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Introduction

Before I describing the contents of this book I have to say a few words about its history.
My original plan was to write a book on the cohomology of arithmetic group and I still have
this intention. Actually there exists a first version of this book in German. They resulted
from a series of lectures I gave on this subject. This subject requires a lot of background
from different aereas of mathematics for intance linear algebraic groups, arithmetic groups,
number theory. For a while it is possible to keep this input on an elementary level because
one can work with special examples like Sls, the action of Sl2(Z) on the upper half plane
is not so difficult to undestand. But then the basic concepts of homological algebra and
sheaf cohomology enter.

Therefore I wrote an exposition of sheaf cohomology and an introduction into homological
algebra. Then it happened that I gave a course on algebraic geometry and again the same
concepts were fundamental. So I used this first part as an introduction into algebraic
geometry and I completed it by writing up some notes for the students which covered
some algebraic geometry.

At a certain point I decided write an introduction into algebraic geometry which also
included the basic facts of sheaf theory and homological algebra. Again after a while I
realized that this volume would cover more than 500 pages and so I decided to split this
volume again in two parts so that my plan is now to deliver three volumes.

The present volume I starts with a very informal introduction into category theory.
It continues with an introduction into homological algebra. In view of the content of
the third volume Chapter II is an introduction into homological algebra based on the
example of cohomology of groups. Chapter III introduces into the theory of sheaves. The
role of sheaves is twofold: They allow to formulate the concepts af manifolds is locally
ringed spaces (Coo-manifolds, complex manifolds, algebraic manifolds ) this is discussed in
IT1.2 and we have the cohomology of sheaves which is covered in Chapter IV. Up to here
the book may serve as an introduction into algebraic topology but with a strong focus
on applications in algebraic geometry and in the cohomology of arithmetic groups. The
discussion of singular homology is rather short.

My original notes where very informal but after a while I felt the desire to give a rather self
contained account and so it happened that the introduction into sheaf cohomology became
rather complete up to a certain level. I included Poincare duality, spectral sequences, the
cup product and Hodge theory. Only in the section on Hodge theory I refer to some
analytical results which are not proved in this book.

The last chapter V we apply sheaf cohomology to the theory of compact Riemann sur-
faces. In the first section of Chapter V we prove the theorem of Riemann-Roch, we show
that Riemann surfaces are smooth projective algebraic curves. We prove Abels theorem
and we discuss the theory of Jacobians over the field C. In the second section we discuss
the theory of line bundles on these Jacobians and more general on abelian varieties.

This last chapter goes beyond homological algebra and algebraic topolgy but it shows the
enormous usefulness of these concepts. The Chapter V can also be seen as a preparation
for the second volume which is an introduction into algebraic geometry.



Chapter 1

Categories, products, projective and inductive limits

I.1. The notion of a category and examples

I want to give a very informal introduction to the theory of categories. The main problem
for a beginner is to get some acquaintance with the language and to get used to the
abstractness of the subject.

A category C is
(i) a collection of objects Ob(C).

We do not insist that this collection is a set. For me this means that we do not have the
notion of equality of two objects. If we write N € Ob(C) then we mean that N is an object
in the category C.

(ii) To any two objects N, M € Ob(C) is attached a set
Homy (N, M)

which is called the set of morphisms between these two objects. Usually we denote a
morphism ¢ € Homp (N, M) by an arrow ¢ : N — M.

(iii) For any three objects N, M, P we have the composition of morphisms
Homg (N, M) x Hom (M, P) — Homg (N, P)

(¢, ) = od.

If a morphism 7 is a composition of ¢ and 1 then we denote this by a commutative diagram
(or commutative triangle)

A% B
n "\ N
P

We require that this composition is associative in the obvious sense (if we have four
objects...). The reader should verify that this associativity can be formulated in terms
of a tetrahedron all of whose for sides are commutative triangles. Here we use that the
morphisms between objects form a set. In a set we know what equaliy between elements
means.



(iv) For any object N € Ob(C) we have a distinguished element Idy € Homg(N, N)
which is an identity on both sides under the composition.

1.1 Examples:
Everybody has seen categories:
a) The category Ens of all sets where the arrows are arbitrary maps.

b) The category Vecty, of vector spaces over a given field k where the sets of morphisms
are the k-linear maps.

c) the category Mod 4 of modules over a ring A where the maps are A-linear maps.

We also have the category of abelian groups Ab, the category Groups of all groups where
the morphisms are the homomorphisms of groups.

d) the category Top of topological spaces where the maps are the continuous maps.

I said in the beginning that we do not have the notion of equality in a category. But we we
can say that two objects N, M € Ob(C) are isomorphic. This means that we can find two
arrows ¢ : N — M and ¢ : M — N such that Idy = ¢ o ¢,Idpy; = ¢p o). But in general it
may be possible to find many such isomorphisms between the objects and hence we have
many choices to identify them. Then it is better to refrain from considering them as equal.
For instance we can consider the category of finite dimensional vector spaces over a field
k. Of course two such vector spaces are isomorphic if they have the same dimension. Since
we may have many of these isomorphisms, we do not know how to identify them and the
notion of equality does not make sense.

But if we consider the category of framed finite dimensional k— vector spaces, i.e. vector
spaces V equipped with a basis which is indexed by the numbers 1,2,...,n = dim(V') and
morphisms which are linear maps which send basis elements to basis elements and which
respect the ordering, then the situation is different. In this case we can say the objects
form a set: If two such objects are isomorphic then the isomorphism is unique.

It is important to accept the following fact: The axioms give us a lot of flexibility, at no
point we require that the elements in Homp (N, M) are actual maps between sets (with
some additional structure). Insofar all the above examples are somewhat misleading.

The simplest example of a situation where the arrows are not maps is the following one:

e) We may start from a an ordered set Z = (I, <) and we consider its elements as the
objects of a category. For any pair 7,5 € I we say that Homy(¢, j) consists of one single
element ¢; ; if + < j and is empty otherwise. The composition is the obvious one obtained
from the transitivity of the order relation.

The reader may say that this is not a good example, because the ¢; ; can be considered
as maps between the two sets {i},{j} but that is the wrong point of view. To make this
clear we can also construct a slightly different category J from our ordered set. We may
define the sets of morphisms as:

Hom (i, j) are finite sequences {ig, i1,...,4,} with i, <i,,1 and i = ig, j = iy,.-
J yJ +

3



We leave it to the reader to verify that we have a composition and an identity. Now we may
have many arrows between two objects {i}, {j} which are sets consisting of one element.

We may also do the following which may look strange at the first glance. If we have a
category C we may revert the arrows and form the so called opposite category C°PP which
has the same objects but where

Homgoee (N, M) = Homg (M, N).

I.2. Functors:

We need the notion of a functor F from one category C to another category C'. A functor
is a rule that transforms an object N € Ob(C) into an object F/(N) € Ob(C’) and for any
two objects N, M € Ob(C) it provides maps

FN,M : HomC(N, M) — HOIIlCl(F(N),F(M))
In other words: For any ¢ : N — M the functor produces an arrow
Fnm(¢) = F(¢) : F(N) = F(M)

and this production should satisfy the obvious consistency conditions namely respect iden-
tity elements and composition. Such an F' together with the collection of map between the
sets of morphisms is called a covariant functor because direction of the arrows is preserved.

We also have the notion of a contravariant functor which turns the arrows backwards or
what amounts to the same: it is a functor from the opposite category C°PP to C'.

Any object X of a category defines functors from this category to the category Ens: We
attach to it the covariant functor

hX(Z) = HomC(X, Z).

If we have two objects Z,Z" and ¢ : Z — Z' then the composition produces hx(¢) :
Hom( (X, Z) — Homp (X, Z') which sends ¢ : X — Z to 1) o 4.

We may also put X into the second free place in the Homp( , ) and consider h%(Z) =
Homg(Z, X). This gives us a contravariant functor.

2.1 Examples:

a) We have a contravariant functor from the category of vector spaces into itself: We send
a vector space V € Ob(Vecty) to its dual space VY = Homg(V, k).

b) A very clever example of a functor is the homology of topological space (see Chap. IV).
To any topological space X (i.e an object in the category Top) we may attach the homology
groups Ho(X,Z),H1(X,Z),...,H;(X,Z),... the index set runs over all positive integers.
These homology groups are abelian groups which depend functorially on the space X: A
continuous map

f: X —Y

4



between spaces induces a homomorphism between their homology groups
fi : Hi(X,Z) — H;(Y,Z) for all indices 4.

This functor transforms a very complicated object - a toplogical space- into a simpler but
not too simple object namely a family of abelian group. This can be used to prove that R"
is not homeomorphic to R™ if n # m. To see this we remove the origin from R™ and from
R™ and we will see that the resulting spaces will have non-isomorphic homology groups
if n # m.(Chap IV, 7.3). On the other hand if we had a homeomorphism between the
two spaces we could arrange that it maps the origin to the origin. Hence we would get
a homeomorphism between the modified spaces which then must induce isomorphisms on
the homology groups and this is impossible.

If I am right these homology groups are historically the first examples where the concept
of functors has been used.

We will see many more interesting functors in the chapter on homological algebra.

I1.3. Products, projective limits and direct limits in a category.

Let us assume that we have a category C and an ordered set Z = (I, <). Furthermore we
assume that to any 7 € I we have attached an object X; € Ob (C) and for any pair 7 < j
of indices we have an arrow

(157;_7' € HomC(XJ,XZ)

We assume that always ¢;; = Idx, and for any triple ¢ < j < j' we have
bij © Pjjr = Pijr.

We have seen in example e) that we may consider our ordered set (I, <) as a category Z.
Then we can summarize our assumptions by saying that ¢ — X; is a contravariant functor
from the category Z to the category C.

The family ({X;}icr, ¢ij) is called a projective or sometimes inverse system of objects in
C.

For any object Z € Ob (C) we define a set

Homg (Z, ({X;}ier, ¢ij))

which consists of families {¢;}{icry of morphisms

such that for any pair ¢« < j the diagram

z % X;
bi ¢ v bij
X;

5



commutes. It is clear that

Z — Homgp (Z, ({ Xitier, 9ij))

is a contravariant functor from C to Ens because a morphism ¢ : Z’ — Z induces a map
Homg (Z, ({ Xi}ier, ¢ij)) — Homp (Z', ({Xi}ier, ¢ij)) which is induced by the composition.

We should think of ({X;}icr, ¢i;) as a huge diagram

—)Xi—)Xj

e
N X, —
/
Xa
/
— Xb \
e

X, — X, —

where we did not draw the compositions because they are redundant and make the picture
complicated. Then an element ¢ € Homp(Z, ({Xi}icr, ¢ij)) is a system of arrows {¢, :
7Z — X, },er into this diagram:

—>Xi—)Xj

¢
/ N\ X, —
s
Z X,
N\ e
— Xb \,
o

X, — X, —

so that every diagram induced by a ¢ < j commutes. Again we suppressed the compositions.
( In the special diagram, are the two arrows from Z to X; and X} arbitrary or is there a
constraint?).

An object P € C together with an element

® € Home (P, ({ X, }Yier, ¢ij))
is called projective limit of the system ({X;}ier, ¢i;)) if doe any Z € Ob(C) the map
Homp(Z,P) — Homp(Z, ({Xi}ier, ¢ij))
(0 — {®; 0 }ien
is a bijection. This is the so called universal property of (P, ®)

6



In terms of our above diagrams this means that a projective limit P is an object that is
squeezed between Z and the diagram i.e. we have given our ® € Home (P, ({X;}icr, ¢ij))
and any ¢ from any Z into the diagram is obtained by first giving an arrow Z — P and
then composing with the universal arrow .

Such a projective limit may not exist in our category. But if it exists then this gives us a
first example of a representable functor:

Starting from the functor Z — Homg(Z, ({Xi}ier, #45)) we find a P such our functor is
equivalent to the functor h% which we attached to P. More precisely we have an universal
element ® € Home (P, ({X;}ier, ¢ij)) such that the equivalence of the functors is given by
the universal property above.

3.1 The Yoneda lemma:

We have a simple categorical argument which is called the Yoneda lemma which shows that
such a (P, ®) is unique up to a canonical isomorphism. If we have a second pair (P’, ®’) then
we get from the universal property that ®' is obtained from a uniquely defined morphism
' : P' - P composed with ® and conversely we get ® from ®' by composing with a
unique v : P — P’. Finally the universal property yields that the composition %’ o 1) and
1 o 1)’ must be the identities.

So we can conclude: If a projective limit exists it is unique up to a canonical isomorphism
and is denoted by
P =lim X;
i€1

This limit is also called the inverse limit because the arrow points backwards. We also
should remember the the arrows in our system {X;} point from objects with a larger
index to objects with smaller index. The universal map u is sometimes suppressed in the
notation.

I will discuss some examples of projective limits which belong to the general education of
anybody working in algebra or topology.

3.2 Examples.

(1) We consider the case where C = Ens and the order relation on [ is trivial, i.e. ¢ <j
if and only if 4 = j. Then we may take the product of these sets P = [[,.; X; and the
®,; : P — X, are the usual set theoretic projections. Then {P, ®;};c; is also the product
in the categorical sense.

(2i) We take the set of positive natural numbers N, and we define as order relation the
divisibility relation, i.e. m < m < n | m. For any m we can define the quotient rings
Z/mZ and if m | m' then we have the projection

bmm 2 L/m'L — L/ mZ,
and @, m/ (T ) = Ty, means that z,, = 2, modm. We can define a ring
Z=A{(....%n,-.Inen, | Tn € Z/nZ, xp = z, modn'if n'|n}

7



where addition and multiplication are taken componentwise, and we have the projection
map

7 9 g, /nZ
which is the projection to the n-th component. Then (Z, ©n)nen+ i the projective limit
in the category of rings.

2ii) We may also look at the ordered set {p™}{n=12,.} where p is a prime. Then we get
the projective system
Z/p"Z — Z]p"Z —

and the projective limit
Zp=A("1Zn,...) | Tm = zpmodp™ if n < m}.

Each component z,, determines completely the x,, with m < n but if we go backwards we
get more and more refined information. We can put a topology onto Z, where a basis of
open sets is given by the elements of the form y + p*Z,.

The ring Z, contains Z as a dense subring, it is a local ring without zero divisors, the
unique maximal ideal is pZ, = (p). Its quotient field is the field Q, of p-adic numbers.

It follows from elementary number theory ( The Chinese remainder theorem) that
2=1]2z,
P
This ring 7. is not integral, it has zero divisors.

(3) It is not too difficult to see that in Ens projective limits exist. One simply forms
the product
11

el

and takes the subset of those elements

which satisfy ¢ij (JZJ) = Tj-
This implies that also in such categories like the category of rings, the category of modules
over a given ring products and projective limits exist.

But in the category of fields we even cannot form the product of two fields, because we
cannot avoid zero divisors.

(4) A very important example of a projective limit is the Galois group of a field .
We assume that we have constructed an algebraic closure k of k, this is a field with the
followind two properties



(i) Every a € k is algebraic over k, i.e. satisfies a nontrivial equation
a” +ad” t+...a,=0

with a; € k.
(ii) The field k is algebraically closed.

(Such a field can always be constructed if we use the axiom of choice).
We have the set of finite normal extensions

kc K Ck,

this is an ordered set by inclusion. For any normal extension k C k1 C k let Gal(ky/k) be
the group of automorphisms of k; whose restriction k£ induces the identity. For a tower of
finite normal extensions

kCcKCL

we have a surjective map
Gal(L/k) — Gal(K/k)

which is simply given by restriction. We can form the projective limit

lim Gal(K/k)

K/k
of this system. It exists by the above remark. The resriction defines an isomorphism

Gal(k/k) — lim Gal(K/k).

K/k

This is clear if we know that every automorphism o : K — K over k can be extended to
an automorphism of the algebraic closure.

(5) It is of course obvious that in the category Ensfin of finite sets we cannot have
infinite products. But if we have a family ({X;}ier, ¢i;)} of finite sets we can form the
product in Ens and we define a topology on this product. This should be the coarsest
topology such that the projections

pi: 1_‘[)(J — X,L
jel

become continuous. (On X; we take the discrete topology, every subset is open). Hence
we get a basis for the topology if we take finite intersections

() »i " ({zi})

1€EE



where F is finite and z; € X; a point.

It is not too difficult to prove that the product endowed with this topology becomes a
compact space. The same holds if we take projective limits of finite sets (groups, rings,.....),
these limits are compact topological spaces (groups, rings, ...). The resulting projective
limits are called profinite sets (groups, rings,.....).

For instance the ring

A

Z =lmZ/mZ

is such a profinite ring. The Galois group Gal(k/k) of a field k is a profinite group. The
topology of this groups is called the Krull topology.

3.3 Representable functors

I want to say a few words about representable functors. We discussed the example of
projective limits. But the notion of representability for a functor is much more general. It
may be applied to any contravariant or covariant functor which takes values in the category
of sets.

If we have a contravariant functor
F:C — Ens

we may ask whether we can find an object X and an element u € F(X) such that for any
Z € Ob(C) we get a bijection
Hom¢ (Z, X)SF(Z)

which is given by the universal rule
¢ = F(¢)(u)?

If such an object X together with u € F'(X) exists then the so-called Yoneda lemma as-
serts that it is unique up to a canonical isomorphism. This means that the data provide
a distinguished isomorphism between two solutions of the problem. (The proof is basi-
cally the same as in the case of projective limits: If we have two such objects X, X' we
have Home (X', X)=F(X'). Now the u' € F(X') provides a morphism in Homg (X', X).
Interchanging the two arguments gives us a morphism in the opposite direction. The
compositions must be the identities.)

3.4. Direct limits:

I begin with the simplest example. If we have a family {X;};cs of sets then we can form
the disjoint union

| ] X

iel

This construction satisfies

Homgns(| | Xi, Z) = [ [ Home (X3, 2).
el i€l

10



Here is becomes clear that the formation of a disjoint union and a product are dual to each
other this means that the arrows are turned backwards. We formulate a principle:

3.4.1. The product is constructed so that we know what the arrows into it are, the disjoint
union so that we know what the arrows from it are.

To describe inductive (or direct) limits we start again from an ordered set (I, <). Now we
consider a covariant functor which attaches to any i an X; € Ob(C) and an element

¢ij € HOIIIC (X,L, X])

whenever ¢ < j. So in contrast to the case of projective limits the arrows point from
objects with a smaller index to objects with a larger index. Such a system (or functor) is
called an inductive system.

This time we look at
Home (({ Xi}ier, ¢i5), Z),

these are now maps from the diagram to objects in C. We say that an object L together
with a map

U € Home (({Xi}ier, ¢i5), L)
is a direct limit of ({Xi}z'EI; ¢zg) if
Home (L, Z) — Home (({Xi}ier, ¢45), Z)

and where the bijection is given by composition

bi = oW
and ¢; € Home (X, Z), ¢; € Home (L, Z). If such a limit exists we write

L =1lim X;.

el

It is clear that in the category Ens direct limits exist: Starting from an inductive system
of sets ({X;}ier, ¢ij) we form the disjoint union | |;.; X;.. We introduce an equivalence
relation ~ on this disjoint union. This equivalence relation will satisfy z; ~ z; whenever
¢ij(z;) = x;. This is not necessarily an equivalence relation, but we simply take the
equivalence relation generated by the relation. Then it is not hard to see that the quotient
of the disjoint union by this relation is a direct limit.

3.5 An ordered set (I, <) is called directed if for any two 4,j € I we can find an element
l € I'such that i < [,j < I. If we have inductive system of sets ({X; }ier, ¢i;) over a directed
set, then the equivalence relation in our construction above can be described directly

Ty~ T dlel,i<l,j <land qbzl(a:z) = ¢jl($j)-
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We may also look at the opposite case where the ordering relation on the set I is trivial,
i.e. we have 7 < j if and only if ¢ = j. If we have an inductive system ({X;}icr, ¢ij) over
such a set then the inductive limit should be called a disjoint union.

More examples of such direct limits will be constructed in Chapter III where we shall see
that stalks of sheaves are direct limits.

Generally we had projective limits as subsets of products, direct limits will be quotients
of disjoint unions.

By the way in some sense this discussion of direct limits is superfluous because if we pass
to the opposite category the direct limits become projective limits.

3.6 Exercise:

1) Do we have disjoint unions in the category Vecty? If so how does the disjoint union of two vector
spaces look like.

2) We may ask the same question for the category Rings of rings, for the category of commutative
rings and for the category of groups.

2b) In any category we can consider diagrams of the form

B
/

N\

A

C

we can interprete this as an inductive system and we can ask whether the limit exists. If our category
is the category of groups then the limit does exist and it is given by the almaganated product.

3) Let me assume we have an index set (I, <) and a projective system ({X,}icr, ¢ij) on it. Let us
assume that the indexing set contains a maximal element m, i.e. 'm > i for all elements i € I. |
claim that the projective limit exists. How does it look like? Can you formulate an analogous assertion
for injective limits.

4) Let us assume that we have a directed set (I, <) We assume that we have inductive system of
rings { R;};c1. Does the direct limit exist? Hint: Forget the ring structure and consider the R; as
sets. Form the limit in the category of sets. Now you can reintroduce the ring structure on this limit
by observing that any pair (or even finite set ) of elements can be represented by elements in a suitable
member R; of the family.

5) We have seen that we may interpret an ordered set (A, <) as a category. What does it mean for
such a category that the product of two elements exists?

12



Chapter 11
Basic Concepts of Homological Algebra

In this chapter I want to explain the fundamental concepts of homological algebra. I will
do this for the specific case group (co-) homology.

This example will become important to us in the third volume of this book where we
discuss the cohomology of arithmetic groups. But since in this particular case the basic
principles of homological become very clear I have chosen this example as introduction
into the subject. The cohomology of sheaves, which can serve as a second example, will
be discussed in Chapter IV.

II.1. The category of I'-modules:

In the following I' will always be a group. A I'-module is an abelian group M together
with an action of I': This means we have a map I' x M — M, (v, m) — ym, which satisfies
1Irm = m, (y1v2)m = y1(y2m) and y(m1 + mg) = ymy + yma. These I'-modules are the
objects of the category of I-modules: If we write M € Ob(Modr), then this means that
M is a I'-module.

If My, M> € Ob(Modr), then we may consider the set

HOIIlModF (Ml, MQ) = HOHII‘(Ml, Mg) =

¢ homomorphism of abelian groups
{(p M 1 — M2

p(ym1) = yp(my) for all v, m,

On Homp (M, M5) we have a natural structure of an abelian group: For any two elements
¢, ¢ € Homp (M, M) we put (¢ +9)(m1) = @(m1) + 9(m1).

Here we have another typical example of a category: We have a collection of objects —
this collection is not a set in general — and for any two such objects we have a set of
morphisms. (In our special case these sets of morphisms are abelian groups.) A certain
bunch of axioms has to be satisfied: We have the identity Idys € Homr (M, M), we have a
composition Homp (M7, M) x Homp(Ms, M3) — Homp (M7, M3) and Idj, is neutral with
respect to this composition. (See the introduction in Chap. I) In our special case this
composition is bilinear.

The special category Modr has some extra features: Given ¢ : M — N we can form the
kernel and the image

ker(p) = {m | p(m) = 0},Im(¢) = {p(m) | m € M},

clearly these are also I'-modules.

If N C M is a I'-submodule of M, then we may form the quotient module
M/N = MmodN,

13



this is again a ['-module. Finally, we have direct sums and direct products

@ M, = {( ..my .. -)iGI ‘ m; € Mi, almost all m; = 0}
el
i€l

where the addition and the action of I' are defined componentwise.

All these properties of imply that Modr is an abelian category. The notion of abelian
categories can be axiomatized (see [Go], 1.8.).

1.1 Complexes
If we have a sequence of maps between I'-modules

dy d,
— M, 5 M, = M,_, —

then this is called a (homological) complex if d,, o d,,;1 = 0 for all indices v, i.e. if always
Im(d, 1) C ker(d,).

The maps d, are the differentials of the complex. The complex is called exact if we have
Im(d,+1) = ker(d,) for all indices v.

We define the homology groups of such a complex as

H, (M*) = ker(d, : M, - M, _1)
v ~ Im(dyyr: My — M)

The complex is exact if and only if its homology groups are trivial.

We can also consider complexes where the differentials raise the index by one then we write
the indices v as superscripts

_ du—l av
— MV MY = MV —,

then this is a cohomological complex.

Very often we abbreviate and simply write M* or (M*,d) for a (co)homological complex.
We define the cohomology groups of a cohomological complex by

ker(M¥ 255 Mv+1)
im(Mv—1 — MY’

HY(M*) =

Again we abbreviate H*(M*) and this is the graded direct sum over all cohomology groups.

The elements in the kernel Z¥ (M) = ker(M" M v+1) are called the cocycles in degree
v and the elements in BY(M) = im(MY~! — MY) are the coboundaries. Hence the
cohomology is the group of cocycles modulo the coboundaries.

14



Actually we may also view these cohomology groups as a complex, the differentials are
zero. Again is clear that a complex is exact, if and only if all its cohomology groups
vanish.

A map between two complexes
@*: M*— N°*

is a sequence of maps ¢¥ : MY — N which commutes with the differentials. It is clear that
such a map induces a map between the cohomology groups H*(¢*) : H*(M*) — H*(N"*).

A short exact sequence is an exact complex

0— M M2 M'—0,
i.e. ¢ is injective, Im(7) = ker(p) and p is surjective, i.e. M" is isomorphic to the quotient
of M by the submodule i(M') ~ M’.

I1.2. More Functors

As T explained already in the first chapter a functor is a rule that produces in a functorial
way an object in a target category from an object in the source category. If for instance
the source category is Modr and the target category is the category Ab of abelian groups,
then a functor

F :Modr — Ab

associates to any I'-module M € Ob(Modr) an abelian group F'(M). Functoriality means
that for any M7, My € Ob(Modr) we have a map

F’]\Jl’]\/[2 : HOIH]\/[OdF (Ml, Mg) — HOIIlAb(F(Ml), F(M2))

which sends Id s to Id p(ar) and compositions into compositions. If we require that this map
is a homomorphism Fyz, ar, between the abelian groups, then this functor is an additive
functor between abelian categories.

There are two very simple functors between the category Modr and the category Ab of

the abelian group
Forget : Modr — Ab

Trivial : Ab — Modr

where the first factor “forgets” the I'-module structure on the abelian group M and the
second introduces the trivial I'-action on an abelian group A, i.e. every element v € T’
induces the identity on A.

These two functors are exact functors, this means that they transform exact sequences into
exact sequences. Homological algebra owes its existence to the fact that many important
additive functors are not exact.

Here comes the first example. If M is a T-module, we define the module MT = {m | ym =
m for all v € '} of invariants. It is an abelian group and hence we defined a functor

Invariants : Modr — Ab
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from the category of I'-modules to the category of abelian groups. If A is a trivial I'-module,
then
Homppoa, (4, M) = Homayp (4, M),

and this property also characterizes the submodule MT in M.

The module Mr of coinvariants is defined as a quotient
M — Mr
where Mt is a trivial I'-module and for any I'-module with trivial action by I' we have
Hommoa, (M, A) = Homayp (Mr, A).

To give a different description of M we recall the notion of the group ring R = Z[I'] of
our group I'. It consists of all finite linear combinations

Z Ty Y ny € Z, almost all n, =0,
v€er

where we add componentwise (i.e. the additive group is the free abelian group over the
set), and where we multiply

This group ring contains the so called augmentation ideal It which is the two sided ideal

Iy = {Znn,’y \ vazo}.

It is clear that this ideal is generated by elements of the form 1 — « (as Z-module). For
any I''module M the module ItM C M is a I'-submodule, and it is also an easy exercise
that

Mr = M/IrM = Hy(T', M)

has the desired property the module of coinvariants should have.
The following fact is the starting point of homological algebra:
In In general the functors M — MY and M — Mty are not exact.

To be more precise: If we start from a short exact sequence
0— M —M-—M'—0
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of I'-modules, then the sequence
0— (M) — MT — (M™T

is exact, but the last arrow is not surjective (in general).

A similar assertion holds for Mp. We only get an exact sequence
M[ — My — M{ — 0.

We say that H? is a left exact functor and Hj is a right ezact functor.

The goal is to construct the so called derived functors which measure the deviation from
exactness. We motivate this by an example:

2.1 The first cohomology group

I want to explain why the functor M — M7 is not exact and to show how this more or
less automatically leads to the definition of the derived functor.

Let us start from an exact sequence of I'-modules
0—M —M-—M'—0.

We get an exact sequence of abelian groups
0 — (M — MY — (M")F.

We pick an element m” € (M")', and we want to understand, why this is not necessarily
in the image of M. Of course we can find an element m € M which maps to m”. But
there is no reason why this element should be invariant under I', the only thing we know
is that for all v € T the difference

m., =m —~ym e M.

We get a map
r — M

’ b

Yo my

and this map satisfies
/ Y
m.,, + V1M, = My -

A map I' - M’ satisfying this relation is called a 1-cocycle. On the set of all 1-cocycles
we get a structure of an abelian group if we add the values and we denote by

ZHr, M),

the abelian group of 1-cocycles. Our element m is in MT if and only if the cocycle m’7 =
m —ym = 0.
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We notice that the choice of m is not unique, we may change m — m +m’ with m’ € M'.
This is the only possible modification. Then we also modify the cocycle defined by m into

v = my +m' —ym/.

This leads to the definition of the group BY(T', M’) of 1-coboundaries. 1t is the group of
those cocycles v — b, for which we can find a m’ € M’ such that b, = m’ —ym’ for all ~.

Hence we see: The element m” € (M")' defines an element in Z'(I', M') which is well
defined up to a coboundary. We introduce the first cohomology group (provisorial defini-
tion)

HY(',M') = Z(T,M")/BY(T', M"),

and we have seen that any m” € (M")' defines a class
s(m") e HY(T,M")

which is zero if and only if m” is in the image of MY — (M")T.
It is clear that ¢ is a homomorphism, and that we have extended our exact sequence one
step further
0 — (M) — MT —s (M")" -2 (T, M").
The next thing that can be checked easily is the functoriality of M’ — H(T', M"). If we

have a ¢ € Hompoa, (M’, N) then this induces a map ) : HY(T', M') — H*(T', N), and
our above considerations also show that we get an even longer exact sequence

0— (M")F = MT = (M"" > BV (T, M) —» HYT, M) — H'(T, M"),

the verification of exactness is left to the reader. But at the end it stops again; the last
map needs not to be surjective.

We also see that this longer exact sequence depends functorially on the short exact sequence
we started from. If we have a map between two exact sequences of ['-modules

0O — M — M — M' — 0

\ \ \

0O — N — N — N' — 0

then this induces a map between the two resulting exact sequences (in the sense of maps
between complexes, i.e. all diagrams commute).

In principle we can try to extend our sequence beyond H'(I', M"). We pick an element
in HY(I', M") and try to lift it to an element in H*(T', M), and then we will see what the
obstruction to this lifting will be. This will suggest a definition of a cohomology group
H?(I',M'). But actually there is a much more elegant way to define the cohomology
functor which is also universal in the sense that it applies to many other cases. This will
be done in section II.3.
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2.2 At this point we introduce some new notation, instead of M' we also write H°(T', M)
and Hy(I', M) will be the same as M. This is a very suggestive notation if we use it for
our exact sequence above.

Of course all this does not yet prove that M — M7 is not exact in general. For instance,
it could be that H*(I', M) = 0 for all T and all M, or it could also be that H'(I', M') —
H'(I', M) is always injective. We will show in exercise 2.6. that for I # {1} these functors
are not trivial.

2.3 Exercise:

If A is a trivial I'-module, then 3
HY (T, A) = Hom(T, A)

where the last Hom is the Hom in the category of groups.

This shows that for suitable A the module H(T', A) # 0 if " is not equal to its commutator
group [I', T].

Let us now assume that IV C T" is a subgroup. We have the important functor from the
category of I''-modules to the category of I'-modules which is called induction. For any
I"-module Y we define an abelian group

IndL, Y ={f:T =Y | f(y'7) =~'f(y) for all ' € TV, v € T},
and we define the action of I' on Indf, Y by

(vf)(71) = fF(m)-

This is the induced I'-module from the I'-module Y. It is very easy to check that for any
I'-module X we have an isomorphism (Frobenius reciprocity )

Homp (X, Indf, Y)— Homp: (X,Y)

which is given by
o — {z— p(z)(1)}.

2.4 Exercise:

We have a canonical (this means functorial in Y ) isomorphism
AYT,Indp Y)—=HY(I,Y).

This isomorphism is obtained from the following map on the level of cocycles: For any 1-cocycle
{y+— f,} € ZY(T,Ind}. Y)

we define the 1-cocycle B
(Y +— fy}eZ!(T,Y)
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by ?'7’ = fy (1). Show that this map sends coboundaries into coboundaries and induces an isomor-
phism on cohomology.

Hint: We have to combine several little observations:

i) We consider an 1-cocycle
{y— f,} € Z' (0, Ind} Y),

and we take into account that f. is actually a Y -valued function on I'. Then the cocycle relation
reads

f’71’72 (‘T) = f’Y1 (.’17) + (’Yf’m)(x) = f’Yl (.’17) + f’Y2 ("B’Yl)‘

If we evaluate at * = 1 we get

f"r2 (’Yl) = f'Yl'Y2(1) - f’)’l (1)’

and this relation tells us that we only need to know the values f7(1). Then the cocycle relation gives
us the values of the f., at any v € I

ii) If we have any function

h : T — Y
h v — hy,
we may put (think of h~ as being f(1))
Hy(z) = hay — ha,
then H., is a function on I' with values in Y. If v — h., satisfies
hw’w'y - h'y’x - ’Yl(hm'y - hx);
then H., € Indf, Y and v — H., it is a I-cocycle.
iii) If we have a I-cocycle v — f in Z*(T, IndL, Y), then
v — fy (1) v eTr’
is a one-cocycle in Z1(I',Y). Hence we have a map
ZY(,IndL, V) — ZY(I,Y),

and it is clear that this map sends coboundaries into coboundaries.
iv) If we have a I-cocycle
, _
’Y f'y’

in Z'(I'",Y'), then we want to construct a I-cocycle v — f, so that ?7, = fy(1). To do this
we choose a system -y; of representatives of I'\I" where we choose the identity for the class I"'. For
v =7"vi we put

(1) = fy (1)
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and apply (ii). The cocycle relation for y' — f.:(1) provides the decisive relation in (ii). This proves
the surjectivity of our map between I-cocycles in (iii).

v) Finally, we have to check that v — f. is a boundary if v — f~' is a boundary. We can write
fy(D)=y—7"y
withy € Y and for all v € T".
If we want to write v — f., as a boundary, i.e.
fy=c—nc,

then this reads f(x) = c(x) — c(x), and evaluation at 1 yields

f(1) = ¢(1) = ¢(7).
Hence we choose ¢(1) = y and put
c(x) =y — f(1)

and verify that this c bounds f. .

2.5 Exercise:

Use the previous exercise and prove that for any group I' # {1} there is a I'-modules M s.t.

HY(T, M) #0.

2.6 Exercise:

The group ring Z[T'] is also a I'-module by multiplication from the left. We get an exact sequence of
I'-modules
0— Ip — Z[I'l—Z —0.

If we apply the functor Hy to this sequence, we find
IF/IFIF — Z[F]/Ip - Z—0

|
Z ;

and hence the sequence is exact if and only if It = It 1.

It is not difficult to prove that
I — IF/]I‘II"

y — l-v
induces an isomorphism

/[T, T =Tap—Ir/IrIp
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([T, T] is the commutator subgroup).

I1.3. The derived functors

After these motivating considerations we explain the fundamental problem to be solved in
homological algebra. We have the functor

M — M" = HY(T, M)

which is only left exact. We want to construct the right derived functor: This is a collection
of functors 4
M — H'(T',M) 1=0,1,...,

such that for any short exact sequence
0— M —M-—M'—0

we get a long exact sequence

0 — H(T, M’ — H°(T, M) — H*(T',M") % HY(T, M) —
— HY(T, M) — HYT,M") -2 H2(, M) — . ..
which depends functorically on the exact sequence in the sense explained before.

Finally we want this functor to be minimal (or universal) in the following sense.

If we have any other collection of functors
M — H T, M) i=0,1,...

with Ho(I', M) = HO(', M), and the same properties as above, then we find a natural
transformation 4 o

H'(T,M) — H' (', M),
which is compatible with the connecting homomorphisms.

We want to indicate the main ideas how to construct these derived functors. The verifica-
tion that the new construction of the H' gives the same result as our previous H! will be
done in the exercises 4.4.

I want to explain a very simple principle that governs to the construction of these functors.

A simple observation: If we have an exact sequence of I'-modules

(3

0— M M- M'—o0,
we say that the sequence splits if one of the following assertions holds:
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(i) We have a section to p. This is a I''modules homomorphism
s:M"— M

for which po s =idps.
(ii) The modules M splits, i.e. we have a I'-submodules M" such that

MeM' = M
(m!,m")  — i(m') +m".
(iii) We have a I''modules homomorphism
j:M — M

s.t. ] 01 = ldMl

Now our observation is that our functors H® H, will transform split exact sequences into
split exact sequences, in other words if we restrict them to split exact sequences then they

are still exact.

3.1 The simple principle:

It is based on the assumption that we have already constructed a derived functor {M —
H*(T,M)}. Let us assume we have a class of C of I'-modules which are acyclic for this
functor, this means that for any X € C we have H*(I', X) = 0 for all i > 0.

An acyclic resolution of M € Ob(Modr) by objects in C is an exact sequence of I'-modules

0—M-—X° - X' — X% —

where the XV € C.

Lemma 3.2.: If C is a class of acyclic objects for the derived functor {M — H*(T', M)},

and if
0—M—X° — X' —

18 an acyclic resolution of M by objects in C. Then we have an isomorphism

HY(T, M) ~ H{((X*)D).

Proof: By induction on ¢. For 7+ = 0 we get the exact sequence
0— M' — (X9 — (xH' —

and
M' = ker(XOT — (XHY) = HO((X9)D).
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Now we cut the resolution into pieces. We write
0—M-—X°— XM — 0,
and we have a resolution by objects in C
0 —X°/M —Y° —vy! —

where Y?~1 = X7V,

The first sequence yields a long exact sequence which is interrupted by many zeroes which
come from the H*-acyclicity of the X".

0 — M'— X9 — XM — HYT,M)—0

— HY (T, X°/M) = s H?(T,M) —0

0 — H~YI,X°/M) - —  H{T,M) — 0.

We check the case ¢ = 1. Here we find
HY(T, M) ~ (X°/M)"/(X°)T,

but X°/M C X! is the kernel of X! — X2 and (X°/M)' = ker((X!)F — (X?)!), and

hence

ker((Xl)F — (XQ)F)

im((X9)F — (X1)F)

Hence we proved our assertion for ¢ = 1 and then induction is clear.

HYT,M) ~ = H'((X*)).

We want to apply this principle to construct the derived functors. But in some sense we
are trapped: If we have not yet defined the derived functor, how can we know that certain
objects are acyclic? This difficulty is resolved by the notion of injective modules.
A T-module 7 is called injective if it has the following property: Whenever we have a
diagram of I'-modules

A—*5 B

|v

VA

where ker(¢) C ker(¢), then we can extend the diagram to a commutative diagram

A % B
e v
A
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Our assumption on ¢, is valid if ¢ is injective. If we want to check the injectivity of a
module it clearly suffices to check diagrams with ¢ = 0.

Injective modules have a very important property: Whenever we have a short exact se-
quence
0—7 —M—M —0,

and the module 7 is injective then the sequence splits. We simply apply the defining
property of injective modules to
0 —7Z —M

|

T

where the vertical arrow is the identity. Our simple observation above implies that we get
exact sequences

0— H°I,T) — H°(I,M) — H°(T,M') — 0.
0 — Ho(I',Z) — H°(T', M) — H°(T', M) — 0.

whenever the module Z on the left is injective. Since the require that the cohomology
modules should measure the deviation from exactness and that they should be minimal
in this respect, we expect them to vanish for injective modules, in other words we expect
that injecive modules should be acyclic. In view of our simple principle above we try to
define them by injective resolutions.

The following lemma is the starting point:

Lemma 3.3.: Fvery I'-modules M can be embedded into an injective module T.

Sketch of the proof: First we consider the category Ab of abelian groups. This is the
case I' = {Id}. One proves that the abelian group Q/Z is injective (this requires Zorn’s
lemma), then we see that every abelian group A can be embedded into a suitable product

A— HQ/Z.

If we have an I'-module M we forget the I'-module structure and embed it into an injective
abelian group, i.e. M — J. Now we get Indlfl} M — Indlfl} J, and the module Indlfl} J
is injective in the category of I'-modules. This follows from Frobenius reciprocity. Then
we have achieved our goal since we have

M — Indjjy M — Ind}yy T = 1.

Now the actual construction of the cohomology functor (the universal derived functor)
becomes clear. We noticed that injective modules should be acyclic, i.e. H"(I',Z) = 0 for
r > 1. But our earlier lemmas tell us that we can find an injective resolution of M, i.e.

0— M —1° - 1" —,

25



in short 0 = M — I*. Then our lemma tells us

_ ker((Z")" — (2*H)")

H, M) = () = o 2

and in some sense that has to be explained and justified. We take this as definition of the
cohomology.

Of course we have to investigate how these cohomology groups depend on the injective
resolution and we have to show functoriality.

3.4 Functoriality

If we have two I'-modules M, N and a ¢ € Hompmoa, (M, N), and if in additon we have
chosen two injective resolutions 0 - M — I* and 0 -+ N — J*, then I claim that we can
extend the map ¢ to a map between the complexes

0 - M 5 1° 5 1
le l l
0 - N L g% 5 g7 S

The existence of this extension is proved by induction on the degree. To get the first arrow
©° : 7% — 7° we apply the defining property of injective modules to get the arrow ¢° in
the diagram

M 5 1°
jo wl ¢
70
Then we construct ¢! by the same principle and it is quite clear that at any step the
existence of the vertical arrow follows directly from the defining property of injective

modules (we only need that the J" are injective). This extension ¢* : Z* — J° induces
of course a map between the cohomology group

H*(¢*) : H*((Z*)") — H*((T")").

Now we have to worry what happens if we take two different extensions ¢*, ¢* of our map
. I want to show that these two extensions induce the same map on the cohomology.
To see this we can easily reduce to the case where ¢ = 0, and where ¢* is an arbitrary
extension of ¢ = 0. Then I have to show that ¢* induces the zero map on the cohomology.

I prove this by showing that under this assumption the map
p* It = 7J°

26



is actually homotopic to zero. This means that we can construct maps h” : T8 — J**
(h® = 0) such that
g01/:dohl/_l_hy—l-lod

To construct h! we observe that our assumption ¢ = 0 implies that the kernel of Z° — 7"
is contained in the kernel of the vertical arrow Z° — J°. Since J° is injective we can
construct h' : T — J° which produces a commutative diagram

v 5 7t
N
jo

Now we modify the given vertical arrow Z* — J* by subtracting the composition of h' and
the horizontal arrow Z° — J'. To this modified arrow we can apply the previous argument
and it becomes clear how to construct these h” by induction. Again the existence of such
an h” in any degree follows from the injectivity of the J“~! and the construction of the
previous ones. But if we now apply our functor (invariants under I') we get

0o —- T - @HY = T -
N A N S
0 - (jO)F - (Jl)l" - (jQ)I‘ -

r r
. 7h-

(We should have written ¢ to be absolutely correct.)

But now it is clear that ¢* induces zero in the cohomology. If we have a cycle ¢, € (Z")!
representing a given cohomology class then ¢”(c,) = d o h(c,) and hence it represents the
trivial class.

If we apply this to a module M, the identity and two different resolutions, then we find
that we get a unique isomorphism between the resulting cohomology groups. In this sense
the cohomology groups do not depend on the chosen resolution.

We also get functoriality of the cohomology groups by the same argument.

3.5 Other resolutions

If we start from an arbitrary resolution of our module M say 0 — X° — X! — ... and if
we also choose an injective resolution as above then our considerations in 1.3.4. show that
we can construct a morphism of complexes of I'-modules

0 - M 5 X 5 X' o
Ly l l
0 > N L g7° 5 g S
because we only need the injectivity of the J°. Therefore we get a canonical homomor-
phism
H (X)) = H*((J*)") = H (T, M)
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Our starting principle in 3.1. says that this homomorphism will be an isomorphism if the
modules X” are acyclic.

Now we want to show that we get a long exact sequence in the derived functors if we start
from a short exact sequence

0—M —M-—M'—0.

3.6 Injective resolutions of short exact sequences:

We write our short exact sequence vertically and choose injective resolutions of the two
modules M’, M"" which we write horizontically. Imagine we have done this. Then we can
write the direct sum in the middle and we get short vertical exact sequences. It will look
like this:

0 0 0
i ) \J

0 - M = 7° - 1" —
\J ) \J

0 - M o1 T'eo1"
i i i

0 - M' — 7" - " S
i ) \J
0 0 0

The horizontal arrows in the middle are still missing. Now the injectivity of Z'° allows an
arrow from M to Z'° which yields a commutative diagram

0
!

0 — M — I°
S
M

This and the map from M” — Z"° gives us an injection
0—M-—TI%a71"°,

which we can fill into the diagram above.
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This yields a diagram

0 0 0
1 \J \:

0 - M — I° - U — 0
1 \J 1

0 - M — IeI" — V — 0
1 \J 1

0o - M' — I - W = 0
! \J l
0 0 0

We have U — I'' and W < I""! and again we construct as before an arrow
V SN _lll @ Illl

This goes on forever and we get a resolution of the exact sequence 3.6.1.

Now one has to be aware that in general the homomorphisms of
Ily oy Illz/ N Ily-l-l oy IIIV—I—l

are not the direct sum of the two homomorphisms which are already given by the resolution
of the extreme modules. The construction gives that we have to add a homomorphism

\I’ . I/Iu — IIV+1

to this direct sum.

Is we apply the functor H°(T') to these complexes. We get the diagram

0 0 0
} ) \J
0 — ()T — (z"Hr —
} .
0 — TeI" — (Tler™) —
} \J
0 — ("’ — (z""hHr —
} )
0 0
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where the horizontal complexes compute the cohomology of M', M and M" respectively
and where the vertical sequences are exact. Now it is standard in homological algebra that
this leads to a long exact sequence of the cohomology groups.

We constructed a derived functor using these injective resolutions. It is universal as one
sees easily from the requirement that it vanished on injective modules.

Essentially the same strategy works for the left derived functor
M — H;(I', M) i=1,...,

where Ho(I', M) = Myp. The defining property of injective modules implied that it is
always a direct summand if it sits in a bigger module. The dual notion is the notion of
projective modules.

A T-modules P is called projective if for any diagram

M 2 N — 0

11
P

where the top sequence is exact we can find a map 5 : P — M so that poj =1, i.e. we find

M N — 0
I\ 1
P

It is easily seen that free I'-modules, i.e.

Dzir]

iel
are projective. Hence we find

i) Every I'-modules M has a projective resolution

— P — P — FPy— M —.

ii) Every projective I'-module P which is a quotient of a I'-module X is a direct summand,
i.e. the sequence
0—Y —-X—P—0

splits.
The assertion ii) implies that the sequence

0—)YF—>XF—>PF—>0
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is still exact. Hence we should require

H;,(I',P)=0 for t=1,....

Now we may apply the same argument. For a module we choose a projective resolution
P,—M-—70
and put
H,(T, M) = H,((P.)r).

The same arguments as before show that this gives a universal left derived functor for the
functor
M — Mp.

All arrows are reversed.

I1.4 The functors Ext and Tor:

We may look at our previous constructions from a slightly more general point of view. The
category of I'-modules is the same as the category of R = Z[[']-modules where R is the
group ring. We now consider the category Modpg of modules over an arbitrary ring R.

To any pair of modules M, N € Ob(Modpg) we can introduce the abelian group

homomorphism of abelian groups
HomR(N,M):{go:N—>M<p P 8 p}

o(rm) = ro(m) for all r,m,

and if we fix N then this becomes a functor from the category Modpg to the category of
abelian groups.

But we may also fix M and vary N, then our functor becomes a contravariant functor:

A R-module homomorphism
v N1 — N2

induces a map
Hompg (N2, M) — Hompg (N1, M)

by composition. (So far all our functors were covariant.)

It is quite clear that the covariant functor

M — Hompg (N, M)
is left exact and that the contravariant functor

N — Hompg (N, M)
is right exact.
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For a given N we may try to construct the right derived functor to M — Hompg(N, M)
and for given M we may try to construct a left derived functor to the functor N —
Hompg(N, M). The same principles as before tell us that the right derived functor should
be zero on injective modules (same definition), and the left derived functor should be trivial
on projective modules. Hence we choose an injective resolution of

0—M —1I°
and define the right derived functor by
RExtR(N,M) = H*(Hompg(N, I*)).
I say againwhat this means: For a fixed R-module N and any exact sequence of R modules
00— M — M — M'"—0,
we get a long exact sequence
0 — Homg(N, M') — Homg(N, M) — Hompg (N, M") — RExth(N, M') — RExtR(N, M) -

But by construction these groups RExt% (N, M) are also functorial in N if we fix M, the
functors N — Ext*(NN, M) are contravariant.

Analogously we choose a projective resolution
P, —N—0

and define
LExty(N,M) = Hy(Hompg(P,, M)).

Our previous arguments show that we get a left derived functor which has all functorial
properties.

It is clear that the functors
M — Hompg (P, M) , resp. N — Hompg(N,I)
are exact if P is projective (resp. I )is injective. Hence we have in this case
RExth(P,M) =0, LExty(N,I).
We will indicate briefly that this implies that we have a functorial isomorphism
LExth (N, M) ~ RExty (N, M).
To see this we choose two resolutions:
0O—M—1I* , P,— N—0,
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and we form the double complex
Homgr(P, > N - 0,0 - M — I*)

which in full looks like

T T
— Hompg(P,M) — Hompg(P,I°) — Homg(P,I') —
T T T
0 — Homg(Py,M) — Homg(Py,I°) — Hompg(P,I') —
T T T
0 — Homg(N,M) — Hompg(N,I°) — Homg(N,I') —

S —
S —
S —

Now the first vertical complex computes the L Exty (P, M) and the horizontal complex at
the bottom computes RExty(P, M). All other vertical or horizontal complexes are exact.
Then a simple diagram chase shows that the cohomology of the bottom horizontal complex
and the first vertical complex are isomorphic.

We summarize

4.1 We have defined a functor in two variables Exty (N, M) which can be be computed
from an an injective resolution of M or a projective resolution of N.

The higher Ext%(N , M) for i > 0 vanish if M is injective or if N is projective.

4.2 The derived functor for the tensor product

Another functor in two variables is given by the tensor product. Here we have to be a
little bit carefull in case that our ring R is not commutative. We consider the categories
Mod i, Mod®r of left and right R-modules. The tensor product of a right R-module N
and a left R-module M is an abelian group N ® g M together with a map

U:NxM-—N®gM
U:(n,m)—n®@m

which has the following properties
(i) It is a biadditive, i.e.

U(ng+ne,m)=(n1+n2)@m=n1@m-+ny@m
U(n+mp+me)=m® (my+mz) =nQ®@ma+nQ@my

(ii) For all r € R,n € N,m € M we have
nrm=nQQrm.
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(This is the moment where we need that N is a right R-module and M is a left R-module).

(iii) This map is universal: If we have another
UV :NxM-—X

with an abelian group X which satisfies (i) and (ii) then we can find a ¢ : N@gp M — X
such that ¥/ = po U.

It is easy to construct N ® p M, we form the free abelian group which is generated by pairs
(n,m) € N x M and divide by the subgroup generated by elements of the form

(n1 4+ n2,m) — (n1,m) — (na,m)

(n,my + msg) — (n,my) — (n, m2)

and
(nr,m) — (n,rm).

If our ring R is commutative then we can give N @ g M the structure of an R-module: We
simply define
r(n®@m) =nr@m=mnQ rm.

In this case of a commutative ring R we can assume that both variables N, M are left
R-modules.

It is a right exact functor but in general it is not exact. This means that for a short exact
sequence 0 — M’ — M — M" — 0 the sequence

N@rM - NprM - NrM" =0

will be exact but the first arrow on the left will not be injective in general. We leave it as
an exercise to the reader to verify the right exactness. In the section on flat morphisms
of schemes we will discuss some examples which explain these phenomena (AS. xxx). But
if the module M" is projective then the sequence stays exact if we tensorize by any N
because the sequence can be split.

This allows us to construct the derived functor. We work with a projective resolution
P, — M — 0,

to define
RTor®(N, M) = H,(N ®z P,).

This is a universal left derived functor of our functor above, it clear that this is a functor
in the two variables N, M.

We can also choose a projective resolution Q4 — N — 0 define the functor L Tor®(N, M) =
H,(Q, ®r M). Again it is not so difficult to prove that these two functors are indeed
equivalent. To see this we consider the double complex defined by the two resolutions and
the vertical and horizontal subcomplexes are acyclic in the ”interior”.
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Again we summarize

4.3.1 Hence we can define a functor in two variables Tor® (N, M) which can be computed
by a projective resolution of N or a projective resolution of M.

The higher Tor?(N, M) vanish for i > 0 if one of the entries is a projective module.

A left R-module M is called flat if the functor N — N ®pr M is exact. The following is
obvious

4.3.2 The left R-module M is flat if and only if Tor;*(N, M) = 0 for all i > 0 and all right
R-modules N .

The functors cohomology and homology of groups are special cases of Ext* and Tor*. We
take for our ring the group ring

Z[I],

and we observe: If Z is the abelian group Z with trivial ['-action then
Homgry(Z, M) = MT,

and hence we see

EXtZZ[F](Za M) = HZ(F7 M)

and
M ®zr)Z = Mr,

hence
Tor®(M,Z) = H,(T', M).

We conclude the section with some extra remarks and some exercises.

First we observe that we can compute the cohomology of a group also from a projective

resolution
— Py — P, — Z[I'| —Z—0

2

Py

Hence we get
HYT, M) = H*(Homp(P,, 7)),

4.4 Exercise:

(i) Apply this to the case of a cyclic group I' = Z/nZ.. Let o be a generator of the group. We have
the exact sequence

0—Ip —ZI'l—Z—0

and Ir = Z[I'|(1 — o).

ia) In the case n = 0 (the infinite group) we have that Iy is a free module. This gives simple formulae
for the cohomology and shows HY (', M) = 0 for v > 2.
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ib) In the case of a finite group the map

Z[l] — Iy

r — r(l-o)

has the kernel Z[T'](1+ ...+ o™ ). Construct a “periodic” resolution from this and compute the
cohomology.

(ii) We still have to compare our provisorial cohomology groups H Y, M) and the new ones. This is
not so difficult.

a) We observe that our new cohomology groups obviously satisfy: For a subgroup I' C T and a
I'-module

HY([,Ind} Y) = HY(T',Y).

(Choose an injective resolution of the I''-modules Y and ..... .)
b) Hence we have H'(T',Ind} M) = 0. We constructed the sequence

0 — M — Ind] M — (Ind} M)/M — 0,

and we find

((Indf M) /M) " /(dl M)T ~ HY(T, M),

but this was also the formula for the H?.

(iii) Let us consider the ring R = k[X]/(X?) where k is any field. Then the category of R-modules
is the same as the category of k-vector spaces V' together with an k-linear endomorphisma : V — V
which satisfies o> = 0. If dim, V = 1, then o must be zero. Compute

Extg(k, k).

Does this ring a bell?
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Chapter 111

Presheaves and Sheaves

II1. 1. Presheaves
We start from a topological space X and we define the category Off (X) of open sets:
The objects are the open sets U,V C X and the morphisms

0 if VguU

Homog(x)(V,U) = { {i} i 1is the inclusion if V C U.

1.1. Definition : A presheaf on X with values in a category C is a contravariant functor
from the category Off (X)) with values in the category C.

We say again what this means: To any open set U C X our presheaf F associates an
object F(U) € Ob(C). Whenever we have an inclusion

v -5uU
we get a so-called restriction morphism
TU\v .7:(U) — .F(V)

Of course we have ryjy = Id and for V1 C Vo C U we get a commutative diagram

FUy — F)
TUIV: N\ TV v
F(V1)
which can be written awkwardly
TUWV: = TVa|Vi © TU|Vs - (Sho)

If this functor F takes values in the category Ab of abelian groups (, rings, modules
over a ring, vector spaces, sets) we call it a presheaf of abelian groups (, rings, modules
over a ring, vector spaces, sets). For us the target category will always be of one these
simpler categories. This means that the objects F(U) will be sets equipped with some
kind of additional structure and the morphisms will be maps which respect this additional
structure.

Under this assumption we we know what the elements in F(U) are they will be called the
sections of F over U.
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Sometimes it is a nagging question what F((}) should be. Usually we can can take for F(()
a so called final object in the category, this is an object €2 such that for any other object
X € Ob(C) we have exactly one morphism from X to Q. For the category of sets we can
take any set consisting of just one element and for the category Modgr we can take the
zero module.

It is clear that presheaves with values in a given category C on X form a category PSx
by themselves. If we have two presheaves F,G a morphism

S HOIIIPSX (F,9)

is a collection of morphisms

which satisfies the obvious rule of consistency: whenever we have V C U we get a commu-

tative diagram
vy : FU) — G(U)

lTUW lTUW

Uy : FV) — G(V).

(If we were pedantic, we should also denote the gy differently (T£V or $0).)

The category of presheaves (in a suitable target category C) contains a ( so called “full”)
subcategory, this is the category of sheaves. Before I can define sheaves I need:

1.1.1 A remark about products

Let us assume we have two indexing sets I, J and two families of objects {X;}icr, {Yj}jes
in a category with products. Assume that we have a map

T:J —1
and in addition that for every 7 € J we have a morphism
fG): Xe) — Y
Then we get for j € J a composition morphism

FG) optr(h) : [[ Xi = V5

el

It is the definition of the product that this gives us a unique morphism

X — Y

iel jeJ
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which produces a commutative diagram

fr
[Hx: = I1Y;

i€l jeJ

1 1
G

Xr ) Y;.

