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Preface

Combinatorial optimization problems arise everywhere, and certainly in
al areas of technology and industrial management. A growing awareness
of the importance of these problems has been accompanied by a combina-
torial explosion in proposals for their solution.

This book is concerned with combinatorial optimization problems
which can be formulated in terms of networks and algebraic structures
known as matroids. My objective has been to present a unified and fairly
comprehensive survey of solution techniques for these problems, with
emphasis on “augmentation” algorithms.

Chapters 3 through 5 comprise the material in one-term courses
on network flow theory currently offered in many university departments
of operations research and industrial engineering. In most cases, a course
in linear programming is designated as a prerequisite. However, this is
not essential. Chapter 2 contains necessary background material on linear
programming, and graph theory as well.

Chapters 6 through 9 are suitable for a second course, presumably
at the graduate level. The instructor may wish to omit certain sections,
depending upon the orientation of the students, as indicated below.

The book is also suitable as a text, or as a reference, for (courses on
combinatorial computing and concrete computational complexity in de-
partments of computer science and mathematics. Any computer scientist
intending to do serious research on combinatorial algorithrns should have
a working knowledge of the materia in this book.

The reader should be aware that certain algorithms are easy to
explain, to understand, and to implement, even though a proof of their
validity may be quite difficult. A good example is the “primal” matroid
intersection algorithm presented in Section 10 of Chapter 8. | can well
imagine situations in which an instructor might legitimately choose to
present this algorithm and its applications, without discussing its theoretical
justification in Section 9.
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Conversely, there are agorithms whose theoretical justification is
not too hard to understand, in principle, but whose detailed implementa-
tion is quite complex. An instructor might well (choose to discuss the
duality theory underlying the weighted non bipartite matching algorithm,
going as far as Section 9 of Chapter 6 and skipping the material in Sections 10
and 11. | might mention, incidentally, that the algorithm in Section 11 is
the one instance in which | have had cause to regret using a simple iterative
description of the algorithms in this book. In this case, a few simple pro-
cedure declarations would have simplified matters substantially.

| began work on this book in the fall of 1968. In my innocence, |
contemplated a two-year project. | did not know that, after many inter-
ruptions, 1 would still be laboring on the book more than seven years later.

Needless to say, there was much progress in the technical area
during this seven-year period. | managed to make a few contributions
myself, including the development of matroid intersection algorithms and
an O(n*) implementation of Edmonds algorithm for weighted nonbipartite
matching. Naturally, these are in the book. There are some results which
| did not put into the book, and possibly should have. These include the
O(n*?) agorithm for unweighted bipartite matching of Dinic and of
Hopcroft and Karp, and its recent generalization to the nonbipartite case
by Even and Kariv. These must await a second edition, if there is to be one.

Because the writing of this book extended over such a considerable
period, | have had the opportunity to receive advice, assistance, and en-
couragement from a large number of people. A special word is necessary
for some of them.

Ray Fulkerson was very kind in giving me advice in the early stages
of writing. | am most fortunate to have received his counsel. His untimely
death in January 1976 was a blow to all of us who knew him, as a scholar
and as a friend.

The last half of this book exists only because of the pioneering insights
of Jack Edmonds. He originated the key ideas for nonbipartite matching,
matroid optimization, and much, much more. | am happy to acknowledge
my personal debt to his creative and fertile mind.

Victor Klee, as consulting editor, was extremely helpful. His crit-
icisms, based on classroom use of the manuscript, were particularly useful
in revising Chapter 4.

Harold Gabow helped me avoid a number of blunders in Chapter 6.
(I, of course, retain sole proprietorship over the errors which remain, as
elsewhere in the book.)

Stein Krogdahl, whose name is seen in many lemmas in Chapter 8,
provided may definitions and proofs where mine were either incorrect or
incomprehensible.



Donald Knuth somehow found time to communicate many useful
suggestions and provided much appreciated encouragement.

The Air Force Office of Scientific Research provided support which
contributed to the writing of this book. | am indebted to that office and to
Captain Richard Rush.

I am aso indebted to Nicos Christofides, Stuart Dreyfus, Alan
Frieze, Dan Gussfield, T.C. Hu, Richard Karp, Sukhamay Kundu. Ben
Lageweg, Howard Landeman. Jan Karel Lenstra, Francesco Maffioli,
Colin McDiarmid, George Minty, Katta Murty, Alexander Rinnooy Kan,
Arnon Rosenthal, Phil Spria, John Suraballe, Robert Tarjan, Roger Tobin,
Klaus Truemper, Robert Urquhart, Dominic Welsh, Lee White, and
Norman Zadeh.

The manuscript was typed and retyped by Sharon Bauerle, Doris
Simpson, Ruth Suzuki, and many others. | thank them all.

Rocquencourt, France E.L.L.
July 1976
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ONE

Introduction

1

What is Combinatorial Optimization?

Combinatorial analysis is the mathematical study of the arrangement,
grouping, ordering, or selection of discrete objects, usually finite in number.
Traditionally, combinator ialists have been concerned with questions of
existence or of enumeration. That is, does a particular type of arrangement
exist? Or, how many such arrangements are there?

Quite recently, a new line of combinatorial investigation has gained
increasing importance. The question asked is not “Does the arrangement
exist?’ or “How many arrangements are there?‘, but rather, “What is a best
arrangement?’ The existence of a particular type of arrangernent is usually
not in question, and the number of such possible arrangements is irrelevant.
All that matters is finding an optimal arrangement, whether it be one in a
hundred or one in an effectively infinite number of possibilities.

The new study of combinatorial optimization owes its existence to
the advent of the modern digital computer. Most currently accepted meth-
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ods of solution to combinatorial optimization problems would hardly have
been taken seriously 25 years ago, for the simple reason that no one could
have carried out the computations involved. Moreover, the existence of the
digital computer has also created a multitude of technical problems of a
combinatorial character. A large number of combinatorial optimization
problems have been generated by research in computer design, the theory of
computation, and by the application of computers to a myriad of numerical
and nonnumerical problems which have required new methods, new ap-
proaches, and new mathematical insights.

2

Some Representative Optimization Problems

Perhaps the best way to convey the nature of combinatorial optimization
problems is to give some specific examples. The first six problems listed
below involve graphs. We assume that a connected undirected graph G is
given, together with a nonnegative length for each arc (when applicable). If
the reader is not already familiar with graphic terminology, he should con-
sult Chapter 2.

ARC-COVERING PROBLEM

An arc (i, j) is said to “cover” nodes i and j. What is the smallest possible
subset of arcs that can be chosen, such that each node of G is covered by at
least one arc of the subset?

ARC-COLORING PROBLEM

It is desired to paint the arcs of G various colors, subject to the constraint
that not all the arcs in any cycle are painted the same color. What is the
smallest number of colors that will suffice?

MIN-CUT PROBLEM

It is desired to find a subset of arcs (a “cut”) such that when these arcs are
removed from G, the graph becomes disconnected. For what subset of arcs
is the sum of the arc lengths minimized?

SPANNING-TREE PROBLEM

It is desired to find a subset of arcs such that when these arcs are removed
from G, the graph remains connected. For what subset of arcs is the sum of
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the arc lengths maximized? (The complementary set of arcs is a “minimal
spanning tree.*)

SHORTEST PATH PROBLEM
What is the shortest path between two specified nodes of G'?

CHINESE POSTMAN'S PROBLEM

It is desired to find a tour (a closed path) that passes through each arc in
G at least once. What is the shortest such tour?

ASSIGNMENT PROBLEM

An nx nmarix W = (w ;} is given. It is desired to find a subset of the
elements in W, with exactly one element in each row and in each column.
For what subset is the sum of the elements minimized?

MACHINE SEQUENCING PROBLEM

A number of jobs are to be processed by a machine. For each job a processing
time and a deadline are specified. How should the jobs be sequenced, so
that the number of late jobs is minimized?

A “TWENTY QUESTIONS” PROBLEM

Consider the following game, not unlike the parlor game of Twenty Ques-
tions. One player chooses a “target” object from a known set of » objects.
The probability that he chooses object i is p, These probabilities are known
to the second player, who is to identify the target object by formulating a
series of questions of the form, “Is the target contained in subset S of the
objects?, for some specified S. Assuming the first player answers these “yes
or no” questions truthfully, how can the second player minimize the mean
number of questions he must ask’?

“RESTRICTED” SATISFIABILITY PROBLEM

A Boolean expression is given, in conjunctive normal form (i.e.. “product-of-
sums” form), with at most two literals in each term (sum) of the expression.
For what assignment of 0. 1 values to the variables does the expression take
on a “maximum” value? (The expression is satisfiable if and only if there is
an assignment for which the expression takes on the value 1.)
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3

When is a Problem Solved?

Of the ten problems listed in the previous section, the first seven can be
solved by algorithms described in this book and the last three by well-
known algorithms referenced at the end of this chapter.

But what does it mean to “solve” one of these problems? After all,
there are only a finite number of feasible solutions to each of these problems.
In agraph withm arcs and » nodes there are no more than 2” possible subsets
that might be arc coverings, no more than m" possible arc colorings, no
more than 2" possible cuts, no more than »" 2 possible spanning trees, no
more than 2" possible paths, and no more than {2m)! tours of the type re-
quired for the Chinese Postman’s Problem. There are no more than n!
feasible solutions to the assignment problem, no more than n! feasible
sequences for n jobs, no more than (n!)* solutions to the Twenty Questions
problem, no more than 2" possible assignments of values to n Boolean vari-
ables in the satisfiability problem. In order to solve any one of these prob-
lems, why do we not just program a computer to make a list of al the
possible solutions and pick out the best solution from the list?

As amatter of fact, there may still be afew (very pure) mathematicians
who would maintain that the problems we have listed are actually nonprob-
lems, devoid of any real mathematical content. They would say that when-
ever a problem requires the consideration of only a finite number of
possibilities the problem is mathematically trivial.

This line of reasoning is hardly satisfying to one who is actually con-
fronted with the necessity of finding an optimal solution to one of these
problems. A naive, brute force approach simply will not work. Suppose that
a computer can be programmed to examine feasible: solutions at the rate of
one each nanosecond, i.e., one billion solutions per second. Then if there are
n! feasible solutions, the computer will complete its task, for n = 20 in
about 800 years, for n = 21 in about 16,800 years, and so on. Clearly, the
running time of such a computation is effectively infinite. A Icombinatorial
problem is not “solved” if we cannot live long enough to see the answer!

The challenge of combinatoriall optimization is to develop agorithms
for which the number of elementary computational steps is acceptably small.
If this challenge is not of interest to “mathematicians,” it most certainly is
to computer scientists. Moreover, the chalenge will be met only through
study of the fundamental nature of combinatorial algorithms, and not by
any conceivable advance in computer technology.
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4

The Criterion of Polynomial Boundedness

Suppose an agorithm is proposed for a combinatorial optimization prob-
lem. How should we evaluate its effectiveness ?

There is a very pragmatic (and realistic) point of view that can be
taken. When the algorithm is implemented on a commercially #available com-
puter, it should require only a “reasonable” expenditure of computer time
and data storage for any instance of the combinatorial problem which one
might “reasonably” expect to solve. It is in exactly this sense that the simplex
method of linear programming has been proved to be effective in solving
hundreds of thousands, perhaps millions, of problems over a period of
more than 20 years.

The “rule of reason” is an accepted principle of adjudication in the
law. But more objective, precise standards should be possible in a mathe-
matical and scientific discipline. One generally accepted standard in the
realm of combinatorial optimization is that of “polynomial boundedness.”
An algorithmis considered “ good” if the required number of elementary com-
putational stepsis bounded by a polynomial in the size of the problem.

The previous statement should raise a number of questions in the
reader’s mind. What is an elementary computational step'? Does not that
depend on the type of computer to be used? What is meant by the “size” of
a problem? Might not there be more than one way to define size? And, most
important, why is a polynomial bound considered to be important?

Consider first the significance of polynomial bounds. A polynomial
function grows much less rapidly than an exponential function and an ex-
ponential function grows much less rapidly than a factorial function.
Suppose one algorithm for solving the arc-covering problem requires 100 »?
steps, and another requires 2" steps, where n is the number of nodes. The
exponential algorithm is more efficient for graphs with no more than 17
nodes. For larger graphs, however, the polynomial algorithm becomes in-
creasingly better, with an exponentially growing ratio in running times. A
50-node problem may be quite feasible for the polynomia algorithm, but
it is amost certain to be impossible for the exponential algorithm.

This is not to say that such comparisons may not be misleading. The
crossover point may be well beyond the feasible range of either algorithm,
in which case the exponentia algorithm is certainly better in practice.
Moreover, there are algorithms which are theoretically exponential, but
behave like polynomia algorithms for all practical purposes. Prime ex-
amples are the simplex algorithms. which have empirically been observed to
require an amount of computation that grows algebraically with the number
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of variables and the number of constraints of the linear programming prob-
lem. Yet it has been shown that for a properly contrived class of problems
the simplex agorithms require an exponentially growing number of opera-
tions.

However, polynomia-bounded algorithms are, in fact. almost always
“good” algorithms. The criterion of polynomial boundedness has been
shown to have both theoretical and practical significance.

The other questions concerning the nature of elementary computa-
tional steps and the definition of problem size can be given formal and pre-
cise answers. But to do so is unnecessary for our purposes and beyond the
scope of this book. We simply mention that theoretical studies of the
complexity of computations, e.g.. the “machine independent” theory of
M. Blum, have indicated that it is relatively unimportant what computer
model is considered and what “elementary computational steps’ are
available in its repetoire. If an algorithm is found to be polynomial bounded
when implemented on one type of computer, it will be polynomia bounded
(perhaps by a polynomial of a different degree) when implemented on
virtually any other computer.

When estimates of algorithmic complexity are made in this book. we
have in mind a hypothetical computer of the following type. The computer
has unlimited random access memory. Input data reside in this memory at
the beginning of the computation and output data are left in it at the end.
Thus. there is no need to consider input-output operations. The memory
storeslogical constants and integers in words of any required size. We assume
that the access time for these words is constant, unaffected by the size of
the words and the number of words stored.

The hypothetical computer is ‘capable of executing instructions of a
conventional and mundane type, e.g., integer arithmetic operations, numeri-
cal comparisons, branching operations, and so on. We do not find it neces-
sary to indicate explicitly what these instructions are. Ordinarily, we assume
that each executed instruction requires one unit of time, regardless of the
size of the operands involved.

Now let us consider the question of problem size. The reader may have
already noted two different uses of the word “problem.” For example, we
speak of “the” arc-covering problem. and “an” arc-covering problem, i.e.
an “instance” of the arc-covering problem, represented by a given graph.
(The same sort of distinction exists in game theory between a “game,” e.g..
chess. and a “play” of the game.) The exact manner in which problem in-
stances are to be encoded as input data is considered to be part of the prob-
lem definition. Thus, in the case of the arc-covering problem we may decree
that graphs are to be represented by adjacency matrices. For the purpose of
evaluating algorithmic complexity, rhe size of a problem instance is the
number of bits (ie, symbols) required to encode it.
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In the case ofa problem involving the specification of various numeri-
cal parameters, e.g.. arc lengths, the magnitudes of these parameters should,
strictly speaking, be taken into account. For example, approximately
log, a;; bits are required to specify an arc length a,;. Ordinarily. we do not
take explicit notice of this fact and we pretend that the magnitudes of these
parameters do not matter. Thus, in the case of the shortest path problem,
we take n. the number of nodes in the graph, to be the natural measure of
problem size. whereas n’*x, where

® = max log, a;;. 4.0
i
would be a more accurate measure. (Note that if an algorithm is polynomial
bounded in g, it is polynomial bounded in p? as well.)
Suppose 1 is taken to be the measure of problem size and the number
of computational steps required by a certain algorithm is found to be

: k-1
at + T am g, 4.2

where g, > 0. Then we say that the algorithm is “of order p*” written O(n*).

The reader will soon discover that we are not much concerned with
the magnitude of the leading coefficient g, in (4.2). Smilarly, he will learn
that we greatly prefer an O(n*) algorithm to any Q(n**!) agorithm. Our
reasons for doing so are largely the same as those that cause us to prefer any
polynomial-bounded agorithm to an exponentially bounded one. Yet it is
admittedly hard to claim that an O(n®) agorithm which requires 10!%y*
steps is better than on Q(n*) agorithm which requires 10 z* + 20 p° steps,
only because the O(n*) algorithm requires less running time for very large n.
In practice one rarely, if ever, is confronted by such bizarre aternatives. In-
sights that are sufficient to obtain a solution method of lower degree are
amost invariably sufficient to provide an acceptable size for the leading
coefficient of the polynomia (4.2).

A cautionary note is in order. We have mentioned that all arithmetic
operations are assumed 10 require unit time, regardless of the size of the
operands. And we have admitted that we shall often ignore the magnitudes
of numerical parameters in measuring problem size. This sometimes results
in an underestimate of the complexity of a computation. For example, in
Chapter 3 we shall state that certain shortest path algorithms are O (n?),
whereas O(n*x) would be a more accurate measure, where « is defined by
(4.1). We consider that this is an inconsequential error. In practice, arithmetic
operations can be considered to require unit time. One expects to perform
either single precision or double precision or triple precision arithmetic.
Between these quantum jumps. the complexity of a shortest path algorithm
is, in fact. essentially O(n?).

It is important tha. our somewhat casual attitude toward the evalua-
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tion of algorithmic complexity does not cause us to declare that an algorithm
is polynomia bounded when it is not. In Chapter 4 we solve the so-called
min-cost network flow problem. The input data include an n-node graph.
various arc parameters, and a specified flow value ¢. The complexity of one
algorithm is estimated to be O(n?v). This is not a polynomial-bounded
agorithm, although in practice it is a fairly good one. The number of bits
required to specify v is log, v, so the complexity of the algorithm should be
polynomial in log,v, not p, in order for the algorithm to be considered to be
polynomial bounded.

5

Some Apparently Nonpolynomial-Bounded Problems

We must not give the impression that all significant combinatorial opti-
mization problems have been effectively solved, in the sense described in the
previous section. The “NP-complete” problems listed below have defied
solution in a polynomial-bounded number of computational steps, and we
strongly suspect that polynomial-bou.nded algorithms do not exist.

NODE-COVERING PROBLEM

A node i is said to “cover” al arcs (i, j) incident to it. What is the smallest
possible subset of nodes that can be chosen, such that each arc of G is
covered by at least one node in the subset’?

CHROMATIC NUMBER PROBLEM

It is desired to paint the nodes of G various colors, subject to the constraint
that two nodes i and j are not painted the same color if there is an arc (i, j)
between them. What is the smallest number of colors that will suffice? (This
is the “chromatic number” of G.)

MAX-CUT PROBLEM

It is desired to find a minimal cut such that the sum of the arc lengths is
to be maximized.

STEINER NETWORK PROBLEM

This is the same as the spanning tree problem of Section 2, except that a
specified subset of the nodes of G are to remain connected.
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LONGEST PATH PROBLEM

What is the longest path, without repeated nodes. between two specified
nodes of G?

TRAVELING SALESMAN PROBLEM

This is the same as the Chinese Postman’s Problem, except that the tour is
to pass through each node (rather than each arc) of G at least once.

THREE-DIMENSIONAL. ASSIGNMENT PROBLEM

This is the same as the assignment problem in Section 2, except that the
matrix W is three dimensional, with the obvious generalizations of the
problem statement.

MACHINE SEQUENCING PROBLEM

This is the same as the machine sequencing problem in Section 2, except that
for each job then: is, in addition, a specified penalty cost which is incurred if
the job is not completed on time. How should the jobs be sequenced, so that
the sum of the incurred penalty costs is minimized’? (In the previous problem
each penalty cost was, in effect, unity.)

CONSTRAINED TWENTY QUESTIONS PROBLEM

This is the same as the twenty questions problem in Section 2, (except that
the second player is constrained to choose questions from a specified list of
questions.

SATISFIABILITY PROBLEM

This is the same as the corresponding problem in Section 2, except that there
is no restriction on the number of literals that may appear in each term of the
Boolean express ion.

No one has yet been able to prove that the problems listed above
cannot be solved in a polynomial number of computational steps. However,
it is possible to elicit strong circumstantial evidence to that effect. It is also
possible to show that either all of these problems can be solved by a poly-
nominal-bounded algorithm or none of them can be.

These results have been obtained by a set of clever problem reduc-
tions. mostly due to R. M, Karp. That is. it has been shown that for any pair
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of problems A and B on the list. the existence of a polynomial-bounded
agorithm for problem B implies the existence of a polynomial-bounded
algorithm for problem A. The technique of problem reduction is employed
repeatedly in this book, generally with respect to the problems listed in
Section 2.

6

Methods of Solution

We have indicated something about the types of problems we wish to solve,
and something about how we intend to evaluate algorithms for their solu-
tion. Let us now consider some of the mathematical techniques which can
be employed in these algorithms.

One can classify solution methods into five broad categories: (1)
linear programming, (2) recursion and enumeration, (3) heuristics, (4) statis-
tical sampling, (5) specia and ad hoc techniques.

Linear programming as the reader probably already knows, is con-
cerned with extremization of a linear objective function subject to linear
inequality constraints. From a geometric point of view, the linear inequality
constraints describe a convex polytope. The “simplex*’ computation of linear
programming proceeds from one vertex of this polytope to another, with an
accompanying monotone improvemeni in the value of the objective function.

One way to solve a combinatorial 1 optimization problem by linear pro-
gramming is to formulate a system of linear inequality constraints which will
cause the vertices of the convex polytope to correspond to feasible solutions
of the combinatorial problem. Sometimes this results in a relatively small
number of constraints which can be listed explicitly in advance of the com-
putation. Problems for which this is the case include the network flow prob-
lems, with the shortest path, min-cut, and assignment problems as special
cases. For example, 2n inequalities, together with nonnegativity constraints
on p,? variables, describe a convex polytope with n! vertices, corresponding
to the n! feasible solutions of an n x n assignment problem.

There are other problems for which there exists a good characteri-
zation of the inequality constraints, but the constraints are far too numerous
to list. Instead, inequalities are generated as necessary in the course of the
computation. Problems which are solved by this approach include certain
matroid problems, with the arc-covering, arc-coloring, and spanning-tree
problems as special cases. For example, there are 2" constraints that describe
a convex polytope with n"~2 vertices. corresponding to the n"~? possible
spanning trees in a complete graph on n nodes.

Even though the number of constraints of these linear programming
problems are sometimes exceedingly large and the structures of the convex
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polytopes exceedingly complex, it has been possible in many cases to devise
algorithms requiring only a polynomial-bounded number of computational
steps. These algorithms are not obtained by simply invoking the simplex
method. Special techniques are necessary, and the duality theory of linear
programming is of fundamental importance in algorithmic analyses and
proofs of convergence.

Combinatorial optimization problems can also be solved by linear
programming methods, even in cases where there is no good characterization
of the necessary Inequality constraints. In the approach of “‘integer” linear
programming, one formulates a set of linear inequalities which describe a
convex polyhedron enclosing points (with integer coordinates) correspond-
ing to feasible solutions of the combinatorial problem. A variant of the
simplex method is applied and additional inequality constraints are generat-
ed as needed in 1 he course of the computation. These additional inequali-
ties or “cutting planes’ ordinarily bear little predictable relation to each
other or to the original set of constraints.

Integer linear programming algorithms usually do not exploit any
special combinatorial structure of the problem at hand. For this reason,
they are sufficiently general to “solve” virtualy any combinatorial optimi-
zation problem. But there is no possibility of establishing good a priori
bounds on the length of computations, and practical experience with these
algorithms has been very uneven.

Under the heading of recursion and enumeration. we include dynamic
programming and branch-and-bound. Dynamic programming, as popular-
ized by Bellman, is a technique for determining optimal policies for a sequen-
tial decision process. A surprisingly large number of optimization problems
can be cast into this form and some of the most useful applications of this
technique are in the combinatorial realm. In some cases, dynamic program-
ming can be applied to solve problems with a factorial number of feasible
solutions. eg., the traveling salesman problem, with an exponentially
growing number of computational steps. Other dynamic programming
algorithms are polynomia bounded. Interestingly, most of the shortest-
path agorithms described in Chapter 3 can be given either linear program-
ming or dynamic programming interpretations.

Branch-and-bound methods have been developed in a variety of
contexts, and under a variety of names, such as “backtrack programming”
and “implicit enumeration .” Essentially, the idea is to repeatedly break the set
of feasible solutions into subsets, and to cal culate bounds on the costs of the
solutions contained within them. The bounds are used to discard entire
subsets of solutions from further consideration. This simple but effective
technique has scored a number of notable successes in practical computa-
tions. However, it is rarely possible to establish good bounds on the length
of the computation.

Under the heading of heuristics we include algorithrns whose justi-
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fication is based on arguments of plausibility, rather than mathematical
proof. Often, these algorithms permit good computational bounds. However,
generally speaking, only solutions which are “close” to optimal or, at best,
not demonstrably optimal, are obtained.

By statistical sampling, we mean the random generation of a number
of solutions from the population of all feasible solutions for the purpose of
making some sort of statistical inference about the closeness of the best
solution sampled to the actual optimum. ‘This type of solution method
appears to be in its infancy.

The heading of special and ad hoc methods includes those techniques
which do not conveniently fall into one of the other categories. Examples
are Moore's method for the machine sequencing problem and Huffman’'s
coding method for solving the Twenty Questions problem, referenced at the
end of this chapter.

In brief, this book is concerned with linear programming techniques
for which good computational bounds exist. and incidentally with recursion
and enumeration. We do not discuss integer linear programming nor heuris-
tics nor statistical sampling. Nor is any comprehensive survey of special
and ad hoc methods attempted.
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Mathematical Preliminaries

1

Mathematical Prerequisites

Some background in graph theory and in linear programming is essential
for reading this book. This chapter provides a review of some of the more
important background concepts, as well as a consistent set of definitions
and notational conventions.

The most important concepts from graph theory, for our purposes,
are those which have to do with connectivity properties. Before attempting
the study of network flows, the reader should be familiar with the notions of
path, directed path, tree, directed tree, cycle. directed cycle, cocycle, and
directed cocycle, and the duality relations between them. The study of
matroids is also made much easier if one is able to make graphic interpreta-
tions of the matroid generalizations of these same concepts.

The linear programming concepts we draw upon most freguently
concern duality relations. The reader should be able to formulate the dual
of a linear program and determine the orthogonality conditions which are

15
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necessary and sufficient for optimality of primal and dual solutions. Familiar-
ity with the simplex method is not necessary. However, the reader should
have some appreciation of convex polytopes and polyhedra. and know that
the simplex computation proceeds from one vertex of the feasible region to
another. In later chapters some emphasis is placed on the fact that certain
convex polyhedra have integer vertices. This is proved by showing that an
integer optimal solution is obtained for any possible objective function. The
reader should be equipped to follow this line of reasoning.

In addition to strictly mathematical background, the reader should
have some familiarity with the principles of computation. He should under-
stand the concept of an algorithm. and how an algorithm is coded in machine
language and executed by a computer. He should be able to count the number
of levels of nesting of iterative loops in an algorithm and thereby estimate
its complexity. No serious attempt is made to explain these matters in this
chapter or elsewhere in this book. IF the reader is unfamiliar with these
concepts, he should consult a text on computer programming.

2

Sets and Relations

We assume that the reader is familiar with basic set operations and conven-
tional set notation: €, & ~.u, N, <, C, . etc. Wewrite Sc T if Sisa
proper subset of T.i.e, Sc T but S # T. We use braces {,} to indicate a set,
and parentheses (,) to indicate an ordered set or sequence. For notational
convenience. we use * +" and * - as follows :

S+e=SuUle
and
s=e=8 ={e].

The symmetric difference of two setsisindicated by thesymbol @, i.e,

S@® T is the set of all elements contained in S or in T, but not both. By an
abuse of notation. we occasionally apply set operations to ordered sets,
as though they were unordered. For example, if

$=@.1,0,5)
and

T = (1, 3, 2? 4)5
then

S@®T=10.23.5
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We let |S| denote the number of elements in S, the cardinality of S. For ex-
ample, if ¢ ¢ S, then |S + ¢| = |S] + 1. We let Y(S) denote the power set of §,
the set of all subsets of S. |2(S)| = 2", where n = |S|. Thus |2(Q)| = 1.

Suppose 7 is a family of sets. We say that S €.7 isminimal in 7 if
thereisno Te .7 such that T < S. Similarly S is maximal in 7 if there is no
Te 7 such that S < T Obviously, a minimal set is not necessarily unique
nor does it necessarily have minimum cardinality. A set may aso be both
minimal and maximal in 7. For example, if .7 = { {0, 1 }, {0, 1, 3}, {4}, { 3},
{ 1,3} }, then the minimal s:ts in 7 are {0, 1}, {3}, and (4). ‘The maximal
sets are {0, 1, 3} and {4}. Quite often we have occasion to speak of a set §
which is minimal (maximal) with respect to some property P. Such a set is
minimal in the family of all sets conforming to the property in question.

The same concepts of minimality and maximality are applicable to
odered s For example, suppose we define a “d-sequence’ to “be a  sequence
of integers in which two successive elements of the sequence differ by no
more than d. For the given sequence S = (0, -~ 1,3,1,6, 8, 10, 2, 7, 0), both
(0,3,6,8,10,7) and (0, — 1. 1,2,0) are maximal three-subsequences of S.

If S is afinite set of numbers, min S (max S) denotes the numerically
smallest (largest) element in §, Thusif §={~1,2 3 8}, mn$§==1 and
max S = 8. By definition, min @f = + oo and max f = - o0, Alternative
notations for min A. where

A=l{aya,,...,a,
ae
min {a;[1 < i < n}
or
min {a;}
1<1<n
or smply
min a,

where the range of i is understood from the context.
As a further example. suppose A is a matrix whose typical element is

a;;, Written

ijs

Then
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is the smallest element in row | and

max aij
!

is the largest element in column j. In the matrix

04 3

A=\ & &/

mex min ¢; = 6.
i 1

min max a; = 7.
J i

The reader is assumed to be familiar with the algebraic concepts of
relations and functions, and with equivalence relations and partial orderings
in particular. He should know thal an equivalence relation is reflexive,
symmetric, and transitive; also, that an equivalence relation on a set induces
a partition of that set and that, conversely, a partition induces an equivalence
relation. He should know that a partial ordering is reflexive, antisymmetric.
and transitive and that a partial ordering can be represented by a Hasse
diagram.

Suppose < is a total ordering of A, i.e., a partia ordering such that
for each pair of elements a b, in A either « < b or b <a. Then this total
ordering induces a lexicographic ordering =" of A”, the set of all n-tuples
of elements of A. (That is, A” is the n-fold cartesian product of A.) Let

a:(a,, az,.- -y an)
and

b = (b, b, . b).

Then a < b if either a = b or there is some k, 1 < k < n, such that ;- b,
i=12,.,k 1, and a, < b,

Suppose ./ = A u 42 u A% U . .. We can define a lexicographic
ordering on %/ as follows. Let

a= (ah Aoy« s a!)
and
b = (bl, bz'« roe e bx)r

where m < n. Thena < b ifa < (b, b, .., b,), as defined above, and
b < a otherwise.
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Or, suppose ./ € 2(A4). Let

4= {a,a,,..,4,),
b= {bby . . b).

where m < n. Assume, without loss of generality, that

afa,£...%a

m
and

by <b,<...<h,

Thena=<bif(a,a,.,a,) < (b, b, ..., b).

A lexicographic ordering of any one of these three types is a total
ordering. This property is handy for “breaking ties.” For example, suppose
we pose the follow’ing optimization problem. Given a positive integer n, for
what factorization of n is the sum of the factors a minimum? (Assume only
positive factors.) For n= 8,2 x 2 x 2 and 2 x 4 are both optimal. However,
if we wish there to be a unique optimum, 2 x 2 x 2 can be declared the
smaller of the two by lexicography.

Lexicographic ordering of n-tuples (“vectors’) should not of course
be confused with the more common partial ordering: i.e., if a= (a, a,, . .,
a,) and b= (b,b,,...,b), thena < bif a, <b,fori= 12,., n We
commonly make use of this type of relation when we write

AX < b,

where A = (g;;) is an m x n matrix and A and b are, respectively. an n-
vector and an m-vector. The vector inequality above means that

n
Zaijxjgbis fori=1,2-,.., m.
=1

PROBLEMS

2.1 Veify exch of the following :
(a minSuT=min(minS, minT),
) mnNnSAT=max (MinS mnT).
( IfScTthenminS=minT
(d) min {S, [} = = MaX {— S, =- {}'.

2.2 Formulate a duality principle whereby “min” and“max” can be interchanged
in relations like those dated in Problem 21 Rewrite each rdation <according
to this principle.
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3

Graphs and Digraphs

A graph G = (N, A) is a structure consisting of a finite set N of elements
caled nodes and a set A of unordered pairs of nodes called arcs. A directed
graph or digraph is defined similarly, except that each arc is an ordered pair.
giving it direction from one node to another. In the literature of graph
theory (where terminology is quite unstandardized), nodes are also referred
to as vertices or points and arcs as edges or lines.

Any system or structure which may be considered abstractly as a
set of elements, certain pairs of which are related in a specified way, has a
representation as a graph or digraph. Thus graph theory is really of a theory
of relations, with graphs representing symmetric relations and digraphs
asymmetric relations.

In many applications in the physical, biological, social, and engin-
eering sciences, graphs or digraphs are not sufficient to adequately specify
the system or structure under study. Numerical values may be attached to
the nodes or arcs of a graph to represent construction costs, flow capacities,
probabilities of destruction, and so on. In general, any graph to which such
additional structure has been added is called a “network.”

For both undirected and directed graphs, an arc from node i to
node j is denoted by (i, j), even though {i, j} would be more appropriate
for undirected graphs. An arc (i, i) is called a loop. (Ordinarily we deal with
undirected graphs with no loops and at most one arc between a given pair of
nodes i, j. Thus, if |[N|= nand |4] = m, it follows that m <n(n  1)/2. In
the case of directed graphs, we permit both (i, j) and (j, i), so m < n(n — 1).

We commonly represent a graph by a drawing in which nodes are
points (drawn as circles) and arcs are lines connecting pairs of points. If the
graph is directed, the arcs are drawn with arrow heads. It should be kept
clearly in mind that two drawings of the same graph may be quite different,
as shown in Figure 2.1.

People find drawings useful. Computers do not. Some of the repre-
sentations of graphs that are appropriate for computers are an arc list, an
incidence matrix, and an adjacency matrix.

Q) (2 \{T{\E
5
°‘° (3 Figure 2.1 Two draw-
ings of the same graph
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An arc list simply contains an entry for each arc (i, j). In the case of
the graph in Figure 2.1, such a list contains (1, 2), (1, 3), (1,4), (2,3). (2, 5),
(3.4), (3 5), (4,5). Arc lists may be sorted, ordered, and manipulated in
various ways within the computer.

An arc (i, j) is said to be incident to each of the nodes i and j, and
conversely. Each row of the node-arc incidence matrix is identified with a
node and each column with an arc. If the arcs are numbered by the index k.
then the incidence matrix E = (b;,) is defined as follows:

b, = 1 if node i is incident to arc k,
= 0 otherwise.

The incidence matrix of the graph in Figure 2.1 is

1+, 1100000
2/1 00 1 1 0 0 O
3101010110
410 01 0 0 1 O 1
S5\0 0O O O 10 | 1/

aRsaasan

Tz ddoecectds

Note that each column contains exactly two 1's.

In the case of a directed graph the arc (i, j). directed from i to |, is
said to be incident from i and incident to j. The arc-node incidence matrix
B = (b,,) is defined. as follows :

b, = + 1 ifarckisincident to node i
= — | if arc k isincident from node i

0 otherwise.

The incidence matrix of the directed graph in Figure 2.2 is
! -1/— 1 1 0 0 0 o0
2 ‘ 1 0 1 -1 -1 1 0

3 0 10 1 ol l

4 \ O 0 0 0 1 -1

0
o —
o0 — o <+ (o] o
- 4 H H o) .
~— N e N N o =

(12)

Note that each column contains exactly one + 1 and one -- 1.
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BO,

Figure 2.2 Directed graph for
example

If there exists an arc {i, j) we say that nodes i and j are adjacent. By
definition, no node is adjacent to itself. For an undirected graph, the adja-
cency matrix A = (g;;) is defined as follows:

a; = 1 if there is an arc (i, j) between nodes i and j
= 0 otherwise.
The adjacency matrix for the graph in Figure 2.1 is
1 /0111 o

3yt 0 11
211 8181
5%\ 1 1 10
1 2 3 45

Note that the adjacency matrix is necessarily symmetric, i.e, a;; = aj
In the case of adirected graph, if thereisan arc (i, j) we: say that node
i is adjacent to node j and node j is adjacent from node i. The adjacency
matrix A = (a;;) is defined as follows:
a; = 1 if thereisan arc (i, j) from i to j
= 0 otherwise.

The adjacency matrix for the digraph in Figure 2.2 is

1 fo 11 o

1011
3lo 100
4\0 0 10

1 2 3 4
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e 195
O —b | :
@ | oo,

N~ ~__/
Figure 2.3 Two drawings of a bipartite graph

Of special interest is the bipartite graph, such as that shown in Figure
2.3. The nodes of a bipartite graph can be partitioned into two sets S and
T, such that no two nodes in § or in Tare adjacent, i.e, all arcs extend
“between S and T.” If a graph G = (N, A) is bipartite, we commonly denote
itasG = (S, T.Arwhere N =Su T.

Proposition 3.1 (7 is a bipartite graph if and only if its nodes can be num-
bered in such a way that it5 adjacency matrix takes on the form

0 | A
A= (ZT 0 ) (&1

In (31). A" denotes. the transpose of the submatrix 4. Thus, for a
bipartite graph G = (S, T. A), with |S|= p and |T|= ¢, the nodes can be
numbered in such a way that A is a px g submatrix and A" is ¢ x p. We
often represent a bipartite graph simply by the adjacency submatrix 4,

PROBLEMS

31 (R M. Kap) The folowing is a representative list of systems or dructures for
which graph modds ae aproprite In each case, decide whether a grgph or
digraph is called for. Determine what additional mathematical structure, if
any, is necessary to adequately model the more important aspects of each
system. Which of the graphs, if any are bipartite?

Nodes / and j Are Connected
System or Structure Nodes ! /

by an Arc If
Road map Cities i and j are connected by a road
Molecule Atoms There is a chemical bond

between | and j
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System or Structure

Electricd  network
Binary relation R over a set N
Game or puzzle

Discrete-state system

Business orgamzation

United States national
economy

Computer  program

Information  retrieval
system

Convex polyhedron

System of simultaneous
equations

Node;

Termir als of
elements
Elements of N
Positions or
configura-
tion:,
States

Employees
Goods and
services
Instructions

Index terms,
documents

Extreme points

Vaiables

Nodes / and j Are Connected
by an Arc If

i and j are connected by a
network  element

(./jeR

i can be reached from j in one
move

A direct transition |s possible
from i to |

i is j's manager

i is required in the production of j

The execution of j can directly
follow the execution of i
Term is relevant (o document |

| is adjacent to j
j is an independent variable in the
equation for i

3.2 If A is the adjacency matrix and B the incidence matrix of a given graph. what
is the relation between A and BB™? (Be sure to consider the relation between the

diagonal elements of
BBT?

the two matrices) Under what specid condition

is A =

3.3 Devise an O(n?) algorithm to test a graph for bipartitness. (Hint: Start by

labeling on arbitrary node §. then label

4

Subgraphs, Cliques, Multigraphs

the adjacent nodes 7, and so on.)

The degree d, of node i is the number of arcs incident to the node. Note that

if B is the incidence matrix,

d; = Z bi.
k

In the case of a digraph. the out-degree d{°*® of node i is the number of arcs
incident from the node, and the in-degree d{" is the number of arcs incident

to the node. Note that

d(iout) - dgin) — Z bik'
b

The complete graph K, has n nodes any two of which are adjacent.

The complete graph has n(n

1)/2 arcs. The complete digraph on n nodes
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has n(n = 1) arcs. The complete bipartite graph K, , is a bipartite graph
G=(S T, A). with |S|= p,|T| = 4. and |4] = pq.

A graph G = (N', A') is called a subgraph of the graph G = (N. A) if
N € Nand A’ < A. If N < N. then the subgraph of G induced by N’ has
the node set N’ and al arcs (i. j) in A such that both j and j are in N'. If a
subgraph of G is a complete graph it is a complete subgraph. A maxima
complete subgraph is caled a clique.

Given the graph G = (N. A), the subgraph obtained by the deletion
of the arcs A’ € A is simply the graph G’ = (N, A = A’). The complement of
the graph G = (N, A) is the graph G obtained by deleting the arcs of G from
the complete graph on the same nodes.

The contraction of an arc (i, j) is accomplished by replacing nodes |
and j by asingle node k. Anarc (k, I) is provided in the contracted graph
for each arc (i, /) or (j, 1) in the original graph, except arc (i, j). The con-
traction of a graph may well result in a graph with multiple arcs between
nodes. Such a structure we call a multigraph.

The above definitions are illustrated by the example in Figure 2.4.

@/\:\
ROSO T_©
@é’/})

(a) (b)

G%S@QEFGD 020 RO

(c) (d)

o
X0 Cr(O—0®
o

Figure 2.4 (a) Graph G. (b) Complementary graph G. (c) Three cliques in G. (d) Sub-
graph induced by N =11, 2, 4]. (e) Deletion of arc (1, 3). (f) Contraction of arc ¢, 3).
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PROBLEMS

4.1 Prove that every graph has an even number of nodes of odd degree.

42 If G = (§, T A) is a hipartite graph, characterize the (clique structure of G and
of G.

43 Theincidence matrix ofa multigraph is defined as for an ordinary graph and the
adjacency matrix can be generalized so that o; = the number of arcs between
between i and j, What is the relation between A and BB™? (Cf. Problem 3.2.)

5

Connectivity in Graphs

In this section we define path, cycle, component, etc., for graphs. In the
next section the analogous notions for digraphs are discussed.

A path between s and ¢, or simply an (s, r) path, is a sequence of arcs
of the form (s, iy), (i1, i), - . .. (i, 1) 1F 5,0y, . . . . §, t @re distinct nodes, we
say that the path is minimal or without repeated nodes. We shall often use
only the word “path,” adding the words “minimal’” or “without repeated
nodes” where this is not clear from the context.

An (s, ?) path is open if s % t and closed if s = 1. A cycle is an (s, )
path containing at least one arc, in which no node except s is repeated. In
an ordinary graph (as opposed to a multigraph or a graph with loops), a
cycle must contain at least three arcs. A graph which contains no cycles
isacyclic.

Two nodes i and j are said to be connected if there exists an (i, j)
path. A graph G is said to be connected if all pairs of nodes are connected.
A component of a graph G is a maximal connected subgraph, i.e., it is not a
subgraph of any other connected subgraph of G. A graph is connected if
and only if it has exactly one component.

Each node or arc of G belongs to exactly one component. It follows
that the components of a graph determine a unique partition. of its nodes
and arcs.

Proposition 5.1 If a graph G has p components, then its nodes can be
numbered in such a way that its adjacency matrix takes on the block diagonal

form
0 0
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Figure 2.5 All trees ¢n five nodes

A tree is a connected acyclic graph. All trees on five nodes are ex-
hibited in Figure 2.5. The following proposition gives a number of equivalent
characterizations of trees.

Proposition 5.2 ‘The following statements are equivalent for a graph G
with n nodes :

1) Gisatree

) Every two nodes of G are connected by a unique path.

3) G isconnected and has 1 — 1 arcs.

4) Gisacyclicand hasn 1 arcs.

5) G isacyclic and if any two nonadjacent nodes of G are joined by an
arc e, then G + e has exactly one cycle.

(6) G isconnected, is not K, for n > 3, and if any two nonadjacent nodes
of G are joined by a new arc e, then G + e has exactly one cycle.

—~ o~~~ —~
N

A tree inG is a connected acyclic subgraph on the nodes of G. A forest
in G is an acyclic subgraph on the nodes of G, i.e., each component of the
forest is atree. A maximal forest in a connected graph is a spanning tree. (It
“gpans’ or connects together all nodes.)) Two important theorems follow.
The reader should be able to prove the first by induction. The second is
difficult; its proof can be found in any standard work on graph theory.

Theorem 5.3 Every maximal forest in a graph with n nodes and p com-
ponents contains n p arcs.

Theorem 5.4 (C. W. Borchardt) K, contains n"~ 2 distinct spanning trees.

PROBLEMS

51 Show that atree on n2 2 nodes has at least two nodes with degree one.
52 Prove that a graph is bipartite if and only if each of its cycles s of even length.
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54  Show that if C is a cycle of a graph G, then the columns of the incidence matrix
corresponding to the arcs in C are linearly dependent, with respect to addition
and multiplication in the field of two elements. (Thatis, 0 +0=14+1=0,
0+ 1= 1+0= 1,0:0=0-1=1-0=0,1-1=1.)

6

Connectivity in Digraphs

Each of the definitions given in the previous section is applicable to digraphs,
by simply ignoring the directions of arcs. However, for every definition for
graphs, there is a specialized definition for digraphs in which the directions
of the arcs are taken into account.

Thus a directed path from s to ¢, or simply an (s, t) path, is a sequence
of arcs from s to t, where the pth arc is incident to the same node from which
the (p + I)st arc is incident. That is, all arcs are directed from s toward t.
A directed cycle is aminima nonempty closed directed path. We shall often
drop the word “directed” from directed paths, directed cycles, and so on,
when no confusion will result.

A node i issaid to be connected to node j, and j is said to be connected
from i if there exists an (i, j) path. A digraph G is saidto be strongly connected
‘if, for all pairs of nodesi andj, i is connected to j and j is connected to i. A
strong component of a graph G is a strongly connected subgraph of G which
ismaximal, i.e, it is not a subgraph of any other strongly connected subgraph
of G. A graph isstrongly connected if and only if it has one strong component.

Each node (but not each arc) of G belongs to exactly one strong com-
ponent. It follows that the strong components of a graph determine a unique
partition of its nodes. Suppose we contract all those arcs which lie in strong
components. Then the resulting contraction digraph has the appearance of
the graph in Figure 2.6. That is, each node is identified with a strong com-
ponent and these nodes are, in effect., partially ordered. If there is a path
from i to j, there is no path fromj to i, In other words the resulting contraction
digraph has no directed cycles.

Proposition 6.1 If a directed graph G has p strong components, then its
nodes can be numbered in such a way that its adjacency matrix takes on the

form
(4]
o o [ ]
0 0 0 |4,|/

where the entries above the block diagonal submatrices are O's and 1’s.
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Figure 2.6 (a) Diagraph G and strong components. (b) G after contrac
tion of strong components.

A directed tree is either rooted to a node or from a node. A tree
rooted from node i is a tree in which the in-degree of i is zero, and the in-degree
of each of the other nodesis at most one. A tree rooted to node i isatreein
which the out-degree of i is zero and the out-degree of the other nodes is at
most one. A directed sparning tree isjust as its name suggests.

A directed graph is called acyclic if it contains no directed cycles.
Each strong component of an acyclic digraph contains exactly one node. It
follows from Proposition 6.1 that there exists a numbering of the nodes such
that the adjacency matrix is upper triangular, i.e.. zero below the main
diagonal. This observation is equivalent to the following proposition.

Proposition 6.2 A directed graph is acyclic if and only if its nodes can be
numbered in such a way that for all arcs (i, j). i < j.

In order to show that the nodes of an acyclic graph can be so ordered,
one first observes that there is at least one node with in-degree zero. Such a
node is found, numbered 1, and al arcs incident from the node are deleted.
A node with in-degree zero is found in the resulting subgraph. This node is
numbered 2, and all arcs incident from it are deleted, and so on.

This procedure can be implemented by a computation whose com-
plexity is O(n?). We suppose that the graph is described by its adjacency
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matrix A and that the rows and columns of this matrix are ordered according
to the given arbitrary numbering of the nodes. Let v{j) denote the new
number of node j.

Initially d{™ is computed for all nodes j, by forming the sum of the
entries in column j of matrix A. A node k for which d{™ = 0 is found, and
v(K) is set to 1. The in-degrees are revised by subtracting the entries in row
k of A. and the process is repeated. This is summarized below.

RENUMBERING THE NODES OF AN AcCYcCLIC DIGRAPH

Step 0 (Start)
Set d}i") = Z a,
i=1
Set N =il2..... n).
Setm = 1.

Step 1 (Detection of Node with Zero In-Degree)
Find k € N such that d{™ = 0. If there is no such k, stop; the digraph is

not acyclic.

Set uk) = m.
Setm=m+ 1.
St N=N k

If N = (. stop; the computation is completed.

Step 2 (Reoision of In-Degrees)
;Setd(jin) = d‘()-ln) Ll akj, fOI’ a” ] € N.
Return to Step 1.//

The complexity of the computation is estimated as follows. Step 0
requires n(n 1) additions. Step 1 requires at most n comparisons to deter-
mine k, and various other operations independent of n. Step 2 requires at
most n 1 subtractions. Step 0, which is O(n?), is performed exactly once.
Steps 1 and 2. which are both O(n), are performed at most » times. It follows
that the overall complexity is O(n?).

Some of the definitions given in this section areillustrated by examples
in Figure 2.7.

PROBLEMS

61 Devise a procedure for detemining the drong components of a digraph  from
its adjacency  matrix.

62 show that if Cis a directed cycle of adigraphG.then the columns of the node-
arc incidence matrix corresponding to the arcsin¢ are linearly dependent.
with respect to addition and multiplication in the fidd of reds.
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Figure 2.7 (a) (s, t) path with repeated node. (b) Minimal (s, t) directed path. (c) Cycle.
(d) Directed cycle. (e) Tree rooted from /. (f) An acyclic digraph.

7

Cocycles and Directed Cocycles

Let G = (N, A) be a graph, or a directed graph in which the directions
of the arcs are ignored. A subset C < A, such that G’ = (N, A = C) contains
more components than G, is a separating set of G. A minimal separating
set isacocycle of G. (The reason for the term “cocycle” is evident in the next
section.)

For any cocycle C, there exists a partition of the nodes of the graph
into two sets S and T, such rhat C contains just those arcs extending between
S and T. The deletion of tae arcs in C destroys any (s, 1) path, where s ES
andieT.

However, the converse is not true. That is, given an arbitrary node
partition §, T, the set of arcs extending between § and T is not necessarily
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a cocycle. (Consider a three-node graph with arcs (1, 2), (1, 3). The partition
S = {1}, T = {2,3} determines a nonminimal separating set.) We cal a
separating set determined by such a partition a cutset and we may refer to
it by any one of the node partitions S, T which determinesit. An (S. 1)-cutset
isany cutset (S, T), wherese Sand te T

Propostion 7.1 Every cutset isa union of disjoint cocycles.

A cutset or cocycle of a digraph in which al the arcs are oriented in
the same direction, i.e., either. al from Sto T oral from T to S, is called a
directed cutset or directed cocycle.

Theorem 7.2 (Minty) Let G be a directed graph with a distinguished arc
(s, t). Then, for any painting of the arcs green, yellow, and red, with (s, 1)
painted yellow, exactly one of the following alternatives holds:

(1) (s, 1) is contained in a cycle of yellow and green arcs, in which all
yellow arcs have the same direction.
(2) (s 1) is contained in a cocycle of yellow and red arcs, in which all
yellow arcs have the same direction.

proor Think of the graph as a network of streets, in which green arcs are
two-way streets, yellow arcs are one-way streets (according to the directions
of the arcs), and red arcs are streets blocked to traffic. Now starting at the
street intersection represented by node ¢, either it is possible for traffic to
move from ¢ to s, or it is not. If there is some way, then there exists a minimal
(t, s) path of yellow and green arcs, with all yellow arcs directed from ¢ to s.
This path, together with the arc (s, 1), forms a cycle satisfying condition (1).

If there is no way for traffic to get from ¢ to s then a cocycle satisfying
the condition (2) can be constructed as follows. Let T be the set of all nodes
accessible to traffic from ¢t and let S be the complementary set. There can
be neither yellow arcs directed from T to S nor green arcs between S and
T in either direction. Otherwise, one or more of the nodes in S would be
accessible to traffic from I contrary to assumption. It follows that all arcs
between S and Tmust be red arcs, in either direction, or yellow arcs including
(s, 1), directed from Sto T. By Proposition 7.1, the (S, T) cutset contains a
cocycle satisfying condition (2).//

8

Planarity and Duality

A graph G is called planar if it can be drawn so that its nodes are points in
the plane and each arc (i, j) is drawn so that it intersects no other arcs and
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Figure 2.8 Kuratowski graphs

passes through no other nodes. Example of nonplanar graphs are the
Kuratowski graphs Ks. K 3 shown in Figure 2.8. Every nonplanar graph
contains one or the other of these Kuratowski graphs, in the sense that it
can be obtained by contraction and deletion of arcs.

The drawing of a planar graph in the plane is called a plane graph. (A
plane graph is not a graph it is a drawing.) We refer to the regions defined
by a plane graph as its faces. the unbounded region being the exterior face.
Given a plane graph G, its geometric dual G* is constructed as follows.
Place a node in each face, including the exterior face. If two faces have an
arc e in their common boundary, join the nodes of the corresponding faces
by an arc e* crossing only ¢. The result may be a plane graph with loops or
with multiple edges. as seen in Figure 2.9. In any case, the graph or multi-
graph G” for which G* is a plane graph is said to be a dual of G.

The plane graph of G is not unique, and so its dual GP is not unique,
as shown in Figure 2.10. Yet we have the habit of referring to “the” dual
of a graph G, and in practice there is not much harm in this.

The procedure for dualizing digraphs is essentially the same as for
graphs, except that we must be able to assign directions to the arcs in the
geometric dual. We do this as follows. Imagine that the arc e* dual to the arc

—

Figure 2.9 A plane graph and its \
geometric  dual ~
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Figure 2.10 Two plane
graphs of the same graph
and their duals

eisrotated clockwise in the plane. Place an arrowhead on the end of ¢* which
would first touch the arrowhead of e. This rule is illustrated in Figure 2.11.

For our purposes, the most significant property of dualization is that
it interchanges cycles and cocycles. The proof of the following theorem is
quite nontrivial, and we refer the reader to the literature.

Figure 2.1 1 Dualization of digraph
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Theorem 8.1 ‘Let (" be asubset of the arcs of G and C* be the dual subset of
arcs of GP. If Cis a cycle, directed cycle, cocycle, or directed cocycle in G,
then C* is, respectively, a cocycle, directed cocycle, cycle, or directed cycle
in G®, and conversely.

We often have occasion to deal with graphs with two designated
terminal nodes. s and t. In some cases, it is possible to construct a dual graph
with corresponding terminal nodes s* and * by the following procedure.

The graph G is augmented by adding a specia arc ¢ = (t. s), to obtain
the graph G + e. (G may alrzady have an arc (1, ). in which case e is parallel
toit) If G + ¢ is planar, thea (G + ¢)” is obtained and the arc ¢*, dual to e,
is by definition directed from s* to ¢*. Now note the relationship between
G” and (G + e)” - ¢*. The addition of ¢ to G simply subdivides nto two
parts some face F of G that has nodes s and | on its boundary. Hence, G”
differs from (G + €” = ¢* only in that the node in G” corresponding to F
is split into two nodes g* and (* See Figure 2.12.

o=l

\\\§\
N

N /
N

o

(©)
Figure 2.12  (a) D graph G with terminals s, £ (b) Addition of
(t s)to G and dualization. (c) Dual digraph (3* with terminals
s't
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By defining ¢* to be directed from 5* to * rather than the opposite,
we obtain the following results. Suppose C is a directed path from s to r. with
no repeated nodes. Then C + ¢ is adirected cyclein G + e and, by Theorem
81, (C+ e)* = C*+ ¢* is a directed cocycle in (G + ¢)”. But then C* is a
directed (s*, t*)-cocycle in (G + e)” -- ¢* Thus a directed (s. f) path in G is
found to correspond to a directed (s*, t*) cocycle in (G + €)" = ¢* The
reader can employ Theorem 8.1 to work out other correspondences.

This technique of two-terminal dualization is obviously valid only if
the graph G remains planar after the addition of the arc e = (t, s). A graph
for which this is true is said to be (s, t) planar.

The operations of contraction. and deletion are also interchanged by
dualization. That is, the contraction of an arc in G corresponds to its deletion
in the dual, and vice versa. Further reference to this property is made in
Chapter 7.

9

Eulerian and Hamiltonian Graphs

Graph theory is said to have been founded in 1736 when Euler settled a fa-
mous unsolved problem known as the Kénigsberg Bridge Problem. Two
islands were linked to each other and to the banks of the Pregel River by
seven bridges. The question posed was whether it was possible to begin at
any of the four land areas. walk across each bridge exactly once, and return
to the starting point.

The general question, for a given graph G, is whether there exists a
closed path which contains each arc exactly once. Such a path, if it exists, we
call an Euler path, and we say the graph is a Euler graph, or Eulerian. Euler
was able to answer the question negatively for the specific Kénigsberg graph
of Figure 2.13 and also to resolve the issue for al graphs. as follows.

Figure 2.13 Graph of the Kdénigsberg Bridge
Problem
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Theorem 9.1 A graph (or multigraph) G is Eulerian if and only if G is
connected and each node of G has even degree.

prooF If G is Eulerian, then clearly it is connected and each node has even
degree. (An Euler path enters each node exactly as many times asit leaves and
contains each arc exactly once, implying the degree of each node is even.)

The converse is proved by induction on the number of arcs. The
theorem is true for graphs with zero arcs. Assume it is true for graphs with
m 1 arcs. A connected graph with m > 1 arcs and in which each node has
even degree must contain a cycle C. (Show this!) The deletion of  from G
produces a graph with one or more components. each of which is Eulerian
by inductive assumption. An Euler path for G is formed by joining C with
the Euler paths of these components. (The reader should work out a detailed
plan for the order in which the various parts of the Euler path are traversed,
if this is not clear to him.)//

Sir William Hamilton once investigated the existence of a cycle
passing through each vertex of a dodecahedron exactly once. We call acycle
that passes through each node of a graph exactly once a Hamilton cycle,
and the graph which contains it a Hamilton graph, or Hamiltonian. In con-
trast with the extremely tidy necessary and sufficient conditions for Euler
graphs, Hamilton graphs seem to defy effective characterization. There are,
however, a few useful sufficient conditions. For example:

Theorem 9.2 (Chvdral) Let G be a graph with n > 3 nodes and no loops or
multiple arcs in which the nodes are numbered so that d, <d, < ... <d,
G 15 Hamiltonian if

dhsk=d_ zn=k fri<k<).

The reader is referred to Chvatal’s paper for a proof.

Let S beasetand ¥ = {S,, S,., §,} be afamily of distinct non-
empty subsets of S whose union is §. The intersection graph of .7 is a graph
whose nodes are identified with sets in .%, with §; and §; adjacent whenever
i#jandS;nS;# . A graph G is anintersection graph on § if there exists
a family .# of subsets of S, with G the intersection graph of .

Theorem 9.3 Every graph G = (N. A) is an intersection graph.
PROOF Let § = N u A and for every node j of G, let §; be the union of
{j } and the set of arcsincident toj. //

Recall that an arc of agraph is defined as a subset of twonodes. Hence.
for agiven graph G = (N, A). wecanlet § = N and ¥ = A. The intersection
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graph of A is called the line graph of G, denoted L(G). A graph G’ iscaled a
line graph if there exists a graph G, with G' = L(G). Sometimes L(G) is cdled
the “arc-to-node dua” of G. Hence aline graph is a graph for which a node-
to-arc dual exists. Examples of graphs and their line graphs are shown in
Figure 2.14.

