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Notation

R real numbers
N natural numbers: {0, 1, 2, . . . }
C complex numbers

{. . .
∣∣ . . . } set of . . . such that . . .
〈. . . 〉 sequence; like a set but order matters

V,W,U vector spaces
~v, ~w vectors
~0, ~0V zero vector, zero vector of V
B,D bases

En = 〈~e1, . . . , ~en〉 standard basis for Rn
~β,~δ basis vectors

RepB(~v) matrix representing the vector
Pn set of n-th degree polynomials

Mn×m set of n×m matrices
[S] span of the set S

M ⊕N direct sum of subspaces
V ∼= W isomorphic spaces

h, g homomorphisms
H,G matrices
t, s transformations; maps from a space to itself
T, S square matrices

RepB,D(h) matrix representing the map h
hi,j matrix entry from row i, column j
|T | determinant of the matrix T

R(h),N (h) rangespace and nullspace of the map h
R∞(h),N∞(h) generalized rangespace and nullspace

Lower case Greek alphabet

name symbol name symbol name symbol
alpha α iota ι rho ρ
beta β kappa κ sigma σ
gamma γ lambda λ tau τ
delta δ mu µ upsilon υ
epsilon ε nu ν phi φ
zeta ζ xi ξ chi χ
eta η omicron o psi ψ
theta θ pi π omega ω

Cover. This is Cramer’s Rule applied to the system x + 2y = 6, 3x + y = 8. The area of the first box is the

determinant shown. The area of the second box is x times that, and equals the area of the final box. Hence, x is the

final determinant divided by the first determinant.



These are answers to the exercises in Linear Algebra by J. Hefferon. Corrections or comments are very
welcome, email to jimjoshua.smcvt.edu

An answer labeled here as, for instance, 1.II.3.4, matches the question numbered 4 from the first chapter,
second section, and third subsection. The Topics are numbered separately.





Chapter 1. Linear Systems

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Answers for subsection 1.I.1

1.I.1.22 This system with more unknowns than equations

x+ y + z = 0
x+ y + z = 1

has no solution.

1.I.1.23 Yes. For example, the fact that the same reaction can be performed in two different flasks shows
that twice any solution is another, different, solution (if a physical reaction occurs then there must be at
least one nonzero solution).

1.I.1.25
(a) Yes, by inspection the given equation results from −ρ1 + ρ2.
(b) No. The given equation is satisfied by the pair (1, 1). However, that pair does not satisfy the first
equation in the system.

(c) Yes. To see if the given row is c1ρ1 + c2ρ2, solve the system of equations relating the coefficients of x,
y, z, and the constants:

2c1 + 6c2 = 6
c1 − 3c2 =−9
−c1 + c2 = 5
4c1 + 5c2 =−2

and get c1 = −3 and c2 = 2, so the given row is −3ρ1 + 2ρ2.

1.I.1.26 If a 6= 0 then the solution set of the first equation is {(x, y)
∣∣ x = (c− by)/a}. Taking y = 0 gives

the solution (c/a, 0), and since the second equation is supposed to have the same solution set, substituting into
it gives that a(c/a)+d ·0 = e, so c = e. Then taking y = 1 in x = (c−by)/a gives that a((c−b)/a)+d ·1 = e,
which gives that b = d. Hence they are the same equation.

When a = 0 the equations can be different and still have the same solution set: e.g., 0x + 3y = 6 and
0x+ 6y = 12.

1.I.1.29 For the reduction operation of multiplying ρi by a nonzero real number k, we have that (s1, . . . , sn)
satisfies this system

a1,1x1 + a1,2x2 + · · ·+ a1,nxn = d1

...
kai,1x1 + kai,2x2 + · · ·+ kai,nxn = kdi

...
am,1x1 + am,2x2 + · · ·+ am,nxn = dm

if and only if

a1,1s1 + a1,2s2 + · · ·+ a1,nsn = d1
...

and kai,1s1 + kai,2s2 + · · ·+ kai,nsn = kdi
...

and am,1s1 + am,2s2 + · · ·+ am,nsn = dm
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by the definition of ‘satisfies’. But, because k 6= 0, that’s true if and only if

a1,1s1 + a1,2s2 + · · ·+ a1,nsn = d1
...

and ai,1s1 + ai,2s2 + · · ·+ ai,nsn = di
...

and am,1s1 + am,2s2 + · · ·+ am,nsn = dm

(this is straightforward cancelling on both sides of the i-th equation), which says that (s1, . . . , sn) solves

a1,1x1 + a1,2x2 + · · ·+ a1,nxn = d1

...
ai,1x1 + ai,2x2 + · · ·+ ai,nxn = di

...
am,1x1 + am,2x2 + · · ·+ am,nxn = dm

as required.
For the pivot operation kρi + ρj , we have that (s1, . . . , sn) satisfies

a1,1x1 + · · ·+ a1,nxn = d1

...
ai,1x1 + · · ·+ ai,nxn = di

...
(kai,1 + aj,1)x1 + · · ·+ (kai,n + aj,n)xn = kdi + dj

...
am,1x1 + · · ·+ am,nxn = dm

if and only if

a1,1s1 + · · ·+ a1,nsn = d1
...

and ai,1s1 + · · ·+ ai,nsn = di
...

and (kai,1 + aj,1)s1 + · · ·+ (kai,n + aj,n)sn = kdi + dj
...

and am,1s1 + am,2s2 + · · ·+ am,nsn = dm

again by the definition of ‘satisfies’. Subtract k times the i-th equation from the j-th equation (remark: here
is where i 6= j is needed; if i = j then the two di’s above are not equal) to get that the previous compound
statement holds if and only if

a1,1s1 + · · ·+ a1,nsn = d1
...

and ai,1s1 + · · ·+ ai,nsn = di
...

and (kai,1 + aj,1)s1 + · · ·+ (kai,n + aj,n)sn
− (kai,1s1 + · · ·+ kai,nsn) = kdi + dj − kdi

...
and am,1s1 + · · ·+ am,nsn = dm



Answers to Exercises 3

which, after cancellation, says that (s1, . . . , sn) solves
a1,1x1 + · · ·+ a1,nxn = d1

...
ai,1x1 + · · ·+ ai,nxn = di

...
aj,1x1 + · · ·+ aj,nxn = dj

...
am,1x1 + · · ·+ am,nxn = dm

as required.
1.I.1.30 Yes, this one-equation system:

0x+ 0y = 0
is satisfied by every (x, y) ∈ R2.
1.I.1.32 Swapping rows is reversed by swapping back.

a1,1x1 + · · ·+ a1,nxn = d1

...
am,1x1 + · · ·+ am,nxn = dm

ρi↔ρj−→ ρj↔ρi−→
a1,1x1 + · · ·+ a1,nxn = d1

...
am,1x1 + · · ·+ am,nxn = dm

Multiplying both sides of a row by k 6= 0 is reversed by dividing by k.
a1,1x1 + · · ·+ a1,nxn = d1

...
am,1x1 + · · ·+ am,nxn = dm

kρi−→ (1/k)ρi−→
a1,1x1 + · · ·+ a1,nxn = d1

...
am,1x1 + · · ·+ am,nxn = dm

Adding k times a row to another is reversed by adding −k times that row.
a1,1x1 + · · ·+ a1,nxn = d1

...
am,1x1 + · · ·+ am,nxn = dm

kρi+ρj−→ −kρi+ρj−→
a1,1x1 + · · ·+ a1,nxn = d1

...
am,1x1 + · · ·+ am,nxn = dm

Remark: observe for the third case that if i = j then the result doesn’t hold:

3x+ 2y = 7
2ρ1+ρ1−→ 9x+ 6y = 21

−2ρ1+ρ1−→ −9x− 6y =−21

1.I.1.33 Let p, n, and d be the number of pennies, nickels, and dimes. For real variables, this system
p+ n+ d= 13
p+ 5n+ 10d= 83

−ρ1+ρ2−→ p+ n+ d= 13
4n+ 9d= 70

has infinitely many solutions. However, it has a limited number of solutions in which p, n, and d are non-
negative integers. Running through d = 0, . . . , d = 8 shows that (p, n, d) = (3, 4, 6) is the only sensible
solution.
1.I.1.34 Solving the system

(1/3)(a+ b+ c) + d= 29
(1/3)(b+ c+ d) + a= 23
(1/3)(c+ d+ a) + b= 21
(1/3)(d+ a+ b) + c= 17

we obtain a = 12, b = 9, c = 3, d = 21. Thus the second item, 21, is the correct answer.
1.I.1.36 Eight commissioners voted for B. To see this, we will use the given information to study how
many voters chose each order of A, B, C.

The six orders of preference are ABC, ACB, BAC, BCA, CAB, CBA; assume they receive a, b, c, d,
e, f votes respectively. We know that

a+ b+ e= 11
d+ e+ f = 12
a+ c+ d= 14
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from the number preferring A over B, the number preferring C over A, and the number preferring B over
C. Because 20 votes were cast, we also know that

c+ d+ f = 9
a+ b+ c= 8
b+ e+ f = 6

from the preferences for B over A, for A over C, and for C over B.
The solution is a = 6, b = 1, c = 1, d = 7, e = 4, and f = 1. The number of commissioners voting for B

as their first choice is therefore c+ d = 1 + 7 = 8.
Comments. The answer to this question would have been the same had we known only that at least 14
commissioners preferred B over C.

The seemingly paradoxical nature of the commissioners’s preferences (A is preferred to B, and B is
preferred to C, and C is preferred to A), an example of “non-transitive dominance”, is not uncommon when
individual choices are pooled.

1.I.1.37 (This is how the solution appeared in the Monthly. We have not used the word “dependent” yet; it
means here that Gauss’ method shows that there is not a unique solution.) If n ≥ 3 the system is dependent
and the solution is not unique. Hence n < 3. But the term “system” implies n > 1. Hence n = 2. If the
equations are

ax+ (a+ d)y = a+ 2d
(a+ 3d)x+ (a+ 4d)y = a+ 5d

then x = −1, y = 2.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Answers for subsection 1.I.2

1.I.2.21 For each problem we get a system of linear equations by looking at the equations of compo-
nents.
(a) Yes; take k = −1/2.
(b) No; the system with equations 5 = 5 · j and 4 = −4 · j has no solution.
(c) Yes; take r = 2.
(d) No. The second components give k = 0. Then the third components give j = 1. But the first
components don’t check.

1.I.2.22 This system has 1 equation. The leading variable is x1, the other variables are free.

{


−1
1
...
0

x2 + · · ·+


−1
0
...
1

xn
∣∣ x1, . . . , xn ∈ R}

1.I.2.26

(a)

1 4
2 5
3 6

 (b)
(

2 1
−3 1

)
(c)

(
5 10
10 5

)
(d)

(
1 1 0

)
1.I.2.28 On plugging in the five pairs (x, y) we get a system with the five equations and six unknowns a,
. . . , f . Because there are more unknowns than equations, if no inconsistency exists among the equations
then there are infinitely many solutions (at least one variable will end up free).

But no inconsistency can exist because a = 0, . . . , f = 0 is a solution (we are only using this zero solution
to show that the system is consistent — the prior paragraph shows that there are nonzero solutions).

1.I.2.29
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(a) Here is one — the fourth equation is redundant but still OK.
x+ y − z + w = 0

y − z = 0
2z + 2w = 0
z + w = 0

(b) Here is one.
x+ y − z + w = 0

w = 0
w = 0
w = 0

(c) This is one.
x+ y − z + w = 0
x+ y − z + w = 0
x+ y − z + w = 0
x+ y − z + w = 0

1.I.2.30
(a) Formal solution of the system yields

x =
a3 − 1
a2 − 1

y =
−a2 + a

a2 − 1
.

If a+ 1 6= 0 and a− 1 6= 0, then the system has the single solution

x =
a2 + a+ 1
a+ 1

y =
−a
a+ 1

.

If a = −1, or if a = +1, then the formulas are meaningless; in the first instance we arrive at the system{
−x+ y = 1,
x− y = 1,

which is a contradictory system. In the second instance we have{
x+ y = 1,
x+ y = 1,

which has an infinite number of solutions (for example, for x arbitrary, y = 1− x).
(b) Solution of the system yields

x =
a4 − 1
a2 − 1

y =
−a3 + a

a2 − 1
.

Here, is a2 − 1 6= 0, the system has the single solution x = a2 + 1, y = −a. For a = −1 and a = 1, we
obtain the systems {

−x+ y =−1,
x− y = 1

{
x+ y = 1,
x+ y = 1,

both of which have an infinite number of solutions.
1.I.2.31 (This is how the answer appeared in Math Magazine.) Let u, v, x, y, z be the volumes in cm3 of
Al, Cu, Pb, Ag, and Au, respectively, contained in the sphere, which we assume to be not hollow. Since the
loss of weight in water (specific gravity 1.00) is 1000 grams, the volume of the sphere is 1000 cm3. Then the
data, some of which is superfluous, though consistent, leads to only 2 independent equations, one relating
volumes and the other, weights.

u+ v + x+ y + z = 1000
2.7u+ 8.9v + 11.3x+ 10.5y + 19.3z = 7558

Clearly the sphere must contain some aluminum to bring its mean specific gravity below the specific gravities
of all the other metals. There is no unique result to this part of the problem, for the amounts of three metals
may be chosen arbitrarily, provided that the choices will not result in negative amounts of any metal.

If the ball contains only aluminum and gold, there are 294.5 cm3 of gold and 705.5 cm3 of aluminum.
Another possibility is 124.7 cm3 each of Cu, Au, Pb, and Ag and 501.2 cm3 of Al.



6 Linear Algebra, by Hefferon

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Answers for subsection 1.I.3
1.I.3.16 The answers from the prior subsection show the row operations.
(a) The solution set is

{

 2/3
−1/3

0

+

1/6
2/3
1

 z
∣∣ z ∈ R}.

A particular solution and the solution set for the associated homogeneous system are 2/3
−1/3

0

 and {

1/6
2/3
1

 z
∣∣ z ∈ R}.

(b) The solution set is

{


1
3
0
0

+


1
−2
1
0

 z
∣∣ z ∈ R}.

A particular solution and the solution set for the associated homogeneous system are
1
3
0
0

 and {


1
−2
1
0

 z
∣∣ z ∈ R}.

(c) The solution set is

{


0
0
0
0

+


−1
0
1
0

 z +


−1
−1
0
1

w
∣∣ z, w ∈ R}.

A particular solution and the solution set for the associated homogeneous system are
0
0
0
0

 and {


−1
0
1
0

 z +


−1
−1
0
1

w
∣∣ z, w ∈ R}.

(d) The solution set is

{


1
0
0
0
0

+


−5/7
−8/7

1
0
0

 c+


−3/7
−2/7

0
1
0

 d+


−1/7
4/7
0
0
1

 e
∣∣ c, d, e ∈ R}.

A particular solution and the solution set for the associated homogeneous system are
1
0
0
0
0

 and {


−5/7
−8/7

1
0
0

 c+


−3/7
−2/7

0
1
0

 d+


−1/7
4/7
0
0
1

 e
∣∣ c, d, e ∈ R}.

1.I.3.19 The first is nonsingular while the second is singular. Just do Gauss’ method and see if the echelon
form result has non-0 numbers in each entry on the diagonal.
1.I.3.22 Because the matrix of coefficients is nonsingular, Gauss’ method ends with an echelon form where
each variable leads an equation. Back substitution gives a unique solution.
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(Another way to see the solution is unique is to note that with a nonsingular matrix of coefficients the
associated homogeneous system has a unique solution, by definition. Since the general solution is the sum
of a particular solution with each homogeneous solution, the general solution has (at most) one element.)
1.I.3.23 In this case the solution set is all of Rn, and can be expressed in the required form

{c1


1
0
...
0

+ c2


0
1
...
0

+ · · ·+ cn


0
0
...
1

 ∣∣ c1, . . . , cn ∈ R}.
1.I.3.25 First the proof.

Gauss’ method will use only rationals (e.g., −(m/n)ρi+ρj). Thus the solution set can be expressed using
only rational numbers as the components of each vector. Now the particular solution is all rational.

There are infinitely many (rational vector) solutions if and only if the associated homogeneous system has
infinitely many (real vector) solutions. That’s because setting any parameters to be rationals will produce
an all-rational solution.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Answers for subsection 1.II.1
1.II.1.5 The vector 2

0
3


is not in the line. Because 2

0
3

−
−1

0
−4

 =

3
0
7


that plane can be described in this way.

{

−1
0
4

+m

1
1
2

+ n

3
0
7

 ∣∣ m,n ∈ R}
1.II.1.8 The “if” half is straightforward. If b1 − a1 = d1 − c1 and b2 − a2 = d2 − c2 then√

(b1 − a1)2 + (b2 − a2)2 =
√

(d1 − c1)2 + (d2 − c2)2

so they have the same lengths, and the slopes are just as easy:
b2 − a2

b1 − a1
=
d2 − c2
d1 − a1

(if the denominators are 0 they both have undefined slopes).
For “only if”, assume that the two segments have the same length and slope (the case of undefined slopes

is easy; we will do the case where both segments have a slope m). Also assume, without loss of generality,
that a1 < b1 and that c1 < d1. The first segment is (a1, a2)(b1, b2) = {(x, y)

∣∣ y = mx+ n1, x ∈ [a1..b1]}
(for some intercept n1) and the second segment is (c1, c2)(d1, d2) = {(x, y)

∣∣ y = mx+ n2, x ∈ [c1..d1]} (for
some n2). Then the lengths of those segments are√

(b1 − a1)2 + ((mb1 + n1)− (ma1 + n1))2 =
√

(1 +m2)(b1 − a1)2

and, similarly,
√

(1 +m2)(d1 − c1)2. Therefore, |b1 − a1| = |d1 − c1|. Thus, as we assumed that a1 < b1 and
c1 < d1, we have that b1 − a1 = d1 − c1.

The other equality is similar.
1.II.1.9 We shall later define it to be a set with one element — an “origin”.
1.II.1.11 Euclid no doubt is picturing a plane inside of R3. Observe, however, that both R1 and R3 also
satisfy that definition.
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Answers for subsection 1.II.2
1.II.2.13 Solve (k)(4) + (1)(3) = 0 to get k = −3/4.
1.II.2.14 The set

{

xy
z

 ∣∣ 1x+ 3y − 1z = 0}

can also be described with parameters in this way.

{

−3
1
0

 y +

1
0
1

 z
∣∣ y, z ∈ R}

1.II.2.16 Clearly u1u1 + · · ·+ unun is zero if and only if each ui is zero. So only ~0 ∈ Rn is perpendicular
to itself.
1.II.2.18
(a) Verifying that (k~x) ~y = k(~x ~y) = ~x (k~y) for k ∈ R and ~x, ~y ∈ Rn is easy. Now, for k ∈ R and
~v, ~w ∈ Rn, if ~u = k~v then ~u ~v = (k~u) ~v = k(~v ~v), which is k times a nonnegative real.

The ~v = k~u half is similar (actually, taking the k in this paragraph to be the reciprocal of the k above
gives that we need only worry about the k = 0 case).

(b) We first consider the ~u ~v ≥ 0 case. From the Triangle Inequality we know that ~u ~v = ‖~u ‖ ‖~v ‖ if and
only if one vector is a nonnegative scalar multiple of the other. But that’s all we need because the first
part of this exercise shows that, in a context where the dot product of the two vectors is positive, the two
statements ‘one vector is a scalar multiple of the other’ and ‘one vector is a nonnegative scalar multiple
of the other’, are equivalent.

We finish by considering the ~u ~v < 0 case. Because 0 < |~u ~v| = −(~u ~v) = (−~u) ~v and ‖~u ‖ ‖~v ‖ =
‖ − ~u ‖ ‖~v ‖, we have that 0 < (−~u) ~v = ‖ − ~u ‖ ‖~v ‖. Now the prior paragraph applies to give that one of
the two vectors −~u and ~v is a scalar multiple of the other. But that’s equivalent to the assertion that one
of the two vectors ~u and ~v is a scalar multiple of the other, as desired.

1.II.2.19 No. These give an example.

~u =
(

1
0

)
~v =

(
1
0

)
~w =

(
1
1

)
1.II.2.22 Assume that ~v ∈ Rn has components v1, . . . , vn. If ~v 6= ~0 then we have this.√(

v1√
v1

2 + · · ·+ vn2

)2

+ · · ·+
(

vn√
v1

2 + · · ·+ vn2

)2

=

√(
v1

2

v1
2 + · · ·+ vn2

)
+ · · ·+

(
vn2

v1
2 + · · ·+ vn2

)
= 1

If ~v = ~0 then ~v/‖~v ‖ is not defined.
1.II.2.23 For the first question, assume that ~v ∈ Rn and r ≥ 0, take the root, and factor.

‖r~v ‖ =
√

(rv1)2 + · · ·+ (rvn)2 =
√
r2(v1

2 + · · ·+ vn2 = r‖~v ‖
For the second question, the result is r times as long, but it points in the opposite direction in that r~v +
(−r)~v = ~0.
1.II.2.25 Write

~u =

u1

...
un

 ~v =

v1

...
vn
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and then this computation works.

‖~u+ ~v ‖2 + ‖~u− ~v ‖2 = (u1 + v1)2 + · · ·+ (un + vn)2

+ (u1 − v1)2 + · · ·+ (un − vn)2

= u1
2 + 2u1v1 + v1

2 + · · ·+ un
2 + 2unvn + vn

2

+ u1
2 − 2u1v1 + v1

2 + · · ·+ un
2 − 2unvn + vn

2

= 2(u1
2 + · · ·+ un

2) + 2(v1
2 + · · ·+ vn

2)

= 2‖~u ‖2 + 2‖~v ‖2

1.II.2.26 We will prove this demonstrating that the contrapositive statement holds: if ~x 6= ~0 then there is
a ~y with ~x ~y 6= 0.

Assume that ~x ∈ Rn. If ~x 6= ~0 then it has a nonzero component, say the i-th one xi. But the vector
~y ∈ Rn that is all zeroes except for a one in component i gives ~x ~y = xi. (A slicker proof just considers
~x ~x.)

1.II.2.27 Yes. We prove this by induction.
Assume that the vectors are in some Rk. Clearly the statement applies to one vector. The Triangle

Inequality is this statement applied to two vectors. For an inductive step assume the statement is true for
n or fewer vectors. Then this

‖~u1 + · · ·+ ~un + ~un+1‖ ≤ ‖~u1 + · · ·+ ~un‖+ ‖~un+1‖
follows by the Triangle Inequality for two vectors. Now the inductive hypothesis, applied to the first summand
on the right, gives that as less than or equal to ‖~u1‖+ · · ·+ ‖~un‖+ ‖~un+1‖.
1.II.2.28 By definition

~u ~v

‖~u ‖ ‖~v ‖ = cos θ

where θ is the angle between the vectors. Thus the ratio is | cos θ|.
1.II.2.29 So that the statement ‘vectors are orthogonal iff their dot product is zero’ has no exceptions.

1.II.2.30 The angle between (a) and (b) is found (for a, b 6= 0) with

arccos(
ab√
a2
√
b2

).

If a or b is zero then the angle is π/2 radians. Otherwise, if a and b are of opposite signs then the angle is π
radians, else the angle is zero radians.

1.II.2.31 The angle between ~u and ~v is acute if ~u ~v > 0, is right if ~u ~v = 0, and is obtuse if ~u ~v < 0.
That’s because, in the formula for the angle, the denominator is never negative.

1.II.2.33 Where ~u,~v ∈ Rn, the vectors ~u+~v and ~u−~v are perpendicular if and only if 0 = (~u+~v) (~u−~v) =
~u ~u− ~v ~v, which shows that those two are perpendicular if and only if ~u ~u = ~v ~v. That holds if and only
if ‖~u ‖ = ‖~v ‖.
1.II.2.34 Suppose ~u ∈ Rn is perpendicular to both ~v ∈ Rn and ~w ∈ Rn. Then, for any k,m ∈ R we have
this.

~u (k~v +m~w) = k(~u ~v) +m(~u ~w) = k(0) +m(0) = 0

1.II.2.35 We will show something more general: if ‖~z1‖ = ‖~z2‖ for ~z1, ~z2 ∈ Rn, then ~z1 + ~z2 bisects the
angle between ~z1 and ~z2
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©©*
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(we ignore the case where ~z1 and ~z2 are the zero vector).
The ~z1 + ~z2 = ~0 case is easy. For the rest, by the definition of angle, we will be done if we show this.

~z1 (~z1 + ~z2)
‖~z1‖ ‖~z1 + ~z2‖

=
~z2 (~z1 + ~z2)
‖~z2‖ ‖~z1 + ~z2‖

But distributing inside each expression gives
~z1 ~z1 + ~z1 ~z2

‖~z1‖ ‖~z1 + ~z2‖
~z2 ~z1 + ~z2 ~z2

‖~z2‖ ‖~z1 + ~z2‖
and ~z1 ~z1 = ‖~z1‖ = ‖~z2‖ = ~z2 ~z2, so the two are equal.
1.II.2.36 We can show the two statements together. Let ~u,~v ∈ Rn, write

~u =

u1

...
un

 ~v =

v1

...
vn


and calculate.

cos θ =
ku1v1 + · · ·+ kunvn√

(ku1)2 + · · ·+ (kun)2
√
b1

2 + · · ·+ bn
2

=
k

|k|
~u · ~v
‖~u ‖ ‖~v ‖ = ± ~u ~v

‖~u ‖ ‖~v ‖

1.II.2.39 This is how the answer was given in the cited source. The actual velocity ~v of the wind is the
sum of the ship’s velocity and the apparent velocity of the wind. Without loss of generality we may assume
~a and ~b to be unit vectors, and may write

~v = ~v1 + s~a = ~v2 + t~b

where s and t are undetermined scalars. Take the dot product first by ~a and then by ~b to obtain
s− t~a ~b = ~a (~v2 − ~v1)

s~a ~b− t = ~b (~v2 − ~v1)

Multiply the second by ~a ~b, subtract the result from the first, and find

s =
[~a− (~a ~b)~b] (~v2 − ~v1)

1− (~a ~b)2
.

Substituting in the original displayed equation, we get

~v = ~v1 +
[~a− (~a ~b)~b] (~v2 − ~v1)~a

1− (~a ~b)2
.

1.II.2.40 We use induction on n.
In the n = 1 base case the identity reduces to

(a1b1)2 = (a1
2)(b12)− 0

and clearly holds.
For the inductive step assume that the formula holds for the 0, . . . , n cases. We will show that it then

holds in the n+ 1 case. Start with the right-hand side( ∑
1≤j≤n+1

aj
2
)( ∑

1≤j≤n+1

bj
2
)
−

∑
1≤k<j≤n+1

(
akbj − ajbk

)2
=
[
(
∑

1≤j≤n
aj

2) + an+1
2
][

(
∑

1≤j≤n
bj

2) + bn+1
2
]
−
[ ∑
1≤k<j≤n

(
akbj − ajbk

)2 +
∑

1≤k≤n

(
akbn+1 − an+1bk

)2]
=
( ∑

1≤j≤n
aj

2
)( ∑

1≤j≤n
bj

2
)

+
∑

1≤j≤n
bj

2an+1
2 +

∑
1≤j≤n

aj
2bn+1

2 + an+1
2bn+1

2

−
[ ∑
1≤k<j≤n

(
akbj − ajbk

)2 +
∑

1≤k≤n

(
akbn+1 − an+1bk

)2]
=
( ∑

1≤j≤n
aj

2
)( ∑

1≤j≤n
bj

2
)
−

∑
1≤k<j≤n

(
akbj − ajbk

)2 +
∑

1≤j≤n
bj

2an+1
2 +

∑
1≤j≤n

aj
2bn+1

2 + an+1
2bn+1

2

−
∑

1≤k≤n

(
akbn+1 − an+1bk

)2
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and apply the inductive hypothesis

=
( ∑

1≤j≤n
ajbj

)2 +
∑

1≤j≤n
bj

2an+1
2 +

∑
1≤j≤n

aj
2bn+1

2 + an+1
2bn+1

2

−
[ ∑
1≤k≤n

ak
2bn+1

2 − 2
∑

1≤k≤n
akbn+1an+1bk +

∑
1≤k≤n

an+1
2bk

2
]

=
( ∑

1≤j≤n
ajbj

)2 − 2
( ∑

1≤k≤n
akbn+1an+1bk

)
+ an+1

2bn+1
2

=
[( ∑

1≤j≤n
ajbj

)
+ an+1bn+1

]2
to derive the left-hand side.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Answers for subsection 1.III.1

1.III.1.10 Routine Gauss’ method gives one:

−3ρ1+ρ2−→
−(1/2)ρ1+ρ3

2 1 1 3
0 1 −2 −7
0 9/2 1/2 7/2

 −(9/2)ρ2+ρ3−→

2 1 1 3
0 1 −2 −7
0 0 19/2 35


and any cosmetic change, like multiplying the bottom row by 2,2 1 1 3

0 1 −2 −7
0 0 19 70


gives another.

1.III.1.13
(a) The ρi ↔ ρi operation does not change A.
(b) For instance, (

1 2
3 4

)
−ρ1+ρ1−→

(
0 0
3 4

)
ρ1+ρ1−→

(
0 0
3 4

)
leaves the matrix changed.

(c) If i 6= j then

...
ai,1 · · · ai,n

...
aj,1 · · · aj,n

...


kρi+ρj−→



...
ai,1 · · · ai,n

...
kai,1 + aj,1 · · · kai,n + aj,n

...



−kρi+ρj−→



...
ai,1 · · · ai,n

...
−kai,1 + kai,1 + aj,1 · · · −kai,n + kai,n + aj,n

...


does indeed give A back. (Of course, if i = j then the third matrix would have entries of the form
−k(kai,j + ai,j) + kai,j + ai,j .)
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Answers for subsection 1.III.2

1.III.2.12 First, the only matrix row equivalent to the matrix of all 0’s is itself (since row operations have
no effect).

Second, the matrices that reduce to (
1 a
0 0

)
have the form (

b ba
c ca

)
(where a, b, c ∈ R).

Next, the matrices that reduce to (
0 1
0 0

)
have the form (

0 a
0 b

)
(where a, b ∈ R).

Finally, the matrices that reduce to (
1 0
0 1

)
are the nonsingular matrices. That’s because a linear system for which this is the matrix of coefficients will
have a unique solution, and that is the definition of nonsingular. (Another way to say the same thing is to
say that they fall into none of the above classes.)

1.III.2.13
(a) They have the form (

a 0
b 0

)
where a, b ∈ R.

(b) They have this form (for a, b ∈ R). (
1a 2a
1b 2b

)
(c) They have the form (

a b
c d

)
(for a, b, c, d ∈ R) where ad − bc 6= 0. (This is the formula that determines when a 2× 2 matrix is
nonsingular.)

1.III.2.14 Infinitely many.

1.III.2.15 No. Row operations do not change the size of a matrix.

1.III.2.16
(a) A row operation on a zero matrix has no effect. Thus each zero matrix is alone in its row equivalence
class.

(b) No. Any nonzero entry can be rescaled.

1.III.2.20
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(a) If there is a linear relationship where c0 is not zero then we can subtract c0~β0 and divide both sides by
c0 to get ~β0 as a linear combination of the others. (Remark. If there are no others — if the relationship
is, say, ~0 = 3 · ~0 — then the statement is still true because zero is by definition the sum of the empty set
of vectors.)

If ~β0 is a combination of the others ~β0 = c1~β1 + · · ·+ cn~βn then subtracting ~β0 from both sides gives
a relationship where one of the coefficients is nonzero, specifically, the coefficient is −1.

(b) The first row is not a linear combination of the others for the reason given in the proof: in the equation
of components from the column containing the leading entry of the first row, the only nonzero entry is
the leading entry from the first row, so its coefficient must be zero. Thus, from the prior part of this
question, the first row is in no linear relationship with the other rows. Hence, to see if the second row can
be in a linear relationship with the other rows, we can leave the first row out of the equation. But now
the argument just applied to the first row will apply to the second row. (Technically, we are arguing by
induction here.)

1.III.2.22
(a) The inductive step is to show that if the statement holds on rows 1 through r then it also holds on
row r + 1. That is, we assume that `1 = k1, and `2 = k2, . . . , and `r = kr, and we will show that
`r+1 = kr+1 also holds (for r in 1 ..m− 1).

(b) Lemma 2.3 gives the relationship βr+1 = sr+1,1δ1 + sr+2,2δ2 + · · · + sr+1,mδm between rows. Inside
of those rows, consider the relationship between entries in column `1 = k1. Because r + 1 > 1, the row
βr+1 has a zero in that entry (the matrix B is in echelon form), while the row δ1 has a nonzero entry in
column k1 (it is, by definition of k1, the leading entry in the first row of D). Thus, in that column, the
above relationship among rows resolves to this equation among numbers: 0 = sr+1,1 ·d1,k1 , with d1,k1 6= 0.
Therefore sr+1,1 = 0.

With sr+1,1 = 0, a similar argument shows that sr+1,2 = 0. With those two, another turn gives that
sr+1,3 = 0. That is, inside of the larger induction argument used to prove the entire lemma is here an
subargument by induction that shows sr+1,j = 0 for all j in 1 .. r. (We won’t write out the details since it
is just like the induction done in Exercise 21.)

(c) First, `r+1 < kr+1 is impossible. In the columns of D to the left of column kr+1 the entries are are all
zeroes as dr+1,kr+1 leads the row k+1) and so if `k+1 < kk+1 then the equation of entries from column `k+1

would be br+1,`r+1 = sr+1,1 · 0 + · · ·+ sr+1,m · 0, but br+1,`r+1 isn’t zero since it leads its row. A symmetric
argument shows that kr+1 < `r+1 also is impossible.

1.III.2.23 The zero rows could have nonzero coefficients, and so the statement would not be true.
1.III.2.25 If multiplication of a row by zero were allowed then Lemma 2.6 would not hold. That is, where(

1 3
2 1

)
0ρ2−→

(
1 3
0 0

)
all the rows of the second matrix can be expressed as linear combinations of the rows of the first, but the
converse does not hold. The second row of the first matrix is not a linear combination of the rows of the
second matrix.
1.III.2.27 Define linear systems to be equivalent if their augmented matrices are row equivalent. The proof
that equivalent systems have the same solution set is easy.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Answers for Topic: Computer Algebra Systems
1
(a) The commands

> A:=array( [[40,15],

[-50,25]] );

> u:=array([100,50]);

> linsolve(A,u);
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yield the answer [1, 4].
(b) Here there is a free variable:

> A:=array( [[7,0,-7,0],

[8,1,-5,2],

[0,1,-3,0],

[0,3,-6,-1]] );

> u:=array([0,0,0,0]);

> linsolve(A,u);

prompts the reply [ t1, 3 t1, t1, 3 t1].
2 These are easy to type in. For instance, the first

> A:=array( [[2,2],

[1,-4]] );

> u:=array([5,0]);

> linsolve(A,u);

gives the expected answer of [2, 1/2]. The others are entered similarly.
(a) The answer is x = 2 and y = 1/2.
(b) The answer is x = 1/2 and y = 3/2.
(c) This system has infinitely many solutions. In the first subsection, with z as a parameter, we got
x = (43 − 7z)/4 and y = (13 − z)/4. Maple responds with [−12 + 7 t1, t1, 13 − 4 t1], for some reason
preferring y as a parameter.

(d) There is no solution to this system. When the array A and vector u are given to Maple and it is asked
to linsolve(A,u), it returns no result at all, that is, it responds with no solutions.

(e) The solutions is (x, y, z) = (5, 5, 0).
(f) There are many solutions. Maple gives [1,−1 + t1, 3− t1, t1].

3 As with the prior question, entering these is easy.
(a) This system has infinitely many solutions. In the second subsection we gave the solution set as

{
(

6
0

)
+
(
−2
1

)
y
∣∣ y ∈ R}

and Maple responds with [6− 2 t1, t1].
(b) The solution set has only one member

{
(

0
1

)
}

and Maple has no trouble finding it [0, 1].
(c) This system’s solution set is infinite

{

 4
−1
0

+

−1
1
1

x3

∣∣ x3 ∈ R}

and Maple gives [ t1,− t1 + 3,− t1 + 4].
(d) There is a unique solution

{

1
1
1

}
and Maple gives [1, 1, 1].

(e) This system has infinitely many solutions; in the second subsection we described the solution set with
two parameters

{


5/3
2/3
0
0

+


−1/3
2/3
1
0

 z +


−2/3
1/3
0
1

w
∣∣ z, w ∈ R}

as does Maple [3− 2 t1 + t2, t1, t2,−2 + 3 t1 − 2 t2].
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(f) The solution set is empty and Maple replies to the linsolve(A,u) command with no returned solutions.

4 In response to this prompting
> A:=array( [[a,c],

[b,d]] );

> u:=array([p,q]);

> linsolve(A,u);

Maple thought for perhaps twenty seconds and gave this reply.[
−−d p+ q c

−b c+ a d
,
−b p+ a q

−b c+ a d

]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Answers for Topic: Input-Output Analysis

1 These answers were given by Octave.
(a) s = 33 379, a = 43 304
(b) s = 37 284, a = 43 589
(c) s = 37 411, a = 43 589

2 Octave gives these answers.
(a) s = 24 244, a = 30 309
(b) s = 24 267, a = 30 675

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Answers for Topic: Accuracy of Computations

1 Sceintific notation is convienent to express the two-place restriction. We have .25 × 102 + .67 × 100 =
.25× 102. The 2/3 has no apparent effect.

2 The reduction
−3ρ1+ρ2−→ x+ 2y = 3

−8 =−7.992

gives a solution of (x, y) = (1.002, 0.999).

3
(a) The fully accurate solution is that x = 10 and y = 0.
(b) The four-digit conclusion is quite different.

−(.3454/.0003)ρ1+ρ2−→
(
.0003 1.556 1.569

0 1789 −1805

)
=⇒ x = 10460, y = −1.009

4
(a) For the first one, first, (2/3) − (1/3) is .666 666 67 − .333 333 33 = .333 333 34 and so (2/3) + ((2/3) −
(1/3)) = .666 666 67 + .333 333 34 = 1.000 000 0. For the other one, first ((2/3) + (2/3)) = .666 666 67 +
.666 666 67 = 1.333 333 3 and so ((2/3) + (2/3))− (1/3) = 1.333 333 3− .333 333 33 = .999 999 97.

(b) The first equation is .333 333 33·x+1.000 000 0·y = 0 while the second is .666 666 67·x+2.000 000 0·y = 0.

5
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(a) This calculation

−(2/3)ρ1+ρ2−→
−(1/3)ρ1+ρ3

3 2 1 6
0 −(4/3) + 2ε −(2/3) + 2ε −2 + 4ε
0 −(2/3) + 2ε −(1/3)− ε −1 + ε


−(1/2)ρ2+ρ3−→

3 2 1 6
0 −(4/3) + 2ε −(2/3) + 2ε −2 + 4ε
0 ε −2ε −ε


gives a third equation of y − 2z = −1. Substituting into the second equation gives ((−10/3) + 6ε) · z =
(−10/3) + 6ε so z = 1 and thus y = 1. With those, the first equation says that x = 1.

(b) The solution with two digits kept.30× 101 .20× 101 .10× 101 .60× 101

.10× 101 .20× 10−3 .20× 10−3 .20× 101

.30× 101 .20× 10−3 −.10× 10−3 .10× 101


−(2/3)ρ1+ρ2−→
−(1/3)ρ1+ρ3

.30× 101 .20× 101 .10× 101 .60× 101

0 −.13× 101 −.67× 100 −.20× 101

0 −.67× 100 −.33× 100 −.10× 101


−(.67/1.3)ρ2+ρ3−→

.30× 101 .20× 101 .10× 101 .60× 101

0 −.13× 101 −.67× 100 −.20× 101

0 0 .15× 10−2 .31× 10−2


comes out to be z = 2.1, y = 2.6, and x = −.43.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Answers for Topic: Analyzing Networks
5
(a) 40/13
(b) 8 ohms
(c) R = 1/((1/R1) + (1/R2))
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Chapter 2. Vector Spaces

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Answers for subsection 2.I.1

2.I.1.17
(a) 0 + 0x+ 0x2 + 0x3

(b)
(

0 0 0 0
0 0 0 0

)
(c) The constant function f(x) = 0
(d) The constant function f(n) = 0

2.I.1.21 The usual operations (v0 +v1i)+(w0 +w1i) = (v0 +w0)+(v1 +w1)i and r(v0 +v1i) = (rv0)+(rv1)i
suffice. The check is easy.
2.I.1.23 The natural operations are (v1x+v2y+v3z)+(w1x+w2y+w3z) = (v1+w1)x+(v2+w2)y+(v3+w3)z
and r·(v1x+v2y+v3z) = (rv1)x+(rv2)y+(rv3)z. The check that this is a vector space is easy; use Example 1.3
as a guide.
2.I.1.24 The ‘+’ operation is not commutative; producing two members of the set witnessing this assertion
is easy.
2.I.1.25
(a) It is not a vector space.

(1 + 1) ·

1
0
0

 6=
1

0
0

+

1
0
0


(b) It is not a vector space.

1 ·

1
0
0

 6=
1

0
0


2.I.1.29
(a) No: 1 · (0, 1) + 1 · (0, 1) 6= (1 + 1) · (0, 1).
(b) Same as the prior answer.

2.I.1.30 It is not a vector space since it is not closed under addition since (x2) + (1 + x− x2) is not in the
set.
2.I.1.31
(a) 6
(b) nm
(c) 3
(d) To see that the answer is 2, rewrite it as

{
(
a 0
b −a− b

) ∣∣ a, b ∈ R}
so that there are two parameters.

2.I.1.34 Addition is commutative, so in any vector space, for any vector ~v we have that ~v = ~v+~0 = ~0 +~v.
2.I.1.36 Each element of a vector space has one and only one additive inverse.

For, let V be a vector space and suppose that ~v ∈ V . If ~w1, ~w2 ∈ V are both additive inverses of ~v then
consider ~w1 + ~v + ~w2. On the one hand, we have that it equals ~w1 + (~v + ~w2) = ~w1 +~0 = ~w1. On the other
hand we have that it equals (~w1 + ~v) + ~w2 = ~0 + ~w2 = ~w2. Therefore, ~w1 = ~w2.
2.I.1.37
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(a) Every such set has the form {r · ~v + s · ~w
∣∣ r, s ∈ R} where either or both of ~v, ~w may be ~0. With the

inherited operations, closure of addition (r1~v + s1 ~w) + (r2~v + s2 ~w) = (r1 + r2)~v + (s1 + s2)~w and scalar
multiplication c(r~v + s~w) = (cr)~v + (cs)~w are easy. The other conditions are also routine.

(b) No such set can be a vector space under the inherited operations because it does not have a zero
element.

2.I.1.39 Yes. A theorem of first semester calculus says that a sum of differentiable functions is differentiable
and that (f + g)′ = f ′ + g′, and that a multiple of a differentiable function is differentiable and that
(r · f)′ = r f ′.
2.I.1.40 The check is routine. Note that ‘1’ is 1 + 0i and the zero elements are these.
(a) (0 + 0i) + (0 + 0i)x+ (0 + 0i)x2

(b)
(

0 + 0i 0 + 0i
0 + 0i 0 + 0i

)
2.I.1.41 Notably absent from the definition of a vector space is a distance measure.
2.I.1.43
(a) We outline the check of the conditions from Definition 1.1.

Item (1) has five conditions. First, additive closure holds because if a0 +a1 +a2 = 0 and b0 +b1 +b2 = 0
then

(a0 + a1x+ a2x
2) + (b0 + b1x+ b2x

2) = (a0 + b0) + (a1 + b1)x+ (a2 + b2)x2

is in the set since (a0 + b0) + (a1 + b1) + (a2 + b2) = (a0 + a1 + a2) + (b0 + b1 + b2) is zero. The second
through fifth conditions are easy.