Hence morphisms from one product into another product can be obtained from maps
between the indexing sets in the opposite direction and morphisms between the objects
indexed by indices related by this map. We say that this arrow is induced by the maps
between the indexing sets and the maps between the objects.

Now we explain the extra condition a presheaf has to satisfy if it wants to be a sheaf. We
need that the target category C has products. For our purpose it is good enough if it is a
category of rings or a category of modules.

Let F be a C-valued presheaf on our space X. Let U C X be open, let U = UyecaU, be
an open covering. Then we get a diagram of maps

p1
FO)2 1 Flu,) = F(Uq NUpg),
— B
a€A P2 (a,B)EAXA

where the arrows are given as follows: The arrow pg is induced by the maps

)=

FU F(Uq)

and pi,pe are induced in the above sense by the two projections
AxAZA
(o, ) — «

(@, 8) — B

and the restriction maps F(U,) — F(Uy N Up). If we assume that our target category
is the category of sets, (abelian) groups, rings ... where the product is the simple-minded
product then we can see what happens to s € F(U): It is mapped to

(- o (s), - ')aEA-

A section

(--Sa--Jaca € |[ FUa)

a€cA
is mapped to
(. - TUaannUﬁ (Sa) T ) (a,B)EAX A
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under p; and to
(- <1 TU|UNUg (sp); - - ')(aﬁ)EAXA

under ps.

In any case it is clear from (Sh0) that the first arrow “equalizes” the two arrows pi, ps.
This means that p; o p = ps o p.

Now we are ready to state the condition a sheaf has to satisfy. For simplicity we assume
that our target category is one of the simple ones above.

1.2 Definition A presheaf F is a sheaf if and only if
(Sh1) The arrow pg is injective.
(Sh2) The image of py is exactly the set of those elements where p1, p2 take the same values.

We summarize the two conditions into

P1
FO)S(]]FU) =2 [ FUanUp))lpr = pal.
a€A P2 (a,B)EAXA
We will say that the above sequence is an exact sequence of sets.

Comment: In the case of an abstract target category C we would have to explain what
injectivity of pp means and how we define the object [p; = ps| for a pair of morphisms

A %ﬁ B. This is actually not so difficult.

P2
Now we fix a target category C. The sheaves with values in C form a “full” subcategory
Sx of the category of presheaves with values in C. This means that each sheaf is also a
presheaf and for any two sheaves F,G on X we have that the sets of morphisms in the
category of sheaves and in the category of presheaves are the same, i.e.

HOIIIPSX (F,9) = HOmSX (F,9)

1.3. Examples:

On any topological space X we have the sheaf Cy of continuous R or C-valued functions: For
any open set U C X we put Co(U) = ring of real or complex valued continuous functions
on U. The restriction maps are given by the restriction of functions. The properties
(Shl),(Sh2) are obvious because the continuity of a function can be checked locally.

We can also define the sheaf

U — Zx(U) = locally constant Z -valued functions on U.

Note that
U — constant Z — valued functions on U

would only define a presheaf because (Sh2) will not be satisfied in general.
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This makes it clear what the general rule is: whenever we have a class of functions defined
by certain properties then they provide a sheaf if these properties can be checked locally.

Of course we can replace Z by any abelian group A and define the sheaf
U — Ax(U) = locally constant A-valued functions on U.

We may look at these sheaves from a different point of view. We can put the discrete
topology on A, and then we see that Ax(U) is simply the abelian group of continuous
functions on U with values in A. Sometimes we will write A instead of Ax.

If we have a point p € X then we can define the ring of germs of continuous functions in
this point p. A germ of a continous function at p is a continuous function f : U, — C
defined in an open neighborhood U, of p modulo the following equivalence relation:

(f:Up—=C)~(g:V, = C)
if and only if there is a neighborhood W, C U, NV}, of p such that and f|W, = g|W,.

It is clear that the germs form a ring which is called Co x ,. It is clear that this ring is the
direct limit
lim Co(U) = Co,x,p

Usp

(See 1.3.4,3.5).

This ring is a local ring which means that it has a unique maximal ideal. This maximal
ideal m,, is the kernel of the evaluation at p. To see this one has to observe that a germ f
which does not vanish at p also does not vanish in a small neighborhood of p and on this
neighborhood we can define the continuous function 1/f. This means that f is invertible
in Cy,x p and it follows that any ideal in Cy x ;, which is not contained in m, is the entire
ring. Of course such a ring of germs is pretty big.

If we do the same thing with our sheaf Z x then it is clear that a germ at p is determined
by its value at p. Hence in this case the ring of germs is simply Zx , = Z. This is not a
local ring.

I11.2. Manifolds as locally ringed spaces

At this point I want to explain that the concept of sheaves gives us a better way to think
of topological (C?), differentiable (C°°) or complex manifolds. T hope the explanation will
also be helpful for the understanding of the concept of sheaves.

A topological manifold X is a Hausdorff space such that for each point p € X we can find
an open neighborhood U, of p which is homeomorphic to an open set in R":

U, — U CR".

This is also called a C%-manifold, on this space we can define the sheaf Cy x of germs of
continuous function with values in R or C.
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A non-trivial theorem in algebraic topology asserts that two non-empty open sets U C R™
and V' C R™ can only be homeomorphic if n = m. (See Chap IV.7.3) This allows us to
speak of the dimension of the topological manifold provided it is connected.

A C*®-manifold of dimension n is a topological manifold X together with a C*°-atlas: This
is a family
{Vom ua}aeA

of open subsets such that

() X = Uaea Ve
(ii) The u, are homeomorphisms

Uy : Vo — V!
where the V. are open subsets in R”.
(iii) If Vo, NV # 0 then we get a diagram
ua(VaN'Vg) CV,

U

v
Va N Vﬁ Uap J/ T UBq
ug
™ /
Uﬁ(Va N Vﬂ) C Vﬂ

and we demand that u,g, ug, are C°°-maps. The maps uq : Vy, = V! are called
the local charts of the atlas. In this case it is easier to see that the dimension is

well defined.

We may define a complexr manifold of dimension n in the same way if we demand that the
V! are open in C" and the uqg, ugs are holomorphic maps. Of course it is clear that a
complex manifold of dimension n also carries a structure of a C° manifold of dimsion 2n.

Once we have the notion of C*°-manifold (resp. complex manifold) we may define the
sheaves of germs of C*°— (resp. holomorphic) functions:

For U C X and f: U — C, we say that f is C* (resp. holomorphic) if for any p € U and
any V, with p € V,, the map

fu foul' :u ' ((VonU)) — C

is C*° (resp. holomorphic).
Let us denote these sheaves by C§ and Ox respectively.

After defining a C*° (resp. complex) manifold in the way we did it there is still a lot
of talking about how to compare different atlases, what are equivalence classes of atlases
what are maximal atlases and so on.

I want to explain that these concepts of manifolds become much clearer if we follow
Grothendieck and introduce the concept of locally ringed spaces.
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With our definition we know what it means that a map
h: X —Y

between two C* (resp. complex) manifolds is a C*® (resp. holomorphic) map. Such a map
should be continuous and then we use the atlases to formulate what else should be true,
namely that the maps induced by the local charts should be C*° (resp. holomorphic).

But we see that there is a different way of formulating that h is C*° (resp. holomorphic):
Whenever we have open sets U C X,V C Y such that h(U) C V, i.e.

h:U—>YV

and a section f € CP(V) (resp. f € Ox(V)) then the composite f o h is certainly
continuous. It is not hard to check, that our map is C*> (resp. holomorphic) if and only if
for any such pair U, V and any f the composite map foh is again C* (resp. holomorphic),
i.e. we get a map

oh : C2(V) —s €2 (U)

resp.
oh: Oy(V) — Ox<U)

A better formulation is obtained if we introduce the sheaf (see the following sections on
f«, f* and the adjointness formula) h*(C5°) on X: For any open subset U C X the space
of section

h*(Cy")(U)

consists functions f : U — C which have the following property: For any point p € U we
can find a neighborhood U, of p and an open set Vj,) C Y such that

h(Up) C Vh(p)

and we can find a section f € C® (Vi(p)) so that

f:foh.

Then we can say that a map h: X — Y is C* (resp. holomorphic) if it is continuous and
induces a map
oh:h*(CYy°) = CY

resp.
oh: h*(OY) — Ox.

Of course the composition with A always induces a map
R*(CY) — C%

between the sheaves of continuous functions. A C° or holomorphic map h has to respect
the distinguished subsheaves which have been defined using the atlases.
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Now we come to the decisive point, we turn the whole thing around and say:

A C*°- (resp. complex) manifold is a topological space X together with a subsheaf C¥
(resp. Ox) in the sheaf of continuous functions such that for any point p € X we have a
neighborhood U, of p and a homeomorphism h between U, and an open subset U’ of R”
(resp. C™) such that

(U, C%) = (U}, C35)

resp.
Uy, Ox) = (U, Our)

where U, is open in R* (resp. C") and the sheaves are the C° (resp. holomorphic) germs
on UI’, and where ~ means that the composition oh induces an isomorphism between the
subsheaves.

In very simple words: A so and so manifold is a topological manifold on which we have
a sheaf of function which locally looks like the sheaf of it so and so functions on some
model. In our examples the stalks are local rings hence we get a examples of so called
locally ringed spaces.

It is not only so that we get a much clearer concept of C°*° or complex manifolds. It turns
out that this concept allows generalizations to cases where we cannot work with atlases
anymore. (See example 4) below and Chapter VI.) It is possible to define the category of
locally ringed spaces. These are topological spaces X together with a sheaf of rings whose
stalks are local rings. We will encounter these objects in Chapter VI.

I want to discuss a couple of examples and exercises.

2.1 Examples

la): We define the structure of a complex space on the one dimensional projective space
P'(C). As a topological space this is the space of lines in C? passing through the origin.
This is also the space of all pairs (zp,21) # (0,0) of complex numbers divided by the

equivalence relation
(Zo, 21) ~ (AZO, )\zl) AE C*

We have the two open subsets Uy (respectively U;) where the coordinate zg # 0 (respec-
tively z1 # 0.) On these open subsets we can normalize the non zero coordinate to one and

get bijections N N
Uy — (C, U, — (C,

(1,2) » 2z, (u,1)—u

Now we define the sheaf Op: : For any open subset U C P(C) the sections of Op:1(U)
consist of those C-valued functions whose restriction UyNU resp. U; NU are holomorphic.

1b): Of course we can define the n-dimensional projective space P"(C). Again it is the
space of lines in C**! passing through the origin. We can identify this to the space

{(z0,-++,2,) €C"™ | notall z =0}/C*
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where C* acts diagonally. We define the subset
U, = {(2:0, .- -,Zn) e Crtt ‘ zi # 0}/C*

and identify U;——C"™ by the map (2o, -, 2i, "+, 2n) —> (zo cee Z—’Z) . The sheaf of holo-

Zi)
morphic functions on P™(C) is the sheaf of those functions whose restriction to the U; is
holomorphic.

2): We choose a lattice
Q= {nlwl —+ naowo | ni,No € Z}

in C, where wj,ws are linearly independent over R. This lattice operates by translations
in C, we form the quotient C/€2 as a topological space, the projection

m:C— C/Q.

is locally a homeomorphism. We define

Ocjo(U) = {f : U = C| 7~ *(U) L3 C is holomorphic}.

Then it is clear that this gives C/{ the structure of a complex manifold.

3): Let us assume that we have a holomorphic function f : U — C where U C C is open
and contains the origin. We assume f(0) = 0. We consider f as a germ and we assume that
its n-th iteration is the identity, i.e. f(f(...f(2))...) = z. We assume the f is of exact
order n, i. e. no earlier iteration gives the identity. Of course f(z) = (z + a122... where
¢ = e*%" and (k,m) = 1. We can find a smaller open set D C U such that f(D) = D.
This defines a holomorphic action of the cyclic group G =< f¥ > of order n on D and we
can form the quotient under this action. This is the space D/G = B. Let m : D — B the
projection map. We define a sheaf Op on B : For any open set V C B we define Og(V)
as the ring of holomorphic functions on the inverse image 7=!(V) C D which are invariant
under the action of the cyclic group G.

2.1.3 Exercise
Prove that this sheaf defines a structure of a one dimensional complex space on B.

Hint: Consider the special case where U = C and f(z) = (z first. Of course the problem arises only
in a neighborhood of the origin 0. There the stalk of the sheaf Op is ring of power series in w = 2"
which have a strictly positive radius of convergence. Then return to the general case and prove that
you can find a germ of a function g(z) = z + baz? + b32> ... such that f(g(z)) = g(Cz) and show
that this reduces the problem to the first case.

4) Let us consider C? and consider the following action of our cyclic group:

[ (21,22) = (Cz1,( '20)

If we form the quotient 7 : C*> — C?/G = B we can try to play the same game. Again we
get the structure of a two dimensional complex variety except at the point 7(0) = 0. Here
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we see that the germ of our sheaf Op becomes a power series ring in u = 27,v = 25, w =
2172 and we have uv = w™. This means u, v, w are not independent variables anymore. At
0 our space is singular and not locally isomorphic to (C?, O¢z ). But our concepts of locally
ringed spaces are strong enough to deal with this and define the more general structure of
a complexr space which may have singular points.

5a) I want to discuss an example which is much more subtle, and where I need some difficult
theorems from local complex analysis. We assume that U C C" is an open subset and
fi(z1,- <y 2n)s -+, fr(z1, -+, zn) are holomorphic functions on U. Then we can consider
the ideal I C O¢n (U) which is generated by these functions. We can look at the subset Y
of common zeroes of the f;, i.e.

Y={z2=(z1,-",2n) | fi(z) =0foralli=1---7}

and this is of course also the set of common zeroes of all the f € I.

For any open subset V' C Y we can look at the open sets U’ C U with U'NY =V, and
then we can form the quotient

O(C" (UI)/(fla Tty f’r‘)
where (fy,---, fr) is the Ocn (U’)-ideal generated by the f;. We put

Oy(V)= lim  Ouw(U)/(frs- fr).

vh.u'ny=v

Now it is a theorem in local complex analysis that V' — Oy (V) is in fact a sheaf (see 7777?).
One checks that the stalk Oy, = lim Oy (V) is a local ring and the pair

V:iyeV
(Ya OY)

is in fact a locally ringed space. I want to point out that we cannot interprete the rings
Oy (V) as rings of holomorphic functions on Y. We may for instance consider the case
that U = C, and we take the single function f(z) = 22. Then Y = {0} and the local ring is
C[z]/(2?). It contains nilpotent elements and cannot be interpreted as ring of holomorphic
functions.

But still our space (Y, Oy) is called a complex space.

5b) We say that our system of equations satisfies the Jacobi criterion in a point y € YV if

the Jacobian matrix
ofi . .
= ]_ .. = ]_ e
(8%)%(3/) i T, n

J

has maximal rank 7. Then this is still true in a small open neighborhood of y. The implicite
function theorem says that in a small neighborhood U; C C" of y we can perform a change
of coordinates
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such that in the new coordinates our functions become fy(uy ---uy) = wy, -+, fr(ug---uy)
= u,. Hence we see that in this neighborhood

YNnU, ={(0,---,0,up41,--,Up) | u; suff. small},

and then (Y, Oy) is clearly an n — r-dimensional complex manifold in the neighborhood of
y € Y. In this case we do not have to invoke the above mentioned theorem.

We can turn this around and say that a subset ¥ C U is a d dimensional submanifold of
U if can describe it locally as the common set of zeroes of n — d holomorphic functions
which satisfy the Jacobi criterion.

We come back to the situation in 5a). We say that the ideal I defines a (smooth) subma-
nifold of dimension d if the set of common zeroes Y is a submanifold of dimension d and
if in addition at any point y € Y we can find ¢1,...,9,—q € I which satisfy the Jacobi
criterion at the point y. In this situation the argument in 5b) shows that these g1,...,gn—q
generate the ideal I we we restrict it to a small neighborhood of y.

5¢c) A closed subset Y C P*(C) is a d dimensional complex projective manifold if for any
index 7 the intersection Y N U; is a d-dimensional complex submanifold of Uj;.

5d) A homogenous polynomial of degree k is a polynomial

o zm) = 3 g 20 2

where a,,...,, = 0 unless ) v; = k. We cannot consider such a polynomial as a function
on P (C). But of course it makes sense to speak of the zeroes of this polynomial on P"(C).
Therefore we may consider an ideal I = {fi,---, fs} which is generated by s homogenous
polynomials. We can look at the common set of zeroes

Y={z=(20""-2n) | 2#0, fi(z) = 0}/C".

Such a set Y is called an algebraic subset of P"(C).

If we restrict a homogenous polynomial f to one of the open sets U; above, then we can
interprete it as a function on U; because we can normalize the i-th coordinate of a point
to one. Hence our ideal I defines an ideal I; of holomorphic functions on each of the U;.

Such a subset Y C P*(C) is called a smooth projective (algebraic) variety of dimension d if
each of the ideals I; defines a smooth submanifold of dimension d in the sense of 5b). This
definition is not yet very satisfactory because it needs input from analysis ( the implicit
function theorem), for a definition in purely algebraic terms I refer to VIL.3.

It happens the we need more than n — d equations to describe a smooth projective variety
of dimension d. Locally at a point y we can choose n—d equations from our set of equations
to describe Y but this subset may vary if the point moves around.

If we have such a complex d -dimensional submanifold Y € C" then the coordinate func-
tions 21, ..., 2, are of course holomorphic functions on C" and therefore after restriction
also on M. If we have a point y € Y we may consider the functions
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Zi:zi—zi(y) forizl,...,n

as holomorphic functions on Y. Then it follows from 5b) that we can pick d functions from
this set - let us assume that these are Zy, ..., Z4- such that locally the remaining functions
can be written as convergent power series in these, i.e.

Z’d+j:hj(§1,...,2d) j=1...’rL—d

Then the

Zi=zi—2z(y) fori=1,...,n

are called a system of local parameters at y.

I11.3. Stalks and sheafification

In our examples above we had the notion of a germ of a function at a point p. This notion
can be extended to the more general classes sheaves. Let us assume that we consider the
category of (pre-) sheaves on X with values in some nice category (abelian groups, rings
or sets). If we have a point p € X then we consider the set L, of open sets containing our
point p. We define an ordering on this set

V>U ifandonlyif V CU. (sic!)

Then this is an inductive system which is also directed: to any U;,Us we find a V with
Uy <V,U; <V. If we have a (pre-)sheaf F on X we define the stalk in p by

Uely

and this limit is simply the (abelian group, ring, set) of germs of sections. It inherits
the structure of an (abelian group, ring, set); this follows from this directedness and is
discussed in the Exercise 4) in Chapter I.

An element s, € F,, is called a germ of a section. By definition it can always be represented
by a section sy € F(U) where U € iL,. If this is so we write sy|, = s, and we say that s,
is the restriction of sy to the stalk at p.

3.1

Let s be a section over the open set U. If we have s, = 0 at p € U then we find an open
neighborhood V of p such that s restricted to this neighborhood is zero. Hence we can
define the support of s: It is the closed subset of U where s, # 0.

These stalks help to clarify the difference of the notion of sheaves and presheaves. For any
presheaf we can consider the map

FU)— [] F»
peU
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which is given by restricting the sections to the stalks. Then we know:
(i) This map is injective, if and only if our presheaf satisfies (Sh1).

(ii) If a presheaf F satisfies (Sh1) then it is a sheaf if and only if the following holds: A
collection of germs (...sp...)per is the restriction of a section over U if for any p we find
a Up € U, and a section 5, € F(U,) such that 5|, = s4 for all ¢ € U,,.

We leave the verification of this fact to the reader.

3.2. The process of sheafification of a presheaf:

To any presheaf G on a space X we can construct a sheaf G# together with a map j: G —
G* (in the category of presheaves) such that for any sheaf F we have

Hompg (G, F)=Homg (G¥,F).

This can also be seen as another example of a representable functor. Our presheaf G
defines a functor from the category S of sheaves (with values in the category of rings,
abelian groups, sets) into the category of sets namely the functor 7 — Homp Sy (G, F).

our sheaf G¥ is the representing this functor. Hence by the Yoneda-lemma it is unique up
to isomorphism.

Using the stalks it is possible to define G* quite directly. We define

For any point p € U 3 open U,
GFU)=S(..sp..) € [[Gp | €U, CU and §, € G(1), s. t.
PEUV Splgq=sqforallqeU

The reader should verify, that this defines indeed a sheaf, this sheaf has the same stalks
as our original presheaf, we have a map G — G¥ and it has the required property.

There exist some more abstract notions of sheaves on so called Grothendieck topologies,
these are in some sense “spaces” which sometimes do not have points anymore. In such a
case it is not possible to use the stalks, but still it is possible to construct G¥. Therefore
I will give here another construction of G# which does not use stalks.

We consider coverings 4 = {U;}ier,U = J;c; Ui of an open set U. We introduce the
category of coverings. An arrow from a covering U = {V,}aca to the covering 4 = {U; }icr
is a map

T:A—1T

s. t. UaET—l(i) V, = U;. We write

750 — 3

for such a morphism. In general the arrow 7 is not determined by the two coverings, but
many constructions using this arrow will give results not depending on it.

We will say that such an arrow defines a refinement of i by 0. Sometimes we will say
that U is a refinement of U if there is an arrow from U to 4.
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The arrow 7 defines a map between diagrams (see the general remark about maps between
products at the beginning of this section)

gU) B Mow)y = I 9UnU)

i€l P2 (i,5)eIxI

l l J

GU) — J16(Va) = [T G(VanVp)

a€A (a,B)EAX A

For any covering U = {U; };cr of U we define

GH(U)lp: = {s e [[6W) [ p(s) = (8)} :

el
If U is a refinement of 4 then our map 7 defines a map
GU) — G U)lp: = pa]
| $
GU) — G¥U)p1=ps)

It is not difficult to see that the vertical arrow does not depend on the choice of 7. Now we
need the courage to believe that we can extend the notion of direct limit to this situation
where we do not have an indexing set but a category which is directed because two coverings
have always a common refinement. We put

Gt (U) =1lim G*(U)[pr = pal-

We check that G is again a presheaf, and it satisfies condition (Sh1l). Moreover if the
original presheaf G satisfies already (Sh1) then G satisfies even (Sh2). Hence we see that
Gt+ = G# is always a sheaf. We have

i:G — G¥,
and G* has the required universal property.

II1.4. The functors f, and f*:

Given two topological spaces X,Y and a continuous map f : X — Y, we construct two
functors f,, f* which transport sheaves on X to sheaves on Y and sheaves on Y to sheaves
on X respectively. Let us denote by Sx resp. Sx the category of sheaves resp. presheaves
on X with values in the category of abelian groups, rings or sets.

If we have a sheaf F on X we define the sheaf f.(F) on Y by
FF)V)=F(HV)

50



for all open subsets V' C Y. It is clear that f.(F) is a sheaf on Y, it is called the direct
image of F.

The functor f* transforms sheaves on Y into sheaves on X. The idea is that the stalk of
f*(G) in a point z € X is equal to the stalk of the original sheaf G in the point y = f(z),
i.e. f*(G)z = G@)- The actual construction is a little bit complicated. At first we define
a presheaf f'(G):

For U C X we put
f(G)U) = lim G(V).

VO f(U)

It is not difficult to verify that this is a presheaf and that for any covering U = U;c;U; we
get an injective map

F©W) — I 79w

iel
It satisfies (Sh1) but not necessarily (Sh2). We define

(@) = 9"

We recall that the stalks of the sheafification of a presheaf are equal to the stalks of the
presheaf hence we get

fH(G)e = lim lim G(V)= lim G(V)=Gy@a).

z€U VDF(U) V:if(z)eEV

Since the exactness of sequences of sheaves can be checked stalkwise, it is clear that f* is
an exact functor.

4.1. The adjunction formula:

The functors f,, f* are adjoint functors. To be more precise: The functor f* is left adjoint
to f.«. This means that we have a functorial isomorphism

Homg (f*(G),F) =Homg_ (G, fu(F)).

Here functorial means that from morphisms v : G’ = Gand v : F — F/, we get the obvious
commutative diagrams.

It is not very difficult to verify the adjointness formula. From the construction of the
sheafification we have Hompg (f'G,F) = Homg (f*G,F). Hence a morphism % in
Hompg (f'G,F) is a collection of ¢y : f'G(U) — F(U). It follows from the definition
f'G(U) and the properties of the direct limit that this is nothing else than a collection of
maps

wU,V : Q(V) — .}—(U)

where U,V run over all open sets in X,Y which satisfy f(U) C V, and where the maps
in this collection satisfy the obvious compatibilities. We will call 9y v the evaluation
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of 9 on U, V. Now we are allowed to evaluate on U = f~1(V) and we get a collection
Yr-ivyy = ¢v 2 G(V) = fu(F)(V), ie. an element in Homg (G, f«(F)). The other
direction is also clear.

Remark: It is always confusing and hard to memorize which functor is a left (right) adjoint
of which. The question is whether f* has to be placed into the source or the target of
the Hom(, ). Here is a simple rule that helps. We have to remember that f, gives directly
a sheaf while the construction of f*G involves the process of sheafification and this uses
direct limits. But as I explained in the chapter on categories direct limits are made so that
we know what the maps from them are. Hence the free place on the left in Hom( , )is
the place where f*G belongs.

4.2 Extensions and restrictions: We can consider the special case of an open subset
U C X and let A = X \ U be its complement. Then we have the two inclusions i :
A—X,j:U—X. For a sheaf F on X the sheaf j*(F) is very easy to understand since
for an open set V' C U we have j*(F)(V) = F(V). This is called the restriction of F to U.
The operation ¢*(F) is much more delicate and will cause us some trouble (See IV 1.2.2.1).
If we have a sheaf G on U then j,(G) is a delicate functor since it depends on the local
topology in the neighborhood of boundary points ( See IV 77?7). But for a sheaf G on A
the i, (G) is easy to understand. Its stalks are zero outside of A and equal to the stalks of
G on A. It is called the extension by zero.

I11.5. Products

If we have a family of sheaves {F,}oca the we can define the product: For any open set
U C X we put

(1] Fo)©) =[] Fa(U)

a€EA a€EA

and it is easy to verify that this is again a sheaf. If our sheaves have values in the category
of rings, modules, abelian groups etc. the product is again a sheaf with values in that
category.

If the F, are abelian groups or modules we might be tempted to take the direct sum of
sheaves. But this does not work in general. The naive definition gives only a presheaf
because (Sh2) may be violated if the indexing set A is infinite.

5.1. Perhaps here is the right place to explain that the sheaves on X with values in the
category of abelian groups form an abelian category . First of all this says that for two
such sheaves the set

¥ € Homg (F,9)

are abelian groups: If we have two morphisms ¥ = {Uy,®y}y,® = {Py, Py}u then
U + & = {Uy + $y }y. This group structure is bilinear with respect to composition.

If we have a morphism ¥ : F — G then we can define the kernel ker(¥) as the subsheaf
U — ker(Uy). This kernel has a categorial interpretation: For any other sheaf .4
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Homg (A ker(¥)) = {¢ € Homg (F,G)|¥o¢=0}.

Now we may consider the preasheaf

K(U) = F(U)/ ker(¥)(U).

It is fundamental that this preasheaf is not neccesarily a sheaf and this will be explained
in detail in the next Chapter. It is not hard to verify the first sheaf condition (Sh1) but
in general it does not satisfy the second condition (Sh2). Of course we can sheafify the
preasheaf K and we get the quotient sheaf

F/ker(¥) = K¥#

This quotient has again a categorial interpretation and it is called the coimage of . We
can also define the image of ¥ as a subsheaf of G. It is simply im(¥)(U) = Uy (K*(U))
and by construction it is isomorphic to the coimage. These to objects namely the coimage
and image can be defined in a categorial context and it is one of the axioms for an abelian
category that they should be canonically isomorphic ( See [ Mac Lane |).

In an abelian category we can define the notion of exact sequences but this will be discussed
in the following chapter.
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Chapter 1V
Cohomology of Sheaves

We consider sheaves with values in abelian groups. We can define the notion of an exact
sequence of sheaves. A sequence of sheaves on a space X

0—F —F—F"—0

is exact if for all points z € X the sequence of stalks is exact. It is easy to see that this is
equivalent to

(i) For all open sets U C X the sequence
0— F(U) — FU) — F"(U)

is exact and

(i) For any s” € F"(U) we can find a covering U = U, U; by open sets and s; € F(Uj)
such that s; — s"|U;

It is the decisive point that the exactness does not imply that F(U) — F"'(U) is surjective.
We can only find local liftings for an s” € F"(U).

Applied to U = X this tells us that the functor F — F(X) will not be exact in gen-
eral. Hence we have to construct a right derived functor to it. As in Chapter II we
introduce the notation H°(X,F) for F(X) and we want construct cohomology groups
HY(X,F),H?(X,F) which have functorial properties and such that any short exact se-
quence yields a long exact sequence

0 —F(X)— FX) —F'X) - H'(X,F) =
as in the previous chapter.

The following two examples are absolutely fundamental. In a nutshell we see everything
that makes sheaf cohomology work. I also want to stress the almost perfect analogy
between these two examples which will be explained in (1.2.1.).

IV.1 Examples
1.1 Sheaves on Riemann surfaces

In the previous section we introduced the notion of a complex manifold (See 2.1). Here I
want to consider a compact Riemann surface (X, Ox). This means that X is a compact
connected complex manifold of dimension 1. For any P € X we find an open neighborhood

Up of P such that (See IIL.2 and I11.2.1)
(Up, Ox|Up) ~ (B, 0p),
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where B = {z € C | |z|] < 1} is the open unit disc and where Op is the sheaf of germs
of holomorphic functions on B. We assume that the homeomorphism between the spaces
maps P to the origin 0 in the disc.

The element z € Op(B) yields via the isomorphism an element zp € Ox(Up). This
element zp vanishes at P and it generates the maximal ideal mp of the stalk Ox p. Such
an element is called a uniformizer or uniformizing element at P. Any power series

up = f(zp) = azp + bz, ...

which has a positive radius of convergence and with a # 0 can serve as an uniformizer as
well.

A complex function
g:Up\{P} > C

is called meromorphic on Up if it is holomorphic and if we can find an integer n such that
2% -9 = h extends to a holomorphic function on Up. We say that g has a pole of order n at
P if n is the smallest value for such an integer. We write ordp(g) = —n and by definition
g€ z25"Ox p, but g & z;"HOX’p.

If T is a finite subset of S and if f : S\ T — C is a holomorphic function then we say
that f is meromorphic if its singularities at the points of T' are at most poles ( and not
essential singularities). For any point P € T we have defined ordp(f) and we define the
polar divisor

Diveo (f) = > ordp(f)P

PeT,ordp(f)>0

which we consider as an an element in the divisor group Div(S), the free abelian group
generated by the points of S. Since S is compact it follows from the principle of analytic
continuation that f can only have a finite number of zeroes on U = S\ T and this implies
that 1/f is also holomorphic on some open set U’ = S\ T’ where T is finite and then 1/f
is also meromorphic. We may also define the zero divisor of f as

Divo(f) = —Diveo(1/f)
and the divisor of f as
Div(f) = Divo(f) + Dive (f).
We have a homomorphism called the degree which is given by
deg : Div(S) —» Z

which is given by deg: D =) npP +— > np.
A divisor D = ), npP which is the divisor of a meromorphic function will be called

a principal divisor. We will see (See V.1.3.2 ) that for a principal divisor the degree
deg(D) =Y np =0.
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To any divisor D = ), npP we attach the sheaf Ox (D) which which is defined by
Ox (D)(U) = {f meromorphic on U | ordp(f) > —np for all P € U}.

We could also say that f € 25”7 Ox p for all P.

A divisor D = Y npP is called effective if all np > 0, we could also call this a positive
divisor and write D > 0. The definition of Ox(D)(U) can be reformulated: It consists
of those meromorphic functions f on U for which Div(f) + D | U > 0. If D is an
effective divisor we have an inclusion of sheaves Ox C Ox (D). We form the quotient
sheaf Lp = Ox(D)/Ox. It is clear that the stalk at P is 25" Ox p/Ox p.

For any point P

2p"Ox.p/Ox.p = ILED")

is the finite dimensional vector space of Laurent expansions, an element ¢/ € Lp can be
written as

20 Gp—1 ai
L= — Tt mod Ox.p.
2P zg_ zZp ’

If a,, # 0, we say that £ has a pole of order n. So the stalk of this sheaf at a point P € X is
the vector space of all Laurent expansions of pole order < np. Especially the stalk is zero
at points where np = 0 and therefore the sheaf Lp has only a finite number of non-zero
stalks. It is called a skyscraper sheaf. We have the exact sequence of sheaves

O%OX%Ox(D)—)]LD — 0.

It is clear that the space of sections H°(X,LLp) is simply the direct sum of the stalks in
the points P with np > 0. There is no interaction between the different points.

The question whether the sequence

0— H°(X,0x) = H°(X,0x(D)) - H*(X,Lp) =0
is exact amounts to whether a given collection of Laurent expansions at the finitely many
points P with np > 0 can be realized by a meromorphic function on X. In general the

answer is no and the discrepancy is controlled by the first cohomology group H!(X, Ox)
which we will define later. To be more precise we will construct a map

§:H(X,Lp) —» H'(X,Ox)
such that the extended sequence
0— H°X,0x) = H°(X,0x(D)) - H*(X,Lp) — H'(X, Ox)

becomes exact. The computation of H'(X, Ox) is more or less equivalent to the Riemann-
Roch Theorem which we will discuss in the chapters on curves and Riemann surfaces.
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1.1.1. Exercise:
(1) Prove that in the case X = P!(C) the above sequence is always exact.

(2) Prove that in the case X = C/S) the above sequence is not always exact.

1.2 Cohomology of the circle
We consider the circle S* and the sheaf Z which is defined by

Z(V)={f:V = Z| f islocally constant }.
We pick a point P € S* and let U = S*\{P}. We define a sheaf Z(") by
zP(V)=2UnV).

If i : U — S! is the inclusion then this is the sheaf i,(Z) (see I11.4.2). Clearly we have an
inclusion Z ¢ Z) and for all Q@ # P we have the equality of stalks

P
ZQ :ZQ = 7.
But in the point P we have
Z=7p 2% =707

because on a little interval I, containing P we have Z(I.) = Z but S (I.) =Z(I.NU) =
7 @ 7.. Hence we get an exact sequence of sheaves

02— 2Z%) 5 8p—0

where Sp is the skyscraper sheaf whose stalk at P is Z and zero elsewhere. We get the
sequence of global sections

0— H°SYL,z) S HOs.,z®) - HYS',Sp)

~

0— Z — Z — Z

and we see that the last arrow is not surjective. Again we need a non-zero H'(S,Z) to
control the discrepancy.

We even can have an idea what this group H'(S',Z) should be. Intuitively we should
think that the sheaf Z(P) doubles the point P, so our circle becomes an intervall I and it
is at least plausible that

HY(I,Z)= H'(S*,zP).

But the intervall is contractible (see 4.4.11), and we will see then H'(I,Z) = 0. Hence we
should expect (and we will prove this later) that

HO(S', Sp)SHY(S',7) ~ 7.
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I want to stress another important point. We can ask whether the isomorphism H'(S',Z)
o~ Z is canonical. The answer is no!

This becomes clear if we recall that
ST =(zZez)/L
where Z is embedded diagonally. There is no way to distinguish between the two possibil-
ities to identify H(S',ST) to Z.
But we can choose an orientation on S' (see 3.3.1), this eans tha we choose a direction (

a non zero tangent vector ) at each point which varies continously with the point. Then
we have distinction between the two intervalls in the intersection

I.NU=UruU-
we say that U is the intervall which the positive tangent vector at P points to. Then
Z(I.NU) =Z(US) ® LU, ) = Z & Z,
and we now have a canonical identification
HY(S,Z) =17

where we send
(a,b) modZ — a.

1.2.1. I want to stress the analogy between the two examples: The sheaves O x and Z have
a property in common: They are very rigid. This eans that any section over a connected
open subset U is determined by its restriction to an arbitrarily small non empty open
subset V C U.

The analogy goes even further. If we consider the sheaf R on a manifold M, then we
can characterize R as a subsheaf in the sheaf Co, (M): It is the subsheaf of functions with
zero derivatives. An analogous statement is true for Ox. We can characterize Ox as the
subsheaf in the sheaf of C, function annihilated by the Cauchy-Riemann operators.
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IV.2 The derived functor.

2.1 Introduction. We want to define a universal derived functor to the functor F —
H°(X,F). To do this we use the same ideas as in Chapter 1. We define the notion of an
injective sheaf. A sheaf T is injective if in any diagram

A —% - B

|v

T

with ker(p) C ker(¢) we can find a map 7 : B — Z which make this diagram commutative.

It is rather easy to see that every sheaf F can be embedded into an injective sheaf. The
following construction has been invented by Godement (See [Go],?7?). For any point € X
we embed the stalk F, into an injective abelian group I,. We define the sheaf 7 by

IU)=]] I

zeU

and the restriction maps [], cv Iz — Ha:EV I, are induced by the inclusion V' C U.

To prove the injectivity of Z we consider our diagram above stalk by stalk and choose for
each x € X an 7, such that the diagram commutes

A, — B,
e e
I,

commutes. By construction this collection provides an embedding n : F — Z, for any open
set U C X the homomorphism ny : F(U) — Z(U) is induced by the maps F(U) — F, —
I,.. Now it is obvious that we can find an injective resolution for any sheaf F:

0 F -1 T —.

Consequently we define
H*(X,F)=H*(ZT*(X)).

The same arguments as in the previous section show that this defines a universal right
derived functor.

The reader might or should even be scared: How can we ever compute the cohomology of
a sheaf if we use such ”huge and bizarre” sheaves to define it.

Our strategy will be to exhibit classes of ”smaller” sheaves which have the property that
they are acyclic. One possibility to construct such sheaves is discussed in the following
exercise.
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2.1.1 Exercise.

Let us assume that we have a sheaf of commutative rings R on X, the rings should have an identity,
especially we have 1 € R(X). Let us assume that we have a so called partition of 1: For any covering
X = ;1 Ui we can find elements h; € R(X) such that Supp(h;) C Uj, for any point z € X we
have only finitely many indices such that hi; # 0 and finally 1 =" h;.

Show that sheaves F of R modules are acyclic.

Hint: Assume we have a short exact sequence

0->F -F—->F"=0

of R-modules. Use the partition of unity to show that F(X) — F"(X) is surjective.

We will see that on a C* -manifold M the sheaves of rings of C°° functions have a partition
of unity. This will imply that for any C* vector bundle ( See 3.2 ) £ and the sheaf C*(£)
of C*° -sections in it

HY(M,C>(E)) =0 for all i >0

2.2 A direct definition of H!:

We want to indicate briefly how we could approach the problem to define a right derived
functor for HY(X, F) more directly. The reader should notices the analogy between this
approach and the one used to define the first cohomology group in group cohomology (See
I1.2.1.)

Let us assume we have an exact sequence of sheaves
0—F —F—F" —0.

We look at
F(X) — F'(X)

and pick a section s” € F”(X). Locally we can lift this section to a section in F. This
means we can find a covering X = UU, and sections s, € F(U,) which map to s” | U,.
But the s, do not necessarily match: The difference

Sn.p = Sa — 58 | Ua NUp

is a section in F'(U, N Up) because it goes to zero in F”. The collection {5/, 5}(a,8)cax4
satisfies the cocycle relation, i.e. we have

This suggests the definition of the group of 1-cocycles with respect to a covering U4 =
{Ua}aca: These 1-cocycles are collections

(ostap--)€ [ FUanUp)
(a,B)EAXA
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which satisfy the relation above. They form a group which will be denoted by Z*(U, F').

We may also define the group of coboundaries: An element (...ty...) is a coboundary
if we can find s/, € F'(U,) s.t. to g = Sa — Sp-

We define H' (X, 4, F') to be the quotient
HY (X, U, F') = Z" (U, F')/B* (4, F').
Now it is clear that s” defines an element
§(s")y € HY(S,u, F'),

and it is clear that s” is in the image if and only if §(s”) = 0.

If we start from a different covering ' then 4 and 4’ have a common refinement (See
IT1.3.1) 7 : W — U, 7' : 20 — . We get maps
HY(X, 4, F') H' (X, 4, F')

e v
HY(X,25, F).

It is not difficult to see that these maps do not depend on the choice of of the arrows.
It is clear that these maps are compatible with ¢ and hence we get a boundary operator

§: F'(X) — lim H' (X, 4, F') = H (X, F).

18

Now it is not hard to see that we have a structure of an abelian group on the limit, the
boundary operator is a homomorphism and the sequence

0— HY(X,F') = HYX,F) » H' (X, F") > HY(X,F') » H (X, F) - HY(X, F")

1s exact.

Of course we need to compare this construction of cohomology groups with the other one
using injective resolutions, this comes next.

2.2.1 A sheaf F on a space X is called flabby if for any open set U C X the restriction
map F(X) — F(U) is surjective. This is a very strange property of a sheaf. For instance
the continuous functions on a space almost never have this property.

2.2.2 We want to show that injective sheaves are flabby. To do this we consider an open
subset U C X we denote its inclusion by j : U — X, let A = X \ U let us denote the
inclusion of the closed set by i : A — X. For any sheaf F we can take its restriction to
A and extend this restriction again to X by using i,. (Extension by zero: See III 4.2.)
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We have a surjective homomorphism of sheaves F — i,i*(F) and this gives us an exact
sequence of sheaves

0= j(F)—=>F =" (F)—0

where of course ji(F) is just the kernel.

A short disgression: We may give a direct definition of this kernel and call it again the
extension of F|U to X by zero. To give this direct definition we recall the notion of the
support of a section (see II1.3.1.) and notice that for any open set V' C X we have more
or less by definition

J(F)(V)={se F(V)| the support of s does not meet V N A}.

This means that this sheaf is a little bit delicate. By construction we have an inclusion
Ji(F)(V)——F. In a sense the sheaf ji(F) "knows” the boundary points of U.

Now we come back to our original problem, we wanted to show that injective sheaves are
flabby. We have an inclusion

l

T

and since Z is injective we find a homomorphism ¢ : j,Z — Z which makes this diagram
commute. If we have a section s € F(U) then this is by definition the same as a section
s € 14(F)(X) and then ¢(s) € F(X). It is clear from the diagram that ¢(s) restricted to
U is s. Moreover we see that our section ¢(s) has support contained in the closure U, the
best we can expect.

2.2.3 Exercise
a) Show that for a flabby sheaf F we have H (X, F) =0

b) Show that ﬁl(X, T) = 0 for an injective sheaf. Show that this implies that for any sheaf F
HY(X,F) = H'(X, F).

c) Show that flabby sheaves are acyclic.

I discussed this construction of the first cohomology groups in detail, because here we
can see how natural these constructions are. Here we meet a fundamental principle of
homological algebra which is applied again and again:

We want to lift a section s” € H°(X,F") to a section s € H°(X,F). We localize the
problem by choosing a covering where we have local liftings. These are not unique and
hence it can happen, that they do not match on the intersections. These differences on
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the intersections yield a cocycle, and the class of this cocycle yields the obstruction to the
global solution of the problem.

We have seen how the same principle works in group cohomology (Chap. 11.2.1.) There
we want to lift a T' invariant section m” € (M")! to a I'-invariant section m € M*. In
this context localizing means that we drop the requirement that m should be I'—invariant.
Then we find a non unique lifting. The comparison of the local sections on the intersections
of the open sets in the geometric situation corresponds now to the comparison of m with
~m where -y runs through the group. This gives the cocycles v — m — ym € M’

This construction generalizes to higher cohomology groups. We can define the so called
Cech cohomology by means of coverings. The cohomology defined by means of injective
resolutions and the Cech cohomology coincide on reasonably spaces. We postpone this
discussion.

At this point we make a short detour. Since we discussed H' in some detail it may be
appropriate to discuss the non abelian H', this means we discuss sheaves with values in
non commutative groups and their first cohomology sets.. This non abelian cohomology
plays an important role in the theory of bundles and I want to loose some words on this
subject.

VI.3 Fiber bundles and non abelian H'.

3.1. Fibrations. I want to introduce the notion of fibre bundles. We consider maps
between topological spaces
m: X — B.

If we have another such map 7’ : X’ — B then a map over B is a continuous map
f: X — X’ which commutes with the projections.

Now we consider a space F' (the fibre) and another space B (the base). A continuous map
m : X — B is called a (locally trivial) fibration with fibre F, if we can find a covering
B = Uz'e ; Ui such that for any ¢ we can find a homoemorphism ¥; over the base Uj;

~

v, 71'_1(Ui) — U, x F
N\ v p1
U;.
Locally in the base our space is a product of an open set in the base and the given fibre.
We also say that X = B is a fibre bundle with fibre F.

If V C B is open then a section to m over V is a continous map s : V — X for which
mTos = IdV

It is important to consider fibres F' which are not only topological spaces but also carry
some extra structure.
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3.1.1. Vector bundles

For instance we can consider the case that F' is a finite dimensional R or C-vector space
and where F', R, C are equipped with the standard topology. For convenience we denote
by K a field which is either R or C. In this case we can make an additional assumption on
our trivialization. We assume that we have a covering B = | J;c; U; and

U N(U;) = Uy x F
as before. But in addition we assume that for any pair 7, j of indices the map
Gij =V, |UiNU; oV | U;NU;: (U;NUj) x F— (U;NU;) x F

has the form
where g;;(u) is a linear automorphism of our vector space F.

It is clear that u — g;;(u) must be a continuous map from U; N Uj into the general linear
group G = Gl,(K). Moreover, it is obvious that we have a cocycle relation for any triplet
of three indices 1, 7, k

gij(u) -gjk(u) = gzk(u) forall uweU;N Uj NUg.
If this assumption is fulfilled, we say that
mn: X — B

is a vector bundles. I find this definition is a little bit unsatisfactory because it needs the
covering and the ¥;. We will give a second definition which I think is better.

Of course our data allow us to introduce the structure of a vector space on each fibre
7~1(b) such that the vector space structure “varies continuously with ”. What do we
mean by that? Our definition also implies that we can find sections

e1, -, en:U; —>7r_1(Ui):Ui x F,

such that in each point u € U; the elements ey (u), - -, e,(u) € 7~1(u) form a basis of this
vector space. Now we can identify

by sending
Z aye,(u) — (ay,---an),

and we get a map
7T_1(Ui) — Uz x K" ,
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and the phrase “the vector space structure varies continuously with " means that this is
a homeomorphism.

This allows us to give a different formulation of the concept of a vector bundle. We can
say that
m: X — B

is a vector bundle if:
(a) For any b € B we have the structure of a finite dimensional K -vector space
on the fibre 771(b)
(b) For any b € B we can find a neighborhood V of b and sections

61,---,6nZV—)7T_1(V)

such that these sections evaluated at any point v € V form a basis of 77 1(v).
(c) The map
(V) — V x K"

sending a point £ =Y a; e;(v) above v € B to (v,a1---a,) € V x K" is a
homeomorphism.

If we have such a vector bundle
m: X — B,

and if we have an open set V' C B together with the section
ei: V— 1 (V) i=1---n

which form a basis at any point v € V, then we call this a local trivialization of a bundle.

We can consider the sheaf of germs of sections into X, let us call it Co x. This is a locally
free module over the sheaf of germs of continous functions Co p.

On the other hand it is rather clear that a locally free module £ over Co g also gives us a
vector bundle.

3.2 The non abelian H!.

We know of course what it means that two vector bundles X — B are isomorphic. Actually
it is obvious that the vector bundles over a given base space form a category: A continuous
map

v + X — X

NS
B

is a morphism of vector bundles, if ¢ restricted to the fibres is linear.
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I want to explain the description of the set of isomorphism classes of vector bundles on B
in terms of non abelian sheaf cohomology. Given our vector bundle we select a covering
U = {V;}icr of B and local trivializations

ei,,,:Vi—>7r_1(Vi) v=1---n.
If we have an ordered pair (i, ) of indices, then we get a continuous map
gij : VinV; — GL(n,K)

such that
9ij(v) - (ei(v)) = €50 (v)

i.e. gij(v) sends the sections {e; .}, into the sections {e; . }v.

This is clearly a one-cocycle, this means
gij - 9ik = gix. on V;inV;NVg

and
gii = 1d.

This suggests that we introduce the set of one-cocycles with respect to our covering. We
introduce the sheaf of germs of continuous maps form our space B to the group G =
GL(n,K), we denote this sheaf by Cy(G). Then we define as before

CHW,Co(Q)) = {e=(--gi5--) € [ [C(G)VinVj) | ¢=(---gi5--) is a 1- cocycle}.
1,J
If we modify our local trivialization, then we modify the cocycle into
gij = higijh;t on VNV,

where h € []Co(G)(V;). This gives us an equivalence relation on C (0, Co(G)) and dividing
by this relation we get a set

HY(B,9,C(G)).

Again we may change the covering, we can pass to common refinements and we end up
with
H'(B,Co(G)) =lim H'(B,,Co(G)).
pi

Since our sheaf takes values in the category of non abelian groups, we cannot multiply
cocycles and we only get a set. Now it follows from our considerations that:

3.2.1. The elements in H'(B,Co(G)) are in one-to-one correspondence with the set of
isomorphism classes of vector bundles.

66



3.3 The reduction of the structure group.

Of course we can start from any topological group G, we can consider te sheaf of G' valued
functions on B and we can look at the cohomology set H'(B,Cy(G)). This set classifies so
called principal G-bundles, this are bundles P — B with a left action of G such that G
acts simply transitively on the fibres. Then G is called the structure group of P — B.

3.3.1 We may introduce different kinds of additinal structures on the fibres of a vector
bundle 7 : X — B.

For instance we may choose a euclidian metric < , > on the fibres which varies differen-
tiably with the point. Then we can choose local trivializations ey, ..., e, which are given
by orthonormal basis vectors. If we compare two such local trivializations then our func-
tions g;; will be functions with values in the orthogonal group O(n) and therefore it will
correspond to an element in H(B,Co(O(n))).

In such a situation we say that the additional structure induces a reduction of the structure
group. In this case we hve a reduction from Gi,(R) to the orthogonal group O(n).

Another such additional structure is an orientation. If we consider the highest exterior
power A" (X/B), i.e we take the highest exterior power fibre by fibre, then we get a bundle
of one dimensional vector spaces. On this bundle we have an action of the multiplicative
group of positive real numbers RY ;. If we divide the bundle by this action then the quotient
is a bundle B — B with fibres consisting of two points. If we can find a global section
s: B — B, then we say that X — B is orientable. If we choose such a section then we say
that X — B is oriented.

If we have an orientation on B then we may choose local trivializations ey, ..., e, for which
the ordered basis is positive with respect to the orientation. If we have done this then our
gi; will take values in the subgroup Gi,(R)* of matrices with determinant positive and
thus we have another case of the reduction of the structure group.

On a C manifold M we have the notion of the tangent bundle Tjs. (See a book ?7?7). Lo-
cally on M we have coordinate functions x4, ..., z, so that any differentiable function is a
differentiable function in the variables z1, . .., z,. Then the vector fields 9/0x1,...,0/0%m.
provide a local trivialization of this tangent bundle.

If we have in addition an euclidian metric on this bundle then M is called a Riemannian
manifold. If we have chosen an orientation (if possible ) then we call M oriented.

3.3.2 Local systems. If B is a topological space and A an abelian group, then we
attached to A the sheaf A = Ap of locally constant functions with values in A (see III,
1.3.).

We want to introduce the notion of local A-systems or local systems of A’s.

If A is a sheaf of abelian groups on B, then we call A a local A-system, if for any point b € B
we can find an open neighborhood Vj, such that the restriction of A to V}, is isomorphic to
Ay, . This implies that for any point b € B the stalk A is isomorphic to A. At this point
it is reasonable to assume that our space B is locally connected, i.e. for any point b € B
and any open neighborhood V;, of b we can find a connected open neighborhood U, C V}
of b.
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If we have that A | V} is isomorphic to Ay, as above, and if we replace V; by the connected
open neighborhood Uy, then
A(Ub) =~ A,

and for any point u € U, we get an isomorphism
AUp) — A,.
If we now fix a covering B = UV, where the V; are connected and we have isomorphisms
U, : A|Vi—=Ay,,
then we may compare the ¥; on the intersections and we get
gij 1 VinN'V; — Aut(A)

which are locally constant (or continuous if Aut(A) is endowed with the discrete topology).
Hence we see that the local A-systems are classified by the elements in

H'(B, Aut(A))

where Aut(A) is the sheaf of locally constant functions in Aut(A).

3.3.3 We may even consider local systems of vector spaces. In this case we endow the
vector space R? with the discrete topology.

Such a local system of vector spaces may also be considered as a vector bundle

m: X — B
where we have local sections eq,...,e,, which are called ”constant”. If we pass to a
different open set V' and a trivialization of X over V' by constant sections e, -- -, e/, then

on the intersection
’ — . . .
€, = 2 , Qij€;

where now the a;; are locally constant functions on V; NVj.

Of course we can describe the set of isomorphism classes of local systems of vector spaces
in terms of non abelian cohomology. We consider the group G4 = GL,(K)4 which is the
general linear group but endowed with the discrete topology. Then it is clear that the
isomorphism classes of local systems of n-dimensional K-vector spaces are given by

HY(B,GL,(K)y).

These local sysytems of vector spaces are the same kind of objects as bundles with a flat
connection. (See also 9.1 and 9.2)
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IV.4 Fundamental properties of the cohomology of sheaves.

4.1 Introduction. I will now state some results concerning the cohomology of sheaves.
They are not so easy to prove. In some cases I can give a hint to how to prove them in an
exercise.

If we have any space X and an abelian group A then we may define the sheaf Ay of germs
of locally constant sections. It is called the constant sheaf attached to A . Sometimes we
simply write A. We define the cohomology of X with coefficients in A as

H*(X,A):=H*'(X,Ay).
If A =7 then the cohomology groups
H*(X,Z):= H*(X, Zx).

are equal to the ones defined by singular cochains, if the space X is reasonable. (This is a
theorem, we come back to it later).

The first important result which we will show is that the cohomology of constant sheaves
vanishes on certain contractible spaces. We begin by stating a special case which is also
the starting point for the more general results:

1) If D ={(z1,...,2,) € R" | £z? < 1} and D the interior of D, then

HY(D, A) = Hi(D, A) = 0 for i > 1.

The following exercise treats the case n = 1.
4.1.1 Exercise.

Let us consider the following property (£) of a sheaf A on the intervall X = [—1,1|: For any open
interval I C [—1,1] the restriction map A([—1,1]) — A() is surjective. (We only require that I

is open in [—1,1], i.e. it may contain the boundary points. Condition (£) does not mean that A is
flabby!)

1.) Show that the sheaves A[_; 1) and injective sheaves have property (€).
2.) If A has property (£) and if we have an exact sequence

0—A—F—G—0

then F(I) — G(I) is surjective for any open interval in [—1,1].
3.) If we have sequence
00— A—B—C—0
where A and B have property (E) then C also has property (£).

4.) For any sheaf A which satisfies (£) we have H1([—1,1]),.A) = 0 for all ¢ > 1. Especially
we have H1([—1,1], A) = 0. for any abelian group A.
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This is some progress, I think we justified the computation in 1.2. But we need a stronger
result and this stronger result is provided by corollary 4.4.9 which says that the cohomology
groups are invariant under homotopies. To get to this point we need to investigate a relative
situation f: X — Y.

4.2 The derived functor to f,.

Given two spaces X,Y and a continuous map f : X — Y, we constructed the two functors
f«, f* which transport sheaves on X to sheaves on Y and sheaves on Y to sheaves on X
respectively (see I11.4). Let us denote by Sx the category of sheaves on X with values in
the category of abelian groups.

If we have a sheaf F on X (with values in the category of abelian groups), then we defined
the sheaf f.(F) on Y by

LF)V)=F(FH V)

for all open subsets V' C Y. It is clear that f,(F) is a sheaf on Y. The functor f, is left
exact but not exact in general.

We get our previous case if we take Y to be just one point, i.e. Y = {pt}. Then the stalk
of f«(F)pt in this point is simply F(X) = H*(X, F).

Again we define a derived functor for f, by the same method as before. We choose an
injective resolution
0 —F—1I° —T"— ...

of F, and we get a complex of sheaves on Y by taking the direct image
0 — fo(Z°) — fu(T") — ...
This is now a complex of sheaves on the space Y. We define the sheaves ( see II1.5.1)

_ ker(£(T%) = £, (Z*))
Im(f(Z971) = fu(Z7)

RIf(F)

It is clear that the stalk of RYf,(F) in a point y is simply the cohomology of the complex
of stalks.

As before, we show that these sheaves do not depend on the choice of the resolution and
that for any morphism
u:F—G

we get the derived map

R : R1f (F) — R1f.(G).
Finally it is clear that f.(F) = R°f.(F), and that any short exact sequence

0—F —wF—F"—0
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leads to a long exact sequence
0= fu(F) = fo(F) = fo(F') = RUL(F) = B fo(F) = R fo(F") = R*f(F).

The intuitive idea — which in some cases is right in some cases wrong — (see 4.4.7) is
that the stalk of R%f,(F), in a point y should be the cohomology of the fibre f~'(y) C X
with coefficients in the restriction of F to this fibre.

4.2.1. The following special case is very important ( see III 4.2.). Let us assume that
A C X is a closed subspace and let i : A — X be the embedding of A into X. Then i, (F)
is a sheaf on X. It is clear that the stalk of i, (F) is given by

. [ F, if zeA
’*(7)““_{0 if ¢ A

It is clear that F — i,(F) is an exact functor.

4.2.2. We also defined the functor f*. This functor transforms sheaves on Y into sheaves
on X. The idea is that the stalk of f*(G) in a point z € X is equal to the stalk of the
original sheaf G in the point y = f(x),i.e. f*(G)z = Gf(s). Since the exactness of sequences
of sheaves can be checked stalkwise, it is clear that f* is an exact functor. We know that
these two functors are adjoint and I recall the adjointness formula

Homg_ (f*(G),F) = Homg_ (G, f(F)).

We want to discuss the consequences of existence of f*, f, and the adjointness formula for
the cohomology and its functorial properties.