One characterization of line graphs is indicated by the following
theorem, the proof of which is left for the reader.

Theorem 9.4 G isaline graph if and only if the arcs of G can be partitioned
into complete subgraphs in such a way that no node lies in more than two
of the subgraphs.

Some relations between line graphs, Euler graphs, and Hamilton
graphs are indicated by the following theorems. the proofs of which are left
to the reader.

Theorem 9.5 G is Eulerian if and only if L(G) is Hamiltonian

Theorem 96 If G is Eulerian, then L(G) is Eulerian.

a
LG
N

L(Gy)

Figure 2.14 Two graphs and their line graphs
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PROBLEMS

9.1 Prove that every comnected graph with m acs posseses a closed pah of length
not exceeding 2m which passes through ech ac a leat once

9.2 Formulate the equivalent of Euler’s conditions for digraphs.

93 Prove that a bipartite graph with an odd number of nodes is not Hamiltonian.

9.4 Prove Theorem 9.5.

9.5 Prove ‘Theorem 96.

10

Linear Programming Problems

The general problem of linear programming is to find values for real variables
X4y« Xa,.... X, Which will, yield an extreme value (maximum or minimum)
for a linear function

h
z= Z CiXj
j=1

subject to the satisfaction of constraining linear relations.

Z a;x: =2 by, i=1,2..... D,
|

. ity =
=

i=p+l.p+2,..., m (10.1

n
dyX; = b
i=1

x; 2 0. J=12..... 4,
Xx; unrestricted, i=g+tg+2...01

In an econometric or operations research context, each variable x;
is identified with an “activity” within a business enterprise or economic
system. e.g., the purchase of a particular raw material or the production of a
certain good or service. A set of variables constitutes a “program” of opera-
tion in terms of “levels’ for the various activities. (Note that it is quite natural
for certain variables to be nonnegative; e.g.. one cannot produce a negative
amount of a good or service.) And since the constraints on the choice of a
program are linear. the term “linear programming” is used. We shall, how-
ever, use the term *‘linear program” to refer to a linear programming
problem, rather than a solution to such a problem.

The reader should be familiar with the various techniques for trans-
forming linear programs from one form to another. For example, an in-
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equality of the form

i=1
is equivalent to a linear equality of the form

h

Zl X == s = by

iz
where s; = 0 is introduced as a nonnegative slack cariable. Conversely. a
linear equality

n

D @X; = b

J=1

is equivalent to the two inequalities

and
n
Y agx; = — by
=

A variable x; which is not sign restricted can be replaced by two
variables x; and x; . where

Ral
+
N/

Y
<o

and

x; 20,

A problem caling for the maximization of c¢yx; + . + ¢,x, is the
same as one calling for the minimization of = ¢;x, = . = ¢,x,. and
conversely.

It follows that any linear programming problem is equivalent to a
problem involving only equality constraints in nonnegative variables. That
is. in matrix notation,

minimize

1
]
=

[

subject to
AX ==
x2: 0,

(10.2)
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where ¢ = (cy, ¢5.... ¢,) isthe cost vecror, c¢x is the objective function,
A = (a;) isan m x n coefficient matrix, and b = (b, b, . . b,) is the

constraint vector. (We avoid indicating whether vectors are “row” vectors
or “column” vectors. assuming that the reader will make the correct inter-
pretation from context. ‘Thus in (10.2), ¢ is understood to be a 1 X »n row

vector, X an n x 1 column vector, and b an m x 1 column vector.)

It is a relatively easy matter to minimize a linear function subject to
linear equations. At first glance, one might think that the solution of linear
programming problems should not be too much more involved, just because
the variables are constrained to be nonnegative. But. in fact, the situation is
very much more complicated. We will now proceed to introduce some defini-
tions and concepts which are fundamental to the theory of linear program-
ming, before proceeding to a description of the simplex method of solution.

A vector x = 0 for which AX = b is said to be a feasible solution to
(10.2). A feasible solution x* is an optimal solution if there: exists no other
feasible solution x such that cx < ¢x* There may be feasible solutions but
no (finite) optimal solution. (See Problem 10.2.)

We recall from linear algebrathat p vectors x!, x2. . .., x? are said to be
linearly dependent if there exist scalars ;. ¢, . . . . «,. not all zero, such that
ax! + oapx? L+ ax? = 0. (103)

Vectors which are not linearly dependent are linearly independent. In any
linearly dependent set thereis at |east one vector which can be expressed as a
linear combination of -the others. For example, if «; + 0 in (10.3). then
xl = - %.:(o(zxz + a3x3 + .. + ocpx”).
1

Also recall that the maximum number of linearly independent rows
of a matrix A is equal to the maximum number of linearly independent
columns, and this is called the rank of A. Assume that the rank of the m x n
matrix A is m, wherem < n. If this is not so. one or more of the rows of A
can be expressed as linear combinations of the others. Depending upon the
coefficients b,, the constraints represented by these rows are either redundant
and can be eliminated from the problem, or else they represent inconsistencies
such that the linear system Ax = b has no solution.

Any m linearly independent columns of A will be referred to as a
basis of the linear system Ax = b. Let B denote the submatrix of A corre-
sponding to a given basis. The m variables identified with the columns of B
are called basic pariables: they constitute a subvector x® of x. The remaining
variables are called secondary variables, and they constitute the subvector
x®, complementary to x® in x,

If, for a basis B, we suppress the n ~ m secondary variables, the
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linear system BxB = b is obtained, and this system possesses a unique solu-
tion x® = B~ 'p. The basic solution associated with B is defined as x®? =
B7'h, x® = 0, but often we refer to the basic solution as simply x?. A basic
solution x? which isfeasible (i.e., x¥ = 0) we call a basic feasible solution and
a basic solution which is optimal we call a basic optimal solution.

Theorem 10.1 If there exists a feasible solution to (10.2). there exists a basic
feasible solution.

prooc Similar to that of Theorem 10.2.//

Theorem 10.2 If there exists an optimal solution to (10.2), there exists a
basic optimal solution.

prooF  Suppose x* isan optimal solution, where. without loss of generality,
xf>0forj=12,...,pand x; =0forj=p+ 1,p+ 2,...,n If columns
1 through p of A are linearly independent, we can choose m ~ p additional
linearly independent columns so as to form a basis, and x* is the basic
solution associated with this basis.

Now suppose columns 1 through p of A are not. linearly independent.
Then there exists a vector g such that Aa = 0, where x; # O for at least one
j <p, and 2;=0, j=p. Choose

I ol
—= max -_—
€ 1<j<p X}‘

Then both x* + ex and x* — ¢x are feasible solutions and at least one of
them has at least one fewer nonzero variable than x* Moreover, it must be
the case that cx = 0 and both x* + & and x* — ex are optimal solutions.
(If this were not the case, one or the other would be less costly than x*,
contrary to the assumption x* is optimal.) The procedure is repeated on
whichever optimal solution has a smaller number of nonzero variables than
x* Eventualy (after no more than p -- m repetitions), an optimal solution
is obtained in which the nonzero variables are identified with a linearly
independent subset of columns of A. At this point a basic optimal solution
can be constructed.//

PROBLEMS

10.1 (Diet Problem) A dietician is concerned with no issue other than that of
providing adequate nourishment at the lowest possible cost. There are nfoods
to choose from, and m nutrients that must be accounted for. Let ¢; denote the
cost of one unit of the jth food, b, the minimum daily requirement of theith
nutrient, and a; the amount of the r'th nutrient contained in one unit of the
jth food. Formulate the problem as a linear program. How many foods need
be purchased for a minimum-cost diet?
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102 For each of the following linear programs. determine the number (i.e., none.
one. or an unbounded number) of solutions, feasible solutions, and optimal

solutions.
(a) minimize z = x,
subject to
X,+X,= |
Xy =2
X.x, 20
(b) minimize z = x,
subject to
xp+ X, =1
X =2
x, =20
x, arbitrary.
(¢) minimize 7 = x,
subject to
Xy + X3 + X3 = 1
X +X,=2
X, =0
X, x; arbitrary.
(d) minimize z = Xy
subject to
Xy 4+ X+ x5=1
X4 +X,=2
X =0

x5 X, arbitrary.
10.3 Given any basic feasible solution x* of the system Ax = b, does there exist
a cost vector such that x* is the unique optimal solution’!

11

The Simplex Method

Theorem 10.2 shows that the search for an optimal solution can be narrowed
to a search among basic solutions. For an m x n linear system, with m < n,

there are no more than
n ) n!
m - mi(n — m)!

bases. and for each basis there is a unique and readily computable basic
solution. Thus we have at least succeeded in reducing the linear program-
ming problem to a finite combinatorial problem.

The simplex method (named after the simplex, a geometric structure)
of George Dantzig is a method for carrying out the search for an optimal
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basic solution. The computation proceeds from one basic feasible solution
to another, with monotonic improvement in the objective function. When no
further improvement can be made, the final basic solution is optimal.

Suppose we are given a linear program in n — m variables and m con-
straints in inequality form, i.e,

Ax < b,
where, for convenience, we assume b;>> 0,i=1,2,..., m. We can introduce
m slack variables to convert the constraints to equalities. For convenience,
let us designate these slacks as x|, x,. .., X,, and renumber the remaining
variables accordingly, ‘ Then we have a linear program in the form of (10.2) :
minimize z = Cort 1Xma1 + ove + CuXp
subject to
Xy T At 1 Xmrt + oot agX, - by
xZ * a.‘l.m+ 1Xm+1 ¥ - - F ApXy = b2
(11.2)
Xm + Qs 1 X1 + + QunXn = bm
X; 2o, i = LM..n |

An initial basic feasible solution is x® = (xy, x5, ., x,,) = (by, b5, . .,
b,). The first m columns of A are the initia basis B for the simplex com-
putation.

We proceed to a new basic feasible solution by choosing to bring a
nonbasic column s into B. As a result, we must remove some column r from
B. (Thus, two successive bases in the simplex method always differ by
exactly two columns.)

Intuitively, we believe that we should bring in a new column s for
which ¢; < 0, because this should result in a decrease in the value of the
objective function. (As a nonbasic variable. x, = O, but as a basic variable
x, may take on a strictly positive value.) Suppose we choose such a column
s, and we try to bring it into the basis in place of column r.

The change in basis is effected by a pivot step, for which a,, is the pivot
element. In order to make the basis change, the pivot element a,, must be
nonzero. If a,; = 0, then column s is linearly dependent on the m = 1 col-
umns 1,2,...,r=1r+ 1. ., m and the proposed change in basis is not
possible.

The pivot step is carried out as follows. First divide equation r by
a,. This changes the coefficient of x; ‘to unity in equation r, Then subtract
a, times eguation r from the ith constraint equation, for i = r. This changes
the coefficient of x to zero in each of these equations. Finally, subtract c,
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times equation r from the equation for the objection function

Z+ CpetXme . T 0X, =0 (112
This changes the coefficient of x; to zero in equation (11.2) and changes the
right-hand side to the negative of the new value of z.

The result of the pivot computation is, in effect, a reformulation of
the linear program:

minimize
Z= (X, + v 1Xm+1 - - Cso1Xgoy
CoprXsar + + CuXy
subject to
Xyt a,x, T 1 Xmrr + v Oy Xy
v Ayge7XsqqF o+ dyX, = El
X, ' F Gt 1 Xms | T 0+ G 1Xy (113)
+ Xs + Ao 47X547
+ .+ dgx, = b,
a,,X, + Xy o+ Amm+1Xmi1 + e+ g 1X5—1
+ (7ms+2 + ..+ dmnx,, = Bm'
x;zo  j=L2,...,n

The new basic solution is feasible if and only if b, = 0, for dl i.
Notice that

and

b b i

We have assumed that b; > 0, for dl i. If b, > O, it is clear that a,,
must not be negative else h, < 0. (The annoying case in which x, = . -,
is discussed later.) So let us demand that g, be strictly positive. But then if
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b; will be negative. Accordingly, we must demand that

b b;
" < L. whenever g, >0
Ay Ay

We restate these observations as follows.

RATIO TEST

If column s is to be brought into the basis, then to preserve feasibility we
must choose as our pivot element 4,,. where a, > 0 and

b, ) b,
— = min {} (119

Ay dis>0 dis

Now let us see how the objective function is affected by a pivot step.

Equation (11.2) becomes
-z E,X,. + Em+ X g F o F Es— 1Xs— 1 ¥ C_s+'7XS+7 + ot Enxn = EO»
where

EO = ~ (g i

ars

is the negative of the new value of z. Since b,/a,, can be assumed to be positive,
the value of the objective function is decreased only if ¢,< 0, asweintuitively
expected. Algebraicaly, ¢ = ¢  ¢®B !4, where ¢f is the subvector of ¢
identified with the new basisB.

It is now clear that we can renumber variables and constraints to put
(11.3) into exactly the form of (11.1). A new pivot element «,, can be chosen
and we can proceed to still another basic feasible solution.

Thus, the essence of the simplex method is as follows. Start with any
feasible basis. Choose a nonbasic column s for which ¢, < 0. Choose a pivot
element a,, by the ratio test (11.4), and perform a pivot step to obtain a new
feasible basis. Repeat the procedure until a final feasible basis is obtained
for which each cost coefficient is nonnegative. This is an optimal feasible
basis, since no increase in the values of the nonbasic variables can further
reduce the value of :z.

Each feasible basis uniquely determines a value of z. At each pivot
step. z is decreased by a finite amount (provided x, > O for that pivot step).
Thus no feasible basis can be repeated. Since there are a finite number of
possible bases, the procedure must terminate with an optimal solution after
a finite number of pivot steps.

A number of technical questions still remain. How does one find an
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initial feasible basis? (Recall that we conveniently assumed that the con-
straints were of the form Ax < b, with b = 0.) What if there is no feasible
solution at all? What if, having chosen column s, there is no positive element
a,,? What if the ratio test selects a pivot element a,, for which x, = O? Does
not this void the argument of finite convergence? Have we really proved that
the final feasible basis is optimal? What if there is no finite optimal solution?
How does that become apparent?

One technique for obtaining an initial feasible solution is as follows.
First put the constraints into equality form. Multiply by — 1 any constraint
equation for which b; < 0. Then introduce “artificial” variables yy, ¥2,- . . sVm
to obtain the system Ax + Iy = b. Give each of these variables a very large
coefficient M in the objective function (assuming minimization). The arti-
ficial variables provide an initial basic feasible solution. Because of their
great cost, the artificial variables eventually all become nonbasic. If this
is not so, there is no feasible solution to the original problem.

The preceding is sometimes called the “big M” method. Other, more
sophisticated techniques appear in the literature.

Suppose column s contains no strictly positive element ¢, Then x,
can be increased without bound. That is, increasing x, does not cause any
basic variable to decrease in value. If ¢, < 0, the problem does not have a
finite optimum.

Now suppose the pivot element a, is chosen according to the ratio
test, but b, = 0. Then we have encountered degeneracy. This occurs when the
constraint vector b is a linear combination of fewer than m of the basis col-
umns (in fact, precisely those columns corresponding to nonzero basic
variables.)

In this situation none of the variables change values with the basis
change. It is indeed possible that the computation can “circle”, repeating
bases and making no progress to an optimal solution.

In practice, degeneracy seldom results in circling. Moreover, there
are several schemes for insuring that no basis is repeated, so that finite
convergence is assured. Possibly the mose elegant of these involves a “lexi-
cographic” condition which is incorporated into the ratio test. However, to
describe this scheme would require more space than the issue deserves here.

We should mention that nearly al of the linear programs formulated
in later chapters are highly degenerate. Yet this creates no difficulty for the
algorithms we shall describe.

The argument that the final feasible basis is optimal is intuitively
compelling. And, indeed, our intuition is further strengthened by the geo-
metric interpretations presented in Section 12. A proper proof is provided
by duality theory in Section 13.
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PROBLEMS

111 For any system Ax = b,x =0. show that it is possible to pass from any given
basic feasible solution x!to any other basic feasible solution x* by means of a
sequence of pivot steps, each of which preserves feasibility. (Hint: Consider
choosing a cost function for which x* is optimal.)

112 Carry out the simplex computation for each of the following:

{a) minimizez = 3, 2x,
subject to
-2X, f x; <1
X <2
x, +x, <3
Xy, x5 = 0.
(b) minimize z = = 3X, = 2x,
subject to

—2x, t x, £
X -2, =0

—X; = Xx; £

< -2
Xy, xz = O

12

Geometric Interpretation

It is often worthwhile to give a geometric interpretation to linear program-

ming problems ad the computtiond proosdures which ae goplied to tham

In this sdtion we provide a vay hrief and intuitive introduction to this topic.
Consider the program given in Problem 11.2a.

maximize z = 3x; + 2x,
Upet to
2%, + x,< 1
Xy 12 (12.1)
X+ x, <3
X, %2 20.

We dav draght lines in the Eudideen plane whoe equetions ae the
constraints of the linear program (including nonnegativity constraints on
Xy, X,) In “tignt” form (< repacsd by =). On eech of these lines we indicate



Geometric Interpretation 49

X1

Figure 2.15 Representation of program (12.1)

by an arrow the half-plane that is feasible with respect to the constraint in
question. The intersection of al these haf-planes is a polygon, whose bound-
ary and interior contain al feasble solutions to the linear program, as shown
in Figure 2.15.

The object of the linear programming problem is to find a point on
or within the polygon for which 3x, + 2x, is maximum. Consider the
family of paradle draight lines

3x; + 2x, = z,

where z is a parameter. The maximum vaue of z will be obtained ifz is chosen
so that the straight line passes through point A, as shown in the figure.
The coordinates of A are determined by the two tight constraints

x. = 2} (12.2)
X+ x, = 3.

A is an extreme point or vertex of the feasible polygon.
Now consider the program given in Problem 11.2b.
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maximize z = 3x; + 2X,
subject to

_2Xa + X2S 1

Xp — 2X; <o

=X =X <- 2
X1, X, > 0.

When a similar drawing is made for this problem, the result is as shown in
Figure 2.16. The region of feasible solutions is unbounded, and there is no
finite maximum value for z

Finally, consider the problem

maximize z = 3x, + 2x,
subject to

2x; — x, < — 1

®

2
~X; +2x, <0
X, X520,

X2 \

AN
N\
2

////

///}

//////////////////,,. /

X)
2

\
/ Jz=6
0 I
—0.5 |

Figure 2.16 Representation of program (12 2)
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When a drawing is made for this problem (atask we leave to the reader). it is
seen that the feasible region is empty. The constraints are contradictory and
the program has no feasible solution.

These concepts generalize naturally to problems with n variables and
their representations in n-dimensional space. For n = 2 the tight form of a
constraint defines a straight line, for n = 3 it defines a plane, and for # = 4
a hyperplane. ‘ The feasible region on one side of a hyperplane isg half-space.
The intersection of the half-spaces defines a convex polytope. If the convex
polytope is bounded, it is a conrex polyhedron, the n-dimensional generaliza-
tion of a convex polygon.

A set of pointsin n-space is said to be convex if, for any two points
x' and x? in the set, all points on the line segment joining x' and x? are also
in the set. An example of a nonconvex region in the plane is shown in Figure
2.17. Algebraically, this condition is stated as follows. A set C is convex if
x' EC, x?€C,0 <1 <1implies ix'+ (1 = A)x? eC.

A vector Ax! + (1 - A)x?, where 0 <} < 1, is said to be a convex
combination of the vectors x! and x?2. It is easy to see that for any linear
programming problem, any convex combination of two feasible solutions is
also a feasible solution. Accordingly, the polytope defined by its inequality
constraints is convex.

An extreme point of a convex set is a point that is not the convex com-
bination of any two distinct points in the set. The extreme points of a convex
polytope occur at its vertices. We shall use the terms vertex and extreme point
synonomously.

Now let us investigate the correspondence between the basic feasible

Figure 2.17 Example of

nonconvex region
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solutions of a linear programming problem and the extreme points of its
convex polytope. Suppose, for example, we add slack variables to (12.1) to
convert its constraints to equality form:

maximize z = 3x, + 2x,
subject to

-2X, + x, + 5
Xy + 35,

Xy + X, + 53

1
b)
; 12.3)

If

Y

X1+X2,51,83.53 0.

Then we see that the choice of x,, x,, s, as basic variables causes the equa-
tions in (12.2) to be satisfied, since the nonbasic slack variables s,, s, must
take on zero values. This results in the basic feasible solution x, =2, x, =
1,s, = 3, which corresponds to vertex A of the polygon in Figure 2.15.
The following is a complete list of all basic feasible solutions, and the
corresponding vertices of the polygon shown in Figure 2.15.

Basic Feasible Solution Vertex of Polygon
xp=2.x,= ls = 4 A
Xp =2, 8= S.853=1 B
SI::1.52=2-S3:3 C
x;=15,=25,=2 D
xlz:%.x2=§,sz=% E

The same situation exists in higher dimensions. That is, each basic
feasible solution corresponds to an extreme point of the convex polytope of
the linear program. It may, however, be the case that several basic feasible
solutions correspond to the same extreme point.

For example, suppose that we add to (12.1) the constraint

26, + x, < 5. (12.5)

Then vertex A of the polygon is determined, not only by equations (12.2) but
by two other sets of equations :

1 =2 (126)
2x; + x, =5 J
and
X+ X, = 3} 127)
2x, + x5, = 5.



Duality Theory 53

This is simply because there are now three nonparallel straight lines inter-
secting at the point A, and any two of them are sufficient to determine A.
Equivalently, there are three distinct basic feasible solutions of the
augmented linear program which correspond to the extreme point A. They
ae :
X1=2, x,=1 5,=4,5,=0.

x; =2 x;,=1,5, =45, =0,
and
X =2, %,=1 s5,=4,s,=0.

This is a simple example of degeneracy.

Except when degeneracy is encountered, each pivot step o the simplex
method effects a move from one vertex of the convex polytope to an adjacent
vertex. The ratio test (1 1.4) dictates that this move is made along an edge of
the polytope for which the rate of improvement in the objective function is
maximal. For example, if the simplex computation for (12.3) is begun at
vertex C in Figure 2.15, the first pivot step results in a move to vertex B,
and the next pivot step to vertex A, which is optimal.

For a given set of linear inequalities, it is intuitively clear that if the
inequalities determine an unbounded convex polytope, then there is some
objective function for which a finite optimum does not exist. It is aso in-
tuitively clear that for each extreme point of the polytope there is an objective
function for which that point is a unique optimal solution.

Sometimes we wish to show that a certain set of linear inequalities
determines a convex polyhedron whose vertices are in one-to-one corre-
spondence with the feasible solutions to a particular combinatorial optimi-
zation problem. We probably will have formulated the linear inequality
constraints in such a way that it is clear that any integer solution to the
inequalities is a solution to the combinatorial problem and conversely.
It then becomes of interest to know whether or not the inequalities deter-
mine a convex polyhedron, all of whose vertices have integer coordinates.

Proposition 12.1 A system of linear inequalities determines a convex poly-

hedron with integer vertices if and only if, for al possible choices of an
objective function. there exists a finite optimal solution in integers.

13

Duality Theory

The theory of duality is one of the more interesting mathematical aspects
of linear programming, and certainly the most important for our purposes.
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It is essential for the understanding of many of the computationa pro-
cedures presented in this book.

The basic idea of duality is that every linear programming problem
has associated with it another problem, called its dual, and that the two
problems bear such a close relationship that whenever one problem is
solved the other problem is, in effect, solved as well.

For a given primal linear programming problem with p variables

Xy, Xs,.., X, and m constraints there is a dual problem with m variables
Uy, oo u,, and n constraints, obtained as follows:
Primal  Problem Dual Problem

n m
Minimize z = 3 ¢x;  Minimize w = Y (= bu,

1 1=

Subject (0 Subject to
Y ayx; = b w; 20
j=1
Y ayx; =b; v, unrestricted
j=1
m
X, 20 ;(— ag)u; = —¢;
=
X, unrestricted. Y (—aju = g

Thus, for every inequality (equality) constraint in the primal problem
there is a nonnegative (unrestricted) variable in the dual problem, and vice
versa. (In general, changing a problem by tightening its constraints results
in loosening the constraints in its dual.) The coefficient matrices of the
primal and dual problems are negative transposes of each other. and the
roles of the b and ¢ vectors are reversed.

It is evident from this definition that duality is reflexive, i.e., the dua
of the dual is the primal. For given pair of dual problems, the designation of
one as “primal” and the other as “dual” is an essentially arbitrary matter.

We have defined duality in such a way that both problems involve
minimization of the objective function and all inequality constraints are of
theform “ > .” Of course, minimizing = bu is equivalent to maximizing bu,
and the direction of inequalities can be reversed. Thus, it is quite equivalent
to say that the following pairs of problems are duals:

minimize c¢x maximize ub
subject to subject to [
AX > b ud <c (13D

X2 0. u 2 0.
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minimize cx maximize ub 1
subject to subject to
Ax=Db ud <c J
x> 0. u unrestricted.
minimize c¢x maximize ub
subject to subject to |
Ax=b ud = ¢ j
X unrestricted. u unrestricted.

Duality relations in this form are indicated schematicaly in
2.18, and are used in the statement of the theorems below.

55

(132)

(133)

Figure

Theorem 13.1 (Weak Duadlity) If X and i are feasible solutions to dual

problems, then ¢x > ib.

proor  Suppose the problems are in the form of (13.1). Since AX > b and

# > 0, it follows that #AXx > gb. Smilarly, gAx < cX, SO ¢x = ub.
The proof for problems not in the form of (13.1) is similar.//

Minimize ¢x

I
|
|
|
|
£
|
l
i
I
|

U
unrestricted

Figure 2.18 Schematic | ‘
representation of duality k i

N

Maximize
ub
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Corollary 13.2 If X and i are feasible solutions to dua problems and cx =
ib, then % and # are optimal solutions.

We can now establish the optimality of the final basic feasible solu-
tion obtained by the simplex method. Let B be the final basis. The cost vector
expressed in terms of this basisis ¢:=c ¢EB" ‘A >0. Thenii= ¢®B !
is a feasible dual solution. (Note that. u is not sign restricted, because the
primal problem is in equality form.) But ¢X = ¢®x? = ¢®B~!b = Lib, and
so by Corollary 13.2 the final solution is optimal.

The converse of Corollary 13.2 is aso true. The following theorem
is the principa result of the duality theory.

Theorem 133 (Strong Duality) If either problem of a dua pair of prob-
lems has a finite optimum, then the other does also and the two optimal ob-
jective values are equal; if either has an unbounded optimum, the other has
no feasible solution.

proor Assume that the dual pair of problems are in the form (13.2). Sup-
pose that the primal problem has a finite minimum solution x achieved at a
basis B. From the simplex method, we know that for an optimal basis B,
c—=cBB"‘A>0. Leti=cBB . Thenc =4 =0, and 7 is a feasible dua
solution. Moreover, ¢x = ¢Bx8 = ¢BB~'b = iib. Hence, by Coradllary 13.2,
u is an optimal dual solution with an equal objective function value.

Suppose that # is a finite maximum solution to the dua problem in
(13.2). Convert the problem to equality form with nonnegative variables.
(This does not affect the optimality of the solution.) Then the argument
above holds with @ in the role of X. This establishes the existence of an
optimal primal solution with an equal objective function value.

The case of an unbounded optimum js simple. By Theorem 13.1,
cx > ib. Butif ¢X — -- oo, this implies that @b is negative infinite no matter
what # we use. Yet any feasible solution # yields a finite value for ib.//

Optimal solutions to dual problems are “orthogonal”, in the sense
of the following theorem.

Theorem 13.4 (Orthogonality oft Optimal Solutions) If x and ii are feasible
solutions to (13.1) then % and i are optimal if and only if (A —¢) X =
i(AX = b) = 0. That is, if and only if, for j=1,2... ., n.

m
X; > 0implies Y ;= ¢
= 1

and,fori= 1.2 ,.... m,

m
i, > 0implies, ) a;%;= b,
j=1
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PROOF 1t follows from (34 — cx=u{AX b =0 that Ay = ¢x = ih.

Hence, by Corollary 13.2. if X, i are feasible, x. i are optimal.
Conversely. suppose X, i are optimal. Then by Theorem 13.3. ¢X =

ith. Since ¢X = iib = 2AX. the orthogonality conditions follow immediately.//

Duality theory suggests a number of alternative procedures for
solving linear programming problems. The (primal) simplex method de-
scribed in the previous section proceeds from one feasible primal solution
x = B~ 'p to another. with monotonic improvement of the prirnal objective
function. The corresponding dual solutions u = ¢8B~! are infeasible until
the very end of the computation. Thereisalso adual simplex method inwhich
row and column operations in the primal method are interchanged. This
proceeds from one feasible dual solution to another, with a monotonic
improvement of the dual objective function. The corresponding primal
solutions are infeasible until the very end of the computation.

In addition to the prima and dua simplex methods, there are
primal-dual methods, in which both primal and dual solutions are main-
tained, and at some stages of the computation changes are made in the
primal solution and at others in the dual.

In the so-called Hungarian method, the computation is begun with
feasible primal and dual solutions. (These solutions bear no special relation
to each other. i.e., they do not correspond in the sense that x = B~ 'b and
u = ¢B~ ') ‘The computation proceeds from one pair of feasible solu-
tions to another, with monotonic improvement of both objective functions.
Whenever there is not strict improvement in either objective function, the
two solutions are made more nearly orthogonal, and improvements in
orthogonality are also monotonic throughout the computation.

In the more general out-of-kilter method, the computation is begun
with arbitrary (possibly infeasible) primal and dual solutions. Throughout
the computation, there is monotonic improvement in the feasibility of the
two solutions and in their relative orthogonality. There is not, however,
monotonic improvement of the two objective functions, unless the initial
solutions are feasible.

The out-of-kilter method is described in detail in Chapter 4, for the
case of network flow computations. The Hungarian method is introduced
in Chapter 5 for bipartite matchings. and is employed extensively in later
chapters. These methods can be applied to general linear programming
problems, but to do so is beyond the scope of this book.

PROBLEM

121 For each of the linear programs in Problem 102, formulate the dud program.
Determine the relations between prima and dual problems, e.g., primal
infeasible, dual unbounded, and so on.
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Shortest Paths

1

Introduction

Suppose each arc (i, j) of a directed graph is assigned a numerical “length”
a;;. A natural and intuitively appealing problem is to find a shortest possible
directed path with no repeated nodes, from a specified origin to a specified
destination.

Problems of this type are possibly the most fundamental and im-
portant of al combinatorial optimization problems. A great variety of
optimization problems can be formulated and solved as shortest-path
problems. In addition, a number of more complex problems can be solved
by procedures which call upon shortest-path algorithms as subroutines.

One of the first observations we make in this chapter is that it appears
to be as easy to compute shortest paths from a specified origin to all other
nodes as it is to compute a shortest path from the origin to one specified
destination. We shall discover that there is a very real difference between
shortest-path problems in which arc lengths are restricted to positive values

59



60 Shortest Paths

and problems in which arc lengths may be positive or negative. We shall
also discover that, in the latter case, there is no efficient procedure known
for solving the problem, if the network contains directed cycles which are
negative in length. The detection of such negative cycles is an important
problem in its own right.

We shall discuss several other variations of the basic shortest path
problem in this chapter. Among these is the problem in which “transit
times’ are assigned to the arcs, and, in effect, we wish to find a directed
cycle around which one can travel at the fastest possible velocity. We also
describe procedures for “ranking” solutions to a shortest-path problem,
i.e., finding the shortest path, the second shortest path, the third shortest
path, and so on.

The dominant ideas in the solution of these shortest-path problems
are those of dynamic programming. Thus, in Section 3 we invoke the
“Principle of Optimality” to formulate a set of equations which must be
satisfied by shortest path lengths. We then proceed to solve these equations
by methods that are, for the most part, standard dynamic programming
techniques.

This situation is hardly surprising. It is not inaccurate to claim that,
in the deterministic and combinatorial ream, dynamic programming is
primarily concerned with the computation of shortest paths in networks
with one type of special structure or another. What distinguishes the net-
works dealt with in this chapter is that they have no distinguishing structure.

Finally, at the risk of introducing confusion where clairty prevails,
we must emphasize that this chapter is concerned exclusively with shortest-
path problems in directed networks. If all arc lengths are positive, then an
undirected shortest path problem can be reduced to a directed one, by
replacing each undirected arc (i, j) by a symmetric pair of directed arcs
(@i, j) and (j, i), each with the same length as the original. However, if the
length of (i, j) is negative, such a transformation would introduce a negative
directed cycle into the network.

Nevertheless, it is entirely feasible to compute shortest paths for
undirected networks with positive and negative arc lengths, provided such
a network contains no negative (undirected) cycles. The theory is much
more sophisiticated than that of this chapter, and not at al dynamic-
programming-like. See Section 2 of Chapter 6.

PROBLEM

1.1 (V. Klee) Consider an undirected network with an origin, a destination,
and 100 additiond nodes, with each par of nodes connected by an ac. Show
that the number of different paths(without repeated nodes, of course) from
origin to degtination is
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+100099) +( 100)(98') (100)2' F100 4 1
1) - D+ o+ ! +1
100! 2 98

where the nth term counts the paths from origin to destination which omit
n 1 of the other nodes. Show that this sum isthe greatest integer in100!e.
Use Stirling's formula to represent 100! in the form g+ 10°, where b is a positive
integer, 1 < a < 10 and 4 is accurate to two ggnificant digits. Stirling's formula

asserts
|
v/z—nnn+1/2€vn < I’l! < /2n.nn+1/ze-<n 1 + )7
n

Some Problem Formulations

Let us consider some optimization problems that can be formulated as
shortest-path problems and variations.

MOST RELIABLE PATHS

In a communications network, the probability that the link from i to j is
operative is p;;. Hence the probability that all the links in any given path
are operative is the product of the link probabilities. What is the most
reliable path from one designated node to another?

This problem becomes a shortest path problem in the conventional
sense by replacing each probability Py with a “length” a; = —log Pij-

PERT NETWORKS

A large project is divisible into many unit “tasks.” Each task requires a
certain amount of time for its completion, and the tasks are partialy ordered.
For example, the exterior walls of a house must be framed in before the
rafters can be raised.

One can form a network in which each arc (i, j) is identified with
a task and the nodes are identified with “events,” i.e., the completion of
various tasks. If (i, j) and (j, k) are arcs, then task (i, j) must be completed
before task (j, k) is begun. (It may be necessary to insert “dummy” arcs
with zero completion times in order to properly represent the partial
ordering of tasks.)

This network is sometimes caled a PERT (for Project Evaluation
and Review Technique) or CPM (Critica Path Method) network. Many
types of analyses can be performed with such a network. For example,
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Figure 3.1 PERT network

we may determine the shortest possible time in which the entire project
can be completed.

Let g; = O denote the length of time required to complete the task
identified with arc (i, j) of the PERT network. The shortest possible com-
pletion time for the project is determined by a longest (or “critical”) path
from a specified origin (corresponding to the “event” of starting) to a
specified destination (corresponding to the event of completion). A critical
path of the PERT network shown in Figure 3.1 is indicated by bold arcs.

A PERT network is necessarily acyclic. Otherwise there would
be an inconsistent ordering of the tasks; e.g., job (1,2) precedes job (2.1).
Thus, the PERT problem illustrates a situation in which it is important
to be able to find optimal paths in acyclic networks. It also illustrates a
case in which it is desired to find a longest path (with respect to nonnegative
arc lengths). As we shall see in Section 4, the acyclic network happens to
be one exceptional type of network for which this is possible.

A TRAMP STEAMER

A tramp steamer is free to choose its ports of call and the order in which
it cals on them. A voyage from port i to port j earns p;; dollars profit.
Presumably, p;; > 0 if there is a cargo available at port i to be taken to
port j and p;; < O if the steamer must sail empty. The most profitable path
from one designated node to another corresponds to a shortest path in
a network in which each arc (i, j) has a “length” a;; = —p;;.

This problem illustrates a case in which it is reasonable for arc
lengths to be either positive or negative. Unfortunately, the network for
the tramp steamer problem is amost certain to have directed cycles which
are negative in length (positive in profit), and this causes great computational
difficulties.

See Section 12 for a further discussion of tramp steamers.

THE KNAPSACK PROBLEM

Suppose there are n objects, thejth object having a positive integer “weight”
a; and “value” p;. It is desired to find the most valuable subset of objects,
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subject to the restriction that their total weight does not exceed b, the
capacity of a “knapsack.” This problem can be formulated as an integer
linear programming problen of the form
maximize ‘
ijxj
J

Y a;x;<b,

subject to

where
x;=1 if object j is chosen
= 0 otherwise.

This problem can be formulated as one of finding a longest path
in an acyclic network. Let the network have n(b + 1) nodes denoted j©®,
wheej =1,2,., noand k =0, 1,2, ..., b Thenodg ® has two arcs directed
into it, one from (j 1), the other from (j — 1) 7, provided these nodes
exist. The length of the first arc is zero, and that of the second is p;. An
origin node s is aso provided, and it is joined to 1 and 1" by arcs of
length zero and p,. Then each path from node s to node j* corresponds to
a subset of the first j objects whose total weight is exactly k, the length of
the path being the value of the subset.

A dedtination node ¢ is aso provided,with an arc of length zero
from each node n® to . Then paths from s to ¢ are identified with subsets
of the n objects whose total weight is at most b. The length of a longest
path from s to ¢ is equal to the value of an optima solution to the knap-
sack  problem.

The structure of the network is suggested in Figure 3.2.

THE TRAVELING SALESMAN PROBLEM

Recall that the traveling salesman problem is to find a minimum-length
Hamiltonian cycle, i.e., a cycle passing through each node: exactly once.

Suppose we replace some node of the network, say node n, by two
nodes s and ¢, where s has incident from it al of the arcs which were directed
out of n, andt has incident into it al of the arcs which were directed into
n. Then the traveling salesman problem becomes that of finding a shortest
path from s to ¢, subject to the restriction that the path passes through each
of thenodes 1,2,..., n = 1 exactly once.

Now suppose in this same network we replace g;;, the length of arc
(i, J), by a; — K where K is a suitably large number. The -problem now
becomes that of finding a shortest path from s to ¢, subject to the redriction
that the path passes through each node at most once. If a shortest path con-
tains fewer than n arcs, then no Hamiltonian cycle exists.

The difficulty in finding a shortest path with no repeated nodes is
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Figure 3.2 Network for knapsack problem

that the network has negative directed cycles. The problem of finding
such a shortest path is a perfectly well-defined problem, and it can, of course,
be “solved” by various methods. However, it cannot be solved efficiently,
unlessit has avery special structure.

We can, equivalently, let each arc have length K - g;; and view this
as a longest path problem, with all arc lengths positive. But, as we have
commented, there is no efficient method for solving a longest path problem,
unless the network is acyclic.

PROBLEMS

2.1 What changes must be made in the network formulation of the knapsack
problem if an arbitrarily large number of copies of each object can be placed in
the knapsack? That is, x; is constrained to be nonnegative integer, rather than
merdy 0 or 1

22 Generalize the knapsack problem so as to provide two constraints, e.g., one
on weight and another on volume. Formulate this problem as a longest path
problem giving an explicit definition of the nodes, arcs, and arc lengths.
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3

Bellman’s Equations

There seems to be no really good method for finding the length of a shortest
path from a specified origin to a specified destination without, in effect,
finding the lengths of shortest paths from the origin to al other nodes
(or, symmetrically, from all nodes to the destination). So let us suppose that
we do, indeed, wish to compute shortest paths from the origin to all other
nodes, and let us formulate a set of equations which must be satisfied by
the shortest path lengths.
Let

a;; = the (finite) length of arc (i, j), if there is such an arc
=t oo, otherwise.
u; = the length of a shortest path from the origin to node j.

Suppose the origin is numbered 1, and the other nodes are numbered
2,3,...,1. If there are no directed cycles with negative length (and, there-
fore, no negative closed paths), it is clear that u; = 0. For each node j,
j # 1, there must be some final arc (k, j) in a shortest path from 1 to j.
Whatever the identity of k, it is certain that u; = w, + ;. This follows
from the fact that the part of the path which extends to node k must be a
shortest path from 1 to k; if this were not so, the overall path to j would
not be as short as possible. (This is the “Principle of Optimality.”) But
there are only a finite number of choices for k, i.e, k=1,2,...,j=~1,j+
I, ..., n. Clearly k must be a node for which u, + Oy j is as small as possible.
Thus, we have established that the shortest path lengths must satisfy the
following system of equations, which we refer to as Bellman's equations.

Up- o
and , _ 3.1)

u; = min {u + a;) (=23,....n).

k#j |

We have argued that the equations (3.1) are necessarily satisfied
by the shortest path lengths, provided the network contains no negative
cycles. Are these equations also sufficient to determine the lengths of the
shortest paths?

Assume that the network is such that there is a finite-le:ngth path
from the origin to each of the other nodes. Also assume that all directed
cycles are strictly positive in length. Under these conditions, it is intuitively
clear that the shortest path lengths are all finite and well defined. We shall
also show that under these conditions the equations (3.1) have a unique
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finite solution. It follows that the solution to (3.1) yields the lengths of the
shortest paths.

Before proceeding to prove the uniqueness of a finite solution to
(3.1) first let us indicate something of the character of such a solution.
Supposeu,, u,, - - . . u, satisfy (3.1). Then we can construct paths to nodes
1,2, ., n having these lengths, as follows. To find a path of length u; to
node j, find an arc (k, j) such that u; = u, + ;. Then find an arc (I, k)
such that u, = u; + a,. Continue in this way until the origin is reached.
The sequence of arcs must eventually reach back to the origin. If this were
not the case we would have found a cycle of zero length. But, by assump-
tion, there are no such cycles.

The reader should be able to establish that if we repeat this process
for all nodes j, a total of exactly n — 1 arcs can be picked out for member-
ship in the various paths and that these n = 1 arcs form a tree rooted
from the origin. See Figure 3.3.

There is such a tree for any finite solution to Bellman's equations.
And since the true shortest path lengths are such a solution, it follows that
we have proved the following.

Theorem 3.1 If the network contains no nonpositive directed cycles, then
there exists a tree rooted from the origin, such that the path in the tree from
the origin to each of the other nodes is a shortest path. (We call such atree
a tree of shortest paths.)

Now let us consider the uniqueness question. Let u;, u#,, ..., u, be
shortest path lengths, and let i, , #,, . . . , &, be any other finite solution to

/O

O

U
®

O

: U/
Uy

Figure 3.3 Tree of shortest paths

”kj
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equations (3.1) such that @; # u;, for some j. From the construction above,
it follows that i, i,, ., #, represent lengths of actual paths, although
not necessarily shortest paths. Accordingly, if i; # u;, it must be the case
that #; > u;. Choose | to be such that u; > u;, but u, = u,, where (k, j)

is an arc in the tree of shortest paths. (There must be at least one such arc
(, j); note that u, = ul.) Then i; > Uy *+ a, contrary to the assumption

that 7, , i, . . . . @i, satisfied (3.1). We have thus proved the following.

Theorem 32 If the network contains no nonpositive cycles, and if there
is a path from the origin to each of the other nodes, then there is a unique
finite solution to the equations (3.1), where y; is the length of a shortest
path from the origin to node j.

Unfortunately, Bellman’'s equations do not lend themselves to solu-
tion as they stand, because they are nonlinear and imply implicit functional
relationships. That is, each of the u;’s is expressed as a nonlinear function
of the other y iS. Much of the remainder of this chapter is devoted to methods
for overcoming these difficulties, and to special situations in which the
equations are particularly easy to solve.

In discussing these computational methods, we shall presume to
have solved the shortest path problem by simply solving the equations
(3.1). The actual construction of a tree of shortest paths can be carried out
from the u; values, as we have indicated above. This is facilitated by storing
with each j a value of k for which u, + a;; is minimal. However, in the ac-
cepted tradition of dynamic programming, we shall view such an issue
as a housekeeping chore to be attended to by the computer programmer.

Finally, we note that although Theorems 3.1 and 32 require the
network to contain no nonpositive cycles, the computational procedures
we shall propose are actually effective for networks which contain no
negative cycles. That is, although the solution to Bellman's equations is
not unique, the computation will terminate with the correct solution. (See
Problem 3.3)

PROBLEMS
31 Rewrite equations (3.1) for each of the following cases:

(a) a;;=the probability that arc (i, j) is intact.
U = the probability associated with a “most reliable” path from the
origin to node |.
(b) a;; = the “capacity” of arc (i, j).
u; = the capacity of maximum capacity path from the origin to node j.

(The capacity of a path is the minimum of the capacities of its arcs.)
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3.2 Let the arc lengths of a certain five-node network be given by the matrix:
rO -1 3 w 6

x 0 5 6 8

o 0 0 » 10
o 0 -1 0 <«
0

0 0o -1 0

A=

Assuming that the shortest path lengths areu; =0, u; = 1,u3=3, us =5,
us = 6, construct a tree of shortest paths.
3.3 Consider the network shown in Figure 3.4. Show that for this network the

equations (3.1) do not have auniqu: finite solution. Characterize the set of
al  solutions.

O~

—1 Figure 3.4 Network for Problem 3.3

4

Acvelic Networks

One special situation in which it is particularly easy to solve Bellman's
equations is that in which the network is acyclic.

Recall that in the previous chapter we showed that a directed graph
is acyclic if and only if there exists a numbering of its nodes such that there
exists an arc directed from i to j only if i < j. Let us assume that the nodes
of the network are so numbered. Then it is easy to see that the equations
(3.1) can be replaced by

and b 41
uy=min {u, + a;t, (=23..,n. 41

k<j
The equations (4.1) are easily solved by substitution. That is, u,
is known, u, depends on u, only, u3 depends on u; and u,, . . ., u; depends
Onuy,uy,...,Uj_y, and so on. The solution of al n equations requires

0O+1+2++n-1=n(kn=-=1)/2 additionsand 0 + 0 + 1 + 2 +
~+n=2= (-1 (n 2)/2 comparisons. Thus the acyclic shortest
path problem can be solved by an O(n?) computation. (Note that if the nodes
have not been properly numbered, this task can also be accomplished in
O (n?) operations. See Chapter 2, Section 6.)
Obviously, a network with no cycles can have no negative cycles,



Acyclic Networks 69

regardless of the lengths of its arcs. Thus, one can replace each arc length
by its negative value and still carry out the computation successfully.
This is equivalent to finding longest, rather than shortest, paths in the
original network. The acyclic network is the one special type of network
for which we can solve the longest path problem.

The acyclic network may seem to be an extremely special case.
However, the general method we shall describe in Section ¢ for solving
Bellman’s equations can be viewed as a technique for converting networks
to acyclic form.

PROBLEMS

41 Solve the shortest path problem for the acyclic network in Figure 3.5, con-
structing the tree of shortest paths “as you go."

42 Repeat Problem 4.1 for the longest path problem.

4.3 Solve the shortest path problem for the network with arc lengths given by

the matrix:
4 3 5 o 9 6
z 0 -1 = 6 4 O
*x o« 0 2 -10 3 -9
A=l = o w 8 2 8
L oL L W 0 1 6
ol R N N & 0 3
I S T R - ¢ 0

Carry out the computations “algebraically,” i.e., as they would be in the com-
puter, without attempting to draw the network.

Figure 3.5 Network for Problem 4.1
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44 Let

a; =1 if there is an arc (i. )

= 0 otherwise.

Revise the equations (4.1) for each of the following cases:

(a) U; = the set of all paths from the origin to node j.
) 1= [U)
= the number of distinct paths from the origin to node |

5

Networks with Positive Arcs. Dijkstra’s Method

Another situation in which it is especially easy to solve the shortest path
problem is that in which all arc lengths are positive. The O(n?) algorithm
we shall describe for this case is due to Dijkstra.

We shall apply “labels” to the nodes of the network. At each stage
of the computation, some of the labels will be designated as “permanent”
and the others as “tentative.” A permanent label on a node represents
the true length of a shortest path to that node. A tentative label represents
an upper bound on the length of a shortest path.

Initially, the only permanently labeled node is the origin, which
is given the label u; = O; each of the other nodes j is given the tentative
label u; = a;;. The general step of the procedure is as follows. Find the
tentatively labeled node k for which u, is minimal (if there is a tie, break
it arbitrarily). Declare node k to be permanently labeled, and revise the
remaining tentative labels u; by comparing u; with u, + a,;, and replacing
u; by the smaler of the two values. The procedure terminates when all
nodes are permanently labeled. (Note that if one wishes to find a shortest
path to some designated node, the procedure can be terminated at the mo-
ment at which a permanent label is assigned to that node.)

The proof of the validity of the method is inductive. At each stage
the nodes are partitioned into two sets, P and T. Assume that the label of
each node in P is the length of a shortest path from the origin, whereas
the label of each node j in T is the length of a shortest path, subject to the
restriction that each node in the path (except j) belongs to P. Then the node
k in T with the smallest label can be transferred to P, because if a shorter
path from the origin existed, it would have to contain a first node that is
in . However, that node must be further away from the origin than Kk,
since itslabel exceeds that of node k. The subsequent use of node k to reduce
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the labels of adjacent nodes belonging to T restores to T the property
assumed above.
Dijkstra's agorithm can be summarized as follows.

SHORTEST PATH COMPUTATION FOR NETWORKS WITH
POSITIVE ARC LENGTHS

Step 0 (Start)
Set u; = 0.
Set u; = ay;, forj=23....n
Set P={1}, T={2,3....nh

Step |  (Designation of  Permunent Label)
Find k e T, where u, = min {y; |
jeT
SetT=T-k, P=P+k.
If T-= (¥, stop; the computation is completed.

Step 2 (Revision of Tentative Labels)
Set u; = min {u;, w+ ay; ; foraljeT
Go to Step 1.//

Note that the first time Step 1 is executed, n 2 comparisons are
called for, the second time n = 3, the third time n = 4, and so on, for atotal
of (n=1) (n — 2)/2 comparisons. The first time Step 2 is executed, N = 2
comparisons and n — 2 additions are required, then n — 3 comparisons
and n 3 additions, for a total of (n = 1) (n = 2)/2 comparisons and the
same number of additions. An overall total of (n - 1) (n — 2) comparisons
and (n = 1) (n = 2)/2 additions is necessary, and the method is clearly
0 (n%) in complexity.

It is perhaps interesting to make some comparisons between Dijkstra’s
method and the method for acyclic networks.

Suppose that the nodes of the network happen to be numbered in
such a way that y, <y, < u; <. < u, (Of course, we have no way
to so number the nodes in advance of the calculation. For the moment,
suppose a “birdie” provided this numbering.) If al arc lengths are positive,
we can again replace Bellman’'s equations by equations (4.1) used for solv-
ing acyclic networks.

Thus, if we knew how to order the nodes, an O(n*) computation
would be possible. There are two important points involved in Dijkstra's
procedure. The first is that it is possible to order the nodes by maintaining
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the sets P and T, such that at each stage of the computation,

max {y;) < min {u; .

jeP jeT
The second is that it is possible to determine each successive node in the
ordering of the nodes (i.e., to transfer one node at a time from T to P),
by means of O(n) additions and comparisons, thereby implying an overall
O(n?) computation.

Of course, Dijkstra's procedure does not simply determine an
ordering of the nodes and then apply equations (4.1). However, the Dijkstra
algorithm does suggest the following alternative computation for the
acyclic shortest path problem.

) =0,

W = ay,, i=23,...n, (51)
uf D =min W, u + ayf, k=23,.,n 1} jzk+ 1.
We can view ul!) > u¥ > .. . > 4y as successive approximations of u,

with ¢’ = y,, for al j. Note that these equations imply exactly the same
number of additions and comparisons as (4.1).

We combine the computational procedure of Chapter 2, Section 6
for ordering the nodes of an acyclic network with the computation implied
by equations (5.1) in the algorithm below. We let

a; =1 if a; < oo, ie,thereisanarc(i,j),

= 0. otherwise.

ALTERNATIVE SHORTEST PATH COMPUTATION FOR
ACYCLIC NETWORKS

Step () (Start)

Set u, = 0.
Set u; = ay;, forj=23...,n
SetP = {1}, T=1{23,...,n}.

Setd} = Z (_1”, for] = 2,3 IRy N /2t
i=2

Step | (Designation of Permanent Label )

Find a k e T, such that d, = 0. If there is no such k, stop; the network
isnot acyclic.

SetT=T-k, P=P+k

If T= ¢, stop; the computation is completed.
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Step 2 (Revision of Tentative Labels)
Set u; = min { uy, Uy + a;y, foraljeT
Set d; = d; = 4,

<n(n 1) arcs. Carry out a detailed
estimate of the number of additions and comparisons required by Dijkstra's
algorithm, as a function of m and n.
(P. Spira) Show how to use the Dijkstra algorithm to find a shortest path
from node 1 to nodeninonly (n  2)* comparisons (instead of (1= 1) (n -- 2)
comparisons). Hint: First find shortest paths from node 1 tonodes 2, 3, . . ..
n 1
(V. Klee) Let G be any function defined for all sequences of nonnegative
numbers such that

(1) G(alsa2v .. ~vam an+1) = G(G(ahaZ, "~’an)»an+1)9
(ll) G(ai,az, A .a,,.,a,,H)ZG(al,az, R a,,).

Let each path in a network with nonnegative arc lengths be given a G-value

determined by the sequence of arc lengths in the path. Show that paths of
minimum G-value can be found by a Dijkstra-like procedure, provided that
G sdisfies conditions (i) and (ii).

Figure 3.6 Network for Problem 5.1
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6

Solution by Successive Approximations.
Bellman- Ford Method

We now consider a general method of solution to Bellman's equations.
That is, we neither assume that ths network is acyclic nor that al arc
lengths are positive. (We do, however, continue to assume that there are
no negative cycles.) The method can be attributed to Bellman and to Ford,
and possibly others.

We propose to solve the equations (3.1) by successive approxima-
tions. That is, initially we set

ul) =0,
1 —_ .
ui = ay, j# 1

and then compute the (m + 1)st order approximations from the mth order,
asfollows:

(6.1a)

u(jm+1) = min {u(jm)’ TL[] {uim) + akj}}' (6.1b)

Clearly, for each node j, successive approximations of u; are monotone
nonincreasing:
(n 2) > 3
up 2wz U =

How are we assured that the successive approximations converge to the
correct value of «;? Or, for that matter, that they converge to any value
a al?

A simple intuitive argument can be made as follows. Apply the
interpretation that

u™ = the length of a shortest path from
the origin to j, subject to the condition
that the path contains no more than marcs.

Clearly this interpretation is valid for u§”. Either a shortest path of no more
than m+ 1 arcs from the origin to node j has no more than marcs, in which
case its length is 4™, or else it contains m + 1 arcs and has some final
arc, say (k, j). The portion of the path from the origin to node k contains
no more than m arcs and its length is 4™ The final arc contributes length
az"{;.+ll-|'ence, minimizing u{™ + a,; over all possible choices of k, one obtains
u

o If the network contains no negative cycles, then there exists a shortest
path from the origin to each node j with no repeated nodes. In the case
of a network with n nodes, this means that there will exist shortest paths
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with no more than n - 1 arcs. In other words, we can be assured that, for
all jur =" = .

The equations (6.1b) must be solved for m= 1,2,.., n -- 2. For
each value of m there are n equations to be solved. The solution of each
equation requires n — 1 additions and minimization over n alternatives.
It follows that approximately »? additions and »® comparisons are required
overall, and the computation is clearly O(n*). (Note that the computation
may be terminated whenever u{"*! = (™ for all values of j. In this case,
we are fortunate to have obtained early convergence to u]..)

We should point out that this computational approach can be viewed
as recasting the general n-node network problem into the form of an acyclic
network problem with n? - n + 1 nodes, as indicated in Figure 3.7. That
is, the acyclic network can be imagined to have n copies, 19,1V, . 1=,
of theoriginandn 1 copies j(", j@ .., j®~1 of each of the other nodesj.
For each arc (1, j) of the original network, there are n arcs (11, jY),
(12 jO), ..., (1=2, j*= 1) each with length ay;. For each arc (i, j),
i #1, thereare n = 1 arcs (i), j12)) (#2) j) .. "~ j»=1) each with
length a;;. In addition, there are arcs of the form (j*, j™*Y) with zero
length. The length of a shortest path from the origin to j™ is u{™. The
equations (6.1) are essentially the same as equations (4.1), suitably modified
to take into account the special structure of the acyclic network.

PROBLEMS
61 Solvethe shortest path problem for the network with arc lengths given by
the matrix: _
[0« 4 103 = <«
o 0 -1 -3 2 11 0
x 9 8 3 2 1
A=}oc 4 0 8 6 3
oo 0 1 2 0 3 -1
o« —1 -1 3 2 0 0
Es 4 3 x oo 2 0

Organize your computations as you think they would be carried out in the
computer.  Condruct the tree of shortet paths.

6.2 Suppose we want to |et w{™ denote the length of a shortest path from 1 to ],
abject to the condition that the path contains exactly m acs. (Repested nodes,
and possibly repeated arcs, are permitted.) How should equations (6.1) he
modified'?

6.3 Assumethat thein-degree of the originis zero and that thereis a path from
the origin to each of the other nodes. Show that such a network contains a
negative cycleif and only if uf" <yu{~ ", for somej.
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Figure 3.7 Acyclic network obtained from construction

7

Improvementsin Efficiency : Yen's Modifica tions

A close examination of the computations implied by equations (6.1) reveals
that these computations may not be as efficient as they could be. They do
not make use of the best information available at each iteration. For example,
u{m* 1 is computed as a function of u{™, u§, .., ui™, even though u{"* 1),
ugrt b, L, Y have presumably already been computed. Making use
of these {m + 1)st order approximations, when available, might accelerate
convergence. This is the idea behind an improvement suggested by J. Y. Yen.

Suppose we call an arc (i, j) upward if i <] and downward if i > j.
(Cf. Figure 3.7.) A path is said to contain a change in direction whenever
a downward arc is followed by an upward arc, or vice-versa. Note that
because node 1 is the first node of any path, the first arc is upward and the
first change in direction (if any) must be up to down.

Let us assign a new interpretation to the mth order approximation
of u;. Let

u{™ = the length of a shortest path from the
origin to node j, subject to the condition
that it contains no more than m = 1 changes

in direction.
The appropriate equations for u{™ are as follows:
u? =0

W9 = ay,j # 1 (by definition),
u(jm+“ — l‘l’lln {M}m), m|n {u}‘m+l) + akj}}’ m even,
k<j
and

1) = o fm) (m+1) 4 m odd.
uy min {u}™, rkn>|rj1 {1l @it
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There exists a shortest path to any node j with no more than n = 1
arcs and hence no more than n 2 changes in direction. It follows that
uf" V'=u;, as before.

Each of the equations (7.1) is solved by a minimization over about
n/2 alternatives, on the average, instead of n, as in (6.1). Accordingly,
the length of the computation is reduced by a factor of approximately
two: about »3/2 additions and »3/2 comparisons are required.

Another, possibly less important, advantage is that storage require-
ments are also reduced by a factor of approximately two, since not both
u%"‘)“’ and #™ must be stored. (As soon as u{"* ! is computed, it replaces
uy™.)

J Yen has pointed out that the computation can be reduced even
further, to approximately n*/4, by exploiting the fact that, at each iteration,
one additional 4™ becomes a correct shortest path length and thereafter
ceases to affect the calculations. Let

Kl = {253 [IRERR] n}'
and

Kpyy = {kKum*) < ym=Dy, m = 1.

