ln′(m′−n′)[2m′−2n′] (mod 2). So,
the composition degP ◦ρis+1(p)−1◦ε∨◦ε′ : CHm′ (M(P |k)(m′−n)[2m′−2n]) →
Z/2 is nonzero. Then, by Theorem 3.8, N(m′ − n)[2m′ − 2n] is isomorphic
to a direct summand of M(Q). Since a(N(m′ − n)[2m′ − 2n]) = m′ and
iW (q|Ft) ≤ m, m′ < iW (q|Ft+1), by Theorem 4.13, M := N(m−n)[2m−2n] is
also isomorphic to a direct summand of M(Q). Theorem 4.17 is proven. ��

Theorem 4.15 is an evident corollary of Theorem 4.17. ��

6 Some Applications

In this section we list some applications of the technique described above.

6.1 Higher Forms of the Motives of Quadrics

In Theorem 3.12 it was shown that the motive of a Pfister quadric Q{a1,...,an}
decomposes into 2n−1 pieces isomorphic up to shift by the Tate motive. This
appears to be a particular case of the following general result.

Theorem 6.1 ([25, Theorem 4.1]). Let α = {a1, . . . , an} ∈ KM
n (k)/2 be

some pure symbol, p some (nondegenerate) quadratic form, and r := 〈〈α〉〉 · p.
If dim p is odd, let a = (dimR)/2 − 2n−1 + 1. Then there exists some direct
summand Fα(M(P )) of M(R) such that
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M(R) =

{

Fα(M(P )) ⊗ M(P2n−1) if dim p is even,
(

Fα(M(P )) ⊗ M(P2n−1)
)

⊕ M(Qα)(a)[2a] if dim p is odd.

Proof. We use the following well-known Lemma.

Lemma 6.2. If a form r is divisible by an n-fold Pfister form 〈〈α〉〉, then
it(r), for 0 ≤ t < h(r), as well as (ih(r)(r) + (dim r)/2), is divisible by 2n.

Proof. Let F0 ⊂ . . . ⊂ Fh(r) be the generic splitting tower for r, and
0 ≤ t ≤ h(r). Then rt−1 := (r|Ft−1)an = 〈〈α〉〉·pt−1 and rt := (r|Ft)an = 〈〈α〉〉·pt

for some forms pt−1/Ft−1 and pt/Ft. If the difference dim pt − dim pt−1 is
odd, then one of the forms rt−1, rt is in In+1 and another is not. Clearly,
then rt ∈ In+1(Ft) and rt−1 /∈ In+1(Ft−1). More precisely, rt−1 ≡ 〈〈α〉〉
(mod I)n+1(Ft−1). Then the form 〈〈α〉〉|Ft must be hyperbolic. But if t < h(r),
then Ft is obtained from k inductively by adjoining the generic points of
quadrics of dimension > 2n − 2. Hence 〈〈α〉〉 was hyperbolic already over the
base field, r is hyperbolic, 0 = t = h(r), contradiction. This shows that for
t < h(r), the difference dim pt − dim pt−1 is even and it(r) is divisible by 2n.
Since ih(r) = (dim r)/2−

∑

t<h(r) it(r), we get the statement. ��

Let 0 < t ≤ h(r), and Yt be the set of isomorphism classes of indecompos-
able direct summands N of M(R) such that iW (r|Ft−1) ≤ a(N) < iW (r|Ft).
By Theorem 4.13 and Lemma 4.2, if Yt is nonempty, then Yt can be identified
with the set of integers in the interval [iW (r|Ft−1), iW (r|Ft)−1], and, with this
identification, a(Ny) = y. Also, Ny2 = Ny1(y2 − y1)[2(y2 − y1)], for any y1,
y2 ∈ Yt. If we put yt

0 := iW (r|Ft−1), then, by Lemma 6.2, for any 0 ≤ t < h(r),

⊕

y∈Yt

Ny
∼= Nyt

0
⊗

(2n−1
⊕

j=0

Z(j)[2j]
)

⊗
(

it(r)/2n

⊕

l=0

Z(l · 2n)[l · 2n+1]
)

.

The same will be true for t = h(r), if ih(r)(r) is divisible by 2n, that is, dim p
is even. Denote m := dimR. By Corollary 4.4,

M(R) ∼=
⊕

z∈Z(Q)

Nz

∼=
⊕

0≤j<iW(r)

(Z(j)[2j] ⊕ Z(m − j)[2m − 2j]) ⊕
(

⊕

0<t≤h(r)

⊕

y∈Yt

Ny

)

.

In the case where dim p is even, we get that M(R) is (uniquely, up to iso-
morphism) divisible by

⊕2n−1
j=0 Z(j)[2j] (we recall that iW (r) is also divisible

by 2n).
In the case where dim p is odd, we need to show that

⊕

y∈Yh(r)
Ny

∼=
M(Qα)(a)[2a], where a = m/2 − 2n−1 + 1. In other words, that N

y
h(r)
0

∼=
Mα(a)[2a]. This follows from Theorem 4.15, since for every field extension
E/k, iW (r|E) > a ⇔ the form r|E is hyperbolic ⇔ 〈〈α〉〉|E is isotropic. ��
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One can notice that Fα(M(P ))|k consists of as many Tate motives as
M(P )|k, but they are 2n-times further apart than the Tate motives from
M(P )|k. We would like to call Fα(M(P )) the higher form of M(P ). So, we
have some kind of action of the semigroup of pure symbols from KM

∗ (k)/2 on
the motives of quadrics.
Examples. (1) Let p = 〈1,−b,−c,−d〉, where {−bcd} �= 0 and {−bcd} does
not divide {b, c} ∈ KM

∗ (k)/2, and α = {a}. Then M(P ) looks like

•
• •

•

and M(R) looks like

•

•

F{a}(M(P))

• • • • •

•
F{a}(M(P))(1)[2]

(We have dotted lines here since F{a}(M(P )) is, in general, decomposable
(when {a,−bcd} divides {a, b, c}, or {a,−bcd} = 0)).

(2) Let p = 〈1,−c,−d〉 and α = {a, b}. Then M(P ) looks like • • and
M(R) looks like

•

•

F{a,b}(M(P))

•

F{a,b}(M(P))(1)[2]

•

F{a,b}(M(P))(2)[4]

•

F{a,b}(M(P))(3)[6]

•

M{a,b}(4)[8]

• • • • •

• M{a,b}(5)[10]

where F{a,b}(M(P )) ∼= M{a,b,c,d}.
As we saw in Example (2) above, the Rost motive is a particular case of

a higher form. These are the higher forms of 0-dimensional quadrics. Namely,
M{a1,...,an} = F{a2,...,an}(M(k

√
a1)).

We expect that Fα act not only on the motives of quadrics, but also on all
their direct summands. More precisely, we can state the following conjecture.
Let ϕ : Λ(P ) → Λ

(

Fα(M(P ))
)

be the natural identification such that the
ordering of the degrees of the Tate motives is preserved and the degree of
ϕ(Lup) is bigger than the degree of ϕ(Llo).

Conjecture 6.3. Under the natural identification Λ(P )
ϕ
= Λ(Fα

(

M(P ))
)

,
ϕ(λ) is connected to ϕ(µ) ⇒ λ is connected to µ. In other words, Fα preserves
the direct sum decomposition.
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6.2 Dimensions of Anisotropic Forms in In

Let W (k) be the Witt ring of quadratic forms over k, and I ⊂ W (k) be
the ideal of even-dimensional forms. I generates the multiplicative filtration
W (k) ⊃ I ⊃ I2 ⊃ · · · ⊃ In ⊃ · · · on W (k), and due to the results of
V. Voevodsky, the corresponding graded ring is isomorphic to Milnor’s K-
theory of k (mod 2).

An important problem in quadratic form theory is to describe the possible
dimensions of anisotropic forms in In. Basic here is the following famous
result.

Hauptsatz (Arason–Pfister). Let q be an anisotropic form in In. Then

(1) Either q = 0, or dim q ≥ 2n.
(2) If dim q = 2n, then q is proportional to a Pfister form.

At the same time, A. Pfister proved that there are no 10-dimensional aniso-
tropic forms in I3 (see [22]), which showed that there are further restrictions
on dim q. And it was conjectured (see, for example, [11, Conjecture 9]) that
the next possible dimension after 2n is 2n + 2n−1. In the case n = 4, this
conjecture was proven by D.Hoffmann (see [4, Main Theorem]). Now we can
prove it for all n.

Theorem 6.4 ([27, Main Theorem]). Let q be an anisotropic form in In.
Then either

dim q = 0, or dim q = 2n, or dim q ≥ 2n + 2n−1.

Remark. Originally, this theorem was proven under the additional condition
char k = 0. Then it was extended to the case of arbitrary characteristic (�= 2)
by P. Morandi, who proved that if d ∈ N is the dimension of some aniso-
tropic form from In in odd characteristic p, then it is the dimension of some
anisotropic form from In in characteristic 0. Now, due to the new results of
V. Voevodsky ([30]), we can drop this characteristic restriction in our original
theorem.

Proof. Suppose it is not the case. Then there exists anisotropic q ∈ In(k),
such that 2n < dim q < 2n + 2n−1. Let us choose such a counterexample of
the smallest possible dimension (among all forms over all fields). Let s ⊂ q
be an arbitrary 2n−1-dimensional subform. By a result of D. Hoffmann ([2]),
there exists a field extension F/k, and an anisotropic n-fold Pfister form 〈〈α〉〉
over F , such that s|F ⊂ 〈〈α〉〉 and all forms anisotropic over k stay anisotropic
after restricting to F . Let us denote q1 := q|F , q2 := (q|F ⊥ −〈〈α〉〉)an. Then
dim q1 = dim q and dim q2 ≤ dim q.

Let E/F be some extension such that dim(qi|E)an < dim q. Then (qi|E)an

is not a counterexample, and by the Hauptsatz, (qi|E)an is either 0 or pro-
portional to some n-fold Pfister form 〈〈β〉〉. But (q3−i|E)an = ((qi|E)an ⊥
±〈〈α〉〉))an. And, by a result of R. Elman and T.Y. Lam ([1]), dim(〈〈α〉〉 ⊥
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λ · 〈〈β〉〉)an is either 2n+1 or 2n+1 − 2i+1 where 0 ≤ i ≤ n, for all n-fold Pfister
forms 〈〈α〉〉 and 〈〈β〉〉. So, this dimension is either ≥ 2n +2n−1 or ≤ 2n. Hence,
dim(q3−i|E)an < dim q as well. Thus, the conditions dim(qi|E)an < dim q and
dim(q3−i|E)an < dim q are equivalent.

In particular, dim q2 = dim q, and the forms q1|F (Q2) and q2|F (Q1) are iso-
tropic. By Corollary 3.9, M(Qi) contains an indecomposable direct summand
Ni such that a(Ni) = 0, and N1

∼= N2. Note that since qi is a counterexample
of the smallest possible dimension, the height of qi is 2. That is, the split-
ting pattern of qi is (j, 2n−1), where 0 < j < 2n−2. Then, by Corollary 4.7,
sizeNi = 2n +j−1 �= 2r−1 for any r. By Theorem 4.20, Ni is not binary, and
so Λ(Ni) must contain some Tate motives Z(c)[2c] from the second shell (that
is, with j ≤ min(c, dimQi−c)). But then, for every field extension E/F , Ni|E
splits into the direct sum of Tate motives if and only if qi|E is hyperbolic (by
Proposition 2.1 and Proposition 2.6). Since N1

∼= N2, we get that, for every
field extension E/F , q1|E is hyperbolic if and only if q2|E is hyperbolic. This is
impossible, since q1 and q2 differ by a non-hyperbolic Pfister form 〈〈α〉〉 (take,
for example, E = F2, the last field from the generic splitting tower for q1).
We get a contradiction, and the theorem is proven. ��

The following conjecture describes all possible dimensions of anisotropic
forms in In .

Conjecture 6.5 ([27, Conjecture 4.11]). Let q ∈ In(k) be an anisotropic
form. Then dim q is either 2n+1 − 2i+1, where 0 ≤ i ≤ n, or is even ≥ 2n+1.

It is not difficult to show that all the values prescribed by Conjecture 6.5
are indeed realized by appropriate forms.

6.3 Motivic Decomposition and Stable Birational Equivalence of
7-dimensional Quadrics

As an illustration of the general methods described above, we will classify
7-dimensional quadrics in terms of motivic decomposition. This classification
was an essential step in the proof of the criterion of O. Izhboldin for stable
birational equivalence of 7-dimensional quadrics.

In [7], O. Izhboldin classified anisotropic 9-dimensional forms into four
different types:

(1) q is a neighbor of some 4-fold Pfister form 〈〈α(q)〉〉.
(2) q is not a neighbor, and, for some λ ∈ k∗, λq differs by a 3-dimensional

anisotropic form r(q) = 〈1〉 ⊥ r′(q) from some 3-fold Pfister form 〈〈β(q)〉〉.
(3) q is not a neighbor and q is a codimension 1 subform of an anisotropic

form of type 〈〈a〉〉 × 〈b1, b2, b3, b4, b5〉.
(4) all other forms.

Theorem 6.6 (O. Izhboldin [7]). Let p and q be anisotropic 9-dimensional
forms.
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(a) Suppose p|k(Q) and q|k(P) are isotropic (in other words, the quadrics P
and Q are stably birationally equivalent). Then p and q have the same
type.

(b) For the four different types described above, P is stably birationally equi-
valent to Q if and only if
(1) α(p) = α(q);
(2) r(p) = r(q) and β(p)|k(r(p)) = β(q)|k(r(p)).
(3) q is a codimension 1 subform of 〈〈a〉〉×〈b1, b2, b3, b4, b5〉, p is a codimen-

sion 1 subform of 〈〈c〉〉 × 〈d1, d2, d3, d4, d5〉, and these 10-dimensional
forms contain proportional 9-dimensional subforms;

(4) q is proportional to p.

The four classes above have the following motivic interpretation:

Proposition 6.7 (O. Izhboldin). Let Q be a smooth anisotropic quadric
of dimension 7. Then the decomposition of M(Q) into indecomposables is as
follows:

(i) • • • • • • • •⇔ Q is excellent.

(ii) • • • • • • • •⇔ q is a neighbor of a 4-fold Pfister form 〈〈α〉〉, q|k√a is
completely split for some a ∈ k∗, and q is not excellent.

(iii) • • • • • • • •⇔ q is a Pfister neighbor, and for any a ∈ k∗, q|k√a is
not completely split.

(iv) • • • • • • • • ⇔ q is not a Pfister neighbor, and there exists a 3-
dimensional anisotropic form r3(q) such that (q ⊥ r3(q))an is proportional
to a 3-fold Pfister form 〈〈β〉〉.

(v) • • • • • • • •⇔ q is not a Pfister neighbor, and for some a ∈ k∗, q|k√a

is completely split.
(vi) • • • • • • • •⇔ q is not a Pfister neighbor, for any a ∈ k∗, q|k√a is not

completely split, and q is not proportional to (〈〈β〉〉 ⊥ r)an, for any 3-fold
Pfister form 〈〈β〉〉 and any 3-dimensional form r.

We start with the forms of dimension 5 and 7. Following B. Kahn, we
introduce the notion of dimn q.

Definition 6.8. For n ∈ N we define

dimn q := min(dim q′ | q ⊥ q′ ∈ In(k)).

If dimn q < 2n−1, then the form q′ with dim q′ = dimn q and q ⊥ q′ ∈ In(k) is
defined uniquely, and it will be denoted by rn(q).

The element π(q ⊥ rn(q)) ∈ KM
n (k)/2, in this case, will be denoted by

ωn(q) (here π is the natural projection In(k) → KM
n (k)/2).

Example. For an odd dimensional form q, dim2 q = 1, r2(q) = 〈det±(q)〉, and
ω2(q) corresponds to the Brauer class of the Clifford algebra C(q) via the
identification KM

2 (k)/2 = Br2(k).
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Recall from Sect. 2 that the splitting pattern of q is the sequence of higher
Witt indices

i(q) =
(

i1(q), . . . , ih(q)(q)
)

.

Proposition 6.9. Let Q be a smooth anisotropic quadric of dimension 3.
Then the motive of Q is as follows:

(i) • • • •⇔ Q is excellent;
(ii) • • • •⇔ Q is not excellent.

Proof. Since i(q) is always (1, 1), by Proposition 4.10, we have the following
necessary connections (not to be confused with the indecomposable direct
summands) in Λ(Q):

• • • •

If Q is excellent, then, by a result of M. Rost ([23, Proposition 4]), these are
all the existing connections, and M(Q) is a direct sum of binary Rost motives.
Conversely, suppose M(Q) has only the binary connections specified above.
Consider the form p := q ⊥ 〈det±(q)〉. Then P is an Albert quadric, and for
any field extension E/k, iW (q|E) > 1 if and only if iW (p|E) > 1. If there
exists an indecomposable direct summand M of M(Q) such that a(M) =
1, then by Theorem 4.17, M is isomorphic to some direct summand M ′ of
M(P ). Then, by Theorem 4.13, M ′(1)[2] is also a direct summand of M(P ).
Suppose P is anisotropic. Then, if N is an indecomposable direct summand
of M(Q) such that a(N) = 0, then Λ(N) does not contain Z(1)[2] or Llo. By
Proposition 4.10, N is binary of size 4, in contradiction with Theorem 4.20.
So, P is isotropic, and Q is excellent. ��

Proposition 6.10. Let Q be a smooth anisotropic quadric of dimension 5.
Then the motive of Q is as follows:

(i) • • • • • •⇔ Q is excellent ⇔ i(q) = (3);
(ii) • • • • • •⇔ dim3 q = 3 ⇔ q|k√a is completely split for some a ∈ k∗, and

q is not excellent. In this case, i(q) = (1, 1, 1);
(iii) • • • • • •⇔ dim3 q > 3 ⇔ q|k√a is not completely split for any a ∈ k∗.

In this case, i(q) = (1, 1, 1);

Proof. The fact that i(p) = (3) ⇔ Q is excellent is well-known. By a result
of M. Rost ([23, Proposition 4]), if Q is excellent, M(Q) has the specified
decomposition. Finally, if M(Q) has a direct summand of the form

• ◦ ◦ • ◦ ◦

then, by Corollary 4.14, i(p) = (3).
Now we can assume that i(p) = (1, 1, 1). By Proposition 4.10, in M(Q)

we have connections (not to be confused with the indecomposable direct sum-
mands) of the form

• • • • • •
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Let us show that Z is connected to Z(2)[4]. Since there are no binary direct
summands of size 5 (by Theorem 4.20), Z must be connected either to Z(1)[2]
or to Z(2)[4]. Suppose Z(2)[4] is not connected to Z(1)[2]. Then, for q1 :=
(q|k(Q))an, M(Q1) looks like

• • • •

and, by Proposition 6.9, q1 is excellent. In particular, dim3 q1 = 3. Consider
p = q ⊥ 〈det±(q)〉. Then p ∈ I2(k), and π(p|k(Q)) ∈ KM

2 (k(Q))/2 is a pure
symbol (π here is the natural projection In(F ) → KM

n (k)/2). By the index
reduction formula of A. Merkurjev ([21]), π(p) ∈ KM

2 (k)/2 is a pure symbol.
Then, it is well-known (see, for example, [3]) that p = 〈〈a〉〉 · 〈b1, b2, b3, b4〉. By
Theorem 6.1, M(P ) decomposes as

•

• • • • • •

•

In particular, if L is an indecomposable direct summand of M(P ) such that
a(L) = 0, then L|k does not contain Z(1)[2]. But i1(p) = 2 and q is a codi-
mension 1 subform in p. So, the forms p|k(Q) and q|k(P) are isotropic, and
by Corollary 3.9, L is isomorphic to a direct summand of M(Q). This shows
that Z is not connected to Z(1)[2] (if Z(1)[2] is not connected to Z(2)[4]). The
conclusion is: in the case of a splitting pattern (1, 1, 1), Z is always connected
to Z(2)[4]. So, in M(Q) we have necessary connections (not to be confused
with the indecomposable direct summands) of the form

• • • • • •

If M(Q) has decomposition as in (ii), then Z(1)[2] is not connected to Z(2)[4],
and, as we saw above, there exists a ∈ k∗ such that q|k√a is completely
split. Conversely, if q is a codimension 1 subform of the anisotropic form
〈〈a〉〉·〈b1, b2, b3, b4〉, then Z is not connected to Z(1)[2], and, if q is not excellent,
M(Q) decomposes into indecomposables as in (ii). It is easy to see that for an
anisotropic 7-dimensional form q, dim3 q = 3 if and only if q is non-excellent,
and there exists a ∈ k∗ such that q|k√a is completely split. ��

Lemma 6.11. Let Q be an anisotropic 7-dimensional quadric. Suppose
Z(1)[2] is not connected to Z(2)[4] in Λ(Q). Then dim3 q ≤ 3.

Proof. By a result of D. Hoffmann (see [2, Corollary 1]), i1(q) = 1. Let q1 =
(q|k(Q))an. Then dim q1 = 7, and in M(Q1), Z is not connected to Z(1)[2]. By
Proposition 6.10, dim3 q1 ≤ 3. Then by a result of B. Kahn ([10, Theorem
2]), which, in our case, basically amounts to the index reduction formula of
A. Merkurjev, we get that dim3 q ≤ 3. ��

Lemma 6.12. Let Q be an anisotropic 7-dimensional quadric. Then the fol-
lowing conditions are equivalent:
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(a) Z(1)[2] is not connected to Z and Z(2)[4] in Λ(Q),
(b) there exists a ∈ k∗ such that q|k√a is completely split.

Proof. (a) ⇒ (b): Consider the form p := q ⊥ 〈det±(q)〉. Then p ∈ I2(k), and,
by Lemma 6.11, π(p) ∈ KM

2 (k)/2 is a pure symbol (possibly, zero). Suppose
p is anisotropic. Then π(p) �= 0, and the splitting pattern of p is (1, 2, 2).
Since Z is not connected to Z(1)[2] in Λ(Q), there exists an indecomposable
direct summand L of M(Q) such that a(L) = 1. But, for every field extension
E/k, iW (q|E) > 1 if and only if iW (p|E) > 1 (since i2(p) = 2 > 1). Hence,
by Theorem 4.17, L is isomorphic to a direct summand M of M(P ). Then
a(M) = 1, b(M) = 6 (by Corollary 4.14), and so, by Theorem 4.20, M is not
binary. Taking into account that M(1)[2] is also a direct summand of M(P )
(by Theorem 4.13), we get that M must look like

•
◦ • ◦ • ◦ • ◦ ◦

◦

Then the direct summand of M(P ) complementary to M ⊕ M(1)[2] will be
binary of size 8, contradiction with Theorem 4.20. Hence p is isotropic. Since
π(p) ∈ KM

2 (k)/2 is a pure symbol, there exists a ∈ k∗ such that p|k√a is
hyperbolic. Consequently, q|k√a is completely split.

(b) ⇒ (a): Suppose q|k√a is completely split. Then p := q ⊥ 〈det±(q)〉 is
isotropic, and pan is divisible by 〈〈a〉〉. Then, by Lemma 6.2, i1(pan) > 1, and
so, for every field extension E/k, iW (p|E) > 0 if and only if iW (q|E) > 1. By
Theorem 4.15, there are indecomposable direct summands M of M(Pan) and
L of M(Q) such that L ∼= M(1)[2] and a(L) = 1 (respectively, a(M) = 0).
Since i1(pan) > 1, by Theorem 4.13 and Corollary 3.7, M |k does not contain
Z(1)[2]. Thus, L|k does not contain Z(2)[4]. Evidently, L|k does not contain
Z. So, Z(1)[2] is connected neither to Z, nor to Z(2)[4]. ��

Lemma 6.13. Let Q be an anisotropic 7-dimensional quadric. Then the fol-
lowing conditions are equivalent:

(a) Z(2)[4] is not connected to Z and Z(1)[2] in Λ(Q).
(b) dim3 q ≤ 3, and (q ⊥ r3(q))an is proportional to some anisotropic 3-fold

Pfister form.

Proof. (a) ⇒ (b): By Lemma 6.11, dim3 q ≤ 3. Certainly, dim3 q is odd. If
dim3 q = 1, then q is excellent. Suppose dim3 q = 3. Let p := q ⊥ r3(q) ∈
I3(k). Since Z(2)[4] is not connected to Z and Z(1)[2] in Λ(Q), we get a direct
summand L of M(Q) with a(L) = 2. Since q is a codimension 3 subform of p,
and for every field extension E/k the conditions iW (p|E) > 2 and iW (p|E) > 5
are equivalent, the conditions iW (p|E) > 2 and iW (q|E) > 2 are equivalent
as well. Then, by Theorem 4.17, L is isomorphic to a direct summand M of
M(P ). By Theorem 4.13 and Theorem 3.11,

⊕3
j=0 M(j)[2j] is isomorphic to

a direct summand of M(P ). In particular, Z(l)[2l] with 2 ≤ l ≤ 8 are not
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connected to Z in Λ(P ). Suppose p is anisotropic. Then the indecomposable
direct summand N of M(P ) with a(N) = 0 must be binary of size 9, in
contradiction with Theorem 4.20. So, p is isotropic, and pan is proportional
to some 3-fold Pfister form.

(b) ⇒ (a): Let q = (λ · 〈〈β〉〉 ⊥ −r3(q))an, where 〈〈β〉〉 is some anisotropic
3-fold Pfister form, dim r3(q) ≤ 3, and dim q = 9. Then, for any field exten-
sion E/k, iW (q|E) > 2 ⇔ iW (p|E) > 0. By Theorem 4.15, the Rost motive
Mβ(2)[4] is a direct summand of M(Q). In particular, Z(2)[4] is not connected
to Z and to Z(1)[2]. ��

Lemma 6.14 (N. Karpenko [14, Theorem 1.7]). Let Q be an anisotropic
7-dimensional quadric. Then the following conditions are equivalent:

(a) M(Q) has a binary direct summand of the form • ◦ ◦ ◦ ◦ ◦ ◦ •

(b) q is a neighbor of a 4-fold Pfister form.

Proof. (b) ⇒ (a): If q is a neighbor of a Pfister form 〈〈a1, a2, a3, a4〉〉, then, by
a result of M. Rost ([23, Proposition 4]), the binary Rost motive M{a1,a2,a3,a4}
is a direct summand of M(Q).

(a) ⇒ (b): Let N be the specified binary direct summand. Then, by a
result of O. Izhboldin (see [5, Theorem 3.1], [9, Theorem 6.9]), there exists a
nonzero element α ∈ Ker(KM

4 (k)/2 → KM
4 (k(Q))/2) (again, due to the new

results of V. Voevodsky ([30]), now the proof of [9, Theorem 6.9] works in
arbitrary characteristic (�= 2)). Due to the result of B. Kahn, M. Rost and
R.J. Sujatha (see [12, Theorem 1]), α must be a pure symbol. Then 〈〈α〉〉|k(Q)

is hyperbolic, and q is a neighbor of 〈〈α〉〉. ��

Lemma 6.15. Let Q be an anisotropic quadric of dimension 7. Then the
following conditions are equivalent:

(a) Q is excellent;
(b) i(q) = (1, 3);
(c) M(Q) has a binary direct summand of the form: ◦ • ◦ ◦ • ◦ ◦ ◦

Proof. It is well-known that (a) ⇔ (b). Suppose Q is excellent (i.e., defined
by a form (〈〈a, b, c, d〉〉 ⊥ −〈〈a, b, c〉〉 ⊥ 〈1〉)an, where {a, b, c, d} �= 0), then, by
a result of M. Rost ([23, Proposition 4]), the binary motive M{a,b,c}(1)[2] is
a direct summand of M(Q). So, (a) ⇒ (c). Finally, if M(Q) has the specified
direct summand then, by Corollary 4.14, i2(q) = 3, and i(q) = (1, 3). Thus,
(c) ⇒ (b). ��

Now we can prove Proposition 6.7.
By a result of D. Hoffmann ([2, Corollary 1]), i1(q) = 1. Hence, i(q) is

either (1, 3) or (1, 1, 1, 1). By Lemma 6.15, i(q) = (1, 3) ⇔ Q is excellent ⇔
M(Q) has a decomposition as in (i).

Now we can assume that i(q) = (1, 1, 1, 1). Then, by Proposition 6.10, in
Λ(Q) we have necessary connections of the form
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• • • • • • • •

So, the question is: which of these pieces are connected, and which are not.
We get 5 cases:

(1) all three Z, Z(1)[2], Z(2)[4] are disconnected;
(2) Z(1)[2] is connected to Z(2)[4], but not to Z;
(3) Z(1)[2] is connected to Z, but not to Z(2)[4];
(4) Z is connected to Z(2)[4], but not to Z(1)[2];
(5) all three Z, Z(1)[2], Z(2)[4] are connected.

Clearly, these cases correspond to the cases: (ii), (iii), (iv), (v) and (vi)
of Proposition 6.7, respectively. Applying Lemma 6.12, Lemma 6.13 and
Lemma 6.14, we get the description of the corresponding quadrics in terms of
quadratic form theory. The proposition is proven. ��
Remark. We can notice that Conjecture 4.22 is valid for quadrics of dimension
3, 5 and 7.

We see that the four classes of forms of O. Izhboldin have the following
motivic interpretation: (1) corresponds to the cases (i), (ii), and (iii) of Propos-
ition 6.7; (2) corresponds to (iv); (3) corresponds to (v); and (4) corresponds
to (vi).

By Corollary 3.9, we know that q and p are stably birationally equivalent
if and only if M(Q) and M(P ) contain indecomposable direct summands
N and L such that N ∼= L and a(N) = 0. In particular, Λ(N) = Λ(L). This
shows that the type of a form is preserved under stable birational equivalence.
To prove (b) one needs to analyze the corresponding direct summands more
carefully.

7 Splitting Patterns of Small-dimensional Forms

This section is devoted to the classification of splitting patterns of small-
dimensional forms (as defined at the end of Sect. 2).

It is an important question to describe all possible splitting patterns of
quadrics. This problem was solved for all forms of dimension ≤ 10 by D. Hoff-
mann, see [3]. With the help of the motivic methods as well as the methods
developed by D. Hoffmann, O. Izhboldin, B. Kahn and A. Laghribi (see [2],
[10], [6], [18]) we are able to describe all possible splitting patterns of forms
of odd dimension ≤ 21 as well as forms of dimension 12.

In many cases, we will be able to describe the class of forms having a
particular splitting pattern in terms of quadratic form theory.

7.1 The Tools We Will Be Using

In this section we list some known results on the structure of the splitting
pattern as well as the structure of the motive of a quadric, which will be used
in our computations.
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We start with the last higher Witt index. By a result of M. Knebusch,
the quadrics of height 1 are exactly the Pfister quadrics and their hyperplane
sections. Hence, we have the following restrictions on ih(q)(q):

Theorem 7.1 (M. Knebusch [16, Theorem 5.8]).

(1) If dim q is even, then ih(q)(q) = 2d for some d ≥ 0.
(2) If dim q is odd, then ih(q)(q) = 2d − 1 for some d ≥ 1.

If dim q is even, the number d + 1 is called the degree of q. The degree of
any odd-dimensional form is zero, by definition.

The next important results of D. Hoffmann are related to the first higher
Witt index.

Theorem 7.2 (D. Hoffmann [2, Corollary 1]). Let q be an anisotropic
quadric of dimension 2r + m, where 0 < m ≤ 2r. Then i1(q) ≤ m.

Theorem 7.3 (D. Hoffmann [2]). Let 0 < m < 2r, and let p be an aniso-
tropic quadratic form of dimension 2r − m with splitting pattern i(p). Then
there is a field extension E/k and an anisotropic quadratic form q of dimen-
sion 2r + m over E such that the splitting pattern of q is (m, i(p)).

Proof. By [2, Remark 1], there is an extension E of the field k(y1, . . . , yr) such
that p|E is isomorphic to a subform of 〈〈y1, . . . , yr〉〉|E and E/k is unirational.
Let q be an orthogonal complement of p|E in 〈〈y1, . . . , yr〉〉|E . Then i(q) =
(m, i1(p|E), . . . , ih(p)(p|E)). But higher Witt indices are clearly stable under
rational, and hence, unirational, extensions. So, i(q) = (m, i(p)). ��

We will also need results concerning the specialization of splitting patterns.

Definition 7.4. Let i = (i1, i2, . . . , ih) be a sequence of natural numbers.
We say that the sequence i′ is an elementary specialization of i if either i′ =
(i2, . . . , ih), or for some 1 ≤ s < h, i′ = (i1, . . . , is−1, is + is+1, is+2, . . . , ih).

We say that the sequence i′′ is a specialization of i if it can be obtained
from i by a (possibly empty) chain of elementary specializations.

Theorem 7.5 (M. Knebusch [16, Corollary 5.6]). Let q be a quadratic
form over the field k, and L/k, F/k be field extensions such that there is a
regular place L → F . Then i(q|F ) is a specialization of i(q|L). In particular,
i(q|F ) is always a specialization of i(q).

We will also use repeatedly the following evident fact:

Theorem 7.6. Let q be quadratic form with i(q) = (i1, i2, . . . , ih) and let
p = q ⊥ 〈a〉 for some a ∈ k∗. Then i(p) is a specialization of

{

(1, i1 − 1, 1, i2 − 1, 1, . . . , 1, ih − 1) if dim q is even,
(1, i1 − 1, 1, i2 − 1, 1, . . . , 1, ih − 1, 1) if dim q is odd,

where we omit zeros.
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In our computations we will be using the interplay between the splitting
pattern of a quadric and the structure of its motive. So, we will need some
facts concerning the latter. The key tool here is Theorem 4.20, describing the
possible sizes of binary direct summands of M(Q).

Let Q be some smooth quadric over k. Then M(Q|k) is a direct sum of
Tate motives. Namely,

M(Q|k) =

{⊕dim Q
j=0 Z(j)[2j] if dimQ is odd,

(
⊕dim Q

j=0 Z(j)[2j]
)

⊕ Z((dimQ)/2)[dimQ] if dimQ is even.

Suppose Q is anisotropic and let i(q) = (i1, i2, . . . , ih). The splitting pattern
separates our Tate motives into different shells. We say that Z(m)[2m] belongs
to the shell number t if

t−1
∑

r=1

ir ≤ min(l, dimQ − l) <
t

∑

r=1

ir .

In the light of Proposition 2.1, Proposition 2.6, this condition is equivalent
to the following: Z(l)[2l] is a direct summand of M(Q|kt), but is not a direct
summand of M(Q|kt−1), where k = k0 ⊂ k1 ⊂ . . . ⊂ kh is a generic splitting
tower of fields for Q. So, we have h different shells, where h is the height of
Q, and the shell number t consists of 2it Tate motives.

Now we can formulate a result which is very useful in splitting pattern
computations.

Theorem 7.7. Let Q be a smooth anisotropic quadric of dimension m and
N be an indecomposable direct summand of M(Q) such that a(N) = 0.

(1) If t > 1 and it < i1, then N |k does not contain Tate motives from the shell
number t.

(2) If i2 is not divisible by i1, then N |k does not contain Tate motives from
the shell number 2.

Proof. Let l be a number such that Z(l)[2l] is a direct summand of N |k. By
Proposition 4.10, we can assume that l ≥ m/2. Let E/k be any field extension
and j := i1(q) − 1. Then the following conditions are equivalent:

(a) iW (q|E) > m − l;
(b) Z(l)[2l] is a direct summand of M(Q|E);
(c) Z(l)[2l] is a direct summand of N |E;
(d) Z(l + j)[2l + 2j] is a direct summand of N(j)[2j]|E;
(e) Z(l + j)[2l + 2j] is a direct summand of M(Q|E);
(f) iW (q|E) > m − l − j.

The equivalences (a) ⇔ (b) and (e) ⇔ (f) follow from Proposition 2.1,
Proposition 2.6. The equivalences (b) ⇔ (c) and (d) ⇔ (e) follow from the
fact that Z(l)[2l] is a direct summand of N |k (respectively, Z(l + j)[2l + 2j]
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is a direct summand of N(j)[2j]|k), and N , N(j)[2j] are direct summands of
M(Q) (by Theorem 4.13). The equivalence (c) ⇔ (d) is evident.

The equivalence (a) ⇔ (f) implies the first statement of the theorem (if
Z(l)[2l] would belong to the shell number t, then it would be > j = i1(q)−1).

To prove the second statement, consider the motive

L :=
i1(q)−1
⊕

j=0

N(j)[2j].

By Theorem 4.13, Theorem 3.11, L is isomorphic to a direct summand of
M(Q). By Theorem 4.19, L is self-dual, that is, L∨ ∼= L. Let M be the
complementary direct summand. Then M∨ ∼= M as well. Clearly, N(j)[2j]|k
contains as many Tate motives from a particular shell as N |k does (since
this number is equal to the number of Tate motives which split from N(j)[2j]
(respectively N) over kt but do not split over kt−1). Since i2(q) is not divisible
by i1(q), L|k does not contain some of the Tate motives from the second shell.
So, M |k contains some Tate motive from the second shell. Let Z(l)[2l] be such
a Tate motive with the minimal possible l. Let M ′ be an indecomposable direct
summand of M such that Z(l)[2l] is a direct summand of M ′|k. We know that
M ′|k contains no Tate motives from the first shell. Hence, a(M ′) = l (here
is the only place where we use the fact that the number of the shell is 2,
but not bigger). Then, by Theorem 4.13, each Tate motive Z(l′′)[2l′′] from
the second shell will be a direct summand of M ′′|k, for some indecomposable
direct summand M ′′ isomorphic to M ′(d)[2d] for some d. Since M ′(d)[2d] is
not isomorphic to N , by Lemma 4.2, we get that N |k does not contain Tate
motives from the second shell. ��

Remark. In item (2) above, the fact that the number of the shell is 2 is
essential. For example, if q is any codimension 1 subform of the form 〈〈e1 , e2〉〉·
〈a, b,−ab,−c,−d, cd〉 over the field k(a, b, c, d, e1, e2), then i(q) = (3, 1, 7), but
N |k contains Tate motives from the third shell.

The previous theorem will be usually used in conjunction with the follow-
ing one.

Theorem 7.8. Let Q be a smooth anisotropic quadric over k and N be an
indecomposable direct summand of M(Q) such that a(N) = 0. Suppose that
N |k does not contain Tate motives from the shells 2, 3, . . . , h(Q). Then N is
binary of size dimQ − i1(q) + 1.

Proof. The fact that N is binary follows from Theorem 4.13, Lemma 4.2, and
the statement about the size is valid for every indecomposable direct summand
N with a(N) = 0, by Corollary 4.7. ��

We will also use the following motivic result, which provides (in conjunc-
tion with Theorem 4.20) some sufficient conditions for all indecomposable
direct summands of M(Q) to “start” from the first shell.
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Theorem 7.9. Let q be an anisotropic form over k and q1 = (q|k(Q))an. Let
N be an indecomposable direct summand of M(Q) such that a(N) = 0, and L
be an indecomposable direct summand of M(Q1) such that a(L) = 0. Suppose
that M(Q1) =

⊕i2(q)−1
l=0 L(l)[2l]. Then either M(Q) =

⊕i1(q)−1
j=0 N(j)[2j], or

N is binary of size dimQ − i1(q) + 1.

Proof. By Theorem 4.13 and Theorem 3.11,
⊕i1(q)−1

j=0 N(j)[2j] is isomorphic
to a direct summand of M(Q). Let M be the complementary summand. If
M �= 0, then M |k contains some Tate motive from some shell number ≥
2. But the condition M(Q1) =

⊕i2(q)−1
l=0 L(l)[2l] exactly says that any such

Tate motive is connected (even over k(Q)) to some Tate motive from the
second shell. So, if M �= 0, then M |k contains some Tate motive Z(m)[2m]
from the second shell. Since M |k clearly does not contain Tate motives from
the first shell, there exists an indecomposable direct summand M ′ of M(Q)
such that a(M ′) = m (we can assume m < (dim Q)/2). By Theorem 4.13,
Lemma 4.2, N |k contains no Tate motives from the second shell, and hence,
no Tate motives from the shells 3, . . . , h (since they are all connected to the
second shell). So, we have only two possibilities: either M = 0 and M(Q) =
⊕i1(q)−1

j=0 N(j)[2j], or N |k does not contain Tate motives from shells number
2, . . . , h(Q), and so N is binary of size dimQ− i1(q)+1, by Theorem 7.8. ��

Sometimes we will draw the pictures of the motives of quadrics. In this
case, each Tate motive will be denoted as •, and sometimes we will place the
number of the corresponding shell over it. For example, the motive of the
quadric with the splitting pattern (1, 3, 1, 1) can be drawn as

•1 •2 •2 •2 •3 •4 •4 •3 •2 •2 •2 •1

The direct summand of M(Q) then can be visualized as a collection of •’s
connected by dotted lines. For example, the direct summand L with L|k =
Z ⊕ Z(2)[4] ⊕ Z(3)[6] ⊕ Z(5)[10] in M(Q), where q = 〈〈a〉〉 · 〈b1, b2, b3〉 ⊥ 〈c〉,
can be drawn as

• ◦ • • ◦ •

The indecomposable direct summand of M(Q) will be visualized as a col-
lection of •’s connected by solid lines. For example, the decomposition into
indecomposables of the M(Q), where q = 〈〈a〉〉 · 〈1,−b1,−b2,−b3〉 ⊥ 〈b1b2〉,
and {a, b1, b2, b3} �= 0, {a,−b1b2b3} �= 0 (mod 2), will look like

• • • • • • • •

Now we can list the splitting patterns of small-dimensional forms. We start
with the odd-dimensional forms.
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7.2 Splitting Patterns of Odd-dimensional Forms

I should mention again that the splitting patterns of forms of dimension 3, 5,
7 and 9, as well as most cases of dimension 11 were classified by D. Hoffmann
in [3]. Nevertheless, we included these cases below, to familiarize the reader
with the technique on simple examples.

dim q = 3

In this case, i(q) = (1) always.

dim q = 5

By Theorem 7.2, we have i1(q) = 1 and i(q) = (1, 1) always.

dim q = 7

Let us show that i1(q) �= 2. First of all, this fact follows from the general
result of O. Izhboldin, claiming that for the anisotropic form of dimension
2r + 3 the first higher Witt index does not equal to 2, see [8, Corollary 5.13]
and [15, Theorem 1.1]. Alternatively, we can argue as follows. Let i1(q) = 2,
then i2(q) = 1. Let N be an indecomposable direct summand in M(Q) such
that a(N) = 0. Then by Theorem 7.7, N |k does not contain Tate motives
from the shell number 2, and so N is binary of size 4 (by Theorem 7.8). This
contradicts Theorem 4.20. So, i1(q) �= 2.