4.2.3. Lemma. If f: X — Y is continuous, and if T is an injective sheaf on X, then
f«(Z) is injective on Y .

Proof. This follows directly from the adjointness formula and the exactness of f*.

4.3 Functorial properties of the cohomology.

If we start from a sheaf G on the target space Y, and if we take an injective resolution
0—G6G—J" —J" — ...,
then we get a resolution
0— f*(G) — f*(JI°) — F(T") — ...
As we have seen earlier (IT1.3.5), this gives us a map
HY0 — f*(JT)X) = X (T — ...) — HYX, *(3)).
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On the other hand we have a map between the complexes

0o — J%%Y) — JYWy) —

N

0 — fIX) — [IEX) —
(This follows from the definition of f*.), and hence a functorial map

HY(Y,G) — H(X, f*0).

There is an especially important case of this: If f : X — Y, and we consider the sheaf Z,-
on Y, then we see easily

f*(ZY) =Lx.

To see this we construct a homomorphism from f/(Zy) to Zy: For U C X, U open, we
have
fZ)U)= lim Z(V).

VO f(U)

For V C f(U) we have f~1(V) C U, and of course, we have maps
Zy (V) — Zx (f~1(V)) — Zx(U),

and this provides a map
f'(Zy)U) — Zx(U).

This is a map from the praesheaf f’(Zy-) to the sheaf Zy, and this provides a unique map
[ (Zy) — Lyx.

Looking at the stalks we see that this map is an isomorphism.

This yields the functoriality of the cohomology groups H?(X,Z). For any map f : X — Y
we get
f4:HYY,Z) — HYX,Z).

There is another case: We always get a map HY(Y, f.F) — HYX, f*f.F) and the ad-
jointness provides the map f*f,F — F which corresponds to the identity f,F — f.F.
The composition of these two maps yields a map f?: HU(Y, fu. F) — HY(X,F). For this
map we have an easy theorem:

4.3.1 Theorem. Let us assume that f : X — Y 1is continuous and F a sheaf on X. If
the higher derived sheaves RYf,(F) = 0 for ¢ > 1 then we get an isomorphism

1: HI(X,F)—HY, f«(F))
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for all g > 1.

This is clear: We start from an injective resolution

0 —F —1I° —T" — ...
Then our assumption says that

0 — fuolF) — fu(T°) — fu(TH) —
is a resolution, and the lemma implies that this resolution is injective. Hence
HYY, fo(F)) = H(0 — f.(Z°)(Y) — £ (ZTH(Y) — ...).

But the complex of sections over Y is equal to the complex

0 —I°%X) —T'(X) — ...,

which gives the cohomology HY(X, F).
One important consequence of this theorem is the case of an embedding

i1 A—X

where A is a closed subspace of X. In this case we have seen that i, is an exact functor
from sheaves on A to sheaves on X, hence R%,(F) =0 for ¢ > 1 and

HY(A,F) = HY(X,ix(F)).

4.3.2 If we want to apply the theorem above we have to understand how to compute the
sheaves R7f,(F). We want to show that under certain assumptions the stalks R f,(F), =
HI(f~H(y), iy (F))-

To get more precise informations which will allow us to compute cohomology groups in
certain cases we have to make assumptions on our spaces.

4.4 Paracompact spaces.

In general the sheaves R?f,(F) may be very difficult to compute. One possibility is to
relate the stalks RYf,(F), to the cohomology groups of the fibre f~!(y). This is possible
if our spaces have certain finiteness and seperability properties.

A covering X = [J,ca Ua is called locally finite if for any point € X we can find a
neighborhood V, of x such that V, meets only finitely many of the U,, i.e. the set of
indices o for which V, N U, # 0 is finite.

A space X is called paracompact if it is Hausdorff and if for any open U C X and any

covering U = |J U; we can find a locally finite refinement of the covering. Recall that a
i€l
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refinement of the covering is another covering U = |J W; together with a map 7: J — I
jed

such that for all j € J we have the inclusion W; C U, ;). We call such a refinement a

strong refinement if even the closures W; are contained in U, ;).

I claim:

If our space X is paracompact and locally compact then any covering of an open set U =
U U; has a strong locally finite refinement.

iel

Since our space is Hausdorff and locally compact we know: For any point z € X and any
open neighborhood V; of z we can find an open neighborhood W, such that its closure
W, is contained in V,. Now it is clear how get a strong locally finite refinement of a

covering U = [J U;: We can construct a strong refinement of the covering and after that
i€l
we construct a locally finite refinement of this strong refinement.

4.4.1 We have a simple criterion for paracompactness. We say that an open subset U C X
is exhaustible by compact subsets if we we can find a increasing sequence of compact subsets

)=KyC...CK,CKpi1C...

o]
s. t. U = |J K,, and for any n the compact set K,, is contained in the interior K, of the
next one.

4.4.2 Lemma. A Hausdorff space X for which any open subset is exhaustible by compact
subsets is paracompact.

To see this we consider U C X and a covering U = |J U; by open subsets. We choose
i€l
o]
inductively finite coverings of K,,, where each covering set is contained in K, 1, , in one

of the U; of the given covering and has empty intersection with K,,_;. It is clear that the
resulting covering is locally finite: For any point € U we have a smallest n such that

[e]
u € K, then it has an open neighborhood which is contained in some K,; and does
not meet K, _; and this neighborhood clearly meets only finitely many of the sets in the
covering.

We say that our space X is exhaustible by compact sets, if the open subset U = X has this
property.

4.4.3 It is not difficult to show that a Hausdorff space is paracompact if it is exhaustible
by compact sets and if any open set U can be exhausted by a sequence of sets

Wn CVVn—}-lC Wn+1
where the W,, are only closed subsets of X.
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To see that this is true we observe that a closed subspace A C X is exhaustible by compact
sets. This implies that any covering of A by open sets has a locally finite refinement. (
Same proof as for Lemma 1.5.2. ) Assume that we have a covering of U by open sets. We
proceed as in the proof of Lemma 1.5.2 but now we construct locally finite coverings of
the W, ( instead of finite ones ) where we obey the same precautions as before.

We come to a very technical lemma which says something about extension of sections.

Assume that we have a closed embedding 7z : A——X . We call this a nice emdedding if
the following is true:

Let F be a sheaf on X, we consider the sheaf i*(F) on A. By construction it is the
sheafification of the preasheaf V' — ¢/(F)(V) where V is open in A and

#(F)V) = lim (F(U)).

Uov

If s € F(U) and if s is its image in ¢*(F)(U N A) then we say that s is the restriction of
§to ANU = V. Now the condition for being nice is that if any section s € i*(F)(V)
can be extended into some neighborhood U of V' in X, this means it is in the image of
F(U) — ¢'(F)(V) for some U which satisfies U N A D V. This can be reformulated by
saying that ¢’ (F) is already a sheaf.

4.4.4 Lemma. (Extension of sections): If X is paracompact and locally compact then any
closed embedding i : A——X 1is nice.

Proof. We start with V C A and our section s € F(V). We know from the definition of
¢*(F) that for any point p € V the image of s in the stalk s, € i*(F), is the restriction
of a section 5, € F(Up) where U, is an open neighborhood of p in X. Hence we can
find a covering |J, Uy D V and sections 5, € F(U,) such that 5, maps to the restriction
s|UaNV . We may assume that this covering is locally finite since our space is paracompact.
Let {W;};es be a strong locally finite refinement of this covering. As usual we denote the
map between the indexing sets by 7: J — 1.

Let g € V we can find an open neighborhood V, of ¢ in X such that V, meets only finitely
many of the W; and the U,.. We choose an open neighborhood D, C V, which is contained
in W; for all those ( finitely many ) j for which ¢ € W} and also in all those finitely many
U, with ¢ € U,. We may also choose D, so small that D,NW; =0 if ¢ ¢ V_Vj because D,
meets only finitely many of them anyway. It follows from the defintion of :* that we can
take these D, so small that we have 4| D, = 55|D, whenever ¢ € U, NUpg. Let 5, € F(D,)
be the restriction of any of these 5,. I claim that these sections 5,, 5, restrict to the same
section over D, N D, for any pair p,q. This is clear if D, N D, = () so we may assume
that D, N Dy # 0. If D, C W; then q € V_Vj because otherwise we have Dy N W; = () by
construction and this implies D, N D, = (), a contradiction. We have D, C W; C U,;).
Since the W; formed a strong refinement of the U, we even know that W; C U, ;. Hence
q € Ury and then we conclude that D, C U, ;) again by construction. Consequently we

have that D, and D, are contained in U, and this implies that the sections §,, 5, are
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restrictions of §.(;). Hence the §p define a section § over U = UD, and this is the element
we where looking for.

4.4.5. I want to discuss a variant of this lemma. Let us assume that only the closed subset
A is locally compact and paracompact. But in addition we assume that can find an subset
W c X with W D A and such that W3W, x A where W, is a topological space and we
assume that the isomorphism sends A%{wg} X A where wq is a point in W,.

I claim that under these assumptions the embedding is nice.

This can be shown by a slight modification of the proof of lemma 4.4.4. We proceed as in
the proof but we choose the open sets U, to be of the form U, = V, x W, where V, is
open in V and W, is a neighborhood of wy in Wy. Then we choose a strong locally finite

refinement of the covering V = J V4, let us denote this refinement by V = |J Y3 and
acl BeJ
let 7:J — I be the map for which Yz C V;(g). This gives us a covering of V' by open set

in X: We have V.C |J Yg X W,(g). This covering now plays the role of the covering by
BeJ

the W; in the proof of the Lemma 4.4.4. We proceed essetially in the same way as before.
We choose neighborhoods D, which satisfy D, C Yg x W, (g) if ¢ = (g, wo) € Y5 x W)
and D, NYp x W, (g) = 0 if - here we have a slight modification- ¢ ¢ Y x W, (). From
here on the argument is the same.

4.4.6 Lemma. Let i : A~—X be a nice embedding. If T is an injective sheaf on X then
i*(Z) is flabby and hence acyclic.

Proof: This follows from 2.2.2
These technical considerations will be applied to prove the following difficult theorem:

4.4.7 Theorem ( Base change):Let us assume that X is paracompact, that'Y is locally
compact and Hausdorff and that
f: X —Y

is a proper map. Then for any sheaf F on X and any y € Y we have

R (F)y = HU(f(y),i5(F)).

Recall that f is called proper if the inverse image of a compact set in Y is again compact.

Proof. We shall need a modification of the theorem therefore we will also discuss to what
extend we really need our assumptions.

Let iy : f~!(y)=—X be the inclusion of the (closed and compact ) fibre. Then we know
from our assumptions that the embedding is nice (Lemma 4.4.4).
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We formulate the following condition on our map f

For any open neighborhood of a fibre U O f~Y(y)we find a Vos.t.f (Vo) cU.  (Cyl)

We show that (Cyl) is valid under the asssumption of the theorem. We consider the
intersection

(X\U)NFHV)

for all closures V of compact open neighborhoods if V. Since f~!(V) is compact, the
intersection is also compact. Since U is a neighborhood of f~(y) we know that for
r € X \ U we have f(z) # y. We may choose open neighborhoods Wy, V) s.t. their
closure is compact and f(Wy(,)) NV, =0, hence f(z) € V. Hence z & (X \U)N f~H(V)
and therefore

(N &X\U)nfF (V) =0.

Voy

Now it follows from a standard argument on compact spaces that there must bea V,y € V
with f~3(V) c U.
The following considerations prove the assertion of the theorem under the two assumptions
a) for all y the fibre f~!(y) is closed and the embedding is nice
b) (Cyl) holds.

By definition we have

fe(A)y = lim A(f7H(V))

V:iyeVv

and (Cyl) implies that

lim A(f7'(V))= lim A{U).

Viyev U:f~l(y)cu

Then the fact that the embedding of the fibre is nice yields

lim  AU) = i (A)

U:f~l(y)cu

and we conclude

Fe(A)y = 3, (A)

This proves our the theorem for ¢ = 0. To prove it in general, we start from an injective
resolution

0—F —71° —71' — ...

on X. Then (we sometimes drop the brackets inf,)
0 — fuf — fL,I° — ...
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is a complex of injective sheaves. If we pass to the sequence of stalks at a point y € Y, we
get a complex of abelian groups

0— fuiFy — [Ty — ...,

and the cohomology of this complex is the stalk Rf.(F),. But this complex is equal to
the complex
00— in(F)(f W) — i I°(fHy) — -,

and this is the complex of global sections of the complex of sheaves on f~1(y):
0 —isF—iyT° — ...

which is a flabby and hence acyclic resolution of 7 7. Hence the cohomology of the above
complex of global sections is

HI(f7H(y), iy (F))-
4.4.8 Corollary. If X,Y and f: X — Y are as in the theorem and if

Hq(f_l(y),iZ(f)) =0 for ¢g>1 andall y€Y,

then
f1: HYY, f F)—HY X, F)

1S an isomorphism.

This is the combination of the difficult and the easy theorem. The following corollary is
not a direct consequence of the theorem.

4.4.9 Corollary. If X is a Hausdorff space and if
p: X x[0,1] — X,
1s the projection to the first factor then this projection induces isomorphisms in cohomology
p*: H*(X,Z)—HYX x[0,1],Z).
For any t € [0, 1] the inclusion x — x X {t} induces an isomorphism in cohomology.

This is not a direct consequence of the the theorem as it is stated since we do not make
any assumption on X except that it is Hausdorff. But first of all our modifified lemma
4.4.6 implies that for any point z¢ in X the embedding {zo} x I——X x I is nice. (We
need that the fibre is closed so we can get away with the weaker assumtion that points in
X are closed). Secondly it is clear that the condition (Cyl) in the proof of the Base change
theorem is also fulfilled. This means that the proof is valid for the projection p.
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The rest is clear since p,Z = Z, and since
Hi({z} x[0,1],Z) = 0.

The second assertion follows if we compose the inclusion with the projection.

4.4.10 The homotopy axiom. Let X be a Hausdorff space. If we have two maps
f,g: X —Y
which are homotopic, i.e. there is a map
F:X x[0,1] —Y,
so that F(z,0) = g(z), F(x,1) = f(x) then

fr=g":H(Y,Z) — H*(X,Z).

Proof. Look at
top

X 3Xxx[0,1]5Y
bot

where the arrows are z — (x,0), z — (x,1). If we compose these arrows with F we get

[ 9.
4.4.11. A space X is called contractible to a point p € X if the two maps f = Id and the
map g which maps all the points in X to the point p are homotopic.

If we apply the homotopy axiom to this two maps we get

For a contractible Hausdorff space X we have

HY(X,Z)=0 for alli >0

It is clear that the space R™ is contractible. The same thing holds for any open ball
B™{(x1,...,7,)| Y. x? < 1} and also its closure.

4.4.12 Application.
We have the tools to compute cohomology groups of spheres and other simple spaces.

We consider the sphere S™ = {(zg, Z1,...,%,) € R a2 +22+.. .+ 22 = 1}. We cover it
by the two balls D, which are defined by z,, > 0 or z,, < 0 respectively. We have the two
inclusions iy : Dy<——S". These balls are contractible, we have the sheaves Zp, which
we extend to the two sheaves Z, = i1.«(Zp, ). We also have maps Zg. — Z, which on
open sets V' C S™ are defined by the restriction Zgn (V) — Z, (V) = Zp, (V N D). This
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gives an inclusion Zg,<——2Z, @® Z_ which is an isomorphism in all the stalks which are
not over the intersection of the two balls which is the sphere S"~!. In the points z in the
intersection the inclusion is given by the diagonal Z, = Z C (Z L@ Z )y = Z® Z From
this we get an exact sequence

0 Zgn =2, ®L_ — Lgn — 0,

where the map s : (Z, ®Z_)y = Z®Z — ZLgn—.» = 7Z is the difference betweeb the +
and — component.

The cohomology of the two balls is trivial except in degree zero, hence we get

Hu_l(Sn_l,Z):)Hu(Sn,Z)

if v —1 > 0 and in degree zero we find the exact sequence

0— H°(S",Z) - H°(D,,2)® H°(D_,Z) — H°(S"',Z) - H*(S",Z) — 0.
Putting all this information together we can prove rather easily that
HY(S°Z)=Za®Z
and for n > 0 we have

v 0 forv#0,n
HY(S™. Z) = ’
(5", 2) {Z forv=0o0rv=mn

This is of course essentially the same calculation as the one one finds in books on topology.
In these books the two essential ingredients are homotopy and the so called Mayer-Vietoris
sequence. Here the Mayer-Vietoris sequence is replaced by the construction of suitable
exact sequences of sheaves.

Of course we have to be aware that the isomorphism H™(S™,Z)>Z is not canonical ( See
also the example 1 (ii) at the beginning of this chapter). It depends on the choice of the
homomorphism s above. To make this choice we used the explicit description of the sphere
to decide what D, and D_ is. The point is that it suffices to choose an orientation on
S™. then we can identify H™(S™,Z) = Z ( See 3.3.1 and 7.3,7.4) . To see this we proceed
inductively. If we have covered S™ = D,UD; and D,N D, = S™~ !, and if we have choosen
an orientation on S™~ 1, then we can do the following: We choose a positively oriented
basis e; - - - €,—1 of tangent vectors in a point z € S*~!. Now we choose a normal vector v
to S”~! at z such that e; ---e,_1, v is positively oriented. This normal vector points into
D, or Dy. Now we put D, = D, if it points to D, or D, = Dy in the other case. Then
we have a unique choice for s, and we get a canonical isomorphism

H" (8" 1 Z) — H™(S™, 7).
Since we selected an orientation on S~ we have H"~1(S"~1 7Z) = Z.
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4.4.13. A two dimensional, compact, oriented manifold is called an oriented surface.
The simplest example is the 2-sphere S2. If we have such a surface S we can construct
a new one by the following construction: We pick two different points p,q € S and we
choose two small neighborhoods D,, D, which are homeomorphic to a two dimensional
disc. The boundaries dD,,, 0D, can be identified to the oriented circle S'. We form a
cylinder S x [0,1]. We remove the interior of the two disks from the surface S and map
(St x [0,1]) = S x {0} U S* x {1} by taking the identity on each component to the
boundaries of our two discs in S\ D, U Dj.

Using this map we glue the cylinder to our surface, we add a so called handle. It is a
theorem in two dimensional topology that any oriented surface S can be obtained from
the sphere by adding a certain number of handles.

4.4.14 Exercise.

Let S be a compact oriented surface which has been obtained from the sphere by adding g handles.
Show that H°(S,Z) = H?(S,Z) = Z and H* (S, Z)>Z29.

Hint: Construct a sequence sheaves on S which is suggested by the process of adding a handle and
proceed by induction.

We can also understand the cohomology of our oriented surface without such an explicit
construction.This will be discussed in the section on Poincaré duality (see 8.3.).

IV.5 Cech cohomology of sheaves

5.1. The Cech-complex:

For any space X, any sheaf 7 on X with values in the category of abelian groups and any
open covering

U={U}ier, X=Ui

iel
of X, we will define the Cech-cohomology groups
HIX,4,F), ¢q=0,1,...

To define these cohomology groups we introduce the so-called Cech complex. For any set
of indices (ig,...,1q) € I7T" we define

U; :UioﬂUilﬂ...ﬂU‘

0---2¢q 1q-

Then we put
cUx,ur) = [ FU.i,)

(i0,...,iq) €T+

for ¢ =0,1,.... We define a boundary map
d: CUX,U,F)— CTHY(X, U, F)
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by the following formula

q+1

(dc)io---iq+1 = Z(_l)y res(cio,...,zu,...,iq+1 )
v=0

We have to explain why this formula makes sense:

An element ¢ € C?(X, 4, F) is an element in a product and has components
Cj0~~~jq E ‘F(UJOJq)

Hence dc will also have components which are indexed by elements in 1972, An element
(3gy---,ig+1) € 1972 provides g + 2 elements in 97! which are obtained by suppressing
one of the components. By (i, ..., %,,, ...,ig4+1) we denote the element in in I9t1! where
we removed 1,,.

cU, -

For all these g+ 2 possibilities we have the restriction associated to U; i0see i eeesiqi

which we simply denote by

0...7:q+1

res: F(U, ) = F(Uio,...igs1)-

0s-cslps--slg+1

Now it is clear that the formula gives the rule to compute the (ip...%4+1)-component of
dc. We leave it as an exercise to prove that dod = 0. Hence (C*(X, 4, F),d) is a complex
of abelian groups.

Let us look at the beginning of our complex
0—[[Frwy) -5 ] Fwinu;)—....
i€l (4,9)€IXI

An element
c = (...,Ci,...)

in the first term goes to zero if and only if
c|U; N U; = Cj|Ui NU; for all 4, 5

But since F is a sheaf this implies that this is the case if and only if ¢ comes from a
uniquely defined global section s € F(X), i.e. s; = s|U; for all 4.

We define cycles Z9(X, 4, F) to be the kernel of d and boundaries are the elements b €
C1(X, 3, F) of the form b = dc with ¢ € C?71(X, 4, F). The boundaries form a subgroup
BI( X, F) of Z9(X, 4, F) and now we put

HY(X, U, F) = ZYX, 4, F)/BYX, U, F).

We just saw 5
HY(X, 4, F) = F(X),.
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5.1.1 Remark. In general these Cech cohomology groups do depend on 4. Later on we
shall see that under certain assumptions on the sheaves and on the space and the nature
of the covering they will be independent of the covering.

We have the notion of a refinement of a covering (See IIL.3.1). If 7 : ¥ — il is such a
refinement the map 7 between the indexing set yields a map between the Cech complexes
T (C* (X, U, F),d) = (C*(X,T,F),d) and we get a map

H* (X, U, F) = H*(X,0, F).

It is possible to show that this map on the level of cohomology does not depend on T, but
we do not need this fact here. Since the coverings form a category we can define the Cech
cohomology groups of a space as direct limit

lim H*(X,4, F) = H* (X, F).

lim
U
5.1.2 The alternating complex.

We can also look at the so called alternating complex Cy, (X, 4, F). It is defined as the
subcomplex where the cochains satisfy

(7/) Cigyeens @y Tyaniq — 0
and
(”) Cigyeesyesyensiq — T Cig Yy Ty it

It is not too difficult to prove that Cg, (X, 4, F) is a subcomplex, i.e. the coboundary
operator maps it into itself. It is a little bit more difficult to prove that

(X W F) = C(X, U, F)

induces an isomorphism in cohomology. Sometimes it is easier to do computations using
this smaller complex.

5.1.3 Exercise.
a) Prove that

;lt(Xauw?-) - C.(X,ﬂ, :F)

induces an isomorphism in cohomology.

b) Consider the simplex
AM = {(21,...,8nya) € R*?z; >0, sz = 1}.
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Then we get a covering 81 of A" by the open sets
U; ={(z1,...,Tny2) € An+ 1|z; > 0}.
Show that the cohomology groups

IV{m ATL-I-l 7 :{:0 ifm >0
( 4.2) =7Z ifm=0.

c) Now we remove the interior of A"t and we get the n-dimensional sphere
= =1(T1,-..,Tpio at least one of the x; is zeroy.
0A = S™ yeveyTnt t least f th
ur covering o induces a coverin on S™.
o g of A" ind g U Sn
Ui = {($17 . '7$’n+2) € Sn‘xz > 0}

Show that the Cech-cohomology groups H* (S™, ', Z) coincide with cohomology groups computed
by injective resolutions.

A rather elegant solution of this exercise can be obtained if we use the following Lemma
whose proof I give for later references.

5.1.4 Lemma. Let U be a covering of an arbitrary space X and let us assume that in our
covering 4 = {U; }icr is a membery € I for which Uy = X. Then we have HI(X, 4, F) =0
for all g > 1.

Proof. Let us assume we have a cocycle
c= ( < Cig,ig + - .)(Z‘07_._’Z'q)e[q+1 € Zq(X,ﬂ, .7:)
We construct a cochain b € C4= (X, 4, F) by

biOa"-viq—l - Cy77:07---71q—1'

We have to observe that

Ui = UyaiOr'

Oa-“aiq—l -aiq—l'

Then
05 ybeeni

= E(—l)yc i i _(dc)y,io,...,iq + Cig,...ig = Cig,....iq-

Y80 5eeaslu yennylq

To apply this to the exercise above we can consider the inclusion U0<—>A"+V1. The covering
of A"+ induces a covering of Uy and these two coverings yield the same Cech complexes.
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5.2 The Cech resolution of a sheaf.

5.2.1 Heuristical remark. Let F be a sheaf on X with coefficients in the category of
abelian groups. Let us assume that we have a resolution of F

0-F—=>G">5¢gt—...5G"—...

A resolution of a sheaf may be very useful for the computation of the cohomology of F.
In Chapterll we showed: If the resolution above is acyclic then we can use it to compute
the cohomology groups of F, we have :

H*(X,F) = H*(G* (X))

But even if a resolution is not acyclic it may also be helpful. For instance we still have a
homomorphism

H*(G* (X)) - H* (X, F)

which in general is neither injective nor surjective. But we have some kind of estimate for
the deviation from being an isomorphism and in these estimates the cohomology groups
HY(X,GP) will enter.

In the case of an acyclic resolution these cohomology groups are zero for ¢ > 0 and we get
another explanation of our old result. The precise formulation of the result will be given
in 6.2.1.

5.2.2. T want to put to Cech complex into this context. Let 4 = {Uy}qea be a covering

of our space X let F be a sheaf with values in the category of abelian groups. We give
q+1

the indexing set A a total order and we denote by AZ"" the subset of those sequences
a = (o, 01, ...,0q) where ag < ai ... < ag. Again we put Uy = Uy, N Uy, N ... Uy, and

let o : Uy——X be the inclusion map. We restrict F to U, and take the direct image of
this restriction. This way we obtain the sheaves F = iq.i}(F). I recall that these sheaves
are defined by the rule iy.3% (F)(V) = F(V NU,). The stalk of this sheaf is equal to F,
if z € Uy it is zero if z ¢ U_g and it depends on the local structure of U_g in the boundary
points z € OU,. We have always a homomorphism F, — Fx_. I allow myself to write F
for Ffa}.

Now we construct a resolution of our sheaf F

O—>.’F—>Hf;—> H Flapy = — H Fa -
acA (a,B)EAX A, gEAq<+1

The first map is simply

Fo — H Foro
a€cA

85



The boundary map

d: [ 7o— H]—'E*

€A peart?
is given by the following rule: Let s = (...s4...) € ([[ Fa)=

g+1

(ds)p =D (=184, 5,...0011

1=0

where we interpret 880, fi. By, BS AN element in fﬁ,m It is clear that this is a complex of

sheaves.

5.2.3 Exercise.
a) Prove that this complex of sheaves is exact.

Hint: We have to check exactness in the stalks. If x € X we know that we can find an element
v € A withx € U,. Now we are in the same situation as in the above Lemma, except that we have
modified the Cech complex since we have ordered the index set. But it is not difficult to adapt the
Lemma to this situation here.

b) Let E be a finite totally ordered set, i.e. E ={0,1,...,n}. Let A be an abelian group, for
any r € 7 we define

C"(A) = ®icE, 1j=r+14,

by definition we have C"(A) =0 ifr € {0,...,n} = E. For a subset I C E and o € I we define
p(a, I) as the position of v in I, i.e. p(a, I) = 0 if o is the smallest element, p(a, I) = |I| — 1 if
« is the biggest one.

We define (co-)boundary operators

d:C"(A) — C™t1(A)
§:C"(A) — C™1(A)

by
(da)s = (-1)PPDas 15
BeJ
(ba); = Z(—l)p(ﬂju{ﬂ})aju{ﬁ}
B&J

where a j is the J-th component of

We get two complexes

0 C%4) L ... L ora) S ortia) L

0—...C"(A) L o 1(4) L ... 5 c4) — 0
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Show that these two complexes are exact using the ideas of the part a) and the previous exercises

5.2.4. Let me come back to the heuristical remark above. I said that the complexes of
sections G*(X) of a resolution contain some information concerning the cohomology of F.
Now we see that for the special case of the Cech resolution the resulting complex of global
sections is very similar to the Cech complex attached to the covering actually it is the
ordered Cech complex and it is known that the ordered Cech complex gives us the same
cohomology groups.

We see that coverings allow us to construct resolutions of sheaves. We already saw some
other constructions providing resolutions of sheaves. If we look back to our computation
of the cohomology of the spheres ( See 4.5 ) then we see that our first short exact sequence
is a resolution. We could extend it by resolving Zg._1 and so on. This gives us the general
idea that these resolution in some sense provide a kind of cutting a space into simpler
pieces. (See Exercise 4.5.2 ).

IV.6 The spectral sequence

6.1. Now we have seen that a covering of our space provides resolutions of sheaves. In
general the sheaves in the resolution will not be acyclic but perhaps their cohomology is
easier to compute because they are supported on smaller sets namely the closures of the
Uio,...;iz- The method of the spectral sequence allows us to extract informations on the
cohomology of the sheaf F in terms of the cohomology groups of the resolving sheaves.

We consider a resolution of a sheaf F:
0-F=G'=G ... 56" — ...
6.1.1. We break the sequence
0F—=G"—K—0

and we have seen (I1.3.6) that we can find an injective resolution of this short exact sequence

0o—- F - ¢ = K -0

) ) \J

0—- I° —- I9J° — J° —0
) \J \J

0— I' - I'eJ' — J' =0
\J \J \J

We have the second half of the exact sequence
0-K—=Gl—...=5G"—
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and we can apply the same to this sequence. Proceeding in the same way forever, we get
a diagram

0 0 0 0
\x ) \: \J

0— F —- ¢ —- Gt —-.-.5 G —
1 ) l \J

0— I° — 99 —» 10 ... [P0
1 ) 1 \J

0— I' - 1% -5 [ ... P
.’ . \J

0— I — 12 — [12 ... P2
1 \J 1 \J

where all the I¥ and IP? are injective, all squares commute. This double complex of sheaves
has two properties

a) all horizontal sequences are eract.

b) The vertical complexes I¥* are injective resolutions of G¥ and I* is an injective
resolution of F.

We apply the functor global sections to this diagram and get the augmented double
complex I**(X)

0 0 0 0
3 \J 1 )

0—- FX) — ¢%(X) —» ¢'(X) == G (X)) —
3 | 1 1

0— I°X) — IX) —» IXx) —---— I"X) —
\’ \J \’ \J

0— I'(X) - I"X) —» I'X) —--— I"X) —
\ 1 1 1

0— I*(X) — I2X) — I*X) —--— IP*(X) —
1 \J 1 \J

We replace the vertical complex on the left and the horizontal line on the top by zero and
then we get the ( non augmented ) double domplex I°*

0 0 0
\ 1 |
0— IX) —» I'%X) —--— I"X)
1 ) \J
0— IX) —» I'(X) —---— I"(X)
1 1 1
0— I2(X) —» I'Y(X) —--— I"X)
1 \J \J
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All squares commute and all vertical and horizontal sequences are complexes. We give a
name to the differentials

. 1, :
dp, : IPI(X) — IPTH9(X) horizontal

dy, + IPY(X) — IP9TH(X)  vertical.

We get a simple complex I3, from I**: We put

S
no—@ Pq
ISpl - p—l—q:nI

and we define
m . n n+1
d" ol —— ISpl

as
dh= ) dy+ (-1)"dy,

p+q=n

It is clear that the commuting of the squares implies that
d"tlod® =0.

6.1.2. The following facts are more or less obvious from the construction 6.1.1.

a) The vertical complexes (IP*(X),d"”) compute the cohomology of the sheaves GP,
i.e.

HY(X,G%) = HI(I"*(X),d")

b) The horizontal complexes (I*?,d') compute the cohomology of I? and hence they
are exact except in degree zero

H(X,I?) =19X) = H'(I*Y(X),d)

and
HP(I*(X),d) =0 for p> 0.
¢) The inclusion
rr(X) 51 (X)

spl
given by £, — (24,0, --,0) induces an isomorphism
H*(I*(X)) = H*(I5,(X)
and hence we have

H*(X, F) = H* (I3, (X))

The last assertion is not quite so obvious, it requires a little argument using b). Let us
look at a class which is represented by the cocycle

= (Zony---,Tn0)-
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The entries of the array are placed in our complex like that:

Zn,0
Tpn—11 O

Zo,n

The cocycle condition implies d],gz,0 = 0. Hence we find a b = (0,...,yn—1,0) € Ig)Tl(X)
such that d;, | 4(yn—1,0) = Tno and z — d?p_ll(b) represents the same class but has its last
component in the upper right corner is equal to zero. Repeating this we get that we can

represent our element by a cocycle whose components are zero except the first one in the
lower left corner. This implies c).

We also have the inclusion of the complex

X)) - (X)) —=---—> (X)) —
{ { {

ISOpI(X) - Islpl(X) == Iy

and hence we get from this construction a homomorphism
H™(G* (X)) — H" (I3, (X)) = H" (X, F)

This is the so called edge homomorphism.

If the sheaves GP are acyclic then I1.3.2 tells us that this edge homomorphism is an isomor-
phism. This can also be seen by looking at the the double complex, the same argument
which gave us c¢) in the assertion above implies that the edge homomorphism is an isomor-
phism.

If the GP are not acyclic then the edge homomorphism is neither injective nor surjective
in general. In this general case we can get information on H™(X,F) in terms of the
cohomology groups H?(X,GP) in other words the cohomology groups of the sheaves GP
enter.

Before I discuss this in some detail I recommend to the reader to solve the following exercise.
It shows how these mechanisms work and it deals with the computation of H' (I3, (X)).

The cocycles are the elements (1, %1,0) which satisfy d'z1 9 = 0,d"z¢1 =0 and d"z1 0+
d'zo1 = 0. Now a simple calculation solves the following exercise

6.1.3 Exercise:

a) Show that the edge homomorphism
HY(G*(X)) — H'(X,F)

is injective. It provides an isomorphism to those classes which can be represented by cocycles
with Zo1 = 0.
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b) Sending a class to xo 1 induces a a homomorphism
HY(X,F) = H'(I;;(X)) — H'(X, )

and that the kernel of this maps is the image of the map in a).
c) The image of the map H'(X, F)) — H'(X,G°) lands in the kernel of H'(X,G") —
H'(X,G') and we have a homomorphism ker(H(X,G%) — HY(X,G')) — H?(G*(X)).

d) Show that we get even on exact sequence

0— HY(G* (X)) » HY(X,F) = ker(H'(X,G°) —» H*(X,G')) — H*(G* (X))

Now I explain what happens in higher degrees. The formulation of the becomes more
complicated. I will formulate the main result and give some indications why it is true.

6.2 The vertical filtration.
In the following discussion we will never need that the horizontal complexes of sheaves are
exact. This means that in 6.1.1 we can drop the condition a) and moreover of condition
b) we only need that the vertical sequences IP* are injective resolutions of GP. The sheaf
F will not play any role.
We have a filtration on the double complex, we define FP(I**(X)) to be the subcomplex
where the entries in the first p — 1 vertical collumns are zero. By we denote F” (I3, (X))
we denote the resulting simple complex. The inclusion of complexes

FP(I:

spl

(X)) —I5,(X)

spl

induces a homomorphism in cohomology

H" (FP(I5,(X))) = H"(I5,(X))-

and we define FP(H" (I3, (X))) as the image of this homomorphism. This yields a filtration
of the cohomology, we have FO(H™ (I3 (X))) = H™(I: 51(X)) and FP(H™(I3,(X))) = 0 for

spl spl
p > n. Our goal is to get some understanding of the filtration steps

FP(H™ (I3(X)))/FPHHH™ (I5,(X)))-

We have an exact sequence of complexes

0— Fp+1( spl(X)) — F? ( spl(X)) - Fp(I pl(X))/Fp+1( spl(X)) — 0.
The complex on the right is simply the vertical complex given by the p-th collumn. Hence
we know

H™(F?(Ig,(X))/F* (I5,(X))) S H" 7P (X, GP).
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We write the exact sequence in cohomology

— H™(FP7(15,(X))) = H™(FP(I3,(X))) = H"7P(X,GP) — H" " (FP~1 (I3, (X)))

spl spl

which yields an inclusion

H™(FP(I3,(X)))/ Tm(H™ (F** (I3, (X))) € H"77(X,GP)

spl p
By definition we have a homomorphism

H"(F?(I:

spl

(X)))/ Tm(H™ (FP*H(I

spl

(X)) — FP(H"(I§

spl

(X)))/FPHHH™ (I5,(X)))

which gives us

E1l: The filtration steps FP(H"(Is'pl(X)))/Fp"'l(H"(IS'pl(X))) are isomorphic to subquo-
tients of H"P(X, GP).

We put n — p = g we write EY'? = H?(X,G?). In addition the structure of a complex on
G* induces a structure of a complex

HY(X,G*)= — HYX,G*")— HYX,G") —» HY(X,G""") —.
We denote these boundary operators by d??: E?? — EPT1% and call the complex
(BT, d1")pq

the Fi-term of our double complex. Since this is a complex we have the cocyles and
coboundaries in it

pgq Pq Pq
BP C 7P C EF

The next question is:

How can we compute the subquotient of EP’? which is isomorphic to the subquotient
FP(H™(I: (X)))/FPTY(H™(I:;(X))) of the cohomology? A subquotient of EY? is by

spl spl
definition of the form Z2?/BP2I where BE? C ZP? C EY?, we have to compute these two

submodules.

First of all it is clear from the definition that ZZZ consists of those classes &, € H1(X, GP)
which have a representative z,, € I?4(X) which is the lower left entry of a cocycle

Tp+2,q-2
Tp+1,q—1

Tpq
0

i.e. given x,, we can place entries ;1 4—1,---,Zp+q,0 Such that dor = 0.
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It is also clear that &,, € B if and only if we can find an element

y € I (X)

l.e. an element
Yn—1,0

Yo,n—1
such that z — dy € FPH (12 (X)).

Our strategy is to approximate these submodules Z2? (resp. B?9) by a sequence of de-
creasing (resp. increasing ) submodules, i.e. we will construct sequences of submodules

Pq Pq
210D 2y D ... L

and

BY c BY¥ c...B¢
such that for large indices r we have Z?? = ZP9, BP9 = BP4,
The first step in this sequence is easy to describe.
It is of course clear, the first problem is to find an ;11,41 € IP*1?71(X) for which

/ 1!
d2pg = d"Tpi1,g-1-

The element z,, represents our class {,4, and we can find such an x,1 4—1 if and only if
the class goes to zero under

di?: HU(X,g%) — H(X,G")

i.e. it lies in the kernel

ZP1 = ker(d)?)
and this implies Z¥? D> ZP4.
If on the other hand our element

€pg € BT = Im(df~ 9 : HI(X,GP"') — HY(X,GP)),

then this means that we can find an element y,,_; 4 which represents a class in H4(X, gr1)
and therefore satisfies d’ (yp—1,4) = 0, and which maps to z,, under d’. Then we can choose
our element

0

Y= Yp—1,q
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and

which means that
€pg € B C ZF1.

We conclude that BY? ¢ B22 C Z22 C ZV, and we define

Y = 7%/ BY? = HO(H"(X.G").

In other words we define E5? as the cohomology groups of the complex (ETY, d7?). We get
E2: The filtration steps FP(H™ (I3, (X)))/FPT(H" (I3,
tients of E¥.

The decisive point is that we can define

(X))) are isomorphic to subgquo-

db?: EY? — BB
such that we get a complex

dp—2.at1 dPe
Eg—2,q+1 LI qui)Egﬁ,q—l
such that the cocyles and coboundaries of this complex satisfy BY? C B?? C Z?4 C Z%.
To construct this map we consider an element &,, € ZP? we want to lift it to a cocycle .

Since this element maps to zero under the boundary map df? we can find an element
Tpi1,q—1 such that &) (z,q) = d”(2p41,4-1). If we apply the horizontal boundary operator
we get ' (Tpt1,4-1) = Zpt2,q-1 € IPT?971(X). This element 2,12, 1 represents a class in
HP+2:4-1(X G9-1) which is in the kernel ZPT2%71 of @?*2971 because it is a boundary
under the horizontal boundary operator.

We made some choices, but it is obvious that another choice modifies z,154—1 by an
element in BP9 and hence we get a homomorphism

Pq . P9 p+2,9—1
dy” : E5" — E5 .

It is alo easy to verify that we even get a complex

p—2,9+1

d qu
p—2,q+1%2 pq 2 p+2,9—1

It is clear that we must have d5?(&,,) = 0 if £y € ZP9 i.e. if this class lifts to a class in
H"(F?(I: (X)) Or in other words Z%? = ker(d5?) D> Z%4.

spl

94



I claim that a class in E5? goes to zero in H™(I3,(X))/FPH (H™(I3,(X))) if it is in
q+1

the image of d2~ "', An element in E%? can be represented by an element y,_s 11 €
IP=2:9+1(X) which goes to zero under the vertical boundary operator and whose image
under the horizontal boundary opertar is of the form d'(yp—24+1) = d”’(yp—1,4)- Then
d'(yp—1,q) = Tpq represents an element in the image. Then we can take

Y= Yp—1,q
(_1)p_2yp—2,q+1
0

and

Hence we get BL? = Im(d5 >t 5 Bra,
Now we define EX? as the cohomology of the complex, i.e.
By = 737/ By

Now it is clear - and I will not give the formal proof - that this construction can extended
by induction to all » and we get

6.2.1. Starting from
E? = HY(X,G% and d}?: HY(X,G?) — HY(X,G*)
we can define a sequence of terms
(EP1 d,) dPY:EPY — EPTTHO"TL where dPT4 " o gP = ()

such that at any level

EP ker(dp? : EP? — Eptra—r+l)
r+1 — Im(dg—’r,q—I-'r—l : E,I?_T’q-I_T_l IR E?’q)

and such that for all r the subquotients FP(H™(13,(X)))/FP* (H™(I3,(X))) are isomor-

phic to subquotients of EF1. Since we are in the positive quadrant, i.e. p,q > 0 the sequence
of modules EF? becomes stationary after a while.

We say that the spectral sequence converges to the target H™(X, F) and write
(ET?, di?) = H"(X, F)
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or if one knows the E>-term
(B3, d5) = H™ (X, F).

6.3 The horizontal filtration.
6.3.1 The horizontal filtration in the case of a resolution

We go back to our starting point where we had a resolution of a sheaf

0F>G"5¢Gt—...5G" — ...

from which we constructed the double complex. Then conditions a) and .b) in 6.1.1. are
valid.

We now consider consider the filtration by subcomplexes 'F'(I3 (X)) C I3, (X) where the
entries in the first ¢ — 1 horizontal lines are zero. If we apply the same the same arguments
to this horizontal filtration we get something that we have done already. Since the I* are

acyclic our arguments yield that
H*('F(I5,(X))/ FI (I3, (X))
vanishes except we are in degree zero and

HO(FI(15,(X)) /' FT (15:(X)) = HY(X, F).

spl

Hence we see that for this filtration
'E?? =0 unless p=0

and
'EY" = H™(X, F).

We do not have any non trivial differentials. Hence we see again that the double complex
computes the cohomology H*(X, F). This is only true since we assumed a) in 6.1.1. If we
do not have this assumption then both filtrations are non trivial (see 6.4.2). We will also
encounter a case where the vertical filtration is uninteresting.

6.3.2 The general case

Assume that we have a complex G* which starts in degree zero and that we have an
adjusted injective resolution G* — I** ( See 6.4.1). We change the notation and give the
index ¢ to the vertical complexes. (We want a certain consistency therefore we arrange
things so that p is the index for the filtration F?.)

Now the horizontal filtration will not be trivial in general. We can apply to it the same
method which we applied for the vertical filtration. Let 'FP(I**) be the subcomplex where
the entries in the first p — 1 lines are zero. Now we use the specific form of the adjusted
injective resolution. The horizontal complex 'FP(I**)/ FP*1(I**) is of the form

q—1,p q—1,p qp qp qp q+1,p q+1,p q+1,p q+2,p
IB EBIH @IB—>IB @IHGBIB —)IB @IH @IB
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where the diffrential is always zero on the first two summands and is the identity isomor-
phism between the third term in degree ¢ and the first term in degree ¢ 4+ 1. This makes
it easy to compute the cohomology even after we applied the global section functor

HI(FP (1) (X)/ FPHH (1) (X) = I (X) 5 B

and the differential ‘d?? : T%(X) — ILPT1(X) is the differential which obtained from the
differential in the resolution H4(G*) — I3 after we take the global sections. Hence we see
that the F5 term of the spectral sequence whose Ej-term is

'EFISHP (X, HY(G*))

and which converges to H*(I3,(X)).

If the sheaves GP are acyclic for the functor global sections then we have R*H$(G*)=
G*(X) But still we may consider an adjusted injective resolution of G* — I**. In this case
the vertical filtration is kind of uninteresting. Its E?? term is as always H%(X,GP) but
this is zero for ¢ > 0. The differentials are given by d : H°(X,GP) — H°(X,GP™") and his
gives us the E%? term as

EP — HP(G*(X)) forg=0
2 0 forg >0

The higher differentials are zero.

6.3.3 Applications.

This method of the spectral sequence has many applications. We will discuss some of these
applications lateron. Here we give some indications how such applications can look like.

If we consider again the resolution of our sheaf

0 F—>G">5¢gt—> ... G — ...

One typical applications provide finiteness results. For instance it we can show that E??
or E¥? are finitely generated abelian groups or finite dimensional vector spaces, then we
can conclude that the same is true for the target groups ( vector spaces ) H™(X, F).

Another typical application concerns Euler characteristics. If we know that the cohomology
groups H™ (X, F) are finite dimensional vector spaces over a field k which vanish forn >> 0
then we define the Euler characteristic

X(X, F) =Y (-1)"dimg(H"(X, F)).
It is of course clear that

XX, F)=>" )" (—1)PTdimy,(ER9).

p+q=n
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But if we have for a certain level r that the total dimension of the EP? is finite then it
follows from simple principles in linear algebra that

D (—1)PTdimyg (EPY) =) (—1)P dimy (EPY,).

Then we can conclude

X(X,F) =Y (-1)P*9dimy,(EPY).

b.q

If already the H?(X,G?) have finite total dimension then

X(X,F) = (=1)P*dim (H)(X,G")).

p.q

There are interesting cases where one knows the structure of the groups E5? and one
also knows that the db? are zero. Then we have EY? = E%? and it can happen that the
differentials on this level vanish again and that this goes on forever. Then we say that
the spectral sequence degenerates at level E5. In such a case the E¥? are equal to the
subquotient in the filtration on the target. If for instance the cohomology groups are
finite dimensional vector spaces then we can compute the dimensions of the cohomology

dimk(H"(X, .'F)) - an dlmk(Efq)
But in some cases the computation of the higher differentials becomes an extremely difficult
task.

6.4. The derived category.

Instead of considering sheaves we consider complexes of sheaves on X
G'=0—...2G" =Gt 5... 5

where we assume that G* = 0 if @ << 0, we say that the complex is bounded to the left.

We introduce the sheaves of cocycles Z(G”) = ker(G” — G¥*!') and the sheaf of cobound-
aries B(G¥) = im(G¥~! — G¥) and the cohomology sheaves

_ ker(¢¥ — gvth)
~im(Gr—t — Gv)’

H”(G*)

We may have cohomology in negative degrees.

If we have two such complexes we have an obvious notion of a morphism
L] w L]
g1 — G;
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It is clear that ¢ induces a morphism of between the cohomology sheaves
H"(G1) = H(G3)

Now the derived category D(Sx) is defined as a “quotient” category of the category of
complexes: A morphism

Y01 = G

is declared to be an isomorphism if it induces an isomorphism on the cohomology sheaves.
This means that the objects are the complexes of sheaves which are bounded to the left
but the sets of morphisms are the morphisms between complexes divided by an equivalence
relation: Two morphisms

g1 36;

become equal if there is third complex G5 and a morphism G5 — G§ which equalizes
the two maps and which introduces an isomorphism #H*(G3) — H*(G3). This categorial
construction will not be discussed in further detail here. (Reference 777)

This gives us a new way to speak of resolutions. If we have a sheaf F we can view it as a
complex
Fo : 0-0—=--->F—=>0—>0—---

where the sheaf sits in degree zero. If we have a resolution
0F -GG —----=G"—

we write this as morphism 1 : F[0] — G*:

o —-.--= F — 0o ==
\ 1
0—- G° —-..— g» —

and the fact that G*® is a resolution translates into the fact that 4 is an isomorphism in
the derived category.

We can introduce the notion of a resolution of a complex. This is a double complex

0— 0 = 0 = 0 — =
\J \J 1

0—- gG» —...—» G — gl ...
\J \ 1

0— A0 — ... A" 5 A0
\J \ 1

0— A"l — ... A 5 AL
\J \J \x

where the vertical complexes are exact.
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We can drop the line on the top and consider the double complex of sheaves A** and we

can pass to the simple complex A;pl. Of course we have a morphism

r: g. — A;pl
and I leave it as an exercise to the reader to prove that this is an isomorphism in the
derived category. (See 2.3.)

6.4.1 Injective resolutions of complexes The point is that we can construct injective
resolutions of complexes of sheaves by double complexes. We adapt the approach we used
when we constructed the double complex for the resolution G* of F in 6.1.1. The only
difference is that we do not assume that the complex of sheaves G* is exact, we have to
take the cohomology sheaves into account. (The condition 6.1.1 a) is not valid) We start
at the left end of our complex and we break it

0 — Z(G™) — G» — B(G" ™) — 0

and resolve this by the standard construction (see Chap. Hom. Alg. ?7??). Our resolution
looks as follows

0 — Huo(g.) N Gvo - B(guo-H) = 0
{

0 - I = erpt'? B |
1

0 - IX' o eipt! — ettt 0
{ { {

For the following indices we always have the sequences
0 — B(GY) — Z(G?) - HYG*) = 0

and
0—-Z(G%) - g1 — B(gq+1) —0

We always resolve the first sequence by this method and then we use the resolution of the
term in the middle for the left term in the second sequence, resolve the term on the right
and then proceed by the standard construction to resolve the term in the middle.

This goes on forever and we get an injective resolution of the complexr G* .

00— 0 —=---—= 0 = 0 — =
\J \J \:

0— G» —...— g — gt ...
\J \J \

0— [W0 ... 0 — L0 ..
\J \J 1

0— Iw! —...— 1 - il ..
\J \J 1
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We call such a resolution an adjusted injective resolution. It is also rather clear that this
construction is functorial in G*, if we have a morphism between two complexes ¢ : G} — G5
then this extends to a morphism of the injective resolutions

U1 — I3t
and if we pass to the simple complexes
I{,spl — 12.,spl

this extension is unique by the definition of the derived category.

Once we have the notion of the derived category we get a new idea of derived functor
should be. I explain this in the context of sheaves on spaces and the global section functor
but it works in a much more general context.

If we have a complex of sheaves on our space X
G € Ob(D(Sx))
we can take an injective resolution
r:g® — I°°.
We apply the functor global sections and we get
rx : GN(X) — I**(X)

and we may pass to the simple complex on the right hand side. Then

sp1(X)

is a complex of abelian groups and can be viewed as an object in the derived category of
abelian groups.

Our functor F — F(X) = HY(X,F) = H%(F) is a functor from the category of sheaves
on X to the category of abelian groups. Now we constructed the derived functor

R°H% : D(Sx) — D(Ab)

from the derived category of sheaves on X to the derived category of abelian groups.

We apply it to our sheaf F. We view it as a complex F[0] and consider
R*H°(F[0)).

We recover the cohomology groups H*(X,F) as the cohomology groups of the complex
R*HO(F[0)).
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In general we can say that the derived functor R*H(F[0]) is a “higher level object” it
contains more information then the cohomology groups.

6.4.2. In section II.3.1 I explained that we may - after defining the derived functor by
using injective resolutions - compute it from acyclic resolutions. The same is of course true
in the context of derived categories. If we have a resolution of our complex G* — A** as
above and if the AP are acyclic for the functor H°(X, ) then we have

R HY(G)SHO (X, A*) = A (X).

To see this we choose an injective resolution G* — Z** The definition of injective sheaves
allows us to construct a commutative diagram of complexes

go — Aoo
) )
go — Ioo

which then induces a homomorphism of complexes
A*(X)spt = I*(X)sp1

which must be an isomorphism in the derived category. To see this we look at the vertical
filiration (see 6.2. 7?7) and find that we get the same E¥? term namely H?(X,GP?) on
both sides. Here we used the acyclicity of the A** resolution. Now the rest follows from
a simple argument of functoriality: We get an isomorphism for the EP? and hence the
homomorphism must be an isomorphism.

6.4.3 The composition rule.

The concept of derived categories allows a very elegant formulation of the content of the
theory of spectral sequences. I want to explain this in a special case but it will be clear
what happens in more general situations.

Now we assume that we have a continuous map f : X — Y between two topological spaces.
Let F be a sheaf on X with values in the category of abelian groups. We have the functors
H°(X, )= H%() and f.. It is clear that H%( ) is the composition of f. and Hy (0). We
want to understand what this composition implies for the derived functors.

We introduced the higher direct images R*® f.(F) as the derived functor of the direct image
functor f,. This is just a collection of sheaves on Y which are indexed by degrees.

But we defined the derived functor

R'f* : D(Sx) — D(Sy)
which sends a complex of sheaves on X into an object in the derived category of sheaves
on Y. The cohomology of this object gives us the derived sheaves R* f,(F). Now we have

a little lemma which makes the whole thing click.
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6.4.4 Lemma. The direct image f.«(I) of an injective sheaf I on X is a sheaf which is
acyclic for the functor H® on Y.

This is lemma 1.5.1. I stated the Lemma in the weaker form because the acyclicity f.(I)
is what we actually need and it can be applied in more general situations.

Now come back to our complex of sheaves. We choose on injective resolution G* — I°*,

apply f.« and get
R*f:(G°) = fu(I5n)

Now we apply R*HY to these complexes. But since the sheaves in f, (I3

1) are acyclic we
find

R*Hy o R*f(G") = H'(Y, Fi(I3,)) ~ H*(X, I3;)) ~ R*Hx (G")
Hence we get
H%(G*) = R*Hy o R* [(G*).

This gives us a general principle: If we pass to the derived category then the derived
functor of a composition is the composition of the derived functors provided the above
lemma is available.

Of course this formulation is very elegant but it may be difficult to extract explicit infor-
mation from this rule. In our case here we can apply 2.4.2. and we get that we have a
spectral sequence with Es term HP(Y, RIf,(F)) which converges to H" (X, F).

6.5 The spectral sequence of a fibration.

This spectral sequence is especially useful if we can apply it in combination with base
change. We say that the map
f: X —Y

is a cohomological fibration for the sheaf F if the sheaves

RUf(F)

are local systems on Y (see 3.2.1) whose stalk in y is given by

H(f~H(y), F).

If our space Y is locally connected this means we have base change, i.e.
RUfu(F)y =~ HI(fH(y), F).

and for any point y we can find a connected neighborhood V,, such that R?f, (F) restricted
to Vj, is isomorphic to the sheaf of locally constant sections into RYf,(F),.

The intuitive meaning of this notion is that R f,(A) is “the system of cohomology groups
of the fibres”.
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To produce examples of such cohomological fibrations we consider maps f : X — Y which
are locally trivial fibrations with some fibre F' (See 3.1). Furthermore we assume that for
any local trivialization

~

\I/i : f_l(UZ) — Uz x F

NP1
Ui

the restriction of F to f~!(U;) is isomorphic to a pullback with respect to the projection
to F' of a sheaf on the fibre F. Finally we assume that X,Y are Hausdorftf and Y should
be locally contractible, i.e. each point y € Y has arbitrarily small contractible (see 4.4.11)
neighborhoods. Then I claim

Under these assumptions f : X — Y is a cohomological fibration.

If we assume in addition that our space Y is pathwise connected and if we pick a base
point yo € Y, then we will also show (See 8.1) that our local system is basically the same
object as a representation of the fundamental group

T (Ya yO)

on HY(f~(y),A). Especially for a simply connected base space Y we even have
Rif(A) = HI(f"'(y), A)

I want to discuss some special cases where this spectral sequence for a fibration becomes
very useful.

Let us consider a fibre space
m: X —Y

(see 7?7?7) where the fibre F' is homeomorphic to a sphere S™~!. Then we have the Es-term
in the spectral sequence
EP? = HP(Y, R7,(Z)),

and it is clear that R°m,(Z) = Z. We have Rin,(Z) for ¢ # 0,n — 1 and R" " 7,(Z) is a
local system where the stalcks are isomorphic to Z. We say that this fibration by spheres
is orientable if the local system is trivial, and we say that the fibration is oriented if we fix
an isomorphism

R" '7,.(7) ~ Z.

Now we consider the Fs-term of the spectral sequence. It looks like

HO(Y, R*'n,(Z)) HYY,R"‘n,(Z)) --- H?(Y,R"‘r.(Z))
0 0 0
0 0 0
H°(Y,Z) HY(Y,Z) HP(Y,Z),
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and the differential operator ds is given by an arrow that points 2 steps to the right and
one step down. Thus it is zero (unless we have n — 1 = 1) and stays zero for a while. So
the terms E5? = EL?. .- for a while until we come to the differential d,, which sends

dy : H?(Y, R" (7)) — HP™ (Y, R'x,(Z)),

and now the EX’!, may be different from EF?. After that the spectral sequence degenerates.
Therefore we get an exact sequence

R Hp+”_1(Y, Z) — Hp—{—n—l(X’ Z) — HP(Y, R"_IW*(Z)) — HPT™(Y, ROTI'*(Z))

which is the so called Gysin sequence. It contains relevant information concerning the
fibration. If for instance, one of the differentials is non zero, then the map

H*(Y,Z) — H*(X,Z)

is not injective. From this we can conclude that under this assumption the fibration cannot
have a section
s:Y — X

to .

If the bundle is oriented, then R"~1m,(Z) = Z, and we have a canonical generator e €
R"'7,(Z). This gives a class in H°(Y, R"'7,(Z)) which is mapped to a class

e=do" (ey) € H*(Y,Z),

and this class is the Euler class of the fibration. If it is non zero, then the bundle has no
section.

6.6 Cech complexes and the spectral sequence.

I return to the Cech resolutions constructed from coverings {4 = {Uy}aca (See 5.2.2.):
Fig=0=F = HacaFa = g pyeaz Fas ==

In view of our previous discussion this means that we have an isomorphism in the derived
category

0— F — 0 — 0
+ + +

0= IlaeaFa — HapeazFap = WapyyeasFapy = —

and hence these two complexes have isomorphic derived functors.