Then the minimizations indicated in equations (7.1) are taken over all
k <j(or k >]) such that ke K, ;. It can be shown (cf. Section 11) that
|Kp+1] S0 = (m+ 1), and that the n*/4 result follows from this fact.

PROBLEMS

71 Resolve Problem 6.1, using equations (7.1).

12 Suppose Yen's computation (7.1) is applied to an acyclic network. At what
iteration does the computation converge if the nodes are numbered so that all
arcs are upward? What if the network is “almost” acyclic, with all arcs, upward,
except for p downward arcs?

73 Modify the acyclic network identified with the Bellman-Ford method, and
pictured in Figure 3.7, to fit Yen's modification.

74 Investigate the statements made in the last paragraph of this section, and justify
in  detail.

8

Linear Programming Interpretation
and Relaxation Procedures

Each of the equations (3.1),

uj - mln {uk + akj}, (81)
k#*j
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implies a system of n — 1 inequalities. That is, for fixed j and for k =
172’)]_111 + 1, FERRN (

S uk + akj‘ (8.2)
Conversely, if uy, us, ..\ uj_ |, Ujyq, - - -, 4, are given fixed values and y;
is maximized subject to the inequalities (8.2), then the equation (8.1) is

satisfied.
This suggests the following linear programming problem:

maximize u, + u; + . + u,
subject to
up = 0, 83
and,fori=1,2,...,n; j=23,...,n; i+#}]
U = < a.

We assert that afinite optimal solution to (8.3) is afinite solution to Bellman's
equations (3.1), and conversely.

In Chapter 4 we shall observe that the dua of (8.3) is a minimum
cost flow problem, and that the dual variables identified with the inequality
constraints of (8.3) have natural and intuitive interpretations in terms of
arc flows. For the present we are not (concerned with exploring these duality
relations. We state, without proof or justification, that the basic variables
of a basic feasible solution to the dual problem are identified with the
arcs of a directed spanning tree rooted from the origin of the network.

We also assert that the application of the dual simplex method to
the linear programming problem (8.3) can be interpreted as follows. The
procedure is begun by finding any spanning tree rooted from the origin.
This tree is identified with a basic feasible solution to the dual problem.
Each variable U; is set equal to the length of the path to node j in this tree.
At each pivot step, an unsatisfied inequality u; — u; > q;; is identified,
and the arc (i, j) is brought into the tree, replacing whatever arc (k, j)
had been directed into j. (If there are no negative cycles, this exchange of

Figure 3.8 Example network



Linear Programming Interpretation and Relaxation Procedures 79

arcs results in a new spanning tree rooted from the origin.) Each variable
u; is set equal to the length of the path to node j in the new tree. Each u;
is monotone nonincreasing during the computation. An optimal solution
is found when feasihility is first obtained; i.e., there are no unsatisfied in-
equalities. At this point, the tree rooted from the origin is a tree of shortest
paths.

As an example, consider the network shown in Figure 3.8. For this
network we have the problem:

maximizeu, + Uz + Uy + us

subject to
Uy = 0
U, U< s
Uy, —uy I - 3
Uy —uyp < 2
uy —u, <3 (84)
Uy —Uus < 6
Ug— Uy = 4
Uy =—u3= 5
Us = uz I - 4
us — u, < 4

A sequence of rooted spanning trees is indicated in Figure 3.9. In each
tree the arc (i, j) to be brought into the tree next is shown by a dashed line.

It is now appropriate to observe that the dual simplex method, and
virtually al the other methods described in previous sections, can be con-
sidered to be specializations of a general relaxation procedure for solving
the linear programming problem (8.3). The relaxation procedure is as fol-
lows.

RELAXATION PROCEDURE FOR SHORTEST PATH PROBLEM

Step 0 (Start)
Set u, = 0. Set uj,j =23, ..., n to any sufficiently large value (at
least as large as the optimal value).

Step 1 (Test Inequalities)
If al inequalities of (8.3) are satisfied, stop; the solution is optimal.
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U =5 U, =9 Uy =35 g =9

Figure 3.9 Sequence of rooted spanning trees

Otherwise, find 4, j such that
UJ - ui > aij.

Step 2 (Relax Inequality)
%t u} - ui + a,‘j.
Return to Step 1. //

Step 1 of the relaxation procedure does not specify which inequality
should be chosen for relaxation, if there are several unsatisfied inequalities
in (83). As a practicad matter, the nondeterministic character of the method
actually makes it very attractive for solving small problems by hand “on
the network.” In this case, one can exploit intuition and insight into the
structure of the network to obtain rapid convergence to an optima solution.
There is, however, a serious theoreticd question of the rate of convergence
to an optimal solution. This can perhaps be answered best by interpreting
each of the shortest path algorithms we have studied as a specialization
of the relaxation method in which the degree of nondeterminism is reduced.

Let us say that an inequality is processed whenever it is tested for
satisfaction and then relaxed if it is not satisfied. That is, u; is compared
with y; + g;; and then, if u; + a;; is smaller, u; is set equal to u; + a;;.

The algorithm for acyclic networks in Section 4 calls for the com-
putation of

uj = min {u, + a;},
k<j
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which is equivalent to the processing of inequalities corresponding to
thearcs (1,}),(2,j),.... (G = 1, j). The algorithm implies that it is sufficient
to process each inequality of (8.3) exactly once, and the order of processing
can be determined in advance of computation. In other words, at most
(n ~ 1) ns2 relaxations, in predetermined order, are sufficient to solve the
shortest path problem for an acyclic network.

Similarly, Dijkstra's method shows that if al g; are nonnegative,
it is sufficient to process each of the (n — 1)? inequalities of (8.3) exactly
once. However, the order in which the inequalities are processed cannot
be predetermined (unless the relative values of the u;'s are al known in
advance of computation). (Note that Dijkstra’s method actually requires
only (n — 1) {(n = 2) comparisons because each of the inequalities u; < a,;,
j=2 3 ..,nis satisfied initially by setting u; = a,;.)

The Bellman-Ford method does not lend itself to interpretation as
a relaxation procedure of the type we have described, because, in effect,
when a new value for u; is determined, this value is not immediately sub-
stituted into all the inequalities of (8.3). It is precisely this fact which Yen
exploited in formulating the equations (7.1). Yen's modification demon-
strates that in the general case, i.e,, when the network is neither acyclic
nor has only positive arcs, it is sufficient to process each inequality of (8.3)
only ns2 times. Moreover, the order of processing is predetermined.

Each pivot step of the dual simplex method is equivalent to the
processing of several inequalities. When the out-of-tree arc (i, j) is exchanged
for the in-tree arc (k, j) the inequality (i, j) is relaxed. This may cause a
number of inequalities identified with other in-tree arcs to become un-
satisfied, and these are all relaxed before the next pivot step is performed.
The relaxation of these inequalities is presumably carried out by algebraic
techniques quite different from the sequential processing of inequalities.
Nevertheless, it is correct to conclude, as a result of the analysis of Yen's
modification, that the linear programming problem (8.3) can be solved
with no more than n? /2 pivot steps of the dual simplex method. (Undoubted-
ly, this bound can be lowered substantially.)

The dua simplex method is a nondeterministic algorithm, in that
there is no well-defined choice of a pivot element at each pivot step. The
above-mentioned optimistic bound on the number of pivot steps is based
on an intelligent choice. At the other extreme, Edmonds has shown that if
one makes a pathologically poor choice, the number of pivot steps can
grow exponentially with n. A fortiori, the relaxation method may require
one to relax an exponentially growing number of inequalities.

Finally, we comment that if any feasible solution to the linear program
(8.3) could be obtained in fewer than O (n?) steps, then an important result
would follow. Note that if we replace a;; by a; = ag + u; = Uy, for any
numbers u, , . . ,u,, then the shortest path lengths are essentially unchanged.

If u, ...,u, are feasible solutions to (8.3), then g; = O and Dijkstra's
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procedure can be applied. Thus, the shortest path problem with negative
arc lengths (but no negative cycles) could be solved in fewer than O (n®)
steps.

PROBLEMS

81 Resolve Problem 5 | by the dual simplex method. Indicate the tree identified
with each successive duad feasible solution.

8.2 Resolve Problem 5.1 by the relaxation method, working “on the network.”
That is, indicate initial u; values at the nodes, and revise them downward by
inspection  of  unsatisfied  inequalities.

8.3 Let T beaspanning treerooted from the originand let(i,j)e T, and (k, j) ¢ T
What are necessary and sufficient conditions for T — (i, j) + (k, j) also to be
a tree rooted from the origin?

84 Suppose the network contains a negative cycle. What happens when the dual
simplex method is applied? The rela ration method?

9

Shortest Paths between All Pairs of Nodes.
Matrix Multiplication

Let us now turn to the problem of finding shortest paths between all pairs
of nodes in the network. Instead of computing shortest paths from an origin
to each of the other 1 1 nodes, we seek to compute shortest paths from
each of the n nodes to each of the other n — 1 nodes, n(n — 1) shortest
pathsin all.

We can, of course, choose 1 separate origins and carry out n separate
computations of the type we have described in the preceding sections.
However, it is more appealing to try to develop a single integrated pro-
cedure.

Let

u;; = the length of a shortest path from ito j.

u? = the length of a shortest path from i to j, subject
to the condition that the path contains no more
than m arcs.

Then we have, if a,, = 0,
ug' =0
W = oo (i #)) 91)

urth = min {uff) + a}.
k
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If we carry out the indicated computations, we obtain convergence at the
(n — D)st approximation, i.e, u}~ ! = u;. The overall computation is
0(n*), which is just what we should expect for 1 repetitions of the O(n?)
Bellman-Ford  computation.

However, there is something which should pique our interest.
Equations (9.1) are very suggestive of the definition of matrix multiplica-
tion. We are accustomed to defining the product P of two dimensionaly
compatible real matrices A and B as follows:

P= (p;) = AB,
where
pij = ; iby;-
Now suppose we define a new type of matrix multiplication “®” as follows:
P= (pij): A®B>
where

pij = mkin {an + by}

That is, let ordinary addition take the place of multiplication and min-
imization take the place of addition.

Now let U™ be the matrix of mth order approximations, ie., U™ =
(u{?). Note that

0 o oo o
U - oo 0 o ©
o o 0 «©
o o w0
Let A = (g;;) be the matrix of arc lengths. Then we see that
Y =zpy® g 4

p@=ym ®A = (U(O) ®A) ®A

U =w-2 @ A = (U9 ®A) @A) .. Q@ A).

Two important things to know about this type of matrix multiplication
are that U is the identity matrix, i.e, U® ® A = A, and that the multi-
plication is associative. Together, these facts mean that we can write

U(n—l) —_ An—l

where by 4"~! we mean the (n - 1)st power of the A matrix. It does not
matter how we obtain this n — 1 power. Since 4% = A4"~! for any 2% >
n 1, it seems appropriate simply to square A until a sufficiently high
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power is obtained. That is, compute 42 = A ® A, then A4* = A* ® A2,

.o A¥ for 2k >~

This method requires log, » matrix multiplications, each of which
is an O(n*) computation. It follows that we have a computation which is

0 (n* log n) overall.

As an example, consider the network of Figure 3.10. For this net-

work, A, A2, etc., are as indicated.
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5
4 <
2
s s
)

Figure 3.10 Example network

Note that it aso is possible to interpret the Bellman-Ford method
in terms of matrix multiplication. That is, let 4™ be a row vector, with

and
u® = (0, o, 0, . .., ).
Then
umrl = @) A4,
= U0 @ am
PROBLEMS

91 Apply the matrix multiplication method to the matrix of arc lengths in Problem
5.1

9.2 Let p,; represent the probability that arc(i,j) isintact. Modify the equations
(9.1) and the definition of matrix multiplication to solve the most reliable
path problem. (That is, in terms of the p; values. Do not use the transformation
a; = —logpij-)

9.3 Letc; represent the “ capacity” of arc(i, j). Modify equations (9.1) and the
definition of matrix multiplication to solve the maximum capacity path prob-
lem.

9.4 Suppose we want u? to represent the length of a shortest path from i to j,
subject to the condition that the path contains exactly m arcs. (The path may
contain repeated nodes.) How should the computation be modified?

9.5 Suppose we simply want to determine which pairs of nodes of a directed graph
G are connected. How might we simplify the matrix multiplication method?
Let A be the adjacency matrix. What is the form of A"-‘? What are necessary
and sufficient conditions for G to be strongly connected, in terms of 4"~1?

96 Prove that the network contains a negative cycleif and only if A” £A"-*.
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10

Floyd- Warshall Method

A computational method, due to Floyd and to Warshall, finds shortest
paths between all pairs of nodes in ((n®) steps, compared with O(n® log n)
for the matrix multiplication method.

We redefine 4 as follows:

u™ = the length of a shortest path from i to j, subject
to the condition that the path does not pass
through nodes m, m + 1, ., n (i and j excepted).

A shortest path from node i to node j which does not pass through nodes
m +1, m+ 2 ., neither (a) does not pass through node m, in which
case u{? ™" = u{f’ or (b) does pass through node m, in which case u*" =

Thuswe have

”g’) = dj,
and (10.1)
w1 = min {uf™, ul® + U™},
and, clearly, ufj * D = u,;, the length of a shortest path from i to j.

We note that ! = 0, for al i and al m It follows that there are
exactly n(n — 1) (n = 2) equations in (10.1) which require explicit solution,
each by a single addition and a single comparison. (l.e., equations for
whichi,jm=12..., n;i#j,i £m | # m) Thus, the Floyd-Warshall
method requires exactly n{n — 1) (n — 2) additions and n(n — 1) (n ~ 2)
comparisons. This is the same order of complexity as the Bellman-Ford
method, which yields shortest paths only from a single origin. But, curiously,
if al arc lengths are positive, and we apply the Dijkstra method p times
for n separate origins, we will perform exactly the same number of com-
parisons and only about half as many additions as the Floyd-Warshall
method. (There are other housekeeping operations which, in practice, may
prevent the n-fold Dijkstra computation from being competitive with
Floyd-Warshall.)

The Foyd-Warshall computation requires the storage of a single
n x n array. Initidly this is 1) = 4. Thereafter, y™*Y is obtained from
U™ by using row m and column m to revise the remaining elements. That
is, uy; is compared with u;, + u,; and if the latter is smaller, w,, + Upj is
substituted for u;; in the matrix. This is suggested schematically in Figure
31L

We illustrate the computation with the same example used for the
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This is the same result as that obtained by the matrix multiplica-

tion method.
We can derive some further insight into the Floyd-Warshall method

yn+th = y®
from the theorem beow.

U
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Theorem 10.1 An n X p marix U = (u;) is a matrix of shortest path
lengths if and only if

u; = 0

it

<ty + iy, foral i, j, k. }

iy —

(102)

The proof is |eft to the reader.

For any matrix A not satisfying the conditions of the theorem, but
for which no negative cycles are implied, there exists a unique largest matrix
U < A which is a matrix of shortest path lengths. This fact suggests that
we might formulate a linear programming problem, analogous to (8.3):

maximize ) [ u;;
J
subject to (10.3)
U < aij,
uij - Uy = kjS 0.

We can imagine a procedure which checks a matrix U and computes
the matrix of shortest path lengths, if U does not satisfy the inequalities
(10.2) or (10.3). That is, one simply makes a choice of i, j, k and compares
wj with uy + uy;. If uy; is larger, a relaxation is performed by reducing
u; in value to uy + u,;. When no further relaxations are necessary, the
matrix of shortest path lengths has been obtained.

We call the relaxation operation which replaces u; by

min {u;, uy + ;|

the triple operation for i. j, k. Note that the equivalent of nin=1) (n = 2)
triple operations are required simply to verify that a matrix U satisfies
the inequalities (10.2) or (10.3), and this is exactly the number required
by the Floyd-Warshall method.
The matrix sguaring method can be expressed as follows:
wh =g,
and ! ’ (10.4)
um = mkin {ulp + umy.

In effect, this method calls for the equivalent of n(n 1) (n - 2) triple
operations to be performed at each of log, n iterations.

It follows that the matrix multiplication method, in effect, cals
for an inefficient ordering of triple operations. The Floyd-Warshall method
prescribes a clever order of triple operations in which each such operation
must be performed only once. Another ordering of this type has been pro-
posed by G. B. Dantzig; others are possible.
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PROBLEMS

101  Apply the Floyd-Warshall method to the matrix of arc lengths in Problem
5.1

102 Resolve Problem 9.2, for the Floyd-Warshall method.

103 Resolve Problem 9.3, for the Floyd-Warshall method.

104 Prove Theorem 10.1.

105 (P. Spria) Show how, with appropriate preconditioning of data, one can
apply the Dijkstra algorithm » times to obtain shortest paths between all
pairs of nodes in only 5(n = 1) (n-- 2) n+ O(n* log n) comparisons. (Hint:
Sort the arc lengths firgt.)

106 Suppose that, along with the matrix U, a second » X n matrix K is main-
tained. Initially, U'' = A, the matrix of arc lengths, and KV = 0, the zero
matrix. Thereafter, the K matrix is updated at each iteration as follows. If
the triple operationi, j, mis performed and it is found that i} > uim’ + uly),
then k{7 + " is set to m. Otherwise, k{7 * D = J4m Show how to use the matrix
K™*Uto construct the actual sequence of *Arcsin a shortest path from i
to j in O(n) operations. (It is a very simple and clean procedure; a pushdown
stack is helpful.)

107 Suppose the shortest path fromito j is not unique. For example, suppose
there are two shortest paths. one path contains arcs (i, 10), (10, 1), (1, j) and the
other contains arcs (i, 2),(2,4), (4, j). Which path is chosen by the Floyd-
Warshall algorithm? (Assume a path construction technique like that devel-
oped in the previous problem.) State a simple rule for answering this question
in  general.

11

Detection of Negative Cycles

Up to this point we have avoided the question of how negative cycles affect
the various shortest path computations and how we should go about de-
tecting negative cycles if that is our objective. This question becomes of
great importance in Section 13.

Although the results we state do not strictly require it, it is reasonable
to suppose that the network is strongly connected. If this is not the case,
it may be best to identify the strong components and analyze the components
separately.

We leave the proof of the theorem below as an exercise for the reader.

Theorem 11.1 Let the network have a path from node 1 to each of the
other nodes. Then the network contains a negative cycle if and only if,
in(6.1) or (7.1), u{" < u®"~V for at least one j = 1,2,. .., n.
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Theorem 11.1 suggests that to detect the existence of negative cycles,
al that is necessary is to carry out the Bellman-Ford or Yen computation
for one additional iteration. Thus, the complexity of the computation
remains at ( (n®).

It may be possible to halt the computation earlier by testing for
other conditions which are sufficient to indicate the existence or nonexistence
of negative cycles. One condition is that u™ < 0, for any m (there is a
negative cycle containing node 1). Another such condition is that u{"*! =
u{™ for al j and for any m (there are no negative cycles). Still another set
of such conditions is given by the following theorem.

Theorem 112 The network contains a negative cycle if, in (6.1), uf"*! <
u™, for some m=1,2,3,., n =1, and for at least n = m distinct nodes j.

These sufficient conditions may well enable the computation to
be ended earlier, but they do not affect the worst-case bound of #3 additions
and »n3 comparisons, in the case of (6.1).

Note that Theorem 11.2 is actually a statement of the property
which yields a n®/4 algorithm, as described in the last paragraph of Section 7.

In the case of the matrix multiplication and Floyd-Warshall methods,
we have the following theorem.

Theorem 11.3 The network contains a negative cycle if and only if, in
(9.1) or (20. 1), u™ < 0, for some i=1,2,.., nand some m= 1,2, 3, ., n.

The Floyd-Warshall method has essentially the same upper bound
on the number of computational steps as the (unmodified) Bellman-Ford
algorithm. However, in practice, it appears that the Bellman-Ford agorithm
is more likely to terminate early, and should be preferred for the detection
of negative cycles.

If the network contains no negative cycles, then we can. compute
the length of a shortest cycle, as follows.

Theorem 11.4 If the network does not contain a negative cycle, then the
length of a shortest cycleisgiven by
min {uy 1},
I

it

where {7 *1) is determined by (9.1), or (10.1), with g, = + o, for al 1.

PROBLEMS

111 Test each of the following matrices of arc lengths for negative cycles by the
Bellman-Ford  method:
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0 0 v <| [0 -8 | x =
oe 0 LT w20 n 0 x x 20
x -2 0 -3 x X -3 0 0 x
xr  -12 6 0 l r -12 6 0 |
% 1 x 0 xL«C I % 0

112 Prove Theorem 11.1.

11.3 Prove Theorem 11.2.

114 Prove Theorems 113 and | 14

11.5 Reduce the traveling salesman problem to the problem of finding a most
negdive  cyde.

116 Obtan the proper andog of Theorem 112 for eguaions (7.1).

12

Networks with Transit Times

Suppose, in addition to a length g;;, a positive integer transit time Lj is
identified with each arc (i, j). There are a number of interesting problems
associated with such networks. For example, suppose we seek to find
a shortest path from the origin, subject to the condition that ho more than
T units of time are required.

Let

u;(t) = the length of a shortest path from the origin to node j,
subject to the condition that the path requires no more
than ¢ units of time.

We can easily establish the equations
u;(t) =+ w, fore <O,
u(0) =0 (12.1)

w;(t) =min {u;(t = 1),mk'm {u(t = t;) + a) }.t

The equations (12.1) can be viewed as a generalization of the Bell-
man-Ford equations (6.1); they imply an O (n? T) computation to determine
u; (T) for dl j.

Now suppose we seek to find shortest paths between all pairs of
nodes. It is possible to apply equations (12.1) n times, for n distinct origins,
yielding an O(n3T) computation. Or a single set of equations analogous
to the matrix multiplication equations (9.1) can be formulated. These aso
imply an O(n*T) computation. Unfortunately, however, the computation
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which is implied by this approach is not a simple matrix multiplication.
Hence a simple matrix squaring technique, which would be Q(n3 log T)
in complexity, does not seem to be feasible.

However, it is sometimes possible to do better than O (n*T). Suppose
each 7;; < 1. Then we have the following proposition.

Proposition 122 Let P;; be a path from i to j which requires no more than
2t units of time. Then P, can be broken into two paths P; and P,; (where
possibly | = k or k = |), which respectively require no more than { = §
and ¢ + ¢ units of time, for some 0 < § < 1.

Define u;(1) in the obvious way, and obtain the equations

u;; (1)

=0
(20 = min {min {uy(t = 8) + uylt + 3)} .

12.2)
u

ij
that may be considered to be, formally, a generaization of the matrix
squaring equations (10.4).

More generally, we have

uii([) = O

u; (2t + 6) = p@g({ mikn {ug(t + 6 O+ uy(t +6) | (123

(2t = 6) = mi in {u. : 1
u;; (2t = @) —(r)TE?S{T min luat )+ u,(t —6 + 9} ).

Equations (12.3) imply that u;(T) can be computed for al j j in
O(n’t? log T) steps. If 1 is sufficiently small, i.e. 1 < T/log, T, this is an
improvement.

As an application of these methods, consider the following problem,
which requires a two-stage shortest path computation. We wish to route
a vehicle through a network in which there are only certain nodes at which
it can refuel. The travel time between successive refuelings must not exceed
T units of time.

Suppose there are m refueling nodes, and the origin and destination
for the vehicle are among them. We first apply equations (12.1) or (12.2)
to obtain u;;(T), for al nodes i, j. We then solve a conventiona (not time
constrained) shortest path problem over an m-node network of refueling
nodes, in which the length of arc (i, j) is u;; (T). The length of a shortest
path in this network is the length of a shortest path in the original network,
subject to refueling constraints. The overall computation is O(nT) or
0(n37% log T), depending upon whether (12.1) or (12.2) are used.
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Shortest Paths

PROBLEMS

Determine the structure of an (nT + 1)-node acyclic network identified with
equations (12.1), just as the network. in Figure 3.7is identified with the equa-
tions (6.1).

Some practical problem situations suggest that it may be useful to permit
both transit times and arc lengths to be time-varying. For example, at time
t; there may be an airline connection from city i to city j costing a;;(t,) dollars
and requiring t;;(t;) hours. At another timeg, there may be atrain, costing
a;;(t,) dollars and requiring 1;(t2) hours, whereaij(zl) >a;;(t,) and t, (1)<
t;; (t;). One may wish to know the minimum cost to travel from city 1 to city
intimeT.

To be precise, et

a;; = the length (cost) of an arc from node i
to node j, terminating at j at time 1,
if there is such an ar;
= 4 oo, Otherwise
t;; (t) = the transit time of an arc from node i
to node j, terminating at j at timet¢
(and originating ati attimer =1, ().

In order to simplify matters, assume that for any i, j t, thereis at most one
arc (i, j) directed into node j at time¢, Modify the time-invariant equations
(12.1) to fit the time-varying case, and show that the complexity measure
remains O (n? T)

Prove Proposition 12.2.

Justify, in detail, the complexity measure of Q(n*z% log T) for the equations
(12.3).

Suppose there is one arc in the network which has a much longer transit
time than any of the others. One way to reduce the magnitude of <, and thereby
speed up the computation by equations (12.3), is to subdivide this arc into
smaller arcs, each with shorter transit times. Now suppose we subdivide all
the arcs in the network into arcs with unit transit times. Then a path requires
no more than T units of time if and only if it contains no morethan T arcs.
Show how to apply matrix squaring to compute u;;(T), and obtain a bound
on the length of the computation.

13

The Minimal Cost-to-Time Ratio Cycle Problem

Consider the following problem formulation due to Dantzig. A tramp
steamer is free to choose its ports of call and the order in which it calls
on them. A voyage from port i to port j earns p;; dollars profit, and requires
t;; days time (including time for loading cargo at i and unloading at j).
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What ports should the steamer visit, and in what order, so as to maximize
its mean daily profit?

A solution to this optimization problem is found by identifying a
directed cycle within the network for which the ratio of total profit to total
travel time is as large as possible. The tramp steamer then sails from its
starting point to any port within this cycle, and then continues to sail
around the cycle indefinitely.

We are accustomed to minimizing rather than maximizing. Ac-
cordingly, we shall continue to deal with a network in which each arc
(i, j) has a length or cost aj; (et a; = —p;;) and a transit time ¢;; and we
shall seek a directed cycle C for which

q(C) =— (13.2)

is minimum. This is caled the “minimal cost-to-time ratio cycle problem.”

For the special case in which ¢;; = 1, for al i, j, the following method
suggests itself. Set a,, = + ¢ and compute ™ for i=1,2, .., nand m =
2, 3, . ., n by the matrix multiplication method (9.1). Then the minimum
value of g (C) isequal to

This technique can be generalized. However, even in the special
case that t; = 1, an Q(n*) computation is implied. We shall now develop
a computational procedure which is essentially 0 (n* log n).

In the following several paragraphs, we do not assume that the t;
values are necessarily positive integers, or even positive. Although we may
dlow some 1;/’s to be negative (the physical interpretation of negative time
is admittedly not clear), we do make the not unreasonable assumption
that

Y 1y >0, (132)
(i,j)eC
for al cycles C.

Suppose we guess a minimum value A for the cost-to-time ratio
(13.1) and give each arc (i, j) a new cost &; = g;; — it;;. There are three
situations that may exist with respect to these modified cost coefficients
a;:

Case | There is a negative cycle in the network.

Case 2 There is no negative cycle, and the cost of minimal-cost cycle
is exactly zero.
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Case 3 Thereis no negative cycle, and the cost of a minimal-cost cycle
is drictly positive.

Suppose that Case 1 holds. Let C be a negar[ive cycle. Then

ZC: G = Z (Gu - u
By assumption (13.2), it follows that
Zau
iz; < A

In other words, the guessed vaue of 1 is too large and C is a cycle for which
the cost-to-time ratio is strictly smaller than 2.

By similar analysis, we see that in Case 2 the guessed value of 7
is exactly equal to the minimal cost-to-time ratio, and in Case 3 1 is too
small.

These observations suggest a search procedure based on the testing
of successive tria values of A. There are two principal types of searches
we might conduct: “monotonic’ and “binary.”

One can organize a monotonic search by choosing an initial value
4O a least as large as the minimum cost-time ratio, and then, by successive
applications of Case 1, obtain 2@ > AW > 23 > until some AV is
found for which Case 2 holds. This must occur in a finite number of seps,
because there are only a finite number of cycles. Hence there are only a
finite number of possible cogt-time ratios.

Actually, it will be shown below that a monotonic search requires
only 0 (n*) trial values of 1. Since each trial value requires an 0 (n*) negative
cycle computation, the monotonic search procedure is 0 (n%) overdl.

The binary search provides a much better bound and is possibly
more effective in practice. The binary search proceeds as follows. Suppose
we know that the optimum cost-time ratio is contained in the interval
(a, b). Wefirst try the tria value of 1 = (a + b)/2. If Case 1 holds, we know
that the optimum ratio is contained in the interval (a, (a + b)/2). If Case 3
holds, the optimum ratio is in the interva ((a-+ b)/2, b). If Case 2 holds,
we have, of course, found the optimum value of the cost-time ratio at the
first try.

We continue in this way, halving the remaining interval with each
trial value. After [ trial values the length of the remaining interval can be
no greater than (b — a)/2* Or, to put it another way, the number of trial
values required to reduce the length of the interval to ¢ islog, (b =a) -
log, e.

We continue the interval-halving procedure until the remaining
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interval is so small that only one distinct cost-time ratio can be contained
within the interval. Then one additional trial value of A is sufficient to
find the cycle with this minimal ratio. (The final value of A is chosen to be
equal to the largest value in the s-interval; either Case 1 or Case 2 must hold.)

Now let us suppose that all the parameters a;; and t; are integers
and that |a;;| <y and |t;;] <1 for dl j, j. Each cycle contains at most n
arcs, and the smallest possible value for the sum of the transit times around
any cycle is unity. Hence the minimum and maximum attainable cost-to-
time ratios are a = - ny and b = ny, respectively.

Furthermore, if the cost-to-time ratios for two cycles are unequal,
those ratios must differ by at least ¢ = 1/n*t2. This can be seen as follows.
Let AT and A'/T be two distinct cost-to-time ratios. Then

A A AT — AT

T T TT

The difference between the ratios is minimized by letting AT = AT= 1
and TT = n?z% (It is possible that cost-to-time ratios for closed paths
other than cycles may differ by less than 1/nt?, but this does not affect the
convergence arguments.)

It immediately follows from the above observations that there can be
no more than 2n3yt? distinct ratios in all, or O (n?) distinct ratios if we assume
yand 7 to be invariant with n, This yields the bound of O (n®) for monotonic
search.

\#0.

It aso follows that the binary search procedure requires no more
trial values of 1 than log,(b — @ =log, ¢ =log, (2ny) log, (1/n?1?) =
1+ 3log, n+log, y+ 2log, . Thus, the number of negative-cycle prob-
lems which must be solved is O (log n + log y + log 7).

Suppose we are concerned with networks of various sizes, but with
similar cost and time parameter values. If we assume that y and 1 are in-
variant with n (or even if y and r increase as polynomial functions of n)
then. the number of negative cycle computations is simply proportional
to log, n and the overall computation is 0 (n* log n).

Even if we make no assumptions about the nature of the parameters
a;; and t;, it is clear that the number of computational steps is bounded
by a polynomial function in the number of bits required to specify an
instance of the problem. In this sense, the minimal cost-to-time ratio prob-
lem can be considered to be a well-solved combinatorial optimization
problem.
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14

M Shortest Paths: Dreyfus Method

Sometimes it is useful to be able to compute in addition to the shortest
path, the second, third, . . . . Mth shortest paths between a specified pair of
nodes. For example, there may be some complex set of constraints associated
with paths. By simply ignoring the constraints and listing paths in order
from the shortest onward, we may be able to determine the shortest path
satisfying the constraints in question.

In order to simplify our analysis, we make a number of assumptions.
In particular, paths containing repeated nodes are admissible paths and
even the origin may be visited more than once. Two paths are considered
distinct if they do not visit precisely the same nodes in the same order.
This does permit two distinct paths to possess precisely the same arcs.
However, all paths have different lengths. Ties are broken by a lexico-
graphic ordering.

The method we shall describe, due to S. E. Dreyfus, computes the
A4 shortest paths from an origin (node 1) to each of the other n = 1 nodes
of the network, and does so in O(Mn log n) running time.

Let
ul™ = the length of the mth shortest path from the origin

to node j

and

u(k, j, m) = the number of paths in which (k, j) is the final

arc, intheset of It, 2nd, . . . , mth shortest
paths from node: 1 to node ;.

By definition,

pulk, j,0)= 0.
During the course of the computation u(k, j, m) will be updated quite
simply:
ulk, j, m) -+ 1,if (k j) is the final arc in the
ulk, j, m + 1) =4 (m + l)st shortest path from the origin to j,
u(k, j, m), otherwise.

The (m + 1)st shortest path from 1 to j has some final arc (k. j).
The length of this path from the origin to k must be uf**>™*1_Accordingly,
by minimizing over all possible choices of k, we obtain

ulm+ 1 = mkin fufptedm+ 1 4 g (14.1)
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with the initial condition
W= 0.

Equations (14.1) are clearly equivaent to Bellman’'s equations (3.1)
for the case m = 0 (except that the condition k # j is eliminated, because
we permit loops). The reader will also note that, as in (3.1), there is a prob-
lem of implicit functional relationships. That is, "' may be defined in
terms of {™* '}, which may in turn be defined in terms of u{™* '] We learned
how to resolve this problem for m = 0 in Section 6, and possibly we could
use a similar technique here. There is, however, a simpler solution.

Let us consider the computation of uf?], for all j. The value of ui!
(which may be infinity) is given by

WPl = min {f + ay, .
k

For each node j whose shortest path from the origin contains only one
arc, (14.1) is equivaent to

ull =min (P + a;, min {4l + gyl
k#1

For each node j whose shortest path from the origin contains two arcs,
say (1, i) and (i, j), (14.1) is equivalent to

u?l = min {u® + g, min (Ul + a5} )
k#i

We can continue, computing u*! for nodes j whose shortest paths from
the origin contain three, four, . . ., n — 1 arcs. At no time is the value of u}*!
required on the right-hand side of equations (14.1), unless it has already
been computed.

In general, u{™ +'! appears on the right-hand side of equations (14.1)
only if the arc (k, j) is the final arc in each of the lst, 2nd, . . ., mth shortest
paths from the origin to node j. But since (k, j) is the final arc of the shortest
path to j, it follows that the number of arcs in a shortest path to node k
is one less than the number of arcs in a shortest path to j. Therefore, if the
nodes j are processed in order of the number of arcs in their shortest paths
from the origin, the value of «{™*! will be known when it is needed in the
computation of "%, Hence the functional relationship in (14.1) is ex-
plicit.

The initial computation of wf], for al j, requires either O(n?) or
O(n®) running time using the Dijkstra or the Bellman-Ford method, de-
pending upon whether or not the network contains negative arcs. The
computation or u{"*! by (14.1), for a given j, seems to require O(n) addi-
tions and comparisons, but this can be reduced to O(log #) running time,
as described in Problem 114.2. Thus, to compute ) for al j, requires
O(Mn log n) running time, in addition to the time required for the initial
shortest path computation.
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The algorithm requires that u{™ be stored, for m=1,2,..., M, for
which Mn words are needed. In addition at each iteration, p(k, j, m) must
be stored for each arc (k, j). Thus, Mn + m’ words of storage are required,
where m’ is the number of arcs in the network. This, of course, isin addition
to the storage required for the specification of the network itself.

PROBLEMS

141 Consider the network shown in Figure 3.12, in which the tree of shortest
pathsisindicated with bold arcs. Use Dreyfus’ method to compute fourth
shortest paths to each of the nodes. How many of these paths contain repeated
nodes?

142 (D. E. Knuth) By using a priority queue for each node, show that it is possible
to reduce the running time for each iteration of Dreyfus' method to O(nlog n).

10
Figure 3.12  Network for Problem ‘I 4.1

15

M Shortest Paths without Kepeated Nodes

We now consider the problem of computing the first, second, . . , Mth
shortest paths between a specified pair of nodes, where we do not permit
these paths to contain repeated nodes. The procedure is possibly conceptual -
ly simpler than that described in the previous section, but is computationally
more arduous. The computation is O(Mn?) in length, and requires O(Mn)
words of storage, in addition to the storage ordinarily required for the
shortest path problem.

Our strategy is essentially as follows. Let 2 denote the set of all
paths (without repeated nodes) from node 1 to node n. Initidly we find
P,, the shortest path in 2. (Here and in the sequel we assume that ties be-
tween paths of equal length are resolved by an unspecified tie-breaking
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rule, perhaps by lexicography. Thus P, is uniquely determined.) We then
partition & -- {P, } into subsets #,, 2,, .., #,,where k <n-- 1, in such
a way that we are able to determine the shortest path in each subset. The
shortest of these shortest paths is clearly P,, the second shortest path from
node 1 to node n. Suppose P, € #;. We then partition #; -- {P,} into
subsets, in the same way that we partitioned #  {P, }. The subsets ob-
tained from the partitioning of #; - {P,}, together with 2,, 2, . . . .
Py, P41, ..., Py, condtitute a partition of 2 = {P,, P, }. The shortest
of the shortest paths found in the subsets which partition # = {P,, P,}
is clearly P,, the third shortest path.

At the general step of the procedure, # -~ {P,, P,,.., P,} has been
partitioned into subsets 2,, Z,, .., .%;. The shortest of the shortest paths
found in any of these subsets is P, 1, the (m + 1)st shortest path. If P, ;€
?;, then 2; — {P,.1} is partitioned into no more than n -- 1 subsets.
These subsets, together with 2, #,, . #  , Z;+,., ?;, yield a parti-
tionof.? ={P,,P,,.... Py }.

The procedure can be visualized in terms of a rooted tree, as shown
in Figure 3.13. Each node in the tree is identified with a subset of paths.
A node is given the label F,, if that path was found in the corresponding
subset. The arcs directed from a node point to subsets formed by further
partitioning. Note that # - {P,, P, .., P,} is partitioned into no more
than m(n = 2,) + 1 subsets, corresponding to the number of leaves of the
tree at that point in the computation.

The key to the procedure is the ability to partition 2; — {P,,.,}
into subsets in such a way that it is easy to compute the shortest path in

Figure 3.13 Search tree for computation
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each of the subsets. This is accomplished through the forced inclusion and
exclusion of arcs.

Each subset #; in the partition of »# (P,  P,,..., P,} contains
al paths which (a) include the arcs in a certain specified path from node 1
to another node p, and (b) from which certain other arcs from node p are
excluded. Without loss of generality, suppose the specified path from 1
to p contains arcs (1,2), (2,3),., (p = 1, p). A shortest path in #,is found
by simply finding a shortest path from p to n in the given network, after
the deletion of nodesi, 2,.... p - 1, and the arcs excluded in condition (b).
Clearly, this requires nothing more than the application of an ordinary
shortest path computation to the reduced network.

Now suppose P, . ; € #;, and again without loss of generality, sup-
pose P, ., contains arcs (1,2), (2,3)..... (g =1 g), (g, n), where g = p. If
q = p, then 2, = {P,.+.} contains all paths which include the arcs (t,2),
(2,3),... (p =1, p). and from which {p, n) is excluded, along with the arcs
from p excluded from #,. If q > p. then #, — (P, | is partitioned into
g=p+ 1subsets #y, 2,,...,2,_,.,. 2 contains al paths which include
(1,2),(2,3), .. .,(p—1.p), and from which (p, p + 1) is excluded, aong
with the arcs from p excluded from #,. 7,1 <k < ¢ = p + [, contains
all paths which include the arcs (1,2),(2,3), ...,(p + k= 2,p + k — 1), and
from which (p + k - 1,p + k) is excluded. #;,_,,, contains al paths
which include arcs (1,2), (2, 3), ..., (q —=1, g), and from which (q, n) is
excluded.

The reader should be able to verify that this scheme yields a valid
partition of #; — {P,}, and that the conditions defining each subset of
the partition arc of the same form as (&) and (bj for P;.

The solution of the shortest path problem for each subset requires
an O(n?) computation if all arc lengths are nonnegative. If this is not the
case, an initiad O(n3) computation suffices to determine shortest path
lengths i from the origin, and each arc length a;; can be replaced by a;; =
a; + u; - u; 2 0. (See the fina paragraph of Section 8) This trick is
utilized in the summary of the algorithm below.

COMPUTATION OF M SHORTEST PATHS WITHOUT
REPEATED NODES

Step 0 (Stat-t) If al arc lengths are nonnegative, find the shortest path
from node 1 to node n by Dijkstra’s method. If not all arc lengths are non-
negative, find the shortest paths from node 1 to each of the other nodes,
using the Bellman-Ford method, and then replace a; by a; + u; = u; > 0
for each arc in the network.
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Place: the shortest path from node 1 to node n in LIST as the only
entry. Set m= 1.

Step I (Output mth Shortest Path) If LIST is empty, stop; there are no
more paths from 1 to n. Otherwise, remove the shortest path in LIST and
output this path as P,,,.

If m = M, stop; the computation is completed.

Step2 (Augmentation of LIST) Suppose, without loss of generality, that
P, containsarcs(1,2),(2,3),..., (g =1, q), (g, n) and that P, is the shortest
path from node 1 to node n subject to the conditions that it is forced to
include arcs (1,2), (2,3}, . ., (p — 1, p), where p < g, and that certain arcs
from node p are excluded. (These conditions are stored with P, as part of
the same entry in LIST.)

If p = ¢, apply Dijkstra’s method to find the shortest path from 1 to
n, subject to the conditions that arcs (1,2),(2,3).....(p 1, p)areincluded,
and that (p, n) is excluded. in addition to the arcs from p excluded for P,.
If there is such a shortest path, place it in LIST together with a record of
the conditions under which it was obtained.

If p > ¢, then apply Dijkstra’'s method to find the shortest path from
1 to n, subject to each of the following sets of conditions:

(1 Arcs(1,2).(2,3)...,(p 1,p)areincluded and arc{p, p + 1)
is excluded, in addition to the arcs from p excluded for
P,

(2) Arcs (1,2),(2,3).....(p, p + 1) are included: and arc

(p+1.p+ 2) is excluded.

g p 2 Arcs(1,2),(23),....(qg =2 g=1) areincluded, and arc
(@ — 1, q) is excluded.

(q=~p=1 Arcs(1,2),(23),....(g 1,4q) areincluded. and arc (¢. n)
is excluded.

Place each of the shortest paths so obtamed in LIST, together with
arecord of the conditions under which it was obtained.
Set m =m + 1 and return to Step 1. //

In order to compute the Mth shortest path, O(Mn) shortest path
computations, each of O(n*) must be carried out. Thus O (Mn?) running time
is required for these computations.

The agorithm may generate as many as O(Mn) entries for LIST.
If the value of M is known in advance (as is assumed in the description of
of the algorithm), all but the shortest M = m paths in LIST can be discarded
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at the mth iteration. Moreoever, even if the value of M is not known in

advance (e.g., the algorithm may be alowed to run until the shortest path
satisfying certain conditions is found), a storage reduction scheme can be
implemented which reduces the size of list to O( M)  entries, but doubles
the number of shortest path computations. (An explanation of this storage
reduction scheme can be found in the references.) In either case, the number
of entires in LIST can be assumed to be O(M), and since each entry re-
quires O (n) space, the total storage requirement for LIST is O(Mn).

There are various data structures that can be used for LIST. Per-
haps the most appropriate is a priority queue, which permits either removal
of the shortest path in LIST or the insertion of a new entry in O(log M)
time. Since there are at most O(Mn) entries to be removed or inserted,
the time required for these operations is at worst 0 (Mn log M). But log M <
nlog n,since M < n!. Hencethe O(Mn log M) running time for these
operations is dominated by the runn-ing time for the shortest path com-
putations, and the algorithm may fairly be said to be O(Mn?).

PROBLEM

151 Apply the dgorithm to find the 1st. 2nd, . . . . 4th shortest paths from node 1
to node 6 for the network in Figure 3.12.
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28-32.
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SECTIONS 1 17— 13
The material in these sections is taken from

E. L. Lawler, “Optimal Cycles in Doubly Weighted Directed Linear Graphs,”
Theory of Graphs, P. Rosenstiehl, editor, Dunod, Paris, and Gordon and
Breach. New York, 1967, pp. 209-214.

and

E. L. Lawler. “Optimal Cycles in Graphs and the Minimal Cost-to-Time Ratio
Problem,” Proceedings of a Conference on Periodic Optimization, CISM,
Udine, Italy, 1973.

See also

G. B. Dantzig, W. Blattner and M. R. Rao, “Finding a Cycle in a Graph with
Minimum Cost to Times Ratio with Application to a Ship Routing Problem,”
Theory of Graphs, P. Rosenstiehl, editor, Dunod, Paris, and Gordon and
Breach. New York, 1967, pp. 77-84.

I. V. Romanovskii, “Optimization of Stationary Control of a Discrete Deterministic
Process,” Cybernetics. 3 (1967) 52-62.

Some other problems that can be put into the form of the minimal cost-to-
time ratio problem are industrial scheduling problems of the type described
in

R. A. Cunningham-Green, “Describing Industrial Processes with Interference and
Approximating Their Steady-State Behavior,” Operational Research Quar-
terly, 13 (1965) 95-100.

and the determination of maximum-computation-rate periodic schedules for
Karp-Miller computation graphs, as in

R. Reiter, ‘ Scheduling Parallel Computations,” Journal ACM., 15 (1968) 590-599,

The procedure for the ratio problem can, of course, be generalized to solve
a much wider class of combinatorial optimization problems with rational
objective functions. At the same time, we should note that the standard

techniques, e.g., those due to Charnes and Cooper, for solving linear pro-

gramming problems with rational objective functions are unworkable for
such problems, This is because of their discrete rather than continuous
character.

SECTION 14

The computational procedure described in this section is from the paper
by Dreyfus, op. cit.

SECTION 15
Many of the essential ideas in this section were presented. in the context
of the assignment problem, in

K. G. Murty. “An Algorithm for Ranking all the Assignments in Increasing Order
of Cost,” Operations Research, 16 (1968) 682- 687.
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These same ideas were applied by to the shortest path problem by Yen in

J. Y. Yen, “Finding the K Shortest Loopless Paths in a Network,” Mgt Sri., 17
(1971) 712-716.

Improvements in the efficiency of Yen’s procedure, and a scheme for re-
ducing the amount of storage, werz proposed in

E. L. Lawler, “A Procedure for Computing the K Best Solutions to Discrete Optimi-
zation Problems and Its Application to the Shortest Path Problem.” Mgr.
Sci., 18 (March 1972) 401-405.

See also

J. Marshall, “On Lawler's K Best Solution to Discrete Optimization Problem,”
Letter to the Editor, with reply by Lawler, Mgt. Sci., 19 (1973) 834-837;
also Mgt. Sci., 20 (1973) 540-541.
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Network Flows

In troduc tion

Network flow problems are linear programs with the particularly useful
property that they possess optimal solutions in integers. This permits a
number of interesting and important combinatorial problems to be formu-
lated and solved as network flow problems. Some of these combinatorial
problems have little, if any, obvious connection with the physical reality
of flows.

In this chapter we review “classical” network flow theory, including
the max-flow min-cut theorem, the computation of minimum cost flows,
conditions for the existence of feasible circulations, and finally, the “out-
of-kilter” method of Minty and Fulkerson.

The out-of-kilter method is of specia interest to us because of the
way in which it exploits the concepts of linear programming duality. Many
of the algorithms in this book can be viewed as specializations, variations,
or extensions of this computational procedure.

109
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We conclude this chapter with a discussion of some important
applications of network flow theory, e.g., the PERT, or critical path method,
of project scheduling. Some further topics, such as multitermina and
multicommodity flow problems, are also indicated.

2

Maximal Flows

Suppose that each arc (i, j) of a directed graph (; has assigned to it a non-
negative number Cijs the capacity of (j, ] ). This capacity can be thought of
as representing the maximum amount of some commodity that can “flow”
through the arc per unit time in a steady-state situation. Such a flow is
permitted only in the indicated direction of the arc, i.e., from i to j.

Consider the problem of finding a maximal flow from a source
node s to a sink node t, which can be formulated as follows. Let

x;; = the amount of flow through arc (i, j).
Then, clearly,
0<x; <¢ 21)

A conservation law is observed at each of the nodes other than s or ¢, That
is, what goes out of nodei,
Z Xijs

must be equal to what comes in,

Y

So we have
v, i=S
Z le - Z 'xij = 0, i #: S, (22)
i i v, i=t

We call any set of numbers x = (x;;) which satisfy (2.1) and (2.2)
a feasible flow, or smply a flow, and v is its value. The problem of finding
a maximum value flow from s to ¢ is a linear program in which the objective
is to maximize p subject to constraints (2.1) and (2.2).

Let P be an undirected path from s to . An arc (i, j) in P is said to
be a forward arc if it is directed from s toward ' and backward otherwise.
P is said to be a flow augmenting path with respect to a given flow x = (x;;)
if x;; < ¢;; for each forward arc (i, j) and x;; > O for each backward arc
inP.
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Figure 4.1 Feasible flow

\
R .
/ Xp = 1 <coa ¢

s x12 = 1 <ep t

X54:1>0 ())
~

Xs56 = 1 <(L‘56

Figure 4.2 Augmenting path

Figure 4.3 Augmented flow

Consider the network shown in Figure 4.1. The first number beside
each arc (i, j) indicates its capacity ¢;; and the second number indicates
the arc flow x;.. It is easily verified that the flow satisfies conditions (2.1)
and (2.2), with s = 1 and { = 6, and that the flow value is 3.

An augmenting path with respect to the existing flow is indicated
in Figure 4.2. We can increase the flow by one unit in each forward arc
in this path and decrease the flow by one unit in each backward arc. The
result is the augmented flow, with a value of 4, shown in Figure 4.3. Note
that the conservation law (2.2) is again satisfied at each internal node.

Recall from Chapter 2 that an (s, t)-cutset is identified by a pair



112 Network  Flows

(S, T) of complementary subsets of nodes, with 5 ES and t e T. The capacity
of the cutset (S, T) isdefined as

C(S, %0 0 @ Z Z Cl‘]"
ieS jeT
i.e.,, the sum of the capacities of all arcs which are directed from Sto T.
The value of any (s, t)-flow cannot exceed the capacity of any (s, ¢)-

cutset. Suppose X = (x;;) isa fiow and (S, T) is an (s, t)-cutset. Sum the equa-
tions (2.2) identified with nodes | € S to obtain

”:Z<§xi1“§.xﬂ>
ieS i

=2 2 (x x)+ 2 2 (= x;0) (23
€S jeS ieS jel

= Y (= xp)
ieS jel

That is, the value ¢ of any flow is equal to the net flow through any cutset.
But x;; < ¢;;and x; = 0, so
v<y Z ¢y =S, T). (24)
ieS jeT
In the case of the augmented flow shown in Figure 4.3, there is an
(s, t)-cutset with capacity equal to the flow value. For example, S = {1, 2},
T ={3,4, 5,6}. It follows from the preceding analysis that the flow is maxi-
mal and that the cutset has minimal capacity. Notice that each arc (i, j)
is saturated, i.e, x;; = ¢;;,if i €S j ¢ T and void, i.e, x;=0,if i € T ieS
We now state and prove three of the principal theorems of network

flow theory. They will later be applied to prove other combinatorial results
and to yield good agorithms for maximal flow problems.

Theorem 2.1 (Augmenting Path Theorem) A Fow is maxima if and only
if it admits no augnienting path from stor.

PROOF Clearly, if an augmenting path exists the flow is not maximal.
Suppose x is a flow that does not admit an augmenting path. Let S be the
set of all nodes j (including s) for which there is an augmenting path from
s to j, and let T be the complementary set. From the definition of augmenting
path and from the definition of S and T, it followsthat for all i € Sand je T,
x;; = ¢ and x; = 0. It follows from (2.3) that

-
U= L )3 Cij»
ieS jeT

the capacity of the cutset (S, T). From (2.4) it follows that the flow is maxi-
md. //
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Theorem 2.2 (integral Flow Theorem) If al arc capacities are integers
there is a maximal flow which is integral.

proor  Suppose all capacities are integers and let x{; = 0, for al i and j.
If the flow x® = (x?j) is not maximal it admits an augmenting path and
hence there is an integral flow x! whose value exceeds that of x° If x!is
not maximal it admits an augmenting path, and so on. As each flow obtained
in this way exceeds the value of its predecessor by at least one, we arrive
eventually at an integral flow that admits no augmenting path and hence
is maximd. //

Theorem 2.3 (Max-Flow Min-Cut Theorem) The maximum value of an
(s, t)-flow is equal to the minimum capacity of an (s, t)-cutset.

proor  The proofs of the previous two theorems, together with (2.4),
are sufficient to establish the max-flow min-cut result for networks in which
al capacities are integers and hence for those in which al capacities are
commensurate (i.e., there exists some ¢ > 0 such that every ¢;; is an integral
multiple of c¢).

To complete the proof of the max-flow min-cut result, we must
show that every network actually admits a maximal flow. (Note that the
existence of a minimum capacity cutset is not open to question,. There are
only a finite number of (s, t)-cutsets, and at least one of them rnust be min-
imal.) We shall present an agorithm for computing maximal flows in the
next section, and in Section 4 we shall prove that the algorithm always
obtains a maximal flow in a finite (in fact, polynomial-bounded) number
of steps, for any real number capacities. This will be sufficient to complete
the proof. //

PROBLEMS

21 Find all minimum capacity (s, ¢)-cutsets of the network in Figure 4.3.

22 Characterize the maximal flow value  as a function of ¢,, and ¢, for the net-
work in Figure 4.4.

23 A recursive characterization of the set S of all nodes reachable from nodes

by augmenting paths is:
seSs.

ieS, x;<c;=jes,

ieS, x;>0=jeSs.

Figure 4.4  Network for Problem 2.2
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Obtain a similar recursive characterization of theset T of all nodes from which
node ¢ is reachable by augmenting paths.

2.4 Which of the following statements is true?

(@ If x = (x;;) is a maximal flow, then either x;; =0 or x; = 0.
(b) There exists amaximal flow for which either x;, = 0 or x;; = 0.
Explain.

2.5 If aflow network is symmetric, i.e.. ¢;; = ¢;;, and (s, t)-planar, then a minimum
capacity (s, t)-cutset corresponds to a shortest (s*, t*)-path in the dual network,
What if the network is planar but not symmetric? Devise a variant of a shortest
path computation to find a minimal cutset for a nonsymmetric (s, t)-planar
network.

2.6 Define a most virglarc in a network as an arc whose deletion reduces the
maximum flow value at least asmuch as the deletion of any other arc. Tyye
or false: A most vital arc isan arc: of maximum capacity in an (S, t)-cutset of
minimum capacity. Explain.

3

Maximal Flow Algorithm

The problem of finding a maximum capacity flow augmenting path is
evidently quite similar to the problem of finding a shortest path, or, more
precisely, a path in which the minimum arc length is maximum. We can
make the similarity quite clear, as follows. Let

¢;; = max {Cij = Xij» xji},
where ¢;; = 0, if thereisno arc (i, j). Let

u; = the capacity of a maximum capacity augmenting
path from node s to node i.

Then the analogues of Bellman’s equations are :

Ug = + o0

u; = mfx min {u,, &1, i 5.

It is clear that the u; values and the corresponding maximum capacity
paths can be found by a Dijkstra-like computation which is O(n?).
Actually, we shall be satistied with a computation which does not
necessarily compute maximum capacity paths. We propose a procedure
in which labels are given to nodes. These labels are of the form (i*, §;)
or (i, ¢;). A label (i*, ¢;) indicates that there exists an augmenting path
with capacity 5j from the source to the node j in question, and that (i, j)
is the last arc in this path. A label (i~ 5j) indicates that (j, i) is the last arc
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in the path, i.e, (j, i) will be a backward arc if the path is extended to the
sink t. Initially only the source node s is labeled with the special label
( =, o¢). Thereafter, additional nodes are labeled in one of two ways:

If node i is labeled and there is an arc (i, j) for which x;; < ¢,
then the unlabeled node j can be given the label (i*, d;), where

s Y
0
If node i is labeled and there is an arc (j, i) for which x;, > 0, then
the unlabeled node j can be given the label (i~ 51), where

— min !
j=min {0, ¢ X

d; = min {0, xj;}.

When the procedure succeeds in labeling node ¢, an augmenting
path has been found and the value of the flow can be augmented by 6,.
If the procedure concludes without labeling node t, then no augmenting
path exists. A minimum capacity cutset (S, T) is constructed by letting S
contain all labeled nodes and T contain all unlabeled nodes.

A labeled nodeis either “scanned” or “unscanned.” A node is scanned
by examining all incident arcs and applying labels to previously unlabeled :
adjacent nodes, according to the rules given above.

MAXIMAL FLOW ALGORITHM

Step 0 (Start) Let x = (x;;) be any integral feasible flow, possibly the zero
flow. Give node s the permanent label (-, ).

Step 1 (Labeling and Scanning)

(1.2) If al labeled nodes have been scanned, go to Step 3.

(1.2) Find a labeled but unscanned node i and scan it as follows: For
each arc (i, ]), if x;; < ¢;; and j is unlabeled, give j the label (i, 9;), where

d; = min {c;; = X0 ;).
For each arc (j, i), if x; > 0 and j is unlabeled, give | the label (i, 9;).
where
d; = min {x;, d;}.
(1.3)  If node t has been labeled, go to Step 2; otherwise go to Step 1.1.

Steo 2 (Augmentation) Starting at node t. use the index labels to construct
an augmenting path. (The label on node I indicates the second-to-last node
in the path, the label on that node indicates the third-to-last node. and so
on.) Augment the flow by increasing and decreasing the arc flows by 6., as

indicated by the superscripts on the index labels. Erase all labels, except
the label on node s. Go to Step 1.
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Step 3 (Construction of Minimal Cur) The existing flow is maximal. A
cutset of minimum capacity is obtained by placing all labeled nodes in S
and all unlabeled nodes in T. The computation is completed. //

We can estimate the complexity of the computation as follows. Let
m be the number of arcs. At most 2in arc inspections, followed by possible
node labelings, are required each time an augmenting path is constructed.
If all capacities are integers, at most v augmentations are required, where
v is the maximum flow value. Thus the algorithm is O(mv) in complexity.

PROBLEMS

31 Apply the max-flow algorithm to the network with capacity matrix

-1 3 2-
4 = 2

C=
6 3 5
T2 1 —

Let y=1,1=4 and start with the zero flow.

32 Modify Step 1 of the max-flow algorithms so that a maximum capacity aug-
menting path is found. (Note: In the Dijkstra shortest path computation a
node i is, in effect, “scanned” a the time it is placed in the st P of permanently
labeled nodes. The scanning operation consists of comparing u; + a; with
u; for all tentatively labeled nodes j in the set T)

33 Modify the labeling procedure of the maximal tlow algorithm to permit each
arc to have alower bound/; on flow as well as an upper bound c;;. Assume
Step 0 begins with afeasible flow, i.e., [; <x;; <¢;;.

34 Develop an efficient procedure for finding all of the minimum capacity (s, t)-
cutsets of a network and estimate its complexity as a function of m, n,and M,
the number of minimal cutsets. Assume a maximal flow x = (x;;) is available
as input data. (Suggestion: Consult Chapter 3, Section 15. An O(Mn) procedure
is possible)

4

Efficiency of the Maximal Flow Algorithm

The complexity of the maxima flow computation was shown to be O (mv),
but this is an unsatisfactory result in that it depends on the integer character
of the arc capacities as well as the underlying digraph structure. Or, to
put it differently, this bound depends on the very quantity v that the algo-
rithm is intended to determine. We would greatly prefer a bound depending
only on the number of nodes and arcs in the network.