Since 7 = 22 + 3, by Theorem 7.2, we have either i1(q) = 1 or i1(q) = 3.
In the first case, we have i(q) = (1, 1, 1); in the second, i(q) = (3).

By a result of A. Pfister, i(q) = (3) if and only if q is a Pfister neigh-
bor. Such forms clearly exist. Respectively, i(q) = (1, 1, 1) for all other an-
isotropic forms of dimension 7. The generic form 〈a1, . . . , a7〉 over the field
F = k(a1, . . . , a7) provides such an example (it is sufficient to notice that over
E := F (

√
−a1a2), iW (q|E) = 1).

dim q = 9

Again, by Theorem 7.2, i1(q) = 1, so i(q) is either (1, 1, 1, 1) or (1, 3). And
both these cases exist in the light of Theorem 7.3. It remains to describe both
classes of forms.

Let i(q) = (1, 3). Consider p := q ⊥ 〈−det± q〉. Then, on the one hand,
p ∈ I2(k), and so the splitting pattern of p is a specialization of (1, 1, 1, 2). On
the other hand, since p differs by a 1-dimensional form from q, the splitting
pattern of p is a specialization of (1, 1, 2, 1) (by Theorem 7.6). Taking into
account Theorem 7.1, we get that the splitting pattern of p is a specialization
of (1, 4). By a result of A. Pfister (see [22, Satz 14 and Zusatz]), an anisotropic

Administrator
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form in I3 cannot have dimension 10. So, dim pan = 8, and i(pan) = (4). By
a result of A. Pfister, pan is isomorphic to λ · 〈〈a, b, c〉〉 for some λ ∈ k∗ and
{a, b, c} �= 0 ∈ KM

3 (k)/2. Hence, q = λ · (〈〈a, b, c〉〉 ⊥ 〈−d〉).
All other anisotropic 9-dimensional forms should have splitting pattern

(1, 1, 1, 1). The generic form q = 〈a1, . . . , a9〉 over the field k(a1, . . . , a9)
provides such an example (it is sufficient to notice that over the field E =
k(
√
−a1a2,

√
−a3a4) we have iW (q|E) = 2).

dim q = 11

Let us show that i1(q) �= 2. This fact is a particular case of the cited result
of O. Izhboldin, since 11 = 23 + 3. Alternatively, we can argue as follows:
suppose i1(q) = 2, then the splitting pattern of q is either (2, 1, 1, 1) or (2, 3).
Let N be an indecomposable direct summand in M(Q) such that a(N) = 0.
By Theorem 7.7 and Theorem 7.8 N is binary of size 8, a contradiction with
Theorem 4.20.

By Theorem 7.2, i1(q) is either 1 or 3. If i1(q) = 1, then i(q) is either
(1, 1, 1, 1, 1) or (1, 1, 3), and we will see that both cases exist. If i1(q) = 3,
then i(q) = (3, 1, 1), and such quadrics also exist. Now we will describe the
respective classes of forms.

We start with (3, 1, 1). By a result of B. Kahn (see [10, Remark after
Theorem 4]), q must be a Pfister neighbor. And conversely, any 11-dimensional
neighbor of an anisotropic Pfister form 〈〈a, b, c, d〉〉 has such splitting pattern.
Such forms clearly exist.

If i(q) = (1, 1, 3), then set p := q ⊥ 〈det± q〉. Then p ∈ I2(k) and the split-
ting pattern of p is a specialization of (1, 1, 1, 1, 2). On the other hand, since p
differs from q by a 1-dimensional form, i(p) is a specialization of (1, 1, 1, 2, 1),
in the light of Theorem 7.6. By Theorem 7.1, i(p) is a specialization of (1, 1, 4)
(actually, of (2, 4), by [22, Satz 14 and Zusatz]). That means, p ∈ J3(k), and
since J3(k) = I3(k), p ∈ I3(k). So, q is a codimension 1 subform of some
anisotropic 12-dimensional form in I3(k). Conversely, if p is some anisotropic
12-dimensional form in I3(k), then i(p) = (2, 4), and for every 11-dimensional
subform q of p, the splitting pattern of q will be a specialization of (1, 1, 3).
And in our list of possible splitting patterns only the splitting pattern (1, 1, 3)
satisfies such conditions. To show that forms with the splitting pattern (1, 1, 3)
exist it is sufficient to construct a 12-dimensional anisotropic form in I3. The
form 〈〈e〉〉·〈a, b,−ab,−c,−d, cd〉 over the field k := F (a, b, c, d, e) provides such
an example.

Finally, all other anisotropic forms of dimension 11 will have splitting pat-
tern (1, 1, 1, 1, 1). The generic form 〈a1, . . . , a11〉 over the field k(a1, . . . , a11)
provides an example.
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dim q = 13

We have i1(q) ≤ 5. Let us show that i1(q) �= 2, 3, or 4. i1(q) �= 4, since
otherwise M(Q) would contain a binary direct summand of size 8 (in the
light of Theorem 7.7 and Theorem 7.8), which contradicts Theorem 4.20.

If i1(q) = 2, then i(q) is either (2, 1, 1, 1, 1) or (2, 1, 3). In the former case,
we get a binary direct summand of M(Q) of size 10, which contradicts The-
orem 4.20. Suppose i(q) = (2, 1, 3). Actually, we can treat the cases (2, 1, 3)
and (3, 3) simultaneously. Let p := q ⊥ 〈−det q〉. Then i(p) is a specialization
of (1, 1, 1, 1, 2, 1), and using the fact that p ∈ I2(k), Theorem 7.1 and [22,
Satz 14 and Zusatz], we get that i(p) is a specialization of (1, 2, 4). If N is an
indecomposable direct summand in M(Q) such that a(N) = 0, then since for
every field extension E/k the conditions iW (p) > 1 and iW (q) > 0 are equival-
ent, N(1)[2] must be isomorphic to some direct summand of M(P ) (by The-
orem 4.15). If i(p) = (1, 2, 4), then M(P ) is indecomposable (by an inductive
application of Theorem 7.9), which is impossible (since rank CHl(Q|k) ≤ 1).
So, iW (p) = 1 and i(p) = (2, 4). Then M(Pan) = L ⊕ L(1)[2] (again, by
an inductive application of Theorem 7.9), where L is indecomposable and
L|k = Z⊕Z(2)[4]⊕Z(4)[8]⊕Z(5)[10]⊕Z(7)[14]⊕Z(9)[18]. But then N must
be isomorphic to L (since M(P ) = Z ⊕ M(Pan)(1)[2] ⊕ Z(dimP )[2 dimP ]).
In the case i(q) = (2, 1, 3), we get size L = 9 �= 10 = size N , a contradiction
(we used Corollary 4.7 here). In the case i(q) = (3, 3), we get that N |k con-
tains Z(2)[4], which is impossible, since i1(q) = 3 and so N(2)[4] is a direct
summand of M(Q). So, i(q) cannot be (2, 1, 3) or (3, 3), and i1(q) �= 2.

If i1(q) = 3, then i(q) is either (3, 1, 1, 1) or (3, 3). In the former case, we get
a binary direct summand in M(Q) of size 9, contradiction with Theorem 4.20.
The case (3, 3) was treated above. So, i1(q) �= 3.

Thus, i1(q) is either 1 or 5. This gives the splitting patterns (1, 1, 1, 1, 1, 1),
(1, 1, 1, 3), (1, 3, 1, 1) and (5, 1). We will show that all of them are realized by
appropriate quadratic forms. Let us describe the classes of forms correspond-
ing to these four splitting patterns.

We start with the splitting pattern (5, 1). Then q is a Pfister neighbor, in
the light of [17, Corollary 8.2] (see also [2, §4]). Conversely, any 13-dimensional
neighbor of anisotropic 4-fold Pfister form has splitting pattern (5, 1). Such
forms clearly exist.

Let i(q) = (1, 3, 1, 1). We have dim(q|k(Q))an = 11, and (q|k(Q))an is a
Pfister neighbor. Then by a result of B. Kahn (see [10, Theorem 2]), there
exists some 5-dimensional form r4(q) such that q ⊥ r4(q) ∈ I4(k). Clearly,
r4(q) is anisotropic, since otherwise q would be a Pfister neighbor and would
have splitting pattern (5, 1). Conversely, let q and r4(q) be 13-dimensional
and 5-dimensional anisotropic forms such that q ⊥ r4(q) ∈ I4(k). Then i((q ⊥
r4(q))an) = (8). Since q differs from (q ⊥ r4(q))an by a 5-dimensional form,
we get that i(q) is a specialization of (1, 3, 1, 1) (by Theorem 7.6). This means
that i(q) is either (1, 3, 1, 1) or (5, 1). If i(q) = (5, 1), then q is a Pfister
neighbor, as we know. That is, there exists a 3-dimensional form p such that
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q ⊥ p ∈ I4(k). Then r4(q) ⊥ −p ∈ I4(k). Since dim(r4(q) ⊥ −p) = 8 <
16, we get r4(q) = p ⊥ H. But r4(q) is anisotropic, contradiction. Hence
i(q) = (1, 3, 1, 1). It remains to show that such anisotropic 13-dimensional
forms do exist. Take k := F (x1, . . . , x4, a1, . . . , a5) and q̃ := 〈〈x1, . . . , x4〉〉 ⊥
〈a1, . . . , a5〉. Let k = k0 ⊂ k1 ⊂ · · · ⊂ kh be the generic splitting tower
of M. Knebusch for q̃. Let E = k(

√
−a1a2). By a result of D. Hoffmann,

there exists a field extension Ẽ/E such that 〈a3, a4, a5〉|Ẽ is a subform of the
anisotropic Pfister form 〈〈x1, . . . , x4〉〉|Ẽ . That means that dim(q̃|Ẽ)an = 13.
By a result of M. Knebusch ([16, Theorem 5.1]), there exists 0 < t < h such
that dim(q̃|kt)an = 13. Since kt is obtained from k by adjoining the generic
points of quadrics of dimension ≥ 13, by a result of D. Hoffmann (see [2,
Theorem 1]), 〈a1, . . . , a5〉|kt is anisotropic. So, we have proved the existence
of the splitting pattern (1, 3, 1, 1).

Let i(q) = (1, 1, 1, 3). Consider p := q ⊥ 〈−det± q〉. Then p ∈ I2(k). So,
i(p) is simultaneously a specialization of (1, 1, 1, 1, 2, 1) and (1, 1, 1, 1, 1, 2).
Hence, by Theorem 7.1, i(p) is a specialization of (1, 1, 1, 4), that is: p ∈
I3(k). Conversely, let q be an anisotropic 13-dimensional form such that
q ⊥ 〈−det± q〉 ∈ I3(k). Then i(q) is a specialization of (1, 1, 1, 3). As we
know, the only possible specialization is (1, 1, 1, 3) itself. To construct an ex-
ample, consider the form p := (〈〈a1, a2, a3〉〉 ⊥ −〈〈b1, b2, b3〉〉)an over the field
k := F (a1, a2, a3, b1, b2, b3). Clearly, p ∈ I3(k). By a result of R. Elman and
T.Y. Lam (see [1]), dim p = 14. Then any subquadric of codimension 1 in p
will have splitting pattern (1, 1, 1, 3).

Finally, all other forms will have splitting pattern (1, 1, 1, 1, 1, 1). The gen-
eric form provides an example.

dim q = 15

We know that i1(q) ≤ 7. If i1(q) = 7, then q is a Pfister neighbor by [16,
Theorem 5.8].

If i1(q) = 6, or 5, or 4, then by standard arguments, M(Q) contains a
binary direct summand of size 8, 9 and 10, respectively. This contradicts
Theorem 4.20.

Suppose i1(q) = 3. Then i(q) is either (3, 1, 1, 1, 1) or (3, 1, 3). In the former
case, we get a binary direct summand in M(Q) of size 11, which is impossible,
by Theorem 4.20. We will show that the case (3, 1, 3) is possible.

Suppose i1(q) = 2. Then i(q) is either (2, 1, 1, 1, 1, 1) or (2, 1, 1, 3) or
(2, 3, 1, 1). In the first case, by Theorem 7.7 and Theorem 7.8, we get a binary
direct summand in M(Q) of size 12, which is impossible by Theorem 4.20.
The same happens in the last case, since 2 does not divide 3.

To show that the case (2, 1, 1, 3) is not possible, let us first study the
motivic decomposition of a quadric with splitting pattern (1, 1, 3).

Lemma 7.10. Let r be an anisotropic quadratic form over some field F such
that i(r) = (1, 1, 3). Then M(R) decomposes as follows:
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•
1

•
2

•
3

•
3

•
3

•
3

•
3

•
3

•
2

•
1

In particular, each Tate motive from the shell number 3 is connected to some
Tate motive from the shells 1 or 2.

Proof. So, let r be such form over some field F . Consider p := r ⊥ 〈det± r〉.
Then i(p) is simultaneously a specialization of (1, 1, 1, 1, 2) and of (1, 1, 1, 2, 1).
By Theorem 7.1, i(p) is a specialization of (1, 1, 4), and by [22, Satz 14 and
Zusatz], a specialization of (2, 4). Since r is anisotropic, we have i(p) = (2, 4).
Let L be an indecomposable direct summand in M(P ) such that a(L) = 0.
Then M(P ) = L ⊕ L(1)[2] (by Theorem 7.9). Since i1(p) = 2 and r is a
codimension 1 subform of p, we have (by Corollary 3.10) that L is isomorphic
to a direct summand N of M(R). Let M be a complementary direct summand.
Then it should have the form

◦ •2 ◦ •3 ◦ ◦ •3 ◦ •2 ◦

If M were decomposable, then in M(R) there would be a direct summand M ′

of the form
◦ ◦ ◦ • ◦ ◦ • ◦ ◦ ◦

But then, by Theorem 4.13, M ′(−1)[−2] and M ′(1)[2] would be isomorphic
to direct summands of M(R) as well. We get that Z(2)[4] is contained in
M ′(−1)[−2]|k and L|k. This contradicts the indecomposability of L (by Co-
rollary 3.7). So, M is indecomposable and we get the desired picture for the
decomposition of M(R). ��

Suppose now q is an anisotropic form with splitting pattern (2, 1, 1, 3), and
N be an indecomposable direct summand of M(Q) such that a(N) = 0. Then,
by Theorem 7.7, N |k does not contain Tate motives from the shells number
2 or 3. But, by Lemma 7.10, any Tate motive from the shell number 4 is
connected to some Tate motive from the shells 2 or 3, so N |k does not contain
such motives either. Consequently, N is binary of size 12, contradiction with
Theorem 4.20.

So, we have proved that i1(q) �= 2.
It remains to consider the case i1(q) = 1. This gives the splitting patterns

(1, 1, 1, 1, 1, 1, 1), (1, 1, 1, 1, 3), (1, 1, 3, 1, 1), and (1, 5, 1). All this patterns are
realized by appropriate quadrics.

Let us now describe the classes of quadratic forms corresponding to par-
ticular splitting patterns.

The splitting pattern i(q) = (7) evidently corresponds to the case of a
Pfister neighbor, that is, to a form of the type λ · (〈〈a, b, c, d〉〉 ⊥ 〈−1〉)an,
where {a, b, c, d} �= 0 ∈ KM

4 (k)/2. Such forms clearly exist.
Let i(q) = (3, 1, 3). Consider p := q ⊥ 〈det q〉. Then the splitting pattern of

p is simultaneously a specialization of (1, 2, 1, 1, 2, 1) and of (1, 1, 1, 1, 1, 1, 2)
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(since p differs from q by a 1-dimensional form and p ∈ I2(k)). By The-
orem 7.1, i(p) is a specialization of (1, 2, 1, 4). But, in the light of [22, Satz 14
and Zusatz], it should be a specialization of (1, 1, 2, 4). So, it is a specialization
of (1, 3, 4). But 3 does not divide 4, so, by Theorem 7.7, i(p) is a specializ-
ation of (4, 4) (otherwise, in the motive of a quadric with splitting pattern
(3, 4) we would have a binary direct summand of size 10, which contradicts
Theorem 4.20). So, p is anisotropic (since q is anisotropic of dimension 15),
and i(p) is either (4, 4) or (8). The last case is impossible since, in this case,
i(q) would be (7). So, i(p) = (4, 4). By results of O. Izhboldin and B. Kahn
([6, Theorem 13.9] and [11, Theorem 2.12]), such a form is isomorphic to
〈〈a, b〉〉 · 〈u, v, w, t〉, and (up to a scalar) is a difference of a 4-fold and a 3-fold
Pfister form having (exactly) two common slots. Conversely, if p is a form of
such type, then i(p) = (4, 4), and so, i(q) is a specialization of (3, 1, 3). Since
i(q) is clearly not equal to (7), it is (3, 1, 3).

Let i(q) = (1, 5, 1). We have dim(q|k(Q))an = 13, and (q|k(Q))an is a
Pfister neighbor. Then, by a result of B. Kahn (see [10, Theorem 2]), there
exists a 3-dimensional form r4(q) such that q ⊥ r4(q) ∈ I4(k). That is,
q = (λ · 〈〈a, b, c, d〉〉 ⊥ −r4(q))an for some {a, b, c, d} �= 0 ∈ KM

4 (k)/2 and
λ ∈ k∗. Conversely, if q is an anisotropic 15-dimensional form of the specified
type, then i(q) = (1, 5, 1). The form (〈〈a, b, c, d〉〉 ⊥ 〈a, b, e〉)an over the field
k(a, b, c, d, e) gives an example.

Let i(q) = (1, 1, 3, 1, 1). We have dim(q|k(Q))an = 13, and (q|k(Q))an differs
by an anisotropic form of dimension 5 from some form in I4(k(Q)). Then by
a result of B. Kahn (see [10, Theorem 2]), there exists a 5-dimensional form
r4(q) such that q ⊥ r4(q) ∈ I4(k). Clearly, r4(q) is anisotropic, since otherwise
i(q) would be a specialization of (1, 5, 1). Conversely, let q and r4(q) be 15-
dimensional and 5-dimensional anisotropic forms such that q ⊥ r4(q) ∈ I4(k).
Then i((q ⊥ r4(q))an) = (8). Since q differs from (q ⊥ r4(q))an by a 5-
dimensional form, in the light of Theorem 7.6, we get that i(q) is a special-
ization of (1, 1, 3, 1, 1). This means that i(q) is either (1, 1, 3, 1, 1) or (1, 5, 1).
If i(q) were (1, 5, 1), then there would exist a 3-dimensional form p such that
q ⊥ p ∈ I4(k). Then r4(q) ⊥ −p ∈ I4(k). Since dim(r4(q) ⊥ −p) = 8 < 16,
we get r4(q) = p ⊥ H. But r4(q) is anisotropic, contradiction. Hence
i(q) = (1, 1, 3, 1, 1). It remains to show that such anisotropic 15-dimensional
forms do exist. Take k := F (x1, . . . , x4, a1, . . . , a5) and q̃ := 〈〈x1, . . . , x4〉〉 ⊥
〈a1, . . . , a5〉. Consider the field extension E = k(

√
−a1a2,

√
−a3a4,

√
−a5).

Then dim(q̃|E)an = 15. By [16, Theorem 5.1], there exists 0 < s < h such that
dim(q̃|ks)an = 15. Since ks is obtained from k by adjoining the generic points
of quadrics of dimension ≥ 15, by [2, Theorem 1], 〈a1, . . . , a5〉|ks is anisotropic.
Then the form q := (q̃|ks)an has the splitting pattern (1, 1, 3, 1, 1).

Let i(q) = (1, 1, 1, 1, 3). Consider p := q ⊥ 〈det± q〉. Then the split-
ting pattern of p is simultaneously a specialization of (1, 1, 1, 1, 1, 2, 1) and of
(1, 1, 1, 1, 1, 1, 2) (since p differs from q by a 1-dimensional form and p ∈ I2(k)).
By Theorem 7.1, i(p) is a specialization of (1, 1, 1, 1, 4). In the light of [22, Satz
14 and Zusatz], it should be a specialization of (1, 1, 2, 4). Clearly, i(p) must
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be either (1, 1, 2, 4) or (2, 2, 4) or (1, 2, 4) (in the last case, p is isotropic).
Conversely, if p has one of the above splitting patterns and q is of codimen-
sion 1 in p, then q is anisotropic and its splitting pattern is a specialization
of (1, 1, 1, 1, 3). In our list of possible splitting patterns of forms of dimen-
sion 15 only the following three satisfy this property: (1, 1, 1, 1, 3), (3, 1, 3),
and (7). But if i(q) were (3, 1, 3) or (7), then i(p) would be (4, 4) or (8). So,
i(q) = (1, 1, 1, 1, 3). And the forms p such that ih(p) = 4 and ih−1(p) = 2 can
be described as p ∈ I3(k), such that π(p) ∈ KM

3 (k)/2 is not a pure symbol
(here π : I3(k) → KM

3 (k)/2 is the projection induced by the isomorphism
KM

3 (k)/2 ∼= I3(k)/I4(k)). This follows from a result of O. Izhboldin, see [6,
Corollary 13.7]. The form q = (〈〈a1, a2, a3〉〉 ⊥ −〈〈b1, b2, b3〉〉)an ⊥ 〈c〉 over the
field k(a1, a2, a3, b1, b2, b3, c) provides an example.

Finally, the remaining forms will have splitting pattern (1, 1, 1, 1, 1, 1, 1).
The generic form provides an example.

dim q = 17

By Theorem 7.2, i1(q) = 1. And so, the possible splitting patterns are
(1, 1, 1, 1, 1, 1, 1, 1), (1, 1, 1, 1, 1, 3), (1, 1, 1, 3, 1, 1), (1, 1, 5, 1), (1, 3, 1, 3), and
(1, 7). Again, by Theorem 7.3, all these patterns are realized. Let us describe
the corresponding classes of forms.

Let i(q) = (1, 7). Consider p := q ⊥ 〈det± q〉. Then the splitting pattern of
p is simultaneously a specialization of (1, 1, 6, 1) and (1, 1, 1, 1, 1, 1, 1, 2). So,
it is a specialization of (1, 8). By a result of D. Hoffmann, p is isotropic and
pan = λ · 〈〈a, b, c, d〉〉, for some {a, b, c, d} �= 0 ∈ KM

4 (k)/2 and λ ∈ k∗. Since q
is anisotropic, we also have {a, b, c, d,−λ · det q} �= 0 ∈ KM

5 (k)/2. Conversely,
the form 〈〈a, b, c, d〉〉 ⊥ 〈−e〉, where {a, b, c, d, e} �= 0 (mod 2) has splitting
pattern (1, 7). Such form clearly exists over the field F (a, b, c, d, e).

Let i(q) = (1, 3, 1, 3). Consider p := q ⊥ 〈det± q〉. Then the split-
ting pattern of p is simultaneously a specialization of (1, 1, 2, 1, 1, 2, 1) and
(1, 1, 1, 1, 1, 1, 1, 2). So, it is a specialization of (1, 1, 2, 1, 4). But, in the light
of [22, Satz 14 and Zusatz], it should be a specialization of (1, 1, 1, 2, 4). So, it is
a specialization of (1, 1, 3, 4). But 3 does not divide 4, so, by Theorem 7.7, The-
orem 7.8 and Theorem 4.20 (applied to the form with splitting pattern (3, 4)),
i(p) is a specialization of (1, 4, 4). By results of O. Izhboldin and D. Hoffmann
([6, Proposition 13.6], [4, Corollary 3.4]), there are no forms with splitting
pattern (1, 4, 4) or (1, 8), so p is isotropic. Clearly, p cannot have splitting pat-
tern (8), so i(p) = (4, 4) and pan = 〈〈a, b〉〉 · 〈u, v, w, t〉, where {a, b, uvwt} �= 0
(mod 2) and {a, b,−uv,−uw} is not divisible by {a, b, uvwt} (mod 2). Con-
versely, if p has the specified type and q := p ⊥ 〈c〉 is anisotropic, then i(q) is
a specialization of (1, 3, 1, 3). So, i(q) is either (1, 3, 1, 3) or (1, 7). In the last
case, i(p) would be a specialization of (1, 1, 6, 1), which is not the case. So,
i(q) = (1, 3, 1, 3). Taking a, b, c, u, v, w, t generic, we get an example.

Let i(q) = (1, 1, 5, 1). We have dim(q|k(Q))an = 15, and (q|k(Q))an differs
by a form of dimension 3 from some form in I4(k(Q)). Then by a result
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of B. Kahn (see [10, Theorem 2]), there exists a 3-dimensional form r4(q)
such that q ⊥ r4(q) ∈ I4(k). That is, q = (λ · 〈〈a, b, c, d〉〉 ⊥ −r4(q))an, for
some {a, b, c, d} �= 0 ∈ KM

4 (k)/2 and λ ∈ k∗ (by a result of D. Hoffmann,
in I4 there are no anisotropic forms of dimensions 18, 20 and 22, see [4,
Main Theorem]). Conversely, if q is an anisotropic 17-dimensional form of the
specified type, then i(q) = (1, 1, 5, 1). The form (〈〈a, b, c, d〉〉 ⊥ 〈a, e, f〉)an over
the field k(a, b, c, d, e, f) gives an example.

Let i(q) = (1, 1, 1, 3, 1, 1). We have dim(q|k(Q))an = 15, and (q|k(Q))an

differs by an anisotropic form of dimension 5 from some form in I4(k(Q)).
Then by [10, Theorem 2], there exists a 5-dimensional form r4(q) such that
q ⊥ r4(q) ∈ I4(k). Clearly, r4(q) is anisotropic, since otherwise q would
have a specialization of (1, 1, 5, 1) as splitting pattern. Conversely, let q
and r4(q) be 17-dimensional and 5-dimensional anisotropic forms such that
q ⊥ r4(q) ∈ I4(k). Then i((q ⊥ r4(q))an) = (8) (since dim(q ⊥ r4(q))an < 24
and (q ⊥ r4(q))an ∈ I4(k)). Since q differs from (q ⊥ r4(q))an by a 5-
dimensional form, we get that i(q) is a specialization of (1, 1, 1, 3, 1, 1). This
means that i(q) is either (1, 1, 1, 3, 1, 1) or (1, 1, 5, 1) or (1, 7). If i(q) = (1, 5, 1),
then there exists a 3-dimensional form p such that q ⊥ p ∈ I4(k). Then
r4(q) ⊥ −p ∈ I4(k). Since dim(r4(q) ⊥ −p) = 8 < 16, we get r4(q) = p ⊥ H.
But r4(q) is anisotropic, contradiction. The case (1, 7) can be treated in the
same way. Hence i(q) = (1, 1, 1, 3, 1, 1). It remains to show that such aniso-
tropic 17-dimensional forms do exist. Take k := F (x1, . . . , x4, a1, . . . , a5) and
q̃ := 〈〈x1, . . . , x4〉〉 ⊥ 〈a1, . . . , a5〉. Let k = k0 ⊂ k1 ⊂ . . . ⊂ kh be the gen-
eric splitting tower for q̃. We know (from the consideration of 15-dimensional
forms), that there is a t such that (q̃|kt)an has the splitting pattern (1, 1, 3, 1, 1).
On the other hand, if E = k(

√−a1a2,
√−a3a4), then dim(q̃|E)an = 17. By [16,

Theorem 5.1], the form q := (q̃|kt−1)an has the splitting pattern (1, 1, 1, 3, 1, 1).
Let i(q) = (1, 1, 1, 1, 1, 3). Consider p := q ⊥ 〈det± q〉. Then the split-

ting pattern of p is simultaneously a specialization of (1, 1, 1, 1, 1, 1, 2, 1) and
of (1, 1, 1, 1, 1, 1, 1, 2) (since p differs from q by a 1-dimensional form and
p ∈ I2(k)). By Theorem 7.1, i(p) is a specialization of (1, 1, 1, 1, 1, 4). In the
light of [22, Satz 14 and Zusatz], it should be a specialization of (1, 1, 1, 2, 4).
Clearly, ih(p) must be 4 and ih−1(p) must be 2 (by Theorem 7.6). Con-
versely, if ih(p) = 4, ih−1(p) = 2, and q is anisotropic of codimension 1
in p, then i(q) is a specialization of (1, 1, 1, 1, 1, 3). In our list of possible
splitting patterns of forms of dimension 17 only the following three satisfy
this property: (1, 1, 1, 1, 1, 3), (1, 3, 1, 3), and (1, 7). But if i(q) were (1, 3, 1, 3)
or (1, 7), then i(p) would be (4, 4) or (8). So, i(q) = (1, 1, 1, 1, 3). And
again, by a result of O. Izhboldin ([6, Corollary 13.7]), the forms p such
that ih(p) = 4 and ih−1(p) = 2 can be described as p ∈ I3(k), such that
π(p) ∈ KM

3 (k)/2 is not a pure symbol (here π : I3(k) → KM
3 (k)/2 is the

projection induced by the isomorphism KM
3 (k)/2 ∼= I3(k)/I4(k)). The form

q = 〈〈a1, a2, a3〉〉 ⊥ d · 〈〈b1, b2, b3〉〉 ⊥ 〈c〉 over the field k(a1, a2, a3, b1, b2, b3, c, d)
provides an example.
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Finally, the remaining forms have the splitting pattern (1, 1, 1, 1, 1, 1, 1, 1).
The generic form provides an example.

We summarize our results in Table 1 (use Definition 6.8).

Table 1: Splitting patterns of forms of odd dimension ≤ 17
dim q splitting pattern description

3 (1) —

5 (1,1) —

7 (3) dim3 q = 1
(1,1,1) dim3 q > 1

9 (1,3) dim3 q = 1
(1,1,1,1) dim3 q > 1

11 (3,1,1) dim4 q = 5
(1,1,3) dim3 q = 1
(1,1,1,1,1) dim3 q > 1, dim4 q > 5

13 (5,1) dim4 q = 3
(1,3,1,1) dim4 q = 5
(1,1,1,3) dim3 q = 1
(1,1,1,1,1,1) dim3 q > 1, dim4 q > 5

15 (7) dim4 q = 1
(3,1,3) dim3 q = 1, ω3(q) is a nonzero pure symbol
(1,5,1) dim4 q = 3
(1,1,3,1,1) dim4 q = 5
(1,1,1,1,3) dim3 q = 1, ω3(q) is not a pure symbol
(1,1,1,1,1,1,1) dim3 q > 1, dim4 q > 5

17 (1,7) dim4 q = 1
(1,3,1,3) dim3 q = 1, ω3(q) is a nonzero pure symbol
(1,1,5,1) dim4 q = 3
(1,1,1,3,1,1) dim4 q = 5
(1,1,1,1,1,3) dim3 q = 1, ω3(q) is not a pure symbol
(1,1,1,1,1,1,1,1) dim3 q > 1, dim4 q > 5

We can also describe the possible splitting patterns of forms of dimen-
sion 19 and 21. However, in these cases we will provide only a hypothetical
description of the respected classes of forms.

dim q = 19

By Theorem 7.2, i1(q) ≤ 3. Let us show that i1(q) �= 2. First of all, this is a
particular case of a result of O. Izhboldin, since 19 = 24 + 3. Alternatively,
we can argue as follows. If i1(q) = 2, then i(q) could be one of the follow-
ing: (2, 1, 1, 1, 1, 1, 1, 1), (2, 1, 1, 1, 1, 3), (2, 1, 1, 3, 1, 1), (2, 1, 5, 1), (2, 3, 1, 3),
or (2, 7). Let N be an indecomposable direct summand of M(Q) such that
a(N) = 0.
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If i(q) = (2, 1, 1, 1, 1, 1, 1, 1), then we immediately get that N is binary of
size dimQ − i1(q) + 1 = 16, a contradiction with Theorem 4.20.

Let now i(q) = (2, 1, 1, 1, 1, 3). Then N |k does not contain Tate motives
from the shells 2, 3, 4 and 5. At the same time, by Lemma 7.10, we know that
each Tate motive from the shell number 6 is connected to some Tate motive
from the shell number 4 or 5. So N |k does not contain Tate motives from the
6-th shell either, and, by Theorem 7.8, N is binary of size 16, a contradiction
with Theorem 4.20.

Let i(q) = (2, 7). Since i2(q) is not divisible by i1(q), by Theorem 7.7(2),
N will be binary of size 16, a contradiction with Theorem 4.20.

To exclude the case i(q) = (2, 3, 1, 3), let us first study the motivic decom-
position of a quadric with splitting pattern (3, 1, 3).

Lemma 7.11. Let R be an anisotropic quadric with splitting pattern (3, 1, 3).
Then its motive decomposes as

• • • • • • • • • • • • • •

Proof. Let L be an indecomposable direct summand of M(R) such that
a(L) = 0. Then L|k does not contain Tate motives from the second shell,
and since L is not binary (by Theorem 4.20), L|k should contain Tate motives
from the third shell. Since L(1)[2] and L(2)[4] are also isomorphic to direct
summands of M(R) (by Theorem 4.13), L|k must be Z⊕Z(4)[8]⊕Z(7)[14]⊕
Z(11)[22], and in M(R) we have indecomposables of the form

• • • ◦ • • • • • • ◦ • • •

The complementary direct summand is binary, and so indecomposable as well
(by Lemma 3.13). ��

Let now q be a form with splitting pattern (2, 3, 1, 3). Since i2(q) is not
divisible by i1(q), N |k does not contain Tate motives from the shell number
2. It does not contain any Tate motive from the shell number 3 either (since
1 < 2). So, if N is not binary, then N |k contains Tate motives from the shell
number 4. But, by Lemma 7.11, each such Tate motive is connected to some
Tate motive from the shell number 2. So, N |k cannot contain Tate motives
from the fourth shell either. And N is binary of size 16, a contradiction with
Theorem 4.20.

Let i(q) = (2, 1, 1, 3, 1, 1). We know that a(N) = 0, b(N) = 16 (by Co-
rollary 4.7), N(1)[2] is a direct summand in M(Q), and N∨ ∼= N(1)[2] (by
Theorem 4.19). In particular, if Z(l)[2l] is a direct summand of N |k, then
Z(16 − l)[32 − 2l] is a direct summand too. But in M(Q) we have connec-
tions (not to be confused with the indecomposable direct summands) of the
following form:

• • • • • • • • • • • • • • • • • •

If N is not binary, then N |k must contain some Tate motive from the shell
number 4. But since any such Z(l)[2l] comes together with Z(16−l)[32−2l] and
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Z(l+7)[2l+14] (because of the connections above), we get that N |k contains at
least four Tate motives from the shell number 4. But then N(1)[2]|k contains
another four from the same shell, a contradiction (the shell contains only 6
Tate motives). So, N is binary of size 16, a contradiction with Theorem 4.20.

Finally, let i(q) = (2, 1, 5, 1). By [10, Theorem 2], dim4 q = 3. Consider
p := q ⊥ r4(q) ∈ I4(k). Since in I4 there are no anisotropic forms of dimension
22, 20 and 18, p = H ⊥ H ⊥ H ⊥ pan, and pan is proportional to an anisotropic
4-fold Pfister form. That means that M(Pan) consists of binary Rost motives,
and because for any field extension E/k, pan|E is isotropic if and only if
iW (q|E) > 3, we get by Theorem 4.15, Theorem 4.13, that the shell number 3
of M(Q) consists of the Rost motives. In particular, N |k does not contain any
Tate motive from the third shell, and so, N is binary of size 16, contradiction
with Theorem 4.20. So, we have proved that i1(q) �= 2.

The remaining possibilities are i1(q) = 3 and i1(q) = 1. In the first case,
we get the splitting patterns (3, 1, 1, 1, 1, 1, 1), (3, 1, 1, 1, 3), (3, 1, 3, 1, 1), and
(3, 5, 1), and all these patterns are realized by appropriate forms in the light
of Theorem 7.3.

Let now i1(q) = 1. If i(q) = (1, 1, 7), consider p := q ⊥ 〈det± q〉. Then i(p)
is simultaneously a specialization of (1, 1, 1, 6, 1) and (1, 1, 1, 1, 1, 1, 1, 1, 2). So,
it is a specialization of (1, 1, 8). Since in I4 there are no anisotropic forms of
dimension 20 or 18, it should be a specialization of (8). That means that q is
isotropic, a contradiction. So, this splitting pattern is not possible.

We will show that the remaining splitting patterns (1, 1, 1, 1, 1, 1, 1, 1, 1),
(1, 1, 1, 1, 1, 1, 3), (1, 1, 1, 1, 3, 1, 1), (1, 1, 1, 5, 1), and (1, 1, 3, 1, 3) are realized
by appropriate forms.

The splitting pattern (1, 1, 1, 1, 1, 1, 1, 1, 1) is realized by the generic form
〈x1, . . . , x19〉 over the field k(x1, . . . , x19).

To construct a form with splitting pattern (1, 1, 1, 1, 1, 1, 3), consider q̃ :=
〈〈a1, a2, a3〉〉 ⊥ λ · 〈〈b1, b2, b3〉〉 ⊥ µ · 〈〈c1, c2, c3〉〉 ⊥ 〈−1〉 over the field F :=
k(a1, a2, a3, b1, b2, b3, c1, c2, c3, λ, µ) . Let F = F0 ⊂ F1 ⊂ . . . ⊂ Fh be the
generic splitting tower for q̃. Then, for some t, dim(q̃|Ft)an = 19 (since it
happens over the field F (

√
−λµ,

√
b1c1)). On the other hand, there exists s

(clearly, equal to t+1), such that dim(q̃|Fs)an = 17, and (q̃|Fs)an has splitting
pattern (1, 1, 1, 1, 1, 3) (since it happens over the field F (

√
a1)). Consequently,

(q̃|Ft)an has splitting pattern (1, 1, 1, 1, 1, 1, 3).
For the splitting pattern (1, 1, 1, 1, 3, 1, 1), consider the form

q := (〈〈a1, a2, a3, a4〉〉 ⊥ 〈−1, x1, x2, x3, x4〉)an

over the field
F := k(a1, a2, a3, a4, x1, x2, x3, x4).

Clearly, dim q = 19. On the other hand, other the field E = F (
√
−a1x1),

dim(q|E)an = 17. Hence dim(q|F (Q))an = 17. And dim4(q|F (Q))an = 5. So,
(q|F (Q))an has splitting pattern (1, 1, 1, 3, 1, 1). Hence, q has splitting pattern
(1, 1, 1, 1, 3, 1, 1).
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For the splitting pattern (1, 1, 1, 5, 1), consider the form

q := 〈〈a1, a2, a3, a4〉〉 ⊥ 〈x1, x2, x3〉

over the field
F := k(a1, a2, a3, a4, x1, x2, x3).

Clearly, q is anisotropic, and over the field E = F (
√
−x1), dim(q|E)an = 17.

Hence dim(q|F (Q))an = 17. And also, dim4(q|F (Q))an = 3. So, (q|F (Q))an has
splitting pattern (1, 1, 5, 1). Hence, q has splitting pattern (1, 1, 1, 5, 1).

Finally, for the splitting pattern (1, 1, 3, 1, 3), consider the form

q̃ := 〈〈a1, a2, a3, a4〉〉 ⊥ λ · 〈〈b1, b2, b3〉〉 ⊥ 〈µ〉

over the field
F := k(a1, a2, a3, a4, b1, b2, b3, λ, µ).

Then for some t, dim(q̃|Ft)an = 19 (since over the field F (
√
−λ,

√
a1b1,

√
a2µ)

this equality holds). And dim(q̃|Ft+1)an = 17, since it is so over the field
F (

√
−λ,

√
a1b1,

√
a2b2). But dim3(q̃|Ft+1)an = 1 and ω3((q̃|Ft+1)an) is a non-

zero pure symbol. So, (q|Ft+1)an has splitting pattern (1, 3, 1, 3), and q :=
(q̃|Ft)an has splitting pattern (1, 1, 3, 1, 3).

dim q = 21

By Theorem 7.2, i1(q) ≤ 5. Let us show that i1(q) is not equal to 2, 3, or 4.
If i1(q) = 4, then i(q) would be (4, 1, 1, 1, 1, 1, 1), (4, 1, 1, 1, 3), (4, 1, 3, 1, 1), or
(4, 5, 1). In the light of Theorem 7.7, in all these cases we get a binary direct
summand of M(Q) of size dimQ−4+1 = 16, which contradicts Theorem 4.20.

If i1(q) = 2, then i(q) would be (2, 1, 1, 1, 1, 1, 1, 1, 1), (2, 1, 1, 1, 1, 1, 3),
(2, 1, 1, 1, 3, 1, 1), (2, 1, 1, 5, 1), (2, 1, 3, 1, 3), or (2, 1, 7). Let N be an indecom-
posable direct summand of M(Q) such that a(N) = 0.

If i(q) = (2, 1, 1, 1, 1, 1, 1, 1, 1), then N is binary of size 18, a contradiction
with Theorem 4.20.

The same will happen in the case i(q) = (2, 1, 1, 1, 1, 1, 3), since all Tate
motives from the shell number 7 are connected to some Tate motives from the
shells number 5 and 6 (by Lemma 7.10), and those shells are not connected
to the shell number 1.

The nonexistence of the splitting pattern (2, 1, 1, 1, 3, 1, 1) follows from
the considerations we applied to the splitting pattern (2, 1, 1, 3, 1, 1) above (in
dim = 19) (with the only difference that N will be a binary direct summand
of size 18 instead of 16, which still contradicts Theorem 4.20).

If i(q) = (2, 1, 3, 1, 3), Then, by Lemma 7.11, in M(Q) we have connections
(not to be confused with the indecomposable direct summands) of the form

◦ ◦ ◦ • • • ◦ • • • • • • ◦ • • • ◦ ◦ ◦
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Since a(N) = 0, b(N) = 18 and N∨ ∼= N(1)[2] (in other words, N is symmet-
ric with respect to flipping over) (here N∨ is the direct summand of M(Q)
given by the dual projector), we see that N |k does not contain any of the
Tate motives from the shells number 3 and 5. So, N is binary of size 18, a
contradiction with Theorem 4.20.

If i(q) = (2, 1, 7), consider p := q ⊥ 〈−det± q〉. Then i(p) is a specialization
of (1, 1, 1, 1, 6, 1) and p ∈ I2(k). So, i(p) is a specialization of (1, 1, 1, 8). Since
in I4 there are no anisotropic forms of dimension 22 or 20 (by a result of
D. Hoffmann), q must be isotropic, a contradiction.

Finally, if i(q) = (2, 1, 1, 5, 1), then by [10, Theorem 2], dim4 q = 3, so there
exists a 3-dimensional form r4(q) such that p := q ⊥ r4(q) ∈ I4(k). Since in I4

there are no forms of dimension 18, 20 and 22, we get that p is anisotropic of
dimension 24, and i(p) = (4, 8). But since q is a subform of codimension 3 in
p, and i1(p) = 4 > 3, we get that N will be isomorphic to a direct summand
L of M(P ) such that a(L) = 0. But size N = dimQ − i1(q) + 1 = 18, and
sizeL = dimP − i1(p) + 1 = 19, a contradiction. So, we have proved that
i1(q) �= 2.

