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PREFACE

One of the main missions of the Abdus Salam International Cen-

tre for Theoretical Physics in Trieste, Italy, founded in 1964 by Abdus

Salam, is to foster the growth of advanced studies and research in de-

veloping countries. To this aim, the Centre organizes a large number of

schools and workshops in a great variety of physical and mathematical

disciplines.

Since unpublished material presented at the meetings might prove

of great interest also to scientists who did not take part in the schools

the Centre has decided to make it available through a new publica-

tion titled ICTP Lecture Note Series. It is hoped that this formally

structured pedagogical material in advanced topics will be helpful to

young students and researchers, in particular to those working under

less favourable conditions.

The Centre is grateful to all lecturers and editors who kindly autho-

rize the ICTP to publish their notes as a contribution to the series.

Since the initiative is new, comments and suggestions are most wel-

come and greatly appreciated. Information can be obtained from the

Publications Section or by e-mail to \pub
�

off@ictp.trieste.it". The

series is published in house and also made available on-line via the ICTP

web site: \http://www.ictp.trieste.it".

M.A. Virasoro

Director
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Introduction

This is the �rst volume of a new series of lecture notes of the Abdus Salam

International Centre for Theoretical Physics. These new lecture notes are

put onto the web pages of the ICTP to allow people from all over the world

to access them freely. In addition a limited number of hard copies is printed

to be distributed to scientists and institutions which otherwise possibly do

not have access to the web pages.

This �rst volume contains the lecture notes of the School on Algebraic

Geometry which took place at the Abdus Salam International Centre for

Theoretical Physics from 26 July to 13 August 1999 under the direction

of Lothar G�ottsche (ICTP), Joseph Le Potier (Universit�e Paris 7), Eduard

Looijenga (University of Utrecht), M.S. Narasimhan (ICTP).

The school consisted of 2 weeks of lecture courses and one week of con-

ference. This volume contains the notes of most of the lecture courses in the

�rst two weeks. The topic of the school was moduli spaces. More specif-

ically the lectures were devided into three subtopics: principal bundles on

Riemann surfaces, moduli spaces of vector bundles and sheaves on projective

varieties, and moduli spaces of curves.

The school was �nancially supported by ICTP and by a grant of the

European commission. I take this opportunity to thank the other organizers.

We are grateful to all the lecturers and speakers at the conference for their

contribution to the success of the school.

Lothar G�ottsche

April, 2000
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1. Introduction

These notes are supposed to be an introduction to the moduli of G-bundles

on curves. Therefore I will lay stress on ideas in order to make these notes

more readable. My presentation of the subject is strongly inuenced by

the work of several mathematicians as Beauville, Laszlo, Faltings, Beilinson,

Drinfeld, Kumar, Narasimhan and others.

In the last years the moduli spaces of G-bundles over algebraic curves have

attracted some attention from various subjects like from conformal �eld the-

ory or Beilinson and Drinfeld0s geometric Langlands program [5]. In both

subjects it turned out that the \stacky" point of view is more convenient

and as the basic motivation of these notes is to introduce to the latter sub-

ject our moduli spaces will be moduli stacks (and not coarse moduli spaces).

As people may feel uncomfortable with stacks I have included a small in-

troduction to them. Actually there is a forthcoming book of Laumon and

Moret-Bailly based on their preprint [15] and my introduction merely does

the step -1, i.e. explains why we are forced to use them here and recalls the

basic results I need later.

So here is the plan of the lectures: after some generalities on G-bundles,

I will classify them topologically. Actually the proof is more interesting

than the result as it will give a avor of the basic theorem on G-bundles

which describes the moduli stack as a double quotient of loop-groups. This

\uniformization theorem", which goes back to A. Weil as a bijection on sets,

will be proved in the section following the topological classi�cation.

Then I will introduce two line bundles on the moduli stack: the deter-

minant and the pfa�an bundle. The �rst one can be used to describe the

canonical bundle on the moduli stack and the second to de�ne a square-

root of it. Unless G is simply connected the square root depends on the

choice of a theta-characteristic. This square root plays an important role in

the geometric Langlands program. Actually, in order to get global di�eren-

tial operators on the moduli stack one has to consider twisted di�erential

operators with values in these square-roots.

The rest of the lectures will be dedicated to describe the various objects

involved in the uniformization theorem as loop groups or the in�nite Grass-

mannian in some more detail.
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2. Generalities on principal G-bundles

In this section I de�ne principal G-bundles and recall the necessary back-

ground I need later. Principal G-bundles were introduced in their generality

by Serre in Chevalley0s seminar in 1958 [19] based on Weil0s \espaces �br�es

alg�ebriques" (see remark 2.1.2).

2.1. Basic de�nitions. Let Z be a scheme over an algebraically closed �eld

k, G be an a�ne algebraic group over k.

2.1.1. De�nition. By a G-�bration over Z, we understand a scheme E on

which G acts from the right and a G-invariant morphism � : E ! Z. A

morphism between G-�brations � : E ! Z and �0 : E0 ! Z is a morphism

of schemes ' : Z ! Z 0 such that � = �0 � '.

A G-�bration is trivial if it is isomorphic to pr1 : Z � G ! Z, where G

acts on Z �G by (z; g): = (z; g).

A principal G-bundle in the Zariski, resp. �etale, resp. fppf, resp. fpqc sense

is a G-�bration which is locally trivial in the Zariski, resp. �etale, resp. fppf,

resp. fpqc topology. This means that for any z 2 Z there is a neighborhood

U of z such that EjU is trivial, resp. that there is an �etale, resp. at of

�nite presentation, resp. at quasi-compact covering U 0
'
�! U such that

'�(EjU ) = U 0 �U EjU is trivial.

2.1.2. Remark. In the above de�nition, local triviality in the Zariski sense

is the strongest whereas in the fpqc sense is the weakest condition. If G is

smooth, then a principal bundle in the fpqc sense is even a principal bundle

in the �etale sense ([9], x6). In the following we will always suppose G to be

smooth and we will simply call G-bundle a principal G-bundle in the �etale

sense. If G = GLr or if Z is a smooth curve (see Springer0s result in [22],

1.9), such a bundle is even locally trivial in the Zariski sense, but it was

Serre0s observation that in general it is not. He de�ned those groups for

which local triviality in the Zariski sense implies always local triviality in

the �etale sense to be special. Then, for semi-simple G, Grothendieck (same

seminar, some expos�es later) classi�ed the special groups: these are exactly

the direct products of SLr
0s and Sp2r

0s.

Remark that if the G-bundle E admits a section, then E is trivial. De�ne

the following pointed (by the trivial bundle) set :

H1
�et(Z;G) = fG-bundles over Zg=isomorphism:
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2.2. Associated bundles. If F is a quasi-projective k-scheme on which G

acts on the left and E is a G-bundle, we can form E(F ) = E �G F the

associated bundle with �ber F . It is the quotient of E � F under the action

of G de�ned by g:(e; f) = (e:g; g�1f). The quasi-projectivity1 of F is needed

in order to assure that this quotient actually exists as a scheme.

There are two important cases of this construction.

2.2.1. The associated vector bundle. Let F be a vector space of dimension

n. Suppose G = GL(F ). Then G acts on F from the left and we can

form for a G-bundle E the associated bundle V = E(F ). This is actually a

vector bundle of rank n. Conversely, for any vector bundle V of rank n the

associated frame bundle E (i.e. IsomOZ
(On

Z ; V )) is a GLn-bundle.

2.2.2. Extension of structure group. Let � : G ! H be a morphism of al-

gebraic groups. Then G acts on H via �, we can form the extension of the

structure group of a G-bundle E, that is the H-bundle E(H). Thus, we have

de�ned a map of pointed sets

H1
�et(Z;G) �! H1

�et(Z;H)

Conversely, if F is an H-bundle, a reduction of structure group is a G-

bundle E together with an isomorphism of G-bundles � : E(H)
�
�! F .

2.2.3. Lemma. Suppose � : G ,! H is a closed immersion. If F is an

H-bundle, denote F (H=G) simply by F=G. There is a natural one to one

correspondence between sections � : Z ! F=G and reductions of the structure

group of F to G.

Proof. View F ! F=G as a G-bundle and consider for � : Z ! F=G the

pullback diagram

��F

G

��

// F

G
��

Z
� // F=G

which de�nes the requested reduction of the structure group.

1In fact it is enough to suppose that F satis�es the property that any �nite subset of

F lies in an a�ne open subset of F .
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2.3. G-bundles on a curve. Let X be a smooth and connected curve. By

the above quoted theorem of Springer ([22], 1.9), all G-bundles over X are

locally trivial in the Zariski topology, so the reader might ask why I insisted

on the �etale topology in the above de�nition. The reason is that in order to

study G-bundles on X, we will study families of G-bundles parameterized

by some k-scheme S. By de�nition, these are G-bundles on XS = X � S,

and here is where we need the �etale topology.

A warning: it is not a good idea to de�ne families point-wise. Let0s look

at the example of Or. Then we may view (considering Or � GLr and

using Lemma 2.2.3) an Or-bundle as a vector bundle E together with an

isomorphism � : E ! E� such that � = �� (I denote here and later the

transposed map of � by ��). The point is as follows. If E is a vector bundle

over XS together with an isomorphism � : E ! E� such that for all closed

point s 2 S the induced pair (Es; �s) is an Or-bundle, this does not imply

in general that (E; �) itself is an Or-bundle.

3. Algebraic stacks

3.1. Motivation. Given a moduli problem such as classifying vector bun-

dles over a curve, there are essentially two approaches to its solution: coarse

moduli spaces and algebraic stacks. The former, introduced by Mumford,

are schemes and are constructed, after restricting to a certain class of ob-

jects such as semi-stable bundles in the above example, as quotients of some

parameter scheme by a reductive group using geometric invariant theory.

However they do not - in general - carry a universal family and may have ar-

ti�cial singularities coming from the quotient process in their construction.

So in order to construct objects on the coarse moduli space, one consid-

ers generally �rst the parameter space (which carries a universal family) and

then tries to descend the constructed object to the moduli space which might

be tricky or impossible.

In our case of the geometric Langlands program a special line bundle on

the moduli space (i.e. a certain square root of the dualising sheaf) will play

a particular role. However, it can be shown, that even if there is a functo-

rial construction of this line bundle (hence a line bundle on the parameter

scheme), it does not - for general G - descend to the coarse moduli space of

semi-stable G-bundles.

It turns out, for this and other reasons, that in order to study the questions

related to the geometric Langlands program, one has to consider the latter,

i.e. the \stacky" solution to the moduli problem. So in my lectures I will
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concentrate on the moduli stack of principal G-bundles and as there are not

many references for stacks for the moment, I will recall in this section the

ideas and properties of stacks I need in order to properly state and prove

the basic results for the program.

3.1.1. The moduli problem. The basic moduli problem for G-bundles on a

projective, connected, and smooth curve X=k is to try to represent the func-

tor which associates to a scheme S=k the set of isomorphism classes of fam-

ilies of G-bundles parameterized by S:

MG;X : (Sch=k)op �! Set

S 7!

� E

# G

S �X

�
= s

Now, as G-bundles admit in general non trivial automorphisms (the auto-

morphism group of a G-bundle contains the center of G), we can0t expect

to be able to solve the above problem, i.e. �nd a scheme M that represents

the above functor. Loosely speaking, if it would exist we should be able,

given any morphism ' from any scheme S to M , to recover uniquely a fam-

ily E parameterized by S such that the map de�ned by s 7! [Es] de�nes

the morphism '. As this should in particular apply to the closed points

Spec(k) 2 M , the above translates that not only for every G-bundle one is

able to choose an element in its isomorphism class with the property that

this choice behaves well under families, but also that there is only one such

choice with this property. This clearly is an obstruction which makes the

existence of M unlikely and can be turned into a rigorous argument.

However, I will not do this here, but rather discuss the �rst non trivial

case of G = k�, i.e. the case of rank 1 vector bundles. Then a possible

candidate for M is the jacobian J(X). We know that J(X) parameterizes

isomorphism classes of line bundles on X and that there is a Poincar�e bundle

P on J(X) �X. Hence we get, for every j 2 J(X), a canonical element in

the isomorphism class it represents, namely Pj, and this choice is compatible

with families (pullback P to the family). The point in this example is that

this choice is not unique as P 
 pr�1(A) is also a Poincar�e bundle for A 2

Pic(J(X)).

Actually what we can do here is to consider a slightly di�erent functor, by

�xing a point x 2 X and looking at pairs (L;�) of line bundles together with

an isomorphism � : Lx
�
�! k. Such a choice determines uniquely a Poincar�e

bundle P and J(X) (together with P ) actually represents the functor de�ned
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by such pairs. The above process of adding structure to the functor in order

to force the automorphism group of the considered objects to be trivial is

sometimes called to \rigidify" the functor.

Let us return to our original moduli problem. As I explained above, the

main problem is the existence of non trivial automorphisms and there is

nothing much we can do about this, without adding additional structures

which may be complicated in the general case and de�nitively changes the

moduli problem. Grothendieck0s idea to avoid the di�culties posed by the

existence of these non trivial automorphisms is simple : keep them. However,

as we will see, carrying out this idea is technically quite involved.

So how to keep the automorphisms? If we do not want to mod out the

automorphisms what we can do is to replace the set of automorphisms classes

of G-bundles over S �X by the category which has as objects such bundles

and as morphisms the isomorphisms between them.

By de�nition, the categories we obtain have the property that all arrows

are invertible; categories with this property are called groupoids. In the

following the category of groupoids will be denoted by Gpd. It will be con-

venient to write groupoids and categories in the form fobjectsg+ farrowsg:

Applying the above idea to our moduli problem gives a \functor"

MG;X : Sch=kop �!Gpd

S 7�!fG-bundles on X � Sg+

fisomorphisms of G-bundles on X � Sg

Actually this is not really a functor as before, but a broader object, called

a \lax functor": if f : S0 ! S is a morphism of k-schemes the pullback

de�nes a functor f� : MG;X(S) ! MG;X(S
0). If g : g3(0)Tj
/T2-334 TT31 1 T5eIeTf
68 0 TD
33 148 TDD
( TD
(S)T8 0T29 1 Tf
65 3mx)T TD
(b3D
30 TD
(k)l
308f
133 0 TD
(S)Tj
/T34 1 Tf
102 0 TD
(is)Tj
101 0 TD
(a)Tj
7D
[(een)-31000(them.)he)-320
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maps between sets), and natural transformations between morphisms (this

is new).

3.1.2. The quotient problem. Suppose that the linear group H acts on the

scheme Z. Suppose moreover that the action is free. Then Z=H exists as a

scheme and the quotient morphism � : Z ! Z=H is actually an H-bundle.

What are the points of Z=H? If S
f
�! Z=H, we get a cartesian diagram

Z 0

H

��

� // Z

H
��

S
f // Z=H

So f de�nes an H-bundle Z 0
H
�! S and an H-equivariant morphism �. If

the action of H is not free, the quotient Z=H does not, in general, exist as

a scheme, however what we can do is to consider the following lax functor

[Z=H] : Sch=kop �!Gpd

S 7�!f(Z 0; �) =Z 0
H
�! S is a H-bundle and � : Z 0

�
�! Z

is a H-equivariant morphismg+

fisomorphisms of pairsg

This de�nition makes sense for any action of H on Z and the \quotient

map" Z �! [Z=H] (we will see in a moment what this means) behaves like

an H-bundle.

3.1.3. The idea then is to de�ne a stack exactly as such lax functors, after

imposing some natural topological conditions on them. Of course this may

seem to be somehow cheating but Grothendieck showed us that one can

actually do geometry with a certain class of such stacks which he called

algebraic.

After the above motivation, the plan for the rest of the section is:

� Grothendieck Topologies

� k-spaces and k-stacks

� Descent

� Algebraic stacks
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3.2. Grothendieck Topologies. Sometimes in algebraic geometry we need

to use topologies which are �ner than the Zariski topology, especially when

interested in an analogue of the inverse function theorem. Over C , there

is the classical topology, although using it leads to worries about the alge-

braicity of analytically de�ned constructions. Otherwise one has to use a

Grothendieck topology such as the �etale topology.

A Grothendieck topology is a topology on a category. The category might

be similar to the category Zar(Z) of Zariski open sets of a k-scheme Z, or it

might be an ambient category like Sch=k or A�=k. Grothendieck topologies

are most intuitively described using covering families, which describe a basis

or a pretopology for the topology.

3.2.1. Covering families. In this approach a Grothendieck topology (or pre-

topology) on a category C with �ber products is a function T which assigns

to each object U of C a collection T (U) consisting of families fUi
'i
�! Ugi2I

of morphisms with target U such that

� if U 0 ! U is an isomorphism, then fU 0 ! Ug is in T (U);

� if fUi
'i
�! Ugi2I is in T (U), and if U 0 ! U is any morphism, then the

family fUi �U U
0 ! U 0gi2I is in T (U

0);

� if fUi
'i
�! Ugi2I is in T (U), and if for each i 2 I one has a family

fVij ! Uigj2Ii in T (Ui), then fVij ! Ui ! Ugi2I;j2Ij is in T (U).

The families in T (U) are called covering families for U in the T -topology.

A site is a category with a Grothendieck topology.

3.2.2. Small sites. Let0s look at some examples:

(i) If Z is a k-scheme consider the category of Zariski open subsets of Z.

A family fUi � Ugi2I is a covering family for U if
S
i2I Ui = U . The

resulting site is the small Zariski site or Zariski topology on Z written

ZZar.

(ii) If Z is a k-scheme, let Et=Z be the category whose objects are �etale

maps U ! Z and whose morphisms are �etale maps U 0 ! U compatible

with the projections to Z. A family fUi ! Ugi2I is a covering family

if the union of the images of the Ui is U (such a family is called a

surjective family). This is the small �etale site or �etale topology on Z

written Z�et.

(iii) Replacing \�etale" by \smooth" gives a topology on Smooth=Z called

the smooth topology. The small smooth site on a scheme is Zsm .

Using \at of �nite presentation" gives the fppf topology and a small
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site Zfppf. The letters \fppf" stand for \�d�element plat de pr�esentation

�nie." There are also letters \fpqc" standing for \�d�element plat et

quasi-compact." Intuitively, each of these successive topologies is �ner

than the previous one because there are more open sets.

3.2.3. Big sites. One can also de�ne a topology on all schemes at once. The

category Sch=k of all k-schemes may be given the Zariski, �etale, smooth,

fppf, and fpqc topologies. In these topologies the covering families of a

scheme U are surjective families fUi
'i
�! Ugi2I of, respectively, inclusions of

open subschemes, �etale maps, smooth maps, at maps of �nite presentation,

and at quasi-compact maps. Each successive topology has more covering

families than the previous one and so is �ner.

One can do the same thing to the category A�=k of a�ne k-schemes.

3.2.4. Sheaves. A presheaf of sets on a category C with a Grothendieck

topology (of covering families) is a functor F : Cop ! Set. A presheaf

is separated if for all objects U in C, all f; g 2 F (U), and all covering

families fUi
'i
�! Ugi2I of U in the topology, the condition f jUi = gjUi for

all i implies f = g. A presheaf is a sheaf if it is separated and in addition,

whenever one has a covering family fUi
'i
�! Ugi2I in the topology and a

system ffi 2 F (Ui)gi2I such that for all i; j, one has F (p
1
i;j)(fi) = F (p2i;j)(fj)

in F (Ui �U Uj), then there exists an f 2 F (U) such that f jUi = fi for all

i. A compact way to say the above is to say that F (U) is the kernel of the

following double arrowY
i2I

F (Ui)
F (p1i;j)
��!���!
F (p2i;j)

Y
i;j

F (Ui �U Uj)

3.3. k-spaces and k-stacks. By a k-space (resp. k-group) we understand

a sheaf of sets (rep. groups) over the big site (A�=k)fppf . A lax functor

X from A�=kop to Gpd associates to any U 2 ob(A�=k) a groupoid X(U)

and to every arrow f : U 0 ! U in A�=k a functor f� : X(U) ! X(U 0)

together with isomorphisms of functors g� � f� ' (f � g)� for every arrow

g : U 00 ! U 0 in A�=k. These isomorphisms should satisfy the following

compatibility relation: for h : U 000 ! U 00 the following diagram commutes

h� � g� � f�

o

��

� // h�(f � g)�

o

��
(g � h)�f�

�
// (f � g � h)�
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If x 2 ob(X(U)) and f : U 0 ! U it is convenient to denote f�x 2 ob(X(U 0)

by xjU 0. A lax functor will be called a k-stack if it satis�es the following two

topological properties:

(i) for every U 2 ob(A�=k) and all x; y 2 ob(X(U)) the presheaf

Isom(x; y) : A�=U �!Set

(U 0 ! U) 7�!HomX(U 0)(xjU 0 ; yjU 0)

is a sheaf (with respect to the fppf topology on A�=U).

(ii) Every descent datum is e�ective.

Recall that a descent datum for X for a covering family fUi
'i
�! Ugi2I is

a system of the form (xi; �ji)i;j2I with the following properties: each xi is

an object of X(Ui), and each �ji : xijUji ! xjjUji is an arrow in X(Uji).

Moreover, we have the co-cycle condition

�kijUkji = �kjjUkji � �jijUkji

where Uji = Uj �U Ui and Ukji = Uk �U Uj �U Ui, for all i; j; k.

A descent datum is e�ective if there exists an object x 2 X(U) and in-

vertible arrows �i : xj Ui
�
�! xi in X(Ui) for each i such that

�jjUji = �ji � �ijUji

for all i; j 2 I:

Any k-space X may be seen as a k-stack, by considering a set as a groupoid

(with the identity as the only morphism). Conversely, any k-stack X such

that X(R) is a discrete groupoid (i.e. has only the identity as automor-

phisms) for all a�ne k-schemes U , is a k-space.

3.3.1. Example. (The quotient stack) Let us consider again the quotient

problem of (3.1.2), in the more general setup of a k-group � acting on a

k-space Z, which we will actually need in the sequel. The quotient stack

[Z=�] is de�ned as follows. Let U 2 ob(A�=k). The objects of [Z=�](U)

are pairs (Z 0; �) where Z 0 is a �-bundle over U and � : Z 0 ! Z is �-

equivariant, the arrows are de�ned in the obvious way and so are the functors

[Z=�](U)! [Z=�](U 0).

3.4. Morphisms. A 1-morphism F : X ! Y will associate, for every U 2

ob(A�=k), a functor F (U) : X(U)! Y(U) and for every arrow U 0
f
�! U an
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isomorphism of functors �(f) : f�X � F (U
0)

�
�! F (U) � f�Y

X(U)

f�
X

��

F (U)
//

��
++

Y(U)

�(f)

@H����
���� f�

Y

��
X(U 0)

F (U 0)

// Y(U 0)

satisfying the obvious compatibility conditions: (i) if f = 1U is an identity,

then �(1U ) = 1F (U) is an identity and (ii) if f and g are composable, then

F (gf) is the composite of the squares �(f) and �(g) further composed with

the composition of pullback isomorphisms g� � f� ' (f � g)� for X and Y (I

will not draw the diagram here).

A 2-morphism between 1-morphisms � : F ! G associates for every

U 2 ob(A�=k), an isomorphism of functors �(U) : F (U)! G(U):

X(U)

F (U)

))

G(U)

55
�(U)

��
Y(U)

There is an obvious compatibility condition which I leave to the reader.

3.4.1. Remark. The above de�nitions of 1- and 2-morphisms make sense for

any lax functor. The compatibility conditions, which will be automatically

satis�ed in our examples, may seem complicated, however can0t be avoided

with this approach. The point is that typically in nature the pullback objects

f�x for every x 2 ob(X)(U) and U 0
f
�! U are well de�ned up to isomorphism,

but that the actual object f�x is arbitrary in its isomorphism class. Let0s

have a closer look at our example MG;X . In this case taking the pullback

(f � id)�E of a G-bundle E on X � U to X � U 0 corresponds to take a

tensor product. This is well de�ned up to canonical isomorphism (it is the

solution of a universal problem) and we are so used to choose an element in

its isomorphism class that we generally (and safely) forget about this choice.

However, when comparing the functors g� �f� and (f � g)� this choice comes

up inherently and we get only something very near to \equality" namely

a canonical isomorphism of functors. So once we see that our functors are

only lax (as opposed to strict) in general we see that we have to choose these

isomorphisms of functors in the de�nitions and then all sorts of compatibility

conditions pop up naturally.
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There is another, less intuitive but more intrinsic approach to lax functors

using k-groupoids. This is an essentially equivalent formalism which avoids

the choice of a pullback object, hence reduces the compatibility conditions.

As this is the point of view of [15], I will describe briey the relation between

the two (which may also help to facilitate the reading of the �rst chapter

of [15]). I start with a lax functor X : (A�=k)op ! Gpd to which I will

associate a category X together with a functor � : X ! (A�=k) (actually I

should denote X by X as well, but here I want to distinguish the two). The

objects of X are a
U2ob(A�=k)

obX(U)

the morphisms going from x 2 obX(U) to y 2 obX(V ) are pairs (�; f) with

f : U ! V an arrow in (A�=k) and � an arrow in X(U) from x to f�y. A

convenient way to encode these pairs is as follows2

x
� //f�y

f //y

With these notations, the composite of two arrows

x
� //f�y

f //y
� //g�z

g //z

is de�ned to be

x
� //f�y

f�� //f�g�z
� //(gf)�z

gf //z

The functor � is de�ned to send an object of X(U) to U and an arrow (�; f)

to f . Looking at � : X ! (A�=k) we see that the categories X(U) are the

�ber categories XU with objects the objects x of X such that �(x) = U and

arrows the arrows f of X such that �(f) = 1jU .

The functor � : X! (A�=k) satis�es the following two properties (exer-

cise: prove this)

(i) for every arrow U 0
f
�! U in (A�=k) and every object x in XU , there is

an arrow y
u
�! x in X such that �(u) = f

(ii) for every diagram z
v
�! x

u
 � y in X with image U 00

f
�! U

g
 � U 0 in

(A�=k) there is for every arrow U 00
h
�! U 0 such that f = gh a unique

arrow z
w
�! y such that u = vw and �(w) = h.

2I learned this from Charles Walter0s lectures on stacks in Trento some years ago.
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A functor � : X ! (A�=k) satisfying (i) and (ii) is called a k-groupoid

in [15]. So a lax functor de�nes a k-groupoid. On the other hand, given a

k-groupoid we can de�ne a lax functor as follows. To every U 2 ob(A�=k)

we associate the �ber category XU . If U
0 f
�! U is an arrow in (A�=k) and

x 2 obXU then by (i) we know that there is y
u
�! x in X. From (ii) it follows

that y
u
�! x is unique up to isomorphism. Now we choose { once and for all

{ for every f and x such an arrow y
u
�! x which we denote by f�x

u
�! x.

Moreover, for every arrow x0
u
�! x in X, we denote by f�(u) the unique arrow

which make the following diagram commutative

f�x0

f�(u)

��

// x0

u

��
f�x // x

We get a functor f� : XU ! XU 0 , and also for U 00
g
�! U 0

f
�! U an isomorphism

of functors g� � f�
�
�! (f � g)� satisfying the conditions of a lax functor.

For k-groupoids most of the basic de�nitions such as 1- and 2-morphisms

are more elegant: a 1-morphism is a functor F : X! Y strictly compatible

with the projection to (A�=k); the 2-morphisms are the isomorphisms of

1-morphisms.

3.5. Descent. The word \descent" is just another name for gluing appro-

priate for situations in which the \open sets" are morphisms (as in the �etale

topology) rather inclusions of subsets (as in the Zariski topology). The basic

descent theorem says that morphisms of schemes can be \glued" together in

the at topology if they agree on the \intersections". The same applies to

at families of quasi-coherent sheaves. Having the notion of a sheaf and a

stack to our disposition, faithfully at descent can be stated as follows:

Theorem. Faithfully at descent ([SGA 1], VIII 5.1, 1.1 and 1.2):

(i) (Faithfully at descent for morphisms) For any k-scheme Z the functor

of points

Hom(A�=k)(�; Z) : (A�=k)
op ! Set is a k-space.

(ii) (Faithfully at descent for at families of quasi-coherent sheaves) For

any scheme Z, the lax functor (A�=k)op ! Gpd de�ned by

S 7! fquasi-coherent OZ�kS-modules at overSg+ fisomorphismsg

is a k-stack.
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Other descent results can be derived from these two. For instance, faith-

fully at descent for principalG-bundles follows from (ii), i.e. the lax functor

MG;X of (3.1.1) is a k-stack.

3.6. Algebraic stacks. I now come to the de�nition of an algebraic stack,

then I will show in the next section that our k-stackMG;X is actually alge-

braic.

3.6.1. The �ber of a morphism of stacks. Fiber products exist in the category

of k-stacks. I will not de�ne them here, but rather explain what is the �ber

of a morphisms of stacks, as this is all I need here. Let F : X ! Y be a

morphisms of stacks, let U 2 ob(A�=k) and consider a morphism � : U ! Y,

that is an object � of Y(U). The �ber X� is the following stack over U :

X� : A�=U �!Gpd

(U 0 ! U) 7�!f(�; �) = � 2 ob(X)(U 0); � : F (�)
�
�! �jU 0g+

f(�; �)
f
�! (�0; �0) = �

f
�! �0 s.t. � � F (f) = �0g

3.6.2. Representable morphisms. The morphism F is representable if X� is

representable as a scheme for all U 2 ob(A�=k) and all � 2 obY(U), i.e.

\the �bers are schemes". All properties P of morphisms of schemes which

are stable under base change and of local nature for the fppf topology make

sense for representable morphisms of stacks. Indeed, one de�nes F to have P

if for every U 2 ob(A�=k) and every � 2 ob(Y (�)) the canonical morphism

of schemes X� ! U has P . Examples of such properties are at, smooth,

surjective, �etale, etc. ; the reader may �nd a quite complete list in [15].

3.6.3. De�nition. A k-stack X is algebraic if

(i) the diagonal morphism X ! X � X is representable, separated and

quasi-compact

(ii) there is a k-scheme P and a smooth, surjective morphism P
p
�!X.

Actually the representability of the diagonal is equivalent to the following:

for all U 2 ob(A�=k) and all � 2 obY(U) the morphism of stacks U
�
�! X is

representable. Hence (i) implies that p is representable (and so smoothness

and surjectivity of p make sense)

Suppose F : X! Y is a representable morphism of algebraic k-stacks and

that Y is algebraic. Then X is algebraic also.

3.6.4. Proposition. Suppose Z is a k-scheme and H is a linear algebraic

group over k acting on Z. Then the quotient k-stack [Z=H] is algebraic:
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Proof. This follows from the de�nitions : a presentation is given by the

morphism p : Z ! [Z=H] de�ned by the trivial H-bundle on Z.

3.6.5. Proposition. The k-stack MGLr;X of 3.1.1 is algebraic.

Proof. ([15],4.14.2.1)

3.6.6. Corollary. The k-stack MG;X of 3.1.1 is algebraic.

Proof. Choose an embedding G � GLr. Using Lemma 2.2.3 we may (and

will) view a G-bundle E over a k-scheme Z as a GLr-bundle V together

with a section � 2 H0(Z; V=G). Consider the morphism of k-stacks

' :MG;X �!MGLr;X

de�ned by extension of the structure group. The corollary follows from the

above proposition and the following remark:

3.6.7. The above morphism is representable. Let U be a k-scheme and � :

U !MGLr;X be a morphism, that is a GLr-bundle F over XU = X �k U .

For any arrow U 0 ! U in A�=k the GLr-bundle F de�nes a GLr-bundle

over XU 0 which we denote by FU 0 .

We have to show that the �berMG;X(�), as de�ned in (3.6.2), is repre-

sentable as a scheme over U . As a U -stack, MG;X(�) associates to every

arrow U 0 ! U the groupoid de�ned on the level of objects by pairs (E;�)

where E is a G-bundle over XU 0 and � : E(GLr)
�
�! FU 0 is an isomorphism

of GLr-bundles. On the level of morphisms we have the isomorphisms of

such pairs, de�ned as follows: the pair (E1; �1) is isomorphic to the pair

(E2; �2) if there is an isomorphism � : E1 ! E2 such that �2 ��(GLr) = �1.

Such an isomorphism is, if it exists, unique for, since G acts faithfully on

GLr, �(GLr) = ��12 � �1 uniquely determines �. Therefore, the �ber is

a U -space. Moreover, the set of pairs (E;�) is canonically bijective to the

set HomXU0
(XU 0 ; (F=G)U 0). An easy veri�cation shows that this bijection

is functorial, i.e. de�nes an isomorphism between the U -space of the above

pairs and the functor which associates to U 0 ! U the above set of sections.

So we are reduced to show that the latter functor is representable. But

this follows from Grothendiecks theory of Hilbert schemes ([10], pp. 19{20),

once we know that F=G ! XU is quasi-projective. In order to see this last

statement we use Chevalley0s theorem on semi-invariants: there is a repre-

sentation V of GLr with a line ` such that G is the stabilizer (in GLr) of `.

We get an embedding GLr=G � P(V
�), hence the required embedding

F=G � P(F (V �)):
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(Actually the line bundle on F=G which corresponds to the above embedding

is nothing else than the line de�ned by extension of the structure group of

the G-bundle F ! F=G via ��1 where � is the character de�ned by the

action of G on `.)

3.6.8. Proposition. Suppose G is reductive. The algebraic stack MG;X is

smooth of dimension dim(G)(g � 1).

This follows from deformation theory. I will be rather sketchy here as

rendering precise the arguments below is quite long. Let E be a G-bundle.

Consider the action of G on g given by the adjoint representation and then

the vector bundle E(g). The obstruction to smoothness of MG;X lives in

H2(X;E(g)) which vanishes since X is of dimension 1. The in�nitesimal

deformations of E are parameterized by H1(X;E(g)) with global automor-

phisms parameterized by H0(X;E(g)). Over schemes in order to calculate

the dimension we would calculate the rank of its tangent bundle. We can do

this here also but on stacks one has to be careful about how one understands

the \tangent bundle". We see this readily here: for example for G = GLr the

tangent space H1(X;End(E;E)) is not of constant dimension over the con-

nected components but only over the open substack of simple vector bundles.

Of course dimH1(X;End(E;E)) jumps exactly when dimH0(X;End(E;E))

jumps, so again one has to take care of global automorphisms. However, we

may consider the tangent complex on MG;X . In our case this complex is

Rpr1�(E(g)) where E is the universal G-bundle overMG;X �X, which may

be represented by a perfect complex of length one (see section 6.1.1 for this).

By de�nition, the dimension of the stackMG;X at the point E is the rank of

the cotangent complex at E, which is ��(E(g)). If G is reductive there is an

isomorphism g! g� of G-modules. Therefore we know that deg(E(g)) = 0

and then Riemann-Roch gives dimMG;X = dim(G)(g�1). If g(X) = 0, then

its dimension is �dim(G), which may be surprising, but which is, in view of

the above, the only reasonable result we may ask for (the standard example

of a stack with negative dimension is BG = [�=H] which is of dimension

�dimH).

4. Topological classification

Here X is a compact connected oriented smooth real surface of genus g

and G a connected topological group. A topological G bundle E over X

is a topological space E on which G acts from the right together with a

G-invariant continuous map E
�
�! X such that for every x 2 X there is an
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open neighborhood U of x such that EjU is trivial, i.e. isomorphic to U �G

as a G-homogeneous space where G acts on U �G by right multiplication.

4.1. Topological loop groups. Let x0 2 X and let D be a neighborhood

of x homeomorphic to a disc. De�ne D� = D � x0 and X� = X � x0.

Associated are the following three groups

LtopG = ff : D� �! G=f is continuousg

L
top
+ G = ff : D �! G=f is continuousg

L
top
X G = ff : X� �! G=f is continuousg

By de�nition, we have the following inclusions:

L
top
X G � LtopG � L

top
+ G

LetM
top
G;X be the set of isomorphism classes of topological G-bundles on X.

4.1.1. Proposition. There is a canonical bijection

L
top
X G
nLtopG=

L
top
+ G

�
�!M

top
G;X

Proof. The basic observation is that if E is a topological G-bundle on X

then the restrictions of E to D and X� are trivial. For the restriction to D

this is clear, since D is contractible; for the restriction to X� we view X as a

CW-complex of dimension 2 and remark that, since G is connected, there is

no obstruction to the existence of a section of a G-bundle on X�. It follows

that if we choose trivialization � : EjD
�
�! D � G and � : EjX�

�
�! X� �G

then the transition function  = � ���1
jD�

is an element of LtopG. On the other

hand, we may take trivial bundles on D and X� and patch them together

by  in order to get a G-bundle E on X. Therefore there is a canonical

bijection

LtopG = f(E; �; �) =E
G
�! X; � : EjD

�
�! D �G; � : EjX�

�
�! X� �Gg

Now, by construction, multiplying  2 LtopG from the right by � 2 Ltop+ G

corresponds under this bijection to changing the trivialization � by �# � �,

where �# is the map D � G ! D � G de�ned by (z; g) 7! (z; g�(z)) and

analogously multiplying from the left by ��1 2 LtopX G corresponds to change

the trivialization � . It follows that dividing by Ltop+ G forgets about the

trivialization � and dividing by LtopX G forgets about the trivialization � ,

hence the proposition.

4.1.2. Corollary. The setM
top
G;X is in bijective correspondence with �1(G).
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Proof. If  2 LtopG, we denote by � : �1(D
�) ! �1(G) the induced map.

Let � be the positive generator of �1(D
�) and consider the map

f : LtopG �! �1(G)

 7�! �(�)

Now f depends only on the double classes. In order to see this consider

for � 2 L
top
+ G and � 2 L

top
X G the element ��1� which we view as an

element of LtopG as follows: z 7! ��1(z)(z)�(z). Then remark that the

composite D� ! D
�
�! G is homotopically trivial since it extends to D.

For the composite D� ! X� �
�! G consider the induced map �1(D

�) !

�1(X
�)! �1(G) and remark (exercise) that the image of �1(D

�) in �1(X
�)

has to sit inside the commutator subgroup. It follows that its image in �1(G)

is trivial, since �1(G) is abelian. Thus D
� ! X� �

�! G is also homotopically

trivial. Therefore ��1� is homotopic to , hence f depends only on the

double classes. Then it is an easy exercise to see that the induced map on

the double quotient is indeed a bijection.

5. Uniformization

The uniformization theorem is the analogue of proposition 4.1.1 in the

algebraic setup. Let k be an algebraically closed �eld, X be a smooth,

connected and complete algebraic curve over k and G be an a�ne algebraic

group over k. We choose a closed point x0 2 X and consider X� = X�fx0g.

Remark that X� is a�ne (map X to P1 using a rational function f with pole

of some order at x0 and regular elsewhere and remark that f�1(A 1 ) = X�).

What is the algebraic analogue of the \neighborhood of x0 homeomorphic

to a disc" of section 4? What we can do is to look at the local ring OX;x0 and

then consider its completion bOX;x0 . Then Dx0 = Spec( bOX;x0) will be conve-
nient for if we choose a local coordinate z at x0 2 X then we may identifybOX;x0 with k[[z]], hence Dx0 with the \formal disc" D = Spec

�
k[[z]]

�
.

Moreover, D�
x0 = D�fx0g is Spec(Kx0), whereKx0 is the �eld of fractions

of bOX;x0 . Using our local coordinate z we see that Kx0 identi�es to k((z)),

hence D�
x0 to D

� = Spec
�
k((z))

�
.

It will be convenient in the following to introduce the following notations:

if U = Spec(R) then we will denote D�
U = Spec

�
R((z))

�
, DU = Spec

�
R[[z]]

�
and X�

U = X� � U .

5.1. Algebraic loop groups. The algebraic analogue of the topological

loop group LtopG is Homalg(D
�; G), that is, the points of G with values in
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D�, i.e. G
�
k((z))

�
. This has to be made functorial so we will consider the

functor

LG : (A�=k) �!Grp

U = Spec(R) 7�!G
�
R((z))

�
Actually that is a k-group (in the sense of 3.3). We de�ne the k-groups LXG

and L+G as well by U 7! G
�
O(X�

U )
�
and U 7! G

�
R[[z]]

�
respectively.

We denote QG the quotient k-space LG=L+G: this is the shea��cation of

the presheaf

U = Spec(R) 7�! G
�
R((z))

��
G
�
R[[z]]

�
:

The k-group LXG acts on the k-space QG; let [LXGnQG] be the quotient

k-stack of 3.3.1.

5.1.1. Theorem. (Uniformization) Suppose G is semi-simple. Then there

is a canonical isomorphism of stacks

[
LXG

nLG=
L+G

]
�
�!MG;X

Moreover, the LXG-bundle QG
LXG
���! MG;X is even locally trivial for the

�etale topology if the characteristic of k does not divide the order of �1(G(C )).

5.2. Key inputs. The theorem has two main inputs in its proof:

� Trivializing G-bundles over X�
U (for this we need G semi-simple)

� Gluing trivial G-bundles over X�
U and DU to a G-bundle over XU .

Both properties are highly non trivial in our functorial setup where U may

be any a�ne k-scheme, not necessarily noetherian. So I discuss them �rst.

5.2.1. Trivializing G-bundles over the open curve. For general G it is not

correct that the restriction of a G-bundle toX� is trivial. The basic examples

are of course line bundles. However, if we consider vector bundles with trivial

determinant (i.e. SLr-bundles) then this becomes true. The reason is that a

vector bundle E over X� may be written as the direct sum O�rX� �det(EjX�)

(translate to the analogue statement of �nite module over a ring and use

that O(X�) is Dedekind as X� is a smooth curve). Now if E is a vector

bundle with trivial determinant on XU we may ask whether, locally (for an

appropriate topology) on U , the restriction of E to X�
U is trivial. This is

indeed true (for the Zariski topology on U) and the argument proceeds by

induction on the rank r of E ([2], 3.5), the rank 1 case being trivial: consider

the divisor d = fx0g�U of XU and choose an integer n such that E(nd) has
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no higher cohomology and is generated by its global sections. Then consider

a point u 2 U and a nowhere vanishing section s of E(nd)jX�fug (count

dimensions in order to see its existence). Shrinking U , one may suppose

that this section is the restriction to E(nd) of a section which does not

vanish on XU . When restricting to X�
U we get an exact sequence

0! OX�

U
�! EjX�

U
�! F ! 0

where F is a vector bundle. But after shrinking U again we may assume

that F is trivial by induction and that the sequence splits, hence EjX�

U
is

trivial.

The natural guess then is that the above trivialization property is true

for semi-simple G at least for the appropriate topology on U . This has been

proved by Drinfeld and Simpson.

Theorem (Drinfeld-Simpson). [7] Suppose G is semi-simple. Let E be

a G-bundle over XU . Then the restriction of E to X�
U is trivial, locally for

the fppf topology over U . If char(k) does not divide the order of �1(G(C )),

then this is even true locally for the �etale topology over U .

I will not enter into the proof, however I will invite the reader to have a

closer look at their note, as it uses some techniques which are quite useful

also in other contexts.

5.2.2. Gluing. Consider the following cartesian diagram

D�
U

��

// DU

��
X�
U

// XU

Given trivial G-bundles on X�
U and DU and an element  2 G

�
R((z))

�
we

want to glue them to a G-bundle E on XU . The reader might say that this is

easy: just apply what we have learned about descent in section 3. However

some care has to be taken here: if U is not noetherian, then the morphism

DU ! XU is not at! Nevertheless the gluing statement we need is true:

Theorem (Beauville-Laszlo). [3] Let  2 G
�
R((z))

�
. Then there exists

a G-bundle E on XU and trivializations � : EjDU
! DU � G, � : EjX�

U
!

X�
U � G. Moreover the triple (E; �; �) is uniquely determined up to unique

isomorphism.
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Actually the above theorem is proved for vector bundles in [3] but the

generalization to G-bundles is immediate. Again, I will not enter into the

proof, but invite the reader to have a look at their note.

5.3. Proof of the uniformization theorem. Once the above two key

inputs are known, the proof of the uniformization theorem is essentially

formal.

We start considering the functor TG of triples:

TG : (A�=k) �!Set

U 7�!f(E; �; �) = E
G
�! XU is a G-bundle with trivializations

� : EjDU

�
�! DU �G; � : EjX�

U

�
�! X�

U �G:g= �

5.3.1. Proposition. The k-group LG represents the functor TG.

Proof. Let (E; �; �) be an element of TG(U). Pulling back the trivializations

� and � to D�
U provides two trivializations �� and �� of the pullback of E

over D�
U : these trivializations di�er by an element  = ���1��� of G

�
R((z))

�
(as usual U = Spec(R)). Conversely, if  2 G

�
R((z))

�
, we get an element of

TG(U) by the Beauville-Laszlo theorem. These constructions are inverse to

each other by construction.

Now consider the functor of pairs PG:

PG : (A�=k) �!Set

U 7�!f(E; �) = E
G
�! XU is a G-bundle with trivialization

� : EjX�

U

�
�! X�

U �G:g= �

5.3.2. Proposition. The k-space QG represents the functor PG.

Proof. Let U = Spec(R) be an a�ne k-scheme and q be an element ofQG(U).

By de�nition of QG as a quotient k-space, there exists a faithfully at ho-

momorphism U 0 ! U and an element  of G
�
R0((z))

�
(U 0 = Spec(R0)) such

that the image of q in QG(U
0) is the class of . To  corresponds by 5.3.1

a triple (E0; � 0; �0) over XU 0 . Let U 00 = U 0 �U U
0, and let (E001 ; �

00
1 ), (E

00
2 ; �

00
2 )

denote the pullbacks of (E0; � 0) by the two projections of XU 00 onto XU 0 .

Since the two images of  in G
�
R00((z))

�
di�er by an element of G

�
R00[[z]]

�
,

these pairs are isomorphic. So the isomorphism � 002 �
00�1
1 over X�

U 00 extends to

an isomorphism u : E001 ! E002 over XU 00 , satisfying the usual co-cycle con-

dition (it is enough to check this over X�, where it is obvious). Therefore
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(E0; � 0) descends to a pair (E; �) on XR as in the above statement. Con-

versely, given a pair (E; �) as above over XU , we can �nd a faithfully at

homomorphism U 0 ! U and a trivialization �0 of the pullback of E over DU 0

(after base change, we may assume that the central �ber of the restriction of

E to DU has a section then use smoothness to extend this section to DU ).

By 5.3.1 we get an element 0 of G
�
R0((z))

�
such that the two images of 0

in G
�
R00((z))

�
(with R00 = R0
RR

0) di�er by an element of G
�
R00[[z]]

�
; this

gives an element of QG(U). These constructions are inverse to each other

by construction.

5.3.3. End of the proof. The universal G-bundle over X � QG (see 5.3.2),

gives rise to a map � : QG ! MG;X . This map is LXG-invariant, hence

induces a morphism of stacks � : LXGnQG ! MG;X . On the other hand

we can de�ne a map MG;X ! LXGnQG as follows. Let U be an a�ne k-

scheme, E a G-bundle over XU . For any arrow U 0 ! U , let T (U 0) be the set

of trivializations � of EU 0 over X�
U 0 . This de�nes a U -space T on which the

group LXG acts. By Drinfeld-Simpson0s theorem, it is an LXG-bundle. To

any element of T (U 0) corresponds a pair (EU 0 ; �), hence by 5.3.2 an element

of QG(U
0). In this way we associate functorially to an object E ofMG;X(U)

an LXG-equivariant map � : T ! QG. This de�nes a morphism of stacks

MG;X ! LXGnQG which is the inverse of �. The second assertion means

that for any scheme U over k (resp. over k such that char(k) does not divide

the order of �1(G(C ))) and any morphism f : U !MG;X , the pullback to U

of the �bration � is fppf (resp. �etale) locally trivial, i.e. admits local sections

for the fppf (resp. �etale) topology. Now f corresponds to a G-bundle E over

XU . Let u 2 U . Again by the Drinfeld-Simpson theorem, we can �nd an fppf

(resp. �etale) neighborhood U 0 of u in U and a trivialization � of EjX�

U0
. The

pair (E; �) de�nes a morphism g : U 0 ! QG (by 5.3.2) such that � � g = f ,

that is a section over U 0 of the pullback of the �bration �.

6. The determinant and the pfaffian line bundles

Let X be a projective curve, smooth and connected over the algebraically

closed �eld k.

6.1. The determinant bundle. Let F be a vector bundle over XS =

X �k S, where S is a locally noetherian k-scheme. As usual we think of F

as a family of vector bundles parameterized by S.
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6.1.1. Representatives of the cohomology. In the following I will call a com-

plex K� of coherent locally free OS-modules

0! K0 
�!K1 ! 0

a representative of the cohomology of F if for every base change T
f
�! S

XT

u

��

g // XS

p

��
T

f // S

we have Hi(f�K�) = Riu�g
�F . In particular, if s 2 S is a closed point:

Hi(K�
s ) = Hi(X;Fs)

Representatives of the cohomology of F are easy to construct in our setup.

Indeed, we may choose a resolution

0! P1 �! P0 �! F ! 0

of F by S-at coherent OXS
-modules such that p�P0 = 0 (use Serre0s theorem

A in its relative version to see its existence). Then we have p�P1 = 0 and,

by base change for coherent cohomology, the complex

0! R1p�P1 �! R1p�P0 ! 0

is convenient. This result is generally quoted as choosing a perfect complex

of length one representing Rp�F in the derived category3Dc(S)

6.1.2. The determinant bundle. The determinant of a complex K� of locally

free coherent OS-modules 0! K0 �! K1 ! 0 if de�ned by

det(K�) =

max̂

K0 
 (

max̂

K1)�1

The determinant of our family F of vector bundles parameterized by S is

de�ned by4

DF = det(Rp�F )
�1

3All the derived category theory I need here and in the proof of 6.2.2 is in ([6],x1). The

category of complexes of OS-modules will be denoted by C(S); the category with the same

objects C(S) but morphisms homotopy classes of morphisms of C(S) will be denoted by

K(S). Finally D(S) is obtained by inverting the quasi-isomorphisms in K(S). A superscript

b (resp. subscript c) means that we consider the full sub-categories of bounded complexes

(resp. complexes with coherent cohomology).
4The minus sign is chosen in order to get the \positive" determinant bundle.
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In general, in order to calculate DF , we choose a representative K� of the

cohomology of F and then calculate det(K�)�1. This does not depend, up

to canonical isomorphism, on the choice of K� (and this is the reason why

the above de�nition makes sense) [11].

By construction, the �ber of DF at s 2 S is given as follows:

DF (s) = (

max̂

H0(X;Fs))
�1 


max̂

H1(X;Fs)

We may also twist our family F by bundles coming from X, i.e. consider

F 
 q�E where E is a vector bundle on X. We obtain the line bundle

DF
q�E , and this line bundle actually depends only on the class of E in the

Grothendieck group K(X) of X (check this!). It follows that we get a group

morphism, Le Potier0s determinant morphism [16]

�F : K(X) �!Pic(S)

u 7�!DF
q�u

If our bundle F comes from a SLr-bundle, i.e. has trivial determinant,

twisting F by an element u 2 K(X) then taking determinants just means

taking the r(u)-th power of DF :

6.1.3. Lemma. Suppose F is a vector bundle on XS such that
Vmax F is

the pullback of some line bundle on X. Then

DF
q�u = D

r(u)
F in Pic(S)

where r(u) is the rank of u.

Proof. We may suppose that u is represented by a vector bundle L and even

{ after writing L as an extension { that L is a line bundle. But then it

is enough to check it for L = OX(�p), for p 2 X, where it follows, after

considering 0! OX(�p)! OX ! Op ! 0, from the fact DF
q�Op is trivial

under our hypothesis on F .

6.1.4. Theta-functions. Twisting is particularly useful in order to produce

sections of (powers of) the determinant bundle. Suppose S is integral and

that F is a vector bundle on XS with trivial determinant. Choose a vector

bundle E such that Fs 
 q
�E has trivial Euler characteristic for some s. If

0! K0 
�!K1 ! 0

is a representative of the cohomology of F 
 q�E, then we know that the

rank n of K0 is equal to the rank of K1, hence  may be locally represented

as a n � n-matrix. We get a section �E = det() of D
r(E)
F , well de�ned
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up to an invertible function on S: the theta-function associated to E. In

particular, its divisor �E is well de�ned with support the points s 2 S such

that H0(Fs 
E) 6= 0.

If we suppose moreover that Ft 
 q
�E has trivial cohomology for some

t 2 S then �E 6= S, i.e. the section �E is non trivial; if there is t0 2 S such

that H0(X;Et0 
E) 6= 0 then �E 6= ;.

6.2. The pfa�an line bundle. Suppose char(k) 6= 2 in this subsection.

Let F be a vector bundle over XS = X � S, together with a quadratic non

degenerate form � with values in the canonical bundle !
X
. We will view � as

an isomorphism F
�
�! F_ such that � = �_, where F_ = HomOXS

(F; q�!
X
).

6.2.1. Lemma. If K� is a representative of the cohomology of F , then

K��[�1] is a representative of the cohomology of F_.

Here5 K��[�1] denotes the complex supported in degrees 0 and 1

0! K1� ��

��! K0� ! 0:

Proof. In the derived category Dc(S), we have

Rp�(F
_)

�
�! Rp�(RHomOXS

(F; q�!
X
)) (F is locally free)

�
�! RHom(Rp�(F );OS)[�1] (Grothendieck-Serre duality)

Now if K� represents the cohomology of F we see that RHom(K�;OS)[�1]

represents the cohomology of F_. But this is nothing else than K��[�1] as

the Ki are locally free.

6.2.2. Proposition. There exists, locally for the Zariski topology on S, a

representative of the cohomology K� of F and a symmetric isomorphism:

� : K� �
�! K��[�1]

such that � and � induce the same map in cohomology.

Proof. Choose a representative eK� of the cohomology of F and remark that

� induces an isomorphism e� in the derived category Dbc(S)eK� �
�! Rp�F

�
�! Rp�(F

_)
�
�! eK��[�1]

which is still symmetric (this follows from the symmetry of � and standard

properties of Grothendieck-Serre duality).

5This is compatible with the usual signs: the dual of K� is supported in degrees �1

and 0; when translated to the right by 1, the di�erential acquires a �1 sign.
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The problem here is that this isomorphism is only de�ned in the derived

category: the proposition actually claims that we can get a symmetric iso-

morphism of complexes and this we only get Zariski locally.

First we may suppose that S is a�ne. Then the category of coherent

sheaves on S has enough projectives and as the eKi are locally free we see

that e� is an isomorphism in Kbc(S). Let ' be a lift of e� to Cbc(S). We get a

morphism of complexes

eK0

'0

��

 // eK1

'1

��eK1�
�� // eK0�

which needs neither to be symmetric nor an isomorphism (it is only a quasi-

isomorphism). First we symmetrize: �i = ('i+'
�
1�i)=2 for i = 0; 1. Remark

that � is still a quasi-isomorphism, inducing � in cohomology. Then we �x

s 2 S. A standard argument shows that there is, in a neighborhood of s,

another length one complex K� of free coherent OS-modules together with

a quasi-isomorphism u : K� ! eK�, such that for the di�erential d we have

djs = 0. Now

� = u�[�1]�u : K� �! K��[�1]

is a symmetric quasi-isomorphism, inducing � in cohomology, and �js is an

isomorphism. Then, in a neighborhood of s, �js will remain an isomorphism

which proves the proposition.

Let (K�; �) be as in the proposition and consider the following diagram

K0

�

""
�0 o

��

 // K1

��
0o

��
K1�

��
// K0�

It follows that � is skew-symmetric. Therefore the cohomology of F may

be represented, locally for the Zariski topology on S, by complexes of free

coherent OS-modules

0! K
�
�! K� ! 0

with � skew. Such complexes will be called special in the following.

An immediate corollary is Riemann0s invariance mod 2 theorem:
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6.2.3. Corollary. 6 Let F be a vector bundle on XS equipped with a non

degenerate quadratic form with values in !
X
. Then the function

s 7! dimH0(X;Fs) mod 2

is locally constant.

Proof. Locally there is a special representative K� of the cohomology of F .

dimH0(X;Fs) = rankK � rank�

Now use that the rank of � is even as � is skew.

6.3. The pfa�an bundle. Let F be a vector bundle onXS equipped with a

non degenerate quadratic form with values in !
X
and cover S by Zariski open

subsets Ui such that F admits a special representative K�
i of the cohomology

of F on Ui. Over Ui

DF
jUi

=

max̂

K�
i 


max̂

K�
i

which is a square. It turns out, because the K� are special complexes, that

the
VmaxK�

i glue together over S and de�ne a canonical square root of DF ,

called the pfa�an bundle.

This gluing requires quite some work and is the content of ([14], x7). I

will not enter into the proof here: (loc.cit.) is self contained.

6.3.1. Theorem. Let F be a vector bundle over XS equipped with a non

degenerate quadratic form � with values in !
X
. Then the determinant bundle

DF admits a canonical square root P(F;�). Moreover, if f : S0 ! S is a mor-

phism of locally noetherian k-schemes then we have P(f�F;f��) = f�P(F;�).

6.4. The pfa�an bundle on the moduli stack. Let r � 3 and (F; �)

be the universal SOr-bundle over MSOr;X � X. If we twist by a theta-

characteristic � (i.e. a line bundle such that �
� = !
X
), then F� = F 
q��

comes with a non-degenerate form with values in !
X
. Then we may apply

6.3.1 in order to get the pfa�an bundle P(F�;�) which we denote simply by

P�.

6In fact the above arguments are valid for any smooth proper morphism Y ! S of

relative dimension 1. I only consider the situation of a product Y = X � S here as this is

the one I need in order to de�ne the determinant resp. pfa�an bundles.
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6.5. The square-root of the dualizing sheaf. Suppose G is semi-simple

and consider its action on g given by the adjoint representation. It fol-

lows from the proof of Proposition 3.6.8, that the dualizing sheaf !MG;X
is

DE(g) where E is the universal G-bundle onMG;X . Remark that the bundle

E(g) comes with a natural quadratic form given by the Cartan-Killing form.

Hence the choice of a theta-characteristic � de�nes, by the above, a square

root !
1=2
MG;X

(�) of !MG;X
.

6.6. The pfa�an divisor. It may seem easier to construct the pfa�an

bundle looking at it from a divisorial point of view using smoothness of

MSOr;X . Suppose F is a vector bundle on XS equipped with a non de-

generate quadratic form � with values in !
X
. Suppose moreover that S is

smooth and that there are points s; t 2 S such that H0(X;Fs) = 0 and

H0(X;Ft) 6= 0. We know from section 6.1.4 that if K0 
�! K1 represents the

cohomology of F , then DF is the line bundle associated to the divisor de-

�ned by det() = 0. Now, locally  may be represented by a skew-symmetric

matrix �, so we may take its pfa�an. This de�nes a local equation for a

divisor, which will be called the pfa�an divisor, hence, by smoothness of S,

our pfa�an line bundle. Of course the preceding sentence has to be made

rigorous, but this may seem easier than the (rather formal) considerations

of ([14], x7) which lead to Theorem 6.3.1.

However7, even if the hypothesis of smoothness is satis�ed for MSOr;X ,

this approach fails to de�ne line bundles P� for all theta-characteristics �.

The point is that the hypotheses of the existence of s 2 S such that

H0(X;Fs) = 0 is not always satis�ed: the equation det() = 0 may not

de�ne a divisor (but the whole space).

In order to see this, consider the componentMSO0
r ;X

ofMSOr;X , contain-

ing the trivial SOr-bundle. Actually we haven
0t seen yet that the connected

components ofMG;X are parameterized by �1(G) (i.e. by their topological

type), but for the moment let0s just use thatMSOr;X has two components:

MSO0
r ;X

andMSO1
r ;X

. They are distinguished by the second Stiefel-Whitney

class

w2 : H
1
�et(X;SOr)! H2

�et(X;Z=2Z) = Z=2Z:(6.6 a)

Let r � 3 and (F; �) be the universal quadratic bundle over MSO0
r ;X
�X.

For � a theta-characteristic, consider the substack �� of section 6.1.4.

7There are of course many other reasons to prefer to construct a line bundle directly

and not as a line bundle associated to a divisor.
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6.6.1. Proposition. The substack �� of MSO0
r ;X

is a divisor if and only

if r or � are even.

Proof. We start with a useful lemma.

6.6.2. Lemma. Let A = (E; q) be an SOr-bundle, r � 3 and � be a theta-

characteristic. Then

w2(A) = h0(E 
 �) + rh0(�) mod 2:(6.6 b)

Proof. Indeed, by Riemann0s invariance mod 2 theorem, the right-hand side

of (6.6 b), denoted w02(A) in the following, is constant over the 2 connected

components of MSOr;X . Because (6.6 b) is true at the trivial SOr-bundle

T , it is enough to prove that w02 is not constant. As w
0
2(T ) = 0, we have to

construct an SOr-bundle A such that w02(A) 6= 0. In order to do this, let

L;M be points of order 2 of the jacobian, such that for the Weil pairing we

have < L;M >= 1. The choice of a trivialization of their squares de�nes a

non degenerated quadratic form on

E = (L
M)� L�M � (r � 3)OX

hence an SOr-bundle A. By [17], we know that we have w02(A) =< L;M >=

1 which proves (6.6 b).

Now choose an ine�ective theta-characteristic �0 and set L = �0
�
�1. If

r is even, there exists a SOr-bundle A = (E; q) such that H0(E
�) = 0 and

w2(A) = 0 (choose E = rL with the obvious quadratic form and use (6.6 b)).

If r is odd and � is even, there exists a SOr-bundle A = (E; q) such that

H0(E
�) = 0 and w2(A) = 0 (by Lemma 1.5 of [1], there is an SL2-bundle

F on X such that H0(X; ad(F )
�) = 0, then choose E = ad(F )� (r� 3)L

with the obvious quadratic form). If r and � are odd, then H0(E
�) is odd

for all A 2MSO0
r ;X

.

7. Affine Lie algebras and groups

In the following sections I suppose k = C . In order to study the in�nite

Grassmannian I need some basic material on (a�ne) Lie algebras which I

will recall briey. I start �xing the notations I will use in the rest of these

notes. The reader who is not very familiar with Lie algebras may have a

closer look at [8].
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7.1. Basic notations.

7.1.1. Lie groups. From here to the end of these notes, G will be a simple

(not necessarily simply connected) complex algebraic group. Let eG! G be

the universal cover of G; its kernel is a subgroup of the center Z( eG) � eG,
canonically isomorphic to �1(G). We will denote the adjoint group eG=Z( eG)
by G. We will �x a Cartan subgroup H � G (and denote by H and eH its

inverse image in G and eG respectively) as well as a Borel subgroup B � G

(and denote by B and eB its inverse image in G and eG respectively).

7.1.2. Lie algebras. Let g = Lie(G), b = Lie(B) and h = Lie(H). By the

roots of g we understand the set R of linear forms � on h such that g� = fX 2

g=[X;H] = �(H) 8H 2 hg is non trivial. We have the root decomposition

g = h�
�
�
�2R

g�
�
:

Let � = f�1; :::; �rg be the basis of R de�ned by B and � be the correspond-

ing highest root; we denote �0 = ��. Let ( ; ) be the Cartan-Killing form,

normalized such that (�; �) = 2. Using ( ; ) we will identify h and h� in the

sequel. The coroots of g are the elements of h de�ned by �_ = 2�
(�;�)

; they

form the dual root system R_.

Let Q(R) and Q(R_) be the root and coroot lattices with basis given

by f�1; :::; �rg and f�
_
1 ; :::; �

_
r g respectively . We denote P (R) and P (R_)

the weight and coweight lattices, i.e. the lattices dual to Q(R_) and Q(R)

respectively. They have basis given by the fundamental weights $i and

coweights $_
i de�ned by

< $i; �
_
j >=< $_

i ; �j >= �ij :

Note that Q(R_) � Q(R) and P (R_) � P (R) and that we have equality if

all roots are of equal length, i.e. if we are in the A-D-E case.

7.1.3. Representations. We denote by P+ � P (R) the set of dominant weights

and by f$1; : : : ;$rg the fundamental weights. The set P+ is in bijection

with the set of simple g-modules; denote by L(�) the g-module associated

to the dominant weight �.

7.1.4. The center. We will identify the quotient P (R_)=Q(R_) with Z( eG)
through the exponential map; its Pontrjagin dual Hom(Z( eG);C�) identi�es

to P (R)=Q(R). Recall from ([Bourbaki], VIII, SS3, prop. 8) that a system

of representatives of P (R_)=Q(R_) is given by the miniscule coweights of
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R : these are exactly the fundamental coweights $_
j ; corresponding to the

roots �j 2 � having coe�cient 1 when writing

� =
X
�i2�

ni�i:

We will denote J( eG) = fi 2 f1; : : : ; rg=ni = 1g and J0( eG) = J( eG) [ f0g.
Then the set J0( eG) has a natural group structure provided by the group

structure on P (R_)=Q(R_) which we will denote additively. Recall, for

further reference, that the miniscule coweights are given by

Type of g Ar

Br

(r � 2)

Cr

(r � 2)

Dr

(r � 3)
E6 E7 E8 F4 G2

J f1; : : : ; rg f1g frg f1; r � 1; rg f1; 6g f7g ; ; ;

For j 2 J0( eG) we will denote the corresponding element of Z( eG), �1(G),
P (R)=Q(R) or P (R_)=Q(R_) under the above identi�cations by zj , �j, $j ,

$_
j or wj respectively.

The subgroup of Z( eG) corresponding to �1(G) will be denoted by Z, the

corresponding subgroup of J0( eG) by J0 and the lattice generated by Q(R_)

and $_
j for j 2 J0 by �J(R

_).

7.1.5. Dynkin diagrams. Associated to the Lie algebra g is its Cartan matrix

A with coe�cients aij = h�i; �
_
j i; i; j = 1; : : : ; r: This matrix is invertible;

its determinant is the connection index Ic, i.e. the index of the root lattice

Q(R) in P (R). The associated Dynkin diagram is constructed as follows.

The nodes are the simple roots �i 2 �; the nodes �i and �j are connected

by maxfjaij j; jajijg lines. Moreover these lines are labeled by \>" if aij 6= 0

and jaij j > jajij. These diagrams have various interpretations: the i-th node

may be seen representing �i or $i or �
_
i or been labeled, for example by

the dual Coxeter numbers c_i de�ned by �_ =
Pr

i=1 c
_
i �

_
i . Note that if � is

the half sum of the roots � =
Pr

i=1$i, then h�; �
_i =

Pr
i=1 c

_
i . The number

h_ = 1 + h�; �_i is called the dual Coxeter number. The possible Dynkin

diagrams, as well as their connection indexes and dual Coxeter numbers are

resumed in table A.
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7.2. A�ne Lie algebras and groups.

7.2.1. Loop algebras and central extensions. Let Lg = g 
C C ((z)) be the

loop algebra of g. It has a canonical 2-cocycle de�ned by

 g : (X 
 f; Y 
 g) 7! (X;Y )Res
z=0

(gdf);(7.2 a)

hence a central extension

0! C �! cLg �! Lg! 0(7.2 b)

In other words, this means that on the level of vector spaces cLg = C c � Lg
with Lie bracket given by (c central):

[X 
 f; Y 
 g] = [X;Y ]
 fg + (X;Y )Res
z=0

(gdf):(7.2 c)

In the following, we denote X[f ] the element X
f of Lg; if f = zn it is also

denoted by X(n). The Lie algebra Lg has several subalgebras which will be

important for us. De�ne

L+g = g
C C [[z]], L
>0g = g
C zC [[z]], L

<0g = g
C z
�1C [z�1 ]

These are in fact subalgebras of cLg.
7.2.2. Irreducible and integrable representations. In nature, representations

of Lg are projective; this is why we look at (true) representations of cLg.
Fix an integer `. Call a representation of cLg of level `, if the center acts

by multiplication by `. In order to construct such representations we start

with a �nite dimensional representation L(�), which we may view as an

L+g-module by evaluation. As the cocycle (7.2 a) is trivial over L+g the

central extension dL+g obtained by restriction from (7.2 b) splits. Hence we

may consider L(�) as an dL+g-module of level ` by letting the center act by

multiplication by `; denote this module L`(�). Now consider the generalized

Verma module:

M`(�) = Ind
cLg
dL+g

L`(�) = U(cLg)

U(dL+g)

L`(�)

In the case when ` is not the critical level �h_ (the dual Coxeter number),

M`(�) has a unique irreducible quotient H`(�). Moreover, if ` � (�; �)

then H`(�) has an important �niteness condition: for all X 2 g� and all

f 2 C ((z)) the element X[f ] acts locally nilpotent on H`(�), i.e. for all

u 2 H`(�) there is N such that X[f ]N :u = 0. Such cLg-modules are called
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integrable and it can be shown that all irreducible integrable cLg-modules

arise in this way. In view of this it is convenient to de�ne the following set.

P` = f� 2 P (R)=(�; �i) � 0 for i 2 I and (�; �) � `g:

In the rest of this subsection we restrict to positive8 `. Actually if � 2 P`
then H`(�) is the quotient of H`(�) by the sub-module Z�(`) generated

by X�(�1)
`+1�(�;�) 
 v�, where v� is a highest weight vector of L(�). By

Poincar�e-Birkho�-Witt, M�(`) = U(L<0g) 
C L�. It follows that we have

the exact sequence

0! Z�(`) �! U(L<0g)
C L`(�) �! H`(�)! 0:(7.2 d)

In other words:

[H`(�)]
L>0g = L`(�) = fv 2 H`(�)=L

>0g:v = 0g(7.2 e)

H`(�) is generated by L(�) over L<0g with only one relation:(7.2 f)

X�(�1)
`+1�(�;�) 
 v� = 0:

7.3. Loop groups and central extensions. We already have de�ned the

loop groups LG and L+G in 5.1. The Lie algebra of LG is Lg, as the kernel

of the homomorphism LG(R["])! LG(R) is Lg(R) = g
C R((z)). For the

same reason we have Lie(L+G) = L+g.

7.3.1. The adjoint action. Let H be an in�nite dimensional vector space

over C . We de�ne the C -space End(H) by R 7! End(H 
C R), the C -group

GL(H) as the group of its units and PGL(H) byGL(H)=Gm. The C -group

L eG acts on Lg by the adjoint action. We de�ne the adjoint action of L eG oncLg as follows:

Ad():(�0; s) =
�
Ad():�0; s+Res

z=0
(�1

d

dz
; �0)

�
where  2 L eG(R), � = (�0; s) 2 cLg(R) and ( ; ) is the R((z))-bilinear

extension of the Cartan-Killing form. Consider an integral highest weight

representation �� : cLg! End(H). The basic result we will use in the sequel

is the following:

8The interesting case for us is actually ` = �h_; I will come back to this later. See also

Frenkel0s lectures.



38

7.3.2. Proposition. (Faltings) Let R be a C -algebra,  2 L eG(R). Locally

over Spec(R), there is an automorphism u of HR = H 
C R, unique up to

R�, such that

HR

u

��

��(�)
// HR

u

��
HR

��(Ad():�)
// HR

(7.3 a)

for any � 2 cLg(R).
Again, the important fact here is that we work over any C -algebra (and

not only over C .) The above proposition is proved in ([2], App. A) in the

case SLr; its generalization to G is straightforward.

7.3.3. Integration. An immediate corollary of the above proposition is that

the representation �� may be \integrated" to a (unique) algebraic projective

representation of L eG, i.e. that there is a morphism of C -groups � : L eG !
PGL(H) whose derivate coincides with �� up to homothety. Indeed, thanks

to the unicity property the automorphisms u associated locally to  glue

together to de�ne an element �() 2 PGL(H)(R) and still because of the

unicity property, � de�nes a morphism of C -groups. The assertion on the

derivative is a consequence of (7.3 a).

7.3.4. Central extensions. We are now looking for a central extension of L eG
such that its derivative is the canonical central extension (7.2 b). In order to

do this, we apply the above to the basic representationH1(0) of cLg. Consider
the central extension

1! Gm �! GL(H1(0)) �! PGL(H1(0))! 1:(7.3 b)

Then the pullback of (7.3 b) to L eG is convenient: it de�nes a central exten-

sion to which we refer to as the canonical central extension of L eG:
1! Gm �!

d
L eG �! L eG! 1(7.3 c)

What happens if we restrict to L+ eG ?

7.3.5. Lemma. The extension (7.3 c) splits canonically over L+ eG.
Proof. ([14], 4.9) By construction of (7.3 c), it is enough to prove that the

representation �� : L+ eG ! End(H1(0)) integrates to a representation � :

L+g ! GL(H1(0)). This will follow from the fact that in the case  2
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L+ eG(R) we can normalize the automorphism u of Proposition 7.3.2. Indeed,

as L(0) = [H1(0)]
L+g by (7.2 e), it follows from (7.3 a) that u maps L(0)R to

L(0)R. Now L(0)R is a free R-module of rank one, hence we may choose u

(in a unique way) such that it induces the identity on L(0)R.

8. The infinite Grassmannian

We will now study in some more detail the in�nite Grassmannian QG for

connected reductive groups over the complex numbers.

8.1. Ind-schemes. The category of C -spaces is closed under direct limits.

A C -space (resp. C -group) will be called a (strict) ind-scheme (resp. ind-

group) if it is the direct limit of a directed system of quasi-compact C -schemes

(Z�)�2I such that all the maps i�;� : Z� ! Z� are closed embeddings.

Remark that an ind-group is in general not a direct limit of a directed system

of groups. Any property P of schemes which is stable under passage to

closed subschemes make sense for ind-schemes: We say that Z satis�es the

ind-property P if each Z� does. In particular we may de�ne Z to be of

ind-�nite type or ind-proper.

An ind-scheme is integral (resp. reduced, irreducible) if it is the direct

limit of an increasing sequence of integral (resp. reduced, irreducible) C -

schemes.

A C -space Z is formally smooth if for every C -algebra R and for every

nilpotent ideal I � R the map Z(Spec(R)) ! Z(Spec(R=I)) is surjective.

If R is an ind-scheme of ind-�nite type, then formal smoothness is a local

property9.

8.1.1. Lemma. Let Z be an ind-scheme, direct limit of an increasing se-

quence of C -schemes. Then the following is true (see [2], 6.3 for a proof).

(i) If Z is reduced and is the direct limit of an increasing sequence of C -

schemes (Zn) then Z = lim�!(Zn).

(ii) If Z is covered by reduced open sub-ind-schemes, Z is reduced.

(iii) The ind-scheme Z is integral if and only if Z is reduced and irreducible.

(iv) If U is a C -scheme and U � Z is integral, Z is integral.

9Formal smoothness is a weak property in our in�nite dimensional setup. For instance,

we will see that LGLr is formally smooth but not reduced.
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8.2. The ind-structure of loop groups. Ind-schemes and ind-groups will

be important for us as the C -groups LG, LXG will be ind-groups, as well

as QG which will be an ind-scheme. Actually L+G is an in�nite product of

a�ne schemes.

8.2.1. Lemma. The C -group L+GLr is represented by

GLr(C ) �

1Y
1

Mr(C )

where Mr(C ) is the set of r � r-matrices with entries in C .

Proof. This follows from the fact that for any C -algebra R the setGLr(R[[z]])

consists of the matrices of the form A(z) =
P1

n=0Anz
n with A0 2 GLr(R)

and An 2Mr(R) for n � 1.

Consider more generally the sub-C -space LGL
(N)
r of LGLr de�ned for any

C -algebra R by the set GL
(N)
r (R) of matrices A(z) such that both A(z) and

A(z)�1 have poles of order � N . Of course, by de�nition LGL
(0)
r = L+GLr.

8.2.2. Lemma. The C -space LGL
(N)
r is representable as an a�ne scheme.

Proof. If M (N)(R) is the set of r � r-matrices with coe�cients in R, then

the corresponding C -space M(N) is represented by the a�ne scheme
1Y

n=�N

Mr(C )

Now remark that LGL
(N)
r is represented by the closed a�ne subscheme of

M(N)�M(N) of pairs of matrices (A(z); B(z)) such that A(z)B(z) = I.

8.2.3. Corollary. The C -group LGLr is an ind-group of ind-�nite type,

direct limit of the increasing sequence of schemes (LGL
(N)
r )N�0

For a general reductive group choose an embedding G � GLr. Then the

ind-structure of LGLr induces an ind-structure on LG.

8.3. The ind-structure of the in�nite Grassmannian. The following

theorem describes the ind-structure of QG

8.3.1. Theorem. Let G be a connected reductive complex group. Then

(i) The C -space QG is an ind-scheme, ind-proper of ind-�nite type.

(ii) The projection � : LG! QG admits, locally for the Zariski topology, a

section.
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(iii) The ind-scheme QG is formally smooth.

(iv) The ind-scheme QG is reduced if and only if Hom(G;Gm) = 0.

Proof. It follows from corollary 8.2.3 that QGLr is an ind-scheme of ind-�nite

type: if Q
(N)
GLr

= LGL
(N)
r =L+GLr,

QGLr = lim
�!
Q

(N)
GLr

In order to see that QGLr is ind-proper we use the following lattice approach

to QGLr (see [2],x2). For any C -algebra R we de�ne a lattice in R((z)))r to

be a sub-R[[z]]-module W of R((z)))r such that

zNR[[z]]r �W � z�NR[[z]]r

for some integer N and such that W=zNR[[z]]r is projective.

8.3.2. Proposition. The C -space QGLr represents the functor which asso-

ciates to any a�ne C -scheme U = Spec(R) the set of lattices W � R((z)))r.

Proof. This is a consequence of Proposition (5.3.2). Indeed if E is a vector

bundle over XU together with a trivialization � : EjX�

U

�
�! U � C r , we get

by restriction an isomorphism �� : R((z))r ! H0(D�
U ; EjD�

U
). The inverse

image W of H0(DU ; EjDU
) is a lattice in R((z))r . On the other hand, given

a lattice W � R((z))r we get a vector bundle EW on X by gluing the trivial

bundle over X�
U with the bundle on DR associated to the R[[z]]-module W ;

the gluing isomorphism is given by W �R[[z]]R((z))! R((z))r coming from

the inclusion W � R((z))r. By de�nition, EW comes with a trivialization

�W and it is easy to see that both constructions are inverse to each other.

It follows from the above that QGLr is ind-proper as the latter functor is.

Let us look at the special case of G = SLr. Then we obtain special

lattices, i.e. the lattices such that the projective module W=zNR[[z]]r is of

rank Nr. Let FN be the complex vector space z�NC [[z]]r=zNC [[z]]r . Then

dim(FN ) = 2Nr. Multiplication by z induces a (nilpotent) endomorphism

�N of FN . If follows that 1 + �N is an automorphism of FN , hence we get

an automorphism of Grass(Nr; 2Nr); denote by VN its �xed points. Then

it is easy to see from the above proposition that the C -space LSL
(N)
r is

isomorphic to the projective variety VN .

Once we know (i) for GLr it follows for a general reductive group after

choosing an embedding G � GLr from the following lemma.

8.3.3. Lemma. Suppose G � H is an inclusion of a�ne algebraic groups

such that H=G is a�ne and such that QH is an ind-scheme of ind-�nite
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type. Then QG is also an ind-scheme of ind-�nite type and the morphism

QG ! QH is a closed embedding. In particular, if QH is ind-proper, QG is.

Proof. Left to the reader.

In order to see (ii), one reduces (use that � is LG-invariant) to show that �

admits a section over a Zariski open neighborhood of [e] 2 QG, which follows

from the fact that if L<0G is the C -group de�ned by R 7! G
�
z�1R[z�1]

�
,

the multiplication map

� : L<0G� L+G �! LG(8.3 a)

is an open immersion. The last statement is proved in ([2], 1.11) using that

QG may be seen as parameterizing G-bundles over P1 and that if E is a

G-bundle over P1U for some U then the set of points u 2 U such that Eu is

trivial is an open subset of U as H1(P1;O 
 g) = 0.

Formal smoothness of QG follows from formal smoothness of LG and

the above, so it remains to prove (iv). Actually to see that QG is reduced

whenever Hom(G; G m ) = 0 is quite delicate. It is proved in ([2],6.4) for SLr
where it is deduced from the corresponding statement for LP1G and a direct

calculation. For general G it is proved in ([14], 4.6) where it is deduced

from a theorem of �Safarevi�c [24]. I will not enter into the proof here, let

me just say why QGm is not reduced. Actually, as L+G m is reduced it is

equivalent to show that LG m is not reduced. Consider � : G m ! G m de�ned

by �(x) = xn and the induced morphism LGm ! LG m . Then the image is

not contained in (LG m )red, hence LG m is not reduced.

8.4. The connected components of the in�nite Grassmannian. Sup-

pose in this subsection that G is semi-simple and recall the notations of

section 7.1.

8.4.1. Lemma. ([4], 1.2)

(i) The group �0(LG) is canonically isomorphic to �1(G).

(ii) The projection � : LG ! QG induces a bijection �0(LG) ! �0(QG).

Each connected component of QG is isomorphic to Q
eG
.

Proof. By [21], there exists a �nite family of homomorphisms x� : G a ! eG
such that for any extension K of C , the subgroups x�(K) generate eG(K).

Since the ind-group G a(C ((z))) is connected, it follows that L eG is connected.