We aso need to establish that the algorithm obtains a maximum
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flow even when capacities arc irrational, in order to complete the proof of
the max-flow min-cut theorem. This is no trivid matter. For example,
Ford and Fulkerson have devised an example to show that with irrational
capacities a nonconvergent sequence of flow augmentations is possible.
That is, with a pathologically poor choice of augmenting paths, an infinite
sequence of finite augmentations is possible, without converging to the
maximum flow vaue.

Even in the case that arc capacities are integers, a poor choice of
augmenting paths can produce an exasperatingly lengthy computation.
For example, if starting with zero flow one aternately chooses the aternat-
ing paths (1, 2), (2, 3). (3.4) and (1. 3). (2, 3). (2. 4) in the network in Figure
4.5, two million augmentations of one unit each are required. By contrast,
the augmenting paths (1, 2), (2, 4) and (1, 3), (3, 4) yield the same: result with
only two augmentations.

It is therefore reassuring, and somewhat surprising, to learn that
the maximal flow computation is O(m?*n), provided each flow augmenting
path contains as few arcs as possible. Moreover this can be accomplished
quite simply by modifying Step 1.2 of the algorithm so that nodes are scanned
in the same order in which they receive labels, i.e., “first labeled, first scanned.”

The computation of each augmenting path is O(m). The overall
efficiency of O(m?n) is assured by the following theorem of Eclrnonds and
Karp, which holds without regard to arc capacities, which may be irra
tional.

Theorem 4.1 (Edmonds agnd Karp) |If each flow augmentation is made
aong an augmenting path with a minimum number of arcs, then a maximal
flow is obtained after no more than mn/2 < (»* — »?)/2 augmentations,
where m is the number of arcs in the network and » is the number of nodes.

Before attempting a proof of the theorem, we provide the following
lemma Let

o®) = the minimum number of arcs in an augmenting path
from s to i after k flow augmentations

2
10 108

.

108 10

Figure 4.5 Example network
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and

® . = the minimum number of arcs in an augmenting path
from j tot after k flow augmentations.

Lemma 4.2 If each flow augmentation is made along an augmenting path
with a minimum number of arcs, then

O.s_k+ 1) > G.Sk)

and

Tf’k+l‘ > T?k'

foral i, k.
proor of Lema 42 Assumethat ¢t < 6%, for some i, k. Moreover, let

ket g k)| okt k
ot Y = min {o*D]e¥ D < ol¥}. 4.3
J

Clearly ¢{¥* 11> 1 (only ¢* * 1V = 0), and there must be some fina arc
(i, J) or(j, i) in a shortest augmenting path from s to i after the (k + 1)st
flow augmentation. Suppose this arc is (j. i), a forward arc, with x; < c;
(the proof is similar for (i, j)). Then o**V = ¢**1 + [ and because of
4.1), o**D = ¢'® + 1. It must have been that x; = ¢, after the kth aug-
mentation; otherwise ¢ < ¢ + 1 < glk*1) contrary to the assumption.
But if x;; = ¢; after the kth augmentation and x;; < c;; after the (k + 1)st
augmentation, it follows that (j, i) was a backward arc in the (k + 1)st flow
augmenting path. Since that path contained a minimum number of arcs,
o = P + 11 and as we have seen o + 1 < g+ 1, so @t + 2 < g+ 1),
contrary to the assumption. The assumption that ¢{¢*! < ¢{¥ is therefore
false.
The proof that t** 1 = ¥ parallels the above. //

proor o Theorem 4.1  Each time an augmentation is made, at least one
arc in the augmenting path is critical in the sense that it limits the amount
of augmentation. The flow through such an arc (i, j) is either increased to
capacity or decreased to zero. Suppose (i, j) is a critical arc in the (k + I)st
augmenting path. The number of arcs in the augmenting path is ¢{¥ +
b = 03-"’ + r‘j"’.

The next time arc {i, j) appears in an augmenting path, say the
(I + Dst, it wi]l be with the opposite orientation. That is, if it was a forward
arc in the (k + 1)st, it is a backward arc in the (I + 1)st, and vice versa.
If (i, j) was a forward arc in the (k + 1)st path,
g* = aﬁ-k) + 1

and
oth = g}“ + 1.
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Because of the lemma, ¢ = ¢, and. < > ¢, 50 that ¢! + 71> ¢ +
™ + 2. It follows that each succeeding augmenting pah in which (i, j)
is a critical arc is at least two arcs longer than the preceding one.

No flow augmenting path may contain more than n 1 arcs.
Therefore, no arc may be a critical arc more than n/2 times. But each aug-
menting path contains a critical arc. There are m < p? — p distinct arcs.
Therefore there can be no more than mn/2 < n'n?>  n)/2 flow augmenting
paths and this completes the proof. //

N. Zadeh has been able to characterize a class of networks for which
O(n®) augmentations are necessary, when each flow augmentation is made
along a shortest augmenting path. Thus the upper bound in Theorem 4.1
cannot be improved upon except for a linear scale factor. (Note: Edmonds
and Karp obtained a bound of mn/4, instead of mn/2, by, in effect, consider-
ing each symmetric pair of arcs (i, j), (j, i) to be a single arc.)

Edmonds and Karp have aso obtained, by different reasoning, a
comparable result for the case in which each augmenting path is chosen
to produce a maximum increase in the flow vadue. A maximum flow is
obtained after no more than about O(log v) augmentations if the arc capac-
ities are integers. Except when the arc capacities are very large, this is a
better bound than that given by Theorem 4.1, so there may be some ad-
vantage in computing maximum capacity augmenting paths.

It is conceivable that there may be better ways to choose augmenting
paths than by either of the two policies we have mentioned, i.e.,, minimum
number of arcs of maximum flow increment. In fact, if one is sufficiently
clever in the choice of augmenting paths and in the choice of § for each of
them, no more than m flow augmentations are necessary to achieve a max-
ima flow.

Theorem 4.3 For any flow network (with possibly nonintegral capacities),
there exists a sequence of no more than m (a t}-flow augmenting paths,
augmentation along which yields a maximal flow. Moreover, al of these
augmenting paths contain only forward arcs.

proor  An aternative linear programming formulation of the maximal
flow problem is obtained as follows. Suppose we list all the possible (s, 1)
directed paths and form an arc-path incidence matrix P = (p ; ), Where
t if arc (i, j) is contained in path k,
Piink=10  otherwise
Let
d, = the amount of flow through path k,

and 6 = (6,) be the vector of these flow values. Let ¢ = (c;;) be the vector
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of arc capacities. Then the maximal flow problem is

maximize
v=73 0
k
subject to
Pé <c¢
d=0.

There are m constraints to this problem, one for each arc, hence
there exists an optimal basic solution in which at most m of the §, are strictly
positive. These nonzero variables are identified with the flow augmenting
paths of the theorem, and the ¢, values indicate the amount of augmenta-
tion through each of them. //

Of course, Theorem 4.3 gives us no insight at al into how an ap-
propriate sequence of augmenting paths might be found. It does suggest,
however, there might exist a max-flow algorithm that is as good as, say
O(m?*). And, of course. there might be still better algorithms based on some
other concept than that of successive flow augmentation.

PROBLEM

4.1 Suppose not all augmentations through the kth are made along shortest aug-
menting paths, but the (k + I)st is. Does the proof of Lemma 4.2 remain valid?

5

Combinatorial  Implications of Max-Flow Min-Cut
Theorem

A number of combinatorial results can be viewed as consequences of the
max-flow min-cut theorem. In order to show this, it is helpful to provide
a generaization of the original theorem.

Let us consider a flow network in which there are arc capacities
¢;; = 0 and, in addition, node capacities ¢; = 0. Flows are required to satisfy
not only the conservation conditions and arc constraints (0 < x;; < ¢;;)
but also the node constraints,

ZXUSC,', i%s,t.

That is, the outflow (and hence the inflow) at any interior node does not
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exceed the capacity of the node. (If all node capacities are infinite, the
situation is as before.)

It is natural to impose node capacities in certain applications. For
example, nodes might be points of transhipment (transportation of goods),
supply points (movement of troops), cleansing stations (overland pipe-
lines), or relay stations (communication networks).

For a node having node capacities as well as arc capacities, we define
an (s, t)-cut as a set of arcs and nodes such that any path from s to { uses at
least one member of the set. The capacity of acut isthe sum of the capacities
of its members.

Asthis notion of an (s, r)-cut appears to be different from the previous
one of an (s, t)-cutset, it is necessary to show that in a network. whose node
capacities are al infinite, the minimum cut capacity in the new sense is
equal to the minimum cutset capacity in the old sense. Let (S, T) be a cutset
and let C be the set of all arcs directed from a node in S to a node in T.
Then C is a cut in the new sense and its capacity is equal to that of (S. T).
Let C be a cut, consisting entirely of arcs, let S be the set of a.11 nodes that
can be reached by directed paths from s not using any member of C, and
let T be the remaining nodes. Then (S, T) is a cutset and C (contains every
arc from Sto T, so the capacity of (S, T) is at most that of C.

Theorem 5.1 (Generalized Max-Flow Min-Cut Theorem) In a network
having node capacities as well as arc capacities, the maximum value of
an (s, t)-flow is equal to the minimum capacity of an (s, t)-cut. Moreover,
if al capacities are integers, there is a maximal flow that is integral.

proor Expand the network by replacing each interior node i ‘by an in-node
i’, an out-node i”, and an arc (', i") of capacity ¢;. For each arc (i, j) of the
original network. there is an arc (i", j’) of capacity ¢;; in the expanded net-
work. (Let s’ = s" = 5, t'= t” =t.) An example of such an expansion is
shown in Figure 4.6.

In the expanded network, nodes are uncapacitated and hence the
original version of the max-flow min-cut theorem applies. As al flow entering
[ must go to i”, and al flow leaving i” must come from i’, there is a natural
one-to-one correspondence between flows in one network and flows in
the other. The theorem follows readily by applying the original max-flow
min-cut theorem to the expanded network. //

A celebrated result of graph theory, and a precursor of many other
duality theorems, is a theorem of K. Menger. This theorem was originaly
stated in terms of undirected graphs, but for convenience we give a formula-
tion in terms of digraphs.

A digraph Gis said to be k-connected from s to t if for any set C of
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Figure 4.6 Expansion of network with node capacities

k 1 nodes missing s and t there is a directed path from s to t missing C.
In other words, it is not possible to disconnect s from t by removing any
fewer than k nodes.

Two (s, 1) paths are said to be independent if they have no nodes in
common except s and ¢.

Theorem 52 (Menger) If digraph (; is k-connected from s to t and does
not contain arc (s, t), then G admits, k independent directed paths from
stor.

proor Give each node a capacity of one and each arc an infinite capacity.
Because of the nonexistence of arc (s, t), the minimum cut capacity is finite.
From the k-connectivity of the digraph, it follows that the minimum cut
capacity is at least k.

From Theorem 5.1, it follows that there is an integra maximal
flow of value at least k. The structure of the flow network is such that this
flow yields k pairwise independent directed paths from sto t. //

Although network flows theory appears to be concerned solely
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with digraphs, it also yields a good deal of information about the structure
of undirected graphs.

Theorem 5.3 The maximum number of arc-digoint (s, r) paths in an un-
directed graph G is equal to the minimum number of arcs in an (s, t)-cutset.

proorF  Construct from G a flow network in which for each arc of G there
is a symmetric pair of arcs (, j) and (}, i), each with unit capacity. An integral
maximd (s, 1) flow exists in which at least one arc of each symmetric pair
is void. Accordingly, such a flow yields a maximum number of digoint
(s, 1) paths in G. Application of the max-flow min-cut theorem completes
the proof. //

By applying Theorem 5.3 to the dual of G and reinterpreting the
results in the origina graph, we obtain the following.

Theorem54 If G is (s, t) planar, then the minimum number of arcs in
an (s, t) path is equal to the maximum number of digoint (s, r)-cutsets.

6

Linear Programming Interpretation of Max-Flow
Min-Cut Theorem

The max-flow min-cut theorem can be viewed as a consequence of linear
programming duality and specificaly, as a corollary of Theorem 13.3 of
Chapter 2. The prima linear programming problem is

maximize v
subject to
—v, [=s§
ijl_zxij_ Os i#:sat
/ ! +v, 1=t
Xi; < ¢y
x; = 0.

Let u; be a dual variable identified with the ith node equation and
w;; be a dual variable identified with the capacity constraint on arc (i, j).
Then the dual problem is
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minimize
Z Wi
nJ
subject to
uj = U+ wy; =0 (6.1)
Uy ~ U, >1
w; =0
u; unrestricted.

For any (s, t)-cutset there is a feasible solution to the dual problem
whose value is equal to the capacity of the cutset. Let (S, T) be such a cutset,
and let

u, =1, ifies
=0, ifieT
w; =1 ifieS, jeT

0, otherwise.

Moreover, there is an optimal solution to the dual problem which
corresponds to an (s, )-cutset. For such an optimal solution we may assume
that u, = 0. This is equivalent to dropping the redundant equation for node
! from the primal problem. Also assume u, = 1. (The reader can verify that
there is no reason for y, to be greater.) Then the remaining variables are
forced to take on 0O, 1 values. For each arc (i, j), it is the case that wi =1
if and only if 4; =1 and u; = 0. (Note that ¢;; > 0.) Then let

T= {jlu; = 0).
The capacity of the cutset (S, T) is exactly equal to the value of the optimal
dual solution.
Thus, the dual problem, in effect, finds a minimum capacity (s, 1)-

cutset. The max-flow min-cut theorem follows immediately from Theorem
13.3 of Chapter 2.

From Theorem 13.4 of Chapter 2, it follows that prima and dua
solutions are optimal if and only if

Xij> O :>uj" Lli+ Wij: O
wij >0 = x; = ¢y

Suppose we view u; as a “node potential.” e.g., atitude or fluid
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pressure. Then, for an optimal pair of prima and dual solutions, exactly
one of three cases exists for each arc (i, j):

Case | The potential at i islessthan at j. Thereis zero flow i (i, j).

Case 2 The potential at i is equal to that at j. There may or may not be
positive flow in (i, j).

Case 3 The potential at | is greater than at j. The flow in (i, j) is equa
to its capacity ;.

These conditions correspond very well indeed with our intuitive
notion of the relationships that should exist between node potentials and
arc flows. These ideas, in generalized form, are the basis for the out-of-
kilter method presented in Section 10.

It is just as important to be able to recognize combinatorial problems
that can be formulated as min-cut problems as it is to be able to recognize
those which can be formulated in max-flow form. Generaly speaking, one
should watch for problems with constraints involving sums or differences
of pairs of variables. The following problem is an excellent example.

A PROVISIONING PROBLEM

In formulating the knapsack problem of Chapter 3, Section 2, we assumed
that the benefit to be gained from the selection of any given item is inde-
pendent of the selection of the other items. This is clearly a simplistic view
of utility. For example, the benefit to be gained from a kerosene lantern
without fuel is rather small.

A more sophisticated view can be taken. Suppose there are n items
to choose from, where item j costs ¢; > O dollars. Also suppose there are
m sets of items, S,,S,,....S, that are known to confer special benefits.
If al of theitemsin setS; are chosen, then a benefit of b;> 0 dollarsis gained.
The sets are arbitrary and need not be related in any particular way, e.g.,
a given item may be contained in several different sets.

There is no restriction on the number of items that can be purchased,
i.e., there is no limiting knapsack. Our objective is smply to maximize
the net benefit, i.e., total benefit gained minus total cost of items purchased.

Even without any constraints on the selection of items the problem
appears to be unreasonably difficult. Yet it can be cast into the mold of
a min-cut problem and can therefore be solved quite easily.

Let

v; = 1 ifitem jis purchased

= 0 otherwise,
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and let

u; = 1 if al of theitemsin set S; are purchased
= 0 otherwise

Then the problem is to
maximize

Z =) bu -y v 6.2)
I j
subject to

for each pair i, j such that j € S;, and

u;, v; €10, 1}.

Because of the 0, 1 restrictions on the variables and constraints
(6.3), it is not possible for a benefit b, to be earned unless al items j in the
set §; are purchased.

Let us make matters more complex by introducing m + 1 new vari-

ables, w,,w,,.,w,and z,,z,, ..., 2.
Consider the problem :
minimize
z =3 bw+) ¢z (64)
! J
subject to

v =u; =0 je§;
ut w21 i=12....m (65)
—v; t7 >0, i = L2..0n (6.6)
u, vy, wizj €401},
Suppose i = (i;). » = (v;) is a ifeasible solution to the original prob-

len. Let w=(1 —#;),z =0 Then g, ¢, w, z is a feasible solution to the new
problem. Moreover,

Now suppose #, 7, W, Z 1s @ minimal solution to the new problem.
From (6.5) and b; > O it follows that w; =1 = u;. From (6.6) and ¢; > O it
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follows that z; = ¢;. Clearly u; v"15 a feasible solution to the original problem
and again z = Z,- b; = Z. It follows that a minima solution to the new
problem yields a maxima solution to the origina problem.

We need to make a few more changes to put the problem into the
form of a min-cut problem. We introduce two new variables u, and v,
and mn new variables w;;. Let K be a large number. Consider the problem:

minimize

Z = Z biwit Z Cij + Z KWU

' J Lj

subject to

;= U + W 20, jeS;

U =g+ wW; =0, i=1,2,...,m (67)

Uugr  Uj*+ 2,20, i = L2.n
Uy = Upyy = 1

Uy, Uj, Wy, Zj Wy € 10, 1),

i “js

These changes make no essential difference in the problem. Because
u, and v, are restricted to 0, 1 values, the constraint #y = ¢,,, > 1 can
be satisfied if and only if uy, =1, v,,, = 0. If K is sufficiently large, all the
variables w;; are zero in a minimal solution.

Except for the 0, 1 restrictions on the variables, (6.7) is in the same
form as the min-cut problem (6.1). There is only a superficia difference in
the designations of variables and their indices. But we know that Problem
(6.1) admits an optimal solution with 0, 1 values for its variables. It follows
that we can drop the O, 1 restrictions from equation (6.7), retaining only
the nonnegativity constraints on w;, z;, w;;.

Sets s; Items j

Figure 4.7 Network for provisioning problem
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The network for the min-cut formulation of the provisioning prob-
lem is shown in Figure 4.7.

PROBLEMS

6.1  Solve the provisioning problem for the following data :

Item j Cost ¢;
1 4
2 5
3 12
4 6
5 10
6 5

Set S,  Benefit b,

— —

wWro
4

Aol
wn

EnlN el
NN o o

w o 0w O

n

6.2 The provisioning problem, as formulated, does not provide any restriction
on the number, weight, or cost of the items which may be purchased. Suppose,
as in the knapsack problem, item j weightsqa; pounds and we are restricted
to atotal weight b, that is,

~

Yajp; <b.

We might try to incorporate such a constraint into the objective function by
means of a Lagrange multiplier, i.e., maximize

2= Y bu; =Y (ha; + C) vy
: ‘

1

What are the difficulties that might be encountered with this approach?
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7

Minimum Cost Flows

Suppose in addition to a capacity ;. each arc of a flow network is assigned
a cost a;;. The cost of aflow x = (x;;) is

2, ij Xij.
L

We now pose the problem of finding a minimum cost flow for a given flow
value v.

ASSIGNMENT PROBLEM

There are n men and n jobs. The cost of assigning man i to jobj is a;;. For
what man-job assignment is the total cost minimized?

Construct a directed bipartite graph with » nodes in each of its
parts, and give arc (i, j) cost g; and infinite capacity. Add a source node
s with an arc (s, i) to each node in the first part, and a sink node ; with an
ac (j, t) from each node in the second part. Set ¢; =1, a, = 0. for al i,
and c;, =1, a; =0, fordl j. A minimum cost integral flow of value p yields
a solution to the problem.

The flow network for the assignment problem is shown in Figure
4.8. The first number of each arc represents its capacity and the second
number isits cost.

Let us define the cost of an augmenting path to be the sum of the costs
of forward arcs minus the sum of costs of backward arcs. Thus the cost of
apath is equal to the net change in the cost of flow for one unit of augmenta-

meni jobs)
0 o0, dij

NG

(>
(&)

[ ]
[ ]
[ ]
-

1 / H

Figure 4.8 Network for assignment problem
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tion along the path. An augmenting cycle is a closed augmenting path. The
cost of an augmenting cycle is computed in the obvious way, with respect
to a given orientation of the cycle, i.e., clockwise or counterclockwise.

Theorem 7.1 A flow of value p is of minimum cost if and only if it admits
no flow augmenting cycle with negative cost.

prooF The only if part of the theorem is obvious. For the converse, sup-
pose that x° = (x{) and x' = (x};) are two flows, both of value u, where
x% is less costly than x!. The difference between these two flows, y = x° —
x', can be expressed as a sum of flow augmenting cycles with respect to
x!. Because the cost of x° is less than that of x?, at least one of these cycles
must have negative cost. //

Theorem 7.2 (Jewell, Busacker and Gowan) The augmentation by & of a
minimum cost flow of value v along a minimum cost flow augmenting path
yields a minimum cost flow of value ¢ -- 4.

procs By Theorem 7.1, it suffices to show that the flow resulting from
augmentation along a minimum cost augmenting path does not admit a
negative augmenting cycle. Suppose such a cycle C were introduced. Then
C must contain at least one arc (i, j) of the minimum cost augmenting path
P. But then (P u C) = (i, j), or some subset of it, would be an augmenting
path with respect to the original flow, and would be less costly than P,
contrary to the assumption that P isminimal. //

A minimum-cost augmenting path can be found by means of a
shortest path computation. Specifically, for a given flow x = (x;;) and arc

ij
costsay;, let

aij, if xij < ¢, x; =0

g = min {a;;, — a;}, if Xij < Cjy X >0 (7.1)
— Qs ifx;= ¢, x; >0
+oC, if Xij = Cjy Xj = 0,

where we understand that g;; = + oo if (i, j) is not an arc of the flow network.
A shortest (s, ) directed path with respect to arc lengths a;; corresponds
to a minimum cost (s, r) augmenting path. A negative directed cycle corre-
sponds to an augmenting cycle with negative cost.

We can now outline an agorithm for solving the minimum cost
flow problem. This algorithm combines ideas of Klein and of Busacker
and Gowen.
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MINIMUM COST FLOW ALGORITHM

Step 0 (Start) Let x = (x;;) be any (s, 1) flow with value v" < v, where v is
the desired flow value. ‘Fhisinitial flow can be the zero flow, or 1 flow of value
v, perhaps determined by the max-flow algorithm. Or if a flow x' = (x;;)
of value v’ > v is known, one can let x = (¢/v') X.

Sep 1 (Elimination of’ Negative Cycles)

(1.1) Apply a shortest path algorithm with respect to arc lengths a;
with the objective of detecting negative cycles. If no negative cycle exists,
go to Step 2.

(1.2) Augment the flow around the corresponding augmenting cycle
to obtain a less costly flow of the same value ', then return to Step 1.1.

Step 2 (Minimum Cost Augmentation)

(2.0) If the existing flow value v' = v, the existing flow is optimal and
the computation is completed. Otherwise, proceed to Step 2.1.

(2.1) Apply a shortest path algorithm with respect to arc lengths a;
with the objective of finding shortest path from s to ¢, If no shortest path
exists, there is no flow of value v and the computation is halted.

(22)  Augment the flow by 6, where ¢' + d < v, along a minimum cost
(s, 1) augmenting path as determined by the shortest path computation.
Return to Step 2.0. //

Note that the procedure has two phases. In the first phase negative
cycles are eliminated and in the second phase a succession of minimum
cost augmentations are made, until the desired flow value v is achieved.
If one begins with the zero flow and no negative cycles exist with respect
to the arc costs g;;, then at most v augmentations are required, provided
al capacities are integers. Each augmentation requires a shortest path com-
putation which is O(xn®). Hence in this situation the overall complexity
is O(n’v).

Edmonds and Karp have shown that, once negative cycles are elim-
inated, it can be arranged for the shortest path computation, to be carried
out over nonnegative arc lengths. Thus, Dijkstra's O(n?) shortest path
algorithm can be applied. ‘ The complexity bound of O(n3v) is then reduced
to O (n®v).

Suppose al arc costs g;; are nonnegative. The computation is begun
with an initia flow x° = (0). An initial shortest path computation is carried
out over arc lengths a2’ = a;; and an initial flow augmentat ion is made to
obtain aflow x'.
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Theresfter, let
ul = the length of a shortest path from s to i, with respect
to arc lengths ¥
and
ay =a;+ 2 - alb,
A A (7.2)
ng-o) =0,

where a,; is defined in (7.1) with respect to flow x*.
Clearly a shortest (s, t) path with respect to a' is also a shortest

path with respect to arc lengths g,,. differing in length by "  z{%. (For
each node i #s.¢in an (s, t) path, 7{¥ is both added and subtracted from the

path length.) It remains to be shown that each @?’ is nonnegative. We leave
this as an exercise for the reader in Problem 7.4. (Note: In constructing a
proof, it simplifies matters to assume that the network contains at most
one arc, i.e, (i, ) or (j, i), between any given pair of nodes i, j.)

Even a bound of O(n’v) is not satisfying, for the same reasons we
disiked a similar bound for the max-flow agorithm. Moreover, we have
not attempted to obtain a bound at all for the case in which there are negative
cycles with respect to the initial flow. We shall not overcome these difficulties

a(v)

Figure 4.9 Plot of a(v)
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for the present algorithm. However, in Sections 9 and 10 we show that the
out-of-kilter algorithm can solve the minimum cost flow problem, even in
the case of negative cycles.. with a polynomial-bounded number of steps.

Note: It is possible to show, by a generalization of ‘Theorem 4.3,
that there exists a sequence of no more than m minimum cost augmenting
paths which are sufficient to yield a minimum cost flow of any given value
t. (See Problem 7.5))

Finally, we should note that the minimum cost flow algorithm is
well-suited to a parametric analysis of minimum flow cost as a function
of flow valuer.

Let g(p) denote the minimum cost of an (s, ¢) flow of value v. A plot
of a(c) versus v, obtained from successive minimum cost augmentations, is
shown in Figure 4.9. Intuitively, we expect each successive augmenting
path to be at least as costly as the previous one, so the a(v) curve should be
convex. Indeed, the convexity of a(v) is easily demonstrated. For suppose
X, X' are minimum cost flows with values v, t’. Then Ax + (1 4) X' is a
feasible flow with value 4v + (1 1) ¢ and its cost is Aa(v) + (1 - 4) a(v'),
where 0 =} < 1. It follows that a(lv + (1 4) ¢') < Aa(r) + (L = 4) a(v))
and the function a(v) is convex.

PROBLEMS

71 (Caterer Problem) A caterer requires r; > 0 fresh napkins on each of »n
successive days, j=1, 2,.., n. He can meet his requirements either by pur-
chasing new napkins or by using napkins previously laundered. Moreover,
the laundry has two kinds of service: quick service requires p days and slow
service requires ¢4 days, where, presumably, p < ¢. Suppose a new napkin
costs a cents, quick laundering costsb cents, and slow laundering costs c
cents. How should the (caterer, starting with no napkins, meet his require-
ments with minimum cost? Formulate as a minimum cost network flow problem.
(This problem had its origin as an aircraft maintenance problem, with the
possibility of quick and slow overhaul of engines.)

1.2 Suppose a minimum cost flow of maximum flow value is desired. Let (S, T)
be a minimum capacity cutset. Show that a maximal flow x is of minimum
cost if and only if x admits a negative cost augmenting cycle within neither
Snor T. (It is unnecessary to consider cycles with nodes in both S and T))
Why?

7.3 Devise a specialized version of the minimum cost flow algorithm for the assign-
ment problem, with all operations “on the matrix.” Estimate the computational
complexity. (Annxn problem can be solved inO(»?) steps.)

7.4 Prove the nonnegativity of g, as defined in (7.2). (Suggestion: Try a proof
similar to that of Lemma 4.2.)

7.5 Restate and prove Theorem 4.3 for minimum cost flows.
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8

Networks with Losses and Gains

Suppose that flow is not necessarily conserved within arcs. If x;; units of
flow go into the tail of arc (i, j). then m,;x;; comes out at the head, where
my; is a nonnegative flow multiplier associated with that arc. If 0 « m;; < 1,
the arc is lossy, and if 1 < m;; < oc, the arc is gainy. In a conventional flow
network, of course, m;; = 1 for al arcs. (The case m;; = + 1 is a “bidirected”
flow and is discussed in Chapter 6.)

Let

X;; = the amount of flow into arc (i, j).
We require the satisfaction of capacity constraints,

0<Lx, £

ij = Cij

)

and the satisfaction of conservation conditions at each node other than
sort:

—U, =5
s, t

+ v, 1= 1,

> MjiX s = Z Xij =

J J

o
<

Note that v, is not necessarily equal to v,. because of flow losses and gains
within arcs. All of the equations above are necessary; none of them is im-
plied by the others, unless the rank of the coefficient matrix is less than n.

Define v, — v, to be the loss of the flow. We shall be concerned with
the problem of finding a minimum loss flow for a given flow value v, or
v, That is, given v, meximize v, or given v, minimize p,.

CURRENCY CONVERSION

An exchange rate has been established such that for each unit of currency
i one receives m; units of currency j. There is a bound ¢; on the number of
units of currency i that one can so convert.

The network in Figure 4.10 exemplifies a hypothetical currency con-
version problem, in which the first number on arc (i, j) is its capacity ¢;;
and the second number is its multiplier m;. The largest number of rubles
that can be purchased with $10,000 is given by a minimum loss flow of
value v, = 10,000. What would be the significance of a directed cycle for
which the product of the multipliers is greater than unity*?
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Pounds Draculas
A

- >7 3000;, 1O
{ . I
10,000; 0.25 / 3000: 140

Dollars . Rubles

10°:0.08 10; 100

10,000; 600
1

3
Lira \/ 10%;0.001 " Forints

Figure 4.10 Hypothetical currency conversion network

WORK ASSIGNMENT

There are p men and ¢ jobs. Any man is capable of performing al the work
on any given job, or the work can be apportioned among several men.
One hour of time by man i is sufficient to complete a fraction my; of job j.
Man i is available to work no more than ¢; hours. How should the men be
assigned to the jobs so that the jobs can be completed with the smallest
possible total number of man-hours of labor?

Let x;; = the number of hours man i works on job j. The problem is
to

minimize }

ij
subject to

and

This is equivalent to finding a minimum loss flow of value v, = g4 for the
network shown in Figure 4.11.

The theory of minimum loss flows is quite parallel to the theory of
minimum cost flows, and we can develop a computational procedure parallel

to that presented in the previous section.
A flow augmenting path is defined as before. That is, x; < ¢;; for
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men i jobsj

Figure 4.1 1 Work assignment network

each forward arc (i, j) and x;; > O for each backward arc. The multiplier
of a path is the product of the multipliers for forward arcs and the reciprocals
of multipliers for backward arcs. A minimum loss (s, t) augmenting path is
one for which the multiplier is maximum.

The capacity of an (s, t) augmenting path i.e., the amount of aug-
mentation that is permissible, is determined as follows. The capacity at
node s is 6, =+ oc. If (i, j) is a forward arc and the capacity at node j is
d;, then the capacity at node j is

d; = my;min {5, ¢;; = X;;.
If (j, i) is a back ward arc. then

;= min{ 1—5,-,xj,}, (&.1)
mj;
The (overall) capacity of the path is 6,.

A peculiar feature of networks with losses and gains is that a directed
cycle can act as a source or as a sink, depending upon whether the product
of the multipliers in the cycle is greater than unity or less than unity.

Let C be an augmenting cycle, i.e., an augmenting path from some
node | to itself, and let the multiplier of this cycle be greater than unity.
Let P be an augmenting path, arc digoint from C, from any node of C to
the source s or to the sink f. Then C U P is said to be an endogenous flow
augmenting path.

Two endogenous augmenting paths are illustrated in Figure 4.12.
The first number by each arc represents its multiplier m,; and the second
number is an increment §; to arc flow x;. (We ignore capacities in this
figure.) Note that the multiplier of each flow-generating cycle is 2, and that
conservation conditions at all nodes other than s or { are observed.
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Figure 4.12  Endogenous augmenting paths

The following theorems are analogous to Theorems 7.1 and 7.2 and
admit similar proofs.

Theorem 8.1 In a network with losses and gains, a flow of source value
t, is of minimum loss if and only iiit admits no endogenous flow augmenting

path to . A flow of sink value v, is of minimum loss if and only if it admits
no endogenous flow augmenting path to s.

Theorem8.2 In a network with losses and gains, the augmentation of a
minimum loss flow of sink value , along a minimum loss augmenting path
of capacity §, yields a minimum loss flow of value v, + 6,.

A minimum loss augmenting path can be found by means of a shortest
path computation. Let

-- log m;, if X;<¢j,x;=0
_— min {-log my;, +log m;},  ifx; <c;, x;>0
R logn;;, if x;= ¢ x; >0
+o, ifx;; = ¢, x; = 0.

Then a shortest (s, ) directed path with respect to arc lengths a;; corre-
sponds to a minimum-loss (s, t) augmenting path. A negative directed cycle
from which the source or the sink is reachable yields an endogenous {low
augmenting path.

There may of course be many augmenting cycles with multipliers
greater than unity from which the source or sink is not reachable. It is the
reachability condition which enables endogenous augmenting paths to be
obtained effectively by shortest path algorithms which compute shortest
paths from a single origin. Except that to find endogenous paths to s or
to t one should compute shortest paths to s or to t. rather than from these
nodes as origins.

We leave it to the reader to provide the outline of a minimum-loss
flow algorithm, parallel to the algorithm in Section 7. When this algorithm
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is applied to a parametric analysis of flow, a plot of minimum loss, I{v,}
versus p,, can be obtained. The function /(v,) is piecewise linear and convex,
by the same arguments used for the convexity of a(r} for minimum cost
flows.

Up to this point, there has been afairly close parallel with the theory
of minimum cost flows. The question of algorithmic complexity is, how-
ever, much more bleak than before.

Reference to (8.1) shows that although the existing flow x = (x;;)
is integral and all capacities ¢; and multipliers m;; are integers, an aug-
mentation may necessarily be fractional. Thus, unfortunately, successive
augmentations may increase the flow value v, or v, by very small increments.
Can we even be assured that the procedure obtains an optimal solution with
a finite number of augmentations?

There are a finite number of possible augmenting paths (but a very
large number, of order n!). If we can insure that no augmenting path is
used more than once, then at least the algorithm is finite.

There are at least two ways to accomplish this objective. One (messy)
way is to perturb the arc multipliers slightly so that no two augmenting
paths can have exactly the same multiplier. Another, essentialy equivalent,
way is to use lexicography to break ties between augmenting paths with
equal multipliers. This can be implemented easily as part of the shortest
path computation.

In any case, it is not possible to obtain a bound as attractive as
O(n*v,). The minimum loss flow problem appears to be decidedly non-
polynomial bounded, in spite of the fact that it can be shown that m aug-
mentations are sufficient. (See Problem 8.1.)

PROBLEM

8.1 Restate and prove Theorem 4.3 for minimum loss flows in networks with
losses and gains.

9

Lower Bounds and Circulations

Some combinatorial problems can be successfully formulated as network
flow problems only if lower bounds on arc flow are imposed. That is, in
addition to a capacity c;; for each arc (i, j) we may designate a lower bound
l;; and require that [; <xj<c

As an example consider the following problem.
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AIRCRAFT SCHEDULING

An airline wishes to use the smallest possible number of planes to meet
a fixed flight schedule. A digraph is constructed with two nodes i, i’ and an
arc (i, i") for each flight. An arc (i’, j) is provided if it is feasible for a plane
to return from the destination of flight i to the starting point for flight |
and be ready in time for its scheduled departure. (Planes are assumed to be
identical and capable of making any of the flights.) In addition, there are
dummy nodes s and ¢, with arcs (s, i) and (i’, t), for al i andi’.
Set I = ¢y =1, for al arcs (i,i’) and I, ; =0, ¢; ;= 1for al other

arcs (i’, j). The minimum number of airplanes required to meet the flight
schedule is determined by an integral (s, t)-flow of minimum value.

Up to this point in our study of network flows we have not had to
be concerned with the existence of feasible flows. The zero flow, if no other,
always satisfied arc capacity constraints. Now, however, the nonexistence
of afeasible flow is a distinct possibility. For example, a network with only
two arcs, (s, 1), (1, 1), with ¢, <,,, has no feasible (s, t)-flow.

It is useful to approach the feasibility problem through the study
of “circulations.” A. circulation is simply a flow in a network in which con-
servation conditions are observed at all nodes. That is, there is no source
or sink.

To convert a conventional flow problem to circulation form, add
an arc (t, ) to the network, with I,, = 0, ¢,, =+ oc. Then a maximal (s, f)
flow is simply a circulation for which x,, is maximum.

Here is how to find a feasible circulation in a network: with both
lower bounds and capacities, if such a circulation exists. Begin with the
zero circulation. If al lower bounds are zero, this circulation is feasible.
Otherwise, find an arc (p, g) for whichx,,, < I,,. Construct a flow augmenting
path from g to p where this path is of the conventional type, except that we
require x;; > I; for each backward arc and ¢ is chosen such that ¢ < x;; =
l;; Augment the flow from ¢ to p by 4, and repeat until x,, = I,. Then
repeat for another arc for which the arc flow is infeasible. Eventudly a
feasible circulation. is obtained, if the network admits such a circulation.

But suppose at some point an augmenting path cannot be found.
Let (z, 5), with x,, < [, be the arc for which the augmenting path cannot
be found. Let S be the set of nodes which can be reached from s by an aug-
menting path, and T those which cannot. For each arc (i, j) directed from
Sto T, x;; = ¢;;, and for each arc directed from T to S, x;; < I;;. (See Figure
4.13.) The net flow across the cutset (S, T) is zero, i.e,

LoXip= ) Xy

ieS,jeT ieT, jeS



140 Network  Flows

Figure 4.13 Infeasibility of circulation

But
XXy = Y, ¢y
ieS.jeT ieS,jeT
and
Yoxy < Y
ieT, jeS ieT,jeS

with strict inequality because of arc (t, s). We have constructed a cutset
(S, T) for which
P TED J 7

€S, jeT ieT jeS
We have thus proved the following theorem.

Theorem 9.1 (Hoffman) In a network with lower bounds and capacities
a feasible circulation exists if and only if

) i< ) ¢y 9.9

ieT, jeS S, jeT

for dl cutsets (S, T).

Corodllary 9.2 (Generalized Max-Flow Min-Cut Theorem) Let G be aflow
network with lower bounds and capacities and which admits a feasible
(s, t)-flow. The maximum value of an (s, t)-flow in G is equal to the minimum
capacity of an (s, t)-cutset, where the capacity of cutset (S, T) is defined as
es. =Y ¢ =Y Iy
icS,jeT ieT,jes
PROOF  Convert the flow problem to circulation form by adding an arc
(t, ) to the network, with I, = v, ¢, = + oc. Because a feasible (s, t)-flow
exists in the original network, a feasible circulation exists in the new net-
work for sufficiently small (s, t)-flow values y. By Theorem 9.1, the largest
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value of v for which there exists a feasible circulation is that which satisfies
the inequalities (9.1) for al (s, t)-cutsets, with strict equality in the case of
at least one (s, t)-cutset. But this value of v is precisely the minimum capacity
of an (s, r)-cutset. as defined in the statement of the corollary. //

As we noted in the statement of the aircraft scheduling problem, it
is sometimes desired to find a minimum vaue flow, rather than a maximum
vaueflow.

Corollary 9.3 (Min-Flow Max-Cut Theorem) Let G be a flow network
with lower bounds and capacities and which admits a feasible (s, t)-flow.
The minimum value of an (s, t)-flow in G is equal to the maximum of

L - > i

ieS,teT ieT,jeS

over dl (s, t)-cutsets (S, T), or equivalently, the negative of the minimum
capacity of a (t,s)-cutset.

proor  Repeat the construction for the preceding corollary, this time
letting 1, = 0, ¢,, = v. //

We can use Corollary 9.3 to prove a well-known theorem of Dilworth.
This theorem concerns the minimum number of paths in an acyclic directed
graph which are sufficient to cover a specified subset of arcs. (A set of paths
“covers’ aset of arcs A if each arc in A is contained in at least one path.)

Theorem 94 (Dilworth) Let G be an acyclic directed graph and let A be
a subset of its arcs. The minimum number of directed paths required to
cover the arcs in 4 is equa to the maximum number of arcs in A4, no two
of which are contained in a directed path in G.

prooF Add nodes s and ¢ to G, and arcs (s, i). (i, 1), fordl i #s, t. For
each arc (i, ]) € A, set I;; =1, ¢;; =+ oo, and for al other arcs set [;; = 0,
¢; =t x A minimum value (s, ¢)-flow yields the minimum number of
directed paths required to cover al the arcs in A. (Note that if the graph
contained directed cycles, some of the arcs in A could be covered by flow
circulating around those cycles.) Apply Corollary 9.3 and the result follows
immediately. //

When the Dilworth Theorem is applied to the aircraft scheduling
problem, it yields the result that the minimum number of planes required
by the flight schedule is equal to the maximum number of flights, no two
of which can be made by the same plane.

Let A be the entire set of arcs of G, apply the Dilworth Theorem
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to the dual of G, and reinterpret the results in the original graph. Then
the following theorem is obtained, parallel to Theorem 5.4.

Theorem 9.5 If G is an acyclic, (s, 1) planar digraph, then the maximum
number of arcs in an (s, t) directed path is equal to the minimum number of
(s, t) directed cutsets covering al the arcs of G.

PROBLEMS

91 Using the Edmonds-Karp results, obtain a polynomial bound (in n) on the
number of steps required by the procedure for constructing a feasible circula-
tion. Also obtain a bound in pand L= z (Assume all lower bounds and
capacities are integers.)

9.2 Sometimes the Dilworth Theorem is stated in terms of partial orderings.
For a given partial ordering (S, <), a chain of elements is a sequence s,, s,..,.,
sm- Wheres; <s, +,. Apply Theorem 9.4 to show that the minimum number
of chains, such that every element is contained in at least one chain, is equal
to the maximum number of incomparable elements. (Elements s; and s; are
incomparable if neither 5,<s,nor s, <s,.)

9.3 Suppose, hypothetically, the D|IWOrth Theorem could be generalized to apply
to digraphs with cycles. For example “The minimum number of directed paths
required to cover thearcsin A is equal to the maximum number of arcsin a
subset A” < A ., [where AP has some specified dual structure] . ..” Show
that such a theorem would yield necessary and sufficient conditions for the
existence of a Hamiltonian cycle in an arbitrary digraph.

10

The Out-of-Kilter Method

We shall now describe a general computational procedure, developed in-
dependently by Fulkerson and Minty, for finding minimum cost circulations.
The minimum cost circulation problem is to
minimize Z a;X;;
”1}
subject to

Z xji Z xij = O, dl i (101)
J

0<l;<x;<¢;dij |

ij — Nij u’

All of the flow problems we have studied so far, and many others,
can be cast into the form of (10.1). For example:
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MAXIMAL FLOW PROBLEM

To the given flow network with source s and sink t add a return arc (¢, s)
with [, =0, ¢, = + o0 and a, = — 1. For al other arcs (i, j), the lower
bounds (if any) and capacities are as given and a; = 0. (For a minimum
flow problem, set q,, = 1)

MINIMUM COST FLOW PROBLEM

Add areturn arc (¢, s) with /;, = 0, ¢,, = v, and a,, = 0. The lower bounds,
capacities, and costs of all other arcs are as given.

FEASIBLE CIRCULATION PROBLEM
Set ;; = O for all arcs (i, j).

SHORTEST PATH PROBLEM

To find a shortest path from s to ¢ in a network with arc lengths ;, add
areturn arc (1, s) with I, = ¢, = 1. For al other arcs (i, ]), l;; =0, ¢;; =
+ ov, andg;; isas given.

To find shortest paths from s to all other nodes, add return arcs
@i, 9 from all nodes j # s, with I;; = ¢, = 1.

The out-of-kilter algorithm is a prima-dua linear programming
method. The problem dual to (10.1) is:

maximize
z Lijhij =Y €y
Lj ij
subject to
Uj - U; + ;L'lj - V‘l < ai]- (102)
AR*[JW ’yl] = O
u; unrestricted.

The dual variables /;; and ;; are identified with the primal constraints
X; = l;and —x;; = —¢;;. (The variable v,; is analogous to w; in (6.1),
but there the primal constraints were of the form x;; < ¢;;, hence the change
in sign in the inequalities of (10.2).) The dual variables u; are identified
with primal node equations., asin (6.1).

Applying Theorem 13.4 of Chapter 2, we obtain the following orthog-
onality conditions which are necessary and sufficient for optimality of
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primal and dual solutions:
.X,] >0 = u, ui + ;lj - ‘yi]' = aij
),ij >0 = X;j = {,-j
yij >0 = .\’,-J- = ('I-j.
The nonnegative variables 4;; and 3;; can effectively be dispensed
with by noting that the above conditions are equivalent to the following:

X =l oy = < ay

lij < X,»]- < Cyj = uj- - U; = aij (103)
Xij = Cij > llj U > al'j‘

For example, suppose x = (x;;) is a prima solution and for some

arc (i, ), 0 < I; = x;; < ¢;;. Then
X > 0=u—u+ij=— Vi = i
But
X< ¢y =>y;=0

and from the nonnegativity of 4; it follows that u; — u; < g;. A smilar
analysis of other cases establishes that conditions (10.3) are satisfied if
and only if the primal and dual solutions are optimal.

We refer to conditions (10.3) as kilter conditions and represent them
by a kilter diagram for each arc as shown in Figure 4.14. Points (x;;, u; = u;)
on the crooked line are in kilter and those which are not are out of kilter.
To each point (xX;j, u;  u;) we assign a kilter number K(x;;) equal to the
absolute value of the change in x;; necessary to bring the arc into kilter.
Thus,

Ixi; = Lyl ifu, =< a5

I,'j XU y if VU < I,,, llj u; = aij

K(x;) = (X, = ¢y ifx > ¢ W= ;= ay
O, if l[-j < Xj < Cijs Uj Uy = dy;
xy =yl ifu o w>

The objective of the out-of-kilter method is to obtain a circulation
X = {x,;) and a set of node numbers » = (u;) for which the kilter conditions
(10.3) are satisfied. As conditions (10.3) are satisfied if and only if al kilter
numbers are zero, the sum of the kilter numbers can be used as a measure
of progress toward an optimal pair of solutions.
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Uj — U

Qi g

{if Cij Xij

Figure 414 Kilter diagram

The out-of-k.ilter computation is begun with any circulation, feasible
or not, provided node conservation conditions are satisfied, and with any
set of node numbers whatsoever. At each iteration a change is made either
in the circulation or in the node numbers. The type of change that is made
is determined by the application of Minty’s painting theorem, described
asfollows.

Recall the statement of the painting theorem, Theorem 7.2, Chapter
2. For any green-yellow-red coloring of the arcs of a digraph, and any
given yellow arc (r, s), there exists exactly one of the following: A yellow-
green cycle containing (¢, s) and in which al yellow arcs are oriented in
the same direction as (t, s), or a yellow-red cocycle containing {t, s) and in
which all yellow arcs are oriented in the same direction as (¢, s). We shall
color the arcs according to a scheme described below and then focus our
attention on an out-of-kilter yellow arc (t, s). Then if we find a yellow-green
cycle, we shall modify the circulation around that cycle. If we find a yellow-
red cocycle, we shall use that cocycle as a basis for revising the node num-
bers.

Here is how we propose to color the arcs, and also change the direc-
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tions of some of them :

(10.4) Paint an arc green if it is in kilter and it is possible to either
increase or decrease the arc flow without throwing the arc out of’ kilter.
For such an arc,

b < xj < ¢jand u; = u; = g

ij J

(105) Paint an arc yellow if it is possible to increase the arc flow, but
not to decrease it, without increasing the arc kilter number. For such
an arc, either

X; < ¢

ij and u; u; > g

ij ij

or

xg $lyand up - = a

1
Q

or

x” < ll.’ and u] — u,« < aij-
(10.6) Paint an arc yellow and also reverse its direction if it is possible
to decrease the arc flow, but not to increase it, without increasing the

arc kilter number. For such an arc, (either
Xij > CU and uj Ll Mi > aij
or

> o - =
xij = ¢ and uj U; aij

or
(10.7) Paint an arc red if the arc flow can be neither increased nor de-
creased without increasing the kilter number. For such an arc, either

Xij = ¢y and u; - up > ay
or

xij = l” and u] u,- < a

iy

These cases account for all possibilities and are summarized in
Figure 4.15. Note that all green and red arcs are in kilter. A yellow arc
(i, ) isin kilter only if (x;;, u; = u;) is @ “corner” point in the kilter diagram
for the arc.

Let us focus attention on an out-of-kilter yellow arc (¢, s) and apply
‘the painting theorem. Suppose there is a yellow-green cycle C, in which
al yellow arcs are oriented in the sarne direction as {t, s). Reorient all arcs
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Hyp —1

Yellow Red

Yellow~__ Green /Yellow*

? ,
( Yellow™

Red

Figure 4.15 Painting of arcs

whose directions were reversed at the time they were painted yellow. An
increase by a small amount ¢ > 0 in the flow through (t,s) will decrease
its kilter number by a like amount, assuming the kilter number is finite.

(If (¢, 9) is one of the yellow arcs whose direction was reversed, we mean
to decrease the flow through (s, ?), and the discussion below must be ap-
propriately modified.) An increase by § in the flow through the arcs of C
oriented in the same direction as (t, s) and a decrease by § in tlhe other arcs

will not increase the kilter number of any arc, and may decrease the kilter
numbers of some. In other words C (¢, s) describes an augmenting path
from s tot.

As an example, consider the cycle shown in Figure 4.16a. After re-
orientation of the yellow arc (1,2), the cycle is as shown in Figure 4.16b.
Changes in the kilter diagrams for arcs in this cycle are indicated in Figure
4.17. Note that the largest permissible value for ¢ is determined by the yellow
arc (2, 1).

An analysis of cases shows that the kilter diagrams of the yellow and
green arcs in the cycle can be affected only in the manner suggested by the
arrows in Figure 4.18. There is no increase in the kilter number of the arc,
provided § is sufficiently small. Let us now consider such a choice of §.
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Green Yellow* +8 -6
(1
Yellow +5 -8
(a) {b)
Figure 4.16 (a) Typical yellow-green cycle. (b) Flow increments after re-
orientation.
Ug —i,y Uy Ty
+5
—O—
?—B—o
X2r | X

U = 1ty ty =1

+0

Xig s

Figure 4.17  Kilter diagrams for yellow-green cycle

- —
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+5
Oo—0
+5 -5+ —5
SD—*O—O<—O—>O—O<—'O
—5
O+

Figure 4.18 Possible changes in kilter diagrams of arcs in
yellow-green  cycle

For a given yellow-green cycle C, let Y, G denote the subsets of yellow

and green arcs in C. Let superscripts + and -~ indicate subsets of ¥, G
for which arc flow is to be respectively incremented and decremented by
6. No in-kilter arc will be thrown out of kilter if ¢ is no greater than d,, d,,

where
Sy=min {¢;; - x| (L)) €Y UG u = u = gy},

(LDEY UG, uj—u = ay.

0y = min {x;; = I
The increment ¢ will not be any greater than necessary to bring an out-of-
kilter arc into kilter if § is chosen to be no greater than

3y =min e = x| €Y + U Y "uy = u; > ay),

0, = min | ‘xij lj Wj)eY+uY "y i <y, .
Accordingly, we choose

0 =min {§,, d,, 03, 04} (10.8)

If in (10.8) § is unbounded, i.e. each of &,, ... ,d, is determined by
minimization over an empty set, there is no finite optimal circulation.
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Figure 4.19 (a) Typical yellow-red cocycle. (b) Reorientation of yellow arc and incre
ments to node numbers.

U —uy Uz — iy

—€
+e
I
X12

Uy —u3 Us =ty

X233

+e

X34 Xts

Figure 4.20 Kilter diagrams for yellow-red cocycle

This can occur when capacities of arcs in the cycle are infinite and the net
cost of circulation around the cycle is negative.

Now suppose there is a yellow-red cocycle (S, T) with se S, t € T,
in which al yellow arcs are oriented in the same direction as (t, s). Reorient
all arcs whose directions were reversed at the time they were painted yellow.
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An increase by a small amount « > 0 in the node numbers of all nodes |
in T affects the value of u; u; only for the arcs in the cocycle. Moreover,
such a change will not increase the kilter number of any arc, and may de-
crease the kilter numbers of some.

As an example, consider the cocycle shown in Figure 4.19a. Aftes
reorientation of the yellow arc (4, 3), the cocycle is as shown in Figure 4.,19b.
Changes in the kilter diagrams for arcs in this cocycle are indicated in Figure
4.20. Note that the largest permissible value for ¢ is determined by the red
arc (2.3). which will be colored yellow, and its direction reversed, the next
time it is painted.

An analysis of cases shows that the kilter diagrams of the yellow
and red arcs in such the cocycle can be affected only in the manner suggested
by the arrows in Figure 4.21. In each case, there is no increase in the kilter
number of an arc, provided e is chosen sufficiently small. Let us now con-
sider such achoice of .

For a given yellow-red cocycle C let Y, R denote the subsets of yellow
and red arcs in the cocycle. Let superscripts +, — indicate subsets of
arcs for which u; = u; will be respectively increased and decreased by the
s-increment to the node numbers. No in-kilter arc will be thrown out of
kilter if ¢ is no greater than ¢, ¢,, where

ey = {u; = u; = ay|(i, j)e R™, Xij

Cij}
l

_ .. + _
82 — {LIU - u}‘ + ui (l,J)ER sxij _ U}
U — U
+e
—€
—€
+e€
—¢ i+e
+e
—€
Figure 4.1 Possible changes

in Kilter diagrams of arcs In
yellow-red cocycle
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The increment ¢ will not be any greater than necessary to bring an out-of-
kilter arc into kilter if ¢ is chosen to be no greater than &;, ¢4, Where
ey = {u; — u; — ay|(i, e Y7, 1; < x; < ¢}

- ; +
er = {ay = uy + wl( e Y, < x; <oyl

Accordingly, we choose
¢ =min {&y,€5,63,€4}. (10.9)

There are three possible cases:

Case ]/ ¢isunbounded, i.e, each of ¢, .., &, is determined by minimiza-
tion over an empty set. This can occur only if x;; = ¢; for al arcs from S
to T and x; < I for dl arcs from T to S and x,; < I,,. Net flow from S
to T is zero, so

>l X

ieS,jeT €T, jeS

It follows from Theorem 9.1 that no feasible circulation exists.

Case2 c¢isfinite and equal to either &3 or ¢,. At least one out-of-kilter arc
is brought into kilter. No kilter numbers are increased and some may be
decreased.

Case 3 ¢ is finite and less than both ¢; and &,. No out-of-kilter arc is
brought into kilter. No kilter numbers are increased and some may be
decreased. At least one red arc will be colored yellow the next time it is
painted. For suchanarc (i, j).ifieS jeT then [;= x; < c;andif ieT
je §, then [; = ¢;;. In addition, some arcs may change color from
yellow to red For each of these arcs, i€ S, je T implies[;; < x;; = ¢; and
ieT jeSimplies ;= x;; < ¢;;. No green arcs, of course, are affected.

A labeling procedure can be used, as in the proof of the painting
theorem, to construct a yellow-green cycle or a yellow-red cocycle. The
node s is initially labeled, and all nodes reachable from s are successively
labeled. To use the analogy of the proof of the painting theorem, green
arcs are viewed as two-way streets, yellow arcs as one-way streets, and red
arcs as streets blocked in both directions. If ¢ is reachable from s, back-
tracing from the label on ¢ yields a yellow-green cycle. If ¢ is not reachable,
let S contain all labeled nodes and Tthe remaining nodes. The desired yellow-
red cocycle is (S, T). (Actudly, (S, T) is a cutset not necessarily a cocycle,
but thisisjust as good for our purposes.)

We are now ready to establish the convergence of the algorithm,
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provided all lower bounds and capacities are integers and the initial circu-
lation is integral.

Each discovery of a yellow-green cycle results in the reduction of
at least one kilter number by some § > 1. Thus, nc more than K revisions
of the circulation are necessary, where K is the sum of the kilter numbers
for the initia circulation.

Assuming a feasible circulation exists, each time a yellow-red co-
cycle is discovered, either an out-of-kilter arc is brought into kilter (Case 2)
or at least one red arc changes color to yellow (Case 3). The former case
reduces at least one positive kilter number to zero, so this cannot occur
more than min (m, K) times in all. The latter case cannot occur more than
Il -1 times in succession, by the the following reasoning.

Suppose the same arc (1, s) is used for the application of the painting
theorem until a yellow-green cycle is discovered. Then each time a cocycle
is discovered and Case 3 occurs, at least one red arc changes color to yellow
in such a way that an additional node iin T will become reachable from s
the next time the labeling procedure is applied. Al.1 nodes reachable from
s remain reachable. (Changes from yellow to red are of no consequence.)
Thus Case 3 can occur at most # — 1 times in succession before either a
cycle is discovered or else an out-of-kilter arc is brought into kilter (Case 2).

To summarize: K is an upper bound on the total number of dis-
coveries of either a yellow-green cycle or a yellow-red cocycle for which
Case 2 applies. There can be no more than » 1 discoveries in succession
of ayellow-red cocycle for which Case 3 applies. Thus the labeling procedure
is applied at most nK times overall. Since the labeling procedure requires
O(m) time, and no other operations require more time, it follows that
O(mnK) is an upper bound on the running time of the out-of-kilter algorithm.

The agorithm can be made more efficient by exploiting the fact that
labels can be preserved after the discovery of a cocycle for which Case 3
applies. (Recal that all nodes reachable from s remain reachable.) ‘This
means that we can, in effect, make one application of the labeling procedure
serve for each succession of Case 3 cocycles. Thus at most K complete
labelings are required, yielding a bound of O (mK).

A little cleverness is required in order to obtain this result. We shall
apply two types of labels: “permanent” and “tentative.” A permanent
label indicates that the node to which it is applied can be reached from s
by means of a yellow-green path, with all yellow arcs oriented in the forward
direction. A tentative label indicates that the node will be reachable by a
yellow-green path, once the node numbers are revised by a sufficient value
¢. This value of ¢ will be indicated by anumber r; associated with a tentatively
|abeled node ;.

The procedure is summarized as follows.



154 Network Flows

OUT-OF-KILTER  ALGORITHM

Step O (Start) Let x = (x;;) be any circulation. possibly infeasible, but
satisfying conservation conditions, and let y = (1;) be any set of node num-
bers. It is desirable to start with x, u such that the sum of the kilter numbers
is small, but x =: (0), 1 = (0) will do.

Sep! (Painting and Labeling)

(1.0) If al arcs are in kilter, halt; the existing circulation is optimal and
u is an optimal dua solution. Otherwise paint the arcs green, yellow,

and red, in accordance with rules (10.4) through (10.7). Set 7, = + =

for al nodes i. Choose any arc (t, s) which is out of kilter and apply the
permanent label “5"" to s. No other nodes have labels.