Suppose i1(q) = 3. We have the following possibilities for i(q):

(3, 1, 1, 1, 1, 1, 1, 1), (3, 1, 1, 1, 1, 3), (3, 1, 1, 3, 1, 1),
(3, 1, 5, 1), (3, 3, 1, 3), and (3, 7).

Let N be an indecomposable direct summand of M(Q) such that a(N) = 0.
If i(q) = (3, 1, 1, 1, 1, 1, 1, 1), then N is binary of size 17, which contradicts

Theorem 4.20. The same happens in the case i(q) = (3, 1, 1, 1, 1, 3), since all
Tate motives from the shell number 6 are connected to some Tate motives
from the shells 4 and 5, and in the case i(q) = (3, 7), since 7 is not divisible
by 3.

If i(q) = (3, 1, 5, 1), then by [10, Theorem 2], dim4 q = 3, so there exists
a 3-dimensional form r4(q) such that p := q ⊥ r4(q) ∈ I4(k). Since in I4

there are no forms of dimension 18, 20 and 22, we get that p is anisotropic of
dimension 24, and i(p) = (4, 8). But since q is a subform of codimension 3 in
p, and i1(p) = 4 > 3, we get that N will be isomorphic to a direct summand
L of M(P ) such that a(L) = 0. But size N = dimQ − i1(q) + 1 = 17, and
sizeL = dimP − i1(p) + 1 = 19, a contradiction.

If i(q) = (3, 3, 1, 3), then consider p := q ⊥ 〈det± q〉. i(p) is a specializ-
ation of (1, 2, 1, 2, 1, 1, 2, 1), and p ∈ I2(k). Hence i(p) is a specialization of
(1, 2, 1, 2, 1, 4), and finally, of (1, 2, 4, 4). Clearly, then i(p) is either (1, 2, 4, 4)
or (2, 4, 4) (in the last case p is isotropic). Let p′′ be a form with splitting pat-
tern (2, 4, 4). If L is an indecomposable direct summand of M(P ′′) such that
a(L) = 0, then, by inductive application of Theorem 7.9, M(P ′′) = L⊕L(1)[2].
In particular, L|k contains Z(2)[4]. Return to our original form q. Since
i1(q) = 3, we have that N(1)[2] and N(2)[4] are also direct summands of
M(Q). In particular, N |k does not contain Z(2)[4]. But for every field exten-
sion E/k, the conditions iW (q|E) > 0 and iW (p|E) > 1 are equivalent (since
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i1(q) = 3). So, by Theorem 4.15, N(1)[2] is a direct summand of M(P ). Con-
sider the field F = k(P ). Then p|F = H ⊥ p′′ and i(p′′) = (2, 4, 4). Since
M(P |F ) = Z ⊕ M(P ′′)(1)[2] ⊕ Z(20)[40], we get that N |F is a direct sum-
mand of M(P ′′) such that a(N |F ) = 0. In particular, the indecomposable
direct summand L of M(P ′′) described above should be a direct summand of
N |F . But L|F does contain Z(2)[4] and N |F does not, a contradiction. So, the
splitting pattern (3, 3, 1, 3) is not possible.

Finally, let i(q) = (3, 1, 1, 3, 1, 1). The only way for N not to be bin-
ary of size 17 is to contain Tate motives from the shell number 4. That is,
N |k = Z ⊕ Z(5)[10] ⊕ Z(12)[24] ⊕ Z(17)[34]. By a result of B. Kahn ([10,
Theorem 2]), dim4 q = 5. So, let r4(q) be a 5-dimensional form such that
q ⊥ r4(q) ∈ I4(k). Let p := (q ⊥ r4(q))an. We know that dim p �= 18, 20 or 22.
Suppose dim p ≥ 24. Then p|k(Q) is isotropic, since dim(q|k(Q))an = 15. Sup-
pose q|k(P) is isotropic. Then, by Corollary 3.9, M(P ) contains a direct sum-
mand L with a(L) = 0 isomorphic to N . But L has size dim P − i1(p)+1 = 19
or 24, since i(p) is either (4, 8) or (1, 4, 8) (the last case does not exist,
actually). In any case, it is not equal to 17 = size N . So, q|k(P) is aniso-
tropic, and i(q|k(P)) is a specialization of (3, 1, 1, 3, 1, 1). So, i(q|k(P)) is either
(3, 1, 1, 3, 1, 1), or (5, 3, 1, 1) (we already know that i1 cannot be 4 for 21-
dimensional forms). But in the second case, for the indecomposable direct
summand M of M(Q|k(P)) with a(M) = 0 we would have that M |

k(P)
contains

Z(dimQ − i1(q|k(P)) + 1)[2(dimQ − i1(q|k(P)) + 1)] = Z(15)[30], but already
N |

k(P)
does not contain this Tate motive, and M is clearly a direct summand

in N |k(P). So, i(q|k(P)) �= (5, 3, 1, 1), and hence, i(q|k(P)) = (3, 1, 1, 3, 1, 1).
This means that by changing the field, we can assume that dim p < 24, which
means dim p = 16, and p is a Pfister form up to a scalar multiple. Abusing
notations, we will still call this new field k and the new form q. But then
we notice that for every field extension E/k, p|E is isotropic if and only if
iW (q|E) > 5. By Theorem 4.15, in M(Q) there is a direct summand N ′ such
that a(N ′) = 5. But N |k contains Z(5)[10], a contradiction. So, the splitting
pattern (3, 1, 1, 3, 1, 1) is not possible, and we have proved that i1(q) �= 3.

The remaining values of i1(q) are 1 and 5. We will show that all the
splitting patterns with such i1 (which are provided by the already classified
splitting patterns of forms of dimension 19 and 11) are realized by appropriate
forms.

If i1(q) = 5, then it is a consequence of Theorem 7.3 that all the splitting
patterns (5, 1, 1, 1, 1, 1), (5, 1, 1, 3) and (5, 3, 1, 1) are realized.

Let now i1(q) = 1. The splitting pattern (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) is realized
by the generic form 〈x1, . . . , x21〉 over the field k(x1, . . . , x21).

To construct a form with splitting pattern (1, 1, 1, 1, 1, 1, 1, 3), consider
q̃ := 〈〈a1, a2, a3〉〉 ⊥ λ · 〈〈b1, b2, b3〉〉 ⊥ µ · 〈〈c1, c2, c3〉〉 ⊥ 〈η〉 over the field
F := k(a1, a2, a3, b1, b2, b3, c1, c2, c3, λ, µ, η) . Let F = F0 ⊂ F1 ⊂ · · · ⊂ Fh

be the generic splitting tower for q̃. Then, for some t, dim(q̃|Ft)an = 21
(since it happens over the field F (

√
−λµ,

√
b1c1)). On the other hand, q̃
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over some field has a splitting pattern (1, 1, 1, 1, 1, 1, 3) (as we saw while con-
sidering forms of dimension 19). So, (1, 1, 1, 1, 1, 1, 1, 3) is a specialization of
i((q̃|Ft)an). But dim3(q̃|Ft)an = 1. Consequently, (q̃|Ft)an has splitting pattern
(1, 1, 1, 1, 1, 1, 1, 3).

For the splitting pattern (1, 1, 1, 1, 1, 3, 1, 1), consider the form

q := 〈〈a1, a2, a3, a4〉〉 ⊥ 〈x1, x2, x3, x4, x5〉

over the field
F := k(a1, a2, a3, a4, x1, x2, x3, x4, x5).

Clearly, dim q = 21. On the other hand, over the field E = F (
√
−x5),

dim(q|E)an = 19, and i((q|E)an) = (1, 1, 1, 1, 3, 1, 1). So, (1, 1, 1, 1, 1, 3, 1, 1)
is a specialization of i(q). But for every field extension K/F , iW (q|K) > 5 ⇔
iW (q|K) > 7. Hence, q has splitting pattern (1, 1, 1, 1, 1, 3, 1, 1).

For the splitting pattern (1, 1, 1, 1, 5, 1), consider the form

q̃ := 〈〈a1, a2, b1, b2〉〉 ⊥ −〈〈a1, a2, c1, c2〉〉 ⊥ 〈x1, x2, x3〉

over the field
F := k(a1, a2, b1, b2, c1, c2, x1, x2, x3).

For some t, dim(q̃|Ft)an = 21 (since over the field F (
√

b1x1,
√

b2x2,
√
−c1x3)

this equality holds). On the other hand, over the field E = F (
√

b1c1),
dim(q̃|E)an = 19, and i((q̃|E)an) = (1, 1, 1, 5, 1). Put q := (q̃|Ft)an. Then
(1, 1, 1, 1, 5, 1) is a specialization of i(q). Since for every field extension K/Ft,
iW (q|K) > 4 ⇔ iW (q|K) > 8, we get i(q) = (1, 1, 1, 1, 5, 1).

For the splitting pattern (1, 1, 1, 3, 1, 3), consider the form

q̃ := 〈〈a1, a2, a3, a4〉〉 ⊥ λ · 〈〈b1, b2, b3〉〉 ⊥ 〈µ〉

over the field
F := k(a1, a2, a3, a4, b1, b2, b3, λ, µ).

Then there exists t with dim(q̃|Ft)an = 21 (since it is so over the field
F (

√
−λ,

√
a1b1)). On the other hand, we know that for some s (evidently,

equal to t + 1), dim(q̃|Fs)an = 19 and i(q̃|Fs)an) = (1, 1, 3, 1, 3). Consequently,
for q := (q̃|Ft)an we get i(q) = (1, 1, 1, 3, 1, 3).

For the splitting pattern (1, 3, 1, 1, 1, 1, 1, 1), consider the form

q̃ := 〈〈a1, a2, a3, a4, a5〉〉 ⊥ 〈x1, . . . , x13〉

over the field
F = k(a1, a2, a3, a4, a5, x1, . . . , x13).

Then, for some t, dim(q̃|Ft)an = 21, since it is so over the field E obtained
by adjoining to F the square roots of a1x1, a2x2, a3x3, a4x4, a5x5, −a1a2x6,
−a1a3x7, −a1a4x8, −a1a5x9, −a2a3x10, −a2a4x11 and −a2a5x12. If we adjoin
also the square root of −a3a4x13, then the dimension of the anisotropic part
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of q̃ will be 19. And finally, over the field K = F (
√

a1), dim(q̃|K)an = 13,
and (q̃|K)an is generic, so i((q̃|K)an) = (1, 1, 1, 1, 1, 1). Then for q := (q̃|Ft)an,
(1, 3, 1, 1, 1, 1, 1, 1) is a specialization of i(q). Since for every field extension
E/Ft, iW (q|E) > 1 ⇔ iW (q|E) > 3, we get i(q) = (1, 3, 1, 1, 1, 1, 1, 1).

For the splitting pattern (1, 3, 1, 1, 1, 3), consider the form

q̃ := 〈〈a1, a2, a3, a4, a5〉〉 ⊥ 〈〈b, c1, c2〉〉 ⊥ −〈〈b, d1, d2〉〉 ⊥ 〈e〉

over the field

F = k(
√
−1)(a1, a2, a3, a4, a5, b, c1, c2, d1, d2, e).

For some t, dim(q̃|Ft)an = 21, since it is so over the field

E = F (
√

a1b,
√

a2c1,
√

a3c2,
√

a4d1,
√

a5d2).

And dim(q̃|E√
a1a2a3e)an = 19. On the other hand, dim(q̃|F√

a1)an = 13, and
i((q̃|F√

a1 )an) = (1, 1, 1, 3). So, for q := (q̃|Ft)an, (1, 3, 1, 1, 1, 3) is a specializa-
tion of i(q). Since for every field extension E/Ft, iW (q|E) > 1 ⇔ iW (q|E) > 3
and iW (q|E) > 7 ⇔ iW (q|E) > 9, we have i(q) = (1, 3, 1, 1, 1, 3).

For the splitting pattern (1, 3, 1, 3, 1, 1), consider the form

q̃ := 〈〈a1, a2, a3, a4, a5〉〉 ⊥ −〈〈b1, b2〉〉 · 〈1,−c1,−c2〉 ⊥ 〈d〉

over the field
F = k(a1, a2, a3, a4, a5, b1, b2, c1, c2, d).

For some t, dim(q̃|Ft)an = 21, since it is so over the field

E = F (
√

a1b1,
√

a2b2,
√

a3c1,
√

a4c2).

Moreover, dim(q̃|E(
√

a5d))an = 19. On the other hand, dim(q̃|F (
√

a1))an = 13,
and i((q̃|F (

√
a1))an) = (1, 3, 1, 1). So, for q := (q̃|Ft)an, (1, 3, 1, 3, 1, 1) is a

specialization of i(q). Since for every field extension E/Ft, iW (q|E) > 1 ⇔
iW (q|E) > 3 and iW (q|E) > 5 ⇔ iW (q|E) > 7, we have i(q) = (1, 3, 1, 3, 1, 1).

For the splitting pattern (1, 3, 5, 1) take q = 〈〈a1, a2〉〉 · 〈b1, b2, b3, b4, b5〉 ⊥
〈−b1b2b3b4b5〉 over the field F = k(a1, a2, b1, b2, b3, b4, b5). Then, on one
hand, q has a codimension 1 subform p′ = 〈〈a1, a2〉〉 · 〈b1, b2, b3, b4, b5〉, so,
i(p′) = (4, 4, 2), and hence, i(q) is a specialization of (1, 3, 1, 3, 1, 1). On
the other hand, q is itself a subform of codimension 3 in the form p′′ =
〈〈a1, a2〉〉 · 〈b1, b2, b3, b4, b5,−b1b2b3b4b5〉 in I4(F ). So, i(p′′) = (4, 8), and hence,
i(q) is a specialization of (1, 1, 1, 1, 5, 1). Consequently, i(q) is a specialization
of (1, 3, 5, 1). Since q is anisotropic, i(q) = (1, 3, 5, 1) (it is the only specializ-
ation possible — check the list).

Table 2 contains the list of possible splitting patterns we obtained. We
should stress that the description of the respective classes of forms is only
hypothetical.



92 Alexander Vishik

Table 2: Splitting patterns of forms of dimension 19 or 21
dim q splitting pattern hypothetical description

19 (3,5,1) dim4 q = 3, dim5 q = 13 ⇔ excellent

(3,1,3,1,1) dim4 q = 5 and

���
��

either dim5 q = 13,

or q ⊥ 〈det± q〉 is divisible

by a 2-fold Pfister form

(3,1,1,1,3) dim5 q = 13, dim3 q = 1
(3,1,1,1,1,1,1) dim5 q = 13, dim4 q > 5, dim3 q > 1
(1,1,3,1,3) dim3 q = 1, ω3(q) is a nonzero pure symbol
(1,1,1,5,1) dim4 q = 3, dim5 q > 13
(1,1,1,1,3,1,1) dim4 q = 5, dim5 q > 13 and q ⊥ 〈det± q〉

is not divisible by a two-fold Pfister form
(1,1,1,1,1,1,3) dim3 q = 1, ω3(q) is not a pure symbol, dim5 q > 13
(1,1,1,1,1,1,1,1,1) dim3 q > 1, dim4 q > 5, dim5 q > 13

21 (5,3,1,1) dim5 q = 11, dim4 q = 5
(5,1,1,3) dim5 q = 11, dim3 q = 1
(5,1,1,1,1,1) dim5 q = 11, dim4 q > 5, dim3 q > 1
(1,3,5,1) dim4 q = 3, and (q ⊥ r4(q))|k(r4(q)) is hyperbolic

(1,3,1,3,1,1) dim4 q = 5 and

���
��

either dim5 q = 13,

or dim5 q > 11, (q ⊥ 〈det± q〉)an
is divisible by a 2-fold Pfister form

(1,3,1,1,1,3) dim5 q = 13, dim3 q = 1
(1,3,1,1,1,1,1,1) dim5 q = 13, dim4 q > 5, dim3 q > 1
(1,1,1,3,1,3) dim3 q = 1 and ω3(q) is a nonzero pure symbol
(1,1,1,1,5,1) dim4 q = 3, and (q ⊥ r4(q))|k(r4(q)) is not hyperbolic
(1,1,1,1,1,3,1,1) dim4 q = 5, dim5 q > 13, (q ⊥ 〈det± q〉)an

is not divisible by a 2-fold Pfister form
(1,1,1,1,1,1,1,3) dim3 q = 1, ω3(q) is not a pure symbol, dim5 q > 13
(1,1,1,1,1,1,1,1,1,1) dim3 q > 1, dim4 q > 5, dim5 q > 13

7.3 Splitting Patterns of Even-dimensional Forms

I should mention that the cases of forms of dimension 2, 4, 6, 8 and 10 were
classified by D. Hoffmann (see [3]). We still included these cases below.

dimp = 2

i(p) = (1).

dimp = 4

Either i(p) = (2), and p is a 2-fold Pfister form (up to scalar), or i(p) = (1, 1),
and p is any other form, for example, the generic one.
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dimp = 6

By Theorem 7.2, i1(p) ≤ 2. If i1(p) = 2, then i(p) = (2, 1) and p is a Pfister
neighbor. If i1(p) = 1, then either i(p) = (1, 2), which corresponds to the case
of Albert forms, or i(p) = (1, 1, 1), which happens if p /∈ I2(k) and p is not
a Pfister neighbor. The generic form 〈x1, . . . , x6〉 over the field k(x1, . . . , x6)
provides an example.

dimp = 8

Clearly, i1(p) ≤ 4. If i1(p) = 4, then p is proportional to a 3-fold Pfister form.
By Theorem 7.7, Theorem 7.8 and Theorem 4.20, i1(p) �= 3. If i1(p) = 2,
then i(p) = (2, 2), again, by Theorem 7.7, Theorem 7.8 and Theorem 4.20.
It is well-known that in this case, p is proportional to a difference of a 3-fold
Pfister form and a 2-fold Pfister form having exactly one common slot. Finally,
let i1(p) = 1. Then all the cases (1, 2, 1), (1, 1, 2), and (1, 1, 1, 1) are realized by
appropriate forms. If i(p) = (1, 2, 1), then p is proportional to the difference
of a 3-fold Pfister form and a 1-fold Pfister form having no common slot. The
case (1, 1, 2) corresponds to a form in I2(k) such that ω2(p) ∈ KM

2 (k)/2 is not
a pure symbol (this follows from Merkurjev’s index reduction formula). And
finally, all other forms have the splitting pattern (1, 1, 1, 1). The generic form
provides an example.

dimp = 10

By Theorem 7.2, i1(p) ≤ 2. For i1(p) = 2, all the splitting patterns (2, 2, 1),
(2, 1, 2), and (2, 1, 1, 1) are realized by Theorem 7.3. Let us describe the re-
spective classes of forms. Since i1(p) = 2, by the result of O. Izhboldin ([6,
proof of Conjecture 0.10]), either p is divisible by some binary form 〈〈a〉〉,
or p is a Pfister neighbor. If i(p) = (2, 2, 1), then p is clearly divisible by
〈〈det± p〉〉 (by Theorem 7.1). And vice-versa, if p is divisible by 〈〈a〉〉 then is(p)
are divisible by 2, for all s < h(p). Since i1(p) �= 4, i(p) must be (2, 2, 1). Con-
sequently, the cases (2, 1, 2) and (2, 1, 1, 1) correspond to Pfister neighbors. In
the first case, p ∈ I2(k). In the second, p /∈ I2(k), and p is not divisible by
〈〈det± p〉〉, or, what is equivalent, dim3 p > 2. And vice-versa, if p is a Pfister
neighbor, p ∈ I2(k), then i(p) is a specialization of (2, 1, 2), and there are no
nontrivial specializations at our disposal. Similarly, if p is a Pfister neighbor,
p /∈ I2(k), and dim3 p > 2, then i(p) is not equal to (2, 2, 1) or (2, 1, 2) but is
a specialization of (2, 1, 1, 1). So, i(p) = (2, 1, 1, 1).

Let now i1(p) = 1. The case (1, 4) is not possible by a result of A. Pfister
([22, Satz 14 and Zusatz]). The other cases (1, 2, 2), (1, 1, 2, 1), (1, 1, 1, 2), and
(1, 1, 1, 1, 1) are all realized by appropriate forms.

It is well known that the case (1, 2, 2) corresponds to the difference of a
3-fold Pfister form and a 2-fold Pfister form having no common slot.
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Let i(p) = (1, 1, 2, 1). Then there exists c ∈ k∗ such that p ⊥ c · 〈〈det± p〉〉 ∈
I3(k). Also, clearly, p is not divisible by any binary form. Conversely, let
dim3 p = 2, and suppose p is not divisible by the binary form 〈〈det± p〉〉.
Then i(p) is a specialization of (1, 1, 2, 1), but not (2, 2, 1), and det± p �= 1,
so ih(p)(p) = 1. Hence, i(p) = (1, 1, 2, 1). The form p = 〈〈a1, a2, a3〉〉 ⊥ 〈b1, b2〉
over the field k(a1, a2, a3, b1, b2) provides an example.

If i(p) = (1, 1, 1, 2), then p ∈ I2(k), and ω2(p) is not a pure symbol (other-
wise, we get a splitting pattern (1, 2, 2)), and p is not a Pfister neighbor. Con-
versely, any form satisfying these conditions has splitting pattern (1, 1, 1, 2).
Such forms clearly exist: take p = 〈〈a1, a2〉〉 ⊥ λ · 〈b1, b2,−b1b2,−c1,−c2, c1c2〉
over the field F = k(a1, a2, b1, b2, c1, c2, λ), then p ∈ I2, and at the same
time, over the fields E1 = F (

√
b1c1), E2 = F (

√
a1), and E3 = F (

√
b1,

√
c1),

the dimension of the anisotropic part of p is 8, 6, and 4, respectively.
So, i(p) = (1, 1, 1, 2). Finally, all the other forms have splitting pattern
(1, 1, 1, 1, 1). The generic form provides an example.

dimp = 12

By Theorem 7.2, i1(p) ≤ 4. If i1(p) = 4, then p is a Pfister neighbor by
a result of B. Kahn ([10, Theorem 2]). So, i(p) = (4, 2) if and only if p =
λ · (〈〈a1, a2, a3, a4〉〉 ⊥ −〈〈a1, a2〉〉)an for some {a1, a2, a3, a4} �= 0 ∈ KM

4 (k)/2.
And i(p) = (4, 1, 1) if and only if p is a Pfister neighbor and p /∈ I2(k).

By Theorem 7.7, Theorem 7.8 and Theorem 4.20, i1(p) �= 3.
Let i1(p) = 2. We have the following possibilities for i(p): (2, 4), (2, 2, 2),

(2, 1, 2, 1), (2, 1, 1, 2), and (2, 1, 1, 1, 1). The case (2, 1, 1, 1, 1) is not possible
by Theorem 7.7, Theorem 7.8 and Theorem 4.20. The same applies to the
case i(p) = (2, 1, 1, 2), since the motive of a quadric with splitting pattern
(1, 2) (Albert quadric) is indecomposable (by Theorem 7.9), and so, the Tate
motives from the shell number 4 of M(P ) are connected to ones from the shell
number 3.

Consider the case i(p) = (2, 1, 2, 1). Then i(p|
k
√

det± p
) must be a special-

ization of (2, 4). Then for some c ∈ k∗, p ⊥ c · 〈〈det± p〉〉 belongs to I3(k).
Really, consider p′ = p ⊥ 〈〈det± p〉〉. Then p′ ∈ I2(k), and ω2(p′)|k√det± p

= 0.

So, by a result of A. Merkurjev (see [20]), there exists c ∈ k∗ such that
ω2(p′) = {c, det± p}. Then p′ ⊥ −〈〈c, det± p〉〉 ∈ I3(k). Hence, p′′ := p ⊥
c · 〈〈det± p〉〉 ∈ I3(k). So, i(p′′) is a specialization of (1, 2, 4). It must be
either (1, 2, 4) or (2, 4) (by Theorem 7.7, Theorem 7.8 and Theorem 4.20,
there are no forms with splitting pattern (3, 4)). By Corollary 4.9(2), p|k(p′′)

is anisotropic. At the same time, 〈〈det± p〉〉|k(p′′) is clearly not hyperbolic.
So, i(p|k(p′′)) = (2, 1, 2, 1) (there are no other specializations possible with
ih(p) = 1). This means that by changing the field, we can assume that p′′ is
isotropic and for r := (p′′)an, i(r) = (2, 4) (while still having i(p) = (2, 1, 2, 1)).
But now p and r have a common subform of codimension 1, and since
i1(p) > 1, i1(r) > 1, we get that p|k(r) and r|k(p) are isotropic. By Corol-
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lary 3.9, M(P ) and M(R) contain isomorphic direct summands N and L
with a(N) = 0. From Theorem 7.9 we know that M(R) = L⊕L(1)[2]. Hence,
L|k = Z ⊕ Z(2)[4] ⊕ Z(4)[6] ⊕ Z(5)[10] ⊕ Z(7)[14] ⊕ Z(9)[18]. But the Tate
motive Z(2)[4] belongs to the second shell of M(P ), so it is not contained in
N |k by Theorem 7.7, a contradiction. So, the case (2, 1, 2, 1) is not possible.

The remaining cases (2, 4) and (2, 2, 2) are possible. By a result of Pfister,
i(p) = (2, 4) if and only if p = (〈〈a, b1, b2〉〉 ⊥ −〈〈a, c1, c2〉〉)an, where {a, b1, b2}
and {a, c1, c2} have exactly one common slot.

The forms with splitting pattern (2, 2, 2) are not classified at the moment.
However, hypothetically, p must have the form 〈〈a〉〉·〈b1, . . . , b6〉, where {a,−b1·
. . . · b6} �= 0 and p is not a Pfister neighbor (the last two conditions are clearly
necessary, so the question is about the divisibility by a binary form). Clearly,
the specified forms have the splitting pattern (2, 2, 2).

Let i(p) = (1, 2, 2, 1). Then, by Theorem 7.1 and Theorem 7.5, p|
k
√

det± p

must be hyperbolic. But then i1(p) must be divisible by 2, contradiction. So,
this splitting pattern does not exist.

We will show that all the other possibilities

(1, 2, 1, 2), (1, 2, 1, 1, 1), (1, 1, 2, 2), (1, 1, 1, 2, 1),
(1, 1, 1, 1, 2), and (1, 1, 1, 1, 1, 1)

are realized.
Let i(p) = (1, 2, 1, 2). Then, as we saw above, p1 := (p|k(P))an is a Pfister

neighbor. So over the field k(P ) there exists a 6-dimensional form r̃ with
trivial discriminant such that p1 ⊥ r̃ is proportional to an anisotropic 4-
fold Pfister form. Then r̃ ∈ Wnr(k(P )/k), by standard arguments (see, for
example, [10]). By a result of B. Kahn ([10, Theorem 2]), r̃ is defined over
k, so there exists a 6-dimensional form r over k such that r|k(P) = r̃. Then
p ⊥ r must be in I4(k). Really, if it were not, then p1 ⊥ r̃ would not be in
I4(k(P )) either (since dim p > 8). It is also clear that det± r = 1. So, up to a
scalar, p differs from some Pfister form by an anisotropic form of dimension 6
with trivial discriminant (we use here the fact that dim �= 18 for anisotropic
forms in I4, see [4]). Conversely, if p is such a form, then, by Theorem 7.6,
i(p) is a specialization of (1, 2, 1, 2). Since ω2(p) is not a pure symbol, we have
ih(p)−1(p) = 1, and i(p) must be (1, 2, 1, 2).

Let us show that such forms really exist. Consider the form

p̃ = 〈〈a1, a2, a3, a4〉〉 ⊥ λ · 〈−b1,−b2, b1b2, c1, c2,−c1c2〉

over the field
F = k(a1, a2, a3, a4, b1, b2, c1, c2, λ).

Let F = F0 ⊂ . . . ⊂ Fh(p̃) be the generic splitting tower for p̃. Then, for some
t, the form p := (p̃|Ft)an has dimension 12. Really, it follows from the fact that
dim(p̃|E)an = 12 for E = F (

√
b1,

√
λ,

√
a1c1,

√
a2c2). Then i(p) = (1, 2, 1, 2),

as we saw above.
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Let i(p) = (1, 2, 1, 1, 1). This is, actually, a complicated variant of the
previous case (the difference is that we cannot use [10, Theorem 2] here, but,
hopefully, we now have the results of O. Izhboldin and A. Laghribi, which
permit to handle the problem). Let us do it in a separate Lemma.

Lemma 7.12. Let p be an anisotropic form of dimension 12. Then the fol-
lowing conditions are equivalent:

(1) i(p) = (1, 2, 1, 1, 1);
(2) p = (r ⊥ d · 〈〈γ〉〉)an, where r is a 6-dimensional form with splitting pattern

(1, 1, 1), d ∈ k∗, and γ ∈ KM
4 (k)/2 is a nonzero pure symbol.

Proof. We know that p1 := (p|k(P))an is a Pfister neighbor. So over the field
k(P ) there exists a 6-dimensional form r′′ such that p1 ⊥ r′′ is proportional
to an anisotropic 4-fold Pfister form 〈〈α′′〉〉, where α′′ ∈ KM

4 (k(P ))/2. Then
r′′ ∈ Wnr(k(P )/k), and α′′ ∈ H4

nr(k(P )/k, Z/2). By a result of O. Izhboldin
([6, Theorem 0.5, Theorem 0.6]), there exists α ∈ KM

4 (k)/2 = H4
ét(k, Z/2)

such that α|k(P) = α′′. Under the projection π : I4(k) → KM
4 (k)/2, α can

be lifted to some form q ∈ I4(k). Let k = k0 ⊂ · · · ⊂ kh(q) be the generic
splitting tower for q. Then qh(q)−1 := (q|kh(q)−1)an is proportional to some
4-fold Pfister form (by a result of B. Kahn, M. Rost, and R.J. Sujatha, see
[12]), and, consequently, α|kh(q)−1 is a nonzero pure symbol. Note that for any
1 ≤ s < h(q), ks = ks−1(qs−1), where qs−1 is a form of dimension ≥ 24.
Denote F := kh(q)−1. Then i(p|F ) = i(p) (by [2], since dim qs−1 > 16). At the
same time, (p|F (P))an is a neighbor of the Pfister form 〈〈α|F (P)〉〉. We know
that iW (p|F (〈〈α|F 〉〉)(P)) = 3. Hence, either iW (p|F (〈〈α|F 〉〉)) = 3, or p|F (〈〈α|F 〉〉)
is anisotropic and i1(p|F (〈〈α|F 〉〉)) = 3 (we recall that (p|F (P))an is a neighbor
of 〈〈α|F (P)〉〉). The last case is impossible, since i1 �= 3 for 12-dimensional
forms. So, iW (p|F (〈〈α|F 〉〉)) = 3. In particular, for any {a} ∈ KM

1 (F )/2 dividing
α|F , iW (p|F (〈〈a〉〉) ) ≥ 3. Pick any such a. Then there exists c ∈ F ∗ such that
iW (p|F ⊥ c · 〈〈a〉〉) ≥ 2, and so iW (p|F ⊥ c · 〈〈α|F 〉〉) ≥ 2, and for r̃ := (p|F ⊥
c · 〈〈α|F 〉〉)an, dim r̃ ≤ 24. We know that for some λ ∈ F (P )∗, dim(p|F (P) ⊥
λ · 〈〈α|F (P)〉〉)an = 6. Then dim

(

(p|F (P) ⊥ λ · 〈〈α|F (P)〉〉)an ⊥ −r̃|F (P)

)

≤
30. But (p|F (P) ⊥ λ · 〈〈α|F (P)〉〉)an ⊥ −r̃|F (P) ∈ I5(F (P )). So, (p|F (P) ⊥
λ · 〈〈α|F (P)〉〉)an ⊥ −r̃|F (P) is hyperbolic. We have two possibilities: either
dim r̃ > 6, or dim r̃ = 6. Suppose dim r̃ > 6. We know that dim(r̃|F (P))an = 6,
and i((r̃|F (P))an) = (1, 1, 1). Let Ft be a field from the generic splitting tower of
r̃ such that h

(

(r̃Ft)an

)

= 4 (in other words, t = h(r̃)−4). Denote r′ := (r̃Ft)an.
Then dim r′ ≥ 10 (since if dim r′ were 8, then dim(r′|Ft(P))an would be 8 as
well (12 > 8)). Then i(r′) = (m, 1, 1, 1), where m > 1. Consequently, by
Theorem 7.7, Theorem 7.8 and Theorem 4.20, (dim r′) − m is a power of
2. In particular, either dim r′ = 10, or dim r′ ≥ 26. Since dim(r̃) ≤ 24, we
have dim r′ = 10. But then r′ must be a neighbor of some 4-fold Pfister
form 〈〈β〉〉, as we saw above. And 〈〈β〉〉|Ft(P) is hyperbolic, since r′|Ft(P) is
isotropic. In particular, p|Ft must be a Pfister neighbor, and so, i(p|Ft) should
be a specialization of (4, 1, 1). But dim(p|F (P))an = 10, and there is a regular
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place F (P ) → Ft (since dim(r̃|F (P))an = 6 < 10). So, dim(p|Ft(P))an = 10,
a contradiction (with Theorem 7.5). This implies dim r̃ = 6. So, we have
shown that p|F = (r̃ ⊥ −c · 〈〈α|F 〉〉)an, where α|F ∈ KM

4 (F )/2 is a nonzero
pure symbol, and r̃ is a 6-dimensional form with splitting pattern (1, 1, 1).
But then r̃ ∈ Wnr(F/k), and since F is obtained from k by adjoining the
function fields of forms of dimension > 16, we get by a result of A. Laghribi
([18, Théorème principal]) that r̃ is defined over k by some form r. Clearly,
i(r) = (1, 1, 1). Then (p ⊥ −r)F ∈ I4(F ). But since dim qs−1 > 8 for all
1 ≤ s < h(q), we must have p ⊥ −r ∈ I4(k), and p = (r ⊥ −d〈〈γ〉〉)an for
some d ∈ k∗ and some nonzero pure symbol γ ∈ KM

4 (k)/2 (we used here the
fact that in I4(k) there are no anisotropic forms of dimension 18, see [4]).
Conversely, if p has such a form (with i(r) = (1, 1, 1)), then i(p) must be a
specialization of (1, 2, 1, 1, 1). Since i((p|k(〈〈γ〉〉))an) = (1, 1, 1) and i1(p) �= 3,
we get i(p) = (1, 2, 1, 1, 1). ��

Let us show that such forms really exist. Consider the form

p̃ = 〈〈a1, a2, a3, a4〉〉 ⊥ 〈b1, b2, b3, b4, b5, b6〉

over the field
F = k(a1, . . . , a4, b1, . . . , b6).

Let F = F0 ⊂ . . . ⊂ Fh(p̃) be the generic splitting tower for p̃. Then, for some
t, the form p := (p̃|Ft)an has dimension 12. Really, it follows from the fact that
dim(p̃|E)an = 12 for E = F (

√
b5,

√
b6,

√
a1b1,

√
a2b2,

√
a3b3,

√
a4b4). Then, by

the evident part of Lemma 7.12, i(p) = (1, 2, 1, 1, 1).
The classification of forms with splitting pattern (1, 1, 2, 2) depends on

the hypothetical classification of forms with splitting pattern (2, 2, 2) above,
and so, is itself hypothetical. Let i(p) = (1, 1, 2, 2). Then p ∈ I2(k) and, by
the index reduction formula of A. Merkurjev (see [21]), ω2(p) ∈ KM

2 (k)/2
is a nonzero pure symbol. Also, p is not divisible by any binary form 〈〈a〉〉,
since i1(p) = 1. Hypothetically, the converse should be also true. That is, an
anisotropic 12-dimensional form in I2(k) for which ω2(p) is a pure symbol,
and which is not divisible by a binary form, should have splitting pattern
(1, 1, 2, 2). It is evident that for such a form, i is either (1, 1, 2, 2) or (2, 2, 2),
but we do not know if the nondivisibility by a binary form guarantees that i(p)
is not (2, 2, 2). Let us construct an example of a form p with i(p) = (1, 1, 2, 2).
Take p := 〈〈a1, a2, a3〉〉 ⊥ λ · 〈〈b1, b2〉〉 over the field F := k(a1, a2, a3, b1, b2, λ).
Then p is anisotropic, p ∈ I2(F ), and ω2(p) = {b1, b2} �= 0 ∈ KM

2 (F )/2 is a
pure symbol. So, i(p) is either (1, 1, 2, 2) or (2, 2, 2). But if E = F

√
−λ, then

iW (p|E) = 1 (by a result of R. Elman and T.Y. Lam ([1]), since {a1, a2, a3}|E
and {b1, b2}|E have no common slots). This shows that i(p) = (1, 1, 2, 2).

Let i(p) = (1, 1, 1, 2, 1). Then for some c ∈ k∗, p ⊥ c · 〈〈det± p〉〉 ∈ I3(k).
Conversely, if dim3 p = 2, then i(p) is a specialization of (1, 1, 1, 2, 1), and
ih(p)(p) = 1. But (1, 1, 1, 2, 1) itself is the only possible specialization sat-
isfying this condition. As an example of such p we can take any codimen-
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sion 2 subform of the form (〈〈a1, a2, a3〉〉 ⊥ −〈〈b1, b2, b3〉〉)an over the field
F = k(a1, a2, a3, b1, b2, b3).

Let i(p) = (1, 1, 1, 1, 2). Then p ∈ I2(k), ω2(p) ∈ KM
2 (k)/2 is not a pure

symbol (since ih(p)−1(p) = 1), and dim4 p > 6 (since otherwise i(p) would
be a specialization of (1, 2, 1, 1, 1)). Conversely, all the forms satisfying these
three conditions have splitting pattern (1, 1, 1, 1, 2). Really, the first two con-
ditions give us ih(p)(p) = 2 and ih(p)−1(p) = 1. So, i(p) is either (1, 1, 1, 1, 2)
or (1, 2, 1, 2). The last possibility is excluded since dim4 p > 6. The form
〈−a1,−a2, a1a2, d1, d2,−d1d2〉 ⊥ λ·〈b1, b2,−b1b2,−c1,−c2, c1c2〉 over the field
k(a1, a2, b1, b2, c1, c2, d1, d2, λ) provides an example (just observe that p is an-
isotropic, and for F = k

√
d1, i((p|F )an) = (1, 1, 1, 2), see the corresponding

case in dimension 10).
Finally, all the other forms have the splitting pattern (1, 1, 1, 1, 1, 1). They

clearly can be described as p /∈ I2(k), dim3 p > 2, dim4 p > 6. The generic
form provides an example.

Our results are summarized in Table 3.

7.4 Some Conclusions

Let us list a couple of observations concerning computations above.
Although, in arbitrary dimension, there is no even hypothetical descrip-

tion of the set of possible splitting patterns, there is a conjecture describing
elementary pieces of such splitting patterns, that is, higher Witt indices.

Conjecture 7.13 (D. Hoffmann). 2 Let q be an anisotropic form. Then
i1(q) − 1 is the remainder of (dim q) − 1 under the division by some power of
2.

Remarks. (1) Conjecture 7.13 claims, in particular, that higher Witt indices
for odd-dimensional forms are always odd, and for even-dimensional forms are
either even or 1.

(2) For each d and each s such that 2s < d, there exists an anisotropic
form q of dimension d over some field F such that i1(q) − 1 is exactly the
remainder of d− 1 divided by 2s. Really, let d− 1 = 2s · n + r, where 0 ≤ r <
2s. Consider F := k(a1, . . . , as, x1, . . . , xn+1), and let q be any (2s − r − 1)-
codimensional subform of p := 〈〈a1, . . . , as〉〉 · 〈x1, . . . , xn+1〉. By Lemma 6.2,
i1(p) is divisible by 2s, on the other hand, iW (p|F√

−x1x2
) = 2s. So, i1(p) = 2s.

By Corollary 4.9(3), i1(q) = r + 1.
Our computations show:

Theorem 7.14. Conjecture 7.13 is valid for all forms of dimension ≤ 22.

Proof. We just need to note that, by Corollary 4.9(3), if dimp is even, i1(p) >
1, and q is any codimension 1 subform of p, then i1(q) = i1(p) − 1. Thus, if
2 This conjecture was proven by N. Karpenko after the article was originally sub-

mitted.
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Table 3: Splitting patterns of forms of even dimension ≤ 12
dim q splitting pattern description

2 (1) —

4 (2) dim2 p = 0
(1,1) dim2 p > 0

6 (2,1) dim3 p = 2
(1,2) dim2 p = 0
(1,1,1) dim2 p > 0, dim3 p > 2

8 (4) dim3 p = 0
(2,2) dim2 p = 0 and ω2(p) is a nonzero pure symbol
(1,2,1) dim3 p = 2
(1,1,2) dim2 p = 0 and ω2(p) is not a pure symbol
(1,1,1,1) dim2 p > 0, dim3 p > 2

10 (2,2,1) p is divisible by the binary form 〈〈det± p〉〉
(2,1,2) dim4 p = 6, dim2 p = 0
(2,1,1,1) dim4 p = 6, dim2 p > 0, dim3 p > 2
(1,2,2) dim2 p = 0, ω2(p) is a nonzero pure symbol
(1,1,2,1) dim3 p = 2, p is not divisible by 〈〈det± p〉〉
(1,1,1,2) dim2 p = 0, ω2(p) is not a pure symbol, dim4 p > 6
(1,1,1,1,1) dim2 p > 0, dim3 p > 2, dim4 p > 6

12 (4,2) dim4 p = 4, dim2 p = 0
(4,1,1) dim4 p = 4, dim2 p > 0
(2,4) dim3 p = 0
(2,2,2) ** dim3 p > 0, dim4 p > 4, p is divisible

by a binary form
(1,2,1,2) dim4 p = 6, dim2 p = 0
(1,2,1,1,1) dim4 p = 6, dim2 p > 0
(1,1,2,2) ** dim2 p = 0, ω2(p) is a pure symbol, and

p is not divisible by a binary form
(1,1,1,2,1) dim3 p = 2
(1,1,1,1,2) dim2 p = 0, ω2(p) is not a pure symbol, dim4 p > 6
(1,1,1,1,1,1) dim2 p > 0, dim3 p > 2, dim4 p > 6

** only hypothetically

Conjecture 7.13 is valid for q, then it is valid for p. But in the case of odd
dimensional forms we have a complete classification of i(q) up to dimension
21. ��

Also, looking at the tables above, it is not difficult to guess the description
of forms with the “generic” splitting pattern (1, 1, . . . , 1).

