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1 Introduction

1.1 What this is about

This material is intended for a course that will combine a study of combinatorial
structures with introductory recursive programming in Maple.

Maple is a system for doing mathematics on a computer. It is widely available in
colleges and universities. Most often Maple is used interactively. That is, you ask it
a question, like
> 2+2;

and it immediately gives you the answer, in this case

4

But programming is a different kettle of fish altogether. In programming you ask
the computer to carry out a sequence of instructions (program) that you have written,
and the computer then retires to its cave and does so. It will report back to you when
it has finished, but in the meantime it might be doing millions of things that you
asked it to do, while you will have been eating chocolates and reading a novel.

So programming is a very nontrivial way to relate to a computer. But recursive
programming raises the stakes once again. A recursive program is one that calls
itself in order to get the job done. Something like looking up the word horse in a
dictionary, and finding that it means horse , and actually learning something from
that exchange. Many high level computer languages are not capable of dealing with
recursive programs, and none of them would be suitable for use in a course such as
this one. Among languages that do permit recursive programming, one might ask,
“Why choose Maple? Why not C++?”

Indeed, Maple is not nearly as elegant a programming language as C++, and a
bunch of others that we might mention. In fact Maple is fairly creaky in a number
of respects. But there one thing you’ll have to admit: Maple is a brilliant mathe-
matician. It not only knows how to answer your questions interactively, and it not
only provides a fully equipped, if cranky, computer programming language; it also
knows an absolutely startling quantity of higher mathematics. C++ doesn’t know
any of that. For instance, some of the tasks for which we’ll write programs below are
already built-in to the Maple language.

So for use in a computing environment that will contain a lot of high grade math-
ematics, a language like Maple is very desirable. There are other languages with
similar capabilities, like Mathematica, for instance, but these are not nearly so widely
available to students in institutions of learning.
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That’s why Maple.
But why recursive? Anything that can be programmed recursively can also be pro-

grammed nonrecursively. In fact, nonrecursive programs often run much faster, and
are often more efficient, than recursive programs. But this is not primarily a course
about writing fast and efficient programs. It is about concepts. If a mathematical
object has an intrinsically recursive structure, then we will respect that structure by
writing a recursive program to build it. In such cases, the recursive programs will
often have great elegance and will faithfully mirror the evolution of the structures,
without letting it get hidden in a sea of bookkeeping and accounting.

Recursion is very much underrepresented in mathematics curricula these days.
One good way to get the subject out of hiding is by coupling it with a mathematical
discussion of some structures that are inherently recursive, as are the combinatorial
families in this work.

Finally, an excellent book on the nuts and bolts of Maple programming [PG] is
now available. We recommend the use of that work in conjunction with this course.

These notes express a point of view that emerged while Albert Nijenhuis and I
were writing Combinatorial Algorithms [NW], and specifically while we were writing
the second edition of same. Indeed, if you are familiar with that volume then you will
recognize that these notes cover much of the same ground as that work, adjusted for
changes in programming languages and fashions, and reflecting my current predilec-
tion for using recursion whenever it is natural to do so. To that collaboration with
Albert Nijenhuis I owe most of what I know about this subject. Jim Propp made a
number of comments that have improved the exposition.

2 About programming in Maple

These lecture notes are not primarily about Maple programming. They are intended
to be used together with a good exposition of the Maple programming language.
Since there aren’t many good books about that subject (one is [PG]), we will say a
few words here about Maple, and the programs will say a few more words.

The heart of writing a Maple program is in writing a Maple procedure. A proce-
dure is like a little box with a certain number of input quantities and some output
quantities. It is intended to be entirely self-contained so that other programs can
freely use it. A Maple procedure begins with lines like

findit:=proc(x,y,z,...)

local var1, var2, .. ;
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Here findit is the name of the procedure. The input and output quantities are
x,y,z,.... The variables var1, var2, ... are declared to be local variables.
Local variables are variables that are used inside your procedure findit, and by
declaring them to be local you are assuring that their names will not conflict with
other names that are used in the programs that use your procedure findit. For
instance, lots of programs use a variable named i as a summation variable. If you
declare i to be local to your procedure then even though a variable named i might
also appear in the main program that is using your procedure, their will be no conflict
between their names. Any change that is made to the external variable i will not affect
the one that is internal to procedure findit and conversely. Generally speaking, it is
good programming practice to declare every variable that occurs inside your procedure
to be local, except for the input and output variables x,y,z,..., so they will not
affect other parts of the program.

Here is a Maple procedure addthem whose mission in life is to add up the members
of a given list and return the sum.

addthem:=proc(x)

local i;

RETURN(add(x[i],i=1..nops(x)));

end:

In this procedure, x is the input list, and the variable i is declared to be local. In
that way, the external program that uses this procedure can also name variables as i,
if it wishes to, and they will not conflict with the ones that are local to this procedure
findit. To use this routine to add up the numbers in the list [3,1,8,19], just type
> addthem([3,1,8,19]);

in a Maple worksheet, for instance, and Maple will reply

31

The next one is a recursive Maple procedure that will calculate n!.

fact:=proc(n):

# Computes n factorial

if n=0 then RETURN(1) else RETURN(n*fact(n-1)) fi:

end:
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Recursive programs have a certain spare beauty. Notice that this one gets its answer
by calling itself with a lower value of n, and then multiplying by n.

Here is a recursive program that will calculate the gcd of two given positive integers
m and n. It expresses the mathematical fact that the gcd of m and n is the same as
the gcd of n and m mod n. Thus gcd(18, 14) = gcd(14, 4) = gcd(4, 2) = gcd(2, 0) = 2.
The Maple program is the following.

gcdiv:=proc(m,n):

# Finds the gcd of two given integers

if n=0 then RETURN(m) else RETURN(gcdiv(n,m mod n)) fi:

end:

A list, in Maple, consists of a left bracket, a number of items separated by commas,
and a right bracket. Thus, yy:=[a,g,379,ww,sam,94] is a Maple list. If tt is a list,
then its successive entries are tt[1], tt[2], ..., so that yy[3] is 379, for instance.
The number of items in a list tt is nops(tt). For example, nops(yy) is 6.

A few more rarefied Maple instructions that will be of much use to us here are
the following.

1. The op command. If you give to the op command a bracketed list, such as
[2,1,5], it will strip off the outermost brackets, leaving the bare sequence.
Thus op([9,3,17]) gives 9,3,17.

2. We can augment a list by using the op command. Suppose we have the list
xx:=[1,2,3,4]; and we want to make it into the list [1,2,3,4,8]. This can
be done by executing the command y:=[op(xx),8], in which the inner op strips
off the brackets, then we adjoin the 8, and then we enclose the result in a new
pair of brackets to achieve the desired effect.

3. The map command is a powerful way to distribute the effect of a function
throughout a list. If we have a function, say the function

> f:=x->x^2;

and we give the command

> map(f,[1,2,3,4]); then the result will be the list

[1,4,9,16]

in which the function has been applied to every element of the input list.
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4. Another command of this kind is applyop. This is similar to map, except that
it applies the mapping only to one chosen part of the object list instead of to
all. More precisely, the instruction applyop(f,j,zz); will apply the mapping
f only to the jth element of zz. For example,

> applyop(x->x^2,2,[1,2,3,4]);

[1,4,3,4]

and since applyop(u->u^2,2,t) will square the 2nd entry of a given list t, we
can map it too, with results like this:

> map(t->applyop(u->u^2,2,t),[[1,2,3],[1,4,5],[4,4,6]]);

[[1,4,3],[1,16,5],[4,16,6]]

2.1 Exercises

Write the following programs as self contained Maple procedures. In each case debug
the program, run it on the sample problem, and hand in the program itself and the
printed output.

1. Write procedure sumcoeff whose input is a polynomial in x, as an expression,
and whose output is the sum of the absolute values of the coefficients of all of
the powers of x in that polynomial. Run sumcoeff(3*x^2+5*x-7), for which
your program should return the value 15.

2. Write a procedure sumsqdiv whose input is a positive integer n and whose
output is the sum of the squares of the divisors of n including 1 and n itself.
Test your program by running sumsqdiv(12) and checking the answer.

3. Write revlist, a Maple procedure whose input is a list and whose output is
the same list in reverse order. Try your program by calling for
revlist([[a,b],[3,q],[1,h]]);.

4. Write a procedure mod3primes whose input is n, and whose output is the list
of just those prime numbers between 1 and n that leave a remainder of 3 when
divided by 4. (See the Maple instruction mod and see also isprime in the
package numtheory). Run the program with n = 100 and hand in that output.
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5. Explain the error message that you will get if you run try(3); where the
procedure try is the following:

try:=proc(x)

local zz;

x:=x^2+1;

zz:=3;

RETURN(zz);

end:

3 Sets and subsets

3.1 What they are

We discuss only finite sets. A set is a collection of objects. The set S = {1, 2, 3, 4} is
the collection of those four objects. No significance is attached to the order in which
the elements of a set are listed. Thus S = {1, 2, 3} = {1, 3, 2} = {3, 1, 2} are all the
same set. A set is like a club: all that matters is whether you are a member or not.

The set of no objects at all is the empty set, written ∅. A subset T of a set S,
written T ⊆ S, is a set all of whose elements are also members of S, e.g., {1, 3} ⊆
{1, 2, 3, 4}, and ∅ ⊆ S is true whatever the set S might be.

3.2 How many there are

The empty set has exactly one subset: itself. The set S = {1} of 1 object has exactly
two subsets, namely ∅ and {1}. In general, how many subsets does a set of n objects
have?

Let’s gather a little more data first. If f(n) is the answer then we have already
noted that f(0) = 1 and f(1) = 2. The reader will quickly check that f(2) = 4 and
f(3) = 8, so our sequence of values of f(n) begins as 1, 2, 4, 8, . . .. Well, the next
value might be 611, but we would bet on 16. In fact, it is starting to look suspiciously
as if a set S of n objects has exactly f(n) = 2n subsets, for each n = 0, 1, 2, . . ..

But why?
Suppose our set S is {1, 2, 3, 4}. Let’s construct a subset T of it. Ready? Pick

up the element 1. Shall we put it into the subset T that we are constructing, or not?
We can make that decision in two ways, “1 is in” or “1 is out.” Having decided the
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fate of 1, we move on to 2. Shall we put 2 into the subset that we are building, or
not? That decision also can be made in two ways. So both of these decisions, the
one that affects 1 and the one that affects 2, can be made in four ways. Similarly,
we can decide whether 3 shall or shall not be in the subset that we’re making in two
ways, and two ways for 4, likewise. So this set S of four elements has 16 subsets,
one corresponding to each way that we make all four of the decisions that affect the
memberships of 1,2,3 and 4.

Theorem 3.1 For each n = 0, 1, 2, . . ., the set Sn = {1, 2, . . . , n} has exactly 2n

subsets.

Proof. Clearly true for n = 0. If n > 0 then Sn has two kinds of subsets, those that
do contain n (east-side sets) and those that don’t (west-side sets). Evidently there
are equal numbers of these two kinds of sets since if we delete n from an east-side
set we get a west-side set, and this mapping is 1-1. But by induction, there are 2n−1

east-side sets. Thus there are 2 · 2n−1 = 2n subsets altogether. 2

Example 3.1. Suppose T ⊆ {1, 2, . . . , n}. We’ll define the spread s(T ) of T to be
the largest element of T minus its smallest element. So s({3, 4, 7}) = 4, for instance.
OK, for a fixed integers n > 1 and 1 ≤ s ≤ n − 1, how many subsets of {1, 2, . . . , n}
have spread s?

If the smallest element of such a subset is m, then the largest is m + s, for
1 ≤ m ≤ n − s. What about the other elements of such a subset? They can be any
subset at all of the set {m + 1, m + 2, . . . , m + s − 1}, so there are 2s−1 such subsets
for every m, 1 ≤ m ≤ n − s, making a total of (n − s)2s−1 subsets of {1, 2, . . . , n}
that have spread s. 2

3.3 Probabilities and averages

Continuing the example above, what is the probability that a randomly chosen subset
T ⊆ {1, 2, . . . , n} will have spread s? It is the number of subsets of spread s divided
by the number of subsets, i.e., (n − s)2s−1/2n = (n − s)2s−1−n. Thus, for each n > 1
and 1 ≤ s ≤ n − 1, the probability ps that a subset has spread s is

ps = (n − s)2s−1−n. (n > 1; 1 ≤ s ≤ n − 1) (3.1)

Now let’s find the average spread of one of these subsets. But first we’d better
talk about how to find averages of things in general.
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Suppose that students’ scores, on a scale of 1-10, from a certain exam are

7, 4, 5, 5, 8, 9, 6, 8, 5, 4, 1, 6, 4, 7, 6, 9, 9, 7, 10, 3, 5.