The sheaves F, are concentrated on the closed subse_ts Ug = Ugy N...NUgq, and our
resolution is acyclic if and only if the sheaves F, on U, are acyclic. In this case we say
that the covering Y provides a F-acyclic resolution.
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We consider the vertical filtration ( See 6.2 and 6.3). We get for our F; term

[I 7' Fa)= [] H'UaFa)=HUX, Fy)

+1 +1
Q€AY Q€AY

The E¥ % term is the Cech cohomology and the edge homomorphism yields a homomor-
phism
HP(X, U, F) - HP (X, F).

It is clear

6.6.1. If the covering provides a F acyclic resolution then the edge homomorphism is an
isomorphism or in other words the Cech complex computes the cohomology of F.

In general this edge homomorphism needs not to be injective because we may have a non
trivial differential
dy: EP~>' — EP° = AP(X, 4, F).

But for p =1 this differential is zero and it follows that edge homomorphism
H'(X,4,F) > H'(X, F)

is injective. (Exercise 6.1.3)

But of course it may be non surjective, its image is the kernel of

H' (X, F)—= [[ BM X, Fa) = || H'Ua, Fa)
a€EA acA

I want to consider a special case. We cover our space X by two open sets X = U UV then
our resolution becomes very short:

0—-F—=FuvdFv— Funv — 0

where Fy = iy.if;(F) and so on. Then our spectral sequence has only two collums: We
have as EF; term

HYU,F)®e H(V,F) — HY{(UNV,F) —0

: — : — 0
HUFeH(V,F) - H'UNV,F) =0
N -~ 7 %/_/

p=20 p=1

and the horizontal boundary operator is taking the difference of the restriction maps. Then
we se that the spectral sequence degenerates on F5 level and we find that we have a long
exact sequence
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H™YUNV,F) = HI(X,F) = H(U,F)®o H(V,F) - H(UNV,F) -

which is called the Mayer-Vietoris sequence. It is of course nothing else that the long exact
sequence obtained from the short exact sequence which is given by the resolution.

With a slight modification we used this Mayer-Vietoris already when we computed the
cohomology of spheres ( See 4.5).

6.6.1.1 A CW-complex is a space which is obtained by succesive attachment of cells. This
construction is easy to explain. We start with a point, this is the simplest CW-complex.
If Y is already a CW-complex, and if

f:8" 1 v

is a continuous map, then we construct a new space X = D™ Uy Y which is again a
CW-complex. To construct his new space X we consider S”~! as boundary of D™ and
X = D" U; Y is obtained from the disjoint union D™ U'Y by identifying z € S™~! to
f(x) € Y. This process is called “attaching a n-cell” to Y. We can relate the cohomology
of the spaces X and Y. If we consider a tubular neighborhood T' of the boundary sphere
(ie. {(®1,-,zp) |1 —e <Y 2? <1}) then V =T U; Y is open in X and clearly the

inclusion Y < V is a homotopy equivalence. The open ball D™= U is also open in X and
we have a covering
X=UUV.

The open set U is acyclic and U NV is homotopy equivalent to S?~1. Thus our spectral
sequence yields for ¢ > 1

— H (8" 7) — HYX,Z) — HYY,Z) — HY(S" ' Z) — .

This tells us that we have some control how the cohomology of Y changes if we attach a
n-cell. More precisely we can say that we can compute the cohomology of X if we know
already the cohomolgy of Y and if we understand the boundary operator on the E; term:

H"YY,Z) — H" Y(S" 1 7).

There is a very prominent example where this method of computing the cohomology is
especially successful. We consider the n-dimensional complex projective space P"(C) (II1.2
Examples).

Exercise: a) Show that the topological space P™(C) is obtained from P"~1(C) by attaching a
2n-cell.

b) Show that
n
H*(P"(C),Z) =P Ze;
1=0
where e; € H?(P"(C),Z) is a free generator.
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6.6.2 A criterion for degeneration.

Let us assume that our complex of sheaves has the following property: For any index g we
can construct a splitting of the sequence

0 — Z(G%) — G4 — B(G4™) — 0.
If we now construct our adjusted resolution, then we can achieve that the vertical differ-
entials P e I p

q,p+1 q+1,p+1
17 @& Ij

are the direct sum of the differentials of the resolutions of Z(G?) and B(G7t!) (see II,
3.6.1). This means for the adjusted resolution of the complex we get

Jap = I%P oy I}zlp o I%+1,p — I%p o 1%4-1,11
+ i +
p+1 p+1 +1,p+1 01 +1,
Japtl = I eI eIyt = IR e IRt

and the rightmost vertical arrow can be taken as the direct sum of the arrows in the
resolution of Z(GP) and B(GPT!).

I claim that this implies that the two spectral sequences obtained from the vertical and
the horizontal filtration degenerate on Fs-level.

We consider the horizontal filtration. We just saw that the FEs-term is given by HP (X, H4(G*))-}
An element in this group is represented by the element

Eap € 177 (X)
which is mapped to zero under the vertical boundary map
I (X)
\
p+1
IEPHH(X).
But if we view it as an element in J9P(X), then it is mapped to an element
Ngp+1 € IE7TH(X) C IFPHH(X) @ I (X) @ TP (X).
We look at the boundary map
Iq—l,p+1(X) SN Iq,p+1(X)
|
X e I T (X e 1T - IO e Y0 8 15 X),
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and we see that our element 7, ,1 is the image of the element

Ng—1,p+1 = (0,0,7g,p11) € Iq_l’p+1(X)

under this boundary map. Now our assumption implies that this element goes to zero
under the vertical differential, because this vertical differential respects the decomposition

Iq—l,p+1(X) — I%_l’erl(X) e I%’p"’_l(X),

But then the element )
§ap = Eqp + (_1)p_17~7q—1,p+1
is a cocycle. This implies that
EP1 = EPY

and this is the degeneration of the spectral sequence.

6.6.3. We even get more. We know that the E3 term is a step in the filtration and hence
H”(X,H9(G"))—'F’H"(X,G")/'F"*'H"(X,G")
but we just constructed a homomorphism
ipg : HP(X,HY(G®)) — H"(X,G")

because to any class &, we constructed a cocycle &, in I” ,(X). Hence we even get a

spl
splitting
H"(X,6*)= P H"(X,HUG")).
ptg=n
This splitting is not canonical because it may depend on the choice of the splitting GP =
Z(GP) @ B(GP*1) since this choice influences the correction term 7. But the images of the
H?(X,H?(G*)) are well defined modulo the horizontal filtration.

6.6.4 An application.

We consider a space Z = X XY, and we assume that Y has a finite covering Y = | act1 Ua

by open sets which is Z acyclic (See 6.4.5). Now we consider the Cech resolution of the
sheaf Z on Z:

0—>Z—>Hza—> H Z{a,ﬂ}—>
a (a.B)

as in 5.2.2. We abbreviate the notation and denote the Cech complex simply by A®. Then

>N« o

— A —
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is an isomorphism in the derived category and get
H*(Z,Z) ~ H*(Z,A®).

Now it follows from our assumptions on the covering that the sheaves AP are acyclic for
the projection map p; to the factor X. We have that

pl,*(Ap) = HZQ(X) = HZ(Uao N...NUq,)

i.e. it is the complex of locally constant sheaves on X associated to the abelian groups
[[,Z(Uqs, N---U,,). This is a complex of finite generated free Z modules, we denote it
by B*. Then we know

H*(Z,Z) = H*(X, B*).

We apply the previous observation. Since the complex B* is a complex of finitely generated
free Z modules, we can conclude that the quotient AP/Z(AP) is also free and hence we
know that we can split off the boundaries. Hence we know that the spectral sequence
degenerates, and we get an isomorphism

K : @ H?(X,HY(Y,2))SH"(Z, Z).
p+q

This isomorphism may depend on the splitting because this spl;itting influences the choice
of the correction term 7 above.

Under our assumptions the modules H4(Y,Z) are finitely generated abelian groups. This
allows us to write these groups as quotient of two finitely generated free abelian groups,
i.e. we have an exact sequence

0— My — My — HYY,Z) — 0
where My, M5 are finitely generated and free. Now we have obviously
H?(X,M;) = H?(X,Z) ® M;,
and hence we get an exact sequence

H?(X,7Z)® M; —HP(X,Z) ® My — HP(X,HY(X,Z)) —
— HPTY(X,Z)® M; — HPY(X,Z) ® Ms.

This yields a short exact sequence. We observe that the first arrow on the left yields a
kokernel
Hq(Xa Z) & M2/M1 = Hq(Xa Z) ® HP(K Z)a

and the last arrow on the right has the kernel Tory(HIT(X,Z), H?(Y,Z)) (see Chap
I1.4.3), and hence our short exact sequence will be

0 — HY(X,Z)® H?(Y,Z) — HY(X, H?(Y, Z)) — Tor},(H" (X, Z), H"(Y, Z)) — 0.
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If we make the further assumption that H*(X,Z) is finitely generated the module on the
right is finite. Then the restriction of K to the tensor products gives us a homomorphism

P H*(X,Z)® H(Y,Z) — H"(X x Y, Z)

pt+q=n

which is injective and has a finite cokernel. This is the so called Kiinneth homomorphism.
This homomorphism does not depend on the choice of the splitting. To see that this is the
case we assume that our space X has a finite Z-acyclic covering {Vg}gen by open sets.
In this case we can consider our locally constant sheaves AP on X and take their Cech
resolution provided by {Vg}gep. Taking sections we get a double complex in which the
(p, q) component is

[T II 2(Xsxy)n(X xUy),

+1 +1
peBLM! el

and where the vertical and horizontal boundary operators are induced from the boundary
operators in the Cech complezes. But then it is clear: If we have cocycles

e [[ zp).nie ] ZU),

peBrt! acA<at!

then we can define
£Ppl = ( . '5577&' . .)7

and this is a cocycle for the resulting simple complex which computes H*(Z,Z). Hence we
see that we do not need the correction in 6.6.4 which shows that the class does not depend
on the splitting.

In the next section where I discuss products in a more general context and then we will
see that K does not depend on the choice of the covering.

We apply the same reasoning to the vertical filtration. A slightly different argument gives
us another construction of the canonical homomorphism

K: @ H*(X,Z)® HI(Y,Z) — H"(X x Y, Z).
ptq=n

We may interchange the role of X,Y this means we study the spectral sequence attached
to the map py : X XY — Y. Now we assume that X also has a Z-acyclic covering by open
sets. Then the Fy term is H4(X, HP(Y,Z)) and we get homomorphisms

If we compute the cohomology starting from Cech coverings, and if we interchange the two
spaces, then the two simple complexes resulting from the double complexes are actually
isomorphic. We simply have to reflect along the diagonal. But we have to observe the sign
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convention in the definition of the differentials. This forces us to put signs. This eventually
results in the formula: If we look at the two product maps

H?(X,Z)® HU(Y,Z)
N\

s

H™(X xY,7),
HY(Y,Z) ® HP(X,Z)

then we have
i(a® B) = (-1 (8 ® a).

6.7 Products

We want to discuss products in a more general context. We start with a commutative ring
R with identity and we consider sheaves of R-modules on topological spaces. If we have
two such sheaves F, G on a space X, then we can consider the tensor product sheaf F®r G
on X. It is plausible that this should be defined as the sheaf attached to the presheaf

U— FU)®rGU)
(see IT1.3.1.), and it is really not too hard to show that the stalk of this sheaf is given by

for all points x € X.

Now we consider two spaces X,Y amd the two projections p;,ps from X XY to X and Y
respectively. If now F and G are sheaves of R-modules on X and Y respectively, then we
can define the exterior tensor product

FOrG = p;(F) ®r p5(9)

as a sheafon X x Y.

We want to construct a R-module homomorphism
m: H(X,F)® HI(Y,G) — H™ (X x Y, FORrG).

It is not so entirely obvious how this can be done because if we take injective resolutions

o — F — 0

{

o — I° — ' —

and
0 — ¢ — 0
{ {
0o — JY — JI —
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then the resulting morphism of complexes

FRrG — (I"®rJ*) spl
needs not to be an isomorphism in the derived category. In other words, the simple complex
of sheaves on the right hand side is not necessarily exact because the tensor product is not
exact.

Therefore it seems to be reasonable to assume that one of the sheaves is flat and admits a
flat acyclic resolution, say

— Q<+ o

0 — A — A} —

where flat means of course that the stalks A% are flat R-modules. Then we find that the

double complex . . B
FOrG — FRrA" — FRrAl —

! {

IO®Rg — IO®R.AO — IO®RA1 —
\ {

I'QrG — I°®rA° — I'®@rA' —
! { 4

has exact rows and exact columns and hence we get a resolution of F®grG by the simple
complex (I*® R'Aépl) which we write down

0 — FQRG — I'QrA° — I'Q@rA’ @ I°®pA" — ... .
Hence we get a map
HY(I"®&prA")gp) (X X Y) — H™(X x Y, FORG).

We get a map
H™(I"®rA")gp) (X x Y)) — H"(X x Y, FORG).

By construction we have a map
m': H(I*(X)) @ HI (A (Y)) = H"((I"®rA*)(X xY))

if 4 + 7 = n the composition of these two is the map which we want to construct.

It is not clear that this product is independent of the resolution, so it may not be canonical.
But if we assume in addition that also F is flat and has a acyclic resolution by flat sheaves,
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then it is clear that this product does not depend on the resolution. To see that this is so
we first consider exact sequences

0—F1 —Fa—>Fz3—0
of sheaves on X. This provides without any assumption on the F; an exact sequence
0 — F1®rG — Fa®@rG — F3®rG — 0,

and we get two exact sequences

— HYX, Fy) — H7Y(F;3) -5 HI(X, F1) —,

and
H7'(X x Y, ForG) = H' (X x Y, Fo®rG) — HH (X X Y, F1®rG).

Now the formula
m(6(§) @ n) = d(m(§ ®@n))
for ¢ € H=Y(X, F3) and nn € HI(Y,G) is obvious by construction.

This reduces the problem of the uniqueness of the map m to the assertion that
m: H'(X,F)® H (Y,G) — H/ (X x Y, F&rG)

is independent of the resolution. But this is obvious because in this case m is the following
map: Any element s € H°(X, F) induces a morphism

m(s) : p5(G) = p1(F) ®r p3(9)
which is given by multiplication and clearly
m(s ® §) = m(s)’ (€)

for all £ € HI(X,G).

Now it is clear that the general considerations fit into the context of our earlier discussion
of the Kiinneth-formula and the cup product.

If we consider spaces X, Y which have a nice acyclic covering, then the acyclic resolutions

0—>Z—>HZ{Q} — H Z{aﬁ} — ...
a (a.B)

are resolutions by free Z-modules and therefore they are also flat. Since we have
Z®ZZ = Z;
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we see that the above considerations generalize the previous ones.

6.7.1 The Cupproduct.
We may take X =Y, and we consider the product

H?(X,7Z)® HY(X,Z) — H*9(X x X, 7).
Now we consider the diagonal X — X x X, and we can consider the restriction
A%(a®p) =aUpB,

and this is the cupproduct of the two classes.

Now we have seen — at least for reasonable spaces — that the cohomology groups

H*(X,2) = P H*(X,Z)

carry the additional structure of a graded anticommutative algebra. We want to determine
the structure of this algebra in some special cases.

6.7.2 An example.

Let us consider a n-dimensional vector space V over R and let I' C V' be a lattice, i.e. a
free submodule of rank n such that V/I" becomes a compact space. We can choose a basis
ey, - -,e, of I', this is also a basis for V and we get an isomorphism

V/T ~ (R/Z)" = (S")™.
The Kiinneth formula yields
H*'((SY",Z2)=H*(S",Z)® --- ® H*(S',Z),
and we see that the cohomology

H*((s")",2) = P H"((SH".2)

is a free module of rank 2" over Z. It remains to determine the structure as a graded
algebra.

First of all we notice that H'(R/Z,Z) = Z (see ....). Now we consider the cohomology
in degree p. If we have a class £ € HP(V/T',Z), then we can attach to it an alternating
p-linear map

w¢ € Hom?, (T, Z).

alt
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To define this element we have to give the value @¢(v1,---,7p) for any p-tuple v =
(71, --,7p) of elements in I'. We take these elements and construct a homomorphism

oy : RV /2P — V/T

which is given by
al(xla e 7$p) =T17 +---+ TpTp-

Then we can restrict our class § to RP /ZP. We consider o (§) € HP(RP /ZP,Z) = Z, and
this is our definition -
pe(v1,- 1) = 5 ()

We see rightaway that this value is zero if 7, -- -y, are linearly dependent because then
the image of a., is a (S1)?' with p’ C p.

We have to show that the map ¢ is p-linear. This is easily reduced to the following special
case: We consider RP*! /ZP*! and we consider the three inclusions 41,45, A : RP /ZP —
RP+1 /ZPF! given by

L+ (x1.---,2p) = (21,0,29,---zp)
i ¢ (21, mp) = (0,z1,29, - xp)
A (z,,xp) = (21,217,220 Tp)

and for a class £ € HPT1(RP+! /ZP T Z) we have to show that
i1(8) +i3(€) = A*(S).
Both sides are linear in ¢ and hence we have to check this equality for classes
& € H(R/Z,2) ® H (R/Z,Z) ® HP (R~ /2P~ 1, Z)

and
¢ € H'(R/Z,2) ® H'(R/Z,Z) @ HP ' (RP~' /271, Z),

and then it is obviously true. This gives us a homomorphism of graded modules
a:H*(V/T,Z) — Hom},, (T, Z).

It is a well known elementary fact that the right hand side has the structure of an anti-
commutative graded algebra where the product is given by

@A) ym) = D (=D Do(i, -+ 9,) - ¥ (5 -+ v5,)

t

where ¢ is a p-form, v is a g-form m = p 4+ ¢ and so on.

Perhaps it is not so much of a surprise that:
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The homomorphism
a:H*(V/T,Z) — Hom},, (T, Z)

18 an isomorphism of graded algebras.

To verify this we wrtie V/T' = (R/Z)™, and we have the following basis for the cohomology:
We look at ordered subsets i; < 4g--- < ip of {1,---n} and form

1®.'.®1®ei1®"'ei2.'.eip®1.'.®1:§i

where e;, € H'(R/Z,Z) is the canonical generator. The e; can be viewed as basis elements
for I' at the same time, then
1 ifialldﬁ:jl"'ip:jp
(e; R €. — -
Qoﬁl( J1 Jp) { 0 else

and clearly
if 4 and 4’ are not disjoint

0
& U 51' = { (_1)6(1,1')51-%, else

This proves the assertion.

6.8 An excursion into homotopy theory.

We want to discuss briefly an application of the spectral sequence which is not directly
related to the goals of this book but which is certainly important and beautiful.

If we consider a pathwise connected space X together with a base point xy we can define
the homotopy groups
Tn (X ; .170) .

On the other hand we have the singular homology groups H;(X, Z) which are not discussed
here (exept in the chapter on cohomology of manifolds), and we always have the so called
Hurewi¢ homomorphism

(X, o) — Hp(X,Z).

A famous theorem of W. Hurewié¢ asserts:

Let X be pathwise connected with base point xoy. Let n > 0 be an integer and let us assume
that
H(X,Z)=0 for 0<i<n.

Then the Hurewi¢ homomorphism
(X, o) — Hp(X,7Z)
18 an isomorphism if n > 1 and for n =1 we get an isomorphism
711(X, 20)ap = m1(X, 20) /[71(X, m0), m1 (X, 10)] — H1(X,Z).
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Here m1 (X, xo)qp is the abelianized fundamental group, i.e. the maximal abelian quotient.

We cannot prove this theorem here, since we did not define the homology groups. But we
can also define the singular cohomology group Hg, . (X, A) and for reasonable spaces we
have

(X, A)~ H'"(X, A)

sing

i.e. the singular cohomology with coefficients in A is isomorphic to sheaf cohomology.
Under these circumstances we can show

Hom(H; (X, Z),Q/Z) ~ H'(X,Q/Z),

and hence we can reformulate the Hurewi¢ theorem:

An element (] € m,(X, xo) is represented by a homotopy class of maps of pointed spaces
( the basepoints are pt and z)

¢ : (5", pt) = (X, 20)
and hence it defines a map
¢*: H"(X,Q/Z) — H"(S",Q/Z) = Q/Z.
Now the map & — ¢*(€) defines a homomorphism
H"(X,Q/Z) — Hom(m, (X, z0), Q/Z)

(the dual of the Hurewi¢ map), and this map is an isomorphism is H*(X,Q/Z) = 0 for
0<i<n.

Indication of proof: We introduce the space (XX, zg) of continuous path starting at x,

i.e. the space of all o
c:00,1] — X
0'(0) = Zo-

Then this space is contractible and we have a map

e @ (EX,zg) — X
: o —  o(1).

This map is a fibration, the fibre over zg is the loop space Q(X, z(). Hence we can say
H*(XX,Q/Z) = H*(X,H* (X, o))
where H*(Q(X,zo)) is the local system of cohomology groups of the loop space.
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We prove the Hurewi¢ theorem by induction on n. The key is the observation that
Hi(XX,Q/Z) = 0 for i > 0 since £X is contractible.

If n =1, then we consider the Es-term in our spectral sequence in degree one
HY(X,HY(Q(X, z0))
HY (X, H°(Q(X, z0))
It follows that H'(X, H°(2(X,zo)) = 0 and
H (X, H' (X, z0)) — H?(X, 1 (X, z0))

is an isomorphism.

The local system H®(2(X, o)) is easy to compute, it is a module under the fundamental
group I' = 71 (X, z¢). We have a continuous map

Q(X, $0) — X
where X is the universal convering and the fibres of this map are exactly the connected

components of (X, zo). Then it is easy to see that H°(Q(X, z¢)) is the local system given
by the I' module

C(,Q/z)

of all Q/Z-valued functions on I" where I" acts by translations. This module contains the
constant functions and hence we get an exact sequence

0—Q/Z — H(QUX,z0)) = M — 0,
where M is the quotient sheaf. We get a long exact sequence in cohomology
0— H°(X,Q/Z) — H° (X, H°(Q(X,z0))) — H°(X,M) - H'(X,Q/Z) — 0.

For the local systems the sections H%( ) are simply the invariants under T, it is easy to
see that we get an exact sequence

(@2)" = (€(N,Q/2)" - M" = H'(X,Q/Z) = 0
Now it follows from our results on the cohomology of groups that
M" ~ H'(T',Q/Z) = Hom(T', Q/Z),
and hence we proved the result for n = 1.
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For n > 1 we apply the same method. Now we know that (X, z¢) is connected and hence
we see that
HO(QUX, 20)) ~ Q/Z.

Then we find many zeroes in the bottom row of the spectral sequence and the system
of cohomology groups H*(2(X, zp)) will be trivial. This shows that the Fa-term in the
spectral sequence looks as follows

HY(X, H" 1 (Q(X, z0)))

HO (X, H'(Q(X, z0)))
H® (X, HY(Q(X,z0))) O ---0 H"(X,H(QX,z0))).
We conclude that H(Q(X, o)) = 0 and that the differential
d: H (X, 1" (X, z0))) — H" (X, H°(QX, 20)))

must be an isomorphism.

This implies that
H"HQUX, 20))ap = H™ (X, Q/Z)

N H™Y(Q(X, 20), Q/Z) = H"(X,Q/Z).

Now we have the exakt sequence for homotopy groups which say that
Wi_l(Q(X, $0)) ~ 7T7;(X, 370),

and the Hurewi¢ theorem follows.

It is quite amusing to consider the special case of X = S™. In this case we find

0 else
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IV.7 Cohomology with compact supports

7.1. The definition Let X be a locally compact space and F a sheaf of abelian groups.
If we have a section s € H%(X, F) then its support is the set of z € X with s, # 0. It is
always closed.

We can define the submodule H?(X, F) of sections with compact support. This yields a left
exact functor and we define the cohomology with compact supports as the right derived
functor of H2(X,F). In accordance with our general principles we choose an injective
resolution

0F =11

of F and define . ‘
HY{X,F)=H'(H)(X,I).

The cohomology with compact supports has different properties from the ordinary co-
homology, it does not satisfy the homotopy axiom. We will see in the section on the
cohomology of manifolds that it is dual to the ordinary cohomology. Of course on a com-
pact space X we have H2(X,F) = H*(X,F). If we have open sets U C V C X then we
have natural map

Hi(U, ) — H(V,F) — H{(X, )

here we see that the restriction maps which we had in the theory of sheaves are turned
backwards. On the other hand if we have a map f : X — Y then we will not be able to
define a map from H:(Y,Z) to H'(X,Z) unless the map is proper.

Let us assume that U < X is an open subset of our space let us assume that its closure is
compact, then its boundary OU \ U is also compact. Let F be a sheaf on U. We defined
two new sheaves on X: The direct image i.(F) where

W(F)V)=FUNYV)
and the the extension by zero
iW(F)(V)={s € F(V) | |s| does not meet V N OU}
One checks easily that 4;(F) has the stalks

iW(F)o=F, if z€U
W(F)y =0 if ygU

We have a morphism of sheaves i1(F) — i, (F) which is an isomorphism in all stalks except
the ones on the boundary oU.

7.1.1 Proposition. If X is a space and i : U — X an open subset with compact closure
and if F is a sheaf of abelian groups on U then

H:(U,F)=H*(X,iu(F)).
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Proof. This is almost clear from the definition. We choose an injective resolution of the
sheaf 7 on U
0 F =11 — ..

and we notice that
aW(I*)(X) = H2U, I*).

7.2. An example Now we consider the sheaf Z on the open ball D™ C R*. We want to
compute H2 (D™, Z). To do this we embed D™ <s D™, On D™ we have an exact sequence

0= i(Z) = is(Z) — i (L) /ir(Z) — 0.

The sheaf i,(Z) is Zp. and the sheaf i,(Z)/i1(Z) is concentrated on D\ D = S™~! and
on this space it is simply Zg.-1. We write the long exact sequence in cohomology, exploit
our proposition and get

— HY(D,Z) — H"(D,Z) — H"(S" ',Z) -— H'™Y(D, Z).
We have H”(D,Z) = 0 for v > 0 and hence we get for v = 0
0 — HYD",Z) — H°(S"',Zz) — HYD"Z) —0

Z

and for v > 0
HY(S™ Y, Z) = H'TY (D", Z).

Our computation of the cohomology groups of spheres yields

Z for v=n

HY(D" D) {

0 for v#n
If we have a homeomorphism f : D,,—D,, then it induces necessarily an isomorphism
f* : HY(D",Z)=H%(D",Z) which can only be multiplication by +1. If we take for
instance the homoeomorphism that sends (z1,z9,...,%,) — (T1,Z2,...,—2y,), l.e. we
change the sign of the last coordinate then we get multiplication by —1 on H¢(D",Z). We
say that f preserves the orientation, if it induces the identity on HZ(D", Z). (???? Noch
was murmeln)

7.2.1. We want to consider a relative situation. Let us assume that we have a diagram

X — X
ml m
Y,
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and we want to assume this is some kind of fibration by n-dimensional balls. By this I
means that locally in Y we can trivialize our diagram

V x D™ i) V x D"
v

V.

If we choose a covering Y = UV, such that we have trivializations over the V,, then we
get identifications (see 3.1.1.). For v € V,, N Vg we have homeomorphisms

gap(v) : (D™, D™) —s (D™, D")

which means g, s(v) is a homeomorphism of D™ which maps the interior to the interior
and the boundary to the boundary.

We call this fibration orientable if the g, g(v) preserve the orientation, and if we selected a
consistent orientation on the fibres . We consider the sheaf Z on X and its extension 4(Z)
to X. We want to compute the cohomology H*(X,4(Z)). We apply the spectral sequence
for a fibration (see 6.6.2), and we have the Ey-term HP(Y, R%m,(i1(Z)). Our computation
in the previous section yields

Rim ((2)) = {5, 177

(remember that we have the orientation) and consequently the spectral sequence degener-
ates and
HP*™(X,4(Z)) = HP (Y, R"n, (01 Z)) = HP(Y, 7).

7.2.2 Formulae for cup products : We want to explain some formulae for prducts and
for this purpose it is convenient to replace the open (resp. closed) ball D™ (resp. D™) by
the open (resp. closed) box

B" = {(z1,++ an) | o] <1} € B" = {(w1,- -+, &n) | ] < 1}

because the pairs (D", D™) and (B™, B™) are homeomorphic.

Let us assume that we have two numbers di, dy with di + ds > n. We consider products
B% x Br—d and  B% x B~
b))
and we consider embeddings

in : B%x Bn—h _, B
7:1 : ((-@1;"'7$d1)7(y17"';yn—d1)) — (xla"'7$d17y17"'7yn—d1)
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and ' p _ _
g : B"% x B* — B"

i2 : ((yl;‘“;yn—dQ)a(‘Tla'"7$d2))H(yl,l“7yn—d27x17“',$d2)'
We get the sheaves i1 (Z) and i3,(Z) on B™, and clearly
Hv= (B, iy (2)) > I
H=%(B" iy (2)) - Z

where we chose the orientations as given by the ordering of the y-coordinates. We want to
consider the cup product

H"=(B",i1,(Z)) x H""%(B",iz)(Z)) — H*" """ (B",i1(Z) ® i2,(Z)).

We must understand the tensor product of the two sheaves. We observe that we have an
embedding

i1’2 : Bd1+d2—n X an—dl—dQ 3 BTL
12 ((9U17 : ",$d1+d2—n), (yh . "ay2n—d1—d2)) —
(yla sy Yn—dy s L1, 5 di+da—ny Yn—do 415777 yn)

and an isomorphism provided by the multiplication on the stalks
i1,1(2) ® iz )(Z) —i12,(Z)

We choose the orientation on B2?~%1~92 which is given by the ordering of the coordinates.
Then all the cohomology groups in

H" (B i1,(Z))) x H"%(B" iy,(Z)) — H*™ 1~%(B" 41, (7))

are identified to Z. Now I claim:
Under these identifications the cup product is given by the multiplication.

I have the feeling that the proof can be left as an exercise to the reader. First of all we
can restrict to the case d; + d3 = n, and now we have enough flexibility to reduce to the
case d; =n — 1,dy = 1. Then we recall that

H)(B',Z) = H'(B",i,(2))
can be computed from the exact sequence
0—>4u(Z)—Z—Z/i(Z) — 0

which reduces it to a cup product with an H? in it.

7.3 The fundamental class.

Let M be a connected Cy-manifold of dimension n. If we have a point p € M then we
can find a neighborhood V,, of p which is homeomorphic to an open ball D C R". Then

we have H(‘f(V}g, Z)=7Z but this isomorphism is not canonical. If we have two points p, g
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and two small open neighborhoods V,,, V, of these points, then we have no consistent way
to identify H3(V,,Z) and HZ(V,,Z). But if we choose a path « : [0,1] — M which starts
at p and ends at ¢, then we get an identification along the path (see the discussion of this
argument in the section on local systems). We say that M is orientable if for any two
points this identification does not depend on the path. If M is orientable then we can
choose a generator in H%(V,,Z) for all p which is consistent with the above identifiction
along paths. Once we have choosen such generators we call the manifold oriented.

If our manifold has a differentiable structure, then we have another notion of orientation on
M. (see ....). In this case it is easy to see that the two concepts of being oriented coincide.

In the next chapter we will prove that for a connected and oriented C°°- manifold M of
dimension n a point p € M and any open ball D, C M containing p the map H%(D,,Z) —
HY(M, Z) is an isomorphism. This is the starting point to get Poincaré duality. The image
of the generator in H3(D,,Z) is the so called fundamental class.

IV.8 Cohomology of manifolds

8.1 Local systems.

I want to study the cohomology of C°°-manifolds with coefficients in local systems See
3.3.2).

We will know that the stalks at two different points x,y are always isomorphic but in
general we do not have the possibility to identify them in a consistent way. The following
argument is the same that everybody has seen during the discussion of the principle of
analytic continuation in theory of complex functions. Since M is connected, we can choose
a path v : [0,1] - M with y(0) = z and v(1) = y. We cover the path by finitely
many sufficiently small open sets U;, on which V is trivial. This gives us a subdivision
0=ty <t <...<t,=1such that the 7[t;,t;11] are entirely in one of the covering sets
U, and hence we can identify V,,) = Vy,,,) = V(U,). This sequence of identifications
yields an identification
UV, =V,

This identification depends on the path, but it is not difficult to see that it only depends
on the homotopy class [y] of the path.

If we choose a base point xqg € M and consider closed paths which start and end at zo,
then we get a representation of the fundamental group

p:mi(M,zo) = Aut(Vy,)
p: [’Y] = (\II[’y] : Vazo — Vwo) .

It is not hard to see that the local system can be reconstructed from this representation:
We consider the set of pairs ([y], v) where [v] is a homotopy class of path from zg to z and
v € V. The stalk at a point £ € M will be this set divided by the equivalence relation

(vl 0) ~ (], 1)
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if and only if
p(ln]™ o (Y] (v1) = v.
We can express this by saying that we have an equivalence of categories:

Abelian groups V together with an action of m (M, zy) and local systems )V whose stalk
at xg is isomorphic to V.

If we have a local system V on our manifold M then under certain assumptions we can
construct a dual local system VV. We want to study

H'(M,V) and HL{(M,VY)

and we will again under certain assumptions construct a duality between H*(M,V) and
HY=i(M,VV) where d is the dimension of M. This will be the Poincaré duality.

8.2 Cech resolutions of local systems.

If M is a C*°-manifold then we can find a covering M = (J,. 4 Ua by open sets which has
the following two properties

(1) The covering is locally finite, i.e. to any point p € M we can find an open
neighborhood V), containing p such that we have only finitely many o € A such that
Ua NV, # 0.

(2) For any finite set ap, ..., a, € A the intersection Uy, M ... N Uy, is diffeomorphic
to an open ball of dimension n and the intersection Uy, N ... N Uy, is contractible.

I want to explain briefly why we can find such a covering It is part of the definition of a
manifold, that it should be paracompact (See 4.4) . This means that any covering admits
a locally finite refinement. This follows if we assume that M is countable at infinity, i.e.
we can find an increasing sequence of relatively compact open sets

W, C Wn+1

where W,, C W, ;1 for all n and which exhausts the manifold M, i.e. [ JW,, = M.

We can use the paracompactness to introduce a Riemannian metric on M. To do this
we construct a partition of unity on M. This is a family {h;};cs of positive C*° functions
which has the following properties.

(i) The support of such an h; is small so that we can find an open set U; C M which
is C*-isomorphic to an open ball D C R? and Supp(h;) C Us.

(ii) For any point € M there are only finitely many indices j € I with h;(z) # 0.
(iii) We have
> hi=1.

The construction of such a partition of unity is standard and quite easy.
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We can construct a Riemannian g; metric on each of the U; simply by transporting the
standard metric on the ball by means of the diffeomorphism. We multiply this metric by h;
then it extends to a positive quadratic form on the tangent bundle of M which is positive
definite on the support of h;. Adding up gives the desired metric.

Now we invest some differential geometry. Any point x € M has an open neighborhood
V: which is diffeomorph to a ball and which has the property that it is convex: Any two
points y, z € V. can be joined by a unique geodesic. We may simply take a small ball
B(z,€) = V,, these are all those points which have distance < e from z. The closure of
such a ball is diffeomorphic to a closed ball in R?, the boundary dB(z, €) is a sphere. Tt is
a smooth hypersurface in M.

Now I come back to the construction of a covering with the required properties. I assume
that M is countable at infinity. We can exhaust it by a sequence of relatively compact
open sets W,, which in addition have the property that W,, C W, ;1.

We start at an index n and cover W, by a finite family of such small balls as above.
We require that these balls are contained in W, ;. Now we proceed with W, 11 but we
require in addition that these balls have empty intersection with W,,_;. Then it is clear
that the union of all these families provides a covering {U,}aca of M. The intersections
Uao N -..NU,, are diffeomorphic to open balls in R™. If we have a point in the boundary

€U N...NUx, \UsyN...NUy, =0Uqs, N...NUy,)

then the intersection B(x,€)NUqy, N ... N Uy, is contractible: each point in the intersection
is joined to x by a unique geodesic in this intersection.

We give the indexing set A a total order, in other word we identify it to {0,1,...,n} or N.

We consider g + 1-tuples a = (o, ...,a,) € A?T! where the indices are increasing. Let
us denote this subset of indices by A‘i"’l. Then we have for such an a = («ap, ..., aq) the
inclusion

ta 1 UgoN...NU; — M

and as in 2.2.we form the sheaf

Vo = taxin(V)-

This sheaf has non-zero stalks only in the points z € Uy, N...N U, and in such a point
the stalk is equal to V,. Here we need that for any point z € U,, N...NU,; and a small
ball B(z,¢€) that

V(B(z,€)) = it,(V)(B(&,€) N Uap N - - N Ua, )-

Outside of Uy, N ... N U, the sheaf has been mowed.
Now we consider the Cech a resolution of our sheaf V (see 5.2 and 6.5 ):

0=V [[vi= Il Vas—---— [ Vi—.
a€A (a,B)EAX A< QEA"<+1

This is now an acyclic resolution since all the sheaves V} are acyclic by the homotopy
axiom.
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Hence we see that the cohomology groups H”(M,V) can be computed from the complex
of global sections (See 6.5.1)

[HaeaVaM) = Tlappeaxa ViapM) = - = Tlacazr Va(M) =
| | |
MeeaV0o) = apeara. VUaNTs) oo o VUoo 0.1 Ts,) =

which is the Cech-complex attached to the resolution.
We introduce the Cech coresolution. To do this we consider the sheaves

iarig (V) = V.

These sheaves are zero outside of the open sets U, N ... N Uy, and on these sets they
coincide with V.

On these open sets our sheaves V are isomorphic to a constant sheaf. We computed the
cohomology with compact supports ( Prop. 7.2)

” iy JO forv#d
H (M’Va)_{V(Ua) forv=d "’

Now we can define a complex of sheaves (777)

= I va—=--= JI Vig—=][Vi—oV—o0

g€A<1<+1 (a,B)EAX A, acA

where the boundary operator is given by

(d52) ... —Z D PO s 0,0t

where 8 runs over those indices which do not occur in o where €(8, a) gives us the po-
sition of B with respect to the ordering, where 8z,00,....0,...,a, 15 an element in the stalk
Vévo,...,ﬁ,...,aq,w' The last homomorphism on the right is simply summation ) s; o. Again
it is clear that this is an exact complex of sheaves.(See 777).

8.2.1 Comment.

In a sense we will see that this is an acyclic resolution for the right exact functor
V — HY(M,V)

but one has to define a suitable category of sheaves for which this makes sense. For a
local system on a manifold the H3(M, V) plays the same role as the global sections for the
ordinary cohomology. Except that in addition all the arrows point in opposite directions
and this is duality.
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Now I claim that we have Hy (M, ]],¢c ga+1 \%:
acic

«

)=0if v # d and

qgHM, [ vi)= @ H'O1,V)).

acALH! acALH!

To see this we take the injective resolution constructed by Godement for the V; (See 2.1)
Then the product of the sheaves in the resolution gives a resolution of the product:

!
o—» [ vi—» I 2- ][] n-
QEA‘1<+1 QEA‘1<+1 gGAq<+1

and to compute the cohomology with compact support we look at the resulting complex
of global sections with compact support. But since any compact set meets only finitely
many of the open sets U, we see that

HO(M, H 1% = @ H)(M,IY).

q+1 q+1
Q€AY a€AT

To see this we have to take into account that the stalks of the sheaves I & are zero ouside
U|, which is clear from the construction. Then

g™, [ vi= @ H'(M V)
aeATH! acAlH!

We apply the functor H¢ applied to the complex yields a complex

- @ HIM,V) ... P HIM,V,)— 0.
acALH! acA

I want to make the additional assumption that the number of indices a for which U,
contains a given x is not only finite but even bounded independently of z. This has the
consequence that our complex of sheaves is even finite.

We numerate the complex so that the boundary operator has degree -1 and the complex
starts at zero at the right hand side, i.e. it looks like

—Yn—...Y1 =>Y;—0.
8.2.2 Theorem. The cohomology of this complex is the cohomology with compact supports

HY™ (M, V)=Hi(— @ H'M,V,)—...» @ H(M,V,)—0.)
acALH! acA
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Proof. We used the same arguments which we used when we proved that we can compute
cohomology groups by acyclic resolutions. We break the complex of sheaves into pieces

— @ Vy—...— @ V(!a,ﬁ)—>g—>0

aeALH! a,BEAY

and
0GP Vve—V—o.
acA

The second complex gives us a long exact sequence if we apply the cohomology with
compact supports. Since the sheaf in the middle has only cohomology with compact
supports in degree d we get

H™YM,V) ~ H{(M,G) for i#d—1,d
and

0— HIY (M, V) —» HY(M,G) — @ H (M, V,) - HY(M,V) » HI (M, G) — 0.
a€cA

At first we want to conclude that H*(M,V) = 0 for m > n. If not we would have
H™(M,G) # 0 for some m > n. But G sits in a short exact sequence

06— @ Vig—G—0
a,BeA%

and G; is the end of the complex

— @ Véﬁﬂ — Gy — 0.
(a,8,7)EAL

We would get H"(M,G;) # 0 for some m > n and applying the same procedure again
and again we get a contradiction because the complex is finite to the left. Hence we get in
degree n

0— HI (M, V) —» HY(M,G) —» @ HY(M, V) - HI(M,V) - 0.
a€EA

Induction on the length of the complex gives us that the complex

0o @ HAMLVY) o B V] ) 0

acALH
computes the cohomology H3~*(M,G) and the theorem follows.
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8.3 Poincaré-Duality.

We assume that we have a local system V on M which has values in the category of R-
modules where R is a commutative ring with identity. We can also consider the dual local
system VYV = Hompg(V, R). We compute the cohomology H*(M,V) and the cohomology
with compact support H2 (M, V") by means of the two complexes which we obtain from a
suitable covering. We write the complexes

0= [aea V0a) = Miapyesz VUaNUp) .= [Lyenars =

X0 = Xt 5 . — X4 —

and
| I I
ve -2, SIS Ly yo —
where we made the identification VV(U,) = HZ(M, VV"'). We have a pairing
<,>:Y?x X1 R

which is given by the formula

S = (...SQ...) GHV(UQ)
lo...) € @VV(UQ)

ata

where s, -1, is the pairing induced by the pairing on the coefficient systems. The expression
makes sense because ¢ has only finitely many non-zero entries.

We have
<ds,t >=< s,0t >

for s € X9t € Y+, From this we get a pairing
HY(M,V) x HI=9(M, V") - R.

We want to discuss the properties of this pairing.

8.3.1 Theorem: Poincaré-duality. We assume that 'V is a local system of finite dimen-
sional k-vector spaces. We also assume that we can find a conver covering such that the
function x — #{a|x € U,} is bounded. Furthermore we assume that

dimy H*(M,V) and dimzH'(M,V)
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are finite for all i. Then the pairing
HY(M,V) x HZ9(M, V) = k

18 non-degenerate for all q.

If R is a discrete valuation ring and if V is a local system of free R-modules of finite rank
and if M admits a finite acyclic covering then the pairing

H?(M,V)/Tors x H¥=9(M,V¥)/Tors — R

18 non-degenerate.

Proof. We start from the computation of the cohomology by means of the two complexes

— HQEA? HO M Vy) = ... —=1laea HH(MVE) —

We abbreviate these complexes by X* and Y* respectively. We have the pairing
<,>:Y9%x X9 k.

These spaces may be of infinite dimension. We say that a linear form A : X9 =[] Az

H°(M,V}) — R is continuous if it factors over a quotient [] . s H O(M,V*) where E) is
a finite subset of AZ. Then it is clear that Y7 is the space of continuous linear forms on
X4, It is also clear that X? is the space of all linear forms on Y.

In X7 (resp. Y7) we have the subspaces of cocycles of coboundaries

BY(X*)C Z9(X*) C X1

BI(Y*)Cc ZzY(Y*)CcY?’
Since BY(X*) = d(X971) by definition we find that

Z2UY") ={y € Yoy =0} = BIX")" = {y € Y < BI(X"),y >= 0}
and by the same argument we find that
Z4(X*) = BY(Y*)* .

The spaces X7, Y ? are in perfect duality. If they were finite dimensional we could conclude,
that for any subspace W of one of them we have (W+)t = W. This is also true in our
situation here for subspaces W C Y because X7 is the space of all linear forms on Y¢ and
for an element y ¢ W we can find an z € X2 with < W,z >=0 and < y,x ># 0. (Zorn’s

Lemma).
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But for subspaces W C X7 the same argument is only true for closed subspaces, which
means

W ={x € X?| A\(z) = 0 for continuous linear forms A\ which vanish on W}.

Now we use a little
Lemma. The space of cocycles Z9(X*) is closed. If

dimg Z9(X*)/B4(X") < o0
then B1(X*) is also closed.

Proof. Exercise

Since we assumed that the various cohomology groups should be finite dimensional, we
conclude that all the BY(X*) are closed and hence

BI(X*)H = BI(X?)
Bq(yo)LJ_ — Bq(y.) :

But then it is obvious that the pairing
HY(M,V) x HIZI(M, V) =k

is non-degenerate.

Now we come to the second half of the theorem, we assume that V is a local system of
free R-modules of finite rank where R is a discrete valuation ring. We also assume that
we have an acyclic covering which is finite. In this case we have that the modules X?,Y?
are free of finite rank and the conclusion

Z9(X*)
Z9(Y")

BY(Y*)*
BI(Xx*)*t

is still valid. But we cannot conclude that B4(Y*)++ = B4(Y*) and BY(X*)*+ = BY(X).
But Z9(X*), Z9(Y*) are direct summands in X resp. Y7 and therefore

X?/79(X*) and Y9/Z9(Y*)

are torsion free.

I claim that BY(X*)1t1/B9(X*) and BY(Y*)+1/BI(Y*) must be torsion. Let K is field of
fractions of R. The claim follows because we know that BI(X*)*+®@rK = BI(X*®@rK)1+

It follows that
= BI(X*) c z9(X?)

= BIY*" ) c Z29Y?)
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and if we look at
Z9(X*)/BU(X*) = HI(X") = Z9(X"*)/BY(X*)**

then the kernel of this map is the torsion subgroup. The same holds for Y*.

Now it is an easy exercise to prove that the pairing
Z9(X*)/BYX*)*+ x 24Y*)/BY(Y*)** - R
is non-degenerate.

8.4 The cohomology in top degree and the homology.

We start from a local system ) and we assume that we obtained it form an action of
the fundamental group 7 = m1(M,xp) on an abelian group (or R-module) V. We have
V2, = V. We want to compute the cohomology with compact support in top degree. We
will see that this can be expressed completely in terms of the action of w on V. Let I,
be the augmentation ideal, we introduced the module of coinvariants V/I, = V. We will
see that HY(M,V)=V,. This makes it clear that the cohomology with compact supports
behaves like homology.

We start from our complex

P HIM. Vi) » @ HYM, V) - HI(M,V) = 0.
(a,B)€A2 a€A

Let ap be an index such that zy € Uy, . I claim that the map
d N d
H(M,V,,,)~V = HS(M,V)
is surjective and induces an isomorphism
V/I,V = HY (M, V).

Let a be any other index. We can choose a sequence «g, a,...,a, = «a of indices such
that UOM.QU%+1 # () for all . For any pair of consecutive indices «a;, ;1 we restrict the
boundary operator
§: P HUM, V) — P HU(M,V))
(a,B)EAZ yEA
to the direct summand
HY(M, V),

iai+1)

(we assume o; < a;y1 otherwise we interchange the indices). It is clear that the image of
this restriction in the target module lies in the submodule
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We have a natural isomorphism

Upioannr * HA(M, V),

Qi1 i+1)'

which is the composition of the isomorphisms

HY(M, V! ) = HY (M, V.

;g
Hd(M7 V;iai_f_l) ; Hd(M7 Vé”_’_l)
which are induced by the inclusions U,; N U,,,, < Uy, and Uy, NUq;,, = Uq,,,. It is

clear from the definition that the image of & restricted to H¢(M, V! ) is the submodule

Q041
Vi _\Ijaiai+1(v7:))7
and hence we see that this submodule is in the kernel of

HYM,V,) P HI M, Y,,,,) » HAM,V).

Qi1
Now our claim of indices gives us by composition an isomorphism

Vogr - = a: H(M, V) — HY(M, V)
and it is clear that the elements

V, =Tag,a1..ay=a(V))

lie in the kernel of
HY M, V,,) @@ H (M, V) - HI(M, V).

From this it follows that the summand H?(M, V(!XO) ~ V is mapped surjectively to
HY(M,V).

We can take o = ¢ then we can construct a path
v:[0,1] > M

with v(0) = v(1) = z¢ which is obtained by joining ¢ inside of U,, to a point in U,, NU,,,
this point to a point in Uy, N Uy, and so on and finally joining the point in Uy,_, NUq,
to xg. The homotopy class of this path is uniquely determined by the chain of indices.
Then it is clear from the construction of the local system from the action p: 7 — Aut(V)
that Upoy -« = @ = p([y]). Hence we see that all elements of the form (Id —p([y])V
lie in the kernel of

HYM,V, ) — HY(M,V)
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and the surjective map factors
V. —  H}M,V)
N\ /
VL,V

But now it follows that
V/I,V = HY(M,V

must be an isomorphism, because the group

@ Hg(M7 V:xﬂ)
(a,B)EAZ

is generated by its direct summands.

We can also define the singular homology groups H;(M,V). To do this we consider map
o Al - M

where A, = {(to,...,t) € RETH|3t; = 1} is the g-dimensional standard simplex. We can
consider the pull back o*(V) of our local system and since A, is contractible, we have

where p is any point in our simplex. We form linear combinations
Z My - O
where m, € 0*(V)(A,). These linear combinations form an abelian group
Cq(M,V).
We define a boundary operator
0q : Cq(M,V) = Cy1(M, V).
To do this we observe that we have face maps

Ti :Dg—1 = Ay
Ti I(to.. tq) — (to,. ceoti—1,t, - tq)

and we put

01(moy0) = Z(_l)ima "0O0T;
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where we use the fact that
(007:)" (V)(Ag-1) = 0" (V)(Ay).
An easy computation yields 0,—1 0y = 0 hence we get the chain complex with coefficients
inV
— Cy(M,V) = Cqu1(M,V) = - -+ = Cy(M,V) = 0
and the homology groups of this complex are the homology groups of M with coefficients
in V:
Hy(M,V) = Hy(Ci(M,V)).

It is clear what Ho(M, V) is: we see that Cy(M, V) is the group given by linear combinations
> s

where m, € V,. Of course we see that
MeT — MyYy is a boundary
if we can find a path v : [0,1] = M with v(0) = z,v(1) = y and [y]m,; = m,,. Hence it is
clear that
Ho(M,V) ~ HY(M,V) = V/I, V.

This suggests that we have A
H;(M,V) ~ H¥™*(M, V)

and this is actually very easy to prove.

8.4.1. If we want to understand the cohomology HZ:(M,V) it is sometimes very useful to
embed M into a compact space. Let us consider an open embedding

i:M— M,
where M is compact. Then we can consider the sheaf 4;()), and we know
H:(M,V)=H*(M,i(V)).
We may also consider the direct image i,()). Here we have to be careful because the

functor i, is not exact in general. But if we assume that our local system is acyclic with
respect to %4, then we know that

H*(M,V) = H*(M,i,V).

Especially we may have the situation that M is an oriented manifold with boundary and
M is the interior of M. Then it is clear that M — M is a homotopy equivalence and a
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local system V on M extends to a local system on M, which we denote by V. Under these
circumstances we have

H*(M,V)=H*(M,i,V)=H*(M,V).

If now V is a local system of free R-modules of finite rank and V¥ = Hom(V, R) the dual
system, then we have the Poincaré pairing

HI(M,V)x H™ Y(M,VY) — H™(M,R) ~ R
which we may also write as
HY(M,iy(V)) x H™9(M,i,(VY)) — R.

It should not be too much of a surprise that this pairing can also be expressed in terms of
the cup product.

We start with the observation that both sheaves i:()) and i, (V") have flat acyclic resolu-
tions. In this situation we defined the product (see 6.6.1)

HY(M,iy(V)) x H" Y M,i,(VY)) — H™(M, i;(V)Ri.(VY)),

and we have the pairing

Now the cup product provides a pairing
HYM,ii(V)) x H"" UM, i.(V¥)) — H™(M,u(R)) = H*(M, R) = R.

We want to convince ourselves that this pairing must be the Poincaré pairing.

To see that this is the case we compute the cohomology groups from Cech resolutions.
Our situation is a little bit different from the previous one since now our manifold has
a boundary. But we may put a Riemannian metric as before and at first we cover a
neighborhood of M by small open “half-balls” with center on the boundary. Then the
complement of the union of these balls is compact, and we cover it by small balls whose
closure does not hit the boundary. Let us denote this covering by {U, }aca-

For any ag --- a4 we consider Uy, N --- N Uy, = Uy, and we remove the boundary points

from it (if there are any) and call the result U,. Then
i U— M

is the inclusion, and we define



Now we compute our cohomology groups from the Cech resolution and the coresolution as
before. We have

1 .
— G%V{Ué',ﬂ} — GBV(\;’! — 4 (V) — 0,

and
0—>V—>HV§—> H Viag —
o (a,8)

Of course it is clear that the Poincaré pairing
H°(M,i.(V)) x H™(M,i(VY)) — R

is given by the cup product. Then we proceed by induction on the degree. We breack the
two resolutions

0GPVt —a)—0

0>V — H Vi—-H—=0
and we get the folowing pieces of long exact sequences

0 — H" Y(M,qs(VV)) — H"(M,G) — - -

and o o
H°(M,H) — H'(M,i,(V)) — 0.

The pairing #;(VV) x i, (V) — 41(R) induces a pairing
(Bve') < [[va — a®)

(see 8.3), and this induces a pairing
G x H —s ii(R).

If we look at the definition of the Poincaré pairing of two classes & € H"~' (M, iy(VV)) and
n =0y € H'(M,i.(V)), then we have

(&;m = (0, ¢).

But the right hand side is also the cup product of the classes 6§ € H O(M,G) and v €
H™(M,H). But we have to see that also the cup product satisfies the rule

EUn=8Udy =0LUY,

and we have seen that the cup product and the Poincaré pairing coincide on H?~! x H'.
The general case follows by the same argument inductively.
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8.5 The fundamental class of a submanifold : The homology groups can be defined
for any space X and they provide a covariant functor from spaces to abelian groups: if we
have a continuous map f: X — Y, then we get a homomorphism

for all degrees 1.

This suggests that we should also have this kind of functoriality for the cohomology with
compact supports on an oriented manifold M.

I want to discuss a special case where we see this functoriality. We consider a manifold M
and a oriented submanifold N C M, let m,n be the dimensions of M and N respectively.
I allow that N has several connected components. We assume that we have a relative
orientation, this means that we have an orientation of the normal bundle Ty /n.

Let V be a local system on M, let V' be its restriction to N. If we consider the homology
groups then we get get - directly from the definition - a homomorphism

On our manifolds the homology groups are isomorphic to cohomology groups with compact
support and hence we get a homomorphism

Hg(N7 VI) — Hgn—n—}-j(M’ V),

and I want to construct this homomorphism directly.

We choose an auxiliary Riemannian metric. This Riemannian metric splits the tangent
bundle of M along N into Thy = Ty ® T n- Using the exponential map we can construct
a tubular neighborhood iy : TN C M ( See [ ]). We have the projection 7 : TN — N
where the fibres 71(b) can be identified to small open balls in Ths/n . By TN we denote
the closure of T'N. This gives us a fibration by open and closed balls as in 7.3.1.

Let Vv be the restriction our local system V' to the open subset TN, then we put Vj =
in,(Vn) we have an inclusion V]!V<—>V! and therefore a homomorphism

H:(TN,Vy) = H*(M,Vy) = H*(M,V")
I claim that we have a canonical iomorphism
HI(N,V)SHIT™="(TN,Vy) = HT™"(TN,Vy)

We apply the same argument as in 7.3.1 and get

Hi+m=n(TN, V) SHI (N, R™ "1, (V))

and then it is obvious that V' = R™ "r,(V). We assume in addition that M and N
are oriented and the relative orientation is compatible with these orientations. Finally we
assume that V = Z is the trivial local system.
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Especially we have the map
Z=H°(N,Z) — H™ ™(M,Z),

and the image of 1 under this map is a class [N] € H* "(M,Z). It is called the funda-
mental class of N in M.

Let w be cohomology class in the complementary dimension n = dim N, then we can
consider the cup product
[NJUw e H"(M,Z) =7

or we can restrict w to N and get a class i*(w) € H"(N,Z) = Z.

It follows directly from the definition and the compatibility of the Poincaré-pairing and
the cup product that
i*(w) = [N]Uw. 8.5.1

8.6 Cup product and intersections Let us assume we have two oriented compact
submanifolds Ny, Ny of codimension dy, ds in our oriented manifold M. We get two classes
[N1], [V2] in the cohomology with compact support, they sit in degrees dy, ds. We want to
understand the cup product of these two classes.

We assume that our two submanifolds intersect transversally. This means that in any
point p of N; N Ny the intersection of the two tangent spaces TN, , N T, p has dimension
dim M —d; —ds. This implies that the intersection N7 N Nj is again a compact submanifold
of codimension d; + dy. It may have several connected components. We write

NlﬂNQZUCj

where the C; are the connected components. For any point p € C; we get an exact sequence
of tangent spaces
0 — TCJ,P - Tvap @ TN27p - TM,p - 0

where the arrow from the direct sum to the tangent space of M is given by : first component
minus second component. This gives us an isomorphism

AT, ) ® A™ (T ) SA™ (T, ) ® A™ (T, )

and this puts an orientation O; on C; for all j. Now I claim

Z[Cj] = [N1] U [NV2] 8.6.1

We can look at the special case where d; 4+ da = n. In this case the cup product lands in
H!™(M,Z) and hence it is a number. If we keep the assumption of transversality then the
intersection is a finite number of points. Now the tangent space of a point has always a
canonical orientation. If now ¢ € N1 N N3 then we define

m(c) = { 1 if the orientatation O, is canonical
—1 if not
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Our formula becomes

[MJU[Ne] = > me)

ceN1NN»

It is purely local problem to verify these formalae. According to (8.5.1) we have to restrict
the class [N3] to N;. We recall the construction of [Ns], this class was the image of
a class in H*"%(TNy,Z) = H™ % (M, ZYy,). If we restrict this class we get a class in
H™ 4 (N, Z® Z!NQ) the rest is clear but has to be written.