Conjecture 7.15. The following conditions are equivalent:

(1) i(q) = (1, 1, . . . , 1);
(2) dims q ≥ 2s−1 − 1, for all 2 ≤ s ≤ log2(dim q − 2) + 1.
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Lens, 26–28 June 2000. Part 1 is based on [11], Part 2 on [10].

In this text we consider only non-degenerate quadratic forms over fields of
characteristic different from 2.

Contents

1 Virtual Pfister Neighbors and First Witt Index . . . . . . . . . . . 104

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
1.2 Proof of Theorem 1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
1.3 Proof of Proposition 1.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
1.4 A Characterization of Virtual Pfister Neighbors . . . . . . . . . . . . . . . . . 110

2 u-invariant 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
2.2 Checking (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
2.3 Checking (3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
2.4 Computing CH3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

J.-P. Tignol (Ed.): LNM 1835, pp. 103–129, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



104 Nikita A. Karpenko

1 Virtual Pfister Neighbors and First Witt Index

1.1 Introduction

Let φ be a quadratic form over a field F . The splitting pattern of φ (cf. [6]) is
defined as the set of integers {iW (φE)} where E runs over all field extensions
of F and iW (φE) stays for the Witt index of the quadratic form φE .

In [5], the list of all splitting patterns of anisotropic quadratic forms of
dimensions up to 10 is given. For example, in dimension 9 the only possible
splitting patterns are {0, 1, 4} and {0, 1, 2, 3, 4} (moreover, a 9-dimensional
form φ has the splitting pattern {0, 1, 4} if and only if its even Clifford algebra
C0(φ) is split).

One difficulty appears in dimension 11 and remains unsolved in [5]: it is not
clear whether the set {0, 2, 3, 4, 5} is the splitting pattern of an 11-dimensional
form. In characteristic 0 this question was answered by negative in [30] (see
also [12]) where it was shown that the difference i1 − i0 can be strictly bigger
than every other difference i2− i1, i3− i2, . . . , in− in−1 for a splitting pattern
{i0, i1, . . . , in} of a form φ only in the case where dim φ − i0 is a power of
2. The proof made use of methods developed in [33] and in particular of the
existence and certain properties of Voevodsky’s cohomological operations in
the motivic cohomology. (See also [32, Sect. 7.2].)

In contrast to that, the proof of the following theorem, also answering the
question raised, works in any characteristic and makes use of much simpler
and more classical tools. Recall that the first Witt index of an anisotropic
quadratic form φ is defined as the smallest positive number in the splitting
pattern of φ:

i1(φ) = min{iW (φE) > 0 | E/F a field extension}.

Theorem 1.1 (Izhboldin, cf. [11, Corollary 5.13]). Let φ be an aniso-
tropic quadratic form of dimension 2n + 3 with some n. Then i1(φ) �= 2.

Since 11 = 23 + 3, this implies

Corollary 1.2. The splitting pattern {0, 2, 3, 4, 5} is not possible for an 11-
dimensional quadratic form. ��

Note that Theorem 1.1 also provides a restriction on the first Witt index
for quadratic forms of dimensions different from 2n + 3:

Corollary 1.3. Let φ be an anisotropic quadratic form of dimension 2n + k
with 3 ≤ k ≤ 2n. Then i1(φ) �= k − 1 (we put k ≤ 2n in order to have a
non-trivial statement).

Proof. Assume that i1(φ) = k−1 and let ψ be a (2n+3)-dimensional subform
of φ. The forms φF (ψ) and ψF (φ) are isotropic:1 the latter is isotropic as a k−3-
1 This type of relation between two quadratic forms is called stably birational equi-

valence of the forms and means in fact that the corresponding projective quadrics
are stably birationally equivalent algebraic varieties.
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codimensional subform in the form φF (φ) of a Witt index > k − 3. Therefore,
by a theorem of A. Vishik [31, Corollary A. 18] (see also [19, Theorem 8.1])

dimφ − i1(φ) = dimψ − i1(ψ).

It follows that i1(ψ) = 2 which is in contradiction with Theorem 1.1. ��

Besides, we would like to remark that Theorem 1.1 proves a particular
case of the following general conjecture,2 due to D. Hoffmann, on the possible
values of the first Witt index of quadratic forms:

Conjecture 1.4. For any anisotropic quadratic form φ, the number i1(φ)−1
is the remainder of dim(φ) − 1 modulo an appropriate power of 2.

See also [32, Sect. 7.4].

1.2 Proof of Theorem 1.1

We fix an anisotropic quadratic form φ of dimension 2n + 3 with n ≥ 2.

Case 1: φ is a Pfister neighbor. Then i1(φ) equals 3 which differs from 2.

Case 2: φ is a virtual Pfister neighbor, that is, φ becomes an anisotropic
Pfister neighbor over some field extension of F . Here we need a couple of
simple observations concerning embeddings of quadratic forms into Pfister
forms.

Lemma 1.5 (cf. [7, Lemma 2.1]). Let π and τ be anisotropic quadratic
forms over F which are similar to some n-fold Pfister forms. There exists
a field extension of F over which the forms are isomorphic while still being
anisotropic.

Proof. Consider the generic splitting tower of the form π ⊥ −τ . Over the top
of the tower the forms π and τ become isomorphic, and we only need to check
that they are still anisotropic over the top.

Since π ⊥ −τ ∈ In, where I ⊂ W (F ) is the fundamental ideal in the
Witt ring, it follows from the Arason–Pfister Hauptsatz ([26, Theorem 5.6
of Chap. 4]) that every step of the tower is the function field of a quadratic
form of some dimension ≥ 2n. By the Cassels–Pfister subform theorem ([26,
Theorem 5.4(ii) of Chap. 4]), any of π and τ cannot become isotropic over the
function field of dimension strictly bigger that 2n (recall that a form similar to
a Pfister form is either anisotropic or hyperbolic). So we only need to see what
can be done in the case where the anisotropic part of the difference π ⊥ −τ is a
2n-dimensional form ρ such that the forms πF (ρ) and τF (ρ) are hyperbolic. This
case is not possible however: again by the Cassels–Pfister subform theorem, π
and τ should be now both similar to ρ whence similar to each other; therefore
the difference π ⊥ −τ is in In+1 and (again by the Arason–Pfister Hauptsatz)
cannot have an anisotropic part of dimension smaller that 2n+1. ��
2 This conjecture has recently been proved by the author.
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Corollary 1.6. Let φ be an anisotropic quadratic form over a field F , let
K = F (t1, . . . , tn) be the field of rational functions in n variables, and let
π = 〈〈t1, . . . , tn〉〉 be the “generic n-fold Pfister form” (π is a quadratic form
over the field K). If there exists a field extension F̃ /F over which φF̃ is similar
to a subform of an anisotropic n-fold Pfister form τ , then there exists a field
extension E/K such that πE is anisotropic and contains a subform isomorphic
to φE.

Proof. We assume that φF̃ ⊂ kτ for some F̃ and k ∈ F̃ ∗. Put K̃ =
F̃ (t1, . . . , tn). The forms πK̃ and kτK̃ are clearly anisotropic (πK̃ is still a
generic n-fold Pfister form; τK̃ is anisotropic because the extension K̃/F̃ is
purely transcendental). We take as E an extension of K̃ over which they
become isomorphic while still being anisotropic. Such an extension exists ac-
cording to Lemma 1.5. ��

Lemma 1.7 ([4, Proof of Theorem 2]). If a 1-codimensional subform ψ
of an anisotropic form φ is contained in an anisotropic Pfister form π, then
there exists a field extension E/F such that πE contains the whole φE while
still being anisotropic.

Proof. We have π = ψ ⊥ ψ′ for some quadratic form ψ′ and φ = ψ ⊥ 〈a〉
for some a ∈ F ∗. We define E as the function field of the quadratic form
ψ′ ⊥ 〈−a〉. Over E the form ψ′

E represents a, therefore φE ⊂ πE and the only
thing to check is the anisotropy of πE .

Assume that π becomes isotropic over E = F (ψ′ ⊥ 〈−a〉). By the Cassels–
Pfister subform theorem we then have ψ′ ⊥ 〈−a〉 ⊂ kπ for any k ∈ F ∗ being
the product of a value of the form ψ′ ⊥ 〈−a〉 by a value of the form π. Since
ψ′ ⊂ π, one may take k = 1. So, ψ′ ⊥ 〈−a〉 ⊂ π = ψ ⊥ ψ′. Applying
Witt cancellation, we get the inclusion 〈−a〉 ⊂ ψ which means that the form
φ = ψ ⊥ 〈a〉 is isotropic, a contradiction. ��

We continue the proof of Theorem 1.1. We are considering the case where
φ is a virtual Pfister neighbor. We set

K = F (t1, . . . , tn+1) and π = 〈〈t1, . . . , tn+1〉〉/K.

Let us consider the generic splitting tower of the quadratic form φK ⊥ −π.
Let L be the smallest field in the tower having the property iW (φK ⊥ −π)L ≥
2n + 2 (i.e., the dimension of the anisotropic part (φL ⊥ −πL)an of the form
φL ⊥ −πL is at most 2n − 1).

Let us show that the form φL is anisotropic. Since φ is a virtual Pfister
neighbor and according to Corollary 1.6, we can find an extension E/K such
that φE is anisotropic and contained in πE . The inclusion φE ⊂ πE provides
us with the inequality iW (φE ⊥ −πE) ≥ dimφE = 2n + 3 ≥ 2n + 2 which
implies that the free composite E ·K L (defined as the field of fractions of the
ring E ⊗K L; this ring is an integral domain because the extension L/K is
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a tower of function fields of quadrics which are absolutely integral varieties)
is a purely transcendental field extension of E. Therefore the anisotropy of
φE implies the anisotropy of φEL. In particular, the quadratic form φL is
anisotropic.

Since our final goal is to show that i1(φ) �= 2, we may assume that i1(φ) ≥
2. First of all we are going to show that i1(φ) = i1(φL) in this case. Since
dimφ = 2n + 3, the condition i1(φ) ≥ 2 means that dim

(

φF (φ)

)

an
≤ 2n − 1.

The statement we are going to check means that the form
(

φF (φ)

)

an
/F (φ)

remains anisotropic over the field L(φ). Recall that the field extension L/F is a
tower with the first step being purely transcendental and the other steps given
by the function fields of quadratic forms of dimensions at least 2n + 1. The
same can be said about the extension L(φ)/F (φ). Therefore, by Hoffmann’s
theorem [4, Theorem 1], every anisotropic quadratic form over F (φ) of any
dimension < 2n +1 remains anisotropic over the field L(φ). In particular, the
form

(

φF (φ)

)

an
remains anisotropic indeed over the field L(φ).

The condition iW (φL ⊥ −πL) ≥ 2n + 2 (appearing in the choice of L)
means that the forms φL and πL have a common subform of dimension 2n+2.
In other words, φL contains a 1-codimensional subform which is a Pfister
neighbor (of πL). But since iW (φL) ≥ 2, the form φL is stably birationally
equivalent with any of its 1-codimensional subforms. It follows that φL is a
Pfister neighbor (more precisely, it is a neighbor of the form πL) and by that
reason i1(φL) is 3. Having i1(φ) = i1(φL), we get i1(φ) = 3. So, i1(φ) �= 2 for
any virtual (2n + 3)-dimensional Pfister neighbor φ.

Case 3: the general case. Here we also start by considering the generic split-
ting tower of the quadratic form φK ⊥ −π with K and π/K as in the proof of
the previous case. Let now L be the smallest field in the tower satisfying the
property iW (φK ⊥ −π)L ≥ 2n (or, equivalently, dim(φL ⊥ −πL)an ≤ 2n + 3).

Let us check that the form πL is anisotropic. Let ψ ⊂ φ be a subform
of dimension 2n. By Hoffmann’s [4, Main Lemma], there exists an extension
of F over which ψ is embeddable into an anisotropic (n + 1)-Pfister form.
Therefore, by Corollary 1.6, we can find a field extension E/K such that the
form πE is anisotropic and contains ψE . The inequality

iW (ψE ⊥ −πE) ≥ dimψE = 2n

shows that iW (φE ⊥ −πE) ≥ 2n as well, whence the field extension L ·K
E/E is purely transcendental. Therefore π, being anisotropic over E, remains
anisotropic over the composite L ·K E; in particular, π is anisotropic over the
smaller field L ⊂ L ·K E.

Let us check that the field extension L(π)/F is unirational. The func-
tion field F (t)(〈〈t〉〉) of the 2-dimensional quadratic form 〈〈t〉〉 = 〈1,−t〉 (t
is transcendental over F ) is easily seen to be purely transcendental over F .
Therefore the extension K′ = K(〈〈t1〉〉)/F is also purely transcendental. How-
ever the form πK′ is hyperbolic whence the inequality iW (φK′ ⊥ −πK′) ≥
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1
2 dimπK′ = 2n by the reason of which the extension L ·K K′/K′ is purely
transcendental. Since the extension (L ·K K′)(π)/L ·K K′ is purely transcend-
ental as well (because of the hyperbolicity of πK′), it follows that the extension
(L ·K K′)(π)/F is made of three purely transcendental steps and so is itself
purely transcendental. Thus the subextension L(π)/F is unirational.

Note that the smaller extension L/F is therefore now also known to be
unirational. In particular, the form φL is anisotropic and i1(φ) = i1(φL).

Now, assuming that i1(φ) = 2, let us check that dim(φL ⊥ −πL)an =
2n +3. By the choice of L we have the inequality dim(φL ⊥ −πL)an ≤ 2n +3.
If the inequality is strict, then iW (φL ⊥ −πL) ≥ 2n +1, i.e., the forms φL and
πL have a common (2n + 1)-dimensional subform. So, φL contains a (2n + 1)-
dimensional Pfister neighbor. By Lemma 1.7, it follows that φL contains a
(2n + 2)-dimensional virtual Pfister neighbor (to get it, one takes just any
(2n+2)-dimensional subform of φL containing the (2n+1)-dimensional Pfister
neighbor). Since i1(φL) = 2 > 1, the form φL is stably birationally equivalent
with any of its 1-codimensional (i.e., (2n + 2)-dimensional) subforms, thus
φL is a virtual Pfister neighbor as well and so φ over F is already a virtual
Pfister neighbor. Thereafter i1(φ) �= 2 by the case which is already done, a
contradiction.

So, for the form ψ = (φL ⊥ −πL)an, we have dimψ = 2n + 3. Going one
step further in the generic splitting tower of φK ⊥ −π, we see that if the form
φL(ψ) were anisotropic, the form φ/F would be a virtual Pfister neighbor.
Therefore the anisotropic form φL becomes isotropic over the function field
of the form ψ/L. We claim that the form ψ also becomes isotropic over the
function field L(φ). This claim will be checked in a moment, but before this
we show how it ends the proof of Theorem 1.1.

The equality πL = φL − ψ taking place in the Witt group W (L) leads to
the equality

πL(φ) = (φL(φ))an − (ψL(φ))an ∈ W (L(φ)).

We have dim(φL(φ))an ≤ 2n − 1 and dim(ψL(φ))an ≤ 2n − 1 (to get the
second relation we use the equality dim(φL)− i1(φL) = dim(ψ)− i1(ψ) for the
stably birationally equivalent forms φL and ψ). Thus the form πL(φ) should
be isotropic as being represented in the Witt group by a form of dimension
(2n − 1) + (2n − 1) < dimπ = 2n+1. Hence it is hyperbolic which implies
that φL is a Pfister neighbor (of πL) and φ is a virtual Pfister neighbor, a
contradiction (recall our assumption i1(φ) = 2 which is already known to be
impossible for a virtual Pfister neighbor of dimension 2n + 3).

The claim that ψ becomes isotropic over L(φ) which we did not prove
so far, follows from the following general conjecture worthy to be mentioned
anyway:

Conjecture 1.8. Let φ and ψ be anisotropic quadratic forms over a field F .

1. If the form φF (ψ) is isotropic, then dimφ − i1(φ) ≥ dimψ − i1(φ);
2. if the form φF (ψ) is isotropic and if moreover dimφ−i1(φ) = dimψ−i1(φ),

then the form ψF (φ) is isotropic as well.
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Remark 1.9. To prove Conjecture 1.8 in general it suffices to handle the case
where i1(φ) = 1 = i1(ψ).

Although it will not help us to finish the proof of Theorem 1.1 in a correct
way, we first show how to deduce from Conjecture 1.8 the claim we need.
We have dimφL = dim ψ and i1(φL) = 2. The first part of Conjecture 1.8
shows then that i1(ψ) ≥ 2. However over the field L(π) the forms φ and ψ are
anisotropic and isomorphic (because 0 = πL(π) = φL(π) − ψL(π) ∈ W (L(π))).
The extension L(π)/F , being unirational, does not change the first Witt index
of a form, therefore i1(ψL(π)) = i1(φL(π)) = i1(φ) = 2; thus i1(ψ) = 2 as
well, and the isotropy of the form ψL(φ) follows now from the second part of
Conjecture 1.8.

To prove the claim in an honest way we need the following result which is
in the heart of the whole business:

Proposition 1.10 (Izhboldin). Let φ and ψ be some quadratic forms over
a field F such that φF (ψ) is isotropic. We assume that dimφ, dimψ ≥ 3. If
the forms φ and ψ are anisotropic and stably birationally equivalent over some
field extension E/F not affecting the first Witt index of the form φ, then they
are stably birationally equivalent already over F .

The proof of Proposition 1.10 will be given in the next section. Now we
use Proposition 1.10 in order to finish the proof of Theorem 1.1.

We apply Proposition 1.10 to the quadratic forms φL and ψ over the field
L. The function field E = L(π) is an extension of L with the properties
required in Proposition 1.10: it does not affect the first index of φL by the
unirationality over F ; by the same reason the form φE is anisotropic; since
φE � ψE , the form ψE is anisotropic too; the forms φE and ψE are stably
birationally equivalent simply because they are isomorphic. Therefore ψ is
isotropic over L(φ).

The proof of Theorem 1.1 is complete.

1.3 Proof of Proposition 1.10

For φ and ψ satisfying the conditions of Proposition 1.10, let us choose some
subforms φ0 ⊂ φ and ψ0 ⊂ ψ of dimension dim φ−i1(φ)+1. Then φ0 becomes
isotropic over F (φ), φ over F (ψ), and ψ over F (ψ0). Therefore, by transitivity,
the form (φ0)F (ψ0) is isotropic. Note that i1(φ0) = 1 because of the relation
dimφ− i1(φ) = dimφ0 − i1(φ0) for the stably birationally equivalent forms φ
and φ0.

Thus, replacing φ and ψ by the subforms φ0 and ψ0, we reduce the proof
of Proposition 1.10 to the following particular case:

Lemma 1.11. Let φ and ψ be some quadratic forms over a field F having one
and the same dimension ≥ 3, and assume that the form φF (ψ) is isotropic.
If φ and ψ are anisotropic and stably birationally equivalent over some field
extension E/F such that i1(φE) = 1 (therefore i1(φ) = 1), then φ and ψ are
stably birationally equivalent already as forms over F .
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We will deduce Lemma 1.11 from the following statement about the in-
tegral Chow correspondences on a projective quadric of first Witt index 1:

Lemma 1.12 ([19, Theorem 6.4]). Let φ be an anisotropic quadratic form
of dimension ≥ 3 with i1(φ) = 1. Let X be the projective quadric φ = 0
and n = dimX (= dim φ − 2). For any element α ∈ CHn(X × X) of the
Chow group of n-codimensional cycles on the variety X × X, one then has
deg1(α) ≡ deg2(α) (mod 2), where degi stays for the degree of α over the i-th
factor of the product X × X.

For the reader’s convenience we recall the definition of degi(α) (cf. [2, Ex-
ample 16.1.4]): degi(α) is the integer such that (pri)∗(α) = degi(α) · [X] ∈
CH0(X) for the push-forward (pri)∗ with respect to the i-th projection
pri : X × X → X (where i = 1 or 2).

Proof of Lemma 1.11. We denote by Y the projective quadric ψ = 0. The
fact that the form φF (ψ) is isotropic means that the variety XF (Y ) has a
rational point, i.e. there exists a rational morphism f : Y ��� X. Let α ∈
CHn(Y × X) be the correspondence given by the closure of the graph of f .
We have deg1(α) = 1 ([19, Example 1.2]). By Springer’s theorem, in order
to show that the form ψF (φ) is isotropic, it suffices to show that the variety
YF (X) possesses a 0-dimensional cycle of odd degree. Since the pull-back of
α to YF (X) is a 0-dimensional cycle of the degree deg2(α), it suffices to show
that deg2(α) is odd.

Since a base change does not affect degi(α), it suffices to show that
deg2(αE) is odd. But the variety YE(X) has a rational point. So there ex-
ists a correspondence β ∈ CHn(XE ×YE) with deg1(β) = 1. For γ = αE ◦β ∈
CHn(XE × XE) (γ is defined as the composition of the correspondences αE

and β, see [2, Sect. 16.1] for the notion of composition for correspondences)
one has

deg1(γ) = deg1(β) · deg1(αE) = 1 · 1 = 1

and deg2(γ) = deg2(β) · deg2(αE). Since deg1(γ) ≡ deg2(γ) (mod 2), the
integer deg2(γ) is odd. Therefore deg2(αE) is odd, too. ��

1.4 A Characterization of Virtual Pfister Neighbors

Note that an anisotropic (2n + 1)-dimensional quadratic form is always a
virtual Pfister neighbor ([4, Theorem 2]). By methods similar to those of
above, one can obtain the following characterization of (2n + 2)-dimensional
virtual Pfister neighbors:

Theorem 1.13 (Izhboldin [11, Theorem 5.8]). An anisotropic quadratic
(2n+2)-dimensional form is a virtual Pfister neighbor if and only if its splitting
pattern contains 2.
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Proof. The first Witt index of an honest anisotropic Pfister neighbor of di-
mension 2n + 2 is equal to 2. Therefore the “only if” part of the theorem is
trivial. Let us prove the “if” part.

We take an anisotropic (2n + 2)-dimensional quadratic form φ over a field
F , put K = F (t1, . . . , tn+1) and consider over K the (n + 1)-fold Pfister form
π = 〈〈t1, . . . , tn+1〉〉. In the generic splitting tower of the form φK ⊥ −π we
take the smallest field L satisfying the condition iW (φL ⊥ −πL) ≥ 2n, i.e.,
dim(φL ⊥ −πL)an ≤ 2n +2. By the same reason as in the proof of the general
case of Theorem 1.1, the form π remains anisotropic over L.

If the inequality iW (φL ⊥ −πL) ≥ 2n is strict, the form φL contains a
(2n + 1)-dimensional Pfister neighbor. Then it follows from Lemma 1.7 that
φL is a virtual Pfister neighbor. Whence φ over F is a virtual Pfister neighbor.

It remains to consider the case where iW (φL ⊥ −πL) = 2n. In this case
dimψ = 2n + 2 for ψ = (φL ⊥ −πL)an. If φL(ψ) is anisotropic, then φ is a
virtual Pfister neighbor; hence we may assume that φL(ψ) is isotropic. Over the
function field L(π) the quadratic form φ is anisotropic and isomorphic to ψ;
moreover, i1(φ) = i1(φL(π)), because the field extension L(π)/F is unirational
(by the same argument as in the proof of the general case of Theorem 1.1).
Applying Proposition 1.10, we get the stably birational equivalence for the
forms φL and ψ.

Let now F ′/F be a field extension such that iW (φF ′ ) = 2. In the
Witt group W (F ′ ·F L) of the free composite F ′ ·F L we have the equality
πF ′L = φF ′L−ψF ′L. Since dim(φF ′L)an ≤ 2n−2 and dim(ψF ′L)an ≤ 2n (ψF ′L

is isotropic as φF ′L is so), we see that πF ′L should be isotropic. On the other
hand, one can check that πF ′L is anisotropic by constructing a field extension
E of F ′(t1, . . . , tn+1) such that πE is anisotropic and iW (φE ⊥ −πE) ≥ 2n: for
the (2n−2)-dimensional anisotropic part φ′ of the form φF ′ we take an exten-
sion E/F ′(t1, . . . , tn+1) over which π is anisotropic and contains φ′. Such an
extension exists by Hoffmann’s [4, Main Lemma] together with Corollary 1.6.
Since iW (φ′

E ⊥ −πE) ≥ 2n − 2 for that extension and since φE � φ′
E ⊥ 2H

(where H stays for the hyperbolic plane), we get iW (φE ⊥ −πE) ≥ 2n. ��

2 u-invariant 9

2.1 Introduction

We recall the definition of the u-invariantu(F ) of a field F : u(F ) = sup{dimφ}
where φ runs over the anisotropic quadratic forms over F . A classical question
in the theory of quadratic forms asks about the possible finite values of the
u-invariant.

Since 1991 we know by [23] that every even positive integer is possible
(before this result one was able to realize the powers of 2 only).

The u-invariant of a quadratically (e.g., separably or algebraically) closed
field is 1. Is an odd value > 1 possible? The answer is classically known to be
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negative for the first three odd integers: 3, 5, and 7. Here we will prove the
following

Theorem 2.1 ([10]). There exists a field E with u(E) = 9.

Proof. The construction of E is not a problem: for any n, if one knows that n
is a value of the u-invariant, then n is the u-invariant of the field E constructed
by the following procedure.

We start with an arbitrary field F and consider the field K = F (t1, . . . , tn)
of rational functions in n variables t1, . . . , tn over F . Let φ be the generic
n-dimensional quadratic form 〈t1, . . . , tn〉/K. We construct an infinite tower
of fields K = K0 ⊂ K1 ⊂ K2 ⊂ · · · as follows: for every i ≥ 0 the field
Ki+1 is the free composite of the function fields Ki(ψ) where ψ runs over
all (n + 1)-dimensional anisotropic forms over Ki (more precisely, one takes
one ψ in every isomorphism class of such quadratic forms; the infinite free
composite is defined as the directed direct limit of all finite subcomposites).
This tower evidently has the following property: any anisotropic quadratic
form of any dimension > n over a field Ki becomes isotropic over the field
Ki+1. Thus the union E =

⋃

i Ki is a field with u(E) ≤ n. By the genericity
of the construction, we have u(E) = n (an anisotropic n-dimensional form
over E is the form φE).

We do not prove the statement just announced, because we do not need it.
But looking at the construction, we see what can be done in order to realize a
number n: it is enough to find a list of properties of n-dimensional quadratic
forms over fields such that the generic forms satisfy them and if a form φ
satisfies them over a field F , then φ is anisotropic and still satisfies them over
the function field F (ψ) of any (n +1)-dimensional anisotropic quadratic form
ψ/F .

If we have such a list, then u(E) = n because the n-dimensional form φE is
anisotropic. Of course in this case we are not obliged to take K = F (t1, . . . , tn)
with φ/K = 〈t1, . . . , tn〉 anymore: we may start the construction of the tower
giving E by any field K and a form φ/K satisfying the conditions of the list:
the form φE will be anisotropic.

The problem of the choice of a list of properties needed is quite delicate. Of
course, we cannot take the list of the only one property “the form is generic,”
because we cannot guarantee that a generic form over F will still be generic
over F (ψ).

Let us recall the property used in [23] working for any even n: the even
Clifford algebra C0(φ) is a division algebra. This property guarantees that φ
is anisotropic and this property is preserved when climbing over the function
field of an (n+1)-dimensional quadratic form according to the index reduction
formula for quadrics [23, Theorem 1] (which is in fact the basic point of the
even n business).

For n odd this property does not work (see (1) in the proof of The-
orem 2.3). An appropriate list of properties for n = 9 is as follows:
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(1) indC0(φ) ≥ 4 where indC0(φ) is the Schur index of C0(φ) which is a
central simple F -algebra (the stronger condition indC0(φ) ≥ 8 can also
be taken);

(2) φ is anisotropic;
(3) φ is not a Pfister neighbor.

We remark that these properties (with 4 in the first one) are also necessary
in order that a field extension E/F with u(E) = 9 and φE anisotropic would
exist: clearly, if (3) is not satisfied, then φE is a neighbor of a 4-fold Pfister
form and hence is isotropic because the dimension of a 4-fold Pfister form
is 16 > 9; besides that, since the 10-dimensional form φE ⊥ 〈−det φ〉E is
isotropic, the form φE represents its determinant and therefore contains an
8-dimensional subform q of determinant 1. The Clifford algebra C(q) of q
is isomorphic to the even Clifford algebra C0(φE). If condition (1) is not
satisfied, then indC(q) ≤ 2 whence q � 〈〈a〉〉 ⊗ 〈b1, b2, b3, b4〉 for some a, b1,
b2, b3, b4 ∈ E∗ ([22, Example 9.12]). Therefore φE is isomorphic to a subform
of the 10-dimensional quadratic form 〈〈a〉〉 ⊗ 〈b1, b2, b3, b4, detφ〉. This form is
isotropic. Since its Witt index is divisible by 2, it is at least 2. Hence the
1-codimensional subform φE is isotropic.

Definition 2.2. A 9-dimensional quadratic form φ satisfying properties (1)–
(3) is called essential.

Theorem 2.3. For an essential quadratic form φ and a 10-dimensional quad-
ratic form ψ over a field F , the form φF (ψ) is also essential.

Proof. For the form φF (ψ), let us check the conditions of essentiality (1)–(3)
one by one:

(1) According to the index reduction formula for quadrics, the Schur index
indC0(φF (ψ)) of the central simple F (ψ)-algebra C0(φF (ψ)) = C0(φ)F (ψ) is
either the same as that of C0(φ) or

(

indC0(φ)
)

/2, depending on whether
the even Clifford algebra C0(ψ) maps homomorphically into the underlying
division algebra of C0(φ) (this is the simplified formulation of Merkurjev’s
index reduction [23] due to J.-P. Tignol [29]).

We only have to care about the situation where indC0(φ) is 4, that is,
dimF D = 42 = 24. Although the algebra C0(ψ) is not always simple, its subal-
gebra C0(ψ′) is simple for any 9-dimensional subform ψ′ ⊂ ψ. Thus an algebra
homomorphism C0(ψ) → D would give an embedding C0(ψ′) ↪→ D which
is far from being possible by the simple dimension reason: dimF C0(ψ′) =
2dim ψ′−1 = 28 > dimF D (as we see, the equality indC0(φF (ψ)) = indC0(φ)
also holds for any φ with indC0(φ) = 8; however, if the Schur index is 16 – the
maximal possible value for a 9-dimensional quadratic form – it can go down
over the function field of ψ; thus we would not come through if only looking at
the Schur indexes which was enough for constructing the even u-invariants).

(2) The proof of the fact that the form φF (ψ) is still anisotropic is based
on the following criterion of isotropy of an essential form φ over the function
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field of a 9-dimensional form (instead of a 10-dimensional) form ψ ([20, The-
orem 1.13]): φF (ψ) is isotropic if and only if the forms φ and ψ are similar.
This criterion is obtained as a consequence of the characterization of the 9-
dimensional Pfister neighbors obtained in [20]: an anisotropic 9-dimensional
quadratic form is a Pfister neighbor if and only if the projective quadric given
by the form has a Rost correspondence. The details will be given in Sect. 2.2.

(3) The proof makes use of certain results on the unramified cohomology
of projective quadrics due to B. Kahn, M. Rost and Sujatha. It also involves
computation of the Chow group CH3 for certain projective quadrics. The
details will be explained in Sect. 2.3. The needed computation of CH3 will be
done in Sect. 2.4. ��

Theorem 2.1 is proved (modulo (2) and (3) in the proof of Theorem 2.3).
��

2.2 Checking (2)

In this section we check that an essential quadratic form φ/F remains an-
isotropic over the function field of any 10-dimensional quadratic form ψ/F .
We shall indicate four different ways to do this (due respectively to myself,
O. Izhboldin, D. Hoffmann, and B. Kahn).

First of all, this can be done by the same method as in the proof of the
anisotropy of φF (ψ) for a 9-dimensional ψ non-similar to φ (Theorem 2.4).
However the proof for a 10-dimensional ψ turns out to be a little bit more
complicated than that for a 9-dimensional ψ because of some special effects
in the intermediate Chow group of an even-dimensional quadric. Since in the
same time it turns out that the 10-dimensional case is a formal consequence
of the 9-dimensional one (see the three other ways which follow), it does not
seem reasonable to argue this way anymore.

Now we assume that we already know the isotropy criterion of essential
forms over the function fields of 9-dimensional forms. We indicate three ways
to deduce the statement on 10-dimensional forms from it (the proof of the
criterion itself will be explained right after). All of them are based on the
following observation. If an essential quadratic form φ were isotropic over the
function field of some 10-dimensional form ψ, then it would be also isotropic
over the function field of any 9-dimensional subform ψ0 ⊂ ψ. Therefore, to
show that φF (ψ) is anisotropic, it suffices to find inside of ψ a 9-dimensional
form ψ0 non similar with φ. It can always be done, at least over a purely
transcendental field extension of F (which is also enough for our purposes).
Here are the three different ways to construct the subform ψ0.

In [10], a sort of generic 9-dimensional subform of ψ is taken for ψ0 (see
[10, Lemma 7.9]). To be precise, the form ψ̃ = ψF (t) ⊥ 〈t〉 over the field
F̃ of rational functions in one variable t is considered, and ψ0 is defined to
be the anisotropic part of ψ̃F̃ (ψ̃). Note that the extension F̃ (ψ̃)/F is purely
transcendental. It is then shown in [10, Lemma 7.9] that for any 9-dimensional
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quadratic form q/F and any k ∈ F̃ (ψ̃)∗, the difference ψ0 − k · qF̃ (ψ̃) in the
Witt ring W (F̃ (ψ̃)) is not in I4(F̃ (ψ̃)), that is, ψ0 is not similar to qF̃ (ψ̃)

modulo I4 (and, in particular, ψ0 is not similar to qF̃ (ψ̃) in the usual sense).
This statement is interesting on its own. But of course it is much stronger

than our simple needs.
As suggested by Detlev Hoffmann during the course, for ψ = 〈a1, . . . , a10〉

one may take the subform ψ0 = 〈a1 + a2t
2, a3, . . . , a10〉 ⊂ ψF̃ . This is a 1-

codimensional subform of ψF̃ which is far from being generic. However, using
exactly the same arguments as in [3, p. 224], one may show that ψ0 is not
similar to qF̃ for any q/F with indC0(q) > 2 (in particular, for any essential
q).

Finally, a third method has been suggested by Bruno Kahn during the
course. Let ψ/F be an anisotropic quadratic form of even dimension 2n. As-
sume that ψ represents 1 and that all 1-codimensional subforms of ψ are
similar. Then it is easy to check that D(ψ) ⊂ G(ψ) with G(ψ) ⊂ F ∗ staying
for the group of similarity factors of ψ and D(ψ) ⊂ F ∗ the set of non zero
elements represented by ψ: we have ψ = 〈1〉 ⊥ ψ′ with some 1-codimensional
subform ψ′ ⊂ ψ; for a ∈ D(ψ), we can also write ψ = 〈a〉 ⊥ ψ′′ with some ψ′′;
we know that the forms ψ′ and ψ′′ are similar; comparing their determinants,
we get aψ′ � ψ′′, whence aψ = 〈a〉 ⊥ aψ′ � 〈a〉 ⊥ ψ′′ = ψ. This is not
yet enough to get a contradiction, but if we assume additionally that for any
purely transcendental extension F̃ /F (it suffices to assume this for F̃ being
the function field of the affine space given by the F -vector space of defini-
tion of ψ) all 1-codimensional subforms of ψF̃ are still similar, the inclusion
D(ψF̃ ) ⊂ G(ψF̃ ) we get implies by [26, Theorem 4.4(v) of Chap. 4] that ψ is
a Pfister form and thus cannot be 10-dimensional.

Now we explain the proof of the isotropy criterion of essential forms over
the function fields of 9-dimensional forms, namely

Theorem 2.4 ([20, Theorem 1.13]). Let φ be an essential quadratic form
over F and let ψ be any 9-dimensional quadratic form over F . Then φF (ψ) is
isotropic if and only if ψ is similar to φ.

Proof. Of course, a proof is needed only for the “only if” part. We shall
give two proofs. The first one makes use of motives and is more conceptual.
However the motives are not really needed: the second proof is much more
elementary (although it seems to be more tricky) and is in fact a translation
of the “motivic” proof into an elementary language. All the details will be
given in the second proof; as to the first one, we shall give only a sketch.

The first proof. The “motivic” proof starts with the following observation.
Let φ be a 9-dimensional anisotropic quadratic form (essential or not) such
that indC0(φ) ≥ 4. Let X be the projective quadric φ = 0. One observes
that any non-trivial decomposition of the Chow-motive M(X) in a direct sum
contains a summand R which is a Rost motive, that is RF � ZF⊕ZF (d), where
F is an algebraic closure of F , Z is the motive of Spec F , d = dimX, and Z(d)
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is the d-fold twist of Z. In particular, if the motive of X decomposes, then there
exists a Rost correspondence on X, that is, in the Chow group CHd(X × X)
there exists an element ρ such that ρF = [X × x] + [x × X] ∈ CHd(X × X),
where X = XF and x ∈ X is a rational point. If we now assume that the
form φ is essential (in other words, we additionally assume that φ is not a
Pfister neighbor), then by [20, Theorem 1.7] we know that there are no Rost
correspondences on X. Thus the motive M(X) of an essential quadric X is
indecomposable.

Let φ and ψ be anisotropic quadratic forms over F such that dimφ =
dimψ = 2n + 1 for some n. A theorem of Izhboldin [9, Theorem 0.2] states
that if φF (ψ) is isotropic, then ψF (φ) is also isotropic. This theorem can be
considered as a complement to [4, Theorem 1]. Hoffmann’s proof of [4, The-
orem 1] as well as Izhboldin’s proof of [9, Theorem 0.2] are tricky and do
not give a feeling to explain why do things happen this way in the nature.
Such explanation (and new proofs) are given by the Rost degree formula ([24,
Sect. 5]).

Applying Izhboldin’s theorem to our particular situation, where φ is an
essential form which becomes isotropic over the function field of some other
9-dimensional form ψ, we see that ψ also becomes isotropic over F (φ). In
other words, there are rational morphisms in both directions: X ��� Y and
Y ��� X, where X and Y are the projective quadrics given by φ and ψ.
An observation due to A. Vishik ([30], see also [32, Corollary 3.9]) says that
every time we have rational morphisms in both directions for two projective
quadrics X and Y , there is a non-trivial direct summand of M(X) isomorphic
to some direct summand of M(Y ). Since the motive of X is indecomposable in
our setup, it follows that M(X) as whole is isomorphic to a direct summand
of M(Y ). Finally, since dimX = dimY , we obtain a motivic isomorphism
M(X) � M(Y ) for X and Y .

Now we apply a theorem of Izhboldin [8, Corollary 2.9] stating that two
projective quadrics of an odd dimension can be motivically isomorphic only
if they are isomorphic as algebraic varieties, which means that the quadratic
forms defining them are similar. Thus the quadratic forms φ and ψ are similar.

The second proof. In this proof all the details will be given. The word
“motive” will be not pronounced in the proof. It will only appear in the
comments indicating the motivic meaning of an intermediate result achieved.

Let X be the projective quadric given by a 9-dimensional quadratic form
φ. We first assume that φ is completely split, i.e., the Witt index of φ is 4,
φ ∼ H ⊥ H ⊥ H ⊥ H ⊥ 〈1〉. So, our X is the hypersurface in the projective
space P

8 given by the equation x1y1 + x2y2 + x3y3 + x4y4 + t2 = 0. The
variety X is known to be cellular: all successive differences of the filtration
X = X0 ⊃ X1 ⊃ X2 ⊃ X3 ⊃ P

3 ⊃ P
2 ⊃ P

1 ⊃ P
0 are affine spaces, where Xi

for i = 1, 2, 3 is the closed (singular!) subvariety of X given by the equations
x0 = 0, . . . , xi = 0, while P

i is an i-dimensional projective subspace of the
3-dimensional projective subspace P

3 ⊂ P
8 contained in X and determined
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by the equations x0 = 0, . . . , x4 = 0 and t = 0. Therefore (see [2, Example
1.9.1]) the whole Chow group CH∗(X) of X is the free abelian group on
[Xi] ∈ CHi(X) and [Pi] ∈ CHi(X) = CH7−i(X), i = 0, 1, 2, 3. We write hi

for [Xi], and li for [Pi]. So, for every i = 0, 1, 2, 3, the groups CHi(X) and
CHi(X) are infinite cyclic with the generators hi and li respectively.

We are more interested in the Chow group CH7(X × X) however. To
understand the Chow group of the product X × X, note that the cellular
structure on X induces a cellular structure on X ×X (see, e.g., [18, Sect. 7]).
In particular, it follows that CH∗(X ×X) is the free abelian group on hi × lj
and lj × hi, i, j = 0, 1, 2, 3. Since hi × lj and lj × hi are in CHi+7−j(X ×X),
the generators of the group CH7(X ×X) are hi × li and li ×hi, i = 0, 1, 2, 3.

Now we do not assume anymore that the quadratic form φ giving the
quadric X is completely split. Nevertheless, it is completely split over an
algebraic closure F of F , and for any α ∈ CH7(X × X) we may define the
type of α as the sequence of integers

type α = (a0, a1, a2, a3, a
′
3, a

′
2, a

′
1, a

′
0) ai, a

′
i ∈ Z

such that αF =
∑3

i=0 ai(hi × li) + a′
i(li × hi). (See also [21, Sect. 2.1].)

Here is a couple of examples: typeα = (1, 0, . . . , 0, 1) means that α is a
Rost correspondence; the type of the diagonal class is (1, 1, . . . , 1).

In the case where α ∈ CH7(X×X) is a projector (i.e., an idempotent with
respect to the composition of correspondences), the type of α is a sequence
of 0 and 1 having the following meaning: over F , the motive (X, α) becomes
isomorphic to the direct sum

⊕r
i=0 Z(ji), where j1, . . . , jr are the numbers

of places of the non-zero entries in the type of α (the places are numbered
starting from 0).

Of course, one also may define the type for an α ∈ CH7(X × Y ) where Y
is another projective quadric of the same dimension as X. We note that the
first and the last entries of type α are the degrees (or indices, see [2, Example
16.1.4]) of α over the first and over the second factor of the product X × Y
respectively (see [19, Example 1.2]).

If α ∈ CH7(X × Y ) and β ∈ CH7(Y × Z) with one more 7-dimensional
projective quadric Z, the type of the composition β ◦α of the correspondences
α and β is the componentwise product of typeα and typeβ.