How might we calculate the class average? The straightforward way would be to add
up all of the scores and divide by the number of scores, to get

7 + 4 + 5 + 5 + 8 + 6 + 8 + 5 + 4 + 1 + 6 + 4 + 7 + 6 + 9 + 9 + 7 + 10 + 3 + 5

20

=
119

20
= 5.95.

After doing this for a few times you would quickly learn to group the data before
calculating. You would say that one student got a 1, none got a 2, one score was
3, there were three 4’s, four 5’s, three 6’s, three 7’s, two 8’s, two 9’s and one 10.
Therefore the average is

1 · 1 + 0 · 2 + 1 · 3 + 3 · 4 + 4 · 5 + 3 · 6 + 3 · 7 + 2 · 8 + 2 · 9 + 1 · 10

20
= 5.95,

as before.
In the numerator of the grouped method of finding the average, we see the sum of

each integer times the frequency with which it occurred, and in the denominator is
the total number of students. So if for each j = 0, 1, 2, . . . , 10, the number of students
who got grade j was nj, then this formula says that the average is

∑10
j=0 jnj

N
=

10∑

j=0

j
(

nj

N

)

where N =
∑

j nj is the total number of students. But in this formula we recognize
the quantity in parentheses, nj/N , as the probability that a student will get a score
of j. So the grouped formula for finding the average score is

average =
∑

j

jpj. (3.2)

So what is the average spread of a subset of {1, 2, ..., n}? The probability of spread
s is given by (3.1), so by (3.2) the average spread is

s̄(n) =
n−1∑

s=1

s(n − s)2s−1−n. (3.3)
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This sum can actually be expressed in a simple, closed form. To do this without1

having to think about it, you can open a Maple worksheet and type

simplify(sum(s ∗ (n− s) ∗ 2ˆ(s− 1− n), s = 1..n− 1));

Maple will respond with n − 3 + (n + 3)2−n as the value of the sum. The average
spread of a subset of {1, 2, . . . , n} is therefore very close to n − 3.

3.4 k-subsets

A k-subset of a set S is a subset whose cardinality is k. The 2-subsets of {1, 2, 3, 4}
are {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}. There are six of them. In general, the
number is given by the following theorem.

Theorem 3.2 A set of n objects has exactly
(

n
k

)
= n!/(k!(n − k)!) k-subsets.

To see why this is so, ask first in how many ways we can make an ordered selection
of k elements from a set of n elements. The first element can be chosen in n ways,
the second in n− 1 ways, . . ., the kth in n− k +1 ways, so the k-tuple can be chosen
in

n(n − 1)(n − 2) . . . (n − k + 1) =
n!

(n − k)!

different ways. Now every k-subset gives rise to k! different ordered selections, one
for each way of arranging its members. Hence the number of k-subsets is equal to
the number of ordered selections divided by k!, which is n!/(k!(n − k)!), or

(
n
k

)
, as

claimed.
The numbers

(
n
k

)
(“n choose k”) are the famous binomial coefficients. If n is a

nonnegative integer, then the binomial coefficient
(

n
k

)
vanishes if k < 0 or k > n.

If n is any real number then the binomial coefficient is well-defined as long as k is
a nonnegative integer. Indeed

(
n

k

)
=

n!

k!(n − k)!
=

n(n − 1)(n − 2) . . . (n − k + 1)

k!
,

1This sum can be done in many ways. But computers can now do all sums of this general kind,
completely automatically, giving you a simple formula for the sum, or else proving that no simple
formula exists. So why work? Be lazy, and just hit Enter. See [PWZ] for details.
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1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

. . . . . . . . .

Figure 3.1: The Pascal triangle of binomial coefficients

and that makes perfect sense even if, say, n = −3/4. For example,

(
−3

4

2

)
=

(−3
4
)(−7

4
)

2
=

21

32
.

The binomial coefficients can be nicely displayed in a triangular array called Pas-
cal’s triangle. The rows are indexed by n = 0, 1, 2, 3, . . ., and in the nth row of
Pascal’s triangle there are the numbers

(
n
0

)
,
(

n
1

)
,
(

n
2

)
, . . . ,

(
n
n

)
. The triangle begins as

in Fig. 3.4.

3.5 East side, west side,. . . (I)

A quick glance at Pascal’s triangle suggests that each entry in it is the sum of the
two entries that are northeast and northwest of it. In symbols, what we see is that

(
n

k

)
=

(
n − 1

k − 1

)
+

(
n − 1

k

)
(3.4)

There are many ways to prove this, but the one that we will use is the east-side-west-
side paradigm, because the same method will work on a variety of problems that we
will encounter later.

Let’s do it. The number
(

n
k

)
counts the k-subsets of the set {1, 2, 3, . . . , n}. Imag-

ine that all of these k-subsets have been strewn on the sidewalks and boulevards,
all around the town. Now take a walking tour and inspect them as they lie on the
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ground. If a certain subset does not contain the letter n, then move it to the east
side of town, and if it does contain n then move it to the west side.

Now instead of one large collection of subsets all over the place, we have two nice
neat piles, one on the east side, and the other on the west side of town.

How many subsets are on the east side? These are the ones that don’t have n in
them. Since they don’t have n then they must all be subsets of {1, 2, 3 . . . , n − 1}.
Since they are k-subsets, they must be k-subsets of {1, 2, . . . , n − 1}, and there are(

n−1
k

)
of these.

So the total number of k-subsets of {1, 2, . . . , n} that are on the east side of town

is
(

n−1
k

)
.

How many subsets are on the west side? These are the ones that do have n in
them. If such a k-subset does contain n, what must the rest of the elements of the
subset be? Evidently they must be some (k− 1)-subset of {1, 2, . . . , n− 1}, and there

are
(

n−1
k−1

)
of these.

So the total number of k-subsets of {1, 2, . . . , n} that are on the west side of town

is
(

n−1
k−1

)
.

Therefore the number of all k-subsets, which is
(

n
k

)
, must be equal to

(
n−1

k

)
+
(

n−1
k−1

)

since every k-subset landed on one side of town or the other. 2

That proof was perhaps a bit more complicated than this particular situation
requires, but it has the advantage that it will apply in numerous similar situations.

3.6 Making lists and random choices of sets and subsets

The counting arguments are directly wired to algorithms for making lists and for
choosing objects at random.

Consider the question of making a list of all subsets of {1, 2, . . . , n}. We discovered
that there are 2n of these by observing that a subset can be described by giving the
status of each possible element {1, 2, . . . , n} as “in” or “out”. This can conveniently
be done with a vector of 0’s and 1’s, where a 1 means that the element is in, and a
0 means it is out, of the subset under consideration. Thus 0001 is the subset {4} of
{1, 2, 3, 4}, while 1010 is the subset {1, 3} and 0000 is the empty subset.

We can make a list L(n) of all subsets of {1, 2, . . . , n} recursively, as follows. Take
the list L(n − 1) and augment every string of 0’s and 1’s on the list by adjoining a 0
to the beginning of the string. Then take the same list L(n − 1) and augment every
string of 0’s and 1’s on the list by adjoining a 1 to the end of the string. The union
of the two lists just produced is the desired list L(n).
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For instance, the list L(1) is [[0],[1]]. So, for n = 2, we first glue a 0 onto
the beginning of each member of L(1), getting [[0,0],[0,1]], and next we glue a 1
onto the beginning of each member of L(1), which gives [[1,0],[1,1]]. Now L(2) is
the union of these two lists, namely L(2) =[[0,0],[0,1],[1,0],[1,1]]. A Maple
program2 that performs this task is as follows.

GlueIt:=(z,d)->[d,op(z)]:
Subsets:=proc(n)
local east, west ; options remember;
if n=0 then RETURN([[]])

else
east:=map(GlueIt,Subsets(n-1),0);
west:=map(GlueIt,Subsets(n-1),1);
RETURN([op(east),op(west)])

fi;
end:

If we call this program with
> Subsets(3)

for instance, then Maple will reply with

[[0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1]] (3.5)

Next suppose we want to choose a subset of {1, 2, . . . , n} uniformly at random
(uar), i.e., in such a way that each of the 2n possible subsets will have an equal
chance of being selected. That’s easy too. Just choose a random integer, using your
random number generator, in the range 0, 1, . . . , 2n − 1, and express it as a binary
string of 0’s and 1’s, and you’re all done. Equivalently, toss a fair coin n times. After
the ith toss, put the letter i into the random subset that is under construction if the
coin came up as Heads, and leave i out of the subset if it landed as Tails. Note that in
Maple, a call to rand returns a function for generating random numbers, rather than
the random numbers themselves. A Maple program3 for choosing a random subset of
{1, 2, . . . , n} is shown below.

2See the program notes on page 62.
3See the program notes on page 62.
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RandSub:=proc(n)
local rn, set, i;
rn:=rand(0..1):
set:=[]:
for i from 1 to n do set:=[op(set),rn()] od:
RETURN(set):
end:

So much for all subsets of n things. Let’s turn now to subsets of given cardinality
k (“k-subsets”). With k-subsets we can also use the east side-west side method. To
make a list L(n, k) of all k-subsets of an n-set we recursively make the lists L(n −
1, k − 1) and L(n − 1, k). The desired list L(n, k) is obtained by beginning with the
list L(n−1, k) and following that by the list that is obtained by adjoining the element
n to each member of L(n − 1, k − 1). Let’s write that symbolically as

L(n, k) = L(n − 1, k), L(n − 1, k − 1) ⊗ n. (3.6)

To implement that in Maple, we will represent each subset by a list of its members.
Here is a procedure4 that will list all of the k-subsets of {1, 2, . . . , n}.

westop:=(y,m)->[op(y),m]:
ListKSubsets:=proc(n,k)
local east,west ; options remember;
#Returns a list of the k-subsets of {1,2,...,n}
if n<0 or k<0 or k>n then RETURN([])

elif n=0 or k=0 then RETURN([[]])
else

east:=ListKSubsets(n-1,k);west:=ListKSubsets(n-1,k-1);
west:=map(westop,west,n);
RETURN([op(east),op(west)]);

fi;
end:

For example, a call to ListKSubsets(5,3) produces the response

[[1, 2, 3], [1, 2, 4], [1, 3, 4], [2, 3, 4], [1, 2, 5], [1, 3, 5], [2, 3, 5], [1, 4, 5], [2, 4, 5], [3, 4, 5]].
(3.7)

4See the program notes on page 62.
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To choose, uniformly at random, a k-subset of {1, . . . , n}, here’s what to do: With

probability
(

n−1
k−1

)
/
(

n
k

)
= k/n choose uar a (k − 1)-subset of {1, . . . , n− 1} and adjoin

n to it, or with probability 1 − k/n, simply output a randomly chosen k-subset of
{1, . . . , n − 1}. The Maple program5 follows.

RandomKSubsets:=proc(n,k)
local rno,east,west ;
if n<0 or k<0 or k>n then RETURN()

elif n=0 and k=0 then RETURN([])
else

rno:=10^(-12)*rand();
if rno<k/n then
east:=RandomKSubsets(n-1,k-1);
RETURN([op(east),n])

else
west:=RandomKSubsets(n-1,k);
RETURN(west)

fi;fi;
end:

3.7 Ranking sets and subsets

Suppose we have a list: {horse, turtle, cow, pig}. The rank of an element of the list
is simply its position in the list, with however one technical ingredient added: the
ranks start at 0. Thus, in the list above, the rank of “horse” is 0, the rank of “turtle”
is 1, the rank of cow is 2 and the rank of “pig” is 3.

For a somewhat more realistic example, in the list (3.7), the rank of [1,2,3] is
0, and the rank of [2,3,4] is 3.

The ranking problem is this: given an element of a list, find its rank in that list.
Of course if the list itself has actually been computed already then we can find the
rank of an element just by searching for it in the list. In the ranking problems that
we consider here, one should think of the lists as not having been already computed,
and we are being asked to find the rank of a given element in a list even though the
list is not available.

Example: What’s the rank of the subset [3,4,7,9] in the list of all of the 210

subsets of {1, 2, 3, . . . , 10}?
To answer this, first observe that we are representing (“encoding”) subsets by

strings of 0’s and 1’s. This particular subset is therefore the string {0011001010}.
5See the program notes on page 63.
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Next, the way we listed the subsets was that we first listed all of the strings
that begin with a 0 and then we listed all that begin with a 1. Now here’s the key
point: this string ss begins with a 0. Therefore it occurs in the first half of the
list, and its position in that first half is the same as the rank of the truncated string
ss’:={011001010} in the shorter list of all subsets of {2, 3, . . . , 10}.

But now suppose that the given string ss begins with a 1, say

ss := {1011001010}.