8.7 Compact oriented surfaces:

Let S be a compact oriented 2 dimensional manifold. We have seen that for any ring R

H°(S,R) = R and H*(S,R)=R

and the only unknown cohomology sits in degree one. For any prime p we have the exact
sequence of sheaves

0—=+Z—Z—TF,—0

and in the resulting long exact sequence we find the piece

0— HY(S,Z)— H'(S,2) - H*(S,F,) = 0
p

we have zeroes at both ends because H°(S,Z) — H°(S,F,)( resp. H*(S,Z) — H?*(S,Z))
is surjective (resp. injective). This implies that H'(S,Z) is torsion free. Since we also
know that these cohomology groups are finitely generated we conclude that H'(S,Z) is
free of some rank.

Now we have the Poincare duality pairing

H'(S,Z) x H*(S,Z) — 7Z
which is non degenerate and alternating. A well known result from elementary algebra

tells us that we can find a basis eq,...,eg, f1,..., fy of H(S,Z) such that the duality
pairing is given by

eiuszéij, eiU(Bj:O,fiUfj:O

The number g is called the genus of the surface. For a curve of genus 3 we can draw the
following picture
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We three pairs of 1-cycles which form a basis in homology. But we also may view these
cycles as submanifolds isomorphic to S* which are oriented by the arrows. These subman-
ifolds have fundamental classes e1, f1, €a, f2, €3, f3 in H'(S,Z) and if we numerate them in
the right way we have the above values of the intersection pairing.

8.8 The cohomology ring of P*(C) We are now able to determine the structure of
the cohomology ring H*(P"(C),Z) (See 6.5.1.1 Exercise). The fundamental class of the
hyperplane P*~1(C) C P*(C) gives us a multiple of the generator ae; € H?(P"(C),Z)
(Since we are dealing with complex manifolds, all manifolds have a canonical orientation.)
Now we can put n such hyperlanes in general position such that they intersect transver-
sally and Ly N---N L, is a point. The fundamental class of a point is the generator in
H?**(P*(C),Z). We conclude that a™e; Ue; ...e; is this generator, it follows that a = 1,
ey is the fundamental class of the hyperplane and

H*(P*(C),Z) = Zlea] /(e7™).
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IV.9. The de-Rham and the Dolbeault Isomorphism

9.1 Real manifolds.

Let M be a C*°-manifold and let V be a local system consisting of finite dimensional R or
C-vector spaces. (See 3.3.2). Locally on small connected open subsets U C M we have a
trivialization of V by constant sections eq,---, e, and

V(U) = {iaiei ‘ a; € K} .

We define

Voo (U) = {Zfiei | fi € COO(U)} ;

1=1

and this gives us the sheaf of C*°-sections in V, we forget the discrete topology on the
fibres.

Let Q%LOO be the sheaf of C*° — p-forms on M (3.3.2). We can define a differential

d: Voo (U) — Voo (U) @ Qoo (U)

d: Zf,ez — Zei Q® df;.
=1 =1

If we pass to another open set U’ and if we choose a trivialization ef, - - -, e}, over U’ then

we get expressions
} : /
€; = aijej

over U N U’ where the a;; are locally constant. Thus we see that we can define a global
differential
d: Voo — Voo ® Qs oo

It is clear from the definition that for any open set Uy C M
V(U,) = {s € Voo(U1) | ds = 0}.

We can extend our differential to forms of higher degree
s:Voo®Q§/‘,’oo —>VOO®Q§Z(1)O

by
d(ZSz ®wi) = Zsi ® dw; + stz A dw;

where ds; = ) gi; ® w; and ds; A dw; = }_; gij ® w; A w;. It is well known that dd = 0,
and we get the so called de-Rham complex of sheaves
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0=V —=C%W) =2 C°WV)®@ Qo = - = C°(V) @ Q44 o — 0.

A form w € C®(V)(U) ® QY (V) is called closed if dw = 0.

9.1.1 Remark. If we have a C*°-vector bundle £ over M (see 3.1.1, here the g;; have to
be C*°-functions), then we may consider differentials

d:C®(€) — C®(€) ® V.o

which satisfy
d(Sl + 82) = d81 + d82
d(fsl) = fd81 +51Q® df

for local sections s1, s2 and local C*°-functions f. Such differentials are called connections
on £. Such a connection is called a flat connection if

d(dsl) = d(z 5 ® w]') = Z 5; @ de' +ds; A w; = 0.

We saw that starting from a local coefficient system )V we have a canonical flat connection
on V.. But in turn, if we have a flat connection, then we can attach a local system & to
& by defining

Eo(U) ={seC=(&)(U) | ds=0}.

It is of course clear that the flatness of the connection is necessary for the construction of
the de-Rham complex.

It is not very hard to see that the de-Rham complex is exact. This follows from the well-
known Lemma of Poincaré which says that a closed p-form w on a convex open set U in
R? can be written as di = w with 1 € QE1(V)(U) . Hence the de-Rham complex gives
us a resolution of the sheaf V. We want to introduce the notation Q5 (V) for Voo ® Qf .

I claim that this resolution is also acyclic, we have
H' (M, Q. (V)) =0 for s > 1 and all p > 0.

To see that this is the case we apply the Exercise 2.1.1. We have seen (Seee 8.2) that we
have a partition of unity for the sheaf C*°(M). If we have any C°°(M)— vector bundle £
on M then the sheaf C*°(&) is a sheaf of C*°(M) modules. Then our exercise 2.1.1 yields
that the higher cohomology groups C*° (&) vanish.

We apply the functor global sections and then the resulting complex of global differential
forms computes the cohomology (See 11.3.1). We get the de-Rham-Isomorphism:

_ {we B W) (M)|dw =0}
{dp|p € QBH(V) (M)}

H'(M,V) = H'(Q%,(V)(M))

145



The argument in Exercise 2.1.1 also applies to the cohomolgy with compact supports and
get by the same token ' _
H;(M,V) = H'(H; (M, Q35, (V).

If for instance we take the trivial system R on M = R? then a closed form w of degree
p > 0 on R? can be written as diyy with ¥ € QE-1(R?). If p = 0 then a closed form is a
constant function f = c¢ thus we get H°(R",R) = R and H*(R",R) = 0 for i > 0. (See
4.4.11)

If we consider the cohomology with compact supports then a closed form in degree zero
which has compact support must vanish. Hence we get HO(R?,R) = 0. But if we have a
form w with compact support on R? which is of degree d then we may not be able to write
it as w = dy where also 9 has compact support. If we could do so we would have

where D is a big closed ball which contains the support of w and . Hence we get a

surjective linear form
HYR" R) - R

[w] — w

Rd
Since it is easy to see that a form w with compact support for which in addition fRd w=20
can be written as w = di with v € Q3~1(R?) we get that the above map is an isomorphism.
9.1.2: We want to discuss the product structure of the cohomology in the context of the
de-Rham isomorphism. If we have two manifolds M and N, then the resolution of the
sheaf R by the two de-Rham complexes are flat ( Comp. the discussion in 6.7.). If we
consider the product M x N and the two projections pq, p2, then we have a homomorphism
of complexes

P 00) B P5(W.00) = Q.00 ®@RAN 00 — Lirx V.00

which is given by the exterior multiplication of the differential forms. Hence it is clear that
the product
H?(M,R) x HY(N,R) — H?T?(M x N,R)

(a7 IB) > a®Rﬂ
is induced by the exterior multiplication of the differential forms which represent the classes
a, B.

Especially it becomes clear that the cup product on H*(M,R) is induced by the structure
of exterior algebra on the differential forms.

Finally it is clear that the Poincaé duality pairing on an open oriented manifold M
H!(M,R) x H""*(M,R) — H™(M,R) — R
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is given by

wxtl— [ wan

if the classes [w] € H:(M,R) and [n] € H™ ¢(M,R) are represented by w and 7.

9.1.3: The de-Rham isomorphism also provides a different way looking at the notion of
the fundamental class and the formulae for the cup product (see 8.5, 8.6). Let us consider
an open ball D™ C M in our manifold of dimension n. We assume it to be oriented. If we
remove the origin from D, then we have a diffeomorphism

D™\ {0} ~ (0,1) x §™!

which is given by

/ I1 In
:L-’...’xn — x2+...+$2’ R — 7-’ .
( 1 ) ( 1 n ( /$%+...+$% /:L'%—{—---—}—[E%)) ( (p)

On S™~! we have a unique differential form w in degree n — 1 which is invariant under the
orthogonal group SO(n), and which satisfies

/ w=1.
Snfl

Now we choose a C*°-function h(r) which is identically equal to 1 if r is close to 0 and
identically equal to zero if r is close to one and this provides the differential form

h(rjw =9
on D\ {0}. If we take its exterior derivative

iy = 8’5&”) drAw=w,

then w is a form on D™\ {0} which vanishes identically in a small open ball around zero
and near the boundary of D™. Therefore we can extend it to a differential form on M and

clearly we have
/ w = 1.
M

Thus we constructed a form which represents the canonical generator in H™ (M, Z).

Let us assume that M is an oriented manifold and N C M is an oriented submanifold. We
construct a tubular neighborhood T'N of N such that we have the projection

7: TN — N
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and such that locally in N we have

(V) = VxDm™n
\
V.

On V x D™™™ we construct a m — n-form wy which is the pullback of a form w on D™™"
which is constructed as above.

Now we choose a covering N = |J;.; Vi which is locally finite and which trivializes 7 :
TN — N, and we choose a portion of unity 1 = Y h; with supp(hg) C V;. On each
7~1(V;) we construct w; and we put

W = Z hzw,

For any point in x € TN we have
(dw)e =Y (dhi)e Aw; — d(Sh) g Aw; =0,

and we see that wy o € W™ (M) is a closed form. It is clear that this form represents
the fundamental class
[N] e H" "(M,R).

If now N7, Ny are two oriented submanifolds in M, and if we assume that one of them is
compact, then we have the two classes

[Nl] = [le], [NQ] = [wNQ]
where one of the forms has compact support. We just saw that
[Nl] U [Ng] = wnN; NWN,.

If now these two submanifolds are if complementary dimension, and if they intersect
transversally, then it is easy to see that

/ wN, NWnN, = / WN,; NWh,
M,0c0 D(c)

where D(c) is a small ball containing the local support of wn, A wy,. Now it is easy to
verify that these contributions from the points are equal to m(c) (see 8.6.1)

ceN1NNsy

9.2. Cohomology of holomorphic bundles on complex manifolds

Let M be a complex manifold. From our discussion in IV.3.2 it is rather clear what a
homolorphic vector bundle £ on M is. This is of course a bundle 7 : £ — M of C— vector
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spaces for which the transition functions g;; : V; N V; — GL(n,C) are holomorphic. This
allows us to define the sheaf of holomorphic sections which also denote by £. It follows
from our general principles in IV.3.3 that the holomorphic vector bundles are classified by
HY(M,GL,(Op.00)) where GL,,(Onr,00) is the sheaf of holomorphic functions from M to
GL,(C).

To such a holomorphic vector bundle £ we have the sheaf of germs of holomorphic sections
which will be denoted by the same letter. This sheaf will be a locally free Ops-module and
a locally free Oy, gives in turn a holomorphic vector bundle.

We also can define the sheaf £,, of C°°- sections in the bundle, we have the inclusions of
sheaves £——&€ .

The following discussion will show that this concept is completely analogous to the concept
of local systems. (See 9.2.4)

9.2.1 The tangent bundle: We pick a point p € M and an open neighborhood U, of p
such that

(Up, OMIU,,) >~ (Dp, ODp)

where D), is an open ball in C? whose center is p = (0,...,0). The tangent Ty is of course
a holomorphic bundle which over U,, can be trivialized by the derivations aizl’ ey a_i,' We

write the complex coordinates by their real and imaginary parts
(21 20) = (w1 + iy — L., 30+ iya).

Then the tangent bundle of the C*°-manifold M ( we forget the complex structure) has a
basis locally at p which is given by

o 0 o 0
Oz, 0y’ Oxqg Oyq
These section are only sections in T . This bundle of 2d-dimensional real vector spaces

has the structure of a bundle of d dimensional complex vector spaces where locally the
multiplication by % is given by

._0 90 . 0 __0
I: oz = Oy1’ Oy = Oz
.0 9 . 0 _ 0
I: Oz4 = O9yq’ Oyq Ozq

We have a priviledged orientation on the underlying C°°-manifold which determined by
requiring that dx1 Ady; A ...dzxg A dyg is positive.

We can take the tensor product
Ty ®r C=Tuc

and get a bundle of 2d-dimensional complex vector spaces. On this bundle of complex
2d-dimensional vector spaces we still have the linear transformation I above and Ty ¢
decompose into two eigenspaces which are the eigenspaces with eigenvalues ¢ and —: for I:

10 01
Tmce=Tyc®Tyc
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where TJ}/_})’ c is the eigenspace for the eigenvalue 4 for I and T](\)/},C is the eigenspace for the

eigenvalue —i for I. It is easy to see that locally on M we Tj,?’(c has the basis (fibre by
fibre)

821 8.’171 e 82/1

0 0 ) 0
=— —3

dzq  Oxy Y4

This provides a structure of a holomorphic vector bundle on T},?,C the local trivialization

is given by the above basis. The composition map Thy — Ty ® C — T ]}/?’ ¢ induces an
isomorphism of complex vector bundles. Hence we can also view T/, as a holomorphic
bundle. The composition Ty — Ty @ C — T]?/}’C is antilinear.

9.2.2 Here we apply some very simple principles of linear algebra which on the other hand
can be confusing and their application requires some care.

If we have a C-vector space V, we may define the complex conjugate space V. Its underlying
abelian group is V' but the scalar multiplication

CxV oV

is given by
(z,v) — Z - v,

where the dot on the right hand side denotes the scalar multiplication of v € V by z € C.
Hence we see that the identity map Id : V — V is antilinear.

If we consider our complex vector space V over C as a real vector space together with a
linear transformation I with I? = —Id, then we can extend I to a linear transformation on
V ® C and decompose into the eigenspace V0 (resp. V) with eigenvalues ¢ (resp. —1).

The vector spaces V,V considered as real vector spaces are isomorphic by the identity
map. In the following diagram the composition of the horizontal maps

V — VerC =58 VI
11d
V. — VerC = V&

are isomorphisms of C-vector spaces.
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The thing that may cause confusion is the following fact: On V Qg C we have the complex
conjugation on the coefficients which may also be denoted by v — v. Then we get obviously

10 _ 01
v% _'v% 3

but now putting a bar on Vi has a different meaning, we get a different underlying set in
contrast to our convention above.

On the other hand we can say that we constructed canonical isomorphisms

vV S pe

Vv = v¥

which allow us to identify V to V29 and V to VO If we insert the map given by complex
conjugation on the right end of our diagram above, then we ge a commutative diagram
and the inconsistency in notation dissolves.

9.2.3 We can form the dual bundle Q},. Attached to this bundle we have the sheaf of C*°
sections in this bundle which is also denoted by Q}\/I,oo' We have a decomposition

Qe =04 9C -5 0 o0l

The sheaf Q}, is locally generated by dz; .. .dzg, we have

0 0
e~ —1® 57— > =20,
< dz oz, 2®8yu> Ovp

<dz”’8ix”+i®8iyu>:0
We can define the fibres of Qll\/_r,c at a point p simply as
QJIVI,(C,p = Homg (Tn,p, C)
and then Q}p = {w|w(It,) = iw(tp)} for all tangent vectors ¢, € Ty yp, in other words

Qi2m2=:HOHMﬂthm,(D.

Analogously we have that Q%},p are the antilinear 1-forms. If we have a local section
w € Q12(U) then the complex conjugate @ is given by

w(tp) = w(tp),

where t,, € T, is a tangent vector at the point p € U.

Again we can form the complex of differential forms

n—1 n n+1
QALC#E _éghWﬂhw _+S)ALCﬂD
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but this sheaf (vector bundle) of n-forms decomposes
K/I,(C,oo = @ Qg’l?oo
ptg=n

where
Qb = APQ2 ® A10Y.

( Once we have a superscript p, ¢ we know that we are dealing with complex vector spaces,
we omoit the subscript C) Locally we get that a (p, ¢) form can be written as

W= fapdza, N...Ndza, NdZs, N...NdZg,
o8

where f, g is a complex valued C* function on U (the open set where we have these local
coordinates). We get a decomposition of the operator

.On n+1
d: QM,OO — QMpo

as d = 3(d' + d") where

0
d’wzz g‘z"ﬁdzv/\.../\dzap/\dzﬁl/\.../\dzﬁo
v Y

and

d"w = (—1)? af—?’ﬁdzal Ao Ndza, NdZs A...dZg,
5 aZf

where the factor % is explained by the fact that %, ai

— and dz,, dz, are not exactly dual
2

bases of each other. (Nochmal nachrechnen).

We have T
I .OP4d p+1,q
d .QM,OO — QMm

1" .)Pq D,q+1"
d .QM,OO — QM,oo

9.2.4 Now we come back to our holomorphic vector bundle £. We can embed the sheaf £
of holomorphic sections into the sheaf of C°°-sections, we write

0= &= Exp =0 (E).

As in the case of local systems we can characterize the subsheaf of holomorphic sections
by a differential equation. We observe that we can define the operator

d": C®(E) = Q0o (Eoo) = Eco @ N oo
To do this we write a local section on U in C*°(€) in the form
s=Y_ fisi
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where the f; are C°°-functions and the s; form a basis of holomorphic sections. Then we

put
OF
d's = fz $; @ dZzy.
07,
This is well-defined because just as in the case of local systems where the corresponding
s; were constant we put d”’s; = 0 and this is consistent with the change of trivializations
because holomorphic functions f are characterized by % = 0. As in the case of local

systems we get a complex of sheaves

0—=E&—= Q2 (&) =% (&) —%E) = Q%eE) —o.

We need an analogon of the lemma of Poincaré, this is the lemma of Dolbeault:
9.2.5 This complex of sheaves is exact
Hier muss ich noch was zu sagen.

Combined with our previous observation, namely that the sheaves Q2(€) are acyclic, gives
us an acyclic resolution of the sheaf £. From our general principles we get the Dolbeault
Isomorphism: _ .

H'(M, &) = H'(Q3(E)(M)).

9.3 Chern classes : We consider holomorphic line bundles £ on our compact complex
manifold M. The isomorphism classes of these line bundles form a group under the tensor
product and this group is the first cohomology H'(M, O}, ) ( 1V.3.3). We have a ho-
momorphism from the sheaf of holomorphic functions Oy to O}, which is given by the
exponential function

Ou(U) — 0Oy(U)

f — 627r1,f7

and this is a surjective homomorphism of sheaves. The kernel is the sheaf of locally constant
functions in Z, thus we get an exact sequence of sheaves

0 —Z— 0Oy — Oy —1
which leads to the exact sequence in cohomology
— HY (M, Oy) — HY (M, 0Y) = H2(M,Z) —> .

If we have a line bundle £, and its isomorphism class corresponds to [£] € H(M, O%,),
then the image under ¢ is called the (first)-Chern class of L, i.e.

§([£)) = e1(L) € H* (M, Z).

We want to give a geometric interpretation of this class. We assume that our holomorphic
bundle has a non zero section

s€ H' (M, L)
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which has an additional property, namely it defines a “smooth divisor”. By this I mean
the following: for any open set U C M over which our bundle becomes trivial and where
we selected a nowhere vanishing section 1y € H(U, £). Our section s can be written as

s=fu-1ly

where fr7 is a holomorphic function. Now we require that the differential dfy is non zero in
all the points where fyy — and therefore s — is zero. The implicit function theorem implies
that the set of zeroes of s is a submanifold Y C M which is of complex codimension one.
This is our smooth divisor.

Since we are in the complex case, we know that M and Y have natural orientations, and
this also defines a relative orientation (see 8.5). In this situation we attached a fundamental
class

[Y] € H*(M,Z)
toY.

Proposition 9.3.1 Under these conditions we have the equality
[Y] = ci(£L).

Proof. We choose a Riemannian metric in M and a tubular neighborhood TY of Y as in
8.5. We shrink this tubular neighborhood slightly by making the discs a little bit smaller.
We cover the shrinked neighborhood

T.Y =U Y, x D, = U,

where Y, is open in Y and D, is a disc. The indices run over an indexing set A. Now
we cover M \ T.Y by open sets U, such that U, NY = @ and v runs through C. We
assume that we can trivialize the bundle on each of these open sets and on the U,,y € C
we may trivialize by using the section s. Then we get our 1-cocycle gog € O}, (Ua NUg),
and gg, = 1if B,y € C.

We assume that the covering sets are convex ( See 8.2) that we can form hyg = 2%” log gap
on U, NUg, and we choose hog = 0 if o, B € C. Then we get the Z valued two cocycle

CaBs = haﬂ — hﬂ& 4+ hys on U,nN Ug NUs

and this 2-cocycle represents our class ¢1(£). But we notice that cogs = 0 if all three open
sets lie in the complement of Y. This means that c,gs # 0 implies that at least one of the
indices lies in A. Consequently

UaﬂUlgﬂU(sCTaK

Now we counsider the sheaf i;(Z) on M where 4, : TY — M (this is the larger tubular
neighborhood), and we see that our cocycle lies in

C%* (A, i\ Z).
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We have the inclusion 41(Z) — Z and we conclude that ¢;(£) is the image of the class
¢y (L) € H*(M,i\7)
which is the class represented by this cocycle. But we know that
H?*(M,4Z) = H (Y, R?m,(4/Z))

(see 8.5.). Since we have a relative orientation we have R%m,(i1(Z)) = Z on Y and by
definition
[Y] = 1y = constant Z-valued function 1.

We want to show that ¢} (£) = [Y]. This can be checked locally on Y.

If we want to do this, we consider a point p € Y and a neighborhood U, of p in M such
that we have an isomorphism

(Up, Ou,) ~ (B, 0p)
where B C C" is an open polydisc, say
B ={(z1, -, 2zm) | |z| < 1}.

We take U, so small that we can trivialize our line bundle £ | U, by a section s; € H°(Up, £)
which is non zero everywhere. Our global section s € H%(M, £) is of the form

8:f81,

if we restrict it to U,. We assumed that df # 0 at p and therefore we may even assume
that f(z1, -, 2m) =21 and then Y NU, = {(0, 22, -, zm) | 2z € C}. Of course it may be
necessary to pass to a smaller neighvorhood and after doing this we can still think that

UP = (z1a227"'7zm) | |Zl| < 1}

and s = z1s1. We cover the disc D = {z1 | |z1] < 1} by open sets. The first one is
Vo ={z | |z| < r} where r < 1 but close to one. The set

Vi ={z1 | Re(z1) > ¢,21 € D}

where € > 0 on small. Then

This yields a covering of U, if we multiply by the disc
D' ={(z2,---,2m) | |2z:| < 1}.
We compute the 1-cocycle by the recipe given in our discussion above. We get
gij =1 if 1<4,5<3
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and

goi =2 for +=1,23.
We have to write these gog as e2mhas with some function hap on V,g. Of course we take
hij =0 for 1 <14,5 < B. To define the hy; we take a path v from 1 to a point z € Vo NV}

which goes counterclockwise around zero, and

1 d¢
hoi = — —.
097 om /7 ¢

We have to compute the differences
coij = hoi — hoj + hij

and get
co12 = c123 =0

but
Co13 = 1.

Now it is clear that this 2-cocycle with values in 417 yields the positive generator in
H*U,,iZ) = H°(Y NU,, R?*1,i1Z)

and this proves the proposition.

9.3.2 This formula gives us a very nice interpretation for Chern classes. Let us assume

that dim M = d and let us assume that L£q,...,L; are line bundles. We assume that
each of these line bundle has a section s; € H°(M, L) and let us assume furthermore
that the zero sets are smooth divisors and Y; = [s; = 0] intersect transversally (See

8.6). This has the consequence that the intersections Y1 NY;...N Y, = Zi are smooth
complex submanifolds. Let us consider a point p in the intersection of all the Y; and
local trivializations t; € H°(U,, £;) of the line bundles at p. Then locally at p we have
s; = fit; where f; is holomorphic at p and f;(p) = 0. Then our transversality assumption
implies that fi, fo,..., fg is a sytem of local coordinates at p. The point is isolated in
the intersection. We can invoke our formula 8.6.1. It tells us that the cup product of the
Chern classes is a class in H2¢(M,Z) and hence a number and

01(51) U Cl(£2) ..U Cl(ﬁd) = |Y1 N Y2 n...N Yd‘

Of course we may always form the above cup product of d Chern classes of line bundles
and we call the result the intersection number of the line bundles. We may even take one
line bundle £ and call ¢;(£)? the d-fold or total selfintersection number of the line bundle.
We will discuss later (See V.3.1.2) on projective smooth varieties this cup product can
always be interpreted as an intersection number of smooth divisors.

9.3.3 The line bundles Opx () (k):
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I want to outline the construction of a familiy of line bundles Opn () (k) on P (C). I begin
with construction of Opn(c)(1). We consider the coordinate functions z; : C**! — C as
linear forms on C**1. Starting from these linear forms we construct the bundle Oprc) (1).
This bundle becomes trivial when we restrict it to one of the open subsets U; and over
this subset z; is a trivializing section, i.e. it it is nowhere zero. For any pair 4, 7 of indices
we have the two trivializing sections z;,z; on U; N U;. They are related by the equation
zi = (#i/zj)z; and z;/z; = gi;j is a holomorphic nowhere vanishing function on U; N Uj.
These quotients define the transition functions ( See III. 3.2 and 9.2 ) defining the bundle
Opn(cy(1). Tt is clear that z; defines in fact a global section in H°(P"(C), Opn(c) (1)) and
this section which defines a smooth divsisor [z; = 0] and this is the hyperplane at infinity
for those people who live in U;. Hence we see that the Chern class of the bundle Opn ¢ (1)
is the fundamental class of an arbitrary hyperplane in P"(C).

In view of our considerations in IV.8.8 this means that the Chern class ¢;(Opn(c)(1)) is a
generator in H2(P"(C), Z).

Now the other bundles are simply the tensor products

Opn(gy (1)(n) = Opn(cy (1)®"

and their Chern classes are given by n-times the generator.

IV.10. Hodge Theory
10.1. Real manifolds.

In this section I describe some very powerful analytical tools which provide insight into
the structure of cohomology groups. They are based on the construction of certain linear
elliptic differential operators (Laplace operators) which arise if we try to write down an
inverse for the operators d,d’,d” in the de-Rham or Dolbeault complexes. We need some
results on elliptic linear differential operators which we not prove here.

We go back to the situation where we have an oriented manifold M, and a local system of
finite dimensional R or C-vector spaces V on M. Let d be the dimension of M.

We have the de-Rham complex
0=V 3V 2 Vou @0, = ... 2 Ve ®Q4, — 0.

If we take global sections and if we drop the first term the resulting complex computes the
cohomology groups H” (M, V).

We have seen that we can construct a Riemannian <, > metric on M and using the same
method we construct an euclidean (or hermitian) metric <, >j on V. The metric on the
tangent bundle provides a metric on the bundle of differential forms Q4 . This allows us
to define a scalar product on the sections f € Voo @ 4, (M): It is clear that the metric on
Voo and the Riemannian metric together give us a metric on the tensor product of fibres
V, ® Q4. at any point z. Hence we get a function £ =< v15 Q Wiz, V15 ® wag > on M for
any two v1 @ws, V2 @wa € Voo @4 (M. Since our manifold M is oriented and Riemannian
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we have a unique section wyo, € Q?M (M) which has length one and is positive with respect
to the orientation. Hence we can integrate

<V R wi, V2 Q wa >:/ < Vig, U2z >< Wig, W2z > Weop-
M,0c0

Here we have to assume that the integral converges. This is centainly so if M is compact.
Otherwise we have to introduce the notion of introduce integrable sections.

There is another way to describe this scalar product. We have the *-operator on the bundle
of forms
w: QF — Q)P

which is defined pointwise by the requirement
w1 A *we =< W1, W2 > “Wiop-

Hence we get as our scalar product for two sections v; ® wy,vs @ Wy € Voo ® Q%I(M ) the
formula

< V1 Qwi, v QW >=/ < U1, V2 >p w1 A *wa.
M,
Now it becomes clear that we can define an adjoint operator

§: Voo @ Q8 (M) = Voo @ Q271 (M)

which we simply put
6= (—1){P D+ 4 gy

We have to verify that for v; @ w1 € Voo ® Qﬁ;l(M), V2 @ way € Voo @ QO (M) we have
< dvi @ w1, V2 @ Wy >=< V1 @ W1, U2 @ Wy > .
To see this we perform a simple calculation
< dvi @wi,v2 Qw2 >= [),  dv1 ® w1 A*va @z =
fM,OO d-(v1 @ w1 A*v3 @ wa) — (—1)P71v; @ wy A d * v3 ® wo.

From this moment on we assume that M is compact, then [ Moo dwi Ad*va @ wy) =0
and hence

< dwl, V2 Q@ wyg >= (_1)p+(d—p+1)(p—1) fM,oo dw1 N\ *V9 @ wy =
(—1)pt1+(d+p)p fMpo <WiA**d* vy ®ws =< wi, *d * Vg @ wo >

We define the Laplace operator
A =dd+dd
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which sends p-forms to p-forms. It is clear that this is a linear operator of second order
and it is elliptic.

[Erkldre was ein ellipt. Operator fiir beliebige Vektorbiindel ist
D:E(M)— Exo(M).]
The theory of elliptic operators tells us that:

10.1.1 We have a decomposition into eigenspace
"WVoo ® D (M) =~ Voo ® Q8 (M)(N)”
A
where

Voo ® Q2 (M)(A) = {w € Voo ® Q2 (M) | Aw = Aw}.

The eigenspaces have a finite dimension and the eigenvalues tend to infinity, i.e. on any
finite interval [0,T] we have only finitely many eigenvalues X\. The sign ), means that
any w can be written as
w = Z Wi
A

where the convergence is uniform on M and stays uniform if we apply a finite number of
derivatives.

Once we believe this we can compute the cohomology very easily: The operators d and ¢
respect the decompositions, they send eigenspaces into eigenspaces to the same eigenvalue.

Now we can compute the cohomology. Let w € Voo @ Q5 ,(M)(M) be a closed form. Write
w=wq + w'
where Awy = 0 is the harmonic component, the one in the eigenspace to A = 0. Then
dw = dwy + dw' =0

and hence dwg = 0 and dw’ = 0. But

w':E wh

A£0

where dw) = 0. Hence

and therefore
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This means that wy represents the same cohomology class as w and we have the

10.1.2 Theorem: The harmonic forms satisfy dw = dw = 0. Sending a harmonic form to
its cohomology class provides an isomorphism

HP (Voo ® 8,) (M) = {w € Voo ® Q8 (M)|Aw = 0} =5 H?(M, V).

We almost proved this theorem. We observe that A is a positive operator. We have
< Aw,w >=< dw,dw > + < dw, dw >> 0. If Aw = 0 then we conclude

0 =< dw, dw >=< dw, dw >

this implies the first assertion. Since harmonic forms are closed they define cohomology
classes. If w is harmonic and w = d¥ then < w,w >=< w, d¥ >=< dw, ¥ >= 0 and hence
w = 0. The map from harmonic forms to cohomology is injective. The surjectivity has
been shown above.

10.1.3 : We can give some indications how these results can be proved. Since we introduced
the scalar product on Vo, ® Q% /(M) we may take the completion with respect to this scalar
product, and we get the Hilbert space

I2(V) © Qf, ) (M)

of quadratically integrable differential forms with values on V.

If we have a closed form w € V,, ® O (M), then we can modify it by a form diy and we
can try to minimize the square of the norm

o+ dy|f® = /M<w + dpw + d).

We look at the lim inf of all the real numbers ||w + d||3 where 9 varies. We can find a
sequence
w+ d¢n = Wp

such that ||w,||2 converges to this infimum. Since the unit ball in our Hilbert space is
weakly compact, we can find a weakly convergent subsequence, i.e. we may assume that
wyp, converges weakly to a form

wo € LA(V) ® O ) (M).

We would like to prove that wg is a C°°-form, that it is harmonic and that this form
represents the given class, i.e. wy = w + d)p.

Assume that we know that wg is a harmonic form. This means that it is C* and satisfies
dwg = dwg = 0. Then we have

(dwo,m) = {wo, )
<5w03 Ilp> = <w0a d¢>
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for all ¢ € Voo @ Q87 (M), 1 € Coo (V) @ Q2 (M). Of course the equalities
<w07 577) =0 <w07 d,(:b) =0

make sense for any square integrable form. I claim that they are true. The first one follows
because

(wo, dm) = lim (w + dbr,, ) = (dw + ddyp, ) = 0

(this is the definition of weak convergence) and the second one follows from the minimality
of the norm |[|wpl|3.

The really deep input from analysis is that the validity of the two equations

{wo, 0m) = {wo, dip)

for all n, 1 implies that wy must be indeed C*° and then it follows that wy must be harmonic.

The rest is easy again. We need to know that wq still represents the given cohomology
class. This follows from Poincaré-duality. We consider the dual local system VV. We have
the non degenerate pairing

HP?(M,V) x H*" ?(M,VY) — R

which in terms of differential forms is given by integration over M. Hence we see that for
any cohomology class [w'] € H"P(M,VV) which is represented by a C* — (n — p)-form w’
that

w]U ] = /M,OO tr(w W) = [ tr((w+ d) A

and weak convergence gives that this integral is equal to
/ br(two A ') = [wo] U [w'].

This theorem has consequences.

(i) We conclude that for a compact oriented C°°-manifold the cohomology HP (M, V) has
finite dimension for any local system of finite dimensional R or C vector spaces.

(ii) If we have such a local system V., and if VY is the dual system then ?777?7.

Both these consequences are known to us, they even hold for more general local systems.
But in the next section where we discuss the analogous situation of holomorphic bundles
on complex manifolds and in this case these consequences are only obtained by the analytic
methods.

10.2. Complex manifolds:

Now we consider a compact complex manifold M. We introduce a hermitian metric A on
the tangent bundle T/ .

161



10.2.1 Some linear algebra.

I have to recall some simple facts from linear algebra which concern these metrics. There-
fore I start from a complex vector space V of finite dimension d. In the following I view
V as a real vector space of dimension 2d which is endowed with a linear transformation
I : V — V which satisfies 12 = —Id. The structure as a C-vector space is regained if we
define scalar multiplication of v € V' by i by v — I(v).

If we have a hermitian form A on V then we can write
h(v1,v2) = Re h(v1,v2) + 4 - Im h(vy, va)

and it is clear that
Reh:V xV — R is symmetric

Imh:V xV =R is alternating
Since h(Ivy, Ive) = h(ivy,ivy) = h(v1, v2) we see that both components satisfy

Reh : (Ivy, Ivy) = Re h(vy,v2)
Imh : (Tvy, Tvg) = Imh(vy, v2)’

in other words I is an isometry for the real part and the imaginary part.

But we may also recover h from either part. We simply write
h(v1, Ive) = Re h(vy, Tvg) + i Im h(vq, Tvg)
and since h(vy, [ve) = —ih(vy, Ivy) this yields
h(v1,v2) = —Im h(v1, [ve) + i Re h(vy, Tvg)

and from this we get
Re h(v1,v2) = —Imh(v1, Tvs)

Im h(vy,v2) = Re h(vy, Tva)
Hence we see that a sesquilinear form A on V (this is a hermitian form without the re-
quirement that it should be positive definite) is the same thing as a symmetric form or an

alternating form
Reh=V xV >RImh=V xV =R

for which I is an isometry. The form A is hermitian (positive definite) if and only if Re h
is euclidean.

We complexify V' and extend Re h to a bilinear form
Reh@:V(c X V@—MC.

We have the decomposition
Vo=Vl V!
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and it is clear that VCIO, V(é)l are isotropic with respect to Re h¢, i.e.
Re he(V,V10) = Re he (VP Vo) = 0.

This follows from the definition of the V!0 V! as eigenspaces for I with eigenvalue i, —i.
But the pairing
Rehc: VIO x VO — C

will be not trivial in general. If for instance the form h is positive definite then this pairing
is a perfect duality.

We have an isomorphism of complex vector spaces
j:V =V

which is obtained by the embedding of V into Vi followed by the projection. Under this
isomorphism we send

1
j:v—)i(v—h)@i)

and we can recover the hermitian form h from Re h¢ by the formula

(s, 02) = 5 Re he(i(wn), 1(02)

where is of course the antilinear isomorphism from V!0 to V%! introduced by complex
conjugation on the factor QC.

We introduce a so-called Hodge structure on the pair vector space V together with its
complex structure I. This is a homomorphism

hp : C* — GL(V)

and it is defined as
hp(z) = hpla+bi) =a-Id+b- 1.

It is clear that this map is a homomorphism.

With respect to the euclidean metric on V' it has the property that
< hp(2)v1, hp(2)vg >= 2Z- < v1,v9 >,

it is not an isometry but a similitude.

If we complexify the space to V¢ then it is obvious that

V10 = {v|hp(2)v = 2v}
VO = {v, hp(2)v = Zv}

The action of C* commutes with complex conjugation we have hp(z)v = hp(z)v on V.
We can extend this action of Cx to the exterior powers A"V and A"V simply by

ho(z)(vi A ... Avy) = hp(2)vi A... A hp(2)vy,
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and it is clear that we can characterize the subspace APV10 @ A9VO1 ¢ APHIV as
APVIO @ ATV W € APTIVL|hp (2)p = 2PZ%).
Of course if we extend Re h¢ to a bilinear form on A"V by

Rehc(p,%) = Rehc(vi A ... Avg,wi, A... Awy) = det(Re he (v, wj))

then we have
Re he(hp(2)p, ho(2)Y) = (22)" Re he(p, ¥).

This implies that the x-operator sends * : APV1I0@ AVl 5 APy 10 A4=9Y 0 This must
be so because the product vy, A*w,, is in top degree and hp (2)vpg A*xwpq = (22)hp (2)vpg A
*Wpq

If can extend our hermitian form A to a hermitian form on APV10 @ AV 0! by
h(QO, ¢) = Re h(C(Qoa 1»5)

10.2.2. Now we come back to our compact complex manifold M of dimension d, we assume
that we have introduced a hermitian metric <,>p on T o. This introduces a hermitian
metric on Qll\l,oo' We have the decomposition

1 10 01
QM,(C = QM,oo QM,oo
and
A"urc = @D AP . AU, = Gpgen L.
We have the euclidean metric Re h on Qll\l,oo and it introduces a star operator

. AnOl 2d—n )l
£ AMQY, - A2RQL

We have seen in the above section on linear algebra that we should extend this antilinearily
to
* @ AHQ}M,C — A2d_n911w,(c

and that this operator sends
. OPY y Qd—Pd—q
* ! QM,oo QM,oo .

We define the scalar product on the sections Q47 (M) by

< W1,Ws >=/ wi N *ws.
M,

Now we are able to define the adjoint operators to d’ and d”, we put

0 = —xd'x

8 = —xd'x
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The sign factor simplifies because our manifold has an even dimension when we consider
it as a real manifold. Of course we have to verify the adjointness formular

< d'wl,w2 > =< w1,5'w2 >
< d”wl,wg > =< UJ1,(5”UJ2 > '

To see this we observe that it is enough to check the case where w € QP~14(M),wy €
Qm%(M). Let us consider the first case. We see that both sides are zero unless p =
d—r,qg =d—s. So we assume that this is the case. Now we perform the same calculation
as in the real case where we at certain places we have to replace d’ by d and then again d
by d’'. We observe that

< dlwl,L&JQ >=< dUJ1,w2 >=< w1,5w2 >=< w1,5'w2 > .
This allows us to define the Laplace operator
A, — dl(sl + (Sldl and A” — d”6” + 6”d”
We want to compare these operators to the real Laplacian. Here we find

A: (dl—l—d”)((sl—{—dll)+(5I+5”)(dl+d”) —
— AI+AII+6IIdl+dlé‘II+6ldll+dﬂ6/

This is not so good unless we know that the mixed contributions disappear. This is indeed
the case if our metric h satisfies a certain condition, which I want to explain.

Our metric h on the tangent bundle has its imaginary part
Imh : T]\/[’oo X TM,oo — R.

Hence the imaginary part defines a 2-form wjp on the manifold. If we complexify the
tangent bundle and if we observe that I is an isometry for wy then we see that wy, is a form
of type (1,1) because it must be zero on T'° ® T19 and T°' @ T°'. This is the so-called
Kahler form of the metric. Kahler discovered the following

10.2.3 Theorem: If the form wy is closed, i.e. dwp = 0 then the two mized terms are
zero and we have
A=A +A".

I will not prove this theorem here. But in our later discussion of the special case of
Riemann surfaces - in this case we have automatically dw;, = 0 - I will carry out the
necessary calculations.

This theorem has the following important consequence:
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The Laplace operator A respects the decomposition
irc(M) = & (M)

and the harmonic forms

n
weN M,C(M )
are sums of harmonic forms
w = 2 : Wp,q
p+q=n

and
Aw=0 < ANw=A"w=0.

A form w is harmonic if and only if it satisfies all the equations

diw=d"w = =46"w

This follows by the same positivity argument which we used in the real case.

This provides us the famous Hodge decomposition of the cohomology of a compact complex
manifold which admits a Kahler metric:

H™(M,C) = @py qen H"I(M, C).

Now we apply the same methods to compute the cohomology of a holomorphic bundle £
on M. We choose a hermitian metric on the tangent bundle and on the bundle £ itself.
We consider the Dolbeault complex

0= 2 (E) (M) L5 (&) @ QY (M) L5 ¢ (£) @ Q2 (M) — .

Again we introduce a scalar product on the sections by
<81®W1,SQ®W2>:/ < 81,82 > wi N *ws

M,0

where < s1, 89 > is the hermitian form on the bundle £. We can construct the adjoint
operator
8" C®(E) @ Wyt (M) — C®(E) @ Qi1 (M)

it is given by
6" = (=1)" xd"«

and we have the Laplacian
A” — 5”d” + d”(sll.

Again we conclude
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The cohomology groups
HP(M,E) =HP (C™(€) ® Q3 (M) = {w € C®(£) @ A  (M)|A"w = 0}.

Especially we can conclude that these groups are finite dimensional.

The finite dimensionality is fundamental and there is no easy way to get it. (In contrast
to the case of C°°-manifolds and cohomology with coefficients in local systems).

Let us consider the dual bundle £¥Y = Hom(€, On,00). We introduce the dual metric on
&V (the dual basis to an orthonormal basis of a fibre £, should be an orthonormal basis
of £Y).

10.3. Hodge theory on tori: We have a special case where the two main theorems
of Hodge theory are easy to prove. We consider the lattice I' C R™ (see 6.5.7), and we
consider the C*°-manifold

M =R"/T.

For any point p € M we have a canonical identification T, M = R"™. If we take the standard
euclidian metric < , > on R” then we get a Riemannian metric on M. If x; - - - x,, are the
coordinates on R™, then the differential forms can be written as

0= s, dae A Ay,

I want to consider complex valued differential forms, the f; ..;, are complex valued C>°-
functions.

A basically simple and straightforward computation yields a formula for the Laplace op-
erator: )
Aw = O iy \ g n o pday
W = Z — 87{1‘,'12 $11 e ﬂfzp .
Now we consider the dual lattice

IV={peR"[(p,l) CZ}

and for ¢ € T'V the function .
ep(r) = e2mi{p,z)

on M is an eigenfunction for the Laplacian
Aey(z) = 47 (9, ey ().

Now any C°-function on M has a Fourier expansion

[ = Z ey (T)

pel’v
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where the absolute values |a,| tend to zero very rapidly. Consequently any differential
form can be written as convergent infinite sum

w:Eww
©

where Aw, = +472%(p, p)w,. This is the “decomposition” in 10.1.1.. It has the required
property: There are only finitely many ¢ which satisfy 4n2{p, ) < T. We apply our
arguments in the “proof” of theorem 10.1.2. . The harmonic forms are the constant forms

wo = Zail...ipdxil VAREREWAN dl‘ip

where a;,...;, € C. We conclude that the cohomology ring H*(M, C) is the exterior algebra
of the complexified dual tangent bundle Hom(7,M, C). This agrees with 6.5.7 but the
result overthere is slightly sharper because it gives the structure over Z.

If we consider a complex torus
M=C"/T

where T' is a lattice of rank 2n, then M is a complex manifold and the tangent space is
the complex vector space C" in any point of M. On this tangent space we introduce the
standard hermitian metric

z": ZyZy = h(z, 2).
v=1

Again we perform a simple computation and find
02 fop

A/:A";w:ngédngdEE—)Z(—Zaz 9 )dzg/\dzé.

Qvé g’é

Again we can introduce the dual lattice
I'V={peC"|Reh(p,v) €Z for all y € '},
and we can expand C°°-functions
F(z) = Zawe2wiReh(¢,z)_
Now we argue as before. We have the Dolbeault complex
0 — Opr,0 — C°(M) 25 QU1 (M) —> -,

and we have the adjoint ¢”". The operator A” = §"d" + d"¢" has the form above, we can
“decompose” into eigenspaces. If we take global sections, we find that

H* (M, Opm,00) = H' (M, Q3 (M) = {w € H*(M,Q3*(M)) | A"w = 0}

and again the harmonic forms are the constants.
We conclude that

H* (M, Op1,00) = Hom*(T,,(M), C),

and this will be used in the next chapter.
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Chapter V

Compact Riemann Surfaces and Abelian Varieties

V.1 Compact Riemann Surfaces

1.0 Introduction: A compact Riemann surface is a compact complex manifold of dimen-
sion 1. Let S be such a surface. It has a canonical orientation (See IV.9.2) In IV 4.4.13
and IV.8.7 we have seen that the cohomology groups of such a surface are given by

H°(S,Z) =17
H'(S,Z) = 7.*9
H*(S,Z) =T

and the Poincaré-Duality gives us in addition an alternating perfect pairing
<, >cup: HY(S,Z) x HY(S,Z) — Z.

The number g is called genus of the surface. The genus g is also a measure fo the complexity
of the Riemann surface. We will show that a Riemann surface S of genus g = 0 is
isomorphic to the so called Riemann sphere P! (C) (see I11.2.1 1a) and 1.3.6 in this chapter).

In the exercise in IV. 6.5.1 we showed that H!(P'(C),Z) = 0 and therefore P! (C) has genus
Zero.

Of course it is clear that a holomorphic function on a compact Riemann surface S must
be constant. We will work very hard to show that on any compact Riemann surface we
can find a non constant meromorphic function (see 1.3 ).

Once we have a non constant meromorphic function f we can cover S by the two open
sets Uy, U; where f or f~! are holomorphic. We get a holomorphic map

f : Uy — C
u —  f(w)

and
f_l : Uy — C
u  — f(u)

and it is clear that these two maps provide a surjective map which is also denoted by
f:8 —PYC)

(see ITI, 1.2.1a). It will turn out that this map has finite fibres and the number of points in

the fibres ( counted with the right multiplicities) is equal to the degree of the polar divisor

( See IV.1.1.) This will become a decisive tool for the understanding of Riemann surfaces
(see 1.4.).
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1.1 The Hodge structure on H!(S, C)

1.1.1 : We study the cohomology with coefficients in C. I want to change the notation
slightly. On our Riemann surface Q} will be the sheaf of holomorphic one forms. The
sheaves of C, differential forms will be denoted by 2. We consider the de-Rham complex

0-C—Q2 -0l - 02 —o.

Then
HY(S,C) = H'(Q,(S)).

We recall our results from IV.9.2. We have a complex structure on the tangent bundle this
is a linear transformation I : T's — Ts which satisfies 12 = —Id. We get a decomposition

Tsc =T ® T

This provides a decomposition of the complex of differential forms, which only effects
1-forms:

0-C— 0l “d glogq

oo

dl d”
ol it Qll —o0.

The sheaf QLY contains the sheaf Q% of holomorphic 1-forms. (See IV,?7).

In local coordinates at a point p we have
w=w +w'= fdz+ gdz
(see IV.9.2.1 ). For a function f we have

df =d'f+d'f = %dw %dz,

and for a 1-form w = fdz + gdz = W' + W" we get

of Og _
/A TN .
dw=d"'w +dw" = (_82 _Bz)dZ/\dz'

Especially we see that a 1-form w = fdz = w’ is holomorphic if and only if d’w’ =0

We introduce a hermitian metric & on the tangent bundle Ts (see IV.10.2.1). As I explained
in general discussion such a hermitian metric is the same as an euclidean metric Re h = hy
on the tangent bundle Ts which satisfies ho(z,y) = ho(Iz, Iy) for any two tangent vectors
z,y € Tsp and any point p. This induces a metric on the dual bundle 7§ which we will
denote by <, >.

If we pick a point p € S and a local coordinate z at p then it identifies a neighborhood
Up to a disc around zero in C. The differential dz is a generator of the Og(Up,) module
of holomorphic differentials Q*(Up). In the neighborhood U, of p our hermitian metric is
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given by a strictly positive function (see section on linear algebra in section on Hodge
theory)
u — Re he < dz(u),dz(u) >

which we simply denote by < dz,dz >. Since we can view U, as an open disc in C we
have dz = dz + idy and < dz,dZ >=< dz,dx > + < dy,dy >= 2 < dz,dx > because the
complex structure I which sends dx to dy is an isometry. The metric and the orientation
give us a distinguished form wyep, in degree 2 which is positive with respect to he orientation
and has length 1 with respect to the metric. It is given by

dzANdz . (dz+idy) A (dz — idy)

; ; de Ndy  (dz Ady)
<dz,dz> <dz,dz >+ <dy,dy >

<dz,dz > <dz,dz>’

= i(~i)

Wtop =

Of course dwyiop = 0 and hence we see that our Riemann surface is a Kahler manifold (See
1V.10.2.3).

Now it is rather easy to check that the * operator does the following

.= dzANdZz
*:f_”f<dz,d2>
x: fdz — ifdz (1.1.2)
x:gdz — —igdz
x:1dzNdz — —1 < dz,dz > .

We can introduce the adjoint operators §’,6” (See IV.10.2.3) and define the Laplacian

A — (d/-l‘d”)((sl‘l‘(s”) —
— dl(s/ _|_ (Sldl + d//(sll + 5//dll + d15” + 5”dl + dllé‘l + 6/dll
=A"+A” + extra terms.

The extra terms add up to zero because the metric is a Kahler metric. (See IV.10.2.3).
Since I stated this result without proof in the general case I will carry out the calculation
for special situation.

On the forms of degree 0 or 2 this is rather clear. If we consider for instance an f € Q% (9)
then

af af aof f

6lldl — 6”_d — dll _d dll
[="%, T0: T 9z

and the same principle works for the other combinations. But for forms of degree one we
have to work a little bit. Let us consider w = fdz then we see easily that for two of the
four terms that they must vanish simply by looking at the degree:

=0

§'dw=d8§"w=0
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For the other two terms we have to compute.

§'d" fdz = 5'8—{d2/\ dz=—x*d x 8—{dz Ndz
0z 0z

af 9% f af o
>l<zd'8 <dzdz>_*z(ﬁ<dzd >+8—8—<dzdz>)/\dz
52
i of 0
(82<d dz >+(9 p < dz,dz >)dz

Since < dz,dz > is positive and therefore real we have

0 0
— <dz.d il
8z< z,dz > = 8z<dZdZ>

Now we treat the second term
d'6' fdz = —d" xd x fdz = —d" * (—i)d fdz

0
= —id" % —fdz ANdzZ = —d'== of <dz,dz >=

0z 0z
0% f of o
(W<dz dz >+E$<d'z dz >)dz.

Hence we see that the two terms add up to zero and (6’d” + d"d") fdz = 0.

We apply our general theorem in the section on Hodge theory to this case. We are mainly
interested the first cohomology group. We get that it is given by the harmonic forms in
degree one and these harmonic forms are sums of harmonic forms in the degrees (10), (01).
A form w = fdz € QL(9) is harmonic if and only if dw = d"w = §'w = §"w = 0.
Two of these equations are automatically fulfilled the other two are equivalent to w being
holomorphic. We get the Hodge decomposition

H'(S,C) = H°(S,Qg) ® HO(S, Q%) (1.1.3)

The C vector space H'(S,C) = H'(S,R) ® C has the complex conjugation on it as an
antilinear map and H(S,QL) is the complex conjugate of H(S, Q%) under this com-
plex conjugation.(See IV. 10.2.1 especially the discussion concerning the formation of the
complex conjugate space of a C-vector space)

1.1.4 : T want to give an indication how this consequence of the general Hodge theory
can be proved in this special situation. Of course there is no problem in degree zero and
degree 2. So we look at the case p = 1 and start from a one form

w = w0 + o1

which is closed and represents a cohomology class [w] € H(S,C). We have seen that we
can construct a weakly convergent sequence w, = w + diy,, (see IV.10.1.3) such that the
weak limit
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satisfies
<w07 d¢> =0

for all ¥ € Cx(S). We also have
{wo,dm) =0

for all n € Q_(S) because this is true for alle w + di),.

Now we decompose
__ .10 01
wo = Wy + Wy -

I claim that even

<w307 dl¢> = <w307 5177) =0
for all ¥ € Co(S),n € Q7 (S). We have

(wé()? dl¢> + <w817 dl’¢> =0

and
(wg’,8"n) + (wg*,8'n) =0

for all 1,n. We take n = %t and then we get from our local formulae ((See 1.1.2))

§'"n = —idy
o'y = id"yp

and the second line becomes
i{wo?, d'p) — i(wgt, d"p) = 0.
We find that in the first line both terms are zero, i.e.
(wo's d'p) = (wp', d"9p) = 0

for all ¥ € Q2 (S).

We want to conclude that wl® is itself a holomorphic 1-form. The holomorphicity is a local
property of wj®. We choose a point p and a neighborhood U, such that we can identify
(Up, Op,) with the disc (D,Op). Let z be the coordinate function on D. Our differential
form can be written

wg? = f(2)dz

and since the restriction of f to D must be square integrable, we have

9. dz N dZ
[1rer ThE < .

Since the fuction < dz,dz > is bounded and bonded away from zero the square integrability
condition is equivalent to
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/ £(2)[% dz A dZ < .
D

Now we exploit the orthogonality relation (wg®, d'+) = 0 for Coo-functions ¢ with compact
support in D. Our local formulae for the *x-operator implies that the space of forms *d'y is
the same as the space of forms d”1) amd therefore the orthogonality condition is equivalent
to

/ wg® A d"yp = 0 for all compactly supported ¢ € Q° (D)
D

We introduce polar coordinates and write

f(z) = f(’f‘, (P) = Z am(,r.)eimgo,

meZ

and we have that a.,(r) is square integrable on [0, 1] with respect to rdr and we have

1
Z/ |am (7)|*rdr < co.
—Jo

We can choose our function 1, and we take
Y(z) = b(r)e”™"?

where b(r) is C, on [0,1) and has compact support in [0,1). Then an easy computation
shows

0 1 . 0 n . 1/0 n ,
e Tt e e —inp _ ~ [ Y e —i(n—1)
82¢(z) =5 e'? (8Tb(r) + Tb(r)) e 'Y = 5 (arb(r) -+ Tb(r)) e L

Consequently our assumption implies

r

/ (1) (2467 200 ) e o

for all such choices of b(r) and n. This means that

and therefore we can conclude that

ap—1(r) = Cp1r™ !

with some constant ¢,,—;. It follows that a,(r) = 0 for n < 0 because in this case

1
/ r2"rdr = oo,
0
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and we get
oo
f(2) =) carme™?
n=0

and )
el <o
(2n + 2)2

This is good enough to show that f is holomorphic on the disc.

The cup product <,>cup: H'(S,Z) x H*(S,Z) — H?(S,Z) = Z extends to a bilinear
pairing <, >cyp: H'(S,C) x H}(S,C) — H?(S,C) = C and we know (See IV. 9.1) that
this pairing is given by

< [wl]a [w2] >cup= / w1 A\ ws
S

where w1, ws are closed forms which represent the classes [w1], [we] in the cohomology.

With respect to this pairing the two subspaces H(S, Q%), H%(S, Q%) are maximal isotropic
spaces and hence the cup product induces a perfect bilinear pairing

<, >eup: HY(S,Q5) x HO(S, Q%) — C.

1.2. Cohomology of holomorphic bundles

1.2.1 For any holomorphic vector bundle on £ on S we consider the Dolbeault complex
0 &9 a0 ) 45 %) - o.

The cohomology group of £ are computed from the complex
0 — Q% (£)(S) L5 Q2L(£)(S) — 0.

Now choose in addition a hermitian metric <, >; the bundle £ and on Tg.

The metrics on £ and on Ts provide an adjoint operator 8" : Q% (€)(S) — Q°(£)(S) and
now Hodge theory implies (See 1V.10.2.4 noch einfuegen)

HO(S, &) = {s € Q% (&)|d"s = 0}

: (1.2.2)
H'(S,€) = {s€ Q% (&)|6"s = 0}.

and the cohomology groups are finite dimensional.

I emphazise that the proof of this finite dimensionality needs the full strength theory of
elliptic operators. Actually for the cohomology in degree zero H®(S,£) the finite dimen-
sionality is not difficult but the H' is by no means easy.
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For compact Riemann surfaces these results are much easier to prove and therefore I will
outline the proofs here.

At first T consider the assertion dim H°(S, ) < oo. We proceed by induction on the rank
of the bundle. Let us assume that we have a non zero section s € H%(S, £). Then we show

1.2.3 Lemma: 7o this non zero section s we can attach a line subbundle L C £ such that

s€ H°(S, L).