Starting from this point, we shall consider the types modulo 2. The types
(1, 1, . . . , 1) and (0, 0, . . . , 0) will be called trivial. It is not difficult to check (see
[20, Sect. 9]) that in the case of an anisotropic φ with indC0(φ) ≥ 4, the only
possible non-trivial types are (1, 0, . . . , 0, 1) and its complement (0, 1, . . . , 1, 0).
Thus for an essential φ, by [20, 1.7] (see also [20, Lemma 9.3]), there are
no non-trivial types (this is a reflection of the fact that the motive of X is
indecomposable for an essential φ).

Now we assume that our essential form φ becomes isotropic over the func-
tion field of some 9-dimensional form ψ. By Izhboldin’s theorem the form ψF (φ)

is then isotropic as well, and we have two rational morphisms f : X ��� Y
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and g : Y ��� X, where Y is the quadric ψ = 0. Let α ∈ CH7(X×Y ) be given
by the closure of the graph of f while β ∈ CH7(Y ×X) is given by the closure
of the graph of g. Recall that one may define the types of α and β in the same
way as in the case X = Y . Moreover, the first entry of such a type is the
degree of the correspondence over the first factor. Since α and β are given by
the closures of the graphs of rational morphisms, these degrees are 1 (see [19]).
Therefore, the first entry in the type of γ = β ◦α ∈ CH7(X ×X) is also 1. In
particular, type γ �= 0. Since the only possible types for X are the trivial ones,
we therefore have type γ = (1, 1, . . . , 1) whence typeα = typeβ = (1, 1, . . . , 1)
(at this stage we almost have constructed a motivic isomorphism between X
and Y ; this “almost” however turns out to be enough for our purposes).

In the first proof we applied Izhboldin’s theorem [8, Corollary 2.9] to get
X � Y from M(X) � M(Y ). However the theorem [8, Corollary 2.9] has
nothing to do with motives: in its proof, the isomorphism X � Y is obtained
as a consequence of the equalities iW (φE) = iW (ψE) for any field extension
E/F . Now we are able to get these equalities directly, without passing through
motives.

For any i the inequality iW (φE) > i is equivalent to the statement that
the element li ∈ CHi(XE) is defined over E (i.e., is in the image of the
restriction CHi(XE) → CHi(XE)). The image of li with respect to the push-
forward (αE)∗ : CHi(XE) → CHi(YE) is li again. The same holds for (βE)∗.
Therefore, for any i, one has iW (φE) > i if and only if iW (ψE) > i. Thus
iW (φE) = iW (ψE) for any E/F .

We have finished the second proof of Theorem 2.4. ��

For the reader’s convenience we formulate and prove Izhboldin’s theorem
used in the end of the proof of Theorem 2.4:

Theorem 2.5 (Izhboldin [8]). Let φ and ψ be some quadratic forms over
F . Assume that the dimension of φ coincides with the dimension of ψ and is
odd. If iW (φE) = iW (ψE) for any field extension E/F , then φ ∼ ψ.

Proof (cf. [8]). Replacing ψ by det(φ) · det(ψ) · ψ, we come to the situation
where det(φ) = det(ψ). We shall prove that φ � ψ in this situation.

Replacing φ and ψ by their anisotropic parts, we come to the situation
where both φ and ψ are anisotropic. We prove that φ � ψ by induction on
dimφ.

We put π = φ ⊥ −ψ and need to show that the quadratic form π is hyper-
bolic. Suppose that it is not. The form πF (φ) is hyperbolic by the induction
hypothesis. Since the anisotropic part πan of π clearly has a common value
with φ, we get that φ ⊂ πan. Now if πan were different from π, the form ψ
would be isotropic. So, the form π is anisotropic.

Over the function field F (π) of π the forms φ and ψ are anisotropic by
Hoffmann’s theorem [4, Theorem 1]. Since the form πF (π) is no more an-
isotropic, it should be hyperbolic by the above arguments. It follows from
[26, Theorem 5.4(i)] that π is similar to a Pfister form. In particular, the
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dimension of π is a 2-power which contradicts the assumption that the di-
mension of the forms φ and ψ is odd (we do not consider the trivial case
where dimφ = dimψ = 1). ��

2.3 Checking (3)

The link to the unramified stuff comes with the following, as simple as crucial,
observation:

Lemma 2.6 (c.f. [10, Lemma 6.2]). Let φ be a quadratic form over F and
let L/F be a field extension such that φL is a neighbor of an n-fold Pfister
form π/L. Then the class of π in the Witt group W (L) is unramified over F .

Proof. We recall that an element x ∈ W (L) is called unramified over F if
∂v(x) = 0 for any discrete valuation v of L trivial on F , where ∂v stays for
the second residue homomorphism.

Let v be a discrete valuation of L trivial on F with a prime p ∈ L∗.
We write kv for the residue field of v. Recall that the second residue homo-
morphism ∂v : W (L) → W (kv) is the group homomorphism (depending on
the choice of the prime p) such that

∂v(〈l〉) =

{

0 if v(l) is even;
〈the class of lp−v(l) ∈ L in kv〉 if v(l) is odd.

(Note that even though ∂v depends on the choice of p, its kernel does not).
We are going to prove that ∂v(π) = 0. We may assume that φ represents

1 over F (because we may replace φ/F by a similar form). Then φL is a
subform of π so that we can write π as φL ⊥ φ′. Since ∂v(π) = ∂v(φL)+∂v(φ′)
and ∂v(φL) = 0, the Witt class ∂v(π) ∈ W (kv) is represented by a form of
dimension ≤ dimφ′ < 1

2
dimπ = 2n−1.

On the other hand, since π is an n-fold Pfister form, the Witt class
∂v(π) ∈ W (kv) is represented by a form similar to an (n − 1)-fold Pfister
form. Comparing with the previous paragraph, we obtain that the form rep-
resenting ∂v(π) is isotropic. Hence it is hyperbolic, that is, ∂v(π) = 0. ��

We need some notation concerning Galois cohomology. We write Hn(F )
for the Galois cohomology group Hn(F, Z/2Z). We write GPn(F ) for the set
of (isomorphism classes of) quadratic forms over F which are similar to n-fold
Pfister forms. We write en : GPn(F ) → Hn(F ) for the degree n cohomological
invariant of such quadratic forms defined as

en(a〈〈a1, , . . . , an〉〉) = (a1, . . . , an),

where (a1, . . . , an) = (a1) ∪ · · · ∪ (an). For a field extension L/F we write
Hn(L/F ) for the relative Galois cohomology group Ker

(

Hn(F ) → Hn(L)
)

,
and we write Hn

nr(L/F ) for the group of cohomology classes in Hn(L) unrami-
fied over F . Note that Hn(L/F ) ⊂ Hn(F ) while Hn

nr(L/F ) ⊂ Hn(L). Recall
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that the unramified cohomology group Hn
nr(L/F ) is defined in the similar way

as Wnr(L/F ):
Hn

nr(L/F ) =
⋂

Ker(∂v),

where the intersection runs over all discrete valuations of L trivial on F and
∂v : Hn(L) → Hn−1(kv) is the residue homomorphism.

One more convention: we shall write Hn
nr(L/F )/Hn(F ) for the cokernel of

the restriction homomorphism Hn(F ) → Hn
nr(L/F ) even in the case where

the restriction homomorphism is not injective.

Corollary 2.7. In the condition of Lemma 2.6, the cohomological invariant
en(π) ∈ Hn(L) is unramified over F .

Proof. This follows from the formula ∂v(en(π)) = en−1(∂v(π)). Note that we
do not use the fact that the cohomological invariant en : In(L) → Hn(L) is
well-defined on the whole In(L): we only apply it to quadratic forms from
GPn. ��

The unramified cohomology group H4
nr(F (ψ)/F ) of the function field of a

quadratic form ψ/F , as well as the relative cohomology group H4(F (ψ)/F )
were investigated in [15] (see also [14]). We shall use only the following list of
results obtained there:

Theorem 2.8 ([15]). We consider quadratic forms ψ/F with dimψ ≥ 9.

(i) For any 4-fold Pfister form ψ there is a monomorphism

H4
nr(F (ψ)/F )/H4(F ) ↪→ H4(F )

natural in F .
(ii) For any ψ which is not a 4-fold Pfister neighbor, there is a monomorph-

ism H4
nr(F (ψ)/F )/H4(F ) ↪→ TorsCH3(Xψ), where TorsCH3(Xψ) is the

torsion subgroup of the Chow group CH3(Xψ) of the projective quadric
given by ψ.

(iii) For any ψ which is not a 4-fold Pfister neighbor, the relative cohomology
group H4(F (ψ)/F ) is trivial.

Now we recall that the goal of this section is the proof of the following
statement: if φ/F is an essential form and ψ/F is an arbitrary quadratic form
of dimension 10, then the form φF (ψ) is essential. To prove this, it suffices to
find a field extension E/F such that the form φE is still essential while the
form ψE is isotropic.

To begin we show that one can always climb over the function field of a
4-fold Pfister form (which will allow us later on to kill the Galois cohomology
of the base field in degree 4).

Proposition 2.9. Let φ/F be an essential quadratic form and let q/F be a
4-fold Pfister form. Then the form φF (q) is still essential.
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Proof. We know already that indC0(φF (q)) ≥ 4 and that the form φF (q) is
anisotropic. The only thing to check is that φF (q) does not become a Pfister
neighbor.

Let us assume the contrary: φF (q) is a neighbor of some 4-fold Pfister form
π/F (q). The element e4(π) ∈ H4

nr(F (q)/F ) is different from 0 (since the form
φF (q) is anisotropic, the form π is anisotropic too, therefore e4(π) �= 0 simply
by the classical “injectivity on symbols” known for en with any n).

Applying Theorem 2.8 (i) to the field extension F (φ)/F , we get a com-
mutative diagram

H4
nr(F (q)/F )/H4(F )

��

�� H4
nr(F (φ, q)/F (φ))/H4(F (φ))

��
H4(F ) �� H4(F (φ))

where F (φ, q) is the function field of the direct product of the projective
quadrics φ = 0 and q = 0. Note that the vertical arrows of the diagram are
monomorphisms (Theorem 2.8(i)). Moreover, the lower horizontal arrow is a
monomorphism as well (Theorem 2.8 (iii)). Hence the upper horizontal arrow
is a monomorphism, too. By this reason, the class of e4(π) in the quotient
H4

nr(F (q)/F )/H4(F ), evidently vanishing in the quotient

H4
nr(F (φ, q)/F (φ))/H4(F (φ)),

is 0, that is, e4(π) is in the image of the restriction homomorphism H4(F ) →
H4

nr(F (q)/F ), say e4(π) = λF (q) for some λ ∈ H4(F ).
For this λ, we have λF (φ,q) = e4(π)F (φ) = 0, whence

λF (φ) ∈ H4(F (φ, q)/F (φ)).

Since qF (φ) is a 4-fold Pfister form, we have ([13] and [28])

H4(F (φ, q)/F (φ)) = {0, e4(q)F (φ)},

whence λF (φ) = 0 or λF (φ) = e4(q)F (φ). By the injectivity of H4(F ) →
H4(F (φ)) (Theorem 2.8 (iii)) we get that λ = 0 or λ = e4(q) already over F .
Therefore λF (q) = 0 which is a contradiction with λF (q) = e4(π) �= 0. ��

Corollary 2.10. For any F and any essential φ/F there exists a field exten-
sion F̃ /F such that H4(F̃ ) = 0 while φF̃ is still essential.

Proof. The extension F̃ /F we construct is common for all essential φ/F . Let
F0 = F and for every i ≥ 0 let Fi+1 be the free composite of the function fields
of all 4-fold Pfister forms over Fi. The union F̃ =

⋃

Fi is a field extension of F
with trivial I4(F̃ ) and the form φF̃ is still essential. Of course, we may conclude
that H4(F̃ ) = 0 by using the fact that H4(F̃ ) is generated by e4(GP4(F̃ )).



122 Nikita A. Karpenko

The things are much simpler however. If for every Fi we consider a maximal
odd extension Ei/Fi and put F̃ =

⋃

Ei, then this new F̃ is a field with trivial
I4(F̃ ) and without odd extensions. Therefore H4(F̃ ) = 0 already by [1]. To
show that φF̃ is essential for this choice of F̃ one uses [20, Corollary 1.12]. ��

Definition 2.11. We say that an anisotropic quadratic form q/F is special,
if

(1) dim q = 9 or 10;
(2) for a 9-dimensional q, we require that indC0(q) ≤ 2;
(3) TorsCH3 Xq = 0.

Remark 2.12. The second condition ensures that a special form is never similar
to an essential form.

Proposition 2.13. Assume that F is a field with H4(F ) = 0, φ/F is an
essential form and q/F a special quadratic form. Then the form φF (q) is also
essential.

Proof. Since q �∼ φ (Remark 2.12), it follows by Theorem 2.4 that the form
φF (q) is anisotropic. Therefore, if φF (q) is a neighbor of a 4-fold Pfister form
π/F (q), the cohomology class e4(π) ∈ H4

nr(F (q)/F ) is non-trivial.
On the other hand, since q is special, the restriction H4(F ) → H4

nr(F (q)/F )
is an epimorphism by Theorem 2.8 (ii), while H4(F ) = 0. We get a contra-
diction. ��

Now we recall that for given essential form φ and 10-dimensional form
ψ over a field F , we are looking for a field extension E/F such that ψE is
isotropic while φE is still essential. For this we need a list of special forms
which is “large enough.” Note that one cannot take all 10-dimensional forms
in such a list because not all of them are special (there are 10-dimensional
forms Q with non-trivial torsion in CH3 Xq , see [10, Theorem 0.5]); also we
cannot simply take all 10-dimensional quadratic forms q with no torsion in
CH3 Xq : it is not clear whether such a list is large enough. One possible choice
of list is given in the following definition. We use some 9-dimensional quadratic
forms as well. This choice is particularly nice because the absence of torsion
in CH3 Xq is particularly easy to check for the forms q of this list (we note
that the Chow group CH3 Xq is computed for all quadratic forms q of all
dimensions ≥ 9 in [10, Theorem 0.5]).

Definition 2.14. An anisotropic quadratic form q is called particular if it is
of one of the following four types:

(i) q with dim q = 10 and indC0(q) ≥ 4;
(ii) q with dim q = 10, indC0(q) = 2, such that q contains a subform q′ ⊂ q

with dim q′ = 8 and disc q′ = 1;
(iii) q with dim q = 9, indC0(q) = 2, such that q contains a subform q′ ⊂ q

with dim q′ = 8 and disc q′ = 1;
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(iv) q with dim q = 9, indC0(q) = 2, such that q contains a 7-dimensional
Pfister neighbor q′ ⊂ q.

Proposition 2.15. A particular quadratic form is special.

The proof of the proposition will be given in the next section. Now we
only check that such a list of special forms is really big enough. First of all we
notice that the particular forms are particularly nice because of the following
additional property:

Lemma 2.16. Let q/F be particular and let F̃ /F be the extension constructed
in Corollary 2.10. Then qF̃ is also particular.

Proof. By the construction of F̃ /F it suffices to check that qF (π) is particular
for any 4-fold Pfister form π/F .

By Hoffmann’s theorem qF (π) is anisotropic.
Since C0(π) � M27(F ) × M27(F ), where Mn(F ) is the algebra of n × n-

matrices over F , for any central division algebra D there is no homomorphism
C0(π) → D. It follows by the index reduction formula that indC0(qF (π)) =
indC0(q) for any q/F . ��

Corollary 2.17. Let F be an arbitrary field, φ/F essential, and q/F partic-
ular. Then φF (q) is also essential.

Proof. The form φF̃ (q) is essential. ��

The following statement shows that the list of special forms given by the
particular ones is “large enough”:

Lemma 2.18. Let ψ be a 10-dimensional quadratic form over a field F . There
exists a finite chain of field extensions F = F0 ⊂ F1 ⊂ · · · ⊂ Fn such that ψFn

is isotropic and every step Fi+1/Fi is the function field either of a particular
form or of a 4-fold Pfister form.

Proof. We assume that ψ/F is anisotropic (otherwise we take n = 0).
If indC0(ψ) ≥ 4, then ψ is particular of type (i). So, we may simply take

n = 1 with F1 = F (ψ).
Now we assume that disc ψ = 1. If indC0(ψ) = 1, the form ψ is iso-

tropic ([25]), so that we assume indC0(ψ) = 2. Such a form ψ contains a
7-dimensional Pfister neighbor q′ ([5, Theorem 5.1]). Let q be an “intermedi-
ate” 9-dimensional form: q′ ⊂ q ⊂ ψ. Since indC0(q) = indC0(ψ) = 2, q is a
form of type (iv), and ψ is isotropic over F (q).

At this stage we have already shown that we can make isotropic any
10-dimensional quadratic form over F with trivial discriminant. Hence for
a given 9-dimensional form over F one may assume that it contains an 8-
dimensional subform of trivial discriminant. It remains us to show that every
ψ with indC0(ψ) ≤ 2 is isotropic in this situation.

If indC0(ψ) = 2, then ψ is of type (ii), hence there is no problem with
such ψ.
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Finally, we assume that indC0(ψ) = 1. We choose a 9-dimensional subform
q ⊂ ψ. We have C0(ψ) � C0(q) ⊗F F (

√
d) with d = disc(ψ). Therefore

indC0(q) = 1 or 2. In the second case, q is of type (iii), while in the first case
q is a neighbor of a 4-fold Pfister form. ��

We have finished part (3) of the proof of Theorem 2.3 modulo the com-
putation of CH3 for the particular forms needed for Proposition 2.15. This
computation will be done in the next section.

2.4 Computing CH3

In this section we prove Proposition 2.15. More precisely, we prove that
TorsCH3 Xq = 0 for any particular (see Definition 2.14) quadratic form q.

Lemma 2.19. Every 9-dimensional quadratic form q with indC0(q) = 4 is a
subform of some 13-dimensional quadratic form ρ with indC0(ρ) = 1.

Proof. Let q ⊥ 〈a〉 be a 10-dimensional quadratic form of discriminant 1
containing q. The Clifford invariant [C(q ⊥ 〈a〉)] = [C0(q)] ∈ Br(F ) of this
form is represented by a biquaternion algebra. Let 〈−a〉 ⊥ q′ be an Albert
form corresponding to this biquaternion algebra (the quadratic form q′ here is
5-dimensional with det q′ = a and C0(q′) Brauer-equivalent to C0(q)). Since
the Clifford invariant of the Witt class

[q ⊥ 〈a〉] + [〈−a〉 ⊥ q′] = [q ⊥ q′] ∈ W (F )

is trivial, one can take ρ = q ⊥ q′′ where q′′ is a 4-dimensional subform of q′ (in
this case ρ is a 13-dimensional subform of the 14-dimensional form q ⊥ q′ with
trivial disc(q ⊥ q′), and therefore [C0(ρ)] = [C(q ⊥ q′)] = 0 ∈ Br(F )). ��

Corollary 2.20. For any 9-dimensional quadratic form q with indC0(q) = 4,
one has TorsCH3 Xq = 0.

Proof. We write K(X) for the Grothendieck group K′
0(X) of a variety X.

We consider the topological filtration on K(X) given by the codimension of
support and write K(i)(X) (i ≥ 0) for its i-th term. Since the canonical epi-
morphism CHi(X) � K(i)(X)/K(i+1)(X) is an isomorphism for i ≤ 3 in
the case where X is a projective quadric (see [16, Corollary 4.5] for i = 3),
it suffices to show that the successive quotient group K(3)(Xq)/K(4)(Xq) is
torsion-free for q as in the statement under proof. According to [16, The-
orem 3.8], this is equivalent to the fact that l1 ∈ K(4)(Xq) where l1 ∈ K(Xq)
is the class of a line on Xq (given by some totally isotropic 2-dimensional sub-
space of qF ). Note that according to Swan’s computation [27] of the K-theory
of projective quadrics, K(Xq) is a subgroup of K(Xq) containing l1.

Let ρ be a 13-dimensional quadratic form as in Lemma 2.19. As indC0(ρ) =
1, we have l5 ∈ K(Xρ) ([27]) for the class l5 of a 5-dimensional projective
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subspace on Xρ. Since dimρ is bigger than 12, the group CH3(Xρ) is torsion-
free by [17]. Note that the groups CHi(Xρ) for i < 3 are torsion-free as well (see
[16, Theorem 6.1] for i = 2). It follows that the groups K(i)(Xρ)/K(i+1)(Xρ)
are torsion-free for i ≤ 3 which implies l5 ∈ K(4)(Xρ). Applying to this l5 the
pull-back K(4)(Xρ) → K(4)(Xq) with respect to the embedding Xq ↪→ Xρ, we
get l1 (because codimXρ Xq = 4). Thus l1 ∈ K(4)(Xq). ��

Corollary 2.21. For any 9-dimensional quadratic form q with indC0(q) ≥ 4,
one has TorsCH3 Xq = 0 as well.

Proof. The possible values of indC0(q) (q is 9-dimensional) greater than 4 are
8 and 16. In the case of maximal index, there is no torsion in the successive
quotients of the topological filtration on K(Xq) at all ([16, Theorem 3.8]).

Let ind C0(q) = 8. To see that there is no torsion in CH3(Xq) is is enough
to show that l0 ∈ K(4)(Xq) where l0 ∈ K(Xq) ⊂ K(Xq) is the class of a
rational point.

We may assume that the base field F has no extension of odd degree.
Then there exists a quadratic field extension E/F such that indC0(qE) = 4.
It follows by Corollary 2.20 that l1 ∈ K(4)(XqE ) over E. Taking the transfer
we get that 2l1 ∈ K(4)(Xq) over F . Since 2l1 = h6 + l0 ∈ K(Xq) where
h6 ∈ K(6)(Xq) is the 6-th power of the hyperplane section class h ∈ K(1)(Xq)
(cf. [16, proof of Lemma 3.9]), the desired relation l0 ∈ K(4)(Xq) follows. ��

Corollary 2.22. Let q be an 8-dimensional quadratic form, a ∈ F ∗, and let
Uq,a be the affine quadric q +a = 0. If indC0(q ⊥ 〈a〉) ≥ 4 then CH3 Uq,a = 0.

Proof. Since Uq,a is the complement of Xq in Xq⊥〈a〉 , we have the exact se-
quence

CH2 Xq → CH3 Xq⊥〈a〉 → CH3 Uq,a → 0.

The middle term is torsion-free by Corollary 2.21, therefore it is generated
by the third power h3 of the hyperplane section h ∈ CH1 Xq⊥〈a〉 . Since this
h3 is the image of h2 ∈ CH2 Xq , the first arrow of the exact sequence is
surjective. ��

Lemma 2.23. Let q be an 8-dimensional quadratic form over F and let
a ∈ F . If either a �= 0 or q is not similar to a 3-fold Pfister form, then
TorsCH2 Uq,a = 0.

Proof. We first consider the case where a �= 0. Here the group TorsCH2 Xq⊥〈a〉
is torsion-free by [16, 6.1], and the exact sequence

CH1 Xq → CH2 Xq⊥〈a〉 → CH2 Uq,a → 0

gives the desired statement.
For a = 0 the following sequence is exact:

CH1 Xq → CH2 Xq → CH2 Uq,a → 0
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with the first arrow given by multiplication by h. Since q is not similar to a
3-fold Pfister form, the middle term is generated by h2 ([16, 6.1]) which is the
image of h ∈ CH1 Xq . ��

Now we are able to prove that TorsCH3 Xq = 0 for a particular form q of
type (i). Let us write q as q = q′ ⊥ 〈a〉. The exact sequence

CH2 Xq′ → CH3 Xq → CH3 Uq′,a → 0

gives an isomorphism of TorsCH3 Xq with CH3 Uq′,a. For q′ written down as
q′ = q′′ ⊥ 〈b〉, we have an exact sequence as follows (cf. [16, Sect. 1.3.2]):

∐

p

CH2 Uq′′
F (p),bt2+a → CH3 Uq′,a → CH3 Uq′′

F (t),bt2+a → 0

where the direct sum is taken over all closed points p of the affine line A
1 =

Spec F [t], t a variable (here bt2 + a is considered as an element of the residue
field F (p)). We claim that the terms on both sides of the exact sequence
are 0 (this gives the triviality of the middle term and finishes the proof of
Proposition 2.15 for the particular forms of type (i)).

The even Clifford algebra of an even-dimensional quadratic form is iso-
morphic to the even Clifford algebra of any 1-codimensional subform tensored
by the etale quadratic F -algebra given by the square root of the discriminant
of the even-dimensional form. Applying this to q′′F (t) ⊥ 〈bt2 + a〉 ⊂ qF (t) we
get

C0(qF (t)) � C0(q′′F (t) ⊥ 〈bt2 + a〉) ⊗F (t) F (t)(
√

disc q).

In particular,

indC0(q′′F (t) ⊥ 〈bt2 + a〉) ≥ indC0(qF (t)) = indC0(q) ≥ 4.

By Corollary 2.22 it follows that CH3 Uq′′
F (t),bt2+a = 0.

Now let us consider a summand CH2 Uq′′
F (p),bt2+a from the left hand side

term of the exact sequence. If bt2 + a �= 0 ∈ F (p), this summand is 0 by
the first part of Lemma 2.23. Let us assume that bt2 + a = 0 ∈ F (p). This
may happen only for a unique closed point p ∈ A

1, namely, for the point
given by the principal prime ideal of the polynomial ring F [t] generated by
bt2 + a. In particular, F (p) � F (

√

−a/b). If the form q′′F (p) is not similar
to a 3-fold Pfister form, CH2 Uq′′

F (p),0
= 0 according to the second part of

Lemma 2.23. In the opposite case, q′′F (p) has trivial discriminant and Clifford
invariant. Since [q′′F (p)] = [qF (p)] ∈ W (F (p)), the quadratic form qF (p) also
has trivial discriminant and Clifford invariant. In particular, indC0(qF (p)) =
indC(qF (p)) = 1 (here we use that the even Clifford algebra of an even-
dimensional quadratic form with trivial discriminant is isomorphic to A × A,
where A is a central simple algebra such that the algebra of 2 by 2 matrices
over A is isomorphic to the whole Clifford algebra of the quadratic form).
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On the other hand, indC0(qF (p)) is at least 2, because indC0(q) ≥ 4 and
[F (p) : F ] = 2. Thus every particular form of type (i) is special.

Now let us check that a particular form q of type (iv) is special. In order
to show that TorsCH3 Xq = 0, it suffices to show that l2 ∈ K(4)(Xq). Let
q′ be a 7-dimensional Pfister neighbor sitting inside q. According to Swan’s
computation of K(Xq′ ), the element l2 ∈ K(Xq′ ) lies in K(Xq′ ) ⊂ K(Xq′ ).
Since the quotients K(0)(Xq′ )/K(1)(Xq′ ) and K(1)(Xq′ )/K(2)(Xq′ ) have no
torsion, the element l2 is in K(2)(Xq′ ). Now taking the push-forward of this
l2 with respect to the 2-codimensional embedding Xq′ ↪→ Xq , we get l2 ∈
K(4)(Xq). Thus every particular form of type (iv) is special as well.

For a particular form q of type (iii) we will use the 1-codimensional embed-
ding Xq′ ↪→ Xq, where q′ ⊂ q is an 8-dimensional subform of trivial discrim-
inant. The Clifford invariant of q′ is represented by the even Clifford algebra
of q which has index 2 and is therefore non-trivial. Hence q′ is not similar to
a 3-fold Pfister form and according to [16, Theorem 6.1] the group CH2 Xq′

is torsion-free. We obtain that l2 ∈ K(3)(Xq′ ) and, taking the push-forward,
l2 ∈ K(4)(Xq). Thus every particular form of type (iii) is special.

Finally, consider a particular quadratic form q of type (ii). Let E be the
quadratic field extension of F given by the square root of the discriminant
of q. The form qE has trivial discriminant and indC0(qE) = 2. According
to [16, Proposition 3.5], 2l4 ∈ K(XqE ) where l4 ∈ K(Xq) is the class of a
4-dimensional projective subspace on X . Note that 4 = (dimX)/2 by which
reason it is not true that all the 4-dimensional subspaces on X have the
same class in the Chow group: there are precisely two different classes of such
subspaces. We have denoted one of them as l4 and we write l′4 for the second
one.

For the subform q′ ⊂ q as in the definition of this type of particular forms,
we have qE � q′E ⊥ H. Therefore, for i = 1, 2, 3 there are isomorphisms
CHi XqE � CHi−1 Xq′

E
([16, Sect. 2.2]). It follows that the isomorphic groups

are torsion-free (CH2 Xq′
E

is so because ind C(q′E) = 2 and so q′E is not similar
to a 3-fold Pfister form) and therefore 2l4 ∈ K(4)(XqE ). Applying the transfer
homomorphism K(4)(XqE ) → K(4)(Xq) to the element 2l4, we get 2(l4 + l′4).
Using the relation l4 + l′4 = h4 + l3 ∈ K(Xq), we get 2l3 = 2(l4 + l′4) − 2h4 ∈
K(4)(Xq). Finally, since 2l3 = l2 + h5, it follows that l2 ∈ K(4)(Xq). Hence
the group K(3)(Xq)/K(4)(Xq) � CH3 Xq has no torsion, i.e., q is special.
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Virtual Pfister Neighbors and First Witt Index

Oleg T. Izhboldin

Introduction (by Nikita Karpenko)

This is a paper almost finished by Oleg Izhboldin in the beginning of the year
2000. I only have checked the text for evident misprints and correct references.
Also I have erased several parts of the text which I have recognized as traces
of earlier versions. Finally I have inserted Remark 4.7 and several (mostly
very short) missing proofs; namely, the proofs for Theorem 1.3, Lemma 4.5,
Lemma 5.4, Lemma 5.6, Corollary 5.9, and Theorem 5.14(2).

I think that the main results of the paper are Theorem 5.8 (with Corol-
lary 5.9) and Theorem 5.11 (with Corollary 5.13).

In this paper, Oleg Izhboldin studies virtual Pfister neighbors, i.e. aniso-
tropic quadratic forms over a field F which become Pfister neighbors of some
anisotropic Pfister form over some field extension. A complete classification
of such forms is known in dimensions ≤ 9 and (“trivially” by a theorem of
Hoffmann) for forms of dimension 2n + 1 (see also the paper Embeddability
of quadratic forms in Pfister forms, Indag. Math. 11(2) (2000), 219–237, by
Hoffmann and Izhboldin, in particular Proposition 2.9 in that paper).

The second main result of the paper, Theorem 5.11 and its Corollary 5.13
deal with the possible values of the first Witt index of a quadratic form,
another interesting question which is the subject of active research (most
notably by Vishik). What distinguishes Izhboldin’s results from Vishik’s work
is that they are obtained in very tricky and subtle, yet elementary ways. The
study of this problem started in Hoffmann’s paper [1] where also the notion
of maximal splitting has been coined.

Here are some explanations on the notation used in the paper: φan is the
anisotropic part of a quadratic form φ; i1(φ) and i2(φ) are the first and the
second Witt indexes of φ; φ

st∼ ψ notifies the stably birational equivalence
of two quadratic forms φ and ψ; φ ⊂ ψ means that φ is isomorphic with a
subform in ψ. A virtual Pfister neighbor is a quadratic form which becomes

J.-P. Tignol (Ed.): LNM 1835, pp. 131–142, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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an anisotropic Pfister neighbor over some extension of the base field. If φ is a
quadratic form over a field F , F (φ) is its function field.

The only fields over which quadratic forms are considered are of charac-
teristic different from 2.

1 Generic Principles

The following statement is well-known:

Proposition 1.1. Let X be a projective homogeneous variety over a field F .
The following conditions are equivalent:

• X has a closed F -rational point,
• X is a rational variety,
• X is a unirational variety.

Theorem 1.2. Let X1, . . . , Xr and X be projective homogeneous varieties
over F . Suppose that for any i = 1, . . . , r there exists a field extension Li/F
such that the variety (Xi)Li is not rational and XLi is rational. Then there
exists an extension L/F such that all varieties (X1)L, . . . , (Xr)L are not
rational and XL is rational.

Proof. We define L as the function field F (X) of X. Clearly XL = XF (X) has
a rational point. Hence, XL is rational. Now we need to check that (Xi)L is
not rational. Suppose at the moment that (Xi)L = (Xi)F (X) is rational. Then
(Xi)Li(X) is rational too. This means that the extension Li(X)(Xi)/Li(X)
is purely transcendental. Since XLi is rational, it follows that the extension
Li(X)/Li is purely transcendental. Hence Li(X)(Xi)/Li is also purely tran-
scendental. Since Li(Xi) ⊂ Li(X)(Xi), it follows that Li(Xi)/Li is unira-
tional. Hence, (Xi)Li is unirational. By Proposition 1.1, it follows that (Xi)Li

is rational. We get a contradiction to our assumption. ��

Theorem 1.3 (generic principle). Let φ1, . . . , φr and φ be quadratic forms
over F . Let m1, . . . , mr and m be positive integers. Suppose that for any
i = 1, . . . , r there exists a field extension Li/F such that dim((φi)Li)an ≥
mi and dim(φLi)an ≤ m. Then there exists an extension L/F such that
dim((φi)L)an ≥ mi for all i = 1, . . . , r and dim(φL)an ≤ m.

Proof. We apply Theorem 1.2 taking as X1, . . . , Xr , and X the appropriate
generic splitting varieties (see e.g. [4]) of the quadratic forms φ1, . . . , φr, and
φ respectively. ��

Corollary 1.4 (generic principle). Let φ1, . . . , φs and φ be quadratic
forms over F . Suppose that for any i = 1, . . . , s there exists a field extension
Li/F such that (φi)Li is anisotropic and dim(φLi)an ≤ m. Suppose also that
there exists an extension E/F such that dim(φE)an = m. Then there exists
an extension L/F such that the forms (φi)L are anisotropic for all i = 1, . . . ,
s and dim(φL)an = m.
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Proof. It suffices to substitute in the formulation of Theorem 1.3 the following
data:

• r = s + 1, φr = φ, and Lr = E;
• mi = dim φi for all i = 1, . . . , s = r − 1 and mr = m.

��

2 Maximal Splitting

Theorem 2.1 ([1]). Let φ be an anisotropic form over a field F of dimension
2n + m with 0 < m ≤ 2n. Then i1(φ) ≤ m and dim(φF (φ))an ≥ 2n − m.

Definition 2.2 (Hoffmann, [1, §4]). Let φ be an anisotropic form over a
field F of dimension 2n + m with 0 < m ≤ 2n. We say that φ has maximal
splitting if i1(φ) = m (in this case, dim(φF (φ))an = 2n − m).

Let (Fi, ψi)i=0,...,h be the generic splitting tower of an anisotropic quad-
ratic F -form ψ. We recall that the field Fi and the Fi-forms ψi are defined by
the following recursive procedure:

• F0 := F and ψ0 := ψ;
• for i ≥ 1, we set Fi := Fi−1(ψi−1) and ψi = ((ψi−1)Fi )an.

Lemma 2.3. Let φ be an anisotropic F -form with dimφ = 2n + m, n ≥ 1,
1 ≤ m ≤ 2n. Let ψ be an F -form and (Fi, ψi)i=0,...,h be the generic splitting
tower of ψ. Let s ≥ 0 be such that dimψs > 2n and φFs+1 is anisotropic. Then
φ has maximal splitting if and only if φFs+1 has maximal splitting.

Proof. An obvious induction reduces the general case to the case where s = 0.
In this case, the lemma coincides with [1, Lemma 5]. ��

3 Basic Construction

In this section we introduce some basic notation which will be used in the
following sections. We start with

Definition 3.1. Let φ be a quadratic form over F . We denote by Dim(φ) the
set of integers defined as follows:

Dim(φ) = {m | there exists a field extension L/F such that dim(φL)an = m}.

Now let k be an arbitrary field of characteristic �= 2. We fix some aniso-
tropic form φ over k. The dimension of the form φ will be written in the form
dimφ = 2n + m where 0 < m ≤ 2n. Now, we define the field F as the purely
transcendental extension of k of transcendence degree n + 1. Namely, we set
F = k(X1, . . . , Xn+1). Now, we define the F -forms π and ψ as follows:

π = 〈〈X1, . . . , Xn+1〉〉 and ψ = φF ⊥ −π.
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Lemma 3.2. Let s ≥ 0 be an integer such that 2n − s ∈ Dim(φ) (see Defini-
tion 3.1). There exists an extension L/F such that the form φL is isotropic,
dim(φL)an = 2n − s, the form πL is anisotropic, and dim(ψL)an = 2n + s.

Proof. Let K/k be an extension such that dim(φK)an = 2n−s. Since s ≥ 0, it
follows that φK is isotropic. Put E = K(X1, . . . , Xn+1) ⊃ k(X1, . . . , Xn+1) =
F (we mean that the extension E/K is purely transcendental). Clearly, the
form πE = 〈〈X1, . . . , Xn+1〉〉E is anisotropic. Since E/K is purely transcend-
ental, we have dim(φE)an = 2n−s. By [1, Theorem 4], there exists an extension
L/E such that ((φE)an)L ⊂ πL and πL is anisotropic. Let ξ be an L-form such
that ((φE)an)L ⊥ −ξ = πL. Since πL is anisotropic, it follows that ξ is an-
isotropic and dim ξ = dimπ − dim((φE)an) = 2n+1 − (2n − s) = 2n + s. In
the Witt ring W (L) we have ξ = φL − πL = (φF ⊥ −π)L = ψL. Therefore,
dim(ψL)an = dim ξ = 2n + s. ��

Lemma 3.3. If φ is a virtual neighbor, then there exists an extension L/F
such that φL and πL are anisotropic and dim(ψL)an = 2n − m.

Proof. Since φ is a virtual neighbor, there exists an extension K/k and an
anisotropic form τ ∈ GPn+1(K) such that φK ⊂ τ . Let E = K(X1, . . . , Xn+1).
Clearly, τE and πE are anisotropic forms from GPn+1(E). Then there exists an
extension L/E such that τL = πL and the forms τL and πL are anisotropic (see
[3, proof of Lemma 2.1]). Since φL ⊂ τL = πL it follows that φL is anisotropic.
Let ξ be an L-form such that φL ⊥ −ξ = πL. Since πL is anisotropic, it follows
that ξ is anisotropic and dim ξ = dimπ −dimφ = 2n+1 − (2n +m) = 2n −m.
In the Witt ring W (L) we have ξ = φL − πL = (φF ⊥ −π)L = ψL. Therefore,
dim(ψL)an = dim ξ = 2n − m. ��

Lemma 3.4. Suppose that φ is a virtual Pfister neighbor such that

dim(φk(φ))an = 2n − 1.

Then dimφ = 2n + 1.

Proof. Obviously, 2n−1 ∈ Dim(φ). By Lemma 3.2, we have 2n +1 ∈ Dim(ψ).
Let (Fi, ψi) be the generic splitting tower of ψ. Since 2n + 1 ∈ Dim(ψ), there
exists r such that dimψr = 2n+1. By Theorem 2.1, it follows that dimψr+1 =
2n−1. Let L/F be the extension constructed in Lemma 3.3. Since dim(ψL)an =
2n−m ≤ 2n−1 = dimψr+1, it follows that the extension (L·Fr+1)/L is purely
transcendental. Since φL and πL are anisotropic, it follows that φL·Fr+1 and
πL·Fr+1 are also anisotropic. Hence the forms φFr+1 and πFr+1 are anisotropic.
We claim that φFr+1 is a Pfister neighbor of πFr+1 . By the Cassels–Pfister
subform theorem, it suffices to verify that the form πFr+1(φ) is hyperbolic.
Since π = φF − ψ in the Witt ring W (F ), we obviously have

dim(πFr+1(φ))an ≤ dim(φFr+1(φ))an + dim(ψFr+1(φ))an

≤ dim(φF (φ))an + dimψr+1 = 2n − 1 + 2n − 1 < 2n+1.
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Since π is an (n + 1)-fold Pfister form, it follows that πFr+1(φ) is hyperbolic.
This shows that φFr+1 is a Pfister neighbor of πFr+1 . Hence φFr+1 is an aniso-
tropic form with maximal splitting. By Lemma 2.3, it follows that φ has max-
imal splitting. Finally, Definition 2.2 and the equality dim(φF (φ))an = 2n − 1
show that dimφ = 2n + 1. ��

Theorem 3.5. Let k be a field of characteristic �= 2. Let φ be a virtual
neighbor over k of dimension 2n + m where 0 < m ≤ 2n. Let us suppose that
dim(φk(φ))an < 2n. Then dim(φk(φ))an = 2n − m.

Proof. The cases where m = 1 or dim(φk(φ))an = 2n − 1 are obvious in view
of Theorem 2.1 and Lemma 3.4. Thus, we may assume that m > 1 and
dim(φk(φ))an < 2n − 1. Then we have i1(φ) > 1.

Now we use induction on m. Let ρ be a subform of φ of codimension
1, i.e., dimρ = 2n + (m − 1). Since i1(φ) > 1, it follows that ρ

st∼ φ. By
Theorem 4.3, we have dim(ρk(ρ))an+dimρ = dim(φk(φ))an+dimφ. Therefore,
dim(ρk(ρ))an = dim(φk(φ))an + 1 < 2n. Applying the induction assumption to
the (2n + m − 1)-dimensional form ρ, we have dim(ρk(ρ))an = 2n − (m − 1).
Therefore dim(φk(φ))an = dim(ρk(ρ))an − 1 = 2n − m. ��

Corollary 3.6. Let φ be a virtual neighbor of dimension 2n + m where 0 <
m ≤ 2n. Then either i1(φ) = m or i1(φ) ≤ m/2.

Proof. The condition i1(φ) = m is equivalent to the condition dim(φF (φ))an =
2n − m. The condition i1(φ) ≤ m/2 is obviously equivalent to the condition
dim(φF (φ))an ≥ 2n. ��

4 Stable Equivalence of Quadratic Forms

Definition 4.1. Let φ be a quadratic form. We define the essential dimension
of the form φ as follows:

dimes φ = min{dimφ0 | φ0 is a subform of φ such that φ0
st∼ φ}.

Theorem 4.2 ([6, Corollary A.18]). For any anisotropic form φ, we have
dimes φ = dimφ − i1(φ) + 1. In particular, the condition dimes φ = dimφ is
equivalent to the condition i1(φ) = 1.

Theorem 4.3 ([6, Corollary A.18]). If φ and ψ are anisotropic forms such
that φ

st∼ ψ, then dimes φ = dimes ψ.

Conjecture 4.4. Let φ and ψ be forms over a field F such that φF (ψ) is
isotropic and

dimes φ ≤ dimes ψ.

Then dimes φ = dimes ψ and φ
st∼ ψ.