In the general case, consider the exact sequence 1! �1(G)! eG! G! 1

as an exact sequence of �etale sheaves onD� := SpecC((z)). SinceH1(D�; eG)
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is trivial [22], it gives rise to an exact sequence of C -groups

1! L eG=�1(G) �! LG �! H1(D�; �1(G))! 1(8.4 a)

Then (i) follows from the connectedness of L eG and the canonical isomor-

phism H1(D�; �1(G))
�
�! �1(G) (Puiseux theorem).

To prove (ii), we �rst observe that the group L+G is connected: for any

 2 L+G(C ), the map F : G � A 1 ! L+G de�ned by F(g; t) = g�1(tz)

satis�es F((0); 0) = 1 and F(1; 1) = , hence connects  to the origin.

Therefore the canonical map �0(LG) ! �0(QG) is bijective. Moreover it

follows from (8.4 a) that (LG)o is isomorphic to L eG=�1(G).
9. The ind-group of loops coming from the open curve

Let G be a connected simple complex group, X be a connected smooth

projective complex curve. Recall the notations of 7.1.

9.1. The simply connected case.

9.1.1. Proposition. ([14],5.1) The ind-group LX eG is integral.

Proof. To see that LX eG is reduced, consider the morphism �� : Q
eG
!M

eG;X
,

which we know to be locally trivial for the �etale topology by the uniformiza-

tion theorem 5.1.1. Hence, locally for the �etale topology, �� is U�LX eG! U .

Now use that Q
eG
is reduced (Theorem 8.3.1) and Lemma 8.1.1 (iv).

To prove that LX eG is irreducible it is enough, as connected ind-groups

are irreducible by Proposition 3 of [24], to show that LX eG is connected. The

idea of its proof is due to V. Drinfeld: consider distinct points p1; : : : ; pi of X

which are all distinct from p. De�ne X�
i = X -fp; p1; : : : ; pig and, for every

a�ne k-scheme U = Spec(R), de�ne X�
i;U = X�

i �k U . Denote by AXi;U
the

C -algebra �(X�
i;U ;OX�

i;U
) and by LiX

eG the C -group R 7! eG(AXi;U
). As LX eG,

the C -group LiX
eG is an ind-group. The natural inclusion AXi;R

� AXi+1;R

de�nes a closed immersion f : LiX
eG! Li+1

X
eG.

9.1.2. Lemma. ([14], 5.3) The map f : LiX
eG! Li+1

X
eG de�nes a bijection

�0(L
i
X
eG) �
�! �0(L

i+1
X
eG):(9.1 a)

Once we know the lemma, we do the following. Let g 2 LX eG(C ) and let

K be the �eld of rational functions on X. Using the fact (cf. [21]) that eG(K)

is generated by the standard unipotent subgroups U�(K), � 2 �, we may

suppose that g is of the form
Q

j2J exp(fjnj) where the nj are nilpotent
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elements of g and fj 2 K. Let fp1; : : : ; pig be the poles of the functions

fj; j 2 J . Then the morphism

A 1 �!LiX
eG

t 7!
Y
j2J

exp(tfjnj)

is a path from g to 1 in LiX
eG. By the above, the morphism �0(LX eG) !

�0(L
i
X
eG) is bijective which shows that g and 1 are in the same connected

component of LX eG, hence LX eG is connected.

9.1.3. Corollary. ([14],5.2) Every character � : LX eG! Gm is trivial.

Proof. The di�erential of �, considered as a function on LX eG, is everywhere
vanishing. Indeed, since � is a group morphism, this means that the deduced

Lie algebra morphism g
AX ! C is zero (with AX = O(X�)). The derived

algebra [g 
 AX ; g 
 AX ] is [g; g] 
 AX and therefore equal to g 
 AX (as

g is simple). Therefore any Lie algebra morphism g 
 AX ! k is trivial.

As LX eG is integral we can write LX eG as the direct limit of an increasing

sequence of integral varieties Vn. The restriction of � to Vn has again zero

derivative and is therefore constant. For large n, the varieties Vn contain 1.

This implies �jVn = 1 and we are done.

9.2. The general case.

9.2.1. Lemma. ([4], 1.2)

(i) The group �0(LXG) is canonically isomorphic to H1(X;�1(G)).

(ii) The group LXG is contained in the neutral component (LG)o of LG.

Proof. Consider the cohomology exact sequence on X� associated to the

exact sequence 1 ! �1(G) ! eG ! G ! 1. As H1(X�; eG) is trivial, we get
the following exact sequence of C -groups

1! LX eG=�1(G)! LXG! H1(X�; �1(G))! 1(9.2 a)

Now using that the restriction H1(X;�1(G)) ! H1(X�; �1(G)) is bijective

and that LX eG is connected by 9.1.1 we get (i).

It follows from (8.4 a) and (9.2 a) that (ii) is equivalent to claim that

the restriction map H1(X�; �1(G)) ! H1(D�; �1(G)) is zero. But this is a
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consequence of the commutative diagram of restriction maps

H1(X;�1(G))

��

� // H1(X�; �1(G))

��
H1(D;�1(G)) // H1(D�; �1(G))

and the vanishing of H1(D;�1(G)).

9.2.2. Corollary. There is a canonical bijection �0(MG;X)
�
�! �1(G).

Proof. This follows from the uniformization theorem and Lemma 8.4.1, (i),

(ii) and Lemma 9.2.1 (iv).

10. The line bundles on the moduli stack of G-bundles

Let G be a connected simple complex group, X be a connected smooth

projective complex curve. Recall the notations of 7.1.

10.1. The line bundles on the in�nite Grassmannian.

10.2. A natural line bundle. Consider the canonical central extension

(7.3 c) of L eG and its restriction to L+ eG. Then we may write

Q
eG
=
d
L eG�[L+ eG(10.2 a)

By Lemma 7.3.5 we have a canonical character

� :
[
L+ eG �

�! Gm � L
+ eG p1
�! G m ;(10.2 b)

hence a line bundle L��1 on the homogeneous space Q
eG
.

10.2.1. A line in the in�nite Grassmannian. Consider the morphism of C -

groups ' : SL2 ! LSL2 de�ned by (for R a C -algebra)

� : SL2(R) �!SL2

�
R((z))

�
�
a b

c d

�
7�!

�
d cz�1

bz a

�

and moreover the morphism of C -groups  : LSL2 ! L eG deduced from the

map SL2 ! eG associated to the highest root �. Let

' =  � � : SL2 ! L eG:(10.2 c)

The Borel subgroup B2 � SL2 of upper triangular matrices maps to L+ eG by

construction, hence we get a morphism ' : P1
C
! Q

eG
. An easy calculation
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shows that the derivative Lie(') maps the standard sl2-triplet fe; f; hg =

fX�;X��;H�g to the sl2-triplet fX�� 
 z;X� 
 z
�1;�H�g of Lg.

10.2.2. Proposition.

(i) The pullback de�nes an isomorphism '� : Pic(QG)
�
�! Pic(P1

C
)

(ii) We have '�(L�) = OP1
C

(1), i.e. Pic(QG) = ZL�

Proof. (i) follows from [12]. In order to prove (ii), we use that the restriction

of (7.3 c) to SL2 splits, hence ' lifts to a morphism e' : SL2 !
d
L eG and all

we have to do is to calculate the character of B2 !
[
L+ eG �

�! Gm. For this it

is enough to calculate the character of B2 on the SL2-module generated by

v0. By (7.2 f) this is the standard representation, so we are done.

In the following we denote, in view of the above, L� by OQG
(1).

10.3. Linearized line bundles on the in�nite Grassmannian. Con-

sider the group PicLXG(QG) of LXG-linearized line bundles on QG. Re-

call that a LXG-linearization of L is an isomorphism m�L
�
�! pr�2L, where

m : LXG � QG ! QG is the action of LXG on QG, satisfying the usual

cocycle condition. It follows from the section on stacks that

10.3.1. Proposition. The map � : QG !MG;X induces an isomorphism

�� : Pic(MG;X)
�
�! PicLXG(QG):

Hence, once we know PicLXG(QG), we know Pic(MG;X).

10.4. The case of simply connected groups. In order to determine the

group Pic
LX eG

(Q
eG
), consider the forgetful morphism f : Pic

LX eG
(Q
eG
) !

Pic(Q
eG
).

10.4.1. Proposition. The map f : Pic
LX eG

(Q
eG
)! Pic(Q

eG
) is injective.

Proof. The kernel of this morphism consists of the LX eG-linearizations of the
trivial bundle. Any two such trivializations di�er by an automorphism of

pr�2OQG
that is by an invertible function on LX eG�Q eG. Since Q eG is integral,

it is the direct limit of the integral projective varieties and this function is

the pullback of an invertible function f on LX eG. The cocycle conditions

on the linearizations imply that f is a character, hence f = 1 by Corollary

9.1.3.

Once we know that f is injective, we may ask whether f is surjective, i.e.

whether OQ
eG
(1) admits an LX eG-linearization.
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10.4.2. Lemma. The line bundle OQ
eG
(1) admits an LX eG-linearization if

and only if the restriction of the central extension (7.3 c) to LX eG splits.

Proof. Let Mum
LX eG

(OQ
eG
(1)) be the Mumford group of OQ

eG
(1) under the

action of LX eG on Q
eG
. This is the group of pairs (f; g) with g 2 LX eG

and f : g�OQ
eG
(1)

�
�! OQ

eG
(1). As Q

eG
is direct limit of integral projective

schemes, we get a central extension

1 �! Gm �! Mum
LX eG

(OQ
eG
(1)) �! LXG �! 1:(10.4 a)

In this setup, an LXG-linearization of OQ
eG
(1) corresponds to a splitting

of (10.4 a). Such a construction works in general10 and is functorial. Now

observe that
d
L eG is MumLG(OQ

eG
(1)). It follows that the extension (10.4 a)

is the pullback to LX eG of (7.3 c), which proves the lemma.

Now our question of the surjectivity of f has a positive answer in view of

the following.

10.4.3. Theorem. The restriction of (7.3 c) to LXG splits.

Proof. Consider the inclusion i : LX eG ,! L eG. The map Lie(i) : LXg ,! Lg

sends X
f to X
 bf=0 where bf=0 is the Laurent development of f at x0. By

the residue theorem the cocycle (7.2 a) is trivial over LXg, hence LXg may be

seen as a subalgebra of cLg. Consider the basic highest weight representation
H1(0) of level one of cLg and take coinvariants:

B = [H1(0)]LXg =
H1(0)=LXg:H1(0):

The crucial fact11 I will use is that B 6= 0.

Remark that the commutativity of (7.3 a) implies that for  2 LXG(R)

the associated automorphism u of H maps coinvariants to coinvariants. We

get a morphism of C -groups � : LXG ! PGL(B) hence we may consider

the diagram

1 // Gm

��

// [
LX eG
��

// LX eG
��

// 1

1 // Gm
// GL(B) // PGL(B) // 1

10The reader may consider to de�ne GL2 as the Mumford group of OP1(1) under the

action of PGL2 on P
1.

11This follows from the decomposition formulas of conformal �eld theory where B is

seen as a space of conformal blocks (see [20]).
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By construction, the central extension of LX eG above coincides with the cen-

tral extension obtained by restriction of (7.3 c) to LX eG. By de�nition of

B, the derivative of � is trivial. As LX eG is an integral ind-group by propo-

sition 9.1.1 it follows that � has to be the constant map identity. Indeed,

write LXG as the direct limit of integral schemes Vn and remark that �

has to be constant on Vn; for large n, as Vn contains 1, this constant is

�(1) = 1. So � being the identity, �̂ factors through Gm which gives the

desired splitting.

10.4.4. Corollary. The line bundle OQ
eG
(1) descends to a line bundle de-

noted OM
eG;X

(1) on M
eG;X

. Moreover

Pic(M
eG;X

) = OM
eG;X

(1)Z(10.4 b)

10.5. The case of the special linear group. Now that we know that

Pic(M
eG;X

) = OM
eG;X

(1)Z we may ask what happens to our determinant

bundle D.

10.5.1. Lemma. Let D be the determinant line bundle on MSLr;X . Then

D = OMSLr;X
(1)

Proof. Consider the morphism ' of 10.2.1:

P1
C

 ##GG
GGG

GGG
G

' // QSLr

�

��
MSLr;X

Using , we get a family E of SLr-bundles parameterized by P1
C
and, by the

above, we have to show that the determinant line bundle of this family is

OP1
C

(1). By de�nition of ' it is enough to treat the rank 2 case in which

this family is easily identi�ed: if we think of QSL2 as parameterizing special

lattices as in Proposition 8.3.2 and the remarks following it. Then E[a:c] is

de�ned by the inclusion

W =

�
d cz�1

bz a

�
(C [[z]] � C [[z]]) ,! C ((z)) � C ((z)):

As the lattice

V = z�1C [[z]] � C [[z]] ,! C ((z)) � C ((z))

de�nes the rank 2-bundle F = OX(p)�OX , we may view, via the inclusion

W � V , the family E[a:c] as the kernel of the morphism F ! C p which maps
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the local sections (z�1f; g) to af(p)� cg(p). But then it is easy to see that

DE = O
P1
C

(1) ([1], 3.4).

10.6. The Dynkin index. Let � : eG ! SLr be a representation. By

extension of structure group we get a morphism of stacks f� : M
eG;X
!

MSLr;X , hence by pullback

f�� : Pic(MSLr;X) �! Pic(M
eG;X

):

As we have seen, both groups are canonically isomorphic to Z, so f�� is an

injection. The index d� of f�� is called the Dynkin index of �. It has been

introduced to the theory of G-bundles over curves by Kumar, Narasimhan

and Ramanathan [12].

This index may be calculated as follows. Looking at the commutative

diagram

Q
eG

��

ef� // QSLr

��
M
eG;X

f� //MSLr;X

we see that ef�� (OQSLr
(1)) = OQ

eG
(d�). As the canonical central extension

(7.3 c) is MumLSLr(OQSLr
(1)), by functoriality of the Mumford group the

restriction of (7.3 c) to L eG under L� : L eG ! LSLr de�nes the Mumford

group
g
L eG = Mum

L eG
(OQ

eG
(d�)). Looking at the di�erentials we see that if

we restrict the canonical central extension (7.2 b) to Lg

0 // C // fLg
��

// Lg //

L�

��

0

0 // C // dLslr // Lslr // 0

all we have to do is to determine the extension fLg, i.e. calculate its cocycle.
10.6.1. Lemma. Let � : g ! sl(V ) be a representation of g and consider

the central extension obtained by restriction of (7.2 b) to Lg. Then, if V =P
� n�e

� is the formal character of V , its cocycle is given by�1
2

X
�

n��(H�)
2
�
 g(10.6 a)

where  g is the cocycle of (7.2 a).
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Proof. By de�nition the cocycle is given by Tr(�(X�)�(X��)) g, so all we

have to do is to calculate this number. For this, decompose the sl2(�)-module

V as �i V
(di), where V (di) is the standard irreducible sl2-module with highest

weight di. As usual, we may realize V (di) as the vector space of homogeneous

polynomials in 2 variables x and y of degree di. Then X� acts as x@=@y, and

X�� as y@=@x. Using the basis x
lydi�l; l = 0; : : : ; di of V (di), we see

Tr(�(X�)�(X��)) =
X
i

diX
k=0

k(di + 1� k):

The formal character of the sl2(�)-module V (d) is
Pd

k=0 e
d���k�� where �� is

the positive root of sl2(�) and �� =
1
2��. Therefore we are reduced to prove

the equality

dX
k=0

k(d+ 1� k) =
1

2

dX
k=0

�
(d�� � k��)(H�)

�2
=

1

2

dX
k=0

(d� 2k)2

which is easy.

De�ne the Dynkin index dg of g itself by gcd(d�) where � runs over all

representations of g. The Dynkin indices of the fundamental and the ad-

joint representations, as well as of g itself are listed in Table B. If � is a

representation of g, we denote by D� the pullback of the determinant bundle

under the morphismM
eG;X
!MSLr;X . Let Picdet(M eG;X

) be the subgroup

generated by the D�, where � runs over all representations of g.

10.6.2. Corollary. The index of Picdet(M eG;X
) in Pic(M

eG;X
) is dg.

If eG is of type B,D or G2, choosing a theta-characteristic � de�nes a

square-root P� of the determinant bundle D = D$1
(see section 6). As

the Picard group is Z for simply connected groups we see that P� does not

depend on � in this case, hence we may denote it simply by P. Looking at

Table B, we see that dg is 2 in the B,D or G2, hence

10.6.3. Corollary. Suppose eG is of type B,D or G2. Then

Pic(M
eG;X

) = ZP

In particular, in the B,D or G2 case there are no other line bundles than

(powers of) the determinant and the pfa�an line bundles.

We saw in 6.5 that !M
eG;X

= D�1Ad admits a square-root !
1

2

M
eG;X

(�). Again,

in the simply connected case, this square root does not depend on �. Looking

at the Dynkin index of the adjoint representation in Table B, we see
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10.6.4. Corollary. Let !M
eG;X

be the dualizing sheaf, !
1

2

M
eG;X

its canonical

(G is simply connected) square root. Then

!
1

2

M
eG;X

= OM
eG;X

(�h_)(10.6 b)

where h_ is the dual Coxeter number of g.

10.7. The non simply connected case. In the non simply connected

case, MG;X acquires �1(G) connected components. I will restrict12 myself

here, for simplicity of the notations, to the component containing the trivial

bundleM0
G;X .

10.7.1. The basic index. We start by de�ning a number which will be useful

in the sequel. De�ne the basic index `b(G) of G to be the smallest posi-

tive integer such that `b($
_
j ;$

_
j0) is an integer for all j; j0 2 J0 (recall the

notations of 7.1). An easy calculation (see [23], Proposition 2.6.3), shows

that this number is given by Table C. In order to state the next theorem

correctly, I have to modify one of these numbers13: de�ne `b(SO
�
4m) = 2 if

m is even.

If A is a �nite abelian group, denote A^ = Hom(A; G m ) its Pontrjagin

dual.

10.7.2. Theorem. ([4]) Suppose g(X) � 1.

(i) Let Pict(M
0
G;X) be the torsion subgroup of Pic(M0

G;X). Then we have

the canonical isomorphism

Pict(M
0
G;X)

�
�! H1(X;�1(G))

^

(ii) The quotient Pic(M0
G;X)=Pict(M

0
G;X) is in�nite cyclic. For its positive

generator L we have

f��L = OM
eG;X

(`b)

where � : eG ! G and f� : M
eG;X
! M0

G;X is the morphism de�ned by

extension of the structure group.

Proof. It follows from the proof of Proposition 10.4.1 that the kernel of the

forgetful map f : Pic
LX eG

(Q
eG
) ! Pic(Q

eG
) identi�es to the character group

12This is not really a restriction: actually the result is the same for the other

components.
13This is related to the fact that the center of Spin4m is Z2�Z2 which has a non trivial

central extension.
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X (LXG) of LXG. Then (i) follows from (9.2 a) and the fact that LX eG has

no non trivial characters by Corollary 9.1.3.

I will not prove (ii) here. Actually one shows, using central extensions of

LG, that an obstruction to the existence of L is that the following pairing

(recall the notations of section 7.1.4)

c : Z � Z �!G m

(zj ; z
0
j) 7�!e

2�i($_

j ;$
_

j0
)

is trivial (see also [18], 4.6.3).

Once we know that we can0t do better than `b, we have to show that

OM
eG;X

(`b) actually descends. This may be easy, as for G = PGLr, where a

pfa�an of DAd is convenient (just look at the numbers of Tables B and C)

or more complicated, as for SLr=�s with s j r (see [13]).

10.8. The case of the special orthogonal group. We close the section

by looking in more detail at G = SOr. According to Theorem 10.7.2, there

is a canonical exact sequence

0! J2
�
�! Pic(MSO0

r ;X
) �! Z! 0 ;(10.8 a)

where the torsion free quotient is generated by any of the P�
0s.

Denote by �(X) � Pic(X) the subgroup of Pic(X) generated by the theta-

characteristics; it is an extension of Z by J2.

10.8.1. Proposition. The map � 7! P� de�nes an isomorphism

P : �(X)
�
�! Pic(MSO0

r ;X
) ;(10.8 b)

which coincides with � on J2.

This means that we have a canonical isomorphism of extensions

0 // J2 // �(X)

P
��

// Z // 0

0 // J2
� // Pic(MSO0

r ;X
) // Z // 0

Proof. ([4], 5.2)
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TABLE A

Type Dual Coxeter (Coxeter) numbers Ic h_

Ar

� �  �� 	 
 �
1

� �  �� 	 
 �
1

� �  �� 	 
 �
1

::::::::: � �  �� 	 
 �
1

� �  �� 	 
 �
1

r + 1 r + 1

Br

� �  �� 	 
 �
1

� �  �� 	 
 �
2

� �  �� 	 
 �
2

::::::::: � �  �� 	 
 �
2

� �  �� 	 
 �
1(2)

�
2 2r � 1

Cr

� �  �� 	 
 �
1(2)

� �  �� 	 
 �
1(2)

� �  �� 	 
 �
1(2)

::::::::: � �  �� 	 
 �
1(2)

� �  �� 	 
 �
1



2 r + 1

Dr

� �  �� 	 
 �
1

� �  �� 	 
 �
2

� �  �� 	 
 �
2

::::::::::: � �  �� 	 
 �
2

� �  �� 	 
 �1mmmmmmm � �  �� 	 
 �
1

QQQQ
QQQ 4 2r � 2

E6
� �  �� 	 
 �
1

� �  �� 	 
 �
2

� �  �� 	 
 �
3

� �  �� 	 
 � 2 � �  �� 	 
 �
2

� �  �� 	 
 �
1

3 12

E7
� �  �� 	 
 �
2

� �  �� 	 
 �
3

� �  �� 	 
 �
4

� �  �� 	 
 � 2 � �  �� 	 
 �
3

� �  �� 	 
 �
2

� �  �� 	 
 �
1

2 18

E8
� �  �� 	 
 �
2

� �  �� 	 
 �
4

� �  �� 	 
 �
6

� �  �� 	 
 � 3 � �  �� 	 
 �
5

� �  �� 	 
 �
4

� �  �� 	 
 �
3

� �  �� 	 
 �
2

1 30

F4
� �  �� 	 
 �
2

� �  �� 	 
 �
3

� �  �� 	 
 �
2(4)

� � �  �� 	 
 �
1(2)

1 4

G2
� �  �� 	 
 �

1(3)

� �  �� 	 
 �
2



1 9
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TABLE B

Type Dynkin index dAd dg

Ar

� �  �� 	 
 �
�
r�1
0

�
� �  �� 	 
 �

�
r�1
1

�
� �  �� 	 
 �

�
r�1
2

�
::::::::: � �  �� 	 
 �

�
r�1

r�2

�
� �  �� 	 
 �

�
r�1

r�1

� 2r + 2 1

Br

� �  �� 	 
 �
2
�
2r�1
0

�
� �  �� 	 
 �

2
�
2r�1
1

�
� �  �� 	 
 �

2
�
2r�1
2

�
::::::::: � �  �� 	 
 �

2
�
2r�1

r�2

�
� �  �� 	 
 �

2(r�2)

�
4r � 2 2

Cr

� �  �� 	 
 �
�
2r�2
0

�
� �  �� 	 
 �

�
2r�2
1

�
� �  �� 	 
 �

�
2r�2
2

�
�

�
2r�2
0

�

::::::::: � �  �� 	 
 �
�
2r�2
r�2

�
�

�
2r�2
r�4

�

� �  �� 	 
 �
�
2r�2
r�1

�
�

�
2r�2
r�3

�



2r + 2 1

Dr

� �  �� 	 
 �
2
�2r�2

0

�
� �  �� 	 
 �

2
�2r�2

1

�
� �  �� 	 
 �

2
�2r�2

2

�
::::::::::: � �  �� 	 
 �

2
�2r�2
r�3

�

� �  �� 	 
 �2
(r�3)

mmmmmmm � �  �� 	 
 �
2(r�3)

QQQQ
QQQ 4r � 4 2

E6
� �  �� 	 
 �
6

� �  �� 	 
 �
150

� �  �� 	 
 �
1800

� �  �� 	 
 � 24 � �  �� 	 
 �
150

� �  �� 	 
 �
6

24 6

E7
� �  �� 	 
 �
36

� �  �� 	 
 �
4680

� �  �� 	 
 �
297000

� �  �� 	 
 � 360 � �  �� 	 
 �
17160

� �  �� 	 
 �
648

� �  �� 	 
 �
12

36 12

E8
� �  �� 	 
 �

1500

� �  �� 	 
 �5292000 � �  �� 	 
 �
8345660400

� �  �� 	 
 � 85500 � �  �� 	 
 �141605100 � �  �� 	 
 �
1778400

� �  �� 	 
 �
14700

� �  �� 	 
 �
60

60 60

F4
� �  �� 	 
 �
18

� �  �� 	 
 �
882

� �  �� 	 
 �
126

� � �  �� 	 
 �
6

8 6

G2
� �  �� 	 
 �
2

� �  �� 	 
 �
8



18 2
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TABLE C

Type Z( eG) Z `b G = eG=Z
Ar Zr+1 Zr+1 r + 1 PGLr+1

Zs; sj(r + 1) smallest k s.t.
k(r+1)r

s2
2 Z

Br Z2 Z2 1 SO2r+1

Cr Z2 Z2 1 for r even, 2 for r odd PSp2r

D2m Z2 � Z2 Z0
2 1 SO4m

Z+
2 1 for m even, 2 for m odd SO+

4m

Z�2 1 for m even, 2 for m odd SO�
4m

Z2 � Z2 2 PSO4m

D2m+1 Z4 Z2 1 SO4m+2

Z4 4 PSO4m+2

E6 Z3 Z3 3 PE6

E7 Z2 Z2 2 PE7
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Abstract

Let X [n] be the Hilbert scheme of n points on a smooth projective surface

X over the complex numbers. In these lectures we describe the action of the

Heisenberg algebra on the direct sum of the cohomologies of all the X [n],

which has been constructed by Nakajima. In the second half of the lectures

we study the relation of the Heisenberg algebra action and the ring structures

of the cohomologies of the X [n], following recent work of Lehn. In particular

we study the Chern and Segre classes of tautological vector bundles on the

Hilbert schemes X [n].
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Hilbert schemes and Heisenberg algebras 63

1. Introduction

In these notes X will be a smooth and projective surface over the complex

numbers. The object of our interest will be the Hilbert scheme of points on

X. For any nonnegative integer n there is such a Hilbert scheme X [n] which

parameterizes �nite subschemes of X of length n.

If W � X is a �nite subscheme of length n, we shall also denote the

corresponding point in X [n] by W .

There is a universal subscheme Zn � X [n] � X whose underlying set is

given as Zn =
�
(W;P )

�� P 2 W	. The �rst projection from Zn � X [n] �X

onto X [n] induces a �nite and at map � : Zn ! X [n]. Let O[n] := ��(OZn).

It is a locally free sheaf on X [n] of rank n.

The Hilbert schemeX [n] enjoys several nice geometric properties, the most

basic one being:

Theorem 1.1. The Hilbert scheme X [n] is smooth, connected and of dimen-

sion 2n.

The �rst proof of this result was given in [6]. Once connectedness is

established, that the dimension of X [n] is 2n, is clear: Each of the n points

has two degrees of freedom.

Any subscheme W 2 X [n] can be written as W =
S
iWi where the Wi

are mutually disjoint subschemes each having support in just one point. If

SuppWi = fPig, we may de�ne the 0-cycle

�(W ) :=
X
i

(lengthWi)Pi =
X
W2X

(lengthOW;P )P:

This 0-cycle is an element of the symmetric power X(n) := Xn=Sn; the

quotient of Xn by the symmetric group Sn acting on Xn by permutation.

In this way we get a map � : X [n] ! X(n), which turns out to be a morphism

(see [6]). It is called the Hilbert-Chow morphism.

Contrary to X [n] the symmetric power X(n) is singular. Along the diago-

nals, where two or more points come together, the action of the symmetric

group has nontrivial isotropy, and because this happens in codimension two

or more, the quotient will be singular.

It is easy to see that the Hilbert-Chow morphism is birational; indeed it

is an isomorphism between the set of reduced subschemes in X [n] and the

subset of X(n) consisting of 0-cycles all whose points are di�erent.
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Theorem 1.2. The Hilbert-Chow morphism is a resolution of the singular-

ities. In fact it is even a semismall resolution; which means that

codimfzjdim ��1(z) � rg � 2r

for any natural number r.

For any point P 2 X we let the closed subscheme Mn(P ) � X [n] be the

set of subschemes whose support is the single point P . In other words

Mn(P ) =
�
W 2 X [n]

�� Supp (W ) = fPg
	
:

This is set-theoretically the same as ��1(nP ), and Mn(P ) is indeed closed.

We also give a name to the closed subset of X [n] whose elements are the

subschemes with support in one (unspeci�ed) point, and de�ne

Mn :=
�
W 2 X [n]

�� Supp (W ) contains just one point
	
:

There is an obvious map Mn ! X which sends a one-point-supported

subscheme to the point where it is supported. The following is a basic result

which now has several proofs. The �rst one was given by Brian�con in [2],

For other proofs see [4] or [5].

Theorem 1.3. Mn(P ) is irreducible of dimension n � 1, and Mn is irre-

ducible of dimension n+ 1.

When studying the Hilbert schemes X [n] of points, it is often a good

idea to look at all the X [n] at the same time, because they are all related

and therefore there is hope that a new structure emerges. One instance

of this is the fact that there is a nice generating function for all the Betti

numbers of all the X [n]. We shall see that this is a reection of the fact

that the direct sum of all the cohomologies of all the X [n] has an additional

structure. It is an irreducible module for a Heisenberg algebra action. This

has been shown by Nakajima [13]. This Heisenberg action is constructed

by means of correspondences between the Hilbert schemes, and the varieties

Mn and Mn(P ) play a big role. In fact the idea is that one can go from

the cohomology of X [k] to that of X [k+n], by adding subschemes of length n

supported in one point of X.

In the second part of these lecture notes we will investigate how this

Heisenberg action is related to the ring structure of the cohomology rings

of the Hilbert schemes. Here we follow the work [11] of Lehn. We are

particularly interested in the Chern classes of so-called tautological vector

bundles on the Hilbert schemes. For every vector bundle V on X one has

an associated tautological vector bundle V [n] on X [n] whose �bers over the
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points W 2 X [n] are naturally identi�ed with H0(W;V jW ). In particular, if

V has rank r, then V [n] is a vector bundle of rank nr. The Chern classes and

Chern numbers of these tautological bundles have interesting geometrical

and enumerative interpretations.

We study the operators of multiplication with the Chern classes of the

tautological sheaves, and express them in terms of the operators of the

Heisenberg algebra action. It is easy to see that the Heisenberg algebra

action induces an action of a Virasoro algebra and an important step in the

argument is a geometric interpretation of the Virasoro operators. Finally, we

restrict to the case of tautological vector bundles associated to a line bundle

L on X. We �nd a generating function for all the Chern classes in terms of

the Heisenberg operators and, at least conjecturally, a generating function

for the top Segre classes of the L[n].

2. The Betti numbers of X [n]

If one is interested in the cohomology of X [n], the �rst question to ask is

what are the Betti numbers of X [n]; i.e., what are the dimensions bi(X
[n]) :=

dimHi(X [n])? (In these notes we will only be interested in homology and

cohomology with coe�cients in Q , so for any space Y we write Hi(Y ) for

Hi(Y;Q) and Hi(Y ) for Hi(Y;Q).)

The Betti numbers of the Hilbert schemes X [n] were determined in [8].

There the following generating series for the Betti numbers was obtained:

Theorem 2.1.X
n�0;i�0

bi(X
[n]) tiqn =

Y
m>0;i�0

(1� (�1)it2m�2+iqm)(�1)
i+1bi(X

[n]):

There are several proofs of this formula. The original proof is by using

the Weil-conjectures and counting subschemes over �nite �elds. A second

proof, based on intersection cohomology, was given by G�ottsche and Soergel

in [9], and �nally in [3] Cheah gave a third proof using the so-called virtual

Hodge polynomials. In addition to the Betti numbers, the last two proofs

also give the Hodge numbers of the Hilbert schemes.

If one puts t = �1 in Theorem 2.1, one gets an expression for the topo-

logical Euler characteristic e(X [n]) of the spaces X [n]:X
n�0

e(X [n]) qn =
Y
m>0

(1� qm)�e(X)
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and by putting t = 1 one gets the generating series for the total dimensions

of the cohomology of X [n] :

X
n�0

dimQ H
�(X [n]) qn =

Y
m>0

(1 + qm)d�

(1� qm)d+
:(1)

Here d� and d+ are respectively the dimensions of the even and odd part of

H�(X), i.e.,

d+ =
X
i

dimH2i(X); d� =
X
i

dimH2i+1(X):

Later in these notes we shall come back to these formulas and give indi-

cations on how one can prove them.

One should note that we got nice generating functions for the Betti num-

bers and Euler numbers by looking at all the Hilbert schemes X [n] at once.

This is a �rst indication that one should also look at all the cohomologies of

the Hilbert schemes at the same time.

3. The Fock space and the current algebra

Let

H (X) =
M
n�0

H�(X [n])

be the direct sum of all the cohomologies of all the Hilbert schemes X [n].

This is a bigraded vector space over Q whose homogeneous parts are the

cohomology groupsHi(X [n]) for n � 0 and i � 0. For any class � 2 Hi(X [n])

we will call n the weight of � and i the cohomological degree or for short the

degree of �. Sometimes we will write deg� = (n; i).

The Hilbert scheme X [0] is just one point | the empty set is the only

subscheme of length zero. Hence H�(X [0]) �= Q in a canonical way. We let

1 denote the fundamental class [X [0]]. It corresponds to 1 2 Q , and we call

it the vacuum vector.

The space H (X) has a parity structure, or a super structure as many call

it: There is a decomposition

H (X) = H +(X)� H �(X)
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where H +(X) and H �(X) are respectively the sums of the even and odd

part of the cohomology H�(X [n]); that is

H +(X) =
M

n�0;i�0

H2i(X [n]);

H �(X) =
M

n�0;i�0

H2i+1(X [n]):

The intersection form Z
X[n]

�� =: h�; �i

induces an intersection form on H (X) which respects the parity structure,

which means that it is symmetric on H +(X) and antisymmetric on H �(X),

and that the two spaces H + (X) and H �(X) are orthogonal.

The Poincar�e series of H (X) with respect to the weight-grading is given

by G�ottsche's formula with t = 1 as in (1):X
n�0

dimQ H
�(X [n]) qn =

Y
m>0

(1 + qm)d�

(1� qm)d+
:

This series also appears naturally in a construction in the theory of Lie

algebras: Let V be a Q-vector space with a parity structure, or a super

space if you want; that is a decomposition V = V + � V � of V into an odd

and an even part. Assume that V comes equipped with a bilinear form h ; i

respecting the parity structure. The cohomology H�(X) with the pairingR
X
� � � is our prototype of such a V .

Associated to V one constructs the Fock space F(V ) in the following way:

First we take a look at V 
Q tQ [t]. A typical element of this space looks likePm
i=1 vi 
 ti. Let T be the full tensor algebra on V 
Q tQ [t]. To construct

F(V ) we impose in T the (super-)commutation relations:

[u
 ti; v 
 tj] := (u
 ti)(v 
 tj)� (�1)p(u)p(v)(v 
 tj)(u
 ti) = 0(2)

where u and v are any homogeneous elements in V , i.e., elements either in

V + or V �, and where i � 1 and j � 1 are any integers. By p(w) we mean

the parity of a homogeneous element w, i.e., p(w) = 0 when w 2 V + and

p(w) = 1 when w 2 V �. In order not to get confused with having two

di�erent 
-signs around, one from V 
Q tQ [t] and one from T , we have

suppressed the 
-signs from the tensor algebra T in equation (2).
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The formal way to impose the relations above, is to divide T by the two-

sided ideal generated by the relations in (2). Clearly F(V ) is an algebra.

The unit element 1 2 F 0(V ) is called the vacuum vector.

There is a natural grading on V 
Q tQ [t] for which the degree of v
 ti is i.

This grading induces, in an obvious way, a grading on the tensor algebra T .

As the relations (2) are homogeneous of degree i + j, the Fock space F(V )

is graded.

The elements of F(V ) are linear combinations of monomials of the form

(v1 
 tj1) (v2 
 tj2) : : : (vp 
 tjp)

where each vm is either an even or an odd element. The degree of such a

monomial is
P

jm. The Fock space also has a parity structure. A monomial

as the one above is even (resp. odd) if the number of odd vm's is even (resp.

odd).

One may then easily check that there is an isomorphism of graded vector

spaces

F(V ) �=

1O
m=0

S(V + 
 tm)
 �(V � 
 tm):

Here

S(V ) :=
M
i�0

Si(V ); �(V ) :=
M
i�0

�i(V );

are the symmetric and alternating algebra on V .

From this the Poincar�e series of F(V ) is readily found to beX
m�0

dimQ F
m (V ) =

Y
m>0

(1 + qm)dimV �

(1� qm)dimV + :

There is another algebra one may associate to V called the current algebra.

To construct this we start by setting V [t; t�1] = V 
Q [t; t�1 ]. The elements

of V [t; t�1] are linear combinations of the elements qi[v] := v 
 ti for v 2 V

and i 2 Z.

Let now T be the full tensor algebra on V [t; t�1]. Elements of T are linear

combinations of monomials qi1 [v1] qi2 [v2] : : : qip [vp] where we again suppress

the 
-signs.

By declaring the degree (or weight) of qi[v] to be i, we get a grading on

T . There is also a parity structure on T : We declare qi[v] to be even if v

is even and odd if v is odd; and a monomial qi1 [v1] qi2 [v2] : : : qip [vp] is even

(resp. odd) if it contains an even (resp. odd) number of odd qi[v]'s.
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We get the current algebra S(V ) by imposing the following relations in T :�
qi[u]; qj [v]

�
= i�i+jhu; vie(3)

where e is the unit element in T 0V [t; t�1] = Q , and where u and v are any

elements either in V + or in V �. The bracket is the supercommutator

[A;B] = AB � (�1)p(A)p(B)BA:

We also use the convention that �m = 0 if m 6= 0 and �0 = 1.

The current algebra S(V ) acts on the Fock space F(V ) in the following

way. Recall that the Fock space is an algebra.

If i > 0, we let the element qi[u] act as multiplication by u 
 ti in the

algebra F(V ), i.e., qi[u]w = (u 
 ti)w for any w 2 F(V ). In particular

qi[u]1 = u
 ti.

For i = 0, we simply put q0[u]w = 0 for any u and w.

To de�ne the action of the operators q�i[u], with i > 0, it is su�cient to

state that q�i[u]1 = 0 for any i > 0 and any u. Indeed by the relations (3)

we get

q�i[u] (v 
 tj) = q�i[u] qj [v]1

= �qj[v] q�i[u]1� i�j�ihu; vi1

= �i�j�ihu; vi1:

Thus the action is given by the formula

q�i[u] (v 
 tj) = �i�j�ihu; vi1:(4)

We call the operators qi[u] creation operators if i > 0 and annihilation

operators if i < 0. One has the following lemma:

Lemma 3.1. If the pairing h ; i is non-degenerate, the S(V )-module F(V ) is

irreducible, i.e., there is no proper, nonzero subspace invariant under S(V ).

Proof. It is clear that the vacuum vector 1 is a generator for F(V ) as a

module over S(V ). On the other hand, by applying an appropriate sequence

of annihilation operators q�i[u] to any element w of F(V ), we may bring it

back to the vacuum 1. Indeed if fv�g and fv
0
�g are dual bases for V , then

by equation (4) above we get

q�ip [v
0
ip ] q�ip�1

[v0ip�1
] : : : q�i1 [v

0
i1 ](vi1 
 ti1) (vi2 
 ti2) : : : (vip 
 tip) =

= (�1)pi1 � i2 � : : : � ip 1



70

where the vi's and the v0i's are elements from the bases fv�g and fv
0
�g. The

operator

q�ip [uip ]q�ip�1
[uip�1

] : : : q�i1 [ui1 ] kills any other monomial made from ele-

ments in fv�g, again by the relation (4). Hence any nonzero and invariant

subspace contains the vacuum, and consequently equals F(V ) because the

vacuum generates F(V ) as an S(V )-module.

4. The Nakajima operators

We now come back to our space H (X). It has the same Poincar�e series

as the Fock space modelled on the cohomology H�(X) of X. The aim of

this section is to de�ne an action of the current algebra S
�
H�(X)

�
on the

space H (X) in a geometric way, making H (X) and F
�
H�(X)

�
isomorphic as

S
�
H�(X)

�
-modules.

We need to de�ne operators qi[u] for i 2 Z and u 2 H�(X) satisfying

the relations (3). The operator qi[u] changes the weight by i, hence is given

by a map H�(X [n]) ! H�(X [n+i]) for any n � 0. In order to de�ne these

maps, we introduce the incidence scheme X [n;n+i] � X [n] � X [n+i]; where

now i � 0. It is de�ned as

X [n;n+i] :=
�
(W;W 0)

�� W �W 0;W 2 X [n] andW 0 2 X [n+i]
	

Here, as also in futureW �W 0 means that W is a subscheme of W 0. This is

easily seen to be a closed subset of the product, and we give it the reduced

scheme structure.

The two projections induce two maps pn : X [n;n+i] ! X [n] and qn+i :

X [n;n+i] ! X [n+i]. There also is a morphism � : X [n;n+i] ! X(i) which is a

variant of the Hilbert-Chow-map. If W � W 0, then for the ideals IW and

IW 0 of IW and IW 0, we do have the inclusion IW 0 � IW , and the quotient

IW=IW 0 is an OX -module of �nite length which is supported at the points

where the two subschemes W and W 0 di�er. We de�ne

�(W;W 0) :=
X
P2X

length(IW =IW 0)P 2 X(i):

One may show that � is a morphism.

Inside X(i) there is the small diagonal � =
�
iP

�� P 2 X
	
which is

isomorphic to X.
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We have the following diagram:

X = � � X(i)

f

x?? �

x??
Zn;i � X [n;n+i] qn+i

�! X [n+i]

pn

??y
X [n]

(5)

where Zn;i is the component1 of

��1(�) =
�
(W;W 0)

��W �W 0; IW=IW 0 is supported in one point
	

which is the closure of the subset where Supp (IW =IW 0) is disjoint from W .

We give it the reduced scheme structure.2 One easily checks that

dimZn;i = 2n+ i+ 1;(6)

indeed W is arbitrary in X [n], but W 0 �W is con�ned to Mi.

We may pull back any class u 2 H�(X) along f to get a cohomology

class f�u on Zn;i. Applying this to the fundamental class [Zn;i], we get the

homology class f�u \ [Zn;i]. This in turn we may push forward to X [n;n+i]

via the inclusion j : Zn;i ! X [n;n+i], and in this way we get the homology

class

Qn;i(u) := j�(f
�u \ [Zn;i])

on X [n;n+i].

Now we are ready to de�ne the Nakajima creation operators; i.e., the

operators qi[u] with i � 0. We de�ne their action on an element � 2 H�(X [n])

by

qi[u]� := qn+i �(p
�
n � \Qn;i(u));

which we regard as an element in H�(X [n+i]) by Poincar�e duality.

This de�nition is similar to the classical way of de�ning the correspondence

betweenX [n] andX [n+i] associated to a class on their product| if one insists

on qi[u] being a correspondence, one has

qi[u]� = pr2 �(pr
�
1 � \ ��Qn;i(u))

where � : Zn;i ! X [n] �X [n+i] is the inclusion map, and where pr1 and pr2
are the two projections.

1To our knowledge it is unknown whether ��1(�) is irreducible or not.
2The scheme-theoretical inverse image ��1(�) is not reduced.
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In order to get some geometric feeling for what these operators do, we

assume that u and � are represented by submanifolds U � X and A � X [n].

Then qi[u]� is represented by the subspace

(7)
�
W 0 2 X [n+i]

�� there is a W 2 A with W �W 0;

W and W 0 such that they di�er in one point in U
	
:

To put it loosely, the creation operator qi[u] sends A to the set of subschemes

which we obtain by adding a subscheme of length i supported in just one

point from U to a subscheme in A. As an illustration we prove the following

lemma

Lemma 4.1.

qi[pt]1 = [Mi(P )]:

qi[X]1 = [Mi]:

Proof. To explain the �rst equality, we observe that 1 is represented by the

empty set. Hence by (7) the class qi[pt]1 is represented by�
W 0 2 X [i]

�� ; �W 0; ; and W 0 di�er only in P
	
;

where P is any point in X, and this is clearly Mi(P ); we are just adding

subschemes supported at P to the empty set.

The second equality is similar. We add subschemes of length i supported

in one point to the empty set, but this time without any constraint on the

point.

We now come to the de�nition of the Nakajima annihilation operators

q�i[u], where i > 0. We shall, except for a sign factor, literally go the other

way around in the diagram (5). For any class � 2 H�(X [n+i]) we de�ne

q�i[u]� := (�1)ipn �
�
q �n+i � \Qn;i(u)

�
:

The geometrical interpretation of these annihilation operators is analogous to

that of the creation operators. If the class � is represented by a submanifold

B � X [n+i], then q�i[u]� will be represented by the subspace

(8)
�
W 2 X [n]

�� there is a W 0 2 B with W �W 0 such that they

di�er in just one point in U
	
:

In other words, the annihilation operator q�i[u] sends B to the set of the

subschemes we get by throwing away subschemes supported in one point in

U from subschemes in B. Of course this is possible only for some of the

subschemes in B.
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We will give one example. Let C � X be a smooth curve, and let � = [C]

be its fundamental class in H2(X). For every n � 0 the symmetric product

C(n) is naturally embedded in the Hilbert scheme X [n]. Put �n = [C(n)]. Let

C 0 be another smooth curve, and assume that hC;C 0i = a. Let �0 = [C 0].

Lemma 4.2.

q�i[�
0]�n = (�1)ia�n�i

Proof. We assume for simplicity that C and C 0 intersect transversally in just

one point. Because C is smooth, a subschemeW � C is uniquely determined

by the associated 0-cycle
P

P2C length (WP )P . Hence there is just one sub-

scheme W 0 of length i in C(i), whose support is C\C 0. Splitting o� W 0 from

the subschemes in C(n) containing it, obviously gives an isomorphism from�
W [W 0 2 C(n)

�� W 2 C(n�i)
	
to Cn�i. This concludes the proof.

The operators qi[u] and q�i[u] behave very well with respect to the inter-

section pairings on X [n] and X [n+i]:

Lemma 4.3. For classes � 2 H�(X [n]) and � 2 H�(X [n+i]) we have the

equality

(�1)i
Z
X[n]

� � q�i[u]� =

Z
X[n+i]

(qi[u]�) � �:

Proof. By the de�nition of the operators and the projection formula, both

are equal to Z
X[n;n+i]

p�n� � q
�
n+i� \Qn;i(u):

The following lemma is easily deduced from the de�nition of the Nakajima

operators

Lemma 4.4. The operator qi[u] is of bidegree (i;deg u+ 2(i� 1)).

5. The relations

The basic result of Nakajima in [13] is that his creation and annihilation

operators satisfy the relations of the current algebra. Below we shall sketch

a proof of that, closely following the proof that Nakajima gave in [14].

Theorem 5.1. (Nakajima, Grojnowski) For all integers i and j and all

classes u and v in H�(X) the following relation holds�
qi[u]; qj [v]

�
= i�i+jhu; viid:
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The proof is in two steps. The �rst is to establish

Proposition 5.2. There are universal non-zero constants ci such that�
qi[u]; qj [v]

�
= ci�i+jhu; viid:

Here by universal we mean that the ci's neither depend on u or v nor on

the surface X. A sketch of the proof of this proposition, will occupy section

6. The next step is | naturally enough | to establish

Proposition 5.3. ci = i.

The last proposition can be proved in two di�erent ways. The constants ci
have a natural interpretation as intersection numbers on the Hilbert scheme.

Recall that dimMi = i+1 and dimMi(P ) = i�1. Therefore Mi and Mi(P )

are of complementary dimension, and their intersection gives a number.

However Mi(P ) �Mi so they do not intersect properly and
R
X[i] [Mi(P )][Mi]

is not entirely obvious to compute. By induction one may prove (see [5]):

Proposition 5.4. (Ellingsrud{Str�mme)Z
X[i]

[Mi(P )][Mi] = (�1)i�1i:

The following lemma then proves Proposition 5.3.

Lemma 5.5. If i > 0 then ci = (�1)i�1
R
X[i] [Mi(P )][Mi].

Proof. Recall that by Lemma 4.1 we have [Mi(P )] = qi[pt]1 and [Mi] =

qi[X]1. The Nakajima relation for the operators q�i[X] and qi[X] reads

qi[X] q�i[pt]� q�i[pt] qi[X] = ci � id:

When we apply this to the vacuum vector, we obtain

q�i[pt] qi[X]1 = �ci

because any annihilation-operator kills the vacuum. Now, by Lemma 4.3,

we get Z
X[i]

[Mi(P )][Mi] =

Z
X[i]

qi[pt]1 � qi[X]1 =

= (�1)i
Z
X[0]

1 � q�i[pt]qi[X]1 =

= (�1)i
Z
X[0]

(�ci)1 = (�1)i�1ci:



Hilbert schemes and Heisenberg algebras 75

There is also another and very elegant approach to Proposition 5.3 due to

Nakajima where he uses vertex operators. We shall give this later on.

The main consequence of the Nakajima-Grojnowski theorem is the follow-

ing:

Theorem 5.6. The space H (X) and the Fock-space F (H�(X)) are isomor-

phic as S(H�(X))-modules.

Proof. There is a map as S(H�(X))-modules from F (H�(X)) to H (X) de-

�ned by sending u 
 ti to qi[u]1. The two spaces have the same Poincar�e

series, and F(H�(X)) is an irreducible S(H�(X))-module.

6. Indication of how to get the relations

In this section we explain in a sketchy way why the commutation relations

in Theorem 5.1 hold.

We will �rst treat the case when i and j have the same sign, for exam-

ple both are positive. This is the case of the composition of two creation-

operators.

Then �i+j = 0, and we have to prove that qi[u] and qj[v] commute up to

the correct sign. For simplicity we also assume that u = [U ] and v = [V ]

where U and V are submanifolds of X intersecting transversally.

In the de�nition of the Nakajima operators we made use of the subvariety

Zn;i � X [n] �X [n+i]: Recall that it was given as

Zn;i =
�
(W;W 0)

��W �W 0 di�er in one point
	
:

We are going to compare the two operators qj[v]qi[u] and qi[u]qj[v], which

both map the cohomology of X [n] to the cohomology of X [n+i+j]. The natu-

ral place to describe the operator qj[v]qi[u], which is the composition of two

correspondences, is on the productX [n]�X [n+i]�X [n+i+j]: In the description

the following subvariety of this product will play a role:

Z1 = p�112 (Zn;i) \ p
�1
23 (Zn+i;j):(9)

It consists of triples (W;W 0;W 00) of nested subschemes | i.e., W � W 0 �

W 00 | such that W and W 0 just di�er in one point which we call P , and

at the same time W 0 and W 00 are di�erent only in one point that we call

Q. The quotient IW =IW 0 has support fPg and satis�es length IW =IW 0 = i:

Similarly, the quotient IW 0=IW 00 has support fQg and is of length j.

There is a map f1 : Z1 ! X �X sending the triple (W;W 0;W 00) to the

pair (P;Q).
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In a similar manner we let Z2 � X [n]�X [n+j]�X [n+i+j] be the subvariety

given by

Z2 = p�112 Zn;j \ p
�1
23 Zn+j;i:(10)

Its elements are the triples (W;W 0;W 00) of nested subschemes with IW =IW 0

and IW 0=IW 00 both having one-point-support in, say, Q and P respectively;

the �rst one of length j and the other one of length i. As above there is

a morphism f2 : Z2 ! X � X, sending the triple (W;W 0;W 00) to the pair

(Q;P ).

Lemma 6.1. Let � be a class on X [n].

qi[u] qj [v]� = p3�
�
p�1� � f

�
2 (v � u) \ [Z2]

�
;(11)

qj[v] qi[u]� = p3�
�
p�1� � f

�
1 (u� v) \ [Z1]

�
;(12)

where pi denotes the restriction of the i-th projection to Z1 in the �rst line,

and of Z2 in the second.

Proof. This is just the formula for composing correspondences; the only point

to check is that the intersections in (9) and (10) are both proper.

Let Z 0
1 � Z1 and Z 0

2 � Z2 be the two open subsets where the two points

P and Q are di�erent. A typical element of Z 0
1, for example, may be drawn

as

�
�
�
�

��
�
�
�
�

��
��

����W

W’ W’’Q

P

It has a 'central' part W and two 'fuzzy' ends, one in P and one in Q.

The 'fuzzy' end at P is a subscheme of length i supported there, and the

other 'fuzzy' end is a subscheme supported at Q of length j. The subscheme

W 0 is the union of the 'central' part and the 'fuzzy' end at P . Of course P

or Q may belong to the central part, but still the above statement makes

sense if interpreted in the right way.

The drawing above might as well represent a typical element in Z 0
2. The

only di�erence being that in that case the 'fuzzy' part of length j at Q would

belong to W 0 instead of the one of length i at P . Hence to any nested triple

(W;V;W 00) in Z 0
1 we may associate the triple (W;V 0;W 00) where we get V 0
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from V by swapping the 'fuzzy' parts at P and Q. With a little thought one

may convince oneself that this swapping is well de�ned even if the 'central'

part touches P or Q. In this way we get an isomorphism g : Z 0
1
�= Z 0

2:

Clearly this isomorphism respects both p1 and p3 | it doesn't change the

extreme subschemesW andW 00 | and up to permutation of the two factors

of X �X, it respects f1 and f2. By the projection formula we therefore get

the following equality

g�
�
p�1� � f

�
1 (u� v) \ [Z 0

1]
�
= (�1)deg udeg vp�2� � f

�
2 (v � u) \ [Z 0

2]:

The sign comes from the following: u � v = pr�1u � pr
�
2v and via g� this is

mapped to pr�2u � pr
�
1v = (�1)deg u deg vv � u.

It only remains to see that there is no contribution from the boundaries,

i.e., when P = Q. The easy case is when U \ V = ;, then the boundary is

empty | indeed P 2 U and Q 2 V .

In general, a dimension estimate will show that all components of the

boundary are | with good margin | of too small dimension to contribute.

We shall need

dimZ 0
1 = dimZ 0

2 = 2n+ i+ j + 2:

Indeed, the n points in the 'central' part each have 2 degrees of freedom,

and we are free to choose the 'fuzzy' ends from Mi and Mj, and these two

varieties are of dimension i+ 1 and j + 1 respectively.

By the transversality of U and V we know that

dimR U \ V = dimR U + dimR V � 4

We now give the dimension count for f�1(U � V ) \ (Z � Z 0), where we

have suppressed the indices and only write f , Z, Z 0; the suppressed index

can be either 1 or 2. The 'central' part is of length n and gives a contribution

of 4n to the (real) dimension. Now P = Q, so the two 'fuzzy' parts live at

the same point. If they could be chosen independently, their contribution to

the dimension would be

dimR(Mi(P )�Mj(P ) = 2(i� 1) + 2(j � 1)

as long as P is �xed, and P can only move in U \V . As this gives an upper

bound of their contribution, we get

dimR(f
�1(U � V ) \ (Z � Z 0)) � dimRMi(P )�Mj(P ) + dimR U \ V

� 4n+ 2i+ 2j + dimR U + dimR V � 8

< 4n+ 2i+ 2j + dimR U + dimR V � 4:
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The class f�(u� v) \ [Z] lives in Hr(Z) where

r = dimR Z � (4� dimR U)� (4� dimR V )

= 4n+ 2i+ 2j + dimR U + dimR V � 4:

After the dimension count, we know that the map Hr(Z � Z 0) ! Hr(Z)

induced by the inclusion is an isomorphism. Hence

g�f
�
1 (u� v) \ [Z1] = (�1)deg u deg vf�2 (u� v) \ [Z2];

and we are done.

Now we shall treat the perhaps more interesting | at least more subtle

| case of the composition of one creation and one annihilation operator.

That is, the composition of one operator of the form q�i[u] and one of the

form qj[v] where i � 0 and j � 0.

We have to explain why

q�i[u] qj[v] + (�1)deg u deg vqj[v] q�i[u] = �ihu; vi�j�iid;

and we start by examining the composition q�i[u] qj [v]: For any n � 0 it

induces a map from H�(X [n]) to H�(X [n+j�i]): As in the preceding case, it

is natural to look at the subvariety

Z1 = p�112 Zn;j \ p
�1
23 Zn+j�i;i � X [n] �X [n+j] �X [n+j�i]:

It may be described as the variety of triples (W;W 0;W 00) 2 X [n] �X [n+j] �

X [n+j�i] with W � W 0 and W 00 � W 0 | this time the one in the middle is

bigger than the two on the sides | such that W 0 and W 00 di�er in just one

point, and at the same time W 0 and W 00 also di�er only in one point. Call

those points P and Q respectively.

The picture now looks like

��
��
��
��

��
�
�
�
�

��

����

��

W

W’’W’

Q

P

This time the big one in the middle | W 0 | is the whole subscheme.

The one to the left | W | is the whole except the 'fuzzy' part at P , and

the one to the right | W 00 | is the whole except the 'fuzzy' part supported

at Q. As before there is a map f1 : Z1 ! X �X sending a triple to the two

points (P;Q) and there is the lemma
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Lemma 6.2.

q�i[u] qj [v]� = p3�
�
p�1� � f

�
2 (v � u) \ [Z1]

�
:

To understand the composition q�i[u] qj [v]; we introduce the subvariety

Z2 = p�112 Zn�i;i \ p
�1
23 Zn�i;j � X [n] �X [n�i] �X [n+j�i]:

This time the points in Z2 are triples (W;W 0;W 00) of subschemes withW 0 �

W and W 0 � W 00 | the one in the middle is smaller than the other two

| and as usual W 0 and W are di�erent only at a point P and W 0 and W 00

di�er only at a point Q. The picture looks like

����
��
��

�
�
�
�

����

�
�
�
�

Q

P
W’’

WW’

The little one in the middle | W 0 | is the 'central' part, and the two

extremes | W andW 00 | are subschemes we get by adding the 'fuzzy' part

located at P respectively Q.

Just as before one checks that

dimZ1 = dimZ2 = 2n+ i+ j + 2;

for the complex dimensions, and there is the usual map f2 : Z2 ! X �X:

We follow the same track as in the creation-creation process, and de�ne

Z 0 � Z | where the missing index is either 1 or 2 | as the open subsets

where P 6= Q. Then there is an isomorphism g : Z 0
1
�= Z 0

2: Indeed we keep

the two extremes and exchange the smallest 'central' part with the whole.

Writing WP for the part of W supported at P and similarly for Q and W 0,

W 00, this amounts to sending the biggest one, W 0, to (W 0 nW 0
P nW

0
Q)[WP [

W 00
Q which has a meaning as long as P 6= Q. In the same way, it is easy to

write down the inverse of g.

Lemma 6.3.

g�
�
p�1� � f

�
1 (u� v) \ [Z 0

1]
�
= (�1)deg udeg vp�2� � f

�
2 (v � u) \ [Z 0

2]:

Now we come to the more subtle point of analyzing the boundaries where

P = Q. Because when we compute the composition, we apply p13�, what

really matters is the dimension of p13(ZnZ
0) | for missing index equal 1 and
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2. In the case of p13(Z2 n Z
0
2) everything works as in the creation-creation

case, and there will be no contribution from the boundary, so let us turn

our attention to the subtle case p13(Z1 n Z
0
1). The case U \ V = ; gives

no boundary at all, but if U \ V = fPg something happens. If in addition

i = j we may take W = W 00. There always exists a subscheme of length

n+ j containing any subscheme of length n which is supported at p. Hence

in this case p13(Z1 nZ
0
1) will be supported along the diagonal in X [n]�X [n].

One may check by dimension count as before that this is the only possible

contribution from the boundary. It follows that�
q�i[u]; qi[v]

�
= � id

for some number �.

7. Vertex operators and Nakajimas computation of the

constants

For any class u 2 H�(X) and any sequence d = fdmgm�0 of numbers we

introduce the following operator, often called a vertex operator,

Ed;u(z) = exp
�X
m>0

dmqm[u]z
m
�
= exp(P (z)):

where P (z) =
P

m>0 dmqm[u]z
m. When we apply Ed;u(z) to the vacuum

vector, we obtain a sequence f�mgm�0 of classes in H (X), with �m of weight

m and �0 = 1, which are de�ned by the expressionX
m�0

�mz
m := exp

�X
m>0

dmz
mqm[u]

�
1 = exp(P (z)) � 1:

We have

Proposition 7.1. For any two classes u; v in H�(X), and any natural num-

ber i, the element exp(P (z)) � 1 is an eigenvector for qi[v] with eigenvalue

�cidi(
R
X
u � v)zi. That is, for m � 0, we have the equality

qi[v]�m = �cidi

�Z
X

u � v
�
�m�i:

In the proof of the proposition we shall need the following easy lemma:

Lemma 7.2. If A and B are two operators commuting with their commu-

tator, then for any p � 1

[A;Bp] = p[A;B]Bp�1:
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Furthermore

[A; expB] = [A;B] expB:

Proof. Exercise.

To prove Proposition 7.1 we do the following computation:

q�i[v] exp(P (z)) � 1 =
�
q�i[v]; exp(P (z))

�
1 ann. oper. kill vacuum

=[q�i[v]; P (z)] exp(P (z)) � 1 Lemma 7.2

=

�X
m>0

dm
�
q�i[v]; qm[u]

�
zm
�
exp(P (z)) � 1 de�nition of P (z)

=� dici(

Z
X

uv)zi exp(P (z)) � 1 Nakajima relations:

By the de�nition of f�mg, this completes the proof.

The property in Proposition 7.1 is very strong. In fact, it determines the

sequence �m completely.

Lemma 7.3. Let the two sequences f�mg and f�mg from H (X) be given,

with �m and �m both of weight m and �0 = �0 = 1. Assume that for any

i > 0 and any class v in H�(X), there is a number ei;v such that both �m
and �m satisfy the equation

qi[v]xm = ei;vxm�i

for all n � 0. Then �m = �m for all m � 1.

Proof. The proof goes by induction on m. We assume that �j = �j for

j < m. Then for any i � 0 and any class v on X we have

q�i[v](�m � �m) = ei;v(�m�i � �m�i) = 0

by induction. Hence S(H�(X))(�m � �m) will be a sub S(H�(X))-module

all of whose elements are of weight greater than or equal to m. Now if

m � 1, the vacuum, being of weight 0, cannot be in this module which

consequently must be trivial, since H (X) is an irreducible S(H�(X))-module.

Hence �m = �m, and we are done.

We shall need the following variant of the above lemma:

Lemma 7.4. Let f�mg and f�mg be two sequences in H (X) with �m and

�m both of weight m and �0 = �0. Assume that for all i � 0 and all classes

v in H�(X) there are numbers ei;v with ei;v = 0 if deg v < 2, such that the

following two conditions are satis�ed.
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1. q�i[v]�m = ei;v�m�i for all i � 0 and all classes v in h�(X),

2. deg�m = 2m and

q�i[v]�m = ei;v�m�i

whenever deg v � 2 and i > 0.

Then �m = �m for all m � 0.

Proof. Again we use induction on m and assume that �m�i = �m�i for all

i > 0. Just as in the proof above, it is su�cient to see that the vacuum

vector is not contained in the S(H�(X))-module spanned by �m � �m. In

other words we must check that any sequence of 'backwards' moves kills

�m � �m; to that end let

z = q�i1 [v1]q�i2 [v2] : : : q�ip [vp](�m � �m)

be the result of p 'backwards' moves applied to �m � �m. If one of the vi's

is of degree greater than or equal to 2, we know that z = 0. Indeed, this

follows by induction from two conditions in the lemma since the annihilation

operators involved all commute | we can move the annihilation qij [vj ] with

deg vj � 2 to the right in the 'backwards' sequence. Hence we may assume

that all the vi's are of degree less than 2. Then by condition 1. in the lemma,

we have q�i1 [v1]q�i2 [v2] : : : q�ip [vp]�m = 0 and hence

z = q�i1 [v1]q�i2 [v2] : : : q�ip [vp]�m:

We want to see that the case z = 1 cannot happen. Indeed, if z = 1, thenPp
j=1 ij = m. By computing the degree of z from the expression above, we

obtain

deg z =deg�m +
X

deg
�
vj � 2(ij + 1)

�
=

=2m+
X

(deg vj � 2)� 2
X

ij =

=
X

(deg vi � 2);

from which it follows that deg z < 0, and thus z = 0.

Let now C � X be a smooth curve whose class in H�(X) is �. Let �n
denote the class of the n-th symmetric power C(n) of C in X [n]. The classes

�n may be computed in terms of the Nakajima creation operators as in the

following theorem which appeared in [13] and [10].
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Theorem 7.5. (Nakajima, Grojnowski)X
n�0

�nz
n = exp

�X
m>0

(�1)m�1

cm
qm[�]z

m
�
� 1:

Proof. By Proposition 7.1 we know that the sequence f�mg de�ned by the

identity X
n�0

�nz
n = exp

�X
m>0

(�1)m�1

cm
qm[�]z

m
�
� 1

satis�es

qi[v]�m = (�1)i
� Z

X

�v
�
�m�i

for all i > 0 and all v 2 H�(X). From Lemma 4.2 we know that q�i[v]�
n =

(�1)ia�n�i for any curve class v satisfying
R
X
�v = a. It is also clear that if

v = [V ] for V a submanifold of X with C \ V = ;, then q�i[v]�
n = 0; hence

we know that

qi[v]�
n = (�1)i(

Z
X

v�)�n�i

holds for all i > 0 and all classes v on X of degree 2 or more. The theorem

then follows from Lemma 7.4.

Finally we will give the second computation | due to Nakajima | of the

constants ci as we promised. We start by computing derivatives in Theorem

7.5 to obtainX
n�1

n�nzn�1 =
� d

dz
expP (z)

�
1 =

� d
dz

P (z)
�
exp(P (z)) � 1 =

=
��X

m>0

(�1)m�1m

cm
qm[�]z

m�1
�
�

1X
n=0

�nzn
�
� 1:

From this we obtain

n�n =

nX
m=1

(�1)m�1m

cm
qm[�]�n�m:(13)

As the constants cm are universal, we may very well assume that X = P2

and that C is a line.
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Lemma 7.6. Let C and C 0 be two curves in X intersecting transversally in

one point; e.g., two di�erent lines in P2. ThenZ
X[n]

�n � �
0
n =

(
1 if n � 1

0 else

Proof. If t = 0 and t0 = 0 are local equations for C and C 0 at the common

point, a subscheme in C(n) supported at this point is necessarily of the form

C [t; t0 ]=(t; t0
n) and one in C 0(n) must be of the form C [t; t0 ]=(tn; t0). If a

subscheme W simultaneously is of these two forms, necessarily n � 1.

Finally we prove

Theorem 7.7.

ci = i:

Proof. The idea is to intersect (13) with �n. For n = 1 we get

1 =

Z
X

�� =
1

c1

Z
X

�1 � q1[�]�0

=
1

c1

Z
X

(�q�1[�]�1) � �0

=
1

c1

Z
X

�0 � �0 =
1

c1
:

This gives c1 = 1. Assume now that n � 2. Then we obtain

0 =

Z
X[n]

�n � �n =

nX
m=1

(�1)m�1m

cm

Z
X[n]

�n � qm[�]�n�m

=

nX
m=1

(�1)m�1m

cm
(�1)m

Z
X[n�m]

q�m[�]�n � �n�m

=

nX
m=1

(�1)m�1m

cm

Z
X[n�m]

�n�m � �n�m

=
(�1)n�1n

cn
+

(�1)n�2(n� 1)

cn�1
:

Hence

cn

n
=

cn�1

n� 1

from which we get cn = n.
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8. Computation of the Betti numbers of X [n]

As before, let X be a smooth projective surface over C . We will now show

formula (1) for the Betti numbers of the Hilbert scheme X [n] of points. We

needed it in the �rst part to show that

H (X) :=
M
n�0

H�(X [n])

is an irreducible representation of the Heisenberg algebra. There are at

least three possible di�erent approaches which have been used to prove this

result; using the Weil conjectures [8], using perverse sheaves and intersection

cohomology [9], or �nally one can use the so-called virtual Hodge polynomials

[3]. The last two approaches will in addition give the Hodge numbers of the

Hilbert schemes. In these notes we will use the second approach. It has the

advantage of leading to the shortest and most elegant proof, and to almost

completely avoid any computations. The disadvantage is that it requires

very deep results about intersection cohomology and perverse sheaves. We

will �rst briey describe these results and then show how one can use them

as a black box, which with rather little e�ort gives the desired result.

Let Y be an algebraic variety over C . In this section we only use the

complex (strong) topology on Y . We want to stress again that all the coho-

mology that we consider is with Q-coe�cients. In particular Hi(Y ) stands

for Hi(Y;Q). There exists a complex ICY of sheaves on Y (for the strong

topology), such that

IH�(Y ) := H�(Y; ICY )

is the intersection homology of Y (strictly speaking ICY is an element in

the derived category of Y ). Recall that the intersection cohomology groups

IHi(Y ) are de�ned for any algebraic variety and ful�ll Poincar�e duality (be-

tween IH�i(Y ) and IHi(Y )). ICY is called the intersection cohomology com-

plex of Y . If Y is smooth and projective of dimension n, then

ICY = QY [n];

is just the constant sheaf Q on Y put in degree n. Therefore IHi�n(Y ) =

Hi(X;Q). More generally, if Y = X=G is a quotient of a smooth vari-

ety of dimension n by a �nite group, then ICY = QY [n], and thus again

IHi�n(Y ) = Hi(X;Q).

Let now f : X ! Y be a projective morphism of varieties over C . Suppose

that Y has a strati�cation

Y =
a
�

Y�
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into locally closed strata. Let X� := f�1(Y�). Assume that f : X� ! Y� is

a locally trivial bundle with �ber F� (in the strong topology).

De�nition 8.1. f is called strictly semismall (with respect to the strati�-

cation), if, for all �,

2dim(F�) = codim(Y�):

We will use the following facts:

: Fact 1. Assume that f : X ! Y is strictly semismall, and that the F�
are irreducible, then

Rf�(ICX) =
X
�

ICY �
:

(see [9]). Here Rf� is the push-forward in the derived category, and

Y � is the closure of Y�. This is a consequence of the Decomposition

Theorem of Beilinson-Bernstein-Deligne [1].

: Fact 2. Let � : X ! Y be a �nite birational map of irreducible algebraic

varieties, then

R��(ICX) = ICY

(see [9]).

Now we want to see how these facts about the intersection cohomology

complex can be applied to compute the Betti numbers of the Hilbert schemes

of points.

Let � : X [n] ! X(n) be the Hilbert-Chow morphism. The symmetric

power X(n) is strati�ed as follows: Let � = (n1; : : : ; nr) be a partition of n.

We also write � = (1�1 ; 2�2 ; : : : n�n), where �i is the number of l such that

nl = i. We put

X(n)
� :=

nX
nixi 2 X

(n)
��� the xi are distinct

o
;

and X
[n]
� := ��1(X

(n)
� ). The X

(n)
� form a strati�cation of X(n) and similarly

the X
[n]
� form a strati�cation of X [n]. The smallest stratum

X
[n]

(n)
:=
n
W 2 X [n]

��� Supp(W ) is a point
o

is just the variety Mn. It is a locally trivial �ber bundle (in the strong

topology) over X(n) ' X, with �ber

F(n) :=Mn(P ):

In particular the �ber is independent of X. This is because �nite length

subschemes concentrated in a point depend only on an analytic neighborhood
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of the point. It follows that each stratum X
[n]

(n1;::: ;nr)
is a locally trivial �ber

bundle over the corresponding stratum X
(n)

(n1;::: ;nr)
, with �ber F(n1) � : : : �

F(nr).

By Theorem 1.3 Mn(P ) is irreducible of dimension (n� 1), which is half

the codimension of X
(n)

(n)
in X(n). It follows that � : X [n] ! X(n) is strictly

semismall with respect to the strati�cation by partitions. Therefore we ob-

tain by Fact 1. above

R��(QX[n] [2n]) = R��(ICX[n]) =
M
�

IC
X

(n)

�

:

We write

� = (n1; : : : ; nr) = (1�1 ; 2�2 ; : : : ; n�n);

and denote (�) := (�1; �2; : : : ; �n). Then there is a morphism

�� : X(�) := X(�1) � : : : �X(�n) ! X
(n)
�

(�1; : : : ; �n) 7!

nX
i=1

i � �i:

It is easy to see that �� is the normalization of X
(n)
� . Therefore Fact 2.

above implies

IC
X

(n)

�

= R(��)�(ICX(�)) = R(��)�QX(�)

�
2j�j

�
;

where j�j =
P

i �i. Putting this together, we get that

R��(QX [n] [2n]) =
M
�

R(��)�
�
QX(�)

�
2j�j

��
:(14)

Here the sum runs through all (�) = (�1; : : : ; �n) with
P

i i�i = n. Finally

we take the cohomology of relation (14). We recall that taking the coho-

mology of a complex of sheaves commutes with push-forward. Therefore we

obtain

Hi+2n(X [n]) =
M
�

Hi+2j�j(X(�)):

So with this we have completely determined the additive structure of the

cohomology of the Hilbert schemes X [n] in terms of that of the symmetric

powers X(k). The cohomology of the symmetric powers is well known. As

X(n) is the quotient of Xn by the action of the symmetric group Sn by

permuting the factors, we see that Hi(X(n)) = Hi(Xn)Sn is the invariant

part of the cohomology of Xn under the action of Sn.
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Now we want to turn this into a generating function for the Betti numbers

of the Hilbert schemes X [n].

Let p(Y ) :=
P

i dim(Hi+dim(Y )(Y ))zi be the (shifted) Poincar�e polyno-

mial of a variety Y . The description above of the cohomology of the sym-

metric powers leads, by Macdonald's formula [12], to a generating function

for their Poincar�e polynomials.
1X
n=0

p(X(n))tn =
(1 + z�1t)b1(X)(1 + zt)b3(X)

(1� z�2t)b0(X)(1� t)b2(X)(1� z2t)b4(X)
:

Here the bi(X) = dim(Hi(X)) are the Betti numbers of X. We are now able

to put all the ingredients together to get our desired generating function for

the Betti numbers of the Hilbert schemes.
1X
n=0

p(X [n])tn =

1X
n=0

X
�1+2�2+:::n�n=n

p(X(�1))p(X(�2)) : : : p(X(�n))t�1+2�2+:::n�n

=

1Y
k=1

 X
l

p(X(l))tkl

!

=

1Y
k=1

(1 + z�1tk)b1(X)(1 + ztk)b3(X)

(1� z�2tk)b0(X)(1� tk)b2(X)(1� z2tk)b4(X)
:

This (keeping track of the shift in the Poincar�e polynomial) is the formula

of Theorem 2.1.

9. The Virasoro algebra

The rest of these lectures is mostly based on the paper [11] of Lehn.

Before we got a nice description of the additive structure (+ the intersection

pairing) of the Hilbert schemes, which put all the Hilbert schemes together

into one structure. Our aim now is to get some insight into the ring structure

of the cohomology rings of the Hilbert schemes of points X [n]. We want to

see how the ring structure is related to the action of the Heisenberg algebra.

That is; for any cohomology class � 2 H�(X [n]) we can look at the operator

of multiplying by �. We want to try to express these operators in terms of

the Heisenberg operators. In particular we will be interested in the Chern

classes of tautological sheaves on the Hilbert schemes, which are useful in

many applications of Hilbert schemes.

As a �rst step we will construct an action of a Virasoro algebra on the

cohomologies of the Hilbert schemes. This is not such a surprising result:

There is a standard construction, which associates to a Heisenberg algebra a
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Virasoro algebra. This construction is essentially translated into geometric

terms. One of the main technical results will be a geometric interpretation

of the Virasoro generators.

We will, in the future, ignore all signs coming from odd-degree cohomology

classes.

De�nition 9.1. Let � : H�(X) ! H�(X � X) = H�(X) 
 H�(X) be the

push-forward via the diagonal embedding � : X ! X � X. If �(�) =P
i �i 
 i, we write

qnqm�(�) :=
X
i

qn[�i]qm[i]:

We de�ne operators Ln : H
�(X)! End(H (X)) by

Ln :=
1

2

X
�2Z

q�qn��� , if n 6= 0

L0 :=
X
�>0

q�q���:

The sums appear to be in�nite, but, for �xed y 2 H (X) and � 2 H�(X),

only �nitely many terms contribute to Ln[�]y.

Theorem 9.2. 1.
�
Ln[u]; qm[w]

�
= �mqm+n[uw].

2. �
Ln[u]; Lm[w]

�
= (n�m)Ln+m[uw]�

n3 � n

12

 Z
X

c2(X)uw

!
1:

Part 2. can be viewed as saying that the Virasoro algebra given by the

Ln[X] acts on H (X) with central charge c2(X).

The proof of the theorem is mostly formal. We will show part 1. in case

n 6= 0. Writing

�(u) =
X
i

si 
 ti;

we get�
q� [si]qn��[ti]; qm[w]

�
= q�[si]

�
qn�� [ti]; qm[w]

�
+
�
q� [si]; qm[w]

�
qn�� [ti]

= (�m)�n+m��qn+m[si]

 Z
X

tiw

!
+ (�m)�m+�

 Z
X

wsi

!
qn+m[ti]:

We sum this up over all � and i, to obtain

2
�
Ln[u]; qm[w]

�
= (�m)qn+m[Z];
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with

Z =
X
i

si

Z
X

tiw +
X
i

ti

Z
X

wui:

Each of the sums on the right-hand side equals uw. This shows part 1. Part

2. can easily be reduced to part 1.

10. Tautological sheaves

We can, in a natural way, associate a tautological sheaf F [n] on X [n] to

a vector bundle F on X. These sheaves are very important in geometric

applications of the Hilbert scheme X [n]. Let again

Zn :=
�
(W;x) 2 X [n] �X

�� x 2W	
be the universal family with the projections p : Zn ! X [n], q : Zn ! X.

Then the tautological sheaf

F [n] := p�q
�(F )

is a locally free sheaf of rank rn on X [n], where r is the rank of F . (This

is because p : Zn ! X [n] is at of degree n.) In particular F [1] = F .

By de�nition the �ber F [n](W ) of F [n] over a point W 2 X [n] is naturally

identi�ed with H0(W;F jW ).

If 0! F ! E ! G! 0 is an exact sequence of locally free sheaves, then

so is

0! F [n] ! E[n] ! G[n] ! 0:

Therefore ( )[n] : F 7! F [n] de�nes a homomorphism from the Grothendieck

group K(X) of locally free sheaves on X to K(X [n]).

The Chern classes of the tautological sheaves have interesting geometric

interpretations.

1. Let L be a line bundle on X. Then cn(L
[n]) 2 Hn(X [n]) is the Poincar�e

dual of the class of C [n] = C(n), where C 2 jLj is a smooth curve.

2. More generally cn�l(L
[n]) is the Poincar�e dual of the class of all W 2

X [n] with W � Ct for Ct a curve in a general l-dimensional linear

subsystem of jLj.

3. The top Segre class s2n(L
[n]) is by de�nition just the top Chern class

c2n(�L
[n]) (here (�L[n]) is the negative of L[n] in the K(X [n])). In

other words that means that s2n(L
[n]) is the part of degree 2n of

1=(1 + c1(L
[n]) + c2(L

[n]) + : : : ):
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The degree of s2n(L
[n]) is the number of allW 2 X [n], which do not im-

pose independent conditions on curves in a general (3n�2)-dimensional

sub-linear system of jLj.

All these identi�cations are under the assumption that L is su�ciently

ample. It is e.g. su�cient, but not necessary that L is the n-th tensor power

of a very ample line bundle on X. The identi�cations are proven by using

the Thom-Porteous formula ([7] Theorem 4.4), which gives the class of the

degeneracy locus of a map of vector bundles in terms of their Chern classes.

There is a natural evaluation map

evn : H
0(X;L) 
OX[n] ! L[n]; (s;W ) 7! sjW 2 H

0(Z;LjW ) = L[n](W )

from the trivial bundle with �ber H0(X;L) to L[n]. The assumption that

L is su�ciently ample ensures that evn is surjective. In this situation the

Thom-Porteous formula says that cn�l(L
[n]) is the class of the locus where

the restriction of evn to a trivial vector subbundle of rank l+1 is not injective.

Such a vector subbundle corresponds to an l-dimensional linear subsystem

M of jLj, and the locus where the map is not injective is easily seen to be

the locus of W 2 X [n] with W 2 C for a curve C 2M . This shows parts 1.

and 2.

Part 3 is similar. In this case we look at the dual map

(evn)
_ : (L[n])_ ! H0(X;L) 
OX[n] ;

and the locus we are looking for is the locus where (evn)
_ is not injective.

So we get in particularZ
X

s2(L) = #
�
base points in a pencil of jLj

	
= c1(L)

2:R
X[2] s4(L

[2]) is the number of double points of the map X ! P4 given by a

general 4-dimensional linear subsystem of jLj. The numbers s2n(L
[n]) are,

for instance, interesting from the point of view of Donaldson invariants.