Item (2) also has five conditions. First, closure under scalar multiplication holds because if a0+a1+a2 =
0 then

r · (a0 + a1x+ a2x
2) = (ra0) + (ra1)x+ (ra2)x2

is in the set as ra0 + ra1 + ra2 = r(a0 + a1 + a2) is zero. The second through fifth conditions here are also
easy.

(b) This is similar to the prior answer.
(c) Call the vector space V . We have two implications: left to right, if S is a subspace then it is closed
under linear combinations of pairs of vectors and, right to left, if a nonempty subset is closed under linear
combinations of pairs of vectors then it is a subspace. The left to right implication is easy; we here sketch
the other one by assuming S is nonempty and closed, and checking the conditions of Definition 1.1.

Item (1) has five conditions. First, to show closure under addition, if ~s1, ~s2 ∈ S then ~s1 + ~s2 ∈ S as
~s1 + ~s2 = 1 · ~s1 + 1 · ~s2. Second, for any ~s1, ~s2 ∈ S, because addition is inherited from V , the sum ~s1 + ~s2

in S equals the sum ~s1 + ~s2 in V and that equals the sum ~s2 + ~s1 in V and that in turn equals the sum
~s2 + ~s1 in S. The argument for the third condition is similar to that for the second. For the fourth,
suppose that ~s is in the nonempty set S and note that 0 · ~s = ~0 ∈ S; showing that the ~0 of V acts under
the inherited operations as the additive identity of S is easy. The fifth condition is satisfied because for
any ~s ∈ S closure under linear combinations shows that the vector 0 ·~0 + (−1) · ~s is in S; showing that it
is the additive inverse of ~s under the inherited operations is routine.

The proofs for item (2) are similar.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Answers for subsection 2.I.2

2.I.2.23
(a) Yes; it is in that span since 1 · cos2 x+ 1 · sin2 x = f(x).
(b) No, since r1 cos2 x+ r2 sin2 x = 3 + x2 has no scalar solutions that work for all x. For instance, setting
x to be 0 and π gives the two equations r1 ·1+r2 ·0 = 3 and r1 ·1+r2 ·0 = 3+π2, which are not consistent
with each other.

(c) No; consider what happens on setting x to be π/2 and 3π/2.
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(d) Yes, cos(2x) = 1 · cos2(x)− 1 · sin2(x).
2.I.2.27 Technically, no. Subspaces of R3 are sets of three-tall vectors, while R2 is a set of two-tall vectors.
Clearly though, R2 is “just like” this subspace of R3.

{

xy
0

 ∣∣ x, y ∈ R}
2.I.2.29 It can be improper. If ~v = ~0 then this is a trivial subspace. At the opposite extreme, if the vector
space is R1 and ~v 6= ~0 then the subspace is all of R1.
2.I.2.30 No, such a set is not closed. For one thing, it does not contain the zero vector.
2.I.2.31 No. The only subspaces of R1 are the space itself and its trivial subspace. Any subspace S of R
that contains a nonzero member ~v must contain the set of all of its scalar multiples {r · ~v

∣∣ r ∈ R}. But this
set is all of R.
2.I.2.32 Item (1) is checked in the text.

Item (2) has five conditions. First, for closure, if c ∈ R and ~s ∈ S then c · ~s ∈ S as c · ~s = c · ~s + 0 · ~0.
Second, because the operations in S are inherited from V , for c, d ∈ R and ~s ∈ S, the scalar product (c+d) ·~s
in S equals the product (c+ d) · ~s in V , and that equals c · ~s+ d · ~s in V , which equals c · ~s+ d · ~s in S.

The check for the third, fourth, and fifth conditions are similar to the second conditions’s check just
given.
2.I.2.33 An exercise in the prior subsection shows that every vector space has only one zero vector (that
is, there is only one vector that is the additive identity element of the space). But a trivial space has only
one element and that element must be this (unique) zero vector.
2.I.2.35
(a) It is not a subspace because these are not the inherited operations. For one thing, in this space,

0 ·

xy
z

 =

1
0
0


while this does not, of course, hold in R3.

(b) We can combine the arguments showing closure under addition and scalar multiplication into one single
argument showing closure under linear combinations of two vectors. If r1, r2, x1, x2, y1, y2, z1, z2 are in R
then

r1

x1

y1

z1

+ r2

x2

y2

z2

 =

r1x1 − r1 + 1
r1y1

r1z1

+

r2x2 − r2 + 1
r2y2

r2z2

 =

r1x1 − r1 + r2x2 − r2 + 1
r1y1 + r2y2

r1z1 + r2z2


(note that the first component of the last vector does not say ‘ + 2’ because addition of vectors in this
space has the first components combine in this way: (r1x1−r1 +1)+(r2x2−r2 +1)−1). Adding the three
components of the last vector gives r1(x1 − 1 + y1 + z1) + r2(x2 − 1 + y2 + z2) + 1 = r1 · 0 + r2 · 0 + 1 = 1.

Most of the other checks of the conditions are easy (although the oddness of the operations keeps them
from being routine). Commutativity of addition goes like this.x1

y1

z1

+

x2

y2

z2

 =

x1 + x2 − 1
y1 + y2

z1 + z2

 =

x2 + x1 − 1
y2 + y1

z2 + z1

 =

x2

y2

z2

+

x1

y1

z1


Associativity of addition has

(

x1

y1

z1

+

x2

y2

z2

) +

x3

y3

z3

 =

(x1 + x2 − 1) + x3 − 1
(y1 + y2) + y3

(z1 + z2) + z3


while x1

y1

z1

+ (

x2

y2

z2

+

x3

y3

z3

) =

x1 + (x2 + x3 − 1)− 1
y1 + (y2 + y3)
z1 + (z2 + z3)
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and they are equal. The identity element with respect to this addition operation works this wayxy
z

+

1
0
0

 =

x+ 1− 1
y + 0
z + 0

 =

xy
z


and the additive inverse is similar.xy

z

+

−x+ 2
−y
−z

 =

x+ (−x+ 2)− 1
y − y
z − z

 =

1
0
0


The conditions on scalar multiplication are also easy. For the first condition,

(r + s)

xy
z

 =

(r + s)x− (r + s) + 1
(r + s)y
(r + s)z


while

r

xy
z

+ s

xy
z

 =

rx− r + 1
ry
rz

+

sx− s+ 1
sy
sz

 =

(rx− r + 1) + (sx− s+ 1)− 1
ry + sy
rz + sz


and the two are equal. The second condition compares

r · (

x1

y1

z1

+

x2

y2

z2

) = r ·

x1 + x2 − 1
y1 + y2

z1 + z2

 =

r(x1 + x2 − 1)− r + 1
r(y1 + y2)
r(z1 + z2)


with

r

x1

y1

z1

+ r

x2

y2

z2

 =

rx1 − r + 1
ry1

rz1

+

rx2 − r + 1
ry2

rz2

 =

(rx1 − r + 1) + (rx2 − r + 1)− 1
ry1 + ry2

rz1 + rz2


and they are equal. For the third condition,

(rs)

xy
z

 =

rsx− rs+ 1
rsy
rsz


while

r(s

xy
z

) = r(

sx− s+ 1
sy
sz

) =

r(sx− s+ 1)− r + 1
rsy
rsz


and the two are equal. For scalar multiplication by 1 we have this.

1 ·

xy
z

 =

1x− 1 + 1
1y
1z

 =

xy
z


Thus all the conditions on a vector space are met by these two operations.

Remark. A way to understand this vector space is to think of it as the plane in R3

P = {

xy
z

 ∣∣ x+ y + z = 0}

displaced away from the origin by 1 along the x-axis. Then addition becomes: to add two members of this
space, x1

y1

z1

 ,

x2

y2

z2


(such that x1 + y1 + z1 = 1 and x2 + y2 + z2 = 1) move them back by 1 to place them in P and add as
usual, x1 − 1

y1

z1

+

x2 − 1
y2

z2

 =

x1 + x2 − 2
y1 + y2

z1 + z2

 (in P )



Answers to Exercises 21

and then move the result back out by 1 along the x-axis.x1 + x2 − 1
y1 + y2

z1 + z2

 .

Scalar multiplication is similar.
(c) For the subspace to be closed under the inherited scalar multiplication, where ~v is a member of that
subspace,

0 · ~v =

0
0
0


must also be a member.

The converse does not hold. Here is a subset of R3 that contains the origin

{

0
0
0

 ,

1
0
0

}
(this subset has only two elements) but is not a subspace.

2.I.2.36
(a) (~v1 + ~v2 + ~v3)− (~v1 + ~v2) = ~v3

(b) (~v1 + ~v2)− (~v1) = ~v2

(c) Surely, ~v1.
(d) Taking the one-long sum and subtracting gives (~v1)− ~v1 = ~0.

2.I.2.37 Yes; any space is a subspace of itself, so each space contains the other.
2.I.2.38
(a) The union of the x-axis and the y-axis in R2 is one.
(b) The set of integers, as a subset of R1, is one.
(c) The subset {~v} of R2 is one, where ~v is any nonzero vector.

2.I.2.39 Because vector space addition is commutative, a reordering of summands leaves a linear combina-
tion unchanged.
2.I.2.40 We always consider that span in the context of an enclosing space.
2.I.2.41 It is both ‘if’ and ‘only if’.

For ‘if’, let S be a subset of a vector space V and assume ~v ∈ S satisfies ~v = c1~s1 + · · · + cn~sn where
c1, . . . , cn are scalars and ~s1, . . . , ~sn ∈ S. We must show that [S ∪ {~v}] = [S].

Containment one way, [S] ⊆ [S ∪ {~v}] is obvious. For the other direction, [S ∪ {~v}] ⊆ [S], note that if a
vector is in the set on the left then it has the form d0~v+ d1~t1 + · · ·+ dm~tm where the d’s are scalars and the
~t ’s are in S. Rewrite that as d0(c1~s1 + · · ·+ cn~sn) + d1~t1 + · · ·+ dm~tm and note that the result is a member
of the span of S.

The ‘only if’ is clearly true — adding ~v enlarges the span to include at least ~v.
2.I.2.44 It is; apply Lemma 2.9. (You must consider the following. Suppose B is a subspace of a vector
space V and suppose A ⊆ B ⊆ V is a subspace. From which space does A inherit its operations? The answer
is that it doesn’t matter — A will inherit the same operations in either case.)
2.I.2.46 Call the subset S. By Lemma 2.9, we need to check that [S] is closed under linear combinations.
If c1~s1 + · · ·+ cn~sn, cn+1~sn+1 + · · ·+ cm~sm ∈ [S] then for any p, r ∈ R we have
p · (c1~s1 + · · ·+ cn~sn) + r · (cn+1~sn+1 + · · ·+ cm~sm) = pc1~s1 + · · ·+ pcn~sn + rcn+1~sn+1 + · · ·+ rcm~sm

which is an element of [S]. (Remark. If the set S is empty, then that ‘if . . . then . . . ’ statement is vacuously
true.)
2.I.2.47 For this to happen, one of the conditions giving the sensibleness of the addition and scalar multi-
plication operations must be violated. Consider R2 with these operations.(

x1

y1

)
+
(
x2

y2

)
=
(

0
0

)
r

(
x
y

)
=
(

0
0

)
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The set R2 is closed under these operations. But it is not a vector space.

1 ·
(

1
1

)
6=
(

1
1

)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Answers for subsection 2.II.1
2.II.1.22 No, that equation is not a linear relationship. In fact this set is independent, as the system
arising from taking x to be 0, π/6 and π/4 shows.
2.II.1.23 To emphasize that the equation 1 · ~s+ (−1) · ~s = ~0 does not make the set dependent.
2.II.1.26
(a) A singleton set {~v} is linearly independent if and only if ~v 6= ~0. For the ‘if’ direction, with ~v 6= ~0,
we can apply Lemma 1.4 by considering the relationship c · ~v = ~0 and noting that the only solution is
the trivial one: c = 0. For the ‘only if’ direction, just recall that Example 1.11 shows that {~0} is linearly
dependent, and so if the set {~v} is linearly independent then ~v 6= ~0.

(Remark. Another answer is to say that this is the special case of Lemma 1.15 where S = ∅.)
(b) A set with two elements is linearly independent if and only if neither member is a multiple of the other
(note that if one is the zero vector then it is a multiple of the other, so this case is covered). This is an
equivalent statement: a set is linearly dependent if and only if one element is a multiple of the other.

The proof is easy. A set {~v1, ~v2} is linearly dependent if and only if there is a relationship c1~v1+c2~v2 = ~0
with either c1 6= 0 or c2 6= 0 (or both). That holds if and only if ~v1 = (−c2/c1)~v2 or ~v2 = (−c1/c2)~v1 (or
both).

2.II.1.27 This set is linearly dependent set because it contains the zero vector.
2.II.1.28 The ‘if’ half is given by Lemma 1.13. The converse (the ‘only if’ statement) does not hold. An
example is to consider the vector space R2 and these vectors.

~x =
(

1
0

)
, ~y =

(
0
1

)
, ~z =

(
1
1

)
2.II.1.29
(a) The linear system arising from

c1

1
1
0

+ c2

−1
2
0

 =

0
0
0


has the unique solution c1 = 0 and c2 = 0.

(b) The linear system arising from

c1

1
1
0

+ c2

−1
2
0

 =

3
2
0


has the unique solution c1 = 8/3 and c2 = −1/3.

(c) Suppose that S is linearly independent. Suppose that we have both ~v = c1~s1 + · · · + cn~sn and ~v =
d1~t1 + · · ·+ dm~tm (where the vectors are members of S). Now,

c1~s1 + · · ·+ cn~sn = ~v = d1~t1 + · · ·+ dm~tm

can be rewritten in this way.
c1~s1 + · · ·+ cn~sn − d1~t1 − · · · − dm~tm = ~0

Possibly some of the ~s ’s equal some of the ~t ’s; we can combine the associated coefficients (i.e., if ~si = ~tj
then · · · + ci~si + · · · − dj~tj − · · · can be rewritten as · · · + (ci − dj)~si + · · · ). That equation is a linear
relationship among distinct (after the combining is done) members of the set S. We’ve assumed that S is
linearly independent, so all of the coefficients are zero. If i is such that ~si does not equal any ~tj then ci is
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zero. If j is such that ~tj does not equal any ~si then dj is zero. In the final case, we have that ci − dj = 0
and so ci = dj .

Therefore, the original two sums are the same, except perhaps for some 0 · ~si or 0 · ~tj terms that we
can neglect.

(d) This set is not linearly independent:

S = {
(

1
0

)
,

(
2
0

)
} ⊂ R2

and these two linear combinations give the same result(
0
0

)
= 2 ·

(
1
0

)
− 1 ·

(
2
0

)
= 4 ·

(
1
0

)
− 2 ·

(
2
0

)
Thus, a linearly dependent set might have indistinct sums.

In fact, this stronger statement holds: if a set is linearly dependent then it must have the property that
there are two distinct linear combinations that sum to the same vector. Briefly, where c1~s1 + · · ·+cn~sn = ~0
then multiplying both sides of the relationship by two gives another relationship. If the first relationship
is nontrivial then the second is also.

2.II.1.30 In this ‘if and only if’ statement, the ‘if’ half is clear — if the polynomial is the zero polynomial
then the function that arises from the action of the polynomial must be the zero function x 7→ 0. For ‘only
if’ we write p(x) = cnx

n + · · · + c0. Plugging in zero p(0) = 0 gives that c0 = 0. Taking the derivative
and plugging in zero p′(0) = 0 gives that c1 = 0. Similarly we get that each ci is zero, and p is the zero
polynomial.
2.II.1.31 The work in this section suggests that an n-dimensional non-degenerate linear surface should be
defined as the span of a linearly independent set of n vectors.
2.II.1.32
(a) For any a1,1, . . . , a2,4,

c1

(
a1,1

a2,1

)
+ c2

(
a1,2

a2,2

)
+ c3

(
a1,3

a2,3

)
+ c4

(
a1,4

a2,4

)
=
(

0
0

)
yields a linear system

a1,1c1 + a1,2c2 + a1,3c3 + a1,4c4 = 0
a2,1c1 + a2,2c2 + a2,3c3 + a2,4c4 = 0

that has infinitely many solutions (Gauss’ method leaves at least two variables free). Hence there are
nontrivial linear relationships among the given members of R2.

(b) Any set five vectors is a superset of a set of four vectors, and so is linearly dependent.
With three vectors from R2, the argument from the prior item still applies, with the slight change that

Gauss’ method now only leaves at least one variable free (but that still gives infintely many solutions).
(c) The prior item shows that no three-element subset of R2 is independent. We know that there are
two-element subsets of R2 that are independent — one is

{
(

1
0

)
,

(
0
1

)
}

and so the answer is two.
2.II.1.34 Yes. The two improper subsets, the entire set and the empty subset, serve as examples.
2.II.1.35 In R4 the biggest linearly independent set has four vectors. There are many examples of such
sets, this is one.

{


1
0
0
0

 ,


0
1
0
0

 ,


0
0
1
0

 ,


0
0
0
1

}
To see that no set with five or more vectors can be independent, set up

c1


a1,1

a2,1

a3,1

a4,1

+ c2


a1,2

a2,2

a3,2

a4,2

+ c3


a1,3

a2,3

a3,3

a4,3

+ c4


a1,4

a2,4

a3,4

a4,4

+ c5


a1,5

a2,5

a3,5

a4,5

 =


0
0
0
0
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and note that the resulting linear system

a1,1c1 + a1,2c2 + a1,3c3 + a1,4c4 + a1,5c5 = 0
a2,1c1 + a2,2c2 + a2,3c3 + a2,4c4 + a2,5c5 = 0
a3,1c1 + a3,2c2 + a3,3c3 + a3,4c4 + a3,5c5 = 0
a4,1c1 + a4,2c2 + a4,3c3 + a4,4c4 + a4,5c5 = 0

has four equations and five unknowns, so Gauss’ method must end with at least one c variable free, so
there are infinitely many solutions, and so the above linear relationship among the four-tall vectors has more
solutions than just the trivial solution.

The smallest linearly independent set is the empty set.
The biggest linearly dependent set is R4. The smallest is {~0}.

2.II.1.38
(a) Assuming first that a 6= 0,

x

(
a
c

)
+ y

(
b
d

)
=
(

0
0

)
gives

ax+ by = 0
cx+ dy = 0

−(c/a)ρ1+ρ2−→ ax+ by = 0
(−(c/a)b+ d)y = 0

which has a solution if and only if 0 6= −(c/a)b+d = (−cb+ad)/d (we’ve assumed in this case that a 6= 0,
and so back substitution yields a unique solution).

The a = 0 case is also not hard — break it into the c 6= 0 and c = 0 subcases and note that in these
cases ad− bc = 0 · d− bc.

Comment. An earlier exercise showed that a two-vector set is linearly dependent if and only if either
vector is a scalar multiple of the other. That can also be used to make the calculation.

(b) The equation

c1

ad
g

+ c2

be
h

+ c3

cf
i

 =

0
0
0


gives rise to a homogeneous linear system. We proceed by writing it in matrix form and applying Gauss’
method.

We first reduce the matrix to upper-triangular. Assume that a 6= 0.

(1/a)ρ1−→

1 b/a c/a 0
d e f 0
g h i 0

 −dρ1+ρ2−→
−gρ1+ρ3

1 b/a c/a 0
0 (ae− bd)/a (af − cd)/a 0
0 (ah− bg)/a (ai− cg)/a 0


(a/(ae−bd))ρ2−→

1 b/a c/a 0
0 1 (af − cd)/(ae− bd) 0
0 (ah− bg)/a (ai− cg)/a 0


(where we’ve assumed for the moment that ae − bd 6= 0 in order to do the row reduction step). Then,
under the assumptions, we get this.

((ah−bg)/a)ρ2+ρ3−→

1 b
a

c
a 0

0 1 af−cd
ae−bd 0

0 0 aei+bgf+cdh−hfa−idb−gec
ae−bd 0


shows that the original system is nonsingular if and only if the 3, 3 entry is nonzero. This fraction is
defined because of the ae − bd 6= 0 assumption, and it will equal zero if and only if its numerator equals
zero.

We next worry about the assumptions. First, if a 6= 0 but ae− bd = 0 then we swap1 b/a c/a 0
0 0 (af − cd)/a 0
0 (ah− bg)/a (ai− cg)/a 0

 ρ2↔ρ3−→

1 b/a c/a 0
0 (ah− bg)/a (ai− cg)/a 0
0 0 (af − cd)/a 0
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and conclude that the system is nonsingular if and only if either ah− bg = 0 or af − cd = 0. That’s the
same as asking that their product be zero:

ahaf − ahcd− bgaf + bgcd = 0
ahaf − ahcd− bgaf + aegc = 0
a(haf − hcd− bgf + egc) = 0

(in going from the first line to the second we’ve applied the case assumption that ae−bd = 0 by substituting
ae for bd). Since we are assuming that a 6= 0, we have that haf−hcd−bgf+egc = 0. With ae−bd = 0 we
can rewrite this to fit the form we need: in this a 6= 0 and ae−bd = 0 case, the given system is nonsingular
when haf − hcd− bgf + egc− i(ae− bd) = 0, as required.

The remaining cases have the same character. Do the a = 0 but d 6= 0 case and the a = 0 and d = 0
but g 6= 0 case by first swapping rows and then going on as above. The a = 0, d = 0, and g = 0 case is
easy — a set with a zero vector is linearly dependent, and the formula comes out to equal zero.

(c) It is linearly dependent if and only if either vector is a multiple of the other. That is, it is not
independent iff ad

g

 = r ·

be
h

 or

be
h

 = s ·

ad
g


(or both) for some scalars r and s. Eliminating r and s in order to restate this condition only in terms
of the given letters a, b, d, e, g, h, we have that it is not independent — it is dependent — iff ae− bd =
ah− gb = dh− ge.

(d) Dependence or independence is a function of the indices, so there is indeed a formula (although at first
glance a person might think the formula involves cases: “if the first component of the first vector is zero
then . . . ”, this guess turns out not to be correct).

2.II.1.40
(a) This check is routine.
(b) The summation is infinite (has infinitely many summands). The definition of linear combination
involves only finite sums.

(c) No nontrivial finite sum of members of {g, f0, f1, . . . } adds to the zero object: assume that

c0 · (1/(1− x)) + c1 · 1 + · · ·+ cn · xn = 0

(any finite sum uses a highest power, here n). Multiply both sides by 1−x to conclude that each coefficient
is zero, because a polynomial describes the zero function only when it is the zero polynomial.

2.II.1.41 It is both ‘if’ and ‘only if’.
Let T be a subset of the subspace S of the vector space V . The assertion that any linear relationship

c1~t1 + · · · + cn~tn = ~0 among members of T must be the trivial relationship c1 = 0, . . . , cn = 0 is a
statement that holds in S if and only if it holds in V , because the subspace S inherits its addition and scalar
multiplication operations from V .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Answers for subsection 2.III.1

2.III.1.18 A natural basis is 〈1, x, x2〉. There are bases for P2 that do not contain any polynomials of
degree one or degree zero. One is 〈1 +x+x2, x+x2, x2〉. (Every basis has at least one polynomial of degree
two, though.)

2.III.1.19 The reduction (
1 −4 3 −1 0
2 −8 6 −2 0

)
−2ρ1+ρ2−→

(
1 −4 3 −1 0
0 0 0 0 0

)
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gives that the only condition is that x1 = 4x2 − 3x3 + x4. The solution set is

{


4x2 − 3x3 + x4

x2

x3

x4

 ∣∣ x2, x3, x4 ∈ R} = {x2


4
1
0
0

+ x3


−3
0
1
0

+ x4


1
0
0
1

 ∣∣ x2, x3, x4 ∈ R}

and so the obvious candidate for the basis is this.

〈


4
1
0
0

 ,


−3
0
1
0

 ,


1
0
0
1

〉
We’ve shown that this spans the space, and showing it is also linearly independent is routine.

2.III.1.22 We will show that the second is a basis; the first is similar. We will show this straight from the
definition of a basis, because this example appears before Theorem 2.III.1.12.

To see that it is linearly independent, we set up c1 · (cos θ− sin θ)+ c2 · (2 cos θ+ 3 sin θ) = 0 cos θ+ 0 sin θ.
Taking θ = 0 and θ = π/2 gives this system

c1 · 1 + c2 · 2 = 0
c1 · (−1) + c2 · 3 = 0

ρ1+ρ2−→ c1 + 2c2 = 0
+ 5c2 = 0

which shows that c1 = 0 and c2 = 0.
The calculation for span is also easy; for any x, y ∈ R4, we have that c1·(cos θ−sin θ)+c2·(2 cos θ+3 sin θ) =

x cos θ + y sin θ gives that c2 = x/5 + y/5 and that c1 = 3x/5− 2y/5, and so the span is the entire space.

2.III.1.25 Yes. Linear independence and span are unchanged by reordering.

2.III.1.26 No linearly independent set contains a zero vector.

2.III.1.28 Each forms a linearly independent set if ~v is ommitted. To preserve linear independence, we
must expand the span of each. That is, we must determine the span of each (leaving ~v out), and then pick
a ~v lying outside of that span. Then to finish, we must check that the result spans the entire given space.
Those checks are routine.
(a) Any vector that is not a multiple of the given one, that is, any vector that is not on the line y = x will
do here. One is ~v = ~e1.

(b) By inspection, we notice that the vector ~e3 is not in the span of the set of the two given vectors. The
check that the resulting set is a basis for R3 is routine.

(c) For any member of the span {c1 · (x) + c2 · (1 + x2)
∣∣ c1, c2 ∈ R}, the coefficient of x2 equals the con-

stant term. So we expand the span if we add a quadratic without this property, say, ~v = 1 − x2. The
check that the result is a basis for P2 is easy.

2.III.1.30 No; no linearly independent set contains the zero vector.

2.III.1.31 Here is a subset of R2 that is not a basis, and two different linear combinations of its elements
that sum to the same vector.

{
(

1
2

)
,

(
2
4

)
} 2 ·

(
1
2

)
+ 0 ·

(
2
4

)
= 0 ·

(
1
2

)
+ 1 ·

(
2
4

)
Subsets that are not bases can possibly have unique linear combinations. Linear combinations are unique

if and only if the subset is linearly independent. That is established in the proof of the theorem.

2.III.1.34 We have (using these peculiar operations with care)

{

1− y − z
y
z

 ∣∣ y, z ∈ R} = {

−y + 1
y
0

+

−z + 1
0
z

 ∣∣ y, z ∈ R} = {y ·

0
1
0

+ z ·

0
0
1

 ∣∣ y, z ∈ R}
and so a natural candidate for a basis is this.

〈

0
1
0

 ,

0
0
1

〉
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To check linear independence we set up

c1

0
1
0

+ c2

0
0
1

 =

1
0
0


(the vector on the right is the zero object in this space). That yields the linear system

(−c1 + 1) + (−c2 + 1)− 1 = 1
c1 = 0

c2 = 0

with only the solution c1 = 0 and c2 = 0. Checking the span is similar.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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2.III.2.15 The solution set is

{


4x2 − 3x3 + x4

x2

x3

x4

 ∣∣ x2, x3, x4 ∈ R}

so a natural basis is this

〈


4
1
0
0

 ,


−3
0
1
0

 ,


1
0
0
1

〉
(checking linear independence is easy). Thus the dimension is three.

2.III.2.17
(a) As in the prior exercise, the space M2×2 of matrices without restriction has this basis

〈
(

1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

)
〉

and so the dimension is four.
(b) For this space

{
(
a b
c d

) ∣∣ a = b− 2c and d ∈ R} = {b ·
(

1 1
0 0

)
+ c ·

(
−2 0
1 0

)
+ d ·

(
0 0
0 1

) ∣∣ b, c, d ∈ R}
this is a natural basis.

〈
(

1 1
0 0

)
,

(
−2 0
1 0

)
,

(
0 0
0 1

)
〉

The dimension is three.
(c) Gauss’ method applied to the two-equation linear system gives that c = 0 and that a = −b. Thus, we
have this description

{
(
−b b
0 d

) ∣∣ b, d ∈ R} = {b ·
(
−1 1
0 0

)
+ d ·

(
0 0
0 1

) ∣∣ b, d ∈ R}
and so this is a natural basis.

〈
(
−1 1
0 0

)
,

(
0 0
0 1

)
〉

The dimension is two.
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2.III.2.19 First recall that cos 2θ = cos2 θ − sin2 θ, and so deletion of cos 2θ from this set leaves the span
unchanged. What’s left, the set {cos2 θ, sin2 θ, sin 2θ}, is linearly independent (consider the relationship
c1 cos2 θ + c2 sin2 θ + c3 sin 2θ = Z(θ) where Z is the zero function, and then take θ = 0, θ = π/4, and
θ = π/2 to conclude that each c is zero). It is therefore a basis for its span. That shows that the span is a
dimension three vector space.
2.III.2.20 Here is a basis

〈(1 + 0i, 0 + 0i, . . . , 0 + 0i), (0 + 1i, 0 + 0i, . . . , 0 + 0i), (0 + 0i, 1 + 0i, . . . , 0 + 0i), . . . 〉
and so the dimension is 2 · 47 = 94.
2.III.2.21 A basis is

〈

1 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 ,

0 1 0 0 0
0 0 0 0 0
0 0 0 0 0

 , . . . ,

0 0 0 0 0
0 0 0 0 0
0 0 0 0 1

〉
and thus the dimension is 3 · 5 = 15.
2.III.2.23
(a) The diagram for P2 has four levels. The top level has the only three-dimensional subspace, P2 itself. The
next level contains the two-dimensional subspaces (not just the linear polynomials; any two-dimensional
subspace, like those polynomials of the form ax2 + b). Below that are the one-dimensional subspaces.
Finally, of course, is the only zero-dimensional subspace, the trivial subspace.

(b) For M2×2, the diagram has five levels, including subspaces of dimension four through zero.
2.III.2.25 We need only produce an infinite linearly independent set. One is 〈f1, f2, . . . 〉 where fi : R→ R
is

fi(x) =

{
1 if x = i

0 otherwise

the function that has value 1 only at x = i.
2.III.2.26 Considering a function to be a set, specifically, a set of ordered pairs (x, f(x)), then the only
function with an empty domain is the empty set. Thus this is a trivial vector space, and has dimension zero.
2.III.2.27 Apply Corollary 2.8.
2.III.2.28 The first chapter defines a plane — a ‘2-flat’ — to be a set of the form {~p+ t1~v1 + t2~v2

∣∣ t1, t2 ∈ R}
(also there is a discussion of why this is equivalent to the description often taken in Calculus as the set of
points (x, y, z) subject to some linear condition ax + by + cz = d). When the plane passes throught the
origin we can take the particular vector ~p to be ~0. Thus, in the language we have developed in this chapter,
a plane through the origin is the span of a set of two vectors.

Now for the statement. Asserting that the three are not coplanar is the same as asserting that no vector
lies in the span of the other two — no vector is a linear combination of the other two. That’s simply
an assertion that the three-element set is linearly independent. By Corollary 2.12, that’s equivalent to an
assertion that the set is a basis for R3.
2.III.2.29 Let the space V be finite dimensional. Let S be a subspace of V .
(a) The empty set is a linearly independent subset of S. By Corollary 2.10, it can be expanded to a basis
for the vector space S.

(b) Any basis for the subspace S is a linearly independent set in the superspace V . Hence it can be
expanded to a basis for the superspace, which is finite dimensional. Therefore it has only finitely many
members.

2.III.2.30 It ensures that we exhaust the ~β’s. That is, it justifies the first sentence of the last paragraph.
2.III.2.32 First, note that a set is a basis for some space if and only if it is linearly independent, because
in that case it is a basis for its own span.
(a) The answer to the question in the second paragraph is “yes” (implying “yes” answers for both questions
in the first paragraph). If BU is a basis for U then BU is a linearly independent subset of W . Apply
Corollary 2.10 to expand it to a basis for W . That is the desired BW .

The answer to the question in the third paragraph is “no”, which implies a “no” answer to the question
of the fourth paragraph. Here is an example of a basis for a superspace with no sub-basis forming a basis
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for a subspace: in W = R2, consider the standard basis E2. No sub-basis of E2 forms a basis for the
subspace U of R2 that is the line y = x.

(b) It is a basis (for its span) because the intersection of linearly independent sets is linearly independent
(the intersection is a subset of each of the linearly independent sets).

It is not, however, a basis for the intersection of the spaces. For instance, these are bases for R2:

B1 = 〈
(

1
0

)
,

(
0
1

)
〉 and B2 = 〈

(
2
0

)
,

(
0
2

)
〉

and R2 ∩R2 = R2, but B1 ∩B2 is empty. All we can say is that the intersection of the bases is a basis for
a subset of the intersection of the spaces.

(c) The union of bases need not be a basis: in R2

B1 = 〈
(

1
0

)
,

(
1
1

)
〉 and B2 = 〈

(
1
0

)
,

(
0
2

)
〉

have a union B1 ∪B2 that is not linearly independent. A necessary and sufficient condition for a union of
two bases to be a basis

B1 ∪B2 is linearly independent ⇐⇒ [B1 ∩B2] = [B1] ∩ [B2]
it is easy enough to prove (but perhaps hard to apply).

(d) The complement of a basis cannot be a basis because it contains the zero vector.
2.III.2.34 The possibilities for the dimension of V are 0, 1, n− 1, and n.

To see this, first consider the case when all the coordinates of ~v are equal.

~v =


z
z
...
z


Then σ(~v) = ~v for every permutation σ, so V is just the span of ~v, which has dimension 0 or 1 according to
whether ~v is ~0 or not.

Now suppose not all the coordinates of ~v are equal; let x and y with x 6= y be among the coordinates of
~v. Then we can find permutations σ1 and σ2 such that

σ1(~v) =


x
y
a3

...
an

 and σ2(~v) =


y
x
a3

vdots
an


for some a3, . . . , an ∈ R. Therefore,

1
y − x

(
σ1(~v)− σ2(~v)

)
=


−1
1
0
...
0


is in V . That is, ~e2 − ~e1 ∈ V , where ~e1, ~e2, . . . , ~en is the standard basis for Rn. Similarly, ~e3 − ~e2, . . . ,
~en − ~e1 are all in V . It is easy to see that the vectors ~e2 − ~e1, ~e3 − ~e2, . . . , ~en − ~e1 are linearly independent
(that is, form a linearly independent set), so dimV ≥ n− 1.

Finally, we can write
~v = x1~e1 + x2~e2 + · · ·+ xn~en

= (x1 + x2 + · · ·+ xn)~e1 + x2(~e2 − ~e1) + · · ·+ xn(~en − ~e1)
This shows that if x1 + x2 + · · · + xn = 0 then ~v is in the span of ~e2 − ~e1, . . . , ~en − ~e1 (that is, is in the
span of the set of those vectors); similarly, each σ(~v) will be in this span, so V will equal this span and
dimV = n− 1. On the other hand, if x1 +x2 + · · ·+xn 6= 0 then the above equation shows that ~e1 ∈ V and
thus ~e1, . . . , ~en ∈ V , so V = Rn and dimV = n.
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2.III.3.16

(a)
(

2 3
1 1

)
(b)

(
2 1
1 3

)
(c)

1 6
4 7
3 8

 (d)
(
0 0 0

)
(e)

(
−1
−2

)
2.III.3.22 Only the zero matrices have rank of zero. The only matrices of rank one have the formk1 · ρ

...
km · ρ


where ρ is some nonzero row vector, and not all of the ki’s are zero. (Remark. We can’t simply say that
all of the rows are multiples of the first because the first row might be the zero row. Another Remark. The
above also applies with ‘column’ replacing ‘row’.)
2.III.3.24 The column rank is two. One way to see this is by inspection — the column space consists
of two-tall columns and so can have a dimension of at least two, and we can easily find two columns that
together form a linearly independent set (the fourth and fifth columns, for instance). Another way to see
this is to recall that the column rank equals the row rank, and to perform Gauss’ method, which leaves two
nonzero rows.
2.III.3.25 We apply Theorem 2.III.3.13. The number of columns of a matrix of coefficients A of a linear
system equals the number n of unknowns. A linear system with at least one solution has at most one solution
if and only if the space of solutions of the associated homogeneous system has dimension zero (recall: in the
‘General = Particular + Homogeneous’ equation ~v = ~p + ~h, provided that such a ~p exists, the solution ~v is
unique if and only if the vector ~h is unique, namely ~h = ~0). But that means, by the theorem, that n = r.
2.III.3.27 There is little danger of their being equal since the row space is a set of row vectors while the
column space is a set of columns (unless the matrix is 1×1, in which case the two spaces must be equal).

Remark. Consider

A =
(

1 3
2 6

)
and note that the row space is the set of all multiples of

(
1 3

)
while the column space consists of multiples

of (
1
2

)
so we also cannot argue that the two spaces must be simply transposes of each other.
2.III.3.28 First, the vector space is the set of four-tuples of real numbers, under the natural operations.
Although this is not the set of four-wide row vectors, the difference is slight — it is “the same” as that set.
So we will treat the four-tuples like four-wide vectors.

With that, one way to see that (1, 0, 1, 0) is not in the span of the first set is to note that this reduction1 −1 2 −3
1 1 2 0
3 −1 6 −6

 −ρ1+ρ2−→
−3ρ1+ρ3

−ρ2+ρ3−→

1 −1 2 −3
0 2 0 3
0 0 0 0


and this one 

1 −1 2 −3
1 1 2 0
3 −1 6 −6
1 0 1 0

 −ρ1+ρ2−→
−3ρ1+ρ3
−ρ1+ρ4

−ρ2+ρ3−→
−(1/2)ρ2+ρ4

ρ3↔ρ4−→


1 −1 2 −3
0 2 0 3
0 0 −1 3/2
0 0 0 0


yield matrices differing in rank. This means that addition of (1, 0, 1, 0) to the set of the first three four-tuples
increases the rank, and hence the span, of that set. Therefore (1, 0, 1, 0) is not already in the span.
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2.III.3.30 This can be done as a straightforward calculation.

(rA+ sB)trans =

 ra1,1 + sb1,1 . . . ra1,n + sb1,n
...

...
ram,1 + sbm,1 . . . ram,n + sbm,n


trans

=

ra1,1 + sb1,1 . . . ram,1 + sbm,1
...

ra1,n + sb1,n . . . ram,n + sbm,n


=

ra1,1 . . . ram,1
...

ra1,n . . . ram,n

+

sb1,1 . . . sbm,1
...

sb1,n . . . sbm,n


= rAtrans + sBtrans

2.III.3.32 It cannot be bigger.
2.III.3.33 The number of rows in a maximal linearly independent set cannot exceed the number of rows.
A better bound (the bound that is, in general, the best possible) is the minimum of m and n, because the
row rank equals the column rank.
2.III.3.35 False. The first is a set of columns while the second is a set of rows.

This example, however,

A =
(

1 2 3
4 5 6

)
, Atrans =

1 4
2 5
3 6


indicates that as soon as we have a formal meaning for “the same”, we can apply it here:

Columnspace(A) = [{
(

1
4

)
,

(
2
5

)
,

(
3
6

)
}]

while
Rowspace(Atrans) = [{

(
1 4

)
,
(
2 5

)
,
(
3 6

)
}]

are “the same” as each other.
2.III.3.37 A linear system

c1~a1 + · · ·+ cn~an = ~d

has a solution if and only if ~d is in the span of the set {~a1, . . . ,~an}. That’s true if and only if the column
rank of the augmented matrix equals the column rank of the matrix of coefficients. Since rank equals the
column rank, the system has a solution if and only if the rank of its augmented matrix equals the rank of
its matrix of coefficients.
2.III.3.38
(a) Row rank equals column rank so each is at most the minimum of the number of rows and columns.
Hence both can be full only if the number of rows equals the number of columns. (Of course, the converse
does not hold: a square matrix need not have full row rank or full column rank.)

(b) If A has full row rank then, no matter what the right-hand side, Gauss’ method on the augmented
matrix ends with a leading one in each row and none of those leading ones in the furthest right column
(the “augmenting” column). Back substitution then gives a solution.

On the other hand, if the linear system lacks a solution for some right-hand side it can only be because
Gauss’ method leaves some row so that it is all zeroes to the left of the “augmenting” bar and has a
nonzero entry on the right. Thus, if A does not have a solution for some right-hand sides, then A does
not have full row rank because some of its rows have been eliminated.

(c) The matrix A has full column rank if and only if its columns form a linearly independent set. That’s
equivalent to the existence of only the trivial linear relationship.

(d) The matrix A has full column rank if and only if the set of its columns is linearly independent set, and
so forms a basis for its span. That’s equivalent to the existence of a unique linear representation of all
vectors in that span.
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2.III.3.39 Instead of the row spaces being the same, the row space of B would be a subspace (possibly
equal to) the row space of A.
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2.III.4.22 It is. Showing that these two are subspaces is routine. To see that the space is the direct sum of
these two, just note that each member of P2 has the unique decomposition m+nx+px2 = (m+px2)+(nx).

2.III.4.24 Each of these is R3.
(a) These are broken into lines for legibility.

W1 +W2 +W3, W1 +W2 +W3 +W4, W1 +W2 +W3 +W5, W1 +W2 +W3 +W4 +W5,
W1 +W2 +W4, W1 +W2 +W4 +W5, W1 +W2 +W5,

W1 +W3 +W4, W1 +W3 +W5, W1 +W3 +W4 +W5,
W1 +W4, W1 +W4 +W5,
W1 +W5,
W2 +W3 +W4, W2 +W3 +W4 +W5,
W2 +W4, W2 +W4 +W5,
W3 +W4, W3 +W4 +W5,
W4 +W5

(b) W1 ⊕W2 ⊕W3, W1 ⊕W4, W1 ⊕W5, W2 ⊕W4, W3 ⊕W4

2.III.4.26 It is W2.

2.III.4.27 True by Lemma 4.8.

2.III.4.28 Two distinct direct sum decompositions of R4 are easy to find. Two such are W1 = [{~e1, ~e2}]
and W2 = [{~e3, ~e4}], and also U1 = [{~e1}] and U2 = [{~e2, ~e3, ~e4}]. (Many more are possible, for example R4

and its trivial subspace.)
In contrast, any partition of R1’s single-vector basis will give one basis with no elements and another

with a single element. Thus any decomposition involves R1 and its trivial subspace.

2.III.4.29 Set inclusion one way is easy: {~w1 + · · ·+ ~wk
∣∣ ~wi ∈Wi} is a subset of [W1 ∪ . . . ∪Wk] because

each ~w1 + · · ·+ ~wk is a sum of vectors from the union.
For the other inclusion, to any linear combination of vectors from the union apply commutativity of

vector addition to put vectors from W1 first, followed by vectors from W2, etc. Add the vectors from W1 to
get a ~w1 ∈W1, add the vectors from W2 to get a ~w2 ∈W2, etc. The result has the desired form.

2.III.4.30 One example is to take the space to be R3, and to take the subspaces to be the xy-plane, the
xz-plane, and the yz-plane.

2.III.4.32 It can contain a trivial subspace; this set of subspaces of R3 is independent: {{~0}, x-axis}. No
nonzero vector from the trivial space {~0} is a multiple of a vector from the x-axis, simply because the trivial
space has no nonzero vectors to be candidates for such a multiple (and also no nonzero vector from the x-axis
is a multiple of the zero vector from the trivial subspace).