Then it lies in the second half of the full list L(10), and what is its rank in that full
list? Well, all of the 29 strings that begin with a 0 precede it in the full list. So its
rank is 29 plus the rank of the truncated string ss′ := {011001010}.

The beauty of the recursive view of the world is that we don’t have to say “con-
tiuing in this way,” or “and so on,” at this point. Instead we can just leave it at that
and write out a formal scheme for ranking a given string of n 0’s and 1’s in the list
L(n).

Let ss be the given string, let ss′ denote the truncation of ss that is obtained by
deleting its leading 0 or 1, and let rank(ss, L(n)) denote the rank of ss in the list
L(n). If the first bit of ss is a 0, then

rank(ss, L(n)) = rank(ss′, L(n − 1)),

while if the first bit is a 1 then

rank(ss, L(n)) = 2n−1 + rank(ss′, L(n − 1)).

Thus we have the following Maple program for computing the rank of a subset. The
subset is input as an array of 0’s and 1’s.

truncate:=ss->[op(2..nops(ss),ss)]:
RankSubset:=proc(ss)
#Finds the rank of subset ss in the list L(nn), where
#nn is the length of the array ss.
local nn;
nn:=nops(ss);
if nn=0 then RETURN(0)

elif ss[1]=0 then RETURN(RankSubset(truncate(ss)))
else RETURN(RankSubset(truncate(ss))+2^(nn-1))

fi;
end:
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Now we can answer the question that was posed in the example above. To find the
rank of the subset [3,4,7,9] in the list of all of the 210 subsets of {1, 2, 3, . . . , 10},
we call

RankSubset([0, 0, 1, 1, 0, 0, 1, 0, 1, 0]).

Maple returns 202, so this is the subset of rank 202 in the list, which is to say that
[3,4,7,9] is the 203rd subset in the list of all 1024 subsets of {1, 2, 3, . . . , 10}.

Now we turn to ranking k-subsets. Given some k-subset S, what is the rank of S
in the list of all

(
n
k

)
k-subsets of {1, 2, 3, . . . , n}? But, in exactly which list of those

k-subsets? The list that we’ll have in mind is the list L(n, k) that is produced by
ListKSubsets above.

In that list L(n, k), all of the k-subsets that do not contain the letter n precede all
of the subsets that do contain n. But that says it all. So to find the rank of a given
k-subset S in L(n, k),we ask if n ∈ S or not. If n /∈ S, then the rank of our set is the
same as its rank in the smaller list L(n− 1, k) of all k-subsets of {1, 2, . . . , n− 1}. If,

on the other hand, n ∈ S, then let S ′ = S\{n}. The rank of S in L(n, k) is
(

n−1
k

)

plus the rank of S ′ in L(n − 1, k − 1). The Maple program is as follows.

cutn:=w->[op(1..nops(w)-1,w)];
RankKSubset:=proc(ss,n,k);

#Finds the rank of the k-subset ss in the list of all
#k-subsets of 1,...,n. ss is given as a list of members.
if k=0 then RETURN(0)

elif ss[k]=n
then RETURN(RankKSubset(cutn(ss),n-1,k-1)+binomial(n-1,k))
else RETURN(RankKSubset(ss,n-1,k))

fi:
end:

Now if we call

> RankKSubset([1,2,5],5,3);

Maple responds with 4, in agreement with eq. (3.7).

3.8 Unranking sets and subsets

The unranking problem is the inverse of the ranking problem. In ranking, we are
given a combinatorial object, such as a set, and we are asked to find its rank on a
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certain list. In unranking we are given an integer r and a list, and we are asked to
find the object whose rank is r on that list.

For instance, which is the subset of rank 784 in the list of all subsets of 13 objects?
To answer that, observe that there are 213 = 8192 subsets on the full list, so the one
we seek lies in the first half of the list. But every subset in the first half of the list
does not contain the first object. That is, the first entry in the array of 0’s and 1’s
that describes the subset will be a 0. The rest of that array will be the set of rank
784 on the list of all subsets of 12 objects.

Suppose we had asked for the subset of rank 5000 in the same list. Then the first
entry of the output array would be 1. The rest of the output array would be the set
of rank 212 − 5000 = 3192 in the list of all subsets of 12 objects.

This reasoning leads to the following Maple program.

UnrankSubsets:=proc(r,n)
#Finds the subset of rank r in the list of all subsets of n things
#Subsets are presented as bit arrays
if n=0 then RETURN([])

elif r<2^(n-1)
then RETURN([0,op(UnrankSubsets(r,n-1))])
else RETURN([1,op(UnrankSubsets(r-2^(n-1),n-1))])

fi:
end:

So if we call

> UnrankSubsets(784,13);

then Maple would quickly inform us that the subset of rank 784 in the list of all
subsets of 13 things is

[0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0].

3.9 Exercises

1. How many subsets of n things have even cardinality? Your answer should not
contain any summations.

2. How many subsets of {1, 2, . . . , n} contain no two consecutive elements? Hint:
Let f(n) be the number, and find a recurrence formula for f(n) by the east
side-west side way of thinking.
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3. How many k-subsets of {1, 2, . . . , n} contain no two consecutive elements?

4. (a) How many ordered pairs (A, B) of subsets of {1, 2, . . . , n} are there such
that A, B are disjoint? Your answer should be a simple function of n, with
no summation signs involved.

(b) How many ordered pairs (A, B) of subsets of {1, 2, . . . , n} are there such
that B ⊆ A? Your answer should be a simple function of n, with no
summation signs involved.

(c) Explain the striking similarity of the answers to 4a and 4b above. That
is, show that those two answers must be the same without finding either
answer explicitly.

5. Find a simple formula for the average of the squares of the first n whole numbers.
For the average of the squares of the first n odd numbers.

6. Write, debug, and run Maple programs that will do each of the following:

(a) Calculate n!, recursively.

(b) Make a list of all subsets of {1, 2, . . . , n} that contain no two consecutive
elements, recursively.

(c) Choose, uar, a pair of disjoint subsets of {1, 2, . . . , n}.
(d) Calculate the average size of the largest gap between two consecutive ele-

ments of a subset of {1, 2, . . . , n}, and plot a graph of this for n = 5(5)100.

(e) Find the first four perfect numbers. A number n is perfect if it is equal to
the sum of all of its divisors except for itself. The first two perfect numbers
are 6 and 28. Use the Maple package numtheory.

7. Similarly to the recursive construction (3.6), write a Maple procedure that will,
for n, k given, output a list of all of the k-subsets of {1, 2, . . . , n}, subject to
the following restriction. The successor of each set S must be a set that can
be obtained from S by deleting one element and adjoining one element. For
example, here is the beginning of such a list when k=4 and n=7:

[1,2,3,4],[1,2,4,5],[2,3,4,5],[1,3,4,5],[1,2,3,5],[1,2,5,6],..

Hint: Modify the recurrence (3.6) by doing a bit of list-reversal.
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8. The purpose of this exercise is to run a few tests of Maple’s random number
generator, to see “how random” the numbers that it produces really are.

(a) Generate 1000 random real numbers x in the range 0 < x < 1. Tabulate
the number of them, n1, . . . , n10, that lie in each of the 10 subintervals
(0, .1), . . . , (.9, 1.0). Roughly 100 of them should lie in each of these subin-
tervals.

(b) Expand your program for problem 8a above, so it computes the χ2 (chi-
squared) statistic. To do this, suppose that n1, n2, . . . , n10 are the 10 occu-
pancy numbers that your program of exercise 8a produces. Then calculate

χ2 :=
10∑

i=1

(ni − 100)2

100
.

If Maple’s random numbers are “truly random” then 95 percent of the
time this χ2 statistic should lie between 3.3 and 17. Does it?

(c) The coupon-collector’s test. Generate random integers m, 1 ≤ m ≤ 10,
only until each of the integers 1, 2, . . . , 10 has been obtained at least once.
Tabulate the number of random integers that you generated until that com-
plete collection was obtained. Call all of that one “experiment.” Do 500
such experiments, and print out the average number of random numbers
that you used per experiment. If Maple’s random numbers are good ones,
then this average should be rather close to 10(1 + 1/2 + 1/3 + . . . + 1/10),
which is about 29.3. That is, if you want to see each integer 1, 2, . . . , 10 at
least once, then you had better generate about 29 random integers inde-
pendently. Is your observed average near 29?

9. (Gray codes) A Gray code is a list of all 2n possible strings of n 0’s and 1’s,
arranged so that successive strings on the list differ only in a single bit position.
For example,

000, 001, 011, 010, 110, 111, 101, 100

is such a list, when n = 3.

(a) Suppose L(n) is such a list, for a certain value of n. Then show that we can
get a list for n + 1 if we (a) concatenate a new 0 bit onto the beginning of
each member of L(n), and (b) follow that with the result of concatenating
a new 1 bit onto the beginning of each member of the reverse of the list
L(n).
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(b) Write a fully recursive Maple program which, given n, will output the list
L(n) described above.

(c) Let’s number the 2n strings on the list L(n) with the integers 0, 1, . . . , 2n−1.
The number that each string receives will be called its rank. Suppose we
are given a particular string σ, of n 0’s and 1’s. Show that the following
procedure will produce its rank in the list L(n): Read the string σ from
left to right. Each time you encounter a bit that has an even number of
1’s to its left, enter that bit unchanged into the output string σ′. Each
time you meet a bit that has an odd number of 1’s to its left in σ, enter
the complement of that bit into the output string σ′. When finished, σ′

will hold the binary digits of the rank of the input string σ.

4 Permutations and their cycles

4.1 What permutations are

A permutation of a set S is a 1-1 mapping of S to itself. The mapping

{1 → 3, 2 → 2, 3 → 5, 4 → 6, 5 → 4, 6 → 1}

is a permutation of the set {1, 2, 3, 4, 5, 6}. This particular permutation would usually
be written in the two line form

(
1 2 3 4 5 6
3 2 5 6 4 1

)

in which we see f(x) directly underneath x, for each x = 1, . . . , 6.

4.2 What cycles are

Suppose f is a permutation of some finite set S. We will define the cycles of f . If x
and y are two elements of S, say that x and y are equivalent if y = f j(x), for some
integer j <=> 0. Note here that f j(x) means the result of applying f j times to x,
if j ≥ 0, or of applying f−1 |j| times, if j < 0.

This is an equivalence relation on the set S. Indeed, x = f 0(x), so the relation is
reflexive. Further, if x = f j(y) then y = f−j(x), so the relation is symmetric. Finally,
if x = f j(y) and y = fk(z) then x = f j+k(z), which shows the transitivity.
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The cycles of f are the equivalence classes of this relation. But they aren’t just
sets. The elements within a cycle are arranged in an ordered list. To exhibit a cycle
explicitly, we choose an element x, follow it with f(x), then with f(f(x)), etc., until x
reappears. The cycle then terminates, and we begin the next cycle with some element
that is not in a cycle that has already been constructed.

In the example permutation above, there is a cycle 1 → 3 → 5 → 4 → 6 and
another one that contains only 2. Hence we can write this same permutation f in
cycle form by exhibiting the cycles explicitly, as (13546)(2). In the cycle form, the
parentheses delimit the cycles. Each element is the image, under the permutation, of
the element that is written immediately to its left, except that the first element of
each cycle is the image of the last element of the same cycle.

A larger example is provided by the permutation of 12 letters which in two line
form is

f =

(
1 2 3 4 5 6 7 8 9 10 11 12
5 12 1 9 7 6 3 10 4 8 2 11

)

This same permutation in cycle form is (1 5 7 3)(2 12 11)(4 9)(6)(8 10), and it has five
cycles altogether.

4.3 Counting permutations by cycles

There are n! permutations of n letters. These permutations have various numbers of
cycles, from a minimum of one cycle to a maximum of n cycles. For each n, k we
introduce the binomial-coefficient-like symbol

[
n
k

]
for the number of permutations of

n letters that have exactly k cycles. These are the Stirling cycle numbers. In the
literature they are also called the absolute values of the Stirling numbers of the first
kind. Thus, for each n we will have

∑
k

[
n
k

]
= n!.

Evidently
[
1
1

]
= 1,

[
2
1

]
= 1,

[
2
2

]
= 1. Of the six permutations of three letters, written

in cycle form, there are two that have one cycle, namely (123) and (132) (why not
(312)?), and three that have two cycles, namely (1)(23) and (2)(13) and (3)(12), and
one that has three cycles, namely (1)(2)(3). We can create a Pascal-like triangle that

has in it the Stirling cycle numbers
[
n
k

]
, instead of the binomial coefficients. This

triangle begins as in Fig. 4.2. The sum of the entries in the nth row is n!, for each
n = 1, 2, 3, . . .. We notice that it is no longer true that each entry in the triangle is
the sum of the two that are diagonally above it. But there is a very similar recurrence
that does hold in this triangle, and which greatly facilitates the computation of these
numbers.
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1

1 1

2 3 1

6 11 6 1

24 50 35 10 1

120 274 225 85 15 1

720 1764 1624 735 175 21 1

. . . . . . . . .