11. Geometric interpretation of the Virasoro operators

Our aim is to give a more geometric interpretation of the action of the

Virasoro algebra, which was de�ned in section 9. We shall see that they are

related to the "boundary" of X [n], i.e. the locus of subschemes of X with

support less then n points. If we write @ for the operation of multiplying by

the cohomology class of the boundary, then Ln will turn out to be essentially

the commutator qn@ � @qn. In order to be able to prove this result we have
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to give another description of the class @, which relates it to tautological

sheaves. This is done by looking at the incidence scheme

X [n;n+1] :=
n
(Z;W ) 2 X [n] �X [n+1]

��� Z �W
o
:

As a special case of diagram (5) we have the diagram

X
�
 � X [n;n+1] pn+1

�! X [n+1]

pn

??y
X [n]:

(15)

In particular there is a morphism � := (pn; �) : X
[n;n+1] ! X [n] �X, which

sends a pair (Z;W ) of subschemes of X to Z and the residual point. It is

evident that � is an isomorphism over the open subset of all (Z; x) 2 X [n]�X

with x 6= Z, i.e. over the complement of the universal family

Zn :=
n
(Z; x) 2 X [n] �X

��� x 2 Zo:
More precisely we have the following theorem:

Theorem 11.1. [5] X [n;n+1] is the blowup of X [n] �X along the universal

family Zn.

Proof. Let � : Y ! X [n] � X be the blowup along Zn with exceptional

divisor E. On X [n] � X �X, let Wn be the pull-back of Zn from the �rst

and third factor. On Y �X, lete� := (� � 1X)
�1�; fWn := (� � 1X)

�1Wn:

Then the projection pY je� : e�! Y is an isomorphism, which maps e� \fWn

isomorphically onto the exceptional divisor E. Therefore eZn+1 := e� [fWn

is a at family of degree (n+ 1) over Y , and on Y �X we have a sequence

0!O
e�
(�E)! O

eZn+1
! O

fWn
! 0:(16)

The at family eZn+1 induces a morphism Y ! X [n+1], which together with

the projection Y ! X [n] gives a morphism Y ! X [n] � X [n+1] with im-

age X [n;n+1]. One checks that the induced morphism Y ! X [n;n+1] is an

isomorphism.

Let E be the exceptional divisor of the blowupX [n;n+1] ! X [n]�X. Then

E can be described as

E =
n
(Z;W ) 2 X [n;n+1]

��� supp(Z) = supp(W )
o
:
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Let F be a vector bundle on X. Then tensoring the sequence (16) with p�XF

and pushing down to Y = X [n;n+1] gives the exact sequence

0! ��F (�E)! p�n+1F
[n+1] ! p�nF

[n] ! 0(17)

which relates the tautological bundles F [n] and F [n+1]. This makes it pos-

sible to try to treat the tautological bundles via an inductive argument. In

particular we get

OX[n;n+1](�E) = p�n+1O
[n+1] � p�nO

[n]

in the Grothendieck group K(X [n;n+1]).

Let @X [n] be the closure of the stratum X
[n]

(2;1;::: ;1)
, i.e. the locus in X [n],

where the subscheme does not consist of n distinct points. The class of

[@X [n]] (i.e. the class Poincar�e dual to it) is related to the �rst Chern class

of the tautological sheaves.

Lemma 11.2. [@X [n]] = �2c1(O
[n]
X ).

Proof. @X [n] is the branch divisor of the projection p : Zn ! X [n], therefore

�2c1(p�OZn) = [@X [n]].

De�nition 11.3. Let d : H (X) ! H (X) be the operator of multiplying

by c1(OX[n]), i.e. for y 2 H�(X [n]) we have dy = c1(OX[n]) � y. For f 2

End(H (X)) the derivative f 0 of f is de�ned to be

f 0 := [d; f ]:

It is easy to check that

(fg)0 = f 0g + fg0; [f; g]0 = [f 0; g] + [f; g0];

which gives some justi�cation for calling it derivative.

We have the following geometric interpretation of the derivative in terms

of tautological sheaves. Let X [n;m] � X [n]�X [m] be the incidence variety of

pairs of subschemes (Z;W ) with Z � W (in particular n < m). Let pn and

be pm be the projections of X [n;m] to X [n] and X [m].

Then taking the derivative of f 2 End(H (X)) amounts to multiplying

with c1(p
�
mO

[m]
X )� c1(p

�
nO

[n]
X ).

Proposition 11.4. Let f : H�(X [n]) ! H�(X [m]) be a homomorphism

which is given by f(�) := pm �(p
�
n� \ u), for a suitable u 2 H�(X

[n;m]).

Then

f 0(�) = pm �

�
p�n(�) �

�
c1(p

�
mO

[m]
X )� c1(p

�
nO

[n]
X )
�
\ u
�
:
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In particular, in case m = n+ 1, we get

f 0(�) = pn+1 �

�
p�n(�) � (�E) \ u

�
:

Proof.

f 0(�) = df(�)� fd�

= c1(O
[m]
X ) � pm �(p

�
n(�) \ u)� pm �

�
p�n
�
� � c1(O

[n]
X )
�
\ u
�

Now we apply the projection formula.

X [n;n+m]�X carries two universal families Zn � Zm+n. The above result

can also be reinterpreted as saying that we multiply by the �rst Chern class

of the push-forward to X [n;n+m] of the ideal sheaf IZn=Zn+m .

Now we come to the most important technical result of Lehns paper. It

gives a geometric interpretation of the Virasoro operators Ln.

Theorem 11.5. 1.�
q0n[u]; qm[w]

�
= �nm

 
qn+m[uw] +

jnj � 1

2
�n+m

 Z
X

KXuw

!
1

!
:

2.

q0n[u] = nLn[u] +
n(jnj � 1)

2
qn[KXu]:

Part 2. Says that the Virasoro generators Ln[u] are essentially the deriva-

tives of the qn[u].

Proof. We show that 1. implies 2. By the Heisenberg relations for the qn
and from the formula

�
Ln[u]; qm[w]

�
= �mqn+m[uw] from Theorem 9.2, we

geth
nLn[u] +

n(jnj � 1)

2
qn[KXu]; qm[w]

i
= �nmqn+m[uw] +

n2(jnj � 1)

2
�n+m

 Z
X

KXuw

!
1:

Therefore the di�erence between the right-hand side and the left-hand side

in 2. commutes with all the qm[u]. Since H (X) is an irreducible Heisenberg

module, it follows by Schurs lemma that the di�erence is the multiplication

by a scalar. This scalar must be zero, because the di�erence has weight n

(i.e. sends H�(X [l]) to H�(X [l+n])).

The proof of part 1. requires a complicated geometric argument, and it

is also di�cult to keep track of the indices. The most di�cult part is the
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case n = �m (when the Theorem also has an extra term). We will sketch

the proof of �
q01[X]; qn[u]

�
1 = �nqn+1[u]1;

which illustrates some of the geometric ideas, without running into any of

the technicalities. In the application to Chern classes of tautological sheaves,

we mostly use q01[X].

Let U � X be the submanifold represented by u. Let

Mn(U) :=
n
Z 2 X [n]

��� supp(Z) is one point of Uo;
Mn;n+1(U) :=

n
(Z;W ) 2 X [n;n+1]

��� supp(Z) = supp(W ) is one point of U
o
:

By de�nition and by Proposition 11.4 we obtain

q01[X]qn[u]1 = q01[X][Mn(U)] = pn+1 �((�E) \ p
�
n[Mn(U)]):

We recall that

E =
n
(Z;W ) 2 X [n;n+1]

��� supp(Z) = supp(W )
o
:

Therefore, set-theoretically Mn;n+1 = Mn �X[n] E, but the map E ! X [n]

has degree n, and the map Mn;n+1 !Mn has degree 1. Therefore

pn+1 �((�E) \ p
�
n[Mn(U)]) = �pn+1 �(n[Mn;n+1(U)])

= �npn+1 �[Mn+1(U)]

= �nqn+1[U ]1:

On the other hand q01[X]1 = 0:

Corollary 11.6. d and the q1[u] for u 2 H�(X) su�ce to generate H (X)

from 1.

12. Chern classes of tautological sheaves

We de�ne operators on H (X) of multiplying by the Chern classes of the

tautological sheaves F [n] on X [n]. If we can understand how these commute

with the qn, this allows us to compute the Chern numbers of all tautological

sheaves, and to partially understand the ring structure of the H�(X [n]).

De�nition 12.1. Let u 2 K(X). We de�ne operators �c[u] 2 End(H (X))

by

�c[u]y = c(u[n]) � y for y 2 H�(X [n]):

So if u is the class of a vector bundle on X, then �c[u] just multiplies for each n

a class on X [n] with the total Chern class of the corresponding tautological
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sheaf F [n]. We also write �ck[u]y for ck(u
[n]) � y. Note that by de�nition

d = �c1[OX ]. Obviously the �c[u] commute among each other (and therefore

they also commute with d). We put

�C[u] := �c[u]q1[X]�c[u]�1:

We can use the operator �C[u] to write down the total Chern classes of the

tautological sheaves in a compact way.

Proposition 12.2. X
n�0

c(u[n]) = exp( �C[u])1:

Proof. We note that
q1[X]n

n!
1 = 1X[n] :

Therefore X
n�0

c(u[n]) = �c[u] exp(q1[X])1

= �c[u] exp(q1[X])�c[u]�11

= exp(�c[u]q1[X]�c[u]�1)1:

Now we express �C[u] in terms of the derivatives of the Heisenberg operator

q1 applied to the Chern classes of u. This establishes a relation between the

Chern classes of the tautological sheaves and the Heisenberg generators.

Theorem 12.3.

�C[u] =
X
�;k�0

�
r � k

�

�
q
(�)
1 [ck(u)];

(here q
(�)
1 [ck(u)] is the �-th derivative of q1[ck(u)]).

Proof. Let F be a locally free sheaf on X. Recall the incidence variety

X
�
 � X [n;n+1] pn+1

�! X [n+1]

pn

??y
X [n]

and the exact sequence

0! ��F (�E)! p�n+1F
[n+1] ! p�nF

[n] ! 0:
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This gives

p�n+1c(F
[n+1]) = p�nF

[n] �
X
�;k�0

�
r � k

�

�
(�E)���ck(F ):(18)

So, for y 2 H�(X [n]), we get

�C[F ]y = c(F [n+1]) � pn+1 �

�
p�n(y � c(F

[n])�1)
�

= pn+1 �

�
p�n+1c(F

[n+1]) � p�nc(F
[n])�1 � p�ny

�
:

We insert (18) into this formula and apply Proposition 11.4, which says that

multiplying by (�E) corresponds to taking derivatives.

At least in the case of a line bundle L on X, the results obtained so far

are enough for �nding an elegant formula for the Chern classes of L[n].

Theorem 12.4.X
n�0

c(L[n]) = exp

 X
m�1

(�1)m�1

m
qm[c(L)]

!
1:

Remark 12.5. Note that for the top Chern classes this gives the following.

Let D 2 jLj be a smooth curve, then cn(L
[n]) = [D[n]] = [D(n)]. Then the

theorem gives X
n�0

[D(n)] = exp

 X
m�1

(�1)m�1

m
qm[c1(L)]

!
1:

This is Theorem 7.5, which was used to determine the constant in the Heisen-

berg relations.

Proof. Let

U(t) :=
X
n�0

c(L[n])tn = exp( �C[L]t)1:

The second equality is by Proposition 12.2. Therefore U satis�es the di�er-

ential equation

d

dt
U(t) = �C[L]U(t); U(0) = 1:

Now let

S(t) := exp

 X
m�1

(�1)m�1

m
qm[c(L)]t

m

!
;
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we want to show that S(t)1 satis�es the same di�erential equation. By

de�nition
d

dt
S(t) = S(t) �

X
m�0

(�1)mqm+1[c(L)]t
m:

By the Lehns Main Theorem 11.5, we have�
q01[X]; qm[c(L)]

�
= �mqm+1[c(L)]:

As this commutes with qm[c(L)], we geth
q01[X];

qm[c(L)]
n

n!

i
=
qm[c(L)]

n�1

(n� 1)!
(�m)qm+1[c(L)]:

Therefore we obtain�
q01[X]; S(t)

�
= S(t) �

X
m�1

(�1)mqm+1[c(L)]t
m:

We recall from Theorem 12.3 that

�C(L) = q1[c(L)] + q01[X]:

So we �nally get by putting everything together

�C(L)S(t)1 =
�
q01[X]; S(t)

�
1+ q1[c(L)]S(t)

= S(t) �
X
m�0

(�1)mqm+1[c(L)]t
m:

Let L again be a line bundle on X. We want to compute the top Segre

classes

Nn :=

Z
X[n]

s2n(L
[n])

as polynomials in the intersection numbers L2, LKX , K
2
X , c2(X) on X. A

priory it is not clear that this should be possible. We rewrite

Nn =

Z
X[n]

c2n((�L)
[n]) =

Z
X[n]

�C[�L]n

n!
� 1:

By Theorem 12.3 we get

�C[�L] =
X
��0

(�1)�q
(�)
1 [c(�L)�+1]:

By the main theorem 11.5 we can express the derivatives of q1 in terms of

the Virasoro generators Ln and the Heisenberg generators qn. Applying the

de�nitions 9.1 of the Virasoro generators, we can express this in terms of

the Heisenberg generators. We can do all these computations explicitly to
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compute the Nn for su�ciently small n. The calculation shows that the

following conjecture is true until n = 7.

Conjecture 12.6. (Lehn) Let k be the inverse power series to

t =
k(1 � k)(1 � 2k)4

(1� 6k + 6k2)
:

Then X
n�0

Nnt
n =

(1� k)LKX�2K
2
X (1� 2k)(L�KX )2+3�(OX)

(1� 6k + 6k2)�(L)
:

(Here �(L) = L(L � KX)=2 + (K2
X + c2(X))=12 is the holomorphic Euler

characteristic of L.)
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Abstract

In these lectures I want to give an introduction to the relation of

Donaldson invariants with algebraic geometry: Donaldson invariants

are di�erentiable invariants of smooth compact 4-manifolds X , de�ned

via moduli spaces of anti-self-dual connections. If X is an algebraic

surface, then these moduli spaces can for a suitable choice of the metric

be identi�ed with moduli spaces of stable vector bundles on X . This

can be used to compute Donaldson invariants via methods of algebraic

geometry and has lead to a lot of activity on moduli spaces of vector

bundles and coherent sheaves on algebraic surfaces.

We will �rst recall the de�nition of the Donaldson invariants via

gauge theory. Then we will show the relation between moduli spaces of

anti-self-dual connections and moduli spaces of vector bundles on alge-

braic surfaces, and how this makes it possible to compute Donaldson

invariants via algebraic geometry methods. Finally we concentrate on

the case that the number b+ of positive eigenvalues of the intersection

form on the second homology of the 4-manifold is 1. In this case the

Donaldson invariants depend on the metric (or in the algebraic geomet-

ric case on the polarization) via a system of walls and chambers. We

will study the change of the invariants under wall-crossing, and use this

in particular to compute the Donaldson invariants of rational algebraic

surfaces.

Keywords: Donaldson invariants, moduli spaces of sheaves.



Contents

1 Introduction 105

2 De�nition and properties of the Donaldson invariants 106

2.1 Moduli spaces of connections . . . . . . . . . . . . . . . . . . 106

2.2 ASD-connections . . . . . . . . . . . . . . . . . . . . . . . . . 107

2.3 Relations to holomorphic vector bundles . . . . . . . . . . . . 108

2.4 Uhlenbeck compacti�cation . . . . . . . . . . . . . . . . . . . 109

2.5 De�nition of the invariants . . . . . . . . . . . . . . . . . . . 110

2.6 Structure theorems . . . . . . . . . . . . . . . . . . . . . . . . 111

3 Algebro-geometric de�nition of Donaldson invariants 112

3.1 Determinant line bundles . . . . . . . . . . . . . . . . . . . . 113

3.2 Construction of sections of L1(nH) . . . . . . . . . . . . . . . 114

3.3 Uhlenbeck compacti�cation . . . . . . . . . . . . . . . . . . . 115

3.4 Donaldson invariants via algebraic geometry . . . . . . . . . . 116

4 Flips of moduli spaces and wall-crossing for Donaldson in-

variants 117

4.1 Walls and chambers . . . . . . . . . . . . . . . . . . . . . . . 118

4.2 Interpretation of the walls in algebraic geometry . . . . . . . 119

4.3 Flip construction . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.4 Computation of the wall-crossing . . . . . . . . . . . . . . . . 123

5 Wall-crossing and modular forms 125

5.1 Ingredients . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.2 The result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.3 Proof of the theorem . . . . . . . . . . . . . . . . . . . . . . . 129

5.4 Further results . . . . . . . . . . . . . . . . . . . . . . . . . . 131

References 133



Donaldson invariants in Algebraic Geometry 105

1 Introduction

Donaldson invariants [D1] have played an important role in the study and

classi�cation of compact di�erentiable 4-manifolds X. The most compre-

hensive introduction to Donaldson invariants is [D-Kr]. Discrete invariants

of 4-manifolds are the fundamental group �1(X) and the intersection form

on H2(X;Z). If X is simply-connected, then the homotopy type of X is

essentially determined by the intersection form. Friedman showed that in

this case X is determined up to homeomorphism by its homotopy type.

In order to attempt to make a di�erentiable classi�cation, ones needs ad-

ditional invariants. The Donaldson invariants are de�ned via gauge theory

in terms of moduli spaces of anti-self-dual connections on di�erentiable bun-

dles on X. If X is an algebraic surface, then these moduli spaces can be

identi�ed with moduli spaces of stable vector bundles on X. This makes it

possible to apply methods of algebraic geometry to compute the Donaldson

invariants. In fact, because of this, for a long time most of the calculations of

Donaldson invariants have been carried out in the case of algebraic surfaces.

On the other hand the Donaldson invariants have provided a lot of interest

for the study of moduli spaces of vector bundles and coherent sheaves on

algebraic surfaces.

Some results obtained with Donaldson invariants are:

1. Algebraic surfaces are essentially indecomposable: If a simply-connected

algebraic surfaceX is the connected sumX = Y#Z of two 4-manifolds,

then either Y or Z must have a negative de�nite intersection form. An

example where this happens is when X is the blow up of Y in a point.

2. The di�erentiable classi�cation of elliptic surfaces.

3. The Kodaira dimension of an algebraic surface is a di�erentiable in-

variant.

Recently the Seiberg-Witten invariants have appeared, which are also de-

�ned via gauge theory, but are often easier to compute [W],[D2]. A number

of conjectures from Donaldson theory were immediately proved, e.g.

1. The plurigenera of algebraic surfaces are di�erentiable invariants.

2. The generalized Thom conjecture: Let X be an algebraic surface, then

each smooth algebraic curve in X minimizes the genus of embedded

2-manifolds in its homology class.
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Conjecturally the Donaldson- and Seiberg-Witten invariants are very closely

related and in particular the Donaldson invariants can be computed in terms

of the Seiberg-Witten invariants.

Since the appearance of the Seiberg-Witten invariants the interest in the

Donaldson invariants has become a bit less, but there is still a large number

of interesting open questions.

2 De�nition and properties of the Donaldson in-

variants

In this lecture we de�ne the Donaldson invariants via gauge theory and

state some of their most important properties. We prefer here to formulate

everything in terms of vector bundles, which should be more familiar to the

audience, instead of principal bundles, which would be more natural.

2.1 Moduli spaces of connections

Let X be a smooth simply-connected compact oriented 4-manifold. Let P

be a principal SU(2)- or SO(3)-bundle on X. The Donaldson invariants are

de�ned via intersection theory on a moduli space of anti-self-dual connections

on P .

SU(2)-bundles on X are classi�ed by their second Chern class c2(P ),

and SO(3)-bundles on X are classi�ed by their second Stiefel-Whitney class

w2(P ) 2 H2(X;Z=2) and their �rst Pontrjagin class p1(P ) 2 H4(X;Z).

In the SU(2)-case the moduli space of anti-self-dual connections on P

can be identi�ed with the moduli space of anti-self-dual connections on the

associated complex vector bundle on E with �rst Chern class c1 = 0. In

the SO(3)-case (after choosing a lift c1 2 H2(X;Z) of w2(P )) it corresponds

to a moduli space of Hermitian Yang-Mills connections on the associated

complex vector bundle with Chern classes c1; c2 (with c21 � 4c2 = p1(P )).

For simplicity, in the following we will concentrate on the SU(2)-case.

Let E be a rank 2 complex di�erentiable vector bundle on X. We �x a

hermitian metric h on E. (That is for each x 2 X we have a hermitian inner

product on the �ber E(x), varying smoothly with x.) We denote by 
i(E)

the space of C1-sections of E 
 �iT �
X
.

A hermitian connection on E is a connection D : 
0(E) ! 
1(E), which

is compatible with h. (That D is a connection means that it is a linear map
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satisfying the Leibniz rule

D(f � s) = d(f 
 s) + f �D(S)

and that D is compatible with the metric means furthermore that

d(h(s1; s2)) = h(D(s1); s2) + h(s1;D(s2)) .)

D is called reducible if E is the direct sum L1 � L2 of two line bundles, and

D = D1 �D2 with Di a connection on Li.

We write A(E) for the space of hermitian connections on E, (which are

trivial on det(E) in the case c1(E) = 0 and equal to a �xed connection on

det(E) otherwise). A�(E) � A(E) is the subspace of irreducible connec-

tions. The gauge group G is the set of C1 -automorphisms of E which are

compatible with h and act as the identity on det(E). G acts on A(E) and

A�(E) via


0(E)
D
�! 
1(E)??y� ??y�


0(E)
�(D)
�! 
1(E):

Let B(E) := A(E)=G, B�(E) := A�(E)=G.

2.2 ASD-connections

We assume in this part that c1(E) = 0. Now �x a Riemannian metric g on

X. It gives rise to a Hodge star operator

�g : �
2T �

X ! �2T �
X ; �2g = 1:

We write �+ for the (+1)-eigenbundle and �� for the (�1)-eigenbundle of

�g.

De�nition 2.1 For D 2 A�(E), let F (D) = D � D 2 
2(End(E)) be it's

curvature. F is called anti-self-dual (ASD), if

�F (D) = �F (D):

In other words, writing F (D) := F�(D) + F+(D), with F�(D) a section of

��(End(E)) (and similarly for F+(D)), the condition is F+(D) = 0. We

write Ng(E) for the moduli space

Ng(E) := fASD-connections on Eg=G � B�(E):
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In the case c1(E) 6= 0 we have instead to take the moduli space of Hermitian

Yang-Mills connections on E, because only these correspond to the moduli

space of ASD-connections on the corresponding principal bundle. The dif-

ferentiable type of E is determined by its Chern classes c1(E), and c2(E).

Therefore we also write Ng(c1; c2) for Ng(E).

If D is an ASD-connection (or Hermitian Yang-Mills in case c1(E) 6= 0)

on E, then by Chern-Weil theory

4c2(E)�c
2
1(E) = �p1(E) =

1

4�2

Z
X

tr(F (D)^F (D)) =
1

4�2

Z
X

kF�(D)k2 > 0:

Let b+(X) be the number of positive eigenvalues of the intersection form on

H2(X;R). We write

k := (c2 � c21=4)(E):

Then we have the following generic smoothness result:

Theorem 2.2 If g is generic, then Ng(E) is a smooth manifold of dimension

2d = 8k � 3(1 + b+(X)):

For a generic path gt of metrics, the corresponding parameterized moduli

space is smooth.

Furthermore NE(g) is orientable. The orientation depends on the choice

of an orientation of a maximal-dimensional subspaceH2(X;R)+ ofH2(X;R)

on which the intersection form is positive de�nite.

2.3 Relations to holomorphic vector bundles

Assume here, that c1(E) = 0. Let X be a projective algebraic surface. Let

H be an ample divisor on X. Let g(H) be the corresponding Hodge metric

and ! the K�ahler form. We write �p;q for the bundle of (p; q) forms. Then

we get

�+ = <(�2;0 � �0;2)� R!

�� = !? in �1;1:

We can writeD := @D+@D, where @D : 
0(E)! 
1;0(E) and @D : 
0(E)!


0;1(E). So we get

F (D) = @2D + (@D@D + @D@D) + @
2

D:

D is ASD if
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1. @
2

D = 0.

2. @2
D
= 0 and F (D) ^ ! = 0.

1. means that @D de�nes a holomorphic structure on E. 2. implies after

some work that (E; @D) is �-stable with respect to H.

Recall that a vector bundle E of rank 2 on an algebraic surface X is called

�-stable (slope stable) with respect to an ample divisor H, if

Hc1(L) <
Hc1(E)

2

for all locally free subsheaves L of rank 1 of E. We denote by MX

H
(c1; c2)

�

the moduli space of �-stable rank 2 bundles on X with Chern classes c1 and

c2. We have motivated (at least in the case c1 = 0) that there is a map

	 : Ng(H)(c1; c2)!MX

H (c1; c2)
�:

In fact this map exists for any c1, and furthermore we get:

Theorem 2.3 (Donaldson) 	 is a homeomorphism.

This will give a relation between the Donaldson invariants (which we will

de�ne via moduli spaces of ASD-connections) and moduli of vector bundles.

2.4 Uhlenbeck compacti�cation

We want to de�ne the Donaldson invariants as intersection numbers on

Ng(E) which is usually not compact. We have therefore to compactify.

Theorem 2.4 Let (Ai)i be a sequence in Ng(E). After passing to a sub-

sequence we obtain: There is a �nite collection of points p1; : : : pl 2 X

with multiplicities n1; : : : ; nl > 0, such that up to gauge transformation

AijXnfp1;::: ;plg
converges to an ASD-connection A1. A1 can be extended to

an ASD-connection on a vector bundle E0 with

det(E0) = det(E); c2(E) = c2(E
0) +

lX
i=1

ni:

This leads to the Uhlenbeck compacti�cation:
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Theorem 2.5 There exists a topology ona
n�0

Ng(c1; c2 � n)�X(n)

such that the closure Ng(c1; c2) is compact.

Here X(n) = Xn=S(n) denotes the n-th symmetric power of X, the quo-

tient of the n-th power of X by the action of the symmetric group S(n) via

permuting the factors. It parameterizes e�ective 0-cycles on X of degree n.

2.5 De�nition of the invariants

We write H�(X) := H�(X;Q) and H�(X) = H�(X;Q). If on X � Ng(E)

there exists a universal bundle E with a universal connectionD withDjX�fDg =

D, then we can de�ne the �-map as follows.

� : H�(X)! H�(Ng(E)); �(�) = �
1

4
p1(E)=�:

Here �1
4
p1(E) = (c2(E)�c1(E)

2)=4, and the slant product�1
4
p1(E)=� means:

write

�
1

4
p1(E) =

X
i

�i 
 i; �i 2 H�(X); i 2 H�(Ng(E)):

Then

�
1

4
p1(E)=� =

X
i

h�i; �ii:

If the universal bundle does not exist, its endomorphism bundle End(E)

will still exist, and we can de�ne � by replacing (c2(E) � c21(E))=4 with

�c2(End(E))=4.

It can be shown that �(�) extends over the Uhlenbeck compacti�cation

Ng(E). For generic metric g, Ng(E) is a strati�ed space with smooth strata,

and the submaximal stratum has codimension at least 4. Therefore Ng(E)

has a fundamental class.

Now let

d := 4c2 � c21 �
3

2
(1 + b+(X))

and write d = l+2m. Let �1; : : : �l 2 H2(X) and let p 2 H0(X) be the class

of a point. Then we de�ne the Donaldson invariant

�X;g

c1;d
(�1 � : : : � �l � p

m) :=

Z
[Ng(E)]

�(�1) [ : : : [ �(�l) [ �(p)
m:
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More generally let

A�(X) := Sym�(H2(X) �H0(X)):

This is graded by giving degree (2� i=2) to elements in Hi(X). We denote

by Ad(X) the part of degree d. By linear extension we get a map �
X;g

c1;d
:

Ad(X)! Q and

�X;g

c1
:=
X
d�0

�
X;g

c1;d
: A�(X)! Q :

By de�nition the Donaldson invariants depend on the choice of the metric

g, because the ASD-equation uses the Hodge � operator, which depends on

g. We have however

Theorem 2.6 1. If b+(X) > 1, then �
X;g

C;d
is independent of the generic

metric g.

2. If b+(X) = 1, then �
X;g

C;d
depends only on the chamber of the period

point of g.

We will discuss walls and chambers later. The result means that the

Donaldson invariants are really invariants of the di�erentiable structure of

X. In the case b+(X) > 1, we can therefore drop the g from our notation.

The argument for showing the theorem is that one connects two generic

metrics by a generic path in order to make a cobordism. Reducible connec-

tions occur in codimension b+(X), so they make no problem for b+(X) > 1,

but can disconnect the path for b+(X) = 1.

2.6 Structure theorems

It is often useful to look at generating functions for the Donaldson invariants.

For a 2 H2(X) and � 2 A�(X) and a variable z we write

�X

C (�e
az) :=

X
n�0

�X

C (�a
n=n!)zn:

De�nition 2.7 A 4-manifold X is of simple type if

�X

C (�(p
2 � 4)) = 0

for all � 2 A�(X) and all C 2 H2(X;Z).
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Many 4-manifolds like K3 surfaces and complete intersections are known to

be of simple type, and it is possible that all simply-connected 4-manifolds are

of simple type. The famous structure theorem of Kronheimer and Mrowka

[Kr-Mr] says that all the Donaldson invariants of a manifold of simple type

organize themselves in a nice generating function, which depends only on a

�nite amount of data: a �nite number of cohomology classes in H2(X;Z)

(the basic classes) and rational multiplicities associated to these numbers.

Theorem 2.8 Let X be a simply-connected 4-manifold of simple type.

Then there exist so-called basic classes K1; : : : ;Kl 2 H2(X;Z) and rational

numbers �1(C); : : : �l(C), such that for all a 2 H2(X)

�X

C (e
at(1 + p=2)) = e(a�a)t

2
=2

lX
i=1

�i(C)e
hKi;ait:

(Here (a � a) denotes the intersection form on H2(X), and hKi; ai the dual

pairing between cohomology and homology.)

3 Algebro-geometric de�nition of Donaldson in-

variants

LetX be a simply-connected algebraic surface, and letH be an ample divisor

on X. For a sheaf F and a line bundle L on X we denote F (nL) := F 
L
n.

Let �F) =
P

i
(�1)idimHi(X;F ) be the holomorphic Euler characteristic

of F . Recall that a torsion-free coherent sheaf F on X is �-stable with

respect to H if (c1(G) � H)=rk(G) < (c1(F ) � H)=rk(F ) for all non-zero

strict subsheaves of F . F is called (Gieseker) H-semistable if �(G(nH)) �

�(F (nH) for all nonzero strict subsheaves G of F .

We denote byM :=MX

H
(C; c2) the moduli space of (Gieseker)H-semistable

rank 2 torsion-free coherent sheaves F on X with c1(F ) = C and c2(F ) = c2:

We want to relate M to the Uhlenbeck compacti�cation N := Ng(H)(C; c2).

Here g(H) is the Fubini-Study metric associated to H. As the Donaldson

invariants are de�ned in terms of the Uhlenbeck compacti�cation, this allows

us to compute them on the moduli space M of sheaves.

The steps of the argument are as follows:

1. Introduce the determinant bundles L1(nH) on M for n� 0.
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2. Construct sections of L1(nH)
m for n;m � 0 and show that the

corresponding linear system is base-point free, thus giving a morphism

	 :M ! P(H0(M;L1(nH)
m)_):

3. Show that Im(	) is homeomorphic to N .

4. Apply this to the computation of the Donaldson invariants.

3.1 Determinant line bundles

We will assume for simplicity that there is a universal sheaf E over X �M .

For instance, this is the case if H is general and either C is not divisible by

2 or c2 � C2=4 is odd.

For a coherent sheaf F on X �M , let

0! Gl ! : : :! Gs ! 0

be a �nite complex of locally free sheaves which is quasi-isomorphic to

Rp2�(F). Then we put

det(p2!(F)) :=
O

det(Gj)
(�1)j 2 Pic(M):

De�nition 3.1 Let D 2 jnHj be a smooth curve. For a general E 2M let

�1 := �(EjD). Let a 2 X be a point. Then we put

L1(nH) := det(p2!(EjD�M ))
�2 
 det(Ejfag�M )
�1 :

Let MD be the moduli space of semistable rank 2 vector bundles on D of

degree D �C. Assume for simplicity that also on D�MD there is a universal

sheaf G. Let G be any element in MD. Then we de�ne

L0 := det(p2!G)

�2 
 det(Gjfag�MD

)
�(G):

Remark 3.2 L1(nH) is independent of the choice of E (and also of D and

a). Any other choice of a universal sheaf F can be written as F = E
p�2� for

� a line bundle on M . Then the projection formula implies that Rp2�(E 


p�2�) = Rp2�(E)
 �, and therefore

det(p2!(E 
 p�2�)) = �
�(E) 
 det(p2!(E)):
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So L1(nH) stays unchanged if we replace E by E 
�. In fact we do not need

the existence of E in order to de�ne L1(nH). The de�nition is part of a more

general formalism of determinant sheaves as was explained in the lectures of

Huybrechts and Lehn (see [LP], [H-L] where these line bundles are de�ned

via descent from the corresponding Quot scheme).

In the same way we see that L0 is independent of the choice of F and

indeed we do not need the existence of G to de�ne L0.

3.2 Construction of sections of L1(nH)

We have the following theorem

Theorem 3.3 [D-N] L0 is ample on MD.

Let U(D) � M be the open subset of all sheaves E such that EjD is

semistable. Thus for E 2 U(D), we get that EjD 2MD. We obtain therefore

a rational map

j :M !MD;

which is de�ned on U(D). By de�nition we see that

j�(L0) = L1(nH) on U(D):

Fix an integer m� 0. As L0 is ample, L

m
0 will have many sections. So we

want to extend the pullbacks j�(s) of sections s 2 H0(MD; L

m
0 ) to sectionses 2 H0(M;L1(nH))
m. By Bogomolovs theorem ([H-L] p. 174) we have

the following: For n � 0 and all E 2 M the restriction EjD is semistable,

unless E is not locally free over D. For c2 � 0 the general element in M

is locally free. If E 2 M is not locally free, then its singularities occur

in codimension 2. Therefore the condition that EjD is not locally free has

codimension 1 in the locus of not locally free sheaves. So, putting things

together, we see that the complement M n U(D) has codimension � 2 in

M . Furthermore M is normal. Therefore every j�(s) for s 2 H0(MD; L

m
0 )

extends to es 2 H0(M;L1(nH))
m.

More precisely one can show the following ([Li], Prop. 2.5).

Lemma 3.4 For every s 2 H0(MD; L

m
0 ) the pullback j�(s) extends toes 2 H0(M;L(nH)
m). Furthermore the vanishing locus of es is

Z(es) = �E 2M
��EjD is semistable and s(EjD) = 0

or EjD is not semistable
	
:
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Now choose m;n� 0.

Proposition 3.5 H0(M;L1(nH)
m) is base-point free.

Proof. Let E 2 M . By the theorem of Mehta and Ramanathan (see

[H-L] Theorem. 7.2.1), we can �nd a smooth curve D 2 jnHj such that

EjD is semistable. Choose s 2 H0(MD; L

m
0 ), such that s(EjD) 6= 0. Thenes(E) 6= 0. �

3.3 Uhlenbeck compacti�cation

L1(nH)
m de�nes a morphism

	 :M ! P(H0(M;L1(nH)
m)_):

Theorem 3.6 	(M) is homeomorphic to the Uhlenbeck compacti�cation

N .

We want to give a brief sketch of the proof of this theorem.

For E 2M , we introduce the pair (A(E); Z(E)), where

1. If E is �-stable, then

A(E) = E__; Z(E) =
X
p2X

l(E__=E)p � p:

l(E__=E)p is the length of the sheaf E__=E at p. Z(E) is an e�ective

0-cycle of length k := c2(E) � c2(E
__) on X, i.e. a point in the

symmetric power X(k).

2. If E is not �-stable, we have the Harder-Narasimhan �ltration

0! F ! E ! G! 0;

where F and G are rank 1 sheaves with degH(F ) = degH(G). We put

A(E) = F__�G__; Z(E) =
X
p2X

l
�
(F__�G__)=(F�G)

�
p
�p 2 X(k):

Claim: For E1; E2 2M we have 	(E1) = 	(E2) if and only if (A(E1); Z(E1)) =

(A(E2); Z(E2)). In other words: the sets 	(M) and N are equal.
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We want to check the claim in a special case. Assume 	(E1) = 	(E2),

where E1 and E2 are �-stable. Take D 2 jnHj general, then E1jD =

E2jD (otherwise, as L
m0 is very ample on MD, we can �nd a section s 2

H0(MD; L

m
0 ), such that 0 = s(E1jD) 6= s(E2jD). Then es(E1) = 0; es(E2) 6=

0). The exact sequence

Hom(E__
1 ; E__

2 )! Hom(E1jD; E2jD)! H1(Hom(E__
1 ; E__

2 (�nH))) = 0

implies that Hom(E__
1 ; E__

2 ) 6= 0. The �-stability of E1; E2 and therefore

also of E__
1 ; E__

2 then implies E__
1 = E__

2 . Now assume p 2 Z(E1) but p 62

Z(E2). Then we choose D 2 jnHj such that p 2 D and E2jD is semistable.

Then E1jD is not semistable and therefore we can �nd s 2 H0(MD; L

m
0 ),

such that es(E1) = 0 and es(E2) 6= 0.

3.4 Donaldson invariants via algebraic geometry

Let again M := MX

H
(C; c2) be the moduli space of Gieseker H-semistable

sheaves with Chern classes C and c2. Assume that there is a universal sheaf

E over X �M . Write

d := 4c2 � C2 � 3(1 + pg(X)):

Let � : H�(X)! H4��(M) be de�ned by

�(a) := c2(E)�
1

4
c1(E)

2=a;

(i.e. we write

c2(E)�
1

4
c1(E)

2 :=
X
i

�i 
 i; �i 2 H�(X;Q); i 2 H�(M;Q);

then

�(�) =
X
i

h�i; aii ).

Again � is independent of the choice of a universal sheaf, and, if no universal

sheaf exists, � can be de�ned without using it. We denote again by Ad(X)

the set of elements of degree d in Sym�(H0(X)�H2(X)), where the class p

of a point in H0(X) is given weight 2 and a class in H2(X) is given weight

1. For � := a1 � : : : � ak 2 Ad(X), we de�ne

�(�) := �(a1) [ : : : [ �(ak) 2 H2d(M)
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and


X;H

C;d
(�) :=

Z
M

�(�):

Theorem 3.7 [M],[Li] Under the conditions speci�ed below we have

�
X;g(H)

C;d
= (�1)(C

2+KXC)=2
X;H

C;d
:

Conditions:

1. Locally-free �-stable sheaves are dense in M (otherwise replace M by

the closure of the locus of locally free sheaves).

2. Every L in Pic(S) n f0g with L � C mod 2 and LH = 0 satis�es

L2 < �(4c2 � C2) (this means that H does not lie on a wall, see

below).

3. MX

H
(C; c2) has dimension 4c2 � c21 � 3�(OX ) and

dim(MX

H (C;n)) + 2(c2 � n) < dim(MX

H (C; c2)); for all n < c2:

4. If C 2 2H2(X;Z) there is an extra condition; e.g. for � 2 Symd(H2(X)),

the condition is d > 2c2 � C2=2.

The point is that the classes �(�) and �(�) are related by 	�: 	�(�(�)) =

�(�). Furthermore the fundamental classes of M and N are related by 	�:

up to di�erent sign convention 	�([M ]) = [N ]. Then the theorem follows

from the projection formula.

4 Flips of moduli spaces and wall-crossing for Don-

aldson invariants

In this and the next lecture we want to determine the dependence of the

Donaldson invariants on the metric in the case b+ = 1 when they indeed

depend on the metric. In this lecture we will restrict to the case of algebraic

surfaces. In this case the change of metric corresponds to a change of ample

divisor H. So we study how the moduli spaces MX

H
(C; c2) vary with H.

We will �nd out that under suitable assumptions, the variation is described

by an explicit series of blow ups and blow downs, with centers projective

bundles over Hilbert schemes of points. We use this to determine the change
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of the Donaldson invariants as an explicit intersection number on a suitable

Hilbert scheme of points on X. Finally one can compute the leading terms of

this intersection number. We will follow mostly [E-G1]. A similar approach

can be found in [Fr-Q].

4.1 Walls and chambers

We start by reviewing general results about the dependence on the metric.

Let X be a compact simply-connected di�erentiable 4-manifold.

In the case b+(X) > 1 the Donaldson invariants �
X;g

C;d
are independent of

the metric g (as long as it is generic). Now assume b+(X) = 1. In this case

the Donaldson invariants will indeed depend on the metric g. Let H2(X;R)+

be the set of all � 2 H2(X;R) with �2 > 0. In fact the Donaldson invariants

depend on g via a system of walls and chambers in H2(X;R)+ .

We �x C 2 H2(X;Z) and d 2 Z�0. The positive cone H2(X;R)+=R+

has two connected components 
+ and 
�. A homology orientation (i.e.

the choice of an orientation on a maximal-dimensional linear subspace of

H2(X;R) on which the intersection form is positive de�nite), which is needed

to de�ne an orientation on the moduli space of ASD-connections, is equiva-

lent to the choice of one of them, say 
+.

De�nition 4.1 Let g be a Riemannian metric on X. The period point

!(g) is the point in 
+ de�ned by the one-dimensional subspace of g-self-

dual g-harmonic 2-forms. I.e these are the harmonic two forms � 2 
2(X)

with �g� = �. By the Hodge theorem this is a 1-dimensional subspace of

H2(X;R). An element � 2 H2(X;Z) + C=2 is called of type (C; d) if

(d+ 3)=4 + �2 2 Z�0:

In this case

W � :=
�
L 2 
+

�� � � L = 0
	

is called the corresponding wall of type (C; d). The chambers of type (C; d)

are the connected components of complement of the walls of type (C; d) in


+.

It turns out that the Donaldson invariants with respect to the Fubini-

Study metric corresponding to H depend only on the chamber of the period

point of H.
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Theorem 4.2 [K-M]

1. �
X;g

C;d
depends only on the chamber (of type (C; d)) of !(g).

2. For all � of type (C; d) there exists a linear map �X
�;d

: Ad(X) ! C .

such that

�
X;g1

C;d
� �

X;g2

C;d
=

X
�!(g2)<0<�!(g2)

(�1)(��C=4)C�X
�;d
:

4.2 Interpretation of the walls in algebraic geometry

Now let X be a simply-connected algebraic surface with geometric genus

pg = 0 (this is equivalent to b+(X) = (1 + 2pg(X)) = 1 ). Let H be an

ample divisor on X. Let C be the ample cone of X. We choose 
+ as the

connected component of H2(X;R)+=R+ , which contains C=R+ . Then the

period point of the Fubini-Study metric g(H) is !(g(H)) = R+H 2 C=R+ .

Fix C 2 H2(X;Z) and c2 2 Z, such that d := 4c2 � C2 � 3 is a nonnegative

integer. By Section 3 we can compute �
X;g(H)

C;d
on MX

H
(C; c2). So we now

need to know how MX

H
(C; c2) depends on H.

Let E be a torsion-free rank 2 sheaf on X with Chern classes C and c2.

Let H+ and H� be two ample line bundles on X, and assume that E is

Gieseker stable with respect to H�, but Gieseker unstable with respect to

H+. Then the Harder-Narasimhan �ltration of E with respect to H+ gives

an exact sequence

0! IZ1
(F )! E ! IZ2

(G)! 0;

where

1. The class � := (F �G)=2 satis�es

�H� < 0 < �H+:

2. IZ1
and IZ2

are the ideal sheaves of 0-dimensional subschemes Z1 2

X [n] and Z2 2 X [m] and c2(E) = FG+ n+m or equivalently

c2 � C2=4 + �2 = n+m � 0:

This means that � is a class of type (C; d) and there exists an ample line

bundle H between H+ and H� with �H = 0. In other words � de�nes a wall

of type (C; d), such that W � intersects C.
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De�nition 4.3 Let E
n;m

�
be the set of all sheaves E lying in extensions

0! IZ1
(F )! E ! IZ2

(G)! 0;

with � := (F �G)=2, Z1 2 X [n], Z2 2 X [m].

Then we conclude

1. MX

H
(C; c2) depends only on the chamber of type (C; d) of H. In par-

ticular the Donaldson invariants are constant on each chamber.

2.

MX

H
�

(C; c2) nM
X

H+
(C; c2) �

a
�

a
n;m

E
n;m

�
:

Here the sums run over all � of type (C; d) such that H� < 0 < �H+,

and over all n;m 2 Z�0 with n+m = c2 � C2=4 + �2.

We would like to say that MX

H+
(C; c2) is obtained from MX

H
�

(C; c2), by

removing the En;m

�
and replacing them by the Em;n

��
(for � classes of type

(C; d) with �H� < 0 < �H+). This however is not quite true. The problem

is that E
n;m

�
and E

l;r

��
can intersect, i.e. we can have a diagram

0??y
IW1

(G)??y &

0 �! IZ1
(F ) �! E �! IZ2

(G) �! 0

&
??y

IW2
(F )??y
0

To deal with this, we need a �ner notion of stability. We use: Gieseker

stability is not invariant under tensorizing by a line bundle.

Assume H� and H+ are separated by a unique wall W � with �H� < 0 <

�H+. Let H lie between H� and H+ with H� = 0. If E is a torsion-free

H-semistable sheaf of rank 2 with Chern classes C and c2, then

1. E is H�-semistable, if and only if E(l(H� �H+)) is H-semistable for

l� 0.
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2. E is H+-semistable, if and only if E(l(H+ �H�)) is H-semistable for

l� 0.

This gives us a �ner notion of stability. By using a parabolic structure of

length 1 (which essentially amounts to tensorizing with a fractional power

of H� �H+), we get moduli spaces

Ma; a 2 [�1; 1]; M�1 =MX

H
�

(C; c2); M1 =MX

H+
(C; c2):

There are miniwalls ai 2 [�1; 1] such that for all i and 0 < �� 1

Mai+� = (Mai�� nE
n;m

�
)q E

m;n

��

for suitable n, m (for more details look at [E-G1]).

4.3 Flip construction

Now we want to see more precisely what happens to MX

H
(C; c2) when H

crosses a wall. We want to see that its change can be described by a se-

quence of blow ups and blow downs. For this we need an additional assump-

tion which essentially guarantees that all the involved moduli spaces will be

smooth near the locus where they change.

De�nition 4.4 A class � of type (C; d) de�nes a good wall if W � contains

ample divisors and 2� +KX and �2� +KX are not e�ective. In particular

if �KX is e�ective, then all walls in the ample cone are good.

We want to describe the wall-crossing through a good wall de�ned by �.

Let b be a miniwall, as above, and let

M� :=Mb��; M+ :=Mb+� = (M� n E
n;m

�
) qE

m;n

��
:

We write

E� := E
n;m

�
; E+ := E

m;n

��
:

Let T := X [n] �X [m], let Z1;Z2 � S � T be the two universal families i.e.

Z1 := f(x;Z;W ) 2 X � T j x 2 Zg

Z2 := f(x;Z;W ) 2 X � T j x 2Wg:
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Let q be the projection S � T ! T . We write C := F + G, � := F � G=2

and write F := IZ1
(F ), G := IZ2

(G), (these are sheaves on X � T and we

suppress the various pullbacks in the notation). Finally we write

A� := Ext1q(F ;G); A+ := Ext1q(G;F):

These are the relative Ext sheaves. Under our assumptions these sheaves

are locally free and the �bers over a point (Z;W ) 2 T are

A�(Z;W ) := Ext1(IZ(F );IW (G)); A+(Z;W ) := Ext1(IW (G);IZ(F )):

We denote the tautological sub-line bundles on P(A�) and P(A+) by �� and

�+.

Lemma 4.5 1. A� is locally free of rank ��(2� �KS) + n+m� 1.

2. The tautological extension

0! F ! E ! G(��)! 0

gives an isomorphism P(A�) ' E�.

3. NE
�
=M

�

= A+(��).

Proof. 1. follows from Riemann-Roch, because the condition of a good wall

implies Homq(F ;G) = 0 and Ext2q(F ;G) = 0.

2. is then easy.

For 3. we use that TM
�

= Ext1q(E ; E), where E is the universal sheaf on

X �M�. Then one has to do some diagram-chasing. �

Part 3. of this lemma lets us hope that the blow up of M� along E� and

the blow up of M+ along E+ might be the same. So let fM� be the blow up

of M� along E� and fM+ the blow up of M+ along E+. Let D ' P(A�)�T

P(A+) be the exceptional divisor. We see that O(D)jD = OD(�� + �+).

Theorem 4.6 fM� = fM+.

Proof. Let E� be the universal family on X � M� (and denote by the

same symbol its pullback to fM�). Let E+ be the kernel of the composition

E� ! E�jD ! G(��)D, where G(��)D is the pullback of G(�) from S � T

to S �D. So we de�ne E+ via elementary transform along the exceptional

divisor D. Then we check that E+ is a b + � stable family for 1 � � > 0.
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Thus E+ de�nes a morphism fM� ! M+. It is not di�cult to check that it

is the blow up along E+. �

So we see that MX

H+
(C; c2) =M1 is obtained from MX

H
�

(C; c2) =M�1 via

a sequence of blow ups along smooth subvarieties of the form E
n;m

�
followed

by a blow up of the exceptional divisor in another direction to E
m;n

��
.

4.4 Computation of the wall-crossing

Now we want to compute the wall-crossing terms �X
�;d
. For simplicity we

restrict to Symd(H2(X)). Let a 2 H2(X). Let b run through the miniwalls

corresponding to � and write fMb for the blow up fMb�� = fMb+�. From the

de�nitions we see that

�X�;d(a
d) = �

 Z
MX
H+

(C;c2)

�(a)d �

Z
MX
H
�

(C;c2)

�(a)d

!
=
X
b

Z
fMb

(�+(a)
d���(a)

d):

Here ��(a) := (c2(E�) � c1(E�)
2=4)=a, and similarly for �+. (The E� and

E+ and therefore the �� and �+ also depend on b.)

Let us again put ourselves in the situation of the previous section: fM� is

the blow up of M� along E� and fM+ the blow up of M+ along E+, and D

is the exceptional divisor.

Lemma 4.7 1. �+(a)� ��(a) = �h�; aiD.

2.
R
fM
�

(�+(a)
d � ��(a)

d) is the evaluation of a suitable (explicitly com-

putable) cohomology class on X [n] �X [m].

Proof. 1. Is an easy application of Riemann-Roch without denominators see

[Fu] (which tells how to compute the Chern classes of sheaves supported on

subvarieties).

2.

�+(a)
d � ��(a)

d = (�+(a)� ��(a))(�+(a)
d�1 + : : :+ ��(a)

d�1)

is by 1. divisible by D, so we can view it as a class on D. We can then push

the class from D down to T . �

Putting all this together and summing over all the miniwalls corresponding

to a given wall � we obtain the following: Note that the various X [n]�X [m]

with m+ n = l can be collected to (X tX)[l] =
`

n+m=lX
[n] �X [m]).
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Theorem 4.8

�X�;d(a
d) = �

dX
b=0

2b
�
d

b

�
h�; aid�b �

Z
(XtX)[l]

�bs2l�b(Ext
1
q(IZ1

;IZ2

 (O(�2�)�O(�2� +KX)))):

Here p and q are the projections of X � (X t X)[l] to X and (X t X)[n]

respectively and l := c2 � C2=4 + �2. Z1 and Z2 � X � (X tX)[n] are the

universal families

Z1 := f(x;Z;W ) 2 X � (X tX)[l] j x 2 Zg;

Z2 := f(x;Z;W ) 2 X � (X tX)[l] j x 2Wg:

si(E) denotes the i-th Segre class, de�ned by

1 + s1(E) + s2(E) + : : : = 1=(1 + c1(E) + c2(E) + : : : )

and � := q�(p
�� � ([Z1] + [Z2])): So we are reduced to a (very complicated)

intersection computation on the Hilbert scheme of points on X. The inter-

section theory of X [n] is in general not understood. It gets harder very fast

as n grows. So in our case the di�culty of the computation depends on the

number l := c2�C
2=4+�2. The intersection number above can be computed

for l not too large, say l � 3. For l = 0 we get for instance

�X
�;d
(ad) = �h�; aid:

There is an alternative way of carrying out the �nal step of the compu-

tation, i.e. the computation in the cohomology ring of the Hilbert scheme

of points. Assume X is a blow up of P2. On P2 we have actions of C
� with

�nitely many �xpoints. We can do the blow up in such a way that X still

carries an action of C � with �nitely many �xpoints (at each step it is enough

to only blow up �xpoints). This action lifts to an action on X [n], which

still has only �nitely many �xpoints. All the intersection numbers we have

to compute for the wall-crossing are indeed intersection numbers of Chern

classes of equivariant bundles for this action.

We can therefore apply the Bott residue formula. This allows us to com-

pute the intersection numbers by looking at the weights of the action on the

�bers of the equivariant bundles over the �xpoints. This gives an algorithm
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for computing the wall-crossing for rational surfaces. We used this in [E-G2]

to compute the Donaldson invariants of P2 of degree � 50.

The fact that we can compute the Donaldson invariants of P2, where there

are no walls might seem surprising. We use the blow up formulas (see the

next lecture) to relate the Donaldson invariants of P2 to those of the blow

up of P2 in a point. On this blow up we can then apply the wall-crossing in

order to do the computation.

5 Wall-crossing and modular forms

Let X be a simply-connected 4-manifold with b+(X) = 1. In this case the

Donaldson invariants were �rst studied in [K]. In this lecture I want to give

a generating function for the wall-crossing terms �X
�;d
. We will see that such

a generating function can be found in terms of modular forms. This is the

contents of the paper [G]. The strategy will be to compare the wall-crossing

an X and on the connected sum of X with P2 with the opposite orientation.

This will give us recursion formulas for the �X
�;d
.

5.1 Ingredients

There are several ingredients which have to be put together in order to

compute the generating function.

(1) Kotschik-Morgan conjecture. In their paper [K-M], where they

show that the Donaldson invariants �X;g

C;d
depend only on the chamber of the

period point of the metric g, Kotschik and Morgan also make a conjecture

about the structure of the wall-crossing terms �X
�;d
. For a class � 2 H2(X)

and a 2 H2(X), we denote by h�; ai the pairing of H2(X) with H2(X) and

by (a � a) the intersection form on the middle homology H2(X).

Conjecture 5.1 [K-M] �X
�;d
(ad) is for a 2 H2(X) a polynomial in h�; ai and

(a �a), whose coe�cients depend only on �2, d and the homotopy type of X.

In a series of papers Fehan and Leness are working on a proof of this con-

jecture [Fe-Le1],[Fe-Le2-4].

(2) Blow up formulas. The blow up formulas relate the Donaldson

invariants of a 4-manifold X with those of the connected sum bX := X#P2 of

X with P2 with the opposite orientation. In the case that X is an algebraic
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surface, we can take bX to be the blow up of X in a point. In the case

b+(X) = 1, when the Donaldson invariants depend on the choice of a metric,

we need to choose the metric on bX to be very close to the pullback of a metric

on X, in order to make the blow up formulas applicable. Let E be the class

of the exceptional divisor, then H2( bX;R) = H2(X;R)�RE. We will identify

H2(X;R) with the classes in H2( bX;R) orthogonal to E.

If L 2 H2(X;R)+ is (a representative of) the period point of the metric

g, we write

�
X;L

C;d
:= �

X;g

C;d
:

For C 2 H2( bX;Z), H 2 H2(X;R)+ , we write

�
bX;H

C;d
:= �

bX;H��E

C;d

for 0 < �� 1. (This will be independent of � for su�ciently small � > 0.)

Theorem 5.2 Let C 2 H2(X;Z), a 2 H2(X), H 2 H2(X;R)+ . We write

e 2 H2( bX;Z) for the Poincar�e dual of E. Then

1. �
bX;H

C;d
(ad) = �X;H

C;d
(ad).

2. �
bX;H

C+E;d+1(e a
d) = �X;H

C;d
(ad).

3. �
bX;H

C;d
(e2ad�2) = 0.

This result holds also if b+ > 1. In fact this is the case in which it

was originally proved. In the case b+ > 1 the Donaldson invariants are

independent of the metric, so one does not have to worry about which metric

to choose on bX for a given metric on X.

More generally Fintushel and Stern [F-S] found generating functions for

the blow up formulas: Let p 2 H0(X) be the class of a point. Then there

are power series

B(x; t) =
X
k

Bk(x)t
k;

S(x; t) =
X
k

Sk(x)t
k;

such that

�
bX;H

C
(adek) = �X;H

C
(adBk(p));

�
bX;H

C+E(a
dek) = �X;H

C
(adSk(p)):
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B(x; t) and S(x; t) can be expressed in terms of elliptic functions, e.g. S(x; t) =

e�t
2
x=6�(t), where � is the Weierstrass � function.

(3) Vanishing results. The last ingredient is that in certain cases (for

rational ruled surfaces) the Donaldson invariants vanish. This will give a

starting point for the calculations.

Lemma 5.3 Let X be a rational ruled surface. Let F be the class of

a �ber and assume CF = 1. Let H be an ample divisor on X. Then

MX

F+�H(C; c2) = ; for 0 < �� 1. In particular �
X;F+�H
C;d

= 0 for 0 < �� 1.

More generally the following holds: Let f : X ! C be a surjective mor-

phism of an algebraic surface to a curve. Let F be the class of a �ber and

let H be ample on X. Then a vector bundle E over X is semistable with

respect to F+�H if and only if the restriction of E to the generic �ber of f is

semistable. This fact is also e.g. used by Friedman to study the Donaldson

invariants of elliptic surfaces.

5.2 The result

Our aim is to show:

Theorem 5.4 Let a 2 H2(X) and let t be a variable. Then

�X� (exp(at)) = Coe�q0

�
f(�)R(�)�(�)�(X)q��

2=2 exp
�
�
h�; ait

f(�)
�
(a � a)G(�)t2

f(�)2

��
:

Here �(X) is the signature of X. For the rest of the notations I briey

review modular forms.

Review of modular forms: Let H :=
�
� 2 C

�� =(�) > 0
	
be the

complex upper half plane. For � in H we denote q := e2�i� . The group

SL2(Z) acts on H by �
a b

c d

�
� =

a� + b

c� + d
:

A function g : H ! C is called a modular form of weight k for SL2(Z), if

g
�a� + b

c� + d

�
= (c� + d)kf(�); for all

�
a b

c d

�
2 SL2(Z);
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and furthermore g has a q-development

f(�) =

1X
n=0

anq
n:

One can associate an elliptic curve E� := C =(Z + Z�) to � 2 H , and E�

and E� 0 are isomorphic if and only if � and � 0 are related by an element of

SL2(Z). Therefore modular forms are related to moduli of elliptic curves.

One can also talk about modular forms for subgroups � of �nite index of

SL2(Z). In this case one requires the transformation behavior only for the

elements in � and the requirement on the q-development has to be modi�ed.

All the functions appearing in the theorem are (related to) modular forms.

�(�) := q

1Y
k=1

(1� qk)24

is the discriminant, a modular form for SL2(Z).

�(�) = �(�)1=24

is the Dirichlet eta-function.

�(�) :=
X
n2Z

qn
2=2

is the theta function for Z.

G2(�) := �
1

24
+

1X
n=1

�X
djn

d
�
qn

is an Eisenstein series and

e3(�) :=
1

12
+

1X
n=1

� X
djn;d odd

d
�
qn;

the value of the Weierstrass }-function at one of the two-division points. We

put

R(�) :=
�(�)2

�(�=2)�(2�)
;

f(�) := e��i=4
�(�)3

�(�)
;

G(�) := G2(�) + e3(�)=2:
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As a corollary to this result we can compute all the Donaldson invariants of

the projective plane P2. The projective plane is in some respects the simplest

algebraic surface. Therefore, if one wants to understand the Donaldson

invariants of algebraic surfaces, one should at least be able to compute them

for P2.

Let H 2 H2(P2;Z) be the hyperplane class, and let h be its Poincar�e dual.

Corollary 5.5

�
P2;H

H
( exp(ht)) = Coe�q0

"
f(�)R(�)

X
a�n>0

(�1)n+
1
4 q

1
2
((a�a)�(n� 1

2
)2) exp

�
�
(n+ 1

2
)t

f(�)
�
G(�)t2

f(�)2

�#
:

There is a similar formula for �P2;H0 .

Proof. The blow up X of P2 at a point is a ruled surface, the class of the

�ber is F = H � E. So we get �X;F+�H
H

= 0 by the vanishing result above.

On the other hand the blow up formulas give that �P2;H
H

(hd) = �X;H

H
(hd);

and the last can be computed by adding all the wall-crossing terms �X
�;d

for

all classes � of type (H; d) with �H > 0 > �F: �

5.3 Proof of the theorem

Now I want to sketch the proof of the theorem. The idea is as follows: We

want to relate the wall-crossing onX and its blow up bX . So �x C 2 H2(X;Z)

and let � de�ne the only wall of type (C; d) on X between H� and H+.

Instead of directly applying the wall-crossing formula for the wall W �, we

can also �rst apply the blow up formulas, then cross all the walls between

H� and H+ on bX and then apply the blow up formula again to get back to

X. This gives us two di�erent ways to compute the wall-crossing term �X
�
,

which will give us recursion formulas.

By de�nition we see that the classes � of type (C; d) on bX with H�� <

0 < H+� are precisely the

� = � + nE; n 2 Z; n2 � (d+ 3)=4 + �2;
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and the classes of type (C +E; d+ 1) are precisely the

� = � + (n+ 1=2)E; n 2 Z; (n+ 1=2)2 � (d+ 4)=4 + �2:

We write

�X� :=
X
d�0

�X�;d:

Then together with the above discussion the blow up formulas give:

�X� (a
d) =

X
n2Z

�
bX

�+nE(a
d); (5.0.1)

�X� (a
d) =

X
n2Z

(�1)n�1�
bX

�+(n+1=2)E(e a
d); (5.0.2)

0 =
X
n2Z

�
bX

�+nE(e
2 ad�2): (5.0.3)

Now we use the Kotschick-Morgan conjecture. Let X(b) be the blow up

of X in b points. The Kotschick-Morgan conjecture allows us to write

�
X(b)

�
(ad=d!) =

X
l+2k=d

h�; ail

l!

(a � a)k

k!
P (l; k; b; �2);

for universal constants P (l; k; b; w) for l; k; b 2 Z, w 2 Z=4. Then the rela-

tions (5.0.1), (5.0.2), (5.0.3) imply in turn

P (l; k; b; w) =
X
n2Z

P (l; k; b+ 1; w � n2); (5.0.4)

P (l; k; b; w) =
X
n2Z

(�1)n(n+ 1=2)P (l; k; b + 1; w � (n+ 1=2)2);

(5.0.5)X
n2Z

n2P (l; k; b; w � n2) = 2
X
n2Z

P (l; k; b; w � n2): (5.0.6)

Now we put

�X :=
X
l;k;b;w

P (l; k; b; w)qw=2
LlQktb

l!k!b!
;

for variables q; L;Q; t. We see that we have encoded all the information

about the wall-crossing formulas into the generating function �X . So our

task is to determine �X explicitly.
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The formulas (5.0.4), (5.0.5), (5.0.6) for the P (l; k; b; w) translate into the

following di�erential equations for �X .

�(�)
@

@t
�X = �X ;

�(�)3
@

@L

@

@t
�X = �X ;

2�(�)
@

@Q
�X =

�
q
@

@q
�(�)

� @2

@L2
�X :

These di�erential equations are trivial to solve: Writing

�X(q) := �X(0; 0; 0; q)

we get

�X = exp
�
�

L

f(�)
�
QG(�)

f(�)2
+
t

�

�
�X(q):

Finally we need to determine �X(q). It is enough to do this in the case

X = P1 � P1: For every simply-connected 4-manifold with b+ = 1, the

blow up Y of X in two points is homotopy-equivalent to the blow up of

P1 � P1 in a number of points. The Kotschick-Morgan conjecture says that

the wall-crossing terms only depend on the homotopy type of X.

Let F and G be the �bers of the two projections of P1�P1 onto its factors.

By the vanishing result we get

�P1�P1;F+�G
F+G;d = �P1�P1;G+�F

F+G;d = 0:

Therefore the sum of all the wall-crossing terms for all the walls between

F and G has to vanish. This is enough to determine all the coe�cients of

�P1�P1(q). This part of the calculation is slightly more di�cult and involves

some tricks with modular forms.

5.4 Further results

This result has later been used in [G-Z] to prove structure theorems (like

those of Kronheimer and Mrowka in the b+ > 1 case) also for manifolds

with b+ = 1. These results work when one takes the limit of the Donaldson

invariants �X;H

C
as H tends to a class F with F 2 = 0. We write �X;F

C
for

this limit.
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We get for instance the following: Let X be a rational elliptic surface (i.e.

the blow up of P2 in the 9 points of intersection of two smooth cubics). Let

F be the class of a �ber. Then for all a 2 H2(X) we get

�
X;F

H
(eat(1 + p=2)) = �

e(a�a)t
2
=2

cosh(hF; ait)
:

To prove such results, one has to sum over all walls between two classes F , G

with F 2 = G2 = 0. These sums organize themselves into theta functions, and

somewhat complicated arguments with modular forms will give the result.
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Introduction:

In this series of lectures we shall examine holomorphic bundles over com-

pact elliptically �bered manifolds. We shall examine constructions of such

bundles as well as (duality) relations between such bundles and other geo-

metric objects, namely K3-surfaces and del Pezzo surfaces.

We shall be dealing throughout with holomorphic principal bundles with

structure group GC where G is a compact, simple (usually simply connected)

Lie group and GC is the associated complex simple algebraic group. Of

course, in the special case G = SU(n) and hence GC = SLn(C), we are con-

sidering holomorphic vector bundles with trivial determinant. In the other

cases of classical groups, G = SO(n) or G = Sympl(2n) we are consider-

ing holomorphic vector bundles with trivial determinant equipped with a

non-degenerate symmetric, or skew symmetric pairing. In addition to these

classical cases there are the �nite number of exceptional groups. Amazingly

enough, motivated by questions in physics, much interest centers around the

group E8 and its subgroups. For these applications it does not su�ce to

consider only the classical groups. Thus, while often �rst doing the case of

SU(n) or more generally of the classical groups, we shall extend our discus-

sions to the general semi-simple group. Also, we shall spend a good deal of

time considering elliptically �bered manifolds of the simplest type { namely,

elliptic curves.

The basic references for the material covered in these lectures are:

1. M. Atiyah, Vectors bundles over an elliptic curve, Proc. London Math.

Soc. 7 (1967) 414-452.

2. R. Friedman, J. Morgan, E. Witten, Vector bundles and F -theory,

Commun. Math. Phys. 187 (1997) 679-743.

3. , PrincipalG-bundles over elliptic curves, Math. Research Letters

5 (1998) 97-118.

4. , Vector bundles over elliptic �brations, J. Alg. Geom. 8 (1999)

279-401.

1 Lie Groups and Holomorphic Principal GC-bundles

In this lecture we review the classi�cation of compact simple groups or equiv-

alently of complex linear simple groups. Then we turn to a review of the
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basics of holomorphic principal bundles over complex manifolds. We �n-

ish the section with a discussion of isomorphism classes of G-bundles (G

compact) over the circle.

1.1 Generalities on roots, the Weyl group, etc.

A good general reference for Root Systems, Weyl groups, etc. is [3]. Let G

be a compact group and T a maximal torus for G. Of course, T is unique up

to conjugation in G. The rank of G is by de�nition the dimension of T . We

denote byW the Weyl group of T inG, i.e., the quotient of the subgroup of G

conjugating T to itself modulo the normal subgroup of elements commuting

with T (which is T itself). This is a �nite group. We denote by g the Lie

algebra of G and by t � g the Lie algebra of T . The group G acts on its Lie

algebra g by the adjoint representation. The exponential mapping exp: t ! T

is a covering projection with kernel � � t, where � is the fundamental group

of T . The adjoint action of W on t covers the conjugation action of W on

T .

The complexi�cation gC decomposes into the direct summand of sub-

spaces invariant under the conjugation action of the maximal torus T . The

subspace on which the action is trivial is the complexi�cation of the Lie al-

gebra t of the maximal torus. All other subspaces are one dimensional and

are called the root spaces. The non-trivial character by which the torus acts

on a root space is called a root of G (with respect to T ) for this subspace.

By de�nition the roots of G are non-zero elements of the character group

(dual group) of T . This character group is a free abelian group of dimension

equal to the rank of G. In the case when G is semi-simple, the roots of G

span a subgroup of �nite index inside entire character group. When G is

not semi-simple the center of G is positive dimensional, and the roots span a

sublattice of the group of characters of codimension equal to the dimension

of the center of G.

Equivalently, the roots can be viewed as elements of the dual space t
� of

the Lie algebra of T , taking integral values on �. Since all the root spaces

are one-dimensional, we see that the dimension of G as a group is equal to

the rank of G plus the number of roots of G.

The collection of all roots forms an algebraic object inside t
� called a

root system. By de�nition a root system on a vector space V is a �nite

subset � � V � of roots such that for each root a 2 =� there is a dual coroot

=a_ 2 V such that the `reection' ra:V
� ! V � de�ned by ra(b) = b�hb; a_ia
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normalizes the set �. It is easy to see that if such a_ exists then it is unique

and furthermore that the fraga2� generate a �nite group. The element ra is

called the reection in the wall perpendicular to a. The wall, denoted W �
a ,

�xed by ra is simply the kernel of the linear map a_ on V �. The group W

generated by these reections is the Weyl group. Dually we can consider the

wall Wa � V determined by a = 0. There is the dual reection ra:V ! V

given by the formula ra(v) = v � ha; via_. These reections generate the

adjoint action of W on V . The set � � V � generates a lattice in V � called

the root lattice and denoted �root. Dually the coroots span a lattice in V

called the coroot lattice and denoted �. Back to the case of a root system of

a Lie group G with maximal torus T , since any root of G must take integral

values on �1(T ) we see that the lattice �1(T ) � t is contained in the integral

dual of the root lattice. Furthermore, one can show that the coroot lattice

� is contained in �1(T ).

The walls fWag divide V into regions called Weyl chambers. Each cham-

ber has a set of walls. We say that a set of roots is a set of simple roots if (i)

the walls associated with the roots are exactly the walls of some chamber C,

and (ii) the roots are non-negative on this chamber. It turns out that a set of

simple roots is in fact an integral basis for the root lattice. Also, every root

is either a non-negative or a non-positive linear combination of the simple

roots, and roots are called positive or negative roots depending on the sign

of the coe�cients when they are expressed as a linear combination of the

simple roots. (Of course, these notions are relative to the choice of simple

roots.)

Since the Weyl group action on V � is �nite, there is a Weyl-invariant

inner product on V �. This allows us to identify V and V � in a Weyl-invariant

fashion and consider the roots and coroots as lying in the same space. When

we do this the relative lengths of the simple roots and the angles between

their walls are recorded in a Dynkin diagram which completely classi�es the

root system and also the Lie algebra up to isomorphism. If the group is

simple, then this inner product is unique up to a positive scalar factor. In

general, we can use this inner product to identify t and t
�. When we do we

have �_ = 2�
h�;�i

.

There is one set of simple roots for each Weyl chamber. It is a simple

geometric exercise to show that the group generated by the reections in the

walls acts simply transitively on the set of Weyl chambers, so that all sets

of simple roots are conjugate under the Weyl group, and the stabilizer in

the Weyl group of a set of simple roots is trivial. Thus, the quotient t=W is
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identi�ed with any Weyl chamber.

A Lie algebra is said to be simple if it is not one-dimensional and has no

non-trivial normal subalgebras. A Lie algebra that is a direct sum of simple

algebras is said to be semi-simple. A Lie algebra is semi-simple if and only

if it has no non-trivial normal abelian subalgebras. A compact Lie group is

said to be simple, resp., semi-simple, if and only if its Lie algebra is simple,

resp., semi-simple. Notice that a simple Lie group is not necessarily simple

as a group. It can have a non-trivial (�nite) center, when then produces

�nite normal subgroups of G. These are the only normal subgroups of G if

G is simple as a Lie group.

A simply connected compact semi-simple group is a product of simple

groups. In general a compact semi-simple group is �nitely covered by a

product of simple groups.

There are a �nite number of simple Lie groups with a given Lie algebra

g. All are obtained in the following fashion. There is exactly one simply

connected group G with g as Lie algebra. For this group the fundamental

group of the maximal torus is identi�ed with the coroot lattice � of the

group. This group has a �nite center CG which is in fact identi�ed with the

dual to the root lattice modulo the coroot lattice. Any other group with the

same Lie algebra is of the form G=C where C � CG is a subgroup. Thus, the

fundamental group of the maximal torus of G=C is a lattice in t containing

the coroot lattice and contained in the dual to the root lattice. Its quotient

by the coroot lattice is C.

Each compact simple group G embeds as the maximal compact subgroup

of a simple complex linear group GC. The Lie algebra of GC is the complex-

i�cation of the Lie algebra of G and there are maximal complex tori of GC
containing maximal tori of G as maximal compact subgroups. For example,

the complexi�cation of SU(n) is SLn(C) whereas the complexi�cation of

SO(n) is the complex special orthogonal group SO(n;C). We can recover

the compact group from the semi-simple complex group by taking a maximal

compact subgroup (all such are conjugate in the complex group and hence

are isomorphic). Any such maximal compact subgroup is called the compact

form of the group. The fundamental group of a complex semi-simple group

is the same as the fundamental group of its compact form.

1.2 Classi�cation of simple groups

Let us look at the classi�cation of such objects.
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1.2.1 Groups of An-type

The �rst series of groups is the series SU(n+1), n � 1. These are the groups

of An-type. The maximal torus of SU(n+1) is usually taken to be the group

of all diagonal matrices with entries in S1 and the product of the entries being

one. We identify this in the obvious way with f(�1; : : : ; �n+1)j
Qn+1

i=1 �i = 1g.
The rank of SU(n+ 1) is n. The Lie algebra su(n) is the space of matrices

of trace zero, and the root space g
ij ; 1 � i; j � n; i 6= j consists of matrices

with non-trivial entry only in the ij position. The root associated to this

root space is denoted �ij and is given by �ij(�1; : : : ; �n+1) = �i�
�1
j . Writing

things additively, we identify t with f(z1; : : : ; zn+1)j
P

i zi = 0g and then

�ij = ei � ej where ei is the linear map which is projection onto the ith

coordinate. The usual choice of simple roots are �12; �23; : : : ; �nn+1. With

this choice the positive roots are the �ij where i < j. When i < j we

have �ij = �i(i+1) + � � � + �(j�1)j . The Weyl group is the symmetric group

on n + 1 letters. This group acts in the obvious way on Rn+1 and leaves

invariant the subspace we have identi�ed with t. This is the Weyl group

action on t. In particular, the restriction of the standard inner product on

Rn+1 to t is Weyl invariant. Also, it is easy to see that all the roots are

conjugate under the Weyl action. Notice that each simple root has length 2

and meets the previous simple root and the succeeding simple root (in the

obvious ordering) in �1, and is perpendicular to all other simple roots. All

this information is recorded in the Dynkin diagram for An. Since each root

has length two, under the induced identi�cation of t with t
� every root � is

identi�ed with its coroot �_. Thus, in this case, and as we shall see, in all

other simply laced cases, one can identify the roots and coroots and hence

their lattices.

1 1 1 1 1

� � � � � � � �

The center C(SU(n+ 1)) is the cyclic group of order n+ 1 consisting of

diagonal matrices with diagonal entry � an n+1 root of unity. Thus for each

cyclic subgroup of Z=(n + 1)Z there is a form of SU(n) with fundamental

group this cyclic subgroup. The full quotient SU(n+1)=CSU(n+1) is often

called PU(n). The intermediate quotients are not given names.
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1.2.2 Groups of Bn-type

For any n � 3, the group Spin(2n + 1) is a simple group of type Bn. The

standard maximal torus of this group is the subgroup of matrices that project

into SO(2n+1) to block diagonal matrices SO(2)�SO(2)�� � ��SO(2)�f1g.
The Lie algebra of this torus is naturally a product of n copies of R, one

for each SO(2), and we let ei be the projection of t onto the ith-factor. The

Lie algebra is all skew symmetric matrices. For any 1 � i; j � n let g
ij; 1 �

i < j � n; i 6= j be the subspace of skew symmetric matrices with non-zero

entries only in places (2i� 1; 2j � 1); (2i� 1; 2j); (2i; 2j � 1); (2i; 2j) and the

symmetric lower diagonal positions. This is a four-dimensional subspace of

the Lie algebra of SPin(2n+ 1). Thus, there are four roots associated with

this space, they are �ei � ej . There are also subspaces g
i; 1 � i � n, where

g
i has non-zero entries only in positions (2i � 1; 2n + 1) and (2i; 2n + 1) as

well as the symmetric lower diagonal positions. The two roots associated to

g
i are �ei. Thus, Spin(2n+1) is of rank n. We can identify the Lie algebra

of its maximal torus with Rn in such a way that the roots are �ei � ej for

i 6= j and �ei, where ei is the projection onto the ith coordinate. The dual

coroots to these roots are �ei � ej and �2ei, so that the coroot lattice �

for Spin(2n+1) is the even integral lattice in Rn, whereas the fundamental

group of the maximal torus of SO(2n+ 1) is the full integral lattice Zn. Of

course, the quotient �=Zn = Z=2Z is the fundamental group of SO(2n+1).

The Weyl group of Spin(2n+1) is the group generated by reections in the

simple roots. It is easy to see that these reections generate the group of all

permutations of the coordinates and also all sign changes of the coordinates.

Thus, abstractly the group is (f�1gn ��n. Clearly, the standard metric on

Rn is a Weyl invariant metric. Notice that something new happens here {

not all the roots have the same length. In our normalization �ei � ej has

length squared 2, whereas �ei has length squared 1. In particular, not all

the roots are conjugate under the action of the Weyl group. In this case

there are two orbits { one orbit for each length. This fact is expressed by

saying that the group is not simply laced.

Since the center of Spin(2n+ 1) is the cyclic group of order 2, there are

only two groups with this Lie algebra spin(2n+ 1) and SO(2n+ 1).

The Dynkin diagram of type Bn is

1 2 2 2 2 2

� � � � � � � � > �
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1.3 Groups of Cn-type

Let J be the 2n� 2n matrix of block 2� 2 diagonal entries�
0 1

�1 0

�
:

The symplectic group consists of all matrices A such that AtrJA = J . These

are the linear transformations that leave invariant the standard skew sym-

metric pairing on R2n, the one given by J . The Lie algebra of this group

consists of all matrices A such that

Atr = �JAJ�1 = JAJ:

For any n � 2 the symplectic group Sympl(2n) is a group of type Cn so

that the complex symplectic group is a complex semi-simple group. There is

a complication in that the real symplectic group is non-compact; it is rather

what is called the R-split form of the group. Its maximal algebraic torus is a

product of n copies of R� and is given by the group of diagonal matrices with

diagonal entries (�1; �
�1; : : : ; �n; �

�1
n ). For example, Sympl(2) is identi�ed

with SL2(R). By general theory there is a compact form for the complex

symplectic group SymplC(2n). It is given as the group of quaternion linear

transformations of Hn, so that as one would expect, the compact form of

SymplC(2) is SU(2). The maximal torus of this group is again a product

of circles so that t is again identi�ed with Rn. The roots are �ei � ej for

1 � i < j � n and �2ei. Thus, once again the group is non-simply laced.

Its Weyl group is the same as the Weyl group of Bn. The coroots dual to

the roots are �ei � ej and �ei so that the coroot lattice � is the integral

lattice Zn. The dual to the root lattice consists of all fx1; : : : ; xng such that

xi 2 (1=2)Z for all i and xi �= xj (mod Z) for all i; j. This lattice contains

the coroot lattice with index two, so that the center of the simply connected

form of this group is Z=2Z and there is one non-simply connected form of

these groups.

The Dynkin diagram of type Cn is

1 1 1 1 1

� � � � � � � < �
It turns out that Spin(5) is isomorphic to Sympl(4) which is why we

start the B-series at n = 3. The group Symp(2) is isomorphic to SU(2)

which is why we begin the C-series at n = 2.
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1.3.1 Groups of Dn-type

For any n � 4 the group Spin(2n) is a group of type Dn. The usual maximal

torus for Spin(2n) is the subgroup that projects onto SO(2)�� � ��SO(2) �
SO(2n). Thus, t is identi�ed with R2n with the factors being tangent to

the factors in this decomposition. The roots of Spin(2n) are �ei � ej for

1 � i < j � n. This group is simply laced and in the given Weyl invariant

inner product all roots have length
p
2. Thus, we can identify the roots with

their dual coroots in this case. The coroot lattice is then the even integral

lattice. The fundamental group of the maximal torus for SO(2n) is the

integral lattice which contains the coroot lattice with index two reecting

the fact that the fundamental group of SO(2n) is z=2Z. The Weyl group

consists of all permutations of the coordinates and all even sign changes of

the coordinates. This is a simply laced group.