2.III.4.35
(a) The intersection and sum are

{
(

0 0
c 0

) ∣∣ c ∈ R} {
(

0 b
c d

) ∣∣ b, c, d ∈ R}
which have dimensions one and three.
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(b) We write BU∩W for the basis for U ∩W , we write BU for the basis for U , we write BW for the basis
for W , and we write BU+W for the basis under consideration.

To see that that BU+W spans U +W , observe that any vector c~u+ d~w from U +W can be written as
a linear combination of the vectors in BU+W , simply by expressing ~u in terms of BU and expressing ~w in
terms of BW .

We finish by showing that BU+W is linearly independent. Consider

c1~µ1 + · · ·+ cj+1
~β1 + · · ·+ cj+k+p~ωp = ~0

which can be rewritten in this way.
c1~µ1 + · · ·+ cj~µj = −cj+1

~β1 − · · · − cj+k+p~ωp

Note that the left side sums to a vector in U while right side sums to a vector in W , and thus both sides
sum to a member of U ∩W . Since the left side is a member of U ∩W , it is expressible in terms of the
members of BU∩W , which gives the combination of ~µ’s from the left side above as equal to a combination
of ~β’s. But, the fact that the basis BU is linearly independent shows that any such combination is trivial,
and in particular, the coefficients c1, . . . , cj from the left side above are all zero. Similarly, the coefficients
of the ~ω’s are all zero. This leaves the above equation as a linear relationship among the ~β’s, but BU∩W
is linearly independent, and therefore all of the coefficients of the ~β’s are also zero.

(c) Just count the basis vectors in the prior item: dim(U + W ) = j + k + p, and dim(U) = j + k, and
dim(W ) = k + p, and dim(U ∩W ) = k.

(d) We know that dim(W1 + W2) = dim(W1) + dim(W2) − dim(W1 ∩W2). Because W1 ⊆ W1 + W2, we
know that W1 + W2 must have dimension greater than that of W1, that is, must have dimension eight,
nine, or ten. Substituting gives us three possibilities 8 = 8+8−dim(W1∩W2) or 9 = 8+8−dim(W1∩W2)
or 10 = 8 + 8− dim(W1 ∩W2). Thus dim(W1 ∩W2) must be either eight, seven, or six. (Giving examples
to show that each of these three cases is possible is easy, for instance in R10.)

2.III.4.36 Expand each Si to a basis Bi for Wi. The concatenation of those bases B1
_ · · ·_Bk is a basis

for V and thus its members form a linearly independent set. But the union S1 ∪ · · · ∪ Sk is a subset of that
linearly independent set, and thus is itself linearly independent.
2.III.4.37
(a) Two such are these. (

1 2
2 3

) (
0 1
−1 0

)
For the antisymmetric one, entries on the diagonal must be zero.

(b) A square symmetric matrix equals its transpose. A square antisymmetric matrix equals the negative
of its transpose.

(c) Showing that the two sets are subspaces is easy. Suppose that A ∈Mn×n. To express A as a sum of a
symmetric and an antisymmetric matrix, we observe that

A = (1/2)(A+Atrans) + (1/2)(A−Atrans)
and note the first summand is symmetric while the second is antisymmetric. Thus Mn×n is the sum of
the two subspaces. To show that the sum is direct, assume a matrix A is both symmetric A = Atrans and
antisymmetric A = −Atrans. Then A = −A and so all of A’s entries are zeroes.

2.III.4.38 Assume that ~v ∈ (W1 ∩ W2) + (W1 ∩ W3). Then ~v = ~w2 + ~w3 where ~w2 ∈ W1 ∩ W2 and
~w3 ∈ W1 ∩W3. Note that ~w2, ~w3 ∈ W1 and, as a subspace is closed under addition, ~w2 + ~w3 ∈ W1. Thus
~v = ~w2 + ~w3 ∈W1 ∩ (W2 +W3).

This example proves that the inclusion may be strict: in R2 take W1 to be the x-axis, take W2 to be the
y-axis, and take W3 to be the line y = x. Then W1 ∩W2 and W1 ∩W3 are trivial and so their sum is trivial.
But W2 +W3 is all of R2 so W1 ∩ (W2 +W3) is the x-axis.
2.III.4.39 It happens when at least one of W1,W2 is trivial. But that is the only way it can happen.

To prove this, assume that both are non-trivial, select nonzero vectors ~w1, ~w2 from each, and consider
~w1 + ~w2. This sum is not in W1 because ~w1 + ~w2 = ~v ∈ W1 would imply that ~w2 = ~v − ~w1 is in W1, which
violates the assumption of the independence of the subspaces. Similarly, ~w1 + ~w2 is not in W2. Thus there
is an element of V that is not in W1 ∪W2.
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2.III.4.42 No. The standard basis for R2 does not split into bases for the complementary subspaces the
line x = y and the line x = −y.
2.III.4.43
(a) Yes, W1 +W2 = W2 +W1 for all subspaces W1,W2 because each side is the span of W1∪W2 = W2∪W1.
(b) This one is similar to the prior one — each side of that equation is the span of (W1 ∪W2) ∪W3 =
W1 ∪ (W2 ∪W3).

(c) Because this is an equality between sets, we can show that it holds by mutual inclusion. Clearly
W ⊆ W + W . For W + W ⊆ W just recall that every subset is closed under addition so any sum of the
form ~w1 + ~w2 is in W .

(d) In each vector space, the identity element with respect to subspace addition is the trivial subspace.
(e) Neither of left or right cancelation needs to hold. For an example, in R3 take W1 to be the xy-plane,
take W2 to be the x-axis, and take W3 to be the y-axis.

2.III.4.44
(a) They are equal because for each, V is the direct sum if and only if each ~v ∈ V can be written in a
unique way as a sum ~v = ~w1 + ~w2 and ~v = ~w2 + ~w1.

(b) They are equal because for each, V is the direct sum if and only if each ~v ∈ V can be written in a
unique way as a sum of a vector from each ~v = (~w1 + ~w2) + ~w3 and ~v = ~w1 + (~w2 + ~w3).

(c) Any vector in R3 can be decomposed uniquely into the sum of a vector from each axis.
(d) No. For an example, in R2 take W1 to be the x-axis, take W2 to be the y-axis, and take W3 to be the
line y = x.

(e) In any vector space the trivial subspace acts as the identity element with respect to direct sum.
(f) In any vector space, only the trivial subspace has a direct-sum inverse (namely, itself). One way to see
this is that dimensions add, and so increase.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Answers for Topic: Fields
1 These checks are all routine; most consist only of remarking that property is so familiar that it does not
need to be proved.
2 For both of these structures, these checks are all routine. As with the prior question, most of the checks
consist only of remarking that property is so familiar that it does not need to be proved.
3 There is no multiplicative inverse for 2, so the integers do not satisfy condition (5).
4 These checks can be done by listing all of the possibilities. For instance, to verify the commutativity of
addition, that a + b = b + a, we can easily check it for all possible pairs a, b, because there are only four
such pairs. Similarly, for associativity, there are only eight triples a, b, c, and so the check is not too long.
(There are other ways to do the checks, in particular, a reader may recognize these operations as arithmetic
‘mod 2’.)
5 These will do.

+ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

· 0 1 2
0 0 0 0
1 0 1 2
2 0 2 1

As in the prior item, the check that they satisfy the conditions can be done by listing all of the cases,
although this way of checking is somewhat long (making use of commutativity is helpful in shortening the
work).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Answers for Topic: Crystals
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1 Each fundamental unit is 3.34× 10−10 cm, so there are about 0.1/(3.34× 10−10) such units. That gives
2.99× 108, so there are something like 300, 000, 000 (three hundred million) units.

2
(a) We solve

c1

(
1.42

0

)
+ c2

(
1.23
0.71

)
=
(

5.67
3.14

)
=⇒ 1.42c1 + 1.23c2 = 5.67

0.71c2 = 3.14

to get c2 =≈ 4.42 and c1 ≈ 0.16.
(b) Here is the point located in the lattice. In the picture on the left, superimposed on the unit cell are
the two basis vectors ~β1 and ~β2, and a box showing the offset of 0.16~β1 + 4.42~β2. The picture on the right
shows where that appears inside of the crystal lattice, taking as the origin the lower left corner of the
hexagon in the lower left.

So this point is in the next column of hexagons over, and either one hexagon up or two hexagons up,
depending on how you count them.

(c) This second basis

〈
(

1.42
0

)
,

(
0

1.42

)
〉

makes the computation easier

c1

(
1.42

0

)
+ c2

(
0

1.42

)
=
(

5.67
3.14

)
=⇒ 1.42c1 = 5.67

1.42c2 = 3.14

(we get c2 ≈ 2.21 and c1 ≈ 3.99), but it doesn’t seem to have to do much with the physical structure that
we are studying.

3 In terms of the basis the locations of the corner atoms are (0, 0, 0), (1, 0, 0), . . . , (1, 1, 1). The locations
of the face atoms are (0.5, 0.5, 1), (1, 0.5, 0.5), (0.5, 1, 0.5), (0, 0.5, 0.5), (0.5, 0, 0.5), and (0.5, 0.5, 0). The
locations of the atoms a quarter of the way down from the top are (0.75, 0.75, 0.75) and (0.25, 0.25, 0.25).
The locations of the atoms a quarter of the way up from the bottom are (0.75, 0.25, 0.25) and (0.25, 0.75, 0.25).
Converting to Ångstroms is easy.

4
(a) 195.08/6.02× 1023 = 3.239× 10−22

(b) 4
(c) 4 · 3.239× 10−22 = 1.296× 10−21

(d) 1.296× 10−21/21.45 = 6.042× 10−23 cubic centimeters
(e) 3.924× 10−8 centimeters.

(f) 〈

3.924× 10−8

0
0

 ,

 0
3.924× 10−8

0

 ,

 0
0

3.924× 10−8

〉

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Answers for Topic: Voting Paradoxes

1 This is one example that yields a non-rational preference order for a single voter.
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character experience policies
Democrat most middle least
Republican middle least most
Third least most middle

The Democrat is preferred to the Republican for character and experience. The Republican is preferred to
the Third for character and policies. And, the Third is preferred to the Democrat for experience and policies.

2 First, compare the D > R > T decomposition that was done out in the Topic with the decomposition of
the opposite T > R > D voter.−1

1
1

 =
1
3
·

1
1
1

+
2
3
·

−1
1
0

+
2
3
·

−1
0
1

 and

 1
−1
−1

 = d1 ·

1
1
1

+ d2 ·

−1
1
0

+ d3 ·

−1
0
1


Obviously, the second is the negative of the first, and so d1 = −1/3, d2 = −2/3, and d3 = −2/3. This
principle holds for any pair of opposite voters, and so we need only do the computation for a voter from the
second row, and a voter from the third row. For a positive spin voter in the second row,

c1 − c2 − c3 = 1
c1 + c2 = 1
c1 + c3 =−1

−ρ1+ρ2−→
−ρ1+ρ3

(−1/2)ρ2+ρ3−→
c1 − c2 − c3 = 1

2c2 + c3 = 0
(3/2)c3 =−2

gives c3 = −4/3, c2 = 2/3, and c1 = 1/3. For a positive spin voter in the third row,

c1 − c2 − c3 = 1
c1 + c2 =−1
c1 + c3 = 1

−ρ1+ρ2−→
−ρ1+ρ3

(−1/2)ρ2+ρ3−→
c1 − c2 − c3 = 1

2c2 + c3 =−2
(3/2)c3 = 1

gives c3 = 2/3, c2 = −4/3, and c1 = 1/3.

3 The mock election corresponds to the table on page 150 in the way shown in the first table, and after
cancellation the result is the second table.

positive spin negative spin

D > R > T

5 voters

T > R > D

2 voters

R > T > D

8 voters

D > T > R

4 voters

T > D > R

8 voters

R > D > T

2 voters

positive spin negative spin

D > R > T

3 voters

T > R > D

–

R > T > D

4 voters

D > T > R

–

T > D > R

6 voters

R > D > T

–

All three come from the same side of the table (the left), as the result from this Topic says must happen.
Tallying the election can now proceed, using the cancelled numbers

3 ·
D

1 voter

T
1 voter

R

−1 voter

+ 4 ·
D −1 voter

T
1 voter

R
1 voter

+ 6 ·
D

1 voter

T
−1 voter

R
1 voter

=
D

5 voters

T
1 voter

R
7 voters

to get the same outcome.

4
(a) The two can be rewritten as −c ≤ a − b and −c ≤ b − a. Either a − b or b − a is nonpositive and so
−c ≤ −|a− b|, as required.

(b) This is immediate from the supposition that 0 ≤ a+ b− c.
(c) A trivial example starts with the zero-voter election and adds any one voter. A more interesting
example is to take the Political Science mock election and add two T > D > R voters (they can be
added one at a time, to satisfy the “addition of one more voter” criteria in the question). Observe that
the additional voters have positive spin, which is the spin of the votes remaining after cancellation in the
original mock election. This is the resulting table of voters, and next to it is the result of cancellation.
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positive spin negative spin

D > R > T

5 voters

T > R > D

2 voters

R > T > D

8 voters

D > T > R

4 voters

T > D > R

10 voters

R > D > T

2 voters

positive spin negative spin

D > R > T

3 voters

T > R > D

–

R > T > D

4 voters

D > T > R

–

T > D > R

8 voters

R > D > T

–
The election, using the cancelled numbers, is this.

3 ·
D

1 voter

T
1 voter

R

−1 voter

+ 4 ·
D −1 voter

T
1 voter

R
1 voter

+ 8 ·
D

1 voter

T
−1 voter

R
1 voter

=
D

7 voters

T
−1 voter

R
9 voters

The majority cycle has indeed disappeared.
(d) One such condition is that, after cancellation, all three be nonnegative or all three be nonpositive,
and: |c| < |a+ b| and |b| < |a+ c| and |a| < |b+ c|. This follows from this diagram.

D
a

T

a

R

−a
+

D −b
T

b

R

b

+

D
c

T

−c
R

c

=

D
a− b+ c

T

a+ b− c
R

−a+ b+ c

5
(a) A two-voter election can have a majority cycle in two ways. First, the two voters could be opposites,
resulting after cancellation in the trivial election (with the majority cycle of all zeroes). Second, the two
voters could have the same spin but come from different rows, as here.

1 ·
D

1 voter

T
1 voter

R

−1 voter

+ 1 ·
D −1 voter

T
1 voter

R
1 voter

+ 0 ·
D

1 voter

T
−1 voter

R
1 voter

=
D

0 voters

T
2 voters

R
0 voters

(b) There are two cases. An even number of voters can split half and half into opposites, e.g., half the
voters are D > R > T and half are T > R > D. Then cancellation gives the trivial election. If the number
of voters is greater than one and odd (of the form 2k + 1 with k > 0) then using the cycle diagram from
the proof,

D
a

T

a

R

−a
+

D −b
T

b

R

b

+

D
c

T

−c
R

c

=

D
a− b+ c

T

a+ b− c
R

−a+ b+ c

we can take a = k and b = k and c = 1. Because k > 0, this is a majority cycle.
6 It is nonempty because it contains the zero vector. To see that it is closed under linear combinations of
two of its members, suppose that ~v1 and ~v2 are in U⊥ and consider c1~v1 + c2~v2. For any ~u ∈ U ,

(c1~v1 + c2~v2) ~u = c1(~v1 ~u) + c2(~v2 ~u) = c1 · 0 + c2 · 0 = 0
and so c1~v1 + c2~v2 ∈ U⊥.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Answers for Topic: Dimensional Analysis
1
(a) This relationship

(L1M0T 0)p1(L1M0T 0)p2(L1M0T−1)p3(L0M0T 0)p4(L1M0T−2)p5(L0M0T 1)p6 = L0M0T 0

gives rise to this linear system
p1 + p2 + p3 + p5 = 0

0 = 0
−p3 − 2p5 + p6 = 0
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(note that there is no restriction on p4). The natural paramatrization uses the free variables to give
p3 = −2p5 + p6 and p1 = −p2 + p5 − p6. The resulting description of the solution set

{


p1

p2

p3

p4

p5

p6

 = p2


−1
1
0
0
0
0

+ p4


0
0
0
1
0
0

+ p5


1
0
−2
0
1
0

+ p6


−1
0
1
0
0
1


∣∣ p2, p4, p5, p6 ∈ R}

gives {y/x, θ, xt/v0
2, v0t/x} as a complete set of dimensionless products (recall that “complete” in this

context does not mean that there are no other dimensionless products; it simply means that the set is a
basis). This is, however, not the set of dimensionless products that the question asks for.

There are two ways to proceed. The first is to fiddle with the choice of parameters, hoping to hit on
the right set. For that, we can do the prior paragraph in reverse. Converting the given dimensionless
products gt/v0, gx/v2

0 , gy/v2
0 , and θ into vectors gives this description (note the ? ’s where the parameters

will go).

{


p1

p2

p3

p4

p5

p6

 = ?


0
0
−1
0
1
1

+ ?


1
0
−2
0
1
0

+ ?


0
1
−2
0
1
0

+ p4


0
0
0
1
0
0


∣∣ p2, p4, p5, p6 ∈ R}

The p4 is already in place. Examining the rows shows that we can also put in place p6, p1, and p2.
The second way to proceed, following the hint, is to note that the given set is of size four in a four-

dimensional vector space and so we need only show that it is linearly independent. That is easily done by
inspection, by considering the sixth, first, second, and fourth components of the vectors.

(b) The first equation can be rewritten
gx

v0
2

=
gt

v0
cos θ

so that Buckingham’s function is f1(Π1,Π2,Π3,Π4) = Π2 − Π1 cos(Π4). The second equation can be
rewritten

gy

v0
2

=
gt

v0
sin θ − 1

2

(
gt

v0

)2

and Buckingham’s function here is f2(Π1,Π2,Π3,Π4) = Π3 −Π1 sin(Π4) + (1/2)Π1
2.

2 We consider

(L0M0T−1)p1(L1M−1T 2)p2(L−3M0T 0)p3(L0M1T 0)p4 = (L0M0T 0)

which gives these relations among the powers.
p2 − 3p3 = 0
−p2 + p4 = 0

−p1 + 2p2 = 0

ρ1↔ρ3−→ ρ2+ρ3−→
−p1 + 2p2 = 0

−p2 + p4 = 0
−3p3 + p4 = 0

This is the solution space (because we wish to express k as a function of the other quantities, p2 is taken as
the parameter).

{


2
1

1/3
1

 p2

∣∣ p2 ∈ R}

Thus, Π1 = ν2kN1/3m is the dimensionless combination, and we have that k equals ν−2N−1/3m−1 times a
constant (the function f̂ is constant since it has no arguments).

3
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(a) Setting
(L2M1T−2)p1(L0M0T−1)p2(L3M0T 0)p3 = (L0M0T 0)

gives this
2p1 + 3p3 = 0
p1 = 0

−2p1 − p2 = 0
which implies that p1 = p2 = p3 = 0. That is, among quantities with these dimensional formulas, the only
dimensionless product is the trivial one.

(b) Setting
(L2M1T−2)p1(L0M0T−1)p2(L3M0T 0)p3(L−3M1T 0)p4 = (L0M0T 0)

gives this.
2p1 + 3p3 − 3p4 = 0
p1 + p4 = 0

−2p1 − p2 = 0

(−1/2)ρ1+ρ2−→
ρ1+ρ3

ρ2↔ρ3−→
2p1 + 3p3 − 3p4 = 0
−p2 + 3p3 − 3p4 = 0

(−3/2)p3 + (5/2)p4 = 0
Taking p1 as parameter to express the torque gives this description of the solution set.

{


1
−2
−5/3
−1

 p1

∣∣ p1 ∈ R}

Denoting the torque by τ , the rotation rate by r, the volume of air by V , and the density of air by d we
have that Π1 = τr−2V −5/3d−1, and so the torque is r2V 5/3d times a constant.

4
(a) These are the dimensional formulas.

quantity
dimensional
formula

speed of the wave v L1M0T−1

separation of the dominoes d L1M0T 0

height of the dominoes h L1M0T 0

acceleration due to gravity g L1M0T−2

(b) The relationship
(L1M0T−1)p1(L1M0T 0)p2(L1M0T 0)p3(L1M0T−2)p4 = (L0M0T 0)

gives this linear system.
p1 + p2 + p3 + p4 = 0

0 = 0
−p1 − 2p4 = 0

ρ1+ρ4−→ p1 + p2 + p3 + p4 = 0
p2 + p3 − p4 = 0

Taking p3 and p4 as parameters, the solution set is described in this way.

{


0
−1
1
0

 p3 +


−2
1
0
1

 p4

∣∣ p3, p4 ∈ R}

That gives {Π1 = h/d,Π2 = dg/v2} as a complete set.
(c) Buckingham’s Theorem says that v2 = dg · f̂(h/d), and so, since g is a constant, if h/d is fixed then v
is proportional to

√
d .

5 Checking the conditions in the definition of a vector space is routine.
6
(a) The dimensional formula of the circumference is L, that is, L1M0T 0. The dimensional formula of the
area is L2.

(b) One is C +A = 2πr + πr2.
(c) One example is this formula relating the the length of arc subtended by an angle to the radius and
the angle measure in radians: `− rθ = 0. Both terms in that formula have dimensional formula L1. The
relationship holds for some unit systems (inches and radians, for instance) but not for all unit systems
(inches and degrees, for instance).
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Chapter 3. Maps Between Spaces

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Answers for subsection 3.I.1
3.I.1.12 To verify it is one-to-one, assume that f1(c1x + c2y + c3z) = f1(d1x + d2y + d3z). Then c1 +
c2x + c3x

2 = d1 + d2x + d3x
2 by the definition of f1. Members of P2 are equal only when they have the

same coefficients, so this implies that c1 = d1 and c2 = d2 and c3 = d3. Therefore f1(c1x + c2y + c3z) =
f1(d1x+ d2y + d3z) implies that c1x+ c2y + c3z = d1x+ d2y + d3z, and so f1 is one-to-one.

To verify that it is onto, consider an arbitrary member of the codomain a1 + a2x + a3x
2 and observe

that it is indeed the image of a member of the domain, namely, it is f1(a1x + a2y + a3z). (For instance,
0 + 3x+ 6x2 = f1(0x+ 3y + 6z).)

The computation checking that f1 preserves addition is this.
f1 ( (c1x+ c2y + c3z) + (d1x+ d2y + d3z) ) = f1 ( (c1 + d1)x+ (c2 + d2)y + (c3 + d3)z )

= (c1 + d1) + (c2 + d2)x+ (c3 + d3)x2

= (c1 + c2x+ c3x
2) + (d1 + d2x+ d3x

2)
= f1(c1x+ c2y + c3z) + f1(d1x+ d2y + d3z)

The check that f1 preserves scalar multiplication is this.
f1( r · (c1x+ c2y + c3z) ) = f1( (rc1)x+ (rc2)y + (rc3)z )

= (rc1) + (rc2)x+ (rc3)x2

= r · (c1 + c2x+ c3x
2)

= r · f1(c1x+ c2y + c3z)

3.I.1.14 It is one-to-one and onto, a correspondence, because it has an inverse (namely, f−1(x) = 3
√
x).

However, it is not an isomorphism. For instance, f(1) + f(1) 6= f(1 + 1).
3.I.1.16 Here are two.

a0 + a1x+ a2x
2 7→

a1

a0

a2

 and a0 + a1x+ a2x
2 7→

a0 + a1

a1

a2


Verification is straightforward (for the second, to show that it is onto, note thatst

u


is the image of (s− t) + tx+ ux2).
3.I.1.18 Here are two:

r1

r2

...
r16

 7→
r1 r2 . . .

. . . r16

 and


r1

r2

...
r16

 7→

r1

r2

...
...
r16


Verification that each is an isomorphism is easy.
3.I.1.20 If n ≥ 1 then Pn−1

∼= Rn. (If we take P−1 and R0 to be trivial vector spaces, then the relationship
extends one dimension lower.) The natural isomorphism between them is this.

a0 + a1x+ · · ·+ an−1x
n−1 7→


a0

a1

...
an−1
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Checking that it is an isomorphism is straightforward.

3.I.1.21 This is the map, expanded.

f(a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5) = a0 + a1(x− 1) + a2(x− 1)2 + a3(x− 1)3

+ a4(x− 1)4 + a5(x− 1)5

= a0 + a1(x− 1) + a2(x2 − 2x+ 1)

+ a3(x3 − 3x2 + 3x− 1) + a4(x4 − 4x3 + 6x2 − 4x+ 1)

+ a5(x5 − 5x4 + 10x3 − 10x2 + 5x− 1)

= (a0 − a1 + a2 − a3 + a4 − a5) + (a1 − 2a2 + 3a3 − 4a4 + 5a5)x

+ (a2 − 3a3 + 6a4 − 10a5)x2 + (a3 − 4a4 + 10a5)x3

+ (a4 − 5a5)x4 + a5x
5

This map is a correspondence because it has an inverse, the map p(x) 7→ p(x+ 1).
To finish checking that it is an isomorphism, we apply item (2) of Lemma 1.9 and show that it preserves

linear combinations of two polynomials. Briefly, the check goes like this.

f(c · (a0 + a1x+ · · ·+ a5x
5) + d · (b0 + b1x+ · · ·+ b5x

5))

= · · · = (ca0 − ca1 + ca2 − ca3 + ca4 − ca5 + db0 − db1 + db2 − db3 + db4 − db5) + · · ·+ (ca5 + db5)x5

= · · · = c · f(a0 + a1x+ · · ·+ a5x
5) + d · f(b0 + b1x+ · · ·+ b5x

5)

3.I.1.22 No vector space has the empty set underlying it. We can take ~v to be the zero vector.

3.I.1.23 Yes; where the two spaces are {~a} and {~b}, the map sending ~a to ~b is clearly one-to-one and onto,
and also preserves what little structure there is.

3.I.1.24 A linear combination of n = 0 vectors adds to the zero vector and so Lemma 1.8 shows that the
three statements are equivalent in this case.

3.I.1.25 Consider the basis 〈1〉 for P0 and let f(1) ∈ R be k. For any a ∈ P0 we have that f(a) = f(a ·1) =
af(1) = ak and so f ’s action is multiplication by k. Note that k 6= 0 or else the map is not one-to-one.
(Incidentally, any such map a 7→ ka is an isomorphism, as is easy to check.)

3.I.1.27 One direction is easy: by definition, if f is one-to-one then for any ~w ∈W at most one ~v ∈ V has
f(~v ) = ~w, and so in particular, at most one member of V is mapped to ~0W . The proof of Lemma 1.8 does
not use the fact that the map is a correspondence and therefore shows that any structure-preserving map f
sends ~0V to ~0W .

For the other direction, assume that the only member of V that is mapped to ~0W is ~0V . To show that f
is one-to-one assume that f(~v1) = f(~v2). Then f(~v1)− f(~v2) = ~0W and so f(~v1 − ~v2) = ~0W . Consequently
~v1 − ~v2 = ~0V , so ~v1 = ~v2, and so f is one-to-one.

3.I.1.28 We will prove something stronger—not only is the existence of a dependence preserved by isomor-
phism, but each instance of a dependence is preserved, that is,

~vi = c1~v1 + · · ·+ ci−1~vi−1 + ci+1~vi+1 + · · ·+ ck~vk

⇐⇒ f(~vi) = c1f(~v1) + · · ·+ ci−1f(~vi−1) + ci+1f(~vi+1) + · · ·+ ckf(~vk).

The =⇒ direction of this statement holds by item (3) of Lemma 1.9. The⇐= direction holds by regrouping

f(~vi) = c1f(~v1) + · · ·+ ci−1f(~vi−1) + ci+1f(~vi+1) + · · ·+ ckf(~vk)
= f(c1~v1 + · · ·+ ci−1~vi−1 + ci+1~vi+1 + · · ·+ ck~vk)

and applying the fact that f is one-to-one, and so for the two vectors ~vi and c1~v1+· · ·+ci−1~vi−1+ci+1f~vi+1+
· · ·+ ckf(~vk to be mapped to the same image by f , they must be equal.

3.I.1.30 First, the map p(x) 7→ p(x+ k) doesn’t count because it is a version of p(x) 7→ p(x− k). Here is
a correct answer (many others are also correct): a0 + a1x+ a2x

2 7→ a2 + a0x+ a1x
2. Verification that this

is an isomorphism is straightforward.

3.I.1.31
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(a) For the ‘only if’ half, let f : R1 → R1 to be an isomorphism. Consider the basis 〈1〉 ⊆ R1. Designate
f(1) by k. Then for any x we have that f(x) = f(x · 1) = x · f(1) = xk, and so f ’s action is multiplication
by k. To finish this half, just note that k 6= 0 or else f would not be one-to-one.

For the ‘if’ half we only have to check that such a map is an isomorphism when k 6= 0. To check
that it is one-to-one, assume that f(x1) = f(x2) so that kx1 = kx2 and divide by the nonzero factor k to
conclude that x1 = x2. To check that it is onto, note that any y ∈ R1 is the image of x = y/k (again,
k 6= 0). Finally, to check that such a map preserves combinations of two members of the domain, we have
this.

f(c1x1 + c2x2) = k(c1x1 + c2x2) = c1kx1 + c2kx2 = c1f(x1) + c2f(x2)
(b) By the prior item, f ’s action is x 7→ (7/3)x. Thus f(−2) = −14/3.
(c) For the ‘only if’ half, assume that f : R2 → R2 is an automorphism. Consider the standard basis E2 for
R2. Let

f(~e1) =
(
a
c

)
and f(~e2) =

(
b
d

)
.

Then the action of f on any vector is determined by by its action on the two basis vectors.

f(
(
x
y

)
) = f(x · ~e1 + y · ~e2) = x · f(~e1) + y · f(~e2) = x ·

(
a
c

)
+ y ·

(
b
d

)
=
(
ax+ by
cx+ dy

)
To finish this half, note that if ad− bc = 0, that is, if f(~e2) is a multiple of f(~e1), then f is not one-to-one.

For ‘if’ we must check that the map is an isomorphism, under the condition that ad − bc 6= 0. The
structure-preservation check is easy; we will here show that f is a correspondence. For the argument that
the map is one-to-one, assume this.

f(
(
x1

y1

)
) = f(

(
x2

y2

)
) and so

(
ax1 + by1

cx1 + dy1

)
=
(
ax2 + by2

cx2 + dy2

)
Then, because ad− bc 6= 0, the resulting system

a(x1 − x2) + b(y1 − y2) = 0
c(x1 − x2) + d(y1 − y2) = 0

has a unique solution, namely the trivial one x1 − x2 = 0 and y1 − y2 = 0 (this follows from the hint).
The argument that this map is onto is closely related—this system

ax1 + by1 = x
cx1 + dy1 = y

has a solution for any x and y if and only if this set

{
(
a
c

)
,

(
b
d

)
}

spans R2, i.e., if and only if this set is a basis (because it is a two-element subset of R2), i.e., if and only
if ad− bc 6= 0.

(d)

f(
(

0
−1

)
) = f(

(
1
3

)
−
(

1
4

)
) = f(

(
1
3

)
)− f(

(
1
4

)
) =

(
2
−1

)
−
(

0
1

)
=
(

2
−2

)
3.I.1.32 There are many answers; two are linear independence and subspaces.

To show that if a set {~v1, . . . , ~vn} is linearly independent then its image {f(~v1), . . . , f(~vn)} is also linearly
independent, consider a linear relationship among members of the image set.

0 = c1f(~v1) + · · ·+ cnf( ~vn) = f(c1~v1) + · · ·+ f(cn ~vn) = f(c1~v1 + · · ·+ cn ~vn)
Because this map is an isomorphism, it is one-to-one. So f maps only one vector from the domain to
the zero vector in the range, that is, c1~v1 + · · · + cn~vn equals the zero vector (in the domain, of course).
But, if {~v1, . . . , ~vn} is linearly independent then all of the c’s are zero, and so {f(~v1), . . . , f(~vn)} is linearly
independent also. (Remark. There is a small point about this argument that is worth mention. In a set,
repeats collapse, that is, strictly speaking, this is a one-element set: {~v,~v}, because the things listed as in
it are the same thing. Observe, however, the use of the subscript n in the above argument. In moving from
the domain set {~v1, . . . , ~vn} to the image set {f(~v1), . . . , f(~vn)}, there is no collapsing, because the image
set does not have repeats, because the isomorphism f is one-to-one.)
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To show that if f : V →W is an isomorphism and if U is a subspace of the domain V then the set of
image vectors f(U) = {~w ∈W

∣∣ ~w = f(~u) for some ~u ∈ U} is a subspace of W , we need only show that it is
closed under linear combinations of two of its members (it is nonempty because it contains the image of the
zero vector). We have

c1 · f(~u1) + c2 · f(~u2) = f(c1~u1) + f(c2~u2) = f(c1~u1 + c2~u2)
and c1~u1 + c2~u2 is a member of U because of the closure of a subspace under combinations. Hence the
combination of f(~u1) and f(~u2) is a member of f(U).
3.I.1.33
(a) The association

~p = c1~β1 + c2~β2 + c3~β3
RepB(·)7−→

c1c2
c3


is a function if every member ~p of the domain is associated with at least one member of the codomain, and if
every member ~p of the domain is associated with at most one member of the codomain. The first condition
holds because the basis B spans the domain—every ~p can be written as at least one linear combination of
~β’s. The second condition holds because the basis B is linearly independent—every member of the domain
~p can be written as at most one linear combination of the ~β’s.

(b) For the one-to-one argument, if RepB(~p) = RepB(~q), that is, if RepB(p1
~β1+p2

~β2+p3
~β3) = RepB(q1

~β1+
q2
~β2 + q3

~β3) then p1

p2

p3

 =

q1

q2

q3


and so p1 = q1 and p2 = q2 and p3 = q3, which gives the conclusion that ~p = ~q. Therefore this map is
one-to-one.

For onto, we can just note that ab
c


equals RepB(a~β1 + b~β2 + c~β3), and so any member of the codomain R3 is the image of some member of
the domain P2.

(c) This map respects addition and scalar multiplication because it respects combinations of two members
of the domain (that is, we are using item (2) of Lemma 1.9): where ~p = p1

~β1 + p2
~β2 + p3

~β3 and ~q =
q1
~β1 + q2

~β2 + q3
~β3, we have this.

RepB(c · ~p+ d · ~q) = RepB( (cp1 + dq1)~β1 + (cp2 + dq2)~β2 + (cp3 + dq3)~β3 )

=

cp1 + dq1

cp2 + dq2

cp3 + dq3


= c ·

p1

p2

p3

+ d ·

q1

q2

q3


= RepB(~p) + RepB(~q)

(d) Use any basis B for P2 whose first two members are x+ x2 and 1− x, say B = 〈x+ x2, 1− x, 1〉.
3.I.1.34 See the next subsection.
3.I.1.35
(a) Most of the conditions in the definition of a vector space are routine. We here sketch the verification
of part (1) of that definition.

For closure of U×W , note that because U and W are closed, we have that ~u1+~u2 ∈ U and ~w1+ ~w2 ∈W
and so (~u1 + ~u2, ~w1 + ~w2) ∈ U ×W . Commutativity of addition in U ×W follows from commutativity of
addition in U and W .

(~u1, ~w1) + (~u2, ~w2) = (~u1 + ~u2, ~w1 + ~w2) = (~u2 + ~u1, ~w2 + ~w1) = (~u2, ~w2) + (~u1, ~w1)
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The check for associativity of addition is similar. The zero element is (~0U ,~0W ) ∈ U ×W and the additive
inverse of (~u, ~w) is (−~u,−~w).

The checks for the second part of the definition of a vector space are also straightforward.
(b) This is a basis

〈 (1,
(

0
0

)
), (x,

(
0
0

)
), (x2,

(
0
0

)
), (1,

(
1
0

)
), (1,

(
0
1

)
) 〉

because there is one and only one way to represent any member of P2 × R2 with respect to this set; here
is an example.

(3 + 2x+ x2,

(
5
4

)
) = 3 · (1,

(
0
0

)
) + 2 · (x,

(
0
0

)
) + (x2,

(
0
0

)
) + 5 · (1,

(
1
0

)
) + 4 · (1,

(
0
1

)
)

The dimension of this space is five.
(c) We have dim(U ×W ) = dim(U) + dim(W ) as this is a basis.

〈(~µ1,~0W ), . . . , (~µdim(U),~0W ), (~0U , ~ω1), . . . , (~0U , ~ωdim(W ))〉
(d) We know that if V = U ⊕W then each ~v ∈ V can be written as ~v = ~u + ~w in one and only one way.
This is just what we need to prove that the given function an isomorphism.

First, to show that f is one-to-one we can show that if f ((~u1, ~w1)) = ((~u2, ~w2)), that is, if ~u1 + ~w1 =
~u2 + ~w2 then ~u1 = ~u2 and ~w1 = ~w2. But the statement ‘each ~v is such a sum in only one way’ is exactly
what is needed to make this conclusion. Similarly, the argument that f is onto is completed by the
statement that ‘each ~v is such a sum in at least one way’.

This map also preserves linear combinations
f( c1 · (~u1, ~w1) + c2 · (~u2, ~w2) ) = f( (c1~u1 + c2~u2, c1 ~w1 + c2 ~w2) )

= c1~u1 + c2~u2 + c1 ~w1 + c2 ~w2

= c1~u1 + c1 ~w1 + c2~u2 + c2 ~w2

= c1 · f( (~u1, ~w1) ) + c2 · f( (~u2, ~w2) )
and so it is an isomorphism.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Answers for subsection 3.I.2
3.I.2.14 There are many answers, one is the set of Pk (taking P−1 to be the trivial vector space).
3.I.2.15 False (except when n = 0). For instance, if f : V → Rn is an isomorphism then multiplying by any
nonzero scalar, gives another, different, isomorphism. (Between trivial spaces the isomorphisms are unique;
the only map possible is ~0V 7→ 0W .)
3.I.2.16 No. A proper subspace has a strictly lower dimension than it’s superspace; if U is a proper
subspace of V then any linearly independent subset of U must have fewer than dim(V ) members or else that
set would be a basis for V , and U wouldn’t be proper.
3.I.2.19 We must show that if ~a = ~b then f(~a) = f(~b). So suppose that a1

~β1+· · ·+an~βn = b1~β1+· · ·+bn~βn.
Each vector in a vector space (here, the domain space) has a unique representation as a linear combination
of basis vectors, so we can conclude that a1 = b1, . . . , an = bn. Thus,

f(~a) =

a1

...
an

 =

b1...
bn

 = f(~b)

and so the function is well-defined.
3.I.2.20 Yes, because a zero-dimensional space is a trivial space.
3.I.2.21
(a) No, this collection has no spaces of odd dimension.
(b) Yes, because Pk ∼= Rk+1.
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(c) No, for instance, M2×3
∼=M3×2.

3.I.2.22 One direction is easy: if the two are isomorphic via f then for any basis B ⊆ V , the set D = f(B) is
also a basis (this is shown in Lemma 2.3). The check that corresponding vectors have the same coordinates:
f(c1~β1 + · · ·+ cn~βn) = c1f(~β1) + · · ·+ cnf(~βn) = c1~δ1 + · · ·+ cn~δn is routine.

For the other half, assume that there are bases such that corresponding vectors have the same coordinates
with respect to those bases. Because f is a correspondence, to show that it is an isomorphism, we need only
show that it preserves structure. Because RepB(~v ) = RepD(f(~v )), the map f preserves structure if and
only if representations preserve addition: RepB(~v1 + ~v2) = RepB(~v1) + RepB(~v2) and scalar multiplication:
RepB(r · ~v ) = r · RepB(~v ) The addition calculation is this: (c1 + d1)~β1 + · · · + (cn + dn)~βn = c1~β1 + · · · +
cn~βn + d1

~β1 + · · ·+ dn~βn, and the scalar multiplication calculation is similar.
3.I.2.23
(a) Pulling the definition back from R4 to P3 gives that a0 + a1x+ a2x

2 + a3x
3 is orthogonal to b0 + b1x+

b2x
2 + b3x

3 if and only if a0b0 + a1b1 + a2b2 + a3b3 = 0.
(b) A natural definition is this.

D(


a0

a1

a2

a3

) =


a1

2a2

3a3

0


3.I.2.25 Because V1 ∩ V2 = {~0V } and f is one-to-one we have that f(V1) ∩ f(V2) = {~0U}. To finish, count
the dimensions: dim(U) = dim(V ) = dim(V1) + dim(V2) = dim(f(V1)) + dim(f(V2)), as required.
3.I.2.26 Rational numbers have many representations, e.g., 1/2 = 3/6, and the numerators can vary among
representations.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Answers for subsection 3.II.1
3.II.1.19 Each of these projections is a homomorphism. Projection to the xz-plane and to the yz-plane
are these maps. xy

z

 7→
x0
z

 xy
z

 7→
0
y
z


Projection to the x-axis, to the y-axis, and to the z-axis are these maps.xy

z

 7→
x0

0

 xy
z

 7→
0
y
0

 xy
z

 7→
0

0
z


And projection to the origin is this map. xy

z

 7→
0

0
0


Verification that each is a homomorphism is straightforward. (The last one, of course, is the zero transfor-
mation on R3.)
3.II.1.20 The first is not onto; for instance, there is no polynomial that is sent the constant polynomial
p(x) = 1. The second is not one-to-one; both of these members of the domain(

1 0
0 0

)
and

(
0 0
0 1

)
are mapped to the same member of the codomain, 1 ∈ R.
3.II.1.21 Yes; in any space id(c · ~v + d · ~w) = c · ~v + d · ~w = c · id(~v) + d · id(~w).
3.II.1.24
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(a) Let ~v ∈ V be represented with respect to the basis as ~v = c1~β1 + · · · + cn~βn. Then h(~v) = h(c1~β1 +
· · ·+ cn~βn) = c1h(~β1) + · · ·+ cnh(~βn) = c1 ·~0 + · · ·+ cn ·~0 = ~0.

(b) This argument is similar to the prior one. Let ~v ∈ V be represented with respect to the basis as
~v = c1~β1 + · · ·+ cn~βn. Then h(c1~β1 + · · ·+ cn~βn) = c1h(~β1) + · · ·+ cnh(~βn) = c1~β1 + · · ·+ cn~βn = ~v.

(c) As above, only c1h(~β1) + · · ·+ cnh(~βn) = c1r~β1 + · · ·+ cnr~βn = r(c1~β1 + · · ·+ cn~βn) = r~v.

3.II.1.29 Let h : R1 → R1 be linear. A linear map is determined by its action on a basis, so fix the basis
〈1〉 for R1. For any r ∈ R1 we have that h(r) = h(r · 1) = r · h(1) and so h acts on any argument r by
multiplying it by the constant h(1). If h(1) is not zero then the map is a correspondence—its inverse is
division by h(1)—so any nontrivial transformation of R1 is an isomorphism.

This projection map is an example that shows that not every transformation of Rn acts via multiplication
by a constant when n > 1, including when n = 2.

x1

x2

...
xn

 7→

x1

0
...
0



3.II.1.30
(a) Where c and d are scalars, we have this.

h(c ·

x1

...
xn

+ d ·

y1

...
yn

) = h(

cx1 + dy1

...
cxn + dyn

)

=

 a1,1(cx1 + dy1) + · · ·+ a1,n(cxn + dyn)
...

am,1(cx1 + dy1) + · · ·+ am,n(cxn + dyn)


= c ·

 a1,1x1 + · · ·+ a1,nxn
...

am,1x1 + · · ·+ am,nxn

+ d ·

 a1,1y1 + · · ·+ a1,nyn
...

am,1y1 + · · ·+ am,nyn


= c · h(

x1

...
xn

) + d · h(

y1

...
yn

)

(b) Each power i of the derivative operator is linear because of these rules familiar from calculus.

di

dxi
( f(x) + g(x) ) =

di

dxi
f(x) +

di

dxi
g(x) and

di

dxi
r · f(x) = r · d

i

dxi
f(x)

Thus the given map is a linear transformation of Pn because any linear combination of linear maps is also
a linear map.