Figure 4.2: The triangle of Stirling cycle numbers

4.4 East side, west side ... (II)

Fix positive integers n, k. Imagine that all of the permutations of n letters that have
exactly k cycles have been strewn on the sidewalks and streets, all around the town.

Now take a walking tour and inspect them as they lie on the ground. If, in a certain
permutation, the letter n lives in a cycle all by itself, then move that permutation to
the east side of town, and if, on the contrary, n lives in a cycle with at least one other
letter, then move it to the west side.

Now instead of one large collection of permutations all over the place, we have
two nice neat piles, one on the east side, and the other on the west side of town.

How many permutations are on the east side? These are the ones in which n lives
all by itself in a cycle of length 1. How many such permutations are there? Well, since
n lives alone, the rest of the permutation must be comprised of k− 1 cycles involving
the other n − 1 letters. That means that altogether, there are

[
n−1
k−1

]
permutations

that are stacked up on the east side.
How many are on the west side? These are the ones in which n lives in a cycle

with other letters. If we remove the letter n from the cycle that it lives in, we will be
looking at some permutation of n − 1 letters into the same number, k, of cycles.

However, the converse is a bit sticky. If, conversely, we take some permutation of
n− 1 letters into k cycles, there are many ways in which we might insert the letter n
into one of the cycles. In fact, since there are n − 1 letters in the permutation, and
we can insert the letter n in between any two consecutive letters on any cycle, there
are n − 1 ways to insert n.

That means that the number of permutations on the west side is n − 1 times the
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number of permutations of n − 1 letters into k cycles, i.e., it is (n − 1)
[
n−1

k

]
.

Therefore the number of all permutations of n letters that have k cycles must be
equal to

[
n−1
k−1

]
+(n−1)

[
n−1

k

]
since every such permutation landed on one side of town

or the other.

Theorem 4.1 The Stirling cycle numbers
[
n
k

]
satisfy the Pascal-triangle-like recur-

rence [
n

k

]
=

[
n − 1

k − 1

]
+ (n − 1)

[
n − 1

k

]
. (4.1)

Here is a recursive Maple procedure to calculate the Stirling cycle numbers.

StirCyc:=proc(n,k)
options remember;

#Returns the no. of perms of n letters with k cycles
if n<1 then RETURN(0)

elif n=1 then
if k<>1 then RETURN(0)

else RETURN(1) fi
else

RETURN(StirCyc(n-1,k-1)+(n-1)*StirCyc(n-1,k))
fi:
end:

4.5 The generating function

From the recurrence (4.1) we can easily find a nice formula for the generating function

fn(x) =
def ∑

k

[
n

k

]
xk,

and that formula will come in handy when we want to find the average number of
cycles that permutations of n letters have.

To find it, multiply both sides of (4.1) by xk and sum over all integers k. On the
left side we will obtain fn(x), the unknown generating function. The second term on
the right will give us (n − 1)fn−1(x), so that part is easy.

What about the first term on the right? It is

∑

k

[
n − 1

k − 1

]
xk = x

∑

k

[
n − 1

k − 1

]
xk−1 = xfn−1(x).
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(Be sure to absorb that footwork before proceeding.) We have found that

fn(x) = xfn−1(x) + (n − 1)fn−1(x) = (x + n − 1)fn−1(x).

Since f1(x) = x (why?), we find successively that f2(x) = x(x + 1), f3(x) = x(x +
1)(x+2), and so forth. By induction, it is trivial now to establish the following result.

Theorem 4.2 The Stirling cycle number
[
n
k

]
is the coefficient of xk in the polynomial

x(x + 1) . . . (x + n − 1). That is, we have

n∑

k=1

[
n

k

]
xk = x(x + 1)(x + 2) . . . (x + n − 1). (4.2)

For example,
x(x + 1)(x + 2)(x + 3) = 6x + 11x2 + 6x3 + x4,

and the row of coefficients is identical with the fourth row in the triangle of Fig. 4.2
(do have a look, and check this).

4.6 The average number of cycles

On average, how many cycles does a permutation of n letters have? We use equation
(3.2) for the average expressed in terms of the probabilities of each value.

First, what is the probability that a permutation of n letters has exactly k cycles?
Evidently it is pk =

[
n
k

]
/n!. Now from equation (3.2) we have that the average number

of cycles among permutations of n letters, let’s call it k̄(n), is

k̄(n) =
∑

k

kpk

=
∑

k

k

[
n
k

]

n!

=
1

n!

[
d

dx

(∑

k

[
n

k

]
xk

)]

x=1

=
1

n!

[
d

dx
(x(x + 1)(x + 2) . . . (x + n − 1))

]

x=1

. (4.3)

If you ever have to differentiate a function g(x) which is a product of lots of things,
as is the case here, it’s usually better to use the fact that

g′(1) =
g′(1)

g(1)
g(1) = g(1)

(
d

dx
log (g(x))

)

x=1

.
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With g(x) = x(x + 1) . . . (x + n − 1), this reads as

g′(1) = n!

[
d

dx
(log x + log x + 1 + . . . + log (x + n − 1))

]

x=1

= n!
[
1

x
+

1

x + 1
+ . . . +

1

x + n − 1

]

x=1

= n!
(
1 +

1

2
+

1

3
+ . . . +

1

n

)
.

If we substitute this in (4.3) we find that

k̄(n) =
1

n!
n!(1 +

1

2
+ . . . +

1

n
) = 1 +

1

2
+ . . . +

1

n
.

Let’s define the nth harmonic number Hn to be

Hn =
def

1 +
1

2
+ . . . +

1

n
.

Theorem 4.3 The average number of cycles that permutations of n letters have is

the harmonic number Hn.

When n is large, the harmonic number Hn is well approximated by log n, as can be
seen by comparing it with the integral

∫ n
1

dt
t
. So permutations of n letters have an

average of about log n cycles.

4.7 An application

We consider an application of the theory of permutations and their cycles to a simple
algorithm for finding the largest member of a set or list.

Suppose {a1, a2, . . . , an} is a given list of n numbers, and we want to find the
largest number in the list. We’ll use the obvious algorithm, namely we will test each
ai, in turn, against the current contents of a certain quantity, winner, say. If ai >
winner, then ai will replace winner. Otherwise we just go to the next value of i.
More formally, we’ll do (using Maple) -
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bigone:=proc(a,n)
local winner,i;
# Returns the largest element of a given
# array a of length n.
winner:=a[1];
for i from 2 to n do

if a[i]>winner then winner:=a[i] fi;
od;

RETURN(winner);
end:

We want to know about the complexity of this routine, that is, about the amount
of labor that is involved in using it. At first glance this seems totally trivial since we
do one pairwise comparison (“if a[i]>winner then ..”) for each i, the thing does
about n pairwise comparisons, and that all there is to say, right?

No, there’s more to say. Aside from the pairwise comparisons of size, this algo-
rithm does another kind of work: it moves data from one place to another. Every
time that a[i] is bigger than winner, the program moves a[i] to winner. How
much work is that? It depends. What it depends on is how many times that data
movement takes place. In other words, it depends on the number of times that we
find an array entry a[i] that is larger than the current occupant of the winner’s
circle.

Let’s assume that the array entries are all distinct. Then all that matter are the
relative sizes of the array entries, so we might as well assume that the input array is
(the 2nd line of the 2-line form of) a permutation of n letters.

As we read (‘parse’) the values of the permutation from left to right, the number
of times the algorithm will have to replace the contents of winner is equal to the
number of values of i for which a[i] is larger than all a[j] for j < i. Another way to
think about it is that we are interested in the number of times a new world’s record
is set, as we read the values of the input permutation. For example, if the input list
is

[6,2,4,8,1,9,5,3,10,7]

then 4 world’s records are set, since each of the 4 entries 6,8,9,10 is larger than every
entry to its left.

An entry that is larger than everything to its left will be called an outstanding
element of the permutation. The number of times our algorithm will have to move
data is equal to the number of outstanding elements that the input array has. The
array displayed above has four outstanding elements. Every permutation has at least
one of them.
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So our question is, what is the average number of outstanding elements that per-
mutations of n letters have? Whatever that answer is, it’s also the average amount
of work that our algorithm will have to do by moving pieces of data around.

Theorem 4.4 The number of permutations of n letters that have k outstanding ele-

ments is equal to the number that have k cycles.

To see why this is so, we will exhibit an explicit 1-1 mapping between these two
flavors of permutations.

First, given a permutation of n letters with k cycles, say σ, do the following.

1. Standardize σ by presenting the cycles in such a way that the largest element of
each cycle appears first in that cycle, and the sequence of cycles of σ is arranged
so that, from left to right, the sequence of largest elements within each cycle
increases.

2. Then drop all of the parentheses that appear in the cycle presentation of σ.

3. Interpret the result as the second line of the two line form of a certain permu-
tation f(σ). This latter permutation has exactly k outstanding elements.

Conversely, if we are given the second line of the two line form of f(σ), we can
recover σ uniquely as follows.

1. Place a left parenthesis at the extreme left of the given line.

2. Read the line from left to right, and each time an element x is encountered that
is larger than every element to its left, put a right parenthesis and an opening
left parenthesis immediately to the left of x.

3. Place a right parenthesis at the extreme right of the given line.

4. Interpret the result as the cycle form of some permutation σ. That permutation
will have exactly k cycles. 2

For example, if we are given, in cycle form, σ = (362)(4)(517), which has three cycles,
we first standardize its presentation as (4)(623)(751). Then we drop the parentheses to
obtain f(σ) = 4623751, which is the second line of the 2-line form of a permutation that
has three outstanding elements.
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Conversely, if we are given f(σ) = 4623751, we insert parentheses as instructed to get
(4)(623)(751), which is the cycle form of a permutation σ with three cycles.

It follows from the theorem that the average number of outstanding elements of
permutations of n letters is the same as the average number of cycles, namely, exactly
Hn, and approximately log n.

Therefore, in the course of finding the largest element of a given array, it will
happen about log n times, on the average, that we will move some data from the
array to winner.

4.8 Making lists and random choices of permutations and

their cycles

Again, the counting arguments in this section will immediately suggest ways of making
lists of permutations with given numbers of cycles and of making random choices of
them.

Suppose n, k are given. To make a list of all permutations of n letters that have
k cycles, let’s list those in which n lives in a cycle by itself first, and then all of the
others second. Suppose L(n, k) denotes this list of permutations.

To list those in which n lives alone, we take the full list L(n−1, k−1), and we glue
onto each permutation on that list a new cycle that contains only the letter n. To list
those in which n lives in a cycle with other letters, we take the full list L(n−1, k), and
for each permutation on that list we construct n− 1 new permutations by inserting n
succesively into the “cracks” between consecutive elements around each of its cycles.

Let’s make the list L(4, 2). First take L(3, 1), which consists of the two permu-
tations (123) and (132), in cycle form. We glue onto these two a new cycle that
contains only the letter 4, to obtain the two east side permutations (123)(4) and
(132)(4). Now take the list L(3, 2), which consists of the three permutations (1)(23),
(2)(13), and (3)(12), and insert the new letter 4 into each position between two con-
secutive letters on each cycle. This yields the nine west side permutations (41)(23),
(1)(423), (1)(243) and (42)(13), (2)(413), (2)(143) and (43)(12), (3)(412), (3)(142).
The desired list L(4, 2) consists of the two east side followed by the nine west side
permutations that we have just constructed.

Here is a Maple procedure6 to make a list of all n-permutations with k cycles.
Remarkably, it turns out to be nicer to implement this using the 2-line form of the
permutation rather than the cycle form.

6See the program notes on page 63.
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eastop:=(y,j)->[op(y),j]:
westop:=(y,j)->[op(subsop(j=1+nops(y),y)),y[j]]:
ListKPerms:=proc(n,k)
local east,west,out,j ; options remember;
#Lists, in 2-line form, the perms of n letters, k cycles
if n<1 or k<1 or k>n then RETURN([])

else
if n=1 then RETURN([[1]])

else
east:=ListKPerms(n-1,k-1);west:=ListKPerms(n-1,k);
out:=map(eastop,east,n);
for j from 1 to n-1 do

out:=[op(out),op(map(westop,west,j))] od;
RETURN(out);fi;fi;
end:

To run this program, we might call ListKPerms(4,2); and the output would then
be as follows:

[[3, 1, 2, 4], [2, 3, 1, 4], [4, 1, 3, 2], [4, 2, 1, 3], [4, 3, 2, 1], [2, 4, 3, 1],

[3, 4, 1, 2], [1, 4, 2, 3], [2, 1, 4, 3], [3, 2, 4, 1], [1, 3, 4, 2]] (4.4)

Thus the output shows the eleven permutations of four letters that have two cycles.
Notice that each permutation is displayed with the second line of its 2-line form, and
not in its cycle form. Thus, the first output permutation, which is shown as [3, 1,

2, 4], is the permutation f for which f(1) = 3, f(2) = 1, f(3) = 2, f(4) = 4, which
indeed has two cycles.