136 Oleg T. Izhboldin

Lemma 4.5. Let φ and ψ be quadratic forms over a field F of the same
dimension and such that φF (ψ) is isotropic. Suppose that there exists an ex-
tension E/F with the following properties:

(a)φ and ψ are anisotropic over E;
(b) ψE

st∼ φE;
(c) i1(φE) = 1 or i1(ψE) = 1.

Then dimes φ = dimes ψ and ψ
st∼ φ.

Proof. See [5, Lemma 3.1]. ��

Theorem 4.6. Let φ and ψ be forms over a field F such that φF (ψ) is isotropic
and dimes φ ≤ dimes ψ. Suppose that there exists an extension E/F with the
following properties:

(a)φ and ψ are anisotropic over E;
(b) ψE

st∼ φE.

Then dimes φE = dimes φ if and only if dimes ψE = dimes ψ, in which case
dimes φ = dimes ψ and ψ

st∼ φ.

Remark 4.7. If dimes φE = dimes φ, then the hypothesis dimes φ ≤ dimes ψ is
fulfilled automatically: dimes φ = dimes φE = dimes ψE ≤ dimes ψ.

Proof of Theorem 4.6. (1) First, suppose that dimes φE = dimes φ. Let n =
dimes φ. By our assumption, we have dimes φE = n and dimes ψ ≥ n.

Since ψE
st∼ φE , it follows that dimes ψE = dimes φE = n. Let φ0 be an

n-dimensional subform of φ and ψ0 be an n-dimensional subform of ψ.
Since dimes φ = dimes φE = n, it follows that φ

st∼ φ0 and i1(φ0) =
i1((φ0)E) = 1.

Since dimes ψE = n, it follows that ψE
st∼ (ψ0)E and i1((ψ0)E) = 1. We

have (φ0)E
st∼ φE

st∼ ψE
st∼ (ψ0)E .

By Lemma 4.5, we see that φ0
st∼ ψ0. Since φ

st∼ φ0, it follows that φ
st∼ ψ0.

Hence (ψ0)F (φ) is isotropic. Therefore, ψF (φ) is isotropic. Since φF (ψ) and

ψF (φ) are both isotropic, it follows that φ
st∼ ψ. Hence, dimes φ = dimes ψ.

(2) Now, we may assume that dimes ψE = dimes ψ. Since φE
st∼ ψE , it

follows that dimes φE = dimes ψE . Clearly, dimes φ ≥ dimes φE. By the hypo-
thesis of the theorem, we have dimes ψ ≥ dimes φ. We have proved that

dimes φ ≥ dimes φE = dimes ψE = dimes ψ ≥ dimes φ.

Therefore, dimes φ = dimes φE . We have reduced the proof to the case (1)
considered earlier. ��
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5 The Invariant d(φ)

Let k be a field of characteristic �= 2 and let φ be an anisotropic k-form of
dimension 2n + m with 0 < m ≤ 2n. In this section we define a new invariant
d(φ) of the form φ as follows.

First of all, we define the field F , the F -forms π and ψ as at the beginning
of Sect. 3. Namely, F = k(X1, . . . , Xn+1), π = 〈〈X1 , . . . , Xn+1〉〉, and ψ =
φF ⊥ −π. Now, let (Fi, ψi)i=0,...,h be the generic splitting tower of ψ. We
define the integer d(φ) as

d(φ) = min{dimψi | i is such that φFi is anisotropic}.

Lemma 5.1. Let L/F be a field extension. If φL is anisotropic, then d(φ) ≤
dim(ψL)an.

Proof. Suppose that d(φ) > dim(ψL)an. Let i be such that dimψi = d(φ).
Then we have dimψi+1 ≥ dim(ψL)an. The “generic property” shows that the
extension (Fi+1 ·L)/L is purely transcendental. Now φFi+1 is isotropic, hence
φFi+1·L is isotropic, therefore φL is isotropic. ��

We see that

d(φ) = min{dim(ψL)an | L/F field extension with φL anisotropic}.

Lemma 5.2. One has d(φ) ≥ 2n − m. Moreover, d(φ) = 2n − m if and only
if φ is a virtual Pfister neighbor.

Proof. Let i be such that d(φ) = dimψi. Since ψ = φF ⊥ −π, we have
πFi = φFi − ψFi = φFi − ψi.

If we assume that d(φ) < 2n − m, then we get dim(πFi)an ≤ dimφ +
dimψi < 2n + m + 2n − m = 2n+1. Therefore, πFi is hyperbolic. Hence
(φFi)an � ψi. Therefore, dim(φFi)an = dimψi = 2n − m < dimφ. Hence φFi

is isotropic, a contradiction.
Now, we assume that d(φ) = 2n − m. Since πFi = φFi − ψi and dimπ =

2n = 2n +m+2n−m = dimφ+dim ψi, it follows that πFi � φFi ⊥ −ψi. This
shows that φFi is a Pfister neighbor of π. Since φFi is anisotropic, it follows
that φ is a virtual Pfister neighbor.

To complete the proof, it suffices to consider the case where φ is a virtual
neighbor. By Lemma 3.3, there exists an extension L/F such that φL is an-
isotropic and dim(ψL)an = 2n − m. By Lemma 5.1, we have d(φ) ≤ 2n − m.
Since d(φ) ≥ 2n − m, we are done. ��

Lemma 5.3. One has d(φ) ≤ dimφ = 2n + m.

Proof. Let L = F (
√

X1). Obviously, L/k is purely transcendental and πL is
hyperbolic. Hence φL is anisotropic and (ψL)an � φL. Hence dim(ψL)an =
dimφ = 2n + m. By Lemma 5.1, we are done. ��
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Lemma 5.4. Let d = d(φ). Then

(1) if d > 2n − m, then d ≥ 2n − m + 4;
(2) if s is the integer such that dimψs = d, then the form πFs is anisotropic;

moreover, if d > 2n − m, then πFs+1 is anisotropic.

Proof. We start the proof with the second part.
(2) Let us assume that πFs is isotropic. Let r be the smallest integer such

that πFr+1 is isotropic. We recall that Fr+1 = Fr(ψr). Since ψr = (φFr ⊥
−πFr)an and dimφ ≤ dimπ, the anisotropic forms ψr and −πFr have a
common value. By the Cassels–Pfister subform theorem, we conclude that
ψr ⊂ −πFr . Since φFr = ψr + πFr in the Witt ring W (Fr) and φFr is aniso-
tropic, it follows that

dimφ = dim(ψr ⊥ πFr )an ≤ dimπ − dimψr <

< dimπ − dimψs = 2n+1 − d ≤ 2n+1 − (2n − m) = 2n + m ,

a contradiction.
We have shown that the form πFs is anisotropic. To complete the proof,

it remains to show that for d �= 2n − m the form πFs+1 is anisotropic as well.
Indeed, if πFs+1 is isotropic, then ψs ⊂ πFs , therefore dimφ ≤ 2n+1 − d. Since
d > 2n − m and dimφ < 2n + m, we have a contradiction.

(1) Let us assume that d < 2n−m+4, i.e., d ≤ 2n−m+2. For the integer
s such that d = dimψs we then have

iW (φFs ⊥ −πFs) =
1
2
(2n + m + 2n+1 − d) ≥

1
2
(

(2n + m + 2n+1) − (2n − m + 2)
)

= 2n + m − 1 = dim φ − 1

which means that the anisotropic form φFs contains a 1-codimensional sub-
form which is isomorphic to a subform of πFs where the form πFs is anisotropic
(by part (2) above). It follows from [5, Lemma 2.3] that φFs is a virtual Pfister
neighbor. Then φ is a virtual Pfister neighbor as well and thus d = 2n − m
according to Lemma 5.2. ��

Corollary 5.5. If m = 2, then d(φ) = 2n + 2 or d(φ) = 2n − 2. ��

Lemma 5.6. If 2n − m ∈ Dim(φ) or i1(φ) > m/2, then d(φ) < 2n + m.

Proof. We assume that d(φ) = 2n + m and we are going to show that neither
2n − m ∈ Dim(φ) nor i1(φ) > m/2 in this case.

Let s be the integer such that dimψs = d(φ). Let us check that the hy-
potheses of Theorem 4.6 are satisfied for the quadratic Fs-forms φFs and ψs

with the field extension Fs(π)/Fs.
First of all, these two forms are anisotropic and have the same dimension

2n + m. Since (ψs)Fs(π) = φFs(π) − πFs(π) = φFs(π) in the Witt ring of Fs(π),
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the forms φFs(π) and (ψs)Fs(π) are isometric. In particular, they are stably
birationally equivalent. To see the rest of the hypothesis, we verify that the
field extension Fs(π)/k is unirational (and therefore it does not affect the
anisotropy and the essential dimension of the k-form φ).

The extension Fs(π)/k is a subextension of Fs(
√

X1)(π)/k which turns
out to be purely transcendental, since it decomposes as

Fs(
√

X1)(π)
(i)
⊃ Fs(

√

X1)
(ii)
⊃ F (

√

X1)
(iii)
⊃ k ,

where the step (iii) is evidently purely transcendental, the step (i) is purely
transcendental by the hyperbolicity of πFs(

√
X1), and, finally, the step (ii) is

purely transcendental because dim(ψF (
√

X1)
)an = dimφ = d.

So, by Theorem 4.6 (see also Remark 4.7), we get φFs

st∼ ψs.
Now we assume that i1(φ) > m/2 and we are looking for a contradiction.

Of course we also have that i1(φFs) > m/2; moreover, i1(ψs) > m/2 because
i1(ψs) = i1(φFs) (Theorem 4.3). Therefore dimψs+1 < 2n and dim(φFs+1)an <
2n, therefore

dim(πFs+1)an ≤ dimψs+1 + dim(φFs+1)an < 2n+1 = dimπ,

that is, πFs+1 is hyperbolic. We get a contradiction to Lemma 5.4(2).
It remains to consider the case where 2n − m ∈ Dim(φ). By Lemma 3.2

there exists an extension L/F such that dim(φL)an = 2n − m, dim(ψL)an =
2n+m (= d), and πL is anisotropic. We write Ls for the free composite L·F Fs.
The field extension Ls/L is purely transcendental. Therefore dim(ψLs)an =
dim(ψL)an = 2n+m. On the other hand, since the forms φFs and ψs = (ψFs)an

are stably birationally equivalent and φLs is isotropic, the form (ψs)Ls is
isotropic as well, that is,

dim((ψs)L)an = dim(ψL)an < dim ψs = 2n + m,

a contradiction. ��

Corollary 5.7. If m = 2 and 2n − 2 ∈ Dim(φ), then d(φ) = 2n − 2 and φ is
a virtual Pfister neighbor. ��
Theorem 5.8. Let φ be an anisotropic quadratic form of dimension 2n + 2.
Then the following conditions are equivalent:

(1) φ is a virtual Pfister neighbor;
(2) 2n − 2 ∈ Dim(φ);
(3) either i1(φ) = 2 or i1(φ) + i2(φ) = 2.

Proof. (1) ⇒ (2). Let φ be a virtual neighbor over k. Let K/k be an exten-
sion such that φK is an anisotropic Pfister neighbor. Then φK has maximal
splitting, i.e., dim(φK(φ))an = 2n − 2.

(2) ⇒ (1). Follows from Corollary 5.7.
(2) ⇐⇒ (3). Evident. ��
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Corollary 5.9. Let φ be an anisotropic form of dimension 10 over k. Then
the following conditions are equivalent:

• φ is not a virtual neighbor;
• φ ∈ I2(k) and indC(φ) = 2;
• φ has the form φ � w(〈〈a, b, c〉〉′ ⊥ −〈〈u, v〉〉′) for suitable a, b, c, u, v, w ∈ F ∗

(where π′ stands for the pure subform of a Pfister form π).

Proof. Follows from Theorem 5.8 by [2, thm. 5.1]. ��

Lemma 5.10. Let r = 2n − m + 2 · i1(φ). Then

(1) 2n − m < r ≤ 2n + m;
(2) if d(φ) ≤ r, then d(φ) = 2n − m;
(3) if 2n ≤ r < d(φ) < 2n+2(i1(φ)+i2(φ))−m, then d(φ) = 2n+3m−4i1(φ).

Proof. (1) Follows from the inequality 0 ≤ i1(φ) ≤ m.
(2) Let s be such that dimψs = d(φ). Let E = Fs+1. Since dim(ψE)an =

dimψs+1 < dimψs = d(φ), the form φE is isotropic. Hence dim(φE)an ≤
dimφ − 2 · i1(φ) = 2n + m − 2 · i1(φ). Since d(φ) ≤ r, we have dim(ψE)an <
d(φ) ≤ r = 2n − m + 2 · i1(φ). Therefore

dim(φE)an + dim(ψE)an < (2n + m− 2 · i1(φ)) + (2n − m + 2 · i1(φ)) = 2n+1.

In the Witt ring W (E), we have πE = ψE − φE . Since πE is a (n + 1)-Pfister
form, the Arason–Pfister Hauptsatz shows that πE = πFs+1 is hyperbolic. By
Lemma 5.4, we see that d(φ) = 2n − m.

(3) Let s be such that dimψs = d(φ) and let E = Fs. By Lemma 5.4,
the form πE is anisotropic. We claim that the form πE(φ) is also anisotropic.
Indeed, otherwise, φE is a Pfister neighbor of πE . Hence φ is a virtual neighbor.
This implies that d(φ) = 2n − m, a contradiction.

Sublemma. The form (ψs)E(φ) is isotropic and dim((ψs)E(φ))an = r.

Proof. Let L = E(φ). Since φL is isotropic, there exists an L-form γ such
that φL � γ ⊥ i1(φ)H. Clearly, iW (γL(γ)) ≥ i2(φ). Hence dim(φL(γ))an =
dim(γL(γ))an ≤ dimφ − 2(i1(φ) + i2(φ)).

Since π = φF − ψ, it follows that

dim(πL(γ))an) ≤ dimφ − 2(i1 + i2) + d(φ) <
(

2n + m − 2(i1 + i2)
)

+
(

2n + 2(i1 + i2) − m
)

= 2n+1.

Therefore, πL(γ) is hyperbolic. Since the form πL = πE(φ) is anisotropic, it
follows that γ is similar to a subform of πL. Now γ − πL = (ψs)L in W (L)
and comparing dimensions yields that γ ⊥ −πL is isotropic, i.e. γ and πL

represent a common element. Hence, there exists an anisotropic L-form ξ
such that πL � γ ⊥ ξ. We obviously have
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dim ξ = dimπ − dimγ = 2n+1 − (2n + m− 2i1) = 2n − m + 2i1 = r.

In the Witt ring W (L), we have

ξ + ψL = (πl − γ) + ψL = (πL − φL) + (φL − πL) = 0.

Hence

dim((ψs)E(φ))an = dim(ψL)an = dim ξ = r < d(φ) = dimψs ,

which implies that (ψs)E(φ) is isotropic. ��

Now, we return to the proof of item (3) of Lemma 5.10. The definition of
the integer s shows that the form φE(ψs) is isotropic. Since the forms φE(ψs)

and (ψs)E(φ) are isotropic, it follows that ψs
st∼ φE . Therefore, the Sublemma

implies that dim((ψs)E(ψs))an = dim((ψs)E(φ))an = r.
By Theorem 4.3, we have

dimφ + dim(φE(φ))an = dimψs + dim((ψs)E(ψs))an.

Finally, we get d(φ) = dimψs = (dim φ+dim(φE(φ))an)−dim((ψs)E(ψs))an =
(2n + m + 2n + m − 2i1) − r = 2n + m + 2n + m − 2i1 − (2n − m + 2i1) =
2n + 3m− 4i1. ��

Theorem 5.11. Let φ be a quadratic form of dimension 2n+m with 0 < m ≤
2n. Suppose also that i1(φ) ≥ 2m/3 and i1(φ) + i2(φ) ≥ m. Then i1(φ) = m.

Proof. Let d = d(φ), i1 = i1(φ), and i2 = i2(φ). By Lemma 5.2 and Corol-
lary 3.6, it suffices to prove that d = 2n − m.

Set r = 2n − m + 2i1. In the case where d ≤ r, Lemma 5.10 shows that
d = 2n − m. Hence, we may assume that r < d.

By Lemma 5.3 we have d ≤ 2n + m. Since i1 ≥ 2m/3, we have r =
2n − m + 2i1 ≥ 2n − m + 4m/3 > 2n. Therefore, 2n < r < d ≤ 2n + m. We
claim that d < 2n + 2(i1 + i2) − m.

To prove this, we consider two cases, where i1 + i2 is equal to m or not.
If i1 +i2 = m, then 2n−m = dimφ−2i1−2i2 ∈ Dim(φ). Then Lemma 5.6

shows that d < 2n + m = 2n + 2(i1 + i2) − m.
If i1+i2 �= m, then (by the hypothesis of the theorem), we have i1+i2 > m.

Therefore, d < 2n + 2(i1 + i2) − m.
Thus, in any case we have proved that d < 2n+2(i1+i2)−m. Summarizing,

we have 2n < r < d < 2n + 2(i1 + i2) − m.
By Lemma 5.10, we see that d = 2n +3m−4i1 . Therefore, 2n −m+2i1 =

r < d = 2n + 3m − 4i1. Hence 6i1 < 4m. Therefore, i1 < 2m/3. We get a
contradiction to the hypothesis of the theorem. This completes the proof. ��

Corollary 5.12. Let φ be an anisotropic quadratic form of dimension 2n +m
with 3 ≤ m ≤ 2n. Then i1(φ) �= m − 1.
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Proof. Suppose that i1(φ) ≥ m − 1. Since m ≥ 3, we have i1(φ) ≥ m − 1 ≥
2m/3. Since i2(φ) ≥ 1, we have i1(φ)+ i2(φ) ≥ m. By Theorem 5.11, we have
i1(φ) = m. ��

Corollary 5.13. Let φ be a form of dimension 2n + 3. Then i1(φ) �= 2. ��

Theorem 5.14. Let φ be a form of height 2 and degree d over a field k.
Suppose that dim φ > 2d+1. Then

(1) φ has maximal splitting,
(2) there exists N > d + 1 such that dimφ = 2N − 2d.

Proof. (1) Let dimφ = 2n+m with 0 < m ≤ 2n. Let i1 = i1(φ) and i2 = i2(φ).
By Theorem 5.11, it suffices to prove that i1 ≥ 2m/3 and i1 + i2 ≥ m.

By the hypothesis of the theorem, we have n ≥ d + 1, dim(φk(φ))an = 2d,
and i2 = 2d−1. We have i1 = 1

2 (dimφ − dim(φk(φ))an) = 1
2(2n + m − 2d) ≥

1
2(2n + m − 2n−1) = 1

2(2n−1 + m) ≥ 1
2(m/2 + m) = 3m/4 > 2m/3.

Finally, i1 + i2 = 1
2

dim φ = 1
2
(2n + m) ≥ 1

2
(m + m) = m.

(2) Comparing the equality dimφ = 2n + m with dim φ = 2(i1 + i2) =
2(m + 2d−1) = 2m + 2d, we get m = 2n − 2d, whereby dimφ = 2n+1 − 2d.
Thus we may take N = n + 1. ��
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Some New Results Concerning Isotropy of

Low-dimensional Forms

List of Examples and Results (Without Proofs)

Oleg T. Izhboldin

Summary. Let φ and ψ be quadratic forms over a field F of characteristic �= 2. We
give an (almost) complete classification of pairs φ, ψ of dimension ≤ 9 such that φ
is stably equivalent to ψ. We also study the question when the form φ is isotropic
over the function field of ψ. In the case where dimφ = 9 and dim ψ ≥ 9 we solve
this problem completely.

The current draft contains only a list of results. We are planning to write three
articles with the following titles:

(a) Isotropy of 7-dimensional forms and 8-dimensional forms.
(b) Stable equivalence of 9-dimensional forms.
(c) Isotropy of 10- and 12-dimensional forms.

Introduction

Let φ and ψ be quadratic forms over F . In this paper we study the question
when the form φ is isotropic over the function field of ψ. This problem was
solved completely in the case where dimφ ≤ 5 ([W], [Sh], [H1]). In the case
where dimφ = 6 the problem was solved almost completely except for some
specific cases where (in particular) dimψ = 4 ([H2], [L4], [L3], [IK2], [IK1]). In
the case where dimφ = 8 and φ ∈ I2(F ) the problem was also solved almost
completely except for the case where (in particular) dimψ = 4 ([L2, L4, L1],
[IK3, IK4]). In the case where either dimφ = 7 or dimφ = 8 and φ /∈ I2(F )
there is a solution of our problem only in very special cases ([L1], [I2]).

In this paper we are mostly interested in the cases where dimφ ≥ 9. Let
us explain the main results of the paper:

• For any 9-dimensional form φ, we give a complete classification of the
forms ψ of dimension ≥ 9 such that φF (ψ) is isotropic (see Corollary 3.7).

• We prove that if φ ∈ I2(F ) is an anisotropic 10-dimensional form with
indC(φ) = 2, and ψ is a form of dimension ≥ 9, then the form φF (ψ) is
isotropic if and only if ψ is similar to a subform of φ (see Theorem 4.1).

J.-P. Tignol (Ed.): LNM 1835, pp. 143–150, 2004.
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• We prove that if φ ∈ I3(F ) is an anisotropic 12-dimensional form and ψ
is a form of dimension ≥ 9 then the form φF (ψ) is isotropic if and only if
ψ is similar to a subform of φ (see Theorem 4.4).

• We prove that if φ is an anisotropic 10-dimensional form and ψ is a form
of dimension > 10 which is not a Pfister neighbor then φF (ψ) is anisotropic
(see Theorem 4.3).

Some words about the methods. Let us start from the question concerning
the isotropy of a 9-dimensional form φ over the function field of a form ψ of
dimension ≥ 9. The proof of the main result consists of several steps which
are based on the methods developed by Vishik [V1, V2], Karpenko [K2], and
the author [I4]. Let us explain, very approximately, the plan of the proofs.

• The case where φ is a Pfister neighbor of some form π is trivial in view
of the Cassels–Pfister subform theorem. Namely, φF (ψ) is isotropic if and
only if ψ is similar to a subform of π. Thus, we may suppose in what
follows that φ is not a Pfister neighbor.

• In the case where indC0(φ) ≥ 4 the problem was solved by N. Karpenko
(see [K2] for the case dimψ = 9 and [I4] for the case dimψ > 9). Thus,
we may assume that ind C0(φ) ≤ 2.

• We give a “preliminary” classification of the 9-dimensional forms satisfying
the condition indC0(φ) ≤ 2.

• In the case under consideration (dim φ = 9 ≤ dimψ), [I3] shows that
the form φF (ψ) is isotropic if and only if the forms φ and ψ are stably
equivalent. By [V1] this implies that the Chow motives of the quadrics Xφ

and Xψ have isomorphic direct summands.
• For any 9-dimensional quadratic form φ we decompose the motive of the

quadric Xφ in the direct sum of indecomposable direct summands. Here
we use the result of N. Karpenko [K2]: If a 9-dimensional form φ is not
a Pfister neighbor, then the motive of the quadric Xφ does not possess a
Rost projector. Besides, we show that if the motives of two quadrics Xφ and
Xψ have the same direct summand, then certain invariants of the forms
φ and ψ should be the same. Analyzing these invariants, we complete the
classification.

To prove the statements concerning 10-dimensional and 12-dimensional
forms (see Theorems 4.1 and 4.4), we use the following results:

• Results concerning isotropy of 9-dimensional forms over the function fields
of quadrics (see Sect. 3).

• New results concerning unramified cohomology of quadrics [I4].

To explain the method of the proof, we note that Theorems 4.1 and 4.4 were
both proved in [I4] in the particular case where dimψ > 10 and dimψ > 12,
respectively. The general case can be obtained by using methods similar to
those of [I4].
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1 Stable Equivalence

Let Xφ and Xψ be the projective quadrics corresponding to φ and ψ. In this
paper, we consider three types of equivalence relations:

• The quadrics Xφ and Xψ are isomorphic as F -varieties. In this case, we
write φ ∼ ψ.

• The Chow motive of Xφ is isomorphic to the Chow motive of Xψ. In this
case, we say that φ and ψ are motivic equivalent and write φ

m∼ ψ.
• The variety Xφ is stably birationally equivalent to the variety Xψ. In this

case, we say that φ is stably equivalent to ψ and write φ
st∼ ψ.

The equivalence relations φ ∼ ψ, φ
m∼ ψ, and φ

st∼ ψ can be written directly
in terms of quadratic forms:1

• φ ∼ ψ if and only if φ is similar to ψ;
• φ

m∼ ψ if and only if dimφ = dimψ and iW (φE) = iW (ψE) for all field
extensions E/F ;

• φ
st∼ ψ if and only if the forms φF (ψ) and ψF (φ) are isotropic.

Let us recall some basic properties of the relations φ ∼ ψ, φ
m∼ ψ, and

φ
st∼ ψ. Let φ and ψ be anisotropic forms over F . One has

• if φ ∼ ψ or φ
m∼ ψ, then dimφ = dimψ;

• φ ∼ ψ ⇒ φ
m∼ ψ ⇒ φ

st∼ ψ;
• if dimφ is odd or dimφ < 8, then φ ∼ ψ ⇐⇒ φ

m∼ ψ.

In this paper, we mostly study the relation φ
st∼ ψ. If the form φ is a Pfister

neighbor of a Pfister form π, then the condition φ
st∼ ψ holds if and only if ψ

is also a Pfister neighbor of π (cf. [H3, Proposition 2]). Thus, we can always
assume that φ is not a Pfister neighbor. In the case where dimφ ≤ 6 we have
the following theorem:

Theorem 1.1 (Wadsworth for dimension 4; Hoffmann for dimensions
5 and 6). Let φ be an anisotropic form of dimension ≤ 6. Suppose that φ is
not a Pfister neighbor. Then for any form ψ we have

φ
st∼ ψ ⇐⇒ φ ∼ ψ ⇐⇒ φ

m∼ ψ.

2 Stable Equivalence of 7- and 8-dimensional Forms

In this section we explain some results concerning stable equivalence of forms
of dimension 7 and 8.

Let φ be either a form of dimension 7 or a form of dimension 8. Let ψ be
some other form. In this section we discuss the following two questions:
1 Only one of the three statement presented here is non-trivial: namely, the criterion

of motivic equivalence [V1, K1].
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• When is the form φF (ψ) isotropic?

• When is φ
st∼ ψ?

The answer to both questions is known in the following cases:

• φ is a Pfister neighbor (Cassels–Pfister subform theorem);
• dimφ = 8 and φ ∈ I2(F ) (see the introduction);
• dimφ = 7 and indC0(φ) ≤ 2 (in this case φ is stably equivalent to the

8-dimensional form φ̃ = φ ⊥ 〈det φ〉 which lies in I2(F ));
• dimφ = 8, φ /∈ I2(F ), and indC0(φ) = 1 (in this case φ is similar to a

twisted Pfister form by [H5, Lemma 3.1]; this case was studied completely
in [H4, I1]).

Thus, it suffices to study only the following two cases:

• dimφ = 7 and indC0(φ) ≥ 4;
• dimφ = 8, φ /∈ I2(F ), and indC0(φ) ≥ 2.

Theorem 2.1. Let φ be an anisotropic quadratic form of dimension 7 such
that indC0(φ) ≥ 4. Suppose also that φ contains no Albert form (for example,
indC0(φ) = 8). Let ψ be a form such that φF (ψ) is isotropic. Then

• if ψ is not a 3-fold neighbor, then dimψ ≤ 7;
• if dimψ = 7 and indC0(φ) = 8, then ψ ∼ φ;
• (Karpenko) if ψ

st∼ φ, then ψ ∼ φ.

Corollary 2.2. Let φ be an anisotropic 7-dimensional quadratic form with
indC0(φ) = 8. Let ψ be a form of dimension ≥ 7 such that φF (ψ) is isotropic.
Then dimψ = 7 and ψ ∼ φ. ��
Theorem 2.3. Let φ be an anisotropic quadratic form of dimension 8. Sup-
pose also that φ contains no Albert form. Let ψ be a form of dimension 8
such that φF (ψ) is isotropic. Suppose also that i1(ψ) = 1 (i.e., ψ /∈ I2(F ) or
indC0(ψ) ≥ 4). Then

• ψF (φ) is isotropic (and hence ψ
st∼ φ);

• if indC0(φ) ≥ 2, then ψ
m∼ φ;

• if indC0(φ) = 2 or indC0(φ) = 8, then φ and ψ are half-neighbors.

Corollary 2.4. Let φ be an anisotropic 8-dimensional quadratic form with
indC0(φ) = 8. Let ψ be a form of dimension 8 such that φF (ψ) is isotropic.
Then φ and ψ are half-neighbors. ��

3 Isotropy of 9-dimensional Forms over Function Fields
of Quadrics

Let φ be an anisotropic form of dimension 9 and ψ be a form of dimension
≥ 9. In this section we give a complete classification of the pairs φ, ψ such
that φF (ψ) is isotropic.
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We start from some examples. The first example is absolutely trivial:
Example 3.1. Let φ1 and φ2 be 9-dimensional forms such that φ1 ∼ φ2. Then
φ1

st∼ φ2.
The second example is a particular case of well-known properties of Pfister

neighbors:
Example 3.2. Let φ1 be an anisotropic 9-dimensional form and φ2 be a form
of dimension ≥ 9. Suppose that there exist a, b, c, d ∈ F ∗ such that

• φ1 is similar to a subform of 〈〈a, b, c, d〉〉,
• φ2 is similar to a subform of 〈〈a, b, c, d〉〉.

Then φ1
st∼ φ2.

The third example is not as “classical” as the previous ones, but it is based
on the well-known properties of 10-dimensional forms of the type 〈〈a〉〉⊗τ (here
τ is a 5-dimensional form). Such a form has maximal splitting and hence is
stably equivalent to any 9-dimensional subform.
Example 3.3. Let φ1 be an anisotropic 9-dimensional form and φ2 be a form of
dimension 9 or 10. Suppose that there exist a1, a2 ∈ F ∗ and two 5-dimensional
forms τ1 and τ2 with the following properties:

• φ1 is similar to a subform of the 10-dimensional form 〈〈a1〉〉 ⊗ τ1,
• φ2 is similar to a subform of the 10-dimensional form 〈〈a2〉〉 ⊗ τ2,
• the forms 〈〈a1〉〉 ⊗ τ1 and 〈〈a2〉〉 ⊗ τ2 contain a common 9-dimensional sub-

form.

Then φ1
st∼ φ2.

The fourth example is really new:
Example 3.4. Let φ1 and φ2 be anisotropic 9-dimensional forms. Suppose that
there exist a1, a2, b, c, u, v, k ∈ F ∗ with the following properties:

• φ1 is similar to 〈〈a1, b, c〉〉′ ⊥ 〈u, v〉,
• φ2 is similar to 〈〈a2, b, c〉〉′ ⊥ 〈u, v〉,
• 〈〈a1a2, b, c〉〉 = 〈〈k, u, v〉〉.

Then φ1
st∼ φ2.

Proof. Let πi = 〈〈ai, b, c〉〉 for i = 1, 2. We claim that for any field extension
E/F the following conditions are equivalent:

(i) the form (φ1)E is isotropic,
(ii) there exists d ∈ DE(〈u, v〉) such that π1 is hyperbolic over E(

√
d),

(iii) there exists d ∈ DE(〈u, v〉) such that π2 is hyperbolic over E(
√

d),
(iv) the form (φ2)E is isotropic.
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Using the “symmetry,” it suffices to prove (i) ⇐⇒ (ii) ⇒ (iii).
We start from the equivalence (i) ⇐⇒ (ii). The form (φ1)E ∼ (π′

1)E ⊥
〈u, v〉 is isotropic if and only if the forms (−π′

1)E and 〈u, v〉E have a common
value. This means that there exists an element d ∈ DE(−π′

1)∩DE(〈u, v〉). The
condition d ∈ DE(−π′

1) holds if and only if the form (π1)E(
√

d) is hyperbolic.
This completes the proof of the equivalence (i) ⇐⇒ (ii).

(ii) ⇒ (iii). Let d ∈ DE(〈u, v〉) be such that π1 is hyperbolic over E(
√

d).
We need to prove that π2 is hyperbolic over E(

√
d). Since d ∈ DE(〈u, v〉), it

follows that 〈〈u, v〉〉 is hyperbolic over E(
√

d). Hence, the form 〈〈a1a2, b, c〉〉 =
〈〈k, u, v〉〉 is hyperbolic over E(

√
d). Since π1 = 〈〈a1, b, c〉〉 and 〈〈a1a2, b, c〉〉 are

hyperbolic over E(
√

d), the form π2 = 〈〈a2, b, c〉〉 is also hyperbolic over E(
√

d).
Thus, we have proved that all the conditions (i)–(iv) are equivalent.
Clearly, the equivalence (i) ⇐⇒ (iv) completes the proof. ��

Definition 3.5. Let φ1 be a 9-dimensional form and φ2 be some other form.
We say that the pair φ1, φ2 is a standard equivalence pair, if it looks like in
Examples 3.1–3.4 listed above.

The main result of this paper is the following theorem.

Theorem 3.6. Let φ1 be a 9-dimensional form and φ2 be some other form.
Then the following conditions are equivalent:

• φ1 is stably equivalent to φ2,
• the pair φ1, φ2 is a standard equivalence pair in the sense of Definition 3.5.

Corollary 3.7. Let φ1 be an anisotropic 9-dimensional quadratic form and
φ2 be a form of dimension ≥ 9. Then the following conditions are equivalent:

• φ1 is isotropic over the function field of φ2,
• φ1 is stably equivalent to φ2,
• the pair φ1, φ2 is a standard equivalence pair in the sense of Definition 3.5.

Proof. The equivalence of the last two statements is given by Theorem 3.6.
The equivalence of the first two statements follows readily from [I3, cor. 2.12].

��

Corollary 3.8. Let φ be a 9-dimensional anisotropic form which is not a
Pfister neighbor. Let ψ be a form of dimension ≥ 10. Then the following
conditions are equivalent:

• φF (ψ) is isotropic;
• there exist a, b ∈ F ∗ and two 5-dimensional forms τ and ρ with the fol-

lowing properties:
– φ is similar to a subform of 〈〈a〉〉 ⊗ τ ,
– ψ is similar to 〈〈b〉〉 ⊗ ρ,
– the forms 〈〈a〉〉⊗τ and 〈〈b〉〉⊗ρ contain a common subform of dimension

9.
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Proof. If φF (ψ) is isotropic, then ψ has maximal splitting (cf. [H3, prop. 5]).

This implies that φ
st∼ ψ by [I3, th. 0.2], and that ψ ∼= 〈〈b〉〉 ⊗ ρ for suitable

b ∈ F ∗ and 5-dimensional τ by [I4], which shows that the first statement
implies the second one by Theorem 3.6. The inverse implication follows from
the definition of standard equivalence. ��

4 Isotropy of Some 10- and 12-dimensional Forms

Theorem 4.1. Let φ ∈ I2(F ) be an anisotropic 10-dimensional form with
indC(φ) = 2. Let ψ be a form of dimension ≥ 9. Then the following conditions
are equivalent:

• φF (ψ) is isotropic,
• ψ is similar to a subform of φ.

Corollary 4.2. Let φ ∈ I2(F ) be an anisotropic 10-dimensional form with
indC(φ) = 2, and let ψ be any form. Then ψ

st∼ φ if and only if φ ∼ ψ.

Proof. The “if” part being trivial, assume that φ
st∼ ψ. Then ψ is similar to a

subform of dimension 9 or 10 of φ by Theorem 4.1 and dimφ − iW (φF (φ)) =
dimψ − iW (ψF (ψ)) by a result of Vishik [V2]. Since iW (φF (φ)) = 1, it follows
readily that dimψ = 10 and thus φ ∼ ψ. ��

Theorem 4.3. Let φ be an anisotropic 10-dimensional form. Let ψ be a form
of dimension > 10. Suppose that ψ is not a 4-fold Pfister neighbor. Then φF (ψ)

is anisotropic.

Theorem 4.4. Let φ ∈ I3(F ) be an anisotropic 12-dimensional form. Let ψ
be a form of dimension ≥ 9. Then the following conditions are equivalent:

• φF (ψ) is isotropic,
• ψ is similar to a subform of φ.

Corollary 4.5. Let φ ∈ I3(F ) be an anisotropic 12-dimensional form. Let ψ

be any other form. Then φ
st∼ ψ if and only if dimψ ≥ 11 and ψ is similar to

a subform of φ.

Proof. The proof mimics that of Corollary 4.2, again invoking Vishik’s result
and noting that iW (φF (φ)) = 2. ��
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Summary. Our main goal is to give proofs of all results announced by Oleg Izh-
boldin in [13]. In particular, we establish Izhboldin’s criterion for stable equivalence
of 9-dimensional forms. Several other related results, some of them due to the author,
are also included.

All the fields we work with are of characteristic different from 2. In these
notes we consider the following problem: for a given quadratic form φ defined
over some field F , describe all the quadratic forms ψ/F which are stably
birational equivalent to φ.

By saying “stably birational equivalent” we simply mean that the project-
ive hypersurfaces φ = 0 and ψ = 0 are stably birational equivalent varieties.
In this case we also say “φ is stably equivalent to ψ”(for short) and write
φ

st∼ ψ.
Let us denote by F (φ) the function field of the projective quadric φ = 0

(if the quadric has no function field, one sets F (φ) = F ). Note that φ
st∼ ψ

simply means that the quadratic forms φF (ψ) and ψF (φ) are isotropic (that is,
the corresponding quadrics have rational points).

For an isotropic quadratic form φ, the answer to the question raised is
easily seen to be as follows: φ

st∼ ψ if and only if the quadratic form ψ is also
isotropic. Therefore, we may assume that φ is anisotropic.

One more class of quadratic forms for which the answer is easily obtained
is given by the Pfister neighbors. Namely, for a Pfister neighbor φ one has
φ

st∼ ψ if and only if ψ is a neighbor of the same Pfister form as φ. Therefore,
we may assume that φ is not a Pfister neighbor.

Let φ be an anisotropic quadratic form which is not a Pfister neighbor
(in particular, dimφ ≥ 4 since any quadratic form of dimension up to 3 is a
Pfister neighbor) and assume that dimφ ≤ 6. Then φ

st∼ ψ (with an arbitrary
quadratic form ψ) if and only if φ is similar to ψ (in dimension 4 this is due

J.-P. Tignol (Ed.): LNM 1835, pp. 151–183, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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to Wadsworth, [41]; 5 is done by Hoffmann, [4, main theorem]; 6 in the case
of the trivial discriminant is served by Merkurjev’s index reduction formula
[33], see also [34, Theorem 3]; the case of non-trivial discriminant is due to
Laghribi, [32, Theorem 1.4(2)]).

In this text we give a complete answer for the dimensions 7 and 9 (see
Sect. 3 and Sect. 5). In dimension 8 the answer is almost complete (see Sect. 4).
The only case where the criterion for φ

st∼ ψ with dim φ = 8 is not established
is the case where the determinant of φ is non-trivial and the even Clifford
algebra of φ (which is a central simple algebra of degree 8 over the quadratic
extension of the base field given by the square root of the determinant of φ)
is Brauer-equivalent to a biquaternion algebra not defined over the base field.
In this exceptional case we only show that φ

st∼ ψ if and only if φ is motivic
equivalent to ψ. This is not a final answer: it should be understood what the
motivic equivalence means in this particular case.

The results on the 9-dimensional forms are due to Oleg Izhboldin and
announced by himself (without proofs) in [13]. Here we also provide proofs for
all other results announced in [13]. In particular, we prove the following two
theorems (see Theorem 7.1 for the proof and Sect. 1 for the definition of the
Schur index iS):

Theorem 0.1 (Izhboldin [13, Theorem 5.1]). Let φ be an anisotropic
10-dimensional quadratic form with disc φ = 1 and iS(φ) = 2. Let ψ be a
quadratic form of dimension ≥ 9. Then φF (ψ) is isotropic if and only if ψ is
similar to a subform of φ.

Theorem 0.2 (Izhboldin [13, Theorem 5.4]). Let φ be an anisotropic
12-dimensional quadratic form from I3(F ). Let ψ be a quadratic form of di-
mension ≥ 9. Then φF (ψ) is isotropic if and only if ψ is similar to a subform
of φ.

Also the theorem on the anisotropy of an arbitrary 10-dimensional form
over the function of a non Pfister neighbor of dimension > 10 announced in
[13] is proved here (see Theorem 7.9).
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Also I am grateful to the Max-Planck-Institut für Mathematik in Bonn for the hos-
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1 Notation and Results We Are Using

If the field of definition of a quadratic form is not explicitly given, we mean
that this is a field F .

We use the following more or less standard notation concerning quad-
ratic forms: det(φ) ∈ F ∗/F ∗2 is the determinant of the quadratic form φ,
disc(φ) = (−1)n(n−1)/2 det(φ) with n = dimφ is its discriminant (or signed
determinant); iW (φ) is the Witt index of φ; iS(φ) is the Schur index of φ, that
is, the Schur index of the simple algebra C0(φ) for φ �∈ I2(F ) and the Schur
index of the central simple algebra C(φ) for φ ∈ I2(F ). Here I(F ) is the ideal



154 Nikita A. Karpenko

of the even-dimensional quadratic forms in the Witt ring W (F ). In the case
where φ ∈ I2(F ), we also write c(φ) for the class of C(φ) in the Brauer group
Br(F ); this is the Clifford invariant of φ.

We write φ ∼ ψ to indicate that two quadratic forms φ and ψ are similar,
i.e., φ � cψ for some c ∈ F ∗; φ

st∼ ψ stays for the stable equivalence (meaning
that for any field extension E/F one has iW (φE) ≥ 1 if and only if one has
iW (ψE) ≥ 1); and φ

m∼ ψ denotes the motivic equivalence of φ and ψ meaning
that for any field extension E/F and any integer n one has iW (φE) ≥ n if
and only if one has iW (ψE) ≥ n.

Theorem 1.1 (Izhboldin [12, Corollary 2.9]). Let φ and ψ be odd-
dimensional quadratic forms over F . Then φ

m∼ ψ if and only if φ ∼ ψ.

Theorem 1.2 (Hoffmann [5, Theorem 1]). Let φ and ψ be two anisotropic
quadratic forms over F with dimφ ≤ dimψ. If the form φF (ψ) is isotropic,
then dim φ and dimψ are in the same interval ]2n−1, 2n] (for some n). In par-
ticular, the integer n = n(φ) such that dimφ ∈]2n−1, 2n] is a stably birational
invariant of an anisotropic quadratic form φ.

For an anisotropic φ, the first Witt index i1(φ) is defined as iW (φF (φ)).

Theorem 1.3 (Vishik [22, Theorem 8.1]). The integer dimφ− i1(φ) is a
stably birational invariant of an anisotropic form φ.