3.II.1.31 (This argument has already appeared, as part of the proof that isomorphism is an equivalence.)
Let f : U → V and g : V →W be linear. For any ~u1, ~u2 ∈ U and scalars c1, c2 combinations are preserved.

g ◦ f(c1~u1 + c2~u2) = g( f(c1~u1 + c2~u2) ) = g( c1f(~u1) + c2f(~u2) )
= c1 · g(f(~u1)) + c2 · g(f(~u2)) = c1 · g ◦ f(~u1) + c2 · g ◦ f(~u2)

3.II.1.33 Recall that the entry in row i and column j of the transpose of M is the entry mj,i from row j
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and column i of M . Now, the check is routine.

[r ·


...

· · · ai,j · · ·
...

+ s ·


...

· · · bi,j · · ·
...

]

trans

=


...

· · · rai,j + sbi,j · · ·
...


trans

=


...

· · · raj,i + sbj,i · · ·
...



= r ·


...

· · · aj,i · · ·
...

+ s ·


...

· · · bj,i · · ·
...



= r ·


...

· · · aj,i · · ·
...


trans

+ s ·


...

· · · bj,i · · ·
...


trans

The domain is Mm×n while the codomain is Mn×m.
3.II.1.34
(a) For any homomorphism h : Rn → Rm we have

h(`) = {h(t · ~u+ (1− t) · ~v)
∣∣ t ∈ [0..1]} = {t · h(~u) + (1− t) · h(~v)

∣∣ t ∈ [0..1]}
which is the line segment from h(~u) to h(~v).

(b) We must show that if a subset of the domain is convex then its image, as a subset of the range, is also
convex. Suppose that C ⊆ Rn is convex and consider its image h(C). To show h(C) is convex we must
show that for any two of its members, ~d1 and ~d2, the line segment connecting them

` = {t · ~d1 + (1− t) · ~d2

∣∣ t ∈ [0..1]}
is a subset of h(C).

Fix any member t̂ · ~d1 +(1− t̂) · ~d2 of that line segment. Because the endpoints of ` are in the image of C,
there are members of C that map to them, say h(~c1) = ~d1 and h(~c2) = ~d2. Now, where t̂ is the scalar that
is fixed in the first sentence of this paragraph, observe that h(t̂ ·~c1 +(1− t̂) ·~c2) = t̂ ·h(~c1)+(1− t̂) ·h(~c2) =
t̂ · ~d1 + (1− t̂) · ~d2 Thus, any member of ` is a member of h(C), and so h(C) is convex.

3.II.1.36 Suppose that h : V →W is a homomorphism and suppose that S is a subspace of V . Consider the
map ĥ : S →W defined by ĥ(~s) = h(~s). (The only difference between ĥ and h is the difference in domain.)
Then this new map is linear: ĥ(c1 · ~s1 + c2 · ~s2) = h(c1~s1 + c2~s2) = c1h(~s1) + c2h(~s2) = c1 · ĥ(~s1) + c2 · ĥ(~s2).
3.II.1.37 This will appear as a lemma in the next subsection.
(a) The range is nonempty because V is nonempty. To finish we need to show that it is closed under
combinations. A combination of range vectors has the form, where ~v1, . . . , ~vn ∈ V ,

c1 · h(~v1) + · · ·+ cn · h(~vn) = h(c1~v1) + · · ·+ h(cn~vn) = h(c1 · ~v1 + · · ·+ cn · ~vn),
which is itself in the range as c1 · ~v1 + · · · + cn · ~vn is a member of domain V . Therefore the range is a
subspace.

(b) The nullspace is nonempty since it contains ~0V , as ~0V maps to ~0W . It is closed under linear com-
binations because, where ~v1, . . . , ~vn ∈ V are elements of the inverse image set {~v ∈ V

∣∣ h(~v) = ~0W }, for
c1, . . . , cn ∈ R

~0W = c1 · h(~v1) + · · ·+ cn · h(~vn) = h(c1 · ~v1 + · · ·+ cn · ~vn)
and so c1 · ~v1 + · · ·+ cn · ~vn is also in the inverse image of ~0W .

(c) This image of U nonempty because U is nonempty. For closure under combinations, where ~u1, . . . , ~un ∈
U ,

c1 · h(~u1) + · · ·+ cn · h(~un) = h(c1 · ~u1) + · · ·+ h(cn · ~un) = h(c1 · ~u1 + · · ·+ cn · ~un)
which is itself in h(U) as c1 · ~u1 + · · ·+ cn · ~un is in U . Thus this set is a subspace.
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(d) The natural generalization is that the inverse image of a subspace of is a subspace.
Suppose that X is a subspace of W . Note that ~0W ∈ X so the set {~v ∈ V

∣∣ h(~v) ∈ X} is not empty.
To show that this set is closed under combinations, let ~v1, . . . , ~vn be elements of V such that h(~v1) = ~x1,
. . . , h(~vn) = ~xn and note that

h(c1 · ~v1 + · · ·+ cn · ~vn) = c1 · h(~v1) + · · ·+ cn · h(~vn) = c1 · ~x1 + · · ·+ cn · ~xn
so a linear combination of elements of h−1(X) is also in h−1(X).

3.II.1.38 No; the set of isomorphisms does not contain the zero map (unless the space is trivial).

3.II.1.39 If 〈~β1, . . . , ~βn〉 doesn’t span the space then the map needn’t be unique. For instance, if we try
to define a map from R2 to itself by specifying only that ~e1 is sent to itself, then there is more than one
homomorphism possible; both the identity map and the projection map onto the first component fit this
condition.

If we drop the condition that 〈~β1, . . . , ~βn〉 is linearly independent then we risk an inconsistent specification
(i.e, there could be no such map). An example is if we consider 〈~e2, ~e1, 2~e1〉, and try to define a map from
R2 to itself that sends ~e2 to itself, and sends both ~e1 and 2~e1 to ~e1. No homomorphism can satisfy these
three conditions.

3.II.1.40
(a) Briefly, the check of linearity is this.

F (r1 · ~v1 + r2 · ~v2) =
(
f1(r1~v1 + r2~v2)
f2(r1~v1 + r2~v2)

)
= r1

(
f1(~v1)
f2(~v1)

)
+ r2

(
f1(~v2)
f2(~v2)

)
= r1 · F (~v1) + r2 · F (~v2)

(b) Yes. Let π1 : R2 → R1 and π2 : R2 → R1 be the projections(
x
y

)
π17−→ x and

(
x
y

)
π27−→ y

onto the two axes. Now, where f1(~v) = π1(F (~v)) and f2(~v) = π2(F (~v)) we have the desired component
functions.

F (~v) =
(
f1(~v)
f2(~v)

)
They are linear because they are the composition of linear functions, and the fact that the compoistion
of linear functions is linear was shown as part of the proof that isomorphism is an equivalence relation
(alternatively, the check that they are linear is straightforward).

(c) In general, a map from a vector space V to an Rn is linear if and only if each of the component functions
is linear. The verification is as in the prior item.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Answers for subsection 3.II.2

3.II.2.25 The shadow of a scalar multiple is the scalar multiple of the shadow.

3.II.2.26
(a) Setting a0 +(a0 +a1)x+(a2 +a3)x3 = 0+0x+0x2 +0x3 gives a0 = 0 and a0 +a1 = 0 and a2 +a3 = 0,
so the nullspace is {−a3x

2 + a3x
3
∣∣ a3 ∈ R}.

(b) Setting a0 + (a0 + a1)x + (a2 + a3)x3 = 2 + 0x + 0x2 − x3 gives that a0 = 2, and a1 = −2,
and a2 + a3 = −1. Taking a3 as a parameter, and renaming it a3 = a gives this set description
{2− 2x+ (−1− a)x2 + ax3

∣∣ a ∈ R} = {(2− 2x− x2) + a · (−x2 + x3)
∣∣ a ∈ R}.

(c) This set is empty because the range of h includes only those polynomials with a 0x2 term.
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3.II.2.29 For any vector space V , the nullspace

{~v ∈ V
∣∣ 2~v = ~0}

is trivial, while the rangespace

{~w ∈ V
∣∣ ~w = 2~v for some ~v ∈ V }

is all of V , because every vector ~w is twice some other vector, specifically, it is twice (1/2)~w. (Thus, this
transformation is actually an automorphism.)

3.II.2.30 Because the rank plus the nullity equals the dimension of the domain (here, five), and the rank is
at most three, the possible pairs are: (3, 2), (2, 3), (1, 4), and (0, 5). Coming up with linear maps that show
that each pair is indeed possible is easy.

3.II.2.31 No (unless Pn is trivial), because the two polynomials f0(x) = 0 and f1(x) = 1 have the same
derivative; a map must be one-to-one to have an inverse.

3.II.2.33
(a) One direction is obvious: if the homomorphism is onto then its range is the codomain and so its rank
equals the dimension of its codomain. For the other direction assume that the map’s rank equals the
dimension of the codomain. Then the map’s range is a subspace of the codomain, and has dimension
equal to the dimension of the codomain. Therefore, the map’s range must equal the codomain, and the
map is onto. (The ‘therefore’ is because there is a linearly independent subset of the range that is of size
equal to the dimension of the codomain, but any such linearly independent subset of the codomain must
be a basis for the codomain, and so the range equals the codomain.)

(b) By Theorem 3.II.2.20, a homomorphism is one-to-one if and only if its nullity is zero. Because rank
plus nullity equals the dimension of the domain, it follows that a homomorphism is one-to-one if and only
if its rank equals the dimension of its domain. But this domain and codomain have the same dimension,
so the map is one-to-one if and only if it is onto.

3.II.2.34 We are proving that h : V →W is nonsingular if and only if for every linearly independent subset
S of V the subset h(S) = {h(~s)

∣∣ ~s ∈ S} of W is linearly independent.
One half is easy—by Theorem 3.II.2.20, if h is singular then its nullspace is nontrivial (contains more

than just the zero vector). So, where ~v 6= ~0V is in that nullspace, the singleton set {~v } is independent while
its image {h(~v)} = {~0W } is not.

For the other half, assume that h is nonsingular and so by Theorem 3.II.2.20 has a trivial nullspace.
Then for any ~v1, . . . , ~vn ∈ V , the relation

~0W = c1 · h(~v1) + · · ·+ cn · h(~vn) = h(c1 · ~v1 + · · ·+ cn · ~vn)

implies the relation c1 ·~v1 + · · ·+ cn ·~vn = ~0V . Hence, if a subset of V is independent then so is its image in
W .

Remark. The statement is that a linear map is nonsingular if and only if it preserves independence for all
sets (that is, if a set is independent then its image is also independent). A singular map may well preserve
some independent sets. An example is this singular map from R3 to R2.xy

z

 7→ (
x+ y + z

0

)
Linear independence is preserved for this set

{

1
0
0

} 7→ {(1
0

)
}

and (in a somewhat more tricky example) also for this set

{

1
0
0

 ,

0
1
0

} 7→ {(1
0

)
}
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(recall that in a set, repeated elements do not appear twice). However, there are sets whose independence is
not preserved under this map;

{

1
0
0

 ,

0
2
0

} 7→ {(1
0

)
,

(
2
0

)
}

and so not all sets have independence preserved.
3.II.2.35 (We use the notation from Theorem 3.II.1.9.) Fix a basis 〈~β1, . . . , ~βn〉 for V and a basis
〈~w1, . . . , ~wk〉 for W . If the dimension k of W is less than or equal to the dimension n of V then the
theorem gives a linear map from V to W determined in this way.

~β1 7→ ~w1, . . . , ~βk 7→ ~wk and ~βk+1 7→ ~wk, . . . , ~βn 7→ ~wk
We need only to verify that this map is onto.

Any member of W can be written as a linear combination of basis elements c1 · ~w1 + · · ·+ ck · ~wk. This
vector is the image, under the map described above, of c1 · ~β1 + · · ·+ ck · ~βk + 0 · ~βk+1 · · ·+ 0 · ~βn. Thus the
map is onto.
3.II.2.36 By assumption, h is not the zero map and so a vector ~v ∈ V exists that is not in the nullspace.
Note that 〈h(~v)〉 is a basis for R, because it is a size one linearly independent subset of R. Consequently h
is onto, as for any r ∈ R we have r = c · h(~v) for some scalar c, and so r = h(c~v).

Thus the rank of h is one. Because the nullity is given as n, the dimension of the domain of h (the vector
space V ) is n+1. We can finish by showing {~v, ~β1, . . . , ~βn} is linearly independent, as it is a size n+1 subset
of a dimension n+ 1 space. Because {~β1, . . . , ~βn} is linearly independent we need only show that ~v is not a
linear combination of the other vectors. But c1~β1 + · · · + cn~βn = ~v would give −~v + c1~β1 + · · · + cn~βn = ~0
and applying h to both sides would give a contradiction.
3.II.2.38 This is a simple calculation.

h([S]) = {h(c1~s1 + · · ·+ cn~sn)
∣∣ c1, . . . , cn ∈ R and ~s1, . . . , ~sn ∈ S}

= {c1h(~s1) + · · ·+ cnh(~sn)
∣∣ c1, . . . , cn ∈ R and ~s1, . . . , ~sn ∈ S}

= [h(S)]

3.II.2.40 Because the rank of t is one, the rangespace of t is a one-dimensional set. Taking 〈h(~v)〉 as a
basis (for some appropriate ~v), we have that for every ~w ∈ V , the image h(~w) ∈ V is a multiple of this basis
vector—associated with each ~w there is a scalar c~w such that t(~w) = c~wt(~v). Apply t to both sides of that
equation and take r to be ct(~v)

t ◦ t(~w) = t(c~w · t(~v)) = c~w · t ◦ t(~v) = c~w · ct(~v) · t(~v) = c~w · r · t(~v) = r · c~w · t(~v) = r · t(~w)
to get the desired conclusion.
3.II.2.41 Fix a basis 〈~β1, . . . , ~βn〉 for V . We shall prove that this map

h
Φ7−→

h(~β1)
...

h(~βn)


is an isomorphism from V ∗ to Rn.

To see that Φ is one-to-one, assume that h1 and h2 are members of V ∗ such that Φ(h1) = Φ(h2). Thenh1(~β1)
...

h1(~βn)

 =

h2(~β1)
...

h2(~βn)


and consequently, h1(~β1) = h2(~β1), etc. But a homomorphism is determined by its action on a basis, so
h1 = h2, and therefore Φ is one-to-one.

To see that Φ is onto, consider x1

...
xn
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for x1, . . . , xn ∈ R. This function h from V to R

c1~β1 + · · ·+ cn~βn
h7−→ c1x1 + · · ·+ cnxn

is easily seen to be linear, and to be mapped by Φ to the given vector in Rn, so Φ is onto.
The map Φ also preserves structure: where

c1~β1 + · · ·+ cn~βn
h17−→ c1h1(~β1) + · · ·+ cnh1(~βn)

c1~β1 + · · ·+ cn~βn
h27−→ c1h2(~β1) + · · ·+ cnh2(~βn)

we have

(r1h1 + r2h2)(c1~β1 + · · ·+ cn~βn) = c1(r1h1(~β1) + r2h2(~β1)) + · · ·+ cn(r1h1(~βn) + r2h2(~βn))

= r1(c1h1(~β1) + · · ·+ cnh1(~βn)) + r2(c1h2(~β1) + · · ·+ cnh2(~βn))

so Φ(r1h1 + r2h2) = r1Φ(h1) + r2Φ(h2).

3.II.2.42 Let h : V →W be linear and fix a basis 〈~β1, . . . , ~βn〉 for V . Consider these n maps from V to W

h1(~v) = c1 · h(~β1), h2(~v) = c2 · h(~β2), . . . , hn(~v) = cn · h(~βn)

for any ~v = c1~β1+· · ·+cn~βn. Clearly h is the sum of the hi’s. We need only check that each hi is linear: where
~u = d1

~β1 + · · ·+ dn~βn we have hi(r~v + s~u) = rci + sdi = rhi(~v) + shi(~u).
3.II.2.43 Either yes (trivially) or no (nearly trivially).

If V ‘is homomorphic to’ W is taken to mean there is a homomorphism from V into (but not necessarily
onto) W , then every space is homomorphic to every other space as a zero map always exists.

If V ‘is homomorphic to’ W is taken to mean there is an onto homomorphism from V to W then the
relation is not an equivalence. For instance, there is an onto homomorphism from R3 to R2 (projection is
one) but no homomorphism from R2 onto R3 by Corollary 2.16, so the relation is not reflexive.∗

3.II.2.44 That they form the chains is obvious. For the rest, we show here that R(tj+1) = R(tj) implies
that R(tj+2) = R(tj+1). Induction then applies.

Assume that R(tj+1) = R(tj). Then t : R(tj+1)→ R(tj+2) is the same map, with the same domain, as
t : R(tj)→ R(tj+1). Thus it has the same range: R(tj+2) = R(tj+1).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Answers for subsection 3.III.1

3.III.1.12

(a)
(

2 · 4 + 1 · 2
3 · 4− (1/2) · 2

)
=
(

10
11

)
(b)

(
4
1

)
(c) Not defined.

3.III.1.18 Where the space is n-dimensional,

RepB,B(id) =


1 0 . . . 0
0 1 . . . 0

...
0 0 . . . 1


B,B

is the n×n identity matrix.
3.III.1.19 Taking this as the natural basis

B = 〈~β1, ~β2, ~β3, ~β4〉 = 〈
(

1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

)
〉

the transpose map acts in this way
~β1 7→ ~β1

~β2 7→ ~β3
~β3 7→ ~β2

~β4 7→ ~β4

∗More information on equivalence relations is in the appendix.
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so that representing the images with respect to the codomain’s basis and adjoining those column vectors
together gives this.

RepB,B(trans) =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


B,B

3.III.1.20
(a) With respect to the basis of the codomain, the images of the members of the basis of the domain are
represented as

RepB(~β2) =


0
1
0
0

 RepB(~β3) =


0
0
1
0

 RepB(~β4) =


0
0
0
1

 RepB(~0) =


0
0
0
0


and consequently, the matrix representing the transformation is this.

0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0



(b)


0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0


(c)


0 0 0 0
1 0 0 0
0 1 0 0
0 0 0 0


3.III.1.21
(a) The picture of ds : R2 → R2 is this.

~u

~v

ds7−→
ds(~u)

ds(~v)

This map’s effect on the vectors in the standard basis for the domain is(
1
0

)
ds7−→
(
s
0

) (
0
1

)
ds7−→
(

0
s

)
and those images are represented with respect to the codomain’s basis (again, the standard basis) by
themselves.

RepE2(
(
s
0

)
) =

(
s
0

)
RepE2(

(
0
s

)
) =

(
0
s

)
Thus the representation of the dilation map is this.

RepE2,E2(ds) =
(
s 0
0 s

)
(b) The picture of f` : R2 → R2 is this.

~v
f`7−→

f`(~v)



Answers to Exercises 53

Some calculation (see Exercise I.29) shows that when the line has slope k(
1
0

)
f`7−→
(

(1− k2)/(1 + k2)
2k/(1 + k2)

) (
0
1

)
f`7−→
(

2k/(1 + k2)
−(1− k2)/(1 + k2)

)
(the case of a line with undefined slope is separate but easy) and so the matrix representing reflection is
this.

RepE2,E2(f`) =
1

1 + k2
·
(

1− k2 2k
2k −(1− k2)

)
3.III.1.23
(a) The images of the members of the domain’s basis are

~β1 7→ h(~β1) ~β2 7→ h(~β2) . . . ~βn 7→ h(~βn)
and those images are represented with respect to the codomain’s basis in this way.

Reph(B)(h(~β1) ) =


1
0
...
0

 Reph(B)(h(~β2) ) =


0
1
...
0

 . . . Reph(B)(h(~βn) ) =


0
0
...
1


Hence, the matrix is the identity.

RepB,h(B)(h) =


1 0 . . . 0
0 1 0

. . .
0 0 1


(b) Using the matrix in the prior item, the representation is this.

Reph(B)(h(~v) ) =

c1...
cn


h(B)

3.III.1.24 The product 
h1,1 . . . h1,i . . . h1,n

h2,1 . . . h2,i . . . h2,n

...
hm,1 . . . hm,i . . . h1,n




0
...
1
...
0

 =


h1,i

h2,i

...
hm,i


gives the i-th column of the matrix.
3.III.1.26
(a) It is the set of vectors of the codomain represented with respect to the codomain’s basis in this way.

{
(

1 0
0 0

)(
x
y

) ∣∣ x, y ∈ R} = {
(
x
0

) ∣∣ x, y ∈ R}
As the codomain’s basis is E2, and so each vector is represented by itself, the range of this transformation
is the x-axis.

(b) It is the set of vectors of the codomain represented in this way.

{
(

0 0
3 2

)(
x
y

) ∣∣ x, y ∈ R} = {
(

0
3x+ 2y

) ∣∣ x, y ∈ R}
With respect to E2 vectors represent themselves so this range is the y axis.

(c) The set of vectors represented with respect to E2 as

{
(
a b
2a 2b

)(
x
y

) ∣∣ x, y ∈ R} = {
(
ax+ by

2ax+ 2by

) ∣∣ x, y ∈ R} = {(ax+ by) ·
(

1
2

) ∣∣ x, y ∈ R}
is the line y = 2x, provided either a or b is not zero, and is the set consisting of just the origin if both are
zero.
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3.III.1.28 We mimic Example 1.1, just replacing the numbers with letters.
Write B as 〈~β1, . . . , ~βn〉 and D as 〈~δ1, . . . , ~δm〉. By definition of representation of a map with respect to

bases, the assumption that

RepB,D(h) =

h1,1 . . . h1,n

...
...

hm,1 . . . hm,n


means that h(~βi) = hi,1~δ1 + · · ·+hi,n~δn. And, by the definition of the representation of a vector with respect
to a basis, the assumption that

RepB(~v) =

c1...
cn


means that ~v = c1~β1 + · · ·+ cn~βn. Substituting gives

h(~v) = h(c1 · ~β1 + · · ·+ cn · ~βn)

= c1 · h(~β1) + · · ·+ cn · ~βn
= c1 · (h1,1

~δ1 + · · ·+ hm,1~δm) + · · ·+ cn · (h1,n
~δ1 + · · ·+ hm,n~δm)

= (h1,1c1 + · · ·+ h1,ncn) · ~δ1 + · · ·+ (hm,1c1 + · · ·+ hm,ncn) · ~δm
and so h(~v) is represented as required.
3.III.1.30
(a) Write BU as 〈~β1, . . . , ~βk〉 and then BV as 〈~β1, . . . , ~βk, ~βk+1, . . . , ~βn〉. If

RepBU (~v) =

c1...
ck

 so that ~v = c1 · ~β1 + · · ·+ ck · ~βk

then,

RepBV (~v) =



c1
...
ck
0
...
0


because ~v = c1 · ~β1 + · · ·+ ck · ~βk + 0 · ~βk+1 + · · ·+ 0 · ~βn.

(b) We must first decide what the question means. Compare h : V →W with its restriction to the subspace
h¹ U : U →W . The rangespace of the restriction is a subspace of W , so fix a basis Dh(U) for this rangespace
and extend it to a basis DV for W . We want the relationship between these two.

RepBV ,DV (h) and RepBU ,Dh(U)
(h¹ U )

The answer falls right out of the prior item: if

RepBU ,Dh(U)
(h¹ U ) =

h1,1 . . . h1,k

...
...

hp,1 . . . hp,k


then the extension is represented in this way.

RepBV ,DV (h) =



h1,1 . . . h1,k h1,k+1 . . . h1,n

...
...

hp,1 . . . hp,k hp,k+1 . . . hp,n
0 . . . 0 hp+1,k+1 . . . hp+1,n

...
...

0 . . . 0 hm,k+1 . . . hm,n
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(c) Take Wi to be the span of {h(~β1), . . . , h(~βi)}.
(d) Apply the answer from the second item to the third item.
(e) No. For instance πx : R2 → R2, projection onto the x axis, is represented by these two upper-triangular
matrices

RepE2,E2(πx) =
(

1 0
0 0

)
and RepC,E2(πx) =

(
0 1
0 0

)
where C = 〈~e2, ~e1〉.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Answers for subsection 3.III.2

3.III.2.12 A general member of the domain, represented with respect to the domain’s basis as

a cos θ + b sin θ =
(

a
a+ b

)
B

is mapped to (
0
a

)
D

representing 0 · (cos θ + sin θ) + a · (cos θ)

and so the linear map represented by the matrix with respect to these bases

a cos θ + b sin θ 7→ a cos θ

is projection onto the first component.

3.III.2.14 Let the matrix be G, and suppose that it rperesents g : V →W with respect to bases B and D.
Because G has two columns, V is two-dimensional. Because G has two rows, W is two-dimensional. The
action of g on a general member of the domain is this.(

x
y

)
B

7→
(
x+ 2y
3x+ 6y

)
D

(a) The only representation of the zero vector in the codomain is

RepD(~0) =
(

0
0

)
D

and so the set of representations of members of the nullspace is this.

{
(
x
y

)
B

∣∣ x+ 2y = 0 and 3x+ 6y = 0} = {y ·
(
−1/2

1

)
D

∣∣ y ∈ R}
(b) The representation map RepD : W → R2 and its inverse are isomorphisms, and so preserve the dimen-
sion of subspaces. The subspace of R2 that is in the prior item is one-dimensional. Therefore, the image
of that subspace under the inverse of the representation map—the nullspace of G, is also one-dimensional.

(c) The set of representations of members of the rangespace is this.

{
(
x+ 2y
3x+ 6y

)
D

∣∣ x, y ∈ R} = {k ·
(

1
3

)
D

∣∣ k ∈ R}
(d) Of course, Theorem 3.III.2.3 gives that the rank of the map equals the rank of the matrix, which is
one. Alternatively, the same argument that was used above for the nullspace gives here that the dimension
of the rangespace is one.

(e) One plus one equals two.
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3.III.2.17 Yes. Consider

H =
(

1 0
0 1

)
representing a map from R2 to R2. With respect to the standard bases B1 = E2,D1 = E2 this matrix
represents the identity map. With respect to

B2 = D2 = 〈
(

1
1

)
,

(
1
−1

)
〉

this matrix again represents the identity. In fact, as long as the starting and ending bases are equal—as long
as Bi = Di—then the map represented by H is the identity.
3.III.2.19 The first map (

x
y

)
=
(
x
y

)
E2
7→
(

3x
2y

)
E2

=
(

3x
2y

)
stretches vectors by a factor of three in the x direction and by a factor of two in the y direction. The second
map (

x
y

)
=
(
x
y

)
E2
7→
(
x
0

)
E2

=
(
x
0

)
projects vectors onto the x axis. The third(

x
y

)
=
(
x
y

)
E2
7→
(
y
x

)
E2

=
(
y
x

)
interchanges first and second components (that is, it is a reflection about the line y = x). The last(

x
y

)
=
(
x
y

)
E2
7→
(
x+ 3y
y

)
E2

=
(
x+ 3y
y

)
stretches vectors parallel to the y axis, by an amount equal to three times their distance from that axis (this
is a skew.)
3.III.2.20
(a) This is immediate from Theorem 3.III.2.3.
(b) Yes. This is immediate from the prior item.

To give a specific example, we can start with E3 as the basis for the domain, and then we require a
basis D for the codomain R3. The matrix H gives the action of the map as this1

0
0

 =

1
0
0


E3

7→

1
2
0


D

0
1
0

 =

0
1
0


E3

7→

0
0
1


D

0
0
1

 =

0
0
1


E3

7→

0
0
0


D

and there is no harm in finding a basis D so that

RepD(

1
0
0

) =

1
2
0


D

and RepD(

0
1
0

) =

0
0
1


D

that is, so that the map represented by H with respect to E3,D is projection down onto the xy plane. The
second condition gives that the third member of D is ~e2. The first condition gives that the first member
of D plus twice the second equals ~e1, and so this basis will do.

D = 〈

 0
−1
0

 ,

1/2
1/2
0

 ,

0
1
0

〉
3.III.2.21
(a) Recall that the representation map RepB : V → Rn is linear (it is actually an isomorphism, but we
do not need that it is one-to-one or onto here). Considering the column vector x to be a n×1 matrix
gives that the map from Rn to R that takes a column vector to its dot product with ~x is linear (this is a
matrix-vector product and so Theorem 3.III.2.1 applies). Thus the map under consideration h~x is linear
because it is the composistion of two linear maps.

~v 7→ RepB(~v) 7→ ~x · RepB(~v)
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(b) Any linear map g : V → R is represented by some matrix(
g1 g2 · · · gn

)
(the matrix has n columns because V is n-dimensional and it has only one row because R is one-
dimensional). Then taking ~x to be the column vector that is the transpose of this matrix

~x =

g1

...
gn


has the desired action.

~v =

v1

...
vn

 7→
g1

...
gn


v1

...
vn

 = g1v1 + · · ·+ gnvn

(c) No. If ~x has any nonzero entries then h~x cannot be the zero map (and if ~x is the zero vector then h~x
can only be the zero map).

3.III.2.22 See the following section.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Answers for subsection 3.IV.1
3.IV.1.8 Represent the domain vector ~v ∈ V and the maps g, h : V →W with respect to bases B,D in the
usual way.
(a) The representation of (g + h) (~v) = g(~v) + h(~v)(

(g1,1v1 + · · ·+ g1,nvn)~δ1 + · · ·+ (gm,1v1 + · · ·+ gm,nvn)~δm
)

+
(
(h1,1v1 + · · ·+ h1,nvn)~δ1 + · · ·+ (hm,1v1 + · · ·+ hm,nvn)~δm

)
regroups

= ((g1,1 + h1,1)v1 + · · ·+ (g1,1 + h1,n)vn) · ~δ1 + · · ·+ ((gm,1 + hm,1)v1 + · · ·+ (gm,n + hm,n)vn) · ~δm
to the entry-by-entry sum of the representation of g(~v) and the representation of h(~v).

(b) The representation of (r · h) (~v) = r ·
(
h(~v)

)
r ·
(
(h1,1v1 + h1,2v2 + · · ·+ h1,nvn)~δ1 + · · ·+ (hm,1v1 + hm,2v2 + · · ·+ hm,nvn)~δm

)
= (rh1,1v1 + · · ·+ rh1,nvn) · ~δ1 + · · ·+ (rhm,1v1 + · · ·+ rhm,nvn) · ~δm

is the entry-by-entry multiple of r and the representation of h.
3.IV.1.10 For any V,W with bases B,D, the (appropriately-sized) zero matrix represents this map.

~β1 7→ 0 · ~δ1 + · · ·+ 0 · ~δm · · · ~βn 7→ 0 · ~δ1 + · · ·+ 0 · ~δm
This is the zero map.

There are no other matrices that represent only one map. For, suppose that H is not the zero matrix.
Then it has a nonzero entry; assume that hi,j 6= 0. With respect to bases B,D, it represents h1 : V →W
sending

~βj 7→ h1,j
~δ1 + · · ·+ hi,j~δi + · · ·+ hm,j~δm

and with respcet to B, 2 ·D it also represents h2 : V →W sending
~βj 7→ h1,j · (2~δ1) + · · ·+ hi,j · (2~δi) + · · ·+ hm,j · (2~δm)

(the notation 2 ·D means to double all of the members of D). These maps are easily seen to be unequal.
3.IV.1.13 That the trace of a sum is the sum of the traces holds because both trace(H+G) and trace(H)+
trace(G) are the sum of h1,1 + g1,1 with h2,2 + g2,2, etc. For scalar multiplication we have trace(r · H) =
r · trace(H); the proof is easy. Thus the trace map is a homomorphism from Mn×n to R.
3.IV.1.14
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(a) The i, j entry of (G+H)trans is gj,i + hj,i. That is also the i, j entry of Gtrans +Htrans.
(b) The i, j entry of (r ·H)trans is rhj,i, which is also the i, j entry of r ·Htrans.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Answers for subsection 3.IV.2

3.IV.2.16
(a) Yes. (b) Yes. (c) No. (d) No.

3.IV.2.19 Technically, no. The dot product operation yields a scalar while the matrix product yields a
1×1 matrix. However, we usually will ignore the distinction.

3.IV.2.21 It is true for all one-dimensional spaces. Let f, g be transformations of a one-dimensional space.
We must show that g◦f (~v) = f ◦g (~v) for all vectors. Fix a basis B for the space and then the transformations
are represented by 1×1 matrices.

F = RepB,B(f) =
(
f1,1

)
G = RepB,B(g) =

(
g1,1

)
Therefore, the compositions can be represented as GF and FG.

GF = RepB,B(g ◦ f) =
(
g1,1f1,1

)
FG = RepB,B(f ◦ g) =

(
f1,1g1,1

)
These two matrices are equal and so the compositions have the same effect on each vector in the space.

3.IV.2.22 It would not represent linear map composition; Theorem 3.IV.2.6 would fail.

3.IV.2.25 We have not seen a map interpretation of the transpose operation, so we will verify these by
considering the entries.
(a) The i, j entry of GHtrans is the j, i entry of GH, which is the dot product of the j-th row of G and
the i-th column of H. The i, j entry of HtransGtrans is the dot product of the i-th row of Htrans and the
j-th column of Gtrans, which is the the dot product of the i-th column of H and the j-th row of G. Dot
product is commutative and so these two are equal.

(b) By the prior item each equals its transpose, e.g., (HHtrans)trans = Htranstrans
Htrans = HHtrans.

3.IV.2.27 It doesn’t matter (as long as the spaces have the appropriate dimensions).
For associativity, suppose that F is m×r, that G is r×n, and that H is n×k. We can take any r dimensional

space, any m dimensional space, any n dimensional space, and any k dimensional space—for instance, Rr,
Rm, Rn, and Rk will do. We can take any bases A, B, C, and D, for those spaces. Then, with respect to
C,D the matrix H represents a linear map h, with respect to B,C the matrix G represents a g, and with
respect to A,B the matrix F represents an f . We can use those maps in the proof.

The second half is done similarly, except that G and H are added and so we must take them to represent
maps with the same domain and codomain.

3.IV.2.28
(a) The product of rank n matrices can have rank less than or equal to n but not greater than n.

To see that the rank can fall, consider the maps πx, πy : R2 → R2 projecting onto the axes. Each is
rank one but their composition πx ◦ πy, which is the zero map, is rank zero. That can be translated over
to matrices representing those maps in this way.

RepE2,E2(πx) · RepE2,E2(πy) =
(

1 0
0 0

)(
0 0
0 1

)
=
(

0 0
0 0

)
To prove that the product of rank n matrices cannot have rank greater than n, we can apply the

map result that the image of a linearly dependent set is linearly dependent. That is, if h : V →W and
g : W → X both have rank n then a set in the range R(g ◦ h) of size larger than n is the image under g
of a set in W of size larger than n and so is linearly dependent (since the rank of h is n). Now, the image
of a linearly dependent set is dependent, so any set of size larger than n in the range is dependent. (By
the way, observe that the rank of g was not mentioned. See the next part.)
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(b) Fix spaces and bases and consider the associated linear maps f and g. Recall that the dimension of
the image of a map (the map’s rank) is less than or equal to the dimension of the domain, and consider
the arrow diagram.

V
f7−→ R(f)

g7−→ R(g ◦ f)
First, the image of R(f) must have dimension less than or equal to the dimension of R(f), by the prior
sentence. On the other hand, R(f) is a subset of the domain of g, and thus its image has dimension less
than or equal the dimension of the domain of g. Combining those two, the rank of a composition is less
than or equal to the minimum of the two ranks.

The matrix fact follows immediately.
3.IV.2.29 The ‘commutes with’ relation is reflexive and symmetric. However, it is not transitive: for
instance, with

G =
(

1 2
3 4

)
H =

(
1 0
0 1

)
J =

(
5 6
7 8

)
G commutes with H and H commutes with J , but G does not commute with J .
3.IV.2.31 Note that (S + T )(S − T ) = S2 − ST + TS − T 2, so a reasonable try is to look at matrices that
do not commute so that −ST and TS don’t cancel: with

S =
(

1 2
3 4

)
T =

(
5 6
7 8

)
we have the desired inequality.

(S + T )(S − T ) =
(
−56 −56
−88 −88

)
S2 − T 2 =

(
−60 −68
−76 −84

)
3.IV.2.33 Here are four solutions.

T =
(
±1 0
0 ±1

)
3.IV.2.34
(a) The vector spaceM2×2 has dimension four. The set {T 4, . . . , T, I} has five elements and thus is linearly
dependent.

(b) Where T is n×n, generalizing the argument from the prior item shows that there is such a polynomial
of degree n2 or less, since {Tn2

, . . . , T, I} is a n2 + 1-member subset of the n2-dimensional space Mn×n.
(c) First compute the powers

T 2 =
(

1/2 −
√

3/2√
3/2 1/2

)
T 3 =

(
0 −1
1 0

)
T 4 =

(
−1/2 −

√
3/2√

3/2 −1/2

)
(observe that rotating by π/6 three times results in a rotation by π/2, which is indeed what T 3 represents).
Then set c4T 4 + c3T

3 + c2T
2 + c1T + c0I equal to the zero matrix(

−1/2 −
√

3/2√
3/2 −1/2

)
c4 +

(
0 −1
1 0

)
c3 +

(
1/2 −

√
3/2√

3/2 1/2

)
c2 +

(√
3/2 −1/2

1/2
√

3/2

)
c1 +

(
1 0
0 1

)
c0 =

(
0 0
0 0

)
to get this linear system.

−(1/2)c4 + (1/2)c2 + (
√

3/2)c1 + c0 = 0
−(
√

3/2)c4 − c3 − (
√

3/2)c2 − (1/2)c1 = 0
(
√

3/2)c4 + c3 + (
√

3/2)c2 + (1/2)c1 = 0
−(1/2)c4 + (1/2)c2 + (

√
3/2)c1 + c0 = 0

Apply Gaussian reduction.

−ρ1+ρ4−→ ρ2+ρ3−→
−(1/2)c4 + (1/2)c2 + (

√
3/2)c1 + c0 = 0

−(
√

3/2)c4 − c3 − (
√

3/2)c2 − (1/2)c1 = 0
0 = 0
0 = 0

−
√

3ρ1+ρ2−→
−(1/2)c4 + (1/2)c2 + (

√
3/2)c1 + c0 = 0

− c3 −
√

3c2 − 2c1 −
√

3c0 = 0
0 = 0
0 = 0
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Setting c4, c3, and c2 to zero makes c1 and c0 also come out to be zero so no degree one or degree zero
polynomial will do. Setting c4 and c3 to zero (and c2 to one) gives a linear system

(1/2) + (
√

3/2)c1 + c0 = 0
−
√

3− 2c1 −
√

3c0 = 0

that can be solved with c1 = −
√

3 and c0 = 1. Conclusion: the polynomial m(x) = x2 −
√

3x + 1 is
minimal for the matrix T .

3.IV.2.35 The check is routine:

a0 + a1x+ · · ·+ anx
n s7−→ a0x+ a1x

2 + · · ·+ anx
n+1 d/dx7−→ a0 + 2a1x+ · · ·+ (n+ 1)anxn

while

a0 + a1x+ · · ·+ anx
n d/dx7−→ a1 + · · ·+ nanx

n−1 s7−→ a1x+ · · ·+ anx
n

so that under the map (d/dx ◦ s)− (s ◦ d/dx) we have a0 + a1x+ · · ·+ anx
n 7→ a0 + a1x+ · · ·+ anx

n.

3.IV.2.36
(a) Tracing through the remark at the end of the subsection gives that the i, j entry of (FG)H is this

s∑
t=1

( r∑
k=1

fi,kgk,t
)
ht,j =

s∑
t=1

r∑
k=1

(fi,kgk,t)ht,j =
s∑
t=1

r∑
k=1

fi,k(gk,tht,j)

=
r∑

k=1

s∑
t=1

fi,k(gk,tht,j) =
r∑

k=1

fi,k
( s∑
t=1

gk,tht,j
)

(the first equality comes from using the distributive law to multiply through the h’s, the second equality
is the associative law for real numbers, the third is the commutative law for reals, and the fourth equality
follows on using the distributive law to factor the f ’s out), which is the i, j entry of F (GH).

(b) The k-th component of h(~v) is
n∑
j=1

hk,jvj

and so the i-th component of g ◦ h (~v) is this
r∑

k=1

gi,k
( n∑
j=1

hk,jvj
)

=
r∑

k=1

n∑
j=1

gi,khk,jvj =
r∑

k=1

n∑
j=1

(gi,khk,j)vj =
n∑
j=1

r∑
k=1

(gi,khk,j)vj =
n∑
j=1

(
r∑

k=1

gi,khk,j) vj

(the first equality holds by using the distributive law to multiply the g’s through, the second equality
represents the use of associativity of reals, the third follows by commutativity of reals, and the fourth
comes from using the distributive law to factor the v’s out).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Answers for subsection 3.IV.3

3.IV.3.26 The product is the identity matrix (recall that cos2 θ + sin2 θ = 1). An explanation is that the
given matrix represents, with respect to the standard bases, a rotation in R2 of θ radians while the transpose
represents a rotation of −θ radians. The two cancel.

3.IV.3.28 No. In P1, with respect to the unequal bases B = 〈1, x〉 and D = 〈1 + x, 1 − x〉, the identity
transformation is represented by by this matrix.

RepB,D(id) =
(

1/2 1/2
1/2 −1/2

)
B,D

3.IV.3.29 For any scalar r and square matrix H we have (rI)H = r(IH) = rH = r(HI) = (Hr)I = H(rI).
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There are no other such matrices; here is an argument for 2×2 matrices that is easily extended to n×n.
If a matrix commutes with all others then it commutes with this unit matrix.(

0 a
0 c

)
=
(
a b
c d

)(
0 1
0 0

)
=
(

0 1
0 0

)(
a b
c d

)
=
(
c d
0 0

)
From this we first conclude that the upper left entry a must equal its lower right entry d. We also conclude
that the lower left entry c is zero. The argument for the upper right entry b is similar.

3.IV.3.30 It is false; these two don’t commute.(
1 0
0 0

) (
0 0
1 0

)
3.IV.3.32 The generalization is to go from the first and second rows to the i1-th and i2-th rows. Row i of
GH is made up of the dot products of row i of G and the columns of H. Thus if rows i1 and i2 of G are
equal then so are rows i1 and i2 of GH.

3.IV.3.33 If the product of two diagonal matrices is defined—if both are n×n—then the product of the
diagonals is the diagonal of the products: where G,H are equal-sized diagonal matrices, GH is all zeros
except each that i, i entry is gi,ihi,i.

3.IV.3.34 One way to produce this matrix from the identity is to use the column operations of first
multiplying the second column by three, and then adding the negative of the resulting second column to the
first. (

1 0
0 1

)
−→

(
1 0
0 3

)
−→

(
1 0
−3 3

)
Column operations, in contrast with row operations) are written from left to right, so doing the above two
operations is expressed with this matrix product.(

1 0
0 3

)(
1 0
−1 1

)
Remark. Alternatively, we could get the required matrix with row operations. Starting with the identity,
first adding the negative of the first row to the second, and then multiplying the second row by three will
work. Because successive row operations are written as matrix products from right to left, doing these two
row operations is expressed with: the same matrix product.

3.IV.3.36 Perhaps the easiest way is to show that each n×m matrix is a linear combination of unit matrices
in one and only one way:

c1

1 0 . . .
0 0
...