How do we choose a permutation of n letters and k cycles uniformly at random?
First we decide whether we are going to choose an east side or a west side permu-
tation. How to do that? Well, the probability of choosing an east side permutation
is obviously p =

[
n−1
k−1

]
/
[
n
k

]
. So calculate the number p, and then choose a random

real number ξ in the range (0, 1). If ξ < p then the output will be an east side
permutation, and otherwise it will be a west side permutation.

If the output is to be from the east side, then here’s what to do. Recursively,
choose uar a permutation of n − 1 letters with k − 1 cycles, and then glue onto it a
new cycle that contains only the letter n. Finished. Otherwise, if you want a west
side permutation, then recursively choose uar a permutation of n − 1 letters with
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k cycles. In this permutation there are n − 1 cracks between consecutive letters on
cycles. Choose one of these cracks uar and insert the new letter n into the chosen
crack. All finished.

Here is a Maple procedure7 that will do the random selection. Again, the proce-
dure presents the output as the sequence of values of the permutation chosen, rather
than in cycle form.

RandKPerms:=proc(n,k)
local rno,r,east,west,rn ;
#Returns a random perm of n letters, k cycles, in 2-line form
if n=1 then

if k<>1 then RETURN([]) else RETURN([1]) fi;
else

rno:=10^(-12)*rand();
if rno<StirCyc(n-1,k-1)/StirCyc(n,k) then

east:=RandKPerms(n-1,k-1);
RETURN([op(east),n])

else
rn:=rand(1..n-1);r:=rn();
west:=RandKPerms(n-1,k);
RETURN(subsop(r=n,[op(west),west[r]]))

fi;fi;
end:

4.9 Ranking permutations by cycles

What is the rank of the permutation τ := (16)(382)(45)(7) (cycle form) of 8 letters
with 4 cycles in the list of all such permutations? Recall our scheme for listing these
permutations. First in the list are those in which the highest letter, in this case 8,
is a fixed point of the permutation. In τ , 8 is not a fixed point. Thus all of the

[
7
3

]

permutations in which 8 is a fixed point have lower rank than τ .
After those in the list come the

[
7
4

]
permutations σ for which σ(1) = 8, then the[

7
4

]
of them in which σ(2) = 8, etc. In our sample permutation τ we have τ(3) = 8.

Hence the rank of τ is equal to
[
7
3

]
+ 2

[
7
4

]
plus the rank of the deleted permutation

τ ′ := (16)(32)(45)(7) in the list of all permutations of 7 letters and 4 cycles. This
leads to the following Maple program for ranking permutations by cycles. It uses the
program StirCyc, of page 26 above.

7See the program notes on page 64.



34

RankPermsCycles:=proc(ss,n,k)
local jj,tt;
if k=n or k=0 then RETURN(0)

elif ss[n]=n
then RETURN(RankPermsCycles(subsop(n=NULL,ss),n-1,k-1))
else

member(n,ss,jj);
tt:=ss;
tt[jj]:=tt[n];
tt:=[op(1..n-1,tt)];
RETURN(RankPermsCycles(tt,n-1,k)+(jj-1)*StirCyc(n-1,k)+StirCyc(n-1,k-1))
fi:
end:

4.10 Exercises

1. Exhibit a permutation of n letters, other than the identity permutation, whose
“square” is equal to the identity. That is, find a permutation f such that f ◦ f
is equal to the identity. Such a permutation is called an involution. What do
the cycles of an involution look like?

2. Suppose that a certain permutation f , of n letters, has νi cycles of length i, for
each i = 1, 2, . . .. Then how many cycles of each length does f ◦ f have?

3. The order of a permutation f in the group Sn of all permutations of n letters
is the least positive integer k such that fk is the identity permutation. Express
the order of a permutation f in terms of the lengths of its cycles.

4. Describe the cycles of f−1 in terms of those of f .

5. How many permutations of n letters have exactly two cycles? That is, find a
simple formula for

[
n
2

]
.

6. Fix positive integers n and j, with j ≤ n. Choose a random permutation of n
letters. What is the probability that the element n lives in a cycle of length j?
(Note that the answer depends remarkably little on j.)

4.11 Maple Programming Exercises

1. Write a Maple procedure PermProd, whose input is a pair of permutations f, g,
of the same number of letters, given by their lists of values, and whose output
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is the list of values of f ◦ g.

2. Write a Maple procedure InvertIt(f) whose input is the list of values of a
permutation f , and whose output is the list for f−1.

3. Write a Maple procedure MaxOrder(n) that will use the result of exercise 3
above to find the largest possible order that a permutation of n letters can
have. Run this program for n = 2, 3, . . . up to as large a value of n as you can
manage, and tabulate the largest possible orders as a function of n.

4. Write a Maple program which, for given n, will print a list of the Stirling
cycle numbers of order n, by using the following method. Take the generating
polynomial (4.2), expand it, and print out its coefficient list. Use the Maple
instructions expand, product, and coeffs.

5. Same as the previous problem, except instead of using the expand instruction,
use the Maple series instruction. For a technical matter, you will need the
instruction convert(...,polynom) in order to convert the output of the series
command to the form of a polynomial, so that its coeffs can be extracted.

6. Write a Maple program RandTest that will generate 1000 random real numbers
x in the range 0¡x¡1 (do not print these individual numbers), and which will
output a table showing how many of those 1000 lay in the interval (0,.1), how
many were in (.1,.2), ..., how many were in (.9, 1.0), Use the Maple instruction
rand(). Do the results look random?

7. Write a Maple procedure RandPerm which, given a positive integer n will output
a randomly chosen permutation of n letters in the form of the second line of the
2-line form of the output permutation.

8. Write a procedure CountCycles(f) that will take as input a list of length n
that is the second line of the 2-line form of a permutation and will output the
number of cycles that the input permutation has.

9. Use the above two procedures to do the following computation: Generate 1000
random permutations of {1, 2, 3, ..., 10}. For each one compute the number of
cycles that it has. Print only the average number of cycles of these 1000 random
permutations as well as the average value that you would expect based on our
work in class.
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5 Set partitions

5.1 What set partitions are

A partition of a set S is a collection A1, . . . , Ak of nonempty subsets of S for which

(i) For all 1 ≤ i < j ≤ k, Ai ∩ Aj = ∅, and

(ii) S = A1 ∪ A2 ∪ . . . ∪ Ak.

The sets Ai are the classes of the partition.
We can write a particular set partition by using braces, each pair of which contains

the elements of one of the classes Ai. Thus

{1, 4, 5}, {2}, {3, 6}

is one way to partition the set {1, 2, 3, 4, 5, 6} into three classes. For computer work it
is often better to represent a set partition by means of its class vector. For a partition
of {1, 2, . . . , n} into k classes, the class vector is of length n, and for each i = 1, . . . , n,
its ith entry is the class to which i belongs. The class vector of the partition displayed
above, for instance, is (1, 2, 3, 1, 1, 3).

5.2 Counting set partitions by classes

The number of partitions of a set of n elements into k classes is called the Stirling set
number, and is denoted by

{
n
k

}
. It is also called the Stirling number of the second kind.

If we make a triangle which contains, in its nth row, the numbers
{

n
1

}
,
{

n
2

}
, . . . ,

{
n
n

}
,

for each n = 1, 2, 3, . . ., then we will have the Pascal-like triangle that these set
numbers occupy. It begins as shown in Fig. 5.3.

Look at the sums of the rows in this Stirling triangle. These are the numbers
1, 2, 5, 15, 52, . . ., and they are called the Bell numbers. The Bell number b(n) is the
number of partitions of a set of n elements. So b(4) = 15 means that there are 15
ways to partition a set of 4 elements. Can you write them all out?

Let’s take some particular number in this array and try to visualize what it counts.
Like the 6 that appears in the (n, k) = (4, 3) position in the array. It says that a set
of 4 things can be partitioned into 3 classes in exactly 6 ways. These 6 ways are

{1, 2}{3}{4}, {1, 3}{2}{4}, {1, 4}{2}{3}, {2, 3}{1}{4}, {2, 4}{1}{3}, {3, 4}{1}{2}.
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1

1 1

1 3 1

1 7 6 1

1 15 25 10 1

1 31 90 65 15 1

1 63 301 350 140 21 1

. . . . . . . . .

Figure 5.3: The triangle of Stirling set numbers

5.3 East side, west side ... (III)

Fix positive integers n, k. Imagine that all of the partitions of n letters into exactly
k classes have been strewn on the sidewalks and streets, all around the town.

Now take a walking tour and inspect them as they lie on the ground. If, in a
certain set partition, the letter n lives in a class all by itself, then move that set
partition to the east side of town, and if, on the contrary, n lives in a class with at
least one other letter, then move it to the west side.

Now instead of one large collection of set partitions all over the place, we have
two nice neat piles, one on the east side, and the other on the west side of town.

How many set partitions are on the east side? These are the ones in which n lives
all by itself in a class of size 1. How many such set partitions are there? Well, since n
lives alone, the rest of the partition must be comprised of k − 1 classes involving the
other n − 1 letters. That means that altogether, there are

{
n−1
k−1

}
set partitions that

are stacked up on the east side.
How many are on the west side? These are the ones in which n lives in a class

with other letters. If we remove the letter n from the class that it lives in, we will be
looking at some partition of n − 1 letters into the same number, k, of classes.

However, the converse is a bit sticky. If, conversely, we take some partition of
n− 1 letters into k classes, there are many ways in which we might insert the letter n
into one of the classes. In fact, since there are k classes in the partition, and we can
insert the letter n into any class, there are k ways to insert n.

That means that the number of set partitions on the west side is k times the
number of set partitions of n − 1 letters into k classes, i.e., it is k

{
n−1

k

}
.



38

Therefore the number of all set partitions of n letters that have k classes must be
equal to

{
n−1
k−1

}
+ k

{
n−1

k

}
since every such partition landed on one side of town or the

other.

Theorem 5.1 The Stirling set numbers
{

n
k

}
satisfy the Pascal-triangle-like recur-

rence {
n

k

}
=

{
n − 1

k − 1

}
+ k

{
n − 1

k

}
. (5.1)

It is important to observe that numbers that are defined recursively can be calcu-
lated recursively, i.e., with a computer program that calls itself. This can be done only
in a recursion-capable computer language. In Maple, a procedure that will calculate{

n
k

}
recursively is as follows.

StirSet:=proc(n,k)
options remember:

#Returns the Stirling number of the 2nd kind
if n<1 then RETURN(0)

else
if n=1 then

if k<>1 then RETURN(0)
else RETURN(1)

fi
else

RETURN(StirSet(n-1,k-1)+k*StirSet(n-1,k))
fi:

fi:
end:

5.4 The generating function

If we look for the generating function of the Stirling set numbers
{

n
k

}
, we might be

tempted to multiply both sides of (5.1) by xk and sum over all integer k, as we did in
the case of the cycle numbers. Here, though, we would be doomed to failure, because
of the appearance of the “k” on the right side of (5.1), which would interfere with
that operation mightily.

Instead, let’s define the generating functions fk(x) =
∑

n

{
n
k

}
xn, and we will suc-

ceed in finding them explicitly. To do that, multiply (5.1) on both sides by xn and sum
on n. The result is that fk(x) = xfk−1(x)+kxfk(x), i.e., fk(x) = (x/(1−kx))fk−1(x).
Since f1(x) = x/(1 − x) (why?), we have proved the following result.
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Theorem 5.2 The Stirling set number
{

n
k

}
is the coefficient of xn in the generating

function xk/((1 − x)(1 − 2x)(1 − 3x) . . . (1 − kx)). That is, we have

∑

n≥0

{
n

k

}
xn =

xk

(1 − x)(1 − 2x)(1 − 3x) . . . (1 − kx)
(k = 1, 2, 3, . . .) (5.2)

5.5 An application

Suppose that there are d different kinds of coupons, and that we want to collect at
least one specimen of each kind. We embark on a series of trials, in each of which we
choose, uniformly at random, one of the coupons and add it to our collection. What
is the probability that at the nth trial we find, for the first time, that we have at least
one specimen of all of the d kinds of coupons?

Let p(n, d) denote the required answer.
If at the nth trial we have a complete collection for the first time, then suppose

we happened to have chosen coupon i at that nth trial. Then i was the only missing
coupon from the results of the first n− 1 trials. That means that the first n− 1 trials
had at least one specimen of each of the coupons 1, 2, . . . , i − 1, i + 1, . . . d, and that
the missing type i was then chosen.