1.1 Pfister Forms and Neighbors

A quadratic form isomorphic to a tensor product of several (say, n) binary
forms representing 1 is called an (n-fold) Pfister form. Having a Pfister form
π, we write π′ for a pure subform of π, that is, for for a subform π′ ⊂ π
(determined by π up to isomorphism) such that π = 〈1〉 ⊥ π′. A quadratic
form is called a Pfister neighbor, if it is similar to a subform of an n-fold Pfister
form and has dimension bigger that 2n−1 (the half of the dimension of the
Pfister form) for some n. Two quadratic forms φ and ψ with dimφ = dimψ
are called half-neighbors, if the orthogonal sum aφ ⊥ bψ is a Pfister form for
some a, b ∈ F ∗.

1.2 Similarity of 1-codimensional Subforms

We write G(φ) ⊂ F ∗ for the multiplicative group of similarity factors of a
quadratic form φ; D(φ) ⊂ F ∗ stays for the set of non-zero values of φ. The
following observations are due to B. Kahn:

Lemma 1.4. Let φ be an arbitrary quadratic form of even dimension. For
every a ∈ D(φ), let ψa be a 1-codimensional subform of φ such that φ � 〈a〉 ⊥
ψa. Then for every a, b ∈ D(φ), the forms ψa and ψb are similar if and only
if ab ∈ G(φ).



Izhboldin’s Results on Stably Birational Equivalence of Quadrics 155

Proof. Comparing the determinants of the odd-dimensional quadratic forms
ψa and ψb, we see that ψa ∼ ψb if and only if bψa � aψb. By adding 〈ab〉
to both sides, the latter condition is transformed in bφ � aφ, that is, to
ab ∈ G(φ). ��

Corollary 1.5. Let ψ be a 1-codimensional subform of an even-dimensional
anisotropic form φ = 〈a0, a1, . . . , an〉/F . Let F̃ = F (x0, x1, . . . , xn)/F be a
purely transcendental field extension and let ψ̃/F̃ be a subform of φF̃ comple-
mentary to the “generic value” ã = a0x

2
0 +a1x

2
1 + · · ·+anx2

n ∈ F̃ of φ (so that
φF̃ = ψ̃ ⊥ 〈ã〉). Then ψF̃ ∼ ψ̃ if and only if φ is similar to a Pfister form.

Proof. We may assume that a0 = 1 and ψ = 〈a1, . . . , an〉. Then

ψF̃ ∼ ψ̃
(i)⇐⇒ ã ∈ G(φF̃ )

(ii)⇐⇒

φF̃ is a Pfister form
(iii)⇐⇒ φ is a Pfister form,

where (i) is by Lemma 1.4, (ii) by [35, Theorem 4.4 of Chap. 4], and (iii) by
[5, Proposition 7]. ��

We will refer to the subform ψ̃ appearing in Corollary 1.5 as the generic
1-codimensional subform of φ (although ψ̃ is a subform of φF̃ and not of φ
itself).

1.3 Linkage of Pfister Forms

We need a result concerning the linkage of two n-fold Pfister forms. This
result is an easy consequence of the results obtained in [2]. However, it is
neither proved nor formulated in the article cited and we do not know any
other reference for it. It deals with the graded Witt ring GW (F ) of a field F
which is the graded ring associated with the filtration of the ordinary Witt
ring W (F ) by the powers of the fundamental ideal I(F ) ⊂ W (F ). It will be
applied in Sect. 5 to the case with n = 3 and i = 2.

Lemma 1.6 (cf. [37, Theorem 2.4.8]). Let a1, . . . , an, b1, . . . , bn ∈ F ∗.
We consider the elements α and β of the graded Witt ring GW (F ) given by
the Pfister forms 〈〈a1, . . . , an〉〉 and 〈〈b1, . . . , bn〉〉, and assume that they are
non-zero (i.e., the Pfister forms are anisotropic). If there exist some i < n
and c1, . . . , ci ∈ F ∗ such that the difference α − β is divisible by 〈〈c1, . . . , ci〉〉
in GW (F ), then there exist some d1, . . . , di ∈ F ∗ such that 〈〈d1, . . . , di〉〉
divides both α and β in GW (F ).

Proof. Let us make a proof using induction on i. The case i = 0 is without
contents.

If 〈〈c1, . . . , ci〉〉 with some i ≥ 1 divides the difference α − β, then
〈〈c1, . . . , ci−1〉〉 also divides it. By the induction hypothesis we can find some
〈〈d1, . . . , di−1〉〉 dividing both α and β. Therefore for some a′

i, . . . , a′
n, b′i,
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. . . , b′n ∈ F ∗ we have isomorphisms of quadratic forms 〈〈a1, . . . , an〉〉 �
〈〈d1, . . . , di−1, a

′
i, . . . , a

′
n〉〉 and 〈〈b1, . . . , bn〉〉 � 〈〈d1, . . . , di−1, b

′
i, . . . , b

′
n〉〉, hence

the difference α − β turns out to be represented by the quadratic form

〈〈d1, . . . , di−1〉〉 ⊗
(

〈〈a′
i, . . . , a

′
n〉〉′ ⊥ −〈〈b′i, . . . , b′n〉〉′

)

of dimension 2i(2n−i+1−1). We claim that this quadratic form is isotropic, and
this gives what we need according to [2, Proposition 4.4]. Indeed, assuming
that this quadratic form is anisotropic, we can decompose it as 〈〈c1, . . . , ci〉〉⊗
δ with some quadratic form δ. Counting dimensions, we see that dim δ =
2n−i+1−1 is odd. This is a contradiction with the facts that 〈〈c1, . . . , ci〉〉⊗δ ∈
In(F ), n > i, and 〈〈c1, . . . , ci〉〉 is anisotropic. ��

1.4 Special Forms, Subforms, and Pairs

Here we recall (and slightly modify) some definitions given in [16, Sect. 8–
9]. We will not work with the general notion of special pairs introduced in
[16, Definition 8.3]. We will only work with the degree 4 special pairs (see [16,
Examples 9.2 and 9.3]). Besides, it will be more convenient for us to call special
also those pairs which are similar to the special pairs of [16, Definition 8.3].
So, we give the definitions as follows:

Definition 1.7. A 12-dimensional quadratic form is called special if it lies
in I3(F ). A 10-dimensional quadratic form is called special if it has trivial
discriminant and Schur index ≤ 2. A quadratic form is called special if it is
either a 12-dimensional or a 10-dimensional special form.

A 10-dimensional quadratic form is called a special subform if it is divisible
by a binary form. A 9-dimensional quadratic form is called a special subform if
it contains a 7-dimensional Pfister neighbor. A special subform is a quadratic
form which is either a 10-dimensional or a 9-dimensional special subform.

A pair of quadratic forms φ0, φ with φ0 ⊂ φ is called special if either φ is a
12-dimensional special form while φ0 is a 10-dimensional special subform, or φ
is a 10-dimensional special form while φ0 is a 9-dimensional special subform.

A special pair φ0, φ is called anisotropic, if the form φ is anisotropic (in
this case φ0 is of course anisotropic as well).

Proposition 1.8 ([16, Sect. 8–9]). Special forms, subforms, and pairs have
the following properties:

(1) for any special subform φ0, there exists a special form φ such that φ0, φ is
a special pair;

(2) for any special form φ, there exists a special subform φ0 such that φ0, φ is
a special pair;

(3) for a given special pair φ0, φ, the form φ is isotropic if and only if the
form φ0 is a Pfister neighbor;

(4) for any anisotropic special pair φ0, φ, the Pfister neighbor (φ0)F (φ) is an-
isotropic.
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Items (3) and (4) give

Corollary 1.9 (cf. [16, Proposition 8.13]). Let φ0, φ and ψ0, ψ be two
special pairs. If φ0

st∼ ψ0, then φ
st∼ ψ. ��

1.5 Anisotropic 9-dimensional Forms of Schur Index 2

In this subsection, φ is an anisotropic 9-dimensional quadratic form with
iS(φ) = 2.

Lemma 1.10. There exists one and unique (up to isomorphism) 10-dimen-
sional special form µ containing φ. There exists one and unique (up to iso-
morphism) 12-dimensional special form λ containing φ. Moreover,

(i) µ is isotropic if and only if φ contains an 8-dimensional subform divisible
by a binary form;

(ii) λ is isotropic if and only if φ contains a 7-dimensional Pfister neighbor;
(iii) if µ and λ are both isotropic, then φ is a Pfister neighbor.

Proof. The form µ is constructed as µ = φ ⊥ 〈−disc(φ)〉. The uniqueness of
µ is evident.

The form λ is constructed as λ = φ ⊥ disc(φ)β′, where β is a 2-fold Pfister
form with c(β) = c(φ). If λ′ is one more 12-dimensional special form containing
φ, then the difference λ − λ′ ∈ W (F ) is represented by a form of dimension
6. Since this difference lies in I3(F ), it should be 0 by the Arason–Pfister
Hauptsatz.

Clearly, the form µ is isotropic if and only if φ represents its determinant,
that is, if and only if φ contains an 8-dimensional subform φ′ of trivial de-
terminant. Since iS(φ′) = iS(φ) = 2, the form φ′ is divisible by some binary
form ([29, Example 9.12]).

The form λ is isotropic if and only if λ = π for some form π similar to a
3-fold Pfister form. The latter condition holds if and only if φ and π contain
a common 7-dimensional subform.

Note that the isotropy of λ implies that φ is a 9-dimensional special sub-
form and φ, µ is a special pair. So, µ is isotropic if and only if φ is a Pfister
neighbor in this case (Proposition 1.8). ��

2 Correspondences on Odd-dimensional Quadrics

In this section we give some formal rules concerning the game with the cor-
respondences on odd-dimensional quadrics.
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2.1 Types of Correspondences

Let φ be a completely split quadratic form of an odd dimension and write
n = 2r + 1 for the dimension of the projective quadric Xφ given by φ. We
recall (see, e.g., [20, Sect. 2.1]), that there exists a filtration

X = X(0) ⊃ X(1) ⊃ · · · ⊃ X(n) ⊃ X(n+1) = ∅

of the variety X = Xφ by closed subsets X(i) such that every successive differ-
ence X(i)

�X(i+1) is an affine space (so that X is cellular) and codimX X(i) = i
for all i = 0, 1, . . . , n. It follows (see [3]) that for every i = 0, 1, . . . , n, the
group CHi(X) is infinite cyclic and is generated by the class of X(i). Note
that for the class of a hyperplane section h ∈ CH1(X) one has [X(i)] = hi for
i < dimX/2 and 2 · [X(i)] = hi for i > dim X/2. In particular, the generators
[X(i)] are canonical.

Since the product of two cellular varieties is also cellular, the group
CH∗(X × X) is also easily computed. Namely, this is the free abelian group
on [X(i) ×X(j)] for i, j = 0, 1, . . . , n. In particular, CHn(X×X) is generated
by [X(i) × X(n−i)], i = 0, 1, . . . , n.

For any correspondence α ∈ CHn(X × X), we define its pretype (cf. [23,
Sect. 9]) as the sequence of the integer coefficients in the representation of α
as a linear combination of the generators. (See also [24, Sect. 2.2].)

Moreover, refusing to assume that φ is split, we may still define the pretype
of an α ∈ CHn(Xφ×Xφ) as the pretype of αF , where F is an algebraic closure
of F . Note that the entries of the pretype of α can be also calculated as the
half of the degrees of the 0-cycles hn−i · α · hi ∈ CH0(Xφ × Xφ). This is an
invariant definition of the pretype. In particular, the pretype of α does not
depend on the choice of F (what can be also easily seen in the direct way).

Finally, we define the type as the pretype modulo 2.

2.2 Formal Notion of Type

We start with some quite formal (however convenient) definitions.
A type is an arbitrary sequence of elements of Z/2Z of a finite length. For

two types of the same length n, we define their sum and product as for the
elements of (Z/2Z)n. We may also look at a type as the diagram of a subset
of the set {1, 2, . . . , n} (1 is on the i-th position if and only if the element i
is in the subset). Using this interpretation of types, we may define the union
and the intersection in the evident way (the intersection coincides with the
product). We may also speak of the inclusion of types. In particular, we have
the notion of a subtype of a given type (all these are defined for types of the
same length).

The reduction (or 1-reduction) of a type of length ≥ 2 is the type obtained
by erasing the two border entries. The n-reduction of a type is the result of n
reductions successively applied to the type.
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The diagonal type is the type with all the entries being 1. The zero type is
the type with all the entries being 0.

We have two different notions of weight of a type: the sum of its entries
(this is an element of Z/2) and the number of 1-entries (this is an integer).
To distinguish between them, we call the second number cardinality. So, the
weight is the same as the cardinality modulo 2.

2.3 Possible and Minimal Types

Let φ be an odd-dimensional quadratic form. A type is called possible (for φ),
if this is the type (in the sense of Sect. 2.1) of some correspondence on the
quadric Xφ. Note that the possible types are of length dimφ − 1. A possible
non-zero type is called minimal (for φ), if no proper subtype is possible.

We have the following rules (see [23, Sect. 9]): the diagonal and zero types
are possible (the diagonal type is realized by the diagonal, [23, Lemma 9.4]);
moreover, sums, products, unions, and intersections of possible types are pos-
sible.

It follows that two different minimal types have no intersection. Moreover,
a type is possible if and only if it is a union of minimal ones.

Therefore, in order to describe all possible types for a given quadratic form
φ, it suffices to list the minimal types (see Sect. 2.7 as well as Propositions 3.6,
3.7, 3.9 or 5.3 for examples of such lists).

2.4 Properties of Possible Types

Here are some rules which help to detect the impossibility of certain types.
Assume that the quadratic form φ is anisotropic. Then the weight of every

possible type is 0, [23, Lemma 9.7].
And now we assume the contrary: φ is isotropic, say φ � ψ ⊥ H (H is

the hyperbolic plane). Then the reduction of a type possible for φ is a type
possible for ψ, [23, Lemma 9.6].

These two rules (together with the trivial observation that a type possible
for a φ is also possible for φE where E is an arbitrary field extension of the base
field) have a useful consequence (cf. [22, Theorem 6.4]): if φ is an anisotropic
form with first Witt index n, then for any type possible for φ we have: the
sum of the first n entries coincides with the sum of the last n entries.

Let us note that a type possible for φE is also possible for φ/F if the field
extension E/F is unirational (this is easily seen by the homotopy invariance
of the Chow group).

2.5 Possible Types and the Witt Index

Here is a way to determine the Witt index of a quadratic form φ by looking
at its possible types: for any integer n ≤ (dimφ)/2, one has iW (φ) ≥ n if
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and only if the type with the only one 1 entry staying on the n-th position
is possible. Note that the “only if” part is trivial while the “if” part follows
from 2.4.

2.6 The Rost Type

The Rost type of a given length is the type with 1 on both border places and
with 0 on all inner places. By definition, the Rost type is possible for a given
odd-dimensional quadratic form φ if and only if there exists a correspondence
ρ ∈ CHn(Xφ × Xφ) such that over an algebraic closure of the base field one
has ρ = a[X×pt]+b[pt×X] with some odd integers a, b, where n = dimXφ =
dimφ − 2 and where pt is a rational point. We will use this reformulation as
definition for the expression “Rost type is possible” in the case of an even-
dimensional quadratic form φ even though we do not have a definition of types
possible for an even-dimensional quadratic form yet (cf. Sect. 2.10).

As shown in [23, Proposition 5.2], the Rost type is possible for any Pfister
neighbor of dimension 2n + 1 (for any n ≥ 1). The converse statement for the
anisotropic forms is an extremely useful conjecture (cf. [23, Conjecture 1.6])
proved by A. Vishik in all dimensions �= 2n+1: if dimφ �= 2n+1 for all n, then
the Rost type is not possible for φ (see [37] or [18, Theorem 6.1]). Vishik’s
proof uses the existence and certain properties of operations in motivic co-
homology obtained by Voevodsky and involved in his proof of the Milnor
conjecture. In the original [39], the operations were constructed (or claimed
to be constructed) only in characteristic 0 (this was enough for the Milnor con-
jecture because the Milnor conjecture in positive characteristics is a formal
consequence of the Milnor conjecture in characteristic 0, [39, Lemma 5.2]).
This is the reason why Vishik’s result is announced only in characteristic 0
in [18]. The new version [40] of [39] is more characteristic-independent. So,
Vishik’s result extends to any characteristic (cf. [38, Theorem 4.20]).

We also note that the conjecture on Rost types is proved by simple and
characteristic-independent methods which do not use any unpublished result,
in the following particular cases:

• iS(φ) is maximal ([23, Corollary 6.6], cf. Lemma 3.5); note that this covers
the cases of dimension 4 (because iS(φ) of a 4-dimensional anisotropic form
is always maximal) and 5 (because an anisotropic quadratic form φ with
dimφ = 5 is not a Pfister neighbor if and only if iS(φ) is maximal);

• dimφ = 7, 8 and φ does not contain an Albert subform (see [23, Proposi-
tion 9.10] for dimension 7; the same method works for dimension 8);

• dimφ = 9, φ is arbitrary (this is the main result of [23]).

Finally, a simple and characteristic-independent proof of the conjecture in
all dimensions �= 2n + 1, using only the Steenrod operations on Chow groups
(constructed in an elementary way in [1]) is recently given in [26].
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2.7 Minimal Types for 5-dimensional Forms

To give an example, we find the minimal types for a 5-dimensional anisotropic
quadratic form φ (cf. [38, Proposition 6.9]). Note that iS(φ) = 2 if and only
if φ is a Pfister neighbor; otherwise iS(φ) = 4. Also note that i1(φ) is always
1. Therefore, the diagonal type (1111) is minimal for φ which is not a Pfister
neighbor. For a Pfister neighbor φ, the minimal types are given by the Rost
type (1001) and its complement (0110).

2.8 Possible Types for Pairs of Quadratic Forms

Let (φ, ψ) be a pair of quadratic forms (the order is important) having the
same odd dimension n. A type is called possible for the pair (φ, ψ) if it is the
type of a correspondence lying in the Chow group CHn(Xφ × Xψ). Here are
some rules.

The product of a type possible for (φ, ψ) by a type possible for (ψ, τ ) is a
type possible for (φ, τ). In particular, the product of a type possible for (φ, ψ)
by a type possible for ψ (that is, possible for (ψ, ψ)) is still a type possible for
(φ, ψ).

Therefore (see Sect. 2.5), one may compare the Witt indices of two quad-
ratic forms φ and ψ (with dim φ = dimψ being odd) over extensions E/F as
follows: let n be an integer such that a type with 1 on the n-th place (the
other entries can be arbitrary) is possible for (φ, ψ) as well as for (ψ, φ), let
E/F be any field extension of the base field F ; then iW (φE) ≥ n if and only
if iW (ψE) ≥ n.

In particular, we get one part of Vishik’s criterion of motivic equivalence of
quadratic forms (cf. [21, Criterion 0.1]): φ

m∼ ψ if the diagonal type is possible
for the pair (φ, ψ).

2.9 Rational Morphisms and Possible Types

Given some different φ and ψ, how can one construct at least one non-zero
type possible for (φ, ψ)? In this article we use essentially only one method
which works only if the form ψF (φ) is isotropic: we take the correspondence
given by the closure of the graph of a rational morphism Xφ ��� Xψ. Its type
is non-zero because its first entry is 1.

Let us give an application. We assume that the diagonal type is minimal
for an odd-dimensional φ and we show that φ

st∼ ψ (for some ψ with dimψ =
dimφ) means φ ∼ ψ in this case as follows: taking the product of the possible
types for (φ, ψ) and (ψ, φ) given by the rational morphisms Xφ ��� Xψ and
Xψ ��� Xφ, we get a possible type for φ, starting with 1; therefore this is
the diagonal type; therefore the types we have multiplied are diagonal as well;
therefore the diagonal type is possible for (φ, ψ); therefore φ

m∼ ψ whereby
φ ∼ ψ by Theorem 1.1.
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2.10 Even-dimensional Quadrics

Even though this contradicts to the title of the current section, we briefly
discuss the notion of a type possible for an even-dimensional quadratic form
here. We need it in order to prove Proposition 4.1 on 8-dimensional quadratic
forms (and only for this). So, let φ be an even-dimensional quadratic form
and X = Xφ. If φ is completely split (i.e., is hyperbolic), the variety X is
also cellular (as it was the case with the odd-dimensional forms). So, CH∗(X)
is a free abelian group, and one may choose the generators as follows: hi for
CHi(X) with i ≤ dimX/2 and ln−i for CHi(X) with i ≥ dimX/2, where h ∈
CH1(X) is the class of a hyperplane section while li ∈ CHn−i(X) is the class
of an i-dimensional linear subspace lying on X. Note that the “intermediate”
group CHr(X), where r = dimX/2, has rang two (the other groups have
rank 1). Moreover, the generator lr is not canonical (the other generators are
canonical).

It follows that CH∗(X × X) is the free abelian group on the pairwise
products of the elements listed above. In particular, CHn(X × X) with n =
dimX is freely generated by the elements hi × li (i = 0, . . . , r), li ×hi (i = r,
. . . , 0), hr × hr, and lr × lr . We define the type of some α ∈ CHn(X × X)
as the sequence of the coefficients modulo 2 in the representation of α as a
linear combination of the generators (in the order given) where the last two
coefficients are erased (in other words, we do not care for the coefficients of
hr × hr and lr × lr).

Now, if the even-dimensional quadratic form φ is arbitrary (i.e., not neces-
sarily split), we define the type of α ∈ CHn(X ×X) as the type of αF , where
F is an algebraic closure of F . As easily seen, the type does not depend on
the choice neither of F nor of lr . To justify our decision to forget the last two
coefficients, let us notice that the generator hr × hr is always defined over F ,
while the coefficient of lr × lr is necessarily even in the case of non-hyperbolic
φ. It is also important that the diagonal class is the sum of all the generators
(with coefficients 1) but the last two ones.

Now it is clear that one may define the notion of a type possible for some
even-dimensional φ in exactly the same way as it was done in Sect. 2.3 for
odd-dimensional forms (note that the length of a possible type equals now
dimφ, in particular, it is still even). Moreover, all properties of possible types
given above remain true.

Since the Rost type is not possible for an even dimensional form, we get
the following

Proposition 2.1. Let φ be an anisotropic even-dimensional form. Assume
that the splitting pattern of φ “has no jumps” (i.e., iW (φE) takes all values
between 0 and dimφ/2 when E varies). Then the diagonal type is minimal for
φ. In particular, if φ

st∼ ψ, where ψ is some other quadratic form of the same
dimension as φ, then φ

m∼ ψ. ��
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Remark. Since i1(φ) = 1 for φ as in Proposition 2.1, such a form φ cannot
be stably equivalent to a form of dimension < dimφ (Theorem 1.3). One can
also show that φ cannot be stably equivalent to a form of dimension > dimφ.
We do not give a proof for this fact, because we apply Proposition 2.1 to the
8-dimensional forms where this fact can be explained by Theorem 1.2.

3 Forms of Dimension 7

Let φ be an anisotropic 7-dimensional quadratic form. In this section we give
a complete answer to the problem of determining quadratic forms ψ such that
φ

st∼ ψ.
To begin, let us consider the even Clifford algebra C0(φ) of the form φ.

Since this is a central simple algebra of degree 8, the possible values of iS(φ)
are among 1, 2, 4, and 8. The condition iS(φ) = 1 is equivalent to the condition
that φ is a Pfister neighbor; this is a case we do not consider.

Assume that iS(φ) = 2 and consider the quadratic form τ = φ ⊥
〈−disc(φ)〉 which is a (unique up to isomorphism) 8-dimensional quadratic
form of trivial discriminant containing φ (as a subform). Since the Clifford
algebra C(τ ) is Brauer-equivalent to C0(φ), we have iS(τ ) = iS(φ) = 2. It
is now easy to show that τ is anisotropic and i1(τ ) = 2 (see, e.g., [8, The-
orem 4.1] for the second statement). Therefore φ

st∼ τ , and, taking into account
[30], we get

Theorem 3.1. Let φ be an anisotropic 7-dimensional quadratic form with
iS(φ) = 2, defined over a field F ; let ψ be another quadratic form over F . The
relation φ

st∼ ψ can hold only if dimψ is 7 or 8. Moreover,

• for dimψ = 7, φ
st∼ ψ if and only if φ ⊥ 〈−disc φ〉 ∼ ψ ⊥ 〈−disc ψ〉;

• for dimψ = 8, φ
st∼ ψ if and only if φ ⊥ 〈−disc φ〉 ∼ ψ.

��
Example 3.2. For any given anisotropic 7-dimensional form φ/F with iS(φ) =
2, one may find a purely transcendental field extension F̃ /F and some 7-
dimensional ψ/F̃ such that φF̃

st∼ ψ but φF̃ �∼ ψ. Indeed, we may take as
ψF̃ the “generic 1-codimensional subform” (Sect. 1.2) of the 8-dimensional
form φ ⊥ 〈−disc(φ)〉. Since this 8-dimensional form is not a Pfister neigh-
bor (because its Schur index is 2 and not 1), we have φF̃ �∼ ψ according to
Corollary 1.5.

It remains to handle the forms φ with iS(φ) being 4 or 8. The main tool
here is the following

Proposition 3.3 ([23, Corollary 9.11], cf. [38, Proposition 6.10(iii)]).
The diagonal type is minimal (see Sect. 2.3) for any 7-dimensional anisotropic
quadratic form φ with iS(φ) ≥ 4.
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Remark. The formulation of [23, Corollary 9.11] includes one additional hypo-
thesis: φ does not contain an Albert subform (that is, the form φ ⊥ 〈−disc(φ)〉
is anisotropic). However this hypothesis is included only in order to avoid the
use of the general theorem on Rost types in dimension 7 which was known only
in characteristic 0 in that time (see Sect. 2.6). Moreover, the proofs of Propos-
itions 3.6 and 3.7 (generalizing Proposition 3.3) we give here are essentially
the same as the proof of Proposition 3.3 given in [23].

Corollary 3.4. Let φ be a 7-dimensional anisotropic quadratic form such that
iS(φ) ≥ 4, ψ an arbitrary quadratic form. Then φ

st∼ ψ if and only if φ ∼ ψ.

Proof. Let ψ be a quadratic form stably equivalent with φ, and let us look at
the dimension of ψ. We cannot have dimψ ≤ 6: one may either refer to the
results on stable equivalence of forms of dimension ≤ 6 or to Theorem 1.3 and
the fact that i1(φ) = 1.

If dimψ = 7, it follows from Sect. 2.9 and Proposition 3.3 that ψ ∼ φ.
Finally, if dimψ = 8, then all 1-codimensional subforms of ψ are similar (to

φ). Moreover, this is still true over any purely transcendental extension of F . It
follows by Corollary 1.5 that ψ is similar to a Pfister form, a contradiction. ��

Proposition 3.3 and Corollary 3.4 can be generalized to any odd dimen-
sion as follows. We start with a statement concerning every (odd and even)
dimension:

Lemma 3.5 ([23]). If φ is a quadratic form with maximal iS(φ) (i.e., such
that the even Clifford algebra C0(φ) is a division algebra or, in the case φ ∈ I2,
a product of two copies of a division algebra), then the Rost type is not possible
for φ.

Proof. If the Rost type is possible for φ, then by [23, Corollary 6.6] the class
of a rational point in K(X) is in the subgroup K(X) ⊂ K(X), where X
is X over an algebraic closure of F , while K(X) is the Grothendieck group
(of classes of quasi-coherent X-modules) of X. By the computation of K(X)
given in [36], it follows that iS(φ) is not maximal, a contradiction. ��

Proposition 3.6. Let φ be an anisotropic quadratic form of odd dimension
2n+1. If iS(φ) = 2n (i.e., iS(φ) is maximal), then the diagonal type is minimal
for φ.

Proof. First of all let us notice that iS(φF (φ)) = 2n−1. Consequently i1(φ) = 1,
and the Schur index of the form

(

(φ)F (φ)

)

an
is maximal. Therefore we can give

a proof using induction on dimφ as follows.
Let t be a minimal type (for φ) with 1 on the first position. By Sect. 2.4

we know that t has 1 on the last position as well. According to Lemma 3.5,
the reduction (see Sect. 2.2) of t is a non-zero type. Moreover, this is a type
possible for (φF (φ))an. Therefore, by the induction hypothesis, the reduction
of t is the diagonal type. It follows that the type t itself is diagonal. ��
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Proposition 3.7. Let φ be an anisotropic quadratic form of odd dimension
2n + 1 and assume that n is not a power of 2. If iS(φ) = 2n−1 (i.e., iS(φ) is
“almost maximal”), then the diagonal type is minimal for φ.

Proof. According to the index reduction formula for odd-dimensional quadrics
([34]), we have iS(φF (φ)) = iS(φ) = 2n−1. It follows that i1(φ) = 1 and that
the odd-dimensional quadratic form (φF (φ))an has the maximal Schur index
(so that we may apply Proposition 3.6 to it).

Let t be a minimal type (for φ) with 1 on the first position. We have to
show that t is the diagonal type. Since t has 1 on the last position as well, it
suffices to show that the reduction of t is diagonal. Since the reduction of t is
a type possible for (φF (φ))an it suffices to show that the reduction of t is non-
zero, that is, that t itself is not the Rost type. We finish the proof applying
the theorem stating that the Rost type is not possible for a quadratic form of
dimension different from a power of 2 plus 1, see Sect. 2.6. ��

Theorem 3.8. Let φ be as in Proposition 3.6 or as in Proposition 3.7. We
assume additionally that dimφ ≥ 5. Then φ is stably equivalent only with the
forms similar to φ.

Proof. We almost copy the proof of Corollary 3.4.
Let ψ be a quadratic form stably equivalent with φ, and let us look at the

dimension of ψ. We cannot have dimψ < dimφ because of Theorem 1.3 and
the fact that i1(φ) = 1.

If dimψ = dimφ, it follows by Sect. 2.9, Propositions 3.6, and 3.7 that
ψ ∼ φ.

Finally, if dimψ > dimφ, then ψ is stably equivalent to any subform
ψ0 ⊂ ψ of dimension dimφ + 1. Therefore it suffices to consider the case
where dimψ = dimφ + 1. In this case all 1-codimensional subforms of ψ
are similar (to φ). Moreover, this is still true over any purely transcendental
extension of F . It follows by Corollary 1.5 that ψ is similar to a Pfister form.
Therefore φ is a Pfister neighbor. However the Schur index iS(φ) of a Pfister
neighbor of dimension ≥ 5 is never maximal and it can be “almost maximal”
only if dimφ is a power of 2 plus 1. ��

To complete the picture in dimension 7, we find the minimal types for
7-dimensional forms of Schur index 2:

Proposition 3.9 (cf. [38, Proposition 6.10(ii)]). Let φ be an anisotropic
7-dimensional quadratic form with iS(φ) = 2. Then the minimal types for φ
are (101101) and its complement (010010).

Proof. Let t = (t1t2t3t4t5t6) be the minimal type with t1 = 1. Since i1(φ) = 1
(see e.g. [8, Theorem 4.1]), t6 = 1 as well (Sect. 2.4). Since the Rost type is
not possible for φ (see Sect. 2.6; note that φ cannot contain an Albert form
because of iS(φ) = 2, therefore the Rost type is impossible by a simple reason,
see Sect. 2.6), the reduction t2t3t4t5 of t is a non-zero type. Moreover, this
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reduction is a type which is possible for the 5-dimensional quadratic form
(φF (φ))an. Since iS(φF (φ)) is still 2 ([34]), t2t3t4t5 is either 1111, or 1001, or
0110 (Sect. 2.7). So, there are three possibilities for t we have to consider:

(1) t = (111111)
(2) t = (110011)
(3) t = (101101)

In the first case we would be able to prove the following “theorem”: for any
purely transcendental field extension F̃ /F and for any 7-dimensional quad-
ratic form ψ/F̃ such that ψ

st∼ φF̃ , one has ψ ∼ φF̃ . This contradicts Ex-
ample 3.2. Therefore the diagonal type is not minimal for φ.

In the second case we would be able to prove the following “theorem”:
for any purely transcendental field extension F̃ /F and for any 7-dimensional
quadratic form ψ/F̃ such that ψ

st∼ φF̃ , one has iW (ψE) ≥ 2 for some E/F̃

if and only if iS(φF̃ ) ≥ 2. However for F̃ and ψ/F̃ as in Example 3.2, we
additionally have

iS(ψE) = 3 ⇔ iS(φ ⊥ 〈−disc(φ)〉)E = 4 ⇔ iS(φE) = 3.

It follows that φF̃
m∼ ψ, whereby φF̃ ∼ ψ (Theorem 1.1), a contradiction.

Therefore, the second case is not possible either.
It follows that the only possible case is the third one, i.e., (101101) is

a minimal type. Since its complement is evidently minimal as well (having
cardinality 2), we are done. ��

The rest of the announcements of [13] concerning the 7-dimensional forms
given in [13, Theorem 3.1] is covered by the following proposition. Note that
we use [27] in the proof which is a tool that Izhboldin did not have.

Proposition 3.10. Let φ be an anisotropic quadratic form of dimension 7
such that iS(φ) ≥ 4. Let ψ be a form such that φF (ψ) is isotropic. Then

(1) if ψ is not a 3-fold Pfister neighbor, then dimψ ≤ 7;
(2) if dimψ = 7 and ψ is not a 3-fold Pfister neighbor, then ψ ∼ φ;
(3) if dimψ = 7 and iS(φ) = 8, then ψ ∼ φ.

Proof. (1) First of all, dimψ ≤ 8 by Theorem 1.2. Furthermore, if dimψ = 8
then, since ψ is not a Pfister neighbor, we have i1(ψ) ≤ 2. It follows by [27]
that ψ

st∼ φ, a contradiction with Corollary 3.4.
(2) Since dimψ = 7 and ψ is not a Pfister neighbor, one has i1(ψ) = 1.
Therefore ψ

st∼ φ by [27]. Applying Corollary 3.4, we get that ψ ∼ φ.
(3) Since the form φF (ψ) is isotropic, one has iS(φF (ψ)) < 8 = iS(φ). By the
index reduction formula [34] it follows that iS(ψ) = 8; in particular, ψ cannot
be a Pfister neighbor and we can apply (2). ��
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4 Forms of Dimension 8

We do not have a complete answer for the 8-dimensional forms, but the answer
we give is almost complete. First we recall what is known.

Let φ be an anisotropic 8-dimensional quadratic form. We assume first
that disc(φ) = 1 and we consider the Schur index of φ. Since iS(φ) = 1 if and
only if φ is a Pfister neighbor (that is, a form similar to a 3-fold Pfister form),
we start with the case iS(φ) = 2. In this case we have φ

st∼ ψ for some ψ with
dimψ ≥ 8 if and only if φ ∼ ψ, [30].

For iS(φ) = 4, 8 one has φ
st∼ ψ if and only if φ and ψ are half-neighbors:

the case iS(φ) = 4 is done in [30] while the case iS(φ) = 8 is done in [31].
Note that φ and ψ can be non-similar in each of these two cases, [7, Sect. 4].

Now we assume that disc(φ) �= 1 and iS(φ) = 1. Let d ∈ F ∗
� F ∗2 be a

representative of disc(φ). As shown in [6], φ is similar to π′ ⊥ 〈d〉 for some
3-fold Pfister form π. Clearly, the form πF (

√
d) � φF (

√
d) is anisotropic. By

[10, Lemma 3.5] one has φ
st∼ ψ if and only if disc ψ = discφ, iS(ψ) = 1, and

the difference φ ⊥ −ψ is divisible by 〈〈d〉〉 (that is, φF (
√

d) � ψF (
√

d)).
It follows that the open cases are the cases where det φ �= 1 and (at the

same time) iS(φ) ≥ 2. In this case, the splitting pattern of φ is {0, 1, 2, 3, 4}
([8, Theorem 4.1]), i.e., the splitting pattern of φ “has no jumps.” Therefore
we may apply Proposition 2.1 which gives us the following

Proposition 4.1. Let φ be an anisotropic 8-dimensional quadratic forms of
non-trivial discriminant and of Schur index ≥ 2. Then φ

st∼ ψ for some ψ if
and only if φ

m∼ ψ.

Proof. If dimψ = 8, then the statement announced is a particular case of
Proposition 2.1. If dimψ ≤ 7, then the relation φ

st∼ ψ is not possible by
Theorem 1.3 (because i1(φ) = 1; of course one may also refer to the results of
previous sections on the stable equivalence of quadratic forms of dimensions
≤ 7). Finally, dimψ > 8 is not possible by Theorem 1.2. ��

Since the condition φ
m∼ ψ for two 8-dimensional forms φ and ψ “almost

always” implies that the forms are half-neighbors ([15, Theorem 11.1]), we get
the following

Theorem 4.2. Let φ be an anisotropic 8-dimensional quadratic form of non-
trivial discriminant d and of Schur index ≥ 2. In the case where iS(φ) = 4
we assume additionally that the biquaternion division F (

√
d)-algebra which is

Brauer equivalent to C0(φ) is defined over F . Then φ
st∼ ψ for some ψ if and

only if φ and ψ are half-neighbors. ��

Remark. In the case excluded (i.e., in the case where det φ �= 1, iS(φ) = 4, and
the underlying division algebra of C0(φ) is not defined over F ), we can only
prove that φ

st∼ ψ ⇔ φ
m∼ ψ. We do not consider this as a final result. A further
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investigation should be undertaken in order to understand what the condition
φ

m∼ ψ means in this case. Note that detφ = detψ and C0(φ) � C0(ψ) if
φ

m∼ ψ ([21, Lemma 2.6 and Remark 2.7]).
The rest of the announcements of [13] concerning the 8-dimensional forms

which are given in [13, Theorem 3.3] is covered by the following proposition
which is an immediate consequence of [27] (note that this is a tool that Izh-
boldin did not have).

Proposition 4.3. Let φ be an anisotropic quadratic form of dimension 8. Let
ψ be a form of dimension 8 such that the form φF (ψ) is isotropic. Suppose also
that i1(ψ) = 1 (i.e., ψ �∈ I2 or iS(ψ) ≥ 4). Then the form ψF (φ) is isotropic

(and hence ψ
st∼ φ). ��

5 Forms of Dimension 9

In this section φ is a 9-dimensional quadratic form over F . We describe all
quadratic forms ψ/F such that φ

st∼ ψ.
We are going to use the following subdivision of anisotropic 9-dimensional

forms φ:

kind 1: the forms φ which contain a 7-dimensional Pfister neighbor;
kind 2: the forms φ containing an 8-dimensional form divisible by a binary

form;
kind 3: the rest.

Remark. A form of kind 1 is a 9-dimensional special subform (in the sense
of Sect. 1.4) while a form of kind 2 is contained in a certain 10-dimensional
special subform (and is stably equivalent with it).

A form which is simultaneously of kind 1 and of kind 2 (this happens) is
a Pfister neighbor (see Proposition 1.8(3) or Lemma 1.10 (iii)).

Theorem 5.1 (Izhboldin, cf. [13, Theorem 4.6]). Let φ1 and φ2 be an-
isotropic 9-dimensional quadratic forms each of which is not a Pfister neigh-
bor. The relation φ1

st∼ φ2 can hold only if φ1 and φ2 are of the same kind.
Moreover,

(3) For φ1 and φ2 of kind 3, φ1
st∼ φ2 if and only if φ1 ∼ φ2.

(1) For φ1 and φ2 of kind 1, φ1
st∼ φ2 if and only if φi ∼ π′

i ⊥ 〈u, v〉 for i = 1,
2 with some 3-fold Pfister forms πi and some u, v ∈ F ∗ such that the
Pfister form 〈〈u, v〉〉 divides the difference π1 − π2 in W (F ).

(2) For φ1 and φ2 of kind 2, let τi, i = 1, 2, be some 10-dimensional special
subform containing φi. Then φ1

st∼ φ2 if and only if some 9-dimensional
subform of τ1 is similar to some 9-dimensional subform of τ2.
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Corollary 5.2 (Izhboldin). Let φ be an anisotropic 9-dimensional quadratic
form which is not a Pfister neighbor. Let ψ be a quadratic form of dimension �=
9. Then φ

st∼ ψ is possible only for φ of kind 2 and for ψ being a 10-dimensional
special subform. Moreover, if τ is a special 10-dimensional subform containing
φ while ψ is a 10-dimensional special subform as well, then φ

st∼ ψ if and only
if some 9-dimensional subform of τ is similar to some 9-dimensional subform
of ψ.

Proof. The condition φ
st∼ ψ implies that 9 ≤ dim ψ ≤ 16 (Theorem 1.2)

and that i1(ψ) = dimψ − 8 (Theorem 1.3), i.e., the form ψ has the maximal
splitting (meaning that the first Witt index has the maximal possible value
among the quadratic forms of the same dimension as ψ). In particular, if
dimψ ≥ 11, then ψ is a Pfister neighbor, because there are no forms with
maximal splitting but Pfister neighbors in dimensions from 11 up to 16, [19]
(for a more elementary proof of this statement see [11]). Since φ is not a Pfister
neighbor, the relation φ

st∼ ψ therefore implies that dimψ = 10.
If a 10-dimensional quadratic form ψ has maximal splitting and is not a

Pfister neighbor, then ψ is divisible by a binary form, [16, Conjecture 0.10].
In this case ψ is also stably equivalent to any 9-dimensional subform ψ′ ⊂ ψ.
Having φ

st∼ ψ′ and applying Theorem 5.1 we get the required result. ��

Remark. Let φ be an anisotropic 9-dimensional quadratic form. Let ψ be
a quadratic form of a dimension ≥ 9. According to [14, Theorem 0.2], the
form φF (ψ) is isotropic if and only if φ

st∼ ψ. Therefore Theorem 5.1 with
Corollary 5.2 gives a criterion of isotropy of φF (ψ).

Proof of Theorem 5.1. The proof of the theorem takes the rest of the section.
We refer to [13] for the proof that the conditions given in the theorem guar-
antee that φ

st∼ ψ (only the case where φ and ψ are of kind 1 requires some
work; the rest is clear).

The proof that the conditions are necessary starts with the following

Proposition 5.3 (Izhboldin, cf. [38, Proposition 6.7]). Let φ be an
anisotropic 9-dimensional quadratic form, and assume that φ is not a Pfister
neighbor. Here are the minimal types for φ depending on the kind (for kind 3
see Proposition 5.5):

kind 1: (11011011) and its complement;
kind 2: (10100101) and its complement.