The Dynkin diagram of type Dn is

1

�
1 2 2 2 2

� � � � � � � �

��������

CCC
CCC

C

�
1

1.3.2 The exceptional groups

A good reference for the exceptional Lie groups is [1]. In addition to the

classical groups there are �ve exceptional simply connected simple groups.

Their names are E6; E7; E8; G2 and F4. The subscript is the rank of the

group. There are natural inclusions D5 � E6 � E7 � E8. The fundamental

group of Er is a cyclic group of order 9 � r. Both G2 and F4 are simply

connected.

Here are their Dynkin diagrams:
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1 2 3 2 1

� � � � �

2 �
E6

1 2 3 4 3 2

� � � � � �

2 �
E7

2 3 4 5 6 4 2

� � � � � � �

3 �
E8

2 4 3 2

� � < � �
F4

3 2

� < �
G2

We shall not say too much about these groups now, but let me give

the lattices E6; E7; E8. These are viewed as the fundamental group of the

maximal torus of the simply connected form of the group. We give these

lattices with an inner product. This is the Weyl invariant inner product. In

all cases these groups are simply laced and the coroots are the elements in the

lattice of square two. We describe all these lattices at once { for any r � 8

consider the inde�nite integral quadratic form q(x; a1; : : : ; ar) =
Pr

i=1 a
2
i�x2
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on Zr+1. We let k = (3; 1; 1; : : : ; 1). Then q(k) = r � 9 < 0. For 6 � r � 8,

the lattice Er is the orthogonal subspace in Z
r+1 of k. It is of rank r and has

the induced quadratic form which is easily seen to be even, positive de�nite,

and of discriminant 9� r. For lower values of r it turns out that the lattice

de�ned this way is the lattice of a classical group: E5 = D5, E4 = A4,

E3 = A2 �A1.

1.4 Principal holomorphic GC-bundles

Let GC be a complex linear algebraic group and let X be a complex mani-

fold. A holomorphic principal GC-bundle over X is determined by an open

covering fUig of X and transition functions gij :Ui \ Uj ! GC. The tran-

sition functions are required to be holomorphic and to satisfy the cocycle

conditions: gji = g�1ij and gjk(z) � gij(z) = gik(z) for all z 2 Ui \Uj \Uk. As
usual, we can use the gij as gluing data to glue Ui �GC to Uj �GC along

uij �GC, by the rule (z; g) 2 Ui�GC maps to (z; gij(z) � g) in Uj �GC pro-

vided that z 2 Ui \Uj. The cocycle condition tells us that the triple gluings

are compatible so that we have de�ned an equivalence relation and the result

of gluing E is a Hausdor� space. The projection mappings Ui � GC ! Ui
then �t together to de�ne a continuous map p:E ! X. The fact that the gij
are holomorphic implies that the natural complex structures on the Ui�GC
are compatible and hence de�ne a complex structure on E for which p is

a holomorphic submersion with each �ber isomorphic to GC. The complex

manifold E is called the total space of the principal bundle and p is called

the projection. There is a natural (right) free, holomorphic GC-action on E

such that p is the quotient projection of this action. Two open coverings and

gluing functions de�ne the isomorphic principal GC-bundles if the resulting

total spaces are biholomorphic by a GC-equivariant mapping commuting

with the projections to X.

If � is a holomorphic principal GC-bundle over X and �:GC ! Aut(V )

is a complex linear representation, then there is an associated holomorphic

vector bundle �(�). If E is the total space of � then the total space of �(�)

is � �GC V where GC acts on V via the representation �.

Example: Let GC be C�. (Notice that this is not a simple group.) Then

a holomorphic principalC� bundle determines a holomorphic line bundle un-

der the natural representation given by complex multiplicationC��C! C.

The holomorphic line bundles associated to � and �0 are isomorphic as holo-

morphic line bundles if and only if � and �0 are isomorphic as holomorphic
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principal C�-bundles. Notice that the total space of the C�-bundle can

be identi�ed with the complement of the zero section in the corresponding

holomorphic line bundle.

Along the same lines, let GC be SLn(C). Then using the de�ning com-

plex n-dimensional representation, a principal SLn(C)-bundle � over X de-

termines a holomorphic n-dimensional vector bundle V over X. But this

bundle has the property that its determinant line bundle ^nV is trivialized

as a holomorphic line bundle. Of course, given a holomorphic n-dimensional

vector bundle V over X with a trivialization of its determinant line bundle

we can de�ne the associated bundle of special linear frames in V . The �ber

over x 2 X consists of all bases ff1; : : : ; fng for Vx such that f1 ^ � � � ^ fn
is identi�ed with 1 2 C under the given trivialization of ^n(Vx). The lo-

cal trivialization of the vector bundle, produces a local trivialization of this

bundle of frames. The holomorphic structure on the total space of V de-

termines a holomorphic structure on the bundle of frames. The obvious

SLn(C)-action on the bundle of frames then makes it a holomorphic prin-

cipal SLn(C)-bundle. This sets up a bijection between isomorphism classes

of holomorphic principal SLn(C)-bundles over X and holomorphic vector

bundles over X with trivialized determinant line bundle.

In the same way we can identify a holomorphic principal SO(n;C)-

bundle over X with a holomorphic rank n vector bundle V over X with

holomorphically trivialized determinant and with a holomorphic symmetric

form V 
 V ! C which is non-degenerate on each �ber. A holomorphic

principal Symp(2n)-bundle over X is identi�ed with a holomorphic rank 2n

vector bundle V over X with holomorphically trivialized determinant and

with a holomorphically varying skew-symmetric bilinear form on the �bers

which is non-degenerate on each �ber.

Up to questions of �nite covering groups, this exhausts the list of classical

simple groups: SLn(C), SO(n;C), and Sympl(2n;C).

Associated to any complex group GC there is the adjoint representation

of GC on its Lie algebra gC. Thus, associated to any holomorphic principal

GC-bundle � is a vector bundle denoted ad�. Its rank is the dimension of GC
as a group. In the case of E8 this is the smallest dimensional representation;

it is of course of the same dimension as the group 248. All other simple groups

have smaller representations: G2 has a seven dimensional representation

even though it has dimension 14; F4 has a 28-dimensional representation;

E6 has a 27 dimensional representation (which we discuss later), and E7 has

a 54-dimensional representation. Still, it is not clear that the best way to
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study principal bundles over these groups is to look at the vector bundles

associated to these representations. For example, it is not obvious what

extra structure a 248-dimensional vector bundle carries if it comes from a

principal E8-bundle, nor what extra information it takes to determine the

structure of that bundle.

1.5 Principal G-bundles over S1

Let us begin with a simple problem. Fix a compact, simply connected, sim-

ple group G. Let � be a principal G-bundle over S1 and let A be a at

G-connection on �. (The reason for the passage from GC to G and the in-

troduction of a at connection will be explained in the next lecture.) The

holonomy of A around the base circle is an element of G, determined up to

conjugacy, which completely determines the isomorphism class of (�;A) and

sets up an isomorphism between the space of conjugacy classes of elements

in G and the space of isomorphism classes of principal G-bundles with at

connections over S1. Thus, we have reduced our problem to that of under-

standing the space of conjugacy classes of elements in a compact group. To

some extent this is a classical and well-understood problem, as we show in

the next section.

1.5.1 The a�ne Weyl group and the alcove structure

This leads us to the question of what the space of conjugacy classes of ele-

ments in G looks like. To answer this question we introduce the a�ne Weyl

group and the alcove structure on the Lie algebra t of the maximal torus T

of G. For a root � and k 2 Z we denote by W�;k the codimension-one a�ne-

linear subspace of t determined by the equation f� = kg. By de�nition, the

a�ne Weyl group, Wa� , is the group of a�ne isometries of t generated by

reections in all walls of the form W�;k. It is easy to see that there is an

exact sequence of groups

0! �!Wa� !W ! 0:

(Recall that � � t is the coroot lattice.) Here, the map Wa� ! W is the

di�erential or linearization of the a�ne map. (Recall that � is the coroot

lattice, i.e., �1(T ) � t.) This sequence is split by including W as the group

generated by the reections in the walls W�;0, but the action of W on �

is non-trivial: it is the obvious action. Thus, Wa� is isomorphic to the

semi-direct product ��W with the natural action of W on �.
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The set of walls W�;k is a locally �nite set and divides t into (an in�nite

number of) regions called alcoves. If G is simple (or even semi-simple),

then the alcoves are compact. In the case when G is simple, the alcoves

are simplices. Clearly, each alcove is contained in some Weyl chamber. An

alcove containing the origin in fact contains a neighborhood of the origin

in the Weyl chamber that contains it. Its walls are the walls of the Weyl

chamber containing it together with one more. This extra wall is given by an

equation of the form ~� = 1 for some root � determined by the Weyl chamber

(or equivalently by the set of simple roots f�1; : : : ; �rg determined by the

Weyl chamber). It turns out that ~� is a positive linear combination of the �i
and it has the largest coe�cients. In particular, it is the unique nonnegative

linear combination of the simple roots with the property that its sum with

any simple root is not a root. This root ~� is called the highest root of G.

The numbers displayed on the Dynkin diagrams above are the coe�cients

of the simple roots in their unique linear combination which is the highest

root. If � is a set of simple roots for G, then the associated set � [ ~� is

denoted by e� and is called the extended set of simple roots.

As in the case of the Weyl group, it is a nice geometric argument to show

that Wa� acts simply transitively on the set of alcoves and that the quotient

t=Wa� is identi�ed with any alcove.

Lemma 1.5.1 Let G be a compact, simply connected semi-simple group.

Then the space of conjugacy classes of elements in G is identi�ed with an

alcove A in t. The identi�cation associates to t 2 A the conjugacy class of

exp(t) 2 T .

Proof. Every g 2 G is conjugate to a point t 2 T . Two points of T

are conjugate in G if and only if they are in the same orbit of the Weyl

group action on T . Thus, the space of conjugacy classes of elements in G

is identi�ed with T=W . Since G is simply connected, T = t=� and hence

T=W = t=Wa� which we have just seen is identi�ed with an alcove.

Example: If G = SU(n+ 1), then the alcove is the subset (t1; : : : ; tn+1) 2
Rn+1 satisfying

P
j tj = 0 and tj � 0 and tj � tj+1 for all 1 � j � n + 1.

Every element in SU(n+1) is conjugate to a diagonal matrix with diagonal

entries (�1; : : : ; �n+1), the �j being elements of S1. We can do a further

conjugation under �j = exp(2�itj for 0 � tj � 1. The determinant condition

is
Q

j �j = 1, which translates into
P

j tj = 0. By a further Weyl conjugation
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we can arrange that the tj are in increasing order. This makes explicit the

isomorphism between the simplex inRn+1 and the space of conjugacy classes

in SU(n+1).

1.6 Flat G-bundles over T 2

Let G be a compact, simply connected group.

Lemma 1.6.1 Let x; y 2 G be commuting elements. Show that there is a

torus T � G containing both x and y. If (x; y) and (x0; y0) are pairs of

elements in a torus T � G and if there is g 2 G such that g(x; y)g�1 =

(x0; y0), then there is an element n normalizing T and conjugating (x; y) to

(x0; y0).

The proof is an exercise.

Corollary 1.6.2 Let G be a compact simply connected group. Then the

space of isomorphism classes of principal G-bundles with at connections

over T 2 is identi�ed with the space (T �T )=W , where T is a maximal torus

of G and W is the Weyl group acting on T �T by simultaneous conjugation.

Notice that this implies that the space of such bundles is connected. Of

course, this is not too surprising since for G simply connected, all G-bundles

over T 2 are topologically trivial.

1.7 Exercises

1. Let G be a compact connected Lie group. Show that the exponential

mapping from the Lie algebra g to G is onto. Use this to show that every

element of G is contained in a maximal torus.

2. Show all maximal tori of G are conjugate.

3. Suppose that G is compact. Show that the centralizer of a maximal torus

in G is the torus itself.

4. Let G be a compact simply connected group. Show that the center of G

is the intersection of the kernels of all the roots. Show that if G is simply

connected and semi-simple then the center of G is identi�ed with the quotient

(�root)
�=� where � � t is the coroot lattice, where �root � t

� is the root

lattice, and (�root)
� is the algebraically dual lattice in t. Use this to show

that the center of a semi-simple group is �nite.
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5. Show that if G is a compact Lie group whose Lie algebra is semi-simple,

then any normal subgroup of G is a �nite central subgroup.

6. Count the number of roots for groups of An, Bn, Cn, and Dn type and

determine the dimension of each of these groups.

6. For any r; 3 � r � 8, let Zr+1 be the free abelian group of rank r+1 with

basis h; e1; : : : ; er and with non-degenerate quadratic form Q with Q(h) =

�1, Q(ei) = 1; 1 � i � r, and the basis being mutually orthogonal. Let

k = 3h �Pr
i=1 ei. Then k? is a lattice of rank r with a positive de�nite

pairing of determinant 9� r. Show that a basis for k? is e1 � e2; : : : er�1 �
er;H � e1 � e2 � e3 and that these vectors are all of square 2. Count the

number of vectors in this lattice of square two. Show that for each vector of

square 2, reection in the vector is an integral isomorphism of the lattice k?

and its form. Show that for r = 3 the lattice is the coroot lattice of A2�A1,

for r = 4, the lattice is the coroot lattice of A4, for r = 5 the lattice is the

coroot lattice forD5. In all cases the coroots are exactly the vectors of square

2. It follows of course that the group generated by reections in the vectors

of square two is the Weyl group. It turns out that for r = 6; 7; 8 the lattice

is the coroot lattice of Er. The statements about the roots, coroots and the

Weyl group remain true for these cases as well. Assuming this, compute the

dimensions of the Lie groups E6; E7; E8.

8. Let E be an elliptic curve. Give a 1-cocycle which represents the generator

of H1(E;OE)). Give a 1-cocycle that represents the principal C�-bundle

O(q � p0).

9. Show that if V is a semi-stable vector bundle of degree zero over an elliptic

curve E with a non-degenerate skew-form, then det(V ) is trivial. Show that

this is not necessarily true it V supports a non-degenerated quadratic form

instead.

10. De�ne the compact form of SymplC(2n) in terms of quaternion linear

mappings of a quaternionic vector space.

11. Show that the conjugacy class of the holonomy representation determines

an isomorphism between the space of isomorphism classes of principal G-

bundles over S1 with at connections and the space of conjugacy classes of

elements in G.

12. Show that the space of conjugacy classes of elements in G is identi�ed

with the alcove of the a�ne Weyl group action on t.

13. Show that if x; y are commuting elements in a compact simply connected

group G then there is a torus in G containing both x and y. [Hint: Show

that the centralizer of x, ZG(x) is connected.] Show that this fails to be true
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if G is compact but not simply connected (e.g. G = SO(3)). Show that if

X and X 0 are ordered subsets of T which are conjugate in G, then they are

conjugate by an element of the normalizer of T .

14. Show that if G is a compact semi-simple group, then G-bundles over

T 2 are classi�ed up to topological equivalence by a single characteristic class

w2 2 H2(T 2;�1(G)) = �1(G). Show that if a G-bundle admits a at connec-

tion with holonomy (x; y) around the generating circles, then its character-

istic class in �1(G) � G is computed as follows. One chooses lifts x; y in the

universal covering group ~G of G for x; y. Then [x; y] 2 ~G lies in the kernel of

the projection to G, i.e., lies in �1(G) � ~G. This is the characteristic class

of the bundle.

15. Show that the space of isomorphism classes of SO(3)-bundles with at

connection over T 2 has two components. Show that one of these components

has dimension 2 and the other is a single point.
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2 Semi-Stable GC-Bundles over Elliptic Curves

In this lecture we introduce the classical notions of stability, semi-stability,

and S-equivalence for vector bundles. We then consider in some detail semi-

stable vector bundles over an elliptic curve and the moduli space of their

S-equivalence classes. We extend these results to the one situation where

it has an easy and direct analogue { namely complex symplectic bundles.

Then we switch and consider at SU(n)-bundles and state the Narasimhan-

Seshadri result relating these bundles to semi-stable holomorphic bundles.

Then we generalize this result to compare at G-bundles and semi-stable

holomorphic GC-bundles. Lastly, we discuss Looijenga's theorem which, in

the case that G is simple and simply connected, describes quite explicitly

these moduli spaces in terms of the coroot integers for the group G.

2.1 Stability

Let C be a compact complex curve. The slope of a holomorphic vector

bundle V ! C is �(V ) = deg(V )=rank(V ) where deg(V ) is the degree of the

determinant line bundle of V . A vector bundle V ! C is said to be stable if

for every proper subbundleW � V we have �(W ) < �(V ). The bundle V is

said to be semi-stable if �(W ) � �(V ) for every proper subbundle W � V .

A subbundle W which violates these inequalities is called destabilizing or

de-semistabilizing.

Note: One usually requires �(W ) < �(V ), resp., � �(V ) for every vector

bundle over C which admits a vector bundle mapping W ! V which is in-

jective on the generic �ber. The image of such a mapping will not necessarily

be a subbundle of V , but rather is a subsheaf of its sheaf of local holomorphic

sections. Nevertheless, there is a subbundleW 0 � V containing the image of

W under the given mapping with the property that W 0 modulo the image

of W is supported at a �nite set of points (a sky-scraper sheaf). In this case

deg(W 0) = deg(W ) + `(W 0=W ) where `(W 0=W ) is the total length of the

sky-scraper sheaf. It follows that �(W 0) � �(W ) so that ifW destabilizes or

de-semistabilizes V then so does W 0. Thus, in the case of curves it su�ces

to work exclusively with subbundles. Let me re-iterate that this is special

to the case of curves.

The main reason for introducing stability is that the space of all bundles

can be studied in terms on stable bundles (the so-called Harder-Narasimhan

�ltration) and that the space of isomorphism classes of stable bundles forms

a reasonable space.
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Over high dimensional manifolds Xn we need a couple of modi�cations.

First of all we need a K�ahler class ! so that we can de�ne the degree of a

bundle V , deg(V ), to be
R
X
!n�1^ c1(V ). (Of course, the degree, and hence

the slope depends on the choice of K�ahler class.) Then as indicated above

we must also consider all torsion-free subsheaves W of V . Each of these has

a �rst Chern class and hence a degree, again depending on ! and computed

by the same formula as above. With these modi�cations one de�nes slope

stability and slope semi-stability exactly as before. There are more re�ned

notions, for example Gieseker stability, which are often needed over higher

dimensional bases, especially if one hopes to obtain compact moduli spaces.

2.2 Line bundles of degree zero over an elliptic curve

We �x a smooth elliptic curve E. By this we mean that E is a compact

complex (smooth) curve of genus 1, and we have �xed a point p0 2 E. This

determines an abelian group law on E for which p0 is the identity element.

Consider a line bundle L ! E of degree zero. According to Riemann-

Roch,

rankH1(E;L) = rankH0(E;L)

which tells us nothing about whether L has a holomorphic section. However,

if we consider L
O(p0), then RR tells us that this bundle has at least one

holomorphic section. Let �:O ! L 
 O(p0) be such a section. Of course,

since the degree of L
O(p0) is 1, � vanishes once, say at a point q 2 E. This

means that � factors to give a holomorphic mapping �0:O(q) ! L
O(p0)
which is generically an isomorphism. In general a map between line bundles

which is generically one-to-one has torsion cokernel and the total length of

the cokernel is the di�erence of the degrees of the two bundles. In our case,

the domain and range both have degree one, so that the cokernel is trivial,

i.e., �0 is an isomorphism. This proves that L is isomorphic to O(q)
O(�p0),
which is also written as O(q� p0). It is easy to see that associating to L the

point q sets up an isomorphism between the space of line bundles of degree

zero on E, Pic0(E), and E itself.

2.3 Semi-stable SLn(C)-bundles over E

Let V be a semi-stable vector bundle of rank n and degree zero. Semi-

stability implies that any subbundle of V has non-positive degree. Let us

�rst show that there is a line bundle of degree zero mapping into V . We
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proceed in the same manner as with line bundles. The bundle V 
O(p0) is
also easily seen to be semi-stable and of slope 1. By RR V 
 O(p0) has n
holomorphic sections. LetH0 be the space of these sections. Then evaluation

determines a vector bundle mapping from the trivial bundle H0 
 OE to

V 
OE(p0). If no non-trivial section of V 
OE(p0) vanished at any point,

then this map would be an isomorphism of vector bundles, which is absurd

since the bundles have di�erent degree. We conclude that there is a non-zero

section of V 
OE(p0) vanishing at some point. Consider the cokernel of this

section. Generically it is a vector bundle of rank n�1, but it has non-trivial

torsion, say T , corresponding to the zeros of the section. Then there is a

line bundle LT �tting into an exact sequence

0! O ! LT ! T ! 0

and an extension of � to a map �0:LT ! V 
 O(p0) whose quotient is a

vector bundle W of rank one less than that of V . Of course, the degree

of LT is the total length of T . By the fact that the slope of V 
 OE(p0)

is one and is semi-stability, we know the total length of T is at most one.

But on the other hand we know that T is nontrivial, so that it has length

exactly one. It follows that it is of the form O=O(q) for some point q 2 E.

Thus, we have a map O(q)! V with torsion-free cokernel and hence a map

O(q � p0)! V whose quotient is a semi-stable bundle of degree n� 1.

Continuing inductively we see that V is written as a successive extension

of n line bundles of degree zero. We can associate to V , the n points that are

identi�ed with these line bundles. Let us now think about the extensions.

For any line bundle of degree zero, RR tells us that sinceH1(E;L) = 0 unless

L is trivial. It follows immediately that if L and L0 are non-isomorphic line

bundles of degree zero then any extension

0! L! V ! L0 ! 0

is trivial. An easy inductive argument shows that if W1 written as a suc-

cessive extension of line bundles Li of degree zero and W2 as a successive

extension of line bundles Mj of degree zero, and no Li is isomorphic to any

Mj , then any extension

0! W1 ! V !W2 ! 0

is trivial. Consequently, we can split V into pieces �q2EVq where Vq is a

successive extension of line bundles isomorphic to O(q � p0). Lastly, there
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is, up to equivalence, exactly one non-trivial extension

0! O(q � p0)! V ! O(q � p0)! 0:

An easy argument shows that if V is such a nontrivial extension, then it has

a unique nontrivial extension by O(q � p0) and so forth.

Notice that since every vector bundle of degree zero over an elliptic curve

E has a subline bundle of degree zero, the only stable degree zero vector

bundles over E are line bundles. Thus, the best we can hope for in higher

rank and degree zero is that the bundle be semi-stable. As we shall eventually

see, there are stable bundles of positive degree.

This allows us to establish the following theorem �rst proved by Atiyah:

Theorem 2.3.1 Any semi-stable vector bundle of degree zero over E is iso-

morphic to a direct sum of bundles of the form O(q � p0)
 Ir where the Ir
are de�ned inductively as follows; I1 = O and Ir is the unique non-trivial

extension of Ir�1 by O.

Clearly, the determinant of �q2EO(q� p0)
 Ir(q) is 
q2EO(q� p0)

r(q),

or under our identi�cation of line bundles of degree zero with points of E,

the determinant of V is identi�ed with
P

q2E r(q)q, where the sum is taken

in the group law of the elliptic curve. Thus, V has a trivial determinant if

and only if
P

q r(q)q = 0 in E.

2.4 S-equivalence

We just classi�ed semi-stable vector bundles of degree zero on an elliptic

curve in the sense that we enumerated the isomorphism classes. But we have

not produced a moduli space (even a coarse one) of all such bundles. The

trouble, as always in these problems, is that the natural space of isomorphism

classes is not separated, i.e., not a Hausdor� space. The reason is exempli�ed

by the fact that there is a bundle over E � H1(E;O) whose restriction to

E�fag is the bundle which is the extension of O by O given by the extension

class a. This bundle is isomorphic to I2 for all fag 6= 0 and is isomorphic to

O �O if fag = 0. Thus, we see that any Hausdor� quotient of the space of

isomorphism classes of bundles I2 and O �O must be identi�ed.

This phenomenon is an example of S-equivalence. We say that a semi-

stable bundle V is S-equivalent to a semi-stable bundle V 0 if there is a family

of V ! E � C, where C is a connected smooth curve, so that for generic

c 2 C the bundle VjC � fcg is isomorphic to V and so that there is c0 2 C
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for which VjE�fc0g is isomorphic to V 0. This relation is not an equivalence

relation (it is not symmetric), so we take S-equivalence to be the equivalence

relation generated by this relation.

Then we take as the moduli space of semi-stable vector bundles of degree

zero the space of S-equivalence classes. Since Ik is S-equivalent to �kO, it
follows immediately from Atiyah's theorem that:

Theorem 2.4.1 The set of S-equivalence classes of semi-stable bundles of

rank n is identi�ed with the set of unordered n-tuples of points (e1; : : : ; en) �
E. The subset of those with trivial determinant is the subset of unordered

n-tuples (e1; : : : ; en) for which
Pb

i=1 ei = 0 in the group law of E.

2.5 The moduli space of semi-stable bundles

Everything we have done so far is at the level of points { that is to say we

are describing all isomorphism classes or S-equivalence classes of bundles.

Now we wish to see that the symmetric product of E with itself n-times is

actually a coarse moduli space for the S-equivalence classes of semi-stable

bundles of rank n and degree zero. Since we have already established a

one-to-one correspondence between the points of this symmetric product

and the set of S-equivalence classes of bundles, the question is whether this

identi�cation varies holomorphically with parameters. By this we mean that

any time we have a holomorphic family V ! E �X of semi-stable bundles

rank n bundles on E (that is to say V is a rank n vector bundle and its

restriction to each slice E � fxg is a semi-stable bundle), there should be

a unique holomorphic mapping X ! (E � � � � � E)=Sn which associates to

each x 2 X the point of the symmetric product which characterizes the S-

equivalence class of VjE�fxg. Of course, this does de�ne a function from X

to the symmetric product; the only issue is whether it is always holomorphic.

To establish this we need a direct algebraic construction which goes from

a vector bundle to an unordered n-tuple of points in E. Let V be a semi-

stable vector bundle of degree 0 and rank n. Then H0(E;V 
 O(p0)) is

n-dimensional. We have the evaluation map from sections to the bundle

which we can view as a map from the trivial bundle H0(E;V 
O(p0))
OE

to V 
O(p0). Taking the determinants we get a map of line bundles

^nH0(E;V 
O)
OE ! detV 
O(np0):
This map is non-trivial. The domain is a trivial line bundle and the range has

degree n. Thus, the cokernel of the map is a torsion sheaf of total degree n.
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Taking the support of this torsion module, counted with multiplicity gives

the unordered n-tuple in E. As one can see directly, for any sum of line

bundles of degree zero, this map exactly picks out the unordered n points in

E associated with the n-line bundles. More generally, one can easily check

that the sections of Ir 
 O(q) all vanish to �rst order at p0 so that such a

factor produces a zero of order r at q in the above determinant map.

Theorem 2.5.1 The coarse moduli space of S-equivalence classes of semi-

stable vector bundles of rank n and degree zero over an elliptic curve E is

identi�ed with (E�� � ��E)=Sn. The coarse moduli space of those with trivial

determinant is identi�ed with the subspace of unordered n-tuples which sum

to zero in the group law of E.

Proof. To each semi-stable vector bundle of degree zero we associate the

unordered n-tuple of points in E which corresponds to the set of line bundles

of degree zero on E which are the successive quotients of V . By Atiyah's

classi�cation we see that this is a well-de�ned function. Clearly, S-equivalent

semi-stable bundles are mapped to the same point and in light of Atiyah's

classi�cation, two bundles which map to the same point are S-equivalent.

It remains to see that if V ! E�X is an algebraic family of semi-stable

rank n bundles of degree zero over E, parametrized by X, then the resulting

map X ! (E�� � ��E)=Sn is holomorphic. To see this let �:E�X ! X be

the projection and consider the cohomology of along the �bers of V 
O(p0).
Let p:E �X ! E be the projection to the other component. Since we have

already seen that for each x 2 X, the cohomology H0(E;V j(E�fxg
O(p0))
has rank n, it follows that the cohomology along the �bersR0��(V 
p�O(p0))
is a vector bundle of rank n over X. We take its nth exterior power and pull

back to a line bundle L on E �X, trivial on each E � fxg. As before, the
evaluation mapping induces a map from ev:L ! ^nV 
 p�O(np0), which
�ber-by-�ber in X is the map we considered above. In particular, the zero

locus of ev is a subvariety of E �X whose projection to X is an n-sheeted

rami�ed covering. Its intersection (counted with multiplicity) with each E�
fxg gives the unordered n-points in E associated with the bundle VjE�fxg.
This proves that the map X ! (E � � � � �E)=Sn is algebraic.

(This argument works in either the classical analytic topology or in the

Zariski topology.)
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The space we just obtained of S-equivalence classes of semi-stable vector

bundles of rank n with trivial determinant has another, extremely useful

description.

Theorem 2.5.2 The coarse moduli space of S-equivalence classes of semi-

stable rank n bundles with trivial determinant on an elliptic curve E is identi-

�ed with the projective space associated with the vector space H0(E;O(np0)).

Proof. Given n points e1; : : : ; en in E whose sum is zero there is a mero-

morphic function on E vanishing at these n points (with the correct mul-

tiplicities) with a pole only at p0. Of course, the order of this pole is at

most n and is exactly equal to the number of i; 1 � i � n, for which ei
is distinct from p0. (Our evaluation mapping constructed such a function.)

But a non-zero meromorphic function on E is determined up multiple by its

zeros and poles.

Corollary 2.5.3 The coarse moduli space of semi-stable vector bundles on

E of rank n and trivial determinant is isomorphic to a projective space Pn�1.

In particular, as we vary the complex structure on E, the complex structure

on this moduli space is unchanged.

2.6 The spectral cover construction

Let us construct a family of semi-stable bundles on E parametrized by

P(H1(E;OE(p0)), which to simplify notation we denote by Pn. There is a

covering T ! Pn de�ned as follows: a point of T consists of a pair ([f ] 2
jOE(np0)j; e) where e 2 E is a point of the support of the zero locus of f .

In other words, letting Sn�1 � Sn be the stabilizer of the �rst point, T =

(E � � � � �E)| {z }
n�times

=Sn�1. Clearly, T ! Pn is an n-sheeted rami�ed covering.

There is of course a natural mapping g:T ! E which associates to (f; e) to

point e. We let L be pullback of the Poincar�e bundlesOE�E(��E�fp0g) to
T �E under g�Id. Then the pushforward Vn = (g�Id)�(L) of L over T �E
to Pn � E is a rank n vector bundle. A generic point of Pn has n distinct

preimages in T and at such points Vn restricts to be a sum of n distinct line

bundles of degree zero { the sum of bundles associated with the n-points in

the preimage. If one asks what happens at points where g rami�es, it turns

out that the pushforward bundle develops factors of the form O(q� p0)
 Ir
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when r points come together. Thus, in fact, this construction produces

a family of regular semi-stable bundles on E. Let q:T � E ! T be the

projection to the �rst factor. Notice that for any line bundle M on T , we

have that (g�Id)�(L
q�M) is also a rank n vector bundle onPn�E which is

isomorphic �ber-by-�ber to the bundle (g� Id)�L. Of course, globally these
bundles can be quite di�erent, and for example have di�erent characteristic

classes over Pn �E.

This construction is universal in the following sense, which we shall not

prove (see Theorem 2.8 in Vector Bundles over elliptic �brations).

Lemma 2.6.1 Suppose that S is an analytic space and U ! S�E is a rank

n vector bundle which is regular and semi-stable with trivial determinant on

each �ber fsg�E. Let 'U :S ! Pn be the map that associates to each s 2 S

the S-equivalence class of Ujfsg�E. Let ~S = S �Pn T and let ~': ~S ! S and

� be the natural maps. Then there is a line bundle M over ~S such that U
is isomorphic to

('� Id)�((�� Id)�L
 p�1M);

where p1: ~S �E ! ~S is the projection.

2.7 Symplectic bundles

Let us make an analysis of principal SymplC(2n)-bundles which follows the

same lines as the analysis for SLn. We can view a holomorphic principal

Sympl(2n)-bundle over E as a holomorphic vector bundle V with a nonde-

generate skew symmetric (holomorphic) pairing V 
 V ! C. Equivalently,

we can view the pairing as an isomorphism ':V ! V � which is skew-adjoint

in the sense that '� = �'. We say that such a bundle is semi-stable if

the underlying vector bundle is. If we consider �rst a sum of line bundles

of degree zero, �2n
i=1Li this bundle will support a skew symmetric pairing

if and only if we can number the line bundles so that L2i�1 is isomorphic

to L�2i. In this case we take the pairing to be an orthogonal sum of rank

two pairings, the individual rank two pairings pairing L2i�1 and L2i via the

duality isomorphism. This means that if a semi-stable rank 2n vector bun-

dle with trivial determinant supports a symplectic form then the associated

points (e1; : : : ; e2n) in E are invariant (up to permutation) under the map

e 7! �e. It turns out that we can identify the coarse moduli space of rank

2n semi-stable symplectic bundles over E with the subset of n unordered

points in E=fe �= �eg. Of course, E=fe �= �eg is the projective line P 1.
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Then the space of n unordered points in P 1 is the n-fold symmetric product

of the projective line, which is well-known to be projective n-space P n. In

terms of linear systems, n unordered points on P 1 is the projective space of

H0(P 1;O(n)).
The double covering map from E to P 1 is given by the Weierstrass p-

function, and the set of 2n points in E invariant under e 7! �e is the zeros
of a polynomial of degree at most n in p. This polynomial has a pole only

at p0 and that pole has order at most 2n.

Once again one can make a spectral covering construction. We de�ne

TSymp as the space of pairs (f 2 jOE(2np0)f(�x) = �f(x);�e) where �e is
in the support of the zero locus of f . Then over T �E there is a two plane

bundle with a non-degenerate skew symmetric pairing. The pushforward of

this bundle to the projective space of even functions on E with pole less

than 2np0 times E is then a family of symplectic bundles over E.

It turns out that these are the only two families of simply connected

groups for which a direct construction like this, relating the moduli space to

the projective space of a linear series can be made. For the other groups the

coarse moduli space is not a projective space, but rather a space of a type

which is a slight generalization called a weighted projective space. For the

groups SO(n), which of course are not simply connected, it is possible to

make a similar construction producing a projective space, but it is somewhat

delicate and I shall not give it here.

2.8 Flat SU(n)-connections

Let us switch gears now to state a general result linking principal holomor-

phic vector bundles to SU(n)-bundles equipped with a at connection. This

is a variant of the famous Narasimhan-Seshadri theorem.

Suppose thatW ! E is an SU(n)-bundle equipped with a connection A.

Consider the complex vector bundle associated to the de�ning n-dimensional

representation: WC = W �SU(n) C
n. Let dA: 


0(E;WC) ! 
1(E;WC) be

the covariant derivative determined by the connection A. We can take the

(0; 1)-part of the covariant derivative @A: 

0(E;WC)! 
0;1(E;WC). Since

the base is a curve, for dimension reasons the square of this operator van-

ishes, and hence it de�nes a holomorphic structure on WC. It is a standard

argument to see that this bundle is semi-stable, and in fact is a sum of stable

bundles, i.e. of line bundles of degree zero. The Narasimhan-Seshadri result

is a converse to this computation.
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Theorem 2.8.1 Let V be a semi-stable holomorphic vector bundle of rank n

with trivial determinant over an elliptic curve E. Then there is an SU(n)-

bundle W ! E and a at SU(n)-connection on W such that the induced

holomorphic structure on the bundle WC is S-equivalent to V . This bundle

and at connection are unique up to isomorphism. Thus, the space of iso-

morphism classes of at SU(n)-bundles is identi�ed with the moduli space

of S-equivalence classes of semi-stable holomorphic vector bundles of rank n

with trivial determinant.

Remarks: (1) As we have already pointed out the holomorphic bundles pro-

duced by this construction are sums of line bundles of degree zero. Generi-

cally, of course, these are the unique representatives in their S-equivalence

class, but when two or more of the line bundles coincide there are other

isomorphism classes in the same S-equivalence class.

(2) This theorem is usually stated for curves of genus at least 2. Over such

curves there are stable (as opposed to properly semi-stable) vector bundles.

In this context, the notion of S-equivalence is not necessary (or more pre-

cisely it coincides with isomorphism). The result is that associating to a at

SU(n)-bundle its associated holomorphic vector bundle determines an iso-

morphism between the space of the space of conjugacy classes of irreducible

representations of �1(C)! SU(n) and the space of stable holomorphic vec-

tor bundles of rank n and trivial determinant. In our case, when the base is

a curve of genus one, there are now irreducible representations (for n > 1)

reecting the fact that there are no stable vector bundles with trivial de-

terminant. In our case we have an equivalence between the S-equivalence

classes of properly semi-stable bundles.

(3) A at connection on an SU(n)-bundle over E is given by homomorphisms

�1(E)! SU(n) up to conjugation. Of course, choosing a basis for H1(E), or

equivalently choosing a pair of one-cycles on E which intersect transversely in

a single point, with +1 interesection at that point, identi�es �1(E) with a free

abelian group on two generators. A homomorphism of this group into SU(n)

is then simply a pair of commuting elements in SU(n). We consider two

pairs as equivalent if they are conjugate by a single element of SU(n). As is

well-known, two commuting elements in SU(n) are simultaneously conjugate

into the maximal torus T (the diagonal matrices) of SU(n). Thus, we can

assume that our elements lie in this maximal torus. The only conjugation

remaining is simultaneous Weyl conjugation. Thus, the moduli space of

homomorphisms of �1(E) ! SU(n) up to conjugation is identi�ed with
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(T � T )=W . (Notice that in this description we have ignored the complex

structure.) This generalizes the picture we established in the last lecture for

at SU(n)-bundles over S1. Still we have one more step to complete this

picture. Before we identi�ed T=W with the alcove for the a�ne Weyl group

action on t. We have not yet identi�ed (T � T )=W .

Let us give another description of (T � T )=W in a way that will keep

track of the complex structure. We write E = C=�1(E) and T = t=� where

t � Rn is the subspace of points whose coordinates sum to zero, and where

the coroot lattice � is the intersection of this subspace with the integral

lattice. A homomorphism �1(E)! T dualizes under Pontrjagin duality to a

homomorphism Hom(T; S1)! Hom(�1(E); S
1). The �rst group is identi�ed

with the dual �� to the lattice � and the second is identi�ed with the dual

curve E� to E. Since we have chosen a point p0 on E we have identi�ed E

and E� holomorphically. Thus, the Pontrjagin dual of the map �1(E) ! T

is a map �� ! E, or equivalently an element of � 
 E. We have the exact

sequence

0! �! Zn ! Z! 0

where the last map is the sum of the coordinates. Tensoring with E yields

0! �
E ! �nE ! E

where again the last map is the sum of the coordinates. Thus, we see that

�
E is identi�ed with the subset (e1; : : : ; en) 2 �nE of points which sum to

zero. Following through the action of the Weyl group, which is the symmetric

group on n letters acting in the obvious way on � � Zn, we see that the

Weyl action on Hom(�1(E); T ) becomes the permutation action on the space

on n points summing to zero. Thus, we see a direct isomorphism

Hom(�1(E); T )=W ! (�
E)=W

which realizes the Narasimhan-Seshadri theorem. Notice that the complex

structure on E induces a complex structure on � 
 E which is clearly in-

variant under the Weyl action. Thus, this structure descends to a complex

structure on (�
E)=W , and hence determines a holomorphic structure on

the moduli space. This structure agrees with the usual functorial one of

the coarse moduli space. Notice that since, as we have already seen by dif-

ferent methods, the quotient is a projective space, in the end, the complex

structure is independent of the complex structure on E.
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2.9 Flat G-bundles and holomorphic GC-bundles

The above result for vector bundles generalizes to an arbitrary complex

semi-simple group. Let GC be a complex semi-simple group with compact

form G. Suppose that W ! E is a principal G-bundle equipped with a

at G-connection A. We take an open covering of E by contractible open

sets fUig. Then for each i, there is a trivialization of W jUi in which A

is the product connection. This induces a trivialization of W �G GCjUi.
The overlap functions on gij :Ui \ Uj ! G in the given trivializations for W

are locally constant and hence holomorphic functions when viewed as maps

of Ui \ Uj into G �G GC. Thus, we have produced a holomorphic bundle

structure. (A better argument shows that any G-connection produces a

holomorphic bundle structure on the associated GC-bundle.)

De�nition 2.9.1 A holomorphic GC-bundle over E is semi-stable if its ad-

joint bundle is semi-stable. We say that two semi-stable GC-bundles V1; V2
on E are S-equivalent if there is a connected holomorphic family of semi-

stable GC-bundles on E containing bundles isomorphic to each of V1 and

V2.

Here is the general version of the Narasimhan-Seshadri result [8] for holo-

morphic principal GC-bundles over an elliptic curve.

Theorem 2.9.2 Let E be an elliptic curve and let GC be a complex semi-

simple group (not necessarily simply connected). Let V ! E be a semi-stable

holomorphic GC-bundle. Then there is a at G-bundle W ! E such that

the induced holomorphic GC-bundle structure on W �G GC is S-equivalent

to V . This at G-bundle is uniquely determined up to isomorphism.

Once again this result is usually stated for smooth curves of genus at least

two and establishes an isomorphism between the space of conjugacy classes

of irreducible representations of �1(C) into G and the space of isomorphism

classes of stable GC-bundles. But over an elliptic curve there are no stable

GC-bundles (and no irreducible representations of �1(E) into G) for any

semi-simple group G, and we must consider semi-stable bundles. As in

the case of vector bundles, we are then forced to work with the weaker

equivalence relation of S-equivalence instead of isomorphism.

We can examine at G-bundles analogously to the way we did when G is

SU(n). First, it is a classical result [2] that in a simple connected Lie group
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G any pair of commuting elements can be conjugated into the maximal torus

T , and any two pairs of elements in T are simultaneously conjugate if and

only if they are conjugate by a Weyl element. Thus:

Theorem 2.9.3 Let G be a compact simply connected semi-simple group

with maximal torus T , Weyl group W and coroot lattice � � t. Then, the

space of isomorphism classes of G-bundles with at connections is identi�ed

with (T � T )=W . By Pontrjagen duality this space is identi�ed with (� 

E)=W where W acts trivially on E and in the natural fashion on �.

We have already unraveled all this for SU(n). Let us see what it says

in the case of Sympl(2n). In this case the coroot lattice � is the integral

lattice in Rn and the Weyl group is the group (�1)n o Sn with the �1's
acting as sign changes of the various coordinates and Sn permuting the

coordinates. Thus, �
E is identi�ed with �nE and the action of the Weyl

group is by �1 in each factor and permutations of the factors. The quotient

�nE=(�1)n is �nP
1 and the symmetric group acts on this to produce a

quotient naturally identi�ed with Pn. This recaptures what we saw directly

in terms of holomorphic bundles.

Theorem 2.9.3 does not hold for non-simply connected groups. The rea-

son is that we cannot simultaneously conjugate a pair of commuting ele-

ments in a non-simply connected group into a maximal torus. For exam-

ple, if G = SO(3) then rotations by � radians in two perpendicular planes

commute but cannot be simultaneously conjugated into a maximal torus (a

circle) of SO(3). The reason is that if we lift these elements in any manner to

the double covering SU(2), then they generate a quaternion group of order

8, i.e., the commutation of the lifts in SU(2) is the non-trivial central ele-

ment of SU(2). If we could put both elements in a maximal torus of SO(3),

then they would lift to elements in a maximal torus of SU(2), and hence

there would be lifts which commuted. A similar phenomenon occurs in any

non-simply connected group G=C. It is an interesting problem to determine

the dimension of the space of representations of �1(E) ! G=C which pro-

duce bundles of a given nontrivial topological type. There is a purely lattice

theoretic description of conjugacy classes of commuting elements in a non-

simply connected compact group, and hence using the Narasimhan-Seshdari

result, a lattice-theoretic description of the coarse moduli space of bundles

over a non-simply connected semi-simple complex group. This description

is quite interesting but much more complicated.
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2.9.1 Looijenga's theorem

We have seen that in the cases of G = SU(n) and G = Sympl(2n) the space

of S-equivalence classes of semi-stable principal GC-bundles or equivalently

the space of conjugacy classes of representations of �1(E)! G is a projective

space. In fact, in each case we explicitly identi�ed the moduli space with the

projective space of a linear system either on the elliptic curve or on the P 1

quotient of the elliptic curve by�1. We now give a theorem which determines

the nature of these moduli spaces for an arbitrary simply connected and

simple group G.

First, let us recall the notion of a weighted projective space. Suppose

that V is a k-dimensional complex vector space with a linear action of C�.

Of course, this action can be diagonalized in an appropriate basis of V and

hence the action is completely determined up to isomorphism by k characters

on C�. Any character of C� is automatically of the form � 7! �r for some

integer r, and in this fashion the characters of C� are identi�ed with the

integers. The characters arising in the action on V are called the weights of

the action. If all the weights are non-zero and have the same sign, let us say

positive, then we say that the action is an action with positive weights. In

this case, there is a nice compact quotient space: V �f0g=C� which is called

a weighted projective space. For any set (g0; g1; : : : ; gk) of positive integers,

the symbol P(g0; g1; : : : ; gk) denotes the quotient of the action of C� with

weights (g0; g1; : : : ; gk). This quotient space is compact and of dimension k.

Indeed, is �nitely covered in a rami�ed fashion by an ordinary projective

space Pk. A weighted projective space is not in general a smooth complex

variety, since the action of C� has �nite cyclic isotropy groups along certain

subspaces. Rather, the quotient space has cyclic orbifold-type singularities.

(The quotient space is locally isomorphic to the quotient of Ck by a �nite

cyclic group.)

Theorem 2.9.4 [6,7] Let G be a compact, simple, simply connected group

and let E be an elliptic curve. Then the space of conjugacy classes of homor-

phisms �1(E) ! G has a natural complex structure and with this structure

is isomorphic to a weighted projective space P(1; g1; : : : ; gr) where g1; : : : ; gr
are the coe�cients that occur when the coroot dual to the highest root of G

is expressed as a linear combination of the coroots dual to the simple roots.

As we have seen, the space of conjugacy classes of homomorphisms

�1(E)! G is identi�ed with (�
E)=W . Since � is abstractly a free abelian



Holomorphic bundles over elliptic manifolds 169

group of rank r, � 
 E is �rE and hence has a natural complex structure

inherited from that of E. Clearly, the Weyl action is holomorphic, and thus

there is a possibly singular complex structure on the quotient space. This is

the one referred to in Looijenga's theorem.

2.10 The coarse moduli space for semi-stable holomorphic

GC-bundles

As we explained in the case of vector bundles, it is not enough simply to

�nd the set of S-equivalence classes, one would like to identify a coarse

moduli space (one has to worry whether or not such a coarse moduli space

even exists). As a �rst step in constructing the coarse moduli space for

semi-stable holomorphic GC-bundles, we claim that there is a holomorphic

family of GC-bundles over E parametrized by �
 E. Actually, this family

is a holomorphic family of TC-bundles over E. To construct this family

we choose an integral basis for �, hence identifying it with Zr and hence

identifying �
E with �rE. This also identi�es the complexi�cation TC of

the maximal torus T of G with a product �rC
�. Then we let P ! E � E

be the Poincar�e line bundle O(��E � fp0g) (where � is the divisor given

by the diagonal embedding of E). This is a family of line bundles of degree

zero over the second factor parametrized by the �rst factor. Over (�rE)�E
we form �r

i=1p
�
iP where pi: (�rE) � E ! E � E is given by the product

of projection onto the ith-component in the �rst factor and the identity in

the second factor. This sum of line bundles is then equivalent to a family

of principal �rC
�-bundles, and though our identi�cation, with a family of

TC-bundles. It is easy to trace through the identi�cations and see that the

resulting family of TC-bundles is independent of the choice of basis for �.

The Weyl groupW acts, as we have already used several times, in the ob-

vious way on the parameter space �
E. It also acts as outer automorphism

of the TC and hence changes one TC-principal bundle into a di�erent one.

The family is equivariant under these actions: the TC-bundle parametrized

by � 
 e is transformed by w 2 W acting on the set of TC-bundles to the

TC-bundle parametrized by w(�) 
 e. Thus, when we extend the structure

group from TC to GC the bundles parametrized by points in the same Weyl

orbit are isomorphic. Thus, our family of GC-bundles is equivariant under

the Weyl action. Consequently, if there is a coarse moduli space MGC for

S-equivalence classes of semi-stable holomorphic GC-bundles over E, then

we obtain a Weyl invariant holomorphic mapping � 
 E ! MGC , and
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hence holomorphic mapping (� 
 E)=W ! MGC . Since the set of points

of (� 
 E)=W are identi�ed with the set of S-equivalence classes of such

bundles, this map would then be a bijection. In fact there is such a moduli

space (as can be established by rather general algebro-geometric arguments)

and it is (� 
 E)=W . I will not establish this here, but I will assume it in

what follows. The precise statement is:

Theorem 2.10.1 The set of points of (� 
 E)=W is naturally identi�ed

with the set of S-equivalence classes of semi-stable GC-bundles over E. If

W ! E � X is a holomorphic family of semi-stable GC-bundles over E

parametrized by X, then the function X ! (�
E)=W induced by associating

to each x 2 X the point of (�
E)=W identi�ed with the S-equivalence class

of W jE�fxg is a holomorphic mapping. This makes (�
E)=W the coarse

moduli space for S-equivalence classes of semi-stable GC-bundles over E.

This completes the problem of understanding semi-stable holomorphic

GC-bundles over E. There is a coarse moduli space which is (� 
 E)=W

with the identi�cation of its points with bundles as given above. Further-

more, by Looijenga's theorem, this complex space is a weighted projective

space with positive weights given by the coe�cients of the simple coroots

in the linear combination which is the coroot dual to the highest root. The

only cases when this weighted projective space is in fact an honest projec-

tive space is when all the weights are 1 and this occurs only for the groups

SU(n) of A-type and the groups Sympl(2n) of C-type. In these two cases

we directly identi�ed with projective space as being associated with an ap-

propriate linear series.

In the next lecture, we will give a construction which will describe the

other moduli spaces in terms of a C�-action on an a�ne space. In the two

special cases given above this a�ne space will be a linear space and the action

will be the usual C�-action hence producing a quotient projective space. In

the other cases, we will show that the a�ne action can be linearized to

produce a quotient which is a weighted projective space. This will provide

a proof of Looijenga's theorem, di�erent from his original proof.

2.11 Exercises:

1. Show that if V;W are vector bundles over a smooth curve and that if

W ! V is a holomorphic map which is one-to-one on the generic �ber, then

there is a subbundle Ŵ � V which contains the image of W and so that
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Ŵ=W is a sky-scraper sheaf. Show that the degree of Ŵ is the degree of W

plus the total length of Ŵ=W .

2. Let E be a smooth projective curve over the complex numbers of genus

one. Show that the universal covering of E is analytically isomorphic to

C and that the fundamental group of E is identi�ed with a lattice � � C.

Show that �xing a point p0 2 E there is a holomorphic group law on E which

is abelian and for which p0 is the origin. Show this group law is unique given

p0. Using the Weierstrass p-function associated with this lattice show that

E can be embedded as a cubic curve in P2 with equation of the form

y2 = 4x3 + g2x+ g3

for appropriate constants g2; g3.

3. Using the RR theorem show that if V is a semi-stable vector bundle of

positive degree over E, then H1(E;V ) = 0 and H0(E;V ) has rank equal

to the degree of V . Formulate and prove the corresponding result for semi-

stable vector bundles of negative degree.

4. Show that there is a unique non-trivial extension I2 of OE by OE . Show

more generally that there is a unique bundle Ir of rank r which is an iterated

extension of OE where each extension is non-trivial. Show that H1(E; Ir) is

rank one. The iterated extensions give an increasing �ltration jcalF
�
of Ir

by subbundles so that for each s � r, we have Fs=Fs�1 = OE . Show that

this �ltration is stable under any automorphism of Ir and is preserved under

any endomorphism of Ir.

5. Show that if V is a vector bundle over any base and if every nonzero

section of V vanishes nowhere then the union of the images of the sections of

V produce a trivial subbundle of V with torsion-free cokernel. In particular,

in this case the number of linearly independent sections is at most the rank

of V and if it is equal to the rank of V , then V is a trivial bundle.

6. Show that there is a rank two vector bundle over E �H1(E;OE) whose

restriction to E � f0g is OE �OE and whose restriction to any other �ber

E � fxg, x 6= 0 is isomorphic to I2.

7. By a coarse moduli space of equivalence classes of bundles of a certain

type we mean the following: we have a reduced analytic space X and a

bijection between the points of X and the equivalence classes of the bundles

in question. Furthermore, if V ! E � Y is a holomorphic bundle such that

the restriction Vy of V to each slice E�fyg is of the type under consideration,
then the map Y ! X de�ned by sending y to the point ofX corresponding to

the equivalence class of Vy is a holomorphic mapping. Show that if a coarse
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moduli space exists, then it is unique up to unique isomorphism. Show that

there cannot be a coarse moduli space for isomorphism classes of semi-stable

bundles over E.

8. Show that H0(E;O(q�p0)
O(p0) is one-dimensional and that any non-

zero section of this bundle vanishes to order one at q. Show that H0(E; Ir

O(q� p0)
O(p0)) has rank r and that every section of this bundle vanishes

to order one at q. Thus, the determinant map for this bundle has a zero of

order r at q.

9. Show that points (e1; : : : ; er) in E are the zeros of a meromorphic function

f :E ! P1 with a pole only at p0 if and only if
P

i ei = 0 in the group law

of E.

10. Let E be embedded inP2 so that it is given by an equation inWeierstrass

form:

y2 = 4x3 + g2x+ g3:

Show that any meromorphic function on E with pole only at in�nity in this

a�ne model is a polynomial expression in x and y. Show that a meromorphic

function with pole only at in�nity which is invariant under e 7! �e is a

polynomial expression in x.

11. Let g:T ! jnp0j be the n-sheeted rami�ed covering constructed in

Section 2.6. Let L be the line bundle over T � E obtained by pulling back

the Poincar�e line bundle over E � E. Show that if (e1; : : : ; en) are distinct

points of E then the restriction of (g�Id)�L to fe1; : : : ; eng�E is isomorphic

to �iOE(ei�p0). Show that if e1 = e2 but otherwise the ei are distinct then

(g � Id)�(L restricted to fe1; : : : ; eng � E is isomorphic to OE(e1 � p0) 

I2 �n

i=3 O(ei � p0)

12. Show that the Pontrjagen dual of a homomorphism �1(E) ! T is a

homomorphism �! Hom(�1(E); S
1). Show that the choice of an origin p0

allows us to identify E with Hom(�1(E); S
1).

13. Show that the quotient of E by e �= �e is P1. Show that the quotient

of (P1)n under the action of the symmetric group on n letters is Pn.

14. Show that a weighted projective space with positive weights is a compact

complex variety. Show that it is �nitely covered by an ordinary projective

space. Show that in general these varieties are singular, but that their sin-

gularities are modeled by quotients of �nite linear group actions on a vector

space.
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3 The Parabolic Construction

In this section we are going to give a completely di�erent construction of

semi-stable bundles over an elliptic curve. We begin �rst with the case of

vector bundles of degree zero.

3.1 The parabolic construction for vector bundles

Lemma 3.1.1 Let E be an elliptic curve with p0 as origin. Then for each

integer d � 1 there is, up to isomorphism, a unique vector Wd over E with

the following properties:

1. rank(Wd) = d.

2. det(Wd) = O(p0).

3. Wd is stable.

Furthermore, H0(E;Wd) is of dimension one.

Proof. The proof is by induction on d. If d = 1, then it is clear that

there is exactly one bundle, up to isomorphism, which satis�es the �rst and

second item, namely O(p0). Since this bundle is stable, we have established
the existence and uniqueness when d = 1. Since O(�p0) is of negative

degree, it has no holomorphic sections and hence by RR, H1(E;O(�p0))
is one-dimensional. By Serre duality, it follows that H0(E : O(p0)) is also
one-dimensional. This completes the proof of the result for d = 1.

Suppose inductively for d � 2, there is a unique Wd�1 as required. By

the inductive hypothesis and Serre duality we have H1(E;W �

d�1) is one-

dimensional. Thus, there is a unique non-trivial extension

0! O !Wd !Wd�1 ! 0:

Clearly, using the inductive hypothesis we see that Wd is of rank d and its

determinant line bundle is isomorphic to O(p0). In particular, the degree

of Wd is one. Suppose that Wd has a destabilizing subbundle U . Then

deg(U) > 0. The intersection of U with O is a subsheaf of O and hence has

non-positive degree. Thus, the image p(U) of U inWd�1 has positive degree,

and hence degree at least one. In particular, it is non-zero. Since the rank

of U is at most the rank of Wd�1, it follows that �(p(U)) � �(Wd�1). Since
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p(U) is non-trivial, it follows that p(U) =Wd�1. Thus, the rank of U is either

d� 1 or d. If it is of rank d, the U = Wd and does not destabilize. Thus, it

must be of rank d�1. This means that p:U !Wd�1 is an isomorphism and

hence that U splits the exact sequence for Wd. This is a contradiction since

the sequence was a nontrivial extension. This contradiction proves that Wd

is stable.

A direct cohomology computation using the given exact sequence shows

that H0(E;Wd) has rank one, completing the proof.

Note (1): We have seen that Wd is given as successive extensions with all

quotients except the last one being O. The last one is O(p0).
(2): There is a one-parameter family of stable bundles of rank d and

degree 1. The determinant of such a bundle is of the formO(q) for some point

q 2 E and the isomorphism class of the bundle is completely determined by

q.

(3) The bundle W �

d is then a stable bundle of degree minus one and

determinant O(�p0).

Corollary 3.1.2 The automorphism group of Wd is C�.

Proof. Suppose that ':Wd ! Wd is an endomorphism of Wd. Then we

see that if ' is not an isomorphism, then deg(Ker(')) = deg(Coker(')).

But by stability, deg(Ker(')) � 0 or ' = 0. Similarly, stability implies

that deg(Coker(')) � 1 or ' is trivial. We conclude that either ' is an

isomorphism or ' = 0. If ' is an endomorphism and � is an eigenvalue of

', then applying the previous to ' � � � Id we conclude that ' = � � Id.
This shows that all endomorphisms of Wd are multiplication by scalars. The

result follows.

Now we are ready to construct semi-stable vector bundles of rank n and

degree zero.

Proposition 3.1.3 Let E be an elliptic curve and p0 2 E an origin for the

group law on E. Fix integers d; n; 1 � d � n� 1. Let Wd and Wn�d be the

bundles of the last lemma. Then any vector bundle V over E which �ts in a

non-trivial extension

0!W �

d ! V !Wn�d ! 0

is semi-stable.



Holomorphic bundles over elliptic manifolds 175

Proof. Clearly, any bundle V as above has rank n and degree zero. Suppose

that U � V is a destabilizing subbundle. Then deg(U) � 1. Since W �

d is

stable, the intersection U \W �

d has negative degree (or is trivial). In either

case, it is not all of U . This means that the image of U inWn�d is nontrivial

and has degree at least one. SinceWn�d is stable, this means the image of U

in Wn�d is all of Wn�d. Hence, the degree of U is one more than the degree

of U \W �

d . Since U \W �

d has negative degree or is trivial, the only way

that U can have positive degree is for U \W �

d = 0, which would mean that

U splits the sequence. This proves that all nontrivial extensions of the form

given are semi-stable bundles.

Lemma 3.1.4 Suppose that V is a non-trivial extension of Wn�d by W �

d .

Then for any line bundle � over E of degree zero, we have Hom(V; �) has

rank either zero or one.

Proof. The bundleHom(Wn�d; �) is of degree �1 and is semi-stable. Thus,

it has no sections. Similarly, Hom(W �

d ; �) has a one-dimensional space of

sections. From the long exact sequence

0! Hom(Wn�d; �)! Hom(W;�)! Hom(W �

d ; �)! � � �

we see that Hom(V; �) has rank at most one.

Corollary 3.1.5 If V is a non-trivial extension of Wn�d by W �

d , then V is

isomorphic to a direct sum of bundles of the form O(qi�p0)
Iri for distinct
points qi 2 E.

Proof. If V has two irreducible factors of the form O(q�p0)
Ir1 and O(q�
p0) 
 Ir2 then Hom(V;O(q � p0) would be rank at least two, contradicting

the previous result.

3.2 Automorphism group of a vector bundle over an elliptic

curve

The following is an easy direct exercise:
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Lemma 3.2.1 Let E be an elliptic curve and let L andM be non-isomorphic

line bundles of degree zero over E. Then Hom(L;M) = 0. Also, Hom(L;L) =

C.

Let V be a semi-stable bundle of degree zero over E. The support of V is

the subset of points e 2 E at which some non-zero section of V vanishes. As

we have seen in Atiyah's theorem, every semi-stable vector bundle of degree

zero over E decomposes as a direct sum of bundles with support a single

point.

Corollary 3.2.2 Let q; q0 be distinct points of E and let Vq and V 0

q0 be vec-

tor bundles of degree zero over E supported at q and q0 respectively. Then

Hom(Vq; V
0

q0) = 0.

Corollary 3.2.3 Let V be a semi-stable bundle of degree zero over and el-

liptic curve E and let V = �q2EVq be its decomposition into bundles with

support at single points. Then Hom(V; V ) = �q2EHom(Vq; vq).

Now let us analyze the individual terms in this decomposition.

Lemma 3.2.4 With Ir as in Lecture 1, Hom(Ir; Ir) is an abelian algebra

C[t]=(tr+1) of dimension r.

Proof. Recall that Ir comes equipped with a �ltration F0 � F1 � � � � �
Fr = Ir with associated quotients O. The quotient of Ir=Fs is identi�ed

with Ir�s. The �rst thing to prove is that this �ltration is preserved under

any endomorphism. It su�ces by an straightforward inductive argument to

show that F1 is preserved by an endomorphisms. But F1 is the image of the

unique (up to scalar multiples) non-zero section of Ir.

Let t: Ir ! Ir be the map of the form Ir ! Ir=F1 = Ir�1 = Fr�1 � Ir.

Clearly, the image of tk is contained in Fr�k so that tr+1 = 0. We claim that

every endomorphism of Ir is a linear combination of f1; t; t2; : : : ; trg. Suppose
that f : Ir ! Fr�s � Ir. Then there is an induced mapping Ir=Ir�1 !
Ir�s=Ir�s�1. Since both of these quotients are isomorphic to O, this map

and some multiple of the map between these quotients induced by ts are

equal. Subtracting this multiple of ts from f we produce a map Ir ! Fr�s�1.
Continuing inductively proves the result.
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Notice that an endomorphism is an automorphism if and only if its image

is not contained in Ir�1 if and only if it is not an element of the ideal

generated by t.

From this description the following is easy to establish.

Corollary 3.2.5 Let V be a semi-stable bundle of degree zero and rank n

over an elliptic curve E. Then the dimension of the automorphism group is

at least n. It is exactly n if and only if for each q 2 E, the subbundle Vq � V

supported by q is of the form O(q � p0)
 Ir(q) for some r(q) � 0.

Proof. We decompose V into a direct sum of bundles Vi which them-

selves are indecomposable under direct sum. Thus, each Vi is of the form

O(q � p0) 
 Ir for some q 2 E and some r � 1. Thus, by the previous

result the automorphism group of Vi has dimension equal to the rank of Vi.

Clearly, then the automorphism group of V preserving this decomposition

has dimension equal to the rank of V . This will be the entire automorphism

group if and only if Hom(Vi; Vj) = 0 for all i 6= j. This will be the case if

and only if the Vi have disjoint support.

Note that if, in the above notation, two or more of the Vi have the same

support then the automorphism group has dimension at least two more than

the rank of V .

De�nition 3.2.6 A semi-stable vector bundle over an elliptic curve whose

automorphism group has dimension equal to the rank of the bundle is called

a regular bundle.

We are now in a position to prove the main result along these lines.

Theorem 3.2.7 Fix n; d with 1 � d < n. A vector bundle V of rank n can

be written as a non-trivial extension

0!W �

d ! V !Wn�d ! 0

if and only if

1. The determinant of V is trivial.

2. V is semi-stable.

3. V is regular.
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Proof. The �rst condition is obviously necessary and in Proposition 3.1.3

and Corollary 3.1.5 we established that the second and third are also neces-

sary.

Suppose that V satis�es all the conditions. Condition (iii) says that

V = �q2EVq where each Vq is of the form O(q � p0) 
 Ir(q). We claim

that there is a map Wd ! O(q� p0)
 Ir(q) whose image is not contained in

O(q�p0)
Ir(q)�1. The reason for this is thatWd
O(q�p0)
Ir is stable and
has degree r. Thus, its space of sections has dimension exactly r. Applying

this with r = r(q) and r = r(q) � 1 we see that there is a homomorphism

Wd ! O(q � p0)
 Ir(q) which does not factor through O(q � p0)
 Ir(q)�1.

Claim 3.2.8 If F is a subsheaf of V of degree zero and if the projection of

F onto each Vq is not contained in a proper subsheaf, then F = V .

Proof. Let W be the smallest subbundle of V containing F . It has degree
at least zero and is equal to F if and only if its degree is zero. By stability

it has degree zero and hence is equal to F . This shows that F is in fact a

subbundle. Since there are no non-trivial maps between subbundles of Vq
and Vq0 for q 6= q0, it follows that any subbundle of �Vq is in fact a direct

sum of its intersections with the various Vq. If the image of the subbundle

under projection to Vq is all of Vq then its intersection with Vq is all of Vq.

The claim now follows.

Let W �

d ! V be a map whose projection onto each Vq is not contained

in any proper subbundle of Vq. Let us consider the image of this map. It is

a subsheaf of V which is proper since d < n. This means it has degree at

most zero. By the above it cannot be of degree zero. Thus, it is of degree at

most �1. Hence the kernel of the map is either trivial or has degree at least

0. This latter possibility contradicts the stability of W �

d . This shows that

the map is an isomorphism onto its image; that is to say it is an embedding

of W �

d � V .

Next, let us consider the cokernel X. We have already seen that the

cokernel is a bundle. Clearly, its determinant is O(p0) and its rank is n� d.

To show that it is Wn�d we need only see that it is stable. Suppose that

U � X is destabilizing. Then the degree of U is positive. Let ~U � V be

the preimage of U . It has degree one less than U and hence has degree at

least zero. But since it contains the image of Wd, the previous claim implies

that it is all of V , which implies that U is all of Wn�d, contradicting the

assumption that U was destabilizing.
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Now we shall show that, given V , there is only one such extension with

V in the middle, up to automorphisms of V .

Proposition 3.2.9 Let V be a semi-stable rank n-vector bundle with trivial

determinant. Suppose that the group of automorphisms of V has dimension

n. Then V can be written as an extension

0!W �

d ! V !Wn�d ! 0:

This extension is unique up to the action of the automorphism group of V .

Proof. Suppose we have an extension as above for V . First notice that if

the image of W �

d were contained in a proper subsheaf of degree zero of V ,

then this subsheaf would project into Wn�d destabilizing it. Thus, the only

subsheaf of degree zero of V that contains the image of W �

d is all of V . That

is to say the image of W �

d in each Vq is not contained in a lower �ltration

level, i.e. a proper subsheaf of degree zero. Now we need to show that all

maps W �

d ! Vq which are not contained in a proper subsheaf of degree zero

are equivalent under the action of the automorphisms of Vq. This is easily

established from the structure of the automorphism sheaf of Vq given above.

Corollary 3.2.10 For any 1 � d < n, the projective space of

H1(E;Hom(Wn�d;W
�

d )) = H1(E;W �

n�d 
W �

d ) is identi�ed with the space

of isomorphism classes of regular semi-stable vector bundles of rank n and

trivial determinant.

Notice that it is not apparent, a priori, that for di�erent d < n that the

above projective spaces can be identi�ed in some natural manner.

The association to each regular semi-stable vector bundle of rank n and

trivial determinant of its S-equivalence class then induces a holomorphic

map from P(H1(E;W �

n�d 
W �

d )) to the coarse moduli space P(O(np0)) of
S-equivalence classes of such bundles. It follows immediately from Atiyah's

theorem that each S-equivalence class contains a unique regular represen-

tative up to isomorphism, so that this map is bijective. Since it is a map

between projective spaces it is in fact a holomorphic isomorphism. Thus, for

any d; 1 � d < n, we can view the projective space of H1(E;W �

n�d
W �

d ) as

yet another description of the coarse moduli space of S-equivalence classes
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of semi-stable rank n vector bundles of trivial determinant. Notice that the

actual bundles produced by this construction are the same as those produced

by the spectral covering construction since both are families of regular semi-

stable bundles. On the other hand, using the Narasimhan-Seshadri result

gives a di�erent set of bundles { namely the direct sum of line bundles. These

families agree generically, but di�er along the codimension-one subvariety of

the parameter space where two or more points come together. We have seen

two constructions of holomorphic families of semi-stable vector bundles {

the spectral covering construction and the parabolic construction and both

create regular semi-stable bundles. It is not clear that the at connection

point of view can be carried out holomorphically in families (indeed it can-

not). A hint to this fact is that it is producing di�erent bundles and these

do not in general �t together to make holomorphic families.

The reason for the name `parabolic' will become clear after we extend

to the general semi-simple group. Before we can give this generalization we

need to discuss parabolic subgroups of a semi-simple group.

3.3 Parabolics in GC

Let GC be a complex semi-simple group. A Borel subgroup of GC is a con-

nected complex subgroup whose Lie algebra contains a Cartan subalgebra

(the Lie algebra of a maximal complex torus) together with the root spaces

of all positive roots with respect to some basis of simple roots. All Borel

subgroups in GC are conjugate. By de�nition a parabolic subgroup is a

connected complex proper subgroup of GC that contains a Borel subgroup.

Up to conjugation parabolic subgroups of GC are classi�ed by proper (and

possibly empty) subdiagrams of the Dynkin diagram of G. Fix a maximal

torus of GC and a set of simple roots f�1; : : : ; �ng. A subdiagram is given

simply by a subset f�1; : : : ; �rg of the set of simple roots. The Lie algebra

of the parabolic is the Cartan subalgebra tangent to the maximal torus, to-

gether with all the positive root spaces and all the root spaces associated

with negative linear combinations of the f�1; : : : ; �rg. Thus, a Borel sub-

group corresponds to the empty subdiagram. The full diagram gives GC
and hence is not a parabolic subgroup. Up to conjugation a parabolic P is

contained in a parabolic P 0 if and only if the diagram corresponding to P

is a subdiagram of that corresponding to P 0. It follows that the maximal

parabolic subgroups of GC up to conjugation are in one-to-one correspon-

dence with the subdiagrams of the Dynkin diagram of G obtained by deleting
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a single vertex. This sets up a bijective correspondence between conjugacy

classes of maximal parabolic subgroups of GC and vertices of the Dynkin

diagram, or equivalently with the set of simple roots for GC.

A parabolic subgroup P has a maximal unipotent subgroup U whose Lie

algebra is the sum of the roots spaces of positive roots whose negatives are

not roots of P . This subgroup is normal and its quotient is a reductive group

called the Levi factor L of P . There is always a splitting so that P can be

written as a semi-direct product U �L. The derived subgroup of L is a semi-

simple group whose Dynkin diagram is the subdiagram that determined P

in the �rst place. A maximal torus of P is the original maximal torus of

G. If P is a maximal parabolic then the character group of P is isomorphic

to the integers, and the component of the identity of the center of P is

C�, and any nontrivial character of P is non-trivial on the center. On the

level of the Lie algebra the generating character of P is given by the weight

dual to the coroot associated with the simple root �i that is omitted from

the Dynkin diagram in order to create the subdiagram that determines P .

The value of this weight on any root � is simply the coe�cient of �i in the

linear combination of the simple roots which is �. The root spaces of the

Lie algebra of P are those ones which the character is non-negative, and the

Lie algebra of the unipotent radical is the sum of the root spaces of roots on

which this character is positive.

Example: The maximal parabolics of SLn(C) correspond to nodes of

its diagram. Counting from one end we index these by integers 1 � d < n.

The parabolic subgroup corresponding to the integer d is the subgroup of

block diagonal matrices with the lower left d � (n � d) block being zero.

The Levi factor is the block diagonal matrices or equivalently pairs (A;B) 2
GLd(C)�GLn�d(C) with det(A) = det(B). A vector bundle with structure

reduced to this parabolic is simply a bundle with a rank d subbundle, or

equivalently a bundle written as an extension of a rank d bundle by a rank

(n � d) bundle. In this case, the unipotent subgroup is a vector group

Hom(Cn�d;Cd).

3.4 The distinguished maximal parabolic

For all simple groups except those of An type we shall work with a distin-

guished maximal parabolic. It is described as follows: If the group is simply

laced, then the node of the Dynkin diagram that is omitted is the trivalent

one. If the group is non-simply laced, then either vertex which is omitted
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is the long one connected to the multiple bond. It is easy to see that in all

cases the Levi factor of this parabolic is written as the subgroup of a product

of GLki of matrices with a common determinant.

Examples: (i) For a group of type Cn, there is a unique long root.

The Levi factor of the corresponding subgroup is GLn(C) and the unipo-

tent radical is the self-adjoint maps Cn to its dual. In terms of complex

symplectic 2n-dimensional bundles, a reduction of structure group of V 2n

to this parabolic means the choice of a self-annihilating n-dimensional sub-

bundle W n. This bundle has structure group the Levi factor GLn(C) of

the parabolic. The quotient of the bundle by this subbundle is simply the

dual bundle W �
n . The extension class that determines the bundle and its

symplectic form is an element in H1(E; SymHom(W;W �)), where SymHom

means the self-adjoint homomorphisms.

(ii) For a group of type Bn the distinguished maximal parabolic has

Levi factor the subgroup of GLn�1(C) � GL2(C) consisting of matrices of

the same determinant. Let us consider the orthogonal group instead of

the spin group. Then a reduction in the structure group of an orthogonal

bundle V 2n+1 to this parabolic is a self-annihilating subspace W1 � V 2n+1

of dimension n. This produces a three term �ltration W1 � W2 � W3

where W2 = W?
1 . Under the orthogonal pairing W1 and W3=W2 are dually

paired and W2=W1, which is three-dimensional, has a self-dual pairing and

is identi�ed with the adjoint of the bundle over the GL2(C)-factor. The

subbundle W1 is the bundle over the GLn(C)-factor of the Levi. There are

two levels of extension data one giving the extension comparing W1 � W2

which is an element of H1(E; (W2=W1)
� 
W1)) and the other an extension

class in H1(E; SkewHom(W3=W2;W1)), where SkewHom refers to the anti-

self adjoint mappings under the given pairing.

(iii) There is a similar description forD2n. Here the Levi factor of the dis-

tinguished parabolic is the subgroup of matrices in GLn�2(C)�GL2(C)�
GL2(C) consisting of matrices with a common determinant. This time a

reduction of the structure group to P corresponds to a self-annihilating sub-

space W1 of dimension n � 2, it is the bundle over the GLn�2(C)-factor of

the Levi. The quotient W2=W1 is four-dimensional and self-dually paired. It

is identi�ed with the tensor product of the bundle over one of the GL2(C)-

factor with the inverse of the bundle over the other. Once again the coho-

mology describing the extension data is two step { one giving the extension

which is W1 � W2 and the other a self-dual extension class for W3=W2 by

W1.
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(iv) In the case of Er, r = 6; 7; 8 the Levi factor is the subgroup of

matrices in GL2(C) � GL3(C) � GLr�3(C) with the same determinants.

It is more di�cult to describe what a reduction of the structure group to

this parabolic means since we have no standard linear representation to use.

For E6 there is the 27-dimensional representation, which would then have a

three-step �ltration with various properties.

In the case of SLn(C) we began with a particular, minimally unstable

vector bundle Wd �Wn�d whose structure group has been reduced to the

Levi factor of the parabolic subgroup. We then considered extensions

0!W �

d ! V !Wn�d ! 0:

These extensions have structure group the entire parabolic. They also have

the property that modulo the unipotent subgroup they become the unstable

bundleW �

d �Wn�d with structure group reduced to the Levi factor L of this

maximal parabolic.

3.5 The unipotent subgroup

Let us consider the unipotent subgroup of a maximal parabolic group. Fix

a maximal torus T of GC and a set of simple roots f�1; : : : ; �ng. Suppose

that this parabolic is the one determined by deleting the simple root �i. We

begin with its Lie algebra. Consider the direct sum of all the root spaces

g
u associated with positive roots whose negatives are not roots of P . These

are exactly the positive roots which, when expressed as a linear combination

of the simple roots have a positive coe�cient times �i. Clearly, these roots

form a subset which is closed under addition, in the sense that if the sum of

two roots of this type is a root, then that root is also of this type. This means

that the sum ~U of the root spaces for these roots makes a Lie subalgebra of

gC. Furthermore, there is an integer k > 0 such that any sum of at least

k roots of this type is not a root. (The integer k can be taken to be the

largest coe�cient of �i in any root of gC.) This means that the Lie algebra
~U is in fact nilpotent of index of nilpotency at most k. It follows that the

restriction of the exponential map to ~U is a holomorphic isomorphism from
~U to a unipotent subgroup U � GC. The dimension of this group is equal

to the number of roots with positive coe�cient on �i. Furthermore, U is

�ltered by a chain of normal subgroups f1g � Uk � Uk�1 � � � U1 where

Ui is the unipotent subgroup whose Lie algebra is the root spaces of roots

whose �i-coe�cient is at least i. Clearly, Uk is contained in the center of the
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group and Ui=Ui�1 is contained in the center of U=Ui. The entire structure

of the unipotent group can be directly read o� from the set of roots with

positive coe�cient on �i together with the information about which sums of

roots are roots.

Examples: (i) For SLn(C) and any maximal parabolic the �ltration is

trivial U1 = U ;U2 = f1g. The reason is of course that all positive roots are

linear combinations of the simple roots with coe�cients 0; 1 only. Thus, U

is a vector group. It is Hom(Cd;Cn�d).

(ii) For groups of type Cn and maximal parabolics obtained by deleting

the vertex corresponding to the unique long root, again U = U1;U2 = f1g
(all roots have coe�cient �1 or 0 on this simple root). The unipotent radical

U is the vector group ^2Cn. For all other maximal parabolics of groups of

type Cn, the unipotent radical has a two-step �ltration and is not abelian.

(iii) For groups of type Bn and for maximal parabolics obtained by delet-

ing the simple root �i which is long and which corresponds to a vertex of the

double bond in the Dynkin diagram, the �ltration is f1g � U2 � U1 = U .

The dimension of U2 is (n � 1)(n � 2)=2 and the dimension of U1=U2 is

2(n�1). The Lie bracket mapping U1=U2
U1=U2 ! U2 is onto, so that the

unipotent group is not a vector group, i.e., it is unipotent but not abelian.

(iv) For groups of type Dn and maximal parabolics obtained by deleting

the simple root corresponding to the trivalent vertex, once again the �ltration

is of length 2: we have f1g � U2 � U1 = U . The dimension of U2 is

(n � 2)(n � 3)=2 and the dimension of U1=U2 is 4(n � 2). Once again the

bracket mapping U1=U2 
U1=U2 ! U2 is onto, and hence the group is non-

abelian.

(iv) Once we leave the classical groups, the �ltrations become more com-

plicated. For E6 the �ltration of the unipotent subgroup of the distinguished

maximal parabolic is f1g � U3 � U2 � U1 where the dimension of U3 is two,

the dimension of U2=U3 is 9 and the dimension of U1=U2 is 18. For E7 and

the distinguished maximal parabolic, the �ltration of the unipotent radical

begins at U4 which is three-dimensional and descends to U1 with U1=U2 be-

ing 24 dimensional. For E8 and the distinguished maximal parabolic, the

�ltration begins at U6 which is �ve-dimensional and descends all the way to

U1 with U1=U2 being of dimension 30.
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3.6 Unipotent cohomology

Fix a simple group GC and a maximal parabolic subgroup P , and �x a

splitting P = U � L. Also, �x a holomorphic principal bundle �L ! E with

structure the Levi factor L of P . We wish to study holomorphic bundles

� ! E with structure group P with a given isomorphism �=U ! �L. Let us

choose a covering of the elliptic curve by small analytic open subsets fUig.
The bundle �L is described by a cocycle nij :Ui \ Uj ! L. A bundle � and

isomorphism �=U ! �L is given by maps uij :Ui \ Uj ! U satisfying the

cocycle condition:

uijnijujknjk = uiknik:

Since the fnijg are already a cocycle, we can rewrite this condition as

uiju
nij
jk = uik;

where un = nun�1 for u 2 U and n 2 L. This is the twisted cocycle con-

dition associated with the bundle �L and the action of L (by conjugation)

on the unipotent subgroup U . A zero cochain is simply a collection of holo-

morphic maps vi:Ui ! U . Varying a twisted cocycle fuijg by replacing the

coboundary of this zero cochain means replacing it by viuij(v
�1
j )nij .