Proof: The section s provides a map

05—)5
f = fs

for any holomorphic function f on some open subset U C S. This yields indeed a line
subbundle £’ but it is not yet the one we want. If we are at a point z € S where s(z) = 0,
then we can choose a neighborhood U, and a local trivialization of £ by local sections
e1 -+ - e, which are nowhere zero on U,. Our section s can be written as

n
s=Y fiei
=1

with f; holomorphic at z and f;(z) = 0 for all ¢ = 1---n. This implies that the set
of zeroes of s is a finite subset of S. But since dimS = 1 we have a local uniformizer
Ty € My C Ogz and f; = wih; where h; € OE,x. Let m be the minimum of the n;. Then

-m _E: -m
Ty S= Ty fiei

extends to a section in & which is defined iover U,. This section defines subbundle £(*)
E|y, - But this line subbundle coincides with the above bundle £’ if we restrict to the
complement of the point z. Hence we see that we can glue the £’ and the £*) to a line
bundle £ on S. We have £ C &, the quotient £/L is a vector bundle of smaller rank
and s € H%(S, £). This reduces the proof of the finite dimensionality to the case of line
bundles. But if we have a line bundle £ and a section s # 0, then we look again at the
inclusion Og — L induced by the sectiuon, and we get an exact sequence

0—0s —L—L/0Os —0

and now £/QOg is a sky scraper sheaf (see IV.1.1 ). Since H°(S,O¢) = C and obviously
dim H°(S, £/Og) is finite dimensional, we are through.

The proof of the second assertion is much more difficult.

In a first step we construct an antilinear map H'(S,&) — HY(S,EY ® Q'), where the
target space has finite dimension. In a second step we show that this map is injective.
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The argument in the first step ia similar to the one in 1.1.3. Of course an section w €
QL (E)(S) defines a class in H(S,£). On these sections we have the scalar product

(w,wr) = / w A *wq
S
and again we introduce the Hilbert space of square integrable sections
Q) (€)(S).

We can modify a given section w by an element d”1, and we can find a sequence w =
w + d"1),, such that
Jenllg — inf o + "3

Again we choose a subsequence which converges weakly to an element @ € Q(()zl) (€)(S), and
then we have again

(@,d") =0

for all 1 € Q°(&)(S). The hermitian metric yields an antilinear map j, = £ — €Y and
together with the hermitian metric on the tangent bundle we get

* = Jp : 9?21)(5)(5) — Q%S)(SV)(S)-

We have of course (x@,d""n) = 0 for all n € Q11(£Y)(S) and basically the same argument
which we used in 1.1.3 implies that *& = j, (@) is holomorphic. We see that we get a map

H'(S,&) = Q% (&)(S)/d"Q% (£)(S) — HO(S, &Y @ QY

which is surjective because the star operator above yields a bijection. We know already
that H°(S,&Y ® Q') is finite dimensional so it remains to show that this map is injective
(our second step). We have the two operators

&’ QOE)(S) —s QOL(E)(S)
5 QOY(E)(S) — QO(E)(S)
and we take the two orthogonal decomposions of the two Hilbert spaces
Q0 (E)(S) = E(S)® QL (E)(S)
QU (E)(S) = ker(8”) @ O (£)(S)-

Since £(S) and ker(0”) consist of holomorphic sections, we get the same decomposition for
Coo-sections

QL E)NS) = E(8)@LE)(S)
QU(E)(S) = ker(d") ® QL(E)(S),
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and we get

d’ QY (E)(S) — QU(E)(S)
o QU(E)(S) — QOE)(S).

These restrictions of d”.6" to Q2 are injective and they have seen that there images are
dense. But we need that these restricted operators provide isomorphisms and this follows
from the decomposition therem in Hodge theory (See IV.10.1.1)

In our special situation here there is an argument which proves
d" %, (€) ()0 (€)(S)

more directly.

Our argument is based on some simple principles of functional analysis. We consider the
local problem, this means we choose a small disc D around a point p, we assume that we
identified it to the unit disc and we assume that z is a local parameter. We consider the
Hilbert spaces (¢, (&)(D).

Our first principle says the following:

1.2.4 Let us assume we have a form w € Q2 (£)(D) and let us assume that this form
is square integrable. Then we can find an n € Q% (€)(D) such that d"n = w and we can
bound the L? norm of 5

In(2)ll2,0 < Cllw|

2,D

Since our bundle is locally trivial we may asum that its restriction to D is trivial. It is
also clear that the validity of the L? estimates does not depend on the hermtian metric.
Thesetwo facts together allow us to restrict to the case where D is the unit disc and where
E£|DS0Op and the metric is the trivial metric. Then we have to show: If f: D — Cis a
C~ -function on D which is square integrable, i.e.

1712 = /D F(2)idz A dz < oo

then we can find Cy-function v on D which satisfies

ou
9 f
and
lull2 < Clf]]2-

The point is that we can write down an explicit solution for this diferential equation:

u(z) = L/ &dg’/\ dc.

2w Jp(—z
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We leave it as anexercise to the reader to show that this is a solution for our equation. It
is quite amusin to show that forf = 1 we get u(z) = z and then the general formula is
€asy.

It is easy to see that this function is Cs. If 29 € D, then we can find a C,-function x on
D which is one on a small neighborhood of zy and zero on a small neighborhood of the
boundary of D. Then

o= o [ X ey L [ A= g

2t Jp (—=% (—=z

The second summand is holomorphic at zy and the first summand is

1 [ x(C+2)f(C+2) ;
W/D . d¢ A dC,

and now we can differentiate under the integral sign because x - f has compact support
and the singularity disappears if we change to polar coordinates.

It is an amusing exercise to show that for f = 1 we have u(z) = Z and from this it follows
easily that u satisfies the differential equation.

I think it is also very easy to see that the integral

1

i) g A%

is bounded by a constant not depending on z. We may work with polar coordinates around
Z.

To get the L2-estimate we start from
2

u2)]? = 2=|fp Ldcnd| <

2

_ 1 |£(<)]
= g | p s z|2/2 = z|1/2dC/\dC

This is the square of the scalar product of two L? functions, and we get by Cauchy’s
integral formula that the right hand side

L QP )( 1
47r2(D|<—z|d“d< Ny

We mentioned already that second factor is bounded by a constant not depending on z
and hence we get
£

271 Jp |C — 2|

u(z)]? < ot [ O e nac

179



Consequently we get

1 2 _ f(OI 5 _
2—m/D|u(z)\ dz/\szC/D/D‘Z_C‘dg/\dg-dz/\dz,

and if we change integration and use our above estimate a second time, then we get
2 2
lullz < C"- 11 £1]3-

Now we come to a second principle. Inside of our Hilbert space Q3 1,(€)(D) we can consider
the holomorphic square integrable functions. The second principle says that this subspace
is closed and even better:

1.2.5 Any weakly convergent sequence of holomorhic functions n, with bounded Qg,D—norm
in Q%,D (€)(D) converges locally uniformly to a holomorphic function on D.

This is an immedeate consequence of Cauchys integral formula. If we pick a point QQ € D
and we put three concentric discs around Q:

Q€D1CD2CD3CD

each of them is slightly bigger than the previous one. If we have a circle I' C D3\ D5 then
we get from Cauchys formula for z € Dy

1

() = 57 [ 1m0

(—z

Now we integrate over all I'; between Dy and D3 and consider z € D;. We get

dc.

- 271

c 1 —
M (2) = 5— M (¢) 7——dC A d,
274 J py\D, -z
where c is a consant depending on the width of the annulus. We can read this as a skalar
product, since the sequence 7, is weakly convergent to n we see that 7,, converges pointwise

to the function
c

- 1 .
n.m%/DS\DQn(odedc

which is holomorphic on D;. But now it the Cauchy-formula also gives us that the 7, are
equicontinous and then it follows that the convergence n,, — 7 is locally uniform and that
n=1
We choose an w € Q01(£)(S), and we know that we can find a sequence of functions
Py, € Q2 (€)(S) such that

|dpy, — wl|2 — 0.
I claim that the sequence of L2-norms {||ty||}nen is bounded. We cover S by a finite
family of discs

S= | Da.

a€cA

180



We restrict the members of the family {4, }en to these discs and call the restrictions 7,b7(1a).

Now we can decompose the restriction

(£)(Da) ® 25V (€)(Da)

) (€)(Da) = Qs (2)

(2)

where the second component is the Hilbert space of holomorphic square integrable sections
on D, and accordingly we have

"/)7(7,0) — ,lp’g‘a,l) + wr(za,hol).
We get
d”w?(za) — d”'lﬁga’l)-
2,0, < Clld"yg]
2,0, < [l77]

Hence we see: If ||1,]|2 is unbounded, then there must be an « such that ||zp,§""h°l) l2,p,, is
unbounded and even

Since we have an 7% for which d"n% = d"¢2 and ||n%

n 2,p, We can conclude
that ||yl

|2,p,, stays bounded because ||¢§La,/)

27Da'

195" l2,p, 2> C"ll4nll2

with some constant C’. Now we consider the sequence of functions 1, /||¢n|l2. We can
extract a subsequence which is weakly convergent, on any D, this sequence has the same

limit as 3" /||¥n|l2 hence it converges to a holomorphic function. This function must
be zero because our 1, where chosen from the orthogonal complement of the holomor-
phic sections. It follows from our second principle that the sequence v, /||1y,| converges
uniformly to zero. This cannot be the case because the L2-norm of the members of the
sequence is one. We get a contradiction.

So we see that the sequence of norms |[1,| is bounded. Of course we extract a weakly
convergent subsequence. If 1 is the limit of this subsequence we found the element which
satisfies di) = w. This finishes the proof of 1.2.2. (Genau genug 777?)

If we write locally s = f ® dz, then
's=—xd"*x(f®dz2) = —xd"(xf)Qdz = —*(% * f)dz A dz.

As T explained in the general section on Hodge theory the x-operator provides an antilinear
map from the bundle £ into its dual bundle.(Nachsehen, ob das da schon steht) Hence we
see that *f ® dz € Coo (V) ® Q'0(S) and the condition £  f ® dz = 0 means that +f ® dz
is holomorphic and hence we get an antilinear isomorphism

HY(S,&) — H°(S, &Y ® Q).

This antilinear isomorphism will depend on the metric. But if our line bundle is the
structure sheaf Og then we may of course choose the standard metric which gives the
value 1 to the constant section 1 at every point. This gives us a canonical identification

HO(S,QL)SH (S, Og).
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Remark: In the context of algebraic geometry we had a duality pairing for line bundles £

on curves:
HY(C,L) x H°(C, LY ® Q%) — C.

This is related to the assertion above. But in the analytic context we get on C-antilinear
isomorphism instead of a pairing. This is so because we have chosen an hermitian metric
on L. We will compare these pairings later after the discussion of the theorem of Riemann-
Roch.

1.3. The theorem of Riemann-Roch

We consider the group Pic(S) isomorphism classes of line bundles on our Riemann surface.
This group is isomorphic to H'(S, O%). The exact sequence of sheaves ( see IX. 9.3 7777)

0—+Z—0s—+05—1
on our Riemann surface provides a long exact cohomology sequence

0+Z—-C—-C" =0
— HY(S,Z) — H'(S,0g) — H*(S,0%) — H?*(S,Z) — 0.

(We have seen that H?(S, Og) = 0 because the Dolbeault complex stops in degree 1).

In IV.1.2 we attached a sheaf Og(D) to any divisor D, it is obvious that Og(D) is a line
bundle. Tt is also clear that Og(D) ® Og(D1)=0Og(D + D;) and that Og(D)>0Og if and
only if D is principal and hence we get

Div(S)/ principal divisors =Pic(S)

For a line bundle £, which we can view as an element [£] in H(S, O%) we define the degree
deg(L) = §([£]) € H*(S,Z) = Z. (We have a canonical orientation on S). This degree has
various properties.

1.3.1 Lemma : If we have a line bundle L on S and a point P then

deg(L(P)) = deg(L) +1

Proof: This is a special case of proposition 1V.9.3.1
Exercise:

(i) If we choose a hermitian metric h on our line bundle L, if we pick a point P and a neighborhood
Up and a local section s € L(U,) which is a generator for all points in Up then we can form the
expression

d"d' logh(s,s) = wp.
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This is a (1,1)-form on S which is closed and it does not depend on the choice of the generator s. |
claim that the class of this form in H?(S, C) is the Chern class c1 (L) = deg(L).

(ii) I refer to the proof of our Lemma: We consider the holomorphic 1-form function z;ldz P on
the annulus Uy NUs. It is clear that we can extend this form to a Coo-form 1) on the disc Uy = Dp,
(we simply multiply it by a Coo-function which is one on the annulus and zero in a neighborhood of
P). If we consider d''n we get a (1,1) form on the disc Dp which has compact support because it
vanishes on the annulus. Hence it defines a class in H2(Dp, C), this maps to H%(S, C)

Show that this is the class 6([Og(P)]). This way we can construct a form of type (1,1) which
represents the degree. This form can be written as a boundary on any open set in S which misses a
small disc around P.

(iii) Let us assume that we have an arbitrary compact complex manifold X and a divisor D C X
which is locally given on the open set of a covering 30 = {U,} by one equation f, = 0. We choose
a hermitian metric on X. We choose our covering in such a way that we place small balls around the
points on D and choose a finite subcovering { = {U,} of D. Then we supplement it by an open set
Uy which is the set of points having distance > € from D.

Construct a (1,1) form wp which has support in the complement of Uy and which represents the
class ¢1(Ox (D)). Show that this form is a boundary outside of the support of D.

(iv) If we have divisors D1, Do, ..., Dy (d = dim X ) which intersect nicely then we can consider

the intersection number D1 - Do - ... Dy.

Show that this intersection number can also be computed by the integral

/ wp, Nwp, AN ... Nwp,
X

(v) Of course we can attach to any line bundle L its Chern class c1(L) € H*(X,Z). If we have d
such bundles L1, ..., L4 we can compute their intersection number and we can take the cup product
of their Chern classes which gives an element in H?>¢(X,7) = 7. Our exercise iv) gives us the equality
of these numbers

El-...-Ldzcl(ﬁl)U...UCl(Ed)

Show the equality of these numbers without using the de-Rham isomorphism 777,

1.3.2 The above Lemma implies: If we have a line bundle £ and a non-zero section
s € H%(S, L) then on a suitably small open set U we can write s = ft where ¢ is a local
generator and f is holomorphic. This function f defines a divisor on U, it is the divisor of
its zeroes (See IV.1.1). Since we can do this everywhere we get a divisor D = div(s) and
it is clear that £ ~ Og(D). Then it follows from Lemma 1.3.1 that

deg(L) = deg(D) (1.3.3.a)

. Hence we can conclude that the degree of a line bundle which has non zero sections must
be positive.
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If D is the divisor of a meromorphic function f then this function defines a section in O(D)
and f~! defines a section in O(—D) and consequently we must have

deg(Div(f)) =0 (1.3.3.)

1.3.4. We also can conclude that a line bundle of degree zero has a non zero section if and
only if it is trivial.

We can formulate the

Theorem of Riemann-Roch: If L is a line bundle on a compact Riemann surface S
then
dimcH®(S, £) — dimcHY(S, £) = deg(£) + 1 — g.

We have
dimcH'(S, £) = dimcH°(S, £7! @ QF).

Furthermore we have deg(Q5) = 29 — 2 and consequently dimcH*(S, £) = 0 if deg(L) >
2g — 1.

This is now more or less obvious. We proved the finite dimensionality and the equality of
the dimensions of the H® and the H! in the previous section. We write x (L) for the left
hand side.

The assertion is true for £ = Og by definition. If we want to prove it for our given sheaf
L we pick a point P and consider the exact sequence

0—L— L(rP)— LrP)/L—0

for a large value of r. Then the dimension of the space of sections of the skyscraper sheaf
becomes large and this space of sections is mapped to the finite dimensional H'(S, £). This
implies that eventually H°(S, £(rP)) will be non zero. But then a non zero section gives
us an inclusion Og——L(rP) with a scyscraper quotient S.(See proof of lemma 1.2.3). We
have the exact sequence

0505 —=>L(rP)—-8—0

and a glance at the resulting exact sequence yields that x(£) — x(Os) = dim H°(S, S).
This is also the degree of £. (Lemma 1.3.1 iterated). Hence we have proved the first
formula for £(rP). Then the same argument applied backwards proves it for L.

It remains to prove the formula for the degree of Q}. To get this we apply the first formula
in the theorem to the sheaf Qf We get

dimcH(S, Q%) — dimc H'(S, Q%) = deg(Qs5) +1 — g.

The left hand side is equal ¢ — 1 and the theorem is proved.

I would like to stress again that the real difficulty is to show that H(S,Og) is finite
dimensional.
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1.3.5. At this point we have proved a very strong finiteness result. We know that any
line bundle £ on a compact Riemann surface S has a very simple acyclic resolution: We
simply take an effective divisor D = ¥n, P with sufficiently large degree and then

0—L— L(D)—Lp —0
is an acyclic resolution of £ (see IV.1.1.). We get the exact sequence
0 — H°(S,L) — H°(S,L(D)) — H°(S,Lp) — H(S, L) — 0.

We have seen that dim H(S, £) = dim H°(S, £L7'®Q%) but we can prove a stronger result.
We construct a non degenerate bilinear pairing

HY(S, L) x H°(S, L' ® Qf) — C.

To get this pairing we respresent an element & € H'(S, £) as the image unter the boundary
map. We lift it to an element

§: (---gp---)Pe|D| € HO(S,]LD)

where |D| is the support of D. We choose small discs Dp around these P such that we can
trivialize the bundle £ over these discs by non vanishing sections tp € H°(Dp, £). Then
the components £p can be written as

where z,, is a local parameter at P. If now n € H°(S, L7'®Q}), we can write the restriction
of n to D, in the form

N |pp=1tp' - f(zp)dzp,

and we can consider the product

- b_p, b_ a_p, a_
§P"7: <_n+...+_1> 'f(ZP)dZP: <—n+_1+> dZP:UJP,
ZP zZp zp Zp

this is a holomorphic 1-form on D, \ {P} which may have a pole (a meromorphic 1-form).
To such a meromorphic 1-form we attach its residue at P, it is given by

a_ a_q
Resp (—n"—{——) dzp =a_j.

It is not clear a priori that this residue is well defined but everybody should know the

formula 1
a_1 =

= — w
2mi Jp F
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where T is a path in Dp \ {P} which winds counterclockwise aroung P just once.
Then we define

(¢,my=> Resp({pn) = » Resp(wp).

We have to show that the value of this pairing does not depend on the choice of the lifting.
If we replace £ by £ + f where f € HY(S,L(D)), then f = w is a meromorphic 1-form
on S, it is an element in H°(S,Q%L(D)). For such a form it is clear that the sum of the
residues vanishes. We simply observe that we can take the Dp so small that they do not
intersect and for the path I'p we take their boundaries with counterclockwise orientation.

Then ) .
Resp(w) = — / w=— dw = 0.
; () 2 Z T'p 21 Jo\uDp

This proves that we get a well defined pairing
HY (S, L) x H*(S, L7 '@ Qf) — C.

But it is also clear that any non zero element n € H%(S, £L~! ® Q%) induces a non zero
linear form on H!(S, L). To see that this is so we simply compute this linear form on Lp,
and then it is obviously non zero.

This non degenerate pairing is called Serre duality pairing but in this special case it was
certainly known to Riemann. It expresses the fact that the existence of holomorphic
differentials on a Riemann surface of higher genus provides an obstruction for a collection
of Laurent expansions

€ € H(S,05(D)/0s)

to come from a meromorphic function (see IV, Exercise 1.1.1(2)). It is stated in Riemann’s
works (see [ |, ....) that £ comes from a meromorphic function if and only if for all
holomorphic differentials w we have

Z Resp(éw) = 0.

1.3.6. If the genus of the Riemann surface S is equal to zero and if P is any point, then
it follows from Riemann Roch and Serre duality that

dim H°(S, 05(P)) = 2,

and we conclude that we can find a meromorphic function f which is holomorphic every-
where except at the point P and at P it has a simple pole.

We saw already that this function gives us a map
f:8— PYC),

186



I claim that this map is an isomorphism between Riemann surfaces. To see this we observe
that there is exactly one point — namely the point P — which goes to infinity. If U = S\{P},
then we get for the restriction

f:U—C={(z1)]2€C} c P(C)

(see ...... ). For any ¢ € C we know that the polar divisor of f — ¢ is —P. Hence the zero
divisor is of degree one and is equal to @@ where f(Q) = c. Since S is compact it follows
that this map is a homeomorphism.

For any point () we can find a neighborhood Dg C S such that
(D@, Opg,) ~ (D, Op)

where D is the unit disc in C. Let z be the resulting uniformizing element. Under the map
f this neighborhood is mapped to an open set f(Dg) which contains f(Q) € P*(C). We
choose a uniformizing element zq, this is a holomorphic function defined in a neighborhood
of f(@Q) and which has a first order zero at zg. Then zg o f is a holomorphic function on a
smaller disc Db C Dg and hence a power series in z. Since the function zg o f is injective
we can conclude that

zgof=az+---

with a # 0.

Now Op1 () is the ring of convergent power series in zg and Og, q is the ring of convergent
power series in z. We see that the map

Ole(Q) — OS’Q

(see ........ ) is an isomorphism and this proves our assertion.

We can also give examples of Riemann surfaces of genus one. If (2 C C is a lattice, then the
quotient § = C/Q is a compact Riemann surface (see III. 1.1.1). It is homeomorphic to
R? /72, and hence we have H'(S,7Z) = Z? (see IV, ....) and hence we see that S has genus
1. We know that the space of holomorphic differentials is of dimension one and clearly the
form w = dz is a generator.

If in turn S is a compact Riemann surface of genus one, then we may do the following: We
pick a point sg € S and we consider the following space

S ={(s,7) | s € S, homotopy class of a point starting in s and ending in s}.

We have the projection .
.S — S

and locally this projection is a homeomorphism. (This construction can be done for any
connected Riemann surface, then S is the so called universal cover of S). It is also clear
that we have a structure of a Riemann surface on S.
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Now we can construct a holomorphic map k& from S to C. We simply send
h:§:(s,'y)|—>/w
v

where we choose a differentiable path in the homotopy class. I leave it as an exercise to the
reader to show that this map is an isomorphism between S and C. It is also not difficult
to show that A= (sg) = Q is a lattice in C and the map factorizes over an isomorphism

S X c
L
s I c/0

This makes it clear that all compact Riemann surfaces are of the form C/(2.

1.4. The algebraicity of Riemann surfaces:

1.4.0: We are now able to show that compact Riemann surfaces may be considered as
purely algebraic objects. More precisely we can say that compact Riemann surfaces are
the same objects as smooth, connected, projective curves over C. It will be discussed in
the second volume of this book what this exactly means.

The starting point is that the meromorphic functions on S form a field K = C(S). We will
show that this field is finitely generated over C and it is of trancendence degree 1. We will
reconstruct the Riemann surface S from this field.

If for instance we consider the Riemann sphere S = §2 = P! (C) (II1.2.1. 1a) or 1.3.6)) then
C(8?) = C(z) is the rational function field in one variable. It is the quotient field of the

polynomial ring C[z] which is the ring of meromorphic functions which are holomorphic
on Uy = PYC) \ {c0}.

1.4.1 If we pick a point P € S and if we consider the line bundle Og(nP) for n >> 0 then
we see that we can find a non-constant function f € HY(S,Og(nP)). As I explained in
the introduction to this chapter a non-constant meromorphic function f on S provides a
surjective map f : S — P(C) . We put Uy = S\ {P} and U; will be the complement of
the set of zeroes of f.

1.4.1.1 : If we have a point s € S where f is holomophic, then the differential df is
holomorphic at this point. If it is non-zero at s then we know from the theorem of implicit
functions that f yields a biholomorphic map from a neighborhood of s to a neighborhood
of f(s). We say that f is unramified or not ramified if df is nt zero at this point s. If f
has a pole at s then we take g = L. If dg # 0 then we have the analogous assertion for
the functon g. In terms of f this can be reformulated: If f has a pole at s and if the pole
of df is of second order, then f yields a biholomorphic map from a neighborhood of s to a
neighborhood of co € P!(C). Again we say that f is unramified at s.
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The map f is called unramified at a point z € P!(C) if it is unramified in all points of the
fibre f=!(x). It is clear that the set of points where f is ramified is finite.

Changing the coordinates allows us to assume that our map is unramified at 0 and co. We
give it a new name and write

m: 8 — PYC).
Let Vo (resp. V1) be the complement of 0 (resp. o), let Uy = 7~ 1(Vy), Uy = 7w 1(V1).

For any set V C S (or in P}(C)) which is the complement of a finite number of points we
define OF" (V') to be the ring of those holomorphic functions on V, which have at most
poles in the points S\ V. For V,, V; C P1(C) this yields

Opi(g) (Vo) = CI/f]
OR{g (V1) = Clf ],

We may also consider the rings OF°"(Up), OF"(Uy) and these two rings are modules for
PI(C) (Vo) and Pi(C) (Vo) respecively.

1.4.2 Proposition:  a) The modules OF (Up) (resp. 0§ (Ur)) over Ot (Vo) (resp-
PI(C) (V1)) are finitely generated.

b) If {a1,...,a;} C Vp is a finite subset and Vj = Vo \{a1,...,a;} and Uy = m=1(Vy) then

OF (U}) = 08 (Uy) - Oy (V).

Proof: We show that O%°"(Up) is a finitely generated PIC) (Vo) module. We consider
the divisor Do = ) pe,1 (0) P, it is the divisor of poles of the function f pulled back to
S.( Here we use that 7 is unramified at oo, actually this is only technical). For n > 0 we
consider the vector spaces H°(S, Os(nDy)). They form an increasing sequence of vector
spaces exhausting O (Up) if n — oo. The dimension of these spaces is given by the
theorem of Riemann-Roch: If n >> 0 then

dimc H(S, Os(nDy) = ndeg(Dy) +1 — g.

xz: H°(S,05(nDy) = H(S,0s((n+1)Dy)

and I claim that this map becomes surjective if we divide the space on the right hand side
by the subspace H%(S, Os(nDy,). We pick a funcion h € H?(S, Og((n + 1)Dy) its polar
divisor is of the form D = ZPerl(oo) mpP with mp <n+ 1. If even mp < n for all n
then this function is in the subspace which we divide out. Now we observe that it follows
from our assumption n >> 0 that

H°(S,05(nDy) — H°(S,05(nDy)/Os((n — 1)Dy))
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is surjective. Therefore we can find a function f € HY(S, Og(nDy) which has an n-th
order pole at a given point P where mp = n + 1 and has at most a n — 1-th order pole
at all the other points in m~1(co) For a suitable combination h — azf the number of mp
which are equal to n + 1 drops by one and our assertion follws by induction. Our claim
implies that the Opiy, (Vo) module O%¢r(Up) is generated by H°(S, Os(noDw,) for some
sufficiently large ng and a) follows.

Now b) is is not difficult anymore. Let f be meromorphic function in OF°*(U;). We can
find a function h € Op1(c)(Vy) which has a zero in the points ay,...,a; and nowhere else
(take the inverse of a function which has poles in exacly these points). If we pull it back
to Uy it has zeroes in all points in the fibres 77 !(a;) i.e. in all points in Uy \ U} and
nowhere else. Hence f - k" will be holomorphic in all points of Uy \ U} and this means
f1N € Omer(Up).

Now we consider the function field K = C(S) of meromorphic functions. It is clear that the
function field of the Riemann sphere C(P!((C)) = C(z) = C(f) is the rational function field
in one variable. The assertion b) in our proposition above implies that any meromorphic
function h on S can be written as a quotient h = g/f where g € O3 (Up) and f is
a meromorphic function in C(P!(C)). Therefore we can conclude: If yp,...y, is a set of
generators of the Opi(t, (Vo) module OF (Up) then C(S) is generated by these elements

as a C(P!(C))-vector space. We conclude

1.4.3 Theorem The field of meromorphic functions on a compact Riemann surface is a
finite extension of a rational funtion field C(h) where h is any non constant meromorphic
function on S.

The only thing we have to observe that a field K which is a finite extension of a rational
function field C(x) is also finite over C(h) for any h ¢ C.

We explain how we can reconstruct S from K. To do this we will use in an ad hoc manner
some arguments from commutative algebra which will be explained in a more systematic
way in chapter VII.

1.4.3.1: Integral elements and integral closures: The finiteness of O™ (Uy) as a Opi™ (Vp)
module implies by a standard argument of commutative algebra that any element h €
Omer(Up) is integral over Op¥*(Vp) and this means that it satisfies an equation

W+ ah" Y. . +a,=0

where the a; € Opi{t, (Vo) and n > 0 (See Chap. VII 7?77 or [Ei], ??7). But if in turn
h € C(S) is integral over PIC) (Vo) then it must be holomorphic on Uy, we simply look
at the possible order of a pole. We conclude

1.4.8.2: The ring OF (Uyp) is the integral closure of O (Vo) in K and this means that
it consists of all the elements in K which are integral over Opi (Vp).

The principal observation is that a point P € S defines a subring O%* C K, it is the
ring of meromorphic functions which are regular at P. This ring is a valuation ring with
quotient field K and this means:
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a) for any f € K we have f or f=! is in OB,

b) The ring is not equal to K and it contains the constant functions C.

Such a ring OB®" has a unique maximal ideal which consists of the elements

mp = {f € OBF|f~' ¢ O8°} = {f € K|f vanishes at P}

This maximal ideal is non zero and it is generated by any function which has a first order
zero at P. This means that the ring is even a discrete valuation ring. The elements which
are not in the maximal ideal are invertible. The property a) implies that the quotient field
of such a ring is K.

Our aim is to show that we can identify S with the set Val(K) of all valuation rings in K,
i.e. those subrings which satisfy a) and b).

1.4.4 Starting from the function field: We forget our Riemann surface completely
and start from a field K over C which is a finite extension of a rational function field C(x).
We can write

K = C(z)[y]

where y satisfies an irreducible polynomial equation
y" +ar(z)y" - an(z) =0

with a;(z) € C(x). Of course we know what Val(K) is.

Propositon 1.4.4.1 All A € Val(K) are discrete valuation rings, i.e. the mazimal ideal
ma is always a principal ideal. The composition C — A — A/my4 is an isomorphism and
this means that the residue field is canonically isomorphic to C. This also means that we
can evalute an f € A at A. The value f(A) = fmod my. Furthermore we will see that
for any f € K the set of A such that f ¢ A is finite.

In accordance with our previous definitions we say that f is reqular at A if f € A.

Again we have to invest a little bit of commutative algebra. If Ky = C(z) then an
A € Val(Kjp) contains C[z] or C[z~!]. Let us assume that A O C[z]. The maximal ideal
my intersected with C[z] gives us a non zero prime ideal in C[z]. It is an elementary
fact that the non zero prime ideals in C[z] are of the form (z — «). This implies that the
elements of Val(Kj) are in one to one correspondence with the points in P*(C) = CU{oo} :
For any a € C we have the ring

Ao = {f= ggg | Qa) 7&0},

and for co we have P(z)
Ao = {1 = 553 deg(P) < dex(@)}
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where P, are polynomials and f(A4,) = f(a). Clearly the valuation rings are discrete
valuation rings. This must be well known.

We consider the integral closures By (resp. By) of C[z] (resp. C[z~!]) in the field K.
Then the theory of Dedeking rings (see [Ei |, [Neu], or Chap. VII, 2.4.4) implies that
these integral closures are finitely generated modules over C[z] (resp. C[z~!]). Since the
polynomial rings have unique factorization, it follows that these modules are even free of
rank [K : C(z)].

This fact has the following consequence:

1.4.4.2 If p is a prime ideal in By then p is maximal and By/p = C. The ring

A={§|ﬁg€Bmg¢M

18 a discrete valuation ring.

To see that this is so we consider pg = my N Clx]. It is clear that po is non zero. Then
By/p is an integral domain and a finite dimensional vector space over C = C[z]/po. This
implies that By/p = C[z]/po = C. For the last assertion we refer to [Ei],??? or [Neu], or
Chap. VII )

Now we pick an A € Val(K) and let us assume A D C[z], otherwise it contains the other
ring. I claim that this implies A D By. If f € By we write down the polynomial equation

ff+a(@)f* - an(z) =0
with a;(z) € Clz].
If now f € A then f~! lies in the maximal ideal m4 of A and our polynomial equation
yields

1=—ay(z)f - —a,(z)f™"

which gives a contradiction. Now A D By, we consider the prime ideal p = my N By and
and p must be maximal. Then

A={§|ﬁg€Bmg¢M-

This together with our considerations above make it clear that the elements of Uy are in
one-to-one correspondence with the maximal ideals in By and these maximal ideals are
also just the homomorphisms By — C which are C linear, i.e. the identity in C. This
proves the second assertion in 1.4.4.1 above. It is also clear that the complements of U
and Uy in Val(K) are finite because it is rather obvious that there are only finitely many
prime ideals in By (resp. By, ) which lie above (z) (resp.(z~!). This implies the finiteness
assertion if we apply our consideration to x = f. Hence the proposition is proved.

We define a topology on Val(K). The open sets U C Val(K) are defined as the complement
of finite sets, and of course we have to add the empty set. This topology is called the Zariski
topology.
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We can define the sheaf of meromorphic functions. For any open set U C Val(K) we put

o) =) 4,

AeU

this is the ring of functions which are regular on U and meromorphic on S. This gives
(Val(K), Zar, O) the structure of a locally ringed space.

If we take any f € K which is not constant, i.e. f & C then Dy is the set of points where
f is regular. Then

O(Dy) = the integral closure of C[f] in K

and this follows from the fact that a Dedekind ring is the intersection of the discrete
valuation in the quotient field which contain it (?77)

This object (Val(K), Zar, O) is almost what is called a smooth, projective, connected curve
over C. The only thing missing is the so called generic point. This generic point is simply
the field K. We can just drop the assumption A # K for our valuation rings and put
Val(K) = Val(K) U {K}. We define the Zariski topology on Val(K), the open sets are
the complements of finite subsets in Val(K) and the empty set. We define the sheaf as
before and now (Val(K), Zar, O) is a locally ringed space and this is now really a smooth,
connected, projective curve. The stalks of the structure sheaf are discrete valuation rings
in the closed points and the stalk in {K} is K.

1.4.5 Back to the Riemann surface: Now we assume again that K is the field of
meromorphic functions on our compact Riemann surface S. We observed earlier that we
have a map

S — Val(K)

and we want to show that this is a bijection. Here it is clear that we have to use the
compactness of the Riemann surface. This compactness will enter in the form that any
holomorphic function on S must be constant.

We pick a valuation ring A C K, let

my={feA|f'¢A}

be its maximal ideal. Our goal is to show that there is a unique point P € S such that
A = Op°". We will show that this point P is the common zero of the f € m4 and it also
be characterized as the unique point where all the elements of A are regular.

We pick a non zero f € my. We consider the intersection A N C[f] then m4 N C[f] = (f)
because the principal ideal (f) is maximal. The intersection

B=ANC(f) ={g/h|g,h € C[f],h & (f)}
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We consider the diagram

T:S — P'(C)
l 4
7:Val(K) — Val(C(f))

induced by f. As before Vy = P}(C) \ {o0} and Uy = 7~*(V;). Then our ring B consists
of those meromorphic functions on P!(C) which are regular in 0. We have to show that
the map 7=1(0) — 7(0) is surjective. The integral closure A; of B in K is a free module
of rank [K : C(f)] and

AyJAf =) Ar/p®
p

where the p are the maximal ideals in A;, they are in one to one correspondence to the
elements in 7(0), we have }_, e, = [K : C(z)]. The divisor of f is of the form }_ /1 ) €p
and it has degree [K : C(z)] and from this the equality of the two fibres follows.

1.4.6 The recovery of the analytic topology: The set S has some further structure,
it has a topology and a sheaf of complex valued functions on it. We want to reconstruct
this structure starting from K.

Our Riemann surface is also a locally ringed space, and it is clear that the map
(S,0g) — (Val(K), Zar, O™)

is a morphism between locally ringed spaces. This is of course not an isomorphism because
on the left hand side we have many more functions, the ring Og p is much larger than
03P = A if P maps to A.
We still go one step further. Again we forget the compact Riemann surface S, and we
start from a function field

K = C(z)[y]
where
y" +ar(z)y" "t =+ +an(z) = 0.

We put S = Val(K) on this set, we have the Zariski topology and our sheaf Og with respect
to the Zariski topology. We want to construct a finer topology on S and S together with this
finer topology will be called S,,,. Of course the identity S,,, — S will now be continuous.
Furthermore we want to construct a sheaf O¢" of C valued functions on S,,, such that we
get a locally ringed space and such that

(San; OF")

will be a compact Riemann surface.

Finally we can restrict meromorphic functions f € Og(U) to the open sets in S,,, and
this will induce a morphism of locally ringed spaces

(San, 0F") — (S, Zar, Og)
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(see III,......).

We come to the construction of the analytic topology. For any open subset U C S we
have the ring Og(U), and we can interpret Og(U) as ring of C-valued functions on U. We
introduce the coarsest topology on U for which all these functions are continuous.

If we have two different points A, B € S, then it is clear that we cannot have A D B or
B C A. Hence we can find an f € A for which f ¢ B. Since we can add a constant, we
can assume f ¢ my. Then g = 1/f € Abut g € ms and g € mp. In other words, the
element g is regular at A and at B and g(A) # 0 and g(B) = 0. Hence we have A, B € Dy
and from the definition of the analytic topology follows that we can find neighborhoods
of A and B whose intersection is empty and we have proved that our analytic topology is
Hausdorff.

We want to describe a neighborhood of a point A € S, and we want to show that A has
neighborhoods isomorphic to a disc in C.

This is of course clear if K = C(z), in this case we could identify
Val(K) = P'(C)

and the analytic topology is of course the usual topology on P! (C).

We reduce the general case to this one. We have our point A € §. We choose an element
f € my which generates the ideal. Again we consider the integral closure O(Dy) of C[f]

in K. We have
Clfl-f < C[f]
N N

(f) < ODy).
In our special situation the C[f]-module O(Dy) is free of rank n where n = [K : C(f)] (see

...... ).

where the elements f,y1,...,y, satisfy some polynomial identities

P(f7y17"'7y'n,):0

with some polynomials P(F,Y1,...,Y,) from the polynomial ring C[F,Yy,...Y,]. If is I
the ideal generated by all these polynomals then we get an isomorphism

C[F,Y1,...Y,]/ISO(Dy)
We introduce the evaluation map

E:Dj; — Cot!
E:uw (f(u),yi(u), ... yn(u))

The the elements of O(Dy) separate the points in Dy because the ponts corresond to the
mximal ideals of O(Dy). Therefore the evaluation map is injective. The image consists of
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those points in (2g, 21, - - -, 2,) € C*"*1 which satisfy P(zg, 21,---,2,) = 0 for all elements
Pel

Our point A is mapped to an element (0, a1, ...,a,) = (f(A),y1(A4),...,yn(A)). We have
a finite set of distinct points A = Ay, A1,..., Ay, in S for which f(A;) =...= f(4n) =0.
We can find an 7 > 0 such that for all i, o, 8 we have |y;(Ag) — yi(Aa)| > 2r whenever
these two numbers are not equal. We consider the open set U C S which is defined by the
requirement

U={B||yi(B) —yi(A)| <rforalll1=1,2,...n}.

We consider the projection to the first coordinate
p:U—C

B — f(B)

and this projection is by construction a homeomorphism to the image. Now we observe
that we can write any of our y; in the form

vi =vi(A) +vf+R;

where v; € C and R; = f?g;/h; where g;, h; € O(Dy) and h;(A) # 0. We represent these
elements bv polynomials G;, H; € C[F,Yy,...Y,] and then we know that the ideal I above
contains elements of the form

Li=Hi(F,Y1,...,Y,)(Yi—yi(A)—H;(F, Y1, Y, ) F—F>G(F, Y1, ...,Y,) fori = 1,...,n.

The independent variables are F' and the Y; for 2 = 1...,n and the partial Jacobi matrix

oL;
(6—Y;)(A)i’j

is a diagonal matrix with non zero entries on the diagonal and therefore it has maximal
rank. Hence we can conclude from the theorem of implicit functions that for a suitably
small € > 0 we can construct an inverse to the projection p above

q:D(e) > U

2z (2,y1(2), - -, yn(2))

where now y1(2),...,yn(2) are convergent power series and ¢ identifies D(e) to an open
neigborhood U (e) of A in S. On this open neighborhood we can define the sheaf O%* (U (¢))
of holomorphic functions, this is simply the sheaf of holomorphic functions on our small
disc. Hence we constructed the structure of a compact Riemann surface (San, O%') and
clearly the identity map

(San, OF') — (S, Zar, Og)
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is a morphism of locally ringed spaces.

One word concerning the notation. Here we think that the algebraic object (S, Zar, Og)
is given first and to denote the analytic object we put the sub and superscripts and write
San, OF". In the beginning of this section we did the oppostite. There the Riemann surface
was given and we had to introduce the sub- and superscripts Zar, mer.

Finally I want to say a few words about the connection to algebraic geometry. I come back
to the description of

O(Df) :(C[fayla"'7yn] :C[ngl,"',yn]/_[.

We described the image of D; under the evaluation map as a set of solutions of polynomial
equations

Y = E(Dy) = {(ao, a1, -+, an) | P(ao,a1,--+,a,) =0 forall P eI},

and this means ( by defintion ) that this image is an affine algebraic variety over C. I claim
that for any point B = (ag,---,a,) € Y we can pick an index i such that y; — a; = §; is
a local parameter: In a small neighborhood the other coordinates of a point b € Y can
be expressed as holomorphic functions in y;. We simply apply our arguments above to B.
Therefore our variety is in fact one dimensional and smooth (See II1.2 Example 5).

Actually we can say even more. Since O(Dy) is the integral closure of C[f] in the function
field we know that the elements y; satisfy an equation

g+ a gt an, =0

where the coefficients a; € C[f|. We may assume that this polynomial is irreducible. We
must have a,, (A) = 0. It is not entirely obvious but true that the previous coefficient ay,, 1
does not vanish at A. We can conclude that for the points B in our small neighborhood
of A the polynomial

Y™ +a;(B)Y"™!... +ay,(B)

has exactly one root which is close to one. This means in classical terms that g is
an algebraic function in the variable z = f(B), it is a root of the polynomial which is
distinguished and depends analytically on z.

Of course a few points are missing, namely, the points in S\ Dy. But we can find an
element g € K which is regular at these missing points. We have a second evaluation map
which identifies

Dy,—Y; c C™*!

and O(Dy) = Clg,u1, -, Up]. In Y we have the open subset Y, where g is regular and in
Y; the open subset Y; ; where f is regular and these two open sets are identifed to DN D,
under the evaluation maps.
We have to say in terms of the two data what the regular functions on Dy N D, are. 1
claim that

Os(Dy N Dy) = Clg, 1, s Ums frY15- 5 Ynl,
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and this means that the regular functions on D, N D¢ can be written as sums of products
of elements in O(Dy) and O(Dy). If h € Og(Dgy N Dy), then this function may have poles
in Ty UT, where Ty = S\ Dy, T, = S\ D,. We want to modify h by sums of products
of functions uius where u; has poles only in Ty and us has poles only in T,. Let us pick
a point ¢ € Ty with ¢t ¢ Ty and s € Ty, s ¢ Ty such that h has a pole at ¢. If such a pair
does not exist there is nothing to prove.

We produce a function u; which has a pole at ¢ and nowhere else. This is possible by
Riemann-Roch. We produce a function us which has a pole at s and nowhere else but
which in addition has a simple zero at ¢. Then u;u3* has a simple pole at ¢ for a suitable
choice of m. Now we can modify h by subtracting a suitable power of u;u™

h =y (uu™)"

such that the pole order of h at ¢ drops. This means that the total pole order at points
in Ty \ (Ty NT,) drops. We repeat this process until ~ does not have any pole in the set
Ty \ (Tf NTy,), and then the modified function has only poles in Tj;. Then we achieved our
goal.

I summarize: Our space S together with the sheaf Og is covered by two affine varieties (or
affine schemes) and the ring of regular functions is generated by the regualar functions on
the two pieces. With a corn of salt this means that we constructed a separated scheme.
(see Chap. VI 7?) . Actually it is even projective this will be discussed later.

We want to have a brief look at the case of Riemann surfaces of genus one. We have seen
that they are of the form S = C/Q where Q is a lattice in C.

In this case it is not so difficult to produce meromorphic functions on S, in a first semester
course on function theory it is taught that we have the two meromorphic functions

1 1 1
(2) =5 + ( 5~ —3)
Y weR,w#0 (Z N UJ) W
@) =-2Y ——
fover (z —w)

on S and they are related by an equation

p'(2)” = 4p(2)* + 92(Dp(2) + 93(Q)

where the coefficients g2(2), g3(€2) can be expressed in terms of the lattice. ( They are
modular forms see for instance [ ]). Furthermore we know that these two functions generate
the field of meromorphic functions on S.

We also get an embedding into the projective space, we map

/ _ p(2) 1 2
2o (#(2.0(:).0) = (1. 55 ) e PO

this map provides an analytic isomorphism
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S=H(@,y,2) € (C°\0)/C* [y?z — 2° — ga ()2 — g3(R)2° = 0} C P*(C)

1.4.7 Geometrie Analytique et Geometrie Algebrique

An analytic sheaf £% on S,,, is called a coherent sheafif it is a sheaf of O%"-modules, and
if for any point P € S the Og'p—module £ is finitely generated. We have the same notion
for Zariski sheaves on S and clearly any coherent Zariski sheaf £ provides an analytic sheaf
8a,n — g ®O'S”e’“ Ogn.

Here we encounter the simplest case of the so called GAGA-principle. In our situation
this principle says that this construction provides an equivalence of categories.

1.4.7.1 Proposition For any coherent sheaf £ on S we can find a unique coherent
Zariski sheaf €& such that
£ =& @omer OF".

For any pair F,G of coherent Zariski sheaves the map
Homg(]:, g) — Homsan (fa,n’ g(m)
18 a bijection.

Proof: In either situation a coherent torsion sheaf is a sheaf where each stalk consists of
torsion elements. Let us assume that our sheaf is a torsion sheaf. We pick a point P € §
and the generators t1,%3,...,ts as above. They are annihilated by a non zero element
f € Op regardless in which case we are. But then this element f can be extendet into a
small neighborhood D’ such that it is non zero at any point @ # P,Q € D’. Hence this
restriction has finite support in P and we conclude that torsion sheaves are the scysraper
sheaves. Now we observe that for any point P and any positive integer a > 0 we have the
equality

Og"p/(m%")* = Os,p/(mp)*,
and therefore analytic and Zariski torsion sheaves are the same objects.

Since OF"p is a discrete valuation ring we can find generators u, ..., um such tht the stalk
&5"p 1s the direct sum

£ = BOTpu;.

If we restrict to a still smaller neighborhood then we can express the u; in terms of the
t; and vice versa. We may assume that the coefficients in these epressions are defined
over this neighborhood and this means that can view the u; as restrictions of some u;
which are defined in this neighborhood. We can replace the t; by te %;. Now some of
the u; are torsion elements and these elements define a torsion subsheaf if we restrict to
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this neighborhood. If we still shrink this neighborhood further then this torsion subsheaf
has support in P and the quotient is free. This happens in a small neighborhood of an
arbitrary point P shows us that we can define a finite skyscraper sheaf £, C £%" and
the quotient £%"/E;ors = E'*™ is locally free.

But if we have a locally free sheaf £?™ and a section s which is defined in a punctured disc
Dp = Dp\ {P}, then we know what it means that s has at most a pole at P. Hence for
any Zariski open subset U C S we can define the Og(U)-module of meromorphic sections
EMeT(U) = E(U). We have defined £ and the assertion £ = £ @, O%" follows from our
strong finiteness results.

Now it is clear what we do in the general case. We have
glan — gan/5t0r37

and we define £(U) as the space of sections which go to meromorphic sections on £'(U).
The rest is clear.

Here we encountered a special case of a general principle which is called the GAGA-
principle (see the headline of this section). In a very rough form it says that compact
complex manifolds are in fact algebraic, provided they have enough meromorphic functions.
In such a case the coherent algebraic and the coherent analytic sheaves form equivalent
categories (See [Se|). We will come back to this principle in the second half of this chapter.

1.4.8 Comparison of two pairings
We have by the Hodge-Dolbeault theorem that

H'(S,0g) ~ H(S, Q}).

We have the Hodge decomposition of H'(S,C)SH?(S, Q%) & HO(S, QL) (1.1.3). If we
compute the cohomology H!(S, C) using the de-Rham complex then the cup product

H'(S,C) x H'(S,C) = C

on the cohomology is giving by integrating cup products of representing forms.(See IV.9.1.3.
) If we consider the above decompostion the two summands are isotropic and we get the
C-linear pairing

H®(S,Q5) x HY(S,Q%) —» C

which is given by

(wl,wg) =< Wy, Wy >= /w1 N Wwa.
The combination of the isomorphism above and the pairing yields a C-bilinear pairing
HY(S,Qk) x H*(S,05) — C.
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We will call this pairing the analytic pairing. We constructed the Serre duality pairing in
section 1.3.5.

1.4.9 Theorem: The analytic pairing is —2mi times the Serre duality pairing.

To see this we need some simple considerations which in principle concern the comparison
between Czech-cohomology of sheaves and the cohomology groups obtained by injective
(or acyclic) resolutions for instance the de-Rham resolution.

We pick a point P € § and an n >> 0 such that the map
HO(S, Os(nP)/0Og) — Hl(S, Os)

becomes surjective. We choose an element n € H'(S,Og) and we lift it to an element
£ € H%(S,05(nP)/Os). We choose a disc Dp around P and a local coordinate zp which
is zero at P. Now we represent an element & by a Laurent series

a
f(z)zz—z+...+a0—|—a1z—l—....

We cover S by two open sets, one of them U; = D,, and Us is the complement of a smaller

closed disc Dy (€) around P, hence U; N U is an annulus. We have that
fe Os(Ul N Uz)

and it defines a 1- cocycle for he covering S = U; N Us. This cocycle maps to n under the
edge homomorphism (See IV, 6.6.1) Now we proceed and use the de Rham resolution, we

get a diagram
Os(Ul) D Os(Uz) — Os(Ul N Ug)

l \
ng(U1) D ng(Ug) — ng(U1 N Ug)
1 d"’ ! d"

We send f to Q% (U; NUs) and 1 claim that we may write f|U; N Uy as the restriction
of a Cx-function hy; on U; = D,. To see this we simply multiply the function f which
is actually defined on he punctured disk by a C,.-function which is identically equal to 1
on the annulus and which isidentically zero in a neighborhood of zero. This C,,-function
on the disc is holomorphic on the annulus but if we go into the interior it certainly loses
this property. This means that d”’h; = % is an element in Q% (U;) which has compact
support and therefore can be extended it by zero to S. Then 9 € QY1(9), it is closed and
it represents our given class in H' (S, Og) via the Dolbeault isomorphism.
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The integral

/Sw/\w

for a holomorphic 1-form w on S gives the value of the analytic pairing between £ and w.
We compute this integral. We observe that

/Sw/\lp:/Dpw/\z/)

and the integrand has compact support in D,,. We choose a circle 0D, (r) which lies in the

annulus, we still have
/ WwAY = / w A Y.
D, Dy (r)

But now we write again ¢ = d”hy; and we have w A dh; = w A (d'hy + d"hy) = w Ad"hy.

Therefore
/ w/\d”hq:/ W/\dhl
D, (r) Dy(r)

—/ d(w/\hl)z—/ hiw
Dy(r) 0Dy (r)
= _/ fw = —2miResp(fw).
9D, (r)

and now the right hand side is by definition the value of the Serre duality pairing multiplied
by 2.

Since our pairings are non degenerate we conclude that we have two different ways of
producing an identification H(S, Og)=>H°(S, QL)Y which differ by a factor —2mi. We
could call the one produced by the cupproduct the analytic identification and the other
one the algebraic identification. We will mostly use the analytic identification.

1.5. The Jacobian of a compact Riemann surface

Let S be a compact Riemann surface. We defined Pic(S) = H'(S, O%) to be the group of
isomorphism classes of holomorphic line bundles on S. Our exact sequence in 1.3. provides

the homomorphism
H'(S,0%) = Pic(S) = H*(S,Z) = Z

The kernel is denoted by Pic®(S) and it is called the Jacobian of the curve and sometimes
we write J = Pic(S). The exact sequence yields

Pic’(S) = H'(S,0s)/H'(S, 7).

Here we divide a g dimensional C-vector space by a free Z-module of rank 2¢g, I claim that
we are in fact dividing by a lattice, i.e. the submodule is in fact discretely embedded. To
see this we recall the Hodge decomposition (1.1.3) and get inclusions

HY(S,Z) — H'(S,R) — H'(S,C) = H°(S, Q%) @ HO(S, Q}).
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Since H'(S,R) = H(S,Z) ® R, we see that H'(S,Z) is a lattice in H!(S,R). On the
other hand it is clear that the projection of H'(S,R) to any of the two summands in the
decomposition of H(S, C) is an isomorphism since the summands are complex conjugate.
This implies that the inclusions followed by the projection

H'(S,Z) — H°(S,Qk) = H'(S, Og)

maps H'(S,Z) isomorphically to a lattice I' in H'(S,Og). We want to denote this iso-
morphism by
j: HY(S,Z)>T.

Of course it is clear the the multiplication of line bundles in Pic®(S) induces the addition
on H(S,Og)/T" and hence we see that the quotient

J = Pic®(S) = H'(S, 0g)/T

has a natural structure of a connected, compact complex-analytic group of dimenson g.
Such a group is called a complex torus.

1.6. The classical version of Abel’s Theorem

In the previous section we described the group of line bundles Pic® in terms of the coho-
mology group H!(S, 0%). Our main tool was the exact sequence

0— HY(S,Z) — H'(S,05) = H'(S,0%) — H*(S,Z)
which allowed us to define the degree of the line bundle and gave us the description
Pic’(S) = H'(S, 0g)/H' (S, Z).

Now we recall ( see 1.3.)that the group of line bundles may also be described as the group
of divisor classes
Div(S)/ principal divisors =Pic(9).

We have seen that the degree of the line bundle 6(Og(D)) = deg(Og(D)) = deg(D) =
> np and by composition we get the isomorphism

Div®(S)/ principal divisors SH'(S, O5)/H'(S, 7).

We want to compute this isomorphism, i.e. if Og(D) € Pic’(S), how can we compute the
corresponding element in H'(S, Og)/H(S,Z)?

We reformulate our problem slightly. The analytic pairing gives us an identification
H(S,0s5)SH(S,Q%)V, the Poincare duality gives an identification Hi(S,Z)>H!(S,Z).
The resulting embedding i; : Hq(S,Z)——H°(S, Q%)Y is obtained by the following rule:
We represent a homology class [c] by a cycle ¢ and to this class we attach the linear form

203



(,oc:wl—>/w.
[+

Then the homomorphism [¢] — ¢, is our embedding ;.

Hence our problem is to compute the isomorphism

Div®(S)/ principal divisors ~H°(S, Q%)Y /H,(S, 7).

Let D be a divisor of degree zero. Then we can find a 1-chain 3p whose boundary 03p = D.
This 1-chain provides a map

YD sp - HO(S, Q}g) —C

YD,sp IW'—)/ Ww.
3D

If we have a second 1-cycle 3%, which also satisfies 937, = D then 3, = 3p + cp where cp
is a closed one- cycle, i.e. dcp = 0. Hence we see that

¢Dsp — ¢y, € Hi(S,Z) C HO(S, Q)"
Hence we see that D defines a well-defined element

¢p € H°(S,Q5)V/H1(S, 7).

Theorem of Abel: The isomorphism
Div®(S)/ principal divisors 5 H°(S,Qg)Y /H1(S,Z).
is given by [D] — ¢p.

To prove this it suffices to consider the case of two points P, () on our Riemann surface
S which lie in a small disc Dp. This is clear because our map D — ¢p is a homomor-
phism from the group of divisors of degree zero to H%(S, Q%)Y /H1(S,Z) and these divisors
generate the group of divisors of degree zero.

We assume that our local coordinate z is zero at P and 1 at ). We want to compute the
class of the line bundle Og(Q — P) in H*(S,Og)/H(S,7Z). To be more precise we want
to find a representative of this class in Q% (S) and identify it as a linear form on the space
of holomorphic differentials.

We draw the straight path v from P to @ in our disc and we cover S by Uy = S\y and
Uy = Dp. The meromorphic function %7 trivializes our bundle on U; and the costant
function 1 trivializes it on U,. Hence the holomorphic function %5 on Uy N Uz = D\y
defines a Czech cocycle with values in O% and its image in H'(S,O0%) is the class of
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Os(Q — P). I claim that we can define the function log -5 on D\{v}. This is so because

we can write down integrals
/ * dz / * dz
— and
o % o 2—1

along a path from a point a to z which avoids . The values of these integrals depend not
only on z but also on the homotopy class of the path. But the multivaluedness drops out

if we take the difference of the integrals, which then gives us the function log —%-. The

z—1
element 5= log %7 € Og(D\{~}) is a 1-cocycle with values in Og. It defines a class in
¢pg € H'(S,0s) which maps to the class of Og(Q — P) in H'(S,0%). This class {pg
can be represented by a closed form of type (0,1). To find such a form we shrink the set
Us a little bit to a set Uj so that it is the complement of a little neighborhood N of 7. (
In the picture below this neigborhood is the ”cigar” containing the path from P to () and
U}, is the complement of the ”cigar”. This ”cigar” is obtained by drawing have circles of
radius € > 0 around P, and then joining the endpoints by straight lines parallel to ~.

The boundary is a C; - manifold.)

By the same argument as in 1.4.8 we extend the restriction of 2%” log -%5 to UyN Dp to a

Coo-function h on Dp and put pu = d”h. This form p has compact support in U, hence it
can be extended to a (0,1)—form on S which then represents {p g € H'(S,Og) (A special
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case of the argument in VI.6.1.1). Again we have that the pairing of this class with a
holomorphic 1-form w is given by
w A W

S
To compute this integral we observe that w A p has support in the neighborhood N of v
hence it suffices to integrate over this neighborhood. But now we can write w A u = w Adh
and our integral becomes

— / wAh
AN

Letting this nelghborhood shrink to v the values of log ~%; differ by 2mi on the two sides
of our path +. Hence we get that

where h = 2

e

< fp,Q,w >:/w

~

and this is Abel’s theorem in the case that our divisor is Q — P, and P, close to each
other.