(1) If all permanently labeled nodes have been scanned, go to Step 3.
Otherwise, find a permanently labeled but unscanned node i and scan it

as follows: For each yellow or green arc (i, j) and for each green arc
(j, ). ifj does not already have a permanent label, give j the permanent
label “i" (replacing any existing tentative label). For each red arc (i, j),

if xij=1l;and u; = 1; = a; < m; give j the tentative label “i" (replacing
any existing label) and set ;= u; = u; = a;. For each red arc (j, i),
if x;=c;and a;+ u; = u; < 7m; give | the tentative label *i” (replacing
any existing label) and set u; = a; + u; — u;.

(1.2) If node { has been given a permanent label, go to Step 2; otherwise,

goto Step 1.1

Step 2 (Change in Circulation) Identify a yellow-green cycle C by using
the label on t to backtrace to s. Determine ¢ by (10.8). If 6 is unbounded,
there is no finite optimal solution and the computation is terminated.
Otherwise, increment or decrement the flow in each arc in C by 4. Erase dl
labels on nodes and go to Step 1.0.

Sep 3 (Change in Node Numbers) Let S contain the all permanently

labeled nodes and T contain the remaining nodes. (S, T) is a yellow-red
cutset. Determine ¢ by (10.9). If ¢ is unbounded, no feasible circulation exists
and the computation is terminated. Otherwise. add ¢ to u, for each node i
in T If Case 2 applies, go to Step 1.0. If Case 3 applies, subtract ¢ from 7,

for each node i in T and make the labels permanent on all nodes for which
n; = O.ThengotoStep 1.1.//

The out-of-kilter method is easily adapted to handle piecewise
linear convex arc costs. A typical arc cost curve of this type and its corre-
sponding kilter diagram are shown in Figure 4.22. It is left to the reader
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Figure 4.22  Typical arc cost function and its kilter diagram

in Problem 10.2 to determine how the agorithm should be generalized and
to show that the order of complexity of the computation is unaffected,
provided lower bounds, capacities, and breakpoints b;; are integers.

In Section 13, it will be seen that a problem in project scheduling
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involves nonlinear costs. A possibly simpler application in which such
costs arise is the following.

OPTIMAL AUGMENTATION OF CAPACITY

Suppose that it is desired to augment the arc capacities of a flow network
in the least costly way, so that the maximum flow value is increased to v’ > v,
where p is the existing maximum flow value. If the cost of increasing the
capacity of each arc is linear and there is a nonnegative cost g;; to increase
the capacity of (i, j) by one unit, then the problem is

minimize )’ a;y;;

]
subject to

|
<
il
wn

2Xi=yx;= {0,
J

I

T
Nl

O .<_. xij S Cij + yij'

Add areturn arc (t, ) to the network with /= ¢,, = ¢/, and the prob-

lem becomes one of finding a minimum cost circulation, where the cost of
flow inarc (i, j) isa; (x;;). where

0, X S ¢y
> ¢

aij(xij) = {

Since g;; = 0, the function a;;(x;;) is convex.

ij = i

dij (X5 = Cij)y X5 ij

PROBLEMS

101 Try torelate theu ¥ variables in the Edmonds-Karp technique for solving
the minimum cost flow problem to the dual variables in the linear pro-
gramming formulation of the problem. Do the final values of these variables
yield an optimal dual solution?

102 Indicate how the out-of-kilter algorithm should be generalized to accom-
modate convex arc cost functions. How should arcs be colored with reference
to Figure 4.227

103 (For electrical engineers) Let y, denote potential, u; - u; voltage drop, and
x;; current. The plot of the “¢ i characteristic” of a network element is
equivalent to a kilter diagram. What are the kilter diagrams for ideal batteries,
resistors, diodes? Determine how you could employ the out-of-kilter algo-
rithm to compute the characteristics of two-terminal networks composed
of such devices. What types of devices cannot be accommodated? (See paper
by Minty on electrical network computations.)

104 Try to generalize the out-of-kilter method to networks with losses and gains.
What difficulties  arise?
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11

Theoretical Improvement in Efficiency of
Out-of-Kilter Method

We concluded the discussion of the out-of-kilter method by establishing
a bound of O(Km) on the number of steps, where K is the sum of the arc
kilter numbers for the initial primal and dua solutions. If x = 0, u = 0
are taken as initia solutions, then K may be as large as the sum of al arc:
capacities, which are assumed to be integers.

In order to qualify as a bona fide polynomial-bounded computation,
the number of steps required by the out-of-kilter method should be poly-
nomia not in the magnitudes of the arc capacities but in their logarithms.,
i.e., the number of bits required to specify them as input data.. A similar
observation holds for the minimum cost flow computation of Section 7,
for which a bound of O (mv) was obtained. It is quite possible that the desired
flow value ¢ could approximate the sum of the arc capacities.

We shall not show that either algorithm is polynomial bounded (in
fact, they are not). Instead we shall describe a “scaling” technique due to
Edmonds and Karp whereby the out-of-kilter algorithm is applied to a
series of problems which provide successively closer approximations to
the given problem. A polynomial bound of the desired type is then ob-
tained.

Suppose we wish to apply the out-of-kilter method to a problem
with integer lower bounds and capacities and for which the maximum arc
capacity is no greater than 2. We first replace the original problem by a

problem (0) in which
Ci;
o CH
w5 zJ*

g 4%

and arc costs are as given. (Here ““r 1" means “least integer no less than”
and “|_ _|" means “greatest integer no greater than.“) All lower bounds
and capacities are 0 or 1.

This O-order approximation of the original network admits a feasible
circulation, if a feasible circulation was possible in the origina, for note
that

p0)
2 Cij Z Cijﬂ

(0)
210 <1,
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If wetake u = 0, x = 0 as an initia circulation, in this crude approximation
of the original network, al kilter numbers are 0 or 1. Hence K < m, where
m is the number of arcs. Accordingly, the out-of-kilter method reguires
no more than O(m?) steps to obtain optimal primal and dual solutions
0 ,,0
X7, u,
We now construct a problem (1) in which
Cii h

C(i}) = - s

21

I
" { T

-

and arc costs remain as given. All lower bounds and capacities are either
0, 1, or 2. If we take 2x9, 4® as an initiadl primal and dual solutions, all
arc kilter numbers are again O or | and again K < m  The out-of-kilter
method requires no more than O(m?) steps to obtain primal and dual
solutions x'V, 4™,

We continue in this way, passing from problem(k) to problem (k + 1),
taking 2x®, u™ as initial solutions for problem (k + 1). Finaly, problem
(p) is for a network identical to the original and we will have obtained a
circulation for it in O(m’p) steps overall. Since p = [Tlog, ¢;; 1 for the
largest ¢;;, we have obtained the desired result.

Kilter diagrams for a typical arc with [;; = 7, ¢j = 20 are shown
in Figure 4.23. The diagrams for successive problems are rescaled so at to
best display their relationship with the original. The reader can verify that
the % and ¢{¥ values are easily determined from the binary representation
of I;; and ¢;;.

It does not seem possible to apply this scaling technique to the
minimum cost flow algorithm, unless the agorithm is generalized in some
way. That is, if x™is an optimal solution to problem (k). then 2x® may ex-
ceed capacity constraints for problem (k + 1). Some technique must be
used to restore feasibility before problem (k + 1) can be solved. Edmonds
and Karp proposed a limited number of iterations of the out-of-kilter meth-
od, but this seems a bit devious.

We should conclude by saying that this scaling technique, although
easy enough to implement, is probably of very limited practical importance.
Its significance appears to be largely theoretical, but in this ream it provides
avery satisfying result.
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Figure 4.23 Scaled kilter diagram
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12

Integrality of Flows and the Unimodular Property

The nature of the out-of-kilter method is such that it provides a constructive
proof of the {ollowing theorem, of which the integral flow theorem is a
corollary:

Theorem 12.1 (Integral Circulation Theorem) If all lower bounds and
capacities are integers and there exists a finite optimal circulation, then
there exists an integral optimal circulation (whether or not arc costs are
integers).

The integrality of optimal circulations is in contrast to the situation
encountered for networks with losses and gains, studied in Section 8.
One is not assured of an integral minimum loss flow, even though all arc
capacities and multipliers are integers.

Some insight into Theorem 12.1 is obtained by an examination of
the algebraic structure of the circulation problem from the viewpoint of
linear programming.

Let us convert the lower bound and capacity constraints in (10.1)
to equality form by introducing nonnegative slack variables r and Sij

ij = =l
X+ 5 = Cye

Then (10.1) isin the form

minimize ax
subject to
AX rs)=b
X, rs=0,
where A and p are structured as below
G|o|o 0
=|—-1,11,] 0 b=|—-1 (12.1)
1,101, ¢
Here G is the arc-node incidence matrix of the network, 'I,, l,, aae mx m

and n x n identity matrices, and | and c are vectors of lower bounds and
capacities.

It so happens that the matrix A is totally unimodular, meaning that
every subdeterminant of A is either + 1, — 1, or 0. From this unimodular
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property it follows that every basis inverse B! is integral and so xf =
B~ lpisintegrd if b is integral. Thus, no matter what integral lower bounds
and capacities are chosen, all basic feasible solutions, including a basic
optimal solution, are integral.

Theorem 12.2 (Hoffman and Kruskal) Let a linear program have con-
straints Ax = b, x = 0, where A is an integer matrix with linearly inde-
pendent rows and b is an integer vector. The following three conditions are
equivalent:

(122) The determinant of every basis B is + 1.

(12.3) The extreme points of the convex polytope C defined by Ax = b,
x = 0 are integral, for al integer vectors b.

(124) Theinverse B~!of every basisB is integer.

procr This proof is due to Veinott and Dantzig. (12.2) implies (12.3).
Let x = (xB x®) be an extreme point of the convex polytope C and B be
the associated basis. By Cramer’'s rule, det B = + | implies that B~! is
integral. Hence if b isintegral, x® = B~'b is integral.

(12.3) implies (12.4). Let B be a basis and y be any integer vector
such that y + B~ !¢, = 0, where ¢; is the ith unit column vector. Let z =
y + B™le; > 0. Then Bz = By + ¢; is an integer vector since B, y, and ¢,
are al integral. Because b can be any integer vector, we shall let b = Bz.
Now Bz =b and z > 0, which shows that z is an extreme point of the convex
polytope C defined by Ax = b, x = 0. By (12.3), z is ‘an integer vector.
Butz —y = B !¢, from which it follows that B~ !¢, is integral. The vector
B lé’i is the ith column vector of B~ 1, and the argument can be repeated
for i=1,2,.... m to show that B™! is an integer matrix.

(12.4) implies (12.2). Let B be a basis. By assumption B is an integer
matrix and det B is an integer. By condition (12.4) B! is an integer matrix
so det B~!is also an integer. But (det B) (det B~!) = 1 which implies that
det B = det B! = fl.

Corollary 123 Let C' be the convex polytope defined by the inequality
constraints A’x < b, x 2 0, where A’ is an integer matrix. The following
three conditions are equivalent:

(122) A’ is totaly unimodular.
(123')  The extreme points of C' are al integral for any integer vector b.
(124')  Every nonsingular submatrix of A’ has an integer inverse.

PrROOF Let A = (A’, I). It is not hard to establish the equivalence of (12.2)
to (12.2), (12.3) to (12.3"), and (12.4) to (12.4'). For example, if M is any
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submatrix of A’ of rank m  k, then abasis of A can be found, after permuting

rows, of the form
<M X >
B= ,
N I,

where I, is a k x k identity matrix. Then det B = det M, so that det B =
+ 1. Similar transformations suffice to establish other equivalences. //

If we can establish that the (coefficient rnatrix A in (12.1) is totally
unimodular, then Theorem 12.1 follows from Theorem 12.2. We will then
have an algebraic, rather than algorithmic proof of the integrality of optimal
circulations.

Unfortunately, there do not seem to be any easily tested necessary
and sufficient conditions for total unimodularity. Perhaps the most elegant
such conditions are due to Camion, which we state without proof.

A matrix is said to be Eulerian if the sum of the elements in each row
and in each column is even.

Theorem 12.4 (Camion) A (0, + |, — 1) matrix is totally unimodular if
and only if the sum of the elements in each Eulerian square submatrix is
a multiple of four.

There is also an easily tested set of sufficient (but not necessary)
conditions for total unimodularity.

Theorem 125 A (0, + 1, — 1) marix A is totally unimodular if both of the
following conditions are satisfied:

(125) Each column contains at most two nonzero elements.

(12.6) The rows of A can be partitioned into two sets A, and 4, such
that two nonzero entries in a column are in the same set of rows if they
have different signs and in different sets of rows if they have the same
sign.

prOOF A submatrix of a (0, + 1, = 1) matrix satisfying the conditions of
the theorem must also satisfy the same conditions. Hence it is sufficient
to prove that det A =0, + 1, for al. square matrices satisfying the condi-
tions. For any 1 x | matrix A, clearly det A =0, + 1. Now suppose, by
inductive hypothesis. that det A = (, + 1 for al (n -~ 1) X (n = 1) matrices
A. Let A be nx n. If A contains a zero column, det A = 0. If some column
of A contains exactly one nonzero entry, thendet A= + det A" =0, + 1,
where A’ is the cofactor of that entry. If every column of A contains exactly
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two nonzero entries, then

Yoay= ) ay forj=12..,1.

iedy iedy

This implies that det A = 0 and the proof is complete. //

Corollary 12.6 A (0, + 1, -- 1) matrix A is totally unimodular if it contains
no niore than one + 1 and no more than one 1 in each column.

The incidence matrix G is a (0, + 1, — 1) matrix with exactly one + 1
and one -- 1 matrix in each column. It follows immediately from Corollary
12.6 and G is totally unimodular.

Theorem 12.7 A matrix A is totally unimodular if and only if any one of
the matrices AT, -A, (A, A), (A, 1) is totally unimodular.

proOF The proof is left to the reader. //

We thus see, from any one of several possible sequences of trans-
formations, using Theorem 12.7, that the matrix

G I, 0 0
-1, 0 I, ©
I, o o I,

is totally unimodular. The matrix A in (12.1) is a submatrix of this last
matrix and hence is also totally unimodular. We have thus established the
desired result.

A linear programming problem with a totally unimodular coefficient
matrix yields an optimal solution in integers for any objective vector and
any integer vector on the right-hand side of the constraints. There are non-
unimodular problems which yield integral optimal solutions for any ob-
jective vector but only certain integer constraint vectors. Nearly all the
problems studied in Chapters 6 through 8 are of this variety. There are till
other nonunimodular problems which yield integral optimal solutions for
any integer constraint vector but only certain objective vectors. As an
example of the latter type consider the following problem.

As we noted in Section 4, any (s, t)-flow can be expressed as a sum
of flows in (s, f) directed paths and circulations around directed cycles.
Let us suppose the network we are dealing with is acyclic, so that we need
not be concerned with cycles. Let P = (p;;,) be an incidence matrix
of arcs and (all possible) directed paths from s to t, where

_ 1 ifarc(i,]) is contained in path k
P e 0 otherwise.
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Thisisan m x p matrix, where p is a very large number. Then the max-
flow problem is equivalent to a linear program of the form:
maximize
v= Z Y !
k

subject to (12.8)
y Pijyuk < €y, forallares(i, j)
k
yk Z 07
where the arc flows identified with a solution to (12.8) are in the relation
Xij = 20 Pijyaee
k

Consider the network shown in Figure 4.24. There are eight (s, 1)
paths in this network and the path incidence matrix is:

(.2) |01 01 0101
L3 10101010
23 |01 010101
34 |00100110
(35) 11011001
45 {001 00110
5.6 |1 0000111
(7 |01 111000
(6.7) 10000111

Py P, Py P, Ps P, P, Py
This matrix is not totally unimodular, since the determinant of the
submatrix

Py Py
C O, - ¥

Figure 4.24  Flow network for example
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is two. Nevertheless (12.8) does admit an optimal solution in integers,
for any choice of integer arc capacities. Moreover, for any choice of arc
costs whatsoever, we can let ¢, denote the negative sum of the costs in
path P, Maximization of Y, ¢,y yields an optima solution in integers.

The coefficient matrix P is not totally unimodular. Yet for any choice
of arc costs and integer arc capacities an integral optimal solution is ob-
tained. This result seems to be in conflict with Corollary 12.3. What is the
reason?

The answer is simply that we can construct an objective function
that does not correspond to any assignment of arc costs. For example,
let all capacities be unity and let ¢;= ¢, = ¢3=+1 ¢ =04 <k <8
Then maximization of Z ¢y, Yields the unique optimal solution y, = y, =
Y3 :%’Yk: 0,4 <k <8.

PROBLEMS

121 Try todevise an efficient procedure for testing an arbitrary matrix for total
unimodularity, using the conditions of Theorem 12.4.

12.2 Prove Theorem 12.7.

123 Provethat a graph is bipartite if and only if its arc-node incidence matrix
is totally unimodular.

13

Application to Project Scheduling

One of the more celebrated and useful applications of network flow theory
isin the area of project scheduling. Various techniques have been developed
under such titles as CPM (Critical Path Method) and PERT (Project Evalu-
ation and Review Technique). We outline here the basic: ideas of this ap-
plication.

Suppose that a large project can be broken into a number of tasks.
The precedence relations between these tasks are indicated by identifying
the tasks with the arcs of a directed graph. All tasks directed into a node
must be completed before any task directed out is begun. (It may be nec-
essary to insert “dummy” tasks having zero completion time, in order to
be able to adequately model all the precedence relations of a given set of
tasks.)

Associated with each task (i, j) are its “normal” completion time
a;;, its “crash” completion time h;; and the cost ¢; of shortening the task
by one time unit (presumably by the application of overtime or a larger
work force). Thus if ¢; is the actual duration of the task, then b; <t; < g,

and the cost required to complete the task in that time is ¢; (a;; - 1;;).
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Associate a variable u; with each node j of the project network,
where y; denotes the time at which the “event” i occurs. We let node s mark
the initial event of the project, and node ¢ mark the final event. Then the
problem of finding the minimum cost C of shortening the project to a given
duration T is:

minimize
C = Z Cij(aij - tij) (133
or, equivalently, "
maximize
Z ciity; (13.2)
i.j
subject to
u, ~ u, =T
W oou ;<0 for all arcs (i, j)
bij S IU S ai,'

u;, t; unrestricted.

Associate nonnegative variables v, x;;, a;, f; with constraints

o Uy <Tuw~u +1; <0, 1; <a; —t;< b;andthe dua of this

linear programming problem is:

minimize
C=Y agu =Y by Bt T (133)
i W
subject to
~r 1=
YXim L= oy 0 i#st
! ! 1 oi=t
Xij ooy =By = gy (134)

Xij» 0ije By 2 0.

From a; = b; = 0 and (13.4,) it follows that an optimal solution
must satisfy the conditions

x,-j S Cij = O(U = Cl.} — Xl-j, l?,j = O

.XU > cij = aij = O, ﬁij = .xij - Cij'
Accordingly, an equivalent flow problem is
minimize
€= Tyx;) + Tv (135)

ij
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subject to

x;; 2 0,

where T;; (x;;) has the form shown in Figure 4.25.

Note that we dropped a constant in passing from (13.1) to (13.2)
and restored the same constant in going from (13.3) to (13.5). Accordingly
for optimal solutions the objective functions (13.1) and (13.5) are in the
relation C = —¢.

We can visualize each task (i, j) of the project as being represented
by two paralel arcs from i to j in the flow network, one with cost —a;;
and capacity Cij and the other with cost —b;; and unbounded capacity. If
there existed directed cycles in the project network the flow problem would
not have a finite optimal solution, for any flow value v. But of course the
task precedence relations are such that the network is necessarily acyclic.

We can add to the flow network a return arc (t, s) with unbounded
capacity and cost T, the flow through this arc being y. For any specified
T, the circulation problem can be solved by the out-of-kilter method. The
kilter diagram for a typica arc (i, j) is as shown in Figure 4.26. As we noted
in Problem 10.2, the out-of-kilter method is easily adapted to handle such
kilter diagrams.

We propose to vary the parameter Tand observe the optimal circula-

Ty (xif)
y

Cij
[}

/S]ope =—ay

/Slope = _b,",'

Figure 4.25  Plot of T;;( X;;)
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[

Cij

Figure 4.26 Kilter diagram

tions which result. If T is chosen very large, we expect that the zero circula-
tion will be optimal, reflecting the fact that if the project duration is permitted
to be sufficiently long, no money should be spent to shorten tasks. This will
be true for any T as large as a critical or longest path from s to t with respect
to arc lengths g;;. (Recall the discussion :in Chapter 3, Section 4.)

On the other hand, if T is chosen sufficiently small, we expect that
there will be no finite optimal circulation, corresponding to the fact that
no finite expenditure of money can reduce the project duration below a
certain point. This will be the case for any value of T smaller than the length
of alongest path from s to t with respect to arc lengths b;;.

We begin the parametric analysis by solving a longest path problem
with respect to arc lengths g;;. The node numbers u; so determined to-
gether with the zero circulation provide optima primal and dual solutions
for T = u,. The parameter Tis then reduced. All arcs remain in kilter except
arc (¢, s). The out-of-kilter method is then applied to bring (t, s) back into
kilter. The procedure is repeated for successively smaller values of T until
no finite optimal circulation exists.

The product of this computation is a project cost curve, such as
that shown in Figure 4.27. This curve is piecewise linear and convex, since
p increases as T decreases and we know that plots of minimum flow cost
against v have this characteristic. The negative slope at T is equal to the
marginal cost of decreasing the project duration by one time unit, and we
should expect this marginal cost to increase as T is decreased.

The physical interpretations of the variables u;, event times, and
t;;, task durations, are obvious. Not so obvious, however, is the interpreta-
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¢ = cost
of shortening

3 t
T

T
Min Project Max Project T
Duration Duration

Figure 4.27 Typical project cost curve

tion of x;. The variable x;; represents the amount we are willing to spend
to shorten ¢,; by one unit. Thus if 0 < x; < ¢;; We are :not willing to spend
at arate sufficient to shorten ¢;;. If x;; = ¢;; we are willing to spend at exactly
the rate necessary to shorten ;. And if x;; > ¢; we would be willing to
spend at a rate greater than c;; to reduce ¢;;, but it is impossible to reduce

t;; any further since x;; = b;;, the crash duration.

14

Transhipment and Transportation Problems

A transhipment problem is a form of minimum cost flow problem in which
for each node i there is a given number b; and instead of the ordinary con-
servation condition it is required that

Yox; 2 x;=bh
7 7

If by <0, > 0, =0, then node i is respectively a supply node, a demand
node, or a transhipment node. Each arc (i, j) has an assigned flow cost a;;,
and arc capacities are assumed to be infinite. If thisis not the case, then the
problem is said to be capacitated.

A Hitchcock- Koopmans transportation problem is a transhipment
problem on a bipartite graph G = (S, T, A) with all supply nodes in §,
all source nodes in T, and al arcs directed from S to T. (Transhipment nodes
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are eliminated.) The assignment problem is a special case of the transporta-
tion problem in which the number of supply nodes is equal to the number
of demand nodes and each b, is + 1.

It is quite evident that the transhipment problem can be reduced
to a conventional minimum cost flow problem with a single source-sink
pair s, t. First, notice that if the problem is to be feasible, the sum of the
supplies must be no less than the sum of the demands. That is,

=Y b =2 Y b =0

b; <0 h, >0
Assume that the cost of any directed path from a supply node to a demand
node is nonnegative, so that there exists an optimal solution in which de-
mands are met with equality. Provide a source node s with an arc (s, i),
¢ = = by, a; = 0 to each supply node | and a sink node ¢ with an arc (j, 1),
¢; = b, a; = 0 from each demand node j. Restablish conservation con-
cfitions at al nodes. Then a minimum cost flow of value y yields a solution
to the transhipment problem. (If some supply-demand paths are negative,
it is necessary to introduce lower bounds on the arcs (j, t).)

It is also quite clear that the minimum cost flow problem is a capac-
itated transhipment problem (For a desired flow value v, set h, = —uv, b, =
v.) What is really surprising is that the capacitated transhipment problem,
and therefore the minimum cost flow problem, can be reduced to the uncapac-
ituted Hitcheock- Koopmans trunsportution problem. There are many trans-
formations that provide this reduction and any of them serves to prove
the dictum that “network programming is bipartite programming.” This
is the basis upon which the theory of ‘bipartite matching presented in the
next chapter can be considered to be coextensive with the theory of network
flows we have developed to this point.

In the remainder of this section we indicate the reduction of the
capacitated transhipment problem to the uncapacitated Hitchcock-
Koopmans problem and conclude witlh some observations about the ap-
plication of the out-of-kilter method to the latter type of problem.

REDUCTION OF CAPACITATED TRANSHIPMENT PROBLEM
TO CAPACITATED HITCHCOCK-KOOPMANS PROBLEM

First note that, without loss of generality, we may assume that all supplies
and demands in the transhipment problem must be satisfied with strict
equality, i.e., the sum of the supplies is equal to the sum of the capacities.
If this is not so, introduce an additional demand node with arcs directed
to it from the sources, each such arc having large capacity and zero cost.
This yields a problem of the form

minimize

;X

ijMy
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subject to
iji_zxij=bi
J J

0 =Xx; =¢y

where b; is either negative, positive or zero, depending upon whether node i
is a supply, demand, or transhipment node.

Now create a new 2n-node network G, in which each node i of the
transhipment network G is represented by two nodes i, i’ and an arc (i, i’),
with ¢;; = +oo a; = 0. For each arc (i, j) of G there is an arc (i,;') in
G, with ¢; = ¢; and g j- Assign values b, to the nodes in the new
network such that the absolute value of each b, is suitably large and b; +
b, = b,

As an example, consider the transhipment network G shown in
Figure 4.28a and the equivalent transportation net work G in Figure 4.28b.
The first number on each arc is its capacity and the second number is its
cost. Numbers on nodes are b; and b, values.

The reader can verify that this transformation is generaly effective
and yields a correct result for the networks in Figure 4.28.

ELIMINATION OF CAPACITY CONSTRAINTS

Capacity constraints are removed from the network G by the following
simple trick. Subdivide each arc (i, j) of G into three arcs (i, k) (K. k), (K, j),
where k and k' are new nodes introduced by the subdivision. (Notice that
k has cut-degree zero and k' has in-degree zero.) Set b, = b,, b, = Cijp by =

—Cij» b; = b;. Set @y = a;;, and all other arc costs to zero. AII arc capac-
ities are infinite. See Figure 4.29. B

If G is bipartite with n nodes and m arcs, then G is bipartite with

n + 2m nodes and 3m arcs. The reader can easily verify that G is equivalent
to G, provided the numbers b, in G are sufficiently large.

APPLICATION OF OUT-OF-KILTER METHOD TO
HITCHCOCK-KOOPMANS TRANSPORATION PROBLEM

The transportation problem, in capacitated or uncapacitated form, is
easily converted to a circulation problem by introducing a source s with

arcs (s, i), ¢; = —b,, a,, = 0 to each supply node i, asink ¢ with arcs (j, t),

¢, = b; a; = 0 from each demand node, and a return arc (t, s), with

a, =01, = ¢,=t,where v is the sum of the supplies (= the sum of the
demands).

For this circulation network, the primal and dual solutions x = (0),
u = (0) are feasible and only arc (t, s) is out of kilter (with kilter number v).
As the out-of-kilter computation proceeds, arc (t, s) is the only arc that is
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-5

(@) Transhipment network G. (b) Correspond-

Figure 4.28
ing transportation network G.

ever out of Kilter, just as was the situation with respect to the project sched-

uling problem in the previous section.
The principal point we want to make is that virtually all existing

computational procedures for the transportation problem can be interpreted
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Figure 4.29 Elimination of arc capacity
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as adaptations, variations, or specializations of the out-of-kilter method
when it is applied in this way.

PROBLEM

14.1 Inthe transformation from the transhipment problem to the transportation
problem, what does “suitably large” mean in the definition of b;? What, in
general, is the smallest value which can be given to 5;?

15

Multiterminal and Multicommodity Flows

Up to this point, we have been concerned exclusively with network problems
involving the flow ofa single commaodity. Thus, for example, in the Hitchcock
transportation problem any source of supply can be used to satisfy the de-
mand at any sink (given requisite capacities and network structure). This
enabled us to reduce the transportation problem to a flow problem with
one source and one sink, and then to transform it to a circulation problem.

It is obvious that many real world problems involve flows of multiple,
differentiated commodities. For some of these problems, the generaliza-
tion of singlee.commodity flow theory is simple and direct. For others,
rather severe complications arise. In this section we attempt a brief survey
of both types of problems.

Generally speaking there are two ways in which multiple commodities
may flow in a network. At any point in time, a network can be dedicated
to the flow of a single commodity. For example, a railroad train may cross
a switchyard from point 1 to point 2. Then switches can be thrown and a
second train cross from point 3 to point 4. Problems with this characteristic
have come to be known as multiterminal flow problems. On the other hand.
severa commodities may flow in the network simultaneously. For example.
a telephone network is expected to handle a great multiplicity of messages
simultaneously, each message with distinct source-sink pair. Such problems
are referred to as multicommodity flow problems.

In engineering terminology, multiterminal flows involve time-
sharing of the network and multicommodity flows, space-sharing. Mixed
time- and space-sharing is, of course, aso possible but is not our concern
here.

We can aso differentiate problems of analysis and problems of
synthesis. Up to this point we have been primarily concerned with analysis,
i.e, finding an optimal flow within a given network with certain fixed capac-
ities, and so on. Many of these analysis techniques can also be applied to
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network synthesis, e.g., the problem of minimum cost augmentation of
capacity discussed in Section 10.
Let us consider the four types of analysis and synthesis problems.

MULTITERMINAL  ANALYSIS

For a given network, we may wish to know the maximum value flow, or
the minimum cost flow, between all pairs of nodes, or some specified set
of node pairs. This can. of course, be accomplished by carrying out a separate
max-flow or min-cost computation for each node pair. However, some
shortcuts are possible. For example, Gomory and Hu have shown that
p ~ 1 max-flow computations, instead of p(p = 1)/2, are sufficient to de-
termine maximum flow values between al pairs of a specified set of p
nodes in a symmetric n-node network.

The following realizability result has aso been obtained. For a

given network, let
v;; = the maximum value of a flow from node i to node j.

ThenV = (v;) isthe flow matrix of the network.

Theorem 15.1 (Gomory and Hu) A. necessary and sufficient condition
for there to exist a network with a given symmetric matrix V' = (v;;) @s its
flow matrix is that

Dy 2 Min { vy, Lyj |3

for i, j, k.

PROOF

Necessity by considering i to be the source and j to be the sink, it follows
from the max-flow min-cut theorem that there is a cutset (S, T), ie S,
j € T, with

vy = XY ey = Cy
ieS jeT
If ke S, then
Ukj ..<. CU = vijﬂ (151)
and if k e T, then
Vi < CU = Uij' (152)

Since either (15.1) or (15.2) must hold,

vy = MmN {vg, v
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Sufficiency It can be shown that there exists a network in the form of a
tree which realizes the flow values indicated by the matrix. This tree net-

work can be constructed by means of the maximal spanning tree algorithm
discussed in Chapter 7. The reader is invited to supply a proof. //

MULTITERMINAL  SYNTHESIS

Let R = (r,;) be a given matrix of flow requirements, and A = (q;) be a
given matrix of arc costs. The cost of providing ¢;; units of capacity in arc
G j)is a;;cyj- What assignment of capacities to arcs will provide a minimum
cost network with flow matrix V > R?

For the special case that R is symmetric and each g;; = 1, Gomory
and Hu have devised an efficient algorithm, discussed in Chapter 7. The
more general case can be solved by linear programming, but vastly less
efficiently.

MULTICOMMODITY  ANALYSIS

We wish to induce a flow of one commodity between one specified pair of
nodes, a flow of a second commodity between a second pair of nodes,
and so on. Find a flow which satisfies certain specified node-pair flow
values, subject to the constraint that the sum of the flows of all commodities
through any given arc does not exceed its capacity. Or, in another version
of the problem, maximize the sum of the commodity flow values.

These problems can be formulated and solved as linear programming
problems. However, for one specia case of the two-commodity flow prob-
lem, Hu has obtained a more effective procedure.

Suppose the sum of the flows of the two commodities in either
direction cannot exceed the given capacity of an arc. That is, if x;; is the
flow of the first commodity from i to j and y;; is the flow of the second, then

Xt Xt vyt v S5 =g
The objective is to maximize the sum v, + v,, where », is the value of
flow of the first commodity from node 1 to node 1' and v, is the value of
the flow of the second commodity from 2 to 2'.

Let ¢, be the minimum capacity of a cutset separating 1 and 1/,
¢, be the same for 2 and 2’, and ;; be the minimum capacity of a cutset
separating both 1 and 1" and 2 and 2’ (1 and 2 may be on one side of the
cutset and 1' and 2° may be on the other, or else 1 and 2’ on one side and
1’ and 2 on the other).

The necessity of the conditions in the theorem below is obvious.
Sufficiency is proved constructively by Hu's algorithm, which we do not
present.
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Theorem 15.2 (Hu) A two-commodity flow of amount z, in the first
commodity and v, in the second is attainable if and only if

vl S 0-1’
vy £ 0,
and

v+ 0, < agy3

We note that ¢, + ¢, = d,,, and this enables us to obtain a two-
commodity max-flow min-cut theorern as a corollary.

Corollary 15.3 The maximum tota value of a two-commodity flow is
Gy,,1.8,

max {v; + v,} = 0y,.

It should be noted, however, that integer capacities are not sufficient
to guarantee integer flows. Two conditions which are sufficient are that
all capacities are even, and that the sum of the capacities of the arcs incident
to each nodeiseven.

MULTICOMMODITY  SYNTHESIS

As in the case of multiterminal synthesis, let R = (r;;) be a given matrix
of flow requirements and A = (g;;) be a given matrix of arc costs. The cost
of providing ¢;; units of capacity in arc (i, j) is a;;¢;;. What assignments of
capacities to arcs will provide a minimum cost network which admits
multicommodity flows as large as those specified by R?

The problem as stated is quite simple. Compute shortest paths be-
tween all pairs of nodes, with respect to arc costs a;;. If P, a shortest path
from s to ¢ provide r,, units of capacity in each arc (i, ]) ¢ P, for the flow
of the commodity from s to ¢. The total capacity that should be provided
for each arc is the sum of the capacities needed for the individual commod-
ities. That is, obtain a superposition of the shortest paths.

Things become immensely rnore difficult when additional con-
straints are placed on the problem, such as bounds on total arc capacities,
nonlinearities of arc costs, and so on. A problem of enormous economic
significance, and also of enormous complexity, is the so-called TELPAK
problem. A reasonable approximation of this problem is that of a multi-
commodity network synthesis problem with concave arc capacity costs,
i.e., there is economy of scale in the construction of arc capacity.

Much remains to be done in this area.
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Bipartite Matching

1

Introduction

Let G = (S, T, A) be an undriected bipartite graph. A subset X & A is said
to be a matching if no two arcs in X are incident to the same node. The term
“matching” derives from the idea that nodes in § are matched with nodes in
T. For example, the nodes in § may be identified with men and those in T
with jobs. Hence men are matched with jobs.

With respect to a given matching X, a node j is sad to be matched or
covered if there is an arc in X incident to j. If a node is not matched, it is said
to be unmatched or exposed. A matching that leaves no nodes exposed is
said to be complete.

In this chapter we are concerned with methods for obtaining match-
ings that are optimal in one sense or another. In particular. we consider the
following problems.

182
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CARDINALITY MATCHING PROBLEM

Given a bipartite graph, find a matching containing a maximum number of
arcs.

MAX-MIN  MATCHING PROBLEM

Given an arc-weighted bipartite graph. find a maximum-cardinality match-
ing for which the minimum of weights of the arcs in the matching is maximum.
(This is sometimes called the “bottleneck” problem.)

WEIGHTED MATCHING PROBLEM

Given an arc-weighted bipartite graph, find a matching for which the sum
of the weights of the arcs is maximum.

Matchings in bipartite graphs have long been a subject of investiga-
tion in both operations research and classical combinatorial analysis, al-
though with rather different terminology and different motivations by inves-
tigators. One of the earliest optimization problems to be studied in the field
of operations research was the assignment problem. Recall that this prob-
lem was introduced in Chapter 4, and was defined as follows. Given an
n X n matrix, find a subset of elements in the matrix, exactly one element in
each column and one in each row, such that the sum of the chosen elements
is minimal. The reader should have little difficulty in establishing the equi-
valence of this problem to the weighted matching problem. We do not
hesitate to refer to the weighted matching problem and the assignment
problem amost interchangeably, when that seems appropriate.

An important topic in combinatorial analysis is that of “systems of

distinct representatives.” Let Q = {¢;; i =1, 2,..., m} be a family of (not
necessarily distinct) subsets of aset E= {e;;j=1,2,., n}. Aset T=
{¢juy - 1 €j)» 0 < t < niscaled a partial transversal of Q if Tconsists of

distinct elements in E and if there are distinct integers i(l), , i(t). such
that € € iy for k = 1,, t. Such a set is called a transversal or a system
of distinct representatives (SDR) of Q if = m
A Typical of the viewpoint of combinatorial analysis is a classic theorem
of Philip Hall which states necessary and sufficient conditions for the exis-
tence of an SDR. (Not surprisingly, the Philip Hall Theorem can be shown
to follow from the max-flow min-cut theorem of network flows.)

From our point of view, the problem of determining an SDR is equi-
valent to the cardinality matching problem. Consider a bipartite graph in
which nodes correspond to subsets ¢; and elements ¢;. There is an arc (i, j)
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between ¢; and ¢; if and only if ¢; € g;. A matching in this graph yields a
partial transversal. If the cardinality of the matching is m, the matching is
an SDR. (More precisely, the set of nodes ¢ covered by the matching is
the SDR.)

It should come as no surprise to the reader that the network flow
algorithms of the previous chapter are quite sufficient to solve the matching
problems we have defined above. The cardinality matching problem can be
solved as a maxima flow problem and the weighted matching problem
yields to a minimal cost flow computation. Thus, from a theoretical point
of view, we break no new ground in this chapter.

We propose to study bipartite matching problems because they are
important and interesting in their own right, and also because the special
computational procedures we shall develop for them are a helpful introduc-
tion to later topics. The algorithms described in the remainder of this book,
including the matroid computations, are patterned after the bipartite
matching algorithms of this chapter.

In Section 2 we first attempt to clarify the relationship between bi-
partite matchings and network flows. We then indicate exact counterparts.
for matchings, of the augmenting path theorem, the integrality theorem,
and the max-flow min-cut theorem of network flows. We then proceed to
develop algorithms for solving the cardinality. max-min, and weighted
matching problems. The chapter concludes with a discussion of a matching
problem with a novel and interesting optimization criterion. due to Gale
and Shapely.

PROBLEM

11 Demonstrate explicitly the equivalence of the weighted matching problem and
the assignment problem. Specifically. if a weighted matching problem is de-
fined for agraph G = (S, T, A), with |S| <|T|= n, show how to add dummy
nodes and arcs so that an equivalent n x n assignment problem can be ob-
tained.

2

Problem Reductions and Equivalences

We propose to show the following. For every cardinality matching problem
on m + p nodes, there is a corresponding maximal flow problem in an
(m + n + 2)-node flow network. Similarly, for every nx n assignment prob-
lem, there is a corresponding min-cost flow problem in a (2n 4+ 2)-node flow
network. Accordingly. there is a polynomial-bounded reduction of weighted
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matching problems to network flow problems and, indirectly, to the shortest
path problem.

Conversely, we shall show that for every maxima flow problem there
is a reduction to a cardinality matching problem, and a reduction of every
min-cost flow problem to a weighted matching problem. Thus, network flow
theory and bipartite matching theory are, for our purposes, essentially
equivalent.

REDUCTION OF CARDINALITY MATCHING PROBLEM
TO MAXIMAL FLOW PROBLEM

The reduction of the cardinality matching problem to the maximal flow prob-
lem is simple and direct. Consider the bipartite graph shown in Figure 5.1.
From it, we construct the flow network with capacities as indicated on the
arcs. These capacities permit at most one unit of flow to enter each of the
nodes 1, 2, 3 and at most one unit to leave each of the nodes 4, 5, 6. From the
integrality theorem of network flows it follows that there exists a maximal
value solution in which the flow through each arc is either 0 or 1. The arcs
(i,), i#s] #1 assigned flow values of unity, are identified with the arcs

of a maximum cardinality matching in the original bipartite graph.

Figure 5.1  Bipartite  graph
and corresponding flow net-
work
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It is important to note that the integrality theorem plays an essential
role in each of the problem reductions even though we may not explicitly
mention that fact.

REDUCTION OF ASSIGNMENT PROBLEM TO MIN-COST
FLOW PROBLEM

We have aready referred to the fact that the weighted matching problem is
equivalent to the assignment problem. The assignment problem can itself be
reduced to a min-cost flow problem by a construction similar to that used for
the cardinality matching problem. For example. if an assignment problem
is defined by the 3 x 3 matrix

4 6 '
A= (2 10 .
o5

we obtain the flow network shown inFigure 5.2. As before, the first number on
each arc denotes its capacity and the second its cost. It should be clear that a
min-cost flow of value 3 corresponds to an optimal solution to the assign-
ment problem.

We know that the min-cost flow problem corresponding to an X n
assignment problem can be solved with exactly n flow augmentations. Each
augmentation can be determined by a shortest path computation of ()
complexity. Thus, the assignment problem is. at worst. O(n") in complexity.

REDUCTION OF SHORTEST PATH PROBLEM TO
ASSIGNMENT PROBLEM

Conversely. and not surprisingly, any algorithm for solving the assignment
problem can be used to solve the shortest path problem. Suppose we wish

Figure 5.2 Flow network
for assignment problem
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to find a shortest path from node [ to node n in an n-node directed network.
Let A be the nx n matrix of arc lengths, with a,, = 0, for al |. We delete
column 1 and row n from this matrix. Any feasible solution to the (n = 1) x
(n — 1) assignment problem. so defined, selects arcs forming a path from
node 1 to node n, plus a number of other node-disjoint directed cycles. some
of which may be loops. If there are no negative cycles in the network. then
an optimal solution to the assignment problem yields a shortest path from
node 1 to node n, plus directed cycles, each of zero length.

REDUCTION OF MIN-COST FLOW PROBLEM TO WEIGHTED
MATCHING PROBLEM

We recall that in Chapter 4 the general min-cost flow problem was reduced
to the transportation problem. By reducing the transportation problem
to the weighted matching problem, we provide a reduction of the general
min-cost flow problem to the weighted matching problem.

Every (uncapacitated) transportation problem is equivalent to a
weighted matching problem on 2v nodes. where ¢ is the sum of the demands
at the sinks (assuming supplies and demands are in equality form). To show
this, we merely replace each node ;i of the transportation network by |b;
copies of the node, where b; is the integer-valued supply or demand at that
node. An undirected arc with cost K — g;; (where K is sufficiently large) is
furnished between each copy of node; and each copy of nodej. provided(i, ;)
existed in the transportation network. A feasible solution to the transporta-
tion problem exists if and only if there is a complete matching in the bipartite

graph, and an optimal solution corresponds to a maximum weight matching.

PROBLEMS

21 Suppose an n-node graph contains negative cycles. What interpretation can be
given to an optimal solution to the assignment problem defined by then xn
matrix A of arc lengths? Suppose there is some node i, such that every negative

Figure 5.3 Flow network for Problem 2.2
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cycle contains node i. Can we solve the “most negative” cycle problem under
this  condition?

22 Consider the flow network shown in Figure 5.3. Transform the min-cost flow
problem for this network. with node 1 as source: and node 6 as sink. to an yn-
capacitated transportation problem. Transform the transportation problem to
a weighted matching problem.

23 Is the reduction of the min-cost flow problem to the weighted matching problem
of such aform that the existence of apolynomial-bounded algorithm for the
matching problem implies the existence of a polynomial-bounded algorithm
for the flow problem‘? Discuss.

3

Counterparts of Network Flow Theorems

We propose to restate the essential theorems of network flow theory in the
context of bipartite matchings. We are concerned particularly with the aug-
menting path theorem. the integrality theorem, and the max-flow min-cut
duality theorem.

With respect to a given matching X, an alternating path is an (un-
directed) path of arcs which are alternately in X and not in X. An augmenting
puth is an alternating path between two exposed nodes.

AUGMENTING PATH THEOREM

A matching X contains a maximum number of arcs if and only if it admits
no augmenting path.

When we formulate the weighted matching problem as a minimal cost
flow problem. the integrality theorem of network flows assures us that there
is an optimal solution in which the flow through each arc is either zero or one.
This is equivalent to saying that there exists an optimal solution to the linear
programming problem

maximize

Y WX (3.1)
ij

subject to

Yx;<1 (j=L2....n) (3.2)
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in which each variable x;; takes on the value zero or one, regardless of the
coefficients in the objective function (3.1). This establishes the following
theorem.

INTEGRALITY THEOREM FOR BIPARTITE MATCHING

The “matching” polyhedron defined by the constraints (3.2) has only (0.1)
vertices.

If m = n, then any feasible solution X = (x;;) which satisfies con-
straints (3.2) with equality is a doubly-stochastic matrix, i.e., a nonnegative
matrix in which the sum of the entries in each row and in each column is
unity. A feasible solution of zeros and ones is in the form of a permutation
matrix, i.e., a (0, 1) matrix with exactly one 1 in each row and in each column.
Thus, we obtain the following as a corollary of the integrality theorem.

BIRKHOFF-VON NEUMANN THEOREM

Any doubly-stochastic matrix is a convex combination (cf. Chapter 2, Sec-
tion 12) of permutation matrices.

The Birkhoff-von Neumann theorem has been cited as a “proof” that
monogamy is the best of all possible systems of marriage. Suppose we have
asociety of n men and n women. Let w;; represent the benefit to be derived
from full-time cohabitation of man i with woman j, and let x;; denote the
fraction of time that man i actually cohabitates with womanj. If the objective
is to maximize total benefit, so the argument goes, there is an optimal solu-
tion in which each x;;is0 or 1, i.e,, a solution in which marriage is monoga-
mous. (It has been pointed out by cynics that the Birkhoff-von Neuman
theorem also shows that monogamy can result in a minimization of total
benefit.)

We shall restate the max-flow min-cut theorem in terms of “cover-
ings’ of acs by nodes A subset of the nodes of a graph is sad to cover the acs
if each arc of the graph isincident to at |east one of the nodes in the subset. (It
is essential to distinguish between a covering of arcs by nodes and a covering
of nodes by acs !)

The relationship between matchings and coverings may be a bit
obscure, and it is perhaps helpful to refer to the graph and the flow network in
Figure 5.1 as an example. By inspection, we see that the arcs (1, 5) and (2, 6)
congtitute a maximum cardinality matching in the graph. This matching
corresponds to unit flows in the paths (s, 1), (1, 5), (5, ) and (s, 2), (2, 6), 6, t)
in the flow network, all other arcs having zero flows. The minimal capacity
cut corresponding to this maximal flow is shown in Figure 5.4.

The minimal cut has a capacity of two: the sum of the capacities of
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Figure 54  Minimum capacity cutset

arcs (5, 1) and (s, 2). Wc next observe that if (i, j) is an arc. where both j and j
belong to S, then either i = s, and (j, j) does not correspond to an arc of the
bipartite graph. or else j = 5, and the arc is covered by node 5. A similar
situation holds for arcs, both ends of which are in T'; node 2 is the covering
node in that case. The only arc (i.j) withjin Tand j in Sis (2. 5). Thisarc is
clearly covered by both nodes 2 and 5. Thus, nodes 2 and 5 cover all arcs of
the bipartite graph from which the flow network was constructed.

For the example. we have constructed a covering of arcs by nodes
that is equa in cardinality to that of a maxima cordinality matching. We
observe that this can be done more generally. That is, such a covering con-
tains all nodes i andj. where (s,j) and (i. ) are arcs in a minimal capacity cut
of the flow network. This gives us the desired duality theorem for matchings :

KONIG-EGERVARY THEOREM

For any bipartite graph. the maximum number of arcs in a matching is equal
to the minimum number of nodes in a covering of arcs by nodes.

An equivalent statement of this theorem is as follows. Consider any
m X n matrix of O's and 1’s. Refer to a. row or a column of the matrix by the
common term “line.” A set of lines “covers’ the I's of the matrix if each 1
belongs to some line of the set. A subset of thel’sis “independent” if no two
I's lie in the same line. The Konig-Egervary Theorem states that the maxi-

mum cardinality of an independent sef of I's'is equal to the minimum number
of lines that cover all 1.

PROBLEMS

3.1 Tor a given bipatite graph. let X, and X,, , be matchings with pand p 41 arcs.
respectively. Consider theform of X, @ X .. i.c..the set of arcs contained in
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Figure 5.5 Graph for Problem 3.4
one matching but not the other. (X, & X, consists of alternating paths and
cycles.) What observations are necessary to provide a “direct” proof of the
augmenting path theorem for matchings?

3.2 Provide a direct proof of the Birkhoff-von Neumann theorem. Specificaly.
show that any given doubly-stochastic matrix which is not a permutation
marix can be expressed a a convex combination of two other doubly-stochastic
matrices. each of which contains fewer nonzero elements than the original .
This provides the key step for an inductive proof.

33 Provide a simple demonstration that the number of nodes in any covering of
arcs by nodes must be at least as great as the number of arcs in any matching.
(This proof should be valid for nonbipartite graphs.)

34 (V.Klee) TheKonig-Egervary equality holds for some graphs which are not
bipartite, Prove that a graph G is such that the maximum number of arcsin a
matching iS equa to the minimum number of nodes in a covering if and only if
6 is of the form shown in Fgure 55. plus some other arcs (not shown). where
the cardinalities of § and §' arc unrestricted. the cardinality of T is of course

equal to that of 5. and the other arcs all go from Su § toT or from T to 7.
but not from Su S'toSu §".

4

Mendelsohn-Dulmage Theorem
An interesting theorem about bipartite matchings follows.

Theorem 4.1 (Mendelsohn-Dulmage) Let G = (S, T. A) be a bipartite
graph and let X,, X, be two matchings in G. Then there exists a matching
X = X, u X,. such that X covers all the nodes of S covered by X, and all
the nodes of T covered by X .

PROOF  Form the symmetric difference X, @ X ,. It consists of the five types
of paths and cycles shown in Figure 5.6. In each case it is possible to select a
matching X' < X @ X, such that X’ covers all the nodes of S covered by
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X, — X, and @l the nodes of T covered by X, = X,. Then X = X" u
(X n X,) is the desired matching. //

As an application of the theorem, let S, T represent men and jobs to
be matched, where the arcs denote the compatibility relation. It is not possible
to match all men to all the jobs. But suppose the union proposes a matching
which employs as many men as possible, subject to a system of seniority.
And suppose management proposes a matching which assigns men to jobs
according to a system of job priorities. It is gratifying that there is a matching
which will be satisfactory to both union and management. This matching
gives jobs to al the men the union wants employed and will assign men to all
the jobs management wants done.

The following theorem and corollary follow directly from Theorem
41

Theorem 4.2 Let X be any matching in G = (S, T, A). Then there exists a
maximum cardinality matching X* which covers al the nodes of G covered
by X.

Corollary 4.3 For any nonisolated node i (degree greater than zero)., there
exists a maximum cardinality matching which covers i.

Suppose that a factory manager has made a feasible assignment of
men to machines. It then follows from Theorem 4.2 that there exists a maxi-
mum cardinality (“full production”) matching in which al the men and
machines employed under the manager’s solution remain employed.

—
= = =
o1

f o,

O_
— Arcs in X
Arcsin X,
o Nodes covered by X;

D Nodes covered by X,

Other nodes
Figure 5.6 Symmetric difference X; @ X,
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Figure 5.7 Graph for Problem 4.1 O/

PROBLEMS

4.1 In the bipatite grgoh shown in Figure 5.7. let X, be represented by wavy lines
and X, by straight lines. Find amatching X « X, u X, that covers ail the
nodes of s covered by X, and al the nodes of T'covered by X,.

4.2 (a) Use Theorem 4.1 to prove Theorem 4.2.
(b) Use the augmenting path theorem to Prove Theorem 4.2.

5

Cardinality Matching Algorithm

The computational procedure for cardinality matching corresponds exactly
to the maxima flow computation for the problem. However, we introduce
some terminology which is appropriate for matching.

For a given bipartite graph G = (S, T, A) and a given matching X < A,
we define an alternating tree relative to the matching to be a tree which
satisfies the following two conditions. First, the tree contains exactly one
exposed node from S, which we call its roof. Second, all paths between the
root and any other node in the tree are alternating paths. (Cf. Section 3.)

The computational procedure is begun with any feasible matching,
possibly the empty matching. Each exposed node in S is made the root of
an alternating tree and nodes and arcs are added to the trees by means of a
labeling technique. Eventually, one or the other of two events must occur.
Either an exposed node in T is added to one of the trees, or else it is not pos-
sible to add more nodes and arcs to any of the trees. In the former case, the
matching is augmented and the tree-building procedure is repeated with
respect to the new matching. In the latter case, the trees are said to be
Hungarian and can be used to construct an optimal dual solution consisting
of the union of all out-of-tree nodes in S and all in-tree nodes in T.

As an example, consider the matching shown in Figure 5.8. in which
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wavy lines represent arcs in the matching. and straight lines those which are
not. Alternating trees are constructed, with the exposed S-nodes 1 and 5 as
roots, as shown in Figure 5.9. An augmenting path is found, as indicated in
the figure. (Note that several different sets of alternating trees could have
been constructed. For example, the tree rooted to node 1 could have con-
tained the arc (2.8).)

The augmented matching is shown in Figure 5.10. When an alternat-

Figure 5.8 Graph for example

-Augmenting path———— Figure 5.9 Alternatmg trees

Figure 5.10 Augmenting matching




Cardinality ~ Matching  Algorithm 195

OO~ O—O—@—0

Figure 5.11  Alternating tree for augmented matching

ing tree is constructed for the augmented matching, as shown in Figure 5.11,
it becomes Hungarian. It follows that the matching in Figure 5.4 can be
used to construct an optimal dual solution. The only out-of-tree node in
Sis 3. Thein-tree nodes in Tare 7.8, and 10. The reader can verify that these
four nodes do indeed cover all the arcs of the graph.

The cardinality matching algorithm is summarized as follows. (We
leave it as an exercise for the reader to show that the computation is O (m*n).
where |S|=m, |T|=n.m <n)

BIPARTITE CARDINALITY MATCHING ALGORITHM

Step0 (Srart) The bipartite graph G = (S, T, A) is given. Let X be any
matching, possibly the empty matching. No nodes are labeled.

Step | (Labeling)

(L0) Givethelabel “(5™ to each exposed node in S.

(L1) If there are no unscanned labels, go to Step 3. Otherwise. find a node
i with an unscanned label. If ie S, go to Step 1.2; if { € T, go to Step 1.3.
(L2) Scan the label on node i (i € S) as follows. For each arc (i, ji¢ X
incident to node i, give node j the label “i,” unless node ; is already
labeled. Return to Step 1.1.

(L3)  Scan the label on node i (i £ T) as follows. If node i is exposed, go
to Step 2. Otherwise, identify the unique arc (i,j) ¢ X incident to node
i and give node j the label “i.” Return to Step 1.1.

Step 2 (Augmentation) An augmenting path has been found, terminating
at node | (identified in Step 1.3). The nodes preceding node i in the path are
identified by “backtracing.” That is, if the label on nodeiis“j,” thesecond-to-
last node in the path isj. If the label on nodej is“k,” the third-to-last node is
k, and so on. The initial node in the path has the label “.” Augment X by
adding to X all arcs in the augmenting path that are not in X and removing
from X those which are. Remove all labels from nodes. Return to Step 1.0.

Step 3 (Hungarian Labeling) The labeling is Hungarian, no augmenting
path exists, and the matching X is of maximum cardinality. Let LSS U T
denote the set of labeled nodes. Then C = (S = L) u (Tn L} is a minimum

cardinality covering of arcs by nodes. dua to X. Halt.//
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Figure 5.12  Graph for Problem 5.1

PROBLEM

5.1 Apply the algorithm to obtain amaximum cardinality matching. and a mini-
mum cardinality covering of arcsby nodes. for the bipartite graph shownin

Figure 512

6

A Special Case: Convex Graphs

The cardinality matching problem is particularly easy to solve for a special
type of graph which F. Glover calls “convex.” A bipartite graph G = (S, T, 4)
is said to be convex if it has the property that if (i, j} and (k, j} are arcs. where
i<k then(i+1)). (i+ 2j)., (k- 1,j) are aso arcs. Such a graph is
shown in Figure 5.13.

As an example, suppose a certain product requires one machined part
from a set § and a second from a set 7. An S-part of length a, can be fitted

Figure .13  Convex bipartite graph
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with a T-part of length b; if and only if
la; = b;| < e

where ¢ is some specified tolerance. This situation leads to a convex matching
problem, and, in fact, to a “doubly-convex” problem. (See Problem 6.3.)

The cardinality matching problem can be solved by the following
procedure. For each node j €T, let

n, =max {i|(i.j)e A).

Start with the empty matching and iterate over i =1,2,.., m. If there are
any arcs (i. j}, where j is an exposed node, add to the matching the arc (i. j)
for which r; is as small as possible.

Application of this procedure to the convex graph in Figure 5.13
results in the matching indicated by wavy lines.

PROBLEMS

61 Prove the validity of Glover's computational procedure.

6.2 Show that Glover’s procedure is O(mn). where |S| = m.|T| = .

6.3 A doubly-convex bipartite graph is one which is convex “in both S and 7.
Determine how Glover's procedure can be made more efficient for this case.
and estimate the computational complexity.

7

Max-Min Matching

A commonly cited example of max-min or “bottleneck” matching is the
following. There are n workers to be assigned to 1 stations on a conveyorized
production line. Let w;; denote the rate at which worker i can perform the
task at station j. The rate at which production can proceed is limited by the
rate of the slowest worker. What assignment of workers to work stations
will maximize the production rate?

This problem calls for the computation of a maximum cardinality
matching for which the minimum arc weight is maximum. A procedure
which computes max-min matchings for all possible cardindities, including
the maximum cardinaity, is as follows.

Start with the empty matching and a suitably large “threshold” W.
At the general step of the algorithm, a max-min matching of cardinality k
has been obtained. One then tries to find an augmenting path in the subgraph
containing all arcs (i. j) for which w,; =.W. If augmentation is possible. a
max-min matching of cardinality k + 1 results. If augmentation is not
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possible. the threshold W is reduced just enough to permit augmentation
to occur.

The number of threshold values which must be considered certainly
does not exceed the number of distinct arc weights, i.e.. mn, where |§|= m.
IT| = n. For each threshold value, the augmentation computation is () (mn).
Thus. this naive thresholding procedure is O (m’n?).

However, it is possible to do better. In particular, it is foolish to throw
away the alternating trees which have been constructed as part of an unsuc-
cessful augmentation computation. The same alternating trees must simply
be reconstructed after the threshold is reduced.

In the algorithm that is summarized here, a number 7 is associated
with each node j in T This number indicates the level to which the threshold
must be reduced, so that j may be added to an alternating tree. In other
words, 7; is set equal to the largest w;;. such that (i, j) is an arc and nede i is
in an alternating tree. Nodes are labeled fully, but no labeled node jin T
is scanned unless r; > W. When there are no further nodes eligible for
scanning, Wis reduced to the maximum value of =; strictly less than W. This
permits at least one additional node to be added to a tree. Eventually either
augmentation must occur, or the trees become Hungarian.

The algorithm also yields the construction of a solution dual to the
max-min matching. Let X, denote any matching containing k arcs. Let
H, | denote any subgraph obtained from G by deleting k = 1 nodes.