The set of cocycles modulo the equivalence relation of coboundary makes

a set, denoted H1(E;U(�L)). In fact, it is a pointed set since we have

the trivial cocycle: uij = 1 for all i; j. In the case when U is abelian,

associated to �L and the action of L on U (which is linear), there is a vector

bundle U(�L). The twisted cocycles modulo coboundaries are exactly the

usual Cech cohomology of this vector bundle, H1(E;U(�L)), and hence this

cohomology space is in fact a vector group. The general situation is not quite

this nice. But since U is �ltered by normal subgroups with the associated

gradeds being vector groups, we can �lter the twisted cohomology and the

associated gradeds are naturally the usual cohomology of the vector bundles

H1(E; (Ui=Ui�1(�L)). In this situation, the entire cohomology H1(E;U(�L))

can be given the structure on an a�ne space which has an origin, and which

is �ltered with associated gradeds being vector bundles.

The center of P is C� (more precisely, the component of the identity of

the center of P ) and hence acts on U and on H1(E;U(�L)). This action

preserves the origin, and the �ltration and on each associated graded is a

linear action of homogeneous weight. That weight is given by the index of

that �ltration level (weight i on Ui=Ui�1). It is a general theorem that since

all these weights of theC�-action are positive, there is in fact an isomorphism
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of this a�ne space with a vector space in such a way that the C�-action

becomes linearized. In particular, the quotient of
�
H1(E;U(�L))� f0g

�
=C�

is isomorphic as a projective variety to a weighted projective space. The

dimension of the subprojective space of weight i is equal to one less that the

dimension of H1(E;Ui=Ui�1)).

This is a fairly formal construction and it is not clear that it has anything

to do with stable GC-bundles. Here is a theorem that tells us that using

the distinguished maximal parabolic identi�ed above and a special unstable

bundle with structure group the Levi subgroup of this parabolic in fact leads

to semi-stable GC-bundles. It is a generalization of what we have established

directly for vector bundles.

Theorem 3.6.1 Let GC be a simply connected simple group and let P � GC
be the distinguished parabolic subgroup as above. Then the Levi factor of

P is isomorphic to the L � Q
iGLn�i consisting of all fAi 2 GLnigi

such that det(Ai) = det(Aj) for all i; j. Let Wni be the unique stable

bundle of rank ni and determinant O(p0). Then �L = �iW
�
ni

is natu-

rally a holomorphic principal L-bundle over E. Every principal P -bundle

which is obtained from a non-trivial cohomology class in H1(E;U(�L)) be-

comes semi-stable when extended to a GC-bundle. Cohomology classes in

the same C�-orbit determine isomorphic GC-bundles. This sets up an iso-

morphism between
�
H1(E;U(�L))� f0g

�
=C� and the coarse moduli space of

S-equivalence classes of semi-stable GC-bundles over E. Every GC-bundle

constructed this way is regular in the sense that its GC-automorphism group

has dimension equal to the rank of G, and any regular semi-stable GC-bundle

arises from this construction. Any non-regular semi-stable GC-bundle has

automorphism group of dimension at least two more than the rank of G.

This result gives a di�erent proof of Looijenga's theorem. It identi�es

the coarse moduli space as weighted projective space associated with a non-

abelian cohomology space. It is easy to check given the information about

the roots and their coe�cients over the distinguished simple root that the

weights of this weighted projective space are as given in Looijenga's theorem.

3.7 Exercises:

1. Suppose that we have a non-trivial extension

0! O ! X !Wd�1 ! 0;
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where Wd�1 is as in the �rst lemma of this lecture. Show that H0(E;X) is

one-dimensional and hence that H1(E;X�) is also of dimension one.

2. Let V be a holomorphic vector bundle. Show that Aut(V ) is a complex

Lie group and that its Lie algebra is identi�ed with End(V ) = H0(V 
 V �).

3. Show that if V1 and V2 are semi-stable bundles over E, then so is V1
V2.

Compute the degree of V1 
 V2 in terms of the degrees and ranks of V1 and

V2.

4. Prove Lemma 3.2.1 and Corollary 3.2.2.

5. Show that if V is a semi-stable vector bundle of rank n over E which is

not regular, then the dimension of the automorphism group of V is at least

r + 2.

6. Let Vqi be semi-stable vector bundles over E of degree zero and disjoint

support. Show that any subbundle of degree zero in �Vqi is in fact a direct

sum of subbundles of the Vqi .

7. Show that if any two homomorphisms W �

d ! Ir which have image not

contained in Ir�1 di�er by an automorphism of Ir.

8. Show that a Borel subgroup of GC is determined by a choice of a maximal

torus for GC and a choice of simple roots for that torus. Show all Borel

subgroups of GC are conjugate.

9. Up to conjugation, describe explicitly all parabolic subgroups of SLn(C).

10. Let GC be a semi-simple group. Show that the character group of a

maximal parabolic subgroup of GC is isomorphic to Z. Show that the center

of a maximal parabolic subgroup of GC is one-dimensional.

11. For E6; E7; E8; G2; F4 work out the dimensions of the various �ltration

levels in the unipotent subgroups associated with the distinguished maximal

parabolic subgroups.

12. Check that in the formula given for the action by a coboundary on a

twisted cocylce that the resulting one-cochain is still a twisted cocycle.

13. For groups of type Bn and Dn and the distinguished parabolic and the

given bundle �L over the Levi factor, compute the cohomology vector spaces

H1(E;U2(�L)) and H1(E;U1=U2(�L)).
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4 Bundles over Families of Elliptic Curves

In this lecture we will generalize the constructions for the case of vector

bundles over an elliptic curve to vector bundles over families of elliptic curves.

4.1 Families of elliptic curves

The �rst thing that we need to do is to decide what we shall mean by a family

of elliptic curves. The best choice for our context is a family of Weierstrass

cubic curves. Recall that a single Weierstrass cubic is an equation of the

form

y2 = 4x3 + g2x+ g3;

or written in homogeneous coordinates is given by:

zy2 = 4x2 + g2xz
2 + g3z

3:

This equation de�nes a cubic curve in the projective plane with homogeneous

coordinates (x; y; z). The point at in�nity, i.e., the point with homogeneous

coordinates (0; 1; 0) is always a smooth point of the curve. In the case when

the curve is itself smooth, this point is taken to be the identity element of the

group law on the curve. More generally, there are only two types of singular

curves which can occur as Weierstrass cubics { a rational curve with a single

node { which occurs when �(g2; g3) = 0 where �(g2; g3) = g32 + 27g23 is the

discriminant, and the cubic cusp when g2 = g3 = 0. In each of these cases

the subvariety of smooth points of the curve forms a group (C� in the nodal

case and C in the cuspidal case), and again we use the point at in�nity as

the origin of the group law on the subvariety of smooth points.

Now suppose that we wish to study a family of such cubic curves para-

metrized by a base B which we take to be a smooth variety. Then we �x a

line bundle L over B. We interpret the variables x; y; z as follows: let E be

the three-plane bundle OB � L2 � L3 over B; z: E ! OB , x: E ! L2, and

y: E ! L3 are the natural projections. Furthermore, g2 is a global section of

L4 and g3 is a global section of L6. With these de�nitions

zy2 � (4x3 + g2xz
2 + g3z

3)

is a section of Sym3(E�)
L6. Its vanishing locus projectivizes to give a sub-

variety Z � P(E) over B, which �ber-by-�ber is the elliptic curve (possible

singular) given by trivializing the bundle L over the point b 2 B in question
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and viewing g2(b) and g3(b) as complex numbers so that the above cubic

equation with values in L6 becomes an ordinary cubic equation depending

on b. While the actual equation associated to b will of course depend on

the trivialization of Ljfbg, the homogeneous cubic curve it de�nes will be

independent of this choice.

Thus, as long as the sections g2 and g3 are generic enough so as not to

always lie in the discriminant locus, Z ! B is an elliptic �bration (which

by de�nition is a at family of curves over B whose generic member is an

elliptic curve). This family of elliptic curves comes equipped with a choice of

base point, i.e., there is a given section of Z ! B. It is the section given by

fz = x = 0g or equivalently, by the section [L3] 2 P(OB � L2 � L3). (This

is the globalization of the point (0; 1; 0) in a single Weierstrass curve.) This

does indeed de�ne a section � of Z ! B. The image of this section is always a

smooth point of the �ber. If we use local �berwise coordinates (u = x=y; v =

z=y) near this section, then the local equation is v = 4u3 + g2uv
2 + g3v

3,

and its gradient at the point (0; 0) points in the direction of the v-axis. This

means that along � the surface Z is tangent to the u-axis. Since what we

are calling the u-axis actually has coordinate x=y, these lines �t together to

form the line bundle L2
 (L3)�1 = L�1, which then is the normal bundle of

� in Z. This bundle is also of course the relative tangent bundle of the �bers

along the section �. Since the tangent bundle of each �ber is trivialized, it

follows that the pushforward, ��T�bers, is isomorphic to L�1. Also important

for us will be the relative dualizing sheaf. It is ��T
�

�bers. (Of course, as I have

presented it, we are working only at smooth �bers. But because the singular

curves have su�ciently mild singularities the relative dualizing sheaf is still

a line bundle, and in fact is the bundle L.)

We have proved:

Lemma 4.1.1 Let �� be the normal bundle of � in Z. Let �:Z ! B be the

natural projection. Then �� = OZ(�)j� and ��(OZ(�)j�) = ��(��) = L�1:

The bundle L is the relative dualizing line bundle.

N.B. The subvariety of B consisting of b 2 B for which the Weierstrass

curve parametrized by b is singular, resp., a cuspidal curve, is a subvariety.

For generic g2 and g3 the codimension of these subvarieties are one and two,

respectively.
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4.2 Globalization of the spectral covering construction

Having said how we shall replace our single elliptic curve by a family of

elliptic curves with a section, we now turn to globalizing the vector bundle

constructions. Our �rst attempt at globalizing the previous constructions

would be to try to �nd the analogue for (E � � � � �E)| {z }
n�times

=Sn. The obvious can-

didate is (Z �B � � � �B Z)| {z }
n�times

=Sn. This works �ne as long as Z is smooth over B

but does not give a good result at the singular �bers. There is in fact a way

to globalize this construction, at least across the nodes. It involves consid-

ering Zreg�B � � ��B Zreg, where Zreg is the open subvariety of points regular

in their �bers, and then given an appropriate toroidal compacti�cation at

the nodal �bers. I shall not discuss this construction here.

There is however another way to view n points on E which sum to

zero, up to permutation. Namely, as we have already seen, these points

are naturally the points of the projective space H0(E;OE(np0)). Thus, a

better way to globalize is to replace O(p0) by OZ(�) and thus consider

R0��(OZ(n�)). This is a vector bundle of rank n on B. Its associated

projective space bundle is then a locally trivial Pn�1 bundle over B. The

�ber of this projective bundle over a point b 2 B is canonically identi�ed

with the projective bundle of the linear system jnp0j on E.

As the next result shows, this pushed-forward bundle splits naturally as

a sum of line bundles.

Claim 4.2.1 The bundle R0��(OZ(n�)) is naturally split as a sum of line

bundles: OB � L�2 � L�3 � � � � � L�n.

Proof. By de�nition we are considering the bundle whose sections over an

open subset U � B are the analytic functions on ZjU with poles only along

�\(ZjU ) and those being of order at most n. We have already at our disposal

functions with this property: 1; x; x2; : : : ; x[n=2]; y; xy; : : : ; x[(n�3)=2]y. Given

any function with this property over U , we can subtract (uniquely) a multiple

of one of these basic functions, xa or xay, so that the order of the pole is

reduced by at least one. The multiple will have a coe�cient which is a section

of the line bundle L�2a in the �rst case and L�2a+3 in the second. In this

way we identify the sections of our vector bundle over U with expressions of

the form

a0 + a1x+ � � �+ a[n=2]x
[n=2] + b0y + � � �+ b[(n�3)=2]x

[(n�3)=2]y:
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The coe�cient of xa lies in L�a and the coe�cient of xay lies in L�(2a+3).

This identi�es the space of sections with the sum OB�L�2�L�3�� � ��L�n.

Notice that a section of this n-plane bundle is then a family of S-

equivalence classes of semi-stable bundles on the �bers of Z==B, but that

it is not yet a vector bundle on Z. Nevertheless, the spectral covering con-

struction generalizes to produce a vector bundle. Let Pn be the bundle

of projective spaces associated to the vector bundle R0��(OZ(n�)). This

is the bundle whose �ber over b 2 B is the projective space of the linear

system OEb
(np0). Consider the natural map ����OZ(n�) ! OZ(n�). It is

surjective and we denote by E its kernel which is a vector bundle of rank

n � 1. De�ne T = P(E). A point of ����OZ(n�) consists of an element

f 2 jOEb
(n�(b))j together with a point z 2 Eb. The �ber E consists of all

pairs for which f(z) = 0. The bundle T is a Pn�2-bundle over Z whose �ber

over any z 2 Eb is the projective space of the linear system OEb
(n�(b)�z) on

Eb. The composition of the inclusion T ! Pn �B Z followed by the projec-

tion onto Pn is a rami�ed n-sheeted covering denoted g, which �ber-by-�ber

is the map we constructed before for a single elliptic curve.

Using this map we can construct a family of vector bundles over Z semi-

stable on each �ber. Namely, we consider the pullback � to T �B Z of the

diagonal �0 � Z �B Z. Then we have a line bundle

L = OT �BZ(�� T �B �):

The pushforward (g �B Id)�(L) is a rank n vector bundle on Z which is

regular semi-stable and of trivial determinant on each �ber. Analogous to

our result for a single curve we have the following universal property for this

construction.

Theorem 4.2.2 Let U ! Z be a vector bundle which is regular, semi-stable

with trivial determinant on each �ber of Z==B. Then associating to each

b 2 B the class of UjEb determines a section sA:B ! Pn. Let TA be the

pullback of T ! Pn via this section. Then the natural projection TA ! B is

an n-sheeted rami�ed covering. Let LA be the pullback to TA�BZ of the line

bundle L over T �B Z by sA �B Id. Then there is a line bundle M over TA
such that U is isomorphic to (g� Id)�(LA
p�1M), where p1:TA�B Z ! TA.

Notice that there are in essence two ingredients in this construction: the

�rst is a section A ofPn ! B and the second is a line bundle over the induced
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rami�ed covering TA of B. The section A is equivalent to the information of

the isomorphism class of the bundle on each �ber of Z==B. The line bundle

over TA gives us the allowable twists of the bundle on Z which do not change

the isomorphism class on each �ber.

This completes the spectral covering construction. It has the advantage

that it produces all vector bundles over Z which are regular and semi-stable

with trivial determinant on each �ber. Its main drawback is that it does

not easily generalize to other simple groups. The construction that does

generalize easily is the parabolic construction to which we turn now.

4.3 Globalization of the parabolic construction

It turns out that (except in the case of E8-bundles and cuspidal �bers) that

the parabolic construction of vector bundles globalizes in a natural way.

The �rst step in establishing this is to globalize the bundles Wd which are

an essential part of the construction, both for vector bundles and for more

general principal G-bundles.

4.3.1 Globalization of the bundles Wd

We de�ne inductively the global versions of the bundles Wd. The globaliza-

tion of W1 = OE(p0) is of course W1 = OZ(�), so that the way we have

chosen to globalize curves has already given us a natural globalization of

W1. Clearly, the restriction of this line bundle to any �ber E of Z==B is

the bundle OE(p0). (Notice that even if the �ber is singular, p0 is a smooth

point of it, so that OE(p0) still makes sense as a line bundle.)

Claim 4.3.1 There is, up to non-zero scalar multiples, a unique non-trivial

extension

0! ��L! X !W1 ! 0:

The restriction of X to any �ber is isomorphic to W2 of that �ber.

Proof. Let us compute the global extension group Ext1(OZ(�); �
�L). Since

both the terms are vector bundles, the extension group is identi�ed with

the cohomology group H1(Z;OZ(�)
� 
 ��L). The local-to-global spectral

sequence produces an exact sequence

0! H1(B;��(OZ(�)
� 
 ��L)! H1(Z;OZ(�)

� 
 ��L)

! H0(B;R1��OZ(�)
� 
 ��L)! H2(B;��OZ(�)

� 
 ��L)! :
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Since the restriction of OZ(�)
� to each �ber is semi-stable of negative degree,

it follows that the �rst term and the fourth term are both zero, and hence

we have an isomorphism

H1(OZ(�)
�
��L)! H0(B;R1(��OZ(�)
��L)) = H0(B;R1��(OZ(�))
L):

But we have already seen that R1��(OZ(��)) = L�1, so that we are con-

sidering H0(B; (L�1 
 L) = H0(B;OB) = C. Since any non-trivial section

of this bundle is nonzero at each point, any non-trivial extension class has

non-trivial restriction to each �ber and hence any non-trivial extension of

the form 0 ! L ! W1 ! 0 restricts to each �ber Eb to give a nontrivial

restriction of W1 by OEb
and hence restricts to each �ber to give a bundle

isomorphic to W2 on that �ber.

Now let us continue this construction. The following is easily established

by induction.

Proposition 4.3.2 For each integer n � 1 there is a bundle Wn over Z

with the following properties:

1. W1 = OZ(�)

2. For any n � 2 we have a non-split exact sequence

0! Ln�1 !Wn !Wn�1 ! 0:

3. R1��W�
n = L�n.

4. R0��W�
n = 0.

For these bundles the restriction of Wn to any �ber of Z==B is isomorphic

to the bundle Wn of that Weierstrass cubic curve.

Proof. The proof is by induction on d, with the case d = 1 being the last

claim. Suppose inductively we have constructed Wd�1 as required. Since

W �

d�1 is semi-stable of negative degree on each �ber, and since R1��Wd�1 =

L1�d, it follows by exactly the same local-to-global spectral sequence argu-

ment as in the claim that H1(W �

d�1 
 ��Ld�1) = H0(B;L1�d 
 Ld�1) =

H0(B;OB) = C. Thus, there is a unique (up to scalar multiples) nontrivial

extension of the form

0! Ld�1 ! X !Wd�1 ! 0
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and the restriction of this extension to each �ber of Z==B is nontrivial. We

letWd be the bundle which is such a nontrivial extension. The computations

of Ri��W�

d are straightforward from the extension sequence.

Notice that Wn is not the only bundle that restricts to each �ber to give

Wn. Any bundle of the form Wn 
 ��M for any line bundle M on B will

also have that property. Since the endomorphism group of Wn is C�, one

shows easily that these are the only bundles with that property.

N.B If we assume that B is simply connected then there are no torsion

line bundles on B. In this case requiring that the determinant of Wd be

��Ld(d�1)=2 
O)Z(�) will determine Wd up to isomorphism.

4.3.2 Globalizing the construction of vector bundles

Lemma 4.3.3 Ext1(Wn�d;W�

d ) is identi�ed with the space of global sections

of the sheaf

R1��(W�

n�d;W�

d )

on B.

Proof. First of all since Wn�d and W�

d are vector bundles, we can iden-

tify Ext1(Wn�d;W�

d ) with H1(Z;W�

n�d 
W�

d ). The local-to-global spectral

sequence produces an exact sequence

0! H1(B;R0��(W�

n�d 
W�

d ))! H1(Z;W�

n�d 
W�

d )

! H0(B;R1��(Wn�d 
W�

d))! H2(B;R0��W�

n�d 
W�

d):

Since W�

d and W�

n�d are both semi-stable and of negative degree on each

�ber, the restriction of their tensor product to each �ber has no sections. It

follows that R0��(W�

n�d 
W�

d ) is trivial. Thus, we have an isomorphism

H1(Z;W�

n�d 
W�

d)! H0(B;R1��(Wn�d 
W�

d));

as claimed in the statement.

Next we need to compute the sheaf R1��(B;W�

d 
W�

n�d) on B.

Proposition 4.3.4 R1��(B;W�

d 
W�

n�d) is a vector bundle and is isomor-

phic to the direct sum of line bundles L� L�1 � L�2 � � � � � L1�n.
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First we consider a special case:

Lemma 4.3.5 R1��(B;OZ(��)
W�
n�1) is isomorphic to L�L�1�L�2 � � ��

L1�n:

Proof. Let R0
n�1 = R0��(OZ(�)
Wn�1). Since the restriction of OZ(�)


Wn�1 to each �ber is a semi-stable bundle of degree �n, R0
n�1 is a vector

bundle of rank n over B.

The relative dualizing sheaf for Z==B is ��L and R1��L = OB . Thus,

relative Serre duality is a map

S:R1��(OZ(��)
W�
n�1)! R0��(OZ(�) 
Wn�1 
 ��L�1)


R1��L = R0
n�1 
 L�1:

Consider the composition of S with the map

(R0
n�1)

� 
 L�1
A�! Vn�1R0

n�1 
 det(R0
n�1)

�1 
 L�1

ev
Id
Id�! R0��(det(OZ(�)
Wn�1))
 det(R0
n�1)

�1 
 L�1

= R0��(OZ(n�))
 L(n�1)(n�2)=2 
 det(R0
n�1)

�1 
 L�1;

where the map A is induced by taking adjoints from the natural pairing

R0
n�1 


n�1̂

R0
n�1 ! det(R0

n�1);

and ev is the map

ev:

n�1̂

R0��(OZ(� 
Wn�1)! R0��(

n�1̂

OZ(�)
Wn�1)

obtained by evaluating sections. Clearly, both S and A are isomorphisms.

It is not so clear, but it is still true that ev is also an isomorphism. I shall

not prove this result { it is somewhat involved but fairly straightforward. A

reference is Proposition 3.13 in Vector Bundles over Elliptic Fibrations.

Assuming this result, we see that the vector bundle we are interested in

computing di�ers from R0��(OZ(n�) by twisting by the line bundle L�1 

detR0

n�1.

According to Claim 4.2.1 R0(OZ(n�)) splits as a sum of line bundles

O�L�2�L�3� � � � �L1�n. Now to complete the evaluation of R1��(Wd

W�

n�d) we need only to compute the line bundle detR0��(OZ(n�)
Wn�1).
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Claim 4.3.6 detR0��(OZ(n�)
Wn�1) is equal to L(n�2)(n�1)=2�2.

Proof. In computing the determinants we can assume that all sequences

split. This allows us to replace Wn�1 by OZ(�) � L� L2 � � � � Ln�2. Since

OZ(2�) sits in an exact sequence

0! OZ(�)! OZ(�)! OZ(�)j� ! 0

and since R0��OZ(�)) = L and R0��OZ(�)j� = L�1, and R0��(OZ(�) 

��La) = La�1, the result follows easily.

Putting all this together we see that

R1��(B;OZ(��)
Wn�1) = R0��(B;OZ(n�))
 L:

This completes the proof of Lemma 4.3.5

Now we are ready to complete the proof of Proposition 4.3.4. This is

done by induction on d. The case d = 1 is exactly the case covered by

Lemma 4.3.5. Suppose inductively that we have established the result for

W�

d 
W �

n�d for some d � 1. We consider the commutative diagram

0 0 0??y
??y

??y
0 ���! W�

d 
W�

n�d�1 ���! W�

d+1 
W�

n�d�1 ���! L�d 
W�

n�d�1 ���! 0??y
??y

??y
0 ���! W�

d 
W�

n�d ���! W�

d+1 
W�

n�d ���! L�d 
W�

n�d ���! 0??y
??y

??y
0 ���! W�

d 
 L1+d�n ���! W�

d+1 
 L1+d�n ���! L�d 
 L1+d�n ���! 0??y
??y

??y
0 0 0

The natural maps R1��(W�

d+1 
 L1+d�n) ! R1��(L
1�d 
 L1+d�n) and

R1��(L
�d
W�

n�d)! R1��(L
�d
L1+d�n) are both isomorphisms. It follows

that the images of R1��(Wd+1 
 W�

n�d�1) and of R1��(W�

d 
 W�

n�d) in

R1��(W�

d+1
Wn�d) are equal to the kernel of the natural map R1��(W�

d+1
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W�

n�d ! R1��(L
�d 
 L1+d�n). Since all the bundles in question are semi-

stable and of negative degree on each �ber, they all have trivial R0��. Thus

the maps R1��(Wd+1 
W�

n�d�1) and R1��(W�

d 
W�

n�d) to R1��(W�

d+1 

Wn�d) are injections. It follows that R

1��(Wd+1
W�

n�d�1) and R
1��(W�

d

W�

n�d) are identi�ed This completes the inductive step and hence the proof

of the theorem.

4.4 The parabolic construction of vector bundles regular and

semi-stable with trivial determinant on each �ber

Let Z ! B be a family of Weierstrass cubic curves with � the section

at in�nity. Fix a line bundle M on B and sections ti of L
�i 
M for i =

0; 2; 3; 4; : : : ; n. Supposing that there is no point of B where all these sections

vanish we can construct a vector bundle as follows.

The identi�cation of Ext1(Wn�d;W�

d ) with L � L�1 � L�2 � � � � L1�n

can be twisted by tensoring with M so as to produce an identi�cation of

Ext1(Wn�d;W
�

d 
 ��M) with M 
 L�M 
 L�1 � � � � �M 
 L1�n. Thus,

the sections ti determine an element of Ext1(Wn�d;W�

d 
 ��M) and hence

determine an extension

0!W�

d 
 ��M ! V ! Wn�d ! 0:

Since we are assuming that not all the sections ti vanish at the same point

of B, the restriction of V to each �ber is a non-trivial extension of Wn�d by

W �

d . Thus, the restriction of V to each �ber is in fact semi-stable, regular

and with trivial determinant.

This parabolic construction thus produces one particular vector bun-

dle associated with each line bundle M on B and each non-zero section of

R0��(OZ(n�))
M . This bundle is automatically regular and semi-stable on

each �ber and has trivial determinant on each �ber. Conversely, given the

bundle regular and semi-stable and with trivial determinant of each �ber, it

determines a section of the projective bundle Pn ! B, to which we can ap-

ply the parabolic construction. The result of the parabolic construction may

not agree with the original bundle { but they will have isomorphic restric-

tions to each �ber. Thus, they will di�er by twisting by a line bundle on the

spectral covering corresponding to the section. That is to say to construct

all bundles corresponding to a given section we begin with the one produced

by the parabolic construction. The section also gives us a spectral covering

T ! B. We are then free to twist the bundle constructed by the parabolic
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construction by any line bundle on T , just as in the spectral covering con-

struction. Thus, the moduli space of bundles that we are constructing �bers

over the projective space of H1(Z;W�

d 
W�

n�d) with �bers being Jacobians

of the spectral coverings T ! B produced by the section. This twisting cor-

responds to �nding all bundles which agree with the given one �ber-by-�ber.

By general theory all such bundles are obtained by twisting with the sheaf

of groups H1(B;��(Aut(V;V)).

4.5 Exercises:

1. Show that a Weierstrass cubic has at most one singularity, and that is

either a node or a cusp. Show that the cusp appears only if g2 = g3 =

0. Show that the node appears when �(g2; g3), as de�ned in the lecture,

vanishes. Show that the point at in�nity is always a smooth point.

2. Show that for any Weierstrass cubic the usual geometric law de�nes a

group structure on the subset of smooth points with the point at in�nity be-

ing the origin for the group law. Show that this algebraic group is isomorphic

to C� if the curve is nodal and isomorphic to C if the curve is cuspidal.

3. Show that any family of Weierstrass cubics is a at family of curves over

the base.

4. Prove Lemma 4.1.1.

5. Describe the singularities of Z �B � � � � �B Z at the nodes and cusps of

Z==B.

6. Show that if V ! Z is a vector bundle and for each �ber Eb of Z==B we

have Hi(Eb;V jEb) is of dimension k, show that Ri��(V ) is a vector bundle

of rank k on B.

7. Let M be a line bundle over B and let V �t in an exact sequence

0!W�

d 
 ��M ! V ! Wn�d ! 0:

Compute the Chern classes of V.
8. Show that if V and U are vector bundles over a smooth variety, then

Ext1(U; V ) = H1(U� 
 V ).

9. Show that if V is a rank n vector bundle then
Vn�1 V is isomorphic to

V � 
 det(V ).

10. State relative Serre duality and show that it is correctly applied to

produce the map S given in the proof of Lemma 4.3.5.

11. Suppose that V is a vector bundle. Show that to �rst order the defor-

mations of V are given by H1(Hom(V; V )).



Holomorphic bundles over elliptic manifolds 199

5 The Global Parabolic Construction for Holomor-

phic Principal Bundles

In this section we wish to generalize the parabolic construction to families

of Weierstrass cubics. In the last lecture we did this for vector bundles,

here we consider principal bundles over an arbitrary semi-simple group GC.

This construction will produce holomorphic principal bundles on the total

space Z of the family of Weierstrass cubics which have the property that

they are regular semi-stable GC-bundles on each �ber of Z==B. Of course,

this construction can also be viewed as a generalization of the construction

given in the third lecture for a single elliptic curve. It is important to note

that we do not give an analogue of the spectral covering construction for

GC-bundles. We do not know whether such a construction exists for groups

other than SLn(C) and Sympl(2n).

5.1 The parabolic construction in families

We let Z ! B be a family of Weierstrass cubics with section �:B ! Z as

before. Let GC be a simply connected simple group. Fix a maximal torus

and a set of simple roots for G, and let P � G be the distinguished maximal

parabolic subgroup with respect to these choices. Then the Levi factor L

of P is isomorphic to the subgroup of a product of general linear groupsQs
i=1GLni consisting of matrices with a common determinant. The charac-

ter group of P and of L is Z and the generator is the character that takes

the common determinant. We consider the bundle W�
n1
� � � � � W�

ns . This

naturally determines a holomorphic principal L-bundle �L over Z. Viewed as

a bundle over GC it is unstable since the GC-adjoint bundle associated with

this L bundle splits into three pieces: the adjoint ad(�L) of the L-bundle,

the vector bundle associated with the tangent space to the unipotent radical

U+(�L) and the vector bundle associated to the root spaces negative to those

in U+, U�(�L). The �rst bundle has degree zero, the second has negative

degree and the third has positive degree. The degree of the entire bundle is

zero. This makes it clear that ad(�L�LGC) is unstable, and hence according

to our de�nition that �C�LGC is an unstable principal GC-bundle. (Notice

that the L-bundle is stable as an L-bundle.)

Once again we are interested in deformations of �L to P -bundles � with

identi�cations �=U = �L. Just as in the case of a single elliptic curve, these

deformations are classi�ed by equivalence classes of twisted cocycles, which
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we denote by H1(Z;U(�L)). Recall that U is �ltered 0 � Un � Un�1 � � � � �
U1 = U where the center C� acts on U and has homogeneous weight i on

Ui=Ui�1. Furthermore, Ui=Ui�1 is abelian and hence is a vector space which

lies in the center of U=Ui�1. Thus, once again we can �lter the cohomology

by H1(Z;Ui(�L)) with the associated gradeds being ordinary cohomology

of vector bundles H1(Z;Ui=Ui�1(�L)). Since det(�L) as measured with re-

spect to the generating dominant character of P is negative, it follows that

R0��(Ui=Ui�1(�L)) is trivial for all i. A simply inductive argument then

shows that R0��(U(�L)) is a bundle of zero dimensional a�ne spaces over

B, and hence H0(Z;U(�L)) has only the trivial element.

A similar inductive discussion shows that R1��(U(�L)) is �ltered with

the associated gradeds being the vector bundles R1��(Ui=Ui�1(�L)). This

implies that R1��(U(�L)) is in fact a bundle of a�ne spaces over B, with

a distinguished element { the trivial cohomology class on each �ber. The

local-to-global spectral sequence, the vanishing of the R0��(U(�L)) and an

inductive argument shows that in fact the cohomology set H1(Z;U(�L)) is

identi�ed with the global sections of R1��(U(�L)) over B.

5.2 Evaluation of the cohomology group

In all cases except G = E8 and over the cuspidal �bers we can in fact split

the bundle R1��(U(�L)) of a�ne spaces so that it becomes a direct sum of

vector bundles. Under this splitting the C� action becomes linear.

Theorem 5.2.1 Let G be a compact simply connected, simple group and let

Z ! B be a family of Weierstrass cubic curves. Assume either that G is not

isomorphic to E8 or that no �ber of Z==B is a cuspidal curve. Then there

is an isomorphism R1��U(�L) with a direct sum of line bundles �iL
1�di

where d1 = 0 and d2; : : : ; dr are the Casimir weights associated to the group

G. Furthermore, the C� action that produces the weighted projective space

is diagonal with respect to this decomposition and is a linear action on each

line bundle.

Corollary 5.2.2 The cohomology H1(Z;U(�L)) is identi�ed with the space

of sections of a sum of line bundles over B, and hence the space of extensions

is identi�ed with a bundle of weighted projective spaces over B. The �bers

are weighted projective spaces of type P(g0; g1; : : : ; gr) where g0 = 1 and for

i = 1; : : : ; r the gi are the coroot integers.
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Here is a table of the Casimir weights grouped by C�-weights

Group 1 2 3 4

An 0; 2; 3; : : : ; n

Bn 0; 2; 4 6; 8; : : : ; 2n

Cn 0; 2; 4; : : : ; 2n

Dn 0; 2; 4; n 6; 8; : : : ; 2n� 2

E6 0; 2; 5 6; 8; 9 12

E7 0; 2 6; 8; 10 12; 14 18

G2 0; 2 6

F4 0; 2 6; 8 12

Thus, with this choice of splitting for the unipotent cohomology, a choice

of a line bundle M over B and sections ti of M 
 L1�di will determine a

section of R1��(U(�L)) and a P -bundle over Z deforming the original L-

bundle �L. By construction there will be a given isomorphism from the

quotient of the deformed bundle modulo the unipotent subgroup back to

�L. Furthermore, if the sections ti never all vanish at the same point of

B, then the resulting P -bundle will extend to a GC-bundle which is regular

and semi-stable on each �ber of Z==B. The resulting section of the weighted

projective space bundle is equivalent to the data of the S-equivalence class of

the restriction of the principal GC-bundle to each �ber of Z==B. Of course,

since these bundles are regular, it is equivalent to the isomorphism class of

the restriction of the GC-bundle to each �ber.

5.3 Concluding remarks

Thus, for each collection of sections we are able to construct a GbfC-bundle

which is regular semi-stable on each �ber. The study of all bundles which

agree with one of this type �ber-by-�ber is more delicate. From the parabolic

point of view, it requires a study of the sheaf R1��(Aut(�)) which can be

quite complicated, and is only partially understood at best.

Even assuming this, we are far from knowing the entire story { one would

like to have control over the automorphism sheaf so as to �nd all bundles

which are the same �ber-by-�ber. Then one would like to complete the

space of bundles by adding those which become unstable on some �bers

(but remain semi-stable on the generic �ber). Finally, to complete the space

it is surely necessary to add in torsion-free sheaves of some sort. All these

issues are ripe for investigation { little if anything is currently known.
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The study of these bundles is an interesting problem in its own right.

After varieties themselves bundles are probably the next most studied ob-

jects in algebraic geometry. Constructions, invariants, classi�cation, moduli

spaces are the main sources of interest. The study we have been describing

here �ts perfectly in that pattern. Nevertheless, from my point of view, there

is another completely di�erent motivation for this study. That motivation

is the connection with other di�erential geometric, algebro-geometric, and

theoretical physical questions.

The study of stable G-bundles over surfaces is closely related to the

study of anti-self-dual connections on G-bundles (this is a variant of the

Narasimhan-Seshadri theorem in for surfaces rather than curves and was

�rst established by Donaldson [4]) and whence to the Donaldson polynomial

invariants of these algebraic surfaces. Thus, the study described here can be

used to compute the Donaldson invariants of elliptic surfaces. These were

the �rst such computations of those invariants, see [5].

More recently, there has been a connection proposed, see [9], between

algebraic n-manifolds elliptically �bered over a base B with E8�E8-bundle

and algebraic (n+1)-dimensional manifolds �bered over the same base with

�ber an elliptically �bered K3 with a section. The physics of this later set-

up is called F -theory. The precise mathematical statements underlying this

physically suggested correspondence are not well understood yet, and this

work is an attempt to clarify the relationship between these two seemingly

disparate mathematical objects. All the evidence to date is extremely posi-

tive { the two theories E8 � E8-bundles over families elliptic curves line up

perfectly as far as we can tell with families of elliptically �bered K3-surfaces

with sections over the same base. Yet, there is still much that is not under-

stood in this correspondence. Sorting it out will lead to much interesting

mathematics around these natural algebro-geometric objects.
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1 Introduction

Let Y be a smooth projective curve of genus g and UY = UY (n; d) the

moduli space of (semi-stable) vector bundles on Y of rank n and degree

d. One strategy for studying the variety UY in depth is by the method of

degeneration (or specialization), namely one specializes Y to a curve X0,

say with only one singularity which is an ordinary double point. One would

have a moduli object UX0
on X0 such that UY specializes to UX0

and one

expects a close relationship between UX0
and the moduli space UX on the

normalisationX ofX0. Since the genus of X is (g�1), one would then obtain

a machinery for studying UY , especially its properties which are amenable

to specialization, by induction on g.

This strategy was employed by Gieseker to prove a conjecture of New-

stead and Ramanan for moduli spaces in rank 2, namely that the Chern

classes ci of the smooth projective variety UY (2; 1) vanish for i >
1
2 dimUY (2; 1),

i.e. i � (2g � 1), since dimUY (2; 1) = (4g � 3) (see [G]). A similar one was

employed by M.S. Narasimhan and T.R. Ramadas to prove what is called the

factorisation rule in the rank two case and recently it has been generalized

to arbitrary rank by Xiaotao Sun (see [NR] and [Su]).

Gieseker constructed a moduli object GX0
on X0 (we do not denote this

by UX0
since this will stand for a moduli space of torsion free sheaves on X0)

such that it has nice singularities and UY (2; 1) specializes to GX0
. Further,

he gave a concrete realization of GX0
via the moduli space UX(2; 1), which

helps in solving the conjecture of Newstead and Ramanan by induction on

the genus.

Recently, in collaboration with D.S. Nagaraj, we have been able to gen-

eralize Gieseker's construction of GX0
for arbitrary rank (see [NS]). A good

part of these lectures is devoted to outlining this construction. Our method

for the global construction is quite di�erent from that of Gieseker; it consists

in relating the Gieseker moduli space to that of torsion free sheaves on X0,

an aspect which does not �gure in Gieseker's work.

We give also a brief sketch of the proof of the conjecture of Newstead

and Ramanan in the rank two case. This is essentially on the lines as done

by Gieseker ([G]). However, our proof for the concrete realization of the

Gieseker moduli space (via the moduli space UX(2; 1)) connects it with the

moduli space of GPB's (generalized parabolic bundles) and shows a close
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relationship with good compacti�cations of the full linear group. In this

sense it appears more conceptual and suggests a natural candidate for the

concrete realization in arbitrary rank.

For related work see [Te] and especially the very recent one [K].

2 Review of basic facts of the moduli space U(n; d)

on X0

We work over an algebraically closed base �eld K, which we can take to be

C - the �eld of complex numbers, as the emphasis is not on the characteristic

of K.

Let X0 be a projective, irreducible curve with only one singularity at

p 2 X0, which is an ordinary double point. We �x an ample line bundle

OX0
(1) on X0. Unless otherwise stated we assume g = arithmetic genus of

X0 � 2.

Let F be a torsion free (coherent) OX0
-module on X0. We have the

notion of the degree of F (say de�ned by degF = �(F ) � rkF � �(O�)).

Following Mumford, we say F is semi-stable (resp. stable) if for every (resp.

proper) subsheaf G of F , we have

degG

rkG
�

degF

rkF
(resp. <):

We have a natural structure of a projective variety (irreducible and reduced)

on certain equivalence classes of semi-stable torsion free sheaves on X0 of

rank n and deg. d. We this by U(n; d) = UX0
(n; d). If (n; d) = 1,

U(n; d) is, in fact, the set of isomorphism classes of stable torsion free sheaves

of rank n and degree d.

The variety U(n; d) has good spe0ialization properties. This means, for

example, the following: Let S = Spe0A, where A is a d.v.r. (discrete val-

uation ring, in fact wecan even take A as a K-algebra) with residue �eld

the ground �eld K. Let X �! S be a at family of projectivecurves such

that the closed �bre Xs0 ' X0 and the generic �bre X� is smooth (of genus

g), s0 (resp. �) being the closed point (resp. generic point) of S. (One may

have to �x a section passing through the smooth points of the �bres). Then

wehavea well-de�ned moduli s0heme U(n; d)S which is at and projective
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over S such that its generic �bre U(n; d)� can be identi�ed with the moduli

space of vector bundles on X� and we have a bijective morphism

(i) UX0
(n; d) �! U(n; d)s0

U(n; d)s0 being the closed �bre of U(n; d)S �! S. All these follow by

appealing to GIT over arbitrary base. We do not know whether, in general,

the map (i) is an isomorphism, even if we suppose that X �! S is smooth

i.e. the closed �bre is smooth. However, if char K = 0, it is easily seen that

(i) is an isomorphism. Also if (n; d) = 1 the map (i) is an isomorphism.

The facts that UX0
(n; d) is a variety (in particular reduced) and that it

has good specialization properties are not very general results. For example,

if Y0 is a projective curve whose singularities are not ordinary double points,

the moduli space on Y0 may have irreducible components whose dimensions

are bigger than the expected dimension (this happens even in the rank one

case). To show that UX0
(n; d) is reduced (scheme theoretically) one has to

have a closer study of deformations of torsion free sheaves. It is known that,

locally at the singular point `p' of X0, a torsion free sheaf F is of the form

F '

 
aM
i=1

m

!
�

0@ bM
j=1

O

1A ; m maximal ideal of O = OX0;p:

We refer to `a' as the type of F (at p). It is known (see [S] and [F]) that the

miniversal deformation space of F (as an O-module) is formally smooth to

the singularity de�ned by

(ii) XY = Y X = 0 (X;Y space of `a� a'-matrices):

i.e. the analytic local ring at the origin of the closed subscheme of the 2a2

dimensional a�ne scheme, de�ned by the equations in (ii). One knows that

this analytic local ring is reduced and Cohen -Macaulay (see [St.]). The

reduced nature of UX0
(n; d) can be deduced from this fact.

Let U(n; d)0 denote the subset of points of U(n; d) which represent vec-

tor bundles on X0. Then U(n; d)0 is open in U(n; d) and if (n; d) = 1,

U(n; d)nU(n; d)0 = SingU(n; d) (singular locus of U(n; d)). It can be seen

that the singularities of U(n; d) are not, in general, normal crossings. This

is a consequence of (ii) above.

One of the main goals of these lectures is to give a construction (see x4

and x5) of a variety G(n; d) (for (n; d) = 1) such that
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(i) G(n; d) is projective and U(n; d)0 is open in G(n; d)

(ii) G(n; d) has only (analytic) normal crossing singularities and

SingG(n; d) = G(n; d)nU(n; d)0

(iii) there is a canonical morphism �� : G(n; d) �! U(n; d) which is an

isomorphism over U(n; d)0.

(iv) G(n; d) has good specialization properties i.e. we have an S-scheme

G(n; d)S associated to a moduli problem on X �! S, which is at and

projective over S. Besides, the generic �bre G(n; d)� of G(n; d)S over

S, identi�es with U(n; d)� and the closed �bre with G(n; d).

This generalizes Gieseker's construction of GX0
, referred to above.

We study also the �bres of ��. They turn out to be the wonderful com-

pacti�cations of the projective linear group (Rem. 5.2).

In x6 we give a concrete realization of G(2; 1) (Th. 6.1 and Th.6.2) and

sketch very briey how this helps in solving the conjecture of Newstead and

Ramanan in the rank two case.

3 Vector bundles on the curves Xk

De�nition-Notation 3.1. We call a scheme R, a chain of projective lines if

R =
Sn
i=1Ri, Ri ' P

1, Ri\Rj (for distinct i; j) is a single point if ji�jj = 1

and otherwise empty. We call m the length of R. Let E be a vector bundle

of rank n on R. One knows that EjRi
=
Ln

j=1O(aij), aij 2 Z. We say that

E is positive if aij � 0 for all i; j. We say that E is strictly positive if it is

positive and for every i, there is a j such that aij > 0. We say E is standard

if it is positive and aij � 1 for all i; j and strictly standard if, moreover, it is

strictly positive.

De�nition-Notation 3.2. Let X0 be the curve as in x2 with an ordinary

double point singularity at `p'. Let � : X �! X0 be the normalisation of

X0 and ��1(p) = fp1; p2g. Let Xk be the curves which are \semi-stably

equivalent to X0" i.e. X is a component of Xk (k � 1) and if � : Xk �! X0

denotes the canonical morphism, then ��1(p) is a chain R of projective lines

of length k, passing through p1; p2 i.e. they are the curves as follows:
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p
X X X

X0 X1 X2 X3

- - -

p1

p2

p1

p2 p2

p1

Let Z be a scheme and E a vector bundle on Z of rank n such that H0(E)

generates E i.e. the canonical map H0(E) �! Ez (�bre of E at z 2 Z) is

surjective. Then we get a canonical morphism.

�E = � : Z �! Gr(H0(E); n) (Grassmannian of n dimensional

quotients of H0(E))

such that E is the inverse image by � of the tautological quotient bundle on

Gr(H0(E); n).

Proposition 3.1. Let R be a chain of projective lines. Then we have the

following:

(1) if E is a positive vector bundle on R, then H0(E) generates E and

H1(E) = 0. Moreover, if R1 is a subchain of R (in the obvious sense),

the canonical map

H0(R;E) �! H0(R1; E)

is surjective.

(2) if E is strictly positive, the canonical morphism

� : R �! Gr(H0(E); n)

is a closed immersion. Conversely, the pull-back of the tautological

quotient bundle by a closed immersion of R in a Grassmannian, is

strictly positive.

(3) �(E) = degE + n (degE = total degree i.e. sum of degEjRi
, for

this claim E could be any vector bundle on R) so that if E is positive

h0(E) = degE + n.
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(ii) Ri��(E) = 0; i > 0

(iii) Hi(Xk; E) ' Hi(X0; ��(E))

(iv) If E is trivial on R, then ��(E) is a vector bundle on X0 and E '

��(��(E)).

Proof. The proof of (i) is immediate. For (ii) take an a�ne neighbourhood

V of p and set U = ��1(V ), V 0 = U \X. Since V 0 is a�ne, the canonical

map EjV 0 �! Ep1 �Ep2 is surjective so that we get

Hi(EjU ) ' Hi(EjV 0)�Hi(EjR); i > 0:

The RHS is zero and then (ii) and (iii) follow. When EjR is trivial, we get

canonical isomorphisms of H0(EjR) with Epi and hence a canonical identi�-

cation � : Ep1 �! Ep2 . We see that H0(EjU ) identi�es with the subspace of

H0(EjV 0) consisting of elements `s' such that � � s(p1) = s(p2). This shows

that ��(E) identi�es with the vector bundle on X0 de�ned by EjX on the

normalisation X of X0 and the patching condition � : Ep1 �! Ep2 and then

(iv) follows.

Proposition 3.3. Let E be a vector bundle of rank n on Xk such that EjR
is strictly positive. If F = E
��(OX0

(l)), then for l� 0, H0(F ) generates F

and the canonical morphism � : Xk �! Gr(H0(F ); n) is a closed immersion.

Further (for all l� 0) H1(Xk; F ) = 0 so that by Prop. 3.2, we have

H0(Xk; F ) ' H0(X0; ��(F )):

Hi(Xk; F ) = Hi(X0; ��(F )) = 0; i > 0:

Note that EjR = F jR.

Proof. If ��(OX0
(1)) were ample, this proposition would be immediate.

However, this is not the case (k � 1) and the proof requires a little work

though it is not di�cult. Observe that ��(OX0
(1))jX is ample. From this

it follows that (for l � 0) the canonical map H0(F jX) �! Fp1 � Fp2 is

surjective and H1(F jX ) = 0. Then from the patching exact sequence

0 �! F �! F jX � F jR �! T �! 0
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we deduce that H1(F ) ' H1(F jX)�H
1(F jR), which implies that H1(F ) =

0. Then the last assertions follow from the previous Prop. 3.2.

Since H0(F jX) �! Fp1�Fp2 is surjective, it follows that H
0(Xk; F ) �!

H0(F jR) is surjective. We cannot say that the canonical map H0(Xk; F ) �!

H0(F jX) is surjective, which causes the little complication. However sec-

tions of F jX which vanish at p1; p2 can be extended to the whole of Xk

(by putting zero on R) and one uses the sheaf Ip1;p2F jX (where Ip1;p2 de-

notes the ideal sheaf of the closed subscheme fp1; p2g of X). We can sup-

pose that for l � 0, H0(Ip1;p2F jX) generates Ip1;p2F jX and the canonical

morphism X �! Gr(H0(Ip1;p2F jX); n) is a closed immersion. We identify

H0(X; Ip1;p2F jX) with the subspace of H0(Xk; F ) vanishing on R. Then

with these observations and the surjectivity of H0(Xk; F ) �! H0(Xk; F jR),

we see that H0(Xk; F ) generates F , that the canonical morphism � : Xk �!

Gr(H0(xk; F ); n) is injective (we see easily that given x; y, x 6= y, there exist

sections on Xk such that (s1 ^ � � � ^ sn)(x) 6= 0 and (s1 ^ � � � ^ sn)(y) = 0)

and that d� is injective at all the points except fp1; p2g. It is not di�cult to

show that d� is injective at fp1; p2g (see [NS]) and the proposition follows.

Consider the vector bundles E on Xk such that EjR are strictly positive.

Our next aim is to characterize those E such that ��(E) are torsion free.

This characterization involves only properties of EjR.

Remark 3.1.

(a) Let E be a strictly standard vector bundle on P1. We have then a

well-de�ned sub-bundleK of E, which we call the canonical subbundle

of E such that K is a direct sum O(1)'s and E=K = Q (called the

canonical quotient bundle) is free. Let x; y 2 P1 such that x 6= y and

Lx a linear subspace of Ex. Then we have a well-de�ned subbundle F

of E such that K � F and FxjKx
= Image of Lx in Qx = ExjKx

. Then

if V is the linear subspace of H0(E) consisting of sections `s' such that

s(x) 2 Lx , then V � H0(F ) and the image of V in Ey in Fy. We say

that Fy is the subspace of Ey determined by Lx. We see that if Lx = 0,

then Fy = Ky. Note also that if s 2 H
0(E) and s(x) = s(y) = 0, then

s is identically zero.

(b) Let E be a strictly standard vector bundle on a chain R of projective

lines of length m. Let Ki (resp. Qi) be the canonical sub-bundle (resp.

quotient bundle) of EjRi
(Ri the P

1-components of R). We denote by
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qi the points Ri \Ri+1 1 � i � (m� 1) and q0 = p1, qm = p2. Let us

take Lq0 = (0). We set

R1

q1

q2

qm�1

p2 = qm

q0 = p1

R2

Lq1 as the linear subspace of Eq1 determined by Lq0 for EjR1
. We

write Lq2 for the linear subspace of Eq2 de�ned by Lq1 for EjR2
. In-

ductively, we thus de�ne a linear subspace Lqi of Eqi . We write M for

the subspace Lqm � Ep2 = Eqm . Consider the condition:

(�) dimM = rkK1 + � � � + rkKm:

We see that

(�)() dimLqi = rkK1 + � � � + rkKi; i � j � m:

Take for example m = 2. Then (�) means that

(K1)q1 \ (K2)q1 = (0):

Lemma 3.1. Let E be a strictly positive vector bundle on a chain R of

projective lines. Consider the property:

(��) s 2 H0(E); s(p1) = s(p2) = 0 =) s � 0:

Then (��) holds if and only if E is strictly standard and the property (�) of

Remark 3.1 holds.

Proof. Suppose that EjRi
= �O(aij) and some aij � 2. Then it is im-

mediate that there exists s 2 H0(EjR1
) such that s(q0) = s(q1) = 0 and s

is not identically zero. Then we can extend s to a section of E vanishing

identically on all Ri, i � 2. Thus (��) =) E is strictly standard.

Let us suppose, for simplicity, that the length m of R is 2. The proof

in the general case is quite similar (see [NS]). Suppose that (��) holds and
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that (K1)q1 \ (K2)q1 = L 6= (0). Then it is clear that given l 2 L, l 6= (0),

there exist s1 2 H
0(EjR1

) and s2 2 H
0(EjR2

) such that s1(q1) = l = s2(q1)

and s1(q0) = 0 and s2(q2) = 0. Hence s1; s2 de�ne a section s of E such

that s(q0) = s(q2) = 0 and s is not identically zero. Hence we shall have

(K1)q = (K2)q = (0), which shows that (��) implies that (�) holds and E is

strictly standard.

Suppose on the other hand that E is strictly standard and (�) holds. Let

s 2 H0(E) such that s(p1) = s(p2) = 0. Then s(q1) is in (K1)q1 as well as

(K2)q1 . Since (�) holds, this implies that s(q1) = 0. Then we see that the

restriction of s to R1 as well as R2 is identically zero. Hence s is identically

zero and (��) holds.

Proposition 3.4. Let E be a vector bundle on Xk such that EjR is strictly

positive. Then we have the following:

(A) ��(E) is torsion free on X0 if and only if the property (��) (of Lemma

3.1) holds. Then by Lemma 3.1, we see that ��(E) is torsion free if

and only if E is strictly standard and the property (�) of Remark 3.1

holds. Note that (�) implies that(
length of R = m � n = rkE; in fact

m � degEjR =
P

i degEjRi
� n:

(B) if ��(E) is torsion free, then its type (at p) is degEjR.

Proof. We have the following exact sequence of OXk
-modules

(a) 0 �! IXE �! E 7�! EjX �! 0:

IX being the ideal sheaf ofX. Note that IXE can be identi�ed with Ip1;p2EjR
- the sheaf of sections of EjR vanishing at p1; p2. Then we have the exact

sequence

(b) 0 �! ��(Ip1;p2EjR) �! ��(E) �! ��(EjX):

Now ��(EjX) is torsion free on X0 and it is clear that ��(Ip1;p2EjR) is a

torsion sheaf, in fact its support is at p. Hence it follows that the torsion

subsheaf of ��(E) is precisely ��(Ip1;p2EjR). It is clear that ��(Ip1;p2EjR) is
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the sheaf determined by the vector space H0(R; Ip1;p2EjR) considered as an

OX0;p module (through its residue �eld). From these remarks the assertion

(A) follows.

Now if ��(E) is torsion free, continuing the exact sequence above we get

the exact sequence

0 �! ��(E) �! ��(EjX) �! R1��(Ip1;p2EjX) �! 0

since R1��(E) = 0 by Prop. 3.2. Further, we see that R1��(Ip1;p2EjR) is

the \sky-scraper" sheaf with support at p and de�ned by the vector space

H1(Ip1;p2EjR).

Let us �rst suppose that degEjR = n, then deg Ip1;p2EjR = �n and

�(Ip2;p2EjR) = 0. Since H0(Ip1;p2EjR) = 0, we see that H1(Ip1;p2EjR) = 0

(see Prop 3.1.). Hence we get

(c) ��(E) ' ��(EjX)

and it is an easy exercise that the RHS is of type n at p. Thus in this

case the assertion (B) above follows. We have then to consider the case

degEjR < n. Then by the considerations in Remark 3.1, it is not di�cult to

see that EjR has a direct summand which is a trivial vector bundle of rank

t = n� degEjR. Then we see that we can choose a suitable neighbourhood

V of p such that in ��1(V ), E has a trivial direct summand of rank t. Thus

we see that to prove (B) we are reduced to the case degEjR = n.

Remark 3.2.

(a) Let E be a vector bundle on Xk such that EjR is strictly standard and

��(E) is torsion free. Then we have

mX0;p(��(E)p) = ��(Ip1;p2EjX)p, or equivalently (mX0;p denotes the

maximal ideal of OX0;p, ��(E)p the stalk of ��(E) at p)

IX0;p(��(E)) = ��(Ip1;p2EjX)

(b) if � : X �! X0 is the normalisation map, the functor ��: (Vector

bundles on X) �! (Torsion free sheaves on X0) is faithful i.e.

Hom (V1; V2) ' Hom (��(V1); ��(V2))

in particular V1 ' V2 () ��(V1) ' ��(V2).
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(c) ��(E) determines EjX i.e. if E1; E2 on Xk (possibly for di�erent k

with EjR strictly positive) are such that ��(Ei) are torsion free and

��(E1) ' ��(E2), then E1jX ' E2jX

(d) if we have a family of vector bundles fEg on Xk (possibly for di�erent

k with EjR strictly positive) such that f��(E)g is a bounded family of

torsion free sheaves on X0, then for l � 0 (independent of E) fEjXg

is a bounded family and for F = E 
 ��(OX0
(l)), H0(F ) generates

F and the canonical morphism � : Xk �! Gr(H0(F ); n) is a closed

immersion. Besides we have

(i) H0(Xk; F ) ' H0(X0; ��(F ))

(ii) Hi(Xk; F ) ' Hi(X;��(F )) = 0; i > 1.

(i.e. the properties of Prop. 3.2 hold. In a sense, we may say that fEg

is a bounded family if ��(E) is a bounded family).

Proof.

(a) Consider the exact sequence

0 �! IRE �! E �! EjR �! 0:

We see that IRE ' Ip1;p2EjX . Then we get the following exact se-

quence of OX0;p-modules

0 �! ��(Ip1;p2EjX)p �! ��(E)p �! ��(EjR)p �! 0

since R1��(Ip1;p2EjX) = 0 (X �! X0 being an a�ne morphism). We

see that ��(EjR)p is the sky-scraper sheaf at p associated to the vector

space H0(EjR). We have dimH0(EjR) = degEjR + n and we saw in

Prop. 3.4 above that degEjR is the type `a' of ��(E). On the other

hand we see that

dim(��(E)p=mX0;p��(E)p) = a+ n:

Then the assertion (a) follows.

(b) Let A = OX0;p and let B the semi-local ring of X at p1; p2 (integral

closure of A). Then Vi are represented by free B-modules and to

prove (b) is to show that an A-module homomorphism Bm �! Bn is

in fact a B-module homomorphism. This follows from the fact that

Hom A(B;B) ' B (multiplication by elements of B).
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(c) By (a) and (b), it follows that if ��(E1) ' ��(E2), then Ip1;p2E1jX '

Ip1;p2E2jX and then by multiplying by I�1p1;p2 the assertion (c) follows.

(d) Now if f��(E)g is bounded, by (a) and (b) it follows easily that fEjXg

is a bounded family and all the other assertions also follow (see [NS]

for more details).

4 The moduli space

We shall now illustrate our construction of the moduli space for the case of

line bundles. This is quite simple but provides a motivation for the general

considerations.

The curves Xk and X0 are as in Def. 3.2. For a line bundle L of X1, we

write L1 = LjX and L2 = LjR (R ' P1).

R

X
P2

P1X1

The line bundleL is de�ned by the following isomorphisms of 1-dimensional

spaces:

�1 : (L1)p2 �! (L2)p1 ; �2(L1)p2 �! (L2)p2 :

We represent L by the 4-tuple (L1; L2; �1; �2). If we modify the 4-tuple by

an automorphism of L1, as well as an automorphism of L2, the resulting

4-tuple represents a line bundle isomorphic to L. We see that

(i)

(
(L1; L2; �1; �2) � (L1; L2; �1; �2)

() �1 = a�1; �2 = a�2; a non-zero scalar.

Let P a;b denote the set of isomorphism classes of line bundle L on X1 such

that degL1 = a and degL2 = b. Then we see that the canonical morphism

P a;b �! Pic a(X) (L 7�! L1) is a principal Gm �bration. Also note that
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we have an identi�cation

(ii)

(
�� : P

a;0 �
�! Pic a(X0)

L 7�! ��(L); � : X1 �! X0

since in this case L2 is trivial. In particular, if we write G(1; 0)0 = Pic 0(X0),

we have G(1; 0)0 ' P 0;0.

Let g be an automorphism ofX1 such that it is identity on the component

X. If L 2 P a;0 we see that g�(L) ' L. Suppose now that L 2 P a;1. Then

g�(L)jR ' L2 = O(1). We have R ' P1 ' P(V ), where V � = H0(L2). Then

identifying p1; p2 with f0;1g, the automorphism g on R is represented by

an automorphism of V as a diagonal matrix�
� 0

0 �

�
:

From these considerations, it follows that if L is represented by (L1; L2; �1; �2),

then g�(L) is represented by a 4-tuple

(L1; L2; t1�1; t2�2); t1 6= 0; t2 6= 0:

Let us introduce an equivalence relation in P a;1, namely L �M if L ' g�(M)

for some g 2 AutX1 such that g is identity on X. Let us take the case

a = �1 so that we deal with the case degL (total degree of L) = 0. Let

G(1; 0)1 denote the set of equivalence classes in P�1;1. Then we see that

G(1; 0)1 identi�es with Pic�1X (by L 7�! L1). We see also that if L � M

(equivalence relation) then ��(L) ' ��(M). In fact, we have a bijection

(iii) �� : G(1; 0)1 ' P1

where P1 is the set of isomorphism classes of torsion free sheaves of rank

one, degree zero and type one on X0.

If U(1; 0) is the moduli space of isomorphism classes of torsion free

sheaves of rank one and degree zero on X0, then one knows that

U(1; 0)nPic 0(X0) ' P1:

Let G(1; 0) denote the disjoint union

G(1; 0) = G(1; 0)0
a

G(1; 0)1; G(1; 0)0 = Pic 0(X0):
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Thus we get a bijection

(iv) �� : G(1; 0) �! U(1; 0):

As we shall see, we have a similar but more complicated phenomenon in

higher rank. The generalisation of �� is no longer a bijection.

De�nition 4.1.

(i) Let E be a vector bundle on Xk such that EjR is strictly positive. It

is said to be stable if ��(E) is a stable (torsion free) sheaf on X0. Note

that it has all the nice properties stated in Prop. 3.4, in particular EjR
is strictly standard.

(ii) We call two vector bundles E1; E2 on Xk equivalent if E1 ' g�(E2),

where g is an automorphism of Xk, which is identity on the component

X (g could move points on R).

(iii) We set

G(n; d)k =

(
equivalence classes of stable vector bundles on Xk

of rank n and degree (total degree) d

G(n; d) =
a

0�k�n

G(n; d)k (disjoint sum):

Note that G(n; d)0 is the set of isomorphism classes of stable vector bundles

of rank n and degree d on X0. We shall see that if (n; d) = 1, G(n; d) has

a natural structure of a projective variety with a birational morphism onto

the projective variety U(n; d) = UX(n; d) (the moduli space of stable torsion

free sheaves of rank n and degree d on X0) and that it has all the good

properties like specialization (stated in x2).

Let L be a line bundle on X0. If E is a vector bundle on Xk, then

since ��(E 
 ��(L)) ' ��(E) 
 L, we note that ��(E) is torsion free ()

��(E
�
�(L)) is torsion free. Since stable torsion free sheaves of rank n and

degree d form a bounded family, we see that for l � 0 and E 2 G(n; d),

E 
 ��(L) has all the good properties of (d) of Remark 3.2. Thus without

loss of generality we may assume that if E 2 G(n; d), H0(E) generates E,

the canonical morphism

�E : Xk �! Gr(H0(E); n)
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is a closed immersion and the properties (d) of Remark 3.2 are satis�ed.

We can identifyGr(H0(E); n) with the standard GrassmannianGr(m;n)

(this identi�cation is upto an automorphism of Gr(m;n) i.e. upto an element

of PGL(m)) and �E with a morphism (denoted again by �E).

�E : Xk �! Gr(m;n) (m = dimH0(E)):

Now PGL(m) operates canonically on Gr(m;n) and also on X0 �Gr(m;n)

by taking the identity action on X0. Now �E gives rise to a closed immersion:

 E : Xk ,! X0 �Gr(m;n);  E = (�; �E):

Let E1; E2 2 G(n; d)k and  E1
;  E2

the imbeddings into X0 � Gr(m;n).

Then the important remark is the observation:(
E1 � E2 (equivalence relation, see (ii) of Def. 4.1)

() g (Im  E1
) = Im  E2

; g 2 PGL(m).

We observe also that the Hilbert polynomial P1 of Im E is the same for

all E 2 G(n; d). Thus Im E 2 Hilb P1(X0 � Gr(m;n)) (we choose some

polarisation on X0 �Gr(m;n)). Note that the action of PGL(m) on X0 �

Gr(m;n) induces a canonical action of PGL(m) on HilbP1(X0�Gr(m;n)).

The foregoing discussion shows that G(n; d) can be identi�ed (set theoret-

ically) as the set of PGL(m) orbits of a certain PGL(m) stable subset of

HilbP1(X0�G(m;n)). We observe that given  E , E is expressed canonically

as a quotient of the trivial rank m vector bundle

Om
Xk
�! E; H0(Om

Xk
)

�
�! H0(E); H1(E) = 0:

Then by (d) of Remark 3.2, ��(E) is a quotient of the trivial vector bundle

of rank m on X0

(�) E = Om
X0
�! ��(E) and H0(Om

X0
)

�
�! H0(��(E))

Let P2 be the Hilbert polynomial of the stable torsion free sheaves on X0

of rank n and degree d of X0. Let Q = Q(E=P2) be the Quot scheme of

quotients of the trivial vector bundle E of rank m on X0 and R;Rs the

PGL(m) stable open subsets of Q, which are now standard (R is de�ned

by the condition that the corresponding point of the Quot scheme de�nes a

quotient which is torsion free, as well as the second condition in (�). The



Degenerations of moduli spaces 225

subset Rs of R corresponds to these quotients which are moreover stable).

Recall that Rs mod PGL(m) ' U(n; d)s and that Rs is a principal bundle

over U(n; d)s.

The following are the main steps in giving a canonical structure of a

quasi-projective variety on G(n; d):

(I) The subset Y s = Y (n; d)s � HilbP1(X0 � Gr(m;n)), Y s = fIm Eg

(E 2 G(n; d)) is PGL(m) stable and has a natural structure of an

(irreducible) variety whose singularities are normal crossings.

(II) The map � : Y s �! Rs de�ned by y (represented by  E or Im E) 7�!

the point of Rs represented by (�) above, is a PGL(m) equivariant

morphism.

(III) The morphism � is proper.

We shall now indicate how admitting I, II and III, we get a nice structure

of a variety on G(n; d).

Let Rs;0 denote the PGL(m) stable open subset of Rs represented by

vector bundles on X0. Then a point of ��1(Rs;0) is represented by 	E such

that the equivalence class is in G(n; d)0 i.e. a closed immersion  E : X0 ,!

X0 �Gr(m;n). Then it is easy to see that the morphism

� : ��1(Rs;0) �! Rs;0

is an isomorphism. Hence it follows that � is a birational morphism. Since

� : Y s �! Rs in PGL(m) equivariant and Rs �! U(n; d)s is a principal

bundle, it is easily seen that the quotient Y s mod PGL(n) exists and in fact

that Y s �! Y s and PGL(m) is a principal PGL(m) bundle. Thus we get

a canonical structure of a variety on G(n; d). Further, since Y s has normal

crossing singularities and Y s �! Y s and PGL(m) is a principal �bration,

we see that G(n; d) has normal crossing singularities.

To prove that G(n; d) is quasi-projective, we use GIT , which can also be

used to give simultaneously a variety structure on G(n; d). We can suppose

that Qs = Rs, Qss = Rss (Qs-stable points of a polarisation on Q; � � �,

for example, as has been done recently by Simpson). Then since � is a

projective morphism, it is easily seen that we can �nd a PGL(m) equivariant

factorisation (instead of taking the Quot scheme we can take the closure of
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Rss in Q, but we use the same notation):

Y s
,! Z

�

??y ??y �

Rs ,! Q

where Z is a projective variety with an action of PGL(m) lifting to an ample

line bundle OZ(1). Consider now the polarisation L = ��(OQ(a)) 
 OZ(1)

on Z. Then with the usual notations, one knows that for `a' su�ciently

large, we have:

(i) ��1(Rs) (= ��1(Qs)) � Z(L)s.

(ii) � maps Z(L)ss onto Rss.

It follows then that Y s mod PGL(m) exists as a quasi-projective variety

and thus G(n; d) acquires a canonical structure of a quasi-projective variety.

Further � induces a canonical (birational) projective morphism G(n; d) �!

U(n; d)s. If (n; d) = 1, U(n; d)s = U(n; d) and it follows that G(n; d) is

projective.

For proving I, II, III we require more formal considerations.

De�nition 4.2. Let Y be the functor de�ned as follows:

Y : (K � schemes) �! Sets:

Y(T ) = set of closed subschemes � ,! X0 � T �Gr(m;n) such that:

(i) the induced projection map p23 : � �! T � Gr(m;n) is a closed

immersion. We denote by E the rank n vector bundle on �, obtained

as the pull-back of the rank n tautological quotient bundle on Gr(m;n)

(ii) the projection p2 : � �! T is a proper at family of curves f�tg,

t 2 T , such that �t is a curve of the form Xk. Besides, the map (Xk '

)�t �! X0 (induced by � �! Xi�T ) is the canonical � : Xk �! X0

that we have been considering

(iii) the vector bundle Et on �t (Et = Ej�t
) is of degree d (and rank n)

with d = m+ n(g � 1)
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(iv) by the de�nition of E, we get a quotient representation Om
�t
�! Et and

we assume that this induces an isomorphism H0(Om
�t
)

�
�! H0(Et). In

particular, dimH0(Et) = m and it follows that H1(Et) = 0.

Proposition 4.1. The functor Y is represented by a PGL(m) stable sub-

scheme Y of HilbP1(X0 � Gr(m;n)) (P1 being the Hilbert polynomial of

the closed subscheme �t of X0 � Gr(m;n), choosing of course a polarisa-

tion). Further Y is an (irreducible) variety with (analytic) normal crossing

singularities.

This is essentially due to Gieseker and some indication of proof will be

given later.

Proposition 4.2. Let � be the universal object representing the functor

Y above. Consider the \universal" closed immersion

� ,! X0 � Y �Gr(m;n)

de�ned by Y. This de�nes a at family of curves � �! Y . We have also a

vector bundle E on � obtained as the pull-back of the tautological quotient

bundle of rank n of Gr(m;n). Then E de�nes a family fEyg of vector

bundles on f�yg, y 2 Y . We denote by �y : �y �! X0 the morphism

induced by the �rst projection p1, to be consistent with our earlier notation.

We observe that (�y)�(Ey) comes with a quotient representation

(�) On
X0
�! (�y)�(Ey) with H0(Om

X0
)

�
�! H0((�y)�(Ey)):

Hence (�) de�nes a point of the open subscheme R of Q(E=P2) (Quot scheme

mentioned above). Then we claim that the map � : Y �! R, de�ned by

y 7�! the point of R de�ned by (�), is a morphism.

Proof. We give a sketch. We have a commutative diagram

X0 � Y

qp

Y

�
�
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where � is the projection p12, p = projection p2 and q = canonical projection

onto Y . Using the fact that the �bres of � are connected and the nice nature

of the singularities of Y , it follows that

(a) ��(O�) = OX0�Y :

We have a quotient representation

Om
� �! E on �:

Using (a) and applying ��, we get a homomorphism

(b) Om
X0�Y

�! ��(E):

The crucial point is to show that

(�)

8>><>>:
��(E) behaves well for restriction to �bres over Y ; i:e:

��(E)jq�1(y) ' (�y)�(Ey)

q�1(y) ' X0 � y ' X0

for one sees easily from (�) that (b) is surjective and that the Hilbert poly-

nomial of ��(E)jq�1(y) is P2. Since Y is reduced, ��(E) is at over Y . Thus

(b) de�nes a morphism of Y into Q(EjP2) which factors enough R. Thus (�)

and hence the above proposition is a consequence of the following:

Lemma 4.1. Suppose that we have a commutative diagram

qp

�
Z W

T

such that p; q and � are projective morphisms, ��(OZ) = OW and p is at.

Let E be a vector bundle on Z such that

R1(�t)�(EjZt) = 0 i � 1; t 2 T:
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Then ��(E) behaves well for restriction to �bres over T i.e.

��(E)jWt
' (�t)�(EjZt); t 2 T:

Further

H0(Zt; EjZt) ' H0(Wt; (�t)�(EjZt)):

Proof. We refer to [NS].

Since � : Y �! R is a morphism and Rs is open in R, it follows that

Y s is open in Y . If we denote by Rtf the open subset of R corresponding

to quotients which are torsion free, we see that Rtf is open in R and hence

Y tf = ��1(Rtf ) is also open in Y . We see that we have a canonical morphism

�� : (Y
smodPGL(m)) = G(n; d) �! U(n; d)s = (RsmodPGL(m):)

For properness and good specialization properties, we require to work

with a more general base scheme.

Thus admitting I, II and III we have the following:

Theorem 1. We have a natural structure of a quasi-projective variety on

G(n; d) and the canonical map �� : G(n; d) �! U(n; d) is a proper birational

morphism. If (n; d) = 1, G(n; d) is projective. Further the singularities of

G(n; d) are normal crossings.

5 Properness and specialization

De�nition 5.1. Let S = SpecA, where A is a d.v.r. (in fact K-algebra)

with residue �eld K. Let X �! S be a proper, at family of curves such

that the closed �bre Xs0 ' X0 and the generic �bre X� is smooth (s0-closed

point of S; � generic point of S). We suppose also that XS is regular over K

(we may also have to �x a section of X over S passing through the smooth

points of the �bres).

De�nition 5.2. Same as in Def. 4.2 over the base S. The functor is

denoted by YS : (S-schemes) �! Sets. The one point to remember is that,
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for example, the morphism �t �! (X �S T )t is an isomorphism if t maps

to the generic point of S [YS(T ) = set of closed subschemes

� ,! X �S T �S Gr(m;n)(Gr(m;n) = Gr(m;n)S)

� �! X �S T at family of curves etc.].

Now Prop. 4.1 generalizes as:

Proposition 5.1. The factor YS is represented by a PGL(m) stable sub-

scheme YS of the S-scheme HilbP1(X �S Gr(m;n) and YS �! S has the

following properties:

(i) the closed �bre (YS)s0 is a variety with (analytic) normal crossing

singularities

(ii) the generic �bre (YS)� is smooth

(iii) YS is regular over K (of course YS �! S is at).

This proposition is essentially to be found in Gieseker [G]. Some indica-

tion of proof will be given later.

Proposition 5.2. Proposition 4.2 generalizes to give a canonical morphism

� : YS �! RS (RS - the obvious open subset of the Quot scheme Q(EjP2)

associated to X �! S). Then � induces morphisms (denoted by the same

letter) (
Y s
S �! RsS ; Y

tf
S �! R

tf
S ; (RsS � R

tf
S )

Y s
S = ��1(RsS); Y

tf
S = ��1(R

tf
S ):

Note that the S-morphisms � are isomorphisms over Snfs0g i.e. � induces

an isomorphism of their generic �bres over S. (e.g. �� : (Y
s
S )� �! (RsS)�).

In fact � is an isomorphism over the bigger open subset RvS corresponding

to vector bundles i.e. de�ned by q 2 QS(EjP2) such that the corresponding

quotient sheaf is locally free.

Proposition 5.3. The morphism

� : Y s
S �! RsS (resp. Y tf

S �! R
tf
S )

is proper.
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Proof. We shall now outline the proof giving the main points.

We see that it su�ces to prove that � : Y
tf
S �! R

tf
S is proper. We

apply the valuation criterion. Let T = SpecB, B d.v.r with residue �eld

K. Given a rational map � : T �! Y
tf
S such that (� � �) : T �! R

tf
S is a

morphism, then to show that � is a morphism. We see that (� � �) de�nes a

family of torsion free sheaves F of rank n on the base change XT = X �S T

parametrized by T . We can suppose that F is a quotient of the trivial bundle

of rank m:

Om
XT

�! F �! 0:

We can suppose that the morphism T �! S does not map to the closed

point of S so that for the family of curves XT �! T , the �bre is smooth

over the generic point of T (i.e. the generic �bre of XT �! T is the base

change of the generic �bre of X �! S). The question is whether we can lift

this to a T -valued point of Y
tf
S (satisfying the required properties). We will

see that there is a canonical candidate for this.

We see also that the closed �bre of XT �! T identi�es with the closed

�bre of X �! S and denote by the same `p' the singular point of the closed

�bre of XT �! T , which is ' X0. Now F is locally free outside `p'. The

quotient representation gives a T -morphism

g : XT nfpg �! Gr(m;n) (Gr(m;n)T ):

We can also suppose that g is an immersion. Let �g be the graph of g so

that we have a closed immersion of T -schemes

(�) �g ,! XT �T Gr(m;n):

Let �g : �g �! XT be the canonical projection which is a T -morphism.

Obviously �g induces an isomorphism over the generic �bres, in fact an

isomorphism over XTnfpg. Let E be the vector bundle of rank n on �g
induced by the quotient bundle on Gr(m;n) (through (�)). Then for the

required lifting and properness, it su�ces to prove the assertion:

(A)8>>>>>>>><>>>>>>>>:

(i) The closed �bres of �g �! T is a curve of the form Xk (this

implies that the morphism induced by �g on the closed �bres

is the canonical morphism Xk �! X0).

(ii) (�g)�(E) = F .
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Note that �g is an isomorphism over XT nfpg and E coincides with F outside

fpg i.e. E and F coincide on XT � fpg.

We see that the assertions (A) are really local with respect to XT i.e. it

su�ces to check them over a neighbourhood of p in XT . More precisely let

C be the local ring of XT at p. Then F is represented by a torsion free C-

module which is B-at (T = SpecB) and F is the quotient of a free module

of rank m over C (F is of rank n over B) and �g should be viewed as the

graph of a morphism

g : SpecCnfpg �! Gr(m;n)

(restriction of g to SpecCnfpg) and denoted by the same letter. Thus we

have a commmutative diagram

�g

T = Spec B

�g Spec C

Let m0 denote the minimal number of generators of the C-module F , we

have a factorisation

Gr(m0; n)

Gr(m;n)Spec C � fpg

We can assume without loss of generality that m = the number of mini-

mal generators of F as a C-module.

The point is that we have a concrete description of the C-module F

which facilitates the checking of the local version of (A).

We see that we can suppose that C (resp. B and A) are complete local

rings. It is also not di�cult to see that F is equal to its bidual (see [NS]) i.e.

F �� = F (F �� bidual of F as a C-module):
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We suppose that char K is zero, say K = C . Now A = K[[t]] and we see

that because of our hypothesis, the completion bOX ;p of the local ring at `p'
is given by K[[x; y]] and the canonical morphism Spec bOp �! SpecA(= S),

is given by

A = K[[t]] �! K[[x; y]]; t 7�! xy:

The canonical homomorphism A �! B (B ' K[[t]]) is given by t 7�! tr.

From these considerations it follows easily that

C ' K[[x; y; y]]=(xy � tr)

and the canonical homomorphism B �! C is de�ned by t 7�! image of t in

C.

Let D = K[[u; v]]. Consider the action of the cyclic group �r of order r

operating on D by:(
(u; v) 7�! (�u; �v); � rth root of unit representing our element of �r

� complex conjugate of �.

We see that (
C = D�r (�r-invariants in D);

taking x = ur, y = vr, t = uv.

Let f be the canonical morphism f : SpecD �! SpecC and f0 : SpecDnf0g �!

SpecCnfpg, the restriction of f to SpecDnf0g. Now C is normal with an

isolated (rational) singularity at `p' and of type A. Also f0 is an unrami�ed

covering. Then f�0 (F ) can be extended to a locally free sheaf on SpecD

represented by a free D-modules F . We see that F is canonically a (D��r)

module (i.e. D-module with an action of �r). By the reexivity of F , we

deduce easily that

F ' (F)�r :

One knows that a (D � �r) free modules is given by a representation of �r,

which is a direct sum of 1-dimensional characters. Thus F is a direct sum

of �r-line bundle L of the form(
L = SpecD � C , action of �r is given by

� = f(u; v); C g = f(�u; �v; �s�g; � 2 C

(we could view SpecD as a 2-dimensional disc). A �-invariant section of

this bundle L is easily identi�ed with a function � on the line satisfying:

�(�u; �v) = �s�(u; v):
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Then we check that the �r-invariant sections of L are generated by us and

vr�s as a C-module. We have

ur�s(us; vr�s) = (ur; (uv)r�s) = (x; tr�s):

Thus we see easily that the C-module F is of the following form:

F '

nM
i=1

(tai ; x); 0 � a1 � a2 � � � � � an:

We see that (tai ; x) is a principal ideal if and only if ai = 0 so that

F ' Ob
C

n�bM
i=1

(tai ; x); 0 < a1 � a2 � � � � � an�b:

As we saw above, we have taken m = minimal number of generators of F

which is equal to b+ 2(n� b). We see that the morphism �g factorises as:

�g

Gr(m;n)Spec C � fpg

Gr(2(n� b); (n� b))

Thus we can suppose without loss of generality that b = 0 i.e. m = 2n.

Then we see that �g factorises as:

Spec C � fpg

�g

Gr(2n; n)

P1 � � � � � P1(n times)
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Let �1; � � � ; �l be the distinct ones occurring among the faig with multi-

plicity �i, 1 � i � l. Then we see that we have a factorisation

Spec Cnfpg

Gr(2n; n)

�g

(l times)

�1

(P1)�1 � � � � � (P1)�l

P1 � � � � � P1

�l

where �l are the diagonal morphisms P
1 �! (P1)�i , 1 � i � l. We observe

that the pull-back of the tautological quotient bundle on Gr(2n; n) on (P1)l

identi�es with:

(a)

(
O(1)�1 �O(1)�2 � � � ��O(1)�l (external direct sum)

i.e. �iO(1)
�i , O(1)�i coming from the i-th factor.