+ · · ·+ cn,m

0 0 . . .
...
0 . . . 1

 =

a1,1 a1,2 . . .
...

an,1 . . . an,m


has the unique solution c1 = a1,1, c2 = a1,2, etc.

3.IV.3.37 Call that matrix F . We have

F 2 =
(

2 1
1 1

)
F 3 =

(
3 2
2 1

)
F 4 =

(
5 3
3 2

)
In general,

Fn =
(
fn+1 fn
fn fn−1

)
where fi is the i-th Fibonacci number fi = fi−1 + fi−2 and f0 = 0, f1 = 1, which is verified by induction,
based on this equation. (

fi−1 fi−2

fi−2 fi−3

)(
1 1
1 0

)
=
(
fi fi−1

fi−1 fi−2

)
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3.IV.3.40 The sum along the i-th row of the product is this.
pi,1 + · · ·+ pi,n = (hi,1g1,1 + hi,2g2,1 + · · ·+ hi,ngn,1)

+ (hi,1g1,2 + hi,2g2,2 + · · ·+ hi,ngn,2)
+ · · ·+ (hi,1g1,n + hi,2g2,n + · · ·+ hi,ngn,n)

= hi,1(g1,1 + g1,2 + · · ·+ g1,n)
+ hi,2(g2,1 + g2,2 + · · ·+ g2,n)
+ · · ·+ hi,n(gn,1 + gn,2 + · · ·+ gn,n)

= hi,1 · 1 + · · ·+ hi,n · 1
= 1

3.IV.3.42 The combination is to have all entries of the matrix be zero except for one (possibly) nonzero
entry in each row and column. Such a matrix can be written as the product of a permutation matrix and a
diagonal matrix, e.g., 0 4 0

2 0 0
0 0 −5

 =

0 1 0
1 0 0
0 0 1

4 0 0
0 2 0
0 0 −5


and its action is thus to rescale the rows and permute them.
3.IV.3.43
(a) Each entry pi,j = gi,1h1,j + · · ·+ g1,rhr,1 takes r multiplications and there are m ·n entries. Thus there
are m · n · r multiplications.

(b) Let H1 be 5×10, let H2 be 10×20, let H3 be 20×5, let H4 be 5×1. Then, using the formula from the
prior part,

this association uses this many multiplications
((H1H2)H3)H4 1000 + 500 + 25 = 1525
(H1(H2H3))H4 1000 + 250 + 25 = 1275
(H1H2)(H3H4) 1000 + 100 + 100 = 1200
H1(H2(H3H4)) 100 + 200 + 50 = 350
H1((H2H3)H4) 1000 + 50 + 50 = 1100

shows which is cheapest.
(c) This is reported by Knuth as an improvement by S. Winograd of a formula due to V. Strassen: where
w = aA− (a− c− d)(A− C +D),(
a b
c d

)(
A B
C D

)
=
(

aA+ bB w + (c+ d)(C −A) + (a+ b− c− d)D
w + (a− c)(D − C)− d(A−B − C +D) w + (a− c)(D − C) + (c+ d)(C −A)

)
takes seven multiplications and fifteen additions (save the intermediate results).

3.IV.3.44 This is how the answer was given in the cited source. No, it does not. Let A and B represent,
with respect to the standard bases, these transformations of R3.xy

z

 a7−→

xy
0

 xy
z

 a7−→

0
x
y


Observe that xy

z

 abab7−→

0
0
0

 but

xy
z

 baba7−→

0
0
x

 .

3.IV.3.45 This is how the answer was given in the cited source.
(a) Obvious.
(b) If AtransA~x = ~0 then ~y · ~y = 0 where ~y = A~x. Hence ~y = ~0 by (a).

The converse is obvious.
(c) By (b), A~x1, . . . ,A~xn are linearly independent iff AtransA~x1, . . . , AtransA~vn are linearly independent.
(d) col rank(A) = col rank(AtransA) = dim {Atrans(A~x)

∣∣ all ~x} ≤ dim {Atrans~y
∣∣ all ~y} = col rank(Atrans).

Thus also col rank(Atrans) ≤ col rank(Atranstrans) and so col rank(A) = col rank(Atrans) = row rank(A).
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3.IV.3.46 This is how the answer was given in the cited source. Let 〈~z1, . . . , ~zk〉 be a basis for R(A)∩N (A)
(k might be 0). Let ~x1, . . . , ~xk ∈ V be such that A~xi = ~zi. Note {A~x1, . . . , A~xk} is linearly independent,
and extend to a basis for R(A): A~x1, . . . , A~xk, A~xk+1, . . . , A~xr1 where r1 = dim(R(A)).

Now take ~x ∈ V . Write
A~x = a1(A~x1) + · · ·+ ar1(A~xr1)

and so
A2~x = a1(A2~x1) + · · ·+ ar1(A2~xr1).

But A~x1, . . . , A~xk ∈ N (A), so A2~x1 = ~0, . . . , A2~xk = ~0 and we now know
A2~xk+1, . . . , A

2~xr1
spans R(A2).

To see {A2~xk+1, . . . , A
2~xr1} is linearly independent, write

bk+1A
2~xk+1 + · · ·+ br1A

2~xr1 = ~0

A[bk+1A~xk+1 + · · ·+ br1A~xr1 ] = ~0
and, since bk+1A~xk+1 + · · · + br1A~xr1 ∈ N (A) we get a contradiction unless it is ~0 (clearly it is in R(A),
but A~x1, . . . , A~xk is a basis for R(A) ∩N (A)).

Hence dim(R(A2)) = r1 − k = dim(R(A))− dim(R(A) ∩N (A)).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Answers for subsection 3.IV.4
3.IV.4.13 Here is one way to proceed.

ρ1↔ρ2−→

1 0 1 0 1 0
0 3 −1 1 0 0
1 −1 0 0 0 1

 −ρ1+ρ3−→

1 0 1 0 1 0
0 3 −1 1 0 0
0 −1 −1 0 −1 1


(1/3)ρ2+ρ3−→

1 0 1 0 1 0
0 3 −1 1 0 0
0 0 −4/3 1/3 −1 1

 (1/3)ρ2−→
−(3/4)ρ3

1 0 1 0 1 0
0 1 −1/3 1/3 0 0
0 0 1 −1/4 3/4 −3/4


(1/3)ρ3+ρ2−→
−ρ3+ρ1

1 0 0 1/4 1/4 3/4
0 1 0 1/4 1/4 −1/4
0 0 1 −1/4 3/4 −3/4


3.IV.4.18
(a) The proof that the inverse is r−1H−1 = (1/r) ·H−1 (provided, of course, that the matrix is invertible)
is easy.

(b) No. For one thing, the fact that H +G has an inverse doesn’t imply that H has an inverse or that G
has an inverse. Neither of these matrices is invertible but their sum is.(

1 0
0 0

) (
0 0
0 1

)
Another point is that just because H and G each has an inverse doesn’t mean H +G has an inverse; here
is an example. (

1 0
0 1

) (
−1 0
0 −1

)
Still a third point is that, even if the two matrices have inverses, and the sum has an inverse, doesn’t
imply that the equation holds:(

2 0
0 2

)−1

=
(

1/2 0
0 1/2

)−1 (
3 0
0 3

)−1

=
(

1/3 0
0 1/3

)−1

but (
5 0
0 5

)−1

=
(

1/5 0
0 1/5

)−1

and (1/2)+(1/3) does not equal 1/5.
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3.IV.4.20 Yes, the inverse of H−1 is H.

3.IV.4.21 One way to check that the first is true is with the angle sum formulas from trigonometry.(
cos(θ1 + θ2) − sin(θ1 + θ2)
sin(θ1 + θ2) cos(θ1 + θ2)

)
=
(

cos θ1 cos θ2 − sin θ1 sin θ2 − sin θ1 cos θ2 − cos θ1 sin θ2

sin θ1 cos θ2 + cos θ1 sin θ2 cos θ1 cos θ2 − sin θ1 sin θ2

)
=
(

cos θ1 − sin θ1

sin θ1 cos θ1

)(
cos θ2 − sin θ2

sin θ2 cos θ2

)
Checking the second equation in this way is similar.

Of course, the equations can be not just checked but also understood by recalling that tθ is the map that
rotates vectors about the origin through an angle of θ radians.

3.IV.4.22 There are two cases. For the first case we assume that a is nonzero. Then
−(c/a)ρ1+ρ2−→

(
a b 1 0
0 −(bc/a) + d −c/a 1

)
=
(
a b 1 0
0 (ad− bc)/a −c/a 1

)
shows that the matrix is invertible (in this a 6= 0 case) if and only if ad − bc 6= 0. To find the inverse, we
finish with the Jordan half of the reduction.

(1/a)ρ1−→
(a/ad−bc)ρ2

(
1 b/a 1/a 0
0 1 −c/(ad− bc) a/(ad− bc)

)
−(b/a)ρ2+ρ1−→

(
1 0 d/(ad− bc) −b/(ad− bc)
0 1 −c/(ad− bc) a/(ad− bc)

)

The other case is the a = 0 case. We swap to get c into the 1, 1 position.
ρ1↔ρ2−→

(
c d 0 1
0 b 1 0

)
This matrix is nonsingular if and only if both b and c are nonzero (which, under the case assumption that
a = 0, holds if and only if ad− bc 6= 0). To find the inverse we do the Jordan half.

(1/c)ρ1−→
(1/b)ρ2

(
1 d/c 0 1/c
0 1 1/b 0

)
−(d/c)ρ2+ρ1−→

(
1 0 −d/bc 1/c
0 1 1/b 0

)
(Note that this is what is required, since a = 0 gives that ad− bc = −bc).
3.IV.4.23 With H a 2×3 matrix, in looking for a matrix G such that the combination HG acts as the 2×2
identity we need G to be 3×2. Setting up the equation(

1 0 1
0 1 0

)m n
p q
r s

 =
(

1 0
0 1

)
and solving the resulting linear system

m +r = 1
n +s= 0
p = 0
q = 1

gives infinitely many solutions.

{


m
n
p
q
r
s

 =


1
0
0
1
0
0

+ r ·


−1
0
0
0
1
0

+ s ·


0
−1
0
0
0
1


∣∣ r, s ∈ R}

Thus H has infinitely many right inverses.
As for left inverses, the equation(

a b
c d

)(
1 0 1
0 1 0

)
=

1 0 0
0 1 0
0 0 1
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gives rise to a linear system with nine equations and four unknowns.
a = 1
b = 0

a = 0
c = 0
d = 1

c = 0
e = 0
f = 0

e = 1
This system is inconsistent (the first equation conflicts with the third, as do the seventh and ninth) and so
there is no left inverse.
3.IV.4.24 With respect to the standard bases we have

RepE2,E3(η) =

1 0
0 1
0 0


and setting up the equation to find the matrix inverse(

a b c
d e f

)1 0
0 1
0 0

 =
(

1 0
0 1

)
= RepE2,E2(id)

gives rise to a linear system.
a = 1
b = 0

d = 0
e = 1

There are infinitely many solutions in a, . . . , f to this system because two of these variables are entirely
unrestricted

{


a
b
c
d
e
f

 =


1
0
0
0
1
0

+ c ·


0
0
1
0
0
0

+ f ·


0
0
0
0
0
1


∣∣ c, f ∈ R}

and so there are infinitely many solutions to the matrix equation.

{
(

1 0 c
0 1 f

) ∣∣ c, f ∈ R}
With the bases still fixed at E2, E2, for instance taking c = 2 and f = 3 gives a matrix representing this map.xy

z

 f2,37−→
(
x+ 2z
y + 3z

)
The check that f2,3 ◦ η is the identity map on R2 is easy.
3.IV.4.25 By Lemma 4.3 it cannot have infinitely many left inverses, because a matrix with both left and
right inverses has only one of each (and that one of each is one of both—the left and right inverse matrices
are equal).
3.IV.4.27 Multiply both sides of the first equation by H.
3.IV.4.30 Assume that B is row equivalent to A and that A is invertible. Because they are row-equivalent,
there is a sequence of row steps to reduce one to the other. That reduction can be done with matrices, for
instance, A can be changed by row operations to B as B = Rn · · ·R1A. This equation gives B as a product
of invertible matrices and by Lemma 4.5 then, B is also invertible.
3.IV.4.31
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(a) See the answer to Exercise 28.
(b) We will show that both conditions are equivalent to the condition that the two matrices be nonsingular.

As T and S are square and their product is defined, they are equal-sized, say n×n. Consider the
TS = I half. By the prior item the rank of I is less than or equal to the minimum of the rank of T and
the rank of S. But the rank of I is n, so the rank of T and the rank of S must each be n. Hence each is
nonsingular.

The same argument shows that ST = I implies that each is nonsingular.

3.IV.4.32 Inverses are unique, so we need only show that it works. The check appears above as Exercise 31.

3.IV.4.33
(a) See the answer for Exercise 25.
(b) See the answer for Exercise 25.
(c) Apply the first part to I = AA−1 to get I = Itrans = (AA−1)trans = (A−1)trans

Atrans.
(d) Apply the prior item with Atrans = A, as A is symmetric.

3.IV.4.35 No, there are at least four. (
±1 0
0 ±1

)
3.IV.4.36 It is not reflexive since, for instance,

H =
(

1 0
0 2

)
is not a two-sided inverse of itself. The same example shows that it is not transitive. That matrix has this
two-sided inverse

G =
(

1 0
0 1/2

)
and while H is a two-sided inverse of G and G is a two-sided inverse of H, we know that H is not a two-sided
inverse of H. However, the relation is symmetric: if G is a two-sided inverse of H then GH = I = HG and
therefore H is also a two-sided inverse of G.

3.IV.4.37 This is how the answer was given in the cited source. Let A be m×m, non-singular, with the
stated property. Let B be its inverse. Then for n ≤ m,

1 =
m∑
r=1

δnr =
m∑
r=1

m∑
s=1

bnsasr =
m∑
s=1

m∑
r=1

bnsasr = k

m∑
s=1

bns

(A is singular if k = 0).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Answers for subsection 3.V.1

3.V.1.8 One way to go is to find RepB(~δ1) and RepB(~δ2), and then concatenate them into the columns
of the desired change of basis matrix. Another way is to find the inverse of the matrices that answer
Exercise 7.
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(a)
(

0 1
1 0

)
(b)

(
1 1
2 4

)
(c)

(
2 −1/2
−1 1/2

)
(d)

(
2 1
1 1

)
3.V.1.11 This question has many different solutions. One way to proceed is to make up any basis B
for any space, and then compute the appropriate D (necessarily for the same space, of course). Another,
easier, way to proceed is to fix the codomain as R3 and the codomain basis as E3. This way (recall that the
representation of any vector with respect to the standard basis is just the vector itself), we have this.

B = 〈

3
2
0

 ,

 1
−1
0

 ,

4
1
4

〉 D = E3

3.V.1.12 Checking that B = 〈2 sin(x) + cos(x), 3 cos(x)〉 is a basis is routine. Call the natural basis D. To
compute the change of basis matrix RepB,D(id) we must find RepD(2 sin(x) + cos(x)) and RepD(3 cos(x)),
that is, we need x1, y1, x2, y2 such that these equations hold.

x1 · sin(x) + y1 · cos(x) = 2 sin(x) + cos(x)
x2 · sin(x) + y2 · cos(x) = 3 cos(x)

Obviously this is the answer.

RepB,D(id) =
(

2 0
1 3

)
For the change of basis matrix in the other direction we could look for RepB(sin(x)) and RepB(cos(x)) by
solving these.

w1 · (2 sin(x) + cos(x)) + z1 · (3 cos(x)) = sin(x)
w2 · (2 sin(x) + cos(x)) + z2 · (3 cos(x)) = cos(x)

An easier method is to find the inverse of the matrix found above.

RepD,B(id) =
(

2 0
1 3

)−1

=
1
6
·
(

3 0
−1 2

)
=
(

1/2 0
−1/6 1/3

)
3.V.1.13 We start by taking the inverse of the matrix, that is, by deciding what is the inverse to the map
of interest.

RepD,E2(id)RepD,E2(id)−1 =
1

− cos2(2θ)− sin2(2θ)
·
(
− cos(2θ) − sin(2θ)
− sin(2θ) cos(2θ)

)
=
(

cos(2θ) sin(2θ)
sin(2θ) − cos(2θ)

)
This is more tractable than the representation the other way because this matrix is the concatenation of
these two column vectors

RepE2(~δ1) =
(

cos(2θ)
sin(2θ)

)
RepE2(~δ2) =

(
sin(2θ)
− cos(2θ)

)
and representations with respect to E2 are transparent.

~δ1 =
(

cos(2θ)
sin(2θ)

)
~δ2 =

(
sin(2θ)
− cos(2θ)

)
For illustration, taking θ as here,

2θ

this pictures the action of the map that transforms D to E2 (it is, again, the inverse of the map that is the
answer to this question). (

cos(2θ)
sin(2θ)

)
= ~δ1

(
sin(2θ)
− cos(2θ)

)
= ~δ2

7−→
~e1

~e2
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This action is easier to understand if we superimpost the domain and codomain planes.

Geometrically, the action of this map is to reflect vectors over the line through the origin at angle θ. Since
reflections are self-inverse, the answer to the question is: it reflects about the line through the origin with
angle of elevation θ. (Of course, it does this to any basis.)
3.V.1.15 Each is true if and only if the matrix is nonsingular.
3.V.1.16 What remains to be shown is that left multiplication by a reduction matrix represents a change
from another basis to B = 〈~β1, . . . , ~βn〉.

Application of a row-multiplication matrix Mi(k) translates a representation with respect to the basis
〈~β1, . . . , k~βi, . . . , ~βn〉 to one with respect to B, as here.

~v = c1 · ~β1 + · · ·+ ci · (k~βi) + · · ·+ cn · ~βn 7→ c1 · ~β1 + · · ·+ (kci) · ~βi + · · ·+ cn · ~βn = ~v

Applying a row-swap matrix Pi,j translates a representation with respect to 〈~β1, . . . , ~βj , . . . , ~βi, . . . , ~βn〉 to
one with respect to 〈~β1, . . . , ~βi, . . . , ~βj , . . . , ~βn〉. Finally, applying a row-combination matrix Ci,j(k) changes
a representation with respect to 〈~β1, . . . , ~βi + k~βj , . . . , ~βj , . . . , ~βn〉 to one with respect to B.

~v = c1 · ~β1 + · · ·+ ci · (~βi + k~βj) + · · ·+ cj ~βj + · · ·+ cn · ~βn
7→ c1 · ~β1 + · · ·+ ci · ~βi + · · ·+ (kci + cj) · ~βj + · · ·+ cn · ~βn = ~v

(As in the part of the proof in the body of this subsection, the various conditions on the row operations,
e.g., that the scalar k is nonzero, assure that these are all bases.)
3.V.1.19 This is the topic of the next subsection.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Answers for subsection 3.V.2
3.V.2.12 Recall the diagram and the formula.

R2
w.r.t. B

t−−−−→
T

R2
w.r.t. D

id
y id

y
R2

w.r.t. B̂

t−−−−→
T̂

R2
w.r.t. D̂

T̂ = RepD,D̂(id) · T · RepB̂,B(id)

(a) These two (
1
1

)
= 1 ·

(
−1
0

)
+ 1 ·

(
2
1

) (
1
−1

)
= (−3) ·

(
−1
0

)
+ (−1) ·

(
2
1

)
show that

RepD,D̂(id) =
(

1 −3
1 −1

)
and similarly these two (

0
1

)
= 0 ·

(
1
0

)
+ 1 ·

(
0
1

) (
1
1

)
= 1 ·

(
1
0

)
+ 1 ·

(
0
1

)
give the other nonsinguar matrix.

RepB̂,B(id) =
(

0 1
1 1

)
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Then the answer is this.

T̂ =
(

1 −3
1 −1

)(
1 2
3 4

)(
0 1
1 1

)
=
(
−10 −18
−2 −4

)
Although not strictly necessary, a check is reassuring. Arbitrarily fixing

~v =
(

3
2

)
we have that

RepB(~v) =
(

3
2

)
B

(
1 2
3 4

)
B,D

(
3
2

)
B

=
(

7
17

)
D

and so t(~v) is this.

7 ·
(

1
1

)
+ 17 ·

(
1
−1

)
=
(

24
−10

)
Doing the calculation with respect to B̂, D̂ starts with

RepB̂(~v) =
(
−1
3

)
B̂

(
−10 −18
−2 −4

)
B̂,D̂

(
−1
3

)
B̂

=
(
−44
−10

)
D̂

and then checks that this is the same result.

−44 ·
(
−1
0

)
− 10 ·

(
2
1

)
=
(

24
−10

)
(b) These two (

1
1

)
=

1
3
·
(

1
2

)
+

1
3
·
(

2
1

) (
1
−1

)
= −1 ·

(
1
2

)
+ 1 ·

(
2
1

)
show that

RepD,D̂(id) =
(

1/3 −1
1/3 1

)
and these two (

1
2

)
= 1 ·

(
1
0

)
+ 2 ·

(
0
1

) (
1
0

)
= −1 ·

(
1
0

)
+ 0 ·

(
0
1

)
show this.

RepB̂,B(id) =
(

1 1
2 0

)
With those, the conversion goes in this way.

T̂ =
(

1/3 −1
1/3 1

)(
1 2
3 4

)(
1 1
2 0

)
=
(
−28/3 −8/3
38/3 10/3

)
As in the prior item, a check provides some confidence that this calculation was performed without
mistakes. We can for instance, fix the vector

~v =
(
−1
2

)
(this is selected for no reason, out of thin air). Now we have

RepB(~v) =
(
−1
2

) (
1 2
3 4

)
B,D

(
−1
2

)
B

=
(

3
5

)
D

and so t(~v) is this vector.

3 ·
(

1
1

)
+ 5 ·

(
1
−1

)
=
(

8
−2

)
With respect to B̂, D̂ we first calculate

RepB̂(~v) =
(

1
−2

) (
−28/3 −8/3
38/3 10/3

)
B̂,D̂

(
1
−2

)
B̂

=
(
−4
6

)
D̂

and, sure enough, that is the same result for t(~v).

−4 ·
(

1
2

)
+ 6 ·

(
2
1

)
=
(

8
−2

)
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3.V.2.17 Yes. Row rank equals column rank, so the rank of the transpose equals the rank of the matrix.
Same-sized matrices with equal ranks are matrix equivalent.
3.V.2.18 Only a zero matrix has rank zero.
3.V.2.21 There are two matrix-equivalence classes of 1×1 matrices—those of rank zero and those of rank
one. The 3×3 matrices fall into four matrix equivalence classes.
3.V.2.22 For m×n matrices there are classes for each possible rank: where k is the minimum of m and n
there are classes for the matrices of rank 0, 1, . . . , k. That’s k+ 1 classes. (Of course, totaling over all sizes
of matrices we get infinitely many classes.)
3.V.2.23 They are closed under nonzero scalar multiplication, since a nonzero scalar multiple of a matrix
has the same rank as does the matrix. They are not closed under addition, for instance, H + (−H) has rank
zero.
3.V.2.24
(a) We have

RepB,E2(id) =
(

1 −1
2 −1

)
RepE2,B(id) = RepB,E2(id)−1 =

(
1 −1
2 −1

)−1

=
(
−1 1
−2 1

)
and thus the answer is this.

RepB,B(t) =
(

1 −1
2 −1

)(
1 1
3 −1

)(
−1 1
−2 1

)
=
(
−2 0
−5 2

)
As a quick check, we can take a vector at random

~v =
(

4
5

)
giving

RepE2(~v) =
(

4
5

) (
1 1
3 −1

)(
4
5

)
=
(

9
7

)
= t(~v)

while the calculation with respect to B,B

RepB(~v) =
(

1
−3

) (
−2 0
−5 2

)
B,B

(
1
−3

)
B

=
(
−2
−11

)
B

yields the same result.

−2 ·
(

1
2

)
− 11 ·

(
−1
−1

)
=
(

9
7

)
(b) We have

R2
w.r.t. E2

t−−−−→
T

R2
w.r.t. E2

id
y id

y
R2

w.r.t. B
t−−−−→
T̂

R2
w.r.t. B

RepB,B(t) = RepE2,B(id) · T · RepB,E2(id)

and, as in the first item of this question

RepB,E2(id) =
(
~β1 · · · ~βn

)
RepE2,B(id) = RepB,E2(id)−1

so, writing Q for the matrix whose columns are the basis vectors, we have that RepB,B(t) = Q−1TQ.
3.V.2.25
(a) The adapted form of the arrow diagram is this.

Vw.r.t. B1

h−−−−→
H

Ww.r.t. D

id
yQ id

yP
Vw.r.t. B2

h−−−−→
Ĥ

Ww.r.t. D

Since there is no need to change bases in W (or we can say that the change of basis matrix P is the
identity), we have RepB2,D(h) = RepB1,D(h) ·Q where Q = RepB2,B1

(id).
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(b) Here, this is the arrow diagram.

Vw.r.t. B
h−−−−→
H

Ww.r.t. D1

id
yQ id

yP
Vw.r.t. B

h−−−−→
Ĥ

Ww.r.t. D2

We have that RepB,D2
(h) = P · RepB,D1

(h) where P = RepD1,D2
(id).

3.V.2.26
(a) Here is the arrow diagram, and a version of that diagram for inverse functions.

Vw.r.t. B
h−−−−→
H

Ww.r.t. D

id
yQ id

yP
Vw.r.t. B̂

h−−−−→
Ĥ

Ww.r.t. D̂

Vw.r.t. B
h−1

←−−−−
H−1

Ww.r.t. D

id
yQ id

yP
Vw.r.t. B̂

h−1

←−−−−
Ĥ−1

Ww.r.t. D̂

Yes, the inverses of the matrices represent the inverses of the maps. That is, we can move from the lower
right to the lower left by moving up, then left, then down. In other words, where Ĥ = PHQ (and P,Q
invertible) and H, Ĥ are invertible then Ĥ−1 = Q−1H−1P−1.

(b) Yes; this is the prior part repeated in different terms.
(c) No, we need another assumption: if H represents h with respect to the same starting as ending bases
B,B, for some B then H2 represents h ◦ h. As a specific example, these two matrices are both rank one
and so they are matrix equivalent (

1 0
0 0

) (
0 0
1 0

)
but the squares are not matrix equivalent—the square of the first has rank one while the square of the
second has rank zero.

(d) No. These two are not matrix equivalent but have matrix equivalent squares.(
0 0
0 0

) (
0 0
1 0

)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Answers for subsection 3.VI.1

3.VI.1.9


1
2
1
3



−1
1
−1
1



−1
1
−1
1



−1
1
−1
1


·


−1
1
−1
1

 =
3
4
·


−1
1
−1
1

 =


−3/4
3/4
−3/4
3/4



3.VI.1.11 Suppose that ~v1 and ~v2 are nonzero and orthogonal. Consider the linear relationship c1~v1+c2~v2 =
~0. Take the dot product of both sides of the equation with ~v1 to get that

~v1 (c1~v1 + c2~v2) = c1 · (~v1 ~v1) + c2 · (~v1 ~v2) = c1 · (~v1 ~v1) + c2 · 0 = c1 · (~v1 ~v1)

is equal to ~v1
~0 = ~0. With the assumption that ~v1 is nonzero, this gives that c1 is zero. Showing that c2 is

zero is similar.
3.VI.1.12
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(a) If the vector ~v is in the line then the orthogonal projection is ~v. To verify this by calculation, note
that since ~v is in the line we have that ~v = c~v · ~s for some scalar c~v.

~v ~s

~s ~s
· ~s =

c~v · ~s ~s

~s ~s
· ~s = c~v ·

~s ~s

~s ~s
· ~s = c~v · 1 · ~s = ~v

(Remark. If we assume that ~v is nonzero then the above is simplified on taking ~s to be ~v.)
(b) Write c~p~s for the projection proj[~s ](~v). Note that, by the assumption that ~v is not in the line, both ~v
and ~v− c~p~s are nonzero. Note also that if c~p is zero then we are actually considering the one-element set
{~v }, and with ~v nonzero, this set is necessarily linearly independent. Therefore, we are left considering
the case that c~p is nonzero.

Setting up a linear relationship
a1(~v) + a2(~v − c~p~s) = ~0

leads to the equation (a1 + a2) ·~v = a2c~p ·~s. Because ~v isn’t in the line, the scalars a1 + a2 and a2c~p must
both be zero. The c~p = 0 case is handled above, so the remaining case is that a2 = 0, and this gives that
a1 = 0 also. Hence the set is linearly independent.

3.VI.1.13 If ~s is the zero vector then the expression

proj[~s ](~v) =
~v ~s

~s ~s
· ~s

contains a division by zero, and so is undefined. As for the right definition, for the projection to lie in the
span of the zero vector, it must be defined to be ~0.
3.VI.1.14 Any vector in Rn is the projection of some other into a line, provided that the dimension n is
greater than one. (Clearly, any vector is the projection of itself into a line containing itself; the question is
to produce some vector other than ~v that projects to ~v.)

Suppose that ~v ∈ Rn with n > 1. If ~v 6= ~0 then we consider the line ` = {c~v
∣∣ c ∈ R} and if ~v = ~0 we take

` to be any (nondegenerate) line at all (actually, we needn’t distinguish between these two cases—see the
prior exercise). Let v1, . . . , vn be the components of ~v; since n > 1, there are at least two. If some vi is zero
then the vector ~w = ~ei is perpendicular to ~v. If none of the components is zero then the vector ~w whose
components are v2,−v1, 0, . . . , 0 is perpendicular to ~v. In either case, observe that ~v + ~w does not equal ~v,
and that ~v is the projection of ~v + ~w into `.

(~v + ~w) ~v

~v ~v
· ~v =

(~v ~v

~v ~v
+

~w ~v

~v ~v

)
· ~v =

~v ~v

~v ~v
· ~v = ~v

We can dispose of the remaining n = 0 and n = 1 cases. The dimension n = 0 case is the trivial vector
space, here there is only one vector and so it cannot be expressed as the projection of a different vector. In
the dimension n = 1 case there is only one (nondegenerate) line, and every vector is in it, hence every vector
is the projection only of itself.
3.VI.1.16 Because the projection of ~v into the line spanned by ~s is

~v ~s

~s ~s
· ~s

the distance squared from the point to the line is this (a vector dotted with itself ~w ~w is written ~w2).

‖~v − ~v ~s

~s ~s
· ~s ‖2 = ~v ~v − ~v (

~v ~s

~s ~s
· ~s)− (

~v ~s

~s ~s
· ~s ) ~v + (

~v ~s

~s ~s
· ~s )2

= ~v ~v − 2 · (~v ~s

~s ~s
) · ~v ~s+ (

~v ~s

~s ~s
) · ~s ~s

=
(~v ~v ) · (~s ~s )− 2 · (~v ~s )2 + (~v ~s )2

~s ~s

=
(~v ~v )(~s ~s )− (~v ~s )2

~s ~s

3.VI.1.17 Because square root is a strictly increasing function, we can minimize d(c) = (cs1−v1)2 +(cs2−
v2)2 instead of the square root of d. The derivative is dd/dc = 2(cs1 − v1) · s1 + 2(cs2 − v2) · s2. Setting it
equal to zero 2(cs1−v1) · s1 + 2(cs2−v2) · s2 = c · (2s2

1 + 2s2
2)− (v1s1 +v2s2) = 0 gives the only critical point.

c =
v1s1 + v2s2

s1
2 + s2

2
=
~v ~s

~s ~s
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Now the second derivative with respect to c
d2 d

dc2
= 2s1

2 + 2s2
2

is strictly positive (as long as neither s1 nor s2 is zero, in which case the question is trivial) and so the critical
point is a minimum.

The generalization to Rn is straightforward. Consider dn(c) = (cs1 − v1)2 + · · · + (csn − vn)2, take the
derivative, etc.

3.VI.1.21 The sequence need not settle down. With

~a =
(

1
0

)
~b =

(
1
1

)
the projections are these.

~v1 =
(

1/2
1/2

)
, ~v2 =

(
1/2
0

)
, ~v3 =

(
1/4
1/4

)
, . . .

This sequence doesn’t repeat.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Answers for subsection 3.VI.2

3.VI.2.9
(a)

~κ1 =
(

1
1

)

~κ2 =
(

2
1

)
− proj[~κ1](

(
2
1

)
) =

(
2
1

)
−

(
2
1

) (
1
1

)
(

1
1

) (
1
1

) · (1
1

)
=
(

2
1

)
− 3

2
·
(

1
1

)
=
(

1/2
−1/2

)

(b)

~κ1 =
(

0
1

)

~κ2 =
(
−1
3

)
− proj[~κ1](

(
−1
3

)
) =

(
−1
3

)
−

(
−1
3

) (
0
1

)
(

0
1

) (
0
1

) ·
(

0
1

)
=
(
−1
3

)
− 3

1
·
(

0
1

)
=
(
−1
0

)

(c)

~κ1 =
(

0
1

)

~κ2 =
(
−1
0

)
− proj[~κ1](

(
−1
0

)
) =

(
−1
0

)
−

(
−1
0

) (
0
1

)
(

0
1

) (
0
1

) ·
(

0
1

)
=
(
−1
0

)
− 0

1
·
(

0
1

)
=
(
−1
0

)
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The corresponding orthonormal bases for the three parts of this question are these.

〈
(

1/
√

2
1/
√

2

)
,

( √
2/2

−
√

2/2

)
〉 〈

(
0
1

)
,

(
−1
0

)
〉 〈

(
0
1

)
,

(
−1
0

)
〉

3.VI.2.12 Reducing the linear system
x− y − z + w = 0
x + z = 0

−ρ1+ρ2−→ x− y − z + w = 0
y + 2z − w = 0

and paramatrizing gives this description of the subspace.

{


−1
−2
1
0

 · z +


0
1
0
1

 · w ∣∣ z, w ∈ R}
So we take the basis,

〈


−1
−2
1
0

 ,


0
1
0
1

〉
go through the Gram-Schmidt process

~κ1 =


−1
−2
1
0



~κ2 =


0
1
0
1

− proj[~κ1](


0
1
0
1

) =


0
1
0
1

−


0
1
0
1



−1
−2
1
0



−1
−2
1
0



−1
−2
1
0


·


−1
−2
1
0

 =


0
1
0
1

− −2
6
·


−1
−2
1
0

 =


−1/3
1/3
1/3
1



and finish by normalizing.

〈


−1/
√

6
−2/
√

6
1/
√

6
0

 ,


−
√

3/6√
3/6√
3/6√
3/2

〉
3.VI.2.13 A linearly independent subset of Rn is a basis for its own span. Apply Theorem 3.VI.2.7.

Remark. Here’s why the phrase ‘linearly independent’ is in the question. Dropping the phrase would
require us to worry about two things. The first thing to worry about is that when we do the Gram-Schmidt
process on a linearly dependent set then we get some zero vectors. For instance, with

S = {
(

1
2

)
,

(
3
6

)
}

we would get this.

~κ1 =
(

1
2

)
~κ2 =

(
3
6

)
− proj[~κ1](

(
3
6

)
) =

(
0
0

)
This first thing is not so bad because the zero vector is by definition orthogonal to every other vector, so we
could accept this situation as yielding an orthogonal set (although it of course can’t be normalized), or we
just could modify the Gram-Schmidt procedure to throw out any zero vectors. The second thing to worry
about if we drop the phrase ‘linearly independent’ from the question is that the set might be infinite. Of
course, any subspace of the finite-dimensional Rn must also be finite-dimensional so only finitely many of its
members are linearly independent, but nonetheless, a “process” that examines the vectors in an infinite set
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one at a time would at least require some more elaboration in this question. A linearly independent subset
of Rn is automatically finite—in fact, of size n or less—so the ‘linearly independent’ phrase obviates these
concerns.

3.VI.2.15
(a) The argument is as in the i = 3 case of the proof of Theorem 3.VI.2.7. The dot product

~κi

(
~v − proj[~κ1](~v )− · · · − proj[~vk](~v )

)
can be written as the sum of terms of the form −~κi proj[~κj ](~v ) with j 6= i, and the term ~κi (~v−proj[~κi](~v )).
The first kind of term equals zero because the ~κ’s are mutually orthogonal. The other term is zero because
this projection is orthogonal (that is, the projection definition makes it zero: ~κi (~v − proj[~κi](~v )) =
~κi ~v − ~κi ((~v ~κi)/(~κi ~κi)) · ~κi equals, after all of the cancellation is done, zero).

(b) The vector ~v is shown in black and the vector proj[~κ1](~v ) + proj[~v2](~v ) = 1 · ~e1 + 2 · ~e2 is in gray.

The vector ~v − (proj[~κ1](~v ) + proj[~v2](~v )) lies on the dotted line connecting the black vector to the gray
one, that is, it is orthogonal to the xy-plane.

(c) This diagram is gotten by following the hint.

The dashed triangle has a right angle where the gray vector 1 · ~e1 + 2 · ~e2 meets the vertical dashed line
~v−(1 ·~e1 +2 ·~e2); this is what was proved in the first item of this question. The Pythagorean theorem then
gives that the hypoteneuse—the segment from ~v to any other vector—is longer than the vertical dashed
line.

More formally, writing proj[~κ1](~v ) + · · ·+ proj[~vk](~v ) as c1 ·~κ1 + · · ·+ ck ·~κk, consider any other vector
in the span d1 · ~κ1 + · · ·+ dk · ~κk. Note that

~v − (d1 · ~κ1 + · · ·+ dk · ~κk)
=
(
~v − (c1 · ~κ1 + · · ·+ ck · ~κk)

)
+
(
(c1 · ~κ1 + · · ·+ ck · ~κk)− (d1 · ~κ1 + · · ·+ dk · ~κk)

)
and that (

~v − (c1 · ~κ1 + · · ·+ ck · ~κk)
) (

(c1 · ~κ1 + · · ·+ ck · ~κk)− (d1 · ~κ1 + · · ·+ dk · ~κk)
)

= 0

(because the first item shows the ~v− (c1 ·~κ1 + · · ·+ ck ·~κk) is orthogonal to each ~κ and so it is orthogonal
to this linear combination of the ~κ’s). Now apply the Pythagorean Theorem (i.e., the Triangle Inequality).

3.VI.2.16 One way to proceed is to find a third vector so that the three together make a basis for R3, e.g.,

~β3 =

1
0
0


(the second vector is not dependent on the third because it has a nonzero second component, and the first
is not dependent on the second and third because of its nonzero third component), and then apply the
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Gram-Schmidt process.

~κ1 =

 1
5
−1



~κ2 =

2
2
0

− proj[~κ1](

2
2
0

) =

2
2
0

−
2

2
0

  1
5
−1


 1

5
−1

  1
5
−1

 ·
 1

5
−1



=

2
2
0

− 12
27
·

 1
5
−1

 =

14/9
−2/9
4/9


~κ3 =

1
0
0

− proj[~κ1](

1
0
0

)− proj[~κ2](

1
0
0

)

=

1
0
0

−
1

0
0

  1
5
−1


 1

5
−1

  1
5
−1

 ·
 1

5
−1

−
1

0
0

 14/9
−2/9
4/9


14/9
−2/9
4/9

 14/9
−2/9
4/9

 ·
14/9
−2/9
4/9



=

1
0
0

− 1
27
·

 1
5
−1

− 7
12
·

14/9
−2/9
4/9

 =

 1/18
−1/18
−4/18


The result ~κ3 is orthogonal to both ~κ1 and ~κ2. It is therefore orthogonal to every vector in the span of the
set {~κ1, ~κ2}, including the two vectors given in the question.

3.VI.2.18 First, ‖~v ‖2 = 42 + 32 + 22 + 12 = 50.
(a) c1 = 4 (b) c1 = 4, c2 = 3 (c) c1 = 4, c2 = 3, c3 = 2, c4 = 1

For the proof, we will do only the k = 2 case because the completely general case is messier but no more
enlightening. We follow the hint (recall that for any vector ~w we have ‖~w ‖2 = ~w ~w).

0 ≤
(
~v −

( ~v ~κ1

~κ1 ~κ1
· ~κ1 +

~v ~κ2

~κ2 ~κ2
· ~κ2

)) (
~v −

( ~v ~κ1

~κ1 ~κ1
· ~κ1 +

~v ~κ2

~κ2 ~κ2
· ~κ2

))
= ~v ~v − 2 · ~v

(
~v ~κ1

~κ1 ~κ1
· ~κ1 +

~v ~κ2

~κ2 ~κ2
· ~κ2

)
+
(
~v ~κ1

~κ1 ~κ1
· ~κ1 +

~v ~κ2

~κ2 ~κ2
· ~κ2

) (
~v ~κ1

~κ1 ~κ1
· ~κ1 +

~v ~κ2

~κ2 ~κ2
· ~κ2

)
= ~v ~v − 2 ·

(
~v ~κ1

~κ1 ~κ1
· (~v ~κ1) +

~v ~κ2

~κ2 ~κ2
· (~v ~κ2)

)
+
(

(
~v ~κ1

~κ1 ~κ1
)2 · (~κ1 ~κ1) + (

~v ~κ2

~κ2 ~κ2
)2 · (~κ2 ~κ2)

)
(The two mixed terms in the third part of the third line are zero because ~κ1 and ~κ2 are orthogonal.) The
result now follows on gathering like terms and on recognizing that ~κ1 ~κ1 = 1 and ~κ2 ~κ2 = 1 because these
vectors are given as members of an orthonormal set.

3.VI.2.19 It is true, except for the zero vector. Every vector in Rn except the zero vector is in a basis,
and that basis can be orthogonalized.

3.VI.2.20 The 3×3 case gives the idea. The set

{

ad
g

 ,

be
h

 ,

cf
i

}
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is orthonormal if and only if these nine conditions all hold(
a d g

) ad
g

 = 1
(
a d g

) be
h

 = 0
(
a d g

) cf
i

 = 0

(
b e h

) ad
g

 = 0
(
b e h

) be
h

 = 1
(
b e h

) cf
i

 = 0

(
c f i

) ad
g

 = 0
(
c f i

) be
h

 = 0
(
c f i

) cf
i

 = 1

(the three conditions in the lower left are redundant but nonetheless correct). Those, in turn, hold if and
only if a d g

b e h
c f i

a b c
d e f
g h i

 =

1 0 0
0 1 0
0 0 1


as required.

This is an example, the inverse of this matrix is its transpose. 1/
√

2 1/
√

2 0
−1/
√

2 1/
√

2 0
0 0 1


3.VI.2.21 If the set is empty then the summation on the left side is the linear combination of the empty
set of vectors, which by definition adds to the zero vector. In the second sentence, there is not such i, so the
‘if . . . then . . . ’ implication is vacuously true.
3.VI.2.22
(a) Part of the induction argument proving Theorem 3.VI.2.7 checks that ~κi is in the span of 〈~β1, . . . , ~βi〉.
(The i = 3 case in the proof illustrates.) Thus, in the change of basis matrix RepK,B(id), the i-th column
RepB(~κi) has components i+ 1 through k that are zero.

(b) One way to see this is to recall the computational procedure that we use to find the inverse. We write
the matrix, write the identity matrix next to it, and then we do Gauss-Jordan reduction. If the matrix
starts out upper triangular then the Gauss-Jordan reduction involves only the Jordan half and these steps,
when performed on the identity, will result in an upper triangular inverse matrix.

3.VI.2.23 For the inductive step, we assume that for all j in [1..i], these three conditions are true of each
~κj : (i) each ~κj is nonzero, (ii) each ~κj is a linear combination of the vectors ~β1, . . . , ~βj , and (iii) each ~κj is
orthogonal to all of the ~κm’s prior to it (that is, with m < j). With those inductive hypotheses, consider
~κi+1.