For each j = 1, . . . , n, let a[j] denote the number of the coupon that was drawn
on the jth trial. For n = 10, d = 4, i = 3, for instance, the array (a[1], a[2], . . . , a[10])
might look like

(1, 4, 4, 1, 2, 4, 4, 2, 1, 3).

We observe that this array a describes (‘encodes’) a certain set partition of the set
{1, 2, . . . , n − 1} into d − 1 classes. Indeed, the class to which the letter j belongs
is a[j]. The example array above describes a partition of the set {1, 2, . . . , 9} into 3
classes, namely the partition {1, 4, 9}, {5, 8}, {2, 3, 6, 7}.

But there’s a little difference that’s important. The classes of the partition are
ordered. That is, the partition {1, 4, 9}, {5, 8}, {2, 3, 6, 7} is counted as a different
partition from the partition {5, 8}, {2, 3, 6, 7}, {1, 4, 9}, for example. That’s because
the first of these two partitions comes from the array (1, 4, 4, 1, 2, 4, 4, 2, 1, 3), as we
saw, while the second comes from the array (4, 2, 2, 4, 1, 2, 2, 1, 4, 3). The number of
partitions with ordered classes that correspond to a single partition into k classes is
k!, since there are that many ways to rearrange the classes.

Thus we can describe the sequence of trials of a coupon collector who succeeded
on the nth trial in getting a complete collection of coupons, by giving the vector a
for the sequence of coupon numbers that were drawn on successive trials, and that
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can be done in (d − 1)!
{

n−1
d−1

}
ways for each choice of the index i that completes the

sequence, for a total of d!
{

n−1
d−1

}
ways altogether.

To return to the probability that n trials will be needed, that is the number of
possible vectors a that correspond to n trials, divided by the total number of possible
outcomes on n trials, which is dn, that is, the probability that exactly n trials are
needed is

pn =
d!

dn

{
n − 1

d − 1

}
.

The probability generating function is

f(x) =
∑

n

pnxn =
∑

n

d!

dn

{
n − 1

d − 1

}
xn.

If we refer to (5.2) the above can be rewritten as

f(x) =
∑

n

d!

dn

{
n − 1

d − 1

}
xn = d!

x

d

∑

n

{
n − 1

d − 1

}(
x

d

)n−1

= (d − 1)!x

(
x
d

)d−1

(1 − x
d
)(1 − 2x

d
) . . . (1 − (d − 1)x

d
)

=
(d − 1)!xd

(d − x)(d − 2x)(d − 3x) . . . (d − (d − 1)x)

We note in passing that f(1) = 1, as must be true for probability generating functions.

Theorem 5.3 The probability that exactly n trials will be needed to complete a collec-

tion of d different coupons is the coefficient of xn in the power series for the function

f(x) =
(d − 1)!xd

(d − x)(d − 2x)(d − 3x) . . . (d − (d − 1)x)
.

The average number of trials will be f ′(1), but this is
(

d
dx

log f(x)
)

x=1
, or

(
d

dx
(log (d − 1)! + d log x − log (d − x) − . . . − log (d − (d − 1)x))

)

x=1

= d +
1

d − 1
+

2

d − 2
+

3

d − 3
+ . . . +

d − 1

1
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= d +
d−1∑

j=1

j

d − j
= d +

d−1∑

j=1

(j − d) + d

d − j

= d − (d − 1) + d
d−1∑

j=1

1

d − j
= 1 + d(Hd −

1

d
) = dHd

Theorem 5.4 The average number of trials that are needed to complete a collection

of d kinds of coupons is dHd, where Hd is the harmonic number.

5.6 Making lists and random choices of set partitions

To make a list L(n, k) of all partitions of {1, 2, . . . , n} into k classes, we do the
following. Take the list L(n − 1, k − 1), and to each partition on that list adjoin a
new class consisting solely of the letter n. That will list the portion of L(n, k) that
comes from the east side. Next, take the list L(n − 1, k), and for each partition Π
on that list create k new partitions, namely those that are obtained by inserting the
letter n as a new member of each of the k classes, in turn, of Π.

A good data structure for representing a set partition in a computer is the class
vector of the partition. The class vector of a partition of the set {1, 2, . . . , n} into
k classes is the n-vector (a1, a2, . . . , an) in which for each i, ai is the class to which
i belongs. Thus the partition (1, 7)(2, 3, 5)(4, 6) of {1, 2, . . . , 7} into three classes is
represented by the class vector (1, 2, 2, 3, 2, 3, 1).

To adjoin a new class consisting solely of the letter n, we take the class vector
and adjoin one new entry to it, namely the entry an = k. To insert n into one of the
already existing k classes, we take the class vector and adjoin one new entry to it,
namely the entry an = i, if i is the index of the class into which we are inserting the
letter n.

A Maple procedure8 for making a list of all partitions of {1, 2, . . . , n} into k classes
is as follows.

8See the program notes on page 64.
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EWop:=(y,m)->[op(y),m]:
ListSetPtns:=proc(n,k)
local east,west,i,out ; options remember;
#Lists all partitions of the set 1,..,n into k classes
#Output array[i] is the class to which i belongs.
if n=1 then

if k<>1 then RETURN([]) else RETURN([[1]]) fi:
else

east:=ListSetPtns(n-1,k-1): west:=ListSetPtns(n-1,k):
out:=map(EWop,east,k);
for i from 1 to k do out:=[op(out),op(map(EWop,west,i))] od;
RETURN(out);
fi:
end:

A procedure that will select a partition of the set {1, 2, . . . , n} with k classes uar is

also easy to do recursively. With probability
{

n−1
k−1

}
/
{

n
k

}
we will choose uar a partition

of {1, . . . , n−1} into k−1 classes and then insert the letter n as a new singleton class.

With probability 1−
{

n−1
k−1

}
/
{

n
k

}
, we will choose uar a partition of {1, . . . , n− 1} into

k classes and then insert the letter n into a randomly chosen one of those k classes.
The Maple program9 follows.

RandSetPtns:=proc(n,k)
local rno,class ;
#Returns a random partition of 1..n into k classes
if n=1 then

if k<>1 then RETURN([]) else RETURN([1]) fi;
else

rno:=10^(-12)*rand();# Choose a random real number in (0,1)
if rno<StirSet(n-1,k-1)/StirSet(n,k)

then #we go to the east side
RETURN([op(RandSetPtns(n-1,k-1)),k])

else #we go to the west side
class:=rand(1..k);
RETURN([op(RandSetPtns(n-1,k)),class()])

fi;
fi;

end:

9See the program notes on page 65.
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5.7 Ranking set partitions

What is the rank of the partition Π := {1, 4}{2, 7, 8}{3}{5, 6} of the set {1, 2, . . . , 8}
into 4 classes in the list of all partitions of that set into 4 classes?

Our list of partitions puts those set partitions in which the highest letter n lives in
a singleton class first. Following those are the partitions in which n lives, not alone,
in class 1, then those in which n is, not alone, in class 2, etc., where the classes are
numbered in order of their smallest element. For this example partition Π, 8 is not
in a singleton class, so it is preceded in the list by all of the

{
7
3

}
partitions in which

8 does live in a singleton class. Further, 8 does not live in the first class of Π, so Π
is also preceded by all

{
7
4

}
partitions that are obtained by inserting 8 into the first

class of some partition of 7 letters into 4 classes.
Thus, if Π′ denotes the partition obtained from Π by deleting 8, then

rank(Π) =

{
7

3

}
+

{
7

4

}
+ rank(Π′),

which is the idea of the recursive algorithm. The full Maple program for ranking set
partitions is as follows.

5.8 Exercises

1. Find a simple formula for the number of partitions of a set of n elements into 2
classes, i.e., for the Stirling set number

{
n
2

}
.

2. In how many partitions of a set of n elements does the element n live in a class
of size j? Express your answer in terms of the Bell numbers.

3. Write a Maple program that will carry out the Coupon Collector’s Test on
random numbers, as described in section 5.5. Specifically, perform the following
experiment 1000 times: Choose integers at random between 1 and 10, inclusive,
until for the first time you have a complete collection of all 10 of them. Record
the number of integers that you had to choose in order to get this complete
collection. After doing the 1000 experiments, print out just one number: the
average of the 1000 numbers that you recorded. This output number should be
around 29, if Maple’s random numbers are good ones. Your program should be
quite short. Try to be sneaky and clever in the way you write it.
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6 Integer partitions

6.1 What they are

A partition of an integer n is a representation of n as a sum of positive integers, the
order of the latter being immaterial. The partitions of 5 are 5, 4 + 1, 3 + 2, 3 + 1 + 1,
2 + 2 + 1, 2 + 1 + 1 + 1, and 1 + 1 + 1 + 1 + 1, so we can partition the integer 5 in 7
ways. If p(n) denotes the number of partitions of the integer n, then the sequence of
values of p(n), for n = 0, 1, 2, . . ., begins as

{1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176, . . .}.

Generically, we will write a partition as n = a1 + a2 + . . . + ar, where a1 ≥ a2 ≥
. . . ≥ ar ≥ 1. The numbers ai(i = 1, . . . , r) are the parts of the partition. So we will
standardize by presenting a partition with its parts in nonascending order.

Let p(n, k) denote the number of partitions of the integer n whose largest part is
k. For example, p(4, 2) = 2 since there are two partitions of 4 whose largest part is
2, viz., 4 = 2 + 2 and 4 = 2 + 1 + 1. The table of values of p(n, k), with rows labeled
by n = 1, 2, . . ., looks like this.

1
1 1

1 1 1
1 2 1 1

1 2 2 1 1
1 3 3 2 1 1

1 3 4 3 2 1 1

The suspense is geting unbearable. Could it be that we have yet another east side-west
side situation developing here?

6.2 East side, west side ... (IV)

Fix positive integers n, k. Imagine that all of the partitions of the integer n whose
largest part is k have been strewn on the sidewalks and streets, all around the town.

Now take a walking tour and inspect them as they lie on the ground. If, in a
certain partition of the integer n whose largest part is k, the part k occurs only once
in the partition, then move that partition of n to the east side of town, and if, on the
contrary, the part k is used more than once, then move the partition to the west side.
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Now instead of one large collection of partitions of the integer n all over the place,
we have two nice neat piles, one on the east side, and the other on the west side of
town.

How many partitions of n are on the east side? These are the ones in which k
occurs just once as a part. So the east side partitions look like this-

n = k + (a part ≤ k − 1) + (a part ≤ k − 1) + . . . + (a part ≤ k − 1).

How many such integer partitions are there? Subtract 1 from the left side of the above
equation, and from the right side subtract 1 from the part k. We now are looking at
a partition of the integer n − 1 whose largest part is k − 1. Conversely, given such a
partition of n− 1 we can add 1 to a part k − 1, thereby geting a partition of n whose
largest part is k and in which that largest part k occurs just once, i.e., an east side
partition of n.

That means that altogether, there are p(n − 1, k − 1) partitions that are stacked
up on the east side.

How many are on the west side? These are the ones in which the part k is repeated,
and they look like

n = k + k + (a part ≤ k) + (a part ≤ k) + . . . + (a part ≤ k).

If we subtract k from the left side, and delete one of the k’s from the right, we will be
looking at some partition of n−k whose largest part is k. If, conversely, we take some
partition of n − k whose largest part is k, and adjoin a new part k to that partition,
we will have a partition of n whose largest part is k, and in which k is a repeated
part, i.e., we will have a west side partition of n.

That means that altogether, there are p(n − k, k) partitions that are stacked up
on the west side. It follows that p(n, k) = p(n − 1, k − 1) + p(n − k, k), since every
partition of n landed on one side of town or the other.

Theorem 6.1 The number p(n, k) of partitions of n whose largest part is k, satisfies

the “Pascal triangle” recurrence

p(n, k) = p(n − 1, k − 1) + p(n − k, k) (6.1)

with the initial values p(n, k) = 0 if n ≤ 0 or k ≤ 0 or k > n, and p(1, 1) = 1.

A Maple program10 that will list all partitions of the integer n whose largest part is
k follows.

10See the program notes on page 65.
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eastop:=y->applyop(t->t+1,1,y):
westop:=(y,j)->[j,op(y)]:
ListKPtns:=proc(n,k)
local east, west ; options remember;
# Lists the partitions of n whose largest part is k
if n<=0 or k<=0 or k>n then RETURN([])

elif n=1 then RETURN([[1]])
else

east:=ListKPtns(n-1,k-1);
west:=ListKPtns(n-k,k);
RETURN([op(map(westop,west,k)),op(map(eastop,east))]);
fi;
end:

6.3 Exercises

1. Write a recursive Maple procedure that will compute the numbers p(n, k). Print
out a table of these numbers for n = 1, . . . , 10 and 1 ≤ k ≤ n.