We see also easily that the �bre of �g �! SpecC over the closed point of

SpecC identi�es with the chain R of P1's in (P1)l (of length l) of the form

(b)(
fP1 � (0; 1) � � � � � (0; 1)g [ f(1; 0) � P1 � (0; 1) � � � � � (0; 1)g

[f(1; 0) � (1; 0) � P1 � (0; 1) � � � � � (0; 1)g [ � � � [ f(1; 0) � (1; 0) � � � � � P1g:

From these considerations one sees that EjR is strictly standard (EjRi
=

O(1)�i� Trivial) that the good conditions of Remark 3.2 are satis�ed and

in fact that (�g)�(E) = F so that (A) follows (see [NS] for more details).

Remark 5.1. Local Theory (outline of proof of Prop. 5.1)

The main steps could be formulated as follows:
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I Let Y 0S be the functor obtained from YS by forgetting the imbeddings into

Grassmannians (see Def. 5.2) i.e. Y 0S(T ) is a (at) family of curves � �! T

together with a T -morphism � �! X �S T which induces the canonical

morphisms of �bres over t 2 T .

We claim that the functor YS �! Y 0S is formally smooth. The proof

of this is quite standard and comes to extending vector bundles and sec-

tions over in�nitesimal neighbourhoods, which are possible because of the

vanishing of H1 in Def. 4.2 (and Def. 5.2) and that we are in the case of

curves.

II We take S = SpecA, A = K[[t]] and W = SpecK[[t0; : : : ; tr]] endowed

with an S-scheme structure by t 7�! t0 � � � tr. A crucial point is the con-

struction by Gieseker of an element � 2 Y 0S(W ) de�ned by a family of curves

S �!W and  : Z �! X �S W , having the following properties:

(a) the closed �bre of Z �!W is a curve Xr

(b) the closed subscheme of W corresponding to the singular �bres of

Z �! W is the union of ti = 0 so that it has, in particular, nor-

mal crossing singularities and is the inverse image of the closed point

of S (by the morphism W �! S)

(c) Z �! W provides a miniversal (e�ective) deformation of the singu-

larities of the closed �bre of Z �! W . More precisely, let V be an

a�ne open subset of the closed �bre of Z �!W , containing its singu-

lar points (or we can take the semi-local ring at the singular points).

Then Z �! W de�nes a deformation ZV �! W of V . The property

is that ZV �! W is an (e�ective) miniversal deformation of V ,

(d) 	�(M) = L, where L (resp. M) is the dualizing sheaf of Z (resp.

X �S W ) relative to W .

Note that for r = 0, Z ' X and the property (C) holds, which is a

consequence of the fact that X is regular.

Roughly speaking Z is obtained by taking the base change of X byW �!

S and performing certain blow ups.

III We restrict the functor Y 0S to Spec of Artin local rings such that Y 0S
(closed point) ' Xr i.e. we take only Y 0S(T ) where T = SpecB, B is an

Artin local algebra with residue �eld K and Y 0S(SpecK) ' Xr. In this
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way we obtain a functor Y 0r �! Spec (Artin local S-schemes). We view Y 0r
as studying Y 0S in an in�nitesimal neighbourhood of a point which repre-

sents Xr. Through the element � 2 Y 0S(W ) in II above, we get a canonical

morphism

(i) � : W �! Y 0r:

Also by (c) of II above, we get a functor

(ii) Y 0r
�
�! Def V (Deformationsof V ):

The important claim is that � and � are isomorphisms

(iii) W��
�
!Y 0r�

�
�
!Def V:

By (c) of II above (� � �) is an isomorphism and to prove (iii) it su�ces to

show that � is formally smooth.

To prove that � is formally smooth we have to do the following. Given

an element � 2 Y 0r(T ) de�ned by Z 0 �! T and  0 : Z 0 �! X �S T , we

suppose further that there is a morphism �0 : T0 �! W such that the

pull backs by �0 of Z �! W and  : Z �! X �S W coincide with the

restriction �0 2 Y
0
r(T0) of � to T0 (T0 closed subscheme of T with length one

less than that of T ). Then it is required to show that �0 can be extended

to a morphism � : T �! W such that the pull-back of Z �! W and

 : Z �! X �S W are isomorphic to Z 0 �! T and  0.

The proof can be sketched as follows: Given Z 0;  0 and �0, we can �nd

a morphism � : T �! W such that the pull-back (Z1;  1) of (Z;	) by �

is isomorphic to (Z 0;  0) over T0 (i.e. the restrictions to T0 are isomorphic);

besides (Z1;  1) and (Z 0;  0) are locally isomorphic over T . This is a conse-

quence of (c) of II above. Given these local isomorphisms (whose restrictions

to T0 de�ne the given isomorphism of (Z; 1) with (Z 0;  0) over T0), we �nd

that the obstruction to extending these local isomorphisms to a global one

over T is an element �,

� 2 H1(Xr;Hom (
0Xr
;OXr

))

where 
0Xr
denotes the sheaf of di�erentials and Hom denotes the \sheaf

Hom". Similarly, the obstruction to extending  00 : Z 00 �! X �S T0 to a

morphism Z 0 �! X �S T is an element �0

�0 2 H1(Xr;Hom (��
0X0
;OXr

))
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and we see that � maps to �0 under the canonical homomorphism

(iv) H1(Xr;Hom (
0Xr
;OXr

)) �! H1(Xr;Hom (��
0X0
;OXr

))

where � is the canonical morphism Xr �! X0. But since  
0 extends  00, we

see that �0 = 0. One shows that (iv) is injective (see [G]) so that � = 0.

IV From the preceding discussions, we see that if we show that the functor

YS is represented by an open subscheme of H = Hilb p1(X �S Gr(m;n)),

Prop. 5.1 would be proved (of course the closed �bre of YS �! S should

also be shown to be irreducible. But this follows easily). Let h 2 H be a

closed point represented by an element YS (SpecK), given by a curve Xr.

We denote by

(i)

(
pH : �H �! H - the universal object over H and  H the

canonical morphism  H : �H �! X �S H = XH .

Let O be the local ring of H at h. We set C = SpecO and write

(ii) pC : �C �! C;  C : �C �! XC

for the base changes of (i) by C �! H. For proving the openness, the crucial

point to show is that (ii) represents an element of YS(C). For this one has

to use the property of dualizing sheaves given by II(d). One sees that the

�bres of pC have only ordinary double point singularities. Let L (resp. M)

denote the dualizing sheaf of � (resp. XC) relative to C. The point is the

claim:

(iii) 	�
C(M) = L:

By II(d) and the arguments in III, it follows that

 �Cn(Mn) = Ln

where the subscript `n' denote base changes by Cn �! C where Cn =

SpecO=mn (m-maximal ideal ofO). Then by an application of Grothendieck's

comparison theorem, the assertion (iii) follows (see [NS] for more details).

Once one has (iii), that (ii) de�nes an element of YS(C) is a consequence of

the following lemma which is easily seen.

Lemma 5.1. Let Y be a connected projective curve with arithmetic genus

g and only ordinary double point singularities. Let f : Y �! D be a
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morphism, where D is a smooth projective curve of genus g or D ' X0.

Suppose that the pull-back of the dualizing sheaf D is isomorphic to the

dualizing sheaf of Y . Then f is an isomorphism if D is smooth; otherwise

Y ' Xr and f identi�es with the canonical morphism Xr �! X0.

Thus we have the following:

Theorem 2. Let X �! S be a proper at family of curves as in Def.

5.1. Then we have a scheme G(n; d)S which is quasi-projective and at over

S (and projective if (n; d) = 1). Its generic �bre is the moduli space of

stable vector bundles of rank n and degree d of the generic �bre of X �! S.

Its closed �bre is the variety G(n; d) (see Def. 4.1 and Theorem 1) whose

singularities are normal crossings. Besides, G(n; d)S is regular as a scheme

over k (recall that we have assumed that X is regular as a scheme over k).

Remark 5.2. Let (n; d) = 1. Consider the canonical morphism �� :

G(n; d) �! U(n; d). Let F 2 U(n; d) such that its type is r. Then we

claim the following:

(�)8><>:
The �bre of �� over F can be canonically identi�ed with the \won-

derful compacti�cation" of PGL(r) (in the sense of De Concini and

Processi [D-P]).

9>=>;

We shall now outline a proof of (�) when F is of type n (for type � n,

the proof is similar). Let E0 2 G(n; d), such that ��(E
0) = F . Then we see

that ��(E
0jX) = F (see (c) in the proof of Prop. 3.4). It is not di�cult to

see that E0jX is a stable vector bundle (intuitively, because of(b) of Remark

3.2). In particular, Aut (E0jX) ' G m . Fix such an E0. If E 2 G(n; d) is

an extension to Xk of E0jX (1 � k � n), we observe that degEjR = n, so

that ��(E) is of type n (by (B) of Prop. 3.4). Then by (c) of Remark 3.2,

the �bre of �� over F identi�es with the set of all E 2 G(n; d) which are

extensions to Xk (1 � k � n) of E0jX . We shall now describe this more

concretely. Let I1 = E0p1 and I2 = E0p2 , so that they are considered as �xed



240

vector spaces of dimension n. Consider triples (V; �1; �2) such that:

(i)

8>>>>>>>>>>>><>>>>>>>>>>>>:

(a) V is a strictly standard vector bundle on R of rank n and

degree n (it follows that length of R � n)

(b) �i : VPi
�
�! Ii are isomorphisms (1 � i � 2).

(c) if s is a section of V such that s(p1) = s(p2) = 0, then s

vanishes identically.

We have the obvious notion of isomorphisms between triples. We see that if

� : V �! V 0 is an isomorphism and (V; �; �2) is a triple, then � extends to

an isomorphism

� : (V; �1; �2) �! (V 0; �01; �
0
2)

of triples; besides, � and �01; �
0
2 are uniquely determined. If (�1; �2) 2

Aut I1 �Aut I2, then we get a map of triples:

(V; �1; �2) �! (V; �1 � �1; �2 � �2)

and this \action" of Aut I1�Aut I2 preserves isomorphism classes of triples.

Let Z1 denote the set of isomorphism classes of triples. Then the above

map de�nes an action of Aut I1 � Aut I2 on Z1. Let Z2 denote the set of

equivalence classes of triples (as in Def. 4.1). Let C = G m � Gm be the

centre of Aut I1 �Aut I2. The crucial point is that

Z2 ' �bre of �� over F :

We have of course a canonical action of Aut I1 � Aut I2 on Z2, which is

e�ectively an action of (Aut I1 �Aut I2)=C ' PGL(n)� PGL(n).

We know that for V in (i), dimH0(V ) = 2n and H0(V ) generates V . Let

W be a �xed vector space of dimension 2n and W the trivial vector bundle

on R of rank 2n. Consider the set of triples T = (W �! V; �1; �2) such that

(ii)

(
(a) (V; �1; �2) is a triple as in (i) and

(b) W �! V induces an isomorphism H0(W ) 'W
�
�! H0(V ).

We have canonical commuting actions of AutW and Aut I1 � Aut I2 on T .

We see that:
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the orbit space T=AutW identi�es with Z1.

We �x two linear subspaces K1 and K2 of W such that dimKi = n and

W = K1 �K2. We �x also identi�cations W=Ki ' Ii, i = 1; 2. Let S1 be

the set of all fW �! V g such that

(iii)8>><>>:
(a) V is as in (i)

(b) the canonical map H0(W ) =W �! H0(V ) is an isomorphism

(c) Ker (W �! Vpi) = Ki, so that Vpi ' Ii (1 � i � 2):

Set

(iv) S = set of triples (W �! V; �1; �2) such that W �! V is as in S1.

We see that �i 2 Aut Ii. We see that given t 2 T , there exists g 2 AutW

such that g � t is in S. The subgroup H 0 of AutW which leaves S (also S1)

stable, is precisely the subgroup which leaves K1 as well as K2 stable and

H 0 ' AutK1 � AutK2 ' Aut I1 � Aut I2. Let H be the group (H 0 mod

centre) ' PGL(n) � PGL(n). It is easily seen that for s in S there exists

h 2 H 0 such that h � s is the triple

(W �! V; id; id); W �! V in S1

and, in fact, that the orbit space T mod AutW can be identi�ed with the

above set of triples. Thus we see that we have a canonical identi�cation

S1 ' Z1.

We see that S1 is the set of all embeddings  : R �! Gr(W;n) such that

(v)8>>>>>>>>>><>>>>>>>>>>:

(a) the pull-back of the tautological bundle on Gr(W;n) by  is a

bundle V as in (1), and

(b) the canonical map H0(W ) =W �! H0(V ) is an isomorphism

(c)  (pi) = ki, ki the points of Gr(W;n) de�ned by Ki (i = 1; 2).

Through the canonical identi�cation S1 �! Z1 we get an action of Aut I1�

Aut I2 and we see that this identi�es with the canonical action of H 0 of S1
(H 0 is the subgroup of AutW which leaves invariant the points ki, i = 1; 2).
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It is now clear that Z2 can be identi�ed with the set of closed subschemes

 (R) of Gr(W;n),  as in (v). Thus we see that

(vi)�
the �bre of �� over F can be identi�ed with the set of closed sub-

schemes  (R) of Gr(W;n),  as in (v)

Roughly speaking the above set is the set of all nicely imbedded curves of

type R (with length � n) in Gr(W;n), passing through the two �xed points

k1, k2 in Gr(W;n). We see that all these subschemes of Gr(W;n) have

the same degree. Thus Z2 can be identi�ed with a closed subscheme of a

Hilbert scheme � of subschemes of Gr(W;n). We see that H = (AutK1 �

AutK2)=C ' PGL(n)�PGL(n) acts on Z2 and (AutK1�AutK2) identi�es

with the subgroup of AutW �xing ki, i = 1; 2.

Let R be of length one so that R ' P1. Then we see that for all the

imbeddings  of P1 as in (v), the inverse image by  of the tautological

bundle on Gr(W;n) is V =
LnO(1) on P1. Then the points of Z2 which

correspond to these imbeddings contribute one orbit under H = PGL(n)�

PGL(n) and it is not di�cult to show that Z2 is the closure of this orbit.

We can take an imbedding  of P1 as follows. Let D be a 2-dimensional

vector space so that P1 = P(D). We �x a basis f1; f2 of D and we denote by

p1; p2 the points of P1 represented by f1; f2. Set W = D 
K, where K is

an n-dimensional vector space and Ki = fi 
K so that W = K1 �K2. Let

�1; : : : ; �n be a basis of K. Then we see that

e1 = f1 
 �1; e3 = f1 
 �2; : : : ; e2n�1 = f1 
 �n

is a basis of K1 and that

e2 = f2 
 �1; e4 = f2 
 �2; : : : ; e2n = f2 
 �n

is a basis of K2. Then the embedding

 : P1 �! Gr(n;W )(Grassmannian of n-dim subspaces of W ) ,! P(

n̂

W )

is de�ned by

(x; y) = xf1 + yf2 7�! n-dimensional linear subspace of W

spanned by (xe1 + ye2); (xe3 + ye4); : : : ; (xe2n�1 + ye2n)
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i.e.

(x; y) 7�! (xe1 + ye2) ^ (xe3 + ye4) ^ � � � ^ (xe2n�1 + ye2n) 2

n̂

W:

We denote by z0 the point of Z2 de�ned by this imbedding. We see that

pi 7�! ki point of Gr(n;W ) represented by Ki. If we identify AutK as

the subgroup (id on D) �AutK of AutW , we see that (AutK) �xes  (P1)

(pointwise). Then the isotropy subgroup ofH at z0 is (AutK)= centre, which

can be considered as the diagonal subgroup ofH ' PGL(n)�PGL(n). Thus

Z2 is a PGL(n)� PGL(n) equivariant closure of PGL(n) and it is natural

to expect that Z2 is the wonderful compacti�cation of PGL(n).

We now see that if L is the line bundle OGr(n;W )(1) on Gr(n;W ), then

L restricts to the line bundle OP1(n) on P
1 and that

H0(Gr(n;W ); L) �! H0(P1;OP1(n)) �! 0

is exact. Let us suppose that this phenomenon is more generally true for

all the imbeddings  of R (which seems to be the case). From this we see

that if M is the linear subspace of P(
VnW ) generated by  (R) ( (R) ,!

Gr(n;W ) ,! P(
VnW )), then dimM = n+1. If  z denotes the imbedding

of R for z 2 Z2, let us suppose that z 7�!M z de�nes a closed immersion

(vii) � : Z2 �! Gr(n+ 1; Q) ,! P(

n+1̂

Q) (Q =

n̂

W ):

It is H equivariant.

We shall now determine �(z0), where z0 corresponds to the embedding

of P1 given above. As we saw above, this is given by

(x; y) 7�! (xe1 + ye2) ^ � � � ^ (xe2n�1 + ye2n)

= xn�0 + xn�1y�1 + � � �+ yn�n

Say for n = 3, the above expression is given by

(x; y) 7�! x3e1 ^ e3 ^ e5 + x2y(e1 ^ e3 ^ e6 + e1 ^ e4 ^ e5 + e2 ^ e3 ^ e5)

+xy2(e1 ^ e4 ^ e6 + e2 ^ e3 ^ e6 + e2 ^ e4 ^ e5) + y3(e2 ^ e4 ^ e6):

If we now identify K1 ' K2 ' K (f1 7�! f2), we have

Q =

n̂

W =

n̂

(K �K) =

nM
i=0

(

î

K 


n�î

K)

'

nM
i=0

Qi; Qi = Hom (

î

K;

î

K)
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and we see that �i identi�es with the identity homomorphism of

Hom (
ViK;

ViK) = Qi which is AutK invariant. We see that Q0 and Qn
are 1-dimensional modules and that theH-irreducible module Hom (W�;W�)

(� = half sum of positive roots for SL(n) ' SL(K)) is a direct summand ofNn
i=0Qi. We have

Vn+1Q = (
Nn

i=0Qi) � other irreducible components for

AutK �AutK. Now �(z0) is de�ned by

(�0 
 � � � 
 �n) 2

 
nO
i=0

Qi

!
,!

n+1̂

Q:

We see that the projection of (�0
� � �
�n) in Hom (W�;W�) is non-zero and

AutK (in fact AutK= centre) invariant. Now Hom (W�;W�) is of regular

special weight in the sense of De Concini-Processi and then by their work

[D-P] it follows that the closure of the H orbit H ��(z0) in P(
Vn+1Q) is the

wonderful compacti�cation of PGL(n). Hence Z2 ' �(Z2) is the wonderful

compacti�cation of PGL(n) and the principal claim follows.

We have supposed that � is a closed immersion. However, we need not

use this. By the general theory of Hilbert schemes, Z2 gets imbedded in the

Grassmannian of (kn+1) dimensional quotients (kn+1 = dimH0(P1;O(kn))

of H0(P(Q);OP(Q)(k)), for k � 0. This latter vector space is Sk(Q�). Hence

we see that we get an imbedding:

�k : Z2 �! Gr(kn+ 1;
kQ); k � 0:

Now �k(z0) is associated to the imbedding

P1
j
,! P

 
kO
Q

!

obtained by composing P1 �! P(Q) with the canonical imbeddings P(Q) ,!

P(
NkQ). This means that j is de�ned by:

(x; y) 7�!

kO
(xn�0 + xn�1y�1 + � � �+ yn�n)

= xkn�0 + xkn�1y�1 + � � �+ ykn�kn

where �kn 2
NkQ. Then by a similar argument, using the criterion of De

Concini and Processi, it follows that Z2 is the wonderful compacti�cation of

PGL(n)
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6 Concrete descriptions of the moduli spaces and

applications

A vector bundle V on X0 can be described by the following datum on the

normalisation X of X0, namely by W = ��(V ) (� : X �! X0) and an

isomorphism j : Vp1 �! Vp2 of the �bres of V at fpig, i = 1; 2. One would

therefore expect to describe a torsion free sheaf on X0 as some limits of the

isomorphisms j. This leads to the notion of a generalized parabolic bundle

(GPB) due to U. Bhosle.

Unless otherwise stated we will hereafter restrict to the case of rank 2

vector bundles.

De�nition 6.1. A GPB on X is a vector bundle E on X together with

an element of Gr(Ep1 �Ep2 ; 2) i.e. a quotient8>><>>:
Ep1 �Ep2 �! Q �! 0; dimQ = 2

or equivalently 0 �! N �! Ep1 �Ep2 , dimN = 2

(0 �! N �! Ep1 �Ep2 �! Q �! 0).

We denote this GPB by (E;Q) (or (E;N)).

To (E;Q) we can canonically associate a torsion free sheaf F on X0 as

follows. Now Q need not have an OX-module structure. However it has an

OX0
-module structure (as a sky-scraper sheaf with support at p) and F is

de�ned by:

0 �! F �! ��(E) �! Q �! 0:

The important point is that degF = degE, since we have

�(F ) = �(��(E)) � 2 = �(E)� 2 i:e:

degF � 2(g � 1) = degE � 2[(g � 1)� 1]� 2 = degE � 2(g � 1):

Now any torsion free sheaf F on X0 can be represented by a GPB (E;Q)

in this manner. However, this representation is not unique, as we shall see

below.

Let E be a vector bundle on X and M a linear subspace of Ex, x 2 X.

Then we have two well-de�ned vector bundles E0; E00 on X called Hecke
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modi�cations de�ned by homomorphisms

E0
j
�! E; ImE0x =M ; E

j
�! E00; Ker jx =M:

We can of course de�ne a Hecke modi�cation de�ned at several points of X.

Proposition 6.1. Let F be a torsion free sheaf on X0. Then we have the

following:

(i) if (E;Q) is a GPB which represents F , then we have a homomorphism

(��(F ) mod. torsion) �! E which is a Hecke modi�cation at p1; p2

(ii) if F is a vector bundle, then the representation (E;Q) is unique, E =

��(F ) and N is the graph of an isomorphism Ep1 �! Ep2

(iii) let F be of type 1 (i.e. F = m�O at p). Then there are precisely two

GPB's (E;Q) and (E0; Q0) which represent F and N (resp. N 0) is the

graph of a rank 1 homomorphism

Ep1
i
�! Ep2 (resp: E0p2

i0

�! E0p1):

We have Hecke modi�cations(
(��(F ) mod torsion) �! E (only modi�cation at p2 associated to Im i)

(��(F ) mod torsion) �! E0 (only modi�cation at p1 associated to ker i).

(iv) Let F be type 2 i.e. F = m�m at p. In this case, there are an in�nite

number of GPB's which represent F and they are given as follows:

(a) (E1; Q1) and N1 is the graph of the 0-map (E1)p1 �! (E1)p2 .

(b) (E2; Q2) and N2 is the graph of the 0-map (E2)p2 �! (E2)p1 .

(c) Consider (E;Q) with N = K1 �K2, dimKi = 1 and K1 ,! Ep1 ,

K2 ,! Ep2 so that Q = Q1 � Q2, Qi = Epi=Ki, i = 1; 2. We

denote by E0 the Hecke modi�cation of E, E0 �! E such that

Im E0pi in Epi is Ki, i = 1; 2. Then all (E;Q) such that E0 =

��(F ) mod torsion, represent F . We see that all these (E;Q) are

parametrized by P1 � P1.
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Remark 6.1. For the objects in (a) and (b) of (iv), we have the relation(
E1(�p2) = E0 = E2(�p1) or E2 = E1(p1 � p2)

E0 = ��(F ) mod torsion:

Note that if F is of rank 1 and type 1, then if (E1; Q1) and (E2; Q2) represent

F , we have

E2 = E1(p1 � p2):

De�nition 6.2. A GPB (E;Q) on X is semi-stable (resp. stable) if for

every (resp. proper 6= 0) subsheaf E0 of E, we have

(�)

8>><>>:
degE0 � dimQE

0

rkE0
�

degE � dimQ

rkE
(resp: <);

QE
0

= the image of E0 in Q.

Note that E0 is a vector bundle and the canonical map E0 �! E need not be

injective everywhere but only generically injective; it could even be a generic

isomorphism.

Remark 6.2.

(a) Let (E;Q) represent the torsion free sheaf F on X0. Then one has (see

[NR], [Su]):

F semi-stable() (E;Q) semi-stable:

However, if F is stable, (E;Q) need not be stable. If (E;Q) is as in

(iv)(c) of Prop. 6.1 (which implies F is type 2), consider the Hecke

modi�cation E0 �! E which maps E0pi onto Kpi and an isomorphism

outside fp1; p2g. Then we see that the inequality in (�) is, in fact, an

equality. A similar argument works for (iv) (a), (b) of Prop. 6.1. Thus

for example, if F is semi-stable and torsion free of degree 1, it is stable;

however, say it is of type 2, then any (E;Q) which represents F is only

semi-stable and not stable.

(b) We can de�ne families of GPB's and then we obtain a functor

(GPB) �! (Torsion free sheaves on X0):
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(c) There is a canonical moduli space associated to the semi-stable GPB's

of rank n and degree d of X. We denote this by GPBX(n; d); in par-

ticular GPBX(2; 1). It has a structure of a normal projective variety.

Further if (E;Q) is a semi-stable GPB and F is the semi-stable torsion

free sheaf on X0 associated to (E;Q) (see (a) of Remark 6.2 above),

the map (E;Q) 7�! F de�nes a morphism GPBX(n; d) �! UX(n; d);

in fact GPBX(n; d) identi�es with the normalisation of UX(n; d) (see

[NR] and [Su]). Note that GPBX(2; 1) is not the set of isomorphism

classes of semi-stable GPB's. We have to have an equivalence relation.

(d) We have also a forget functor:

(GPB) �! (vector bundles on X):

This is not well-behaved with respect to semistability. If (E;Q) is

semi-stable (as a GPB), the underlying vector bundle need not be

semi-stable; further if E is semi-stable, (E;Q) need not be semi-stable.

Remark 6.3. Take two copies V1; V2 of a 2-dimensional vector space. Then

we have identi�cations AutVi ' GL(2) and Isom (V1; V2) ' GL(2). Imbed-

ding Isom (V1; V2) by their graphs in Gr(V1 � V2; 2), we get a compacti-

�cation of GL(2). However, this is not a \good compacti�cation" as the

complement of GL(2) is not a variety with normal crossings. Let v1( resp.

v2) represent the points of Gr(V1 � V2; 2) corresponding to the zero homo-

morphism V1 �! V2 (resp. V2 �! V1) represented by its graph. We blow

up (Gr(V1 
 V2; 2) at these points v1; v2 and obtain a variety H with ex-

ceptional divisors H1 and H2 mapping to v1; v2 respectively. We see that

H �! Gr(V1
V2; 2) is AutV1�AutV2 equivariant. Further, this compact-

i�cation H of GL(2) ' Isom(V1; V2) is \good" as we check easily that its

complement has normal crossing singularities, i.e. H is a \good" compacti-

�cation of GL(2) unlike Gr(V1 
 V2; 2).

De�nition 6.3.

(a) An H-structure on a vector bundle V on X is just giving a point of H

where H is the blowing up of Gr(Vp1 
 Vp2 ; 2) as de�ned above, or we

can say that an H-bundle on X is a pair (V; h), where V is a vector

bundle, h 2 H;H being the blowing up of Gr(Vp1
Vp2 ; 2) as indicated

above. We have functors

(H� bundles ) �! (GPB) �! ( Torsion free sheaves on X0):
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(b) We say that an H-bundle is stable if the corresponding torsion free

sheaf on X0 is stable (recall that we are in the rank 2 case).

Remark 6.4. We have a canonical morphism �� : G(2; 1) �! UX0
(2; 1). As

mentioned in Remark 6.2(c), GPBX(2; 1) is the normalisation of UX0
(2; 1).

Hence �� induces a canonical morphism

(�) : Ĝ(2; 1) �! GPBX(2; 1)

where Ĝ(2; 1) denotes the normalisation of G(2; 1). This map can be more

concretely seen as follows.

Let E be a vector bundle on Xk (of rank 2 and degree 1) such that EjR
is strictly positive and ��(E) is torsion free (which implies EjR is strictly

standard and restricts the possibilities as below). Then to E we shall now

associate, upto a �nite number of choices, a GPB such that the underlying

bundle is of rank 2 and degree 1. This leads to the canonical morphism (�)

above.

(i) k=0 i.e. E is a bundle on X0. Then E is given by an element Isom

(E0p1 ; E
0
p2
); E0 = ��(E) and hence we associate this GPB structure on

E0

(ii) k = 1; EjR = O �O(1)

X

X1

O �O(1)

We set E0 = EjX . Let Li be the 1-dimensional subspace of Epi(= E0pi)

de�ned by O(1)pi . Let E1 (resp. E2) be the Hecke modi�cation:

(
E0 �! E1(resp. E2);

Ker (E0p2 �! (E1)p2)(resp. Ker (E
0
p1
�! (E2)p1) is L2 (resp. L1)
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Then we have well-de�ned rank 1 homomorphisms:

(E1)p1
f1
�! (E1)p2(resp. (E2)p2

f2
�! (E2)p1):

Let N1 (resp. N2) be the graph of f1(resp. f2). Then we have exact

sequences

0 �! N1 �! Ep1 �Ep2 �! Q1 �! 0

0 �! N2 �! Ep1 �Ep2 �! Q2 �! 0

and (E1; Q1); (E2; Q2) are the two GPB's which we associate to E.

They are the two GPB's which represent ��(E) (see (iii) of Prop.

6.1). One sees that E0 = ��(F )mod torsion.

(iii) k = 1; EjR = O(1)�O(1)We set E0 = EjX . We check E0 = ��(F )mod

torsion. Let E0 �! Ei(i = 1; 2) be the Hecke modi�cations de-

�ned by Ei = E0(pi), (i = 1; 2) and (E1; Q1) (resp. (E2; Q2)) be

the GPB de�ned by the zero homomorphism (E1)p2 �! (E1)p1 (resp.

(E2)p1 �! (E2)p2). We assign to E these two GPB's. These two

GPB's represent ��(E).

X

X1

O(1)�O(1)

p1

p2

Given E0 on X, we can extend E0 to E on X1 with EjR ' O(1)�O(1)

by giving isomorphisms:

g1 : E
0
p1
�! (O(1) �O(1))p1 ;

g2 : E
0
p2
�! (O(1) �O(1))p2

Now we can modify gi by an automorphism of O(1) �O(1). Since gi
can be identi�ed with elements of GL(2), we can suppose that g2 =

identity. Since there are two components, we can modify g1 by an

arbitrary scalar. Thus the number of ways of extending E0 to E on X1

(with EjR = O(1)�O(1)) depends upto an element of PGL(2).
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(iv) k = 2; EjRi
= O �O(1) We set E0 = EjX and check that E0 ' ��(F )mod

torsion.

X

p2

O �O(1)

O 	O(1)

X2
p1

Let Ki � E0pi be the 1-dimensional subspace by the �bre at pi('

O(1)p1) of the canonical sub-bundle of EjRi
. Let E00 be the Hecke

modi�cation E0 �! E00 such that Ker (E0pi �! E00pi) = Ki; i = 1; 2.

Let Ni = Im E0pi , Qi = E00pi=Ni, Q = Q1 � Q2. Then (E00; Q) is the

GPB assigned to E.

The above discussion, especially of cases (iii) and (iv) indicates that

a �bre of the morphism (�) is either a point or P3 (compare also the

general result in Remark 5.2). For the morphismH �! Gr(V1�V2; 2),

the �bre over v1 (resp. v2) is P
3. Thus we may expect the following

result which is an important step in the concrete determination of the

Gieseker moduli space.

Theorem 6.1. On the set of isomorphism classes of stable H-bundles on

X of rank 2 and degree 1 (i.e. the underlying vector bundles have these

properties), there is a canonical structure of a smooth projective variety,

which can be identi�ed with the normalisation Ĝ(2; 1) of the Gieseker variety

G(2; 1). We denote Ĝ(2; 1) by SII .

Proof. We do not give a formal proof but carry it out in a test case. In the

following considerations, compare Remark 6.4. Let us take a 1-parameter

Gieseker family of the following type : We have a T-morphism

X
�
�! X0 � T



252

where T is a smooth curve and we �x a point t0 2 T (e.g. T = Spec . of a

d.v.r. and t0 is the closed point of T . We suppose that for t 6= t0; �t : X �!

X0 � t � X0 is an isomorphism. The curve Xt is the form Xk(0 � k � 2).

We have a vector bundle V on X which de�nes a Gieseker family of rank

2 and degree 1. A test case for the theorem is that one should be able to

associate to this Gieseker family a canonical 1-parameter family of stable

H-bundles on X. We can suppose that 1 � k � 2.

Let Z denote the normalisation of X . Then we have a canonical mor-

phism.

� : Z �! X � T (normalisation of X0 � T ):

Then we have the following possibilities:

(i) Z is obtained by blowing up either (p1; t0) or (p2; t0). Then the excep-

tional �bre is D ' P1(k = 1)

(ii) Z is obtained by blowing up both the points (p1; t0) and (p2; t0). Then

the exceptional �bres are D1;D2 ' P
1 and D1 \D2 = ; (k = 2)

(iii) Z is obtained by �rst blowing up say (p2; t0) and then blowing up a

point on the exceptional �bre. Hence the exceptional �bre is D1 [D2,

such that Di ' P
1, the intersection D1\D2 reduces to a point and the

exceptional �bre maps to (p1; t0) or (p2; t0).

If T0 = Tnt0, we can identify p � T0 (p singular point of X0) as a sub-

scheme of XnXt0 . The closure S of p � T0 is a section of X over T and S

meets one of the singular points Xt0 ' Xk. The above possibilities (i), (ii)

and (iii) depend upon the way S meets the singular point of Xk.

Let C; T1; T2 denote respectively the proper transforms of X� t0; p1�T

and p2 � T in Z. Let W denote the vector bundle on Z obtained as the

inverse image of V by the canonical morphism Z �! X . In the case (i)

above the restriction of W to D is either O � O(1) or O(1) � O(1). In all

the other cases the restriction of W to Di is O �O(1).

Case k = 1 and W jD ' O �O(1) Now D maps to (p1; t0) or (p2; t0), say

(p2; t0). Then we see that T2 does not meet C. We see that T2 meets D;T1
meets C and C meets D.
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T1 q1

C

q2

D

T2

q1 = C \ T1

q2 = D \ T2

We have a canonical isomorphism � : W jT1 �! W jT2 , which de�nes the

vector bundle V (the non-normal variety � is obtained by identifying T1
and T2). Let F be the direct image ��(W ) which is a torsion free sheaf on

X � T and E = F �� - the double dual of F . Then E is a vector bundle on

X � T . It is not di�cult to see that we have a canonical homomorphism

j : W �! ��(E) such that when restricted to D, the trivial quotient line

bundle of W jD maps onto a line sub-bundle of ��(E)jD i.e. ��(E) is the

\push-forward Hecke modi�cation" ofW along D by the trivial quotient line

bundle of W jD. Then jjT2 : W jT2 �! ��(E)jT2 is the Hecke modi�cation

(on T2) of W jT2 by the canonical 1-dimensional quotient of the �bre of W jT2
at q2 (namely the �bre of the canonical trivial quotient line bundle of W jD
at q2). We have identi�cations

W jT1 ' ��(E)jT1 and ��(E)jTi ' Epi�T (i = 1; 2):

Hence if we set � = (jjT2 ��), � de�nes a homomorphism � : Ep1�T �! Ep2�T
such that �t (t 6= t0) is an isomorphism and �0 = �t0 is of rank one. Now �

de�nes a family ofH-bundles, in fact a family of GPB's. This is the required

1-parameter family of H-bundles.

Case k = 2 and Z is obtained by blowing up (p1; t0) and (p2; t0)

In this case we have:
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q1

C

D2

T1 D1

q2
T2

We see that C meets D1 and D2, T1 meets D1 at q1; T2 meets D2 at q2
and T1; T2 do not meet C. We de�ne E as above and then we get a canonical

homomorphism W �! ��(E). We have also a canonical isomorphism � :

W jT1 �!W jT2 inducing an isomorphism �0 : Wq1 �! Wq2 . We see that the

kernel Ki of Wqi �! ��(E)qi identi�es with the �bre of the line subbundle

ofW jDi
(= O(1)�O) isomorphic to O(1), so that by Prop. 3.4 (and Remark

3.1) we have �0(K1) \ K2 = (0). From this we deduce that under the

canonical homomorphism

Wq1 �Wq2 �! ��(E)q1 � ��(E)q2

the graph of �0 maps isomorphically onto the image of the above homomor-

phism, which is N1 � N2, Ni = Wqi=Ki. This means that the family of

GPB's represented by the isomorphisms �t : Ep1;t �! Ep2;t(t 6= t0) special-

izes to the GPB �t0 represented by (Et0 ; N1�N2). Thus �t de�nes a family

of H-bundles, in fact a family of GPB's. This is the required 1-parameter

family of H-bundles.

Case k = 1 and WD = O(1)�O(1). In this case the �gure is as in the �rst

case (k = 1) considered above. We de�ne E as before. We have canoni-

cal isomorphisms � : W jT1 �! W jT2 , �0 : Wq1 �! Wq2 and a canonical

homomorphism j : W �! ��(E). We observe that ��(E) = W (D) and

j is a \push-forward Hecke modi�cation" of W along D inducing the zero

homomorphism when restricted to D. We see that jjT2 : W jT2 �! ��(E)jT2
is the Hecke modi�cation (on T2) inducing the zero map on Wq2 - the �bre

at q2. Then � = (jjT2 � �) de�nes a homomorphism � : Ep1�T �! Ep2�T
such that �t (t 6= t0) is an isomorphism and the local expression for �t at
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t0 takes the form t� (t - local coordinate at t0) such that � (essentially �):

Ep1;t0 �! Ep2;t0 is an isomorphism. We get a GPB on Et0 by taking the

zero homomorphism Ep1;t0 �! Ep2;t0 and we endow it with an H-structure

by taking the image of � in P(Hom (Ep1;t0 ; Ep2;t0) (which is canonically the

�bre of H �! Gr(Ep1;t0 � Ep2;t0 ; 2) over the point represented by the zero

homomorphism Ep1;t0 �! Ep2;t0). We check that �t (t 6= t0) together with

this H-structure on Et0 de�nes a family of H-bundles. This is the required

1-parameter family of H-bundles.

Case k = 2 and as in (iii) above. In this case we have the �gure

q1
T1

C

D2

r D1

T2
q2

r = D1 \D2

The �rst blow up gives D1 and then the next blow up gives D2. Let E1 be

the push-forward Hecke modi�cation of W along D2 for the canonical quo-

tient line bundle of W jD2
. We have a canonical homomorphism W �! E1

and canonical isomorphisms � : W jT1 �! W jT2 and �0 : Wq1 �! Wq2 .

We claim that E1jD1
' O(1) � O(1). To prove this observe �rst that

W jD1
�! E1jD1

is a Hecke modi�cation. Further, for this homomorphism,

the kernel of the �bre of W jD1
(' O � O(1)) at r = D1 \ D2, is not the

�bre of the canonical line sub-bundle (' O(1)) of W jD1
. This is an easy

consequence of the fact that the �bre at r of the canonical sub-bundles of

W jD1
and W jD2

generate the �bre of W at r. Then the claim follows easily.

The homomorphismW �! E1 induces a rank one homomorphismWq2 �!

(E1)q2 ' (E1)r (the restriction of E1 to D2 is trivial). Then composing with

the isomorphism �0 : Wq1(' (E1)q1) �! Wq2 , we get a canonical rank one

homomorphism � : (E1)q1 �! (E1)q2 ' (E1)r.

Let Z1 denote the variety which gives the �rst blow up D1 so that we

have the factorisation of the morphism �:

Z �! Z1 �! X � T:
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Then E1 goes down to a vector bundle on Z1 and we denote this by the

same letter E1. We have E1jD1
' O(1) � O(1) and we are in a situation

similar to the case considered above (k = 1 and W jD = O(1) � O(1)).

Set E2 = E1(D1). Then the restriction of E2 to D1 is trivial and E goes

down to a vector bundle E on X � T . Then we see easily that we have a

homomorphism � : Ep1�T �! Ep2�T such that �t (t 6= t0) is an isomorphism

and the local expression for �t at t0 takes the form t� (mod t2) such that

� (essentially the above � : Ep1;t0 �! Ep2;t0 is a rank one homomorphism.

By taking the image of � in P (Hom (Ep1;t0 ; Ep2;t0)), we get a family of

H-bundles as we did in the case above. This is the required family of H-

bundles.

One can give a structure of a smooth projective variety on the isomor-

phism classes of H stable bundles of rank 2 and degree one on X. We shall

outline a proof later (see Remark 6.6). Call this moduli space H(2; 1). The

preceding considerations show that we have a morphism SII = Ĝ(2; 1) �!

H(2; 1). This is certainly birational. It is not hard to show that the �bres

of this morphism are �nite. This would show that it is an isomorphism.

Remark 6.5.

(a) Consider the moduli space UX = UX(2; 1) of stable vector bundles of

rank 2 and degree 1 onX. Let P be a Poincar�e bundle on X�UX(2; 1).

Then Grass (Pp1�Pp2 ; 2) is a Grassmann bundle on UX . Then if P1;P2
are the principal GL(2) bundles associated to the vector bundles Ppi
on UX . Then we can construct a bundle over UX with �bre H as a

bundle associated to P1 �P2. We call this variety SI . This variety is

\inductively good" with respect to the genus g i.e. it is a �bre space

with �bre H over the moduli space UX with X of genus (g � 1). We

see we have a diagram with morphisms j1; j2:

SI
j1
�! Gr(Ppi � Pp2 ; 2)

j2
�! VX ;

We have of course a family of GPB's on X parametrized by Gr(Pp1 �

Pp2 ; 2) which is the set of all GPB's over the moduli space UX . We

get then a family of GPB's parametrized by SI .

(b) If V is a vector bundle on X, the set of all GPB's on V is parametrized

by Gr(Vp1 � Vp2 ; 2) and those which yield vector bundles on X0 corre-

spond to the open subset Isom (Vp1 ; Vp2). One sees that the motivation
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for de�ningH bundles is to have a better compacti�cation for the mod-

uli space of vector bundles on the singular curve X0.

(c) We see that SI and SII are birational. In fact, we have the follow-

ing. Let �1 ,! SI be the closed subscheme such that the underlying

GPB's are not semi-stable or equivalently the corresponding tension

free sheaves on X0 are not stable. Similarly let �2 be the closed sub-

scheme of SII such that the underlying vector bundles on X are not

semi-stable (or equivalently not stable since we are in the degree 1

case). We see that

SIn�1 ' SIIn�2:

We have the following result essentially due to Gieseker (see [G]).

Theorem 6.2. The varieties �1;�2 are smooth. Let S be the blow up SI
along �1 and � the inverse image of �1 in S. Then we have a canonical

morphism � : S �! SII so that we have a diagram: (� : S �! SI canonical

map).

�

= Ĝ(2; 1)

j1

SI

Gr(Pp1 � Pp2 ; 2)

UX

SII

UX0
(2; 1)

S

��j2

G(2; 1)

�

Further S is the blow up of SII along �2 and � is the canonical morphism

S �! SII . Besides, we have the following properties of �'s.

The variety of �1 ' PJ0�J1(F1), where Ji = Jacobian of degree i on X

and F1 is the vector bundle on J0�J1 representing the space of all extensions

0 �! L0 �! E �! Li �! 0; Li�Ji:
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In fact �1 maps onto its image in UX (we see that these extensions

which are non-trivial de�ne stable bundles of degree 1 on X. These acquire

canonical GPB's de�ned by the quotients Ep1 � Ep2 �! (L1)p1 � (L1)p2 .

Similarly, one has a vector bundle F2 on J0�J1 such that �2 = PJ0�J1(F2).

We have

� = PJ0�J1(F1)�J0�J1 PJ0�J1(F2):

J0 � J1

�

� �21

Remark 6.6. We shall now indicate how SI and SII can be viewed as GIT

quotients for two di�erent polarizations on the same variety. This gives

also the required construction of the variety structure on H(2; 1) (' SII)

stated in the proof of Theorem 6.1. One knows that we have a process of

blowing up and blowing down when comparing GIT quotients for di�erent

polarisations (as exploited by Thaddeus [T]). This should clarify the blowing

up and blowing down process to obtain SII from SI .

We call a GPB (E;Q) on X �-semi-stable (resp, �-stable) if for every

(resp. proper 6= 0) subsheaf E0 of E, we have

degE0 � �dimQE
0

rkE0
�

degE � � dimQE

rkE
(resp: <):

In Def. 6.2 we had taken � = 1.

We shall now relate this to GIT stability (see [U]) and ([NR]). We restrict

to the case of rank 2 and degree 1.

Let Q be the Quot scheme of quotients of the trivial bundle of rank

n(n >> 0) with Hilbert polynomial of a rank two vector bundle of su�ciently
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large odd degree. We denote by E the universal quotient on X � Q. For a

suitable polarization on Q, we know that the GIT quotient QsmodPGL(n)

is the moduli space UX(2; 1). Let eQ denote the Q-scheme Gr(Ep1 
 Ep2 ; 2)-

the Grassmannian of 2 dimensional quotients of Ep1 = Ejpi�Q. Then we have

a family of polarisations L� parametrized by �, 0 < � < 1, on eQ such that

(
GIT stability (resp. semi-stability) for L�

() � stability (resp. semi-stability) as above for GPB's.

This implies, in particular, that if Eq is the quotient sheaf of the trivial

rank n vector bundle corresponding to a point q 2 eQ which is GIT semi-

stable for L�, then Eq is locally free. The above assertion is in [U], it follows

also from the arguments in [NR]. The notion of �-stability does not �gure

in [NR] but only in [U]. It is also shown in [NR] that

(
1 stability (resp. semi-stability) i.e. as in Def. 6.2

) GIT stability (resp. semi-stability) for L1.

The converse is not true as there are GIT semi-stable objects for L1
which are not locally free. However, in each GIT semi-stable equivalence

class, there are vector bundles and the converse is true for vector bundles (see

[NR]). The GIT quotient for the polarisation L1 is the variety GPBX(2; 1)

(see Remark 6.2 (c)).

We see easily that � stable (resp. semi-stable) GPB's remain the same,

respectively in the intervals 0 < � < 1
2 and 1

2 < � < 1 and consequently the

GIT quotients behave the same way. We denote the GIT quotients respec-

tively by GPB(�0) and GPB(�1). We see also that in these cases stable()

semi-stable, so that GPB(�1) (resp. GPB(�0)) is a smooth projective variety

and its underlying set is the set of isomorphism classes of �-stable GPB's

with 1
2 < � < 1 (resp. 0 < � < 1

2). We denote the GIT quotients for L 1

2

and L1 respectively by GPB(12) and GPB(1)(= GPBX(2; 1) as mentioned

above). By the general process of blowing up and blowing down for GIT

quotients for varying polarisations, we get canonical birational morphisms.



260

GPB(12)

GPB(�0)

GPB(�1)

GPB(1)

We observe that for 1
2 < � < 1, we have:

(
GPB �-stable ) GPB 1-semi-stable

GPB 1-semi-stable ) GPB� stable.

From this it follows that GPB(�1) (rather its underlying set) is, in fact,

the set of isomorphism classes of GPB's which de�ne stable torsion free

shears rank 2 and deg 1 on X0, whereas GPB(1) = GPBX(2; 1) is a further

quotient of GPB(�1). It is also easily seen that GPB(�0) is a Grassmann

bundle Gr(Pp1 � Pp2 ; 2) over UX (see Remark 6.5).

The maps (blow ups and blow downs) in (1) above result from the follow-

ing observation in GIT . Let us �x a polarisation L (on a projective variety

with an action of a reductive group etc.). Then if L0 is a polarisation which

is su�ciently close to L, we have

(a) L0 semi-stability =) L semi-stability.

(b) L stability =) L0 stability.

(Note the slightly more general observation prior to Def.4.2 which is used

for the construction of the variety structure on G(n:d).) The set of L0 semi-

stable points is contained in that of L-semi-stable points so that we get a

canonical morphism.

L0 GIT quotient �! L GIT quotient.

Further, if the set of L stable points is non-empty, then the above is a

(proper) birational morphism. This gives the maps in (1) above. Further,

from general considerations, it follows that we can divide the ample cone

(rather the one with the group action) into nice regions in each of which

stable and semi-stable points remains the same. This is the general phe-

nomenon behind stable and semi-stable GPB's remaining the same in the

intervals 0 < � < 1
2 and 1

2 < � < 1.
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Now to get theH-stable moduli, we construct a schemeQ0 which is proper

over the open subset of eQ corresponding to quotients which are locally free,

and corresponds to the blowing up of H of the Grassmannian. We can take

a suitable Q� which contains Q0 as an open subset, Q� being proper over

Q and we can suppose that the actions of the group lift to Q0; Q� etc. Fix

a � in such a way that 0 < � < 1
2
. Let M be a polarisation on Q� which

is relatively ample with respect to Q�
�
�! Q. Then (as we saw prior to

Def.4.2) if a is su�ciently small (a > 0) and � � � < 1, we have

(a) q 2 Q� is (L� + aM) semi-stable then �(q) is L� semi-stable.

(b) q 2 Q is L� stable, then ��1(q) is (L� + aM) stable.

Now it is not di�cult to see that the variety SI (see Remark 6.5) is the

GIT quotient for the polarisation for L�+aM with � � � < 1
2 and that SII is

the GIT quotient for L�+aM with 1
2 < � < 1. For all these polarisations we

have stability () semi-stability, so that we get, in particular, a canonical

structure of a projective variety, namely SII , on the set of isomorphism

classes of H-stable vector bundles on X of rank 2 and deg. 1 (mentioned in

the proof of theorem 6.1).

Let S0 be the GIT quotient for L 1

2

+ aM . Then we get as in (1) above

(by general considerations explained above) canonical birational morphisms.

S0

SIISI

The variety S in Theorem 6.2 seems to be the �bre product SI �S0 SII .

Remark 6.7. Vanishing of Chern classes for the moduli space on a smooth

projective curve of genus g.

We shall now very briey outline Gieseker's proof of the conjecture of New-

stead and Ramanan, namely that

ci(
U(2;1)Y ) = 0; i > 2g � 2;
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where Y is a smooth curve of genus g, which can be taken as the generic

�bre of X �! S.

One shows that there is a vector bundle 
 on G(2; 1)S such that the

restriction 
� of this bundle to the generic �bre of G(2; 1)S over S is the

cotangent bundle and the restriction 
0 to the closed �bre is 
G(2;1)(logD
0),

where D0 is the singular locus of G(n; d). This uses the fact that G(n; d)S
is regular and its closed �bre is a divisor with normal crossings. Then one

shows that it su�ces to prove that ci(
0) = 0 for i > 2g � 2 and in fact

that it su�ces to prove this vanishing for e
0 the pull-back of 
0 on the

normalisation Ĝ(2; 1) of G(2; 1). It is seen that e
0 = 

Ĝ(2;1)

(log eD0), eD
being the inverse image of D0 in Ĝ(2; 1). Then the problem reduces to

proving the vanishing of Chern classes of the pull-back of this bundle on

the variety S (see Theorem 6.2). One has an explicit hold on this bundle.

For the vanishing of Chern classes one uses the factorisation: S �! SI �!

Gr(Pp1 � Pp2 ; 2) �! UX . The proof is by induction on the genus and one

can start the induction process, since for g = 1, G(2; 1) is the curve X0 itself.

Hence we can suppose that the vanishing result holds for the moduli space

UX(2; 1) = UX on X. Then the required vanishing result follows by this

inductive argument.

7 Comments

(I) It should be possible to work out generalisations of Gieseker moduli

spaces for (n; d) 6= 1 say for X0. For obvious reasons one cannot expect

normal crossing singularities since the quotients are not by free actions.

Semi-stability has to be more carefully de�ned. We have to add more

conditions besides the condition that the direct image by � is torsion

free and semi-stable.

If there is more than one ordinary double point (say the curve is irre-

ducible), even if (n; d) = 1 the singularities for the generalized Gieseker

moduli spaces are not normal crossings since they are only products of

normal crossings.

(II) It should be possible to work out generalisations of Gieseker moduli

spaces for any family, say for stable curves over general base schemes,
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for any rank and degree.

(III) The method of Gieseker for constructing the moduli space G(2; 1) is by

giving criteria for semi-stability of the points in the Hilbert scheme rep-

resented by imbeddings of curves into a Grassmannian (of two planes).

This is a very natural method but seems complicated and therefore

di�cult to generalize for arbitrary rank. It would be interesting to see

if our method would imply some results on the \Hilbert stability" of

imbeddings of curves into Grassmannians of n-planes.

(IV) The moduli space G(n; d) can be thought of as a moduli problem of

vector bundles on the curve Xn (we need not take all k, k < n) modulo

the action of the automorphism group of Xn which is identity on X.

One knows how to construct the moduli of semi-stable torsion free

sheaves on Xn (now thanks to Simpson for general projective schemes).

It would be interesting to construct the moduli spaces G(n; d) more

directly as quotients of the moduli spaces of vector bundles or torsion

free sheaves on Xn.

(V) In the proof of properness, one saw that a torsion free sheaf F on the

isolated normal singularity represented by C is the invariant direct

image of a vector bundle on a �nite covering represented by a disc. In

fact, it is easily checked that a torsion free sheaf on X0 is, locally at

p, an invariant direct image of �-vector bundle on a rami�ed Galois

covering with Galois group � (�-cyclic group). This may suggest a

good de�nition for G-objects on a nodal singularity for a semi-simple

algebraic group G.

(VI) These moduli spaces should be considered as solutions of the moduli

problem associated to the following objects over X0:

f(�;E); � proper map X 0 �! X0, E a vector bundle on X0

such that ��(E) is torsion free and � is an isomorphism over X0nfpg:

We have of course to �x invariants. It is tempting to ask for generali-

sations when X0 is replaced by a higher dimensional variety, say even

a smooth surface. We may get compact moduli spaces only with the

use of vector bundles but over varying varieties dominating the quasi

variety.
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Abstract

These are notes that accompany a short course given at the School on

Algebraic Geometry 1999 at the ICTP, Trieste. A major goal is to outline

various approaches to moduli spaces of curves. In the last part I discuss the

algebraic classes that naturally live on these spaces; these can be thought of

as the characteristic classes for bundles of curves.
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1. Structures on a surface

We start with two notions from linear algebra. Let T be a real vector

space. A conformal structure on T is a positive de�nite inner product ( � )
on T given up to multiplication by a positive scalar. The notion of length

is lost, but we retain the notion of angle, for if v1; v2 2 T are independent,

then

\(v1; v2) :=
(v1 � v2)
kv1kkv2k

does not change if we multiply ( �) with a positive scalar. A complex structure

on T is a linear automorphism J of T such that J2 = �1V ; this makes T

a complex vector space by stipulating that multiplication by
p
�1 is given

by J . If dimT = 2, then these notions almost coincide: if we are given an

orientation plus a conformal structure, then `rotation over �
2
' is a complex

structure on T . Conversely, if we are given a complex structure J , then

we have an orientation prescribed by the condition that (v; Jv) is oriented

whenever v 6= 0 and a conformal structure by taking any nonzero inner

product preserved by J .

Let S be an oriented C1 surface. A conformal structure on S is given

by a smooth Riemann metric on S given up to multiplication by a positive

C1 function on S. By the preceding remark this is equivalent to giving

an almost-complex structure on S, i.e., an automorphism J of the tangent

bundle TS with J2 = �1TS , that is compatible with the given orientation.

Given such a structure, then we have a notion of holomorphic function: a C1

function f : U ! C on an open subset U of S open is said to be holomorphic

if for all p 2 U , dfp � Jp =
p
�1dfp : TpS ! C . This generalizes the familiar

notion for if S happens to be C with its standard almost-complex structure,

then we are just saying that f satis�es the Cauchy-Riemann equations. It

is a special property of dimension two that S admits an atlas consisting of

holomorphic charts. (This amounts to the property that for every Riemann

metric on a neighborhood of p 2 S we can �nd local coordinates x; y at p

such that the metric takes the form c(x; y)(dx2 + dy2).) Coordinate changes

will be holomorphic also (but now in the conventional sense), and we thus

�nd that S has actually a complex-analytic structure.

A surface equipped with such a structure is called a Riemann surface.

We shall usually denote such a surface by C. I will assume you are familiar

with some of the basic facts regarding compact Riemann surfaces such as the
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Riemann-Roch theorem and Serre-duality and the notions that enter here.

These give us for instance

Theorem 1.1. A compact connected Riemann surface C of genus g can be

complex-analytically embedded in Pg+1 such that the image is a nonsingular

complex projective curve of degree 2g + 1. The algebraic structure that C

thus receives is canonical.

The proof may be sketched as follows. Choose p 2 C. Then the complete

linear system generated by (2g + 1)(p) is of dimension g + 2 and de�nes a

complex-analytic embedding of C in Pg+1 of degree 2g + 1. A theorem of

Chow asserts that a closed analytic subvariety of a complex projective space

is algebraic. So the image of this embedding is algebraic. It also shows that

the algebraic structure is unique: if C is complex analytically embedded

into two projective spaces as C1 � Pk and C2 � Pl, then consider the

diagonal embedding of C in Pk�Pl, composed with the Segre embedding of

Pk�Pl in Pkl+k+l; by Chow's theorem the image is a complex projective curve

C3. The curves C1 and C2 are now obtained as images of C3 under linear

projections. These are therefore (algebraic) morphisms that are complex-

analytic isomorphisms. Such morphisms are always algebraic isomorphisms.

The above theorem shows in particular that a compact Riemann surface

of genus zero resp. one is isomorphic to P1 resp. to a nonsingular curve in

P2 of degree 3.

What can we say about the automorphism group of a compact Riemann

surface C of genus g? If g = 0, then we can assume C = P1 and Aut(P1) is

then just the group of fractional linear transformations z 7! (az+b)(cz+d)�1

with ad � bc 6= 0. If g = 1, then the classical theory tells us that C is

isomorphic to a complex torus, and so Aut(C) contains that torus as a

`translation' group. This subgroup is normal and the factor group is �nite.

In all other cases (g � 2), Aut(C) is �nite. There are several ways to see

this, one could be based on the uniformization theorem, another on the fact

that Aut(C) acts faithfully on H1(C;Z) (any automorphism acting trivially

has Lefschetz number 2 � 2g < 0, so cannot have a �nite �xed point set,

hence must be the identity) and preserves a positive de�nite Hermitian form

on H1(C; C ).

We denote by Mg the set of isomorphism classes of nonsingular genus g

curves. For the moment it is just that: a set and nothing more, but our aim

is to put more structure onMg when g � 2. We will discuss four approaches

to this:
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� Riemann's original (heuristic) approach, that we will discuss very briey.

� The approach through Teichm�uller theory. Actually there are several

of this type, but we mention just one. More is said about this in Hain's

lectures.

� The introduction of an orbifold structure onMg in the spirit of Grothen-

dieck's formalization and generalization of the Kodaira-Spencer theory.

� The introduction of a quasi-projective structure on Mg by means of

geometric invariant theory.

The last two approaches lead us to consider a compacti�cation of Mg as

well.

2. Riemann's moduli count

Fix integers g � 2 and d � 2g � 1. Let C be a smooth genus g curve.

Choose a point p 2 C. By Riemann-Roch the linear system jd(p)j has
dimension g � d. Choose a generic line L in this linear system that passes

through d(p), in other words, L is a pencil through d(p). The genericity

assumption ensures that this pencil has no �xed points. Choose an a�ne

coordinate w on L such that w = 1 de�nes d(p). We now have a �nite

morphism C ! P1 of degree d that restricts to a �nite morphism f : C �
fpg ! C . We invoke the Riemann-Hurwitz formula (which is basically an

euler characteristic computation):X
x2C�fpg

�x(f) = 2g � 1 + d;

where �x(f) is the rami�cation index of f at x (= the order of vanishing

of df at x). The discriminant divisor Df is
P

x2C�fpg �x(f)(f(x)) (so the

coe�cient of w 2 C is the sum of the rami�cation indices of the points of

f�1(w)). Its degree is clearly 2g � 1 + d. The passage to the discriminant

divisor loses only a �nite amount of information: from that divisor we can

reconstruct C and the covering C ! P1 (up to isomorphism) with �nite

ambiguity. Furthermore, it is easy to convince yourself that in the (2g�1+d)-
dimensional projective space of e�ective degree 2g� 1+ d divisors on P1 the

discriminant divisors make up a Zariski open subset. We now count moduli

as follows: in order to arrive at f we needed for a given C, the choice of

p 2 C (one parameter), the choice of a line L in jd(p)j through d(p) (d�g�1

parameters) and the a�ne coordinate w (2 parameters). Hence the number

of parameters remaining for C is

(2g � 1 + d)�
�
1 + (d� g � 1) + 2

�
= 3g � 3:
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This suggests that Mg is like a variety of dimension 3g � 3.

3. Orbifolds and the Teichm�uller approach

We begin with a modest discussion of orbifolds. Let G be a Lie group

acting smoothly and properly on a manifoldM . Proper means that the map

(g; p) 2 G �M ! (g(p); p) 2 M �M is proper; this guarantees that the

orbit space GnM is Hausdor�.

If G acts freely on M , then the orbit space GnM is in a natural way a

smooth manifold: for every p 2M , choose a submanifold S of M through p

such that TpS supplements the tangent space of the G-orbit of p at p. After

shrinking S if necessary, S will meet every orbit transversally and at most

once. Hence the map S ! GnM is injective. It is not hard to see that

the collection of these maps de�nes a smooth atlas for GnM , making it a

manifold.

If G acts only with �nite stabilizers, then we can choose S in such a

way that it is invariant under the �nite group Gp. After shrinking S in a

suitable way we can ensure that every G-orbit that meets S, meets it in

a Gp-orbit and that the intersection is transversal. So we then have an

injection GpnS ! GnM . This is in fact an open embedding and hence GnM
is locally like a manifold modulo a �nite group. It is often very useful to

remember the local genesis of such a space, because this information cannot

be recovered from the space itself (example: the obvious action of the nth

roots of unity on a one dimensional complex vector space has orbit space

isomorphic to R2 , so that we cannot read o� n from just the orbit space).

This leads to Thurston's notion of orbifold: this is a Hausdor� space X for

which we are given an `atlas of charts' of the form (U�; G�; h�)�, where

U� is a smooth manifold on which a �nite group G� acts, and h� is an

open embedding of the orbits space U�nG� in X. The images of these open

embeddings must cover X and there should be compatibility relations on

overlaps. It is understood that two such atlasses whose union is also atlas

de�ne the same orbifold structure. So if F is a discrete space on which a

�nite group H acts simply transitively, then we may add the chart given by

U��F with its obvious action of G��H (its orbit space is U�nG�) and h�.

This allows us to express the compatibility relation simply by saying that

the atlas is closed under the formation of �bered products (`intersections'):

U� �X U� with its G� �G�-action and the identi�cation of the orbit space

with a subset of X should also be in it. It also implies that we have an

atlas of charts for which the group actions are e�ective. I leave it to you to
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verify that GnM has that structure. There exist parallel notions in various

settings, e.g., complex-analytic and algebraic. In the last two cases, it is

often useful to work with a more re�ned notion of orbifold (a `stack'), but

we will not go into this now.

The case that concerns us is in in�nite dimensional analogue of the above

situation: we �x a closed oriented surface Sg of genus g and we let the space

of conformal structures on S take the role of M and the group of orientation

preserving di�eomorphisms take the role of G. It is understood here that

these carry certain structures that allow us to think of an action of an in�nite

dimensional Lie group on an in�nite dimensional space. This action turns

out to be proper with �nite stabilizers. It turns out that all orbits have

codimension 6g� 6 and so it is at least plausible that Mg has the structure

of an orbifold of real dimension 6g � 6. This heuristic reasoning has been

justi�ed by Earle and Eells.

4. Grothendieck's view point

It is worthwhile to discuss things in a more general setting than is strictly

necessary for the present purpose, for the methods and notions that we need

come up in virtually all deformation problems.

4.1. Kodaira-Spencer maps. Suppose � : C ! B is a proper (holomor-

phic) submersion between complex manifolds. According to Ehresmann's

�bration theorem, � is then locally trivial in the C1-category, that is,

for every b 2 B we can �nd an open U 3 b and a smooth retraction

h : CU = ��1U ! Cb = ��1(b) such that ~h = (h; �) : CU ! Cb � U is

a di�eomorphism. In particular, when B is connected, then all �bers of �

are mutually di�eomorphic. If both B and the �bers are connected, we will

call � a family of compex manifolds with smooth base. We assume that this is

the case and we wish to address the question whether the �bers Cb are mu-

tually isomorphic as complex manifolds. Suppose that the family is trivial

over U , in other words, that the retraction h can be chosen holomorphically

so that ~h is an analytic isomorphism. Then each holomorphic vector �eld

on U lifts to Cb � U in an obvious way and hence also lifts to CU (via ~h).

Suppose now the converse, namely, that every holomorphic vector �eld at

b lifts holomorphically. Then � is locally trivial at b. To see this, assume

for simplicity that dimB = 1. Choose a nowhere zero vector �eld on an

open U 3 b (always obtainable by means of a coordiante chart) that lifts

holomorphically to a vector �eld on CU . The properness of � ensures that
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this lift is integrable to a holomorphic ow on CU . The ow surfaces (=

complex ow lines) produces the desired retraction h : CU ! Cb. The case

of a higher dimensional base goes by induction and the induction step is a

parametrized version of the one dimensional case just discussed.

Liftability issues lead inevitably to cohomology. Let us begin with the

noting that the fact that � is a submersion implies that for every x 2 C we

have an exact sequence

0! TxCb ! TxC ! TbB ! 0; b := �(x):

This shea��es as an exact sequence of OC-modules

0! �C=B ! �C ! ���B ! 0

(�C stands for the sheaf of holomorphic vector �elds on C, �C=B for the

subsheaf of �C of vector �elds that are tangent to the �bers of �). Now take

the direct image under �; since the �bers are connected, we get:

0! ���C=B ! ���C ! �B ! 0:

This sequence diplays our lifting problem: an element of �B is holomorphi-

cally liftable i� it is in the image of ���C=B . But the sequence may fail to be

exact at �B since �� is only left exact. We need the right derived functors

of �� in order to continue the sequence in an exact manner:

0! ���C=B ! ���C ! �B
��!R1���C=B ! � � � :

The sheaf R1���C=B is a coherent OB-module, whose value at b is equal to

the cohomology group H1(Cb; �Cb). So an element of �B is holomorphically

liftable i� its image under � vanishes. Hence � gives us a good idea of how

nontrivial the family at a point b is: the family is locally trivial at b i� � is

zero in b. Both � and its value at a point b, �(b) : TbB ! H1(Cb; �Cb), are

called the Kodaira-Spencer map.

4.2. The deformation category. Let us �x a connected compact complex

manifoldC. A deformation of C with smooth base (B; b0) is given by a proper

holomorphic submersion � : C ! B of complex manifolds, a distinguished

point b0 2 B and an isomorphism � : C �= Cb0 , with the understanding

that replacing � by its restriction to a neighborhood of b0 in B de�nes the

same deformation (in particular, B may be assumed to connected). From

the preceding discussion it is clear that we may think of this as a variation

of complex structure on C parametrized by the manifold germ (B; b0).
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The deformations of C are objects of a category: a morphism from (�;0 �0)

to (�; �) is given by a pair of holomorphic map germs (~�; �) in the diagram

C0
~����! C

�0

??y
??y�

(B0; b00)
����! (B; b0)

such that the square is cartesian (this basically says that ~� sends the �ber C 0b0

isomorphically to the �bre C�(b0)) and
~��0 = �. So (�; �) is more interesting

than (�;0 �0) as every �ber of the latter is present in the former. In this sense,

the most interesting object would be a �nal object, if it exists (which is often

not the case). A deformation (�; �) is said to be universal if it is a �nal object

for this category. So this means that for every deformation (�0; �0) of C there

is a unique morphism (�0; �0) ! (�; �). A universal deformation is unique

up to unique isomorphism (a general property of �nal objects). We also

observe that the automorphism group Aut(C) acts on (�; �): if g 2 Aut(C),

then (�; �g�1) is another deformation of C and so there is a unique morphism

(~�g; �g)) : (�; �g
�1) ! (�; �). The uniqueness implies that ~�gh = ~�g ~�h and

that ~�1 is the identity. So the action of Aut(C) extends to (C; Cb0). Similarly,

Aut(C) acts on (B; b0) such that � is equivariant.

Remark 4.1. The restriction to deformations over a smooth base turns out to

be inconvenient. The custom is to allow B to be singular. The submersivity

requirement for � is then replaced by the condition that � be locally trivial

on C: for every x 2 Cbo , there is a local holomorphic retraction h : (C; x)!
(Cbo ; x) such that ~h = (h; �) is an isomorphism of analytic germs. This

enlarges the deformation category and consequently the notion of universal

deformation changes. Our restriction to deformations with smooth base was

only for didactical purposes: a universal deformation is always understood

to be the �nal object of this bigger category (and therefore need not have a

smooth base).

We can go a step further and allow C to be singular as well (in fact, we

shall have to deal with that case). Then the right condition to impose on

� is that it be at, which is an algebraic way of saying that the map must

be open. In contrast to the situation considered above, the topological type

of C can now change (simple example: take the family of conics in P2 with

a�ne equation y2 = x2+ t). The Kodaira-Spencer theory has to be modi�ed

as well. For example, H1(C; �C) must be replaced by Ext1(
C ;OC).
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Remark 4.2. As said earlier, a universal deformation need not exist. But

what always exists is a deformation (�; �) with the property that for any

deformation (�; �0) there exists a morphism (~�; �) : (�0; �0) ! (�; �) with �

unique up to �rst order only. This is called a semi-universal deformation

of C (others call it a Kuranishi family for C). Such a deformation is still

unique, but may have automorphisms (inducing the identity on C and the

Zariski tangent space of the base).

4.3. Orbifold structure on Mg. We can now state the basic

Theorem 4.3. For a smooth curve C of genus g � 2 we have

(i) C has a universal deformation with smooth base.

(ii) A deformation (�; �) of C is universal i� its Kodaira-Spencer map

Tb0B ! H1(Cb0 ; �Cb0 )
�= H1(C; �C) is an isomorphism.

(iii) A universal deformation of C can be represented by a family C ! B

such that Aut(C) acts on this family (and not just on the germ) so that

every isomorphism between �bers Cb1 ! Cb2 is the restriction of the

action of an automorphism of C.

So the universal deformation of C is smooth of dimension h1(�C). A

simple application of Riemann-Roch shows that this number is 3g � 3.

A universal deformation as in (iii) de�nes a map B !Mg that factorizes

over an injection Aut(C)nB ! Mg. We give Mg the �nest topology that

makes all those maps continuous. It is not di�cult to derive from the above

theorem that with this topology the maps Aut(C)nB ! Mg become open

embeddings. It is harder to prove that the topology is Hausdor�. Thus Mg

acquires the structure of a (complex-analytic) orbifold of complex dimension

3g � 3.

Remark 4.4. The orbifold structure onMg has the property that every orb-

ifold chart (U;G; h : GnU ! Mg is induced by a family of genus g curves

over U , provided that g � 3. For g = 2 we run into trouble since every genus

2 curve has a nontrivial involution (it is hyperelliptic). For this reason, the

orbifold structure as de�ned here is not quite adequate and we have to resort

to a more sophisticated version: ultimately we want only charts that support

honest families of curves, with a change of charts covered by an isomorphism

of families.

The space Mg is not compact. The reason is that one easily de�nes

families of smooth genus g curves over the punctured unit disk C ! ��f0g
with monodromy of in�nite order. A classic example is that of degerating
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family of genus one curves given by the a�ne equation y2 = x3+x2+ t, with

t the parameter of the unit disk. I admit that we dismissed genus one, but

it is not di�cult to generalize to higher genus: for example, replace x3 by

x2g+1. Such a family de�nes an analytic map �� f0g !Mg such that the

image of its intersection with a closed disk of radius< 1 is closed. To see this,

suppose the opposite. One then shows that the map � � f0g ! Mg must

extend holomorphically over �. If the image of the origin is represented by

the curve C, then a �nite rami�ed cover of (�; 0) will map to the universal

deformation of C so that the family on this �nite cover will have trivial

monodromy. This contradicts our assumption. The remedy is simple in

principle: compactify Mg by allowing the curves to degenerate (as mildly

as possible). This leads us to the next topic.

4.4. Stable curves. A stable curve is by de�nition a nodal curve C (that

is, a connected complex projective whose singularities are normal crossings

(nodes), analytically locally isomorphic to the union of the two coordinate

axes in C 2 at the origin) such that

� the euler characteristic of every connected component of the smooth

part of C is negative.

The genus of such a curve can be de�ned algebro-geometrically as h1(OC)

or topologically by the formula 2 � 2g = e(Creg). So it has to be � 2. The

itemized condition is equivalent to each of the following ones:

� g � 2 and Creg has no connected component isomorphic to P1 � f1g
or P1 � f0;1g,

� Aut(C) is �nite,

� C has no in�nitesimal automorphisms.

Topologically a stable genus g curve is obtained as follows. Let Sg be a

closed oriented genus g surface. Choose on S a �nite collection of embedded

circles in distinct isotopy classes and such that none of these is trivial in the

sense that it bounds a disk. Then the space obtained by contracting each of

the circles underlies a stable curve and all these topological types are thus

obtained. (Note that removal of an embedded circle from a surface does not

alter its euler characteristic.) There is a deformation theory for stable curves

which is almost as good as if the curve were smooth:

Theorem 4.5. A stable curve of genus g � 2 has a universal deformation

with smooth base of dimension 3g � 3. This deformation can be represented

by a family C ! B such that Aut(C) acts on this family in such a way that
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(i) every isomorphism between �bers Cb1 ! Cb2 is the restriction of the

action of an automorphism of C,

(ii) all �bers are stable genus g curves,

(iii) for any singular point x of C, the locus �x � B that parametrizes the

curves for which x persists as a singular point is a smooth hypersurface

and the (�x)x2Csing
cross normally.

So the complement of the normal crossing hypersurface � := [x2Csing
�x

in B parametrizes smooth genus g curves. If there is just one singular point,

then you may picture the degeneration from a smooth curve Cb to the sin-

gular curve Cb0
�= C in metric terms as by letting the circumference of the

embedded circle on Sg that de�nes the topological type of C go to zero. The

monodromy around Bx is in this picture the Dehn twist along that circle

(see the lectures by Hain).

Let Mg be the set of isomorphism classes of stable genus g curves. The

above theorem leads to a compact orbifold structure on this set:

Theorem 4.6 (Deligne-Mumford). The universal deformations of stable ge-

nus g curves put a complex-analytic orbifold structure on Mg of dimension

3g�3. The spaceMg is compact and the locus @Mg =Mg�Mg parametriz-

ing singular curves is a normal crossing divisor in the orbifold sense.

This is whyMg is called the Deligne-Mumford compacti�cation ofMg. A

generic point of the boundary divisor corresponds to a stable curve C with

just one singular point. The underlying topological type of such a curve is

determined by a nontrivial isotopy class of an embedded circle � on Sg. The

following cases occur:

�0: C is irreducible (Sg � � is connected) or

�fg0;g00g: C is the one point union of two smooth curves of positive genera g0; g00

with sum g0+ g00 = g (Sg� � disconnected with components punctured

surfaces of genera g0 and g00).

These cases correspond to irreducible components of @Mg. We denote them

by �0 and �fg0;g00g.

5. The approach through geometric invariant theory

Perhaps the most appealing way to arrive atMg and its Deligne-Mumford

compacti�cation is by means of geometric invariant theory. Conceptually

this approach is more direct than the one discussed in the previous section.

Best of all, we stay in the projective category. The disadvantage is that we

do not know a priori what objects we are parametrizing.
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Let us begin with a minimalist discussion of the general theory. Let a

semisimple algebraic subgroup G of SL(r + 1; C ) be given. That group acts

on Pr. Let X � Pr be a closed G-invariant subvariety. A G-orbit in Pr is

called semistable if it is the projection of a G-orbit in C r+1 � f0g that does
not have the origin in its closure. The union Xss of the semistable orbits

contained in X is a subvariety of X. This subvariety need not be closed and

may be empty (in which case there is little reason to proceed). The basic

results of Hilbert and Mumford are as follows:

1. Every semistable orbit in Xss has in its closure a unique semistable

orbit that is closed in Xss.

2. There exists a positive integer N such that the semistable orbits that

are closed in Xss can be separated by the G-invariant homogeneous

polynomials of degree N .

3. If RX stands for the homogeneous coordinate ring of X, then the sub-

ring of its G-invariants RG
X is noetherian.

Let GnnX denote the set of semistable G-orbits in X that are closed in Xss.

Property 1 implies that there is a natural quotient map Xss ! GnnX. If

G happens to act properly on Xss, then every orbit in Xss is closed in Xss

and so GnnX will be just the orbit set GnXss. From property 2 it follows

that if f0; : : : ; fm is a basis of the degree N part of RG
X , then the map

[f0 : � � � : fm] : Xss ! Pm is well de�ned and factorizes over an injection

GnnX ! Pm. The image of this injection is a closed subvariety of Pm and

thus GnnX acquires the structure of a projective variety. (A more intrinsic

way to give it that structure is to identify it with Proj(RG
X).)

So much for the general theory. For the case that interests us, you need

to know what the dualizing sheaf !C of a nodal curve C is: it is the coherent

subsheaf of the sheaf of meromorphic di�erentials characterized by the prop-

erty that on Creg it is the sheaf of regular di�erentials, whereas at a node p

we allow a local section to have on each of the two branches a pole of order

one, provided that the residues sum up to zero. It is easy to see that !C is

always a line bundle (as opposed to 
C) and that its degree is 2g(C)� 2. It

is ample precisely when C is stable and in that case !
kC is very ample for

k � 3. (The name dualizing sheaf has to do with the fact that it governs

Serre duality. But that property is of no concern to us; what matters here

is that every stable curve comes naturally with an ample line bundle.)

If C is stable of genus g, then a small computation shows that for k � 2,

h0(!
kC ) = (2k � 1)(g � 1). Let us �x for each k � 2 a complex vector space
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Vk of dimension dk := (2k � 1)(g � 1) (k � 2). Choose k � 3. Since !
kC is

very ample, we have an embedding of C in P(H0(C;!
kC )�). The choice of

an isomorphism � : H0(C;!
kC )� �= Vk allows us to identify C with a curve

C� � P(Vk). It is a standard result of projective geometry that for m large

enough,

1. the degree m hypersurfaces in P(Vk) induce on C� a complete linear

system,

2. C� is an intersection of degree m hypersurfaces.

In other words, the natural map

Symm(V �k )
�= SymmH0(C;!
kC )! H0(C;!
mk

C )

is surjective (property 1) and its kernel de�nes C� (property 2). So the

image W� � Symm Vk of the dual of this map is of dimension dmk and

determines C�. Nothing is lost if we take the dmkth exterior power of W�

and regard it as a point of P(^dmk Symm Vk). Now let Xk;m be the set of

points in P(^dmk Symm Vk) that we obtain by letting C run over all the

stable genus g curves and � over all choices of isomorphism. This is a (not

necessarily closed) subvariety that is invariant under the obvious SL(Vk)-

action on P(^dmk Symm Vk). One can show that SL(Vk) acts properly on

Xk;m. It is clear from the construction that as a set, SL(Vk)nXk;m may be

identi�ed with Mg. The fundamental result is

Theorem 5.1 (Gieseker). For k and m su�ciently large, the semistable lo-

cus of the closure of Xk;m in P(^dmk Symm Vk) is Xk;m itself.

Corollary 5.2. The set Mg is in a natural way a projective variety con-

taining Mg as an open dense subvariety

In particular, Mg acquires a quasi-projective structure. As one may ex-

pect, the structure of projective variety Mg is compatible with the analytic

structure de�ned before. Incidentally, geometric invariant theory also allows

us to put the orbifold structure on Mg, but we shall not discuss that here.

6. Pointed stable curves

It is quite natural (and very worthwhile) to extend the preceding to the

case of pointed curves. If n is a nonnegative integer, then an n-pointed curve

is a curve C together with n numbered points x1; : : : ; xn on its smooth part

Creg. If (C;x1; : : : ; xn) is an n-pointed smooth projective genus g curve, then

its automorphism group is �nite unless 2g � 2 + n � 0 (so the exceptions
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are (g; n) = (0; 0); (0; 1); (0; 2); (1; 0)). Therefore we always assume that

2g � 2 + n > 0. In much the same way as for Mg one shows that the set of

isomorphism classesMg;n of n-pointed smooth projective genus g curves has

the structure of a smooth orbifold of dimension 3g � 3 + n. Just as we did

for Mg, we compactify Mg;n by allowing mild degenerations. The relevant

de�nition is as follows:

An n-pointed curve (C;x1; : : : ; xn) is said to be stable if C is a nodal curve

C such that

� the euler characteristic of every connected component of

Creg � fx1; : : : ; xng is negative,
a condition that is equivalent to each of the following ones:

� 2g � 2 + n > 0 (where g is the genus de�ned as before) and Creg has

no connected component isomorphic to P1 � f1g or P1 � f0;1g,
� Aut(C;x1; : : : ; xn) is �nite,

� (C;x1; : : : ; xn) has no in�nitesimal automorphisms.