~κi+1 = ~βi+1 − proj[~κ1](βi+1)− proj[~κ2](βi+1)− · · · − proj[~κi](βi+1)

= ~βi+1 −
βi+1 ~κ1

~κ1 ~κ1
· ~κ1 −

βi+1 ~κ2

~κ2 ~κ2
· ~κ2 − · · · −

βi+1 ~κi
~κi ~κi

· ~κi

By the inductive assumption (ii) we can expand each ~κj into a linear combination of ~β1, . . . , ~βj

= ~βi+1 −
~βi+1 ~κ1

~κ1 ~κ1
· ~β1

−
~βi+1 ~κ2

~κ2 ~κ2
·
(

linear combination of ~β1, ~β2

)
− · · · −

~βi+1 ~κi
~κi ~κi

·
(

linear combination of ~β1, . . . , ~βi

)
The fractions are scalars so this is a linear combination of linear combinations of ~β1, . . . , ~βi+1. It is therefore
just a linear combination of ~β1, . . . , ~βi+1. Now, (i) it cannot sum to the zero vector because the equation
would then describe a nontrivial linear relationship among the ~β’s that are given as members of a basis
(the relationship is nontrivial because the coefficient of ~βi+1 is 1). Also, (ii) the equation gives ~κi+1 as
a combination of ~β1, . . . , ~βi+1. Finally, for (iii), consider ~κj ~κi+1; as in the i = 3 case, the dot product
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of ~κj with ~κi+1 = ~βi+1 − proj[~κ1](~βi+1) − · · · − proj[~κi](~βi+1) can be rewritten to give two kinds of terms,

~κj

(
~βi+1 − proj[~κj ](~βi+1)

)
(which is zero because the projection is orthogonal) and ~κj proj[~κm](~βi+1) with

m 6= j and m < i+ 1 (which is zero because by the hypothesis (iii) the vectors ~κj and ~κm are orthogonal).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Answers for subsection 3.VI.3
3.VI.3.12
(a) Paramatrizing the equation leads to this basis for P .

BP = 〈

1
0
3

 ,

0
1
2

〉
(b) Because R3 is three-dimensional and P is two-dimensional, the complement P⊥ must be a line. Anyway,
the calculation as in Example 3.5

P⊥ = {

xy
z

 ∣∣ (1 0 3
0 1 2

)xy
z

 =
(

0
0

)
}

gives this basis for P⊥.

BP⊥ = 〈

 3
2
−1

〉
(c)

1
1
2

 = (5/14) ·

1
0
3

+ (8/14) ·

0
1
2

+ (3/14) ·

 3
2
−1


(d) projP (

1
1
2

) =

 5/14
8/14
31/14


(e) The matrix of the projection1 0

0 1
3 2

((1 0 3
0 1 2

)1 0
0 1
3 2

)−1
(

1 0 3
0 1 2

)
=

1 0
0 1
3 2

(10 6
6 5

)−1(1 0 3
0 1 2

)
=

1
14

 5 −6 3
−6 10 2
3 2 13


when applied to the vector, yields the expected result.

1
14

 5 −6 3
−6 10 2
3 2 13

1
1
2

 =

 5/14
8/14
31/14


3.VI.3.14 No, a decomposition of vectors ~v = ~m+~n into ~m ∈M and ~n ∈ N does not depend on the bases
chosen for the subspaces—this was shown in the Direct Sum subsection.
3.VI.3.15 The orthogonal projection of a vector into a subspace is a member of that subspace. Since a
trivial subspace has only one member, ~0, the projection of any vector must equal ~0.
3.VI.3.16 The projection into M along N of a ~v ∈ M is ~v. Decomposing ~v = ~m + ~n gives ~m = ~v and
~n = ~0, and dropping the N part but retaining the M part results in a projection of ~m = ~v.
3.VI.3.17 The proof of Lemma 3.7 shows that each vector ~v ∈ Rn is the sum of its orthogonal projections
onto the lines spanned by the basis vectors.

~v = proj[~κ1](~v ) + · · ·+ proj[~κn](~v ) =
~v ~κ1

~κ1 ~κ1
· ~κ1 + · · ·+ ~v ~κn

~κn ~κn
· ~κn

Since the basis is orthonormal, the bottom of each fraction has ~κi ~κi = 1.
3.VI.3.20 True; the only vector orthogonal to itself is the zero vector.
3.VI.3.21 This is immediate from the statement in Lemma 3.7 that the space is the direct sum of the two.
3.VI.3.25
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(a) First note that if a vector ~v is already in the line then the orthogonal projection gives ~v itself. One way
to verify this is to apply the formula for projection into the line spanned by a vector ~s, namely (~v ~s/~s ~s) ·~s.
Taking the line as {k · ~v

∣∣ k ∈ R} (the ~v = ~0 case is separate but easy) gives (~v ~v/~v ~v) ·~v, which simplifies
to ~v, as required.

Now, that answers the question because after once projecting into the line, the result proj`(~v) is in
that line. The prior paragraph says that projecting into the same line again will have no effect.

(b) The argument here is similar to the one in the prior item. With V = M ⊕ N , the projection of
~v = ~m + ~n is projM,N (~v ) = ~m. Now repeating the projection will give projM,N (~m) = ~m, as required,
because the decomposition of a member of M into the sum of a member of M and a member of N is
~m = ~m+~0. Thus, projecting twice into M along N has the same effect as projecting once.

(c) As suggested by the prior items, the condition gives that t leaves vectors in the rangespace unchanged,
and hints that we should take ~β1, . . . , ~βr to be basis vectors for the range, that is, that we should take
the range space of t for M (so that dim(M) = r). As for the complement, we write N for the nullspace of
t and we will show that V = M ⊕N .

To show this, we can show that their intersection is trivial M ∩ N = {~0} and that they sum to the
entire space M + N = V . For the first, if a vector ~m is in the rangespace then there is a ~v ∈ V with
t(~v) = ~m, and the condition on t gives that t(~m) = (t ◦ t) (~v) = t(~v) = ~m, while if that same vector is
also in the nullspace then t(~m) = ~0 and so the intersection of the rangespace and nullspace is trivial. For
the second, to write an arbitrary ~v as the sum of a vector from the rangespace and a vector from the
nullspace, the fact that the condition t(~v) = t(t(~v)) can be rewritten as t(~v − t(~v)) = ~0 suggests taking
~v = t(~v) + (~v − t(~v)).

So we are finished on taking a basis B = 〈~β1, . . . , ~βn〉 for V where 〈~β1, . . . , ~βr〉 is a basis for the
rangespace M and 〈~βr+1, . . . , ~βn〉 is a basis for the nullspace N .

(d) Every projection (as defined in this exercise) is a projection into its rangespace and along its nullspace.
(e) This also follows immediately from the third item.

3.VI.3.26 For any matrix M we have that (M−1)trans = (M trans)−1, and for any two matrices M , N we
have that MN trans = N transM trans (provided, of course, that the inverse and product are defined). Applying
these two gives that the matrix equals its transpose.(

A(AtransA)−1Atrans
)trans

= (Atranstrans)(
(
(AtransA)−1

)trans
)(Atrans)

= (Atranstrans)(
(
(AtransA)trans)−1)(Atrans) = A(AtransAtranstrans)−1Atrans = A(AtransA)−1Atrans

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Answers for Topic: Line of Best Fit

1 As with the first example discussed above, we are trying to find a best m to “solve” this system.

8m= 4
16m= 9
24m= 13
32m= 17
40m= 20
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Projecting into the linear subspace gives this
4
9
13
17
20




8
16
24
32
40




8
16
24
32
40




8
16
24
32
40


·


8
16
24
32
40

 =
1832
3520

·


8
16
24
32
40



so the slope of the line of best fit is approximately 0.52.

flips

heads

10 30

5

15

bc

bc

bc

bc

bc

2 With this input

A =


1 1852.71
1 1858.88
...

...
1 1985.54
1 1993.71

 b =


292.0
285.0

...226.32
224.39


(the dates have been rounded to months, e.g., for a September record, the decimal .71 ≈ (8.5/12) was used),
Maple responded with an intercept of b = 994.8276974 and a slope of m = −0.3871993827.

year

secs

1870 1890 1910 1930 1950 1970 1990

230

250

270

290
bc

bc

bc

bc

bcbc bc
bc
bc bc

bcbc bcbc
bc bcbc

bc
bc bc

bcbcbc bc
bc
bcbcbc

bc
bcbc
bc bcbcbc

bcbc bc
bc bcbcbcbcbc bc

bc

3 With this input (the years are zeroed at 1900)

A :=


1 .38
1 .54
...
...
1 92.71
1 95.54

 b =


249.0
246.2

...
208.86
207.37


(the dates have been rounded to months, e.g., for a September record, the decimal .71 ≈ (8.5/12) was used),
Maple gives an intercept of b = 243.1590327 and a slope of m = −0.401647703. The slope given in the body
of this Topic for the men’s mile is quite close to this.

year

secs

1910 1930 1950 1970 1990

230

250 bc
bc bc

bc bc
bcbcbcbc

bcbc
bc
bcbcbcbc bc

bcbc
bc bcbcbcbcbc

bc
bcbc

bc bc bcbcbcbcbcbc bc
bc
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4 With this input (the years are zeroed at 1900)

A =


1 21.46
1 32.63
...

...
1 89.54
1 96.63

 b =


373.2
327.5

...
255.61
252.56


(the dates have been rounded to months, e.g., for a September record, the decimal .71 ≈ (8.5/12) was used),
MAPLE gave an intercept of b = 378.7114894 and a slope of m = −1.445753225.

year

secs

1930 1950 1970 1990

270

290

310

330

350

370
bc

bc

bcbc
bc

bc
bc

bcbc
bc

bc
bcbcbc

bc

bc

bc
bc
bcbc
bcbc

bc

bc
bcbcbc
bcbc
bcbc bc

bc

5 These are the equations of the lines for men’s and women’s mile (the vertical intercept term of the
equation for the women’s mile has been adjusted from the answer above, to zero it at the year 0, because
that’s how the men’s mile equation was done).

y = 994.8276974− 0.3871993827x
y = 3125.6426− 1.445753225x

Obviously the lines cross. A computer program is the easiest way to do the arithmetic: MuPAD gives
x = 2012.949004 and y = 215.4150856 (215 seconds is 3 minutes and 35 seconds). Remark. Of course all
of this projection is highly dubious — for one thing, the equation for the women is influenced by the quite
slow early times — but it is nonetheless fun.

year

secs

1870 1890 1910 1930 1950 1970 1990

230

250

270

290

310

330

350

370

bc

bc

bc

bc
bcbc bc

bc
bc bc

bcbc bcbc
bc bcbc

bc
bc bc

bcbcbc bc
bc
bcbcbc

bcbcbc
bc bcbcbc

bcbc bc
bc bcbcbcbcbc bc

bc

+

+
+++
++

+++
++++

+
+

+ +++++
+

+++++++++ +

6
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(a) A computer algebra system like MAPLE or MuPAD will give an intercept of b = 4259/1398 ≈ 3.239628
and a slope of m = −71/2796 ≈ −0.025393419 Plugging x = 31 into the equation yields a predicted number
of O-ring failures of y = 2.45 (rounded to two places). Plugging in y = 4 and solving gives a temperature
of x = −29.94◦F.

(b) On the basis of this information

A =


1 53
1 75
...
1 80
1 81

 b =


3
2
...
0
0


MAPLE gives the intercept as b = 187/40 = 4.675 and the slope as m = −73/1200 ≈ −0.060833. Here,
plugging x = 31 into the equation predicts y = 2.79 O-ring failures (rounded to two places). Plugging in
y = 4 failures gives a temperature of x = 11◦F.

◦F

number fails

35 45 55 65 75 85

0

1

2

3

4

bc

bc

bcbc bc bcbc

bcbcbcbcbcbcbcbc bcbc bcbcbc bcbcbcbc

7
(a) The plot is nonlinear.

planet

log of dist

1 2 3 4 5 6 7 8

5

15

bc
bc

bc
bc

bc

bc

bc

(b) Here is the plot.

planet

log of dist

1 2 3 4 5 6 7 8

0.0

1.0

bc
bc

bc
bc

bc
bc

bc

There is perhaps a jog up between planet 4 and planet 5.
(c) This plot seems even more linear.

planet

log of dist

1 2 3 4 5 6 7 8 9

0.0

1.0

bc
bc

bc
bc

bc
bc

bc

(d) With this input

A =



1 1
1 2
1 3
1 4
1 6
1 7
1 8


b =



−0.40893539
−0.1426675

0
0.18184359
0.71600334
0.97954837
1.2833012


MuPAD gives that the intercept is b = −0.6780677466 and the slope is m = 0.2372763818.
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planet

log of dist

1 2 3 4 5 6 7 8 9

0.0

1.0

bc
bc

bc
bc

bc
bc

bc

(e) Plugging x = 9 into the equation y = −0.6780677466 + 0.2372763818x from the prior item gives that
the log of the distance is 1.4574197, so the expected distance is 28.669472. The actual distance is about
30.003.

(f) Plugging x = 10 into the same equation gives that the log of the distance is 1.6946961, so the expected
distance is 49.510362. The actual distance is about 39.503.

8
(a) With this input

A =



1 306
1 329
1 356
1 367
1 396
1 427
1 415
1 424


b =



975
969
948
910
890
906
900
899


MAPLE gives that the intercept is b = 34009779/28796 ≈ 1181.0591 and the slope is m = −19561/28796 ≈
−0.6793.

avg. hours squandered

SAT

325 375 425

900

950

bc

bc

bc

bc

bc

bc

bc bc

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Answers for Topic: Geometry of Linear Maps
1
(a) To represent H, recall that rotation counterclockwise by θ radians is represented with respect to the
standard basis in this way.

RepE2,E2(h) =
(

cos θ − sin θ
sin θ cos θ

)
A clockwise angle is the negative of a counterclockwise one.

RepE2,E2(h) =
(

cos(−π/4) − sin(−π/4)
sin(−π/4) cos(−π/4)

)
=
( √

2/2
√

2/2
−
√

2/2
√

2/2

)
This Gauss-Jordan reduction

ρ1+ρ2−→
(√

2/2
√

2/2
0

√
2

)
(2/
√

2)ρ1−→
(1/
√

2)ρ2

(
1 1
0 1

)
−ρ2+ρ1−→

(
1 0
0 1

)
produces the identity matrix so there is no need for column-swapping operations to end with a partial-
identity.
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(b) The reduction is expressed in matrix multiplication as(
1 −1
0 1

)(
2/
√

2 0
0 1/

√
2

)(
1 0
1 1

)
H = I

(note that composition of the Gaussian operations is performed from right to left).
(c) Taking inverses

H =
(

1 0
−1 1

)(√
2/2 0
0

√
2

)(
1 1
0 1

)
︸ ︷︷ ︸

P

I

gives the desired factorization of H (here, the partial identity is I, and Q is trivial, that is, it is also an
identity matrix).

(d) Reading the composition from right to left (and ignoring the identity matrices as trivial) gives that H
has the same effect as first performing this skew

~u

~v

(
x
y

)
7→

−→

(
x+ y
y

)
h(~u)

h(~v)

followed by a dilation that multiplies all first components by
√

2/2 (this is a “shrink” in that
√

2/2 ≈ 0.707)
and all second components by

√
2, followed by another skew.
~u

~v

(
x
y

)
7→

−→

(
x

−x+ y

)
h(~u)

h(~v)

For instance, the effect of H on the unit vector whose angle with the x-axis is π/3 is this.(√
3/2

1/2

) (
x
y

)
7→

−→

(
x+ y
y

) (
(
√

3 + 1)/2
1/2

) (
x
y

)
7→

−→

(
(
√

2/2)x√
2y

) (√
2(
√

3 + 1)/4√
2/2

)
(
x
y

)
7→

−→

(
x

−x+ y

) (√
2(
√

3 + 1)/4√
2(1−

√
3)/4

)
Verifying that the resulting vector has unit length and forms an angle of −π/6 with the x-axis is routine.

2 We will first represent the map with a matrix H, perform the row operations and, if needed, column
operations to reduce it to a partial-identity matrix. We will then translate that into a factorization H =
PBQ. Subsitituting into the general matrix

RepE2,E2(rθ)
(

cos θ − sin θ
sin θ cos θ

)
gives this representation.

RepE2,E2(r2π/3)
(
−1/2 −

√
3/2√

3/2 −1/2

)
Gauss’ method is routine.√

3ρ1+ρ2−→
(
−1/2 −

√
3/2

0 −2

)
−2ρ1−→

(−1/2)ρ2

(
1
√

3
0 1

)
−
√

3ρ2+ρ1−→
(

1 0
0 1

)
That translates to a matrix equation in this way.(

1 −
√

3
0 1

)(
−2 0
0 −1/2

)(
1 0√
3 1

)(
−1/2 −

√
3/2√

3/2 −1/2

)
= I

Taking inverses to solve for H yields this factorization.(
−1/2 −

√
3/2√

3/2 −1/2

)
=
(

1 0
−
√

3 1

)(
−1/2 0

0 −2

)(
1
√

3
0 1

)
I

3 This Gaussian reduction

−3ρ1+ρ2−→
−ρ1+ρ3

1 2 1
0 0 −3
0 0 1

 (1/3)ρ2+ρ3−→

1 2 1
0 0 −3
0 0 0

 (−1/3)ρ2−→

1 2 1
0 0 1
0 0 0

 −ρ2+ρ1−→

1 2 0
0 0 1
0 0 0
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gives the reduced echelon form of the matrix. Now the two column operations of taking −2 times the first
column and adding it to the second, and then of swapping columns two and three produce this partial
identity.

B =

1 0 0
0 1 0
0 0 0


All of that translates into matrix terms as: where

P =

1 −1 0
0 1 0
0 0 1

1 0 0
0 −1/3 0
0 0 1

1 0 0
0 1 0
0 1/3 1

 1 0 0
0 1 0
−1 0 1

 1 0 0
−3 1 0
0 0 1


and

Q =

1 −2 0
0 1 0
0 0 1

0 1 0
1 0 0
0 0 1


the given matrix factors as PBQ.
4 Represent it with respect to the standard bases E1, E1, then the only entry in the resulting 1×1 matrix
is the scalar k.
5 We can show this by induction on the number of components in the vector. In the n = 1 base case the
only permutation is the trivial one, and the map(

x1

)
7→
(
x1

)
is indeed expressible as a composition of swaps—as zero swaps. For the inductive step we assume that the
map induced by any permutation of fewer than n numbers can be expressed with swaps only, and we consider
the map induced by a permutation p of n numbers.

x1

x2

...
xn

 7→

xp(1)

xp(2)

...
xp(n)


Consider the number i such that p(i) = n. The map

x1

x2

...
xi
...
xn


p̂7−→



xp(1)

xp(2)

...
xp(n)

...
xn


will, when followed by the swap of the i-th and n-th components, give the map p. Now, the inductive
hypothesis gives that p̂ is achievable as a composition of swaps.
6
(a) A line is a subset of Rn of the form {~v = ~u+ t · ~w

∣∣ t ∈ R}. The image of a point on that line is
h(~v) = h(~u+ t · ~w) = h(~u) + t ·h(~w), and the set of such vectors, as t ranges over the reals, is a line (albeit,
degenerate if h(~w) = ~0).

(b) This is an obvious extension of the prior argument.
(c) If the point B is between the points A and C then the line from A to C has B in it. That is, there is
a t ∈ (0 .. 1) such that ~b = ~a+ t · (~c− ~a) (where B is the endpoint of ~b, etc.). Now, as in the argument of
the first item, linearity shows that h(~b) = h(~a) + t · h(~c− ~a).

7 The two are inverse. For instance, for a fixed x ∈ R, if f ′(x) = k (with k 6= 0) then (f−1)′(x) = 1/k.

x

f(x)

f−1(f(x))
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Answers for Topic: Markov Chains
1
(a) With this file coin.m

# Octave function for Markov coin game. p is chance of going down.

function w = coin(p,v)

q = 1-p;

A=[1,p,0,0,0,0;

0,0,p,0,0,0;

0,q,0,p,0,0;

0,0,q,0,p,0;

0,0,0,q,0,0;

0,0,0,0,q,1];

w = A * v;

endfunction

this Octave session produced the output given here.
octave:1> v0=[0;0;0;1;0;0]

v0 =

0

0

0

1

0

0

octave:2> p=.5

p = 0.50000

octave:3> v1=coin(p,v0)

v1 =

0.00000

0.00000

0.50000

0.00000

0.50000

0.00000

octave:4> v2=coin(p,v1)

v2 =

0.00000

0.25000

0.00000

0.50000

0.00000

0.25000
...

octave:26> v24=coin(p,v23)

v24 =

0.39600

0.00276

0.00000

0.00447

0.00000

0.59676

(b) Using these formulas
p1,n+1 = 0.5 · p2,n p2,n+1 = 0.5 · p1,n + 0.5 · p3,n p3,n+1 = 0.5 · p2,n + 0.5 · p4,n p5,n+1 = 0.5 · p4,n
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and these initial conditions 
p0,0

p1,0

p2,0

p3,0

p4,0

p5,0

 =


0
0
0
1
0
0


we will prove by induction that when n is odd then p1,n = p3,n = 0 and when n is even then p2,n = p4,n = 0.
Note first that this is true in the n = 0 base case by the initial conditions. For the inductive step, suppose
that it is true in the n = 0, n = 1, . . . , n = k cases and consider the n = k + 1 case. If k + 1 is odd then

p1,k+1 = 0.5 · p2,k = 0.5 · 0 = 0 p3,k+1 = 0.5 · p2,k + 0.5 · p4,k = 0.5 · 0 + 0.5 · 0 = 0

follows from the inductive hypothesis that p2,k = p4,k = 0 since k is even. The case where k + 1 is even is
similar.

(c) We can use, say, n = 100. This Octave session
octave:1> B=[1,.5,0,0,0,0;

> 0,0,.5,0,0,0;

> 0,.5,0,.5,0,0;

> 0,0,.5,0,.5,0;

> 0,0,0,.5,0,0;

> 0,0,0,0,.5,1];

octave:2> B100=B**100

B100 =

1.00000 0.80000 0.60000 0.40000 0.20000 0.00000

0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

0.00000 0.20000 0.40000 0.60000 0.80000 1.00000

octave:3> B100*[0;1;0;0;0;0]

octave:4> B100*[0;1;0;0;0;0]

octave:5> B100*[0;0;0;1;0;0]

octave:6> B100*[0;1;0;0;0;0]

yields these outputs.

starting with: $1 $2 $3 $4
s0,100

s1,100

s2,100

s3,100

s4,100

s5,100

0.80000
0.00000
0.00000
0.00000
0.00000
0.20000

0.60000
0.00000
0.00000
0.00000
0.00000
0.40000

0.40000
0.00000
0.00000
0.00000
0.00000
0.60000

0.20000
0.00000
0.00000
0.00000
0.00000
0.80000

2
(a) From these equations

(1/6)s1,n + 0s2,n + 0s3,n + 0s4,n + 0s5,n + 0s6,n = s1,n+1

(1/6)s1,n + (2/6)s2,n + 0s3,n + 0s4,n + 0s5,n + 0s6,n = s2,n+1

(1/6)s1,n + (1/6)s2,n + (3/6)s3,n + 0s4,n + 0s5,n + 0s6,n = s3,n+1

(1/6)s1,n + (1/6)s2,n + (1/6)s3,n + (4/6)s4,n + 0s5,n + 0s6,n = s4,n+1

(1/6)s1,n + (1/6)s2,n + (1/6)s3,n + (1/6)s4,n + (5/6)s5,n + 0s6,n = s5,n+1

(1/6)s1,n + (1/6)s2,n + (1/6)s3,n + (1/6)s4,n + (1/6)s5,n + (6/6)s6,n = s6,n+1
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We get this transition matrix. 
1/6 0 0 0 0 0
1/6 2/6 0 0 0 0
1/6 1/6 3/6 0 0 0
1/6 1/6 1/6 4/6 0 0
1/6 1/6 1/6 1/6 5/6 0
1/6 1/6 1/6 1/6 1/6 6/6


(b) This is the Octave session, with outputs edited out and condensed into the table at the end.

octave:1> F=[1/6, 0, 0, 0, 0, 0;

> 1/6, 2/6, 0, 0, 0, 0;

> 1/6, 1/6, 3/6, 0, 0, 0;

> 1/6, 1/6, 1/6, 4/6, 0, 0;

> 1/6, 1/6, 1/6, 1/6, 5/6, 0;

> 1/6, 1/6, 1/6, 1/6, 1/6, 6/6];

octave:2> v0=[1;0;0;0;0;0]

octave:3> v1=F*v0

octave:4> v2=F*v1

octave:5> v3=F*v2

octave:6> v4=F*v3

octave:7> v5=F*v4

These are the results.

1 2 3 4 5
1
0
0
0
0
0

0.16667
0.16667
0.16667
0.16667
0.16667
0.16667

0.027778
0.083333
0.138889
0.194444
0.250000
0.305556

0.0046296
0.0324074
0.0879630
0.1712963
0.2824074
0.4212963

0.00077160
0.01157407
0.05015432
0.13503086
0.28472222
0.51774691

0.00012860
0.00398663
0.02713477
0.10043724
0.27019033
0.59812243

3
(a) It does seem reasonable that, while the firm’s present location should strongly influence where it is
next time (for instance, whether it stays), any locations in the prior stages should have little influence.
That is, while a company may move or stay because of where it is, it is unlikely to move or stay because
of where it was.

(b) This Octave session has been edited, with the outputs put together in a table at the end.
octave:1> M=[.787,0,0,.111,.102;

> 0,.966,.034,0,0;

> 0,.063,.937,0,0;

> 0,0,.074,.612,.314;

> .021,.009,.005,.010,.954]

M =

0.78700 0.00000 0.00000 0.11100 0.10200

0.00000 0.96600 0.03400 0.00000 0.00000

0.00000 0.06300 0.93700 0.00000 0.00000

0.00000 0.00000 0.07400 0.61200 0.31400

0.02100 0.00900 0.00500 0.01000 0.95400

octave:2> v0=[.025;.025;.025;.025;.900]

octave:3> v1=M*v0

octave:4> v2=M*v1

octave:5> v3=M*v2

octave:6> v4=M*v3

is summarized in this table.
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~p0 ~p1 ~p2 ~p3 ~p4
0.025000
0.025000
0.025000
0.025000
0.900000




0.114250
0.025000
0.025000
0.299750
0.859725




0.210879
0.025000
0.025000
0.455251
0.825924




0.300739
0.025000
0.025000
0.539804
0.797263




0.377920
0.025000
0.025000
0.582550
0.772652


(c) This is a continuation of the Octave session from the prior item.

octave:7> p0=[.0000;.6522;.3478;.0000;.0000]

octave:8> p1=M*p0

octave:9> p2=M*p1

octave:10> p3=M*p2

octave:11> p4=M*p3

This summarizes the output.
~p0 ~p1 ~p2 ~p3 ~p4

0.00000
0.65220
0.34780
0.00000
0.00000




0.00000
0.64185
0.36698
0.02574
0.00761




0.0036329
0.6325047
0.3842942
0.0452966
0.0151277




0.0094301
0.6240656
0.3999315
0.0609094
0.0225751




0.016485
0.616445
0.414052
0.073960
0.029960


(d) This is more of the same Octave session.

octave:12> M50=M**50

M50 =

0.03992 0.33666 0.20318 0.02198 0.37332

0.00000 0.65162 0.34838 0.00000 0.00000

0.00000 0.64553 0.35447 0.00000 0.00000

0.03384 0.38235 0.22511 0.01864 0.31652

0.04003 0.33316 0.20029 0.02204 0.37437

octave:13> p50=M50*p0

p50 =

0.29024

0.54615

0.54430

0.32766

0.28695

octave:14> p51=M*p50

p51 =

0.29406

0.54609

0.54442

0.33091

0.29076

This is close to a steady state.

4
(a) This is the relevant system of equations.

(1− 2p) · sU,n + p · tA,n + p · tB,n = sU,n+1

p · sU,n + (1− 2p) · tA,n = tA,n+1

p · sU,n + (1− 2p) · tB,n = tB,n+1

p · tA,n + sA,n = sA,n+1

p · tB,n + sB,n = sB,n+1
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Thus we have this. 
1− 2p p p 0 0
p 1− 2p 0 0 0
p 0 1− 2p 0 0
0 p 0 1 0
0 0 p 0 1



sU,n
tA,n
tB,n
sA,n
sB,n

 =


sU,n+1

tA,n+1

tB,n+1

sA,n+1

sB,n+1


(b) This is the Octave code, with the output removed.

octave:1> T=[.5,.25,.25,0,0;

> .25,.5,0,0,0;

> .25,0,.5,0,0;

> 0,.25,0,1,0;

> 0,0,.25,0,1]

T =

0.50000 0.25000 0.25000 0.00000 0.00000

0.25000 0.50000 0.00000 0.00000 0.00000

0.25000 0.00000 0.50000 0.00000 0.00000

0.00000 0.25000 0.00000 1.00000 0.00000

0.00000 0.00000 0.25000 0.00000 1.00000

octave:2> p0=[1;0;0;0;0]

octave:3> p1=T*p0

octave:4> p2=T*p1

octave:5> p3=T*p2

octave:6> p4=T*p3

octave:7> p5=T*p4

Here is the output. The probability of ending at sA is about 0.23.

~p0 ~p1 ~p2 ~p3 ~p4 ~p5

sU
tA
tB
sA
sB

1
0
0
0
0

0.50000
0.25000
0.25000
0.00000
0.00000

0.375000
0.250000
0.250000
0.062500
0.062500

0.31250
0.21875
0.21875
0.12500
0.12500

0.26562
0.18750
0.18750
0.17969
0.17969

0.22656
0.16016
0.16016
0.22656
0.22656

(c) With this file as learn.m

# Octave script file for learning model.

function w = learn(p)

T = [1-2*p,p, p, 0, 0;

p, 1-2*p,0, 0, 0;

p, 0, 1-2*p,0, 0;

0, p, 0, 1, 0;

0, 0, p, 0, 1];

T5 = T**5;

p5 = T5*[1;0;0;0;0];

w = p5(4);

endfunction

issuing the command octave:1> learn(.20) yields ans = 0.17664.
(d) This Octave session

octave:1> x=(.01:.01:.50)’;

octave:2> y=(.01:.01:.50)’;

octave:3> for i=.01:.01:.50

> y(100*i)=learn(i);

> endfor

octave:4> z=[x, y];

octave:5> gplot z

yields this plot. There is no threshold value — no probability above which the curve rises sharply.



Answers to Exercises 91

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

line 1

5
(a) From these equations

0.90 · pT,n + 0.01 · pC,n = pT,n+1

0.10 · pT,n + 0.99 · pC,n = pC,n+1

we get this matrix.

(
0.90 0.01
0.10 0.99

)(
pT,n
pC,n

)
=
(
pT,n+1

pC,n+1

)

(b) This is the result from Octave.
n = 0 1 2 3 4 5

0.30000
0.70000

0.27700
0.72300

0.25653
0.74347

0.23831
0.76169

0.22210
0.77790

0.20767
0.79233

6 7 8 9 10
0.19482
0.80518

0.18339
0.81661

0.17322
0.82678

0.16417
0.83583

0.15611
0.84389

(c) This is the sT = 0.2 result.
n = 0 1 2 3 4 5

0.20000
0.80000

0.18800
0.81200

0.17732
0.82268

0.16781
0.83219

0.15936
0.84064

0.15183
0.84817

6 7 8 9 10
0.14513
0.85487

0.13916
0.86084

0.13385
0.86615

0.12913
0.87087

0.12493
0.87507

(d) Although the probability vectors start 0.1 apart, they end only 0.032 apart. So they are alike.

6 These are the p = .55 vectors,
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n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7

0-0
1-0
0-1
2-0
1-1
0-2
3-0
2-1
1-2
0-3
4-0
3-1
2-2
1-3
0-4
4-1
3-2
2-3
1-4
4-2
3-3
2-4
4-3
3-4

1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0.55000
0.45000
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0.30250
0.49500
0.20250
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0.16638
0.40837
0.33412
0.09112
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0.09151
0.29948
0.36754
0.20047
0.04101
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0.09151
0
0
0
0.04101
0.16471
0.33691
0.27565
0.09021
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0.09151
0
0
0
0.04101
0.16471
0
0
0.09021
0.18530
0.30322
0.12404
0
0

0
0
0
0
0
0
0
0
0
0
0.09151
0
0
0
0.04101
0.16471
0
0
0.09021
0.18530
0
0.12404
0.16677
0.13645

and these are the p = .60 vectors.
n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7

0-0
1-0
0-1
2-0
1-1
0-2
3-0
2-1
1-2
0-3
4-0
3-1
2-2
1-3
0-4
4-1
3-2
2-3
1-4
4-2
3-3
2-4
4-3
3-4

1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0.60000
0.40000
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0.36000
0.48000
0.16000
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0.21600
0.43200
0.28800
0.06400
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0.12960
0.34560
0.34560
0.15360
0.02560
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0.12960
0
0
0
0.02560
0.20736
0.34560
0.23040
0.06144
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0.12960
0
0
0
0.02560
0.20736
0
0
0.06144
0.20736
0.27648
0.09216
0
0

0
0
0
0
0
0
0
0
0
0
0.12960
0
0
0
0.02560
0.20736
0
0
0.06144
0.20736
0
0.09216
0.16589
0.11059

(a) The script from the computer code section can be easily adapted.
# Octave script file to compute chance of World Series outcomes.

function w = markov(p,v)

q = 1-p;

A=[0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,0,0,0,0; # 0-0

p,0,0,0,0,0, 0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,0,0,0,0; # 1-0
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q,0,0,0,0,0, 0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,0,0,0,0; # 0-1_

0,p,0,0,0,0, 0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,0,0,0,0; # 2-0

0,q,p,0,0,0, 0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,0,0,0,0; # 1-1

0,0,q,0,0,0, 0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,0,0,0,0; # 0-2__

0,0,0,p,0,0, 0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,0,0,0,0; # 3-0

0,0,0,q,p,0, 0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,0,0,0,0; # 2-1

0,0,0,0,q,p, 0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,0,0,0,0; # 1-2_

0,0,0,0,0,q, 0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,0,0,0,0; # 0-3

0,0,0,0,0,0, p,0,0,0,1,0, 0,0,0,0,0,0, 0,0,0,0,0,0; # 4-0

0,0,0,0,0,0, q,p,0,0,0,0, 0,0,0,0,0,0, 0,0,0,0,0,0; # 3-1__

0,0,0,0,0,0, 0,q,p,0,0,0, 0,0,0,0,0,0, 0,0,0,0,0,0; # 2-2

0,0,0,0,0,0, 0,0,q,p,0,0, 0,0,0,0,0,0, 0,0,0,0,0,0; # 1-3

0,0,0,0,0,0, 0,0,0,q,0,0, 0,0,1,0,0,0, 0,0,0,0,0,0; # 0-4_

0,0,0,0,0,0, 0,0,0,0,0,p, 0,0,0,1,0,0, 0,0,0,0,0,0; # 4-1

0,0,0,0,0,0, 0,0,0,0,0,q, p,0,0,0,0,0, 0,0,0,0,0,0; # 3-2

0,0,0,0,0,0, 0,0,0,0,0,0, q,p,0,0,0,0, 0,0,0,0,0,0; # 2-3__

0,0,0,0,0,0, 0,0,0,0,0,0, 0,q,0,0,0,0, 1,0,0,0,0,0; # 1-4

0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,0,0,p,0, 0,1,0,0,0,0; # 4-2

0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,0,0,q,p, 0,0,0,0,0,0; # 3-3_

0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,0,0,0,q, 0,0,0,1,0,0; # 2-4

0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,p,0,1,0; # 4-3

0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,q,0,0,1]; # 3-4

v7 = (A**7) * v;

w = v7(11)+v7(16)+v7(20)+v7(23)

endfunction

Using this script, we get that when the American League has a p = 0.55 probability of winning each game
then their probability of winning the first-to-win-four series is 0.60829. When their probability of winning
any one game is p = 0.6 then their probability of winning the series is 0.71021.

(b) This Octave session
octave:1> v0=[1;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0];

octave:2> x=(.01:.01:.99)’;

octave:3> y=(.01:.01:.99)’;

octave:4> for i=.01:.01:.99

> y(100*i)=markov(i,v0);

> endfor

octave:5> z=[x, y];

octave:6> gplot z

yields this graph. By eye we judge that if p > 0.7 then the team is close to assurred of the series.
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(a) They must satisfy this condition because the total probability of a state transition (including back to
the same state) is 100%.

(b) See the answer to the third item.
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(c) We will do the 2×2 case; bigger-sized cases are just notational problems. This product(
a1,1 a1,2

a2,1 a2,2

)(
b1,1 b1,2
b2,1 b2,2

)
=
(
a1,1b1,1 + a1,2b2,1 a1,1b1,2 + a1,2b2,2
a2,1b1,1 + a2,2b2,1 a2,1b1,2 + a2,2b2,2

)
has these two column sums
(a1,1b1,1 + a1,2b2,1) + (a2,1b1,1 + a2,2b2,1) = (a1,1 + a2,1) · b1,1 + (a1,2 + a2,2) · b2,1 = 1 · b1,1 + 1 · b2,1 = 1

and
(a1,1b1,2 + a1,2b2,2) + (a2,1b1,2 + a2,2b2,2) = (a1,1 + a2,1) · b1,2 + (a1,2 + a2,2) · b2,2 = 1 · b1,2 + 1 · b2,2 = 1

as required.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Answers for Topic: Orthonormal Matrices
1
(a) Yes.
(b) No, the columns do not have length one.
(c) Yes.

2 Some of these are nonlinear, because they involve a nontrivial translation.

(a)
(
x
y

)
7→
(
x · cos(π/6)− y · sin(π/6)
x · sin(π/6) + y · cos(π/6)

)
+
(

0
1

)
=
(

x · (
√

3/2)− y · (1/2) + 0
x · (1/2) + y · cos(

√
3/2) + 1

)
(b) The line y = 2x makes an angle of arctan(2/1) with the x-axis. Thus sin θ = 2/

√
5 and cos θ = 1/

√
5.(

x
y

)
7→
(
x · (1/

√
5)− y · (2/

√
5)

x · (2/
√

5) + y · (1/
√

5)

)
(c)

(
x
y

)
7→
(
x · (1/

√
5)− y · (−2/

√
5)

x · (−2/
√

5) + y · (1/
√

5)

)
+
(

1
1

)
=
(
x/
√

5 + 2y/
√

5 + 1
−2x/

√
5 + y/

√
5 + 1

)
3
(a) Let f be distance-preserving and consider f−1. Any two points in the codomain can be written as
f(P1) and f(P2). Because f is distance-preserving, the distance from f(P1) to f(P2) equals the distance
from P1 to P2. But this is exactly what is required for f−1 to be distance-preserving.

(b) Any plane figure F is congruent to itself via the identity map id: R2 → R2, which is obviously distance-
preserving. If F1 is congruent to F2 (via some f) then F2 is congruent to F1 via f−1, which is distance-
preserving by the prior item. Finally, if F1 is congruent to F2 (via some f) and F2 is congruent to F3 (via
some g) then F1 is congruent to F3 via g ◦ f , which is easily checked to be distance-preserving.

4 The first two components of each are ax+ cy + e and bx+ dy + f .
5
(a) The Pythagorean Theorem gives that three points are colinear if and only if (for some ordering of
them into P1, P2, and P3), dist(P1, P2) + dist(P2, P3) = dist(P1, P3). Of course, where f is distance-
preserving, this holds if and only if dist(f(P1), f(P2)) + dist(f(P2), f(P3)) = dist(f(P1), f(P3)), which,
again by Pythagoras, is true if and only if f(P1), f(P2), and f(P3) are colinear.

The argument for betweeness is similar (above, P2 is between P1 and P3).
If the figure F is a triangle then it is the union of three line segments P1P2, P2P3, and P1P3. The

prior two paragraphs together show that the property of being a line segment is invariant. So f(F ) is the
union of three line segments, and so is a triangle.

A circle C centered at P and of radius r is the set of all points Q such that dist(P,Q) = r. Applying
the distance-preserving map f gives that the image f(C) is the set of all f(Q) subject to the condition
that dist(P,Q) = r. Since dist(P,Q) = dist(f(P ), f(Q)), the set f(C) is also a circle, with center f(P )
and radius r.

(b) Here are two that are easy to verify: (i) the property of being a right triangle, and (ii) the property of
two lines being parallel.

(c) One that was mentioned in the section is the ‘sense’ of a figure. A triangle whose vertices read clockwise
as P1, P2, P3 may, under a distance-preserving map, be sent to a triangle read P1, P2, P3 counterclockwise.
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Chapter 4. Determinants

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Answers for subsection 4.I.1

4.I.1.2
(a) 6 (b) 21 (c) 27

4.I.1.5
(a) Nonsingular, the determinant is 3.
(b) Singular, the determinant is 0.
(c) Singular, the determinant is 0.

4.I.1.7 Using the formula for the determinant of a 3×3 matrix we expand the left side

1 · b · c2 + 1 · c · a2 + 1 · a · b2 − b2 · c · 1− c2 · a · 1− a2 · b · 1
and by distributing we expand the right side.

(bc− ba− ac+ a2) · (c− b) = c2b− b2c− bac+ b2a− ac2 + acb+ a2c− a2b

Now we can just check that the two are equal. (Remark. This is the 3×3 case of Vandermonde’s determinant
which arises in applications).

4.I.1.9 We first reduce the matrix to echelon form. To begin, assume that a 6= 0 and that ae− bd 6= 0.

(1/a)ρ1−→

1 b/a c/a
d e f
g h i

 −dρ1+ρ2−→
−gρ1+ρ3

1 b/a c/a
0 (ae− bd)/a (af − cd)/a
0 (ah− bg)/a (ai− cg)/a


(a/(ae−bd))ρ2−→

1 b/a c/a
0 1 (af − cd)/(ae− bd)
0 (ah− bg)/a (ai− cg)/a


This step finishes the calculation.

((ah−bg)/a)ρ2+ρ3−→

1 b/a c/a
0 1 (af − cd)/(ae− bd)
0 0 (aei+ bgf + cdh− hfa− idb− gec)/(ae− bd)


Now assuming that a 6= 0 and ae − bd 6= 0, the original matrix is nonsingular if and only if the 3, 3
entry above is nonzero. That is, under the assumptions, the original matrix is nonsingular if and only if
aei+ bgf + cdh− hfa− idb− gec 6= 0, as required.

We finish by running down what happens if the assumptions that were taken for convienence in the prior
paragraph do not hold. First, if a 6= 0 but ae− bd = 0 then we can swap1 b/a c/a

0 0 (af − cd)/a
0 (ah− bg)/a (ai− cg)/a

 ρ2↔ρ3−→

1 b/a c/a
0 (ah− bg)/a (ai− cg)/a
0 0 (af − cd)/a


and conclude that the matrix is nonsingular if and only if either ah− bg = 0 or af − cd = 0. The condition
‘ah − bg = 0 or af − cd = 0’ is equivalent to the condition ‘(ah − bg)(af − cd) = 0’. Multiplying out and
using the case assumption that ae− bd = 0 to substitute ae for bd gives this.

0 = ahaf − ahcd− bgaf + bgcd = ahaf − ahcd− bgaf + aegc = a(haf − hcd− bgf + egc)

Since a 6= 0, we have that the matrix is nonsingular if and only if haf − hcd− bgf + egc = 0. Therefore, in
this a 6= 0 and ae− bd = 0 case, the matrix is nonsingular when haf − hcd− bgf + egc− i(ae− bd) = 0.