This theorem of Abel is the source for the so called self- duality of the Jacobian, which
will be discussed in detail in a later section (V.2.3). We pick a point Py and consider the
morphism

Zpots—>J

which is given by
ip, : P— (P)— (P).

This is clearly a holomorphic map and we want to explain how Abels theorem gives us
its differential. The tangent space of J at any point is H'(S, Og) and hence we see that
the space of holomorphic one forms on J is H°(S,{s). Hence ip, yields a C-linear map
between the spaces of holomorphic 1-forms

iy, : H(J,QY) = HO(S,Qk) — H(S,2b)

and I claim that this map must be the identity. If w € H 0( , ) is a holomorphic 1-form
and if X € Tp is a tangent vector at Py we compute ip, (w)p(X). We choose a local

coordinate z at P, then we may assume that X = 5.

The ip (P +h - Z2) is the linear form

P+hZ P+hZ
w — w = / w —{—/
Py

ip,(W)p(X) = ip,(W)p(5;) = wp(o-

and this yields



and hence i}, (w) = w.

Hence we see that ¢p, gives us an holomorphic embedding of the curve into its Jacobian.
This map also induces a homomorphism between the Picard groups

ip, : Pic(J) — Pic(S).

We will define the subgroup Pic®(.J) (V.2.1.1) and we will prove that the restriction
tip, : Pic’(J) — Pic’(S)

is an isomorphism. This is the so called self-duality of J.

1.7. Riemann period relations

The cup product <,>_ defines a non degenerate alternating pairing on our lattice I' .
On the other hand we have I' ® R H'(S, Og) and this identification provides a complex
structure I on I' ® R, namely the one which is induced by the multiplication by ¢ on
H'(S,Og).

We will show that the complex structure I is an isometry for the extension of <, > to
I'r. Therefore this pairing is the imaginary part of a hermitian form A on (I' ® R, I) (See
IV.10.2.1). We compute this form A and in addition it will turn out to be positive definite.

We can define a hermitian scalar product on H(S,Q}). If we have two antiholomorphic
forms wq,we € HO(S,Q}) we put

h < Wy,ws >= —2’1,/ w1 N\ Wa.
S

If we write locally
w1 = fidz, Wy = fadz

then the integrand becomes
fi(dz —idy) A fo(dz + idy) = 2ify fadz A dy

hence we see that h is a positive definite hermitian form.

Now we take to cohomology classes &,n € H'(S,Z). Using the de-Rham isomorphism, we
can represent them by differential forms which we can decompose

we = w' + wg!
Wy = w—gl + wgl.
The cup product pairing is given by integrating the representing differential forms

< &1 >cup=/wg/\wn:—/wgl/\w—gl—i-/wgl/\w—gl:—Imh(wgl,wgl).
s s s
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We have the isomorphism
j: HY(S,Z)>T C HY(S,05)>HO(S, QL)

and it is clear the the classes j(§) (resp.j(n)) are represented by wgl (resp. w)'). We can
transport the cup product pairing via j to I' then we get the famous

Riemann period relations:  The restriction of the imaginary part of the hermitian
form h to I' is the cup product times -1. Especially we can conclude that the values of
Imh onT' X I' are integers and this form is a perfect pairing.
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V.2. Line bundles on complex tori

2.1 Construction of line bundles:

These period relations are of great importance, because they allow the construction of line
bundles on J. The positivity of the form A will ensure that these bundles will be ample
and this means roughly that high positive powers of this bundle have many sections (See
below ?77?7). To explain this construction we consider a more general situation.

Let V be a complex vector space of dimension g and let I' C V be a lattice in V, this
means that I' is a free Z-module of rank 2¢g which sits in V as a discrete submodule. The
quotient A = V/T" is a compact complex analytic variety which also carries the structure
of a complex analytic abelian group, it is a complex torus (V.1.2). We have I'r—=V as real
vector space and as usual we denote by I the complex structure on I'g induced by this
isomorphism.

We change our point of view slightly. Our starting point is a free abelian group I' of rank
2g on which we have an alternating 2-form

(,):TxT —Z.

A second datum is a complex structure I : 'y — I'r which is an isometry for the pairing,
ie. (Iz,Iy) = (z,y) for all z,y € T'r. Then we can put V = (I'r,I) and consider it
as a complex vector space and V/T" is our complex torus. Let H on V = (I'g,I) be the
hermitian form obtained from ((, ),I) (See IV.10.2.1).

The pairing ( , ) allows us to construct certain vector bundles

L5 )sm,0)

which depend on additional data ¢ and n where
¢ € Hom(T", C)
and where 7 is a map
n:T/2I —» %Z /Z
which satisfies the compatibility relation

1
5 {1172) modZ + (v +72) = n(y1) = n(y2) =0 (3 %)
for all v1,v2 € I'. We say that n is adapted to the alternating form <, > .

To define such a bundle we consider an open connected neighborhood U of a point x €
A which is so small that the connected components U, in the inverse image of U map
isomorphically to U under the projection

p:V — A
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For any two such components U,,Ug C p~1(U) there is exactly one element v € T' such
that v+ U, = Ug. We define a sheaf Lg((, ),n,¢) = L((, ),n, ¢) whose sections over U
are the holomorphic functions

fip7t(U)—C

which satisfy the transformation rule

F(z +7) = f(2)emHEMNtzHOm)+2mile(m)+n(n)

The reader should notice that e271(") is well defined and is equal to £1.

I claim that giving such a function is the same as giving a holomorphic function on any of
the connected components U, in p~!(U) and then extending it to the other components
by the transformation rule. To see this we have to check consistency which means we have
to verify that

fz+7+72) = f((z+71) +72)-

To do this we compute both sides:

flz+v14+72) = f(z)eﬂ(H(z,vﬁvz)-l-%H(w-I-72m+72))+27ri(<0(71+72)+n(71+72))

= f(z)eW(H(zm)JrH(zm)Jr%(H(vl,71)+H(72,72)+H(71,72)+H(72m)))+2m'(<p(71)+<p(72)+n(71+72))_

For the other side we get

F(z+7) +72) = f(z_|_,yl)evr(H(z+71,72)+%H(72,72))+27ri(<p(72)+n(72))

= f(z) - emHE)+THnm)+H (z02)+H(n72)+ 5 H vz 7)) +2mile () +e ()0 () +0(v2))

The exponential factors are equal because their quotient is

o™ (3 (H (v2,71) = H(7y1,72)) +2mi(n(v1+72)=n(71) —n(72))

— 2mi(5 Im H(v2,m1)+n(vi+72)—n(11)—n(72))

and this is equal to 1 since we required (x * x) for 7.

If we consider the map

Cu(e,n):v— Oy(V)
v w(H(z,v) + SH(v, 7)) + 2mi(o(v) + n(¥))

as a map from the group I' to the holomorphic functions on V' then our computation says
that this is a 1-cocycle modulo the constant functions with values in 27iZ.

Hence we see that
La((, ) e)U)~0OUsa)

for any component in U, C p~*(U). and this means that Lz ({, ),n, ) is a line bundle.
Now we see why the integrality of Im H on I' x T" is so important.
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The data H and (<, >, ) determine eachother, therefore we may suppress the subscript
H in the notation. On the other hand it follows from IV.10.2.1 that the pair of R-bilinear
forms < , >, H determines the complex structure I which is not directly visible in the
definition of the line bundle. Hence it may be sometimes useful to keep the H.

In IV.6.6.2 we have shown that the second cohomology group (See ?777?)
H?*(A,Z) = H*(V/T') = Hom(A’T, Z).
We have the exact sequence
0— H'(A,Z) = H'(A,04) — H' (A, 0%) — H*(A,7)
and we leave it as an exercise to the reader to verify that

c1(Lu((, )m,¢)) =ImH|L x T

It is not too difficult to show that we can find an 7 for a given ( , ) . It is not unique,
but it is not hard to see that for two choices ng,ny we can find a homomorphism
6 : T — C so that §(T') C 3Z and 6(y) = nu(y) — njg(y) € Z. Then it is clear that

La((, )me)=>La((, ),n',o+10)

We want to show that this construction gives us all line bundles on A. In any case it is
clear that the group of Chern classes of line bundles is the kernel of the homomorphism

H?(A,Z) — H*(A,0,).

We have seen that H?(A,Z) = Hom(A?,Z) and it is an easy exercise in linear algebra that

an element
c € H*(A,7) = Hom(AT', Z)

goes to zero in H2(A, O4) if and only if the extension
cr:TOR) AL ®R) — R

satisfies cr(Iz,Iy) = cr(z,y), i.-e. the complex structure is an isometry. But for those
classes ¢ we gave an explicit construction of line bundles with Chern classe c. We can take

any L(c,n, ¢)-

2.1.1 This means that our construction at least provides enough line bundles to fill up the
module of possible Chern classes of line bundles.

It is of course clear that these alternating forms ¢ which satisfy cg (I, Iy) = cr(z,y) form a
finitely generated subgroup N.S(A) of Hom(A?T,Z). This group is called the Neron-Severi

group.

We should be aware that this group NS(A) can be trivial, actually this is the case for a
generic choice of the complex structure on I'g.
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To get the group of all line bundles we return to its description as H'(A, O%) and we
define

Pic’(A) = ker(d : Pic(A) — H%*(A,Z))
From our familiar exact sequence we get
Pic’(A) = H'(A,04)/HY (A, 7).

Again we get from IV.6.6.2 that H'(A,Z) = H'(C?/T;Z) = Hom([,Z). To compute
H'(A,O4)we consider the Dolbeault complex

0 — Q5,(04)(A4) = QL (04)(4) = Q2 (0a)(A) —

The tangent bundle of A is trivial. Using the translations we can identify the tangent
space at any point to Ty o ~ V' the tangent space at zero.

Hence the bundle of differentials is also trivial and at any point
Q4 , = Home(V, ©).

It is clear that the bundle Qf’417 is also trivial and if we give a basis to V and write z =
(..., 2q--.) € C9 =V then the global sections Q9!(A) are given by

W= falZa

where f, is a Co-function on A. We apply the principles of Hodge theory: we choose a
positive definite hermitian form on the tangent bundle, which we get from a hermitian
form on V' = T4 . We choose it in such a way that the basis vectors above form an
orthonormal basis. Then it is an easy computation to show that

0% fa
8Z5825

A"w — (d”&” + 6”d”)w — Z dza
B

and in IV.10.3 we proved that

H (Q23(A)) = {D _ cadZalca € C}.

and that we get an isomorphism
D) cadzalca € C} =5 H'(A, O4).

It does not depend on the metric, it is induced from the embedding of the translation
invariant differential form into the space of all differential forms.
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The space on the left is canonically isomorphic to Home_ angiin (V, C) (See 1V9.2.2) and we
obtain for our complex torus A = V/I’

Hom@_antilin(V, (C) = Hom@(f/, (C) = VV = Hl (A, OA)

To get the group Pic®(A) we have to divide by the subgroup H'(A,Z) and we have to
remind ourselves how this group sits inside VYV = H(A, O 4). This is clear: We know that
H'Y(A,Z) = Hom(T", Z) and

Hom(I', Z) ¢ Hom(I', C) = Hom(I' ®z C, C)

and by construction B
re;C=veV=vPlev"

Now the embedding H'(A,Z) < H'(A,O4) is given by extending ¢ € Hom(T',Z) to an
element in Hom(I' ®7 C,C) and then restricting it to the summand V = V9. Hence we
get an isomorphism

¢ : Pic?(4)5 Hom(V°!, C)/ Hom(T', Z)= Hom(T', C) /(Homc (V, C) + Hom(T', Z)).

We want to invert this isomorphism. We constructed the line bundles Lz ((, ), 7, ¢) where
¢ € Hom(I', C). We denote the restrictions of ¢ to V and V respectively by @10, @01 and
hence ¢ = (10, po1)- It is clear from the construction that

2.1.2 Lemma : a) The two line bundles Ly ({, ),n,¢) and Lg({, ),n, ) are isomorphic
ifo—¢" = (¥,0).
b) The bundles Ly ({, ),n,¢) and Lx({, ),n,¢’) are actually the same line bundles if

¢ — ¢ € Hom(T, Z)

Proof: To see a) we observe that e2™*¥(?) is holomorphic on V' and multiplication by this
function provides an isomorphism between Ly ({, ),n,¢) and Lg({, ),n,¥).

The assertion b) is obvious because e>7#(7) = e2mi® (M) for all v € T

If now the alternating form ( , ) = O is the trivial nullform then we choose 7o = 0. We
find
L£(0,0,¢)® L(0O,0, 90,) = L(0,0,¢ + Qol)a

our construction of line bundles yields a homomorphism
Hom(T, C) — Pic’(A).
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which by the previous Lemma factors through Home (V, C) + Hom(I', Z). Hence our con-
strucion yields a homomorphism

d : Hom(T', C)/(Hom¢(V, C) + Hom(T', Z)) — Pic’(A).
I leave it as an exercise to show
Proposition 2.1.3 : These two homomorphisms c,d are inverse to each other.

Corollary 2.1.4: If A = V/T is a complex torus then the group Pic’(A) has again the
structure of a complex torus and is canonically isomorphic to VV /TV.

This torus is called the dual torus and denoted by AV.

Our considerations also imply that the bundles with a given Chern class form a principal
homogeneous space under

Homg (T, C)/(Homc(V, C) & Hom(T', Z)).

But this description requires a choice of an 7 adapted to < , >. We have seen that
changing 7 can be corrected by the modification of the linear form ¢.

Now it is clear that all line bundles £ on A are of the form Ly ({, ),n, ¢).

2.1.5 We want to construct families of line bundles. We have the isomorphism
Pic’(A) =5 Hom(T'Y!, C)/TV.

We consider the line bundles

L5 ),m,(0,9))

where ¢ € Hom(T'?!, C). It is clear that these line bundles can be seen as members of
a family of line bundles on A x Hom(I'2}, C): We consider the line bundle £({ , ),7) on
A x Hom(T'2, C) whose sections over an open set

U x Hom(TY, C)
are given by holomorphic functions
h:n Y (U) x Hom(T', C) — C

which satisfy
h(u + 7, 1) = e H@NT3HE@N T2 N+ (3, 4p).

Let
py : A x Hom(TQ, C)/TY = A x AY
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be the projection on the second factor, we want to “push” this bundle down to a bundle
P((, ),n) on the quotient, i.e. we want that

p(P((, ) m) L, )ym)

To see how this can be done we have to find out what happens if we modify % by an
element \p; in I'V. Such an element is the image of an element A € Hom(T', Z) under the
restriction map Hom(T'¢c, C) — Hom(I'¥', C). We can write

A = Ao + Ao,

and we saw in Lemma 2.1.2 that

L(C, ) (0,9)) =L, ),m,(0,9) + A)

In the same lemma above we showed that we can write an explicit isomorphism

'@b)\ : E(( s >ana ()‘107¢ + )\01)) L) £(< ’ >7"77 (Oa'ﬁb + )‘01))

which on the sections was given by multiplication by e~27**10(2) Now it is clear that these
isomorphisms are consistent. If we consider a sum X' + A" = p, then v, = ¢ o 1p». This
allows to “push” down the bundle. We can define the bundles

P, )my)

where now y € AY = Hom(I'?!, C) /T and they form a family P(<, >,7n) on A x AV.

2.2 Homomorphisms between complex tori.
If we have two such tori
Vi/T'1 = Ay, Va/Te = Ay

then an analytic homomorphism ¢ : A1 — A is of course the same thing as a C-linear
map ¢ : Vi3 — V5 which maps the lattice I'; into I's. We may also view ¢ as an element
¢ : 'y = I'y which after extension to a linear map I'y ® R — I's ® R respects the complex
structureson 't 9 R =V, I's @ R = V5.

We summarize:

2.2.1 The module Hom(A1, A3) is a submodule of Hom(I'y,T's). It consists of those ele-
ments which after extension to R commute with the complex structures.

A homomorphism ¢ : A; — Az also induces a homomorphism between the Picard groups
QO* : PlC(Ag) — PlC(Al)
which is induced by the pull back of line bundles.
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We can restrict this homomorphism to the groups Pic®(43) = AY and Pic®(4;) = AY and
denote this restriction by
oV Ay — AY.

A priori this is an homomorphism between abstract groups but from the explicit description
of the isomorphism Pic®(4;)—+AY it becomes clear:

2.2.1.1. Proposition: The element ¢V is a homomorphism of complex tori. This homo-
morphism— viewed as an element in Hom(T'y,TY)- is simply the adjoint of the element
¢ € Hom(T'1,Ts). Especially we see that the function ¢ — ¢V is additve.

To see that this is true, we consider an element z € Pic’(A4y). We gave an explicit
construction of a line bundle £, corresponding to z starting from a linear map

)\zirg—)C,

which after extension to I's ® C and restriction to Vo maps to z:

For an open set V C A; the space of sections
L, (V)= {f : 7 Y(V) — C| f is holomorphic and f(z+7) = f(z)e%i)‘””)}
and the fibre of £, in a point y € H(S, Og)/I is given by

L)y = {71772 0) > €| fly+7) = Flg)eO)
If now ¢ : Ay — A and if y; € Ay, then

o* (['w)yl = (Lw)w(yl)-

If we consider the diagram
r, % 1, 2scC
\J \J

Vi 25V,

then we see that ¢*(L£) is the line bundle defined by the composition
Azop:I'1 — C

and this proves the desired formula.

We may also consider the induced map

An element e € NS(Az) is an alternating form e : I'y X 'y — Z and ¢*(e) is simply the
form on I'; x I'; induced by ¢, i.e.

©*(e){v1,71) = e{p(1), p(72))-
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This implies of course that the function ¢ — ¢* is not linear, it is in fact quadratic which
means that we have

PP =" + 9+ < > 2.2.1.2

where (¢,) =< ¢, > is bilinear.

2.2.2 We come to another interpretation of the Neron-Severi group. If we pick an element
e € NS(A), then this element defines a homomorphism

¢ : I' — TV
e v — {¥V =elr,")}

It is clear that the condition that I is an isometry for the extension er implies that it
extends to a C linear homomorphism

zpe:V—)VV

We have the inclusions I' C V and I'V C VV and it is clear that 1), maps I into I'V and
induces ¢, on the lattices.

Therefore we see that we have a canonical homomorphism
®: NS(A) — Hom(A4, AY).
Any element ¢ : ' — I'V has a transpose

¢V TV =T - TV.

We can define the alternating elements Hom, (A, AY) to be the elements which satisfy
¢V = —¢ and it is an easy exercise in linear algebra to show that our above map ® provides
an isomorphism

®: NS(A) — Homg; (A4, AY). (2.2.2.1)

The inverse of this homomorphism is given by the map that sends an alternating element
¢ to the form

ep < 7,7 >=d(7)(Y).

( I hope that I got the sign right).

2.2.3 We also have a homomorphism ¥ : Hom(A4, AY) — NS(A).

To construct this homomorphism we start from the alternating form
T (FEBFV) X (FEBFV) — 7,

217



which is defined by
T < (71, Y1), (72, %2) >= a(71) — Y1(72)-

If now ¢ : I' — I'V then this yields the homomorphism
Idx¢: T =T eIV

and we can restrict 7 via this inclusion to I'. The resulting form

< 71,72 >¢= d(71)(v2) — d(v2) (1) = ep < Y1,72 > —€ypv < V1,72 >

on [' is alternating. It depends only on the alternating component of ¢ and for alternating
¢ the map ¢ —<, >4 is twice the inverse of ®.

We give a different construction of the homomorphism ® which works with the bundles
themselves rather than with their Chern classes.

To our element e € NS(A) we choose a line bundle £ with ¢;(£) = e, in other words we
choose an adapted 1 and a ¢ : I' — C and consider the line bundle

L= L(e,n,p).

Any element z € A induces a translation T, : y — =z + y on A and we can consider the
line bundle T} (£) ® £L~1. To compute this line bundle we choose an element Z in the fibre
p~1(z). Let H, the attached hermitian form then the fibre of T*(L£) at a point z is equal
to the fibre of £ at  + z and therefore it is given by the functions which satisfy

fG+z+7y)=fGE+ ;y;)efr(He(5+:E,7)+%He (v +2mi(e(v)+nme (7))

for all z € p~1(2).

Comparing this to the fibre of £ at z yields that the fibre of T*(£) ® L~ is given by the
functions

fE+7) = f(E)em D

This line bundle is obtained from the linear form ¢z : v — H.(Z,7), in other words it
is isomorphic to Lo(¢z). An easy calculation shows that this linear form is of the type
(0, ¢10) in other words it is trivial on the first component in the decomposition

Homg (F ® C, C) = Hom@(V &D V, (C)

The same calculation shows that the linear form vz : v — H(y,Z) is of type (%o1,0).
Therefore we do not change the isomorphism class of the line bundle if we replace ¢z
by ¢z(y) = H(Z,v) — H(v,%Z) = 2iIlmH.(Z,7) = 2ie < &, > . Hence we see that
THL)® LT1SL(0,0,e < F, >) wheree <, > is a linear map from I to C.
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Therefore it is clear that

2.2.4 The map
z—Ty(L)® £t
from A to AV is a homomorphism and this homomorphism is equal to ®(e).

This new description of ® has the advantage that it is constructed in terms of the bundles
rather than in terms of the Chern classes. It is of course important that this homomorphism
depends only on the Chern class of the line bundle L.

We have also a description of 2x the inverse of this homomorphism in terms of line bundles.
We observe that the alternating form 7 on I'&I'V defines an element in NS(Ax AY) in other
words the complex structure on (I' ® T'V)g is an isometry. Hence we can construct a line
bundle N on A x AV whose Chern class is 7. If now ¢ : A — AV we get a homomorphism
Id x¢: A — AxAY. The pullback (Id x¢)*(N) gives us a line bundle Ny and ®(Ny) = 2.

2.2.5 If an element ¢ = ¢1 (L) of the Neron-Severi group is called rationally non degenerate
if the alternating pairing cg : I'o X I'p — Q is non degenerate then it is clear that the
induced homomorphism ¢, : ' — I'V is injective and that the image ¢.(I') C T'V has finite
index. From our description of the complex tori it is immedeately clear that the kernel of

e THL) QLT

is canonically isomorphic to I'V /¢.(I') we have an isomorphism
ker(¢c) =T /e(T).

2.3. The self duality of the Jacobian.

We specialize these considerations to the Jacobian J of our Riemann surface S. I recall
J = H'(S,05)/T = HO(S,QL)/T

where we identify H'(S,Og) = H°(S,QL) by means of the Dolbeault isomorphism and
Hodge theory. The submodule I' is the image of H'(S,Z) under the homomorphism
j:HY(S,Z) =T (see 1.5).

On this module I' we have the priviledged alternating form given by the cup product
ep: ' x I' = Z. It provides an isomorphism

Qoo : [ —> TV,

We need to know that this isomorphism is compatible with the complex structures. This
follows from the Riemann period relations (see 1.7) they imply that eo is the imaginary
part of a hermitian form

he, : HO(S, QL) x HO(S, QL) — C.
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which then gives an isomorphism of the complex vector spaces - also denoted by ¢, -
namely
Yeo : HY(S.QL) — H(S, Q%)Y

and this alltogether gives us an isomorphism

@(60) : J — JV

|
H'(S,05)/T — H(S,QL)Y/IV

Our isomorphism Pe, I8 of course the composition of the Dolbeault isomorphism and the
analytic duality (See 1.4.8):

H'(S,05) = HO(S,QL) — H°(S,Qz)Y

The isomorphism - or what is the same - the class e € NS(J) is called the canonical
polarization of J. It is an additional datum attached to the complex torus.

At the end of the discussion of Abel’s theorem we discussed the embedding
7 P S—J
which provided a homomorphism

tip, : Pic°(J) — Pic%(9)
I |

JV — J

and now it is clear from these computations that 'ip, is the inverse of the canonical
polarization.

2.4 Ample line bundles and the algebraicity of the Jacobian. Let us assume that
we have an alternating form e =<, > for which [ is an isometry. So far it did not play
any role that the hermitian form H attached to this form e was positive definite. We want
to discuss the implication of te positivity and we will see that it implies that sufficiently
high powers of this bundle will have many sections.

I refer to the section on Kéahler manifolds (See IV.10.2.2) There we attached a 2-form wy,
to any (positive definite) hermitian form h on the tangent bundle. In our case here the
tangent bundle of A = V/I is trivial and isomorphic to I' ® R at the origin. Then our 2-
form wp, on A is invariant by translation and is our form e at the origin. It is clear that
wp, is closed, it defines a class [wy,] € H?(M,Z) and of course

[wp] =e.

If now in addition the hermitian form H. - is positive definite, then <, > gives us a Kahler
metric on M = V/T" whose class is integral.

220



Now I want to formulate the famous embedding theorem of Kodaira.

2.4.1 Theorem: Let X be a compact complex manifold. Let us assume that we have a
hermitian metric h on Tx whose corresponding class wy, is closed and defines an integral
class in H?(X,7Z). Then we can find a line bundle L on X whose Chern class c1(L) = [wp]-
For n >> 0 we have that H4(X, L®™) = 0 for all ¢ > 0 and we get a projective embedding

On: X — P(H(X, L®™))
r — Hy, = {s € H°(X,L®")|s(x) = 0}.

We have a tautological example for this theorem. If our manifold X is the projective space
P"(C) and the bundle is £ = Opn()(1) then we can take n = 1 and the bundle provides
an embedding and a closer look shows that this embeddeding is simply the identity.

In the general case it is clear from the construction that the restriction by ©,, of the bundle
O]}D(HO(X,[:@'A))(]_) to X is our bundle £&"

This theorem also applies to our complex tori, we need that our classe =<, > H = H -
is positive definite. Then any bundle £ = Lg({, ),n, ¢) is of the type as in the theorem.
If we can find such an alternating form e for which the attached hermitian form is positive
definite, then we say that our complex torus is an abelian variety.

We will almost prove the above theorem of Kodaira in the special case of abelian varieties.
This will be done by showing that the bundles have a lot of sections. After that we will
make it more precise what a projective embedding is.

2.4.2 The spaces of sections and Theta functions: We want to compute the space of
global sections in our line bundles £({, ), 7, ¢). To do this we give a different description
of these bundles: we modify the cocycle Cy(z,w) by a boundary.

To get this modifiction we choose a sublattice G C Q of rank g such that Q/G is also
free and the alternating form <, > is trivial on G. This is possible because our form
is alternating. Then our hermitian form H. - restricted to G takes real values and is
symmetric. Since we have G & IG = V we can extend this restriction to a symmetric
C-bilinear form h on V, so we have H(z,w) = h(z,w) for all w € G.

For simplicity I want to assume that the restrictions of n and ¢ to G are trivial. Actually
we can assume this without loss of generality. The function n|G satisfies n(e; + e3) =
n(e1) + n(es) for e1,es € G. We can construct a linear form ¢’ : Q@ — 17 such that
n|G = ¢'|G mod 2. Now we modify 7 by ¢’ such that n(w) = 0 for all w € G. Once we have
done this we also modified ¢. Now we can restrict the form ¢ : 2 — C to G and extend
this ¢ to a linear C-form v on V. We have seen that L(<, >,n,¢) ~ L(<, >,0,¢0 — 1)
and hence we may also assume that ¢ restricted to G is trivial.

We look at our 1- cocycle mod 27iZ

w— w(H(z,w)+ %H(w, w)) + 27i(p(w) + n(w)) = Cu(z,w).
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This cocycle is uniquely determined by 2, < , > and the complex structure I and n. We
change our notation slightly and we denote the resulting bundle by £(Cp, ¢).

Now we consider global sections in this bundle and this means that we consider holomorphic
functions which which satisfy

f(z +w) = f(z)eCuFw)triow)
We modify these functions and consider

f(z) = f(2) - e BM=2),

These functions can be considered as sections in a new bundle which is isomorphic to the
given one but which is described by a different 1-cocycle. If we put

Chol(z,w) = m(H(z,w) — h(z,w)) + g(H(w,w) — h(w,w))

then the section of the bundle £(Cho, ¢) are functions which satisfy

f(z+w) = f(2) - eralzeltzmile@)int),

This new 1-cocycle has the disadvantage that it depends on the choice of G but it has
several advantages.
1) We have H(z,w) = h(z,w) for all z € V,w € G and n(w) = 0,p(w) =0 for all w € G.
Hence we see that f(z +w) = f(z) for all w € G, the function f is periodic with respect
to the sublattice G.

2) We will show that the cocycle depends “holomorphically” on I and this means that we
can view the abelian varieties together with the bundles as a holomorphic family.

Now I give an indication how we can describe the space of sections in these bundles. We
choose a basis e;...e4 of G, this is also a C-basis of V. We write the elements of V' as
linear combinations z =) e, z, = (#1,..., 2g).

The periodicity of f with respect to G means that f(z +n1,..., 24+ ng) = f(z1,...,29)
for all ny,...,n, € Z9. Hence we may introduce the variables u, = e?™*** and write

fz1s 00 29) = h(u1, ..., ug).

We expand

— mi m
h(ul,...,ug)—g Ay gty - - Ug?

We apply the transformation formula defining the line bundle. The elements in Q/G will
provide recursion formulae for the coefficients. We will see that some of the coefficients can
be chosen arbitrarily and then the other ones can be computed from these via recursion
and depend holomorphically on 1.
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Before I carry out this computation in detail I want to make a remark on the moduli space
of principally polarized abelian varieties.

2.4.3 The symmetric domain

To explain this I start from a principally polarized abelian variety. I recall that this is a

triplet
A= (Q’ < ) >, I)

where

(i) Q is a free Z-module of rank 2g and ( , ) is a skew symmetric form
(,):QxQ—Z

which is non degenerate over Z. This means that we can write our lattice

g
Q=PZe; w21,

v=1
where (e,, f,) = —1 = —(f,,e,) and where all other ( , ) between basis elements are zero.
(ii) The element I is a complex structure on Qg, we have I> = —Id and it respects the

alternating form ( , g : Qr X Qg = R.

(iii) On the complex vector space V = (Qg, I) we can define a hermitian form Hy on V by
ImHI(-T, y) = <Jf, y)

for all z,y € Qg. It is part of our assumption that this form is positive definite.
We want to explain that these data can be viewed as points in a complex manifold.

If we consider such an element I, and if we extend the scalars to C, then the C-vector
space 2¢c = Q2 ® C decomposes

Qc = QP @ Q2
Where QL is the eigenspace for I with eigenvalue 7 and Q2! is the eigenspace with eigenvalue
—i.

There exists an object which is called the Grassmann variety of maximal isotropic sub-
spaces. I do not want to discuss this in detail. Its complex points X'(C) are the maximal
isotropic subspaces of {2 ® C and in fact we have the structure of a complex manifold on
this set. (We will give some local coordinates later.)

To any element I we can attach a point in X'(C). Actually we have two choices — namely
we can attach QF° or Q2 to I — but in our situation we choose

I — Q8 ={ueQc|lu=—i®u}.
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On X(C) we have complex conjugation, it interchanges the two space in the decomposition
and sends the element I into —I. This means that the two parabolic subgroups (the
stabilizer of Qf° and Q') are in opposition.

If in turn we have a point z € X(C), and the corresponding parabolic subgroup P,, and if
P, and P; are in opposition, then we get a decomposition

Q(C:W@W

where W = z. Then we can consider the automorphism J which acts by multiplication by
ion W and —i on W. Clearly this defines a complex structur on Qg: the elements of Qg
are the elements of the form

w=w-+w

and Jw=w®i+w® (i) =w®1i+ w ®i. We conclude that we have a bijection
{I | I2 = _Id7 <I$,Iy> = <$7y>} = XO(C)

where X,(C) is the set of points z for which z and Zz are in opposition. This induces a
complex structure on the set of all 1.

On XpH(C) we have an action of G(R) by conjugation, we want to determine the orbits.
Recall that an element I defines a hermitian form H; on the complex vextor space (Qg, I)
and the stabilizer of the element I is the unitary group U; C G(R) of the hermitian form

This hermitian form H; has a signature (p, q) with p+ ¢ =g and H; ~ U(p, q). Now it is
an easy — or perhaps better — a well known theorem that:

The orbits under G(R) on X(C) are given by the signatures (p,q) of the hermitian forms
Hy.

Especially we have the open orbit X C &p(C) where the form Hj is positive definite. This
is the orbit which is hit by the principally polarized abelian varieties.

We see that two such principally polarized abelian varieties (2, <, > I),(Q,<, > I') are
isomorphic if we can find an automorphism of (€2, <, >) which sends I into I’. The group
of these automorphisms is the symplectic group G(Z) = Spy(Z) and this gives us a hint
that the abelian varieties with a given type of polarization are parametrized by

G(Z)\X = universal family of principally polarized abelian varieties

We had chosen a basis e1---eg, fg--- f1 for Q. Now we write

Jv= Z (@op + Yopd)ep, (t)

we put T, = Ty + Yoy - o
The element I gives the decomposition Q¢ = Q°@N2. We attached the space Q2 € X(C)

to I, and we want to write ”coordinates” this point (or space). To compute this space we
have to observe that we have

Qc=Gcd Q(%l.
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The map V — Q¢ /Q2" is by construction an isomorphism and hence

fu_ZTup®eu € le (TT)
The assumption that Q2! is maximal isotropic is equivalent to the symmetry of the matrix

(Tvu)

and our hermitian form is positive definite if and only if the real part of this matrix is
positive definite. Therefore the 7, are the holomorphic coordinates for the possible choices
of I..

We see that the space of possible complex structures I which provide a positive definte
form Hj can be identified to the points in the Siegel half space

H={Z2Z=X+iV}

where 7 is symmeric and Y is positive definite.

2.4.4 We consider the cocycle w — Cpol(z,w) and I want to explain that this cocycle
depends holomorphically on I. To be more precise we can fix an element w € 2 and
consider this cocycle as a function in the variables z and I. Then we want to show that
this cocycle is holomorphic in both variables.

We have the two forms
H : QprxQp — C

h QRXQR — (C,

which H is hermitian with respect to the element I and where h is linear in both variables
with respect to I. Now we extend these forms to Q¢ = Qr ® C bilinearly, i.e. we have

He(w®z,n®@w) = zw H(w,n)
he(w®z,n@w) = zw h(w,n).

forw,ne Qand z,w € C

We observe that the inclusion Qx — ¢ induces an isomorphism
Or — Qc/Q,

and this map is C-linear if we give (g the complex structure where multiplication by i is
given by I.

We can decompose
Qc = Ge @ Q¢

and hence we can write any element w € Q¢ as a sum
w = wgqg + wo1-
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Now we consider the expression
H(C(Za OU) - h(C(Za w)a

and we observe that this depends only on wmod G¢ in the second variable. On the other
hand we see: If z € Qc is in QY', then

H¢(z,w) = he(z,w) = 0.
this is clear because z = n + In ® ¢ with some n € Qr and
Hce(n+1In®@t,w) = H(nw)+i H(In,w) = H(n,w) — H(n,w) =0,
and the same holds for h¢c. Hence we conclude that
He(z,w) — he(z,w)

defines a bilinear form
Qc/Qg:l X Q(c/G(C — C.

We can express this form in terms of the original alternating form: We write as above
w = wqg + Wo1,

then I claim that
He(z,w) — he(z,w) = 2i{z, wo1)c

where (, )¢ is of course the bilinear extension of {, ) to Qc¢.

To see that this is the case it suffices to show that

Hc(z,wo1) — he(2z,wo1) = 2i(z, wo1)c-

In this case
wor1=n+In®1

and because h¢ is bilinear with respect to I, we get
he(z,n+In®i) =0
as above. Hence we have to show that
He(z,wo1) = 2i{z, wo1)c-
We may assume that z € g and again we write wg; =7+ In ® i. Then
He(z,n+In®i) = H(z,n) +i-H(z,In) =i H(z,In) + H(z,n).
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We invoke our formulae for H and get

?:((Z, 77>+i<za I77>) - <Z7 I77> + i<z7 77) =
27:('2’ 77) - 2<Z7 I77> =2 (<Za ne Z>(C - <Z7 I77>) =
2i ({z,m) + (2, In ® i)c) = 2i{z,wp1)c-

This function (z,I) — 2i(z,wp1)c is now clearly holomorphic in the variables z, I.

Now we pick an w and we get for our 1-cocycle

Chol(2,w) + 2mip(w) = 2mi(2, wor)c + Ti{w, wor)c + 27mi(n(w) + p(w))
We write z = Y z,e, € Qg and we want exploit the formula

F(z + w) = f(z)eCraz@)t2mile(@)+n(w)

for the section of the bundle. If w € G then the factor on the right hand side is equal
to 1 and this means that f is periodic in G which in our coordinates means that f(z; +
Ni,...,29 + ng) = f(z1,....24) where the n,; are integers. Hence we have to consider
elements w = ), n; f;. Then the relation (11) says that

po1(w) = Z”M(fu — ZTH,,e,,).
If z=)_z,e,, then it follows that
H(z,w) — h(z,w) = 2iZzMnu,

and
H(w,w)—h(w,w) = 2i{w, po1(w)) =

23(2 NSy Z My (fu — Z Tuv€y) = —2i Z NN Top.
1 p v v,p

and hence our recursion formula will be
flz+w) = f(z)e%i(zu Zuny) =mi(y o) +2mi(e(w)+(w))
We introduce the new variables
u, = > and Qup = ek,
The ¢- variables are not independent, we have the relation
Qup = Quu-
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We return to the problem of the computation of the space of sections. We start from our
data A = (Q,(, ),I), and we consider the d-th power of our line bundle £(Chy, ¢)®¢ =
L(dChor, dy).

The periodicity with respect to G allows us to write our sections f as functions in the
variables u,

F(or, .. zg) = hlur, .., ug)

and the transformation rules becomes for an element w = nqf1 + ...+ n4f,

h(uq H qi?", CeesUg H q2”"

u17 N Ug) H udn,, l_Iq—n>\clnN 2wd(p(w)+n(w))

If we now expand the function A into a Laurent series

mi1 m
h(ui,...,ug) = E Umy,...;myg N T

then transformation rule for our element w =) n, f, yields the following recursion

2n,m,, —nxdn, 2mi w)+n(w
am17 -Tg H q . a’m1 dn1, ,mg—dng H q>\ A re 77 (QD( ) 77( ))
AK

From this we conclude that the coefficients Ay, ,....v, for 0 <vy; < d—1 determine the rest
of the coefficients. On the other hand we can choose values for the coefficients a,,, . .., aq
for the indices 0 < a; < d — 1 and then we vary the n, we get

g

nya,+dny,n, 2mid(e(w)+n(w
aa1—dn1,...,a9—2dn9 aal, ,Clgqy;j, © vy o ™ (‘P( ) 7)( ))

Now we make the fundamental observation that the positive definiteness of our matrix Y
above implies that we can prove an estimate

2 2
—c(ni+...n
‘aa1—dn1,...,a9—dn9| <e ( 1 g)

with some constant ¢ > 0 depending on Y. This implies that the Laurent series will be
convergent for all uy,...,u, € C* and we conclude

2.4.5 We can write down explicitly all sections in a line bundle L(Chol, 0)®? as infinite
Laurent series, if the corresponding hermitian form is positive definite. The dimension of
the space of section is d9.

With a little bit more efforts in linear algebra linear algebra it is not difficult to show

Theorem: If e € NS(J) is an alternating form on I' which for which the corresponding
hermitian form H, is positive definite, then

dimH®(V/T, Lu, (¢, nm)) = det <, > .
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If we return to our Jacobian J then we have the cup product pairing on H'(S,Z) ~T. If
H, is the corresponding hermitian form then we can form the line bundle P = Ly, (¢, )
with an arbitrary ¢ and suitable ng. Our theorem yields

dimcHY(J,P) = 1.
If we take powers of this line bundle then det(r <, >) = r29 and it follows that
dimc HO(J, P®") = r29.
This can be used to construct an embedding into the projective space

Theorem (Lefschetz): If we take r = 3 then the morphism

J — P(H°(J, P®3))
r — H, = {s € H°(J,P®%)|s(z) = 0}

is everywhere defined and yields an embedding of J into the projective space.

I want to comment on this theorem without proving it, its proof will be discussed in the
second volume in the section on Jacobians. At first we need to know is that for any x € J
we can find a section s € H?(J,P®3) which does not vanish at this point. Secondly we
have prove that for any pair of points x # y we can find a section which vanishes at x
but not at y. And finally we need to know the following: If we pick a point z and a
section sp which does not vanish at x then the ratios s/s¢ are function on J which are
defined in a suitable neighborhood of z. Then we have to show that we can find sections
S1,.-..,8q which vanish at z such that the differentials d(s1/s¢),...,d(sq/s0) generate the
dual tangent space. This implies that the local ring O(J, 7) is the ring of convergent power
series in s1/$o,-- -, S84/So-

If all this is shown then it is clear that

the image of J under © is a complex analytic submanifold in Y C P(H®(J, P®3)) and

0:J5Y
s in fact an analytic isomorphism.

Now we use the theorem of Chow which says that a smooth and closed submanifold of
P*(C) is in fact a smooth projective algebraic variety. (See II1.1.2.1,5d). Hence we can
define the image ©(J) =Y as the set of common zeroes of a finite number of homogeneous
polynomials. Then the pair (J,P) becomes an object in algebraic geometry. To make this
precise we have to say a few words about the comparison between algebraic and analytic
geometry.

As in the case of Riemann surfaces we define a new topology on Y, namely the Zariski
toplogy. If we have a homogeneous polynomials f(zo,...,2,) then we can look at the set
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V(f) € P*(C) where it vanishes and the set D(f) C P™(C) where it does not vanish. These
sets D(f) form a basis for the Zariski topology on P™(C) , i.e. the Zariski open subsets in
P (C) are unions of sets of the form D(f).

The Zariski open subsets in Y are the intersections of Zariski open subsets in P™(C) with
Y. As in the case of Riemann surfaces we know that the identity map Y,, — Yzu, is
continous.

If now U C P*(C) is a Zariski open subset we say that a holomorphic function f : U — C
is meromorphic if for any point y € U we can find homogenous polynomals g, h of the same
degree, such that h(y) # 0 and such that f = g/h on the open set U N D(h). We put as
before

Opicy(U) = {f : U — C|f is meromorphic}

We can do the same thing with Y and define the sheaf O3°.

As in the case of Riemann surfaces the identity map

(Yan; OY) — (YZO,T; Oger)

is a morphism between locally ringed spaces.

A meromorphic function on Y is an element in some O%*"(U) where U # () is Zariski open
in Y. Now Y was special namely it was the image of J under ©. Hence it is connected
as a toological space and from this it follows easily that the intersection of two non empty
Zariski open sets is again non empty. This allows us to define the field C(Y') = C(J) of
meromorphic functions on J.

We state without proof:

The field of meromorphic functions on J is a finitely generated extension of trancendance
degree d

As in the case of Riemann surfaces we can define coherent sheaves of Oy-modules (resp.
Ope") modules on Yy, (resp.Yzsr). In both cases this are sheaves of modules under the
structure sheaf which locally are finitely generated.

It is the content of Serre’s paper “Geometry algebrique ét geometry analytique” (in short
GAGA) that these two categories are equivalent. In short words: To any coherent Opn g,-
sheaf F,, on P*(C) we can find a unique subsheaf F of Opn-modules (i.e. F(U) is an
Opr-modules for any U C P", Zariski open) such that Fop, = F ®0pn Opn gn-

A first consequence of the GAGA-principle get that the sheaf I,,,, which defines the analytic
subspace Y is the extension of a sheaf of ideals I C Op~, and this is of course the statement
of Chows theorem.

If we now consider line bundles on J we have the freedom to look at them as complex
analytic bundles or as line bundles on the scheme (J,O;). Hence we will not make any
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distinction between these two kinds of line bundles, we identify
Piczar(J) = Pic(J) = Pic(Jan)

Hyp,,(1,03) = H'(J,07,,)

J,an

where actually H'(J, O3 ,,,) was exactly what we called H'(J, O0%) before.

2.4.6 Degenerations of abelian varieties

At this point we achieved also something else. We can consider the 7, as complex analytic
variables and then then we can consider our abelian varieties as varying in a holomorphic
family of bundles. And we have in addition a holomorphic family of lines bundles and a
holomorphic family of sections. If the matrix Y tends to infinity then the g,, tend to zero
and our abelian variety degenerates into a product of C* in a certain sense we have written
down a universal degenerating family of abelian varieties.

The point is that this degeneration can be given an arithmetic meaning. This will be
explained in a special case.

2.4.7 The case of genus 1

I want to discuss these constructions in the special case of curves of genus one. We can
assume that the Jacobian is of the form

J=C/{1,1}

where 7 € C, Im(7) > 0 and where {1,7} = 2 is the Z-lattice generated by the elements
1,7.

We have an alternating pairing ( , ) on €, it is determined by its value on the basis
elements, and we put
(1,7) = —1.

All other alternating pairings are of the form d( , ) with some integer d. In this case it is
clear that ( , ) is the imaginary part of a hermitian form H on C. If y = Im(7), then this

form is given by

1
H(Zl, Z2) = §Z1EQ.

Now we consider line bundles
E(d< ) >7 (p7 ’,7)

where we have changed the notation in the sense of 6.1.1 (777).

Let us look at the case d = 1 first. In this case we must have a non trivial . One possibility
is to take

1) =n(r) =n(1+7) =,
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1

5 on exactly one of the elements

and there are 3 other choices, namely, taking the value
{1,7,1+ 7} and zero on the two others.

I want to stick to the first choice, it is in a sense the most canonical. We investigate the
line bundle
'C(CHa 0)7

i.e. we take a linear form to be trivial. We have to look at functions which satisfy
f(z ‘l‘w) _ e%za+%wa+2win(w)f(z).

Now we apply the strategy explained in 6.4. We choose the submodule G to be the module
generated by 1. Now 7 is not trivial on the vector 1 this forces us to make some minor
modifications. Again we put

and then we find

fz+1) ==f(2).

(Here we have to take into account that (1) = 3.)

A simple computation shows

f(Z + nT) — e—%(z—i—nT)zf(z + nT) — e—%(z—i—nT)Ze%zn?+%n27'?+7rinf(z)

— e—27rinze—7rin27'+7rinf(z)

In this situation we modify the definitions of ¢ and u and we put v = €™ and ¢ = ™",
then our first relation above says that our function f has a Laurent expansion

g amu™,

m=1mod 2

Tz

and as in 6.4. the second relation gives a recursion for the coefficients a,.

It says

f(uq”) — (_1)nu—2n . q—n f-(u)
and looking at the expansion we get

amuq™" = (—1)”u_2”q_”2 (oo Qmgonu™t ),

and hence for any choice n,m

n m,n-l-n2

Am+2n = (_1) q Ay -
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Since the coefficients with an even index are vanishing, we see that the coefficient a
determines all the others. We put it equal to one and then we get

Flwy = Y (1) grenatiom,
MEZ

Since we have Im(7) > 0 we have |¢| < 1 and hence our function converges for all u € C*.

This function is one of the Jacobi Theta functions. We change the notation and write
9(u, q) = Z(—l)mqm+m2ul+2m.

We have seen that in modern language this ¥-function is a section in a line bundle on the
Jacobian C/{1, 7}.

We can ask ourselves whether we have a different description of this line bundle. Clearly
it is of degree one so on our Riemann surface J it should be of the form O;(P) with some
point P € C/{1,7}. The bundle O;(P) has a non trivial section which vanishes at P.
Hence we see that our 9¥(u,q) must vanish for some value of u. A simple computation
yields

19(17 Q) =0,

and hence we conclude

E(( ’ >,0,’I’]) = OJ(O)
where O € C/{1,7} is the zero element.

Now it becomes clear what the other choices of n will give. In section 6.1. I explained
that different choices of 77 can be compensated by changing ¢. In this case we can consider
¢ : 2 = C such that ¢(Q2) C 1Z, of course what matters is the resulting homomorphism

5:0/20 —» %Z/Z.

We have three non zero such homomorphisms and

£(< ) >’Oanl) = E(( ) >a§0a77)

if n =@ +n. We could carry out the same calculations and get three more 9 functions

,1901 — Z(_l)mqm2u2m
,1910 — Z me -I-mu2m-|-1
,1911 — Z qm2 u2m

and they correspond to the linear forms with @;;(1) = £ modZ, g;(1) = 4 mod Z. These
give the four Jacobi #-functions. The kernel of ¢;; defines a two torsion point P;; € J, and

we must have that 9;; is a non zero section in
HO(J7 E(( ) )7 ©ijs 77)
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and
L, ), pij.n) = O5(Pij).

We make another change of notation and put
0, =19.
we know how we can write down sections in
H®(J, L(dChot,0,).

We know from the Riemann-Roch theorem that this space of sections has dimension d
which we also get from our considerations above.

We always have for sections in H°(J, £(d(, ),0,dn))

fw = (0w
f(qu) — (_1)dmu—2mdq—dm f(’LL)

and if we expand into a Laurent series in u the non zero coefficients with even (resp. odd)
indices vanish if d is odd (resp. even).

Later we will consider the case where d is even more closely. Then it is usefull to replace
d by 2d and

2miz 27iT

u byu=e and gbyqg =e

then the recursion formula becomes

Fug™) = u=2mdg=dm® fy)

If d = 2 then

e2=...— (Z q2m2+2m)u0 + (Z q2m2)u2 +...,

meZ meL

and we find a second section where the coefficient ag = 1 and as = 0.

@2 — Z q2m2u4m‘

MEZL

We consider d = 3, we have already two sections, namely, ©3 and ©;0,, and we can write
a third section
O3 = Z(_l)mq?xm?-l-mul-l-ﬁm-
meZ

We are now in exactly the same situation as in 7?7. We have the sections

6. € H'J,0,;0)) c H(J,0;(30))
6, € H°(J,0;(20) C H'(J,05(30)
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and
03 € H°(J,05(30)).

We must have linear relations among the monomials 02, 030,01, 0303, 03,0302, 0,07, 6S. Now
we take into account that our curve depends on a parameter 7 and hence on €™ = ¢, and
we want to find out what these relations are. I refer to the discussion of the Weierstrafl
equation in section 777 .

We have the two division points 1 5, 5 and 1+T in C/{1, 7}, we call them Pyq, Py; and Py;
respectively. Then Pyy = O. The ratios

ﬁﬁu

92

are meromorphic functions on C/{1,7} and div(¢,,) = 2P,,, — 20.

Suu ==

We choose one of these points, say Pig, and we put x = ;¢ and we consider the function
z(z — z(Por)) - (z — x(Pr1)).
The function y = % has the divisor Py, + Pig + P11 — 30 and hence
div(y?) = 2Py; + 2P1o + 2P1; — 60.

We have div(z — z(Pp1)) = Po1 + Q — 20, but then we conclude Q = Py because if not
the divisor could not be a principal divisor.(??) The same argument holds for the third
factor. We get div(y?) = div(z(x — 2(Po1))(z — z(P11))-

We conclude that

v =a- m(a: — m(POl))(a: —z(P11)).
Our division points are Pjg = 5 P11 = ~3" and Pp1 + 5 . A simple calculation shows that
Y10(P1o) = 0. Hence z = ’25 (thls shows that the ch01ce of indices is correct) and we have

TiT

D10 (%) = Ymez qm2+meﬂT(2m+1) = ZmEZ qm2+m6m7m€ 2 =

(Senam+2m) e = (S q™)e

1910(14_TT) = qu2+m€m'TT+1'(2m+1)—(qu2+me”i7m-e”im)e% =
(C(Dmgm4am) . o™ o) = (D(-1)™ g7 e ¥ ¥,

The same calculation for ¥ yields




We get

P=a-zeo (™) . (C(=1)m+igm)? .
(o (=1)m+tgm*)2 (> gm*)?

We can compute the factor a. As in (777) we look at the leading term in the expansion
for x + (%)2 and y + (77910%”901)3 at z=0. If

9¥(z) = Bz + higher order terms

then

Tz = ’9[3%;2) + ... higher order terms
y = 7191019;%2%1(0)3 + higher order terms
and we get

_ 911(0)% - 991(0)?
B 910(0)*

If we now replace

y by y - 9100002 900(0)91(0) - 21T

9(P11)?
x by = - 1910(11311)2

then our equation becomes

2 _ (g — r— (Eqm2(_1)n)4
Yy = ( 1)( (Eqm2)4 )

This is now an equation in Legendre normal form. We put

(S (-1)™)*

Ag) = )

We can change our point of view. So far we consider ¢ as a complex number or perhaps
better as a function depending on a complex variable 7. But the power series A(g) is in
fact a power series in Z[[q]] and we have

Z[X(q)] C Z[[4]].

We can comfortably interprete our f-series as elements in the ring of Laurent series

Z{[g))[[u, w™"]]-

We have constructed a curve — namely

E:yt=z(x-1) (az—
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over Z[[q]] and its discriminant is

Platz fuer Formel

We conclude that this curve is smooth over the ring Z [1] [[¢]] [ﬂ . In principle we can say

that we are in the same situation as in (???) where we wrote the Legendre normal form
for an elliptic curve with a 2-torsion point and a 1-form w.

But here we can write down a formula for the points. So we may for instance consider the
morphism

£
;\6

Spec (Z [5] [[ql]) «— Spec (Z [3] [[g]][[u,w"]])

and the f-series; can be seen as a tautological section #. We can write down points with

values in extensions of Z [1] [[¢]], so for instance we get n-torsion points on £ if we evaluate

at roots of unity ¢ or elements of the form Cq'/2".

If we consider a homomorphism

-

where k is any field, then we can consider the base change of our curve to k[[¢]] and to the
quotient field K = k[[q]] [ﬂ, then it can be shown that

E(K) = K*/(q%)

(Tate’s theorem), and we have an explicit description of the group of rational points.
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V.3. Towards the algebraic theory

3.1 Introduction During our discussion of the Jacobian J of a Riemann surface S and
the description of the Picard group of J we made heavily use of transcendental methods.
This means we worked in the category of (compact) complex manifolds. We used the
cohohomology groups H*(J, Z) and the construction of line bundles was done in the analytic
context.

On the other hand we have seen that the Riemann surface can be viewed as the set of C
valued points of a non singular projective curve C/ Spec(C) and we also have stated the
result that J is projective algebraic variety which is equipped with a line bundle P which
has very specific properties.

In this section we will aim at an algebraic formulation of our central results, we still use
the trancendental arguments in the proofs.

It is the content of chapter X in the second volume that the main results of the present
chapter here can be formulated and proved in algebraic terms and hence they belong to
algebraic geometry. Especially they make sense in characteristic p > 0.

The key to a deeper understanding of J and also of the Riemann surface itself is the
investigation of the Picard group of varieties of the form

SxS8,8xJ,JxJand J x JV.

Let X be any smooth, projective, connected variety over C (see II1,777), we denote its set
of complex valued points also by X. We use the above mentioned principles from GAGA.

Then we have
0— HY(X,Z) - H'(X,0x) - H'(X,0%) —» H*(X,Z) —

and from here
0 — Pic®(X) — Pic(X) > H2(X, 7).

The class §(£) is the Chern class of £ and the subgroup generated by the Chern classes is
called the Neron-Severi group NS(X).

3.1.1 The algebraic definition of the Neron-Severi group: If X is any smooth
prjective algebraic variety then he group H?(X,Z) is of course a trancendental object,
it needs the concept of continuity in its definition. But if we believe in GAGA then the
group Pic(X) is defined in the context of algebraic geometry. We also can give an algebraic
definition of subgroups which are close to Pic?(X). For instance we can define the subgroup
Pic? (X)) of those line bundles which are algebraically equivalent to zero: We say that a
line bundle £ on X is algebraically equivalent to zero if we can find a connected projective
algebraic variety T over C and a line bundle £ on X x T such that there are two poits t1, g
on T for which £, = £|X x t1 3£ and Ly, = £|X x to=>Ox. Naively speaking this means
that we can deform our bundle into the trivial bundle. It is of course clear that during
such a deformation process the Chern classes do not change. This means that the group
Pic’®(X) of lines bunles algebraically equivalent to zero is always contained in Pic®(X).
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If we divide Pic(X) by this subgroup we get a modified Neron-Severi group which is defined
in the context of algebraic geometry.

Our results (for instance 2.1.5 ) imply that for abelian varieties A over C we have in
fact Pic’(A) = Pic"®(A) and thus we have an algebraic definition of NS(A) for abelian
varieties.

3.1.2 : The algebraic definition of the intersection numbers. At this point I want
to outline how we can define in purely algebraic terms the intersection numbers of line
bundles on a smooth connected projective variety X C P?¢(C).

If we have d line bundles £; - - - L4 on X, then we have their Chern classes ¢1(L1), -+, c1(Lq) -}
We can form the cup product

c1(L1)U---Ucq(Ly) € H(X,Z) = 7,

and the result is a number. We have already seen that under certain favorable circum-
stances we can interprete this number as the number of points in the intersection of d
smooth divisors (see IV, 9.3.2)

cl(ﬁl)u---Ucl(ﬁd):Y1ﬂ---ﬂYd.

I want to explain that it is always possible to interprete this cup product of Chern classes as
intersection numbers. I have to appeal to some theorems in projective algebraic geometry
which will be discussed in more detail later.

Our projective space P%(C) has the line bundle Opa(cy(1) = H on it. We will show that for
any bundle £ on X we can find an integer n > 0 and a non zero section s € H°(X, LQH®")
such that [s = 0] is a smooth divisor (see IV ...). We take our bundle £; and construct
such a section

s1€ HO(X, L1 @ H®)

and another section
t, € HO(X, H®n)

which also provides a smooth divisor on X. If we look at the cup product of the Chern
classes, we find

Cl(ﬁl) J---uU Cd(ﬁd) = Cl(,Cl (024 H®n) U---u Cd(ﬁd) — 61(7'[®n) J---u Cd(ﬁd).

Now the two divisors [s; = 0] and [t; = 0] are again smooth projective varieties. They
are perhaps not connected but their connected components Z; --- Z - - - are also smooth
projective varieties by the theorem of Chow. We can restrict the remaining line bundles
L1+ L4 to these components.