We will also refer to a stable n-pointed genus g curve as a stable curve of

type (g; n). The underlying topology is obtained as follows: �x p1; : : : ; pn
distinct points of our surface Sg and choose on Sg � fp1; : : : ; png a �nite

collection of embedded circles (�e)e2E in distinct isotopy classes relative to

Sg � fp1; : : : ; png such that none of these bounds a disk on Sg containing at

most one pi, and contract each of these circles. There is a more combinatorial

way of describing the topological type that we will use later. It is given by

a �nite connected graph � that may have multiple bonds and for which we

allow loose ends (that is, edges of which only one end is attached to a vertex,

some call them legs). We need the additional data consisting of

� for each vertex a nonnegative integer gv and

� a numbering of the loose ends by f1; 2; : : : ; ng.
We say that these data de�ne a stable graph if

� for every vertex v we have 2gv � 2 + deg(v) > 0.

We de�ne the genus by g(�) :=
P

v gv + b1(�), and we call the pair (g(�); n)

the type of the stable graph. The recipe for assigning a stable graph of

type (g; n) to (Sg; p1; : : : ; pn; (�e)e2E) is as follows: the vertex set is the set

of connected components of Sg � fp1; : : : ; png � [e�e, the set of bonds is

indexed by E: the two sides of �e de�ne one or two connected components

and we insert a bond between the corresponding vertices (so this might be

a loop), and we attach the ith loose end to the vertex v if the corresponding

connected component contains pi. You should check that the topological
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type is faithfully represented in this way. Note that the stable graph of a

smooth curve of type (g; n) is like a star: n loose ends attached to a single

vertex of weight g.

Let Mg;n denote the set of isomorphism classes of stable curves of type

(g; n). We have the expected theorem:

Theorem 6.1 (Knudsen-Mumford). The universal deformations of stable

curves of type (g; n) put a complex-analytic orbifold structure on Mg;n of

dimension 3g � 3 + n. The space Mg;n is compact and the locus @Mg;n

parametrizing singular curves is a normal crossing divisor in the orbifold

sense.

The construction of Mg;n can also be obtained by means of geometric

invariant theory, which implies that it is a projective orbifold. (The role of

the dualizing sheaf is taken by !C(x1 + � � � + xn); details can be found in

a forthcoming sequel to [1].) The irreducible components of the boundary

@Mg;n are in bijective correspondence with the embedded circles in S �
fp1; : : : ; png given up to orientation preserving di�eomorphism. These are:

�0: C is irreducible or

�f(g0;I0);(g00;I00)g: C is a one point union of smooth curves of genera g0 and

g00 with the former containing the points xi with i 2 I 0 and the latter

the points indexed by I 00 (so fI 0; I 00g is a partition of f1; : : : ; ng). We

allow g0 to be zero, provided that jI 0j � 2 and similarly for g00.

6.1. The universal stable curve. Let (C;x1; : : : ; xn) be a stable curve

of type (g; n). Let us show that any x 2 C determines a stable curve

( ~C; ~x1; : : : ; ~xn+1) of type (g; n + 1).

� If x 2 Creg�fx1; : : : ; xng, then take ( ~C; ~x1; : : : ; ~xn+1) = (C;x1; : : : ; xn; x).

� If x = xi for some i, we let ~C be the disjoint union of C and P1 with the

points xi and 1 indenti�ed. We let ~xi = 1 2 P1 and ~xn+1 = 0 2 P1;

whereas for j 6= i; n + 1, ~xj = xj, viewed as a point of ~C. We denote

this (n+ 1)-pointed curve by �i(C;x1; : : : ; xn).

� If x 2 Csing, then ~C is obtained by separating the branches of C in x

(i.e., we normalize C in this point only) and by putting back a copy of

P1 with f0;1g identi�ed with the preimage of x. Then ~xn+1 = 1 2 P1

and for i � n, ~xi = xi, viewed as a point of ~C.

We thus have de�ned a map C !Mg;n+1 that maps xi to �i((C;x1; : : : ; xn).

There is also a converse construction: given stable curve ( ~C; ~x1; : : : ; ~xn+1)

of type (g; n + 1), then we can associate to it a stable curve (C;x1; : : : ; xn)
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of type (g; n) basically by forgetting ~xn+1; this yields a stable pointed curve

unless ~xn+1 lies on a smooth rational component which has only two other

special points. Let ~C be obtained by contracting this component and let xi
be the image of ~xi (i � n). This de�nes a map � :Mg;n+1 !Mg;n. Notice

that the map C ! Mg;n+1 de�ned above parametrizes the �ber of � over

the point de�ned by (C;x1; : : : ; xn).

Proposition 6.2. The map � :Mg;n+1 !Mg;n is morphism and so are its

sections �1; : : : ; �n. The �ber of � over the point de�ned by (C;x1; : : : ; xn)

can be identi�ed with the quotient of C by Aut(C;x1; : : : ; xn).

This Proposition says that in a sense the projection � with its n sections

de�nes the universal stable curve of type (g; n). For this reason we often

refer to Mg;1 as the universal smooth genus g curve (g � 2) and denote it

by Cg. Likewise Cg :=Mg;1 is the universal stable genus g curve.

6.2. Strati�cation of Mg;n. The normal crossing boundary @Mg;n deter-

mines a strati�cation of Mg;n in an obvious way: a stratum is by de�nition

a connected component of the locus of points of Mg;n where the number of

local branches of @Mg;n at that point is equal to �xed number. That number

may be zero, so that Mg;n is a stratum. It is clear that the strata decom-

poseMg;n into subvarieties. A stratum of codimension k parametrizes stable

curves of type (g; n) with �xed topological type (and k singular points). You

may check that distinct strata correspond to distinct topological types.

We next show that the closure of every stratum is naturally covered

by a product of moduli spaces of stable curves. Let Y be a stratum.

If (C;x1; : : : ; xn) represents a point of Y , then consider the normaliza-

tion n : Ĉ ! C and the preimage of the set of special points X̂ :=

n�1(Csing [ fx1; : : : ; xng). The connected components of the pair (Ĉ; X̂)

are stable curves, at least after suitably (re)numbering the points of X̂ ,

for every component of Ĉ � X̂ maps homeomorphically to a component of

Creg�fx1; : : : ; xng, hence has negative euler characteristic. So if the types of
the stable curves are (gi; ni)i2I , then we �nd an element of

Q
i2IMgi;ni. Con-

versely if we are given a �nite collection of smooth curves of type (gi; ni)i2I ,

then by identifying some pairs of points we �nd a stable curve of type (g; n).

In terms of stable graphs: the �rst procedure amounts to cutting all the

bonds in the middle of the stable graph associated to Y so that we end

up with a �nite set of stars, whereas the second builds out of stars a sta-

ble graph by identifying certain pairs of edges. This recipe de�nes a map
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Q
iMgi;ni ! Y of which it is not di�cult to see that it is a �nite surjec-

tive morphism. The same recipe can be used to glue stable (not necessarily

smooth) curves of type (gi; ni), so that the map extends to

f :
Y
i

Mgi;ni !Mg;n:

It is easy to verify that this is a �nite morphism with image the closure of

Y . (It is in fact an orbifold cover of that closure.) The section �i of the

universal curve is a special case of this construction.

7. Tautological classes

Throughout the discussion that follows we take rational coe�cients for

our cohomology groups. One reason is that the space underlying an orbifold

is a rational homology manifold, so that it satis�es Poincar�e duality when

oriented (which is always the case in the complex-analytic setting). We shall

be dealing with complex quasi-projective orbifolds and the coholomology

classes that we consider happen to have Poincar�e duals that are Q-linear

combinations of closed subvarieties. Such classes are called algebraic classes.

7.1. The Witten classes. Given a stable curve (C;x1; : : : ; xn), then for

a �xed i 2 f1; : : : ; ng, we may associate to it the one dimensional complex

vector space T �xiC. This generalizes to families: if (C ! B : (�i : B !
C)ni=1) is a family of stable curves, then for a �xed i, the conormal bundle

of �i de�nes a line bundle over B. In the universal example (Mg;n+1 !
Mg;n;�1; : : : ; �n) this produces an orbifold line bundle over Mg;n. Its �rst

Chern class, denoted  i 2 H2(Mg;n), is called the ith Witten class. Since

the notation wants to travel lightly, it is a little ambiguous. For example,

it is not true that the image of  i in H2(Mg;n+1 is the ith Witten class

of Mg;n+1. The euler class of the normal bundle of a parametrization f :Q
iMgi;ni ! Mg;n of a closed stratum is a product of Witten classes of

the factors. This illustrates a point we are going to make, namely, that all

classes of interest appear to be obtainable from the Witten classes.

7.2. The Mumford classes. Mumford de�ned these classes forMg before

the Witten classes were considered; Arbarello-Cornalba used the Witten

classes to extend Mumford's de�nition to the pointed case. It goes as follows:

if ~ n+1 denotes the last Witten class on H2(Mg;n+1), and r is a nonnegative

integer, then the rth Mumford class is

�r := ��( ~ 
r+1
n+1) 2 H2r(Mg;n):
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(It is an interesting exercise to check that �0 = 2g � 2 + n.) Arbarello and

Cornalba showed that �1 is the �rst Chern class of an ample line bundle.

They also proved that H2(Mg;n) is generated by  1; : : : ;  n; �1 and the

Poincar�e duals of the irreducible components of the boundary @Mg;n and

that these classes form a basis when g � 3.

7.3. The tautological algebra. It is convenient to make an auxiliary

de�nition �rst: de�ne the basic algebra B(Mg;n) of Mg;n as the subal-

gebra of H�(Mg;n) generated by the Witten classes ( j)j and the Mum-

ford classes (�r)r�0. Then the tautological algebra of Mg;n, R(Mg;n), is

by de�nition the subalgebra of H�(Mg;n) generated by the direct images

f�(
iB(Mgi;ni) � Heven(Mg;n), where the maps f :
Q

iMgi;ni ! Mg;n

run over the parametrizations of the strata. Since the tautological algebra

is made of algebraic classes we grade it by half the cohomological degree:

Rk(Mg;n) � H2k(Mg;n). It is clear that the tautological algebra and the

basic algebra have the same restriction to Mg;n; we denote that restriction

by R(Mg;n) and call it the tautological algebra of Mg;n.

It is remarkable that all the known algebraic classes on Mg;n are in the

tautological subalgebra. We illustrate this with two examples.

Example 7.1 (The Hodge bundle). If C is a stable curve of genus g � 2,

then H0(C;!C) is a g-dimensional vector space. On the universal example

this gives a rank g vector bundle E over Mg called the Hodge bundle. (Since

H0(C;!C) only depends on the (generalized) Jacobian of C, E is the pull-

back of a bundle that is naturally de�ned on a certain compacti�cation of

the moduli space of principally polarized abelian varieties of dimension g.)

Mumford [3] expressed the Chern class �i := ci(E ) 2 H2i(Mg) as an element

of Ri(Mg).

Example 7.2 (The Weierstra� loci). SupposeC is a smooth, connected pro-

jective curve C of genus g � 2, p 2 C, and an l a positive integer. It is easy

to see that the following conditions are equivalent:

� The linear system jl(p)j is of dimension � 1.

� There exists a nonconstant regular function on C � fpg that has in p

with a pole of order � l.

� There exists a �nite morphism C ! P1 of degree � l that is totally

rami�ed in p.

By Riemann-Roch these conditions are always ful�lled if l � g + 1. If l = 2,

then the morphism f appearing in the last item must have degree 2 so that

C is hyperelliptic and p is a Weierstra� point.
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These equivalent conditions de�ne a closed subvarietyW �
l of the universal

smooth curve of genus g, Cg. Arbarello, who introduced these varieties, noted
that W �

l is irreducible of codimension g + 1 � l in Cg. Mumford expressed

the corresponding class in H2(g+1�l)(Cg) as an element of Rg+1�l(Cg).

The validity of Grothendieck's standard conjectures implies that the al-

gebraic classes on Mg;n make up a nondegenerate subspace of Heven(Mg;n)

with respect to the intersection product. Since we do not know any algebraic

class that is not tautological, we ask:

Question 7.3. Does R(Mg;n) satisfy Poincar�e duality?

Since all tautological classes originate from Witten classes, this question

could, in principle, be answered for a given pair (g0; n0) if we would know

all the intersection numbersZ
Mg;n

 k11 � � � knn 2 Q ;

(where it is of course understood that this number is zero if the degree

k1 + � � � + kn of the integrand fails to equal 3g � 3 + n) for all (g; n) with

2g+n � 2g0 + n0. A marvelous conjecture of Witten (which is a conjecture

no longer) predicts the values of these numbers. We shall state it in a form

that exhibits the algebro-geometric content best (this formulation is due

to Dijkgraaf-E. Verlinde-H. Verlinde). For this purpose it is convenient to

renormalize the intersection numbers as follows:

[�k1�k2 � � � �kn ]g := (2k1 + 1)!!(2k2 + 1)!! � � � (2kn + 1)!!

Z
Mg;n

 k11 � � � knn ;

where (2k+1)!! = 1:3:5: � � � :(2k+1). We use these to form the series in the

variables t0; t1; t2; : : : :

Fg :=

1X
n=1

1

n!

X
k1�0;;k2�0;:::;kn�0

[�k1�k2 � � � �kn ]gtk1tk2 � � � tkn :

It is invariant under permutation of variables. The Witten conjectures assert

that these polynomials satisfy a series of di�erential equations indexed by

the integers � �1. For index �1 this is the string equation:

@Fg

@t0
=
X
m�1

(2m+ 1)tm
@Fg

@tm�1

+ 1
2
�0;gt

2
0;
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for index 0 the dilaton equation:

@Fg

@t1
=
X
m�0

(2m+ 1)tm
@Fg

@tm
+ 1

8
�1;gt

2
0

and for k � 1 we get:

@Fg

@tk+1

=
X
m�1

(2m+ 1)tm
@Fg

@tm+k

>+ 1
2

X
m0+m00=k�1

@Fg�1

@tm0@tm00

+ 1
2

X
m0+m00=k�1

X
g0+g00=g

@Fg0

@tm0

@Fg00

@tm00

:

You may verify that these equations determine the functions Fg completely

(note that Fg has no constant term). The string equation and the dilaton

equation involve a single genus only and were veri�ed by Witten using stan-

dard arguments from algebriac geometry. But the equations for k � 1 were

proved in an entirely di�erent manner: Kontsevich gave an amazing proof

based on a triangulation of Teichm�uller space on which the intersection num-

bers appear as integrals of explicitly given di�erential forms. Yet there are

reasons to wish for a proof within the realm of algebraic geometry. The form

of the equations is suggestive in this respect: the �rst line involves theMg;n,

but the second and third seem to be about intersection numbers formed on

irreducible components of @Mg; n (�0 and the �f(g0;I0);(g00;I00)g respectively).

Consider this a challenge.

7.4. Faber's conjectures. These concern the structure of R(Mg). From

the de�nition it is clear that these are generated by the restrictions of the

Mumford classes. Let us for convenience denote these classes �r instead of

�rjMg. Faber made the essential part of his conjectures around 1993. We

shall not state them in their most precise form (we refer to [4] for that).

1. Rg is zero in degree � g � 1 and is of dimension one in degree g � 2

and the cup product

Ri(M)g) �Rg�2�i(Mg)!Rg�2(Mg) �= Q

is nondegenerate.

2. The classes �1; : : : ; �[g=3] generate R(Mg) and satisfy no polynomial

relation in degree � [g=3].
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Let us review the status of these conjectures. First, there is the evidence

provided Faber himself: he checked his conjectures up to genus 15.

As to conjecture 1: the vanishing assertion was proved in a paper of

mine where it was also shown that dimRg�2(Mg) � 1. Subsequently Faber

proved that the dimension is in fact equal to one. The rest of conjecture

1 remains open. Conjecture 2 now seems settled: Harer had shown around

the time that Faber made his conjectures that the kappa classes have no

polynomial relations in degree � [g=3] and Morita has recently announced

that �1; : : : ; �[g=3] generate R(Mg).

Let me close with saying a bit more about Faber's nonvanishing proof.

He observes that the class �g�g�1 2 R2g�1(Mg) restricts to zero on the

boundary @Mg. This implies that for every u 2 Rg�2(Mg), the intersection

product
R
Mg

�g�g�1u only depends on ujMg. So this de�nes a `trace' t :

R(Mg)! Q . Faber proves that this trace is nonzero on �g�2. The unproven

part of the conjecture can be phrased as saying that the associated form

(u; v) 2 R(Mg) � R(Mg) 7! t(uv) is nondegenerate. Faber has also an

explicit proposal for the value of the trace on any monomial in the Mumford

classes.
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These notes are an informal introduction to moduli spaces of compact

Riemann surfaces via complex analysis, topology and Hodge Theory. The

prerequisites for the �rst lecture are just basic complex variables, basic Rie-

mann surface theory up to at least the Riemann-Roch formula, and some

algebraic topology, especially covering space theory. Some good references

for this material include [1] for complex analysis, [8] and [9] for the basic the-

ory of Riemann surfaces, and [11] for algebraic topology. For later lectures

I will assume more. The book by Clemens [5] and Chapter 2 of Gri�ths

and Harris [12] are excellent and are highly recommended. Other useful

references include the surveys [16] and [14] and the book [17].

The �rst lecture covers moduli in genus 0 and genus 1 as these can be

understood using relatively elementary methods, but illustrate many of the

points which arise in higher genus. The notes cover more material than was

covered in the lectures, and sometimes the order of topics in the notes di�ers

from that in the lectures. I hope to add the material from the last lecture

on the Torelli group and Morita's approach to the tautological classes in a

future version.

Lecture 1: Low Genus Examples

Suppose that g and n are non-negative integers. An n-pointed Riemann

surface (C;x1; : : : ; xn) of genus g is a compact Riemann surface C of genus g

together with an ordered n-tuple of distinct points (x1; : : : ; xn) of C. Two n-

pointed Riemann surfaces (C;x1; : : : ; xn) and (C
0;x01; : : : ; x

0
n) are isomorphic

if there is a biholomorphism f : C ! C 0 such that f(xj) = x0j when 1 � j �

n. The principal objects of study in these lectures are the spaces

Mg;n =

�
isomorphism classes of n-pointed compact
Riemann surfaces C of genus g

�
At the moment all we can say is that these are sets. One of the main

objectives of these lectures is to show that each Mg;n is a complex analytic

variety with very mild singularities.

Later we will only consider Mg;n when the stability condition

2g � 2 + n > 0(1)

is satis�ed. But for the time being we will consider all possible values of g

and n. When n = 0, we will simply write Mg instead of Mg;0.

The spaceMg;n is called themoduli space of n-pointed curves (or Riemann

surfaces) of genus g. The isomorphism class of (C;x1; : : : ; xn) is called the

moduli point of (C;x1; : : : ; xn) and will be denoted by [C;x1; : : : ; xn].
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There are (at least) two notions of the genus of a compact Riemann surface

C. First there is the (analytic) genus

g(C) := dimH0(C;
1
C);

the dimension of the space of global holomorphic 1-forms on C. Second there

is the topological genus

gtop(C) :=
1

2
rankH1(C;Z):

Intuitively, this is the `number of holes' in C. A basic fact is that these are

equal. There are various ways to prove this, but perhaps the most standard

is to use the Hodge Theorem (reference) which implies that

H1(C; C ) �= fholomorphic 1-formsg � fanti-holomorphic 1-formsg:

The equality of gtop(C) and g(C) follows immediately as complex conjugation

interchanges the holomorphic and antiholomorphic di�erentials.

Finally, we shall use the terms \complex curve" and \Riemann surface"

interchangeably.

1. Genus 0

It follows from Riemann-Roch formula that if X is a compact Riemann

surface of genus 0, then X is biholomorphic to the Riemann sphere P1. So

M0 consists of a single point.

An automorphism of a Riemann surface X is simply a biholomorphism

f : X ! X. The set of all automorphisms of X forms a group AutX. The

group GL2(C ) acts in P
1 via fractional linear transformations:�

a b

c d

�
: z 7!

az + b

cz + d

The scalar matrices S act trivially, and so we have a homomorphism

PGL2(C ) ! AutP1

where for any �eld F

PGLn(F ) = GLn(F )=fscalar matricesg

and

PSLn(F ) = SLn(F )=fscalar matrices of determinant 1g:

Exercise 1.1. Prove that PGL2(C ) �= PSL2(C ) and that these are isomor-

phic to AutP1.
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Exercise 1.2. Prove that AutP1 acts 3-transitively on P1. That is, given

any two ordered 3-tuples (a1; a2; a3) and (b1; b2; b3) of distinct points of P
1,

there is an element f of AutP1 such that f(aj) = bj for j = 1; 2; 3. Show

that f is unique.

Exercise 1.3. Prove that if X is a compact Riemann surface of genus 0,

then X is biholomorphic to the Riemann sphere.

Exercise 1.4. Show that the automorphism group of an n-pointed curve

of genus g is �nite if and only if the stability condition (1) is satis�ed.

(Depending on what you know, you may �nd this a little di�cult at present.

More techniques will become available soon.)

Since AutP1 acts 3-transitively on P1, we have:

Proposition 1.5. Every n-pointed Riemann surface of genus 0 is isomor-

phic to
(P1;1) if n = 1;
(P1; 0;1) if n = 2;
(P1; 0; 1;1) if n = 3:

Corollary 1.6. If 0 � n � 3, then M0;n consists of a single point.

The �rst interesting case is when n = 4. If (X;x1; x2; x3; x4) is a 4-pointed

Riemann surface of genus 0, then there is a unique biholomorphism f : X !

P1 with f(x2) = 1, f(x3) = 0 and f(x4) = 1. The value of f(x1) is forced

by these conditions. Since the xj are distinct and f is a biholomorphism,

f(x1) 2 C � f0; 1g. It is therefore an invariant of (X;x1; x2; x3; x4).

Exercise 1.7. Show that if g : X ! P1 is any biholomorphism, then f(x1)

is the cross ratio

(g(x1) : g(x2) : g(x3) : g(x4))

of g(x1), g(x2), g(x3), g(x4). Recall that the cross ratio of four distinct

points x1, x2, x3, x4 in P
1 is de�ned by

(x1 : x2 : x3 : x4) =
(x1 � x3)=(x2 � x3)

(x1 � x4)=(x2 � x4)

The result of the previous exercise can be rephrased as a statement about

moduli spaces:

Proposition 1.8. The moduli space M0;4 can be identi�ed naturally with

C � f0; 1g. The moduli point [P1;x1; x2; x3; x4] is identi�ed with the cross

ratio (x1 : x2 : x3 : x4) 2 C � f0; 1g.
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It is now easy to generalize this to general n � 4. Since every genus 0

Riemann surface is biholomorphic to P1, we need only consider n-pointed

curves of the form (P1;x1; : : : ; xn). There is a unique automorphism f of P1

such that f(x1) = 0; f(x2) = 1 and f(x3) =1. So every n-pointed Riemann

surface of genus 0 is isomorphic to exactly one of the form

(P1; 0; 1;1; y1; : : : ; yn�3):

To say that this is an n-pointed curve is to say that the points 0; 1;1,

y1; : : : ; yn�3 are distinct. That is,

(y1; : : : ; yn�3) 2 (C � f0; 1g)n�3 ��

where � = [j<k�jk is the union of the diagonals

�jk = f(y1; : : : ; yn�3) : yj = ykg:

This is an a�ne algebraic variety as it is the complement of a divisor in an

a�ne space. This shows that:

Theorem 1.9. If n � 3, then M0;n is a smooth a�ne algebraic variety of

dimension n� 3 isomorphic to

(C � f0; 1g)n�3 ��:

The symmetric group �n acts on M0;n by

� : (P1;x1; : : : ; xn) 7! (P1;x�(1); : : : ; x�(n)):

Exercise 1.10. Show that each � 2 �n acts onM0;n as a regular mapping.

(Hint: it su�ces to consider the case of a transposition.)

Exercise 1.11. Suppose that n � 3. Construct a universal n-pointed

genus 0 curve M0;n � P1 !M0;n that is equipped with n disjoint sections

�1; : : : ; �n such that

�j([P
1;x1; : : : ; xn]) = ([P1;x1; : : : ; xn]; xj):

Show that it is universal in the sense that if f : X ! T is a family of

smooth genus 0 curves over a smooth variety T and if the family has n

sections s1; : : : ; sn that are disjoint, then there is a holomorphic mapping

�f : T !M0;n such that the pullback of the universal family is f and the

pullback of �j is sj.
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2. Genus 1

The study of the moduli space of genus 1 compact Riemann surfaces is

very rich and has a long history because of its fundamental connections to

number theory and the theory of plane cubic curves. We will take a tran-

scendental approach to understanding M1 which will reveal the connection

with modular forms. Our �rst task is show that genus 1 Riemann surfaces

can always be represented as the quotient of C by a lattice.

One way to construct a Riemann surface of genus 1 is to take the quotient

of C by a lattice. Recall that a lattice in a �nite dimensional real vector

space V is a �nitely generated (and therefore free abelian) subgroup � of

V with the property that a basis of � as an abelian group is also a basis

of V as a real vector space. A lattice in C is thus a subgroup � of C that

is isomorphic to Z2 and is generated by two complex numbers that are not

real multiples of each other.

Exercise 2.1. Show that if � is a lattice in V and if dimR V = d, then V=�

is a compact manifold of real dimension d, which is di�eomorphic to the

d-torus (R=Z)d.

If � is a lattice in C , the quotient group C =� is a compact Riemann

surface which is di�eomorphic to the product of two circles, and so of genus

1.

Theorem 2.2. If C is a compact Riemann surface of genus 1, then there is

a lattice � in C and an isomorphism � : C ! C =�. If xo 2 C, then we may

choose � such that �(xo) = 0.

The proof follows from the sequence of exercises below. Let C be a com-

pact Riemann surface of genus 1.

Exercise 2.3. Show that a non-zero holomorphic di�erential on C has no

zeros. Hint: Use Riemann-Roch.

Since gtop(C) = g(C) = 1, we know that H1(C;Z) is free of rank 2.

Fix a non-zero holomorphic di�erential w on C. Every other holomorphic

di�erential is a multiple of w. The period lattice of C is de�ned to be

� =
�Z

c

w : c 2 H1(C;Z)
	
:

This is easily seen to be a subgroup of C .
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Exercise 2.4. Show that � is a lattice in C . Hint: Choose a basis a; b of

H1(C;Z). Show that if
R
a
w and

R
b
w are linearly independent over R, then

this would contradict the Hodge decomposition of H1(C; C ).

Let E = C =�. Our next task is to construct a holomorphic mapping from

C to E.

Exercise 2.5. Fix a base point xo of C. De�ne a mapping � : C ! E by

�(x) =

Z


w

where  is any smooth path in C that goes from xo to x. Show that

(i) � is well de�ned;

(ii) � is holomorphic;

(iii) � has nowhere vanishing di�erential, and is therefore a covering map;

(iv) the homomorphism �� : �1(C; xo) ! �1(E; 0) �= � is surjective, and

therefore an isomorphism.

Deduce that � is a biholomorphism.

This completes the proof of Theorem 2.2. It has the following important

consequence:

Corollary 2.6. If C is a compact Riemann surface of genus 1, then the

automorphism group of C acts transitively on C. Consequently, the natural

mapping M1;1 !M1 that takes [C;x] to [C] is a bijection.

Proof. This follows as every genus 1 Riemann surface is isomorphic to one

of the form C =�. For such Riemann surfaces, we have the homomorphism

C =� ! Aut(C =�)

that takes the coset a+� to the translation z +� 7! z + a+�.

De�nition 2.7. An elliptic curve is a a genus 1 curve C together with a

point xo 2 C.

The previous result says that if C is a genus 1 curve and xo and yo are

points of C, then the elliptic curves (C;xo) and (C; yo) are isomorphic.

The moduli space of elliptic curves is M1;1.

Exercise 2.8. Suppose that f : C ! C =� is a holomorphic mapping from

an arbitrary Riemann surface to C =�. Let xo be a base point of C. The 1-

form dz on C descends to a holomorphic di�erential w on C =�. Its pullback
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f�w is a holomorphic di�erential on C. Show that for all x 2 C,

f(x) = f(xo) +

Z


f�w +�

where  is a path in C from xo to x.

Exercise 2.9. Use the results of the previous exercise to prove the following

result.

Corollary 2.10. If �1 and �2 are lattices in C , then C =�1 is isomorphic

to C =�2 if and only if there exists � 2 C � such that �1 = ��2.

Exercise 2.11. Show that if (C;xo) is an elliptic curve, then C has a natural

group structure with identity xo.

We are �nally ready to give a construction ofM1. Recall that the complex

structure on a Riemann surface C gives it a canonical orientation. This can

be thought of as giving a direction of \positive rotation" about each point

in the surface | the positive direction being that given by turning counter-

clockwise about the point in any local holomorphic coordinate system. If C

is compact, this orientation allows us to de�ne the intersection number of

two transversally intersecting closed curves on C. It depends only on the

homology classes of the two curves and therefore de�nes the intersection

pairing

h ; i : H1(C;Z)
H1(C;Z)! Z:

If �, � is a basis of H1(C;Z), then h�; �i = �1. We shall call the basis

positive if h�; �i = 1.

A framing of Riemann surface C of genus 1 is a positive basis �; � of

its �rst homology group. We will refer to (C : �; �) as a framed genus 1

Riemann surface. Two framed genus 1 Riemann surfaces (C : �; �) and

(C 0 : �0; �0) are isomorphic if there is a biholomorphism f : C ! C 0 such

that �0 = f�� and �0 = f��.

Let

X1 =

�
isomorphism classes of framed
Riemann surfaces of genus 1

�
:

At the moment, this is just a set. But soon we will see that it is itself a

Riemann surface. Note that forgetting the framing de�nes a a function

� : X1 !M1:

Denote the isomorphism class of (C : �; �) by [C : �; �]. If C is a genus 1

Riemann surface, then

��1([C]) = f[C : �; �] : (�; �) is a positive basis of H1(C;Z)g:
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Exercise 2.12. Show that if (�; �) and (�0; �0) are two positive bases of

H1(C;Z), then there is a unique element�
a b

c d

�

of SL2(Z) such that �
�0

�0

�
=

�
a b

c d

��
�

�

�
(The reason for writing the basis vectors in the reverse order will become

apparent shortly.)

De�ne an action of SL2(Z) on X1 by�
a b

c d

�
[C : �; �] = [C : �0; b0]

where �
�0

�0

�
=

�
a b

c d

��
�

�

�

Exercise 2.13. Show that there is a natural bijection

M1
�= SL2(Z)nX1:

At present, X1 is just a set, but we now show that it is naturally a Riemann

surface. We know from Theorem 2.2 that every element of X1 is of the

form [C =� : �; �]. But, by standard algebraic topology, there is a natural

isomorphism

� �= H1(C;Z):

Thus a basis of H1(C;Z) corresponds to a basis of �.

Exercise 2.14. Suppose that �; � is a basis of H1(C =�;Z) and that !1; !2
is the corresponding basis of �. Show that �; � is positive if and only if

!2=!1 has positive imaginary part.

It follows from this and Corollary 2.10 that

X1 = f[C =� : !1; !2] : Im(!2=!1) > 0g=C �

where the C � -action is de�ned by

� � [C =� : !1; !2] = [C =�� : �!1; �!2]:

We can go even further: since the basis !1, !2 determines the lattice,

� = Z!1� Z!2;
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we can dispense with the lattice altogether. We have:

X1 = f(!1; !2) : !1; !2 2 C and Im(!2=!1) > 0g=C �(2)

where C � acts on (!1; !2) by scalar multiplication.

Denote the upper half plane fz 2 C : Im z > 0g by H . Each � 2 H

determines the element

[C =(Z� Z�) : 1; � ]

of X1. This de�nes a function  : H ! X1. Under the identi�cation (2),

 (�) = the C � -orbit of (1; �)

Since (!1; !2) and (1; !2=!1) are in the same orbit, we have proved:

Theorem 2.15. The function  : H ! X1 is a bijection.

The group PSL2(C ) acts on P
1 by fractional linear transformations.

Exercise 2.16. Show that T 2 PSL2(C ) satis�es T (H ) � H if and only if

T 2 PSL2(R).

Thus the group SL2(R) acts on H by fractional linear transformations:�
a b

c d

�
� =

a� + b

c� + d

Exercise 2.17. Show that  : H ! X1 is SL2(Z)-equivariant. That is, if

T 2 SL2(Z), then T (�) =  (T�).

Theorem 2.18. There are natural bijections

M1
�=M1;1

�= SL2(Z)nH :

Proof. The �rst bijection was established in Corollary 2.6. The second fol-

lows from Exercise 2.13, Theorem 2.15 and Exercise 2.17.

Exercise 2.19. Suppose that C is a genus 1 Riemann surface. Show that

the point of SL2(Z)nH that corresponds to [C] 2M1 is the SL2(Z) orbit of�Z
�

w

�Z
�

w

�
2 H

where w is any non-zero element of H0(C;
1
C) and �, � is a positive basis

of H1(C;Z).
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2.1. Understanding SL2(Z)nH . The Riemann surface structure on H de-

scends to a Riemann surface structure on SL2(Z)nH . Good references for

this are Chapter VII of Serre's book [24], and Chapter 3 of Clemens' book

[5]. We'll sketch part of the proof of the following fundamental theorem.

Theorem 2.20. The quotient of H by SL2(Z) has a unique structure of a

Riemann surface such that the projection H ! SL2(Z)nH is holomorphic.

Moreover, there is a biholomorphism between SL2(Z)nH and C which can be

given by the modular function j : H ! C , where

j(�) =
1

q
+ 744 + 196 884 q + 21 493 760 q2 + � � �

and q = e2�i� .

The following exercises will allow you to construct most of the proof. The

rest can be found in [24] and [5].

Let P1(R) = R[f1g. This is a circle on the Riemann sphere which forms

the boundary of H . Let H be the closure of H in the Riemann sphere P1; it is

the union of H and P1(R). Recall that every non-trivial element of PSL2(C )

has at most two �xed points in P1. Note that the �xed points of elements of

PSL2(R) are real or occur in complex conjugate pairs.

Exercise 2.21. Suppose that T 2 SL2(Z) is not a scalar matrix. Show that

T has exactly

(i) one �xed point in H if and only if j trT j < 2;

(ii) one �xed point in P1(R) if and only if j tr T j = 2;

(iii) two �xed points in P1(R) if and only if j tr T j > 2.

Show that T 2 SL2(R) has �nite order if and only if T has a �xed point in

H .

Fix an integer l � 0. The level l subgroup of SL2(Z) is the subgroup of

SL2(Z) consisting of those matrices congruent to the identity mod l. We

shall denote it by SL2(Z)[l]. Since it is the kernel of the homomorphism

SL2(Z)! SL2(Z=l), it is normal and of �nite index in SL2(Z).

Exercise 2.22. Show that SL2(Z)[l] is torsion free for all l � 3. Hint: use

the previous exercise. Deduce that SL2(Z)[l]nH is a Riemann surface with

fundamental group SL2(Z)[l] and universal covering H whenever l � 3.

The quotient of SL2(Z) by its level l subgroup is SL2(Z=l), which is a

�nite group. It follows that the projection

SL2(Z)[l]nH ! SL2(Z)nH



Moduli of Riemann surfaces, transcendental aspects 307

is �nite-to-one of degree equal to the half order of SL2(Z=l) when l > 2.

Exercise 2.23. Show that the quotient GnC of a Riemann surface C by

a �nite subgroup G of AutC has the structure of a Riemann surface such

that the projection C ! GnC is holomorphic. Hint: �rst show that for each

point x of C, the isotropy group

Gx := fg 2 G : gx = xg

is cyclic. This can be done by considering the actions of Gx on TxX and

OX;x.

This result, combined with the previous exercises, establishes that M1 =

SL2(Z)nH has a natural structure of a Riemann surface such that the pro-

jection H !M1 is holomorphic.

Serre [24, p. 78] proves that a fundamental domain for the action of SL2(Z)

on H is the region

F = f� 2 H : jRe � j � 1=2; j� j � 1g:

Points of F can be thought of as giving a canonical framing of a lattice �

i

-1 10-1/2 1/2

ρρ2

Figure 1. A a fundamental domain of SL2(Z) in H

in C . Such a framing is given as follows: the �rst basis element is a non-zero

vector of shortest length in �, the second basis element is a shortest vector

in � that is not a multiple of the �rst.
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Exercise 2.24. Show that � 2 F if and only if (1; �) is such a canonical

basis of the lattice Z� Z� .

Serre [24, p. 78] also proves that PSL2(Z) is generated by � 7! �1=� and

� 7! � + 1.

Exercise 2.25. Use this to prove that SL2(Z)nH is the quotient of the

fundamental domain F obtained by identifying the opposite vertical sides,

and by identifying the arc of the circle j� j = 1 from � to i with the arc from

�2 to i. Deduce that M1 = SL2(Z)nH is a Riemann surface homeomorphic

to a disk.

It is conceivable that M1 is biholomorphic to a disk, for example. But

this is not the case as M1 can be compacti�ed by adding one point.

Exercise 2.26. Show thatM1 can be compacti�ed by adding a single point

1. A coordinate neighbourhood of 1 is the unit disk �. Denote the

holomorphic coordinate in it by q. The point � of M1 = SL2(Z)nH is

identi�ed with the point e2�i� of �. Show that

M1 [ f1g

is a compact Riemann surface of genus 0 where q is a local parameter about

1 and where M1 holomorphically embedded. Deduce that M1 is biholo-

morphic to C .

Remark 2.27. This compacti�cation is the moduli space M1;1.

Since every compact Riemann surface is canonically a complex algebraic

curve, this shows that M1 is an algebraic variety.

2.2. Automorphisms. The automorphisms of an elliptic curve are inti-

mately related with the set of elements of SL2(Z) that stabilize the points

corresponding to it in H .

Exercise 2.28. Suppose that C is a genus 1 Riemann surface curve. Sup-

pose that � : C ! C is an automorphism of C. Show that

(i) � is a translation if and only if �� : H1(C;Z)! H1(C;Z) is the identity;

(ii) if �; � is a positive basis of H1(C;Z), then

[C : �; �] = [C : ���; ���] 2 X1;

Deduce that there is a natural isomorphism

Aut(C;xo) �= stabilizer in SL2(Z) of [C : �; �] 2 X1:
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Note that any two points of H that lie in the same orbit of SL2(Z) have

isomorphic stabilizers. Consequently, to �nd all elliptic curves with auto-

morphism groups larger than Z=2Z, one only has to look for points in the

fundamental domain with stabilizers larger than Z=2Z.

Exercise 2.29. Show that the stabilizer in SL2(Z) of � 2 H is8><
>:
Z=2Z � =2 orbit of i and �;

Z=4Z � 2 orbit of i;

Z=6Z � 2 orbit of �:

An immediate consequence of this computation is the following:

Theorem 2.30. If (C;xo) is an elliptic curve, then

Aut(C; xo) �=

8><
>:
Z=4Z if (C;xo) �= (C =Z[i]; 0)

Z=6Z if (C;xo) �= (C =Z[�]; 0)

Z=2Z otherwise.

It is easy to see from this, for example, that the Fermat cubic

x3 + y3 + z3 = 0

in P2 has automorphism group Z=6Z and therefore is isomorphic to Z=Z[�].

2.3. Families of Genus 1 and Elliptic Curves. Suppose that X is a

complex analytic manifold and that f : X ! T is a holomorphic mapping

to another complex manifold each of whose �bers is a genus 1 curve. We say

that f is a family of genus 1 curves. If there is a section s : T ! X of f ,

then the �ber of f over t 2 T is an elliptic curve with identity s(t). We say

that f is a family of elliptic curves.

Each such family gives rise to a function

�f : T !M1

that is de�ned by taking t 2 T to the moduli point [Xt] of the �ber Xt of f

over t. We shall call it the period mapping of the family.

Theorem 2.31. The period map �f is holomorphic.

Sketch of Proof. For simplicity, we suppose that T has complex dimension 1.

The relative holomorphic tangent bundle of f is the holomorphic line bundle

T 0f on X consisting of holomorphic tangent vectors to X that are tangent to

the �bers of f . That is,

T 0f = kerfT 0X ! T 0Tg:
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The sheaf of holomorphic sections of its dual is called the relative dualizing

sheaf and is often denoted by !X=T . The push forward f�!X=T of this sheaf

to T is a holomorphic line bundle over T and has �ber

H0(Xt;

1
Xt
)

over t 2 T . Fix a reference point to 2 T . Let w(t) be a local holomorphic

section of !X=T de�ned in a contractible neighbourhood U of to. Since bundle

is locally topologically trivial, f�1(U) is homeomorphic to U �Xto . We can

thus identify H1(Xt;Z) with H1(Xto ;Z) for each t 2 U . Fix a positive basis

�; � of H1(Xto ;Z). This can be viewed as a positive basis of H1(Xt;Z) for

all t 2 U .

It is not di�cult to show thatZ
�

w(t) and

Z
�

w(t)

vary holomorphically with t 2 U . It follows that

�(t) :=

�Z
�

w(t)

�Z
�

w(t)

�

varies holomorphically with t 2 U . This shows that map �f is holomorphic

in the neighbourhood U of to. It follows that �f is holomorphic.

If you examine the proof, you will see that we really proved two extra

facts. First, the period mapping �f : T ! M1 associated to every family

f : X ! T of genus 1 curves is locally liftable to a holomorphic mapping to

H . If, in addition, f is a family of elliptic curves, then the period mapping

�f determines the family f and the section s:

Proposition 2.32. The period mapping �f associated to a family f : X !

T of genus 1 curves is locally liftable to a holomorphic mapping to H . If f

is a family of elliptic curves, then �f can be globally lifted to a holomorphic

mapping ~�f : ~T ! H and there is a homomorphism �f� : �1(T; to)! SL2(Z)

(unique up to conjugacy) such that the diagram

~T
~�f

���! H??y ??y
T ���!

�f

M1

commutes and such that

~�f ( � x) = �f�() � ~�f (x)
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for all x 2 ~T and all  2 �1(T; to).

The proof is left as an exercise. We shall see in a moment that the converse

of this result is also true.

This result has an important consequence | and that is that not every

holomorphic mapping T ! M1 is the period mapping of a holomorphic

family of elliptic (or even genus 1) curves. The reason for this is that not

every mapping T !M1 is locally liftable.

Exercise 2.33. Show that the identity mapping M1 ! M1 is not locally

liftable. Deduce that there is no family of genus 1 curves over M1 whose

period mapping is the identity mapping. In particular, show that there is

no universal elliptic curve over M1.

To each genus 1 curve C, we can canonically associate the elliptic curve

JacC := Pic0 C which we shall call the jacobian of C. Abel's Theorem tells

us that C and JacC are isomorphic as genus 1 curves, but the isomorphism

depends on the choice of a base point of C.

Exercise 2.34. Show that for each family f : X ! T of genus 1 curves the

corresponding family of jacobians is a family of elliptic curves. Show that

these two families have the same period mapping. Show that if f is a family

of elliptic curves, then the family of jacobians is canonically isomorphic to

the original family f .

3. Orbifolds

The discussion in the previous section suggests thatM1 should be viewed

as SL2(Z)nH rather than as C | or that M1 is not an algebraic variety

or a manifold, but rather something whose local structure includes the in-

formation of how it is locally the quotient of a disk by a �nite group. In

topology such objects are called orbifolds and in algebraic geometry stacks.

Very roughly speaking, orbifolds are to manifolds as stacks are to varieties.

The moduli spaces Mg;n are often conveniently viewed as orbifolds or as

stacks.

For us, an orbifold is a topological space that is the quotient of a simply

connected topological space X by a group �. The group is required to act

properly discontinuously on X and all isotropy groups are required to be

�nite.1 For example, M1 can be viewed as an orbifold as the quotient of H

by SL2(Z).

1We could have added some other natural conditions, such as requiring that there be

a �nite index subgroup of � that acts on X �xed point freely. We could also require that
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This de�nition is not as general as it could be, but since all of our moduli

spacesMg;n are of this form, it is good enough for our purposes. The general

de�nition is obtained by \shea�fying" this one | i.e., general orbifolds are

locally the quotient of a simply connected space by a �nite group. A general

de�nition along these lines can be found in Chapter 13 of [25]. Mumford's

de�nition of stacks can be found in [23].

A morphism f : �1nX1 ! �2nX2 of orbifolds is a continuous map that

arises as follows: there is a homomorphism f� : �1 ! �2 and a continuous

mapping ~f : X1 ! X2 that is equivariant with respect to f�; that is, the

diagram

X1

~f
���! X2

g

??y ??yf�(g)
X1

~f
���! X2

commutes for all g 2 �1.

At this stage, I should point out that every reasonable topological space

X can be viewed as the quotient �1(X;x)n ~X of its universal covering by its

fundamental group. In this way, every topological space can be regarded as

an orbifold. It thus it makes sense to talk about orbifold mappings between

orbifolds and ordinary topological spaces.

An orbifold �nX can have an enriched structure | such as a smooth, Rie-

mannian, K�ahler, or algebraic structure. One just insists that its \orbifold

universal covering" X has such a structure and that � act on X as automor-

phisms of this structure. Maps between two orbifolds with the same kind

of enriched structure are de�ned in the obvious way. For example, a map

between two orbifolds with complex structures is given by an equivariant

holomorphic map between their orbifold universal coverings.

Many orbifolds are given as quotients of non-simply connected spaces by

a group that acts discontinuously, but not �xed point freely. Such quotients

have canonical orbifold structures: IfM is a topological space and G a group

that acts discontinuously on M , then

GnM �= �nfM

the set of elements of G that act trivially on X is central in �. Both of these conditions

are natural and are satis�ed by all of our primary examples of orbifolds, theMg;n.
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where p : fM !M is the universal covering2 of M and

� = f(�; g) : where � : fM ! fM covers g 2 Gg:

Here � covers g 2 G means that the diagram

fM �
���! fM

p

??y ??yp
M ���!

g
M

commutes.

There is a notion of the orbifold fundamental group �orb1 (�nX;xo) of a con-

nected pointed orbifold. It is a variant of the de�nition of the fundamental

group of a pointed topological space.

First, we'll �x the convention that the composition �� of two paths �

and � in a space is de�ned when �(1) = �(0). The product path is the one

obtained by traversing � �rst, then �. This is the convention used in [11],

for example, and is the opposite of the convention used by many algebraic

geometers such as Deligne.

We need to impose several conditions on X and on xo in order for the

de�nition to make sense. Let p : X ! �nX be the projection. Note that

if x; y 2 p�1(xo), then the isotropy groups �y and �z are conjugate in �.

Our �rst assumption is that �y is contained in the center of � for one (and

hence all) y 2 p�1(xo). For such xo, we shall denote the common isotropy

group of the points lying over xo by �xo. Our second assumption is that X

is connected, locally path connected, and locally simply connected. These

conditions are satis�ed by all connected complex algebraic varieties. Finally,

we shall assume that if g 2 � acts trivially in the neighbourhood of some

point of X, it acts trivially on all of X. All three of these conditions are

natural and will be satis�ed in cases of interest to us.

Let

P (xo) = fhomotopy classes of paths ([0; 1]; f0; 1g) ! (X; p�1(xo))g:

Since � acts on the left of X, this is a left �-set. Let

Q(xo) = f(g; ) 2 �� P (xo) : g
�1 � (0) = (1)g:

2Of course, I am assuming that M is nice enough as a topological space to have a uni-

versal covering. We assume, for example, that M is locally simply connected, a condition

satis�ed by all complex algebraic varieties and all manifolds.
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This has a natural left �-action given by

g : (h; ) 7! (ghg�1; g � ):

De�ne �orb1 (�nX;xo) to be the quotient �nQ(xo). This has a natural group

structure which can be understood by noting that Q(xo) is a groupoid. The

composition of two elements (g; ) and (h; �) is de�ned when (1) = �(0).

It is then given by

(g; ) � (h; �) = (gh; �):

To multiply two elements of �orb1 (GnX;xo), translate one of them until they

are composable. For example, if we �x a point ~xo of p�1(xo), then each

element of �orb1 (GnX;xo) has a representative of the form (g; ) where (0) =

~xo. This representation is unique up to translation by an element of �xo .

To multiply two elements (g; ) and (h; �) starting at ~xo, multiply (h; �) by

g so that it can be composed with (g; ). Then the product of these two

elements in �orb1 (GnX;xo) is represented by the path

(g; ) � (g�1hg; g�1 � �) = (hg;  (g�1 � �)):

Exercise 3.1. Show that if k 2 �xo , then k acts trivially on P (xo). Deduce

that the multiplication above is well de�ned. (This is where we need �xo to

be central in �.)

The following exercises should help give some understanding of orbifold

fundamental groups.

Exercise 3.2. Show that if � acts �xed point freely on X, then there is

a natural isomorphism between �orb1 (�nX;xo) and the usual fundamental

group �1(�nX;xo). In particular, if we view a topological space X as an

orbifold, then the two notions of fundamental group agree.

Exercise 3.3. Show that if � is an abelian group that acts trivially on a one

point space X = f�g, then �orb1 (�nX;xo) is de�ned and there is a natural

isomorphism

�orb1 (�nX;xo) �= �:

Exercise 3.4. Let X = C and � = Z=nZ. De�ne an action � on X by

letting the generator 1 of Z=nZ act by multiplication by e2�i=n. Show that

�orb1 (�nX;xo) is de�ned for all xo 2 �nC , and for each xo there is a natural

isomorphism

�orb1 (�nX;xo) �= Z=nZ:
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Exercise 3.5. Show that for each choice of a point x 2 p�1(xo), there is a

natural isomorphism

�x : �
orb
1 (�nX;xo)! �

de�ned by �x(g; ) = g�1 when (0) = x. Show that if y = hx, then

�y = h�xh
�1.

Remark 3.6. One can also de�ne the orbifold fundamental group of �nX

using the Borel construction. First, �nd a contractible space E� on which

� acts discontinuously and �xed point freely (any one will do). There is a

canonical construction of such spaces. (See for example [3, p. 19].) Fix a

base point eo 2 E�. The diagonal action of � on E��X, a simply connected

space, is �xed point free and the map

q : E��X ! �n(E��X)

is a covering mapping with Galois group �. For x 2 X, de�ne

�orb1 (�nX; q(eo; x)) = �1(�(E��X); q(eo; x)):

If �x is central in �, then this depends only on xo = p(x). It is not di�cult

to show that, in this case, this de�nition agrees with the more elementary

one given above.

The moduli space M1 is naturally an orbifold, being the quotient of H

by SL2(Z). The condition on xo is satis�ed for all points not in the orbit

of i or �. Consequently, �orb1 (M1; xo) is de�ned for all xo other than those

corresponding to the orbits of i and �, and for each such xo, there is an

isomorphism

�orb1 (M1; xo) �= SL2(Z)

which is well de�ned up to conjugacy.

This gives the following restatement of Proposition 2.32.

Proposition 3.7. If f : X ! T is a holomorphic family of genus 1 curves,

then the period mapping �f : T !M1 is a morphism of orbifolds.

Remark 3.8. Since M1 can also be written as PSL2(Z)nH , it is natural

to ask why we are not giving M1 this orbifold structure. This question

will be fully answered in the section on the universal elliptic curve and in

subsequent sections on curves of higher genus. For the time being, just note

that if we giveM1 the orbifold structure PSL2(Z)nH , then �
orb(M1) would

be PSL2(Z) instead of SL2(Z).
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3.1. The Universal Elliptic Curve. Let's attempt to construct a \uni-

versal elliptic curve" over M1. We begin by constructing one over H . The

group Z2 acts on C � H by

(n;m) : (z; �) 7! (z + n� +m; �):

This action is �xed point free, so the quotient Z2n(C � H ) is a complex

manifold. The �ber of the projection

Z2n(C � H ) ! H

over � is simply the elliptic curve C =Z�Z� . The family has the section that

takes � 2 H to the identity element of the �ber lying over it. So this really

is a family of elliptic curves.

Let's see what happens if we try to quotient out by Z2 and SL2(Z) at

the same time. First note that SL2(Z) acts on Z2 on the right by matrix

multiplication. We can thus form the semi-direct product SL2(Z)nZ
2. This

is the group whose underlying set is SL2(Z)� Z2 and whose multiplication

is given by

(A1; (n1;m1))(A1; (n2;m2)) = (A1A2; (n1;m1)A2 + (n2;m2)):

Exercise 3.9. Show that the action of SL2(Z)nZ2 on C � H given by��
a b

c d

�
; (n;m)

�
: (z; �) 7!

�
z + n� +m

c� + d
;
a� + b

c� + b

�
is well de�ned. Show that there is a well de�ned projection

(SL2(Z)nZ2)n(C � H ) ! SL2(Z)nH :

This is a reasonable candidate for the universal curve. But we should be

careful.

Exercise 3.10. Show that the �ber of the natural projection

(SL2(Z)nZ2)n(C � H ) ! SL2(Z)nH(3)

over the point corresponding to the elliptic curve (C; 0) is the quotient of C

by the �nite group Aut(C; 0). In particular, the �ber of the projection over

[(C; 0)] is always a quotient of C=� �= P1, and is never C.

However, it is more natural to regard E := (SL2(Z) n Z2) n H as an

orbifold. We shall do this. First note that the projection (3) has an orbifold

section that is induced by the mapping

H ! C � H
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that takes � to (0; �). Note that if we considerM1 as the orbifold PSL2(Z)nH ,

then the section would not exist. It is for this reason that we give M1

the orbifold structure with orbifold fundamental group SL2(Z) instead of

PSL2(Z).

The following should illustrate why it is more natural to view M1 as an

orbifold than as a variety.

Theorem 3.11. There is a natural one-to-one correspondence between holo-

morphic orbifold mappings from a smooth complex curve (or variety) T to

M1 and families of elliptic curves over T . The correspondence is given by

pullback.

We could de�ne a `geometric points' of an orbifoldX to be an orbifold map

from a point with trivial fundamental group to X. For example, suppose �

is any point of H . Denote its isotropy group in SL2(Z) by �� . Then ��nf�g

is a point of SL2(Z)nH , but is not a geometric point as it has fundamental

group �� , which is always non-trivial as it contains Z=2Z. The corresponding

geometric point corresponds to the `universal covering' f�g ! ��nf�g of this

point. One can de�ne pullbacks of orbifolds in such a way that the �ber of

the pullback of the universal curve to the geometric point � of M1 is the

corresponding elliptic curve C =(Z � Z�).

Denote the n-fold �bered product of E ! M1 with itself by E(n) !M1.

It is naturally an orbifold (exercise). This has divisors �jk that consist of

the points of E(n) where the jth and kth points agree. It also has divisors

�j where the jth point is zero.

Exercise 3.12. Show that the moduli space M1;n can be identi�ed with

E(n�1) �
� [
j<k

�jk [
[
j

�j

�
:

3.2. Modular Forms. There is a natural orbifold line bundle L over M1.

It is the quotient of H � C by SL2(Z) where SL2(Z) acts via the formula�
a b

c d

�
: (�; z)!

�
a� + b

c� + d
; (c� + d)z

�
:

Exercise 3.13. Show that this is indeed an action. Show that the kth

power L
k of this line bundle is the quotient of H � C by the action�
a b

c d

�
: (�; z)!

�
a� + b

c� + d
; (c� + d)kz

�
:
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Orbifold sections of L
k correspond to holomorphic functions f : H ! C

for which the mapping

H ! H � C � 7! (�; f(�))

is SL2(Z)-equivariant.

Exercise 3.14. Show that f : H ! C corresponds to a section of L
k if

and only if

f

��
a b

c d

�
�

�
= (c� + d)kf(�):

Such a function is called a modular form of weight k for SL2(Z).

Exercise 3.15. Show that f : H ! C is a modular form of weight 2k if

and only if the k-di�erential (i.e., section of the kth power of the canonical

bundle)

f(�)d�
k

is invariant under SL2(Z). Deduce that the (orbifold) canonical bundle of

M1 is isomorphic to L

2.

Some basic properties and applications of modular forms are given in

Chapter VII of [24].

Just as one can de�ne the Picard group of a complex analytic variety to

be the group of isomorphism classes of holomorphic line bundles over it, one

can de�ne the Picard group PicorbX of a holomorphic orbifold X as the

group of isomorphism classes of orbifold line bundles over X. The details

are left as a straightforward exercise. The following result will be proved

later in the lectures.

Theorem 3.16. The Picard group of the orbifold M1 is cyclic of order 12

and generated by the class of L.

It is easy to see that the class of L in PicorbM1 as L

12 is trivialized by

the cusp form

�(q) = (2�)12q

1Y
n=1

(1� qn)24

of weight 12 which has no zeros or poles in H . Also, the non-existence of

meromorphic modular forms of weight k with 0 < k < 12 and no zeros or

poles in H implies that L is an element of order 12 in PicorbM1. We will

show later that the order of PicorbM1 is of order 12, from which it will

follow that PicorbM1 is isomorphic to Z=12 and generated by the class of

L.
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Lecture 2: Teichm�uller Theory

We have seen in genus 1 case that M1 is the quotient

�1nX1

of a contractible complex manifold X1 = H by a discrete group �1 = SL2(Z).

The action of �1 on X1 is said to be virtually free | that is, �1 has a �nite

index subgroup which acts (�xed point) freely on X1.
3 In this section we

will generalize this to all g � 1 | we will sketch a proof that there is a

contractible complex manifold Xg, called Teichm�uller space, and a group

�g, called the mapping class group, which acts virtually freely on Xg. The

moduli space of genus g compact Riemann surfaces is the quotient:

Mg = �gnXg:

This will imply thatMg has the structure of a complex analytic variety with

�nite quotient singularities.

Teichm�uller theory is a di�cult and technical subject. Because of this, it

is only possible to give an overview.

4. The Uniformization Theorem

Our basic tool is the the generalization of the Riemann Mapping Theorem

known as the Uniformization Theorem. You can �nd a proof, for example,

in [9] and [8].

Theorem 4.1. Every simply connected Riemann surface4 is biholomorphic

to either P1, C or H .

Exercise 4.2. Show that no two of P1, H and C are isomorphic as Riemann

surfaces.

We have already seen that AutP1 �= PSL2(C ) and that PSL2(R) �

Aut H .

Exercise 4.3. (i) Show that

Aut C = fz 7! az + b : a 2 C � and b 2 C g:

(ii) Show that there is an element T of AutP1 that restricts to an isomor-

phism T : �! H between the unit disk and the upper half plane.

3More generally, we say that a group G has a property P virtually if P holds for some

�nite index subgroup of G.
4We follow the convention that every Riemann surface is, by de�nition, connected.
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(iii) Show that every element of Aut� is a fractional linear transformation.

Hint: Use the Schwartz Lemma.

(iv) Deduce that every element of Aut H is a fractional linear transformation

and that Aut H �= PSL2(R).

If X is a Riemann surface and x 2 X, then �1(X;x) acts on the universal

covering eX as a group of biholomorphisms. This action is �xed point free.

Exercise 4.4. Show that ifX is a Riemann surface whose universal covering

is isomorphic to H and x 2 X, then there is a natural injective homomorph-

ism � : �1(X;x) ! PSL2(R) which is injective and has discrete image.

Show that this homomorphism is unique up to conjugation by an element of

PSL2(R), and that the conjugacy class of � is independent of the choice of

x. Show that X is isomorphic to im�nH and that the conjugacy class of �

determines X up to isomorphism.

This will give a direct method of putting a topology on Mg when g � 2.

But �rst some preliminaries.

Exercise 4.5. Show that ifX is a Riemann surface whose universal covering

is

(i) P1, then X is isomorphic to P1;

(ii) C , then X is isomorphic to C , C � or is a genus 1 curve.

Hint: Classify the subgroups of AutP1 and Aut C that act properly discon-

tinuously and freely.

So we come to the striking conclusion that the universal covering of a

Riemann surface not isomorphic to P1, C , C � or a genus 1 curves must be

isomorphic to H . In particular, the universal covering of C � f0; 1g is H .

Picard's Little Theorem is a consequence.

Exercise 4.6. Show that if f : C ! C is a holomorphic mapping that omits

2 distinct points of C , then f is constant.

For our immediate purposes, the most important fact is that the universal

covering of every Riemann surface of genus g � 2 is isomorphic to H . More

generally, we have the following interpretation of the stability condition 2g�

2 + n > 0.

Exercise 4.7. Show that if U is a Riemann surface of the form X � F

where X is a compact Riemann surface genus g and F a �nite subset of X

of cardinality n, then the universal covering of U is isomorphic to H if and
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only if 2g � 2 + n > 0. Observe that 2 � 2g � n is the topological Euler

characteristic of U .

5. Teichm�uller Space

Suppose that g � 2 and that S is a compact oriented surface of genus

g � 2. Fix a base point xo 2 S and set � = �1(S; xo). Let

Xg =

(
conjugacy classes of injective representations � :
� ,! PSL2(R) such that im� acts freely on H and
im�nH is a compact Riemann surface of genus g

)

It is standard that we can choose generators a1; : : : ; ag, b1; : : : ; bg of � that

are subject to the relation
gY

j=1

[aj ; bj ] = 1:

where [x; y] denotes the commutator xyx�1y�1.

Exercise 5.1. Show that Xg can also be identi�ed naturally with the set�
compact Riemann surfaces C plus a conjugacy class of isomor-
phisms � �= �1(C) modulo the obvious isomorphisms

�

The group PSL2(R) is a real a�ne algebraic group. It can be realized as

a closed subgroup of GL3(R) de�ned by real polynomial equations.

Exercise 5.2. Denote the standard 2-dimensional representation of SL2(R)

by V . Denote the second symmetric power of V by S2V . Show that this

is a 3-dimensional representation of SL2(R). Show that �I 2 SL2(R) acts

trivially on S2V , so that S2V is a 3-dimensional representation of PSL2(R).

Show that this representation is faithful and that its image is de�ned by

polynomial equations. Deduce that PSL2(R) is a real a�ne algebraic group.

Because of this, we will think of elements of PSL2(R) as 3 � 3 matrices

whose entries satisfy certain polynomial equations. A representation � : � !

PSL2(R) thus corresponds to a collection of matrices

A1; : : : ; Ag; B1; : : : ; Bg

in PSL2(R) � GL3(R) that satisfy the polynomial equation

I �

gY
j=1

[Aj ; Bj ] = 0;(4)

the correspondence is given by setting Aj = �(aj) and Bj = �(bj).
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The set of all representations � : � ! PSL2(R) is the real algebraic

subvariety R of PSL2(R)
2g consisting of all 2g-tuples

(A1; : : : ; Ag; B1; : : : ; Bg)

that satisfy (4). This is a closed subvariety of PSL2(R)
2g and is therefore

an a�ne variety. Note that5

dimR � 2g � dimPSL2(R) � dimPSL2(R) = 6g � 3:

Observe that PSL2(R) acts on R on the right by conjugation:

A : � 7! fg 7! A�1�(g)Ag:

Exercise 5.3. Show that

U :=

(
� : � ,! PSL2(R) such that im� acts
freely on H and im �nH is a compact Rie-
mann surface of genus g

)

is an open subset of R and that it is closed under the PSL2(R)-action.

Hint: One can construct a fundamental domain F for the action of � on H

given by � as follows. First choose a point x 2 H . Then take F to be all

points in H that are closer to x than to any of the points �(g)x (with respect

to hyperbolic distance) where g 2 � is non-trivial. Then F is a compact

subset of H whose boundary is a union of geodesic segments. As � varies

continuously, the orbit of x varies continuously. Now choose x to be generic

enough and study the change in F as � varies.

Note that Xg = U=PSL2(R).

Exercise 5.4. Show that the center of PSL2(R) is trivial.

Proposition 5.5. If � 2 U , then the stabilizer in PSL2(R) of � is trivial.

Proof. The �rst step is to show that if � 2 U , then im � is Zariski dense

in PSL2(R). To prove this, it su�ces to show that im� is Zariski dense in

the set of complex points PSL2(C ). From Lie theory (or algebraic group

theory), we know that all proper subgroups of PSL2(C ) are extensions of a

�nite group by a solvable group. Since im� is isomorphic to �, and since � is

not solvable (as it contains a free group of rank g), im� cannot be contained

in any proper algebraic subgroup of PSL2(R), and is therefore Zariski dense.

5One has to be more careful here as, in real algebraic geometry, a�ne varieties of higher

codimension can all be cut out by just one equation. Probably the best way to proceed is

to compute the derivative of the product of commutators map PSL2(R)
2g
! PSL2(R) at

points in the �ber over the identity.
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An element A of PSL2(R) stabilizes � if and only if A�1�(g)A = �(g) for

all g 2 � | that is, if and only if A centralizes im�. But A centralizes im�

if and only if it centralizes the Zariski closure of im�. Since im� is Zariski

dense in PSL2(R), and since the center of PSL2(R) is trivial, it follows that

A is trivial.

Theorem 5.6. The set U is a smooth manifold of real dimension 6g�3. The

group PGL2(R) acts principally on U , so that quotient Xg = U=PSL2(R) is

a manifold of real dimension 6g � 6.

Sketch of Proof. It can be shown, using deformation theory, that the Zariski

tangent space of R at the representation � of � is given by the relative

cohomology group:6

T�R = H1(S; xo; A )

where A is the local system (i.e., locally constant sheaf) over S whose �ber

over xo is sl1(R) and whose monodromy representation is the homomorphism

�
�

���! PSL2(R)
Ad

���! Aut sl2(R):

Here sl2(R) denotes the Lie algebra of PSL2(R), which is the set of 2 � 2

matrices of trace 0, and Ad is the adjoint representation

A 7! fX 7! AXA�1g:

A result equivalent to this was �rst proved by Andr�e Weil [26]. The long

exact sequence of the pair (S; xo) with coe�cients in A gives a short exact

sequence

0! sl2(R) ! H1(S; xo; A ) ! H1(S; A ) ! 0

and an isomorphism H2(S; xo; A ) �= H2(S; A ).

6This is a non-standard way of giving this group | Weil used cocycles. Here A�(S; A )

is the complex of di�erential forms on S with coe�cients in the local system A . It is a

di�erential graded Lie algebra. Restricting to the base point xo one obtains an augmenta-

tion A�(S; A ) ! sl2(R). The complex A�(S; xo; A ) is the kernel of this, and H
�(S; xo; A )

is de�ned to be the cohomology of this complex. Briey, this is related to deformations

of � as follows: when the representation � is deformed, the vector bundle underlying the

local system corresponding to � does not change, only the connection on it. But a new

connection on the bundle corresponding to � will di�er from the original connection by

an element of A1(S; A ). So a deformation of � corresponds to a family of sections w(t) of

A
1(S; A ) where w(0) = 0. For each t the new connection is at. This will imply that the

t derivative of w(t) at t = 0 is closed in A�(S; A ). Changes of gauge that do not alter the

marking of the �ber over xo are, to �rst order, elements of A0(S; xo; A ). The t derivative

of such �rst order changes of gauge gives the trivial �rst order deformations of �.
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Deformation theory also tells us that if H2(S; xo; A ) vanishes, then R is

smooth at [�] 2 R.7 The Killing form is the symmetric bilinear form on

sl2(R) given by

b(X;Y ) = tr(XY ):

It is non-degenerate and invariant under Ad ��. It follows that A is isomor-

phic to its dual A � as a local system. Thus it follows from Poinar�e duality

(with twisted coe�cients) that

H2(S; A ) �= H0(S; A )� :

But if � is an element of U , it follows from Proposition 5.5 that H0(S; A )

vanishes. Consequently, if � 2 U , then

dimH1(S; A ) = ��(S; A ) = �(rank A ) � �(S) = 3(2g � 2) = 6g � 6

and

dimH1(S; xo; A ) = 6g � 3:

We saw above that U has dimension � 6g � 3, but dimU is not bigger

than the dimension of any of its Zariski tangent spaces, which we have just

shown is 6g � 3. It follows that dimU = 6g � 3 and that it is smooth as

its dimension equals the rank of its Zariski tangent space. Finally, since the

PSL2(R)-action on U is principal, Xg = U=PSL2(R) is smooth of dimension

(6g � 3) � dimPSL2(R) = 6g � 6.

It is not very di�cult to show that the tangent space of Xg at [�] is

naturally isomorphic to H1(S; A ).

6. Mapping Class Groups

The mapping class group �g plays a role for higher genus (g � 2) Riemann

surfaces analogous to that played by SL2(Z) in the theory of genus 1 curves.

As in the previous section, S is a �xed compact oriented surface of genus g,

xo 2 S, and � = �1(S; xo). But unlike the last section, we allow any g � 1.

The mapping class group �S of S is de�ned to be the group of connected

components of the group of orientation preserving di�eomorphisms of S:

�S = �0Di�
+ S:

7A proof of this and also a proof of Weil's result can be found in the beautiful paper of

Goldman and Millson [10].
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Here Di� S is given the compact open topology. It is the �nest topology on

Di� S such that a function f : K ! Di� S from a compact space into Di� S

is continuous if and only if the map �f : K � S ! S de�ned by

�f (k; x) = f(k)(x)

is continuous.

Exercise 6.1. Suppose that M is a smooth manifold. Show that a path in

Di�M from � to  is a homotopy 	 : [0; 1]�M !M from � to  such that

for each t 2 [0; 1], the function 	(t; ) :M !M that takes x to 	(t; x) is a

di�eomorphism. Such a homotopy is called an isotopy between � and  .

Recall that the outer automorphism group of a group G is de�ned to be

the quotient

OutG = AutG= InnG

of the automorphism group AutG of G by the subgroup InnG of inner

automorphisms.

Exercise 6.2. Suppose that M is a smooth manifold. Show that each dif-

feomorphism of M induces an outer automorphism of its fundamental group

and that the corresponding function

Di�M ! Out�(M)

is a homomorphism. (Hint: Fix a base point of M and show that every dif-

feomorphism ofM is isotopic to one that �xes the base point.) Show that the

kernel of this homomorphism contains the subgroup of all di�eomorphisms

isotopic to the identity. Deduce that there is a homomorphism

�0(Di�M)! Out�1(M):

Taking M to be S, our reference surface, we see that there is a natural

homomorphism

� : �S ! Out�:

It is a remarkable fact, due to Dehn [6] and Nielsen [22], that this map is

almost an isomorphism. (I believe there is a proof of this in the translation

of some papers of Dehn on topology by Stillwell.)

Theorem 6.3 (Dehn-Nielsen). For all g � 1, the homomorphism � is in-

jective and the image of � is a subgroup of index 2.



326

One can describe the index 2 subgroup of Out� as follows. Since S has

genus � 1, the universal covering of S is contractible, and there is a natural

isomorphism Hi(S;Z) �= Hi(�;Z). Each element of Out� induces an auto-

morphism of Hi(�;Z) as inner automorphisms of a group act trivially on its

cohomology. The image of � is the kernel of the natural homomorphism

Out� ! AutH2(�;Z) �= f�1g:

When g = 1, � �= Z2, and

Out� = Aut� �= GL2(Z):

Exercise 6.4. Show that when g = 1, the homomorphism Out� ! f�1g

corresponds to the determinant GL2(Z)! f�1g.

The genus 1 case of the Dehn-Nielsen Theorem can be proved by elemen-

tary means:

Exercise 6.5. Show that if g = 1, then the homomorphism �S ! SL2(Z) is

an isomorphism. Hint: Construct a homomorphism from SL2(Z) to Di� S.

Since two compact orientable surfaces are di�eomorphic if and only if they

have the same genus, it follows that the group �S depends only on the genus

of S. For this reason, we de�ne �g to be �S where S is any compact genus

g surface.

7. The Moduli Space

In this section, S is once again a compact oriented surface of genus g � 2

and � denotes its fundamental group. The mapping class group �g = �S
acts smoothly on Teichm�uller space Xg on the left via the homomorphism

�g ! Out�.

Exercise 7.1. Describe this action explicitly. Show that the isotropy group

of [�] 2 Xg is naturally isomorphic to the automorphism group of the Rie-

mann surface im�nH . (Compare this with the genus 1 case.) Deduce that

all isotropy groups are �nite.

Exercise 7.2. Show that two points in Xg are in the same �g orbit if and

only if they determine the same Riemann surface. Hint: Use the Uniformiza-

tion Theorem.

Rephrasing this, we get:

Theorem 7.3. If g � 2, then Mg is naturally isomorphic to the quotient

of Xg by �g.
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This result allows us to put a topology on Mg. We give it the unique

topology so that Xg !Mg is a quotient mapping. To try to understand the

topology of Xg we shall need the following fundamental result.

Theorem 7.4 (Teichm�uller). For all g � 2, the Teichm�uller space Xg is

contractible and the action of �g on it is properly discontinuous.

A natural way to approach the proof of this theorem is via hyperbolic

geometry. We do this in the next two sections.

8. Hyperbolic Geometry

Perhaps the most direct way to approach the study of Teichm�uller space is

via hyperbolic geometry. The link between complex analysis and hyperbolic

geometry comes from the fact that the upper half plane has a complete

metric

ds2 =
1

y2
(dx2 + dy2)

of constant curvature �1 whose group of orientation preserving isometries is

PSL2(R). The Riemannian manifold (H ; ds2) is called the Poincar�e upper

half plane. A good reference for hyperbolic geometry is the book by Beardon

[2].

Exercise 8.1. Show that

(i) every element of PSL2(R) is an orientation preserving isometry of

(H ; ds2);

(ii) PSL2(R) acts transitively on H and that the stabilizer of one point

(say i), and therefore all points, of H is isomorphic to SO(2) and acts

transitively on the unit tangent space of H at this point.

Deduce that the Poincar�e metric ds2 has constant curvature and that PSL2(R)

is the group of all orientation preserving isometries of the Poincar�e upper

half plane.

The fact that the group of biholomorphisms of H coincides with the group

of orientation preserving isometries of H is fundamental and is used as fol-

lows. Suppose that X is a Riemann surface whose universal covering is H .

Then, by Exercise 4.4, X is biholomorphic to the quotient of H by a discrete

subgroup � of PSL2(R) isomorphic to �1(X). Now, since PSL2(R) is also

the group of orientation preserving isometries of H , the Poincar�e metric ds2

is invariant under � and therefore descends to X = �nH . This metric is

complete as the Poincar�e metric is.
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Exercise 8.2. Prove the converse of this: if X is an oriented surface with a

complete hyperbolic metric, then X has a natural complex structure whose

canonical orientation agrees with the original orientation.

These two constructions are mutually inverse. Thus we conclude that

when g � 2, there is a natural one-to-one correspondence

(5)
n
isomorphism classes of compact
Riemann surfaces of genus g

o
$n

isometry classes of compact oriented surfaces
of genus g with a hyperbolic metric

o
It follows that if g � 2, then

Mg =

�
isometry classes of compact oriented surfaces
of genus g with a hyperbolic metric

�
:

Remark 8.3. Likewise, a Riemann surface of genus 1 has a at metric (unique

up to rescaling) which determines the complex structure. So M1 can be

regarded as the moduli space of (conformal classes of) at tori.

Exercise 8.4. Show that ifX is a Riemann surface whose universal covering

is H , then the group of orientation preserving isometries of X equals the

group of biholomorphisms of X.

9. Fenchel-Nielsen Coordinates

Once again, we assume that g � 2 and that S is a reference surface of

genus g. The interpretation of Teichm�uller space in terms of hyperbolic

geometry allows us to de�ne coordinates on Xg. To do this we decompose

the surface into \pants."

A pair of pants is a compact oriented surface of genus 0 with 3 boundary

components. Alternatively, a pair of pants is a disk with 2 holes. A simple

Figure 2. pairs of pants

closed curve (SCC) on S is an imbedded circle. A pants decomposition of
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Figure 3. a pants decomposition

S is a set of disjoint simple closed curves in S that divides S into pairs of

pants.

Proposition 9.1. If the simple closed curves C1; : : : ; Cn divide S into m

pairs of pants, then n = 3g � 3 and m = 2g � 2.

Proof. Since a pair of pants has the homotopy type of a bouquet of 2 circles,

it has Euler characteristic �1. Since the Euler characteristic of a disjoint

union of circles is 0, we have

2� 2g = �(S) = m � �(a pair of pants) = �m:

Thus m = 2g� 2. Since each pair of pants has 3 boundary components, and

since each circle lies on the boundary of two pairs of pants, we see that

n = 3m=2 = 3g � 3:

If T is a compact oriented surface with boundary and �(T ) < 0, then

T has a hyperbolic metric such that each boundary component is totally

geodesic. As in the case where the boundary of T is empty, the set of all

hyperbolic structures on T (modulo di�eomorphisms isotopic to the identity)

can be described as a representation variety. I will omit the details. This

space is called the Teichm�uller space of T and will be denoted by XT .

Proposition 9.2. If P is a pair of pants, then XP is a manifold di�eomor-

phic to R3 . The di�eomorphism is given by taking a hyperbolic structure on

P to the lengths of its 3 boundary components.

Discussion of the Proof. A proof can be found in the Expos�e 3, partie II by

Po�enaru in the book [7]. The basic idea is that a pair of pants can be cut

into two isomorphic hyperbolic right hexagons, and that two right hyperbolic

hexagons are equivalent if the lengths of every other side of one equal the

lengths of the corresponding sides of the other. Also, one can construct
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hyperbolic right hexagons where these lengths are arbitrary positive real

numbers.

A basic fact in hyperbolic geometry is that if one has a compact hyperbolic

surface T (not assumed to be connected) with totally geodesic boundary,

then one can identify pairs of boundary components of the same lengths to

obtain a hyperbolic surface whose new hyperbolic structure agrees with that

on T � @T . Another elementary fact we shall need is that if C is a SCC in

a compact hyperbolic surface T with totally geodesic boundary, then there

is a unique closed geodesic  : S1 ! T that is freely homotopic to C.

Now suppose that P = fP1; : : : ; P2g�2g is a pants decomposition of S

determined by the SCCs C1; : : : ; C3g�3. For each hyperbolic structure on S,

we can �nd closed geodesics 1; : : : ; 3g�3 that are isotopic to the Cj. Taking

the lengths of these, we obtain a function

` : XS ! R
3g�3
+ :

It is not di�cult to show that this mapping is continuous. (See [7], for

example.) On the other hand, we can de�ne an action of R3g�3 on XS and

whose orbits lie in the �bers of `. To de�ne the action of (�1; : : : ; �3g�3) on a

hyperbolic surface S, write S as the union of 2g�2 pairs of hyperbolic pants

whose boundaries are represented by geodesics 1; : : : ; 3g�3 isotopic to the

Cj. Then twist the gluing map at j by an angle �j. This is also continuous.

Theorem 9.3 (Douady,[7, Expos�e 7]). If g � 2, then the map ` : XS !

R
3g�3
+ is a principal R3g�3 bundle with the action described above.

Corollary 9.4. For all g � 2, Teichm�uller space Xg is di�eomorphic to

R6g�6 .

Exercise 9.5. At �rst it may appear that ` : Xg ! R
3g�3
+ should be a

principal (S1)3g�3 bundle. Show that rotation by 2� about one of the SCCs

Cj alters the representation � by an automorphism of � that is not inner.

Hint: it may help to �rst read the part of Section 15 on Dehn twists.

10. The Complex Structure

Suppose that C is a compact Riemann surface. Recall that a deformation

of C is the germ about to 2 T of a proper analytic mapping f : C ! T ,

where T is an analytic variety, and an isomorphism j : C ! f�1(to). One

de�nes maps between deformations to be cartesian squares. A deformation

of C is called universal if every other deformation is pulled back from it.
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A standard result in deformation theory is that every Riemann surface of

genus g � 2 has a universal deformation. This has the property that T is

smooth at to and that T is of complex dimension 3g � 3 with tangent space

at to canonically isomorphic to H1(C;�C), where �C denotes the sheaf of

holomorphic sections of the tangent bundle of C.

As explained in Looijenga's lectures, Mg can be obtained by patching

such local deformation spaces together. If C is a smooth projective curve of

genus g and � : � ! PSL2(R) is a representation such that C �= im �nH ,

then [�] 2 Xg goes to [C] 2 Mg under the projection Xg ! Mg. The

following fact can be proved using partial di�erential equations.

Theorem 10.1. If (T; to) is a universal deformation space for C, then there

is a smooth mapping  : T ! Xg such that  (to) = [�] which is a di�eo-

morphism in a neighbourhood of to. Moreover, the composition of  with the

projection Xg ! Mg is the canonical mapping that classi�es the universal

deformation of C.

Corollary 10.2. There is a canonical �g invariant complex structure on Xg

such that the projection Xg !Mg is a complex analytic mapping.

It should be noted that, although Xg is a complex manifold di�eomorphic

to R6g�6 , it is not biholomorphic to either a complex 3g � 3 ball or C 3g�3

when g > 1.

Combining these results, we obtain the following basic result:

Theorem 10.3. The moduli space Mg is a complex analytic variety whose

singularities are all �nite quotient singularities. Furthermore, Mg can be

regarded as an orbifold whose universal covering is the complex manifold Xg

and whose orbifold fundamental groups can be identi�ed, up to conjugacy,

with �g. More precisely, if C is a compact genus g curve with no non-trivial

automorphisms, then there is a canonical isomorphism

�orb1 (Mg; [C]) �= �0Di�
+ C:

11. The Teichm�uller Space Xg;n

It is natural to expect that there is a complex manifold Xg;n and a discrete

group �g;n that acts holomorphically on Xg;n in such a way that Mg;n is

isomorphic to the quotient �g;nnXg;n. We give a brief sketch of how this

may be deduced from the results when n = 0 and g � 2.