2. Write a recursive Maple procedure that will make a list of all partitions of a
given integer n into k parts. Run your program with n = 8 and k = 4.

3. Write a recursive Maple procedure that will choose, uniformly at random, a
partition of n whose largest part is k. Run your program fifty times with n = 6,
k = 3.

4. Let p̃(n, k) denote the number of partitions of n into k parts. Show that
p̃(n, k) = p(n, k) as follows:

(a) Show that p̃(n, k) satisfies the same recurrence as p(n, k), using the east
side-west side method. You will of course have to find the correct criterion
for which partitions get thrown onto which of the two piles.

(b) Then show that p̃(n, k) and p(n, k) satisfy the same set of initial values,
these values being sufficient to determine the two sequences uniquely.

(c) This quaint method implies a certain direct bijection between the sets of
partitions of n that have k parts and those whose largest part is k. Find
this bijection.
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7 . . . and all around the town

We have now encountered a fairly large number of combinatorial families, and their
recursive structures are quite similar in a number of respects. So what we’d like to
do now is to abstract from these examples their common characteristics and discuss
them at a greater level of generality. We’ll see that the view from a higher perch
is a lot nicer; the details recede into the distance, while the fundamental structural
properties of these families will be etched more clearly.

Let’s focus for a moment on the example of k-subsets of an n-set. There are
(

n
k

)

of them, and recall the steps that were involved in counting them. Let’s denote by
B(n, k) the collection of all k-subsets of an n-set.

1. First we designate some of these sets as east side sets and the rest of them as
the west side. Specifically, those sets that do contain the highest letter n are
put on the west side and those that do not are on the east side. Let Be(n, k)
(resp. Bw(n, k)) denote the collection of all east side (resp. west side) k-subsets
of an n-set.

2. Next we took the west side sets, the ones that do contain n, and identified them
with all of the (k−1)-subsets of n−1 things. What does that word “identified”
mean? It means that we created a 1 − 1 mapping, fw, say, between the west
side k-subsets of an n-set and all (k − 1)-subsets of an n − 1 set. In the usual
mathematical notation, we have

fw : Bw(n, k) → B(n − 1, k − 1).

And what, precisely, is that mapping fw? That is, if we are given a west side
set S ∈ Bw(n, k), which (k − 1)-subset of an (n − 1)-set do we use for fw(S)?
Easy. Delete the element n from S (why are we so sure that n ∈ S?), and what
remains is fw(S).

3. Onwards to the east side. We took the east side sets, the ones that do not contain
n, and identified them with all of the k-subsets of an (n−1)-set. What does the
word “identified” mean now? It means that we created a 1−1 mapping, fe, say,
between the east side k-subsets of an n-set and all k-subsets of an (n − 1)-set.
In the usual mathematical notation, we have

fe : Be(n, k) → B(n − 1, k).
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Figure 7.4: The neighborhood of (n, k)

And what, precisely, is that mapping fe? That is, if we are given a west side
set S ∈ Be(n, k), which k-subset of an (n − 1)-set do we use for fe(S)? Easier.
Use S itself. It doesn’t contain n, therefore it belongs to B(n − 1, k).

4. The mappings fe, fw are both invertible. So we obtained the recurrence
(

n
k

)
=(

n−1
k

)
+
(

n−1
k−1

)
. And the recurrence was constructively proved, by means of the

pair of mappings.

Let’s draw a little picture of all of that, as shown in Fig. 7.4.

In the diagram the directed edge from (n, k) to (n − 1, k) represents the map fe,
while that from (n, k) to (n − 1, k − 1) stands for the map fw. In this way we can
connect each point (n, k) to the two points (n − 1, k − 1) and (n, k − 1), except that
points (n, n) can be connected only to (n−1, n−1) and points (n, 0) only to (n−1, 0).
We will label the edges that are outbound from each vertex consecutively. If there
are two outbound edges from (n, k) then we label the westbound edge with 0 and the
southwestbound edge with 1. If there is only one outbound edge then we label it 0.

If we were to make all of these connections at once we would find ourselves looking
at a graph as shown in Fig. 7.5. This directed graph (“digraph”), and its general-
izations, has a number of useful properties that will enable us to perform certain
standard algorithms on the family of k-subsets, and on all of the east-west families
that we have discussed, in a unified way, and quite straightforwardly.
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Figure 7.5: The digraph for the k-subsets of an n-set, showing the 0, 1 labels on the

edges
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Figure 7.6: Portrait of the subset {1, 3, 5}

7.1 k-subsets and codewords

The most important single feature of the digraph shown in Fig. 7.5 is the following:
there is a 1-1 correspondence between k subsets of an n-set, on the one hand, and
walks in the digraph beginning at the point (n, k) and ending at the origin. That is,
for instance, each 3-subset of {1, 2, 3, 4, 5} corresponds to a certain walk from the
point (5, 3) to the origin. We might say that the walk encodes the subset.

To see what this means, consider the walk from the point (5, 3) to the origin that
is shown in Fig. 7.6. We claim that this walk corresponds to (encodes, represents, is)
the 3-subset {1, 3, 5} of the set {1, 2, 3, 4, 5}.

Indeed, the first step in the walk goes from (5, 3) to (4, 2). Since both the n and
the k coordinates changed, we must have chosen the element n = 5 to live in our
subset. The second step goes from (4, 2) to (3, 2). On that step, the n-coordinate
changed, but the k-coordinate did not. So we still are looking for the same number,
2, of elements in a shrunken universe, viz. {1, 2, 3}. On the next step, to (2, 1), both
n and k changed, so we did choose the element 3 to live in our subset. The step
(2, 1) → (1, 1) is again horizontal, so we do not choose 2 to add to our subset, and on
the last step we do choose 1. Hence the subset ends up as {1, 3, 5}.

In general, if we have a walk from a point (n, k) to (0, 0) we can discover the
k-subset of {1, 2, . . . , n} that it corresponds to as follows.

• Begin with the empty set S, and follow the given walk to the origin.

• Each time you encounter a diagonal step (as opposed to a horizontal step), say
from (n′, k′) to (n′ − 1, k′ − 1), adjoin the element n′ to the set S.

• When you reach the origin, output the set S.
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As we walk from (n, k) to the origin, we can write down the numbers of the edges
that we encounter. In the walk of Fig. 7.6, we use first edge 1, then 0, 1, 0 and 0, in
that order. Thus the walk generates a codeword, in this case 10100.

Conversely, if we are given the codeword and (n, k), then we can reconstruct the
walk. If we have 10100, and we begin at (5, 3), for example, the codeword tells us
which road we must follow out of each vertex that we encounter.

Thus, the list of all k-subsets of n elements corresponds to a list of
(

n
k

)
codewords

of n 0’s and 1’s. The 10 3-subsets of {1, 2, 3, 4, 5} correspond to the list

00000, 01000, 01100, 01110, 10000, 10100, 10110, 11000, 11010, 11100

of codewords. Note that these are arranged in lexicographic order, considered as 5
letter words over an alphabet of two letters {0, 1}.

It is easy to design a recursive program that will list, in lexicographic order, all
of the codewords that correspond to walks that originate at a fixed vertex (n, k). Let
ListWalks(n,k) denote a call to such a program. Then, aside from consideration of
the base cases, what we need to do is this-

1. Recursively, obtain the list ListWalks(n-1,k), and prepend to each codeword
on that list a “0”, and then,

2. recursively obtain the list ListWalks(n-1,k-1), and prepend to each codeword
on that list a “1”.

A Maple program that will do this is as follows.

prepend:=(arry,j)->[j,op(arry)]:
ListWalks:=proc(n,k)
local yy,zz ;
if k>n or k<0 then RETURN([])

elif
n=k or k=0 then RETURN([[seq(0,j=1..n)]])

else
yy:=map(prepend,ListWalks(n-1,k),0);
zz:=map(prepend,ListWalks(n-1,k-1),1);

fi;
RETURN([op(yy),op(zz)]);
end:

To test the program, we call ListWalks(5,3); and the following output results:

[[0,0,0,0,0],[0,1,0,0,0],[0,1,1,0,0],[0,1,1,1,0],[1,0,0,0,0],

[1,0,1,0,0],[1,0,1,1,0],[1,1,0,0,0],[1,1,0,1,0],[1,1,1,0,0]]
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7.2 Toll charges on the roads

There is a remarkable function whose values can be attached to the edges of any one
of these families in such a way as to do a few very valuable tasks easily. We’ll call
the values of this function the toll charges on the “highways” (edges) of the directed
graph of the family. It turns out that we can put on each edge e a number f(e) in
such a way that

• if we take a walk along the edges of one particular path (combinatorial object),
starting from, say, (n, k), and ending at the origin, then the rank of this walk
in the set of all such walks is simply the total amount of the toll charges that
were encountered along the walk, and

• if we want to construct the walk of given rank r in the set of all walks from
(n, k) to (0, 0), then what we do is begin at (n, k) and walk along the edge out
of (n, k) whose toll charge r′ is as large as possible but ≤ r, and we diminish
our “money” r by the amount r′. Having arrived at a new vertex we always
take the edge out from that vertex whose toll charge is the most that we can
afford with our remaining funds.

In Figure 7.9 below we show the toll charges on the roads of the family of permu-
tations and their cycles. Look at that figure for a while, and observe that the object
that begins at (5, 3), and then uses the edge whose toll charge is 12, and then the
edge whose toll charge is 1, followed by three edges of charge 0, is in fact the object
of rank 13 (on a scale of 0 to 34) among the 35 permutations of 5 letters that have 3
cycles.

Then notice how the toll charges are found. To find the toll charge for an edge e,
from v to v′, here’s what we do. Look at the terminal vertices of all of the edges out
of v whose edge labels are less than e’s. For each of those terminal vertices count the
total number of objects in the family that begin at that vertex. Add those numbers
together and there’s the toll charge for e.

For instance, in Figure 7.9, let’s verify that the toll on the third edge, e, from the
top among those outbound from (5, 3) is indeed 12, as the figure claims. The two
edges whose edge labels are lower than that of e both go to (4, 3). The total number
of objects that begin at (4, 3) is 6, so the toll charge on e is 2 · 6 = 12.
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Figure 7.7: The neighborhood of (n, k) ((6, 3) is shown)

7.3 A look at one more family

Here we’ll have a brief look at the family of n-permutations with k-cycles. To draw the
directed graph that is associated with this family we begin by recalling the recurrence
relation (4.1) that these permutations satisfy,

[
n

k

]
=

[
n − 1

k − 1

]
+ (n − 1)

[
n − 1

k

]
. (7.1)

This tells us that the grid point (n, k) will connect to points (n−1, k−1) and (n−1, k),
but because of the factor of (n− 1), there will have to be (n− 1) directed edges from
(n, k) to (n−1, k). If we number those edges 0, 1, . . . , n−2, then the environment of a
typical vertex (n, k) is as shown in Fig. 7.7. When we assemble these neighborhoods
of all vertices into a single directed graph, we obtain Fig. 7.8.
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Figure 7.8: Permutations and their cycles (showing edge numbering)
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Figure 7.9: Permutations and their cycles (showing toll charges on the roads)
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Figure 7.10: The k-subsets of an n-set, showing toll charges on the roads



57

8 Some review problems

1. We have seen several examples of the East-West approach: k-subsets of sets,
the two kinds of Stirling numbers, subsets with no consecutive elements, etc.
In each of those cases,

(a) briefly describe exactly what was put on the East side and what was put
on the West side, and

(b) describe the mapping that allows you to count how many objects are on
each side, and

(c) briefly state how many objects are in fact on each of these two sides.

2. In the binary reflected Gray code, for which we gave a recursive algorithm in
exercise 9 on page 22, describe how you would answer a question like this: “In
the Gray code list of all strings of 40 0’s and 1’s, which string is the 2,564,777th
one on the list?” For example, the string that is 12th on the Gray code list of
strings of 4 bits is the string 1110. How would you find out such things?

3. A “run” in a permutation is a rising sequence of consecutive values. To find
the runs in a permutation, we can first write down its sequence of values, say
357168942. Then put a vertical bar at each end and another vertical bar between
the members of each descending consecutive pair. In this example we would get
| 3 5 7 | 1 6 8 9 | 4 | 2 |. The runs are the segments between the pairs of
vertical lines. So this permutation has four runs. Let f(n, k) be the number of
permutations of n letters that have k runs. These numbers f(n, k) are called
Eulerian numbers. Then

(a) show, by the East-West philosophy, that

f(n, k) = kf(n − 1, k) + (n − k + 1)f(n − 1, k − 1) (n ≥ 1)

(b) Display the numbers in this “Pascal triangle” for n = 1, 2, 3, 4.