Proof. Let t be the minimal type with t1 = 1. Since i1(φ) = 1, t8 = 1 as
well. Since φ is not a Pfister neighbor, the reduction t′ of t is a non-zero
type (Sect. 2.6). Moreover, t′ is a type possible for the 7-dimensional form
φ′ = (φF (φ))an. Since iS(φ′) = iS(φ) = 2 ([34]), we may apply Proposition 3.9
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to φ′ and conclude that t′ is ether (101101), or (010010), or (111111). Accord-
ing to this, t is one of the following three types: (11011011), (10100101), or
(11111111).

Let us assume that φ is of kind 1. By the reason of Corollary 6.3, the diag-
onal type cannot be minimal for such φ. Assume that the second possibility for
t takes place. Then we get the following “theorem”: for any unirational field
extension L/F and any 9-dimensional ψ/L with φL

st∼ ψ one has iW (φE) ≥ 3
for some field extension E/L if and only if iW (ψE) ≥ 3. This contradicts
however Lemma 6.2. Therefore t = (11011011) for φ of kind 1.

Now we assume that φ is of the second kind. By the reason of Proposi-
tion 6.1, the diagonal type cannot be minimal for such φ. Assume that the first
possibility for t takes place. Then we get the following “theorem”: for purely
transcendental field extension F̃ /F , any 9-dimensional ψ/F̃ with φF̃

st∼ ψ and
for n = 2, 4, one has iW (φE) ≥ n for some field extension E/F̃ if and only if
iW (ψE) ≥ n. However for F̃ and ψ as in Proposition 6.1 we evidently have as
well

iW (φE) ≥ 3 ⇐⇒ iW (τE) ≥ 3 ⇐⇒ iW (τE) ≥ 4 ⇐⇒ iW (ψE) ≥ 3.

It follows that φF̃
m∼ ψ, whereby φF̃ ∼ ψ, a contradiction. Therefore t =

(10100101) for φ of kind 2. ��

Corollary 5.4. A 9-dimensional and a 10-dimensional anisotropic special
subforms are never stably equivalent. ��
Proposition 5.5. Let φ be a 9-dimensional anisotropic form of kind 3, not
a Pfister neighbor. Then the diagonal type is minimal for φ.

Proof. Since φ is not a Pfister neighbor, we have iS(φ) ≥ 2. If iS(φ) ≥ 4, then
the diagonal type is minimal for φ by [23, Corollary 9.14]. So, we assume that
iS(φ) = 2 in the rest of the proof.

Let t be the minimal type with t1 = 1. As in the proof of Proposition 5.3,
we show that t is either (11011011), or (10100101), or (11111111).

Let µ and λ be respectively the 10-dimensional and the 12-dimensional
special forms containing φ (see Sect. 1.5). Over the function field F (λ), the
form µF (λ) is anisotropic ([16, Theorem 10.6]). Besides φF (λ) is a special sub-
form of the special form µF (λ) (Lemma 1.10). It follows that the form φF (λ)

is an anisotropic 9-dimensional form of kind 1 and is not a Pfister neighbor.
We conclude that the type (10100101) is not possible for φ.

On the other hand, over the function field F (µ), the form λF (µ) is aniso-
tropic (Proposition 7.3). Let τ be any 10-dimensional subform of λ containing
φ. Besides τF (µ) is a special subform of the special form λF (µ) (Lemma 1.10).
φ is of kind 2 and still not a Pfister neighbor

So, we conclude that the type (11011011) is also not possible. The only
remaining possibility is t = (11111111). ��
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Corollary 5.6. Let φ and ψ be anisotropic 9-dimensional quadratic forms,
not Pfister neighbors. If φ

st∼ ψ, then φ and ψ are of the same kind. Moreover,
if the kind is 3, then φ

st∼ ψ is possible only if φ ∼ ψ. ��

5.1 Stable Equivalence for Forms of Kind 1

For a 9-dimensional form φ of kind 1, we write µφ for the 10-dimensional
special form φ ⊥ 〈−disc(φ)〉 (so that φ, µφ is a special pair).

Let φ and ψ be 9-dimensional quadratic forms of kind 1 each of which is
not a Pfister neighbor. We first prove

Proposition 5.7. If φ
st∼ ψ, then µφ ∼ µψ.

To prove this, we need

Lemma 5.8. Let n be 2 or 4. If φ
st∼ ψ, then for any field extension E/F one

has
iW (φE) ≥ n ⇔ iW (ψE) ≥ n.

Proof. Follows from the fact that the type 11011011 is minimal for φ (Pro-
position 5.3) as explained in Sect. 2.8. ��

Proof of Proposition 5.7. Assuming that φ
st∼ ψ, let us check that µφ

m∼ µψ,
i.e., iW (µφ)E ≥ n ⇔ iW (µψ)E ≥ n for any E/F and any n ∈ Z. Since
the possible values of iW (µφ)E and iW (µψ) are 1, 3, and 5 (see, e.g., [8,
Theorem 5.1]), it is enough to check the equivalence desired only for n = 1,
3, 5. The case n = 1 is served since φ

st∼ ψ ⇒ µφ
st∼ µψ by Corollary 1.9.

For n = 3, 5, one has

iW (µφ)E ≥ n ⇒ iW (φE) ≥ n − 1 Lemma 5.8=⇒
iW (ψE) ≥ n − 1 ⇒ iW (µψ)E ≥ n − 1 ⇒ iW (µψ)E ≥ n .

By symmetry, the converse holds as well.
We have shown that µφ

m∼ µψ. It follows that µφ ∼ µψ according to

Lemma 5.9. Let π1, π2 be some 3-fold Pfister forms, and let τ1, τ2 be some
2-fold Pfister forms such that the 10-dimensional special forms µ1 = π′

1 ⊥ −τ ′
1

and µ2 = π′
2 ⊥ −τ ′

2 are anisotropic. The statements (1)–(5) are equivalent:

(1) µ1
m∼ µ2;

(2) (i) µ1
st∼ µ2,

(ii) c(µ1) = c(µ2) ∈ Br(F ), that is, µ1 ≡ µ2 mod I3(F ) in W (F );
(iii) (µ1)F (C) ≡ (µ2)F (C) mod I4(F ) in W (F (C)), where C/F is a

Severi–Brauer variety corresponding to the element of (2-ii);
(3) the elements τ1 and τ2 of W (F ) coincide and divide the difference π1−π2;
(4) for some u, v, a1, a2, b, c , k ∈ F ∗ there are isomorphisms
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(i) τ1 � 〈〈u, v〉〉 � τ2,
(ii) π1 � 〈〈a1, b, c〉〉, π2 � 〈〈a2, b, c〉〉,
(iii) 〈〈a1a2, b, c〉〉 � 〈〈k, u, v〉〉;

(5) µ1 ∼ µ2.

Remark. A statement stronger than Lemma 5.9 on 10-dimensional special
forms will be given in Proposition 7.3: µ1 ∼ µ2 already if µ1

st∼ µ2.

Proof of Lemma 5.9. We prove the implications (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒
(5) ⇒ (1).

(1) ⇒ (2). The property (2-i) constitutes a part of the definition of the prop-
erty (1); (2-ii) follows from (1) by [21, Remark 2.7]. As to (2-iii), in the Witt
ring of F (C) we have (µ1)F (C) = (π1)F (C) and (µ2)F (C) = (π2)F (C). There-
fore the Pfister forms (π1)F (C) and (π2)F (C) are stably equivalent, whereby
(π1)F (C) = (π2)F (C) ∈ W (F (C)).

(2) ⇒ (3). Since c(µi) = c(τi) for i = 1, 2, (2-ii) gives c(τ1) = c(τ2)
whereby τ1 = τ2 (because τi are 2-fold Pfister forms). Let τ be a quad-
ratic form isomorphic to τ1 and τ2. Since F (C) �F F (τ ′) for C as in (2-
iii), (π1)F (τ) ≡ (π2)F (τ) mod I4(F ) in W (F (τ )). It follows that (π1)F (τ) =
(π2)F (τ) ∈ W (F (τ )) and therefore the difference π1 − π2 is divisible by τ in
W (F ) ([28, Lemma 4.4]).

(3) ⇒ (4). Since τ1 and τ2 are isomorphic 2-fold Pfister forms, we may find u,
v ∈ F ∗ satisfying (4-i).

Since the Witt class of 〈〈u, v〉〉 divides the difference π1 − π2, the 3-fold
Pfister forms π1 and π2 are 2-linked (or, simply, linked), that is, divisible
by a common 2-fold Pfister forms (Lemma 1.6). So, we may find a1, a2, b,
c satisfying condition (4-ii). Now, the difference π1 − π2 is represented by a
quadratic form similar to the 3-fold Pfister form 〈〈a1a2, b, c〉〉. Since this 3-fold
Pfister form is divisible by 〈〈u, v〉〉, we may find k ∈ F ∗ satisfying (4-iii).

(4) ⇒ (5).1 We write τ for 〈〈u, v〉〉. Let us consider the difference γ = φ1−kφ2 ∈
W (F ) with k from (4-iii). If γ = 0 then φ1 � kφ2 and we are done. So, we
assume that γ �= 0. We have

γ = (π1 − τ ) − k(π2 − τ ) = (π1 − kπ2) − 〈〈k〉〉τ ≡
(π1 − π2) − 〈〈k〉〉τ ≡ 0 mod I4(F ).

So, γ ∈ I4(F ). Since the element γF (π1) can be evidently represented by a
quadratic form of dimension < 16, the Arason–Pfister Hauptsatz tells that
1 A proof of this implication was found in the hand-written private notes of Oleg

Izhboldin; we reproduce it here almost word for word.
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γF (π1) = 0, whereby π1 divides γ in W (F ) ([28, Lemma 4.4]). In particular,
γ ≡ 〈〈s〉〉π1 mod I5(F ) for some s ∈ F ∗. Having

〈〈s〉〉π1 ≡ γ = (π1 − τ ) − kφ2 mod I5(F ),

we get
0 ≡ (sπ1 − τ ) − kφ2 mod I5(F ).

By the Arason–Pfister Hauptsatz, this congruence turns out to be an equality,
i.e., (sπ1 − τ ) = kφ2. In particular, the quadratic form sπ1 ⊥ −τ is isotropic.
It follows (Elman–Lam, see [16, Theorem 8.1(1)]) that the anisotropic part of
the form sπ1 ⊥ −τ is similar to (π1 ⊥ −τ )an = φ1. Therefore φ1 ∼ φ2.

(5) ⇒ (1). This implication is trivial. ��

We have checked the implication φ
st∼ ψ ⇒ µφ ∼ µψ. The proof of Propos-

ition 5.7 is therefore finished. ��

Lemma 5.10. Let φ1 and φ2 be 9-dimensional quadratic forms of kind 1 each
of which contains the pure subform of some (common) 3-fold Pfister form π.
If φ1

st∼ φ2, then φ1 ∼ φ2.

Proof. Using the hypothesis, we write φi (for i = 1, 2) as φi � π′ ⊥ βi, where
β1 and β2 are some binary forms. Since the forms

β1 ⊥ 〈−det(β1)〉 and β2 ⊥ 〈−det(β2)〉

are isomorphic (Proposition 5.7 with Lemma 5.9(3)), we can find some u, v1,
v2 ∈ F ∗ such that βi � 〈u, vi〉.

Let µ be a 10-dimensional form isomorphic to φi ⊥ 〈−disc(φi)〉 and let τ
be a 2-fold Pfister form isomorphic to 〈〈u, vi〉〉. Since the form µ � π′ ⊥ −τ ′

becomes isotropic over the function field F (µ), the forms π′ and µ′ over F (µ)
have a common value d. Therefore, 〈〈d〉〉 is a common divisor of π and µ over
F (µ). Let k ∈ F (µ)∗ be such that τ � 〈〈d, k〉〉 over F (µ). Then (φi)F (µ) is

a neighbor of the 4-fold Pfister form π〈〈−uvik〉〉. Since (φ1)F (µ)
st∼ (φ2)F (µ),

the Pfister forms π〈〈−uv1k〉〉 and π〈〈−uv2k〉〉 are isomorphic, i.e., π〈〈v1v2〉〉 =
0 ∈ W (F (µ)). Since µ is not a Pfister neighbor, it follows that π〈〈v1v2〉〉 = 0
already in W (F ), that is, v1v2 ∈ G(π). We note additionally that the relation
〈〈u, v1〉〉 = 〈〈u, v2〉〉 implies that v1v2 ∈ G(〈〈u〉〉). Now we get

v1v2φ1 = v1v2(π − 〈〈u〉〉 + 〈v1〉) = π − 〈〈u〉〉 + 〈v2〉 = φ2 ∈ W (F ),

therefore, φ1 is similar to φ2. ��

Corollary 5.11. Let φ1 and φ2 be 9-dimensional quadratic forms of kind 1
and assume that φ1

st∼ φ2. Then there exist some linked 3-fold Pfister forms π1

and π2 and a binary form 〈u, v〉 such that φ1 ∼ π′
1 ⊥ 〈u, v〉, φ2 ∼ π′

2 ⊥ 〈u, v〉,
and the difference π1−π2 ∈ W (F ) is divisible by the 2-fold Pfister form 〈〈u, v〉〉.
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Proof. By the definition of the first kind, up to similarity, we can write φ1

and φ2 as φi = π′
i ⊥ 〈ui, vi〉 with some 3-fold Pfister forms π and some ui,

vi ∈ F ∗. We assume that φ1
st∼ φ2. Then the difference π1 − π2 is divisible

by 〈〈u1, v1〉〉 according to Proposition 5.7 and Lemma 5.9. Let us consider the
quadratic form φ3 = π′

2 ⊥ 〈u1, v1〉. By [13, Example 4.4] we have φ1
st∼ φ3. It

follows that φ2
st∼ φ3. Applying Lemma 5.10 to the forms φ2 and φ3, we get

that φ2 ∼ φ3. Therefore, we may take u = u1 and v = v1. ��

We have finished the proof of Theorem 5.1 for the 9-dimensional quadratic
forms of kind 1.

5.2 Stable Equivalence for Forms of Kind 2

The only thing to check here is the following

Proposition 5.12. Let τ1 and τ2 be anisotropic 10-dimensional quadratic
special subforms (see Sect. 1.4). We assume that neither τ1 nor τ2 are Pfister
neighbors. Then τ1

st∼ τ2 if and only if some 9-dimensional subform of τ1 is
similar with some 9-dimensional subform of τ2.

Proof. The “if” part of the statement is evident. We are going to prove the
“only if” part.

For i = 1, 2, let ρi be a 12-dimensional special form containing τi. Let us
choose some 11-dimensional form δi such that τi ⊂ δi ⊂ ρi. It is enough to
show that δ1 ∼ δ2 and we are going to do this.

According to [12], it suffices to check that δ1
m∼ δ2, that is,

iW (δ1)E ≥ n ⇐⇒ iW (δ2)E ≥ n (∗)

for any E/F and any integer n. Since the possible positive values of iW (δi)E

are 1, 2, and 5 (see, e.g., [8, Theorem 5.4(ii)]), the relation (∗) has to be
checked only for n = 1, 2, 5.

First of all, to handle the case of n = 1, let us check that δ1
st∼ δ2. The

condition τ1
st∼ τ2 implies ρ1

st∼ ρ2 by Corollary 1.9. Besides, since i1(ρi) = 2,
we have δi

st∼ ρi whereby the forms δ1 and δ2 are stably equivalent, indeed.
For n = 2 we have

iW (δ1)E ≥ 2 ⇒ iW (τ1)E ≥ 1 τ1
st∼τ2=⇒

iW (τ2)E ≥ 1
i1(τ2)=2

=⇒ iW (τ2)E ≥ 2 ⇒ iW (δ2)E ≥ 2.

By symmetry, iW (δ2)E ≥ 2 ⇒ iW (δ1)E ≥ 2 as well.
Finally, to handle the case n = 5, let us choose some 9-dimensional sub-

forms φ1 ⊂ τ1 and φ2 ⊂ τ2. Since the quadratic forms φ1 and φ2 are of
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the second kind and stably equivalent, it follows from Proposition 5.3 that
iW (φ1)E ≥ 3 if and only if iW (φ2)E ≥ 3. Now we have

iW (δ1)E = 5 ⇒ iW (φ1)E ≥ 3 ⇒
iW (φ2)E ≥ 3 ⇒ iW (δ2)E ≥ 3 ⇒ iW (δ2)E = 5

and iW (δ2)E = 5 ⇒ iW (δ1)E = 5 by symmetry. ��

The proof of Theorem 5.1 is finished. ��

The following corollary will be used in the proof of Theorem 0.2.

Corollary 5.13. Let τ1, ρ1 and τ2, ρ2 be anisotropic special pairs with
dim τ1 = dim τ2 = 10 (and dimρ1 = dim ρ2 = 12). Let δ1 and δ2 be some
11-dimensional “intermediate” forms: τ1 ⊂ δ1 ⊂ ρ1 and τ2 ⊂ δ2 ⊂ ρ2. If
τ1

st∼ τ2, then δ1 ∼ δ2 and ρ1 ∼ ρ2.

Proof. The relation δ1 ∼ δ2 is checked in the proof of Proposition 5.12. It
implies the relation ρ1 ∼ ρ2 because ρi � δi ⊥ 〈−disc(δi)〉. ��

6 Examples of Non-similar Stably Equivalent Forms of
Dimension 9

The examples constructed in this section are good not only on their own: they
also work in the proof of Proposition 5.3.

6.1 Forms of Kind 2

For any given anisotropic 9-dimensional quadratic form φ of kind 2, we get
another 9-dimensional form ψ (over a purely transcendental extension of the
base field) such that ψ �∼ φ while ψ

st∼ φ as follows:

Proposition 6.1. Let φ be a 9-dimensional anisotropic form of kind 2. Let τ
be a 10-dimensional special subform containing φ. Then there exists a purely
transcendental field extension F̃ /F and a 9-dimensional subform ψ ⊂ τF̃ such
that φF̃

st∼ ψ while φF̃ �∼ ψ.

Proof. Since φ
st∼ τ , the form τ is anisotropic. Since the dimension of τ is not

a power of 2, τ is not a Pfister form. To finish, we apply Corollary 1.5 and
use the fact that any two 1-codimensional subform of τ (or of τF̃ ) are stably
equivalent. ��
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6.2 Forms of Kind 1

Let φ/F be an arbitrary 9-dimensional anisotropic quadratic form of the first
kind, say, φ � 〈〈a, b, c〉〉′ ⊥ 〈u, v〉 with some a, b, c, u, v ∈ F ∗. We assume
that the 10-dimensional special form 〈〈a, b, c〉〉′ ⊥ −〈〈u, v〉〉′ is anisotropic (i.e.,
that φ is not a Pfister neighbor). Let us construct a new quadratic form over
a certain field extension of F as follows.

We consider a degree 2 purely transcendental extension F (t, z)/F and
the quadratic form ψ = 〈〈t, b, c〉〉′ ⊥ 〈u, v〉 over F (t, z). Let L/F (t, z) be the
top of the generic splitting tower of the quadratic F (t, z)-form 〈〈at, b, c〉〉 ⊥
−〈〈z, u, v〉〉. We state that the data obtained this way have the following prop-
erties:

Lemma 6.2.

(1) The field extension L/F is unirational;
(2) the forms φL and ψL are stably equivalent;
(3) the forms φL and ψL are not similar;
(4) there exists a field extension E/L such that iW (ψE) ≥ 3 while iW (φE) ≤ 2.

Proof. (1) Over the field F (
√

at,
√

z), the Pfister forms 〈〈at, b, c〉〉 and 〈〈z, u, v〉〉
are split. Therefore the field extension L(

√
at,

√
z)/F (

√
at,

√
z) is purely tran-

scendental. Since the extension F (
√

at,
√

z)/F is also purely transcendental, it
follows that the extension L(

√
at,

√
z)/F is purely transcendental and there-

after L/F is unirational.
(2) According to the definition of L, the form 〈〈at, b, c〉〉L is divisible by 〈〈u, v〉〉L.
So, φL

st∼ ψL by [13, Example 4.4].
(3) follows from (4).
(4) We take E = L(〈〈t, b, c〉〉). Since the form 〈〈t, b, c〉〉 splits over E, the Witt
index of (〈〈t, b, c〉〉′)E is 3. Therefore iW (ψE) ≥ 3.

To see that iW (φE) ≤ 2, it suffices to check that the form 〈〈a, b, c〉〉E is
anisotropic. We will check that this form is still anisotropic over a bigger
extension, namely, over the field E(

√
t). For this we decompose the field ex-

tension E(
√

t)/F in a tower as follows:

F ⊂ F (
√

t, z) ⊂ K ⊂ L′ ·F K ⊂ L ·F K

where K = F (
√

t, z)(〈〈t, b, c〉〉) and where the field L′, sitting between F (t, z)
and L, is the next-to-biggest field in the generic splitting tower of 〈〈at, b, c〉〉 ⊥
−〈〈z, u, v〉〉. Recall that L is the top of this tower and therefore L = L′(π)
where π/L′ is a Pfister form similar to

(

(〈〈at, b, c〉〉 ⊥ −〈〈z, u, v〉〉)L′
)

an
.

Since the extension K/F is purely transcendental (note that 〈〈t, b, c〉〉F (
√

t,z)

is hyperbolic), the form 〈〈a, b, c〉〉K is anisotropic. Since the extension (L′ ·
K)/K is a tower of function fields of some quadratic forms of dimension > 8,
the form 〈〈a, b, c〉〉L′·K is still anisotropic (Theorem 1.2). In this situation the
hyperbolicity of this form over L · K would mean that 〈〈a, b, c〉〉L′·K = π ∈
W (L′ · K). Since π = 〈〈at, b, c〉〉 − 〈〈z, u, v〉〉 = 〈〈a, b, c〉〉 − 〈〈z, u, v〉〉, this would
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give hyperbolicity of 〈〈z, u, v〉〉L′·K. However, the latter form is anisotropic
by the reasons similar to those we have given already: the field extension
K/F (z) is purely transcendental (note that 〈〈z, u, v〉〉 is defined over F (z) and
is of course anisotropic over F (z) because 〈〈u, v〉〉 is anisotropic over F ) while
the field extension L′ ·K/K is a tower of the function fields of some forms of
dimensions > 8. ��

In particular, we get

Corollary 6.3. Let φ/F be an anisotropic 9-dimensional quadratic form of
the first kind. Then there exists a unirational field extension L/F and a 9-
dimensional quadratic form ψ/L which is at the same time stably equivalent
and non-similar to φL. ��

7 Other Related Results

7.1 Isotropy of Special Forms

Theorem 7.1 (Izhboldin). Let φ be an anisotropic special quadratic form
and let ψ be a quadratic form of dimension ≥ 9. Then φF (ψ) is isotropic if
and only if ψ is similar to a subform of φ.

The proof will be given after certain preliminary observations.

Lemma 7.2. If φ0 is an anisotropic special subform while ψ is a special form,
then the form (φ0)F (ψ) is anisotropic.

Proof. We assume that the form (φ0)F (ψ) is isotropic (in particular, the form
ψ is anisotropic). We have dim φ0 = 9 or 10. Let φ1 ⊂ φ0 be a 9-dimensional
subform of φ0 (in the case dimφ0 = 9 we set φ1 = φ0). We have φ0

st∼ φ1

and therefore the form (φ1)F (ψ) is isotropic. Consequently φ1
st∼ ψ by [14,

Theorem 0.2]. It follows that the form ψ has the maximal splitting. However
this is not possible because ψ is special (and therefore i1(ψ) = 1 for a 10-
dimensional ψ while i1(ψ) = 2 for a 12-dimensional ψ). ��

Proposition 7.3. Let φ and ψ be special anisotropic quadratic forms. If the
form φF (ψ) is isotropic, then the forms φ and ψ are similar.

Proof. We can choose some subforms φ0 ⊂ φ and ψ0 ⊂ ψ such that φ0, φ and
ψ0, ψ are anisotropic special pairs. Let E/F be the extension constructed in
[16, Proposition 6.10]. We recall that this extension is obtained as the union
of an infinite tower of fields where each step is either an odd extension or the
function field of some 4-fold Pfister form. By [16, Lemma 10.1(1)] the special
pairs (φ0)E , φE and (ψ0)E , ψE are still anisotropic. Since the form φE(ψ) is
isotropic, the form (φ0)E(ψ) is a 4-fold Pfister neighbor (Proposition 1.8 (3)).
Moreover, in view of Lemma 7.2 this 4-fold Pfister neighbor is anisotropic.
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By the same reason or by Proposition 1.8 (4), the form (ψ0)E(ψ) is also an

anisotropic 4-fold Pfister neighbor. By [16, Lemma 6.7] we have (ψ0)E(ψ)
st∼

(φ0)E(ψ). Hence (φ0)E(ψ,ψ0) is isotropic. Since ψ0 ⊂ ψ, the form (φ0)E(ψ0) is

already isotropic. By [16, Proposition 8.13], it follows that (φ0)E
st∼ (ψ0)E .

By Corollary 5.4, it follows that dimφ0 = dimψ0 and dimφ = dimψ. In the
case where dimφ0 = dimψ0 = 10, that is, dimφ = dimψ = 12, we get that
φE ∼ ψE applying Corollary 5.13. In particular, φE ≡ ψE mod I4(E). It
follows by [16, Proposition 6.10, n = 4] that φ ≡ ψ mod I4(F ). Therefore
φ ∼ ψ by [9, corollary].

In the case where dimφ0 = dimψ0 = 9, that is, dimφ = dimψ = 10,
we get that φE ∼ ψE by Proposition 5.7. In particular, φE

st∼ ψE , c(φE) =
c(ψE), and φE(C) = ψE(C) ∈ W (E(C)) for C as in (2-iii) of Lemma 5.9.

These three relations can be descended to F : the first one implies φ
st∼ ψ

according to [16, Lemma 10.1(2)]; the second one implies c(φ) = c(ψ) by
[16, Proposition 6.10(v), n = 3], while the third one gives φF (C) = ψF (C) ∈
W (F (C)) according to the construction of E/F and [16, Corollary 4.5, n = 4]
with [16, Lemma 1.2, odd extensions]. We have got condition (2) of Lemma 5.9.
Hence φ ∼ ψ. ��

Lemma 7.4. Let φ0, φ be an anisotropic special pair and let ψ be a quadratic
form with dimψ ≥ 9. Let E/F be the field extension constructed in [16, Pro-
position 6.10]. If the form (φ0)E(ψ) is isotropic, then ψ is similar to a subform
of φ.

Proof. Note that the forms (φ0)E , φE are anisotropic by [16, Lemma 10.1(1)].
We have dim φ0 = 9 or 10. We consider first the case with dimφ0 = 9. The
isotropy of (φ0)E(ψ) implies the condition (φ0)E

st∼ ψE ([14, Theorem 0.2]).
Moreover, since (φ0)E is a 9-dimensional form of the first kind, ψE is 9-
dimensional of the first kind as well (Theorem 5.1) and the forms φE = (φ0 ⊥
〈−disc(φ0)〉)E and (ψ ⊥ 〈−disc(ψ)〉)E are similar (Proposition 5.7). It follows
by [16, Lemma 10.1(2)] that the special forms φ and ψ ⊥ 〈−disc(ψ)〉 are stably
equivalent. Therefore these two forms are similar (Proposition 7.3), and we
see that ψ is similar to a subform of φ in this case.

It remains to consider the case where dimφ0 = 10. Note that any 9-
dimensional subform φ1 ⊂ (φ0)E is of the second kind and stably equivalent
to (φ0)E . Therefore, by Theorem 5.1 and Corollary 5.2, ψE is contained in
a 10-dimensional special subform. It follows that ψ considered over F is also
contained in a 10-dimensional special subform τ (in the case dimψ = 10
we simply take τ = ψE). Moreover, τE is stably equivalent with (φ0)E (Co-
rollary 5.2). Applying Corollary 5.13, we get that φE ∼ ρE where ρ is the
12-dimensional special F -form containing τ . It follows by [16, Lemma 10.1(2)]
that the special forms φ and ρ are stably equivalent. Therefore these two forms
are similar (Proposition 7.3), and we see that ψ is similar to a subform of φ
in this case as well. ��
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Lemma 7.5. Let F be a field such that H4(F ) = 0 (the degree 4 Galois
cohomology group of F with coefficients Z/2 is 0). Let φ0, φ be a degree 4
anisotropic special pair over F and let ψ/F be a quadratic form of dimension
≥ 9. If the form φF (ψ) is isotropic while the form (φ0)F (ψ) is anisotropic, then
TorsCH3(Xψ) �= 0, where TorsCH3(Xψ) stays for the torsion subgroup of the
Chow group CH3(Xψ).

Proof. Since the form φF (ψ) is isotropic, (φ0)F (ψ) is a neighbor of a 4-fold
Pfister form π/F (ψ) ([16, Theorem 8.6(2)]). Since the form (φ0)F (ψ) is an-
isotropic, the Pfister form π is anisotropic and so the cohomological in-
variant e4(π) gives a non-zero element of H4(F (ψ)). Since π contains a 9-
dimensional subform defined over F , the element e4(π) is unramified over
F ([16, Lemma 6.2]). We conclude that the unramified cohomology group
H4

nr(F (ψ)/F ) is non-zero. Since H4(F ) = 0, we even get that the cokernel
of the restriction homomorphism H4(F ) → H4

nr(F (ψ)/F ) is non-zero. Since
this cokernel is isomorphic to TorsCH3(Xψ) ([16, Theorem 0.6]), the proof is
finished (note that the hypothesis of [16, Theorem 0.6] saying that ψ is not
a 4-fold Pfister neighbor is satisfied because otherwise the form ψ would be
isotropic and φF (ψ) would not). ��

Lemma 7.6. Let ψ/F be a quadratic form of dimension ≥ 9 and let E/F
be the extension constructed in [16, Proposition 6.10]. If TorsCH3(XψE ) �= 0,
then TorsCH3(Xψ) �= 0.

Proof. If TorsCH3(XψE ) �= 0, then the form ψE is a form of one of the
types (9-a), (9-b), (10-a), (10-b), (10-c), (11-a), (12-a) of forms listed in [16,
Theorem 0.5]. Consider these types case by case.

ψE ∈ (9-a). In this case, (ψ ⊥ 〈−disc(ψ)〉)E is an element of I3(E) (rep-
resented by an anisotropic 3-fold Pfister form) which does not lie in I4(F ).
Therefore, the 10-dimensional F -form ψ ⊥ 〈−disc(ψ)〉 gives an element of
I3(F ) � I4(F ) ([16, Proposition 6.10(v)]). It follows that this element is rep-
resented by an anisotropic 3-fold Pfister F -form, whereby ψ ∈ (9-a).

ψE ∈ (9-b). This type is characterized as follows: ψ ∈ (9-b) for a 9-dimensional
ψ if and only if iS(ψ) = 2 and both the 10- and 12-dimensional special forms
containing ψ (see Sect. 1.5) are anisotropic. Since iS(ψE) = iS(ψ) ([16, Pro-
position 6.10(ii)]), and a special F -form is anisotropic if and only if it is
anisotropic over E ([16, Lemma 10.1(2)]), it follows that ψ ∈ (9-b) if ψE ∈
(9-b).

ψE ∈ (10-a). This condition means that the class of the 10-dimensional form
ψE in W (E) is represented by an anisotropic 3-fold Pfister form. As explained
in part (9-a), this is equivalent to the fact that the element ψ ∈ W (F ) is
represented by an anisotropic 3-fold Pfister form, i.e., to the fact that ψ ∈
(10-a).
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ψE ∈ (10-b) means that ψE is a 10-dimensional anisotropic special form. As
explained above, this implies that ψ over F is a 10-dimensional anisotropic
special form.

ψE ∈ (10-c). Here ψ is an anisotropic 10-dimensional form with disc(ψ) �= 1
and iS(ψ) = 1, because the form ψE has these properties (to see that disc(ψ) �=
1 one may use the binary form 〈〈disc(ψ)〉〉) and [16, Proposition 6.10(v), n =
2]). Therefore, there exists a 12-dimensional special form ρ containing ψ (see,
e.g., [16, Lemma 1.19(i)]). Note that such ρ is also unique: if ρ′ is another
one, then the difference ρ − ρ′ ∈ I3(F ) is represented by a form of dimension
4 and hence is 0 by the Arason–Pfister Hauptsatz. Since the special form ρ is
anisotropic over E, is is anisotropic over F as well. Finally, the condition that
ψF (

√
d) is not hyperbolic for a representative d ∈ F ∗ of the discriminant of ψ

is given by [16, Proposition 6.10(vi)].

ψE ∈ (11-a) means that ψE ⊥ 〈−disc(ψ)〉 is a 12-dimensional anisotropic
special form. In this case the 12-dimensional F -form ψ ⊥ 〈−disc(ψ)〉 is also
anisotropic and special.

ψE ∈ (12-a). Here ψ is a 12-dimensional anisotropic special form because ψE

is so. ��

Lemma 7.7. Let ψ/F be a quadratic form of one of the seven types (9-a)–
(12-a) listed in [16, Theorem 0.5]. Then at least one of the following conditions
holds:

(i) φ is isotropic or contains a 4-fold Pfister neighbor;
(ii) there exists a special form ρ containing φ and such that the form φF (ρ)

is isotropic or contains a 4-fold Pfister neighbor;
(iii) there exist two special forms ρ and ρ′ of different dimensions which (both)

contain φ and such that the form φF (ρ,ρ′) is isotropic or contains a 4-fold
Pfister neighbor.

Remark 7.8. Since every isotropic 9-dimensional quadratic form is a 4-fold
Pfister neighbor, one may simplify the formulation of Lemma 7.7 by saying
“contains a 4-fold Pfister neighbor” instead of “isotropic or contains a 4-fold
Pfister neighbor” in (i), in (ii), and in (iii).

Proof of Lemma 7.7. We consider all the seven types (9-a)–(12-a) case by
case.

If φ ∈ (9-a), then φ is a 4-fold Pfister neighbor; condition (i) is satisfied.
If φ ∈ (10-a), then φ is isotropic; condition (i) is satisfied as well.
If φ ∈ (9-b), then, by Lemma 1.10, there exists a (unique) 12-dimensional

special form ρ containing a subform similar to φ and there exists a (unique)
10-dimensional special form ρ′ containing φ. Moreover, both ρ and ρ′ are
anisotropic. Over the function field F (ρ, ρ′) the form φ becomes a 4-fold Pfister
neighbor (Lemma 1.10).
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If φ ∈ (10-b), then φ is a 10-dimensional special form.
If φ ∈ (12-a), then φ is a 12-dimensional special form.
If φ ∈ (11-a), then φ becomes isotropic over the function field of the

quadratic form φ ⊥ 〈−disc(φ)〉, which is a 12-dimensional special form.
Finally, if φ ∈ (10-c), then φ is contained in some 12-dimensional special

form ρ (mentioned in the definition of this type). Let us write ρ = φ + β ∈
W (F ) with some binary quadratic form β. Since ρF (ρ) = π in the Witt ring
of the function field F (ρ), where π/F (ρ) is some 3-fold Pfister form, we have
φF (ρ) = π − βF (ρ). It follows that the form φF (ρ) contains a 3-fold Pfister
form as a subform. Consequently, φF (ρ) contains a 9-dimensional 4-fold Pfister
neighbor (one may take any 9-dimensional subform containing π). ��

Proof of Theorem 7.1. Let us choose a special subform φ0 ⊂ φ. So, we have
an anisotropic special pair φ0, φ. We assume that φF (ψ) is isotropic, where ψ
is some quadratic form over F of dimension ≥ 9. We write E/F for the field
extension constructed in [16, Proposition 6.10].

If the form (φ0)E(ψ) is isotropic, then ψ is similar to a subform of φ

(Lemma 7.4) and the proof is finished. Otherwise, we have TorsCH3(XψE ) �= 0
(Lemma 7.5, note that the special pair φ0, φ remains anisotropic over E ac-
cording to [16, Lemma 10.1(1)]). Therefore one has TorsCH3(Xψ) �= 0 already
over F (Lemma 7.6). It follows that ψ is a quadratic form of one of the seven
types listed in [16, Theorem 0.5], and we may apply Lemma 7.7.

Assume that condition (i) of Lemma 7.7 is fulfilled, i.e., ψ contains a 4-fold
Pfister neighbor ψ0 ⊂ ψ (see Remark 7.8). Then the form φ becomes isotropic
over the function field F (ψ0) which is a contradiction (cf. [16, Lemma 10.1(1)].

Assume that condition (ii) of Lemma 7.7 is fulfilled, i.e., ψ is a subform of
a special form ρ and the form ψF (ρ) contains a 4-fold Pfister neighbor. Then
the form φ becomes isotropic over the function field F (ρ). Therefore φ ∼ ρ
(Proposition 7.3), whereby ψ is similar to a subform of φ.

Finally, assuming that condition (iii) of Lemma 7.7 is fulfilled, we get that
ψ is contained in two special forms ρ and ρ′ of different dimensions while the
form ψF (ρ,ρ′) contains a 4-fold Pfister neighbor. Then the form φ becomes
isotropic over the function field F (ρ, ρ′). Since the dimensions of ρ and ρ′

are different, one of these two forms, say ρ, has the same dimension as the
special form φ. If the form φF (ρ) were anisotropic, the form F (ρ, ρ′) would
be anisotropic as well, because ρ′F (ρ) �∼ φF (ρ) (the dimensions are different).
Therefore φF (ρ) is isotropic, whereby φ ∼ ρ (Proposition 7.3). Consequently
ψ is similar to a subform of φ in this case too. ��

7.2 Anisotropy of 10-dimensional Forms

The following theorem will be proved with the help of [27]. The original proof
is not known.
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Theorem 7.9 (Izhboldin [13, Theorem 5.3]). Let φ be an anisotropic 10-
dimensional quadratic form. Let ψ be a quadratic form of dimension > 10 and
assume that ψ is not a Pfister neighbor. Then the form φF (ψ) is anisotropic.

Proof. It suffices to consider the case with dimψ = 11. In this case we have
i1(ψ) ≤ 3 by Theorem 1.2. Since ψ is not a Pfister neighbor, i1(ψ) �= 3 ([19] or
[11]). Besides, i1(ψ) �= 2 by [17, Corollary 5.13] (see also [24, Theorem 1.1], [38,
Sect. 7.2], or [25]). It follows that i1(ψ) = 1; consequently, φF (ψ) is anisotropic
by [27]. ��
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I knew Oleg since he was a sixth-grade student. At that time I was on the jury
of the Leningrad Mathematical Olympiad. Oleg won the first prize that year
as he did each year that he competed. Upon entering the university, after some
hesitation, Oleg decided to study algebra (if I am not mistaken he was also
invited to study mathematical analysis). He began to work in an area that was
very fashionable at that time: algebraic K-theory of fields. When Oleg asked
me to suggest a topic for his annual paper, after some reservations, I gave him a
problem connected with objects over fields of finite characteristic. Historically,
this particular case has always developed more rapidly than the general theory
and has served as a quite a good testing range for many conjectures in algebra.
Soon, Oleg mastered a rather extensive amount of the theory. His annual paper
could easily have served as his Master’s dissertation. His work investigated the
cohomologies of function fields over fields of finite characteristic and contained
some original ideas; it was later published. My reservations about giving him
this particular problem for his annual paper were due mostly to the fact that
Oleg might easily find himself trapped in a relatively narrow area of study
within fields of finite characteristic.

Soon it became clear that my concerns were unfounded. Oleg had a won-
derful ability to learn and use new areas of mathematics. He loved to arrange
knowledge according to his own system. His talks in various seminars dedic-
ated to seemingly well-known theories were very original. They often revealed
connections absolutely new to me and other participants. Instances of this
were seminars in such areas of algebra as algebraic K-theory, algebraic theory
of quadratic forms, and, recently, Voevodsky’s theory of motives.

Since Oleg’s master’s paper was in fact already a worthy Ph.D. thesis, I
only asked him to add some finishing touches of a formal technical nature.
Simultaneously he began to work on Tate’s conjecture in algebraic K-theory
about the lack of p-torsion in Milnor K-groups over fields of characteristic p
and soon solved it. Of course, we also had to include this result in his Ph.D.
paper. (I must admit here that in many everyday issues Oleg was somewhat
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impractical but by no means would I want to add “alas” to this.) My contri-
bution as his scientific advisor for his Ph.D. thesis was a mere formality after
this – he worked mostly independently.

After graduating, Oleg became an assistant professor at the Department
of General Mathematics that I then chaired. He took teaching very seriously.
Despite the fact that he had to teach mathematics to students from depart-
ments where mathematics was certainly not the most popular subject (for
instance, to students in the Department of Philosophy), he never lowered
standards (which was rather common with some other lecturers). When the
position of our Chair’s secretary became available I recommended that Oleg
take it. Although I knew this was not a good deal for him, since the position
entailed struggling with a mountain of bureaucratic work, my own selfish de-
sires won out. I was sure that Oleg could successfully do the secretary’s job,
and he proved me right. Only a secretary of the Chair of General Mathem-
atics can fully understand what a tremendously difficult job it is to put the
schedules for all the departments of St. Petersburg State University together
as well as to distribute the teaching load for all the chair’s staff. Luckily, Oleg
had help: he was very good with computers which allowed him to partially
computerize his workload.

At some point, it seemed to me that Oleg’s infatuation with computers
was getting the best of him. Fortunately for algebra, his friends were able to
convince him not to leave mathematics behind. Perhaps that was a critical
moment in his life. He had to make some crucial decisions about what to do
next.

Oleg found his niche in algebra, namely, the algebraic theory of quadratic
forms. I had worked in this area briefly and I knew how difficult it was for a
novice to “enter” this field, but at the same time I understand why this field
of algebra fit Oleg so well. To study in this unique area of algebra one must
be able to navigate a vast ocean of minor lemmas and tiny facts and have the
ability to grind through huge amounts of knowledge and data. Simultaneously,
one must be well versed in quite a few different areas of mathematics, not only
in algebra.

This needed knowledge in different areas of mathematics was especially im-
portant in light of the recently discovered interaction (by Oleg, among others)
between the theory of quadratic forms and various branches of mathematics
that had seemed absolutely unrelated before.

Oleg mastered the algebraic theory of quadratic forms very quickly and
became one of the acknowledged experts in that field. I was extraordinarily
pleased to see him work with Nikita Karpenko, who had also been my stu-
dent. I am a lucky man to have seen both of them do research in algebra so
successfully. During a fairly short period of time, together they wrote several
very strong papers. The pinnacle of their cooperation led to Oleg’s solution
of a very old classical conjecture by Kaplansky. Oleg constructed an example
of a field with u-invariant 9 – the very first example of a field with nontrivial
odd u-invariant. From my point of view, the proof was as important as the
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fact itself. It shows us a wonderful pattern of interaction of a some very differ-
ent techniques and the inner workings of the “algebraic machine” that Oleg
discovered and revealed.

It is with great sorrow to realize that this remarkable achievement will be
his last. . .