Theorem 7.1 (Gross) For any bipartite graph G.

maxmin {w;|(i.j)€ X,} = min max {w;;

i
X Hy -y

(iaj)er—l}

Note that the dual of the empty matching is undefined.

The proof of the theorem follows directly from the Konig-Egervary
theorem. (See the proof of Theorem 7.3 in Chapter 6 for a more general case.)

We leave it as an exercise for the reader to verify that the algorithm
requires O(m?n) steps, the same as for cardinality matching.

THRESHOLD METHOD FOR MAX-MIN MATCHING

Step( (Start) The bipartite graph G = (5, T, A) and a weight w;; for each
arc (i,j) e A are given. Set X = @, W = + x, and =; = — oc for each
node j € 7 No nodes are labeled.

Step | (Labeling)

L 9 Givethelabel “@5 to each exposed nodein S.
(1.1) If there are no unscanned labels, go to Step 3. If there are un-
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scanned labels, but each unscanned label is on a node i in T for which
m < W, thenset W= max {m|r, < W}.

(120 Find a node i with an unscanned label, where either [ § or else
ieTandn; = W. Ifie S, go to Step 1.3;ifie T, go to Step 1.4,

(1.3) Scan the label on node i (i € S) as follows. For each arc (i, j) ¢ X
incident to i, if n; < w;; and n; < W, then give nodej the label *i" (re-
placing any existing label) and set 7; = w,;. Return to Step 1.1.

(14)  Scan the label on node i{i ¢ T) as follows. If node i is exposed. go
to Step 2. Otherwise, identify the unique arc (i, j) ¢ X incident to node i
and give node j the label “i.” Return to Step 1.1.

step ) (Augmentation)  An augmenting path has been found, terminatrng
at node i (identified in Step 1.4). The nodes preceding node i in the path are

identified by “backtracing” from label to label. Augment X by adding to
X al arcs in the augmenting path that are not in X, and removing from
X those which are. Remove all labels from nodes. Set M= -, for each
nodej in T, Return to Step 1.0.

Step 3 (Hungarian Labeling) No augmenting path exists, and the match-
ing X is a max-min matching of maximum cardinality. Let L € S U T
denote the set of labeled nodes. Let (i, j) € X be such that

wyp = min {w (i) e X\,

The subgraph obtained by deleting the nodes in (S -- L)u (T n L) ~
{i", j) is a min-max solution dua to X. Halt.//

We should mention that an alternative, and perhaps conceptually
simpler, approach to max-min matching is as follows. Given a max-min
matching X,, one obtains X, , by means of an augmenting path for which
the minimum of the weights of the arcs is maximized. Such a path can be
computed by an adaptation of the shortest path techniques described in
Chapter 3. (Cf. comments about “maximum capacity” paths.) In particular
one can develop a Dijkstra-like computation for this purpose. Once this is
done, however, it is discovered that the algorithm looks remarkably like
the threshold method. Specifically, Step 1.1 of the threshold method corre-
sponds to the operation of finding the largest “tentative” label in the Dijkstra
method, for the purpose of making the label permanent.

The two approaches to the max-min matching problem lead to
essentialy similar algorithms. However, to the extent that they are concept-
ually different, we can draw something of a parallel between the threshold
method for max-min matching and the Hungarian method for weighted
matching on the one hand, and the max-min (Dijkstra-like) augmenting
path and the “primal” method for weighted matching on the other. This
guestion is discussed further in Section 8.
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PROBLEMS

71 Apply the max-min matching algorithm to the weighted bipartite graph shown
in Figure 5.14. Find both a max-min matching of maximum cardinality and a
min-max dual solution.

7.2 Prove Theorem 7.1.

73 Write out. in detail. the steps of a rnax-min matching algorithm based on the
approach of max-min augmenting paths. Make a detailed comparison with the
threshold algorithm.

74 (Klein and Takamori) Consider the following generalization of the production
line problem. There aren workers to be assigned to stations on two parallel
lines, with a tota of p dtations. As before, let w;; denote the rate at which worker
i can perform the task at station j. The rate at which production can proceed on
each line is determined by the rate of the slowest worker on that line. The total
rate of production is the sum of the rates of production for the two lines. What
assignment  of workers to work stations will maximize the total production rate'?

As a generalization of the above, suppose that each arc of a bipartite
graph on 2n nodes is colored either red or green. The problem is to find a com-
plete matching which maximizes the sum of the minimum weight red arc and
the minimum weight green arc in the matching.

One way to solve the matching problem is to establish two thresholds.
W, and W,, for red and green arcs, respectively. One can then test for the existence
of a complete matching in the subgr aph composed of all red arcs (i, j) for which

=W, and all green arcs for whichw;;= W,. If a complete matching exists,
then cIearIy there is a feasible solution with a value of W, + W, By testing for all
possible combinations of W, and W, one can obtain an optimal solution.

The process of testing for choices of W, and W, is greatly accelerated by
taking advantage of an obvious dominance relation. Namely, if W, + W, is
feasible, then so is W' + W,, for any W, < W, and W, < W,. And if W, + W,
is infeasible, then so is W, + W,, for W, = W, and W, = W,. Moreover,
the total number of W, and W, values which must be tested cannot possibly
exceed the number of dlstlnct arc weightsw;, which isp? at most. Thus, an

T

Figure 5.14 Network for Problem 7.1
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optimal value of W, + W, must occur at one of the corners of the “ staircase”
boundary separating the “feasible” and “infeasible” regionsin Figure 5.15.
There are no more than #? points on this staircase boundary. The stair-
case points can be identified by a search procedure which moves from one
corner point to another. Each move requires a single augmenting path compu-
tation which is O(n?) in complexity. Hence the entire staircase boundary can
be determined, and an optimal solution located. with an O(n*) computation.
(Hint: If W,+W,isinfeasible, move “down” in the diagram of Figure 5.15 by
reducing W, until a feasible solution is found. Then move “right” by increasing
the value of W, until infeasibility results.)
(a) Work out the details of this computational procedure, and write out the
steps of the algorithm.
(b) Attempt to generalize the procedure to three or more parallel produc-
tion lines. What computational complexity seems to be required’ ?
For Problem 7.4. find. and prove, an appropriate generalization of the duality
theorem for max-min matching.

Infeasible

Feasible

5.15 Feasible and infeasible

The Hungarian Method for Weighted Matching

The procedure we propose for the weighted matching problem is a primal-
dual method, called “Hungarian” by H. W. Kuhn in recognition of the
mathematician Egervary.

For simplicity, assume a complete bipartite graph G = (S, T, Sx T),

with .SI =m |T| =n m < n A linear programming formulation of the
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weighted matching problem is :
maximize Y w;x;;
i
subject to

Y x; <1,
IETEN

=0,

'
with the understanding that
.xij = l a a(l,]) S X

X ﬂru_(i,w2:¢:'

ij
T'he dua linear programming problem is

minimize ) u; + Y ;
| j

subject to
up + v = Wy
u; LO,

L‘jZ().

Orthogonality conditions which are necessary and sufficient for
optimality of primal and dual solutions are:

Xl-j > 0 = ; + U, = M)i}"' (81)
>0 = ) Xy =1, 8.2)
v;>0=3 x;, = 1. (8.3)

The Hungarian method maintains primal and dual feasibility at all
times, and in addition maintains satisfaction of all orthogonality conditions,
except conditions (8.2). The number of such unsatisfied conditions is de-
creased monotonically during the course of the computation.

The procedure is begun with the feasible matching X = ¢ and with
the feasible dual solution u; = W, where W > max {w,;}, and v, = O, for
al i, j. These initial primal and dua solutions clearly satisfy all of the condi-
tions (8.1) and (8.3), but not the conditions (8.2).

At the general step of the procedure, X is feasible, y; and v; a.re dual
feasible, all conditions (8.1) and (8.3) are satisfied: but some of the conditions
(8.2) are not. One then tries, by means of a labeling procedure. to find an
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augmenting path within the subgraph containing only arcs (i,j) for which
w; + v; = wy;. In particular, an augmenting path is sought from an exposed
node i in S for which (necessarily) u; > 0. If such a path can be found. the

new matching will be feasible, all conditions (8.1) and (8.3) continue to be
satisfied. and one more of the conditions (8.2) will be satisfied than before.
If augmentation is not possible, then a change of § is made in the dual vari-

ables, by subtracting § > 0 from u; for each labeled S-node | and adding ¢
to v; to each labeled T-node j.

It is always possible to choose § so that at least one new arc can be
added to an aternating tree, while maintaining dual feasibility. unless the
choice of ¢ is restricted by the size of u; at some S-node. But u; takes on its
smallest value at the exposed S-nodes. The exposed nodes have been exposed
at each step since the beginning of the algorithm, and hence their dual vari-
ables have been decremented each time a change in dual variables has been
made. It follows that when ; is reduced to zero at these nodes, the conditions
(8.2) are satisfied, and both the primal and dual solutions are optimal.

The augmentation computation is such that only arcs (i, j) for which
u; + ;= wy; are placed in the alternating trees. If the construction of the
alternating trees concludes without an augmenting path being found, then
one of two things has occurred. Either the trees are truly Hungarian and the
matching is of the maximum cardinality, or else it is not possible to continue
adding to the trees because all arcs (i. j) available for that purpose are such
that u; + v; > wy;.

Let us deal with the latter case first. Any arcs which we should like
to add to the alternating trees are arcs not in the matching X. (Because con-
dions (8.1) are satisfied, arcs in X are such that u; + v; = w;;.) Such arcs
are incident to an S-node in an alternating tree and a T-node not in any
tree. In the max-min problem. we lowered the threshold in the comparable
situation. thereby permitting at least one arc to be added to an alternating
tree. In the present case. we manipulate the values of the dual variables so
as to achieve the desired effect.

Suppose we subtract é > 0 from u; for each S-node i in a tree and add
dtou, for each T-node j in atree. Such a change in the dual variables affects
the net value of u; + v; only for arcs which have one end in a tree and the
other end out. If such an arc is incident to a T-node of the tree, u; + v; is
increased by ¢, which is of no consequence (note that such an arc cannot bein
the current matching). If the arc is incident to an S-node of a tree, u; + v, is
decreased by 4, possibly to w;; in which case it can be added to the tree.

The effect of the changes in the dual variables is summarized in
Figure 5.16. Under each node in that figure is indicated the change in u; or
v; On each arc is indicated the net change in u; + v; for that arc. All possibili-
ties are accounted for. (Note that it is not possible for an arc in the matching
to have one end in an alternating tree and the other end out.)

If the alternating trees are truly Hungarian, then the choice of § is
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\

/ Figure 5.16 Effect of change

Out of tree in dual variables

indeed determined by the value of u; at the exposed S-nodes. In this case. the
values of the dual variables are changed, as indicated above, conditions
(8.2) are satisfied, and both the primal and dual solutions are optimal.

The algorithm begins with the empty matching X, and then pro-
duces matchings X, X,, ..., X,, containing 1, 2, ., k arcs. Each of these
matchings is of maximum weight, with respect to all other matchings of
the same cardinality, as is shown below. (Incidentally, note that the maxi-
mum weight matching existing at the end of the computation does not
necessarily have maximum cardinality.)

Suppose we were to demand a maximum weight matching, subject
to the constraint that it contains no more than k arcs. Then we could add a
single constraint to the prima linear programming problem:

> x; <k
i

This constraint is identified with a dual variable 1 and, after appropriate
modifications in the dual problem, the orthogonality conditions become
Xij > 0 = u v+ A= Wy,

uj>0:>2xij=1.

).>O:>qu:k.
ij
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Let X, be the matching of cardinality k obtained by the algorithm, and u;,
#; be the dual solution. Choose A = min {#}. Then X,, #; ~ A, 0,4 ae
feasible primal and dual solutions for the k-cardinality problem and satisfy
the new orthogonality conditions indicated above. It follows that X, is
of maximum weight, with respect to all matchings containing k arcs.

As in the case of the threshold algorithm for max-min matching,
anumber 7; is associated with each node j in T This number indicates the
value of 4 by which the dual variables must be changed, in order that
j may be added to an alternating tree. The labeling procedure progressively
decreases m; until x; is equal to the smallest value of u; + v; — w;;, for
arcs (i, j) with i € S labeled. A node j in T may receive a label if n; > 0,
but its label is scanned only if ;= 0. In other words, j is “in tree” if and only
ifr, =0

! The algorithm is summarized below. We leave it as an exercise for
the reader to verify that the number of computational steps required is
O(m?*n), the same as for cardinality matching and max-min matching.

BIPARTITE WEIGHTED MATCHING ALGORITHM

Step0 (Start) The bipartite graph G = (S, T, A) and a weight w;; for each
ac (i, J) € A are given. Set X = (. Set u; =max {w,;; for each node i ¢ S.
Set v; = 0 and #; = + o for each node j € T. No nodes are |abeled.

Step | (Labeling)

(1.0) Give the label “¢7” to each exposed node in S.

(L) If thereare no unscanned labels, or if there are unscanned |abels, but

each unscanned label is on a node iin T for which z; > 0, then go to
Step 3.

(L2) Find a node i with an unscanned label, where either i €S or else

ieTand 1, =0.If ie S, go to Step 1.3; if i e T, go to Step 1.4.

(L3) Scan the label on node i (i € S) as follows. For each arc (i, j) ¢ X

incident to node i, if u; + v; = w;; < m;, then give node j the label “i"

(replacing any existing label) and set mn; = u; + v; — w;;. Return to

Step 1.1.

(14) Scanthelabel on nodei (i € T) as follows. If node i is exposed, go

to Step 2. Otherwise, identify the unique arc (i,j) e X incident to node
i and give node j the label “i.” Return to Step 1.1.

Step 2 (Augmentation) An augmenting path has been found terminating
at node i (identified in Step 1.4). The nodes preceding node i in the path are
identified by “backtracing” from label to label. Augment X by adding to X
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al arcs in the augmenting path that are not in X and removing from X
those which are. Set n; = + x«c, for each node j in T. Remove all labels from
nodes. Return to Step 1.0.

Step 3 (Change in Dud Variables) Find

O, = min {ujie 9),
o o
8, =min {r;|z;>0,j €T},

6 =min {J,. d,}.

Subtract ¢ from u;, for each labeled node i € S. Add ¢ to ¢; for each nodej e T
with m; = 0. Subtract 6 from n; for each labeled node je T with n; > 0.
If § <&, goto Step 1.1. Otherwise, X is a maximum weight matching and
the u; and v; variables are an optimal dua solution. Halt. /;

There is an aternative, “primal” approach to weighted matching.
This is to perform successive augmentations of the matching X by means of
a maximum weight augmenting path (where the weight of arc (i,j) 15 taken
to be w; if (i.j)e X and -- wy; if {i,j)¢ X). This approach is essentially the
same as that used in the previous chapter to compute min-cost flows by suc-
cessive min-cost augmentations. We refer to this as a “primal™ method be-
cause it involves no dual variables or other considerations of duality.

It is easy to devise a procedure for determining maximum weight
augmentations. In fact, a method essentially like that of Bellman and Ford
can be implemented very nicely within the framework ofa labeling procedure.
The computation of a maximum weight augmenting path requires O(m?n)
steps, when carried out in this way. Since O(m) augmentations are called
for, the overall complexity is O(m3n), compared with O(m?n) for the Hun-
garian method.

The efficiency of the primal method can be improved, by making use
of node numbers, as described in the previous chapter. The number 7¥ indi-
cates the weight of a maximum weight alternating path from an exposed
S-node to node i, relative to matching X,. These node numbers are used to
modify the arc weights. so that all arc weights are negative when a maximum
weight augmentation is sought. relative to matching X, ;. (Negative arc
weights are desired, since a maximum weight path is sought.) It follows that
a Dijkstra-like procedure can be used to find an optimal augmenting path.

When the details have been worked out, it is discovered that the
Dijkstra-like procedure looks very much like the Hungarian method. Speci-
fically, the computation of §, in Step 3 of the Hungarian method corresponds
to the operation of finding. in the Dijkstra computation, that “tentative”
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label which is next to be made permanent. Thus, the Hungarian method
and the modified primal method are essentially similar.

We noted a similar situation in the previous section, with respect

to the threshold method and the max-min augmeating path method for
max-min matching. The reader is referred to that discussion.

8.1

8.2

8.3

84

8.5

86

PROBLEMS

Apply the Hungarian algorithm to the weighted bipartite graph shown in
Figure 514 to find a maximum weight matching and an optima dud solution.
Interpret each step of the Hungarian algorithm. as nearly as possible. as a
step of the out-of-kilter method. Where do the two algorithms differ?
Gerneralize the algorithm to the case

N ox;i <o

LM = U

2 Xy < by

(D. Gale) There arem potential house buyers and 11 potential house sellers.
where m < . Buyer i evaluates house j and decides that its value to him is
w;; dollars. If seller j puts a price of ¢; on his house, buyer i will be willing to
buy only if w;; > ¢, Moreover. if there is more than one house j for which
w;> 1", hewill prefer to buy ahouse for whichw,; v;ismaximal. A set of
prices is sdd to be “fessble’ if it is such that for every buyer ;i there is & least
one house j for which w,;; = s, Show that. with respect to all other feasible
sets of prices there is one st of prices which maximizes both the sum of the
total profits to the buyers,

YWy~ )
and total proceeds to the sdlers, Z v
Devise a simple example of a matching problem in which a maximum weight
matching does not have maximum cardinality. (All arc weights are to be strictly
positive.) How should the Hungarian method be modified so as to produce a
maximum cardinality matching which is of maximum weight (relative to all
other such matchings)'?
Write out. in detail, the steps of a weighted matching algorithm based on the

approach of finding maximum-weight augmenting paths by a Dijkstra-like
procedure. Make a detailed comparison with the Hungarian algorithm.

9

A Special Case: Gilmore-Gomory Matching

Consider two examples of weighted matching problems which have parti-
cularly simple solutions.
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SKIES AND SKIERS

A ski instructor has n pairs of skis to assign to n novice skiers. The length of
the skis assigned to a skier should be proportional to his height, and for
simplicity, we assume that the constant of proportionality is unity. How
should the instructor match skis to skiers so that the resulting differences
between ski length and height of skier are as small as possible?

The obvious solution to this problem is optimal. The shortest pair
of skies should be assigned to the shortest skier, the second shortest pair to
the second shortest skier, . . ., the kth shortest pair to the kth shortest skier,
and so on. This assignment minimizes the sum of the absolute differences
of ski length and skier height. Perhaps more importantly, it also minimizes
the maximum of the differences.

SCHOOL BUSING (R. B. POTTS)

A bus company has n morning runs and n afternoon runs to assign to n bus
drivers. The runs vary in duration, and if a driver is given a morning run and
an afternoon run whose total duration exceeds T hours, he is to be paid a
premium on the overtime hours. The problem, from management’s point of
view, is to match morning runs with afternoon runs so as to minimize the total
number of overtime hours. This is accomplished by matching the kth longest
morning run with the kth shortest afternoon run, for k= 1,2,.., n.

The bus drivers union has different optimization criteria. One of the
union demands is that the minimum number of hours worked by any driver
should be maximized. And, more generally, that the number of hours worked
by the various drivers should be as uniform as possible.

As it turns out, management’s solution to the problem also happens
to maximize the minimum number of hours and minimize the maximum
number of hours worked by any driver. Thus, there exists a solution which
is both management-optimal and union-optimal. (Recall that a similar
situation was discussed in Section 4.)

Both of these weighted matching problems can be formulated as fol-
lows. Let G = (S, T, Sx T) be a complete bipartite graph with |S] = |T|= n.
Each node i ES has associated with it a real number a, and each node j ¢ T
area number f;. For al i, j, the weight of arc (i, j) is taken to be

B,
Wij :J f(y) dy» (ai < ﬂj)

&

: ©.1)
= J g(y) dy, (‘BJ < o),

Bi
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where f(y) and g(y) are given integrable functions. A matching problem
with arc weights determined as in (9.1) will be referred to as a Gilmore-
Gomory matching problem.

In the example of skies and skiers, let a be the length of the ith pair
of skies, f3; be the height of the jth skier, and f(y) = g(v) = 1. This yields.
by (9.1). the weights

wy = o = Byl

It is desired to find a complete matching for which the sum of these weights
is minimized.

In the case of school busing let a, and b; denote the length of the ith
morning run and the jth afternoon run respectively. Then let o, = T ¢
B;=b.f(y)=1and g(y) = 0. By (9.1),

i

— {
M’u = max ’loq ai + bj - T},

is the amount of overtime occasioned by a matching of morning run i with
afternoon run j. Management seeks a complete matching for which the sum
of these weights is minimized.

For the union’s problem, let o, = &, ;= b, and f(y)=9(y) = 1.
Then, by (9.1), w;; = a; + b;, and a complete matching is sought for which
the minimum of the weights is maximized.

The optimality of the solutions to the example problems can be
shown by applying the theorems below. In the statement of each of these
theorems, we assume that o, > o, 2 > o, and B; = f, > ... 2 B, In
each case. we demand a complete matching which is optimal with respect
to all other complete matchings.

Theorem 9.1
X={i))i=12..... n}

is a minimum-weight complete matching, if f (v) + ¢g(y) = 0 for al »-

Theorem 9.2
X= {in—i+hli=1,2.....n

is a maximum-weight complete matching, if f(v) + g(») = 0 for all y.

Theorem 9.3
X = {(hli= 12.. .. n]

is @ min-max optimal complete matching, if f(y) =0, g(y) = 0, for a] .
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Theorem 9.4
X = {(l, 1)|1 = 12... ’ I’l}:

is a max-min optimal complete matching if either fy) > 0, g(y) < 0, for
aly,or f(y) <0,9(y) =0, for al y.

It helps to visualize Gilmore-Gomory matchings if the nodes of the
graph are arranged on two vertical axes, with the nodes in Sand Tpositioned
according to the values of «; and f; If a complete matching differs from
X ={(i,i)}, then it contains at least one pair of “crossed” arcs (i, ), (A, 1). as
illustrated in Figure 5.17. The proof of Theorem 9.1 is based on the effect of
“uncrossing” such pairs of arcs.

PROOF OF THEOREM 9.1  Let X! be a complete matching. If X! + X =
{(i, i)}, then X' contains arcs (i, j) and (k, /). with i< k, j>1. Let

X=X+ (kj)+ @)~ (j) (1),

and let w(X"). w(X?) denote the weights of the matchings X!. X2, It can be
shown that
y2

w(X?) = w(X") ~f (S + gly) dvify, <y
N

= w(X), iy, = y,,
where yi= max {o; fij. ¥2 = min {o,. f3;]

Since f(y) + g(y) = 0, clearly w(X?):l w(X").If X? # X. repeat the pro-

aqe

a, e [ Jem

1 Figure 517 “Crossed” arcs
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cedure a finite number of’ times. obtaining matchings X, X”. ... X" = X.
showing that w(X') > w(X).//

We leave the proofs of the other theorems as problems for the
reader.

In Problem 9.5 we suggest 4 method for solving Gilmore-Gomory
problems for graphs in which |S| # |T]|.

PROBLEMS

91 Let a=(a. as...u,)andb=(h, b,,.b,) bepositivereal vectors. We wish
to permute the elements of ¢ in such a way that the inner product

a- b =Y ab

is minimized. Formulate the problem as a Gilmore-Gomory matching problem

9.2 Prove Theorem 9.2.

9.3 Prove Theorem 9.3.

9.4 Prove Theorem 9.4.

95 Let G=(S, T.A) bea bipartite graph with an arbitrary (not necessarily Gilmore-
Gomory) weighting of the arcs. Suppose we seek to find a maximum weight
matching, subject to the conditions that it contains no crossed arcs (with respec
to agiven numbering of the nodesin$andin 7). Let

W (p. ) = the maximum weight of an uncrossed matching containing
only arcs (i. /). wherei <p.j<g.

(a) Obtain arecursion formulafor W(p.q) which can be used to find amaxi-
mum-weight uncrossed matching in O (mn) computational steps. where
Sl=m.|T| =1l

(b) IOlbtain a|silmilar recursion formula which can be used to find a minimum-
weight uncrossed matching with exactly m arcs. assumingm<#, asoin
O(mn) steps.

(¢) Now suppose that the graph is complete and that arc weights are de-
termined by formula (9.1), with f(y) + g(y) = O. Generalize Theorem
9.1 by showing that there exists a minimum weight matching with exactly
m acs in which no arcs are crossed.

(d) Obtain results pardle to those of pats (b) and (c), for the case of maximum
weight matching.

10

A Novel Optimization Criterion:
Gale-Shapley Matching
D. Gale and L. S. Shapley have proposed a novel optimization criterion

for matching which does not depend in any way on arc weights. We can
perhaps illustrate their approach best with their own example.
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A certain community consists of n men and n women. Each person
ranks those of the opposite sex in accordance with his or her preferences
for a marriage partner. For example, suppose there are three men, «, g, and
1, and three women, A, B, and C. Their preferences can be illustrated by a
“ranking matrix” such as that below:

A B C

| 13 22 A
gl 31 13 22
vy | 22 31 13

The first number of each pair in the matrix gives the ranking of women by
men, the second number gives the ran king of men by women. Thus « ranks
A first, B second, C third, while A ranks f first, y second, and a third.

There are as many possible sets of marriages as there are complete
matchings of three men and three women. (i.e., 3!). Some of these matchings
are unstable. For suppose o marries B, f marries A, and y marries C. Under
such an arrangement, f would like to leave A, his third choice. in favor of
C, his second choice, while C would be willing to break up with vy, her third
choice, in order to join f, also her second choice.

Definition A complete matching of men and women is said to be unstable
if under it there are a man and a woman who are not married to each other
but prefer each other to their assigned mates.

It is by no means clear that a stable matching need exist. However.
not only does a stable matching exist, for any set of rankings, but also a
matching which is optimal, in a very strong sense.

Definition A stable matching of men and women is said to be (man) optimal
if every manisat least aswell off under it as under any other stable matching.

Theorem 10.1 (Gale, Shapley) For any set of rankings, there exists a (man)
optimal matching of men and women

The following algorithm yields a man-optimal matching. and thereby
provides the basis of a constructive proof of Theorem 10.1. To quote Gale
and Shapley :

To start, let each boy propose to his favorite girl. Each girl who receives
more than one proposal rejects all but her favorite from among those who have
proposed to her. However, she does not accept him yet. but keeps him on a string
to allow for the possibility that someone better may come along later.
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We ae now ready for the second dage Those boys who ae rgected now pro-
poe to ther second choices. Each girl receiving proposas choosss her favorite from
the group consding of the new proposees and the boy on her dring. if ay. She
rgects dl the ret and agan keeps the favorite in suspense

We proceed in the same manner. Those who ae reected a the sccond dage

propose to ther second choices, and the girls again reect dl but the best proposd
they have had o0 fa.

Eventudly (in fact in a most n? - 2n + 2 dtages) exch girl will have receved
a proposa. for as long as any gifl has not been proposed to there will be reections
ad new proposas. but snce no oy can propose to the same girl more than once
every girl is sure to get a proposd in due time. As soon as the last girl gets her pro-
posd, the ‘courtship’ is declared over. and each girl is now required to accept the
boy on her dring.

We first must show that the algorithm yields a stable set of marriages.
Thisis easy. “Namely. suppose John and Mary are not married to each other,
but John prefers Mary to his own wife. Then John must. have proposed to
Mary at some stage and subsequently been rejected in favor of someone that
Mary liked better. It is now clear that Mary must prefer her husband to
John and there is no instability.”

Now let us show that the set of marriages is (man) optimal. We call a
woman “possible” for a man if there is a stable matching that marries him to
her. The proof is by induction. Assume that up to a given point in the proce-
dure no man has as yet been rejected by a woman that is possible for him. At
this point suppose that a woman A. having received a proposal from a man /3
she prefers, rejects man o. We must show that Aisimpossible for «. We know
that § prefers A to all the others. except for those who have previously re-
jected him, and hence (by assumption) are impossible for him. Consider a
hypothetical matching in which a is married to A, and § is married to a wo-
man who is possible for him. Under such an arrangement £ is married t a
woman who is less desirable to him than A But such a hypothetical matching
is unstable since f and Acould upset it to the benefit of both. The conclusion
is that the algorithm rejects men only from women that they could not possi-
bly be married to under any stable matching. The resulting matching is
therefore optimal.

Note that. by symmetry, a woman-optimal matching is obtained by
having the women propose to the men. (Women’'s lib take note.)

The procedure is easily generalized to match students with colleges
or football players with professional teams. However, it is not possible to
apply the procedure to obtain optimal marriages for a group of homosexuals.
In fact. no stable set of homosexual marriages may exist. (One is free to
draw whatever sociological conclusions one will.) See Problem 10.4.
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PROBLEMS

10.1 Find a (man) optimal matching for the ranking matrix below

A i? C D
x| 13 23 32 43
p| 14 41 33 22
v | 22 14 34 41
S| 41 22 31 14

Verify that the optimal assignment is the only stable assignment.

10.2 Verily Gale and Shapley’s statement that at most #* 2n t 2 iterations of
their procedure are required. Estimate the overall computational complexity
of the algorithm.

10.3 Modify the algorithm for the case of college admissions. That is. suppose
2. f,...w are prospective students and A, B,., Z are colleges, where each
college can accept ¢ students. Deal with both student-optimal and college-
optimal matchings.

10.4 The Gale-Shapley results hold only for bipartite matchings. To quote Gale

and Shapley :

A problem similar to the marriage problem is the “problem of the room-

mates.” An even number of boys wish to divide up into pairs of roommates. A
set of pairingsis called stable if under it there are no two boys who are not

roommates and who prefer each other to their actual roommates. An easy
example shows that there can be situations in which there ¢xists no stable
pairing. Namely consider boys a. f, y, and d. where 2 ranks f first, § ranks ;
first, p ranks x first, and o, . 7 ali rank § last

Show that regardless of §'s preferences, there can be no stable pairing.
10.5 Show that a set of marriages is both man-optimal and woman-optimal if and
only if it is the only stable set of marriages.
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SIX

Nonbipartite Matching

1

Introduction

The theory and algorithmic techniques of the previous chapter have been
generalized by Edmonds to apply to matchings in nonbipartite graphs.
This also provides a proper generalization of network flow theory to
“bidirected” network flow theory.

As we shall see, the augmenting path theorem can be extended to
nonbipartite matchings. However, the computational problems involved
in finding augmenting paths are more formidable than in the bipartite
case, and can be solved only by the proper treatment of “blossoms,” as
shown by Edmonds. Nevertheless, the nonbipartite cardinality matching
problem, the max-min problem, and the weighted problem can all be solved
in O(n®) steps, as in the bipartite case.

The nonbipartite matching problem is a special case of an apparently
more genera type of problem that we refer to as the degree-constrained
subgraph problem. This is the problem of finding an optimal subgraph of

217
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a given graph, subject to the constraint that the subgraph observes certain
constraints on the degrees of its nodes. If there is a lower and upper bound

on the permissible degree of each node, but no other restrictions, the prob-
lem is reducible to the ordinary matching problem. This reduction, similar
to the reduction of the transportation problem 1.0 the assignment problem,
is explained in Section 3. A degree-constrained subgraph problem in which
the lower and upper degrees are equal is sometimes called a factors prob-
lem.

2

Problem Formulations

Nonbipartite matching problems arise in a variety of contexts. We indicate
below some applications for cardinality, max-min, and weighted matching
algorithms.

OPTIMAL SCHEDULING OF TWO PROCESSORS

There are two identical processors and » jobs, each requiring one unit of
processing time. A partial ordering relation “1” is given, which prescribes
precedence constraints for the jobs. For example, if | < j, then job i must
be completed before job j can be begun by either processor. How should
the jobs be scheduled on the two processors, so that all the jobs can be
completed at the earliest possible time?

A simple set of precedence constraints on seven jobs is indicated
by the acyclic directed graph in Figure 6.1. Each node is identified with a
job. Job i must precede job ;j if there is a directed path from i to j.

For any acyclic directed graph G representing precedence constraints
on jobs, we can construct a “compatibility” graph G*, as follows. G* has
the same nodes as G, and there is an (undirected) arc (i, j) in G* if and only
if there is no directed path from { toj or from jto i in G. In other words,
if i and j are adjacent in G*, then jobs i and j can be processed at the same
time.

A maximum cardinality matching in G* indicates the maximum
number of pairs of jobs that can be simultaneously processed and therefore
yields a lower bound on the total processing tirne. Fujii et al., have shown
that a maximum matching can be used to obtain a schedule that meets
this lower bound and is therefore optimal.

As an example, the nonbipartite compatibility graph in Figure 6.1
permits a matching of three arcs. Hence a lower bound on the length of a
schedule is four. But suppose the matching contains arcs (1, 6), (2, 5), and
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Figure 6.1 Precedence con-
straints on jobs and associat-
ed compatibility graph

(3,4). It is not possible to process both jobs i and 6 and jobs 3
and 4 simultaneously. However, it is possible to effect an interchange
of jobs between the pairs (1,6) and (3,4) to obtain the pairs (1,3) and
{4,6). and these pairs, together with (2, 5), constitute a feasible arrange-
ment. Fujii et al. show such an interchange of jobs can always be carried
out. (See Problem 2.1.)

SYMMETRIC BIPARTITE MATCHING

There are situations in which an optimal bipartite matching is sought,
subject to the condition that it be symmetric. That is, arc (i, ), ie S j e T,
is to be in the matching if and only if (j, i),j €S, i e T, is in the matching.

Consider the following situation. Each of n workers has a regular
job. However, the factory manager believes that each worker should be
able to perform a second job should the need arise. He decides that the best
plan is to arrange a “buddy” system, where worker A trains worker B in
A’s regular job, and B does the same for A.

Clearly, the factory manager's problem is one of symmetric bi-



220 Nonbipartite Matching

partite matching (cardinality, max-min, or weighted, as the case may be).
But symmetric matching in a 2n-node bipartite graph is really no dlifferent
from matching in an rz-node nonbipartite graph. (The reader should be
clear on this point.) Or, to put it another way: Just as the weighted bi-
partite matching problem is equivalent to the assignment problern, so is
the weighted nonbipartite matching problem equivalent to the symmetric
assignment problem. Some of the difficulties resulting from symmetry
are discussed in the following.

HOMOSEXUAL MARRIAGE

The (heterosexual) marriage problem was discussed in the previous chapter
in connection with the integrality theorem of bipartite matching. It was
shown that there exists a monogamous set of marriages that maximizes
total happiness in the community.

We may consider the analogous situation with respect to a com-
munity of homosexuals. Let there be n individuals, and let w;; represent
the benefit to be derived from full-time cohabitation of individua i with
individual j. Let x;; denote the fraction of time that i spends with j We
must require that x;; = x;. Or in other words, we seek a symmetric doubly-
stochastic matrix X = (x;;) such that » w;;x;; is maxima.

The fact is that the Birkhoff-von Neumann theorem does not apply
to symmetric matrices. That is, a symmetric doubly-stochastic matrix is
not necessarily a convex combination of symmetric permutation matrices.
In other words, it is not necessarily true that there exists a monogamous
set of homosexual marriages that is (optimal. (It is, however, true that there
exists an optimal solution to the problem in which each X;; is either O, 4
orl)

This is the second “proof” of the instability of monogamous homo-
sexual marriages. (See also Chapter 5, Section 10.) We need not assign any
particular social significance to these results in order to conclude that
matching in nonbipartite graphs is rather different from matching in bi-
partite graphs.

UNDIRECTED SHORTEST PATHS

Suppose we wish to find a shortest path between two nodes in an undirected
network. If all arc lengths are nonnegative, it is possible to replace each

undirected arc (i, j) by a pair of directed arcs (i, j) and (j, i), each with the

same length as the original arc, and solve as a conventional shortest path
problem in O (n?) steps. However, if any of the arc lengths are negative, this
transformation creates negative dirscted ‘cycles, and even the Q(n®) pro-
cedures of Chapter 3 are inapplicable.
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It is possible to solve the undirected shortest path problem as a
nonbipartite weighted matching problem. Negative arc lengths are per-
missible. but there must be no undirected cycles which are negative in
length. We illustrate the transformation to a matching problem by the ex-
ample network shown in Figure 6.2.

By inspection, a shortest undirected path from node 1 to node 6
contains arcs (1,2) (2,3) (3,5) and (5,6), and has length -6. This path is

M+20

M2

Figure 6.2 Undirected shortest path problem and equivalent weighted matching problem
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obtained by solving a degree-constrained subgraph problem in which each
of the nodes 2, 3, 4, 5 is provided with a loop of length zero. Lengths are
interpreted as costs, and a minimum-cost subgraph is sought, in which
nodes 1 and 6 are to have degree one and each of the other nodes is to have
degree two. Such a subgraph is in the form of a path between nodes 1 and 6,
plus a node-digjoint set of cycles (some of which may be loops). If there are
no negative cycles in the network, the path contained in such a minimum
cost subgraph is a shortest path.

The reduction of the degree-constrained subgraph problem to a
weighted matching problem is indicated by the network in the lower portion
of Figure 6.2. All arc weights are zero, unless otherwise indicated. The
solution to the minimum cost degree-constrained subgraph problern indi-
cated by wavy lines in the original network corresponds to the maximum
weight matching indicated in a like rnanner in the second network.

A genera procedure for transforming degree-constrained subgraph
problems to ordinary matching problems is described in the next section.

THE CHINESE POSTMAN'S PROBLEM

A postman delivers mail along a set of streets represented by the arcs of
a connected graph G. He must traverse each street. at least once, in either
direction. He starts at the post office (one of the nodes of G} and must re-
turn to this starting point. What route enables the postman to walk the
shortest possible distance?

This problem, dubbed “Chinese” by Edmonds in recognition of the
mathematician Mei-ko Kwan who proposed it, can be solved efficiently
by a procedure which employs the weighted nonbipartite matching algo-
rithm as a subroutine. The problem is discussed in Section 11.

PROBLEMS

2.1 Describe a systematic technique for interchanging jobs between the pairs
determined by a maximum cardinality matching in the compatibility graph
of a two-processor scheduling problem. In particular, consider the case where
i,j and k, [ are paired, and there is a conflict because i < k and | < j Then
show that there is no conflict in pairing i with [ and k with j. Show that the inter-
change problem can be completely avoided by solving a weighted matching
problem on the compatibility graph, for a suitably chosen set of arc weights.

2.2 Verify that the Birkhoff-von Neumann Theorem does not apply to the sym-
metric assignment problem. That is, show that a symmetric, doubly-stochastic
permutation matrix is not necessarily a convex combination of symmetric
permutation matrices. (A 3 x 3 counterexample suffices to show this.)

2.3 (Norman and Rabin) A maximum cardinality matching can be used to
obtain a minimum cardinality covering of nodes by arcs. Prove that, given a
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maximum cardinality matching which leaves a certain set of nodes exposed,
one can add one arc at each exposed node to achieve a minimal covering.
Prove that, conversely, given a minimum cardinality covering, one can retain
one arc from each component of the solution to achieve a maximal matching.

(The problem of covering nodes with arcs should not be confused with the
problem of covering arcs with nodes. There is no known polynomial-bounded
algorithm for the latter problem, except in special cases.)

2.4 Show that a minimum cardinality covering of nodes by arcsin G yields a
minimum cardinality covering of arcs by nodes in L(G). In other words,
there is a polynomial-bounded reduction of the covering problem for line
graphs to the cardinality matching problem for nonbipartite graphs.

3

Bidirected Flows

We noted in the previous chapter that bipartite matching theory is essentially
coextensive with network flow theory. Edmonds has ‘observed that non-
bipartite matching theory is coextensive with “bidirected” network flow
theory.

A directed graph is a graph in which each arc has both a “head”
and a “tail.” A bidirected graph is a graph in which each arc can have a
head or a tail, or two heads or two tails. The node-arc incidence matrix
of a bidirected graph is, as for a directed graph, a matrix A = (a;;), where

1, if arcj hasatail at node i
a; = 1= 1, if arcj hasahead at node i

0, otherwise.

(We can aso provide for arcs which have two tails or two heads at the same
node, by setting g;, = 2 or -2, respectively. However, this is not necessary
for our present development.)

A bidirected network flow problem is an integer linear programming
problem of the form

minimize
2 a5,
subject to
Ax = }
x =

X; nonnegative integer,
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where A is the incidence matrix of a bidirected graph, a; is the cost of one
unit of “flow” through arc j, ¢ = (¢, ¢5, . . . . ¢,) IS @ Vector representing
arc “capacities,” and b = (b, b,, .. b,) is a vector in which b, represents
the net supply (if b; = 0) or demand [if b; < 0) at node i (Hopefully, it does
not cause confusion to let a; denote the unit cost of flow in arc j, to let a;
be an element of the incidence matrix A, nor to refer to arcs by a single
index j, where elsewhere double indices are used.)

Nonbipartite matching problems are reduced to bidirected flow
problems by a simple procedure. If the number of nodes is odd, a dummy
node is added to the graph. Then “slack” arcs with zero weight are added
to convert the matching problem to a degree-constrained subgraph problem
in which each node of the subgraph is to have degree one (a “one-factor”
problem). Each undirected arc becomes a bidirected arc with two tail ends
and unit capacity. Arc weights are converted to costs, b, is set to unity at
each node i, and the transformation is complete.

The reduction of bidirected flow problems to matching problems
requires a few more steps. First, the bidirected flow problem is transformed
to a problem involving an undirected network. For each node i in the bi-
directed network G, let there be two nodes, i and i in the undirected network
G*. Let al the bidirected arcs which have tails at i be identified with un-
directed arcs which are incident to i in G*, and all the arcs which have heads
at i be identified with arcs which are incident to /' in G*, and let their costs
and capacities be as they were before. Let there also be arcs of the form
(i, iM, foral i. each with zero cost and infinity capacity. Let. p* and b} be
appropriately large, and such that b¥ = b} = b;.

We now have a problem of the form

minimize
Z a;x;
subject to
A*x = p*
X <c*

Xj nonnegative integer,

where A* is the node-arc incidence matrix of the: 2n-node undirected graph
we have just constructed. The construction at this point is paralel to that
described in Chapter 4 for transforming transhipment problems into trans-
portation problems. The reader can verify that if the bidirected network G
is directed, then G* is bipartite.

The second step is to eliminate arc capacities, by essentially the same
technique used in Chapter 4 to eliminate arc capacities in the capacitated
transportation problem. Subdivide zach arc (i, j) with finite capacity ¢ij
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by replacing (i, j) by (i, k), (k, k'), (K, j). where k and K’ are new nodes.
Set bf = by = ¢y, af = af; = 0, and afy. = af, and leave b} and b} un-
changed. (Note that now a}; denotes the cost of arc (i, j); we have reverted
to double index notation.)

The third step is to convert the problem to one in which a complete
matching is demanded. Construct a new network G** in which for each
node i of G* there are b¥ copies of node i. For each arc: (i, j), an arc with
the same cost is provided between each copy of i and each copy of j. Set
b¥* = 1 at each node i. This is similar to the transformation used to convert
the transportation problem to the assignment problem in Chapter 4,
Section 14.

The fourth and final step is to set w;; = M = a* in G**, for a suitably
large M. A maximum weight matching is then a complete matching, if a
complete matching exists, and corresponds to a minimal cost flow in the
origina network G. If no complete matching exists, there is no feasible
solution to the original bidirected flow problem.

It has been shown that a bidirecred flow problern can, in principle,
be solved as a nonbipartite matching problem. However., it would probably
be unwise to do so, just as it would be unwise to solve a transhipment prob-
lem by first transforming it into an assignment problem. Although we shall
not discuss computation procedures for the bidirected flow problem, we
note that such procedures have been developed and successfully programmed
for a computer. They make use of essentially the same ideas as those pre-
sented in this chapter.

PROBLEMS

3.1 Inthetransformation of the network ; to G*, what does it mean for p* and
b¥ to be “suitably large?” Is the reduction to a matching problem really a
polynomial-bounded reduction?

Figure 6.3 Bidirected flow
network (Problem 3.5)
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32 How large does M have to be, in order to insure that a maximum weight
matching is a complete matching?

33 In the reduction of the undirected shortest path problem to a matching prob-
lem, some simplifications were made in the final network, in order to obtain
the graph shown in Figure 6.2. Trace through the reduction, according to the
rules presented in this section. Determine the nature of the simplification, and
verify that it is valid.

34 Consider a weighted matching problem in a graph in the form of a three-cycle,
with arc weights -- 1, 2, 5. Reduce this problem to a bidirected flow problem.

35 Reduce the bidirected flow problem for the network shown in Figure 6.3 to

a matching problem. The numbers by each arc represent its capacity and cost.
The number by each node i is the value of b,

4

Augmenting Paths

It has been pointed out that the (bipartite) integrality theorem and the
Konig-Egervary theorem do not apply to nonbipartite graphs. However,
some of the theory of bipartite matching does carry over intact. In particular,
the concepts of “alternating paths,” “augmenting, paths,” and the augment-
ing path theorem generalize without change.

Theorem 4.1 (Berge, Norman und Rabin) A matching X in a nonbipartite
graph contains a maximum number of arcs if and only if it admits no aug-
menting path.

prooF If there exists an augmenting path with respect to X, then clearly
X does not contain a maximum number of arcs. Conversely, suppose X
and X* are matchings and that |X X*\. The arcs in the symmetric dif-
ference X @ X* form a subgraph with a number of components. Each
component is either an alternating path or an alternating cycle. as indicated
in Figure 6.4. Each cycle must contain an equal number of arcs from X
and from X*. And since |X| < |X*|, it follows that there must be at least
one aternating path that contains more arcs from X* than from X. Such
a path extends between two nodes that are exposed by X, and is therefore
an augmenting path with respect to X. //

<C

Augmentation of a matching X by means by an augmenting path
does not expose any nodes covered by X. It follows that successive aug-
mentations of X results in a maximum-cardinality matching which covers
all nodes covered by X. Thus, Theorem 4.2 of Chapter 5 generalizes to
nonbipartite graphs.
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Figure 6.4 Components of X @ x*

Theorem 4.2 Let X be any matching in the nonbipartite graph G = (N, A).
Then there exists a maximum cardinality matching X* which covers all
the nodes of G covered by X.

Corollary 4.3 For any nonisolated node i, there exists a maximum car-
dinality matching which coversii.

Theorem 4.1 was at one time thought sufficient by itself to provide a
solution to the nonbipartite matching problem. Indeed, for small graphs it is
not at all difficult to discover augmenting paths, or to solve matching prob-
lems “by inspection.” However, it seems that when one tries 1.0 devise a
systematic procedure for discovering augmenting paths, all the “obvious’
approaches either contain pitfalls or else involve an exponentially growing
amount of computation. The following indicates some of these inadequate
approaches.

One way to solve the problem is to partition to the nodes into an
“S’ set and a “T” set, making sure that each arc of the matching extends
between an S-node and a T-node. One can then apply the procedures of
the bipartite matching algorithm to the induced bipartite subgraph. If
there exists an augmenting path, then there exists an §, Tpartition for which
the path can be discovered in this way. However, the number of partitions
grows exponentially with the number of nodes, and to test all possible
partitions clearly requires a nonpolynomial-bounded number of com-
putational steps.

Another approach is to assign § and T designations to nodes, as
dictated by a labeling procedure. Thus one can start by giving an exposed
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node the label “S :¢7." Thereafter, when an S-label on node: i is scanned,
for each arc (i, j) ¢ X incident to i, the label “T: i” is given to node j, unless

node j already has a T-label. When a T:label is scanned, the unique arc
(i, j)e X isidentified, and the label “S: " is given to node j. The procedure

is continued until either an exposed node is given a T-label or no further
labels can be applied. In the first case an augmenting path has presumably
been found. In the latter case, the “tree” of labeled nodes is Hungarian,
and another tree can be grown from another exposed node.

This procedure, which, of course, works perfectly well for bipartite
graphs, can lead to the false discovery of an augmenting path as shown in
Figure 6.5.

One might suspect that the labeling procedure fails because nodes
are permitted to take on both S-labels and ‘I-labels. It is quite simple to

S:5
T3

/

S:3 8:2
S:¢ T:1 74 ~
C— (X
\\
()
———— 6) S:4
Exposed .
Nodes T2 3
Figure 6.5 False discovery of augmenting path
T:3
0
Exposed
Node
S:¢ 7:1 '
Exposed
Node

Figure 6.6 Failure to discover augmenting path
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add the restriction that once a node is given one type of label, it cannot be
given the other. This does, indeed, eliminate the possibility of false paths.
But it may also prohibit the discovery of valid augmenting paths, as shown
in Figure 6.6.

A still further refinement would be to permit double labeling of
nodes but in such a way that the sequence of labels so generated does not
“loop back” on itself. For example, nodes 4 and 5 in Figures 6.5 and 6.6
would be permitted to have double labels, but not node 3.

This last refinement is actually fairly close to a solution to the prob-
lem, but is still not quite sufficient to permit the discovery of all valid aug-
menting paths. In the next section we indicate a solution to this problem.

PROBLEM

41 Suppose there exists an augmenting path with respect to a matching X in
a nonbipartite graph G = (N, A). Show that an augmenting path can be found

by applying the bipartite labeling procedure to the bipartite subgraph ob-
tained by appropriately partitioning the nodes into sets § and 7, and deleting

all arcs that do not extend between an S-node and aT-node.

5

Trees and Blossoms

An elegant solution to the problem of finding augmenting paths has been
devised by Edmonds. Briefly, Edmonds approach involves the construction
of alternating trees (much as in bipartite matching), the detection of certain
odd cycles called “blossoms,” and the “shrinking” of these blossoms by
contraction of the graph.

Definition 51 Let X be a matching in the graph G = (N, A). Let N3 € N
be a subset of 2r + 1 nodes, r = 1, and let B be the set of all arcs., both ends
of which are incident to nodes in N. B is said to be a blossom with respect
to the matching X if

(5.1a) X nBl=r,

i.e., the matching X is maximal within B. The unique node b of Ng left
exposed by X A B isthe base of the blossom.

{5.1b) There exists an alternating path S, called the stem of the blossom,
where \S] iseven and S n B = {J, extending between the base of the
blossom and a node exposed by X, called the root of the stem.

(5.1c) For each node i € N, there is an alternating path S, ; < B, where
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]Sb'i| is even, between node i and the base of the blossom. It follows that
there is an alternating path of the form S, §, ; between the root of the
stem and node i.

The simplest form of blossom is one in which B is an odd cycle.
Thus the arcs (3,4), (3,5), (4,5) forrn a blossom in Figures 6.5 and 6.6,
with arcs (1, 2), (2, 3) asits stem and node 3 as its base.

The stem of the blossom may be empty, in which case we say that
the blossom is rooted. If the stem is not empty, it contains an arc in X inci-
dent to the base. Thus, the base of a blossom is exposed if and only if the
blossom is rooted.

Suppose we use a labeling procedure to construct alternating trees,
approximately as suggested in the previous section. Then a blossom is
formed whenever there is an arc (i, j) ¢ X between two nodes with S-labels
or an arc (i, j) € X between two nodes with T-labels. (The two nodes are
assumed to be in the same tree.) Whenever a blossom B is detected, we
propose to “shrink” it by replacing the graph G with G ctr B. The node
corresponding to B in G ctr B is referred to as a pseudonode, and is given
an S-label for the purpose of further tree construction.

The tree construction process may involve a number of shrinking
operations. In fact, blossoms may be shrunk within blossoms several, levels
deep. However, if an augmenting path is found in the (blossomless) alternat-
ing trees which ultimately result, there is an augmenting path in the original
graph G. The existence of such a path is guaranteed by the transitive applica-
tion of Theorem 5.2.

Theorem 52 Let B be a blossom with respect to X in G. There exists an
augmenting path in G ctr B with respect to X = B, if and only if there exists
an augmenting path in G with respect to X.

proOF Let P be an augmenting path in G ctr B.{f P does not pass through
the pseudonode corresponding to B, then clearly P is also an augmenting
path in G. If P does pass through the pseudonode, and the pseudonode is
not exposed, then P is of the form Py, (i, b), P,, where (i, b) € X is the arc
of the matching incident to the base b of the blossom in G. Then there exists
an aternating path S' < B such that Py, (i, b), S, P, is an augmenting path
in G. Similarly, if the pseudonode is exposed, there exists an S < 13 such
that S', P isan augmenting path in G. (An example is indicated in Figure 6.7.)
Conversely, suppose there is an augmenting path Pin G. It is possible,
by a rather complicated case analysis, to show that there exists an aug-
menting path in G ctr B. However, it is easier to show, as a consequence of
Theorem 7.1, that if there does not exist an augmenting path in G ctr B
then there does not exist an augmenting path in G. This line of reasoning
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Figure 6.7 Example for Theorem £ 2

is analogous to invoking the Konig-Egervary theorem to prove the aug-
menting path theorem for bipartite graphs. //

The outlines of an algorithm, which we will illustrate by an example,
have now been sketched out. Consider the matching in the graph shown
in Figure 6.8. There exists an augmenting path from node 1 to nodes 3, 5,
9,8, 7,6, 4, 2, and then 10. Our task is to construct this path systematically.

We begin by establishing node | as the root of an alternating tree,
with the label “S: &5.” Nodes 2 and 3 are given the label “T: 1,” and so on.
Eventually nodes 6 and 7 are given T-labels, and an arc of the matching
is discovered between them, as shown in the first diagram of Figure 6.9.

O—O—C—0__
e ——0

Figure 6.8 Graph for example
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Sl¢ T:B_v,
(9
Figure 6.9

Alternating trees for example

Thus, the blossom B, is formed and replaced by a pseudonode, A,, as
indicated in the second diagram. The pseudonode B, is given the same
S-label as the base of B, and this label is considered to be unscanned. Con-
tinuation of the labeling procedure results in the detection and shrinking
of blossoms B, and B,, as shown in the third diagram. Finally, an aug-

menting path is found in G ctr B, cir B, ctr By, as shown in the fourth
diagram.
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The construction of an augmenting path in the original graph G,
starting from the augmenting path in G ctr B, ctr B, ctr B,, proceeds as
follows. First, backtracing in the final graph yields the sequence of nodes
B;, 10. It is then necessary to find an alternating path through Bj in the
graph G ctr B, ctr B,. The appropriate alternating path passes through
nodes 1, 3, 3. B,. 2. The desired path through B, in G ctr By is B, 8, 9, and
the path through B, in Gis7, 6, 4. Putting all these pieces together, we obtain
the desired sequencel, 3,5,9, 8,7, 6, 4, 2, 10.

It is seen that there are two principal elaborations required of the
bipartite cardinality matching algorithm. First, it is necessary to detect
and shrink blossoms. Second, it must be possible to discover appropriate
alternating paths through shrunken blossoms, so that an augmenting path
in the original graph can be reconstructed. The detection of blossoms is
simple, and shrinking is really no problem. (The reader should be able to
think of mbre than one way to write a subroutine for graphical contraction.)
However, it is a nontrivial matter to perform these operations in the most
efficient manner.

In the next section, we go into some details of implementation of
the algorithm, and we carry out an analysis of its complexity. We show that
the algorithm can be programmed in such a way that its complexity is
0(n?), as in the case of bipartite matching.

6
Cardinality Matching  Algorithm

We now concern ourselves with the implementation of Edmonds’ algorithm
for the computer. We shall develop a labeling procedure that does not
require the actual contraction of blossoms in the graph; instead blossoms
are treated “as though” they were shrunk. The labeling technique provides
a systematic and efficient method for backtracing through blossorns.

RECORDING OF BLOSSOMS

We need to keep a record only of outermost blossoms, and these blossoms
are identified by their base nodes. Associated with each node i is am index
b(i) indicating the base node of the (outermost) blossom in which it is con-
tained. If a node i is not contained in a blossom, then b(i) = i. Thus two
nodes i, j are in the same outermost blossom if and only if b(i) = b(j).
When a new blossom is formed, the base node b of the new blossom
is identified, and b(i) is set to b, for all nodes i in the blossom. This means
that it is necessary to maintain a listing of all the nodes within a given
blossom, and it must be possible to merge these listings efficiently.
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DETECTION OF AUGMENTING PATHS AND BLOSSOMS

It is possible to grow one alternating tree at a time, and when one tree
becomes Hungarian to begin another at a new root node. Or, we may
begin by rooting an aternating tree at each exposed node and grow all
alternating trees simultaneously. There are technical reasons, concerning
the modification of dual variables, why the latter aternative is preferable
for the weighted matching problem. Hence we adopt this plan here.

Initially the label “S:¢F” is given to al exposed nodes. Thereafter,
S-labels and T-labels are applied to nodes. An S-label indicates the existence
of an even-length aternating path to the root node, and a T-label indicates
the existence of an odd-length path. (A node receives both types of labels
if and only if it is a nonbase node of an outermost blossom.) Augmenting
paths extend between the root nodes of two different trees, as suggested in
Figure 6.10.

Now, suppose the labeling procedure discovers an arc (i, j) ¢ X
where i and j have S-labels or an arc (i, j) € X, where j and j have T-labels.
Assume h(i) # b(j), i.e., nodes i and j are not contained within the same
blossom. Then an augmenting path has been found if i and j are in different
alternating trees, and a new outermost blossom has been formed if i and
j are in the same tree. The question of which one of these situations exists
is resolved by backtracing from the labels on i and j. If different root nodes
are reached, then an augmenting path has been found. If the same root
node is reached in both cases, then a blossom has been formed.

Augmenting
path —

Figure 6.10 Example of augmentmg path



Cardinality Matching Algorithm 235

LABELING PROCEDURE

Rules covering the detection of augmenting paths and blossoms, in ac-
cordance with the preceding paragraph, are incorporated into the |abeling
procedure. Other than these, the rules for labeling are quite similar to those
for bipartite matching.

That is, when an S-label on node i is scanned, the following pro-
cedure is carried out for each arc (i, j) ¢ X incident to i. If b(ij) = b(j),
then nothing is done, because i and j are contained within the same blossom.
(All possible labels are applied within a blossom at the time the blossom
is formed; see below.) Otherwise, if node j has an S-label, backtracing is
carried out from i and from j to detect either an augmenting, path or a
blossom. If node j has neither an S-label nor a T-label., then the label “T: ;"
is applied to j.

When a T-label on node i is scanned the unique arc (i, j) € X incident
to i isfound. If b(i) = b(j), then nothing is done. Otherwise, if node | has
a T-label, backtracing is carried out from i and from j to detect either an
augmenting path or a blossom. If node j has neither an S-label nor a T
label, then the label “S: j” is applied to j.

CONSTRUCTION OF BLOSSOMS

Once a new blossom has been detected, it is necessary to determine ijts
membership and the identity of its base node. This is done as follows.
Backtracing from nodes i and j produces two sequences of nodes

gy

jl,jz.. ..,jq,
where i; = j; (the root node of the alternating tree) and i, =i, j,= J (where
backtracmg began). Since i; = j, and Ip # Jj,» there i§ some inQex m, §uch
that il =j17 i2 = jZ’ cees lm = jm'l and either im = ior.]m = j’ Or 1,49 # Im+1-

The base of the new blossom isi;, 1 <m, wherei, =b(i,,), and its stern passes

through the nodesiy. i,, .. ., i,
The new blossom contains all nodes k, such that

b(k) € {b(lm)a b(im+1)7- BN b(lp)’ b(jm+1)w b(.jm+2)’- ARR) b(]q)} (61)

Accordingly, b(k) is set to i, for all nodes k in the new blossom. This, plus
the addition of missing labels to nodes within the blossom (to be described
below), is all that is necessary to “shrink” the blossom.