(c) Write a Maple procedure that will take as input the array of values of some
permutation, like [3,5,7,1,6,8,9,4,2], and will return the number of
runs in the permutation.

(d) Then write a Maple program which, for a given value of n, will choose
500 random permutations of n letters and print out the average number of
runs that they had. Run it for n = 10 and n = 11. Your answers should
turn out to be near (n + 1)/2, if your program is working properly. Why?
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4. Consider the collection of all permutations f , of n letters, that have the fol-
lowing property: for every letter i = 1, 2, . . . , n we have f(f(i)) = i. These
permutations are called involutions (see exercise 1 on page 34).

(a) If t(n) is the number of involutions of n letters, use the East-West way of
thinking to show that t(n) = t(n−1)+(n−1)t(n−2). Explain what each
of the two terms on the right counts.

(b) Draw pictures of the cycles of each of the involutions of 4 letters.

(c) Write a recursive Maple program that will make a list of all involutions of
n letters. The output should be in the form of showing the 2nd line of the
2-line form of each of the output involutions.

(d) Write a recursive Maple program that will choose, uniformly at random,
an involution of n letters. In this and the previous part, run the programs
to show some output for n = 1, 2, 3, 4, 5.

5. Write a recursive Maple program that will make a list of all strings of n 0’s and
1’s that have the property that no two 1’s are consecutive. Call the program
bitstrings, so for example, a call to bitstrings(3) would result in output
like this:

[0,0,0],[0,0,1],[0,1,0],[1,0,0],[1,0,1]

Note: Your program does not have to return the strings in the above order; any
order that is convenient for you will be fine.

6. Suppose you are given a permutation σ of n letters in two-line form. You want
to create the two-line form of a new permutation τ of n + 1 letters, which will
be identical with σ except that the letter n + 1 will now have been inserted
between the letter i and its successor on the cycle of σ that i lives on. State
precisely how you would obtain the two-line form of τ from that of σ. (This is
not a question about Maple, and you are not being asked to write any program.
Just explain.)

9 The EastWest Maple package

In this section we describe the package EastWest, which is available from
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<http://www.cis.upenn.edu/∼wilf>

in the form of a binary file EastWest.m. To use this file, open a new Maple worksheet,
and enter
> read ‘[your path]/EastWest.m‘;

Then enter
> hello();

if you want to see a printout of operating instructions.
The purpose of this package is to perform any one of six functions on any one of

seven combinatorial families. The seven families are as follows.

1. k-subsets of an n-set. This family is encoded by member lists. That is to say, a
particular k subset of {1, . . . , n} is represented by a Maple list of the elements
of the subset. Thus [1,3,4] is the 3-subset whose elements are 1, 3, and 4.

2. permutations of n letters with k cycles. A permutation in this family is repre-
sented by its list of values, i.e., by the second line of its two-line form. Thus
[1,4,3,2] is the permutation σ on 4 letters with 3 cycles for which σ(1) = 1,
σ(2) = 4, σ(3) = 3, σ(4) = 2,

3. Partitions of a set of n elements with k classes. A member of this family is
represented by its class vector array, which is an array of length n whose ith
entry is the number of the class to which i belongs. The classes are arranged with
their smallest elements in increasing order. Thus the partition (1, 3, 5)(4)(2) is
encoded by the vector [1,2,1,3,1].

4. Partitions of the integer n into k parts. An integer partition is encoded by its
array of parts, listed in nonincreasing order. Thus the partition 6 = 2+2+1+1
is represented by the array [2,2,1,1].

5. Ordered partitions of the integer n into k nonnegative parts. These are encoded
by their arrays of parts. The ordered partition 6 = 2 + 0 + 0 + 1 + 3 of 6 into 5
parts is represented by the list [2,0,0,1,3].

6. Permutations of n letters with k runs up. A “run up” in a permutation is
a maximal sequence of consecutive increasing values of the permutation. The
permutation whose values are [1,4,3,6,8,5,2,7] has 4 runs up, namely {1, 4},
{3, 6, 8}, {5}, {2, 7}. These permutations are also encoded by their arrays of
values.
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7. Partitions of the integer n whose largest part is k, encoded by their arrays of
parts

The six functions are

1. Count counts the members of the specified family and size. Call it with

> Count(famno,n,k);

where famno is the number of the family, and n,k are the size parameters.

2. List returns a list of all objects of the specified size, in the standard encoding
for the family. Call with

> List(famno, n, k);

3. Random returns a single object, chosen uniformly at random from the members
of the family of the given size. Call with

> Random(famno, n, k);

4. Rank returns the rank of the input object on the list of all members of the family
of the size of the input object. Call with

> Rank(famno, object);

5. Unrank returns the member of the family of given rank in the list of all members
of the family of given size. It is called as

> Unrank(famno,n,k,object);

6. Successor returns the object that immediately follows the given object on the
list of all members of the family of the given size. Called by

> Successor(famno,n,k,object)

Here are some samples of the package in action.



61

• How many permutations of 8 letters have exactly 3 runs up? We’re in
family # 6, and we want the Count function. The Maple dialogue is

> Count(6,8,3);

4293

so there are 4293 such permutations.

• How many partitions of the integer 30 have largest part 8? Now we’re in
family # 7, so we type

> Count(7,30,8);

to which Maple replies

638

.

• List all partitions of the set {1, 2, 3, 4, 5} into 2 classes. For this we enter

> List(3,5,2);

which gets the answer

[[1, 1, 1, 1, 2], [1, 1, 1, 2, 1], [1, 1, 2, 1, 1], [1, 2, 1,

1, 1], [1, 2, 2, 1, 1], [1, 1, 2, 2, 1], [1, 2, 1, 2, 1], [1,

2, 2, 2, 1], [1, 1, 1, 2, 2], [1, 1, 2, 1, 2], [1, 2, 1, 1,

2], [1, 2, 2, 1, 2], [1, 1, 2, 2, 2], [1, 2, 1, 2, 2], [1, 2,

2, 2, 2]]

• In the list of all partitions of the set {1, 2, 3, 4, 5} into 2 classes, what is
the successor of the partition [1,1,2,2,1]? For this we enter

> Successor(3,5,2,[1,1,2,2,1]);

and Maple says

[1,2,1,2,1]

My thanks to Joanna Nordlicht for her assistance in writing this package.
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10 Program notes

Program Subsets, on page 15, lists all of the subsets of an n-set.

line 1: First we define the function GlueIt. This enlarges a given array z by inserting
one new entry, d, in as a new first entry.

line 3: In Subsets itself, the options remember; phrase causes Maple to remember
the output of Subsets each time it is called. That’s very helpful in a recursive
routine since on a new call, Maple will not have to go all the way back to the
beginning each time. Instead it needs to go back only far enough to meet some
quantity that it computed on an earlier call. Thus it gets smarter every time
you use it during a single session.

line 6: The instruction east:=... takes the array of all subsets of n − 1, and glues
onto each one a new first entry equal to 0.

line 7: The line west:=... takes the array of all subsets of n − 1, and glues onto each
one a new first entry equal to 1.

line 8: The RETURN line returns as output the single array that one gets by concatenat-
ing east and west.

Program RandSub, on page 16, chooses at random a subset of {1, 2, . . . , n}.

line 3: The rand instruction in Maple returns a program to choose random numbers.
It does not choose a random number. Thus rn is defined to be a program which
when called will return a random integer that will be either 0 or 1 with equal
probability.

line 4: We initialize the output set set to be the empty set.

line 5: we successively augment set by adjoining to it a randomly chosen 0 or 1.

1. A question for you. This is a recursive routine. So why isn’t there an options

remember; phrase in it? If this puzzles you, put such a phrase in, and run the
resulting program a few times until you see what the problem is.

Program ListKSubsets, on page 16, lists all of the k-subsets of an n-set.

line 1: We define the operation westop. It takes two arguments, an array x and an
integer m. It adjoins to the end of the array x a new entry equal to m.
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line 8: After attending to the base cases, the general construction appears. Recursively
we call the lists for (n-1,k) and for (n-1,k-1), calling them east and west,
respectively.

line 9: We need to adjoin a new element, namely n to each set on the list west. We do
this by mapping the operation westop, with arguments west and n, over all of
the elements of the array west.

line 10: Finally, we RETURN the concatenation of the two lists east and west.

Program RandomKSubsets, on page 17, chooses, uniformly at random, a k-subset of [1..n].

line 6: After doing the base cases, we create an instruction rno that will, when called,
produce a random number in the range (0, 1).

line 7: We want to do something with probability k/n and something else otherwise.
So we ask if a random number is less than k/n.

line 8: If it is then we want to adjoin n to a randomly chosen k−1 subset of {1, . . . , n−1}.
So we choose one of those, recursively, and call it east. Then we RETURN the
result of adjoining n to the end of the array east.

line 11: Otherwise we want to choose, recursively, a random k-subset of {1, . . . , n − 1},
call it west, and RETURN it.

Program ListKPerms, on page 32, lists all of the permutations of an n-set that have k

cycles.

line 1: We first define, externally to the routine itself. two auxiliary operations that
will be needed. eastop simply adjoins a new entry, j, to a given list y.

line 2: westop, on the other hand, replaces the jth entry of the list y by n, where n-1

is the length of the input list y, and adjoins as a new array entry at the end of
y the former array entry y[j], that was just replaced by n. Note carefully that
if the input list is the sequence of values of (i.e., the second line of the two line
form of) some permutation of n-1 letters, then this operation in effect inserts
n between two consecutive entries of some cycle, since before the operation we
had consecutive letters j → y[j] and after the operation we have j → n → y[j]
consecutively around a cycle.

line 10: After taking care of the base cases of the recursion, we create, recursively, the
two lists east and west, being, respectively, the lists of permutations of n-1

letters with k-1 cycles, and with k cycles.
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line 11: The list out lifts the list east by adjoining the element n to each permutation
on that list as a new singleton cycle.

1. 13 The hard part of the recursive construction takes the list west, of permu-
tations of n-1 letters and k cycles, and it inserts the new letter n in between
two consecutive letters of some cycle in all possible ways, on each cycle. This is
done by mapping the operation westop to the array west with all values of j.

Program RandKPerms, on page 33, chooses a random permutation of an n-set that has k

cycles.

line 7: After doing the base cases of the recursion, we make a program rno that will,
when called, generate a uniformly random number between 0 and 1.

line 8: We want to decide between east and west with probability
{n−1

k−1

}
/
{n

k

}
. So we

choose a random number rno, and if it is less than
{n−1

k−1

}
/
{n

k

}
we will head east,

otherwise west.

line 9: To go east, we create, recursively, a random k-1 permutation of n-1 letters,
then in the next line we adjoin a new entry n, to create a singleton cycle for n,
and exit.

line 12: To go west, we first choose a random integer r in the range (1, n − 1).

line 13: A random permutation west of n-1 letters with k cycles is chosen recursively.

line 14: Then we adjoin a copy of the rth entry of west as a new nth entry of west, and
finally we substitute n for the rth entry of west, and exit.

Program ListSetPtns, on page 41, lists all of the partitions of an n-set into k classes.

line 1: An externally defined operation EWop adjoins m to the end of the input list y.

line 8: Following the disposal of the recursive base cases in lines 5,6 we recursively call
this program with (n-1,k-1) and (n-1,k), putting the resulting lists into east

and west, respectively.

line 9: By mapping the operation of adjoining k to the end of a list, over the list east,
we create the list out of those set partitions in which n lives alone in class k.

line 10: Here we successively concatenate the list out with k other lists, the ith one
of which is the list of all partitions where n lives in class i, completing the
construction.
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Program RandSetPtns, on page 42, chooses a random partition of an n-set into k classes.

line 7: To generate random numbers in the range (0, 1) we make the program rno.

line 8: Now we choose such a random number, and if it is less than
[n−1
k−1

]
/
[n
k

]
we will

go east, else west.

line 10: To go east, we generate, recursively, a random set partition of an n− 1-set into
k − 1 classes, and adjoin n as the singleton kth class.

line 12: Else, we go west, and must choose a random class for n to live in. This is done
by the routine class.

line 13: We append the randomly chosen class of n to a randomly chosen set partition
of n-1 things into k classes, and exit.

Program ListKPtns, on page 46, lists the partitions of an integer n whose largest part is k.

line 1: eastop simply adds 1 to the first entry of a given list y.

line 2: westop extends a given list y by inserting j as a first entry, keeping all of the
previous entries.

line 11: The output list of partitions is obtained by concatenating two lists. The first
of these is the recursively generated list west of partitions of n-k whose largest
part is k to all of which a new part equal to k is inserted as a new first part. The
second is the recursively generated list east of partitions of n-1 whose largest
part is k-1, with the first part of every partition on the list increased by 1.
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