Now we assume by induction that we have an algebraic definition of the intersection number
Ly --- L4 of d—1 line bundles on smooth projective varieties of dimension d — 1. Then the
above argument gives us a definition for d line bundles on X.

Here we have to observe that in view of our result in IV. 9.3.2 we know that this definition
does not depend on the choices of n and of the sections s; and ¢; because the intersection
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numbers are also given by the cup product. But later in the context of algebraic geometry,
when now cohomology groups are available, then we have to work a little bit more.

If X is equal to one of our four varieties above and if we write X =Y x Z then we get for
the cohomology in degree one

We get from 2.3 and the Kiinnet formula

H'(J,0,) = H\(S,0%)
HI(YXZ,Osz) = Hl(Y,Oy)EBHl(Z,Oz)

The second isomorphism yields
Pic’(X) = Pic®(Y x 2)5Pic®(Y) @ Pic®(2)

We say that Pic? is linear.
We recall the notation I' ~ H(S,Z) and then

H?(J,7) =Hom(AT,Z)
H?*(S x 8,7) =H*(S,Z)® H*(S,Z) ® H'(S,Z) ® H*(S,Z) =
Ze&T T @ Z.
H?*(S x J,7) =H*(S,Z)® H*(S,Z) ® H*(J,Z) ® H*(J,Z) =
ZoT @IV @ Hom(AT,Z).

We have to find out what the Neron-Severi group will be in our four cases. It decomposes
into
NS(Y)® A(H'(Y,Z)® H'(Z,Z)) ® NS(Z).

To see this we observe that we have the Chern classses of the pull backs p}(£1), p5(L2) of
line bundles on the two factors, which have Chern classes (c1,0,0), (0,0, c2) with respect
to the above decomposition. On the other hand we can choose point yy € Y, 29 € Z and
restrict a bundle L on Y X Z to yo X Z,Y X zg. The Chern classes of these restrictions do
not depend on the selected points ( because Y, Z are connected ) and if we modify £ by
the product of the inverses of the pull backs we get a bundle whose Chern class is (0, ¢z, 0).
We put
NS'(Y x Z)={ce NS(Y x Z)|c=(0,c2,0)}

The first and the third summand are considered as less interesting at this point since they
are filled up by the Chern classes of line bundles which are pull backs from the two factors.
We are interested in the summand in the middle.

We have the morphisms

Id xip 1p, X1Id 1d x PD
SxS —°SxJ 2 IxJ =T TIxJVY.
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which induces a sequence of isomorphisms
PR+ Tl +—TIVeIV+—IVerlY

where the isomorphism is always the tensor product of the identity and the Poincaré duality
pd. It is clear that this sequence of isomorphisms also induces homomorphisms between
the corresponding subgroups NS'(Y x Z) and

3.1.3 Proposition: With the obvious notation we get a sequence of isomorphisms

AT ®T) +— AT ®TY) «— ATV @TV) +— ATV @TV)

To see that this is indeed the case we recall that the Neron-Severi group is always the

kernel of
H?*(X,Z) — H*(X,Ox).

In our situation we have to apply the Kiinneth-formula and look at the kernel of
HYY,Z)® H'(Z,Z) — H*(Y,Oy) ® H'(Z,0z)
and then the claim follows because the maps
HY(JY,0;)5HY(J,05) — H'(S, O5)

are isomorphisms.

There is a slightly different way of looking at this. We have seen that have to study the
alternating 2-forms on T @ I, T & 'V, TV @ I'V. If our two summands are I';, 'y then we
denote the space of those alternating 2-forms which are trivial on the two summands by
Alty(Ty ® T'3,7Z). Then we have an ispmorphism

'Y @ Ty SAlty (T & Ty, Z)

An element 11 ® 9o = W is sent to the form

ew : ((71,72), (71,73)) = Y1(71)¥2(7s) — 1 (V1) 2(72).

To get the Neron-Severi group we have to look at those alternating forms which are after
tensorzation by R compatible with the complex structure and then we have to translate
what this means for the corresponding elements in I'Y @ I'Y

If for instance I'y = T'Y and I'y = T then the we get ' ® I'V = End(T).

Now it is obvious that the subspace of alternating forms which satisfy in addition condition
i) are exactly those which under the above map ¥ correspond to elements in End(I") which
are compatible with the complex structure. Hence we have shown
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NS'(J x JY)S End(J)

(To get this identification we did not use the polarization).

Now we consider the case J x J, in this case we have to look at I' ® I' and this is the
module of bilinear forms on I'V and via Poincaré duality this is the same as the module of
bilinear forms on I'. Following the identifications we see that an element v @ v, € T ® I’
gives us the bilinear form (7y,72) — eg < 1,71 > €o < 7Y2,M2 >.

Now it is an easy exercise that the identification
@ TSI @IYS End()

the element Id € End(T") corresponds to the polarization form ey € ' @ TSIV @ TV

This element ey therefore defines an element Ey in Alty(I' @ I', Z) which is given by
Eo(((v1,72), (71,72))) = €o(71,72) — €o(y2, 71)-
The alternating form provides the line bundle
L(F,0,0) =N on JxJ

whose Chern class is Ej.

More generally it is now obvious that under the identification T @ I 3I'® 'V End(T') an
element o € End(T") corresponds to the bilinear form F, < 1,72 >= Ey < 71, a(y2) >
We can summarize this discussion and say

3.1.4 Theorem: We have a canonical identification
NS'(J x J)=End(J)

which is given by the map which sends an elemet 1) € End(J) to the line bundle (Id xv)*(N) ]

This should be seen in conjunction with our earlier result

NS(J)SEndgym(J)

I want to point out that the construction of our line bundle N on J x J an algebraic terms
only using the bundle P.: We consider the product and three maps

D1

JxJ il J

—

D2
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and we put
N =m*(P)®@pi(P)' @ p3(P)~".

It is quite clear that this bundle has a Chern class, the class Ey. But it is also clear that
this bundle does not depend on the choice of P: If we modify P by a line bundle £ which
has Chern class zero then this amounts to changing the linear form in the construction .
But this change cancels in the construction of N, this means that N is a canonical bundle
on J x J.

The bundles P provides the isomorphism
op:J — JY = Pic’(J)

which was given by
r— T,(P)@ P .

This isomorphism can also be interpreted in terms of N': If we restrict N to J x {z}, then
this restriction is a line bundle N, on J and clearly by definition we have

Ny ~T(P)@P L.

The bundle N gives us a still better understanding of the self duality of the Jacobian. The
map

y — N'|[Sx{y}
J — Pic%(8)=J

is the identity.

But the bundle A has a still stronger property which is called universality. Let us assume
that we have a line bundle £ on J x T where T is a complex analytic variety. We assume
that T is connected, and we also assume that £ | J x t, is in Pic’(J) for some point tg.
Now we can define a map

Y: T — JY =Pic®(J)

which is defined by

I claim that 1 is indeed an analytic map, and that in addition for any point ¢; € T we can
find a neighborhood V' of ¢; such that

L|JxV~({dxy*)N)|JxV.
We introduce the following notation: If we have two line bundles £, L2 on X x T then we
write

Ly ~r Lo
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is these bundles are isomorphic locally in T" which means that for any point ¢ € T we can
find a neighborhood V such that

£1|XXVZ£2|XXV
This amounts to that we can find a lim bundle M on T such that

L1~ Lo ®p;(./\/l)

This looks very plausible but it is not so easy to prove, and I will not give the proof here.
The proof requires some deeper results in complex analysis, for instance some finiteness
results.

In the following chapter (7??) we will prove an analogous statement in the context of
algebraic geometry. In that case the truth of the assertion will be a consequence of the
construction, and we will need the full strength of the finiteness results in algebraic geom-
etry.

3.2 The structure of End(J):

Since we have an inclusion End(J) C Hom(I',T"), we know that End(.J) is a finitely gener-
ated algebra over Z.

For any ¢ € End(J) defined an endomorphism
¢* : Pic(J) — Pic(J)

of the Picard group which is given by the pull back of line bundles. We denote by t¢ the
restriction of ¢* to the subgroup PicO(J ), and use the selfduality of the Jacobian we get
the transposed

bp:J — .

I want to point out that this result makes sense in the context of algebraic geometry. We
have seen that the group NS’(J x J) has an algebraic definition and this is also the case
for End(J).

We have seen that *¢ corresponds to the transpose of ¢ : I' — I' with respect to eq.

The map ¢ —* ¢ is called the Rosati involution (with respect to the standard polarization).
It has the property
lo+1) = ‘o+'y
flop) = "o

244



It is of course clear that ¢* also induces an endomorphism
@ : NS(J) — NS(J).
We had the identification
NS(J) ~ Endgym(J)
(see 777) and we saw that
P — oo

Especially it follows that ¢ — ©* is quadratic. This means that we can consider ¢ + @2
and then

(01 + @2)" =91 + P35 + (o1, 92)
where (@1, p2) : NS(J) — NS(J) depends bilinearily on the two variables.

To any ¢ € End(J) we can define ¢r(p) and deg(y) simply as the trace and the determinant
of ¢ considered as endomorphism of T', i. e.

tr(y) tr(p: T —1T)
deg(p) = det(p:T —=T).

These functions have the obvious properties

tr(*¢) = tr(yp)
det(tp) = det(p)
det(p192) = det(pr1)det(p2)

We have the following

3.2.1 Theorem (Positivity of the Rosati-Involution): For any ¢ € End(J), ¢ # 0 we
have

tr(ptp) > 0.

Proof: We give a proof which uses the lattice I'. We have seen in IV.8.7 that we can find
a basis

{elaflaGZana o 'egafg}

such that Ie; = f; and {ey, fy = —1 where the other scalar products vanish. Then it is
clear that for any endomorphism 1) we have

tr() ==Y _(W(e), fi) + Y _($(fa), e)-

If ¢ =t ¢ then we get

— 2i-i{eles), o(fi)) + 2oi_i (e, fi), olei))
=237 (e ), p(les)).
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Since ¢ commutes with I, the last sum is equal to

-2 Z(cp(ei),ﬂp(ei)) = +Z2h( )y (p(ei), ples))-

The terms are > 0 and since at least one of the ¢(e;) # 0 (p(fi) = ¢(le;) = @(e;)!) we
conclude that the sum must be strictly positive.

The existence of the trace and the positivity of the Rosati involution have a dramatic
influence on the structure of the algebra End(J) this will be discussed in the second volume
Chap. 777

We defined the degree of an endomorphism as deg(yp) = det(¢|I"), this definition uses the
trancendental object I'. But we can easily define this degree in purely algebraic terms. We
consider
J S J
T T
HY(S,05)/T 2% HY(S,0s)/I.

and then we see easily:

3.2.2 Proposition: The degree of ¢ is non zero if and only if the morphism ¢ is finite.
If the degree of ¢ is non zero, then we have

deg(¢) = [C(J) :, C(J)] = number of points in ¢~ *(0).

Proof: This is rather clear: The determinant of ¢ is equal to the index of ¢(I') in I'. If
I C¢ HY(Og,7Z) is the inverse image of I', then I''/I" ~ I'/¢(I") and this proves that the
order of the kernel p~1(0) is also equal to det(y).

It is also clear that ¢ induces an isomorphism of the tangent spaces at zero and hence we
can conclude that the fibre ¢~!(0) is reduced. The morphism ¢ induces an inclusion of
the field of franctions C(J) < C(J) and the subfield is the field of invariants under IV /T,
the last assertion follows from Galois theory.

We defined the degree deg(p) and the trace tr(p) on J using the lattice I but now we found
an algebraic definition of the degree. From the definition of the degree as a determinant
it follows that

deg(p +nld) = ag(p) + - - azn—1(p)n*9 " + n?,

then
tr(p) = aan—1(9p).

But it not clear how we can derive this formula from the algebraic definition as the degree
of a field extension.
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The point in the following considerations will be that for an element i) € End(A) the

element
P*(c) € NS(A)

contains decisive information on the endomorphism 1. Especially we will see that we can
express the degree of the endomorphism in terms of this class. The fundamental point
is that its g-th power with respect to the cup product is an element in H?9(J,Z) = Z
by Poincare duality. But if we think of 9*(¢) € NS(A) then we can define the g fold
selfintersection of this line bundle in the context of algebraic geometry (See ?77) this is
also a number. We explained in (IV.8.6 ) show us that these numbers are the same.

The element c is an alternating form on I'V. If dim A = g, then we can raise this element
into the ¢g’th power in the cohomology ring and we have seen (See IV.6.6.2.1) that this
means that we have to take its g’th exterior power

2 \
¢d=cNc...Nce Hom} (I, Z) ~ Z,

(this is the selfintersection number of the class c.) Now the class

Y*(c)(v1,72) = (¥ (1), ¥ (712)),

and it is an elementary excercise in linear algebra that
P*(e)? = deg(y) - 7,
where det()) is of course the determinant of the endomorphism v on the free module I'

which is of rank 2g.

Now the formula above gives us the degree of ¢ in terms of the elements ¢ and *(c)
which are in NS(A) and this makes sense- as explained above- in the context of algebraic
geometry.

Of course this formula will give us an expression for the trace of ¢ € End(A). We assume
that A has a polarization ¢ € NS(A) such that a corresponding bundle is ample. Now we
consider the map

(Y +nld)*: NS(A) — NS(A).

We have seen that this map is
Y* +n(p,Id) +n?-1d.
We have the formula for the degree

deg(y +n1d) - ¢ = (4 +nld)())* =
= (*(c) + n(y, 1d)(c) +n? - ¢)9 =
oo gn2g—1cg—1 A {1, 1d)(c) + n29 .9
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and hence we get the formula

tr(y) - ¢f = ge? =1 A (9, 1d)(c),

and this gives us the trace as a cup product of classes in the cohomology evaluated on the
fundamental cocycle. Let us assume that A = J and c is the canonical polarization.

Let us assume that the endomorphism v is a product of the form ¢ = tp. Then

(¢ +1d)y, (b + Id)v2) = (¥ +1d)"c(y1,72) =
= @b*c<’)’17 72> + C<’)/1, ’72> + C<717 w72) + C<,¢’Yl7 72>

and the sum of the last two terms is (1, Id)(¢)(y1,v2). Hence we get

(¥, 1d) (c) (71, 72) = 2¢{p71, PY2),

and this means that
(¢, 1d)(c) = ¢*(c).
This gives us the formula
tr(*op) - ¢ = 29¢971 A @ (c).

We return to the interpretation in terms of algebraic geometry. We assumed that ¢ should
be the class of an ample line bundle and we have seen that the highest intersection numbers
of line bundles are equal to the highest cup product of their Chern classes. Hence we can
say that

tr(tpp) - P9 = 2gPI7L A *(P).

Since the right hand side must be positive for ¢ # 0 we get a formula in the context of
algebraic geometry which implies the positivity of the Rosati involution.

Finally we want to give a formula for the trace of an endomorphism in terms of intersection
number of two divisors on these surface S x S. We return to our bundle

N =m*(P)®pi(P)" ®pi(P)”"

on J x J has Chern class zero when restricted to e X J and J X e and its Chern class is Fy.

If we pick an element ¢ € End(J), then we can consider the bundle
(Id x4)*(N)
on J x J. We have the inclusion
ipy, Xip, : S XS —JxJ

and get the line bundle
(ipy X ip,)" o (Id xp)*(N) = Ly,

248



on S x S. The Chern class of this line bundle sits in NS’(S x S) ¢ HY(S,Z)® H'(S,Z) =
I'er.

Now we have the famous trace formula

A- ,Cw = —tI‘(’l[)).
This is a rather formal consequence of the definitions. We have seen that the intersection
product of two divisors is equal to the cup product of the Chern classes and this evaluated
on the fundamental class. The cup product of the classes

E1@n,&®@n eT®T C HX(S x 81,7)

is given by
—£1,6Umne

where now £1&, € H%(S,Z) ® H°(S,Z) and nyn, € H(S,Z) ® H%(S,7Z).

Since we have the alternating 2-form, we can choose as a standard basis on I' a Z-basis
u]_ PR ug /l)l . e e /l)g
such that eg(u;, v;) = —eg(v;, u;) = 1 and all other products are zero.

Under this identification the element
E=ZU¢®’U¢—Z’U,'®UZ' el'rl
becomes the identity element in I'V Q@I = Hom(T',T"): The element E applied to an element

v € I yields
E(y) = Z(Uz'ﬁ)w - Z(%’ﬁ)“i-

Then it is clear that E(u;) = u; and E(v;) = v;.
Then the Chern class of L is given by

c1(Ly) = Zul®¢ v;) ZUZ®’£/) U;)

and
EFUc ,Cw (ZU;@UZ ZU;@’M) (Z’M@'Ip ’Uz sz®¢uz)

=+ Z<u’47 vi) ’ <’Ui, w(uz» = Z<’U,Z, 'U71> . <'U'i, w(vz»
= Z<’U1a'¢(uz)> - Z(Ul,l/)(vz)) = —tr('(/)).

249



Let us consider the Abel map
ipo : S —J

which induces a map on the first cohomology

in Hl(ﬂI,Z) — Hl(ﬁ,Z)

rv — r
which we identified as the inverse of the polarization map. It induces a map

H2(J,Z) — H2(S,17)

| |
ATV — 7

and this map is just the evaluation by the dual form
e A e¥(p,9).

This linear form on H?(J,Z) can be viewed as an element [S] in Hy(J,Z) or as an element
in H2972(J,Z). This class [C] is of course the Chern class of our Riemann surface S, it is
the image of the fundamental class in Hy(S,Z) in Hy(J,Z) under the map induced by the
Abel map.

If we choose a basis eq, -, eq, f1--- fg on I such that (e;, f;) =1 = —(f;, e;) and all other
pairings give zero, then the —fq,---,—f;,e1,---,e4 are the elements of the dual basis if
we identify I" and I'V by the polarization map. Then the form e, is given by

> enfi

again and our form in H2972(.J,Z) which is the fundamental class of S is given by

Yo oerAficrei Nfih--eg A fg,

i

i.e. the factor e; A f; is left out.

The polarization class eV € A2T"Y itself maps to g in H2(S,Z), and it is clear that

€)= enf)n- A einfi)=(g—1)[S]

and
(e¥)? =gl

Now recall the formula for the trace




We have seen that P9=1 = (g — 1)![S] and P9 = ¢!, hence we get
tr(y) = [S] - (Id, ¥)(P) =

I think that at this point the role of the polarization becomes clear. First of all we have
seen that it allows the constructionof a line bundle P on J which is ample and hence it
provides a projective embedding of J and hence (J,P) becomes an object in algebraic
geometry. The reader should be aware that the bundle P is not unique since it depends
on the choice of a linear form.

Now we consider the diagram

S By §xS
lip, lip, Xip,
J Ly IxJ

The ring of correspondences

We have the isomorphism Pic(S x S)/p;(Pic(S)) + p3(Pic(S)) ~ End(J). We want to
explain how we can define a ring structure on the left hand side directly.

If we have an irreducible divisor D C S x S we can look at it as a so called correspondence:
To any point z € S we can consider the points(z, z;) € D and call the points z; counted
with multiplicity as the points corresponding to z. We can form the free group of these
divisors and mod out by the divisors of the form S x D’ or D' x S where D’ (resp. D")
is a divisor in the first or second factor, let us call this R. After we have done this, we
can introduce a product on this group: We choose suitable representatives D1, D of two
elements and consider the divisors in

D1 x88xDy on SxSxS8.

Now we take the intersection — this makes sense if we made a careful choice — and project
this intersection to the two outer factors.

This induces a ring structure on R with identity which is given by the class of the diagonal.

It is clear that this ring has an involution which is obtained by interchanging the two
factors.

We can also define a trace: For any [D] € R we choose a representative D for which
D |z xS and D | zy x S are both in Pic®(S). Then we put

—tx([D]) = A - D.
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Now it is at least plausible that
~tr(*[D]+ [D)) = (‘[D] x [D)) - A= DD,

and this last number is strictly < 0 if D # 0 by the Hodge index theorem. (See 777)

We know of course that R ~ End(J). These considerations show that we can define this
ring without reference to the Jacobian.

(Vielleicht spéter an eine andere Stelle!)

3.3 An algebraic sustitute for the cohomology I think that I convinced the reader
that the cohomology groups H'(S,Z) = I, H'(J,Z) = TV play a fundamental role in
understanding the structure of S and J. Therefore we should have a substitute for these
cohomology groups in the algebraic context. This will be explained later (see 777) but we
give an indication how we can get cohomology in the algebraic context.

We have
J=HS,0s)/H*(S,Z) = H'(S,Os)/I.

The module I" does not make sense in the context of algebraic geometry. Now we consider

the endomorphism
nld: J — J,

and we consider the kernel
J[n] =ker(nld: J — J).

This kernel is obviously isomorphic to
1 2
— /T ~ (Z/nZ)*9.
n

But this kernel can be defined in the context of algebraic geometry. We consider J as a
projective variety over C which has the structure of an abelian algebraic group and then
the kernel of nld is a finite group scheme over C.

Once we have done this, we observe that we have for n | n;
J[n] — J[n4],
and we can define
Tors(J) = lim J[n],
where the ordering on N is given by divisibility. Of course it is clear that
Tors(J) =T ® Q/Z

and we conclude:
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The module ' cannot be defined in terms of algebraic geometry, but the module
I'®Q/Z

is an algebraic geometric object.

We can pass to the dual module, we consider
Hom(Tors(J), Q/Z).
It is an elementary fact that

Hom(Q/Z,Q/Z) ~lim Z/nZ = Z,

and therefore we get .
Hom(Tors(J),Q/Z) =T ® Z,

and this is the so called Tate-module

T(J) = lim Jn]

n

where now for n/n; the map
J[n1] — J[n]

is given by multiplication by n /n.
(Verweise auf Kap. I 777)

The Chinese remainder theorem yields

V%= P U/

£:fpine

where £ runs over the primes and @y is the /-adic completion and Z, is the ring of ¢-adic
integers. This yields a decomposition

Tors(J) = @ Tors(J),
L

where Tors(J), = lim J[£%] and dually

7

I1 7
l

and
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Chapter VI
Basic notions in algebraic geometry

VI.1.Affine schemes

We consider commutative rings A, B. .. with identity (1A, 1p,...), morphisms ¢ : A — B
are homomorphisms sending the identity of A into the identity of B. We always assume
that the identity in a ring is different from zero. For any such ring A we have the group of
invertible elements (units): A* = {a € A| 3 da’ € A such that aa’ = 14}. A proper ideal
a C Ais an ideal with 14 ¢ a, prime ideals are always proper. For any ring and any f € A
we use the standard notation (f) for the principal ideal Af.

VI1.1.1 Localization

If we have a subset S C A which is closed under multiplication and contains the identity
14 € S we can define a quotient ring Ag and a map ¢g : A — Ag such that the elements
of S become invertible.

To do this we consider pairs (a,s) € A x S and introduce an equivalence relation
(a,s) ~ (a',s") < 3 5" € S such that (as’ —a’s)- s’ = 0.

We consider the quotient As of A x S by this relation, let 7g : A x S — Ag be the
projection to this quotient. We define a ring structure on Ag by

ns((a,s)) + ms((a’.s") = ws((as’ + a’s, ss'))
ns((a,s)) - ws((a'.s")) = ws((ad, ss')).
We have a homomorphism of rings

— AS
—  7s((a, 1))’

A
Cbs-a

We will write the elements of Ag simply as ws((a,s)) = & — as~1. Of course
s

a as' as's"

s ss'  ssls" T
The quotient ring has a universal property: For any ring B we can consider
HomRines 8 to units(4: B) = {#: A = B|¢(S) € B* for alls € S}
and this set of homomorphisms is equal to
Homgings(As, B)
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where the identification is given by the diagram

A5 4
N ¢
B
If 0 € S then Ag = {0}. If f € A then we write

}n:O,l...'

VI1.1.2 The spectrum of a ring A.

If A is a commutative ring with identity then we define the spectrum of A as
Spec(A) = {p| p prime ideal in A}.

The spectrum of A is ordered the ordering is given by the inclusion among prime ideals.
It is functorial in A, if we have a homomorphism

p:A— B
then it induces
¢ : Spec(B) — Spec(A)
'o(p) = ¢~ (p) = {f | &(f) € p}

and ¢ respects the order relation.

The spectrum Spec(A) always contains as a subset the set of mazimal ideals. A maximal
ideal m C A is an ideal with 14 € m and for any ideal m’ with

mCm'C A

we have m = m’ or m’ = A. We have a different characterization

Lemma VI.1.2.1 : An ideal m C A with 14 ¢ m is maximal if and only if A/m is a
field. Mazximal ideals are prime ideals.

I think this should be clear.

The set of maximal ideals is denoted by Specmax(A) C Spec(A).
Zorn’s lemma implies:

1.2.1.1.If A is a commutative ring with 14 # 0, then Specmax(A) # 0.

I want to give brief indications of the proof: A chain of proper ideals is a totally ordered
subset K of the set of proper ideals, this means that for any pair a,b € K we have a C
borb C a. For any chain we can form



this is an ideal with 14 ¢ a* and a* D a for all a € K. Hence we see that for any chain of
proper ideals we can find a proper ideal which contains all elements of the chain. Now it is
simply the assertion of Zorn’s lemma, that this implies the existence of a (proper) maximal
ideal. This has as a consequence:

Lemma VI.1.2.2 : If f € A is not nilpotent, then Spec(Ay) # 0. Hence we get

Rad (A) = Ideal of nilpotent elements = ﬂ p.
pESpec(A)

A commutative ring is called a local ring if it has a unique maximal prime ideal.

If p € Spec(A) then the complement S = A\ p is closed under multiplication. Then we
write (abuse of notation)
Aarp) = 4Ap.

The ring A, is called the local ring at p. The ideal

my = {glf €p,g&p}

is the unique maximal. The field k(p) = A, /m, is called the residue field at p.

Lemma VI1.1.2.3 : If we consider any multiplicatively closed S C A and the local-
ization ¢ : A — Ag then t¢ is an inclusion. We get

¢ : Spec(As) — {p € Spec(A)|pN S = 0}.
If especially S = {f"}n=0,1... then
Spec(Ay) = {p € Spec(A4)|f & p}.

If p € Spec(A) then

Spec(Ap) = {q € Spec(A) [ q C p}.
The proof is left to the reader.
VI1.1.2.4 Heuristical remarks:

(i) The spectrum of a ring is a geometric object attached to the ring. At this point it
is simply an ordered set, but soon we will put a topology onto this space (The Zariski
Topology). We already spoke of maximal ideals. If our ring A is integral then the zero
ideal (0) is also a prime ideal which then is the unique minimal element. This ideal (0) is
called the generic point of Spec(A).

(ii) Intuitively we want to consider A as a ring of functions on Spec(A). This is not quite
the case because these functions do not have a common domain of values. But it makes
sense to say that f € A ”vanishes” at p € Spec(A): By this we mean that f € p. Sometimes

we will write f(p) =0, (resp. f(p) #0) for f € p (resp. f & p).

256



Examples.

(1) The ring Z and the polynomial ring k[X] are principal ideal domains. This implies
immediately that the maximal ideals are of the form

p = (p)resp.p = (p(x))

where p is a prime number (resp. p(X) € k[X] is a non-constant irreducible polynomial).
Both rings contain one more prime ideal namely p = (0) because they are integral. Hence

Spec(Z) = (0) U {(2), (3), (5), ...}
Spec(k[X]) = (0) U {(X), (X — 1),...}

(Of course not all irreducible polynomials are linear, but I cannot write down any other
polynomial which is irreducible regardless what the field & is).

(2) Let us assume that k is a field. We consider the polynomial ring A = k[ X1, Xo, ..., X4l

in n variables. For any point P = (a1,as,...,a,) € k™ we get an evaluation homomor-
phism
gbp Ak
¢P : f = f(P)a
whose kernel is the maximal ideal mp = (X7 — a1, X3 — ag, ..., Xn — ayp).

If our field % is algebraically closed then the Nullstellensatz of Hilbert (It will be discussed
in the next section on commutative algebra) says that we get an identification

Specmax(k[Xl, Xg, ey Xn]) =k".

In other words the maximal ideals are exactly the ideals of the form m = mp.
Ezercise (1):

(i) Prove the Nullstellensatz in the case of a polynomial ring in one variable.

(i) Try to prove it in the case of a polynomial ring A = k[X, Y] in two variables.
Hint: Let m be a maximal ideal. It cannot be the zero ideal.

Step 1:

Assume it contains an element of the form F(X,Y) = Y™ 4 g1 (X)Y™ 1 + ... g (X) where
the g; are polynomials in X. Now we get a diagram

A — A/(F)=B
N\ e
A/m

The ring B contains the polynomial ring k[ X | = By and over this ring it is generated by an element
y which satisfies the relation y™ + g1(X)y™ ' + ... gm(X) = 0. The maximal ideal m C A has
as its image a maximal ideal m in B.
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Prove that mN k[ X is a maximal prime ideal! (In this case it suffices to show it is not zero.) Hence
By/m = k and since B/m is a finite extension of k it follows that B/m = k.

Step 2: We know that m contains a non zero polynomial

F(X,Y)=) a,,X"Y*
vy
Write this as a polynomial in Y with coefficients polynomials in X . Now it will not be the case in

general that the highest power of Y occuring in the polynomial has a constant coefficient not involving

X . But if we make a substitution
X—>X+Y"=X'

Y —-Y

then k| X' Y = k[X,Y] for m >> (0 the new polynomial will satisfy the assumption in step 1 .

It is known that a polynomial ring k[ X7, ..., X,] has unique factorization ( See [Ei],777).
This implies that any non constant irreducible polynomial f € k[Xi,...,X,,] defines a
prime ideal p = (f). This means of course that for instance Spec(k[X,Y]) contains many
more elements than just (0) and the maximal ones: Any irreducible polynomial

p(X,Y)=X+YorX?>+Y3or...

defines a prime ideal p = (p(X,Y)).
If k is algebraically closed then the Nullstellensatz allows us to identify p = (p(X,Y))
with
V(p) = {(a,b) € k*|f(a,b) =0 forall fcp}
this is the set of common zeroes of the elements in p or the set of zeroes of p(X,Y) and
also the set of maximal ideals containing p. Hence we get an injection into the power set

Spec(k[X,Y]) — PB(Specmax(k[X,Y]))p — V(p).

Then the maximal ideals correspond to the sets consisting of one element, the prime ideals
p = (p(X,Y)) give hypersurfaces and p = (0) gives us the entire plane.

(3) Let k be arbitrary and
A = kX, Y](XY) = k[z,y].

The elements z, y satisfy xy = 0. Hence this ring has zero divisors.

A prime ideal p in A has to contain either x or y. On the other hand the principal ideals
p = (z) and q = (y) are prime because after dividing by them we get polynomial rings in
the other variable.
We see that
Spec(k[z, y]) = Spec(k[z]) U(o,0) Spec(k[y])
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where the two spectra are identified at (z,y) = (0,0).

This is an example of a reducible spectrum.

VI.1.3. The Zariski Topology on Spec(A4) = X.

We define a topology on the space X. To do so we have to define what open sets are.
At first we declare the sets of the form

Xy =Spec(Ay) C X

open. We saw that Xy was the set of prime ideals p which do not contain f. In our remark
(VI.1.2.4..) we said that this means ” f does not vanish at p.” Hence our topology has the
property that the sets where a given f € A is not zero are open set.

This system of sets is closed under finite intersection because
Xf1 n... ﬂst = Xfl---fs'

These open sets are called affine open sets the reason is that they are again equal to a
spectrum of a ring. This system of affine open sets forms a basis for the Zariski topology
and this means that a set U C X is open if and only if it is the union of the affine open
sets which are contained in U.

A subset Y C X is closed if the complement X\Y is open. Of course this means that ¥
is the set of common zeroes of a collection of elements in A.

The Zariski topology is not Hausdorff in general. It has other strange properties one has
to get used to:

Ezercise (2):
Ifp € Spec(A) then the closure of the set {p} is given by

{p} = {q € Spec(A4)|q D p}.

A point p € Spec(A) is closed if and only if p is maximal.
If g is in the closure of {p} then we say that q is a specialization of p.

Ezamples: In our rings Z and k[X] the closed points are the principal ideals (p) resp.
(p(z)) where p is a prime (resp. p(z) a non-constant irreducible polynomial). The generic
point (0) is dense in Spec(A) in both cases. The open sets are the complements of finite
sets of closed points and the empty set.

Here it becomes quite clear that Spec(Z) and Spec(k[X]) are not Hausdorff.

For an integral ring A the generic point (0) always dense in the space Spec(A4). Every
prime ideal p € Spec(A) is a specialization of the generic point.

VI.1.3.1.General remark:

We have put some further structure onto the set Spec(A) : Now it is a topological space.
But still this space does not yet contain a lot of information on the original ring A. If for
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instance A is a field then Spec(A) is a single point which will never be able to recover the
field A.

This is different for finitely generated algebras A = k[z1, z2, ..., Z,] over an algebraically
closed field k. In the next section we will see that the Nullstellensatz implies (See CA.1.3.)

([l  m=Rad(A).

meESpecmax(A)

If our k-algebra is reduced, i.e. if Rad(A) = 0 then this implies that we can view A as
an an algebra of k-valued functions on Specmax(A) This discussion is resumed in VI. 2.5.
and 2.6.

FEzercise (3):
Let k be an algebraically closed field and let

A =k[x1,22,...,2,], B=Ek[y1,Y2,- -, Ym]

be two finitely generated reduced k-algebras. Let ¢ : A — B be a homomorphism which is the
identity on k ( a k- algebra homomorphism). Show that this induces a map ¢* : Specmax(B) —
Specmax(A). We assume in addition that A and B do not contain nilpotent elements.

Prove: (a) ¢* is injective <= ¢ is surjective.
(b) If ¢* is surjective then ¢ is injective.
(c) The map ¢* determines ¢.

The following property of the topological space Spec(A) is very important and perhaps
a little bit surprising at the first glance

Proposition VI1.1.3.2: The space X = Spec(A) is quasicompact, this means that for
any covering | J;c; U; by open sets U; we can find a finite subcovering, i. e. we can find a

finite subset E C I such that X = J,cg Ui

Proof: The U; are open, hence we can cover each of them by open sets of the form Xy, .
Therefore it is clear that we may assume that the U; themselves are of this form U; = Xy,.
Now we consider the ideal generated by the f; it consists of the finite linear combinations

a= {Z gifi | almost all g; = 0}
i€l

This cannot be a proper ideal because otherwise we could find a maximal ideal m con-
taining a (See 1.2.1.1.). Then we have f;(m) = 0 for all i € I and hence m ¢ | J;.; Xy,. This
implies that a = A and hence the identity 1,4 is in our ideal. We can find a finite linear
combination 14 = ) ;. g;fi with E C I finite. But then it is clear that X = (J,c5 X,
because if there would be a p not contained in this union then we would have f;(p) =0
for all i € E and hence 1,(p) = 0 which cannot be the case if our ring is not the zero ring.
But for this last ring the spectrum is empty so the claim is also clear.

Our next goal will be to put more structure on X = Spec(A). Since it is already a
topological space we have the notion of a sheaf on this space. We will construct the sheaf

of regular functions on Ox = Spec(A) and then (X, Ox) will be a locally ringed space.
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VI.1.4 The structure sheaf on Spec(A):

We want to introduce the structure of a locally ringed space on X = Spec(A4). This
means that we want to construct a sheaf of rings A on X which plays the role of the sheaf
of regular functions on X. It will turn out- but this will be a theorem- that the ring of
regular functions on the total space is again A.

We make the following Ansatz: If we have an open set Xy C X then the element 1/f € Ay
should be a regular function on the affine open set X;. Hence we define A'(X;) = A;.
If we have h = gf then A, = (Ay)y then the map DL}, , A — Ap gives us a
restriction map A'(Xf) — A’'(X,7) = Xp. This obviously satisfies the transitivity relation
for presheaves this means that the restriction from A’ (Xf) to Xf, and then composed
with the restriction to X4 is equal to the restriction from Xy to X;g. We will denote the
Yncong Ay — Ap, also by | X. Hence our Alis something like a
presheaf except that it is not yet defined it on all open set but only on the affine open sets
of the form Xy.

We now have a proposition which says that A’ satisfies the axioms (Sh1),(Sh2) when we
restrict them to these special open sets.

=0,1,...

restriction map ¢ygn

Proposition VI1.1.4.1..: If we have an arbitrary covering X = |
quence

ic1 Xy, then the se-

A,(X) 5 HA,(Xfi) :)) H AI(Xfifj)’
el P2 (i,5)€IxI
18 exact, this means that the first arrow is injective and its image is exactly the set of
elements which become equal under p, and p-.
This proposition is really central.

Proof: Since our space is quasicompact, we can find a finite subset £ C I such that
already X = (J;cp = X. I assume that I proved exactness for this finite covering. I want
to show that then we have exactness for the original covering. We get a map from the
diagram above to the corresponding diagram for our finite covering.

AX) 2 [LaAXy) = [ jerxt A (Xy,5,)
) 4 n v
A'(X) = HieE A'(Xy,) — H(i,j)EExE Al(Xfifj)’

The injectivity of the first arrow this is quite obvious, because the arrow pg for the
second diagram is the composite of the py for the first diagram and the projection from
the product over I to the product over E. Now let us take an element (..., %, .. ier in

the first diagram with py((..., fggi o) =pa((- -, %, ...)). If we project it to the second

diagram then the image is also équalized by the corresponding two arrows. Hence by our
assumption it comes from an element g € A, this means that the image of g in Ay, is

equal to f% for all + € E. We have to show that this implies that g actually maps to
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(cooy B, Dier-
f 2

pick an ¢ € I. We know that sz U eE(sz NXy) = UeeE Xf”re But then we have

g ‘ szfe (g | Xfe) ‘ Xfefz f |Xfefz ”‘z ‘Xfef for all e € E. Now we need a little

remark. The open set Xy, is again the spectrum of a ring. Hence everything we proved for
X is also valid for Xy,. Especially we can assume that Ay, — [[.cg Ay, . is injective. We
have seen that g | Xs,7, = 91 | X4, ¢, for all e € E hence we conclude g | Xy, = g’ | Xy,

for all ¢+ € I. Hence the reductlon to the case of a finite covering is complete and therefore
we assume now that our covering is finite.

If the homomorphism pg is not injective then we have have an element f € A and
f| X = 0 for all 4 € I. This means that we can find exponents n; so that ff/* = 0 in
the ring A. Since I is finite we can assume that all these exponents are equal to a fixed
integer n.

We have seen in the proof of the compactness of X that we can find g; € A such that

D gifi=1.

Raising this to a suitable high power N we get a relation

ZGifzn =

and hence f = f1 =3, ; Gifl'f =0 and proves injectivity.

Now let us assume we have an element

g.
(...,f.—,r’:i,...)iej

7

for which g g
7 7
fzn J fJnJ J

for all pairs (i,j) € I x I. Again we may assume that all n; are equal.

Then the equality means that we can find an integer N so that

(g f] — g; ST (i)Y =0

We are searching an element g € A which satisfies

91Xy = fn

for all 7+ € I. This is certainly true if
fi'g=g; forall 7¢€l.
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But again we can find H,, € A for v € I such that
Y Hfr=1

and we see that g = Zue ; H, g, solves our problem.

Still we have not yet defined our sheaf A. For an arbitrary open set U C X we choose a
covering U = (J,c; X, and define (See SH xxx)

A(U) = (H Ay, :; H Afifj)[pl = pal.
iel (i,7)€IxI

We have to verify that this does not depend on the covering and really defines a sheaf. 1
will not do this in detail, the proof is a little bit tedious. To prove the independence of the
covering we first pass to a refinement of the covering: We have 7: J — I and

Xy = U Xfih, -

ver—1(s)
We put 71,, = fih, (the index v determines the index 7) and X = Uue g X P
We get a diagram N
H Afi — H Afifj
i€l (G,5)EIXT

| |

—
II 4, — II A,
velJ (v,u)ETXJ
and is easy to check that if we apply the proposition VI.1.4.1. to the vertical arrows that
we get an isomorphism between the [p; = ps| subrings.

Then we may compare two coverings by passing to a common refinement.

The fact that U — A(U) is actually a sheaf can be derived by similar arguments as
those used in the sheafification process. The intuitive meaning of A(U) is clear: These are
the "regular functions” on U and these are ”functions” which can locally be written in

the form f% in such a way that i, % match on the intersection of their ”domains of

j
definition” which of course is Xy, -

Our proposition says that A(X 7;) = Ay, and this means that a ”regular function” on
affine open sets Xy, has always a kind of ”global” description which uses only denominators
of the form f*. Especially we have A(X) = A.

VI.1.5. Quasicoherent sheaves

Our considerations can be generalized. If we have an A-module M a set S C A which is
closed under multiplication and contains 14, then we define

Mg ={(m,s)lme M,s € S}/ ~
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where the equivalence relation is
(m,s) ~ (m',s") <= 35" € S such that (ms’ —m's)s” =0.

It is quite clear that this defines an Ag-module Mg.

Now we can construct a sheaf M of A-modules just by defining

M(Xy) = My

then verifying the proposition (just replace A by M everywhere) and then we put

~ —
M(U) = (H My, _ H Mfifj)[pl = pal.
icl (i,j)EIXI

The stalk of the sheaf A at a point p is the local ring Ap, the stalk of M in p is the
Ap-module M, = M(4\p)-

It can happen that the stalk M, vanishes in some points. This is so if for any m € M
we can find an s € A\p such that sm = 0. The module M defines an ideal

Ann(M) ={f € A|fM = 0}.

It is clear that M, # 0 is equivalent to p D Ann(M). The set of these p is called the
support of M and is a closed subset in Spec(A).

It is not so that any sheaf M of A-modules is automatically of the form M with some
A-module M. On Spec(Z,)) we have the sheaf

M{(0)}) =Q
M(Spec(Z(p))) =0

which is not of this form.

The sheaves M which are obtained from an A-module M are called the quasicoherent
sheaves on Spec(A). We can recover the A-module from the sheaf since M = M (X).

We will say that M is the sheaf obtained from M
We get quasicoherent sheaves of ideals on X = Spec(A) by starting from an ideal I C A,
this is an A-module and the sheaf o
ICcA

is a quasicoherent sheaf of ideals.

VI.1. 6 Schemes as locally ringed spaces:
An affine scheme is a locally ringed space of the form (X, Ox) = (Spec(A), A). (See SH

X.X.X)
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I recall the definition of a morphism between two locally ringed spaces. A morphism is
a pair
(fa h) : <X7 OX) — (Y7 OY)

where f is a continuous map from X to Y and A is a map of sheaves of rings
h: f*(Oy)— Ox
which induces local homomorphisms
he : Oy 5@) = f*(Oy )z = Ox o

on the stalks. This means that the maximal ideal of Oy, f(,) is mapped into the maximal
ideal of Ox . The locally ringed spaces form a category we have an obvious way of
composing two morphisms.

V1.1.6.1. Heuristical remark:

The difficulty is as always that the sections of the sheaves are not actual functions, they
are elements in very abstract rings. In our previous examples (Coo-manifolds, complex
manifolds (See SH xxx)) a continous map f : X — Y between the spaces gave us a map
ho from the sheaves of continuous functions on Y to the continuous functions on X. Then
we made requirements that this map should respect certain distinguished subsheaves of
functions which define a ”"so and so” structure on X and Y. If this was the case we called
f a ”7so and so” map. The map hy was determined by f in such a case. Especially it is
clear in these examples that a germ f at a point y € Y with f(y) = 0 is mapped by ho to
a germ at z € f~1(y) which vanishes at x. This means the hg is automatically local.

Here the situation is different, the map is h: f*(Oy) — Ox is an extra datum.

What is left from the notion of functions is the notion of vanishing of a section f € Ox (U)
in a point z € U (VI.1.2.4.). Now the requirement that h induces local homomorphism in
the stalks becomes clear: A germ in Oy, f(,) which vanishes in f(z) must be sent by A to
a germ in Ox , which vanishes at x. The reader should observe that a germ in Oy, f()
which does not vanish at f(x) is a unit and hence it goes automatically to a germ in Ox
which does not vanish in z.

End of the remark

The following theorem is fundamental.

Theorem. VI.1.6.2 Let (X,0x) = (Spec(A4), A) and (Y,0y) = (Spec(B), B) be
affine schemes. A morphism

(f7 h) : (X1 OX) - (Y7 OY)
defines a map hx : Oy (Y) = Ox(X) i.e. a homomorphism
hX : B — A.

The map

Hom (X, OX), (Y, Oy)) — HomRings(B, A)

affine schemes(
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given by

1 a bijection.
Proof: We start by constructing a map in the other direction and then we show that
the maps are inverse to each other.

Given ¢ : B — A we have defined a map
t¢ : Spec(A) — Spec(B)
“p(p) =& (1) '
If we have an element b € B we get an open set Y, = {q|b € q} in Y and it is clear that
7 (Vo) = Xo)-
Hence our map is continuous and we get maps
do: Oy (Yy) = By = f.(Ox) (Vo) = Ox(Xy(r)) = Agr)
which by the adjointness formula is nothing else than a map
¢: [*(Oy) = Ox

and hence we constructed a morphism (¢¢, qz) between locally ringed spaces.

We have to show that these maps are inverse to each other. At first we start from
¢ : B — A we get ("¢, $). From this we construct again a homomorphism from B — A.
According to our rules we have to evaluate ¢ on the pair X,Y and get

Q;X:B—)A

which is our original map.

Now we start from (f, h) The map h can be evaluated on X, Y this gives us
hx : B— A.
We have to prove at first that the map
‘hx : X -Y

is equal to f. We have thx(p) = hx'(p) = g.
Since we know that h induces a morphism between the sheaves we get a diagram

hxtB — A

.

hp : By — Ap
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This implies that Ax has to map elements b € B\ f(p) to elements hx (b) € A\p because b
becomes invertible in By ) and hence hy has to map it to a unit in A,. This implies

B\f(p) C B\hk (p)

and hence hy'(p) C f(p). We also know that h, maps the maximal ideal my,) into the
maximal ideal m,. Hence it maps the elements of f(p) into p and this implies f(p) C hx" (p)
and we have the desired equality for f(p) = hx'(p) =t hx(p) -

The rest is clear, the map hx which we construct from hyx is obviously equal to h since
these two coincide on the global sections.

VI 1.6.1 Closed subschemes:

We start from an ideal I C A. We have the projection map 7 : A — A/I and we have
Spec(A/I)={p |p DI} =VI).If i : V(I) = Spec(A) is the inclusion then we consider
the map

(i,7) : (V(I), A/I) — (Spec(A), A)

as a closed subscheme of (Spec(A), A).

At this point the reader might wonder: We made a lot of effort to show the following;:
something seemingly simple namely the category of commutative rings with identity is
antiequivalent category of locally ringed spaces and this category consists of rather com-
plicated objects and the morphisms are also not so easy to define.

The reason why we do this will become clear: These concepts allow us to glue affine
schemes together so that we can build larger objects namely schemes. Locally these
schemes look like affine schemes but globally they look different.

VI. 2. Schemes:
VI 2.1 The definition of a scheme:

An arbitrary scheme is a locally ringed space (X, Ox) which is locally isomorphic to an
affine scheme. In other words we can find a covering X = |J, U, by open sets such that
(U,,0x | U,) is affine.

This implies of course that (U,,Ox | U,) = (Spec(4,), A,) where A, = Ox(U,) is
the ring of regular functions on U,. But in contrast to the case of affine scheme the ring
of regular functions on X may be to small to contain enough information to recover the
scheme (X, Ox). This will be demonstrated in the next section on projective schemes.

Example VI.2.1.1:

Let us consider the polynomial ring A = k[f, g], let X = Spec(A4) . We remove the point
(0,0) from X, the resulting space U inherits a topology and the structure of a locally
ringed space. It is clearly a scheme since we may cover it by

U:XfUXg
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But U is not an affine scheme since we have Oy (U) = A and U # Spec(A). We are not
able to produce a regular function on U which is not regular on X.

This example shows that any open subset of an affine scheme is a scheme but not an
affine scheme in general.

2.1.3 :Again we have the notion of a quasicoherent O x-module M. This means that for
all open subsets U the sections M(U) form an Ox(U)—module and for affine open subsets
U the restriction M | U is obtained from the Ox (U) module M(U) (See 1.5.1.).

2 .1.4. At his point it is rather clear what a closed subscheme of a general scheme is.
We know how to define a quasicoherent sheaf of ideals Z C Ox: It is a sheaf of ideals,
i.e. for any open subset U C X the sections Z(U) C Ox(U) form an ideal in Ox(U)
and for an affine U the restriction Z | U is the sheaf associated to Z(U). On this open

affine subset U we have the closed subscheme ((V(Z(U)), (A(U)/Z(U)))), (A(U)/Z(U))) —

(U, A(U)). We define V(ZI) to be the union of all these subsets (V(Z(U)), (A(U)/Z(U)))
and a quotient sheaf Ox /T by its restriction to the affine pieces. This yields the closed
subscheme (V(Z),0x/T) — (X, Ox).

2.1.5. If we have a morphism f : X — Y between schemes 7777

VI1.2.2:Construction of quasicoherent sheaves

We have an important way of constructing quasicoherent O x—modules on X. Let us
assume we have a covering U = {U, },en of a scheme (X, Ox) by affine subschemes. Let
us also assume that we have given an O x (U,)—module M, for all v € N. Each of them
defines a quasicoherent sheaf M, on the corresponding subscheme U,,. Now let us assume
that for any pair (v, ) of indices we have an isomorphism

Gop: M, | U,NUSM, |U,NU,

such that this system of isomorphism satisfies

a) gv, =1Id for all = v

b)gu,u © 9u,, = Id for all pairs v, u

c) and for any three indices v, u, A we have the relation g, ,0gux = gu.x on U, NU, NU,.

Then we can construct a sheaf M = (M, 4, g,,) on X by the glueing process: For an
open set V' C X which is contained in at least one of the U, we define M (V) to be the set
of vectors m = (..., m,,...,my,...) where the indices run over the subset of indices A for
which Uy D V, where the m,, € M, (V) and where

Gv,u(my) = my, for all pairs v, u

Of course any of the components determines all the others). Then for an arbitrary V' we
may cover it by the V N U, and define M (V) by the conditions (SH1), (SH2) for sheaves
(See 1.1.2.).
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I will not discuss an example for this kind of construction, for this I refer to the chapter
on projective spaces.

VI 2.3 Fibered products

The schemes form a category. It is very important to study relative situations. We
consider a fixed scheme S. Then a scheme over S is a scheme X together with a morphism

X

=

S

Sometimes we write X/S, the morphism 7 is called the structure morphism and S is called
the base scheme. (For more motivation why we need this general concept I refer to the
end of this section)

The schemes over S form a category again. If we have two schemes X/S,Y/S then the
S-morphisms
Homg(X,Y)

are those morphisms ¢ from X to Y which render the following diagram

P
X — Y
N\ vd
S

commutative.

Given two schemes X/S,Y/S we have the notion of the fibered product of these schemes
over S. This fibered product is nothing else than the product in the category of schemes
over S.

Hence the fibered product is an object Z/S together with (See Cat xx)

P1 D2
7 — X 7/ — Y
¢ v ¢ v
S S

such that for any scheme 7'/S we have
Homg (T, Z) — Homg (T, X) x Homg(T,Y)
where the identification is given by
U +— (p1oW,pyoW).
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We can do this for any category. The reader is advised to consider the construction of
fibered product in the category of sets as an example.

Theorem V1.2.3 : In the category of schemes fibered products exist.

This theorem will not be proved here, I will prove it for affine schemes in this section
and at the end of the proof I will give some indication how to do it in general. ( See also
Harthshornes book Chap. II, 3.3 or to EGA I, 3.2.6.) In the next section on projective
schemes I will prove that the product of projective schemes is again projective and the
existence of products in that case will be a byproduct.

We consider the category of affine schemes. If X = Spec(A4) and S = Spec(R) then
m: X — S is the same thing as a homomorphism of rings

p:R— A.

At this point two remarks are in order
(i) The datum ¢ : R — A is the same as giving the additive group A the structure of an
R-module, i.e. giving a composition

tRxA— A,

which satisfies the usual rules, especially we want 1z - @ = a and we have to require in
addition 7 - (a1a2) = (7 - a1)az. This is clear because starting from ¢ we put

r-a=p(r)-a.
On the other hand if we have given the R-module structure on A then
\IJ(’I”) =7T- lA

gives us the ring homomorphism.

(ii) To simplify the notation we will drop the name of the morphism, this means we will
only write R — A instead of ¢ : R — A. In view of the first remark this means: If we see
R — A then this allows us to write - a for r € R on a € A and this satisfies the obvious
rules.

If we have R — A we say that A is a ring over R or a R-ring sometimes we also say that
A is an R-algebra.

If we have given R-rings A, B then
Hompg(A, B)
are exactly those homomorphisms which are linear with respect to R, i.e.
¢ € Hompg(A, B)
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means that ¢ satisfies in addition ¢(r-a) = 7-¢(b). (Now the two - have different meaning).

Of course we don’t make any assumption that R — A should be injective. For instance
7. — Z./p make Z/pZ to a ring over Z. Actually it is clear that any ring A is in a unique
way a ring over Z, we simply send 1 — 14.

I come back to the construction of fibered products in the category of affine schemes.
We describe the problem in the category of rings and therefore we turn the arrows around.

We have
A B

N -
R

We are looking for a ring C over R together with two R-homomorphism a: A — C,
B : B — C such that for any other ring 7" over R we get: In the following diagram

C
a /s N6

4 I B
N /

R — T

a R homomorphism from C' to T is the same thing as a pair of R-homomorphisms f : A —
T,g:B—T.

How do we get such a C'?7 Starting from f, g we get a map

AxB—T
(a,0) — f(a)-g(b)

This is an R-bilinear map from A x B to T. We have to verify

(r-a,b)

r-(f(a)g(b))
/!
(a,r-b)

but
(r-a,b) = f(r-a)g(b) = f((r-14)g(b)
= f(r-14)f(a)-g(b) = (r- f(14))f(a)g(b)
= (r-1¢)f(a)g(b) =7 - (f(a)g(b))
and the distributivity is clear.

But this tells us that the pair f, g provides us an R-linear map
f ®g: A Xnr B—T
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where A ® g B is of course the tensor product of the two R-modules A, B.

We define a ring structure on A ® g B: The elements of the tensor product are finite
sums
a1®b1+ag®b2...+a8®bs

where we have the following rules

(r-a)@b—a®r-b=0
(a1+ag)®b—a1®b—ag®b:0.
a® (b1+b) —a®b; —a®by =0

We introduce as multiplication
(a®b)(a' ®b') =ad @bV,
we extend this by distributivity. Then we have to check that this is compatible with the

rules above.

We put C = A ®pg B with this ring structure, we have the homomorphism
7‘—)7"1A®1b:1A®T‘-1b,
we have
a:A— AQr B
a—aQ®lp
B:B—A®rB
b—14Q®0b.

Starting from f, g we already had the R-linear map from the R-module A ®@r B to T'. But
the ring structure on AQpr B is made in such a way that f®g is a ring homomorphism. On
the other hand, if h : AQr B — T is a R-homomorphism then we may put f = hoa, g = hof3
and it is clear that

hMa®b)=h((a®1p)- (14 ®b))
=h((a®1B))-h((1a®Db)) = f(a) - g(b)
=(f®g)(a®b).

After all this it should be clear that the diagram

Spec(A ®gr B)

e N\ D2
Spec(A) Spec(B)
p v
Spec(R)

is a fibered product of Spec(A) and Spec(B) over the base Spec(R).
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2.3.1. Examples:
1)If A and B are polynomial rings over R, i.e.

B=R[Y;...Yy,]

then A, B are free R modules with a basis consisting of monomials
X7 XE YR YR

Then A ®p B is free again and has as basis
XL X @Y YR

But then it is obvious that A ® g B is actually isomorphic to the polynomial ring in
Xl...Xn,Yl...Ym, i.e.

R[X1...X,]®R[Y1...Yyy] = R[X1... X0, Y1,... Y],

The scheme Spec(R[X; ... X,]) is called the n-dimensional affine space over Spec(R) and
if S = Spec(R) we write A% for this scheme. Hence we get the truly exciting formula

Al xg AT = AgT™.
2) If we have two R-algebras R — A, R — B and we have given two ideals I C A,J C B

then these ideal define closed subschemes

Spec(A/I) — Spec(A) Spec(B/J) — Spec(B)

hN e N\ e
Spec(R) Spec(R)

Hence we get a morphism from the fibered products

SpeC(A/I) XSpec(R) Spec(B/J) - SpeC(A) X Spec(R) Spec(B)

p v
Spec(R)

and I claim that this is again a closed embedding. I leave it to the reader as an exercise
to show, that the arrow gives us an isomorphism of the fibered product of the subschemes
to the subscheme defined by the ideal (A ®r B)(14 ®r J) + (AQr)(I ®r B) C A®pg B.

3) If k is a field and K /k is a finite extension, then we have a map

Spec(K)

Spec(k)
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which on the underlying sets is just a map from a point to a point. But we have different
rings of regular functions on these points hence this morphism is not an isomorphism.

If we take the fibered product we get
SpeC(K) X Spec(k) SpeC(K) = Spec(K Ok K)

and K ®; K will not be a field in general. If for instance K/k is a separable normal
extension then
K®K = b «k
oc€Homy, (K,K)

(Main theorem of Galois theory) and hence

Spec( €@  K)=Hom(K,K)
oc€Homy (K ,K)

as a set. Hence we have an example where the underlying set of X xg Y may differs from
the set theoretic fibered product which in our case is still a point.

As I explained earlier, we always have a canonical morphism Spec(A) — Spec(Z) and we
may define the absolute product of two affine schemes as

Spec(A) x Spec(B) = Spec(A ®z B).

We can consider the situation that we have an R-algebra R; and two R; algebras, i.e. we

have a digram
A

/

pY
B.

R— Ry

Then we have a morphism
p:AQr B — AQpg, B

(in the ring on the right hand side we have the rule r1a ® b = a ® r1b for 71 € R which is
not valid in the ring on the right ha