As an example consider the situation shown in Figure 6.11. There
are T-labels on nodes 8 and 9, and (8, 9) € X. Hence a blossom has been
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Existing
blossom

New blossom

Figure 6.1 1  Example of blossom c¢onstruction

detected. Backtracing from nodes 8 and 9 yields the sequences
1,2,34,6,8

and
1,2,3,4,6,9

In this case, i, = j, = 6 and b(6) = 3, since node 6 is aready part of a
blossom, with node 3 asits base. The nodes3, 4, 5, 6,7, 8, and 9 arein the new
blossom, node 3 is its base, and nodes 1, 2, and 3 are in its stem.

LABELING OF NODES IN BLOSSOMS

Between each nonbase node in the new blossom and the root of the alternat-
ing tree there exists both an even-length and an odd-length alternating
path. This fact should be indicated by the existence of both an S-label and
a T-label on each such node.

Suppose the blossom was detected by backtracing from nodes i = i,
andj = j.where i and j have S-labels and (i, j) ¢ X. (We leave it to the
reader to supply rules for the case i and j have T-labels and (i, j) € X)
We concern ourselves only with nodesi,, ; ,ip+ 2. - . 1,. (Therules for nodes
Jmt1s Jmeas o000 Jq &€ Of course, similar.) The S-labels on iy, ip_2, . ., imta2s
and the T-labelsoni,_y,i,-3,....1,,,; were actually used in backtracing.
Hence any missing labels must be T-labels on i,, i,-;, ., im4+2, OF Slabels
0 \F PP SN ST The label assigned to any node i, will be such that
backtracing from that label yields the sequence of nodes i,, i,y 1, - - - ip
jq*jq—l’ ”-»jl'

Let us assign missing labels t0 i, 4 , , im+2, - - - , i, in Order. Suppose
i, lacks an S-label. We assert that necessarily (i, i,,;)€ X and that i,.;
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Figure 6.12 Labeling within blossom

lacks a T-label. We give |, the label “S. | , ;. The T-label we shall assign
to j, ., will cause backtracing to be carried out correctly.

Now suppose i, lacks a T-label. We assert that necessarily (i,.i,..;) € X.
Ifdo i, + | lacks an S-label, then we give the label “T: i, , ,” to i,. The S-label
we shall assign to i,,; will cause backtracing to be carried out correctly.

But now suppose i, lacks a T-label and i,,; has an S-label already.
Then i, must be the base node of a previously existing blossom, containing
1.+ 1, and backtracing from the S-label oni, +, will lead back to .. It is there-
fore quite wrong to give the label “T: i,__,” to node i,.

What we do to resolve this problem is to find the last node i, in the
sequence i, {,1,+ 3, - - -, i, that is contained in this previously existing outer-
most blossom with i, as base. Necessarily k = r + 2. We then assign a
special label “T: i, + ;,i," to i, This latel is interpreted as follows: There
exists an odd-length alternating path between i, and the root node. To
find this path, backtrace from the S-label on node i, , , to the root, and also
from node i, to i, itself. The arcs thus discovered, together with the arc
(i, i+ 1), properly ordered, constitute the desired alternating path.

An example of the application of labels within a blossorn is shown
in Figure 6.12.

BACKTRACING ROUTINE

The introduction of special T-labels with double indexes does complicate
backtracing a bit, and a recursive routine is called for. For example, in
backtracing one may encounter the label “T:j, j” at node k. Backtracing
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from j to k, one may then encounter “T: i, j,” at k,. Backtracing from j,
to k,, one may encounter “T: i,, j,” a k,, and 3o on. This may continue
for as many levels as blossoms are nested. Suffice it to say that the back-
tracing routine can be efficiently and elegantly implemented on a com-
puter, and that backtracing from a given node to the root of the alternating
tree is no more than O(n) in running time.

The complete cardinality matching algorithm can now be sum-
marized as follows.

NONBIPARTITE CARDINALITY MATCHING ALGORITHM

Step 0 (Start) The graph G = (N, A) is given. Let X be any matching,
possibly the empty matching. Set b(i) = i, for a.11 nodes i€ N. No nodes
are labeled.

Step | (Labeling)

(1.0) Apply thelabel “S: &5 to each exposed node.
(1.2) If there are no unscanned labels, go to Step 4. Otherwise, find a
node i with an unscanned label. If the label is an S-label, go to Step 1.2:
if itisaT-label, go to Step 1.3.
(12)  Scan the S-label on node i by carrying out the following procedure
for each arc (i,J) ¢ X incident to node i If b(i) = b(j)., do nothing.
Otherwise, if node j has an S-label, backtrace from the S-labels on nodes
iand j and if different root nodes are reached go to Step 2; if the same
root node is reached, go to Step 3. If node j has neither an S-label nor
a T-label, apply the label “T: j" toj.

When the scanning of node i is complete, return to Step 1.1.
(L3) Scan the T-label on node i as follows. Find the unique arc (i, j) € X
incident to node i, If b(i) = b(j), do nothing. Otherwise, ifnodej has a
T-label. backtrace from the T-labels on nodes i and j and if different root
nodes are reached, go to Step 2; if the same root node is reached, go to
Step 3. If node j has neither an S-label nor a T-label, apply the label
“S:i"to].

Return to Step 1.1.

Step 2 (Augmentation) An augmenting path has been found in Step 1.2
or 1.3. Augment the matching X. Remove all labels from nodes and set
b(i) =i, for dl i. Return to Step 1 .0.

Step 3 (Blossoming) A blossom has been formed in Step 1.2 or 1.3.
Determine the membership and base node of the new blossom, as described
in the text. Supply missing labels for zll nonbase nodes in the new blossom.
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Reset b(i) for al nodes i in the new blossom. Return to Step 1.2 or 1.3, as
appropriate.

Step4 (Hungarian Labeling) The labeling is Hungarian. No augmenting
path exists, and the matching X is of maximum cardinality. The labels
and blossom numbers can be used to construct an optimal dual solution
(cf. Section 7). Halt.//

Let us consider the complexity of the algorithm. For a graph with
n nodes, there can be no more than O(rn) augmentations and applications
of the labeling procedure. Each application of the labeling procedure calls
for the labels on each of the n nodes to be scanned at most once, and each
scanning operation requires at most O(n) steps (ignoring backtracing, and
so on). Hence simple scanning and labeling contributes O (1n*) steps overall
to the agorithm.

There can be no more than O(n) blossoms formed per augmentation,
or O{n®) overall. Each augmentation and each blossom requires, back-
tracing, which is O(n) in complexity. Hence backtracing contributes O(n?)
steps overal. The other operations for blossom construction, including the
determination of blossom membership by (6.1) and the application of missing
labels, require O (n) steps per blossom or O (%) steps overall. The complexity
of other operations is dominated by those mentioned above. Hence we
conclude that the overall running time of the algorithm is O(n®).

7

Duality  Theory

We now wish to formulate and prove a duality theorem for nonbipartite
matching, generalizing the Konig-Egervary theorem for bipartite matching.
The appropriate dual structure is suggested by the notion of blossoms, and
the cardinality intersection algorithm provides a constructive proof for the
duality theorem.

Let G = (N, A) be a given graph and let 4" = {N,N,,...,N,} be
a family of subsets of nodes, i.e., N; £ N, where each N; contains an odd
number of elements. If (N, =1, then N, is said to cover all arcs incident
to the node in N,, and the capacity of N, is one. If |N,-‘ =2r+1 r =1,
then N;is said to cover all arcs, both ends of which are incident to nodes
in N, and the capacity of N, isr. The family 4" is said to be an odd-set cover
if each arc of the graph is covered by at |east one subset N; € .4". The capacity
of 47, denoted ¢(.4"), is the sum of the capacities of the odd sets contained
within it.
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We assert that |X| < ¢( #) for any matching X and any odd-set
cover | . (Prove this) We now seek to show that max |X| = min c(. |).

Consider the situation at the conclusion of the matching computa-
tion, as described in Section 5. There is a Hungarian tree rooted at each
exposed node. Whatever pseudonodes exist have been given S designations.
A typical case is shown in Figure 6.13, in which pseudonodes are drawn
as squares. We assert that, for any given arc of the graph, exactly one of the
following cases holds :

(1) The arc is incident to a T-labeled node in a tree.
(2) The arc is contained within a blossom, shrunken to a pseudonode.
(3) Both ends of the arc are incident to unlabeled (out-of-tree) nodes.

Hence we can construct an odd-set cover, .4°, with capacity equal
to the number of arcs in the matching, 35 follows. Each T-labeled node
becomes a singleton set in .4". There are exactly as many such nodes as
there are arcs of the matching in the Hungarian trees. The nodes in each
blossom become an odd set in 4", and its capacity is equal to the number of
arcs of the matching contained within it. There are 2k unlabeled (out-of-

Hungarian
trees

Remainder
of graph

Figure 6.13 Example for duality theorem
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tree) nodes and k arcs of the matching between them. If k = (, the cover .4~
is complete, and |X| = ¢(4"), as claimed. If k = 1, one of the out-of-tree
nodes is chosen arbitrarily as a singleton set, and this completes the odd-set
cover. If k= 2, one of the out-of-tree nodesis arbitrarily chosen as a singleton
set, and the remaining 2k — [ nodes are chosen as an odd set with capacity
k 1. This completes the cover.

We have thus proved the following theorem.

Theorem 7.1 (Edmonds) For any graph G, the maximum number of arcs
in a matching is equal to the minimum capacity of an odd-set cover.

An older theorem of Tutte giving necessary and sufficient conditions
for the existence of a complete matching can be obtained from Theorem 7.1
as acorollary. Let S © N be a subset of the nodes of G = (N, A). Let ¢(S)
denote the number of components of G del S which contain an odd number
of nodes.

Corollary 7.2 (Tutte) G = (N, A) contains a complete matching if and
only if there does not exist an S < N such that ¢(S) > |S].

proor  The proof is left to the reader as an exercise./

Theorem 7.1 also enables us to prove a max-min duality theorem
for nonbipartite matching, just as the Konig-Egervary Theorern could be
used to prove Gross's max-min duality theorem in the bipartite case.

Let H,_, denote any graph obtained from G by contracting odd
sets of three or more nodes and deleting single nodes, where the capacity
of the family of odd sets (not necessarily a cover of G) is k -- 1. Let X,
denote any matching containing k arcs. Each arc (i, j) has a weight w;;.

Theorem 7.3

(i, j)eHe_y}.

proor  Let Xf be max-min optimal, with respect to matchings with k
arcs. Let (p, q) € X, be such that

maxmin {w;|(i, j)€ X,} = min max {w;;
Xi H,

k-1

Wp, = Min {wy|(i, j)e X§},
where the weights of the arcs are assumed to be distinct. Let G¥_ | contain
al arcs (i, /) such that w;; > w,,. Clearly a maximum cardinality matching
in G} | contains at most k — 1 arcs, and G, can be covered by an odd-set
cover with capacity k - 1. Appropriate contraction and deletion operations

with respect to this odd-set cover of Gf_yieldsan H,_ such that

Wpg = MaxX {Wij|(isj)EHk—l}'//
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PROBLEMS

71 Prove the assertion that the maximum cardinality of a matching cannot exceed
the minimum capacity of an odd-set cover.
7.2 Prove Corollary 7.2.

8

Linear Programming Formulation of
Weighted Matching Problem

The matching duality theorem gives an indication of how the matching
problem should be formulated as a linear programming problem. That
is, the theorem suggests a set of linear inequalities which are satisfied by
any matching, and it is anticipated that these inequalities describe a convex
polyhedron with integer vertices corresponding to feasible matchings.

Let x;=1 ifarc (i, j) is chosen for the matching

= 0 otherwise.

Let R, be any set of 2r, + 1 nodes. Then it is clear that the inequality

Z Z Xij < rk
ieR; jeRy
must be satisfied by any matching. We represent the set of all possible con-
straints of this form by
Rx <,

where R denotes the incidence matrix of odd sets of nodes vs. arcs. That is,
the kth row of R isthe incidence vector of R, ; when necessary, we also denote
this incidence vector by R,. The vector r = {(r,, r,, ., r,) is such that
}Rkl = 2r, + 1, r, is the capacity of the set R,.

Let us proceed to investigate the linear programming problem

maximize
wX
et to
Ax <1,
Rx <,

x =2 0,
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where, as before, A is the node vs. arc incidence matrix of the graph for
which the matching is to be computed, and the vector w represents the
weights on the arcs.

We know, from Edmonds' theorem, that the linear programming
problem yields an integer solution for the case of unit weights, ie., the
cardinality problem. However, it has not been established that it yields an
integer solution in the more general case. We will prove that it does, by
developing a procedure that computes an integer prima solution and an
orthogonal dual solution for any given set of arc weights.

The dua to the linear programming problem above is

minimize
Z Ui + 2 FiZk
i k

subject to
Au+ Rz 2w,
u,z=20.

The dual variables u; and z, are identified with node i and the odd set of
nodes R,, respectively.

Orthogonality conditions which are necessary and sufficient for
the optimality of prima and dua solutions are

x>0 = u+ u+ Y o= wy (8.1)
Ri2((.7)

>0=) x;=1, (8.2)

2> 0= Ryx=rp. (8.3)

As in the bipartite case, the computational procedure maintains
primal and dual feasibility at dl times, and in addition maintains satis-
faction of al orthogondity conditions, except conditions (8.2). The number
of such unsatisfied conditions, i.e, the number of exposed nodes i for which
u; is strictly positive, is decreased monotonically during the course of the
computation.

The computation is begun with the feasible matching X = @& and
with the feasible dual solution

u, = W, for al i,
7z, =0, forallk,
where W is suitably large, say

W= %m?x {wi;}.
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These initial primal and dual solutions clearly satisfy al of the conditions
(8.1) and (8.3}, but not the conditions (8.2).

At the general step of the procedure, X is feasible, all conditions
(8.1) and (8.3) are satisfied, but some of the conditions (8.2) are not. One then
tries, in effect, to find an augmenting path within the subgraph obtained
by shrinking al blossoms k for which z, > 0 and from which al arcs (i, j)
are deleted for which u; + u; + Y z; > w;;.

If an augmenting path is found, it extends between two exposed
nodes i andj for which u; = u; > 0. Thus, after augmentation of the match-
ing two less of the conditions (8.2) fail to be satisfied. Changes in the match-
ing within each of the shrunken blossoms are such that the matching
continues to be maximal within each blossom. Thus, each of the conditions
(8.3) continues to be satisfied after augmentation. Because the augmenting
path involves only arcs (i, j) for which u; + u; + ) z, = w;, al of the
conditions (8.1) continue to be satisfied.

If augmentation is not possible, then an appropriate value ¢ > 0
is chosen, and the following changes are made in the dua variables. For
each node | with an S-label and each node i contained within an outermost
blossom whose pseudonode is given a S-label, & is subtracted from u;.
For each node i with an T-label and each node ; contained within an outer-
most blossom whose pseudonode is given a T-label, ¢ is added to u;. For
each outermost blossom k whose pseudonode is given an Slabel, 26 is
added to z,, and for each outermost blossom k whose pseudonode is given
a T-label, 26 is subtracted from z,.

If an arc (i, j) is contained within a blossom there is no effect at all
onu;+u;+ Y z caused by the changes in the values of the dual variables.
But if i is given an S-label or i is contained within an outermost blossom
whose pseudonode has an S-label and j is unlabeled, then the net effect
is -6. Other cases are indicated in Figure 6.14. As before, square boxes
are used to represent pseudonodes.

Recall that in the case of bipartite matching there were two con-
straints on the maximum value of 6. First, for all S-nodes i, it was required
that u;, = § = 0. Second for each arc (i, j) where i was a labeled S-node
and j an unlabeled T-node, it was required that (¥; = ) + v; = w;;. Now
there are no less than the following four constraints:

(84) If i is a node with an S-label or is contained within an outermost
blossom whose pseudonode has an S-label, it is required that u; — 6 = 0.
(85 If (i, j) is an arc such that both i and j either have S-labels or are
contained within different outermost blossoms whose pseudonodes have
S-labels, it is required that

(ui - 5) + (Ul s 5}2 W”



Linear Programming Formulation of Weighted Matching Problem 245

Nodes
and pseudonodes
in trees

Nodes

and pseudonodes
not in trees

Figure 6.14  Effect of change in dual variables

(8.6) If the pseudonode for an outermost blossom k has a T-label,
then it is required that
Zk - 26 > 0.

(8.7) If (i, j) isan arc such that i is a node with an S-label or is contained
within an outermost blossom whose pseudonode has an S-label, whereas
node j is either unlabeled or contained within an outermost blossom
whose pseudonode is unlabeled, then it is required that

(u,~ — 6) + Mj > WU

Suppose é is chosen to be as large as possible subject to conditions
(8.4) through (8.7). If condition (8.4) is controlling, then the new dual solu-
tions is such that all of the conditions (8.2) are satisfied. Both the primal
and dual solutions are optimal, and a maximum matching has been ob-
tained. (Recall that uniform initial values were chosen for the u; variables.
Hence the same minimum value of u; exists at each exposed node i.)
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If condition (8.5) is controlling, then either an augmenting path
can be found or a new blossom formed. If condition (8.6) is controlling,
an outermost blossom can be expanded (unshrunk). If condition (8.7)
is controlling, at least one new arc can be added to one of the alternating
trees.

We can now outline the algorithm as follows:

SUMMARY OF WEIGHTED MATCHING ALGORITHM

Step 0 (Stat) Stat with X = f and u; = § max {w;} as primal and
dual solutions.

Step / (Labeling) Root an alternating tree at each exposed node, and
proceed to construct alternating trees by labeling, using only arcs (i, j)
for which

up + ou; + >_‘ Zp = W

If an augmenting path is found, go to Step 2. If a blossom is formed, go to
Step 3. If the trees become Hungarian, go to Step 4.

Step 2 (Augmentation) Find the augmenting path, tracing the path
through shrunken blossoms. Augment the matching, remove al labels
from nodes and pseudonodes, and return to Step 1.

Step 3 (Blossoming) Identify the blossom and shrink it in the graph.
The pseudonode representing the blossom receives an S-label, and its
z-variable is set to zero. Return to Step 1.

Step 4 (Change in Dual Variables) Determine the maximum vaue of
¢, according to conditions (8.4) through (8.7), and make the appropriate
changes in the dua variables. If condition (8.4) is controlling, halt; the
matching and the dual solution are optimal. Otherwise, expand outermost
blossoms for which z, = 0 and return to Step 1. //

PROBLEMS

81 Using the linear programming formulation of the weighted matching problem
as a guide, obtain a linear programming formulation of the symmetric matching
problem. Start with the problem

maximize

LW X
ij
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subject to
Y x;=1
i

Yxi <1

x; =0 orl

Wha linear inequality congtraints must be added to insure that there exidts
an optimal solution in integers when each x;; is simply required to be non-
negative?

82 Show that each successve augmentation yidds a maching which is of maxi-
mum weight relative to all other matchings with the same number of arcs.
(Consider the addition of aconstraint of theform Y, ; x;, = k into the linear
programming  formulation, and the role of the dud vaiable identified with this
constraint.)

9

An O(n*) Weighted Matching Algorithm

We now consider the implementation of the weighted matching #algorithm
outlined in the previous section. In this section we detail only those features
which are necessary to attain O(n*) running time. In the next section we

shall describe additional elaborations necessary to reduce the complexity
to 0(n’).

RECORDING OF BLOSSOMS

The management of blossoms is much rnore involved than in tlhe case of
cardinality matching. It is not sufficient to record only the outermost blos-
soms. When an outermost blossom is expanded, it is necessary to know
which blossoms are nested immediately within it, so that these blossoms
can be restored to the status of outermost blossoms. When augmentation
occurs, blossoms with strictly positive dual variables must be maintained
for use in the next application of the labeling procedure.

It follows that it is necessary to maintain an explicit record of al
blossoms, their base nodes, and their nesting relationships. It seems un-
necessary to specify the exact form in which these records are to be main-
tained. A variety of data structures are appropriate. It is necessary only
that the reader be convinced that the necessary record-keeping tasks can
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be accomplished in a manner consistent with the asserted complexity esti-
mates.

As before, we identify the base node of the outermost blossom in
which a given node i is contained by b(i). Nested blossoms may have the
same base node (hence blossoms are not uniquely identified by their base
nodes), but two distinct outermost blossoms cannot have the same base.

For brevity, we call anode i abase nodeif b(i) = i. even though such
a node may not be contained within a blossorn. Similarly, we may speak
of “nodes contained in the same outermost blossom as ;" even though
i isnot in ablossom. In this case, we refer only to the node i itself.

TYPES OF BLOSSOMS

In cardinality matching only outermost blossoms are of consequence, and
the base nodes of these blossoms have S-labels but not T-labels. There are
now four distinct types of blossoms:;

(1) Unlabeled blossoms, corresponding to unlabeled pseudonodes. The
base node has no label. The blossom is outermost, and its dual variable

is strictly positive.

(2) S-blossoms, corresponding to S-labeled pseudonodes. The base node
has an S-label, but not a T-label. The blossom is outermost, and its dual

variable may be either zero or positive.

(3) T-blossoms, corresponding to T-labeled pseudonodes. The base node
has a T-label, but not an S-label. The blossom is outermost, and its dual
variable is strictly positive.

(4 Inner blossoms, corresponding to pseudonodes shrunken inside
pseudonodes. The base node may have both an S-label and a T-label
and the dual variable is strictly positive.

LABELING OF T-BLOSSOMS

Suppose the S-label on node i is scanned and an arc (i, j)¢ X is found,
where u; + u;  w; =0, b() # b(i), b(G) #j, and b(j) is unlabeled. In
this situation, j is contained in an unlabeled blossom which should receive
a T-label from i. Accordingly, we apply the label “T:i, j” to b(j), where
this label has exactly the same interpretation as in Section 6.

For ease of description, we shall place the label “T:i, j~ on node
b(j), even when b(j )= j. This is harmless, the second index being ignored
in backtracing.
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CORRECTION OF LABELS FOLLOWING AUGMENTATION

After each augmentation, blossoms must be retained for use in the next
application of the labeling procedure. We also wish to retain labels on nodes
within blossoms. But the labels on nodes through which the augmenting
path passes are no longer valid, and must be corrected.

We carry out this task as follows. First, identify all the blossoms
(not just the outermost ones) through which the augmenting path passes.
For each blossom, find its new base node. (The augmenting path extends
between the old base node and the new base node of each blossom through
which it passes.)

For al nodes in the augmenting path which are neither new base
nodes nor old base nodes, simply interchange the indices of the labels.
That is, if the labels on such a node are “S: i and “T: j,” the new labels are
“s:0”and “T:i

For a node b that is a new base node, find the innermost blossom
in which it is contained and the old base node b’ of this. blossom. Find arcs

(b. iy and (b'. ) of the augmenting path, where i, j are not contained in the
blossom. The new labels for b are“S: i and “T: j, b'.”

Figure 6.15 Augmenting path passing through blossoms
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F'or anode b’ that is an old base node, find the innermost blossom
in which it is contained, and the new base node b of this blossom. If b = b/,
simply interchange the indices of the labels on §'. Otherwise, backtrace
from the (old) T-label on b, to discover an arc (b, j)¢ X, where j is in the
blossom. Let (b, i} be the arc of the augmenting path, where i isin the blos-
som, incident to b’. The new labels for b are “S:i” and “T: j.”

An example of the effect of the label correction procedure is shown
in Figures 6.15 and 6.16. An augmenting path, extends between nodes 1
and 10 in Figures 6.15. After augmentation and correction of labels, the
labels on nodes within the outermost blossom are as shown in Figure 6.16.

It should be clear that the procedure requires no more than O (n?)
running time, which is al that is required to attain the overal level of
complexity of O(n?) asserted for the algorithm developed in the next section.

A-VARIABLE

A variable A is introduced and updated by the labeling procedure. This
variable is to indicate the maximum value of § which can be chosen. con-
sistent with conditions (8.5) and (8.7)

Figure 6.16 Corrected labels after augmentation
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Finally we should note that, for conciseness, w;; is used to represent
u; + u; = w;;. Each time w; is referred to in the computation, the values
of u;, u;, and wy; are found and w;; = u; + u; = w;; is computed. The -values
of w;; are not maJ ntained in storage else they would all have to be recom-
puted with each revision of the dual solution, defeating the O(n®) com-
plexity estimate sought in the next section.

0 (n*) WEIGHTED MATCHING ALGORITHM

Step 0 (Start) The graph G = (N. A) is given, with a weight w;; for each
arc (i, j). Set u; = ymax {w,;}, for each node ie N. Set A = +rc Set
X = . There are no blossoms and no nodes are labeled.

Step | (Labeling)

(L0) Apply thelabel “S: & to each exposed node.

(1.2) If there are no unscanned labels, go to Step 4. Otherwise, find
a node i with an unscanned label. If the label is an S-label, go to Step 1.2;
if itisaT-label, go to Step 1.3.

(12)  Scan the S-label on node i by carrying out the following procedure
for each arc (i, }) ¢ X incident to node i:

If b(i) = b(j), do nothing; otherwise continue.

If node b(j) has an S-label and w;; = 0. backtrace from the §-
labels on nodes i and j. If different root nodes are reached, go to Step 2;
if the same root node is reached, go to Step 3.

If node b (j ) has an S-label and #;; > 0, set A = min {A, Wi | .

If node b(j) is unlabeled and w;; = O, apply the label “7T:i, j"
to b(j).

If node b(j) is unlabeled and wy; > 0, set A = min {A, W;, .

When the scanning of node i is complete, return to Step 1.1.

(13) Scan the T-label on node i by carrying out the following procedure
for the unique arc (i, j) € X incident to node i.

If b(i) = b(j), do nothing; otherwise continue.

If node j has a T-label, backtrace from the T-labels on nodes i and
j. If different root nodes are reached, go to Step 2; if the same root node
is reached, go to Step 3.

Otherwise, give node j the label “S:i.” The S-labels on all nodes
within the outermost blossom with base node j are now considered to
be unscanned.

Return to Step 1.1.

Step 2 (Augmentation) An augmenting path has been found in Step 1.2
or 1.3. Augment the matching X. Correct labels on nodes in the augmenting
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path, as described in the text. Expand blossoms with zero dual variables,
resetting the blossom numbers b(i). Remove labels from a.11 base nodes.
Remaining labels are set to “scanned” state. Set A = + . Go to Step 1.0.

Step 3 (Blossoming) A blossom has been formed in Step 1.2 or 1.3.
Determine the membership and base node of the new blossom, as described
in the text. Supply missing labels for all nodes, except the base node, in
the new blossom. Reset blossom numbers. Set the z-variable to zero for the
new blossom.

Return to Step 1.2 or 1.3, as appropriate.

Sep4  (Revision of Dual Solution) Let K¢ denote the set of S-blossoms
and K ; denote the set of T-blossoms.

Find

dy = min {u,},

9, = jmin {z|ke Kr},

4 = min {d,, §,, A}.
Set u; = u; — ¢, for each node i such that b(i) has an S-label.
Set y; = u; + 6, for each node i such that b(i) has a T-label.
Set z;, = z; — 26, for each blossom k € K.

Set z, = z;, + 26, for each blossom k ¢ Kj.

If = 4,, halt; X is a maximum weight matching, and the values of
u;, z, yield an optimal dual solution.

If 6= 6,, expand each T-blossom k for which z, = O by determining
the blossoms nested immediately within the T-blossom and resetting b(i)
for all nodes within the blossom. Remove labels from all new base nodes
within the expanded blossom.

All labels on base nodes, and S-labels on nodes within S-blossoms,
are now “unscanned.” Remaining labels are in a “scanned” state.

SetA = + .

Return to Step 1.1. //

10
An O (n*) Weighted Matching Algortihm

Several features must be added to the algorithm presented in the previous
section, in order to reduce its complexity to 0 (). Each of these features
has as its objective the avoidance of rescanning labels after revision of the
dual solution.
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There are three reasons why labels must be rescanned in the 0(n?)
algorithm :

(1) T-labels Suppose Ww;; is reduced to zero for an arc (i. j) ¢ X, where
i has an S-label and h(j) is unlabeled. Rescanning the S-label on node i
results in the application of a T-label to b(j).

(2) Augmenting paths and blossoms Suppose W;; is reduced to zero for
an arc (i, J) ¢ X, where both i and j have S-labels. Rescanning the S-label
on either i or j results in the discovery of either an augmenting path or

anew blossom.

(3) Expansion of T-blossoms Suppose a T-blossom is expanded be-
cause its z-variable is reduced to zero. Rescanning the S-labels, on nodes
adjacent to the expanded blossom may result in the labeling of nodes
and blossoms contained within the expanded blossom.

These three situations are provided for by the introduction of special
variables m;, y;, and 1; and two arrays C(i, j) and t(i), as described in the
following. The variable A is dispensed with.

7; VARIABLES

The role of the 7, variables is exactly tlhe same as in bipartite matching.
Suppose the S-label on node i is scanned, and an arc (i, j) ¢ X is found,
where b(i) # b(j) and b(j) has no S-label. Then if W; < m,;, the label
T:i, ] is applied to node b(j), and my; is set to wy;.

In other words, if m; > 0, then the T-label on node i is “undeserved.”
The value of 7; indicates the value of ¢ by which the dual solution must be
revised, in order for the T-label on node i to become “deserved.” The T-label
on node i is scanned only if x; = 0.

7: VARIABLES, C (i, j) ARRAY

Let us cal an arc (i, j) ¢ X critical if i and j are contained in different S-
blossoms. Such an arc is found in the course of scanning the S-label on i
orj. If W= w;+ u; = w; = 0, either an augmenting, path has been dis-
covered or a new blossom formed. On the other hand, if w;; > 0, a later
revision of the dual variables may reduce w;; to zero, and access to arc (i, j)
is needed at that time.

Critical arcs can be recovered by rescanning al S-labels after each
revision of the dual variables. But, as we know, this technique causes the
agorithm to be O(n*) in complexity. Clearly another strategy is called for.

We associate a variable y; with each node i. For each base node i,

y; indicates the minimum value of w,,, for any critical arc (p, g) extending
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between the S-blossom containing i and any other S-blossom (or S-labeled
base node). The variable v, is continually updated by the labeling and blos-
soming procedures.

When the dual solution is revised, y; is reduced by 26. (The u-variable
at each end of a critical arc is decreased by 4.) If y; becomes zero at a base
node i, then we recover the critical arc which yields either an augmenting
path or a new blossom by utilizing an array C(i. j) of critical arcs which is
maintained for this purpose.

For each pair of base nodes i andj, C(i, j) is a critica arc (p, q)
extending between the S-blossoms containing i and j, and W,, is minima
with respect to all such arcs. When y; = 0 for base node i. the desired critical
arc can be found by retrieving al arcs C(i, j) = (p, ¢), where i is fixed and
j ranges over all other base nodes, and evaluating w,, for each such arc.
(If C(. j) does not exist, denoted C(i, ) = &, then w,, = +oo.) For at
least one of these arcs (p, ¢), it must be the case that w,, = 0. Recovering
this arc requires O(n) running time.

Initially, and after each augmentation, y; = + o and C(i, j) = .
Updating is performed by the labeling procedure as follows. Suppose the
S-label on node i is scanned and an arc (i, j)¢ X is found, where #;; > 0,
b(i) # b(j),and b(j) has an S-label. Set

Yoy = MIN {Vpys 795}

Togy = TN {35, 3 W)
Find C(b(i), b(j)) = (p, 9) and evaluate w,,. If w; < W, then set
C(b(i), b(j)) = (@i j). (The array is symmetric; we assume resetting C(i, j)
also resetsC(J, i).)

Now suppose a new blossom is formed. with base node b. Let I
denote the set of (old) base nodes which are to be contained in this blossom,
and let J be the complementary set of base nodes. We must revise y, and
C(b, j), foreach je J. (y;.for je J, and C(i, j) for al pairsi, je J areun-
changed.) Thisis done as follows.

For each j € J, findanarc C( i,j ) = (p', ¢') for which

Wyg = miln (W CU.J) = (p, @)}, (10.1)
and set C(b,j) =(p,q'). Then set
76 = mbn {qu.(j(b,J) = (p’ Q)}
Jje
At first glance, it might appear that this procedure causes us trouble
in attaining the desired degree of complexity for the algorithm. The revision
of C(b, j) by (10.1) requires O(n*) running time for any single blossom,

and 0 (n") blossoms may be formed overall, seeming to imply O (#*) r unning
time for the algorithm. This is not, however th.e case, as we shall show.
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Suppose |I| = k. |J|= k. Then k,k, node pairs i, j enter into the
evauation of (10.1) for dl j € J, and the evaluation is O(k,k,) in complexity.
At least (k, — 1) k, of these pairs can never enter into any later evaluation
of (10.1). (That is, not until after the next augmentation.) Also k, > 3.
It follows that for every three node pairs entering into the evaluation of
(10.1), at least two other node pairs will not enter into any later evaluation.
The total number of node pairs is less than 4i?,hence the total number of
node pairs processed by (10.1) between augmentations is bounded by

nf+ i+ fnt+ .
which is O(n?). The total running time attributable to (10.1) between aug-
mentations is thus O(n?) or O(n*) overall. The other operations involved
in maintaining the variables y; or array C(j, j) are easily seen to have equal
or less complexity.

7; VARIABLES, t(/) ARRAY

When the z-variable identified with a T-blossom is reduced to zero, that
blossom must be expanded. Any blossoms immediately within the blossom
now become outermost blossoms, and the base number b(i) for each node
i within the blossom must be reset accordingly.

We must now take care that the base nodes of the new outermost
blossoms have correct labels. This task is complicated by the fact that
certain of these new base nodes would have been entitled to receive T-labels
from the scanning of S-labels on nodes outside the expanded blossom,
except that at the time those S-labels were scanned, the base nodes were
contained within the now expanded blossom. If we were to rescan all exist-
ing S-labels, the appropriate T-labels would now be applied. However,
this would not enable us to achieve the desired degree of complexity for
the agorithm.

We resolve this problem by providing a variable 7, and an index
t(i) for each node i. At the beginning of the labeling procedure. t;, =+ o
and t(i) is undefined. Thereafter, suppose the S-label on node i is scanned,
an arc (i, j)¢ X is found to exist, b(i) = b(j), and b(j) has no S-label.
We compare w;; with 7. If w; < 1;, we set 1; = w;; and t(j) = i. Then,
when a T-blossom is expanded, we perform the following operations. First,
any existing labels are removed from the base nodes of the new outermost
blossoms. Then, for each new outermost blossom, we find the minimum
of 7; over al nodes j within the blossom. Suppose 7; = min t; and t(k) = i.
Then the label “T: i, k™ is applied to the base node b (k) and Ty, is set to 7.

Each time a change in 6 is made in the dual variables, 7, is reduced
by ¢ for each node i within an unlabeled blossom and is unchanged for
each node within a T-blossom.
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O (n3) WEIGHTED MATCHING ALGORITHM

Step O (Start) The graph G = (N, A) is given, with a weight w; for
each arc (i, j). Let W = § max {w;}. Setu, =W y,=mn=r1=+c0ad
b(i) = i for each node i e N. For each node pair i, j set C(i,] ) = . Set
X = (. There are no blossoms and no nodes are |abeled.

Step | (Labeling)

(10 Apply the label “S: " to each exposed node.
(1.1) If there is no node i with an unscanned S-label or an unscanned
T-label with m, = 0. go to Step 4. Otherwise, find such a node i If the
label is an S-label, go to Step 1.2; if it is a T-label, go to Step 1.3.
(1.2) Scan the S-label on node i by carrying out the following procedure
for each arc (i, ) ¢ X incident to nodei :

Ifb(i) = b(j), do nothing; otherwise continue.

If node b(j) has an S-label and w;; = 0, backtrace from the §-
labels on nodes i and j. If different root nodes are reached, go to Step 2;
if the same root node is reached, go to Step 3.

If node b(j) has an S-label and w;; > O, then carry out the follow-
ing procedure. Set

. . 1=
Toy = D {yy, 3W;
. 1
Yoy = TN {Vpgy 39,5}

Find C(b(i), b()) = (p, a). If W;; < W, then set C(b(i), b@)) = (i, J).

If node b(j) has no S-label and W;; < m,;, then apply the label
“T:i, j"to b(), replacing any existing T-label, and set m,;, = ;.

If node b(j) has no S-label and w;; < t;, then set 1, = w;; and set
f(G) = i.

When the scanning of node i is complete, return to Step 1.1.
(L3)  Scan the T-label on node i (where z; = 0) by carrying out the follow-
ing procedure for the unique arc (i, j) € X incident to node i.

If b(i) = b(j), do nothing; otherwise continue.

If node j has a T-label and =; = O, backtrace from the T-labels
on nodes i and j. If different root nodes are reached, go to Step 2; if the

same root node is reached, go to Step 3.
Otherwise, give node j the label “S:i" The S-labels on all nodes

within the outermost blossom with base node j are now ‘considered to

be unscanned.
Return to Step 1.1.

Step 2 (Augmentation) An augmenting path has been found in Step 1.2,
1.3, or 4.2. Augment the matching X Correct labels on nodes in the aug-
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menting path, as described in the text. Expand blossoms with zero dual
variables, resetting the blossom numbers. Remove labels from all base
nodes. The remaining labels are set to the “scanned” state. Set y;, = «; =
1, = +oc, fordl i, and C(i, j) = &, for dl i, j. Go to Step 1.0.

Step3 (Blossoming) A blossom has been formed in Step 1.2, 1.3, or 4.2.
Determine the membership and base node of the new blossom, as described
in the text. Supply the missing labels for all nodes, except the base node,
in the new blossom. Reset the blossom numbers. Set the z-variable 1.0 zero
for the new blossom.

Let b be the base node of the new blossom, and | be the set of (old)
base nodes contained in the blossom. Let J be the complementary set of
base nodes. For each j e J, find arc C(i, j) = (o', g'). for which

My = min {Woa| CG.J) = (0, @)}
and set C(h,j) = (p’, q°). Then set

J

b = iJn {qu|c(b’j)= (P,Q)}
Return to Step 1.2, 1.3, or 4.2, as appropriate.

Step 4 (Revision of Dual Solution)

(4.1) Let Ky denote the set of S-blossoms and K, denote the set of
T-blossoms, i.e., outermost blossoms whose base nodes b have T-labels

with 7, = 0.
Find
51 = mln {ui}
62: % mln {Zk|kEKT}
6y = min {m|m; > 0)
5 = m|n {51, é'z, 53, 54}

Set y; = u; = 6, for each node i such that b(i) has an S-label.

Set y; = u; + 9, for each node i such that b(i) has a T-label and
iy = 0.

Set y; = y; = 26, for each node i such that b(i) = i.

Set 7;= 7, = 4, if m; > 0.

Set 1, = 1; — o, for each node i such that n, > 0.

Set z, = z, — 26, for each blossom k € K.

Set z; = z + 26, for each blossom k € K.

If 6= 46, hat; X is a maximum weight matching, and the values
of u, z, yield an optimal solution.
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If 0 = §,, carry out the following procedure to expand each
T-blossom k for which z, = 0. Determine the blossoms nested immediately
within the T-blossom and reset b(i) for all nodes within the blossom.
Remove labels from all new base nodes within the blossom. For each
new base node b, find

T, = min {t;]b(j) = b},

and if 7; < 40, apply the (unscanned) label “T:t(i), i” to b and set
m, = 1,. Remaining labels on nodes within the blossom are in a “scanned”
state.

@2 If y, > 0, for al base nodes b, go to Step 1.1. Otherwise, find a
base node b for which y, = 0 and a base node b’ such that w;; = 0 for
(i,j) = C(b, b'). Backtrace from the S-labels on i and j. If different root
nodes are reached, go to Step 2. If the same root node is reached, go to
Step 3, later returning to Step 4.2. //

We can now verify the complexity estimate of O{n*) for the algorithm.
For simplicity, let us estimate running time between each of the O(n)
augmentations, and show that this is Q(n?).

The scanning operations performed in Step 1, exclusive of back-
tracing, are O(n) for each label scanned. At most ‘two labels are scanned for
each node, hence labeling and scanning account for Q(n?) running time.
(Note that new labels applied to new base nodes created by the expansion
of T-blossoms replace T-labels that are in a “scanned” state, but which have
not been scanned since the previous augmentation.)

The correction of labels following augmentation requires O(n?)
running time.

At most n/2 blossoms are formed, and the backtracing and labeling
operations are O(n) in complexity. The revision of 7, and C(i, j) requires
0 (n?) running time per augmentation, as shown previously. Hence blossom-
ing operations require O (n?) running time.

There can be at most O(n) revisions of the dual solution. (Each change
in the dual variables results either in a new T-label with z; = 0. in the forma-
tion of a new S-blossom, the expansion of a T-blossom, in the discovery
of an augmenting path, or in termination of the computation. None of these
things can occur more than O(n) times.) All operations that are required
for each revison of the dual solution are O(n), except for those which are
0 (n?) overall between augmentations, e.g., expansion of T-blossoms.

We thus conclude that the algorithm is indeed O (xn®) in complexity.

PROBLEM

101 Using the weighted matching algorithm as a guide, write out a procedure
for max-min matching, parallel to that in Chapter 5, Section 7.
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11

The Chinese Postman s Problem

Recall the statement of the Chinese Postman’s Problem given in Section 2.
The problem is to find a minimum length closed path, with repeated arcs
as necessary, which contains each arc of a given undirected network.

We assume that the network is connected and that all arc lengths
are nonnegative. If the degree of each node is even, then the network is
Eulerian and the solution is simply an Euler path. (See Chapter 2, Section 9.)
Such a path, which contains each arc exactly once, is certainly as short as
any closed path which contains each arc at least once.

Now suppose that the network G is not Eulerian. Consider any
feasible closed path, and use it to construct a network G*, where G* has
the same nodes as G, and as many copies of an arc (i, j) as the arc (i, j)
appears in the path. The graph G* (or “multi-graph,” since it has multiple
arcs) is Eulerian. Also, if the path is optimal then no arc (i, j) appears in
G* no more than twice. (Why?) This means, of course, that it is unnecessary
for the postman to traverse any street more than twice.

These observations enable us to reformulate the Postman’s problem.
as follows. Given a connected network G, where each arc is assigned a
nonnegative length, find in the graph a set of arcs of minimum total length.
such that when these arcs are duplicated, the degree of each node becomes
even. That is, find a set of arcs such that an odd number of arcs in the set
meets each odd-degree node and an even number in the set meets each
even-degree node.

One possible solution method is to start with any given feasible solu-
tion, and then to make successive improvements in it through the modifi-
cation of arc weights and the discovery of negative cycles, described as
follows. This was the technique originally proposed by Mei-ko Kwan.

Consider, for example, the network shown in Figure 6.17a. It has
four odd-nodes: 1, 2, 4, and 5. A feasible set of arcs for duplication is the
set {(1,3),(3,4),(2,3),(3,5)}. Now a new network is constructed., exactly
like the original, except that each of the arcs which we propose to duplicate
is given the negative of its origina length, as shown in Figure 6.17b. If
this new network contains a negative cycle, such a cycle can be used to
improve the solution. All we have to do is work our way around the cycle,
duplicating each arc which was previously not duplicated, and unduplicat-
ing each edge which was. Without much difficulty, we can show that the
converse is also true, and thereby establish an “augmenting path” theorem:
The duplicated arcs have minimum length if and only if there is no negative
cycle.

The only trouble with these observations, as Edmonds pointed
out, is that it is not apparent how one should detect negative cycles in an
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Network with duplicated arcs and discovery of negative cycle

Figure 6.17

undirected network. The ordinary shortest path computations do not
apply to undirected networks in which some arcs have negative length.

And any apparent process of enumeration involves a lengthy computation.
By contrast, Edmonds solution of the Chinese Postman's Problem

is O(n®). It employs both shortest path and weighted matching computa-
tions as subroutines, and proceeds asfollows :
ALGORITHM FOR CHINESE POSTMAN'S PROBLEM

Step | (Identification of Odd Nodes) ldentify the nodes of odd degree
in the graph G. If there are none, go to Step 4.
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Step 2 (Shortest Paths) Compute the shortest paths between all pairs
of odd-nodes.

Step 3 (Weighted Matching) Partition the odd-nodes into pairs, so that
the sum of the lengths of the shortest paths joining the pairs is minimal. Do
this by solving a weighted matching problem over the complete graph G
whose nodes are the odd-nodes of the network, and in which w;;, the weight
of arc (i, j), is given by the relation

wy = M - a

where g;; is the length of a shortest path between i and j, and M is a large
number. (Note that there is a complete matching in a. complete graph with

an even number of nodes.) The arcs of G in the paths identified with arcs

of the matching are arcs which should be traversed twice. Duplicate these
arcsin G.

Step 4 (Construction of Tour) Use any efficient procedure to construct
an Euler pathin G. / /

PROBLEMS

111 Apply Edmonds’ algorithm to the network shown in Figureé.17a.

112 Show that no arc can appear in more than one of the shortest paths picked
out by an optimal solution to the matching problem in Step 3 of the algo-
rithm.

11.3 Formulate the Postman’s Problem for directed networks, and show that
it can be solved by network flow techniques. What do you suppose can be
done for the case of a “mixed” graph., ie., one in which some arcs are directed
and some are undirected?

114  Suppose that the length of an arc is a function of the number of times it has
been traversed. Does this change the formulation and solution of the prob-
lem? Does it change the directed version of the problem?

115 Devise a procedure to detect a negative cycle in an undirected, arc-weighted
graph.
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SEVEN

Matroids and the
Greedy Algorithm

1

Introduction

Matroid theory was founded by Hassler Whitney in 1935 as a product of
his investigations of the algebraic theory of linear dependence. This theory
has since been found to have ramifications in graph theory, lattice theory,
projective geometry, electrical network theory, switching theory, and linear
programming. In particular, Jack Edmonds has been responsible for point-
ing out the siginficance of matroid theory to combinatorial optimization
and has provided many pioneering results.

Our abjective in this book is simply to present those basic defini-
tions and theorems of matroid theory which have most immediate applica-
tion in the area of combinatorial optimization. Specifically, we shall try
to show how matroid theory provides an interesting and potentially powerful
generalization of network flow theory.

In this chapter we concentrate on rnatroid problems which can be
solved by the simple and elegant approach known as the “greedy” algorithm.
In the following chapter we present more elaborate, but computational-

264
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ly efficient, algorithms for more complex matroid problems. Included among
these are the partitioning algorithm of Edmonds and the cardinality inter-
section and weighted intersection algorithms of the present author.

2

Three Apparently Unrelated Optimization Problems

Let us consider three problems which at first glance seem to have very
little in common except for their solution procedures.

A “SEMIMATCHING” PROBLEM

Let W = (w;;) be an m x n nonnegative matrix. Suppose we wish to choose
a maximum weight subset of elements, subject to the constraint that no
two elements are from the same row of the matrix. Or, in other words, the
problem is to
maximize
2 WijXij
ij
subject to
Z)C--<1 (i::1,2,.,m)
J

Xij =

x;€ 10, 1}.

This “semimatching” problem can be solved by choosing the largest
element in each row of W. Or dternatively: choose the elements one at a
time in order of size, largest first, rejecting an element only if an element
in the same row has already been chosen. For example, let

4(6) 4 5
6

92
2 3 (3
@l

The elements chosen by the algorithm are encircled.

2
w= |1
3

A SEQUENCING PROBLEM

A number of jobs are to be processed by a single machine. All jobs require
the same processing time, e.g., one hour. Each job j has assigned to it a dead-
line d;, and a penalty w;, which must be paid if the job is not completed by
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its deadline. What ordering of the jobs minimizes the total penalty costs?

It is easily seen that there exists an optimal sequence in which all
jobs completed on time appear at the beginning of the sequence in order
of deadlines, earliest deadline first. The late jobs follow, in arbitrary order.
Thus, the problem is to choose an optimal set of jobs which can be completed
on time. The following procedure can he shown to accomplish that objective.

Choose the jobs one at a time in order of penalties, largest first,
rejecting ¢ job only jf its choice would mean that it, or one of the jobs already
chosen, cannot be completed on time. (This requires checking to see that the
total amount of processing to be completed by a particular deadline does
not exceed the deadline in question.)

For example, consider the set of jobs below, where the processing
time of each job is one hour, and deadlines are expressed in hours of elapsed
time.

Job Deadline Penalty
i d; w;

| 10

=

2 1 9
3 3 7
4 2 6
5 3 4
6 6 2

Job 1 is chosen, but job 2 is discarded because the two together
require two hours of processing time: and the deadline for job 2 is at the
end of the first hour. Jobs 3 and 4 are chosen, job 5 is discarded, and job 6
is chosen. An optimal sequence is jobs 1, 4, 3, and 6, followed by the late
jobs 2 and 5.

THE MAXIMAL SPANNING TREE PROBLEM

A television network wishes to lease video links so that its stations in various
cities can be formed into a connected network. Each link (i, j) has a dif-
ferent rental cost g;;. How can the network be constructed with minimum
total  cost'?

Clearly, what is wanted is a rninimum cost spanning tree of video
links. In order to turn this into a maximization problem, replace g;; by
a weight w;; = N - q;;, where N is a large number, and find a maximum
weight spanning tree. Kruskal has proposed the following solution: Choose
the arcs one at a time in order of their weights, largest firsr, rejecting an
arc only if it forms a cycle with arcs already chosen.
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For example, suppose the network is as shown in Figure 7.1. The
arcs chosen by the algorithm are indicated by wavy lines.

Each of the algorithms described above can be characterized as
“greedy,” because at each step they attempt to add the choicest possible
morsel to the solution. A curious aspect of this procedure is that the com-
putation does not in any way depend upon the actual numerical values
of the weights involved, but only on their relative magnitudes.

Our goal in the next several sections is to introduce enough mathe-
matical machinery to enable us to justify all three of these greedy algorithms
in one fell swoop, and to explain such facts as the unimportance of the
actual numerical values of the weights.

PROBLEMS

21  Construct a simple example to show that the greedy algorithm is not valid
for the weighted matching problem. That is, no two elements of W are to be
chosen from the same row or the same column.

22 Find an optimal selection of jobs which can all be performed on time.

Job Deadline Penalty

J d; W
[ | 10
2 3 9
3 2 1
4 [ 6
5 4 5
6 5 4

NN\ B

Figure 7.1  Network wi*h maximal span
ning tree



268 Matroids and the Greedy Algorithm

3

Matroid Definitions

Consider a matrix whose elements are from an arbitrary field. Any subset
of the columns of the matrix is either linearly independent or linearly de-
pendent; the subsets thus fall into two classes. As Whitney pointed out in
his classic paper, “On the Abstract Properties of Linear Dependence,”
these classes are not at all arbitrary. For instance, any subset of an inde-
pendent set is independent. Also, if I, and [, are independent sets of p
and p + 1 columns respectively, then I, together with some column of
I ,+ 1 forms an independent set of p + 1 columns.

On the other hand there are systems that satisfy these two proper-
ties but do not correspond to subsets of columns of any matrix. Algebraic
systems which generalize these properties of matrices are known as
“matroids.”

Definition A matroid M = (E, 4) is a structure in which E is a finite set
of elements and .# is afamily of subsets of E, such that

(31 & e .7 and all proper subsets of aset Iin .# arein .¥.
(32 If I, and I,,, are setsin ¢ (containing p and p + 1 elements re-
spectively, then there exists an elemente € I, ;- I, such that |, + e € ..

The system M = (E, .¥) is said to be the matroid of the matrix A
if E corresponds to the set of columns of 4, and .# contains al linearly
independent subsets of columns. A matroid is said to be matric if it is the
matroid of some matrix A.

Matroids also have a close connection with graphs, as we can see
by considering the matroid of the node-arc incidence matrix of the graph G,
where the 0, 1 elements of the matrix are taken to be elements of the field
of integers modulo 2. In this case, a. linearly independent subset of the
columns corresponds to a subset of arcs which is cycle-free, i.e., a tree, or
aforest of trees, in the graph. A matric matroid M = (E, #) is said to be the
matroid of the gruph G if E is the set of arcs of G and a subset | = E isiin
Jif and only if I isacycle-free subset of arcs. Such a matroid is said to be
graphic.

Much of the terminology of rnatroid theory is drawn from linear
algebra. For example, a subset I in .# is said to be an independent set of
the matroid M = (E, .#). (“Independence” is a property stemming from
membership in .#, and not the other way around.) A maximal independent
set is said to be a base of the matroid., and the rank r(A4) of a subset A < E
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is the cardinality of a maxima independent subset of .A. (All maximal in-
dependent subsets of A must have the same cardinality; see Problern 3.1.)
A subset of E which is not independent is dependent.

Other terminology is drawn from graph theory. For example, a
minimal dependent set is called a circuit. Still other terminology is common
to both linear algebra and graph theory. Thus, the span of aset 4 < E,
denoted sp(A), is the maxima superset of A having the same rank as A.
Clearly, if B is a base, then sp (B) = E; i.e, “‘a base spans the matroid.”
A set A which is egual to its own span, i.e.. A ==sp(4), is said to be a closed
set.

Theorem 3.1 The span of a set is unique.

prooF  Let A be given and assume A, and A, are distinct maximal supersets
of A such that r(A) =r(4,) = r{4,) =p. Let e; € 4,— A,. Then r(4,i-e) >
r(A), else A, would not be maximal with respect to the property of having
equal rank. Let I, = A and I,,, CA, + ¢, be independent sets having
pand p + 1 elements respectively. By (3.2), there must be an element
eel,,, — I, such that I, + e is independent. But the only such element
can be ¢,. Hence I, + ¢, is independent. But [ + ¢, < A, contrary to
the assumption that r(4,) = p. It follows that the assumption that there
can be two distinct spans A, and A, isfalse. //

As an example, consider the matroid of the graph G shown in Figure
7.2. Arcs (1, 2), (1, 3), and (4, 5) form an independent set. These arcs, plus
any one of the arcs (1,4), (2, 5), (3.4}, (3, 5) form a base. The arcs (1, 2),
(1,3), 4,3) plus both the arcs (1, 4) and (2, 5) form a dependent set, since
it contains the cycle (1, 2), (2,5), (4, 5), (1,4). This cycle is a circuit of the
matroid. Each cycle of a graph G is a circuit of its matroid. Since cycles

TN
NN
SR

Figure 7.2 Example graph
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may contain differing numbers of arcs, it follows that not all circuits have
the same cardinality.

Consider the dependent set A = {(1,2), (1, 3), (2 3), (2 5)}. Note
that r(A) = 3 and that arcs (1,5) and (3, 5), but no others, can be added
to A without increasing its rank. Hence sp (A) = {(1,2), (1, 3). (1, 5), (2. 3),
{2,5), (3, 5)}. Another characterization of the span of a set is that sp (A)
contains all elements in A plus all elements e such that A" + ¢ is a circuit,
for some A" € A

Another useful theorem that follows almost directly from the defi-
nitions is the following.

Theorem 32 If | is independent and | + ¢ is dependent, then | + e con-
tains exactly one circuit.

PROCF  Suppose there are two distinct circuits C, and C, in | + e. Ob-
viously e e C;nC,and (C,uC) ¢ isindependent. Choose ¢ € C, ~ C,.
C, = € isindependent and can be augmented with elements of (C, u C,)

e (by repeated application of (3.2), using subsets of (C, u C,) — €) to obtain
an independent set I' < C, u C, such that |I'|= |(C; U C) = ¢|. Thus
there is only one element € of C, v C, not in ['. Either ¢" € C, — C, or
¢" = €. In the first case C, would be independent and in the second case
C, would be. This contradiction rules out the existence of two circuits. //

PROBLEMS

31 Let E be an arbitrary subset of n elements. (&) For given p 0 <p <, let ¢
contain all subsets of E with p or fewer elements. Is(E, .#) amatroid? (b) For
given e;.¢,,let # contain all subsets of E which do not contain both ¢, and
e,.Is (E, ) a matroid?

32 Let M= (E, #) be a matroid and § be an arbitrary subset of E. Prove that
Mdel §=(E §,.#)isamatroid, where

S = {I"]’GJ,I’ < E--S}.

(M det s is the matroid obtained by “deleting” the elements of §.)

33 Let E=1.2..7, and let.# contain as bases all subsets of three elements,
except {1,2,4}, {1,3,5}, {1,6,7}, {2,3,6}, {2,5,7}, {3,4,7}, and {4,5,6}.
Verify that (E, .#)isamatroid. Does this rnatroid have any circuits with two
elements? (Thisis cited by Whitney as an example of a nonmatric matroid;
it corresponds to a well-known example of a finite projective geometry. If
you are ambitious, try to demonstrate that it is nonmatric.)

34 Construct a simple example to show that two nonisomorphic graphs can have
the same matroid.
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4

Matching, Transversal, and Partition Matroids

In the previous section two types of matroids were defined: matric matroids
and graphic matroids. We now introduce three other types of matroids:
matching, transversal, and partition matroids, in order of increasing
specidization.

Theorem 4.1 (Edmonds and Fulkerson) Let G = (N, A) be a graph and
E be any subset of N. Let .# be the family of al subsets I = E such that there
exists a matching which covers al the nodes in I. Then M= (E,.#) is a
matroid, caled a matching matroid.

proor Clearly axiom (3.1) is satified.

Now suppose |, and [,,; are setsin ./ containing pand p + 1
nodes, respectively. Let X, andX +, be matchings covering J and ] .,
respectively. Assume that for al e e I, 1 - 1,, e is not covered by X,,
ese X, covers, + e forsomee e/, ., -1, and (3.2) is verified i |mme
di ately Cons der the symmetric dlfference of the matchings X, and X, ,,
which is composed of alternating cycles and alternating paths (asin the
proof of Theorem 4.1 in Chapter 6). At least one of the aternating paths
must extend between anode not in |, and anodeee .~ I,. The sym-
metric difference of this alternating path and X, yields a matching which
covers ], + e. Hence axiom (3.2) is verified and Mis a matroid. /;

As a simple example, consider the graph pictured in Figure 7.3.
The set [, is covered by the matching containing the two arcs drawn as
wavy lines and I, by the matching containing the three arcs; drawn as
straight lines. The alternating path containing arcs (3, 6), (3,4), and (4, 7)
enables us to obtain the matching (1, 2), (3, 6), (4, 7), which covers nodes
1,2 3 6, and 7. Thus, nodes 6 or 7 (or both) can be added to I5.

Recall the definitions of partial transversals, transversals, and sys
tems of distinct representations given in Section 1, Chapter 5. Let

Q={gfi=12...m
be a family of (not necessarily distinct) subsets of a set
ij =12,..,n.

Let G = (Q, E, A) be a bipartite graph where arc (i, j) ¢ A if and only if
¢; €q;. By applying Theorem 4.1 to the b|part|te graph we obtain the
foIIowmg corollary.



272 Matroids and the Greedy Algorithm

Figure 7.3 Example of matching matroid

Corollary 4.2 For any family Q of subsets of E, M = (E, .#) is a matroid
where ¢ is the set of partial transversals of Q.

Let us say that a subfamily Q' ¢ Q isassignable if there is a matching
in G = (Q, E, A) which covers all the nodes in ('. By letting Q now play
the role of E in Theorem 4.1 and again applying that theorem to the bi-
partite graph G, we have:

Corollary 43  For any family Q of subsets of E, A4 = (Q, .#) is a matroid,
where .# is the set of assignable subfamilies of Q.

Any matroid whose structure is like that of the matroids of Corol-
laries 4.2 or 4.3, we call a transversal matroid.

Now let @ be a partition which separates the finite set E into m
disjoint blocks B\, B,, ..., B,, and let d;, i= 1,2, ., m be m given non-
negative integers.