The remaining cases are routine. Do the a = 0 but d 6= 0 case and the a = 0 and d = 0 but g 6= 0 case
by first swapping rows and then going on as above. The a = 0, d = 0, and g = 0 case is easy—that matrix
is singular since the columns form a linearly dependent set, and the determinant comes out to be zero.
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4.I.1.10 Figuring the determinant and doing some algebra gives this.

0 = y1x+ x2y + x1y2 − y2x− x1y − x2y1

(x2 − x1) · y = (y2 − y1) · x+ x2y1 − x1y2

y =
y2 − y1

x2 − x1
· x+

x2y1 − x1y2

x2 − x1

Note that this is the equation of a line (in particular, in contains the familiar expression for the slope), and
note that (x1, y1) and (x2, y2) satisfy it.

4.I.1.12 The determinant is (x2y3−x3y2)~e1 +(x3y1−x1y3)~e2 +(x1y2−x2y1)~e3. To check perpendicularity,
we check that the dot product with the first vector is zerox1

x2

x3

 x2y3 − x3y2

x3y1 − x1y3

x1y2 − x2y1

 = x1x2y3 − x1x3y2 + x2x3y1 − x1x2y3 + x1x3y2 − x2x3y1 = 0

and the dot product with the second vector is also zero.y1

y2

y3

 x2y3 − x3y2

x3y1 − x1y3

x1y2 − x2y1

 = x2y1y3 − x3y1y2 + x3y1y2 − x1y2y3 + x1y2y3 − x2y1y3 = 0

4.I.1.13
(a) Plug and chug: the determinant of the product is this

det(
(
a b
c d

)(
w x
y z

)
) = det(

(
aw + by ax+ bz
cw + dy cx+ dz

)
)

= acwx+ adwz + bcxy + bdyz
−acwx− bcwz − adxy − bdyz

while the product of the determinants is this.

det(
(
a b
c d

)
) · det(

(
w x
y z

)
) = (ad− bc) · (wz − xy)

Verification that they are equal is easy.
(b) Use the prior item.

That similar matrices have the same determinant is immediate from the above two: det(PTP−1) = det(P ) ·
det(T ) · det(P−1).

4.I.1.15 The computation for 2×2 matrices, using the formula quoted in the preamble, is easy. It does also
hold for 3×3 matrices; the computation is routine.

4.I.1.17 Bring out the c’s one row at a time.

4.I.1.18 There are no real numbers θ that make the matrix singular because the determinant of the matrix
cos2 θ+ sin2 θ is never 0, it equals 1 for all θ. Geometrically, with respect to the standard basis, this matrix
represents a rotation of the plane through an angle of θ. Each such map is one-to-one — for one thing, it is
invertible.

4.I.1.19 This is how the answer was given in the cited source. Let P be the sum of the three positive terms
of the determinant and −N the sum of the three negative terms. The maximum value of P is

9 · 8 · 7 + 6 · 5 · 4 + 3 · 2 · 1 = 630.

The minimum value of N consistent with P is

9 · 6 · 1 + 8 · 5 · 2 + 7 · 4 · 3 = 218.

Any change in P would result in lowering that sum by more than 4. Therefore 412 the maximum value for
the determinant and one form for the determinant is∣∣∣∣∣∣

9 4 2
3 8 6
5 1 7

∣∣∣∣∣∣ .
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Answers for subsection 4.I.2

4.I.2.8

(a)
∣∣∣∣ 2 −1
−1 −1

∣∣∣∣ =
∣∣∣∣2 −1
0 −3/2

∣∣∣∣ = −3; (b)

∣∣∣∣∣∣
1 1 0
3 0 2
5 2 2

∣∣∣∣∣∣ =

∣∣∣∣∣∣
1 1 0
0 −3 2
0 −3 2

∣∣∣∣∣∣ =

∣∣∣∣∣∣
1 1 0
0 −3 2
0 0 0

∣∣∣∣∣∣ = 0

4.I.2.9 When is the determinant not zero?∣∣∣∣∣∣∣∣
1 0 1 −1
0 1 −2 0
1 0 k 0
0 0 1 −1

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
1 0 1 −1
0 1 −2 0
0 0 k − 1 1
0 0 1 −1

∣∣∣∣∣∣∣∣
Obviously, k = 1 gives nonsingularity and hence a nonzero determinant. If k 6= 1 then we get echelon form
with a (−1/k − 1)ρ3 + ρ4 pivot.

=

∣∣∣∣∣∣∣∣
1 0 1 −1
0 1 −2 0
0 0 k − 1 1
0 0 0 −1− (1/k − 1)

∣∣∣∣∣∣∣∣
Multiplying down the diagonal gives (k − 1)(−1− (1/k − 1)) = −(k − 1)− 1 = −k. Thus the matrix has a
nonzero determinant, and so the system has a unique solution, if and only if k 6= 0.
4.I.2.12 It is the trivial subspace.
4.I.2.14

(a)
(
1
)
,
(

1 −1
−1 1

)
,

 1 −1 1
−1 1 −1
1 −1 1


(b) The determinant in the 1×1 case is 1. In every other case the second row is the negative of the first,
and so matrix is singular and the determinant is zero.

4.I.2.15

(a)
(
2
)
,
(

2 3
3 4

)
,

2 3 4
3 4 5
4 5 6


(b) The 1×1 and 2×2 cases yield these. ∣∣2∣∣ = 2

∣∣∣∣2 3
3 4

∣∣∣∣ = −1

And n×n matrices with n ≥ 3 are singular, e.g.,∣∣∣∣∣∣
2 3 4
3 4 5
4 5 6

∣∣∣∣∣∣ = 0

because twice the second row minus the first row equals the third row. Checking this is routine.
4.I.2.17 No, we cannot replace it. Remark 2.2 shows that the four conditions after the replacement would
conflict — no function satisfies all four.
4.I.2.18 A upper-triangular matrix is in echelon form.

A lower-triangular matrix is either singular or nonsingular. If it is singular then it has a zero on its
diagonal and so its determinant (namely, zero) is indeed the product down its diagonal. If it is nonsingular
then it has no zeroes on its diagonal, and can be reduced by Gauss’ method to echelon form without changing
the diagonal.
4.I.2.19
(a) The properties in the definition of determinant show that |Mi(k)| = k, |Pi,j | = −1, and |Ci,j(k)| = 1.
(b) The three cases are easy to check by recalling the action of left multiplication by each type of matrix.
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(c) If TS is invertible (TS)M = I then the associative property of matrix multiplication T (SM) = I shows
that T is invertible. So if T is not invertible then neither is TS.

(d) If T is singular then apply the prior answer: |TS| = 0 and |T | · |S| = 0 · |S| = 0. If T is not singular
then it can be written as a product of elementary matrices |TS| = |Er · · ·E1S| = |Er| · · · |E1| · |S| =
|Er · · ·E1||S| = |T ||S|.

(e) 1 = |I| = |T · T−1| = |T ||T−1|
4.I.2.20
(a) We must show that if

T
kρi+ρj−→ T̂

then d(T ) = |TS|/|S| = |T̂ S|/|S| = d(T̂ ). We will be done if we show that pivoting first and then
multiplying to get T̂ S gives the same result as multiplying first to get TS and then pivoting (because the
determinant |TS| is unaffected by the pivot so we’ll then have |T̂ S| = |TS|, and hence d(T̂ ) = d(T )). That
argument runs: after adding k times row i of TS to row j of TS, the j, p entry is (kti,1 + tj,1)s1,p + · · ·+
(kti,r + tj,r)sr,p, which is the j, p entry of T̂ S.

(b) We need only show that swapping T
ρi↔ρj−→ T̂ and then multiplying to get T̂ S gives the same result as

multiplying T by S and then swapping (because, as the determinant |TS| changes sign on the row swap,
we’ll then have |T̂ S| = −|TS|, and so d(T̂ ) = −d(T )). That argument runs just like the prior one.

(c) Not surprisingly by now, we need only show that multiplying a row by a nonzero scalar T
kρi−→T̂ and

then computing T̂ S gives the same result as first computing TS and then multiplying the row by k (as
the determinant |TS| is rescaled by k the multiplication, we’ll have |T̂ S| = k|TS|, so d(T̂ ) = k d(T )). The
argument runs just as above.

(d) Clear.
(e) Because we’ve shown that d(T ) is a determinant and that determinant functions (if they exist) are
unique, we have that so |T | = d(T ) = |TS|/|S|.

4.I.2.21 We will first argue that a rank r matrix has a r×r submatrix with nonzero determinant. A rank
r matrix has a linearly independent set of r rows. A matrix made from those rows will have row rank r and
thus has column rank r. Conclusion: from those r rows can be extracted a linearly independent set of r
columns, and so the original matrix has a r×r submatrix of rank r.

We finish by showing that if r is the largest such integer then the rank of the matrix is r. We need only
show, by the maximality of r, that if a matrix has a k×k submatrix of nonzero determinant then the rank
of the matrix is at least k. Consider such a k×k submatrix. Its rows are parts of the rows of the original
matrix, clearly the set of whole rows is linearly independent. Thus the row rank of the original matrix is at
least k, and the row rank of a matrix equals its rank.
4.I.2.23 This is how the answer was given in the cited source. The value (1 − a4)3 of the determinant is
independent of the values B, C, D. Hence operation (e) does not change the value of the determinant but
merely changes its appearance. Thus the element of likeness in (a), (b), (c), (d), and (e) is only that the
appearance of the principle entity is changed. The same element appears in (f) changing the name-label of
a rose, (g) writing a decimal integer in the scale of 12, (h) gilding the lily, (i) whitewashing a politician, and
(j) granting an honorary degree.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Answers for subsection 4.I.3

4.I.3.17 This is all of the permutations where φ(1) = 1
φ1 = 〈1, 2, 3, 4〉 φ2 = 〈1, 2, 4, 3〉 φ3 = 〈1, 3, 2, 4〉 φ4 = 〈1, 3, 4, 2〉 φ5 = 〈1, 4, 2, 3〉 φ6 = 〈1, 4, 3, 2〉

the ones where φ(1) = 1
φ7 = 〈2, 1, 3, 4〉 φ8 = 〈2, 1, 4, 3〉 φ9 = 〈2, 3, 1, 4〉 φ10 = 〈2, 3, 4, 1〉 φ11 = 〈2, 4, 1, 3〉 φ12 = 〈2, 4, 3, 1〉
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the ones where φ(1) = 3
φ13 = 〈3, 1, 2, 4〉 φ14 = 〈3, 1, 4, 2〉 φ15 = 〈3, 2, 1, 4〉 φ16 = 〈3, 2, 4, 1〉 φ17 = 〈3, 4, 1, 2〉 φ18 = 〈3, 4, 2, 1〉

and the ones where φ(1) = 4.
φ19 = 〈4, 1, 2, 3〉 φ20 = 〈4, 1, 3, 2〉 φ21 = 〈4, 2, 1, 3〉 φ22 = 〈4, 2, 3, 1〉 φ23 = 〈4, 3, 1, 2〉 φ24 = 〈4, 3, 2, 1〉

4.I.3.18 Each of these is easy to check.
(a) permutation φ1 φ2

inverse φ1 φ2

(b) permutation φ1 φ2 φ3 φ4 φ5 φ6

inverse φ1 φ2 φ3 φ5 φ4 φ6

4.I.3.19 For the ‘if’ half, the first condition of Definition 3.2 follows from taking k1 = k2 = 1 and the
second condition follows from taking k2 = 0.

The ‘only if’ half also routine. From f(~ρ1, . . . , k1~v1 + k2~v2, . . . , ~ρn) the first condition of Definition 3.2
gives = f(~ρ1, . . . , k1~v1, . . . , ~ρn) + f(~ρ1, . . . , k2~v2, . . . , ~ρn) and the second condition, applied twice, gives the
result.
4.I.3.20 To get a nonzero term in the permutation expansion we must use the 1, 2 entry and the 4, 3 entry.
Having fixed on those two we must also use the 2, 1 entry and the the 3, 4 entry. The signum of 〈2, 1, 4, 3〉 is
+1 because from 

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


the two rwo swaps ρ1 ↔ ρ2 and ρ3 ↔ ρ4 will produce the identity matrix.
4.I.3.21 They would all double.
4.I.3.22 For the second statement, given a matrix, transpose it, swap rows, and transpose back. The result
is swapped columns, and the determinant changes by a factor of −1. The third statement is similar: given
a matrix, transpose it, apply multilinearity to what are now rows, and then transpose back the resulting
matrices.
4.I.3.24 False. ∣∣∣∣1 −1

1 1

∣∣∣∣ = 2

4.I.3.25
(a) For the column index of the entry in the first row there are five choices. Then, for the column index of
the entry in the second row there are four choices (the column index used in the first row cannot be used
here). Continuing, we get 5 · 4 · 3 · 2 · 1 = 120. (See also the next question.)

(b) Once we choose the second column in the first row, we can choose the other entries in 4 · 3 · 2 · 1 = 24
ways.

4.I.3.26 n · (n− 1) · · · 2 · 1 = n!
4.I.3.27 In |A| = |Atrans| = | −A| = (−1)n|A| the exponent n must be even.
4.I.3.30 Let T be n×n, let J be p×p, and let K be q×q. Apply the permutation expansion formula

|T | =
∑

permutations φ

t1,φ(1)t2,φ(2) . . . tn,φ(n) |Pφ|

Because the upper right of T is all zeroes, if a φ has at least one of p + 1, . . . , n among its first p column
numbers φ(1), . . . , φ(p) then the term arising from φ is 0 (e.g., if φ(1) = n then t1,φ(1)t2,φ(2) . . . tn,φ(n) is 0).
So the above formula reduces to a sum over all permutations with two halves: first 1, . . . , p are rearranged,
and after that comes a permutation of p+ 1, . . . , p+ q. To see this gives |J | · |K|, distribute.[ ∑

perms φ1
of 1,...,p

t1,φ1(1) · · · tp,φ1(p) |Pφ1 |
]
·
[ ∑

perms φ2
of p+1,...,p+q

tp+1,φ2(p+1) · · · tp+q,φ2(p+q) |Pφ2 |
]

4.I.3.32 This is how the answer was given in the cited source. When two rows of a determinant are
interchanged, the sign of the determinant is changed. When the rows of a three-by-three determinant
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are permuted, 3 positive and 3 negative determinants equal in absolute value are obtained. Hence the 9!
determinants fall into 9!/6 groups, each of which sums to zero.
4.I.3.33 This is how the answer was given in the cited source. When the elements of any column are
subtracted from the elements of each of the other two, the elements in two of the columns of the derived
determinant are proportional, so the determinant vanishes. That is,∣∣∣∣∣∣

2 1 x− 4
4 2 x− 3
6 3 x− 10

∣∣∣∣∣∣ =

∣∣∣∣∣∣
1 x− 3 −1
2 x− 1 −2
3 x− 7 −3

∣∣∣∣∣∣ =

∣∣∣∣∣∣
x− 2 −1 −2
x+ 1 −2 −4
x− 4 −3 −6

∣∣∣∣∣∣ = 0.

4.I.3.34 This is how the answer was given in the cited source. Let
a b c
d e f
g h i

have magic sum N = S/3. Then

N = (a+ e+ i) + (d+ e+ f) + (g + e+ c)
− (a+ d+ g)− (c+ f + i) = 3e

and S = 9e. Hence, adding rows and columns,

D =

∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣ =

∣∣∣∣∣∣
a b c
d e f
3e 3e 3e

∣∣∣∣∣∣ =

∣∣∣∣∣∣
a b 3e
d e 3e
3e 3e 9e

∣∣∣∣∣∣ =

∣∣∣∣∣∣
a b e
d e e
1 1 1

∣∣∣∣∣∣S.
4.I.3.35 This is how the answer was given in the cited source. Denote by Dn the determinant in question
and by ai,j the element in the i-th row and j-th column. Then from the law of formation of the elements
we have

ai,j = ai,j−1 + ai−1,j , a1,j = ai,1 = 1.

Subtract each row of Dn from the row following it, beginning the process with the last pair of rows. After
the n− 1 subtractions the above equality shows that the element ai,j is replaced by the element ai,j−1, and
all the elements in the first column, except a1,1 = 1, become zeroes. Now subtract each column from the
one following it, beginning with the last pair. After this process the element ai,j−1 is replaced by ai−1,j−1,
as shown in the above relation. The result of the two operations is to replace ai,j by ai−1,j−1, and to reduce
each element in the first row and in the first column to zero. Hence Dn = Dn+i and consequently

Dn = Dn−1 = Dn−2 = · · · = D2 = 1.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Answers for subsection 4.I.4

4.I.4.10 This is the permutation expansion of the determinant of a 2×2 matrix∣∣∣∣a b
c d

∣∣∣∣ = ad ·
∣∣∣∣1 0
0 1

∣∣∣∣+ bc ·
∣∣∣∣0 1
1 0

∣∣∣∣
and the permutation expansion of the determinant of its transpose.∣∣∣∣a c

b d

∣∣∣∣ = ad ·
∣∣∣∣1 0
0 1

∣∣∣∣+ cb ·
∣∣∣∣0 1
1 0

∣∣∣∣
As with the 3×3 expansions described in the subsection, the permutation matrices from corresponding terms
are transposes (although this is disguised by the fact that each is self-transpose).
4.I.4.13 The pattern is this.

i 1 2 3 4 5 6 . . .
sgn(φi) +1 −1 −1 +1 +1 −1 . . .



Answers to Exercises 101

So to find the signum of φn!, we subtract one n! − 1 and look at the remainder on division by four. If the
remainder is 1 or 2 then the signum is −1, otherwise it is +1. For n > 4, the number n! is divisible by four,
so n! − 1 leaves a remainder of −1 on division by four (more properly said, a remainder or 3), and so the
signum is +1. The n = 1 case has a signum of +1, the n = 2 case has a signum of −1 and the n = 3 case
has a signum of −1.
4.I.4.14
(a) Permutations can be viewed as one-one and onto maps φ : {1, . . . , n} → {1, . . . , n}. Any one-one and
onto map has an inverse.

(b) If it always takes an odd number of swaps to get from Pφ to the identity, then it always takes an odd
number of swaps to get from the identity to Pφ (any swap is reversible).

(c) This is the first question again.
4.I.4.15 If φ(i) = j then φ−1(j) = i. The result now follows on the observation that Pφ has a 1 in entry
i, j if and only if φ(i) = j, and Pφ−1 has a 1 in entry j, i if and only if φ−1(j) = i,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Answers for subsection 4.II.1

4.II.1.8 For each, find the determinant and take the absolute value.
(a) 7 (b) 0 (c) 58

4.II.1.13 The starting area is 6 and the matrix changes sizes by −14. Thus the area of the image is 84.
4.II.1.14 By a factor of 21/2.
4.II.1.15 For a box we take a sequence of vectors (as described in the remark, the order in which the
vectors are taken matters), while for a span we take a set of vectors. Also, for a box subset of Rn there must
be n vectors; of course for a span there can be any number of vectors. Finally, for a box the coefficients
t1, . . . , tn are restricted to the interval [0..1], while for a span the coefficients are free to range over all of R.
4.II.1.18
(a) If it is defined then it is (32) · (2) · (2−2) · (3).
(b) |6A3 + 5A2 + 2A| = |A| · |6A2 + 5A+ 2I|.

4.II.1.24 Any permutation matrix has the property that the transpose of the matrix is its inverse.
For the implication, we know that |Atrans| = |A|. Then 1 = |A ·A−1| = |A ·Atrans| = |A| · |Atrans| = |A|2.
The converse does not hold; here is an example.(

3 1
2 1

)
4.II.1.25 Where the sides of the box are c times longer, the box has c3 times as many cubic units of volume.
4.II.1.27
(a) The new basis is the old basis rotated by π/4.

(b) 〈
(
−1
0

)
,

(
0
−1

)
〉, 〈
(

0
−1

)
,

(
1
0

)
〉

(c) In each case the determinant is +1 (these bases are said to have positive orientation).
(d) Because only one sign can change at a time, the only other cycle possible is

· · · −→
(

+
+

)
−→

(
+
−

)
−→

(
−
−

)
−→

(
−
+

)
−→ · · · .

Here each associated determinant is −1 (such bases are said to have a negative orientation).
(e) There is one positively oriented basis 〈(1)〉 and one negatively oriented basis 〈(−1)〉.
(f) There are 48 bases (6 half-axis choices are possible for the first unit vector, 4 for the second, and 2 for
the last). Half are positively oriented like the standard basis on the left below, and half are negatively
oriented like the one on the right
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~e1
~e2

~e3

~β1
~β2

~β3

In R3 positive orientation is sometimes called ‘right hand orientation’ because if a person’s right hand is
placed with the fingers curling from ~e1 to ~e2 then the thumb will point with ~e3.

4.II.1.28 We will compare det(~s1, . . . , ~sn) with det(t(~s1), . . . , t(~sn)) to show that the second differs from
the first by a factor of |T |. We represent the ~s ’s with respect to the standard bases

RepEn(~si) =


s1,i

s2,i

...
sn,i


and then we represent the map application with matrix-vector multiplication

RepEn( t(~si) ) =


t1,1 t1,2 . . . t1,n
t2,1 t2,2 . . . t2,n

...
tn,1 tn,2 . . . tn,n



s1,j

s2,j

...
sn,j



= s1,j


t1,1
t2,1

...
tn,1

+ s2,j


t1,2
t2,2

...
tn,2

+ · · ·+ sn,j


t1,n
t2,n

...
tn,n


= s1,j~t1 + s2,j~t2 + · · ·+ sn,j~tn

where ~ti is column i of T . Then det(t(~s1), . . . , t(~sn)) equals det(s1,1~t1+s2,1~t2+. . .+sn,1~tn, . . . , s1,n~t1+s2,n~t2+
. . .+sn,n~tn).

As in the derivation of the permutation expansion formula, we apply multilinearity, first splitting along
the sum in the first argument det(s1,1~t1, . . . , s1,n~t1 + s2,n~t2 + · · ·+ sn,n~tn) + · · · + det(sn,1~tn, . . . , s1,n~t1 +
s2,n~t2 + · · ·+ sn,n~tn) and then splitting each of those n summands along the sums in the second arguments,
etc. We end with, as in the derivation of the permutation expansion, nn summand determinants, each of the
form det(si1,1~ti1 , si2,2~ti2 , . . . , sin,n~tin). Factor out each of the si,j ’s = si1,1si2,2 . . . sin,n ·det(~ti1 ,~ti2 , . . . , ~tin).

As in the permutation expansion derivation, whenever two of the indices in i1, . . . , in are equal then the
determinant has two equal arguments, and evaluates to 0. So we need only consider the cases where i1, . . . ,
in form a permutation of the numbers 1, . . . , n. We thus have

det(t(~s1), . . . , t(~sn)) =
∑

permutations φ

sφ(1),1 . . . sφ(n),n det(~tφ(1), . . . ,~tφ(n)).

Swap the columns in det(~tφ(1), . . . ,~tφ(n)) to get the matrix T back, which changes the sign by a factor of
sgnφ, and then factor out the determinant of T .

=
∑
φ

sφ(1),1 . . . sφ(n),n det(~t1, . . . ,~tn) · sgnφ = det(T )
∑
φ

sφ(1),1 . . . sφ(n),n · sgnφ.

As in the proof that the determinant of a matrix equals the determinant of its transpose, we commute the
s’s so they are listed by ascending row number instead of by ascending column number (and we substitute
sgn(φ−1) for sgn(φ)).

= det(T )
∑
φ

s1,φ−1(1) . . . sn,φ−1(n) · sgnφ−1 = det(T ) det(~s1, ~s2, . . . , ~sn)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Answers for subsection 4.III.1

4.III.1.15 adj(T ) =

T1,1 T2,1 T3,1

T1,2 T2,2 T3,2

T1,3 T2,3 T3,3

 =


+
∣∣∣∣5 6
8 9

∣∣∣∣− ∣∣∣∣2 3
8 9

∣∣∣∣+
∣∣∣∣2 3
5 6

∣∣∣∣
−
∣∣∣∣4 6
7 9

∣∣∣∣+
∣∣∣∣1 3
7 9

∣∣∣∣− ∣∣∣∣1 3
4 6

∣∣∣∣
+
∣∣∣∣4 5
7 8

∣∣∣∣− ∣∣∣∣1 2
7 8

∣∣∣∣+
∣∣∣∣1 2
4 5

∣∣∣∣


=

−3 6 −3
6 −12 6
−3 6 −3



4.III.1.18


T1,1 T2,1 T3,1 T4,1

T1,2 T2,2 T3,2 T4,2

T1,3 T2,3 T3,3 T4,3

T1,4 T2,4 T3,4 T4,4

 =


4 −3 2 −1
−3 6 −4 2
2 −4 6 −3
−1 2 −3 4


4.III.1.23 Consider this diagonal matrix.

D =


d1 0 0 . . .
0 d2 0
0 0 d3

. . .
dn


If i 6= j then the i, j minor is an (n−1)×(n−1) matrix with only n−2 nonzero entries, because both di and
dj are deleted. Thus, at least one row or column of the minor is all zeroes, and so the cofactor Di,j is zero.
If i = j then the minor is the diagonal matrix with entries d1, . . . , di−1, di+1, . . . , dn. Its determinant is
obviously (−1)i+j = (−1)2i = 1 times the product of those.

adj(D) =


d2 · · · dn 0 0

0 d1d3 · · · dn 0
. . .

d1 · · · dn−1


By the way, Theorem 4.III.1.9 provides a slicker way to derive this conclusion.

4.III.1.25 It is false; here is an example.

T =

1 2 3
4 5 6
7 8 9

 adj(T ) =

−3 6 −3
6 −12 6
−3 6 −3

 adj(adj(T )) =

0 0 0
0 0 0
0 0 0


4.III.1.26
(a) An example

M =

1 2 3
0 4 5
0 0 6


suggests the right answer.

adj(M) =

M1,1 M2,1 M3,1

M1,2 M2,2 M3,2

M1,3 M2,3 M3,3

 =



∣∣∣∣4 5
0 6

∣∣∣∣ −
∣∣∣∣2 3
0 6

∣∣∣∣ ∣∣∣∣2 3
4 5

∣∣∣∣
−
∣∣∣∣0 5
0 6

∣∣∣∣ ∣∣∣∣1 3
0 6

∣∣∣∣ −
∣∣∣∣1 3
0 5

∣∣∣∣∣∣∣∣0 4
0 0

∣∣∣∣ −
∣∣∣∣1 2
0 0

∣∣∣∣ ∣∣∣∣1 2
0 4

∣∣∣∣

 =

24 −12 −2
0 6 −5
0 0 4



The result is indeed upper triangular.
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A check of this is detailed but not hard. The entries in the upper triangle of the adjoint are Ma,b where
a > b. We need to verify that the cofactor Ma,b is zero if a > b. With a > b, row a and column b of M ,

m1,1 . . . m1,b

m2,1 . . . m2,b

...
...

ma,1 . . . ma,b . . . ma,n

...
mn,b


when deleted, leave an upper triangular minor, because entry i, j of the minor is either entry i, j of M
(this happens if a > i and b > j; in this case i < j implies that the entry is zero) or it is entry i, j + 1 of
M (this happens if i < a and j > b; in this case, i < j implies that i < j + 1, which implies that the entry
is zero), or it is entry i+ 1, j + 1 of M (this last case happens when i > a and j > b; obviously here i < j
implies that i + 1 < j + 1 and so the entry is zero). Thus the determinant of the minor is the product
down the diagonal. Observe that the a− 1, a entry of M is the a− 1, a− 1 entry of the minor (it doesn’t
get deleted because the relation a > b is strict). But this entry is zero because M is upper triangular and
a− 1 < a. Therefore the cofactor is zero, and the adjoint is upper triangular. (The lower triangular case
is similar.)

(b) This is immediate from the prior part, by Corollary 1.11.
4.III.1.27 We will show that each determinant can be expanded along row i. The argument for column j
is similar.

Each term in the permutation expansion contains one and only one entry from each row. As in Exam-
ple 1.1, factor out each row i entry to get |T | = ti,1 · T̂i,1 + · · ·+ ti,n · T̂i,n, where each T̂i,j is a sum of terms
not containing any elements of row i. We will show that T̂i,j is the i, j cofactor.

Consider the i, j = n, n case first:

tn,n · T̂n,n = tn,n ·
∑
φ

t1,φ(1)t2,φ(2) . . . tn−1,φ(n−1) sgn(φ)

where the sum is over all n-permutations φ such that φ(n) = n. To show that T̂i,j is the minor Ti,j , we need
only show that if φ is an n-permutation such that φ(n) = n and σ is an n− 1-permutation with σ(1) = φ(1),
. . . , σ(n− 1) = φ(n− 1) then sgn(σ) = sgn(φ). But that’s true because φ and σ have the same number of
inversions.

Back to the general i, j case. Swap adjacent rows until the i-th is last and swap adjacent columns until
the j-th is last. Observe that the determinant of the i, j-th minor is not affected by these adjacent swaps
because inversions are preserved (since the minor has the i-th row and j-th column omitted). On the other
hand, the sign of |T | and T̂i,j is changed n−i plus n−j times. Thus T̂i,j = (−1)n−i+n−j |Ti,j | = (−1)i+j |Ti,j |.
4.III.1.28 This is obvious for the 1×1 base case.

For the inductive case, assume that the determinant of a matrix equals the determinant of its transpose
for all 1×1, . . . , (n − 1)×(n − 1) matrices. Expanding on row i gives |T | = ti,1Ti,1 + . . . + ti,nTi,n and
expanding on column i gives |T trans| = t1,i(T trans)1,i + · · ·+ tn,i(T trans)n,i Since (−1)i+j = (−1)j+i the signs
are the same in the two summations. Since the j, i minor of T trans is the transpose of the i, j minor of T ,
the inductive hypothesis gives |(T trans)i,j | = |Ti,j |.
4.III.1.29 This is how the answer was given in the cited source. Denoting the above determinant by Dn,
it is seen that D2 = 1, D3 = 2. It remains to show that Dn = Dn−1 + Dn−2, n ≥ 4. In Dn subtract the
(n − 3)-th column from the (n − 1)-th, the (n − 4)-th from the (n − 2)-th, . . . , the first from the third,
obtaining

Fn =

∣∣∣∣∣∣∣∣∣∣
1 −1 0 0 0 0 . . .
1 1 −1 0 0 0 . . .
0 1 1 −1 0 0 . . .
0 0 1 1 −1 0 . . .
. . . . . . . . .

∣∣∣∣∣∣∣∣∣∣
.

By expanding this determinant with reference to the first row, there results the desired relation.
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Answers for Topic: Cramer’s Rule
1

(a) x = 1, y = −3 (b) x = −2, y = −2
2 z = 1
3 Determinants are unchanged by pivots, including column pivots, so det(Bi) = det(~a1, . . . , x1~a1 + · · · +
xi~ai+ · · ·+xn~an, . . . ,~an) is equal to det(~a1, . . . , xi~ai, . . . ,~an) (use the operation of taking −x1 times the first
column and adding it to the i-th column, etc.). That is equal to xi · det(~a1, . . . ,~ai, . . . ,~an) = xi · det(A), as
required.
4 Because the determinant of A is 1, Cramer’s Rule applies, and shows that xi = |Bi|. With Bi a matrix
of integers, its determinant is an integer.
5 The solution of

ax +by = e
cx+dy = f

is

x =
ed− fb
ad− bc y =

af − ec
ad− bc

provided of course that the denominators are not zero.
6 Of course, singular systems have |A| equal to zero, but the infinitely many solutions case is characterized
by the fact that all of the |Bi| are zero as well.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Answers for Topic: Speed of Calculating Determinants
1
(a) Under Octave, rank(rand(5)) finds the rank of a 5×5 matrix whose entries are (uniformily distributed)
in the interval [0..1). This loop which runs the test 5000 times

octave:1> for i=1:5000

> if rank(rand(5))<5 printf("That’s one."); endif

> endfor

produces (after a few seconds) returns the prompt, with no output.
The Octave script
function elapsed_time = detspeed (size)

a=rand(size);

tic();

for i=1:10

det(a);

endfor

elapsed_time=toc();

endfunction

lead to this session.
octave:1> detspeed(5)

ans = 0.019505

octave:2> detspeed(15)

ans = 0.0054691

octave:3> detspeed(25)

ans = 0.0097431

octave:4> detspeed(35)

ans = 0.017398
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(b) Here is the data (rounded a bit), and the graph.
matrix rows 15 25 35 45 55 65 75 85 95
time per ten 0.0034 0.0098 0.0675 0.0285 0.0443 0.0663 0.1428 0.2282 0.1686

(This data is from an average of twenty runs of the above script, because of the possibility that the
randomly chosen matrix happens to take an unusually long or short time. Even so, the timing cannot be
relied on too heavily; this is just an experiment.)

matrix rows20 40 60 80 100

time per ten

0.05

0.10

0.15

0.20

bc
bc

bc

bc

bc

bc

bc

bc

bc

2 The number of operations depends on exactly how the operations are carried out.
(a) The determinant is −11. To row reduce takes a single pivot with two multiplications (−5/2 times 2
plus 5, and −5/2 times 1 plus −3) and the product down the diagonal takes one more multiplication. The
permutation expansion takes two multiplications (2 times −3 and 5 times 1).

(b) The determinant is −39. Counting the operations is routine.
(c) The determinant is 4.

3 Because this question is open, any reasonable try is worthwhile. Here is a suggestion to get started: com-
pare these under Octave: tic(); det(rand(10)); toc() versus tic(); det(hilb(10)); toc(), versus
tic(); det(eye(10)); toc(), versus tic(); det(zeroes(10)); toc().
4 This is a simple one.

DO 5 ROW=1, N

PIVINV=1.0/A(ROW,ROW)

DO 10 I=ROW+1, N

DO 20 J=I, N

A(I,J)=A(I,J)-PIVINV*A(ROW,J)

20 CONTINUE

10 CONTINUE

5 CONTINUE

5 Yes, because the J is in the innermost loop.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Answers for Topic: Projective Geometry
1 From the dot product

0 =

1
0
0

 (
L1 L2 L3

)
= L1

we get that the equation is L1 = 0.
2
(a) This determinant

0 =

∣∣∣∣∣∣
1 4 x
2 5 y
3 6 z

∣∣∣∣∣∣ = −3x+ 6y − 3z

shows that the line is L =
(
−3 6 −3

)
.

(b)

−3
6
−3
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3 The line incident on

u =

u1

u2

u3

 v =

v1

v2

v3


can be found from this determinant equation.

0 =

∣∣∣∣∣∣
u1 v1 x
u2 v2 y
u3 v3 z

∣∣∣∣∣∣ = (u2v3 − u3v2) · x+ (u3v1 − u1v3) · y + (u1v2 − u2v1) · z

The equation for the point incident on two lines is the same.
4 If p1, p2, p3, and q1, q2, q3 are two triples of homogeneous coordinates for p then the two column vectors
are in proportion, that is, lie on the same line through the origin. Similarly, the two row vectors are in
proportion.

k ·

p1

p2

p3

 =

q1

q2

q3

 m ·
(
L1 L2 L3

)
=
(
M1 M2 M3

)
Then multiplying gives the answer (km) · (p1L1 + p2L2 + p3L3) = q1M1 + q2M2 + q3M3 = 0.
5 The picture of the solar eclipse — unless the image plane is exactly perpendicular to the line from the
sun through the pinhole — shows the circle of the sun projecting to an image that is an ellipse. (Another
example is that in many pictures in this Topic, the circle that is the sphere’s equator is drawn as an ellipse,
that is, is seen by a viewer of the drawing as an ellipse.)

The solar eclipse picture also shows the converse. If we picture the projection as going from left to right
through the pinhole then the ellipse I projects through P to a circle S.
6 A spot on the unit sphere p1

p2

p3


is non-equatorial if and only if p3 6= 0. In that case it corresponds to this point on the z = 1 planep1/p3

p2/p3

1


since that is intersection of the line containing the vector and the plane.
7
(a) Other pictures are possible, but this is one.

T0
U0

V0

T1
U1

V1

V2
U2

T2

The intersections T0U1 ∩ T1U0 = V2, T0V1 ∩ T1V0 = U2, and U0V1 ∩ U1V0 = T2 are labeled so that on
each line is a T , a U , and a V .

(b) The lemma used in Desargue’s Theorem gives a basis B with respect to which the points have these
homogeneous coordinate vectors.

RepB(~t0) =

1
0
0

 RepB(~t1) =

0
1
0

 RepB(~t2) =

0
0
1

 RepB(~v0) =

1
1
1


(c) First, any U0 on T0V0

RepB(~u0) = a

1
0
0

+ b

1
1
1

 =

a+ b
b
b
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has homogeneous coordinate vectors of this formu0

1
1


(u0 is a parameter; it depends on where on the T0V0 line the point U0 is, but any point on that line has a
homogeneous coordinate vector of this form for some u0 ∈ R). Similarly, U2 is on T1V0

RepB(~u2) = c

0
1
0

+ d

1
1
1

 =

 d
c+ d
d


and so has this homogeneous coordinate vector.  1

u2

1


Also similarly, U1 is incident on T2V0

RepB(~u1) = e

0
0
1

+ f

1
1
1

 =

 f
f

e+ f


and has this homogeneous coordinate vector.  1

1
u1


(d) Because V1 is T0U2 ∩ U0T2 we have this.

g

1
0
0

+ h

 1
u2

1

 = i

u0

1
1

+ j

0
0
1

 =⇒
g + h = iu0

hu2 = i

h = i+ j

Substituting hu2 for i in the first equation hu0u2

hu2

h


shows that V1 has this two-parameter homogeneous coordinate vector.u0u2

u2

1


(e) Since V2 is the intersection T0U1 ∩ T1U0

k

1
0
0

+ l

 1
1
u1

 = m

0
1
0

+ n

u0

1
1

 =⇒
k + l = nu0

l = m+ n

lu1 = n

and substituting lu1 for n in the first equation lu0u1

l
lu1


gives that V2 has this two-parameter homogeneous coordinate vector.u0u1

1
u1
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(f) Because V1 is on the T1U1 line its homogeneous coordinate vector has the form

p

0
1
0

+ q

 1
1
u1

 =

 q
p+ q
qu1

 (∗)

but a previous part of this question established that V1’s homogeneous coordinate vectors have the formu0u2

u2

1


and so this a homogeneous coordinate vector for V1.u0u1u2

u1u2

u1

 (∗∗)

By (∗) and (∗∗), there is a relationship among the three parameters: u0u1u2 = 1.
(g) The homogeneous coordinate vector of V2 can be written in this way.u0u1u2

u2

u1u2

 =

 1
u2

u1u2


Now, the T2U2 line consists of the points whose homogeneous coordinates have this form.

r

0
0
1

+ s

 1
u2

1

 =

 s
su2

r + s


Taking s = 1 and r = u1u2 − 1 shows that the homogeneous coordinate vectors of V2 have this form.
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Chapter 5. Similarity

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Answers for subsection 5.II.1

5.II.1.4 One way to proceed is left to right.

PSP−1 =
(

4 2
−3 2

)(
1 3
−2 −6

)(
2/14 −2/14
3/14 4/14

)
=
(

0 0
−7 −21

)(
2/14 −2/14
3/14 4/14

)
=
(

0 0
−11/2 −5

)
5.II.1.6 Gauss’ method shows that the first matrix represents maps of rank two while the second matrix
represents maps of rank three.
5.II.1.7
(a) Because t is described with the members of B, finding the matrix representation is easy:

RepB(t(x2)) =

0
1
1


B

RepB(t(x)) =

 1
0
−1


B

RepB(t(1)) =

0
0
3


B

gives this.

RepB,B(t)

0 1 0
1 0 0
1 −1 3


(b) We will find t(1), t(1 +x), and t(1 +x+x2, to find how each is represented with respect to D. We are
given that t(1) = 3, and the other two are easy to see: t(1 + x) = x2 + 2 and t(1 + x+ x2) = x2 + x+ 3.
By eye, we get the representation of each vector

RepD(t(1)) =

3
0
0


D

RepD(t(1 + x)) =

 2
−1
1


D

RepD(t(1 + x+ x2)) =

2
0
1


D

and thus the representation of the map.

RepD,D(t) =

3 2 2
0 −1 0
0 1 1


(c) The diagram, adapted for this T and S,

Vw.r.t. D
t−−−−→
S

Vw.r.t. D

id
yP id

yP
Vw.r.t. B

t−−−−→
T

Vw.r.t. B

shows that P = RepD,B(id).

P =

0 0 1
0 1 1
1 1 1


5.II.1.9 The only representation of a zero map is a zero matrix, no matter what the pair of bases
RepB,D(z) = Z, and so in particular for any single basis B we have RepB,B(z) = Z. The case of the
identity is related, but slightly different: the only representation of the identity map, with respect to any
B,B, is the identity RepB,B(id) = I. (Remark: of course, we have seen examples where B 6= D and
RepB,D(id) 6= I — in fact, we have seen that any nonsingular matrix is a representation of the identity map
with respect to some B,D.)
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5.II.1.13 Let fx and fy be the reflection maps (sometimes called ‘flip’s). For any bases B and D, the
matrices RepB,B(fx) and RepD,D(fy) are similar. First note that

S = RepE2,E2(fx) =
(

1 0
0 −1

)
T = RepE2,E2(fy) =

(
−1 0
0 1

)
are similar because the second matrix is the representation of fx with respect to the basis A = 〈~e2, ~e1〉:(

1 0
0 −1

)
= P

(
−1 0
0 1

)
P−1

where P = RepA,E2(id).

R2
w.r.t. A

fx−−−−→
T

V R2
w.r.t. A

id
yP id

yP
R2

w.r.t. E2
fx−−−−→
S

R2
w.r.t. E2

Now the conclusion follows from the transitivity part of Exercise 12.
To finish without relying on that exercise, write RepB,B(fx) = QTQ−1 = QRepE2,E2(fx)Q−1 and

RepD,D(fy) = RSR−1 = RRepE2,E2(fy)R−1. Using the equation in the first paragraph, the first of these two
becomes RepB,B(fx) = QPRepE2,E2(fy)P−1Q−1 and rewriting the second of these two as R−1 ·RepD,D(fy) ·
R = RepE2,E2(fy) and substituting gives the desired relationship

RepB,B(fx) = QPRepE2,E2(fy)P−1Q−1

= QPR−1 · RepD,D(fy) ·RP−1Q−1 = (QPR−1) · RepD,D(fy) · (QPR−1)−1

Thus the matrices RepB,B(fx) and RepD,D(fy) are similar.
5.II.1.14 We must show that if two matrices are similar then they have the same determinant and the same
rank. Both determinant and rank are properties of matrices that we have already shown to be preserved by
matrix equivalence. They are therefore preserved by similarity (which is a special case of matrix equivalence: if
two matrices are similar then they are matrix equivalent).

To prove the statement without quoting the results about matrix equivalence, note first that rank is
a property of the map (it is the dimension of the rangespace) and since we’ve shown that the rank of a
map is the rank of a representation, it must be the same for all representations. As for determinants,
|PSP−1| = |P | · |S| · |P−1| = |P | · |S| · |P |−1 = |S|.

The converse of the statement does not hold; for instance, there are matrices with the same determinant
that are not similar. To check this, consider a nonzero matrix with a determinant of zero. It is not similar
to the zero matrix, the zero matrix is similar only to itself, but they have they same determinant. The
argument for rank is much the same.
5.II.1.15 The matrix equivalence class containing all n×n rank zero matrices contains only a single matrix,
the zero matrix. Therefore it has as a subset only one similarity class.