First, we �x an n-pointed reference surface of genus g where g � 2. That

is, we �x a compact oriented surface S and a subset P = fx1; : : : ; xng of n
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distinct points of S. De�ne

�g;n := �0Di�
+(S; P )

By de�nition, elements of Di�+(S; P ) are orientation preserving and act

trivially on P .

Here is a sketch of a construction of Xg;1. One can construct the Xg;n

when n > 1 in a similar fashion.

There is a universal curve C ! Xg. This can be constructed using defor-

mation theory. This is a �ber bundle in the topological sense and it is not

di�cult to see that the action of the mapping class group �g on Xg can be

lifted to an action on C such that the projection is equivariant. Since the

�ber of C ! Xg is a compact surface of genus g, and since Xg is contractible,

C has the homotopy type of a surface of genus g and therefore has funda-

mental group isomorphic to �1(S). De�ne Xg;1 to be the universal covering

of C. This is a complex manifold as C is. The �bers of the projection Xg;1

are all isomorphic to H . Since Xg is contractible, so is Xg;1.

Exercise 11.1. Show that there is a natural bijection

Xg;1 =

8<
:
conjugacy classes of representations � : � !

PSL2(R) such that C� := im �nH is of genus g,
plus a point x 2 C�

9=
; :

Use this (or otherwise) to show that �g;1 acts on Xg;1 and that the quotient

is Mg;1. Show that the isotropy group of any point of Xg;n lying above

[C;x] 2Mg;n is naturally isomorphic to Aut(C; x).

We shall regard Mg;n as the orbifold �g;nnXg;n. There is a natural iso-

morphism

�orb1 (Mg;n; [C;x1; : : : ; xn]) �= �0Di�
+(C; fx1; : : : ; xng)

provided Aut(C;x1; : : : ; xn) is trivial.

12. Level Structures

Level structures are useful technical devices for rigidifying curves. Suppose

that ` is a positive integer. A level ` structure on a compact Riemann surface

is the choice of a symplectic basis of H1(C;Z=`Z).

Exercise 12.1. Show that if C is a compact Riemann surface of genus g,

then there is a canonical isomorphism betweenH1(C;Z=`Z) and the `-torsion

points in Pic0C. (Remark: the intersection pairing on H1(C;Z=`Z) corre-

sponds to the Weil pairing on the `-torsion points.)
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Denote the moduli space of n-pointed, smooth, genus g curves with a level

` structure by Mg;n[l]. This can be described as a quotient of Teichm�uller

space by a subgroup of �g;n that we now describe.

Fix an n-pointed compact oriented reference surface S of genus g. The

mapping class group �g;n acts naturally on H1(S;Z). Since it preserves the

intersection pairing, this leads to a homomorphism

� : �g;n ! Aut(H1(S;Z); intersection form):

De�ne the level ` subgroup of �g;n to be the kernel of the homomorphism

�` : �g;n ! Aut(H1(S;Z=`Z); intersection form):

This homomorphism is surjective.

Exercise 12.2. Show that �g;n[`] is a normal subgroup of �nite index in

�g;n and that the quotient is isomorphic to Spg(Z=`Z).

Exercise 12.3. Show that there is a natural bijection betweenMg;n[`] and

the quotient of Xg;n by �g;n[`]. Show that the quotient mappingMg;n[`]!

Mg;n that forgets the level structure has �nite degree and is Galois with

Galois group Spg(Z=`Z).

Choosing a symplectic basis of H1(S;Z) gives an isomorphism

Aut(H1(S;Z); intersection form) �= Spg(Z):

We therefore have a homomorphism

� : �g;n ! Spg(Z):

De�ne the level ` subgroup Spg(Z)[`] of Spg(Z) to be the kernel of the

reduction mod ` homomorphism

Spg(Z)! Spg(Z=`Z):

This homomorphism is surjective.

Exercise 12.4. (i) Show that �g;n[`] is the inverse image of Spg(Z)[`]

under �.

(ii) Show that Sp1(Z) is isomorphic to SL2(Z) and that � is the standard

representation when g = 1.

Theorem 12.5 (Minkowski). The group Spg(Z)[`] is torsion free when ` �

3.

Proposition 12.6. If 2g � 2 + n > 0, g � 1 and ` � 3, then the mapping

class group �g;n[`] is torsion free and acts �xed point freely on Xg;n.
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Sketch of Proof. The case g = 1 is left as an exercise. Suppose that g � 2.

We �rst show that �g;n[`] acts �xed point freely on Xg;n. The isotropy group

of a point inXg;n lying over [C;x1; : : : ; xn] is isomorphic to Aut(C;x1; : : : ; xn).

This is a �nite group, and is a subgroup of AutC. It is standard that the

natural representation AutC ! AutH0(C;
1
C) is injective (Exercise: prove

this. Hint: use Riemann-Roch). It follows that the natural representation

AutC ! Aut(H1(C;Z); intersection pairing) �= Spg(Z):

is injective and that Aut(C;x1; : : : ; xn) \ �g;n[`] is trivial. (Here we are

realizing Aut(C;x1; : : : ; xn) as a subgroup of �g;n as an isotropy group.) It

follows from Minkowski's Theorem that if ` � 3, then �g;n[`] acts �xed point

freely on Xg;n.

The rest of the proof is standard topology. If �g;n[`] has a torsion element,

then it contains a subgroup G of prime order, p say. Since this acts �xed

point freely on the contractible space Xg;n, it follows that the quotientGnXg;n

is a model of the classifying space B(Z=pZ) of the cyclic group of order p.

Since the model is a manifold of real dimension 6g�6+2n, this implies that

Hk(Z=pZ;Z=pZ) vanishes when k > 6g � 6 + 2n. But this contradicts the

known computation that Hk(Z=pZ;Z=pZ) is non-trivial for all k � 0. The

result follows.

Putting together the results of this section, we have:

Corollary 12.7. If g � 1, n � 0 and ` � 3, then Mg;n[`] is smooth and the

mapping Xg;n !Mg;n[`] is unrami�ed with Galois group �g;n; the covering

Mg;n[`] ! Mg;n is a �nite (rami�ed) Galois covering with Galois group

Spg(Z=`Z).

With this information, we are able to prove a non-trivial result about the

mapping class group.

Corollary 12.8 (McCool, Hatcher-Thurston). For all g and n, the map-

ping class group is �nitely presented.

Proof. We shall use the fact that each Mg;n[`] is a quasi-projective variety.

As we have seen, this is smooth when ` � 3 and has fundamental group

isomorphic to �g;n[`]. But a well known result Lojasiewicz [19] (see also

[18]) implies that every smooth quasi-projective variety has the homotopy

type of a �nite complex. It follows that �g;n[`] is �nitely presented when

` � 3. But since �g;n[`] has �nite index in �g;n, this implies that �g;n is also

�nitely presented.
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13. Cohomology

One way to de�ne the homology and cohomology of a group G is to �nd

a topological space X such that

�j(X; �) =

(
G j = 1;

0 j 6= 1:

This occurs, for example, when the universal covering of X is contractible.

Such a space is called a classifying space of G. Under some mild hypotheses,

it is unique up to homotopy. One then de�nes the cohomology of G with

coe�cients in the G-module V by

Hj(G;V ) = Hj(X;V)

where V is the locally constant sheaf over X whose �ber is V and whose

monodromy is given by the action of G on V . It is well de�ned. Homology

is de�ned similarly in terms of the homology of X with coe�cients in V.

Exercise 13.1. Suppose that V is a �g;n-module and V is the corresponding

locally constant sheaf overMg;n[`], where ` � 3. Show that there is a natural

isomorphism

H�(Mg;n[`];V) �= H�(�g;n[`]; V ):

Show that the group Spg(Z=`Z) acts on both sides and that the isomorphism

is Spg(Z=`Z)-equivariant.

Since �g;n does not act �xed point freely on Xg;n,Mg;n is not a classifying

space for �g;n. Nonetheless, standard topological arguments give

H�(Mg;n;Q) �= H�(Mg;n;Q)
Spg (Z=`Z)

and

H�(�g;n;Q) �= H�(�g;n;Q)
Spg (Z=`Z):

It follows that:

Theorem 13.2. There is a natural isomorphism

H�(�g;n;Q) �= H�(Mg;n;Q):

If V is a �g;n-module and �g;n has �xed points in Xg;n, we cannot always

de�ne a local system V over Mg;n corresponding to V . However, we can

formally de�ne

H�(Mg;V 
 Q) := H�(Mg;n[`];V 
 Q)Spg (Z=`Z):
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where the superscript Spg(Z=`Z) means that we take the Spg(Z=`Z) invari-

ant part. This should be regarded as the cohomology of the orbifold Mg;n

with coe�cients in the orbifold local system corresponding to V .

Exercise 13.3. Show that this de�nition is independent of the choice of the

level ` � 3.

Let A be the locus of curves inMg with non-trivial automorphisms. The

goal of the following exercise is to show that A is an analytic subvariety of

Mg, each of whose components has codimension � g � 2. Set

M0
g =Mg �A:

Exercise 13.4. Suppose that X is a Riemann surface of genus g � 2 and

that G is a �nite subgroup of AutX.

(i) Set Y = GnX. Show that if X is compact, then

g(X) � 1 = d(g(Y )� 1) +
X
O

(d� jOj)=2

where O ranges over the orbits of G acting on X and where d is the

order of G.

(ii) Show that if g � 3, then each component of the locus of curves in Mg

that have automorphisms is a proper subvariety of Mg.

(iii) Show that the hyperelliptic locus in Mg has codimension g � 2.

(iv) Show that codimension of each component of the locus in Mg with

curves with a non-trivial automorphism is � g�2, with equality if and

only if the component is the hyperelliptic locus. Hint: reduce to the

case where d is prime.

(v) Give an argument that there are only �nitely many components of the

locus in Mg of curves with a non-trivial automorphism.

Deduce that when g � 3, the set of points of Mg corresponding to curves

without automorphisms is Zariski dense in Mg.

Since each component of A has real codimension � 2g� 4, it follows from

standard topological arguments (transversality) that the inverse image X 0
g

of Mg in Xg has the property

�j(X
0
g) = 0 if j < 2g � 5:

From this, one can use standard topology to show that if g � 3, and if V is

any �g-module, then there is a natural mapping

Hk(�g; V )! Hk(M0
g;V)
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which is an isomorphism when k < 2g � 5 and injective when k = 2g � 5.8

In particular, there is a natural isomorphism

Hk(�g;Z)�= Hk(M0
g;Z)

when k � 2g � 5.

There are similar results for Mg;n, but the codimension of the locus of

curves with automorphisms rises with n. For example, if n > 2g + 2, then

Aut(C;x1; : : : ; xn) is always trivial by the Lefschetz �xed point formula.

(Exercise: prove this.)

Lecture 3: The Picard Group

In this lecture, we compute the orbifold Picard group ofMg for all g � 1.

Recall that an orbifold line bundle over Mg is a holomorphic line bundle

L over Teichm�uller space Xg together with an action of the mapping class

group �g on it such that the projection L ! Xg is �g-equivariant. An

orbifold section of this line bundle is a holomorphic �g-equivariant section

Xg ! L of L. This is easily seen to be equivalent to �xing a level ` � 3 and

considering holomorphic line bundles over Mg[`] with an Spg(Z=`Z)-action

such that the projection is Spg(Z=`Z)-equivariant. Working on Mg[`] has

the advantage that we can talk about algebraic line bundles more easily.

An algebraic orbifold line bundle over Mg is an algebraic line bundle

over Mg[`] for some ` equipped with an action of Spg(Z=`Z) such that the

projection toMg[`] is Spg(Z=`Z)equivariant. A section of such a line bundle

is simply an Spg(Z=`Z)-equivariant section de�ned overMg[`]. Isomorphism

of such orbifold line bundles is de�ned in the obvious way. Let

PicorbMg

denote the group of isomorphisms classes of algebraic orbifold line bundles

over Mg. Our goal in this lecture is to compute this group. It is �rst useful

to review some facts about the Picard group of a smooth projective variety.

14. General Facts

Recall that ifX is a compact K�ahler manifold (such as a smooth projective

variety), then the exponential sequence gives an exact sequence

0! H1(X;Z)! H1(X;OX )! PicX ! H2(X;Z)

8There is a similar result for homology with the arrows reversed and injectivity replaced

by surjectivity.
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where the last map is the �rst Chern class c1. The quotient

Pic0X := H1(X;OX )=H
1(X;Z)

is the group of topologically trivial complex line bundles and is a compact

complex torus (in fact, an abelian variety). Note that if H1(X;Z) vanishes,

then Pic0X vanishes and the �rst Chern class c1 : PicX ! H2(X;Z) is

injective.

If H1(X;Z) vanishes, it follows from the Universal Coe�cient Theorem

that the torsion subgroup of H2(X;Z) is Hom(H1(X;Z); C
� ). Every torsion

element of H2(X;Z) is the Chern class of a holomorphic line bundle as

a homomorphism � : H1(X;Z) ! C � gives rise to a at (and therefore

holomorphic) line bundle over X.

Exercise 14.1. Suppose thatX is a compact K�ahler manifold withH1(X;Z) =

0. Show that if L is the at line bundle over whose monodromy is given by

the homomorphism � : H1(X;Z)! C � , then

c1(L) = � 2 Hom(H1(X;Z); C
�) � H2(X;Z):

These basic facts generalize to non-compact varieties. Suppose that X is

a smooth quasi-projective variety. De�ne PicX to be the group of isomor-

phism classes of algebraic line bundles over X, and Pic0X to be the kernel

of the Chern class mapping

c1 : PicX ! H2(X;Z):

Theorem 14.2. Suppose that X is a smooth quasi-projective variety. If

H1(X;Q) vanishes, then Pic0X = 0 and the torsion subgroup of PicX is

naturally isomorphic to Hom(H1(X;Z); C
� ).

Sketch of Proof. There are several ways to prove this. One is to use Deligne

cohomology which gives a Hodge theoretic computation of PicX. Details can

be found in [13], for example. A more elementary approach goes as follows.

First pick a smooth compacti�cation X of X. Each line bundle L over X

can be extended to a line bundle over X. Any two extensions di�er by twists

by the divisors in X that lie in X �X. After twisting by suitable boundary

components, we may assume that the extended line bundle also has trivial

c1 in H
2(X;Z). (Prove this using the Gysin sequence.) It therefore gives an

element of Pic0X, which, by the discussion at the beginning of the section,

is at. This implies that the original line bundle L over X is also at. But

if H1(X;Q) vanishes, then H1(X;Z) is torsion and c1(L) 2 H
2(X;Z) is the
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corresponding character � : H1(X;Z)! C � . But since c1(L) is trivial, this

implies that � is the trivial character and that L is trivial.

This result extends to the orbifold case. By a smooth quasi-projective

orbifold, we mean an orbifold �nX where � has a subgroup �0 of �nite index

that acts �xed point freely onX and where �0nX is a smooth quasi-projective

variety. There is a Chern class mapping

c1 : Picorb(�nX)! H2(�;Z):

(The Picard group is constructed using equivariant algebraic line bundles on

�nite covers of �nX.) The Chern class c1 can be constructed using the Borel

construction, for example. De�ne Pic0orb(�nX) to be the kernel of c1.

Theorem 14.3. Suppose that �nX is a smooth quasi-projective orbifold. If

H1(X;Q) vanishes, then Pic0orbX = 0 and the torsion subgroup of PicX is

naturally isomorphic to Hom(H1(�;Z); C
�).

Sketch of Proof. Fix a �nite orbifold covering of �0nX of �nX where �0 is

normal in � and acts �xed point freely on X. The Galois group of the

covering is G = �=�0. Suppose that L is an orbifold line bundle over �nX

with c1(L) = 0 in H2(�;Z). This implies that the �rst Chern class of the

pullback of L to �0nX is also trivial. Since this pullback has a natural G-

action, this means that the corresponding point in Pic0(�0nX) is G-invariant.

Since

H1(�0nX;Q)G �= H1(�nX;Q) = 0

it follows that the G-invariant part of Pic(�0nX) is �nite. It follows that

some power L
N of the pullback of L to �0nX is trivial. This also has a

G-action. If s is a trivializing section of L
N , then the productO
g2G

g � s

is a G-invariant section of L
N jGj. It follows that L has a at structure

invariant under the G-action. But since L has trivial c1, it must have trivial

monodromy. It is therefore trivial. It follows that Picorb(�nX) is trivial.

Assembling the pieces, we have:

Corollary 14.4. If H1(�g;Q) vanishes, then the Chern class mapping

PicorbMg ! H2(�g;Z)

is injective.
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15. Relations in �g

In this section we write down some well known relations that hold in

various mapping class groups. These will be enough to compute H1(�g),

which we shall do in the next section.

First some notation. We shall let S denote any compact oriented surface

with (possibly empty) boundary. The corresponding mapping class group is

de�ned to be

�S := �0Di�
+(S; @S):

That is, �S consists of isotopy classes of orientation preserving di�eomor-

phisms that act trivially on the boundary @S of S.

Exercise 15.1. Show that elements of �S can be represented by di�eomor-

phisms that equal the identity in a neighbourhood of @S.

Exercise 15.2. Show that if S is a compact oriented surface and T is a com-

pact subsurface, then there is a natural homomorphism �T ! �S obtained

by extending elements of �T to be the identity outside T .

An important special case is where we take T to be the cylinder [0; 1]�S1

(with the product orientation). One element of �T is the di�eomorphism

� : (t; �) 7! (t; � + 2�t):

Figure 4. a positive Dehn twist

Theorem 15.3. If T is the cylinder, then �T is in�nite cyclic and is gen-

erated by � .
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Now, if S is any surface, and A is a (smoothly imbedded) simple closed

curve (SCC), then A has a neighbourhood that is di�eomorphic to the cylin-

der T = [0; 1] � S1 as in Figure 5. Denote the image of � under the homo-

morphism �T ! �S by tA. It is called the Dehn twist about A.

A

T

Figure 5

Theorem 15.4. The class of tA in �S is independent of the choice of the

tubular neighbourhood T of A and depends only on the isotopy class of A.

Every mapping class group is generated by Dehn twists.

Exercise 15.5. Show that if � 2 �S and A is a SCC in S, then

t�(A) = �tA�
�1:

Observe that if two elements of �S can be represented by di�eomorphisms

with disjoint support, then they commute. In particular:

Proposition 15.6. If A and B are disjoint SCCs on S, then tA and tB
commute in �S.

Exercise 15.7. Show that if S is a surface with boundary and A and B

are each non-separating SCCs in S, then there is an orientation preserving

di�eomorphism � of S that takes one onto the other. Deduce that tA and

tB are conjugate in �S . Give an example to show that not all Dehn twists

about bounding SCCs are conjugate in �S when g � 3.

Next we consider what happens when A and B are two simple closed

curves in S that meet transversally in one point as in Figure 6.

Exercise 15.8. Show that ifA and B are two SCCs in S that meet transver-

sally in one point, then there is a neighbourhood of their union that is a

compact genus 1 surface with one boundary component. Hint: Compute the

homology of a small regular neighbourhood of the union and then apply the

classi�cation of compact oriented surfaces.



342

B
A

Figure 6

So any relation that holds between Dehn twists such curves in a genus

one surface with one boundary component will hold in all surfaces. Let S

be a compact genus 1 surface with one boundary component and let A and

B be the two SCCs in the diagram:

A

B

Figure 7

Theorem 15.9. With notation as above, we have

tAtBtA = tBtAtB

in �S and therefore in all mapping class groups.

This relation is called the braid relation as it comes from the braid group

on 3 strings9 using the following technique.

Denote the unit disk by D. We view this as a manifold with boundary.

Suppose that P is a set of n distinct points of D, none of which lies on @D.

The braid group Bn is de�ned to be

Bn := �0Di�
+(D; (P ));

where Di�+(D; (P )) denotes the group of orientation preserving di�eomor-

phisms of D that �x P as a set, but may permute its elements. There is a

surjective homomorphism

Bn ! AutP �= �n

9A good reference for braid groups is Joan Birman's book [4].



Moduli of Riemann surfaces, transcendental aspects 343

onto the symmetric group on n letters.

Suppose that U is a disk imbedded in D such that

@U \ P = ;

and U \ P consists of two distinct points x and y of P . Then there is an

element �U of Bn whose square is the Dehn twist t@U about the boundary

of U and which swaps x and y.

It can be represented schematically as in Figure 8: The braid group Bn

x y

x y

Figure 8. a basic braid

is generated by the braids �1; : : : ; �n�1 illustrated in Figure 9. Note that �i

i i+11 n-1 n

1 n-1 ni i+1

. . .. . .

Figure 9. the generator �i

and �j commute when ji� jj > 1, and that

�i�i+1�i = �i+1�i�i+1:(6)

Now suppose that (S; @S) ! (D; @D) is a branched covering, unrami�ed

over the boundary. Suppose that the image of the branch points is P . Then

there is a natural homomorphism

Bn ! �S :
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So relations in Bn will give relations in �S . The relations we are interested

in come from certain double branched coverings of the disk.

Suppose that (S; @S) ! (D; @D) is a 2-fold branched covering. The in-

verse image of a smooth arc � joining two critical values p1; p2 2 P and

avoiding P otherwise, is an SCC, say A, in S. There is a small neighbour-

hood U of � that is di�eomorphic to a disk and whose intersection with P

is fp1; p2g as in Figure 10. There is a braid � supported in U that swaps p1
and p2 by rotating in the positive direction about �.

P1

P2

α
U

Figure 10

Proposition 15.10. The image of � under the homomorphism Bn ! �S
is the Dehn twist tA about A.

Exercise 15.11. Show that a genus 1 surface S with one boundary compo-

nent can be realized as a 2:1 covering of D, branched over 3 points.

We therefore have a homomorphism B3 ! �S. Note that the inverse

image of the two arcs � and � in Figure 11 under the covering of the disk

branched over fp1; p2; p3g is a pair of SCCs in S that intersect transversally

in one point. The braid relation in �S now follows as we have the braid

relation (6)

�1�2�1 = �2�1�2

in B3.

More relations can be obtained this way. Suppose that S is a compact

genus 1 surface with 2 boundary components.

Let A, B, C, T1 and T2 be the SCCs in Figure 12. Denote the Dehn twists

about A, B and C by a, b and c, and those about T1 and T2 by t1 and t2.
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α β

p2 p3p1

Figure 11

T1 T2

A
B

C

Figure 12

Theorem 15.12. The relation

(abc)4 = t1t2

holds in the mapping class group �S.

Corollary 15.13. If S is a compact genus 1 surface with one boundary

component, then the relation

(ab)6 = t

holds in �S, where a and b denote Dehn twists about a pair of SCCs that

intersect transversally in one point and t denotes a Dehn twist about the

boundary.

Exercise 15.14. Deduce Corollary 15.13 from Theorem 15.12 by capping

o� one boundary component and using the braid relation, Theorem 15.9.

Theorem 15.12 is proved in the following exercise.

Exercise 15.15. Suppose that S is a genus 1 surface with two boundary

components. Show that S is a double covering of the disk, branched over 4

points. Use this to construct a homomorphism from the braid group B4 on

4 strings into �S . Use this to prove the relation

(abc)4 = t1t2
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where a, b, c, t1 and t2 denote Dehn twists on the SCCs A, B, C, T1 and T2
in the diagram above. Note that in the braid group, we have the relation

t = �1�2�3

where t is Dehn twist about the boundary of the disk and �i is the ith

standard generator of B4.

There is one �nal relation. It is called the lantern relation and is due

to Johnson and Harer independently. Let S be a disk with 3 holes. (That

is, a genus 0 surface with 4 boundary components.) Consider the SCCs in

Figure 13.

A

A2 A3

A

A23

31

A0
1

A12

Figure 13. the lantern con�guration

Theorem 15.16. The relation

a0a1a2a3 = a12a23a31

holds in �S where ai denotes the Dehn twist about Ai and aij denotes the

Dehn twist about Aij.

16. Computation of H1(�g;Z)

The fact �g is generated by Dehn twists and the relations given in the

previous section allow the computation of H1(�g).

Theorem 16.1 (Harer). If g � 1, then

H1(�g;Z) �=

8><
>:
Z=12Z g = 1;

Z=10Z g = 2;

0 g � 3:
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Proof. We begin with the observation that if S is a compact oriented genus

g surface, then all Dehn twists on non-separating SCCs lie in the same

homology class as they are conjugate by Exercise 15.5. Denote their common

homology class by L. Next, using the relations coming from an imbedded

genus 1 surface with one boundary component, we see that the homology

class of any separating SCC that divides S into a genus 1 and genus g � 1

surfaces has homology class 12L. Using the relation that comes from an

imbedded genus 1 surface with 2 boundary components, we see that the

homology class of every separating SCC is an integer multiple of L. It

follows that H1(�g) is cyclic and generated by L.

Now suppose that g � 3. Then we can �nd an imbedded lantern as

in Figure 14 Since each of the curves in this lantern is non-separating, the

rest of surface

lantern

Figure 14

lantern relation tells us that 3L = 4L, which implies that L = 0. This proves

the vanishing of H1(�g) when g � 3.

When g = 1, the relation for a genus 1 surface with one boundary com-

ponent implies that 12L = 0 as the twist about the boundary is trivial in

�1. Thus H1(�1) is a quotient of Z=12Z. But, as we shall explain a lit-

tle later, the fact that PicorbM1 is at least as big as Z=12 implies that

H1(�1) = Z=12Z.10

10The abelianization of SL2(Z) can also be computed using, for example, the presen-

tation of PSL2(Z) given in [24].
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A genus 2 surface can be obtained from a genus 1 surface with two bound-

ary components by identifying the boundary components. The relation ob-

tained for a genus 1 surface with 2 boundary components gives 12L = 2L,

so that 10L = 0. This shows that H1(�2) is a quotient of Z=10Z. But, as

in the genus 1 case, the theory of Siegel modular forms shows that it cannot

be any smaller. So we have H1(�2) = Z=10Z.

Corollary 16.2. For all g � 1, H1(�g;Z) vanishes.

17. Computation of PicorbMg

Since H1(�g;Q) is torsion, it follows from Corollary 14.4 that

c1 : PicorbMg ! H2(�g;Z)

is injective. Since H1(�g) is torsion, the Universal Coe�cient Theorem im-

plies that the sequence

0! Hom(H1(�g;Z); C
�)! H2(�g;Z)! Hom(H2(�g);Z)! 1

is exact. To determine the rank of H2(�g), we need the following fundamen-

tal and di�cult result of Harer [15].

Theorem 17.1. The rank of H2(�g;Q) is 0 if g � 2 and 1 if g � 3.

Combining this with our previous discussion, we have:

Theorem 17.2. If g � 1, then

H2(�g;Z)�=

8><
>:
Z=12Z g = 1;

Z=10Z g = 2;

Z g � 3:

There is one obvious orbifold line bundle over Mg. Namely, if we take

the universal curve � : C !Mg over the orbifoldMg, then we can form the

line bundle

L := det��!C=Mg

over Mg, where !C=Mg
denotes the relative dualizing sheaf. The �ber over

[C] 2Mg is

�gH0(C;
1
C):
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Theorem 17.3. If g � 1, the orbifold Picard group of Mg is cyclic, gener-

ated by L and given by

PicorbMg
�=

8><
>:
Z=12Z g = 1;

Z=10Z g = 2;

Z g � 3:

Proof. All but the generation by L follows from preceding results. In genus

1 and 2, the generation by L follows from the theory of modular forms.

Suppose that g � 3. Denote the �rst Chern class of L by �. To prove that

L generates PicorbMg, it su�ces to show that � generates H2(�g;Z). The

following proof of this I learned from Shigeyuki Morita. It assumes some

knowledge of characteristic classes. A good reference for this topic is the

book [21] by Milnor and Stashe�.

We begin by recalling the de�nition of the signature of a compact ori-

ented 4-manifold. Every symmetric bilinear form on a real vector space can

be represented by a symmetric matrix. The signature of a non-degenerate

symmetric bilinear form is the number of positive eigenvalues of a repre-

senting matrix minus the number of negative eigenvalues. To each compact

oriented 4-manifold X, we associate the symmetric bilinear form

H2(X;R) 
H2(X;R) ! R

de�ned by

�1 
 �2 7!

Z
X

�1 ^ �2:

Poincar�e duality implies that it is non-degenerate. The signature �(X) of

X is de�ned to be the signature of this bilinear form. It is a cobordism

invariant.

The Hirzebruch Signature Theorem (see [21, Theorem 19.4], for example)

asserts that

�(X) =
1

3

Z
X

p1(X)

where p1(X) 2 H4(X;Z) is the �rst Pontrjagin class of X. When X is a

complex manifold,

p1(X) = c1(X)2 � 2c2(X):(7)

Now suppose that X is a smooth algebraic surface and that T is a smooth

algebraic curve. Suppose that � : X ! T is a family whose �bers are smooth

curves of genus g � 3.11 Denote the relative cotangent bundle !X=T of � by

11Such families exist | see [17, p. 45, p. 55].
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!. Then it follows from the exact sequence

0! ��
1
S ! 
2

X ! !X=T ! 0

that

c1(X) = ��c1(T )� c1(!) and c2(X) = �c1(!) ^ �
�c1(T ):

Plugging these into (7) we see that p1(X) = c1(!)
2. Using integration over

the �ber, we have

�(X) =
1

3

Z
X

c1(!)
2 =

1

3

Z
T

��(c1(!)
2):

It is standard to denote ��(c1(!)
2) by �1. Thus we have

�(X) =
1

3

Z
T

�1:

An easy consequence of the Grothendieck-Riemann-Roch Theorem is that

�1 = 12�. This is proved in detail in the book of Harris and Morrison [17,

pp. 155{156]. It follows that for a family � : X ! T of smooth curves

�(X) = 4

Z
T

�:

The last step is topological. Suppose that F is a compact oriented surface

and that p :W ! F is an oriented surface bundle over F where the �bers of

p are compact oriented surfaces of genus g � 3. Denote the local system of

the �rst integral homology groups of the �bers by H . There is a symmetric

bilinear form

H1(F; H R )
H1(F; H R)! R(8)

obtained from the cup product and the intersection form. Poincar�e duality

implies that it is non-degenerate. It follows from the Leray-Serre spectral

sequence of p that

�(W ) = � the signature of the pairing (8):

The local system H over F corresponds to a mapping � : F ! BSpg(Z)

into the classifying space of the symplectic group. Meyer [20] shows that

there is a cohomology class m 2 H2(Spg(Z);Z) whose value on � is the

signature of the pairing (8). It follows from this and the discussion above,

that under the mapping

�� : H2(Spg(Z);Z)! H2(�g;Z)
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induced by the canonical homomorphism � : �g ! Spg(Z), m goes to �4�.

Mayer also shows that the image of

m : H2(�g;Z)! Z

is exactly 4Z, which implies that � generates H2(�g;Z).

As a corollary of the proof, we have:

Corollary 17.4. For all g � 3, both H2(Spg(Z);Z) and H
2(�g;Z) are gen-

erated by � and the natural mapping

�� : H2(Spg(Z);Z)! H2(�g;Z)

is an isomorphism.

Note that H2(Sp2(Z);Z) is in�nite cyclic, while H2(�2;Z) is cyclic of

order 10. So �� is not an isomorphism in genus 2.
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Abstract

This is a short note on the algebraic (or sometimes called arithmetic)

fundamental groups of an algebraic variety, which connects classical funda-

mental groups with Galois groups of �elds. A large part of this note describes

the algebraic fundamental groups in a concrete manner.

This note gives only a sketch of the fundamental groups of the algebraic

stack of moduli of curves. Some application to a purely topological state-

ment, i.e., an obstruction to the surjectivity of Johnson homomorphisms in

the mapping class groups, which comes from Galois group of Q , is explained.
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1. Galois groups of field extension

We recall some basic notions of classical Galois theory of �elds. Let K

be a �eld, and �x its algebraic closure �K. Let L be a �nite extension of K.

An extension L=K is said to be separable if the cardinality of HomK(L; �K)

is the same as the extension degree [L : K]. Let Aut(L=K) be the group of

automorphisms of L as a �eld, �xing each element in K. Then, Aut(L=K)

acts on HomK(L; �K). If the action is transitive, then the extension L=K is

said to be a normal extension. A �nite separable normal extension L=K is

called a �nite Galois extension, and Aut(L=K) is called the Galois group of

L=K and denoted by G(L=K).

Suppose that L=K is a �nite Galois extension. Galois theory asserts that

there exists a one-to-one correspondence between

fM : intermediate �eld between L and Kg

and

fN : subgroup of G(L=K)g

given by M 7! G(L=M) and N 7! LN , where LN denotes the sub�eld of ele-

ments �xed by the action of all elements of N . The correspondence reverses

the inclusion relation, i.e., if M � M 0 then G(L=M) � G(L=M 0). If we use
the terminology of categories, then the correspondence is a contravariant

equivalence.

There is an in�nite version. Let L=K be an algebraic extension, which is

allowed to be in�nite. It is called an (in�nite) Galois extension, if any �nite

extension of K in L is �nite Galois. Then, Aut(L=K) is called the Galois

group of L=K, and denoted by G(L=K) again.

This in�nite Galois group is equipped with a natural topology, called pro-

�nite topology, as will be stated later. For L �M � K withM being Galois

over K, we have a short exact sequence

1! G(L=M)! G(L=K)! G(M=K)! 1: (1.1)

Exercise 1.1. Let K = Q , L = Q(�n), with �n = e2�
p
�1=n being an n-

th primitive root of unity. Show that � : G(L=K) �= (Z=n)�, where � 2
G(L=K) is mapped to the unique �(�) 2 (Z=n)� such that �(�n) = �

�(n)
n , by

using the irreducibility of the minimal polynomial of �n.

If we put L0 := Q(�n jn 2 N), what is G(L0=K)?
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2. A short way to arithmetic fundamental groups

Let X be an arcwise connected topological space, and let a be a point of

X. The fundamental group of X with base point a, denoted by �1(X; a), is

de�ned to be the set of homotopy equivalence classes of closed paths from

a to itself. By the usual composition of paths, taking the homotopy classes,

�1(X; a) becomes a group. For the composition rule, we denote by 0 � the

path �rst going along  and then along 0.

For another choice of base point b, we have �1(X; a) �= �1(X; b), where

the isomorphism is well-de�ned up to an inner automorphism.

More generally, let �1(X; a; b) denote the homotopy classes of paths from

a to b. Two paths  2 �1(X; a; b) and 0 2 �1(X; b; c) can be composed

to get an element 0 �  2 �1(X; a; c), and the system f�1(X; a; b)j(a; b 2
X)g constitutes a groupoid (i.e. a category where every homomorphism is

invertible).

Assume that X is a smooth complex algebraic variety. Let a be a point

of X.

De�nition 2.1. Let Ma be the �eld of the germs of meromorphic algebraic

functions at a on X, such that the germ has analytic continuation to a

�nitely multivalued meromorphic function along any path on X.

Algebraic means that every h 2Ma is algebraic over the rational function

�eld C (X) of algebraic variety X. Functions like exp(z) are not in C (A 1 ).
Clearly Ma is a �eld, which contains the rational function �eld C (X) as

the single-valued meromophic functions. By analytic continuation, we have

an action

�1(X; a; b) �Ma !Mb;

with h 2 Ma 7! h 2 Mb being obtained by analytic continuation of the

germ h along the path . In particular, �1(X; a) acts on Ma from the left,

so we have a group homomorphism

�1(X; a)! Aut(Ma=C (X));

since C (X) is single-valued and is �xed elementwise by analytic continuation

along a closed path. Because h 2 Ma is assumed to be �nitely multival-

ued, the set of all the branches S := fhj 2 �1(X; a)g is �nite. Hence,

the fundamental symmetric polynomials of S =: ff1; f2; : : : ; fng are single-
valued, i.e. in C (X), since �1(X; a) acts on S by permutations. Thus,
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F (T ) :=
Qn

i=1(T � fi) 2 C (X)[T ], which is divisible by the minimal polyno-

mial of h over C (X). Thus, any algebraic conjugate of h over C (X) is one

of the fi, and hence Ma=C (X) is a Galois extension.

Now we have a homomorphism

�1(X; a)! G(Ma=C (X)):

De�nition 2.2. We de�ne the algebraic fundamental group of a connected

smooth algebraic variety X over C by

�
alg
1 (X; a) := G(Ma=C (X)):

We have a group homomorphism

�1(X; a)! �
alg
1 (X; a);

by analytic continuation.

It can be proved that this morphism is \completion," i.e., the right-hand

side is obtained by a purely group-theoretical operation called \pro�nite

completion" of the left-hand side, and thus depends only on the homotopy

type of X, as we shall see in the next section. The arithmetic part will come

into sight when we consider X over a non algebraically closed �eldK in x2.2.

2.1. Pro�nite groups and algebraic fundamental groups. We want

to describe the (possibly in�nite) Galois group G(L=K) for L := Ma, K :=

C (X). The answer is that it is the pro�nite completion of �1(X; a).

To see this, for a while, let L=K be a general in�nite Galois extension.

We look at all �nite Galois subextensions M=K in L. The surjectivity of

G(L=K) ! G(M=K) in (1.1) says that � 2 G(L=K) determines a family

�M 2 G(M=K) for each �nite Galois extension M , so that they are com-

patible in the sense that if M �M 0, then �M 7! �M 0 via natural morphism

G(M=K)! G(M 0=K).

In general, let � be a directed set (i.e. a partially ordered set such that

for any �; �0 2 � there is a common upper element �00 � �; �0 in �), and

assume that we are given a family of �nite groups G� (� 2 �) together with a

group homomorphism G� ! G� for � � �, with the following compatibility

condition: the composition of G� ! G� with G� ! G� coincides with

G� ! G� . We call this family a projective system of �nite groups. (In

the terminology of category theory, this is merely a functor from � to the

category of �nite groups.) We de�ne its projective limit proj lim�2�G� as

follows. An element of proj lim�G� is a family (��)�2�, �� 2 G�, with the
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property �� 7! �� for � � �. This is a subset of the direct product:

proj lim
�2�

G� �
Y
�2�

G�:

We equip G� with the discrete (but compact, being �nite) topology. Then,

the product is compact by Tikhonov's Theorem, and so is the projective

limit, being a closed subgroup of the compact group.

If we apply this notion to the case: � is the set of �nite Galois subextension

M=K equipped with the inclusion ordering M �M 0 ,M �M 0, we obtain

a projective system of �nite groups G(M=K). Our previous observation says

that there is a morphism

G(L=K)! proj lim
M

G(M=K);

� 2 G(L=K) 7! (�jM 2 G(M=K)). This is injective, since L being algebraic,

L is the union of all �nite Galois extensions M . The above morphism is

surjective, since if we have an element of (�M ) 2 proj limM G(M=K), then

the compatibility assures that the action of �M restricts to that of �M 0

if M � M 0. Thus, the actions �M patch together to give an element of

G(L=K). Thus we have

G(L=K) = proj lim
M

G(M=K):

A topological group which can be written as the projective limit of �nite

groups is called a pro�nite group. G(L=K) is an example. It is known that

G is a pro�nite group if and only if it is a compact totally disconnected

Hausdor� topological group.

Let G be an abstract group. The set of �nite-index normal subgroups

� := fN /G j G=N : �nite groupg is a directed set by N � N 0 if and only if

N � N 0. Then, we have a projective system of �nite groups G=N , N 2 �.

De�nition 2.3. For an abstract group G, we de�ne its pro�nite completionbG to be

bG := proj lim
N

(G=N);

where N runs over the �nite index normal subgroups of G. We have a natural

group homomorphism

G! bG
by patching G! G=N together, and its image is dense.
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Fix a prime l. Let N run over the �nite index normal subgroups of G

with the quotient G=N being an l-group, and take the similar projective limit.

Then we obtain the pro-l completion of G, denoted by Gl.

Theorem 2.1. (SGA1[7, Corollary 5.2, p.337]) Let X be a connected alge-

braic variety over C . Then

�1(X; a)! �
alg
1 (X; a)

gives an isomorphism of the pro�nite completion of the topological funda-

mental group and the algebraic fundamental group,

�1(X; a)! �1(dX; a) �= �
alg
1 (X; a):

A rough sketch of the proof is as follows. It is enough to prove that there

is a one-to-one correspondence between

fN / �
alg
1 (X; a) j �alg1 (X; a)=N : �nite groupg

and

fM �Ma jM=K is �nite Galois g
so that

�
alg
1 (X; a)=N �= G(M=K) (2.1)

holds through

�
alg
1 (X; a)! G(Ma=K)! G(M=K);

since then by taking the projective limit of (2.1) we have the desired isomor-

phism.

For N , we construct a �nite topological unrami�ed covering pN : YN !
X with aN 2 p�1N (a) �xed. This can be done as follows. Let ~X be the

universal covering of X, and ~a 2 ~X be a point above a. (These topological

notions are recalled in x3.1 below.) It is well known that �1(X; a) acts on

the covering ~X=X from the right. Then, by taking the quotient of ~X by N ,

we have a �nite connected unrami�ed covering pN : YN ! X, with a point

aN 2 YN being �xed as the image of ~a. A \Riemann existence theorem" in

SGA1[7, Theorem 5.1, p.332] asserts that YN is actually an algebraic variety

over C . We have a homomorphism C (Y ) ! Ma induced by aN , namely, a

rational function h 2 C (Y ) is a multivalued meromorphic function on X,

and it can be regarded as a germ at a by restricting h to a neighbourhood

of aN 2 Y . This gives a correspondence N 7! C (Y ) � Ma, such that

�1(X; a)=N �= G(C (Y )=C (X)), as desired. The converse correspondence is

M=K 7! Ker(�1(X; a)! G(M=K)).

We shall again discuss this construction in a later section x3.
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2.2. Arithmetic fundamental groups. So far, the algebraic fundamental

group is obtained from the topological one by pro�nite completion, and it

ignores the algebraic structure altogether. An interesting part comes from

the absolute Galois groups of the �eld over which the algebraic variety is

de�ned.

Let K � C be a sub�eld, �K the algebraic closure of K in C . Assume that

X is a smooth algebraic variety over K, which is geometrically connected.

This can be paraphrased by saying that the de�ning polynomials of X have

coe�cients in K, and X(C ) is connected as a complex variety.

If X is de�ned over K, then K(X) denotes the rational function �eld of

X over K. If X is de�ned by polynomials, K(X) is the set of the functions

which can be described as rational expressions of the coordinate variables

with coe�cients in K.

Theorem 2.2. (c.f. SGA1[7, Chapter XIII p.393]) If Y ! X is a �nite

unrami�ed covering of a complex algebraic variety, and X is de�ned over
�K, then there is a model Y �K ! X �K of varieties over �K, giving Y ! X by

base extension 
 �KC . If C (Y )=C (X) is Galois, then so is �K(Y )= �K(X) and

their Galois groups are isomorphic.

Corollary 2.1. Let M
alg
a be the sub�eld of Ma of the algebraic elements

over �K(X). Then

G(Malg
a = �K(X)) = G(Ma=C (X)):

One can show that if X is de�ned over K, then M
alg
a =K(X) is a Galois

extension.

De�nition 2.4. If X is a smooth algebraic variety over K, then we de�ne

its arithmetic fundamental group

�
alg
1 (X; a) := G(Malg

a =K(X)):

Corollary 2.2. We have a short exact sequence

1! �
alg
1 (X 
K

�K; a)! �
alg
1 (X; a)! G( �K=K)! 1: (2.2)

This is the exact sequence coming from Galois extensionsM
alg
a � �K(X) �

K(X). Note that G( �K(X)=K(X)) = G( �K=K) since K(X) 
K
�K = �K(X),

i.e., since X is geometrically connected.

Now the left term of the short exact sequence (2.2) is the pro�nite com-

pletion of the topological fundamental group �1(X; a), which depends only

on the homotopy type of X, while the right term G( �K=K) is the absolute
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Galois group of K, which controls the arithmetic of K and depends only on

the �eld K.

But the middle term, or the extension, highly depends on the structure of

X as an algebraic variety, for example if K is a number �eld. Grothendieck

conjectured [8] that X is recoverable from the exact sequence of pro�nite

group, if X is \anabelian." Recently much progress has been done in this

direction, by H. Nakamura, F. Pop, A. Tamagawa, and S. Mochizuki, and

others. For example, the conjecture is true for curves over p-adic �elds

with nonabelian fundamental groups. An exposition on these researches in

Japanese is available, and its English translation is to appear [25].

2.3. Arithmetic monodromy. The exact sequence (2.2) can be considered

to be an algebraic version of the \�ber exact sequence" for X ! SpecK.

Let us consider a topological �bration F ! B which is locally trivial.

Take a point b 2 B, and let Fb be the �ber at b. Fix x 2 Fb. Assume

�2(B) = f1g. Then, we have the so-called homotopy exact sequence

1! �1(Fb; x)! �1(F; x)! �1(B; b)! 1:

In the arithmetic case, F ! B is X ! SpecK, b is a : Spec �K ! SpecK,

and Fb is X �K
�K, therefore (2.2) is an analogue of the above. Note that

�
alg
1 (SpecK; a) = G( �K=K) holds, if we argue in the etale fundamental group,

see x3 below.

In topology theory, it is often more convenient to consider the monodromy

of the �bration p : F ! B, as follows. The rough idea is as follows: take

a closed path  2 �1(B; b). Then, because of the local triviality of the

�bration, we can consider the family Fc := p�1(c) where c moves along  as

a deformation of Fb. Then,  induces a homeomorphism of Fb to itself. Such

a homeomorphism of Fb is not unique, but its isotopy class is well de�ned.

Thus, �1(B; b) acts on various homotopy invariants of Fb, like cohomologies

and homotopy groups. Such a representation of �1(B; b) is called monodromy

representation associated to F ! B. Let us concentrate on the monodromy

on the fundamental group of Fb. In this case, we take x 2 Fb, and take

any lift  2 �1(B; b) to F with starting point x, and call it ~. Since Fb is

connected (i.e. �0(Fb) = f1g), we may adjust ~ so that it lies in �1(F; x).

The ambiguity of ~ is up to a composition with an element of �1(Fb; x). Take

an element � 2 �1(Fb; x). Then, its deformation along  can be considered

to be ~�~�1. In this way �1(B; b) acts on �1(Fb; x), but the action is well

de�ned up to the choice of ~, i.e., up to the inner automorphism of �1(Fb; x).
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Then we have an outer monodromy representation associated to F ! B,

� : �1(B; b)! Aut(�1(Fb; x))=Inn(�1(Fb; x)) =: Out(�1(Fb; x)):

This is easier to treat than the exact sequence itself, since often the funda-

mental groups of a �ber and the base are well understood.

An analogue can be considered for the arithmetic version. Take � 2
G( �K=K), then take any lift ~� 2 �

alg
1 (X; b), and let it act by conjugation

� 7! ~�(�)~��1 on � 2 �
alg
1 (X 
 �K; b). This gives an arithmetic version of the

monodromy representation

�X : G( �K=K)! Out(�
alg
1 (X 
 �K; b)): (2.3)

The left-hand side depends only on K, and the right-hand side depends

only on the homotopy type of X 
 C , and thus �X connects arithmetic and

topology. Sometimes �X is called the outer Galois representation associated

with X.

2.4. The projective line minus two points. As a simplest example, we

consider the case where X=Q is an a�ne line minus one point f0g, with
coordinate function z, and take a = 1 as the base point. The topological

fundamental group of this space is Z. An element h of M
alg
a is �nitely

multivalued, say, N -valued. Then, h is a single-valued function of w, if we

take an N -th root w of z. Since we assumed that h is algebraic over Q(X), h

is a rational function of w with coe�cients in Q . Thus, Malg
a is generated by

the functions z1=N := exp(log z=N), with branch �xed so as to have positive

real values around 1. Put �N := exp(2�
p�1=N). The �eld extensions

Malg
a = Q (z1=N jN 2 N) � Q (X) = Q (z) � Q(X) = Q(z)

give

�
alg
1 (X 
 Q ; a) = proj lim

N
G(Q (z1=N )=Q (z)) = proj lim

N
(Z=N) =: bZ:

Here, the identi�cationG(Q (z1=N )=Q (z)) = Z=N is given by � 2 G(Q (z1=N )=
Q (z)) 7! b 2 Z=N , where b is the unique element such that �(z1=N ) 7!
�bNz

1=N . Then, the generator  of �1(X; a) which goes around 0 counter-

clockwise gives an element of the Galois group which maps

 : z1=N 7! exp(2�
p
�1=N)z1=N ;

so  is, throughG(Q (z1=N )=Q (z)) = Z=N , identi�ed with 1 2 bZ. To compute

�X : G(Q =Q) ! Out(bZ) = Aut(bZ);
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it su�ces to see the action on 1 2 bZ, or equivalently on  2 G(Q (z1=N )=Q (z)),

since it generates bZ topologically. We take a lift of � 2 G(Q =Q) = G(Q (z)=Q(z))
to ~� 2 G(Q (z1=N jN 2 N)=Q (z)). For this, for example, we may take ~� acting

trivially on z1=N . Then, ~�~��1 maps

z1=N
~�7! z1=N

7! exp(2�
p
�1=N)z1=N

~�7! exp(2�
p
�1=N)�(�)z1=N = �(�)(z1=N ):

Here,

�(�) = (�(�)N ) 2 proj lim
N

(Z=N)� = bZ�
is the cyclotomic character G(Q =Q) ! bZ�, that is, �(�)N 2 Z=N is uniquely

determined by � : �N 7! �
�(�)N
N . This shows �() = �(�), so �X is nothing

but the cyclotomic character

� : G(Q =Q) ! bZ� = Aut(bZ):
2.5. The projective line minus three points. A basic result by Belyi

[3] says

Theorem 2.3. Let X be the projective line minus three points 0; 1;1 over

Q , and take an a 2 X. Then,

�X : G(Q =Q) ! Out(�1(dX; a))
is injective.

The right-hand side �1(dX; a) is the pro�nite completion of the free group

F2 with two generators, say, x; y. This implies that G(Q =Q) is contained in

a purely group-theoretic object. One can �x a lift

�X : G(Q =Q) ! Aut( bF2)

from Out( bF2), then two elements �X(�)(x), �X(�)(y) in bF2 characterise �. It

is convenient to �x the lift so that �X(�) : x 7! x�(�); y 7! f�(x; y)y
�(�)f�(x; y)

�1

with f�(x; y) 2 [ bF2; bF2]. This is possible in a unique way [3] [12].

There are roughly two directions of research:

(i) Characterize the image of �X in a group-theoretic way.

(ii) Use �(�), f�(x; y) to describe �Y (�) for other varieties Y .

For (i), the Grothendieck-Teichm�uller group was introduced by Drinfeld [6],

and its pro�nite versiondGT was given by Ihara [12] [13]. dGT is the subgroup

of Aut( bF2) given by three conditions [12], with G(Q =Q) ,!dGT � Aut( bF2)

being Belyi's injection.

It is known thatdGT acts on the pro�nite completion of the braid groupscBn ([6], for the pro�nite case, [15, Appendix]). G(Q =Q) !dGT! Aut(cBn) is
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known to come from the representation on the algebraic fundamental group

of the con�guration space of n points on the a�ne line [15].

Recently, Hatcher, Lochak, Nakamura, Schneps [10] [24] gave a subgroup

� of dGT, G(Q =Q) � � � dGT (actually there are several variations of �,

but whether � = dGT or not is still open), so that � acts on the pro�nite

completion of mapping class groups of type (g; n) systematically.

These researches are closely related to the program by Grothendieck [8],

which tries to study G(Q =Q) by towers of moduli spaces, but here we don't

pursue this direction.

These studies go with (ii): �rst the Galois action is described in terms

of �(�) and f�(x; y), thendGT-action is described so that it generalizes the

Galois action.

It is still open whether G(Q =Q) =dGT or not.

3. Arithmetic fundamental groups by etale topology

The de�nition of arithmetic fundamental groups in the previous section is

concrete, but not intrinsic. For example, it cannot be applied for the positive

characteristic case. A more sophisticated general de�nition uses the notion

of Galois category [7, Chapter V].

3.1. Unrami�ed coverings of a topological space and �ber functors.

In this section, we forget about algebraic varieties and consider only topo-

logical spaces. Though our aim is the theory of fundamental groups without

paths, this section illustrates how the categorical machinary works.

Let X be an arcwise connected topological space. Let p : Y ! X be an

unrami�ed covering of X. That is, p : Y ! X is a surjective continuous

map such that for any x 2 X there exists an open neighbourhood U of x

with each connected component of p�1(U) being homeomorphic to U via p.

It is a �nite unrami�ed covering if the number of the connected components

is �nite. The map p is called a covering map.

It is well known that the connected unrami�ed coverings of X and the

subgroups of �1(X; a) are in one-to-one correspondence, but we shall start

by recalling this fact.

Fix a point a on X, and consider the category of connected unrami�ed

coverings with one point speci�ed. Its objects are the pairs of an unrami�ed

connected covering pY : Y ! X and a point b 2 p�1Y (a), and its morphisms

are the continuous maps f : Y 0 ! Y compatible with the covering maps:

pY � f = pY 0 and f(b0) = b. We denote this category by Con(X; a).
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Assume thatX is arcwise connected, locally arcwise connected, and locally

simply connected. Then there is a category equivalence between Con(X; a)

and fN : subgroup of �1(X; a)g: The correspondence is: for (Y; b) 2 Con(X; a),

we have �1(Y; b) ! �1(X; a), which is injective, so �1(Y; b) considered as a

subgroup corresponds to (Y; b). For the converse, for N � �1(X; a), we

consider the set of classes of paths

YN := fa path starting from a with arbitrary end point in Xg= �N ;

where the equivalence is given by  �N 0 if and only if they have the

same end point and the closed path �1 � 0 lies in the homotopy class in

N � �1(X; a). YN has a speci�ed point aN , which corresponds to the trivial

path at a. Taking the end point of the path gives a map pN : YN ! X,

which is locally a homeomorphism by the assumption on locally arcwise

simply connectedness. Thus, (YN ; aN )! (X; a) is an object of Con(X; a).

If N is a normal subgroup of �1(X; a), then pN : YN ! X is called a

Galois covering. In this case, �1(X; a) acts on YN=X from the right. Take

� 2 �1(X; a), and let � act by [] 2 YN 7! [ � �] 2 YN . We need to check

the well-de�nedness; if  �N 0 then � �N 0� should hold, which requires

that, if �10 2 N , then ��1�10� 2 N , that is, N must be normal. In

this case, we have

�1(X; a)=N �= Aut(YN=X)o;

where o denotes the opposite, i.e., the group obtained by reversing the order

of multiplication.

If N is f1g, then Yf1g is called the universal covering of X, and denoted

by ~X . Then, we have

�1(X; a) �= Aut( ~X=X)o:

Thus, if we can de�ne a universal covering without using paths, then we

can de�ne the fundamental group. Essentially this is the case for schemes,

a projective system (or a pro-object) plays the role of the universal cover-

ing. However, if we adopt Aut( ~X=X) as the de�nition of the fundamental

group, it is not clear where the dependence on the choice of a disappeared.

The functoriality of �1 is also not clear, and the de�nition of fundamental

groupoid is di�cult.

A smart idea is to use all (possibly non connected) coverings of X.

We consider the category CX of unrami�ed coverings of X, i.e., an object

is a covering f : Y ! X, and a morphism is Y 0 ! Y compatible with f 0; f .
Thus, di�erently from Con(X; a), a point is not speci�ed, and the covering
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may not be connected. Let a; b 2 X be points. The discrete set f�1(a) � Y

is called the �ber of f at a. Take an element a0 2 f�1(a): By lifting of the

path  2 �1(X; a; b) to a path starting from a0 in Y we have ~ 2 �1(Y ; a
0; b0),

and the end point b0 of ~ is uniquely determined. Thus, we obtain a bijection

cf () : f
�1(a)! f�1(b); a0 7! b0;

in other words, an action of groupoid

cf : �1(a; b)� f�1(a)! f�1(b)

with (; a0) 7! cf ()(a
0) = b0. cf () is a bijection from f�1(a) to f�1(b),

which is compatible with morphisms Y 0 ! Y . The assignment (f : Y !
X) 7! f�1(a) gives a covariant functor

CX ! Sets

from the category of unrami�ed coverings to the category of sets, which we

denote by Fa. Each element of �1(X; a; b) gives a natural transformation

Fa 7! Fb, which is a natural equivalence.

On the other hand, a natural transformation Fa 7! Fb always comes

from some element of �1(X; a; b). To see this, note that CX has a spe-

cial object, namely, the universal covering p : ~X ! X. Actually, the ob-

ject ~X represents the �ber functor Fa, i.e., we have a natural isomorphism

Fa(Y ) �= HomCX (
~X;Y ). To �x the isomorphism, it is enough to �x a point

~a 2 ~X above a. Then, for every point b 2 f�1(a), there exists a unique ho-

momorphism ~X ! Y with ~a 7! b, by the property of the universal covering.

We shall see that a natural transformation Fa ! Fb comes from an element

of �1(X; a; b). A natural transformation  : Fa ! Fb gives a map ( ~X) :

Fa( ~X) = p�1(a) ! Fb( ~X) = p�1(b). Then, once we choose a ~a 2 p�1(a),

we have ( ~X)(~a) 2 p�1(b), which we denote ~b. Now, by the naturality of

, it commutes with any automorphism of ~X=X. Since ~X=X is a Galois

cover, for any ~a0 2 p�1(a), there is an automorphism � : ~X ! ~X such that

�(~a) = ~a0. This shows that the image of ~a0 by ( ~X) must be �(~b). Thus,

( ~X) : p�1(a)! p�1(b) is bijective, and it is uniquely determined, once ~b is

chosen, by compatibility with � . Let ~ be a path from ~a to ~b in ~X . �(~) for

� 2 Aut( ~X=X) gives the bijection Fa( ~X)! Fb( ~X).

Since connected components of other coverings are quotients of the uni-

versal covering, it is easy to see that any choice of ~b uniquely gives a natural

transformation Fa ! Fb, and it comes from the path from a to b which is the

projection of ~ to X. Thus, we have Hom(Fa; Fb) �= �1(X; a; b) canonically.



Arithmetic fundamental groups 371

This identi�es the groupoid f�1(X; a; b)ja; b 2 Xg with the groupoid

whose objects are Fa : CX ! Sets, and the morphisms are the natural

transformations Fa ! Fb, which are automatically invertible.

Since Fa is representable by ~X , we can identify �1(X; a) = Aut(Fa) with

the opposite group of Aut( ~X=X), because of the Yoneda lemma

Aut(Fa) �= Aut(HomC( ~X;�)) = Aut( ~X)o;

where �= is determined once ~a is speci�ed.

Now, Fa : CX ! Sets induces a functor from CX to the category �1(X; a)-

set, whose objects are the sets with an action of �1(X; a) = Aut(Fa), and

whose morphisms are the maps compatible with this action. This functor

gives a categorical equivalence. To establish the equivalence, let S be a

�1(X; a)-set. We decompose S to orbits, and construct a covering corre-

sponding to each orbit, then take the direct sum. For an orbit, take one

point and let H be the stabilizer of the point. The covering corresponding

to H gives the desired covering for that orbit.

Proposition 3.1. The category CX of unrami�ed coverings of an arcwise

and locally arcwise simply connected topological space X is categorically

equivalent to �1(X; a)-set. The equivalence is given by the �ber functor

Fa : (f : Y ! X) 7! f�1(a):

The �1(X; a) action on f�1(a) comes from �1(X; a) = Aut(Fa).

3.2. Finite coverings. Roughly speaking, the etale fundamental groupoid

of a connected scheme is de�ned by using the category of unrami�ed covers

in an algebraic sense. We don't have an analogue of real-one dimensional

\path", say, in the positive characteristic world, but we have a good category

and functors which allow us a categorical formulation of the algebraic (or

etale) fundamental groupoid.

Before proceeding to etale fundamental groups, we note what will occur if

we restrict CX to the category CX;fin of �nite unrami�ed coverings and the

�ber functor

Fa : CX;fin ! Finsets;

where Finsets is the category of �nite sets. This modi�cation is essential

when we work in the category of algebraic varieties.

A problem is that this functor Fa is not representable by an object in

CX;fin. So, instead of the universal covering, we use a projective system,

called a pro-object, which represents the functor Fa. Let (P�)(�2�) be the

system of all connected �nite Galois coverings of X with one point above a
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speci�ed. That is, an object of P� is a pair (aY ; Y ) with a connected �nite

unrami�ed covering pY : Y ! X and aY 7! a, and a morphism is Y 7! Y 0

which maps aY to a0Y . We consider (P�) as a projective system in CX;fin
(thus, aY for each Y gives no restriction on morphisms in CX;fin).
It can be shown that

Hompro�CX;fin
((P�); Z) := lim

!�
HomCX;fin

(P�; Z) �= p�1Z (a):

Then, one can show

Aut(Fa)
opposite
= Aut((P�)) = proj lim

�
Aut(P�)

opposite
= �1(dX; a):

The �rst identity comes from the Yoneda lemma, and the last equality is

because Aut(P�)
o is the �nite quotient of �1(X; a) correspondinng to P�.

Both equalities are �xed because a system (a�) is �xed. In this case, the

category CX;fin is equivalent to the category of �nite sets with continuous

action by �1(dX; a), which we call the category of �nite �1(dX; a)-sets.
Proposition 3.2. CX;fin is categorically equivalent to the category of �nite

�1(dX; a)-sets. The equivalence is given by the �ber functor Fa.

3.3. Etale fundamental groups. In the following, we work in the category

of schemes. We shall only sketch the story of the etale fundamental groups

here. For the precise notions, see SGA1 [7].

De�nition 3.1. Let f : X ! Y be a morphism of �nite type, x 2 X,

y := f(x) 2 Y . We say f is unrami�ed at x, if OX;x=f(my)OX;x is a �nite

direct sum of �nite separable �eld extensions of k(y). If moreover f is at

at x, then f is said to be etale at x. If f is etale at every point x 2 X, then

f is called etale. If moreover f is �nite and Y is connected, then f : X ! Y

is called an etale covering.

IfX and Y are algebraic varieties over an algebraically closed �eldK � C ,
and if x is a closed point, then it is known that f is etale at x 2 X if and only

if f is �nite and unrami�ed as an analytic morphism [7, Chapter XII]. Thus,

the etale morphisms correctly generalize the notion of unrami�ed coverings.

De�nition 3.2. Let X be a locally noetherian connected scheme. Let CX be

the category of etale coverings of X, i.e., objects are �nite etale f : Y ! X,

and morphisms are Y 0 ! Y compatible with f 0; f .

This category is an analogue of that of �nite unrami�ed coverings of a

connected topological space X.
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There is a notion of Galois category. It consists of a category C and a

functor called the �ber functor, F : C ! Finsets, and satis�es six axioms

stated in [7, Chapter V-x4], which we shall omit here. Once we have a Galois

category, we can de�ne its fundamental group with base point F as Aut(F ),

i.e., the group of natural transformation from F to itself. This becomes a

pro�nite group. Two �ber functors F;G : C ! Finsets are non-canonically

isomorphic, and the set of natural transformations from F to G is a groupoid,

with objects �ber functors and morphisms natural transformations.

Similarly to the topological case, one can show the category equivalence

between CX and the category of the �nite sets with Aut(F )-continuous ac-

tion.

Theorem 3.1. [7, Chapter V] Let X be a locally noetherian connected scheme.

Take a geometric point a : Spec
 ! X, where 
 is an algebraically closed

�eld. Then, the category CX of �nite etale covers of X, with �ber functor

Fa : CX ! Finset, (f : Y ! X) 7! f�1(a) = Y �X Spec
, is a Galois

category.

De�nition 3.3.

�
alg
1 (X; a) := Aut(Fa):

Thus, the category of �nite etale covers of X is equivalent to the cagegory

of �nite sets with �
alg
1 (X; a)-action. Similarly to the topological case, we

may use (P�), the projective system of connected �nite Galois cover of X,

with a geometric point a� above a compatibly speci�ed. Then, by forgetting

a�, we may regard (P�) as a projective system in CX , which pro-represents

Fa. Then, we have

�
alg
1 (X; a) := Aut(Fa) = proj lim

�

(P�):

In this setting, the functoriality of �
alg
1 is easy. For f : X ! Y , we have

�
alg
1 (X; a) ! �

alg
1 (Y; f(a)), since (�)�Y X is a functor f� : CY ! CX , and

Fa � f� = Ff(a) : CY ! Finsets holds, so an element of Aut(Fa) gives an

element of Aut(Ff(a)), inducing

Aut(Fa) = �
alg
1 (X; a)! Aut(Ff(a)) = �

alg
1 (Y; f(a)):

Let X be a geometrically connected scheme over a �eld K. Let a :

Spec �K ! X be a geometric point. The sequence

X 
 �K ! X ! SpecK
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gives a short exact sequence

1! �
alg
1 (X 
K

�K; a)! �
alg
1 (X; a)! �

alg
1 (SpecK;Spec �K)! 1;

which is nothing but (2.2) (for a proof, see [7, Chapter X, XIII]).

It is easy to show that an object of CSpecK is a direct sum of a �nite number

of �nite separable extensions ofK, and morphisms are usual homomorphisms

of algebras over K. A connected object is the spectrum of a �eld. Once we

�x a geometric point a : Spec
 ! SpecK, the pro-object which represents

the �ber functor Fa is the system of �nite Galois extensions of K inside


 (this inclusion into 
 corresponds to choosing a point aN in the �ber

YN ! X above a). Thus, we have

�
alg
1 (SpecK;Spec
)

contra
= proj lim

L
Aut(SpecL=SpecK)

contra
= proj lim

L
G(L=K);

where L runs through the �nite Galois extensions ofK in 
, and it is nothing

but G(Ksep=K) where Ksep � 
 is the separable closure of K in 
.

Proposition 3.3. Let 
 be an algebraically closed �eld, and let K � 
 be

a sub�eld. Then

�1(SpecK;Spec
) = G(Ksep=K)

holds, where Ksep is the separable closure of K in 
.

The geometric part of the fundamental group can be obtained as follows.

A theorem called \Riemann's existence theorem" in SGA1[7, Theorem 5.1

P.332] assures that a �nite unrami�ed covering of an algebraic variety X

over C is algebraic and etale over X, i.e., CX and CX;fin are categorically

equivalent. An argument in SGA1[7, Chapter XIII] says that if X is an

algebraic variety over an algebraically closed �eld �K � C , then the base

change (�)
 �K C gives a category equivalence between CX
C and CX . These

category equivalences are compatible with �ber functors, so we have

�
alg
1 (X; a) = �

alg
1 (X 
 C ; a) = AutCX;fin

(Fa) = �1(dX; a):
Exercise 3.1. Show that the universal covering of the complex plane C mi-

nus 0 is still an algebraic variety, but that of C minus 0 and 1 is not. Even

in the former case, the covering map is not algebraic.

Exercise 3.2. Describe the category CX of �nite etale coverings where X

is the a�ne line minus one point 0 over Q .
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4. Arithmetic mapping class groups

4.1. The algebraic stack Mg;n over SpecZ. I do not give the de�nition

of an algebraic stack, the de�nition of the fundamental group of an algebraic

stack, and so on, in this note, simply because of my lack of ability to state

it concisely. I would just like to refer to [5] for the de�nition of an algebraic

stack, the moduli stack of genus g curves and the moduli stack of stable

curves and to [19] for the case of n pointed genus g curves. For the arithmetic

fundamental group of the moduli stack, see [26] (but this article requires

prerequisites on etale homotopy [1]).

We just sketch the picture. Let g, n be integers with 2g � 2 + n > 0. We

want to introduce the universal property of the moduli stack of n pointed

genus g curves.

De�nition 4.1. A family of n pointed genus g curves over a scheme S (a

family of (g; n)-curves in short), C ! S, is a proper smooth morphism

C� ! S, whose �bers are a proper smooth curves of genus g, with n sections

s1; s2; : : : ; sn : S ! C� given, where the images of the si do not intersect

each other, and C ! S is the complement of the image of these sections in

C�.

What we want is the universal family Cg;n ! Mg;n, which itself is a

family of (g; n)-curves, with the universal property that for any family of

(g; n)-curves C ! S, we have a unique morphism S !Mg;n such that C is

isomorphic to the base change Cg;n �Mg;n S. Unfortunately, we don't have

such a universal family in the category of schemes. So, we need to enlarge

the category to that of algebraic stacks.

I just describe some properties of algebraic stacks here. The category of

algebraic stacks contains the category of schemes as a full subcategory, and

algebraic stacks behave similarly to schemes. In the category of algebraic

stacks, we have the correct universal family Cg;n !Mg;n.

The notion of �nite morphisms, etale morphisms, connectedness, etc. can

be de�ned for algebraic stacks. In particular, for a connected algebraic stack,

we have the category of its �nite etale covers. It becomes a Galois category,

and we have its etale fundamental group.

The algebraic stack Mg;n is de�ned over SpecZ. But from now on, we

consider Mg;n over SpecQ .

4.2. The arithmetic fundamental group of the moduli stack. Takayuki

Oda [26] showed that the etale homotopy type of the algebraic stackMg;n
Q
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is the same as that of the analytic stack Man
g;n, and using Teichm�uller space,

showed that the latter object has the etale homotopy type K(\�g;n; 1) in the

sense of Artin-Mazur [1], where �g;n is the Teichm�uller-modular group or

the mapping class group of n-punctured genus g Riemann surfaces.

This shows as a corollary

�
alg
1 (Mg;n � Q ; a) �= b�g;n;

and gives a short exact sequence

1! �
alg
1 (Mg;n � Q ; a)! �

alg
1 (Mg;n; a)! G(Q =Q) ! 1: (4.1)

Also, the vanishing of �2 of Mg;n gives a short exact sequence

1! �
alg
1 (Cg;n; b)! �

alg
1 (Cg;n; b)! �

alg
1 (Mg;n; a)! 1; (4.2)

where a is a geometric point of Mg;n, Cg;n is the �ber on a, b a geometric

point of Cg;n. Hence, Cg;n is a (g; n)-curve over an algebraically closed �eld,

and �
alg
1 (Cg;n; b) is isomorphic to the pro�nite completion of the orientable

surface of (g; n)-type, i.e., the pro�nite completion of

�g;n :=< �1; �1; : : : ; �g; �g; 1; 2; : : : ; n;

[�1; �1][�2; �2] � � � [�g; �g]1 � � � n = 1 >; (4.3)

where i are paths around the punctures, �i; �i are usual generators of �1
of an orientable surface.

Once we are given a short exact sequence (4.2), in the same way as x2.3,
we have the monodromy representation

�g;n : �
alg
1 (Mg;n; a)! Out(�

alg
1 (Cg;n; b)) �= Out(b�g;n);

which is called arithmetic universal monodromy representation. This con-

tains the usual representation of the mapping class group �g;n in the fun-

damental group of the orientable surface �g;n, since the restriction of �g;n
to

�
alg
1 (Mg;n 
 Q ; b) � �

alg
1 (Mg;n; b)

coincides with
b�g;n ! Out(d�g;n);

which comes from the natural homomorphism

�g;n ! Out(�g;n):

This latter may be called the topological universal monodromy. What do

we get if we consider the arithmetic universal monodromy instead of the
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topological one? There is an interesting phenomenon: \arithmetic action

gives an obstruction to topological action."

5. A conjecture of Takayuki Oda

5.1. Weight �ltration on the fundamental group. Let C be a (g; n)-

curve, and �g;n be its (classical) fundamental group. We de�ne its weight

�ltration as follows.

De�nition 5.1. (Weight �ltration on �g;n.)

We de�ne a �ltration on �g;n

�g;n =W�1�g;n �W�2�g;n �W�3�g;n � � � �
By W�1 := �g;n,

W�2 :=< [�g;n;�g;n]; 1; 2; : : : ; n >norm;

where <>norm denotes the normal subgroup generated by elements inside <>

and [; ] denotes the commutator product, i are elements in the presentation

(4.3), and then

W�N :=< [W�i;W�j ]ji+ j = N >norm

inductively for N � 3.

Fix a prime l. We de�ne a similar �ltration on the pro-l completion

of �l
g;n. There, <>norm and [; ] are the topological closure of the normal

subgroup generated by the elements inside <>, the commutators, respectively.

It is easy to check that grj(�g;n) :=W�j=W�j�1 is abelian, and is central

in �g;n=W�j�1. In other words,W� is the fastest decreasing central �ltration
withW�2 containing 1; : : : ; n. It is known that each grj is a free Z-module

(free Zl-module, respectively for pro-l case) of �nite rank [2] [18].

This notion of weight �ltration came from the study of the mixed Hodge

structure on the fundamental groups, by Morgan and Hain [9], but for the

particular case of P1�f0; 1;1g, Ihara had worked on this [11] independently,
from an arithmetic motivation.

For x 2W�i; y 2W�j, [x; y] 2W�i�j holds, and this de�nes a Z-bilinear
product gr�i 
 gr�j ! gr�i�j . We de�ne

Gr�g;n := �1i=1gr�i(�g;n):

With the product [x; y], Gr�g;n becomes a Lie algebra over Z. For �l
g;n, we

have a Lie algebra over Zl.
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De�nition 5.2. (Induced �ltration) We equip � := Aut(�g;n), with the

following �ltration � = I0 � I�1 � I�2 � � � � , called induced �ltration:

 2 I�j , for any k 2 N and x 2W�k(�g;n), ~(x)x
�1 2W�k�j(�g;n) holds.

We pushout this �ltration to Out(�g;n). For an outer representation

� : G! Out(�g;n)

of any group G, we pullback the �ltration to G, and call it induced �ltration:

G = I�0(G) � I�1(G) � I�2(G) � � � � :
The same kind of �ltration is de�ned for G! Out(�l

g;n).

In this case, we de�ne

Gr(G) := �1i=1gr�i(G) = �1i=1I�i(G)=I�i�1(G)

(note that i starts from 1, not 0), then Gr(G) becomes a Lie algebra. By

de�nition, if we induce �ltrations by G ! G0 ! Out(�g;n), then Gr(G) ,!
Gr(G0). By [18] [2], GrOut(�g;n) injects to GrOut(�

l
g;n), and hence if

G! Out(�g;n)! Out(�l
g;n)

factors through G0 ! Out(�l
g;n), then GrG ,! GrG0 holds.

The natural homomorphism

�g;n ! Out(�g;n)

gives a natural �ltration to �g;n, which seems to go back to D. Johnson [17].

By composing with the natural morphism

Out(d�g;n)! Out(�l
g;n);

we have

�
alg
1 (Mg;n; a)! Out(�l

g;n);

hence �
alg
1 (Mg;n; a), �

alg
1 (Mg;n 
 Q ; a), is equipped with an induced �ltra-

tion, and we have a natural injection

Gr�
alg
1 (Mg;n; a) ,! Gr�

alg
1 (Mg;n 
 Q ; a);

and the image is a Lie algebra ideal.

Conjecture 5.1. (Conjectured by Takayuki Oda) The quotient of

Gr(�
alg
1 (Mg;n; a))

by the ideal

Gr(�
alg
1 (Mg;n 
 Q ; a))

is independent of g; n for 2g � 2 + n � 0.
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This conjecture is almost proved by a collection of works by Nakamura,

Ihara, Takao, myself, et. al. [21] [23] [16],

Theorem 5.1. The quotient of

Gr(�
alg
1 (Mg;n; a)) 
Zl Q l

by

Gr(�
alg
1 (Mg;n 
 Q ; a))
Zl Q l

is independent of g; n for 2g � 2 + n � 0.

The signi�cance of this result is that for M0;3 = SpecQ , the Lie algebra
is understood to some extent by deep results such as Anderson-Coleman-

Ihara's power series and Soul�e's non-vanishing of Galois cohomology, and it

implies a purely topological consequence: an obstruction to the surjectivity

of the Johnson homomorphisms.

5.2. Obstruction to the surjectivity of Johnson morphisms. For sim-

plicity, assume n = 0, and hence �g denotes the mapping class group

of genus g Riemann surfaces. Take � 2 I�m�g, and take a suitable lift

~� 2 I�mAut(�g) as in De�nition 5.2. Then, ~�(�)��1 2 W�m�1�g for any

� 2 �g. The map

�g !W�m�1�g; � 7! ~�(�)��1

gives a linear map �g=W�1�g ! gr�m�1�g. We denote H := �g=W�1�g

for homology, then we have Poincare duality H� �= H, and de�ne

hg;�(m) := Ker(Hom(H; gr�m�1�g)! gr�m�2�g);

where

Hom(H; gr�m�1�g)! gr�m�2�g

comes from

Hom(H; gr�m�1�g) �= H 
 gr�m�1�g
[;]! gr�m�2�g:

The lift ~� in Aut(�g) is mapped into hg;�(m). The ambiguity of taking the

lift in Aut is absorbed by taking the quotient by the action of gr�m�g by

� 7! [�; x] for x 2 gr�m�g, and we have an injective morphism

gr�m(�g) ,! hg;�=gr�m�g (� Hom(H; gr�m�1�g)=gr�m�g):

This is called the Johnson homomorphism [17] (see Morita [22]).

D. Johnson proved that this is an isomorphism for m = 1, but for general

m it is not necessarily surjective; actually S. Morita gave an obstruction

called Morita-trace [22] for m odd, m � 3.
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We can de�ne the same �ltration for

�
alg
1 (Mg)! Out(�l

g);

and then we have an injection

gr�m(�
alg
1 (Mg)) ,! (hg;�=gr�m�g)
 Zl � Hom(H; gr�m�1�

l
g)=gr�m�

l
g:

Theorem 5.1 asserts that

gr�m(�
alg
1 (Mg;n 
 Q )) ,! gr�m(�

alg
1 (Mg;n))

is not surjective for some m, it has cokernel of rank independent of g; n. As

I am going to explain in the next section, for (g; n) = (3; 0), it is known that

this cokernel is nontrivial at least for m = 4k + 2, k � 1 (and the rank has

a lower bound which is a linear function of m). Thus,

gr�m(�
alg
1 (Mg;n 
 Q )) ,! hg;�=gr�m�g 
 Zl

has also cokernel of at least that rank. This homomorphism is given by 
Zl
from the Johnson homomorphism, hence this gives an obstruction to the

surjectivity of Johnson homomorphisms, which is di�erent from Morita's

trace. The existence of such an obstruction was conjectured by Takayuki

Oda, and proved by myself [21] and H. Nakamura [23] independently.

5.3. The projective line minus three points again. Let P1011 denote

the projective line minus three points over Q . This curve does not deform

over Q , and hence the universal family is trivial,

C0;3 = P1011 and M0;3 = SpecQ :

Geometrically, thus, there is no monodromy, but arithmetically this has huge

monodromy as proved by Belyi (see x2.3).
Fix a prime l. We shall consider pro-l completion F l

2 of the free group F2

in two generators, so we have

�
alg
1 (P1011 
 Q ; a) = bF2 ! F l

2:

Then, we have a group homomorphism

�l
P1
011

: G(Q =Q) ! Out(F l
2):

The weight �ltration for the (g; n) = (0; 3) curve essentially coincides with

the lower central series

F l
2 = F l

2(1) � F l
2(2) � F l

2(3) � � � �
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de�ned inductively by F l
2(1) = F l

2, F
l
2(m) = [F l

2(m�1); F l
2] (here [; ] denotes

the closure of the commutator); the correspondence is

W�2m+1(F
l
2) =W�2m(F

l
2) = F l

2(m) (m � 1):

Ihara [11] started to study the �ltration of G(Q =Q) induced by this �ltration,
independently of the notion of weight etc. Note that, the case of (0; 3) in

Theorem 5.1, the geometric part vanishes, so the quotient in the theorem is

nothing but just GrG(Q=Q) in this case.

The following is a corollary of the theory of power-series by Anderson,

Coleman, Ihara, together with Soul�e's nonvanishing of Galois cohomology

(there is a list of references, see the references in [11]).

Theorem 5.2. In the Lie algebra Gr(G(Q =Q), each gr�m(G(Q =Q)) does

not vanish for odd m � 3.

Roughly speaking, by using Anderson-Coleman-Ihara's power-series, one

can construct a homomorphism

gr�2m(G(Q =Q)) ! HomG(Q=Q)(�1(SpecZ[1=l]);Zl(m)):

It can be described as a particular Kummer cocycle, and the morphism does

not vanish for odd m � 3 by Soul�e's result. The right-hand side is rank 1

up to torsion. An element �2m 2 gr�2m(G(Q =Q)) which does not vanish in

the right-hand side is called a Soul�e element.

The following conjecture is often contributed to Deligne [4].

Conjecture 5.2. (i) Gr(G(Q =Q))
Q l is generated by �2m (m � 3; odd).

(ii) Gr(G(Q =Q)) 
 Q l is a free graded Lie algebra.

The rank of Grm(G(Q =Q)) as Zl-module has a lower bound which is a linear

function of m, and these conjectures are veri�ed for m � 11 [20] [27], but

both conjectures seem to be still open. Ihara [14] recently showed that (ii)

implies (i).
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