In contrast, the matrix equivalence class of 1×1 matrices of rank one consists of those 1×1 matrices (k)
where k 6= 0. For any basis B, the representation of multiplication by the scalar k is RepB,B(tk) = (k), so
each such matrix is alone in its similarity class. So this is a case where a matrix equivalence class splits into
infinitely many similarity classes.
5.II.1.16 Yes, these are similar (

1 0
0 3

) (
3 0
0 1

)
since, where the first matrix is RepB,B(t) for B = 〈~β1, ~β2〉, the second matrix is RepD,D(t) for D = 〈~β2, ~β1〉.
5.II.1.19 There are two equivalence classes, (i) the class of rank zero matrices, of which there is one:
C1 = {(0)}, and (2) the class of rank one matrices, of which there are infinitely many: C2 = {(k)

∣∣ k 6= 0}.
Each 1×1 matrix is alone in its similarity class. That’s because any transformation of a one-dimensional

space is multiplication by a scalar tk : V → V given by ~v 7→ k · ~v. Thus, for any basis B = 〈~β〉, the matrix
representing a transformation tk with respect to B,B is (RepB(tk(~β))) = (k).
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So, contained in the matrix equivalence class C1 is (obviously) the single similarity class consisting of the
matrix (0). And, contained in the matrix equivalence class C2 are the infinitely many, one-member-each,
similarity classes consisting of (k) for k 6= 0.

5.II.1.20 No. Here is an example that has two pairs, each of two similar matrices:(
1 −1
1 2

)(
1 0
0 3

)(
2/3 1/3
−1/3 1/3

)
=
(

5/3 −2/3
−4/3 7/3

)
and (

1 −2
−1 1

)(
−1 0
0 −3

)(
−1 −2
−1 −1

)
=
(
−5 −4
2 1

)
(this example is mostly arbitrary, but not entirely, because the the center matrices on the two left sides add
to the zero matrix). Note that the sums of these similar matrices are not similar(

1 0
0 3

)
+
(
−1 0
0 −3

)
=
(

0 0
0 0

) (
5/3 −2/3
−4/3 7/3

)
+
(
−5 −4
2 1

)
6=
(

0 0
0 0

)
since the zero matrix is similar only to itself.

5.II.1.21 If N = P (T − λI)P−1 then N = PTP−1 − P (λI)P−1. The diagonal matrix λI commutes with
anything, so P (λI)P−1 = PP−1(λI) = λI. Thus N = PTP−1 − λI and consequently N + λI = PTP−1.
(So not only are they similar, in fact they are similar via the same P .)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Answers for subsection 5.II.2

5.II.2.7
(a) Setting up (

−2 1
0 2

)(
b1
b2

)
= x ·

(
b1
b2

)
=⇒ (−2− x) · b1 + b2 = 0

(2− x) · b2 = 0
gives the two possibilities that b2 = 0 and x = 2. Following the b2 = 0 possibility leads to the first equation
(−2− x)b1 = 0 with the two cases that b1 = 0 and that x = −2. Thus, under this first possibility, we find
x = −2 and the associated vectors whose second component is zero, and whose first component is free.(

−2 1
0 2

)(
b1
0

)
= −2 ·

(
b1
0

)
~β1 =

(
1
0

)
Following the other possibility leads to a first equation of −4b1 + b2 = 0 and so the vectors associated with
this solution have a second component that is four times their first component.(

−2 1
0 2

)(
b1
4b1

)
= 2 ·

(
b1
4b1

)
~β2 =

(
1
4

)
The diagonalization is this. (

1 1
0 4

)−1(−2 1
0 2

)(
1 1
0 4

)−1(−2 0
0 2

)
(b) The calculations are like those in the prior part.(

5 4
0 1

)(
b1
b2

)
= x ·

(
b1
b2

)
=⇒ (5− x) · b1 + 4 · b2 = 0

(1− x) · b2 = 0
The bottom equation gives the two possibilities that b2 = 0 and x = 1. Following the b2 = 0 possibility,
and discarding the case where both b2 and b1 are zero, gives that x = 5, associated with vectors whose
second component is zero and whose first component is free.

~β1 =
(

1
0

)
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The x = 1 possibility gives a first equation of 4b1 + 4b2 = 0 and so the associated vectors have a second
component that is the negative of their first component.

~β1 =
(

1
−1

)
We thus have this diagonalization.(

1 1
0 −1

)−1(5 4
0 1

)(
1 1
0 −1

)
=
(

5 0
0 1

)
5.II.2.9 These two are not similar (

0 0
0 0

) (
1 0
0 1

)
because each is alone in its similarity class.

For the second half, these (
2 0
0 3

) (
3 0
0 2

)
are similar via the matrix that changes bases from 〈~β1, ~β2〉 to 〈~β2, ~β1〉. (Question. Are two diagonal matrices
similar if and only if their diagonal entries are permutations of each other’s?)
5.II.2.10 Contrast these two. (

2 0
0 1

) (
2 0
0 0

)
The first is nonsingular, the second is singular.
5.II.2.12
(a) The check is easy.(

1 1
0 −1

)(
3 2
0 1

)
=
(

3 3
0 −1

) (
3 3
0 −1

)(
1 1
0 −1

)−1

=
(

3 0
0 1

)
(b) It is a coincidence, in the sense that if T = PSP−1 then T need not equal P−1SP . Even in the case of
a diagonal matrix D, the condition that D = PTP−1 does not imply that D equals P−1TP . The matrices
from Example 2.2 show this.(

1 2
1 1

)(
4 −2
1 1

)
=
(

6 0
5 −1

) (
6 0
5 −1

)(
1 2
1 1

)−1

=
(
−6 12
−6 11

)
5.II.2.13 The columns of the matrix are chosen as the vectors associated with the x’s. The exact choice,
and the order of the choice was arbitrary. We could, for instance, get a different matrix by swapping the
two columns.
5.II.2.14 Diagonalizing and then taking powers of the diagonal matrix shows that(

−3 1
−4 2

)k
=

1
3

(
−1 1
−4 4

)
+ (
−2
3

)k
(

4 −1
4 −1

)
.

5.II.2.16 Yes, ct is diagonalizable by the final theorem of this subsection.
No, t+ s need not be diagonalizable. Intuitively, the problem arises when the two maps diagonalize with

respect to different bases (that is, when they are not simultaneously diagonalizable). Specifically, these two
are diagonalizable but their sum is not: (

1 1
0 0

) (
−1 0
0 0

)
(the second is already diagonal; for the first, see Exercise 15). The sum is not diagonalizable because its
square is the zero matrix.

The same intuition suggests that t ◦ s is not be diagonalizable. These two are diagonalizable but their
product is not: (

1 0
0 0

) (
0 1
1 0

)
(for the second, see Exercise 15).
5.II.2.18
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(a) Using the formula for the inverse of a 2×2 matrix gives this.(
a b
c d

)(
1 2
2 1

)
· 1
ad− bc ·

(
d −b
−c a

)
=

1
ad− bc

(
ad+ 2bd− 2ac− bc −ab− 2b2 + 2a2 + ab
cd+ 2d2 − 2c2 − cd −bc− 2bd+ 2ac+ ad

)
Now pick scalars a, . . . , d so that ad − bc 6= 0 and 2d2 − 2c2 = 0 and 2a2 − 2b2 = 0. For example, these
will do. (

1 1
1 −1

)(
1 2
2 1

)
· 1
−2
·
(
−1 −1
−1 1

)
=

1
−2

(
−6 0
0 2

)
(b) As above,(

a b
c d

)(
x y
y z

)
· 1
ad− bc ·

(
d −b
−c a

)
=

1
ad− bc

(
adx+ bdy − acy − bcz −abx− b2y + a2y + abz
cdx+ d2y − c2y − cdz −bcx− bdy + acy + adz

)
we are looking for scalars a, . . . , d so that ad − bc 6= 0 and −abx− b2y + a2y + abz = 0 and cdx + d2y −
c2y − cdz = 0, no matter what values x, y, and z have.

For starters, we assume that y 6= 0, else the given matrix is already diagonal. We shall use that
assumption because if we (arbitrarily) let a = 1 then we get

−bx− b2y + y + bz = 0
(−y)b2 + (z − x)b+ y = 0

and the quadratic formula gives

b =
−(z − x)±

√
(z − x)2 − 4(−y)(y)
−2y

y 6= 0

(note that if x, y, and z are real then these two b’s are real as the discriminant is positive). By the same
token, if we (arbitrarily) let c = 1 then

dx+ d2y − y − dz = 0
(y)d2 + (x− z)d− y = 0

and we get here

d =
−(x− z)±

√
(x− z)2 − 4(y)(−y)

2y
y 6= 0

(as above, if x, y, z ∈ R then this discriminant is positive so a symmetric, real, 2×2 matrix is similar to a
real diagonal matrix).

For a check we try x = 1, y = 2, z = 1.

b =
0±
√

0 + 16
−4

= ∓1 d =
0±
√

0 + 16
4

= ±1

Note that not all four choices (b, d) = (+1,+1), . . . , (−1,−1) satisfy ad− bc 6= 0.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Answers for subsection 5.II.3
5.II.3.20
(a) This

0 =
∣∣∣∣10− x −9

4 −2− x

∣∣∣∣ = (10− x)(−2− x)− (−36)

simplifies to the characteristic equation x2− 8x+ 16 = 0. Because the equation factors into (x− 4)2 there
is only one eigenvalue λ1 = 4.

(b) 0 = (1− x)(3− x)− 8 = x2 − 4x− 5; λ1 = 5, λ2 = −1
(c) x2 − 21 = 0; λ1 =

√
21, λ2 = −

√
21

(d) x2 = 0; λ1 = 0
(e) x2 − 2x+ 1 = 0; λ1 = 1
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5.II.3.22 The characteristic equation

0 =
∣∣∣∣−2− x −1

5 2− x

∣∣∣∣ = x2 + 1

has the complex roots λ1 = i and λ2 = −i. This system
(−2− x) · b1 − 1 · b2 = 0

5 · b1 (2− x) · b2 = 0
For λ1 = i Gauss’ method gives this reduction.

(−2− i) · b1 − 1 · b2 = 0
5 · b1 − (2− i) · b2 = 0

(−5/(−2−i))ρ1+ρ2−→ (−2− i) · b1 − 1 · b2 = 0
0 = 0

(For the calculation in the lower right get a common denominator
5

−2− i − (2− i) =
5

−2− i −
−2− i
−2− i · (2− i) =

5− (−5)
−2− i

to see that it gives a 0 = 0 equation.) These are the resulting eigenspace and eigenvector.

{
(

(1/(−2− i))b2
b2

) ∣∣ b2 ∈ C} (
1/(−2− i)

1

)
For λ2 = −i the system

(−2 + i) · b1 − 1 · b2 = 0
5 · b1 − (2 + i) · b2 = 0

(−5/(−2+i))ρ1+ρ2−→ (−2 + i) · b1 − 1 · b2 = 0
0 = 0

leads to this.

{
(

(1/(−2 + i))b2
b2

) ∣∣ b2 ∈ C} (
1/(−2 + i)

1

)
5.II.3.23 The characteristic equation is

0 =

∣∣∣∣∣∣
1− x 1 1

0 −x 1
0 0 1− x

∣∣∣∣∣∣ = (1− x)2(−x)

and so the eigenvalues are λ1 = 1 (this is a repeated root of the equation) and λ2 = 0. For the rest, consider
this system.

(1− x) · b1 + b2 + b3 = 0
−x · b2 + b3 = 0

(1− x) · b3 = 0
When x = λ1 = 1 then the solution set is this eigenspace.

{

b10
0

 ∣∣ b1 ∈ C}
When x = λ2 = 0 then the solution set is this eigenspace.

{

−b2b2
0

 ∣∣ b2 ∈ C}
So these are eigenvectors associated with λ1 = 1 and λ2 = 0.1

0
0

 −1
1
0


5.II.3.26 λ = 1,

(
0 0
0 1

)
and

(
2 3
1 0

)
, λ = −2,

(
−1 0
1 0

)
, λ = −1,

(
−2 1
1 0

)
5.II.3.28 The determinant of the triangular matrix T − xI is the product down the diagonal, and so it
factors into the product of the terms ti,i − x.
5.II.3.30 Any two representations of that transformation are similar, and similar matrices have the same
characteristic polynomial.
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5.II.3.33 The characteristic equation

0 =
∣∣∣∣a− x b
c d− x

∣∣∣∣ = (a− x)(d− x)− bc

simplifies to x2 + (−a − d) · x + (ad − bc). Checking that the values x = a + b and x = a − c satisfy the
equation (under the a+ b = c+ d condition) is routine.

5.II.3.37
(a) Where the eigenvalue λ is associated with the eigenvector ~x then Ak~x = A · · ·A~x = Ak−1λ~x =
λAk−1~x = · · · = λk~x. (The full details can be put in by doing induction on k.)

(b) The eigenvector associated wih λ might not be an eigenvector associated with µ.

5.II.3.38 No. These are two same-sized, equal rank, matrices with different eigenvalues.(
1 0
0 1

) (
1 0
0 2

)
5.II.3.39 The characteristic polynomial has an odd power and so has at least one real root.

5.II.3.40 The characteristic polynomial x3 − 5x2 + 6x has distinct roots λ1 = 0, λ2 = −2, and λ3 = −3.
Thus the matrix can be diagonalized into this form.0 0 0

0 −2 0
0 0 −3


5.II.3.41 We must show that it is one-to-one and onto, and that it respects the operations of matrix
addition and scalar multiplication.

To show that it is one-to-one, suppose that tP (T ) = tP (S), that is, suppose that PTP−1 = PSP−1, and
note that multiplying both sides on the left by P−1 and on the right by P gives that T = S. To show that
it is onto, consider S ∈Mn×n and observe that S = tP (P−1SP ).

The map tP preserves matrix addition since tP (T + S) = P (T + S)P−1 = (PT + PS)P−1 = PTP−1 +
PSP−1 = tP (T +S) follows from properties of matrix multiplication and addition that we have seen. Scalar
multiplication is similar: tP (cT ) = P (c · T )P−1 = c · (PTP−1) = c · tP (T ).

5.II.3.42 This is how the answer was given in the cited source. If the argument of the characteristic
function of A is set equal to c, adding the first (n − 1) rows (columns) to the nth row (column) yields a
determinant whose nth row (column) is zero. Thus c is a characteristic root of A.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Answers for subsection 5.III.1

5.III.1.8 For the zero transformation, no matter what the space, the chain of rangespaces is V ⊃ {~0} =
{~0} = · · · and the chain of nullspaces is {~0} ⊂ V = V = · · · . For the identity transformation the chains are
V = V = V = · · · and {~0} = {~0} = · · · .
5.III.1.9
(a) Iterating t0 twice a+ bx+ cx2 7→ b+ cx2 7→ cx2 gives

a+ bx+ cx2 t207−→ cx2

and any higher power is the same map. Thus, while R(t0) is the space of quadratic polynomials with
no linear term {p+ rx2

∣∣ p, r ∈ C}, and R(t20) is the space of purely-quadratic polynomials {rx2
∣∣ r ∈ C},

this is where the chain stabilizes R∞(t0) = {rx2
∣∣ n ∈ C}. As for nullspaces, N (t0) is the space of purely-

linear quadratic polynomials {qx
∣∣ q ∈ C}, and N (t20) is the space of quadratic polynomials with no x2

term {p+ qx
∣∣ p, q ∈ C}, and this is the end N∞(t0) = N (t20).
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(b) The second power (
a
b

)
t17−→
(

0
a

)
t17−→
(

0
0

)
is the zero map. Consequently, the chain of rangespaces

R2 ⊃ {
(

0
p

) ∣∣ p ∈ C} ⊃ {~0 } = · · ·

and the chain of nullspaces

{~0 } ⊂ {
(
q
0

) ∣∣ q ∈ C} ⊂ R2 = · · ·

each has length two. The generalized rangespace is the trivial subspace and the generalized nullspace is
the entire space.

(c) Iterates of this map cycle around

a+ bx+ cx2 t27−→ b+ cx+ ax2 t27−→ c+ ax+ bx2 t27−→ a+ bx+ cx2 · · ·
and the chains of rangespaces and nullspaces are trivial.

P2 = P2 = · · · {~0 } = {~0 } = · · ·
Thus, obviously, generalized spaces are R∞(t2) = P2 and N∞(t2) = {~0 }.

(d) We have ab
c

 7→
aa
b

 7→
aa
a

 7→
aa
a

 7→ · · ·
and so the chain of rangespaces

R3 ⊃ {

pp
r

 ∣∣ p, r ∈ C} ⊃ {
pp
p

 ∣∣ p ∈ C} = · · ·

and the chain of nullspaces

{~0 } ⊂ {

0
0
r

 ∣∣ r ∈ C} ⊂ {
0
q
r

 ∣∣ q, r ∈ C} = · · ·

each has length two. The generalized spaces are the final ones shown above in each chain.
5.III.1.10 Each maps x 7→ t(t(t(x))).
5.III.1.11 Recall that if W is a subspace of V then any basis BW for W can be enlarged to make a basis
BV for V . From this the first sentence is immediate. The second sentence is also not hard: W is the span of
BW and if W is a proper subspace then V is not the span of BW , and so BV must have at least one vector
more than does BW .
5.III.1.12 It is both ‘if’ and ‘only if’. We have seen earlier that a linear map is nonsingular if and only
if it preserves dimension, that is, if the dimension of its range equals the dimension of its domain. With a
transformation t : V → V that means that the map is nonsingular if and only if it is onto: R(t) = V (and
thus R(t2) = V , etc).
5.III.1.13 The nullspaces form chains because because if ~v ∈ N (tj) then tj(~v) = ~0 and tj+1(~v) =
t( tj(~v) ) = t(~0) = ~0 and so ~v ∈ N (tj+1).

Now, the “further” property for nullspaces follows from that fact that it holds for rangespaces, along
with the prior exercise. Because the dimension of R(tj) plus the dimension of N (tj) equals the dimension n
of the starting space V , when the dimensions of the rangespaces stop decreasing, so do the dimensions of
the nullspaces. The prior exercise shows that from this point k on, the containments in the chain are not
proper — the nullspaces are equal.
5.III.1.14 (Of course, many examples are correct, but here is one.) An example is the shift operator on
triples of reals (x, y, z) 7→ (0, x, y). The nullspace is all triples that start with two zeros. The map stabilizes
after three iterations.
5.III.1.15 The differentiation operator d/dx : P1 → P1 has the same rangespace as nullspace. For an
example of where they are disjoint — except for the zero vector — consider an identity map (or any
nonsingular map).
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Answers for subsection 5.III.2

5.III.2.19 By Lemma 1.3 the nullity has grown as large as possible by the n-th iteration where n is the
dimension of the domain. Thus, for the 2×2 matrices, we need only check whether the square is the zero
matrix. For the 3×3 matrices, we need only check the cube.
(a) Yes, this matrix is nilpotent because its square is the zero matrix.
(b) No, the square is not the zero matrix.(

3 1
1 3

)2

=
(

10 6
6 10

)
(c) Yes, the cube is the zero matrix. In fact, the square is zero.
(d) No, the third power is not the zero matrix.1 1 4

3 0 −1
5 2 7

3

=

206 86 304
26 8 26
438 180 634


(e) Yes, the cube of this matrix is the zero matrix.

Another way to see that the second and fourth matrices are not nilpotent is to note that they are nonsingular.
5.III.2.23 A couple of examples(

0 0
1 0

)(
a b
c d

)
=
(

0 0
a b

) 0 0 0
1 0 0
0 1 0

a b c
d e f
g h i

 =

0 0 0
a b c
d e f


suggest that left multiplication by a block of subdiagonal ones shifts the rows of a matrix downward. Distinct
blocks 

0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0



a b c d
e f g h
i j k l
m n o p

 =


0 0 0 0
a b c d
0 0 0 0
i j k l


act to shift down distinct parts of the matrix.

Right multiplication does an analgous thing to columns. See Exercise 17.
5.III.2.24 Yes. Generalize the last sentence in Example 2.9. As to the index, that same last sentence
shows that the index of the new matrix is less than or equal to the index of N̂ , and reversing the roles of
the two matrices gives inequality in the other direction.

Another answer to this question is to show that a matrix is nilpotent if and only if any associated map is
nilpotent, and with the same index. Then, because similar matrices represent the same map, the conclusion
follows. This is Exercise 30 below.
5.III.2.26 No, by Lemma 1.3 for a map on a two-dimensional space, the nullity has grown as large as
possible by the second iteration.
5.III.2.27 The index of nilpotency of a transformation can be zero only when the vector starting the string
must be ~0, that is, only when V is a trivial space.
5.III.2.29 We must check that B ∪ Ĉ ∪ {~v1, . . . , ~vj} is linearly independent where B is a t-string basis for
R(t), where Ĉ is a basis for N (t), and where t(~v1) = ~β1, . . . , t(~vi = ~βi. Write

~0 = c1,−1~v1 + c1,0~β1 + c1,1t(~β1) + · · ·+ c1,h1t
h1(~~β1) + c2,−1~v2 + · · ·+ cj,hit

hi(~βi)

and apply t.

~0 = c1,−1
~β1 + c1,0t(~β1) + · · ·+ c1,h1−1t

h1(~~β1) + c1,h1
~0 + c2,−1

~β2 + · · ·+ ci,hi−1t
hi(~βi) + ci,hi~0

Conclude that the coefficients c1,−1, . . . , c1,hi−1, c2,−1, . . . , ci,hi−1 are all zero as B ∪ Ĉ is a basis. Substitute
back into the first displayed equation to conclude that the remaining coefficients are zero also.
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5.III.2.30 For any basis B, a transformation n is nilpotent if and only if N = RepB,B(n) is a nilpotent
matrix. This is because only the zero matrix represents the zero map and so nj is the zero map if and only
if N j is the zero matrix.
5.III.2.31 It can be of any size greater than or equal to one. To have a transformation that is nilpotent
of index four, whose cube has rangespace of dimension k, take a vector space, a basis for that space, and a
transformation that acts on that basis in this way.

~β1 7→ ~β2 7→ ~β3 7→ ~β4 7→ ~0
~β5 7→ ~β6 7→ ~β7 7→ ~β8 7→ ~0

...
~β4k−3 7→ ~β4k−2 7→ ~β4k−1 7→ ~β4k 7→ ~0

...
–possibly other, shorter, strings–

So the dimension of the rangespace of T 3 can be as large as desired. The smallest that it can be is one —
there must be at least one string or else the map’s index of nilpotency would not be four.
5.III.2.32 These two have only zero for eigenvalues(

0 0
0 0

) (
0 0
1 0

)
but are not similar (they have different canonical representatives, namely, themselves).
5.III.2.33 A simple reordering of the string basis will do. For instance, a map that is assoicated with this
string basis

~β1 7→ ~β2 7→ ~0

is represented with respect to B = 〈~β1, ~β2〉 by this matrix(
0 0
1 0

)
but is represented with respect to B = 〈~β2, ~β1〉 in this way.(

0 1
0 0

)
5.III.2.35 For the matrices to be nilpotent they must be square. For them to commute they must be the
same size. Thus their product and sum are defined.

Call the matrices A and B. To see that AB is nilpotent, multiply (AB)2 = ABAB = AABB = A2B2,
and (AB)3 = A3B3, etc., and, as A is nilpotent, that product is eventually zero.

The sum is similar; use the Binomial Theorem.
5.III.2.36 Some experimentation gives the idea for the proof. Expansion of the second power

t2S(T ) = S(ST − TS)− (ST − TS)S = S2 − 2STS + TS2

the third power
t3S(T ) = S(S2 − 2STS + TS2)− (S2 − 2STS + TS2)S

= S3T − 3S2TS + 3STS2 − TS3

and the fourth power
t4S(T ) = S(S3T − 3S2TS + 3STS2 − TS3)− (S3T − 3S2TS + 3STS2 − TS3)S

= S4T − 4S3TS + 6S2TS2 − 4STS3 + TS4

suggest that the expansions follow the Binomial Theorem. Verifying this by induction on the power of tS is
routine. This answers the question because, where the index of nilpotency of S is k, in the expansion of t2kS

t2kS (T ) =
∑

0≤i≤2k

(−1)i
(

2k
i

)
SiTS2k−i

for any i at least one of the Si and S2k−i has a power higher than k, and so the term gives the zero matrix.
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5.III.2.37 Use the geometric series: I −Nk+1 = (I −N)(Nk +Nk−1 + · · ·+ I). If Nk+1 is the zero matrix
then we have a right inverse for I −N . It is also a left inverse.

This statement is not ‘only if’ since (
1 0
0 1

)
−
(
−1 0
0 −1

)
is invertible.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Answers for subsection 5.IV.1

5.IV.1.15 Its characteristic polynomial has complex roots.∣∣∣∣∣∣
−x 1 0
0 −x 1
1 0 −x

∣∣∣∣∣∣ = (1− x) · (x− (−1
2

+
√

3
2
i)) · (x− (−1

2
−
√

3
2
i))

As the roots are distinct, the characteristic polynomial equals the minimal polynomial.
5.IV.1.18 The n = 3 case provides a hint. A natural basis for P3 is B = 〈1, x, x2, x3〉. The action of the
transformation is

1 7→ 1 x 7→ x+ 1 x2 7→ x2 + 2x+ 1 x3 7→ x3 + 3x2 + 3x+ 1
and so the representation RepB,B(t) is this upper triangular matrix.

1 1 1 1
0 1 2 3
0 0 1 3
0 0 0 1


Because it is triangular, the fact that the characteristic polynomial is c(x) = (x − 1)4 is clear. For the
minimal polynomial, the candidates are m1(x) = (x− 1),

T − 1I =


0 1 1 1
0 0 2 3
0 0 0 3
0 0 0 0


m2(x) = (x− 1)2,

(T − 1I)2 =


0 0 2 6
0 0 0 6
0 0 0 0
0 0 0 0


m3(x) = (x− 1)3,

(T − 1I)3 =


0 0 0 6
0 0 0 0
0 0 0 0
0 0 0 0


and m4(x) = (x− 1)4. Because m1, m2, and m3 are not right, m4 must be right, as is easily verified.

In the case of a general n, the representation is an upper triangular matrix with ones on the diagonal.
Thus the characteristic polynomial is c(x) = (x − 1)n+1. One way to verify that the minimal polynomial
equals the characteristic polynomial is argue something like this: say that an upper triangular matrix is
0-upper triangular if there are nonzero entries on the diagonal, that it is 1-upper triangular if the diagonal
contains only zeroes and there are nonzero entries just above the diagonal, etc. As the above example
illustrates, an induction argument will show that, where T has only nonnegative entries, T j is j-upper
triangular. That argument is left to the reader.
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5.IV.1.19 The map twice is the same as the map once: π ◦ π = π, that is, π2 = π and so the minimal
polynomial is of degree at most two since m(x) = x2 − x will do. The fact that no linear polynomial will do
follows from applying the maps on the left and right side of c1 · π + c0 · id = z (where z is the zero map) to
these two vectors. 0

0
1

 1
0
0


Thus the minimal polynomial is m.
5.IV.1.20 This is one answer. 0 0 0

1 0 0
0 0 0


5.IV.1.21 The x must be a scalar, not a matrix.
5.IV.1.22 The characteristic polynomial of

T =
(
a b
c d

)
is (a− x)(d− x)− bc = x2 − (a+ d)x+ (ad− bc). Substitute(

a b
c d

)2

− (a+ d)
(
a b
c d

)
+ (ad− bc)

(
1 0
0 1

)
=
(
a2 + bc ab+ bd
ac+ cd bc+ d2

)
−
(
a2 + ad ab+ bd
ac+ cd ad+ d2

)
+
(
ad− bc 0

0 ad− bc

)
and just check each entry sum to see that the result is the zero matrix.
5.IV.1.25 A minimal polynomial must have leading coefficient 1, and so if the minimal polynomial of a
map or matrix were to be a degree zero polynomial then it would be m(x) = 1. But the identity map or
matrix equals the zero map or matrix only on a trivial vector space.

So in the nontrivial case the minimal polynomial must be of degree at least one. A zero map or matrix
has minimal polynomial m(x) = x, and an identity map or matrix has minimal polynomial m(x) = x− 1.
5.IV.1.27 For a diagonal matrix

T =


t1,1 0
0 t2,2

. . .
tn,n


the characteristic polynomial is (t1,1 − x)(t2,2 − x) · · · (tn,n − x). Of course, some of those factors may be
repeated, e.g., the matrix might have t1,1 = t2,2. For instance, the characteristic polynomial of

D =

3 0 0
0 3 0
0 0 1


is (3− x)2(1− x) = −1 · (x− 3)2(x− 1).

To form the minimal polynomial, take the terms x− ti,i, throw out repeats, and multiply them together.
For instance, the minimal polynomial of D is (x− 3)(x− 1). To check this, note first that Theorem 5.IV.1.8,
the Cayley-Hamilton theorem, requires that each linear factor in the characteristic polynomial appears at
least once in the minimal polynomial. One way to check the other direction — that in the case of a diagonal
matrix, each linear factor need appear at most once — is to use a matrix argument. A diagonal matrix,
multiplying from the left, rescales rows by the entry on the diagonal. But in a product (T − t1,1I) · · · , even
without any repeat factors, every row is zero in at least one of the factors.

For instance, in the product

(D − 3I)(D − 1I) = (D − 3I)(D − 1I)I =

0 0 0
0 0 0
0 0 −2

2 0 0
0 2 0
0 0 0

1 0 0
0 1 0
0 0 1
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because the first and second rows of the first matrix D− 3I are zero, the entire product will have a first row
and second row that are zero. And because the third row of the middle matrix D − 1I is zero, the entire
product has a third row of zero.

5.IV.1.29
(a) This is a property of functions in general, not just of linear functions. Suppose that f and g are
one-to-one functions such that f ◦ g is defined. Let f ◦ g(x1) = f ◦ g(x2), so that f(g(x1)) = f(g(x2)).
Because f is one-to-one this implies that g(x1) = g(x2). Because g is also one-to-one, this in turn implies
that x1 = x2. Thus, in summary, f ◦ g(x1) = f ◦ g(x2) implies that x1 = x2 and so f ◦ g is one-to-one.

(b) If the linear map h is not one-to-one then there are unequal vectors ~v1, ~v2 that map to the same value
h(~v1) = h(~v2). Because h is linear, we have ~0 = h(~v1) − h(~v2) = h(~v1 − ~v2) and so ~v1 − ~v2 is a nonzero
vector from the domain that is mapped by h to the zero vector of the codomain (~v1 − ~v2 does not equal
the zero vector of the domain because ~v1 does not equal ~v2).

(c) The minimal polynomial m(t) sends every vector in the domain to zero and so it is not one-to-one
(except in a trivial space, which we ignore). By the first item of this question, since the composition m(t)
is not one-to-one, at least one of the components t− λi is not one-to-one. By the second item, t− λi has
a nontrivial nullspace. Because (t − λi)(~v) = ~0 holds if and only if t(~v) = λi · ~v, the prior sentence gives
that λi is an eigenvalue (recall that the definition of eigenvalue requires that the relationship hold for at
least one nonzero ~v).

5.IV.1.30 This is false. The natural example of a non-diagonalizable transformation works here. Consider
the transformation of C2 represented with respect to the standard basis by this matrix.

N =
(

0 1
0 0

)
The characteristic polynomial is c(x) = x2. Thus the minimal polynomial is either m1(x) = x or m2(x) = x2.
The first is not right since N − 0 · I is not the zero matrix, thus in this example the minimal polynomial
has degree equal to the dimension of the underlying space, and, as mentioned, we know this matrix is not
diagonalizable because it is nilpotent.

5.IV.1.31 Let A and B be similar A = PBP−1. From the facts that

An = (PBP−1)n = (PBP−1)(PBP−1) · · · (PBP−1) = PB(P−1P )B(P−1P ) · · · (P−1P )BP−1 = PBnP−1

and c ·A = c · (PBP−1) = P (c ·B)P−1 follows the required fact that for any polynomial function f we have
f(A) = P f(B)P−1. For instance, if f(x) = x2 + 2x+ 3 then

A2 + 2A+ 3I = (PBP−1)2 + 2 · PBP−1 + 3 · I
= (PBP−1)(PBP−1) + P (2B)P−1 + 3 · PP−1 = P (B2 + 2B + 3I)P−1

shows that f(A) is similar to f(B).
(a) Taking f to be a linear polynomial we have that A − xI is similar to B − xI. Similar matrices have
equal determinants (since |A| = |PBP−1| = |P | · |B| · |P−1| = 1 · |B| · 1 = |B|). Thus the characteristic
polynomials are equal.

(b) As P and P−1 are invertible, f(A) is the zero matrix when, and only when, f(B) is the zero matrix.
(c) They cannot be similar since they don’t have the same characteristic polynomial. The characteristic
polynomial of the first one is x2 − 4x− 3 while the characteristic polynomial of the second is x2 − 5x+ 5.

5.IV.1.32 Suppose that m(x) = xn +mn−1x
n−1 + · · ·+m1x+m0 is minimal for T .

(a) For the ‘if’ argument, because Tn + · · · + m1T + m0I is the zero matrix we have that I = (Tn +
· · · + m1T )/(−m0) = T · (Tn−1 + · · · + m1I)/(−m0) and so the matrix (−1/m0) · (Tn−1 + · · · + m1I)
is the inverse of T . For ‘only if’, suppose that m0 = 0 (we put the n = 1 case aside but it is easy) so
that Tn + · · · + m1T = (Tn−1 + · · · + m1I)T is the zero matrix. Note that Tn−1 + · · · + m1I is not
the zero matrix because the degree of the minimal polynomial is n. If T−1 exists then multiplying both
(Tn−1 + · · ·+m1I)T and the zero matrix from the right by T−1 gives a contradiction.

(b) If T is not invertible then the constant term in its minimal polynomial is zero. Thus,

Tn + · · ·+m1T = (Tn−1 + · · ·+m1I)T = T (Tn−1 + · · ·+m1I)

is the zero matrix.
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Answers for subsection 5.IV.2

5.IV.2.17 We are required to check that(
3 0
1 3

)
= N + 3I = PTP−1 =

(
1/2 1/2
−1/4 1/4

)(
2 −1
1 4

)(
1 −2
1 2

)
That calculation is easy.
5.IV.2.18
(a) The characteristic polynomial is c(x) = (x− 3)2 and the minimal polynomial is the same.
(b) The characteristic polynomial is c(x) = (x+ 1)2. The minimal polynomial is m(x) = x+ 1.
(c) The characteristic polynomial is c(x) = (x+ (1/2))(x− 2)2 and the minimal polynomial is the same.
(d) The characteristic polynomial is c(x) = (x− 3)3 The minimal polynomial is the same.
(e) The characteristic polynomial is c(x) = (x− 3)4. The minimal polynomial is m(x) = (x− 3)2.
(f) The characteristic polynomial is c(x) = (x+ 4)2(x− 4)2 and the minimal polynomial is the same.
(g) The characteristic polynomial is c(x) = (x− 2)2(x− 3)(x− 5) and the minimal polynomial is m(x) =
(x− 2)(x− 3)(x− 5).

(h) The characteristic polynomial is c(x) = (x−2)2(x−3)(x−5) and the minimal polynomial is the same.
5.IV.2.20 For each, because many choices of basis are possible, many other answers are possible. Of
course, the calculation to check if an answer gives that PTP−1 is in Jordan form is the arbiter of what’s
correct.
(a) Here is the arrow diagram.

C3
w.r.t. E3

t−−−−→
T

C3
w.r.t. E3

id
yP id

yP
C3

w.r.t. B
t−−−−→
J

C3
w.r.t. B

The matrix to move from the lower left to the upper left is this.

P−1 =
(
RepE3,B(id)

)−1 = RepB,E3(id) =

 1 −2 0
1 0 1
−2 0 0


The matrix P to move from the upper right to the lower right is the inverse of P−1.

(b) We want this matrix and its inverse.

P−1 =

1 0 3
0 1 4
0 −2 0


(c) The concatenation of these bases for the generalized null spaces will do for the basis for the entire
space.

B−1 = 〈


−1
0
0
1
0

 ,


−1
0
−1
0
1

〉 B3 = 〈


1
1
−1
0
0

 ,


0
0
0
−2
2

 ,


−1
−1
1
2
0

〉
The change of basis matrices are this one and its inverse.

P−1 =


−1 −1 1 0 −1
0 0 1 0 −1
0 −1 −1 0 1
1 0 0 −2 2
0 1 0 2 0
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5.IV.2.23 The restriction of t+ 2 to N∞(t+ 2) can have only the action ~β1 7→ ~0. The restriction of t− 1
to N∞(t− 1) could have any of these three actions on an associated string basis.

~β2 7→ ~β3 7→ ~β4 7→ ~0 ~β2 7→ ~β3 7→ ~0
~β4 7→ ~0

~β2 7→ ~0
~β3 7→ ~0
~β4 7→ ~0

Taken together there are three possible Jordan forms, the one arising from the first action by t − 1 (along
with the only action from t+ 2), the one arising from the second action, and the one arising from the third
action. 

−2 0 0 0
0 1 0 0
0 1 1 0
0 0 1 1



−2 0 0 0
0 1 0 0
0 1 1 0
0 0 0 1



−2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


5.IV.2.25 There are two possible Jordan forms. The action of t+ 1 on a string basis for N∞(t+ 1) must
be ~β1 7→ ~0. There are two actions for t − 2 on a string basis for N∞(t − 2) that are possible with this
characteristic polynomial and minimal polynomial.

~β2 7→ ~β3 7→ ~0
~β4 7→ ~β5 7→ ~0

~β2 7→ ~β3 7→ ~0
~β4 7→ ~0
~β5 7→ ~0

The resulting Jordan form matrics are these.
−1 0 0 0 0
0 2 0 0 0
0 1 2 0 0
0 0 0 2 0
0 0 0 1 2



−1 0 0 0 0
0 2 0 0 0
0 1 2 0 0
0 0 0 2 0
0 0 0 0 2


5.IV.2.29 Its characteristic polynomial is c(x) = x2 + 1 which has complex roots x2 + 1 = (x+ i)(x− i).
Because the roots are distinct, the matrix is diagonalizable and its Jordan form is that diagonal matrix.(

−i 0
0 i

)
To find an associated basis we compute the null spaces.

N (t+ i) = {
(
−iy
y

) ∣∣ y ∈ C} N (t− i) = {
(
iy
y

) ∣∣ y ∈ C}
For instance,

T + i · I =
(
i −1
1 i

)
and so we get a description of the null space of t+ i by solving this linear system.

ix− y = 0
x+ iy = 0

iρ1+ρ2−→ ix− y = 0
0 = 0

(To change the relation ix = y so that the leading variable x is expressed in terms of the free variable y, we
can multiply both sides by −i.)

As a result, one such basis is this.

B = 〈
(
−i
1

)
,

(
i
1

)
〉

5.IV.2.30 We can count the possible classes by counting the possible canonical representatives, that is,
the possible Jordan form matrices. The characteristic polynomial must be either c1(x) = (x+ 3)2(x− 4) or
c2(x) = (x+ 3)(x− 4)2. In the c1 case there are two possible actions of t+ 3 on a string basis for N∞(t+ 3).

~β1 7→ ~β2 7→ ~0 ~β1 7→ ~0
~β2 7→ ~0
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There are two associated Jordan form matrices.−3 0 0
1 −3 0
0 0 4

 −3 0 0
0 −3 0
0 0 4


Similarly there are two Jordan form matrices that could arise out of c2.−3 0 0

0 4 0
0 1 4

 −3 0 0
0 4 0
0 0 4


So in total there are four possible Jordan forms.
5.IV.2.32 One example is the transformation of C that sends x to −x.
5.IV.2.33 Apply Lemma 2.7 twice; the subspace is t− λ1 invariant if and only if it is t invariant, which in
turn holds if and only if it is t− λ2 invariant.
5.IV.2.34 False; these two 4×4 matrices each have c(x) = (x− 3)4 and m(x) = (x− 3)2.

3 0 0 0
1 3 0 0
0 0 3 0
0 0 1 3




3 0 0 0
1 3 0 0
0 0 3 0
0 0 0 3


5.IV.2.35
(a) The characteristic polynomial is this.∣∣∣∣a− x b

c d− x

∣∣∣∣ = (a− x)(d− x)− bc = ad− (a+ d)x+ x2 − bc = x2 − (a+ d)x+ (ad− bc)

Note that the determinant appears as the constant term.
(b) Recall that the characteristic polynomial |T − xI| is invariant under similarity. Use the permutation
expansion formula to show that the trace is the negative of the coefficient of xn−1.

(c) No, there are matrices T and S that are equivalent S = PTQ (for some nonsingular P and Q) but
that have different traces. An easy example is this.

PTQ =
(

2 0
0 1

)(
1 0
0 1

)(
1 0
0 1

)
=
(

2 0
0 1

)
Even easier examples using 1×1 matrices are possible.

(d) Put the matrix in Jordan form. By the first item, the trace is unchanged.
(e) The first part is easy; use the third item. The converse does not hold: this matrix(

1 0
0 −1

)
has a trace of zero but is not nilpotent.

5.IV.2.36 Suppose that BM is a basis for a subspace M of some vector space. Implication one way is
clear; if M is t invariant then in particular, if ~m ∈ BM then t(~m) ∈ M . For the other implication, let
BM = 〈~β1, . . . , ~βq〉 and note that t(~m) = t(m1

~β1 + · · · + mq
~βq) = m1t(~β1) + · · · + mqt(~βq) is in M as any

subspace is closed under linear combinations.
5.IV.2.38 One such ordering is the dictionary ordering. Order by the real component first, then by the
coefficient of i. For instance, 3 + 2i < 4 + 1i but 4 + 1i < 4 + 2i.
5.IV.2.39 The first half is easy—the derivative of any real polynomial is a real polynomial of lower degree.
The answer to the second half is ‘no’; any complement of Pj(R) must include a polynomial of degree j + 1,
and the derivative of that polynomial is in Pj(R).
5.IV.2.40 For the first half, show that each is a subspace and then observe that any polynomial can be
uniquely written as the sum of even-powered and odd-powered terms (the zero polynomial is both). The
answer to the second half is ‘no’: x2 is even while 2x is odd.
5.IV.2.41 Yes. If RepB,B(t) has the given block form, take BM to be the first j vectors of B, where J is
the j×j upper left submatrix. Take BN to be the remaining k vectors in B. Let M and N be the spans
of BM and BN . Clearly M and N are complementary. To see M is invariant (N works the same way),
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represent any ~m ∈ M with respect to B, note the last k components are zeroes, and multiply by the given
block matrix. The final k components of the result are zeroes, so that result is again in M .
5.IV.2.42 Put the matrix in Jordan form. By non-singularity, there are no zero eigenvalues on the diagonal.
Ape this example: 9 0 0

1 9 0
0 0 4

 =

 3 0 0
1/6 3 0
0 0 2

2

to construct a square root. Show that it holds up under similarity: if S2 = T then (PSP−1)(PSP−1) =
PTP−1.
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Answers for Topic: Computing Eigenvalues—the Method of Powers
1
(a) The largest eigenvalue is 4.
(b) The largest eigenvalue is 2.

3
(a) The largest eigenvalue is 3.
(b) The largest eigenvalue is −3.

5 In theory, this method would produce λ2. In practice, however, rounding errors in the computation
introduce components in the direction of ~v1, and so the method will still produce λ1, although it may take
somewhat longer than it would have taken with a more fortunate choice of initial vector.
6 Instead of using ~vk = T~vk−1, use T−1~vk = ~vk−1.
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Answers for Topic: Stable Populations

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Answers for Topic: Linear Recurrences