Corollary 44 Forany E, n,and d;,i=1,2,.., m, M =(E, %) is a matroid,
where

JS={|IcE |[InB|<d,i=12....m).

proor Let Q contain each block B; = E exactly 4, times and apply Cor-
ollary 4.2. //

Any matroid whose structure is like that of the matroids of Corollary
44 is called a partition matroid. Quite commonly, we assume that each
of the numbers d,,i =1, 2,.... m, is unity, and fail to mention this fact
explicitly.
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As an example, let G = (N, A) be a directed garph. Then M, =
(A, #,) is a partition matroid, where #, contains all subsets of arcs, no
two of which are incident to the same node. M, = (A, ;) is also a partition
meatroid, where .#, contains all subsets of arcs., no two of which are incident
from the same node. Any set I € ¥, n .#, consists of a node-disjoint set
of directed paths and cycles.

PROBLEMS

41 Formulate the “semimatching” problem of Section 2 as a problem involving
a partition matroid.

4.2 Formulate the sequencing problem of Section 2 as a problem involving a
transversal matroid. Show that this transversal matroid has a special “convex”
structure, like that described in Section 6, Chapter 5.

5

Matroid Axiomatics

Some insight into matroid structures can be gained by examining alternative
axiom systems.

Theorem 5.1 Let # be the family of independent sets of a matroid. Then;

(61) Forany A < E,if | and I’ are maxima subsets of A in .#, then
=1

Conversely, if M = (E, #) is a finite structure satisfying (3.1) and
(5.1), then M is a matroid.

ProcF Suppose (3.2) holds. Let A be given and suppose | and I’ are
maximal subsets of A in .# such that J| < |I'|. Let [" < I’ be such that
I +1=|I"l.By (32), there exists an e €1” = [ such that | + e ¢ .,
contrary to the assumption that I is maximal in A. This is a contradiction.
Hence there can exist no such maximal sets I and [' with |1] < |I'.

Conversely, suppose (5.1) holds. Let I, I,,; be sets in . with p
and p + 1 elements, respectively. Let A = Lul, .1t follows from (5.1)
that 1, cannot be maximal in A. Hence there must exist an e e I,,; |,
such that I, + e € 4, and (3.2) is established. //

Theorem 5.1 asserts that for any A < E, all maximal independent

sets in A have the same cardinality. The rank function ra) is thus well
defined.



274 Matroids and the Greedy Algorithm

The specidization of Theorem 5.1 to graphic matroids yields the
following corollary.

Corollary 52 All spanning trees of a connected graph conl.ain the same
number of arcs.

Theorem 5.1 shows that condition (5.1) is an aternative to axiom
(3.2). There are other alternative characterizations of matroids, as indicated
below.

Theorem 5.3 (Whitney) Let # be the set of bases of a matroid. Then:

(52) # # J and no set in # contains another properly.
(53) If Byand B, arein # and ¢, is any element of B,. then there exists
an element e, in B, such that B; — 2, + e, isin 4,

Conversely, if (E, ) is a finite structure: satisfying (5.2) and (5.3),
then M = (E, .#) is a matroid, where:
4 = {I|lc B, forsomeBe %}

prooF  The proof is |eft as an exercise. //

The specialization of Theorem 5.3 to graphic matroids yields the
following corollary.

Corollary 54 Let T, and T, be two spanning trees of a connected graph
and let ¢, be any arc in T,. Then there exists an arc ¢, in T, such that T,
¢, + ¢, is also a spanning tree.

Theorem 55 (Whitney) Let r be the rank function of a matroid. Then:
(5.4) r(Z) = 0
(55) For any subset A < E, and any elernent ¢ not in A, either

r(A+ e =r1(A)
or
rd+e =r@A) + L

(56) For any subset A < E and elements e, e, not in A, if
A +e) =rd +e) = r(A),

then
A+ ¢/ + e3) = r(A).

Conversely, if r is a function over the finite set E satisfying (5.4)



The Matroid Greedy Algorithm 275

through (5.6), then M = (E, 4) is a matroid, where
4 = {Ilr(n =1}

prooF It is not too difficult to verify that conditions (5.4) through (5.6)
are satisfied by a matroid. The converse, however, is more difficult, and
the reader is referred to Whitney's original paper. //

Theorem 5.6 (Whitney) Let % be the family of circuits of a given matroid.
Then:

(57 (& ¢ % and no set in % contains another properly.
58 If C,and Cyaein ¢.C, = C,and ec C;n C,, € €C, = (C,,
then thereisaset C3;& (C,uC) e€%suchthate eC.

Conversely, if (E, %) is a finite structure satisfying (5.7) and (5.8),
then M = (E, .#) is a matroid, where

g = {I|C¢ 1, forall Ce¥).

prock The reader should be able to ‘prove that (5.7) and (5.8) are satis-
fied by any matroid. However, proving the converse is more difficult. The
reader is referred to Section 8 of Whitney's original paper, where Whitney
defines the “rank” of a subset of E in terms of the sets C in which it contains,
and then shows that this notion of rank satisfies (5.4) through (5.6). //

As an example of the application of Theorem 5.6, consider again
the matroid of the graph G shown in Figure 7.2. Let C, = { (1, 3), (2, 3).
(2,5),4,5),(1,4)},C, = {(1,2),(1,3),(2,3)}, and let e be (1, 3). Then C; =
1(1,2).(2,5).(4,5),(1.4)}.

PROBLEMS

5.1 Prove Theorem 5.3.

5.2 Prove that conditions (5.4) through (5.6) are satisfied by a matroid.

53 Prove that conditions (5.7) and (5.8) are satisfied by a matroid.

54 Devise an algorithm, based on conditions (5.7) and(5.8), to determine, for a
given set E and a family of subsets %, whether % is the set of circuits of a matroid.
Estimate computational complexity as a function of |E| and|%].

6

The Matroid Greedy Algorithm

Let M = (E, .¥) be a matroid whose elements ¢; have been given weights
w(e;) = 0. We wish to find an independent set for which the sum of the

weights of the elements is maximal.
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Any weighting of the elements induces a lexicographic ordering on
the independent sets. Thus, suppose

I,={a,,..-a} and I,={b,b,,....b}
are two independent sets, where the elements are listed in order of weight,
i'e" W(al ) 2 W(az) =N W(am) and W(bl)Ei W(b:z) >...= W‘(b"), Then we

say that I, is lexicographical/ly greater than I, if there is some k such that
w(g;)) = wby), forl <i <k = 1and wia,) > w(by) or else wia;) = w(b,),
for 1 <i<nand m> . A set which is not lexicographically less than any
other set is said to be lexicographically maximum. Clearly, such a lexico-
graphically maximum independent set must be a base, and if al element
weights are distinct this base is unique.

Theorem 6.1 (Rado, Edmonds) Let 4 be the family of independent sets
of a matroid. Then:

(6.1) For any nonnegative weighting of t' he elementsin E, a lexicographi-
cally maximum set in ¢ has maximum weight.

Conversely, if A4 = (E, ¥) is afinite structure satisfying (3.1) and
(6.1), then M is a matroid.

PRooOF Let # be the family of independent sets of a weighted matroid.
Let B be a lexicographically maximum base and let I = {a,, a,, . . . , &}

be any other independent set, where the elements are indexed in order of
weight, i.e., w(b,) = w(b,) =.. Zw(b,) and w(a,) = w(a,) = ... = wla,).

It cannot be the case that w(b,) < w(a,), for any k. For then consider the
independent sets

Bk—1: {blabZ""'bk—l}

Ik = {al7a25---5ak}

By (3.2),the set {b,, b5, . ... by— {, a;} , for some i, 1 <i <k, is an inde-
pendent set, and is lexicographically greater than B, This contradicts the
assumption that B is lexicographically maximum. It follows that w(b,) =
w(a,) for al p, and B is clearly a maximum weight independent set.

Conversely, suppose M is not a matroid. Then, by Theorem 5.1
there must be a subset A < E and two maximal subsets I and I' of A in
4, where |I| < |I'|. Let each element in I have weight 1 + ¢ where ¢ > 0
is small, each element in I' I have weight 1, and each of the remaining
elements in E have zero weight. Then I is contained in a lexicographically
maximum set whose weight is less than that of [ Hence (6.1) does not
hold. //
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The proof of Theorem 6.1 suggests that a lexicographically maximum
base has an even more impressive property than that of simply having
maximum weight. Such a base is element-by-element weightier than any
other independent set. That is, if B is a lexicographically maximum base
and | is any other independent set, then the weight of the kth largest ele-
ment of B is at least as great as that of the kth largest element of |, for all
k. We shall say that a set B in .# is Gale optimal in £ if, for any other set
| in .# there exists a one-to-one mapping k:I — B such that w(e) < w{h{e)),
for al ein I. (Note that, by this definition, only bases can be Gale optimal.)

Theorem 6.2 (Gale) Let .# be the family of independent sets of a matroid.
Then :

(62) For any weighting of the elements in E, there exists a set B which
is Gae optima in .£.

Conversely, if M = (E, #) is a finite structure satisfying (3.1) and
(6.2), then M is a matroid.

PRooF The proof uses essentially the same reasoning as that for Theorem
6.1. (Note that a Gale-optimal set must be lexicographically maximal.) //

Theorems 6.1 and 6.2 show that a lex.icographically maximal base
is of maxima weight (if weights are nonnegative), and is Gale optimal.
A lexicographically maximal base can be found by the matroid greedy
agorithm. Namely, choose the elements of the matroid in order to size,
weightiest element first, rejecting an element only if its selection would
destroy independence of the set of chosen elements. The problem of applying
the greedy algorithm to any particular matroid thus reduces to the prob-
lem of being able to decide whether or not any given set is independent.
This issue, and some applications, are dealt with in later sections.

In the case that some element weights are negative and one seeks
a maximum-weight independent set, the greedy algorithm is applied to
the point where only negative elements remain, and al of these are re-
jected. This is equivalent to applying the greedy algorithm to the matroid
obtained by deleting negative elements.

There are several possible variations of the greedy algorithm. We
postpone mentioning these until we have discussed matroid duality.

PROBLEM

61 Show that when the greedy algorithm has chosen k elements, these k elements
are of maximum weight with respect to all independent sets of k or fewer
elements.
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7

Applications of the Greedy Algorithm

Recall the problems discussed in Section 2.

A “SEMIMATCHING” PROBLEM

The elements of the matrix Ware elements of a partition matroid and their
weights are equal to their numerical values. The independent sets of the
matroid contain at most one element from each row of W.

A SEQUENCING PROBLEM

The jobs to be processed are elements of a transversal matroid and their
weights are the penalty values. This transversal rnatroid has a simple struc-
ture, so that testing for independence is Iparticularly easy (cf. Section 6,
Chapter 5).

THE MAXIMAL SPANNING TREE PROBLEM

The video links are elements of a graphic rnatroid. The problem of testing
for independence is equivalent to the problem of testing a subset of arcs
for the existence of a cycle. In Section 10 we see that the naive greedy
algorithm for this case can be improved upon.

In addition to these problems consider the following application
of the greedy algorithm to a matric matroid.

EXPERIMENTAL DESIGN

An agronomist knows that n minerals are important for improving the
production of a certain crop. He assumes that there is a linear relation

between the amount of minerals added to the soil and the improvernent in

crop yield. Specifically, the added yield Y is given by the formula

Y =ayxi+ ax,+ ...+ a,x,,

where x; is the amount of the ith mineral applied in the form of chemical
fertilizers. His problem is to design a set of experiments to determine the
coefficientsa,, a,, . . .. a,.

Suppose that the agronomist can make a number of separate ex-
periments, each with a different commercialy available fertilizer. Fertilizer
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j contains g;; units of mineral i and its application to a standard test plot
costs c; dollars. What is the least costly choice of fertilizers that will enable
the agronomist to determine the coefficientsa,* ?

The various fertilizers correspond to the columns of the matrix
A = (a;;). The agronomist must choose a subset of columns which has
rank n. But if he chooses for his experiment a subset of the columns which
is linearly dependent, he is doing more than is necessary to determine the
desired information (assuming the accuracy of the model and disregarding
experimental error); the production for at least one of the fertilizers could
have been predicted from the production of the others. Thus, what he
seeks is a linearly independent subset of n columns, for which the sum of
thecj’s isas small as possible.

Let column j have “weight” w,= W ¢ where W is suitably large.
Then the problem is to find a lexicographic maximum set of linearly inde-
pendent columns. The testing of linear independence can be carried out
quite systematically, using Gaussian elimination. The following procedure
can be used.

GREEDY ALGORITHM FOR MATRIC MATROIDS

Step () (Start) Order the columns of the matrix so that the largest is at
the left and the smallest at the right, i.e, w,>w,> ... >w, Set k= L

Step | (Elimination)

(1.2)  If column k is zero, go to Step 1.2. Otherwise, choose any nonzero
entry in the column, say a;, and use it to eliminate nonzero entries to
the right, i.e., subtract ai]./aik times column k from each column j > k.
(12) If k<n, set k =k + 1 and return to Step 1.1. Otherwise, stop.
The nonzero columns are identified with an optimal base, and the number
of such nonzero columns is equal to the rank of the matrix. //

PROBLEMS

71 Find a maximum-weight linearly independent subset of columns for the real

matrix below:
l 0 2 01
o -1 -1 1 1
3 2 8 1 4
2 1 50 2

Weights iO 9 8 41
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7.2 Estimate the computational complexity of the greedy algorithm for matric
matroids.

8

Matroid Duality

For any given matroid M = (E, .#), there is a dual matroid M? = (E, .#?P),
in which each base of M? is the complement of a. base (a cobase) of M,
and vice vasa The dralits of M? ae called cocircuits of M, and vice vasa

Theorem 8.1 If M = (E, .#) isamatroid, then M = (E, .#?)is amatroid.

procr Axiom (3.1) is clearly satisfied by M. Moreover, #2 #+ ¢ since
HesP Let |, I,. be two sets in ¢ containing p, p + 1 elements, re-
spectively. Let B,, B, ., be bases of M disjoint from1,, I, ,, respectively.

Casel Supposel,,;-(,UuB,)+. Leteel,,, ~(l,,uB,) Then
I, + eisdigoint fromB,, I, + ¢ € .#° and axiom (3.2) holds.

Case 2 Suppose I,.; = (I,u B,) = &. We first wish to show that
B,+ | — (B, UI,)isnonempty. Assume B,, ,—~(B,vI,)=¢.i.e, B,, &
B, ul,. Then we have the relations

(Bp+1 Ip) u (Ip-f [ IIJ) = BP’

Bps 1 nI)ull,e  nl)cl,
from which it fdlows thet

B,or VI, y =B U,
and
|Bp+1 + p+ IS|BP1+P = |Bp+1 +pa

which is a contradiction. Hence B, +, =(B,ul,) # .

Now choose any element e € B,, | — (B, u 1,). B, + e contains a
unigue circuit in M. Let ¢’ be any element of this circuit other than e. The
Set B, = B, + e — ¢ isabase of M digaint. from 1. If I,,, -- (I, u B;) #
&, then Case 1 applies. If [, , = (I, v B,) = &, then repeat the argument
with B, in the role of B, until a base B, is obtained such that I,,, =

(I, u B,) #+ . This must occur in a finite number of iterations or else
we will run out of elementsin B,,, — (B,uU,).//

Theorem 8.2 The rank functions of a matroid M and its dual MP are
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in the relation

r°(4) = |4+ r(E ~ A) = 1E) (8.1)
foral AcE

proor Therank of A in MP is determined by a base of M with a minimum
number of elements in A. The maximum cardinality of an independent set
of M, digoint from A, is#(E = A). Such a set is contained in a base with
r(E) elements, of which r(E) = r(E — A) are contained in A. The number
of elements in A not contained in this base is \AI +rE A =r(E). //

In the special case of a graphic rnatroid M, the dual matroid MP
is said to be cogruphic. If the graph is connected, the spanning trees of the
graph are bases of M, and the cotrees are bases of M®, The cycles of the
graph are circuits of M and the cocycles are circuits of M” (Note that it
is not necessarily true that a cocycle is the complement of a cycle, nor is it
necessarily true for a matroid that the complement of a circuit is a co-
circuit.) If the graph has n nodes, m arcs, and p components, the number of
elementsin abase of Misn—p andinabase of MPism=n +p. Interms
of the two rank functions,

rE)=n-p
PE)=m—-n+p
= |E| - 1(E).

The more genera relation (8.1) holds for an arbitrary set of arcs A.

Thus, there are two matroids associated with every graph G, a
graphic matroid M and a cographic matroid MP. If the graph G has a dual
GP®, then the roles of M and M? are reversed for G”: MP is the graphic
matroid of G” and M is the cographic matroid. This is consistent with our
knowledge that each cycle of G is a cocycle of G®, and vice versa.

What if G does not have a dua? Then the graphic matroid M is
not the cographic matroid of any graph, and the cographic matroid M?”
is not graphic. A necessary and sufficient condition for a graph to be planar
is that its graphic matroid be cographic or, equivalently, that its cographic
matroid be graphic. (Note that this statzment is of no particular help in
testing graphs for planarity; testing a graphic matroid for cographicness
is essentially the same problem as testing for the existence of a dual graph.)

Now consider the relation between the operations of deletion and
contraction when performed on a matroid and its dual. Given a subset
of elements S < E, the deletion of the elements S from M = (E, .#) yields
the matroid M del S= (E = S, I'), where .#' contains all subsets I’ < E — S
which belong to .4, i.e, al subsets I' < E = S such that r(I') = |I'|. The
contraction of the elements S yields the matroid M ctr S= (E = S, .#"),
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where .#” contains all subsets |” € E = S such that r(I"u S) = 1”] + 1(S).
The application of the deletion operation to a matroid corresponds to
contraction operation on its dual, and vice versa.

Theorem 8.3 For any matroid M = (E, #) and subset S < E
(M del S)° = MP ctr S.
(M ctr §)? = MP del S.

proor Omitted. //

This theorem is illustrated for a planar graph in Figure 7.4. We
note that in this case G del {a, b} and GP ctr {a, b} are indeed graphical
duals.

The following theorem illustrates still further relations between a
matroid and its dual.

Theorem 84 (Minty) Let E be an arbitrary finite set of elements and %
and % be two families of subsets of E. € and £ contain circuits of a dual
pair of matroids if and only if the following conditions are satisfied:

(1) No set in € contains another properly; no set in § contains another
properly.

f

Gdel {4, b} GPctr {a, b}
Figure 7.4 Example of contractior; and deletion
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(2) For any C €% and any De 2, their intersection does not contain
exactly one lement, ie, (Cn Dl =0,2,3, . . . .
(3) For any painting of the elements of E red, yellow, and green, with
exactly one element painted yellow, precisely one of the following con-
ditions holds:

(a) There is a set in 4 containing the yellow element, but no red ones
(i.e., a yellow-green circuit) or

(b) There is a set in ¢ containing the yellow element, but no green
ones (i.e., a yellow-red cocircuit).

We shall not prove this theorem, but merely observe its relation
to the more specialized painting theorem for undirected graphs. The matroid
properties observed in the theorem have been used by Minty as the basis
for a self-dual axion system for matroids. Systems (E, €, %) which satisfy
the properties of the theorem he calls graphoids.

PROBLEMS

81 Provethatif CandD areacircuit and acocircuit of thesame matroid, then
]C N Dl + 1.

82 What type of matroid is the dual of a partition matroid? What is the effect
of contraction on a partition matroid?

9
Variations of the Greedy Algorithm

Suppose, for some ordering of the elements of E. A is a lexicographic maxi-
mum base. Then E-A is a lexicographic minimum cobase. It is clear that
solving a maximization problem for the primal matroid also solves a mini-
mization problem for the dua matroid; a greedy algorithm for the primal
corresponds to an “abstentious” algorithm for the dual, and vice versa.

Each element which is discarded by the greedy algorithm is the
smallest element of at least one circuit of the matroid. For suppose A =
e, e,, ., ¢ have aready been chosen by the greedy algorithm, but A +
e.+ 1 is found to be dependent, and ;.  is therefore discarded. Since A
is independent and A + e, ; is dependent, it follows that ¢,.; forms a
circuit with some subset of the elements of A, and all of these elements are
known to be larger than e, ,, because of the order of processing. Similarly,
each element which is discarded by the abstentious algorithm applied to
the dual matroid is known to be the largest element of at least one cocircuit
of the primal matroid.
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These duality relations have been noted by various authors, particu-
larly Rosenstiehl, who made the following (observation about spanning-tree
computations. All algorithms for computing the rnaximum spanning tree
of agraph are governed by two principles :

(91) No arc of the maximum spanning tree is the smallest arc of any
cycle of the graph.

(92) Each arc of the maximum spanning tree is the largest arc of at
|east one cocycle of the graph.

For matroids in general, we can formulate a computational pro-
cedure which requires only the construction of circuits and/or cocircuits.
For example, consider the following procedure.

VARIANT OF GREEDY ALGORITHM

Step 0 (Start) Set A = A’ = ¢, B=E (A and. A’ are to contain ele-
ments of the optimal set and its complement; B is to contain elements about
which no decision has been made.)

Step 1 (Selection of Elements) Perform either one of the following steps
in any order:

(1) Try to find a circuit of elements in A u B. If a circuit C exists,
move the smallest element of C from B to 4'. Otherwise (if no circuit
exists), move the remaining elements of B to A, and stop.

(1.2) Try to find a cocircuit of elementsin A’ u B. If a cocircuit D exists,
move the largest element of D from B to A. Otherwise (if no cocircuit
exists), move the remaining elements of B to A’, and stop.//

A further variation makes use of the deletion and contraction opera-
tions. For example, the following can be substituted for Steps 1.1 and 1.2
in the previous algorithm.

(L) Try to find a circuit of elements of B. If a circuit C exists, move
the smallest element of C from B to A" and delete the element from the
matroid. Otherwise, move the remaining elements of B to A, and stop.
(1.2) Try to find a cocircuit of elements of B. If a cocircuit D exists,
move the largest element of D from B to A and contract the elernent in
the matroid. Otherwise, move the remaining elements of B to 4, and
stop. //

Such questions as to whether it is easier to construct circuits and
cocircuits, or to perform deletions and contractions, or to work with the
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matroid or its dual, must be determined for the particular problem at
hand.

The properties of matroid greedy algorithms are useful for proving
and interpreting various theorems of graph theory and other mathematical
speciaties. For example, consider the following theorem: Let B, and B,
be minimal or maximal (in total number of arcs) basis systems of the vector
cycles of a graph G. Then there exists a length-preserving mapping s of
the set of cyclesCy, . ., C, of B;onto the set of cyclesCy, . .., C, Of
B,. (Here v(G) is the cyclomatic number of the graph.) This theorem was
proved by Stepanets by finding a complete matching in a certain bipartite
graph that he assigns to a pair of bases of vector cycles. However, the same
result could have been obtained quite easily by noting that the extremal
bases can be obtained by the greedy algorithm, and that the greedy algorithm
has the property that the kth largest element selected always has the same
size, regardless of how ties are resolved in the course of the algorithm.

PROBLEM

9.1 For a given grgoh G, to wha matroid should the greedy dgorithm be applied,
in order to obtan an extremd bass of vector cycles?

10

Prim Spanning Tree Algorithm

Since every graphic matroid is matric. the matric greedy algorithm de-
scribed in Section 7 can be used for maximal spanning tree computations,
by operating on the node-arc incidence matrix of the graph. However, this
would imply an O(n*) computation for the complete graph on n nodes,
whereas an O (n?) computation is possible.

A procedure proposed by Prim constructs a larger and larger set of
optimally connected nodes. This set of nodes we denote by the letter P,
to correspond with the permanently labeled set of nodes in Dijkstra’s
related shortest path computation, described in Chapter 3. The comple-
ment of the set P is denoted T.

We begin with an arbitrary node in the set P, and find the heaviest arc
between this node and any of the nodes in T. This node is added to the solu-
tion, and the node k at the other end of the arc is added to P. We then com-
pare, for each node i in T, the weight of the arc (i, k) with the weight of the
heaviest arc from j to any other node in P, as previously recorded, and then
find the maximum weight of all arcs extending between T and P. This yields
us the heaviest arc in the (T, P)-cutset, and this arc is brought into the
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solution. The T-node to which this arc is incident then becomes node k;
it is added to the set P and the process is repeated.
The Prim dgorithm is as follows.

MAXIMAL SPANNING TREE ALGORITHM (PRIM)

Step ¢ (Start) The connected graph G == (N, A) is given, with a weight
w;; for each arc (i, ) € A

Seti(j)=landu; = wy;,forj=23,...,n

Set P={1},T=1{2,3,....n}.

Set S=.

Step /  (Addition of Arcto Tree) Find k e T, where u, = max {u;}.
J€

]
SetT=T- k,P=P+ k.
Set S =S+ (i(k), k).
If T= ¢, stop; the arcsin S form a maximal spanning tree.

Step2 (Revision of Labels) Forallje Tifwy; > u;,setu; = wyandi(j) =
k. Goto Step 1. //

PROBLEMS

101 Verify that the Prim algorithm is()(nz) in complexity for a complete graph.
Estimate its complexity as a function of nand m = }A]
102 Apply the Prim algorithm, step by step, to the network in Figure 7.1.

11

An Application: Flow Network Synthesis

An interesting application of maximal spanning tree computations has
been found in flow network synthesis. Suppose we are given a symmetric
n X n matrix R = (r;;) of flow requirements. We shall call a network feasible
if it is possible to induce a flow of value v;; between nodes i and j, where
vy = ry;- A problem which suggests itself is that of constructing a feasible
network which minimizes some prescribedl function of the arc capacities
¢ij» €g,

Z a;cij,

sJ

where a;; may be thought of as the cost of providing one unit of capacity
in an ac bewen i ad j.
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The above is a linear programming problem, and can be solved by
applying the dual simplex method to a system of 2° = 1 linear inequalities
of the form,

2 ¢y =ma {ry},

& o
one for each cutset (S, T) of the network. Gomory and Hu have suggested
a computational procedure that does not require an explicit enumeration
of these constaints. We shall not discuss this general synthesis problem
here. Instead, we shall describe the simpler version of the problem which
arises when all the g;;'s are equal.

The Gomory-Hu procedure will be illustrated by reference to the
following requirements matrix.

—

(11.1)

=

I
w = O O
W wn N O &
D= O OO
1 O = O =
S N o W u.:i

NETWORK SYNTHESIS ALGORITHM (GOMORY AND HU)

Step 1 (Dominant Requirement Tree) Let r;; represent the weight of the
arc (i, j) in a graph on the n nodes and solve the maximal spanning-tree
problem. The resulting tree is called the dominunt requirement tree. (The
dominant requirement tree for (11.1) is shown in Figure 7.5.)

Step 2 (Decomposition of Dominant Requirement Tree) Decompose the
dominant requirement tree into a “sum” of a “uniform” requirement tree
plus a remainder, by subtracing the smallest in-tree requirements. De-
compose each remaining nonuniform tree in the same way, until the tree
is expressed as a sum of uniform requirement subtrees. (For the example,
this results in the decomposition shown in Figure 7.6.)

7 ( )
Figure 7.5 Dominant requirement tree @
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O+

Figure 7.6 Decomposition of dominant requirement tree

Step 3 (Cycle Synthesis) Synthesize each uniform tree of the decomposi-
tion as a cycle through its nodes, in any order. Each arc of acycle hascapacity
equal to one half of the uniform requirement. (See Figure 7.7.) Superpose
the resulting cycles to form the final network and add the corresponding
arc capacities. (See Figure 7.8.) Each arc of the final network corresponds
to an arc of the required capacity in each direction. (The fina network
for the example is shown in Figure 7.9.) //

To justify the algorithm, it is first necessary to prove that the final
network is feasible, and then that it is optimal. To do the latter, note that
for any feasible network,

Zcijzmax {rij}, i=12....1.
i j

That is, the sum of the capacities of arcs incident from any node i must be
at least as great as the maximum of the flow requirements out from i.

o
rof—

=

Figure 7.7 Cycles corresponding to decomposition
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Figure 7.8 Superposition of cycles

Figure 7.9 Final network

Yet this inequality is satisfied with equality for the network synthesized

by the agorithm. Therefore, the network is optimal.
The final network is not unique, because of the different trees which

may be obtained in Step 1, and the many different choices of cycles in
Step 3. However, any one of the networks which results from the algorithm

is optimal.

PROBLEMS

111 Prove that the find network is indeed feasible.
112 Of all the minimal capacity networks which can be obtained from the con-
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struction, there is one whose flow function dominates all others. That is,
there is a network G* such that

9;‘; > Uy,
where v;; is the flow function of any other feasible, minimal capacity network.

Show that this dominant network can be obtained by applying the algorithm
to a requirements matrix R*, where

rf = min {ma;x Fio mf\x i)

ESS )

12

The Seiner Problem and Other Dilemmas

We have seen that the minimal spanning tree problem can be solved in
0(n?) steps. However, a problem which appears to be closely related has
resisted solution in a polynomia-bounded nurnber of steps. The Steiner
Problem is to find a minimum length tree which spans n given points in the
Euclidean plane. Such a minimum tree, called a Sener treg, may contain
nodes other than the points which are to be spanned; these are called Sener
points. Consider the situation in Figure 7.10, in which the points to be
connected (indicated by double circles) are at the corners of a unit square.

The Steiner Problem has been solved for three points. Let the three
points to be spanned be denoted A, B, and C. A fourth point Pis sought so
that the sum a + b + ¢ is a minimum, where a. b, ¢ denote the three dis-
tances from P to A, B, and C, respectively. If in the triangle ABC al angles
are less than 120° then P is the point frorn which each of the three sides,
AB, BC, CA subtends an angle of 120”. If, however, an angle of ABC, eg.,
the angle at C, is equal to or greater than 120°, then the point P coincides
with the node C.

The generalization of these ideas to more than three points appears
to be difficult.

A problem which is easier (at least because it can be solved by enu-
meration) is the Sener network problem Here n specified nodes of an

)
@ %:) Figure 7.10  Steiner problem for
@ unit square
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(n + s)-node weighted graph are to be spanned by a tree of minimum weight.
The tree may include any of the other s nodes as Steiner points.

The Steiner network problem (or semi-Steiner problem, as it is
sometimes caled) has an interesting matroid interpretation. Let T be a
tree with p — 1 arcs spanning the n specified nodes. (If the network does not
contain such a tree, add sufficient arcs to the network and give them very
large weights.) The problem can now be formulated as follows. In the
graphic matroid of the network, find a minimum-weight independent set
I such that sp (I) 2 sp (T).

Although no polynomial-bounded algorithm for the Steiner net-
work problem is known, we are able to describe two algorithms, where one
is polynomia in n, the number of nodes to be spanned, and the other is
polynomia in s, the number of possible Steiner points. Thus, if one holds
s constant and increases n, or vice-versa, the number of computational steps
grows as a polynomial function.

We present first an algorithm which is polynomial in # and exponen-
tial in s. It is based on the idea that one can solve a minimal spanning tree
problem for each of several possible choices of Steiner points.

Lemma 12.1 Suppose the arc lengths g; of a network satisfy the metric
requirement, i.e., they are nonnegative and

4 < ag + ay,

for al i, j, k. Then, for any n points to be spanned, there exists a Steiner tree
in the network which contains no more than n — 2 Steiner points.

PROOF Let p denote the number of Steiner points in a minimal tree. Let
X denote the mean number of tree arcs incident to a Steiner point, and
y denote the mean number of tree arcs incident to the n points to be spanned.
The number of arcsin the tree is

but, because of the metric condition, x > 3; and certainly y > 1. It follows
that
3p+n

-1 =
n+p )

and
p<=<n-—2/

We now have a way (although not a very good one) to solve the
Steiner network problem. We illustrate the algorithm by reference to the
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Figure '7.11  Example network

network in Figure 7.11. The nodes 1, 2, and 3 are to be connected; the re-
maining nodes are possible Steiner points,

STEINER NETWORK ALGORITHM

Step | (Shortest Path Computation) If the arc weights do not satisfy
the metric conditions, compute shortest paths between all pairs of nodes,
and replace the arc weights with shortest path lengths, adding arcs to the
network where necessary.

In the example, we have as the original arc lengths,

1 2 3 4 5 6 7
1o 6 5 1 3 o o
2 6 o« o o 2 3 «
3 S oo w 3 oo T 2
4 1 ¢ 3 o 2 x 1
5 3 2 o 2 w oo 4
6 oo 3 7 o w oo 4
7T l>x « 2 1 4 4 oo

These distances do not satisfy the conditions of a metric, so we solve the
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shortest path problem for al pairs of nodes, which yields as arc lengths
1 23 4567

1 1 54136 2
2 |507 42365
3 |4703562
4 |1 430251
5 |3252053
6 |6 36550 4
7 |2 521340

Step 2 (Minimum Spanning Tree Computation) For each possible subset
of n — 2 or fewer Steiner points, solve a minimal spanning tree problem.

In the case of the example, there are five spanning tree problems to
solve, asfollows:

Weight of Minimum

Problem Nodes to be Spanned i
Spanning Tree

(1 (1,2.3) 9
(2; (1,2,3,4) §
3 (1,2, 3,5) 0
(4; (1.2, 3,6) 12
) (1.2,3,7) 0

Step 3 (Construction of Steiner Tree) Select the least costly spanning
tree from among those computed in Step 2, and transform it into a tree of
the origina network, i.e., replace each arc of the spanning tree with the
arcs of the shortest path between the nodes in question.

The least costly tree obtained in Step 2 is shown in Figure 7.12, and
the Steiner tree is shown in Figure 7.13. //

Q.
P

Figure 7.12 Minimum cost tree @
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Figure 7.13 Final netowrk

The preceding agorithm requires the solution of a minima spanning-
tree problem on no more than 2n = 2 nodes for each of ¢ choices of Steiner
points, where

igo Ci
It follows that the overall computational complexity is no worse than
0(n*2%), which is polynomia in n, as claimed. (This does not count the
shortest path computation of Step 1 whichis 0 (n +5)*) )

We now present a computationd met hod due to Dreyfus and Wagner,
where the number of computational steps is polynomial in s and exponen-
tid in n. This method employs a recursive relation between the length of
an optimal Steiner tree for a given subset of nodes and the lengths of optimal
Steiner trees for smaller subsets. Or, in other words, having obtained op-
timal Steiner trees for al subsetsof 1,2, ., p 1 nodes, we shdl be able
to use these trees to construct optimal Steiner trees for subsets of p nodes.
Finally, we shall be able to construct an optimal Steiner tree for the set
N itsdf.

Let N be the set of nodes to be spanned and S be the set of possible
Steiner points, where |[N| = n,|S|=s. Let K< Nand ie N uS. (Thus
K + i contains a most one node from S) Let

T (K +i) = the length of an optimal Steiner tree spanning the set
K+ i
T,(K) = the length of an optimal Steiner tree spanning K + i,
subject to the constraint that i is an interior node of
the tree, i.e, the degree of node 1 is a least 2.
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We first note a simple functiona relationship for T;(K). Since node
i is to be an interior node, an optimal Steiner tree spanning K + i is the
union of two subtrees, one of which is an optimal Steiner tree for K' + i
and another that is an optimal Steiner tree for (K — K’) + i, where K’ is
anonempty proper subset of K. (See Figure 7.14.) By rninimizing over all
possible choices of K', we have
T(K)= min {T(K +i)+ T(K~- K + i)} (12.1)
ek’ ck
Now let us obtain a functiona relationship for T(K + i). Assume
Lemma 12.1 applies. There are three possible cases for an optirnal Steiner
tree spanning K + i:

Casel Nodeiis an interior node of the tree. In this case, T(K + i) =
T(K).

Case 2 Node i is aleaf of the tree, and the only arc incident to node i
is (i, j), where j¢ K. Node j is a Steiner point in an optimal Steiner tree for
K + i, and has degree at least three, by Lemma 12.1. The tree for K + i
is thus composed of the arc (i, j) plus an optimal Steiner tree for K + j,
where it is known that j is an interior point. In this case, T(K + i) =
a; + T(K).

Cae 3 Nodeisaleaf of the tree and the only arc incident to node i is
(i, j),wherej e K. Inthiscase, T(K + i) = a; + T(K).

Putting these observations together, and minimizing over al ater-
natives, we obtain

o .
M\ Tj(K)iI
min {a; + T(K)J .
je K
(Note that Case ! is accounted for by j =i¢ K, where g, = 0.)

Equations (12.1) and (12.2), together with appropriate initial con-
ditions, eg., T(&) = 0, imply a straightforward computation for T(N),

T(K + i) = min (12.2)

Figure 7.14  Steiner tree for K + |
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with no implicit functional relationships. Let us ‘consider how much work
is involved. The number of additions and comparisons occasioned by
equations (12.1) is of the same order as the number of possible choices of
i, K, and K’. Each of the n nodes in N belongs to exactly gne of the three
sets K. K’, or N = K. Hence the number of computational steps attributable
to (12.1) isO((n + 9) 3").

There are (n + s) 2" equations of the form (12.2). Each equation
involves minimization over at most n + s alternatives. Hence the com-
putation aftributable to equations (12.2) is O((n + s)* 2).

Thus, the overall computation is O((n + s) 3" + (n + s)* 2"}, which
is polynomial in s, as claimed. (An initial shortest path computation which
isO( (n+ s)*) may be required, so that Lernma 12.1 applies, and the final
solution transformed into the original set of arcs, as in the previous algo-
rithm.)

In addition to the Steiner problem, it is possible to cite a number
of other unsolved problems concerning trees and forests of networks.
Among these are the degree-constrained spanning-tree problem, about which
we will have more to say in a later chapter. There are several versions
of the star-forest problem. A star tree is a tree which contains at most one
node of degree greater than unity. One may wish to find a forest of star
trees which is minimal with respect o the sum of the arc weights of the
trees, plus the sum of certain node weights assigned to their “centers.”

PROBLEM

121 Show that, for fixed n, the first algorithm given in thissection is also poly-
nomial in s, by establishing a bound of O (n%s"~?).
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EIGHT

Matroid Intersections

1

Introduction

The greedy algorithm is an efficient method for computing, a maximum
weight independent set of a single given matroid. The comparable problem
for two matroids is as follows. Given M,= (E, #,) and M, = (E, .¥,),
two matroids over the same weighted set E, find a maximum weight inter-
section | € £ n 4,. In this chapter we are concerned with the development
of efficient computational procedures for solving such intersection prob-
lems.

It is a simple matter to show that the bipartite matching problem
is a matroid intersection problem involving two partition rnatroids over
the set of arcs of the given bipartite graph. Since network flow problems
are reducible to bipartite matching problems, it follows that matroidl inter-
section theory provides a generalization not only of bipartite matching
theory but of network flow theory as well.

It is perhaps not surprising that the augmenting path methods of

300



Problem Formulations 301

bipartite matching are suggestive of a similar procedure: for matroid inter-
section problems. The notion of an “augmenting sequence” is introduced
in Section 3 of this chapter, and an efficient procedure for solving the “car-
dinality” intersection problem is described in Section 4. This procedure
yields a constructive proof of a duality theorem which generalizes the
Konig-Egervary theorem of bipartite matching.

Interestingly, the cardinality intersection problem is equivalent to
a matroid “partitioning” problem, as follows. Given k matroids, M, =
(E,#,),M, = (E, #,),...,M, = (E, 9, over the same set E, does there
exist a partitioning of E into k sets I, I,, .., |, where ], ¢ .4, for i =
1,2,..) k? The relationship between the cardinality intersection problem
and the partitioning problem is discussed in Section 7, and an efficient
partitioning algorithm due to Edmonds is presented.

Two different methods for solving the weighted intersection prob-
lem are presented. A “primal” algorithm, based on the notion of weighted
augmenting sequences, is described in Sections 9 and 10. This, algorithm
is analogous to the procedure of Busacker, Gowan and Jewell for finding
minimum cost network flows. A “primal-dual” algorithm is described in
Sections 13 and 14. This method is analogous to the Hungarian method
for finding maximum weight matchings.

2

Problem Formulations

Let us consider some examples of matroid intersection problems.

BIPARTITE MATCHING

Let G=(S, T, A) be a given bipartite graph. Let 7, be a partition of A which

places two arcs in the same block if and only if they are incident to the same
Snode. Smilarly, let m, be defined by the T-node incidence relationships.
Let M, = (4,4,)and M, = (A, #,) be partition matroids determined
by the partitions m; and m,. A subset I € A is a matching in G if and only
if I'is an intersection of M and M,.

The nonbipartite matching problem can be forrnulated as an inter-
section problem involving two partition matroids, but with additional
constraints in the form of symmetry conditions. The construction parallels
that used in Chapter 6 to show equivalence to the symmetric assignment
problem. In the next chapter we shall show how the nonbipartite matching
problem can be formulated as a matroid problem with “parity conditions.”
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MATRIC MATROID INTERSECTION

Let C be an m X n matrix. Suppose a horizontal line is drawn through C
so that there are m, rows above the line and m, below. We can speak of a
subset of the columns as being linearly independent both “above the ling’
and “below the line.” In other words, the projections of those columns are
independent in an “upper” m,-dimensional space, and aso in a “lower”
m,-dimensional space. Any such subset of columns is an intersection of
two matric matroids.

COMMON TRANSVERSALS

A set of elements that is a transversal of each of two different families of
subsets is known as a common transversal of those families. Clearly, the
computation of a common transversal is a problem involving the inter-
section of two transversal matroids. Just as in the case of hipartite matching,
secidized methods have been developed for this problem.

A NETWORK SYNTHESIS PROBLEM

Suppose G, = (N,, A) and G, = (N,, A) are two connected graphs con-
structed from the same set of arcs A. A subset | = A is an intersection of
the two cographic matroids if and only if the arcsin A-Z form connected
subgraphs in both G, and G,.

Suppose, as in Chapter 7, a broadcasting network wishes to rent
video links to connect together various cities. Except now we shall com-
plicate the situation (perhaps quite artificially). Each month there is a
different set of cities to be connected, as broadcasting stations enter and
leave the network. (These changes are known for some time in advance.)
Moreover, each video link can be rented for a single month at one rate or
for two consecutive months at a cost somewhat less than twice the single-
month rate. The network wishes to plan the renta of video links for severa
months in advance so as to minimize the total rental charges.

The problem can be formulated in the following manner. For month
t construct a multigraph G(t) = (N (1), A(t)) as follows. The nodes in N (1)
represent cities to be connected together that month. There may be as many
as three arcs joining each pair of cities i and j in N(t), depending upon
whether or not j and j also appear in N (¢ - 1) and N(tr + 1). One arc,
which appears in G(r) only, is assigaed a cost equal to the single-month
rental for that particular link. Another arc joins the same two cities in
N (t — 1) and is assigned a cost equal ‘to the two-month rental. Still another
arc joins the same two citiesin N (t 4 1) and is also assigned a cost equal
to the two-month rental.
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Treat N(I), N(2), . . . as disjoint sets of nodes. Let G, be the graph
obtained by taking the union of GV, G?®, . .., G'**! and let G, be obtained
by taking the union of G, G“%. . . .. G*M. The network synthesis problem
becomes a weighted intersection problern involving cographic matroids of
G, and G,. The reader should be able to fill in the details.

As a simple example, consider the two-period problem indicated
in Figure 8.1. The number shown with each arc ¢;,,i. = 1,2, .., 14. isits
rental cost. If the arc appears in the network for both time periods, the rental
cost is for two periods. If an arc appears in the network for the first time
period, but not in the network for the second, it can be considered to be
a self-loop in the second network, and vice versa. The problem of finding
a minimum cost subset of arcs connecting all cities in both tirne periods
can be solved by the algorithm given in Section 10.

PAINTING A GRAPH

We wish to paint each arc of a given graph G either red, white, or blue,
subject to the constraint that not all the arcs of any cycle are painted the
same color. Depending upon the graph, it may or may not be possible to
paint the graph in this manner.

An equivalent formulation of this problem calls for a partitioning
of the arcs into three forests. Create a graph G* which is the union of three
copies of G, i.e, a“red,” a“white,” and a “blue” copy. There are thus three
copies of each of the m arcs of G, one in each copy of the graph. Let M
be the graphic matroid of G* and let M, be a partition matroid over the
3m arcs. Each independent set of M, contains no more than one copy of
each of the arcs of G. There exists afeasible painting of G if and only if there
exists an m-element intersection of M ;and M .

Assuming that a feasible painting exists, an optimization problem

Minneapolis

San Francisco €6 6 Boston
San e12,9 _
Francisco & 4 ey,
St.
és 7 N\ e1p, 3|Louis
eg, 5 "\ enr, 4
New Orleans New Orleans

Figure 8.1 Example of network synthesis problem
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can be defined as follows. For each arc (i, j) let there be three parameters
rij» Wy, by; indicating the number of quarts of red, white, and blue paint,
respectively required to paint that arc. What painting requires the smallest
total amount of paint? The reader should have no difficulty in formulating

this as a weighted intersection problem.

DIRECTED SPANNING TREES

Let G = (N, A) be an arc-weighted directed graph. Suppose we wish to
find a maximum weight spanning tree directed from a prescribed root
node with in-degree zero. Any subset of arcs | forming such a tree must
satisfy two conditions. First, it must contain no cycle. Hence I must be an
independent set of the graphic matroid of G (in which the directions of the
arcs are ignored). Second, it must contain no more than one arc into any
given node. Hence | must be an independent set of the partition matroid
which is defined by a partition of the arcs which places all the arcs directed
into a given node in the same block. A directed spanning tree exists if
and only if there is an (n — 1)-element intersection of these two matroids.
(Actually, testing for the existence of such a spanning tree is quite simple,
see Problem 14.1.)

A weighted version of the directed spanning tree problem is the
following: A military commander wishes to form a directed tree, rooted
from himself, for the propagation of orders to al the men under his com-
mand. (Edmonds has called such an organization a “branchocracy.”)
There is a weight associated with each directed arc that indicates its de-
sirability for use in such a tree. What directed tree is optimum?

It turns out that this particular matroid intersection problem permits
an especialy simple and elegant method of solution, which is described
in Section 14.

THE TRAVELING SALESMAN PROBLEM

Supoose we wish to find a Hamiltonian cycle in a given graph G. Create
an (n + 1)st node, and let each arc directed into node 1 be redirected into
node n + 1. There exists a Hamiltonian circuit in G if and only if there
exists a path from node 1 to node n + 1 which passes through each of the
other nodes exactly once.

Let M, be the graphic matroid of the (1 + 1}-node graph. Let M,
be a partition matroid whose independent sets contain no more than one
arc directed into any given node and M; be a partition matroid whose
independent sets contain no more than one arc directed gyt of any given
node. There exists a Hamiltonian cycle in the n-node graph G if and only
if there exists an n-element intersection of M, M,, and M.,.
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The formulation of the traveling salesman problem as a problem
calling for a maximum weight intersection of M, M,, and M3 should be
evident.

Unfortunately, there is no known polynomial-bounded algorithm
for computing optimal intersections of three or more matroids. The traveling
salesman problem, the three-dimensional assignment problem, and others
like them, are beyond the scope of the methods described in this chapter.

PROBLEMS

21 Formulate the three-dimensional assignment problem as a problem involving
the intersection of three matroids.

2.2 A university department chairman must recommend the appointment of a
departmental representative to each of m interdepartmental committees. For

each faculty member, he has a list of the committees for which that person is
qualified and interested. However, before solving the bipartite matching
problem which is implied by these data, it occurs to the chairman that he should
limit the number of committee appointments within each rank, i.e., no more
than m, appointees should be assistant professors, no more than m, should
be associate professors, and no more than m, should be full professors. Formu-
late the problem of obtaining a feasible assignment as a cardinality inter-
section problem (with two matroids).

2.3 Try to solve “by inspection” the network problem illustrated in Figure 8.1.

3

Augmenting Sequences and Border  Graphs

Bipartite matching algorithms solve intersection probllems involving two
partition matroids. These algorithms can be generalized to solve inter-
section problems involving arbitrary pairs of matroids. Our first task in
generalizing the bipartite matching agorithms is to find an appropriate
generalization of the idea of an augmenting path.

Let | be any intersection of two matroids, M, and M,. We can
construct an “augmenting sequence” with respect to I as follows. The
first element ¢, of such a sequence is such that I + e; is independent in
M . If I+ e, isindependent in M, as well. the sequence is completed.
Otherwise I + ¢, contains a unique circuit in M, and we choose ¢, to be
an element other than e, in that circuit. | + ¢; — ¢, is clearly independent
in both M, and M,. Now we try to find an element €3 such that I + ¢; -
€, + ey is independent in M,;, whereas | + e; is not. Such an element
ey isin sp, (I) — spy (I — e,), where “sp,” denotes span in M. If I+ ¢, —
e, + e3 is independent in M,, we are done. Otherwise I + ¢, — ¢, + e;
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contains a unigue circuit in M, and we choose ¢, to be an element in that
circuit, and so on.

In other words, the addition to I of the Ist, 3rd, 5th, . elements
preserves independence in M but creates dependence in M ,, whereas the
removal of the 2nd, 4th, 6th, . elements restores independence in M,. This
manner of playing off independence in M, against independence in M,
is quite analogous to the way that we played off incidence of arcs to nodes
in one part of a bipartite graph against incidence of the same arcs to nodes
in the other part in the construction of an augmenting path in the matching
problem.

These ideas may become clearer by actually working out an example.
Each of the multigraphs G, and G, shown in Figure 8.2 is constructed
from the same arcs E = {e,, e,, . . , ¢5}. We wish to find the largest possible
subset of arcs which contains a cycle in neither G, nor G,. In other words,
we wish to solve the cardinality intersection problem for the graphic matroids
of G, and G,.

Note that I = {e,, es } isa maximal intersection, since the addition
of any single arc to | creates a cycle in either G, or G,. For example, I == ¢,
contains the cycle C; = {e,, ¢,} in Gy, I + ¢, contains the cycle C, =
{e,, €4} in G, and so on. However, | is not a maximum-cardinality inter-
sction, as we sdl see

One can carry out a search for an “augmenting sequence” with
respect to J, by growing “alternating trees,” much as in the case of bipartite
matching. Each node of these trees corresponds to a matroid element,
i.e., one of the arcs of G,, G,. Each tree is rooted to an element ¢; such that
e; € E =9, (), i.e, ¢ can be added to I without forming a cycle in G,.
There are three trees, rooted to e,, ¢,, and eg, respectively. Each tree will

y e\

3
&) € eg €7 3 ) (3 eg
€3 |
&4 €6 N

Gy Gy
Figure 8.2 Multigraphs for Intersection problem
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be constructed in such a way that any path from the root will pass through
an alternation of nodes, corresponding to elements in I and not in I.

Now consider how the trees can be extended from each of the roots
¢,, ¢4, €g. The addition of arc e, forms a. cycle in G, the cycle containing
the arcs ¢, and e,. Thus, if arc e, is addled to ], arc e, must be removed.
Accordingly, we extend the tree rooted to e, by adding an arc lleading to
4. The addition of arc e, forms a cycle containing arcs es and e+ in G,
so if arc e, is added to I, e5 must be removed. Accordingly, we extend the
tree rooted to e, by adding an arc leading to es. The: addition of arc eg
forms a cycle containing arcs ¢, and ez in G,. But e4 is aready in the tree
rooted to ¢,, SO we do not extend the tree rooted to eg.

Now consider the effect in G, of removing either one of the arcs
¢4 Or esfrom I. Removing arc ¢, permits any one of the arcs e,, e;, Or ¢4
to be added to I without forming a cycle in G,. Accordingly, we extend the
tree by adding arcs leading from ¢, to ¢, €3, €¢5. On the other hand, re-
moving arc e¢s does not permit any arc to be added to | without forming
a cycle in G,, other than arcs which aready appear in the tree. ‘Therefore,
the tree is not extended beyond the arc ¢5. The situation is now as shown
in Figure 8.3.

We now consider the effect in G, of adding any one of the arcs ey,
ey, €¢. The addition of any one of these arcs to I does not form a cycle
in G,. By tracing back to the root of the tree from e,, e3, es, we identify
three distinct augmenting sequences (e,, 24, €,), (€2, €4, €3), and (e,, ey, €¢).
Arbitrarily choosing the first of these, we augment [ by adding arcs e,
and e; and removing arc e, to obtain a new intersection I = {e, e,, es } .
This new intersection is indicated by wavy linesin Figure: 8.4.

The repetition of the tree construction process for the new set

e
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AL

O—©
)

6@b

Figure 8.3 Alternating trees
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Figure 8.4 Augmented intersections

I'= {e,, e, es | yields the aternating trees shown in Figure 8.5. No aug-
menting sequences are discovered, and we assert that | = {e,, ¢,, 5} is a
maximum-cardinality  intersection.

We note that arcs e,, ¢; of I are in the Hungarian trees in Figure
8.5, but arc ¢, is not. Now,
Spl({el}) = {91’83» eAa eé}

and

spa2({es, e5}) = {ey, €4, 05,07, €5}

so that

spy({e:} Usp,({eses}) = E.

We will show in Section 5 that these two spans constitute an optimal
solution for a covering problem dua to the intersection problem for which
I ={e,, €2 e5} is optimal.

We are now prepared to formalize some of these ideas. Let [ be an
intersection of two matroids M, = (E, .#,) and M, = (E, .%,). Let § =

O—O
O—0O
Figure 8.5 Hungarian trees
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(e1.e5, .. ., &) be a sequence of distinct elements, where ¢; € E - |, for i
odd, and e; € I, for i even. Let S; = (e, €,, ..., ¢),for i <s We say that S
is an alternating sequence with respect to I if

Bl + e efy.
(32) For al even i, sp,(I @ S)) = sp,(I). Hence I ® S, € 4.
(33 Foraloddi>1sp, I@S)=sp,(I+e¢) Hencel @S, € Sy.

If, in addition,

34 [S|=sisodd and I ® S € #,, we say that § is an augmenting
sequence with respect to |I.

It is clear that if an intersection admits an augmenting sequence,
then that intersection does not contain a maximum number of elements.
The converse, however, is not so evident. In order to facilitate the study of
this and other related questions, we introduce the notion of the “border
graph” of an intersection.

For a given intersection |, the border graph BG(I) is a directed
bipartite graph constructed as follows. For each node ¢;e E I such that
e; € spy (1), there is an arc (e;, ¢;) directed from each ¢; € C!V) = ¢,, where
C is the unique M, -circuit in I + e. If e;¢ sp;(I), then e is a source
in BG(I} (in-degree zero). For each node ¢; € E — [ such that e; € sp,(I),
there is an arc (e;, ¢;) directed to each ¢; e C\?' — ¢;, where C{*' is the unique
M ~circuit in I + e, If ¢; ¢ sp,(J), then ¢; isa sink in BG() (out-degree
Zero).

We shall have occasion to refer to two special subgraphs of BG(I).
The subgraph BG, (I) contains al arcs directed from [to E — 1 and sub-
graph BG,(I) contains al arcs directed from E ~ I to I. These subgraphs
indicate incidences of elements in E = I with M,-circuits and M ,-circuits,
respectively. We call BG, (1), BG,(I) simple border graphs.

The border graph for the intersection I = {e, es} of the example
is shown in Figure 8.6. Note that e,, e4, eg are sources, and e;, €3, €5 ae
sinks. Each of the augmenting sequences (e;, €4, €1)s (€3, €4, €3); (€3, e4, €6)
is identified with a directed path from a source to a sink. The reader should
be able to pick out other source-sink paths which also yield augmenting
sequences.

It is true that every augmenting sequence is identified with a source-
sink path in BG(I), However, the converse is not true. A source-sink path
(without repetition of nodes) does not necessarily yield an augmenting
sequence. One way to insure that a path does yield an augmenting sequence
is to require that it admit no shortcuts.

Suppose that S is a source-sink path in BG(I) and S passes through
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Figure 8.6 Border graph for example
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e,,....6. The path is said to admit a shortcut if there exists an
ac (e, e;) in BG(I),wherel <k <j—2 £ 5= 2.

In the statement of the lemma which follows, and in other discussions
concerning border graphs, we shall use the terms “element” and “node”
interchangeably. We shall let a path be defined by the sequence of nodes
through which it passes, e.g., S = (e;, €3, . . . . &) is the path from e, to e,
passing through intermediate nodes ¢;, €3, ..., €_ ;. Thus, we may say that
a source-sink path S “is’ an augmenting sequence.

Lemma 3.1 (Krogdahl) If Sis asource-sink path in BG(I) which admits
no shortcut, then S is an augmenting sequence with respect to 1.

prooF Without loss of generality, let S = (e;, €5,....¢€). Since e; is a
source, I + ¢, € £ and (3.1) holds.

Now let i be even. We wish to show that sp,(I @ S;) = sp,([).
We shall do this by dealing with pairs of elements in “reverse’ order, i.e.,
first adding e;_, to ! and deleting e, then adding e;_; and deleting e;_,,
and finally adding ¢; and deleting ¢,. As an aid in visualizing the process,
consider the subgraph of BG,(I) induced on S; = (e, e,, . . ., ¢;). Because
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Figure 8.7 Subgraph of BG, (/) in proof of Lernma 3.1

S admits no shortcuts, when this subgraph is drawn as in Figure 8.7, there
are no arcs directed downward. That is, ¢; ¢ C{*, for any oddj, k,j<k.

I + e,_, contains the unique Mz-cucult C®,, where e. € C'?,.
Hence sp, (I + ¢;_; ¢) = sp,(I). By inductive hypothesis, ‘assume
spo(I%) = sp,(/), where ¥ = T+ ¢ = ¢+ ey = . . . + o =
1M 4 ¢,_, contains a unique M ,-circuit. Moreover, thls c1rcu1t is C{?,,
because C#', < I® + e,_,. It follows that spo(I%%) = sp,(I). Hence
spo(I'") = sp,(I), where I'V =1 @ S, and condition (3.2) holds.

The proof for condition (3.3) is, of course, similar. //

Lemma 32 (Krogdahl) Let I, J be intersections such that |I| + 1= |J].
There exists a source-sink path Sin BG(I), where S €1 @ J.

prooF If J contains an element ¢, that is not in sp;(I) u sp,(I), then e,
is both a source and a sink in BG(I) and S = (e,) is the desired path. So
assume J < sp; (1) u sp, (I).

Partition J — I into three sets J,, J,. J,, consisting of the sources, the
sinks, and the other elements in J = ], ‘Consider now the subgraph H, <
BG, () induced on the nodes in I @ J. Each node in J, u J; has nonzero
in-degree in H,. Moreover, for any subset J' = J, u J,, there are at least
' nodesin| J with arcs directed to nodes in J’, because J' cannot be
spanned in M, by fewer than jJ"aemenIs inI J. For the moment, ignore
the directions on arcs in H, so as to consider H, to be an undirected graph.
We have shown that the conditions of the well-known Philip Hall theorem
(Theorem 7.2) have been satisfied in such a way as to guarantee the existence
of a matching X, in H, which covers al the nodes in J; u J,.
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n
<U>>© Figure 8.8 Typical components of H in proof of
Lemma 3.2

Similarly, we can form the subgraph H, < BG,(I) induced on the
nodes in I @ J and show that there is a matching X, in H, covering al
the nodesin J, u J;.

Now consider the subgraph H = BG(I) with node set | @ J and
arc set X, u X, (with the directions of the arcs restored). Each connected
component of H is either a directed path or a directed cycle. (See Figure 8.8.)
Since |J — I| > |I = J|, at least one: component must contain one more
node in |J — I| than in |I  J|. Such a component is the desired source-
sink path SinBG (1). //

If Sis a source-sink path in BG(I). then there exists a source-sink
path S < S, where S' admits no shortcuts. The path S is obtained from
S by simply “shortcutting” S until no further shortcuts remain. This ob-
servation, together with Lemmas 3.1 and 3.2, enable us to establish the
following theorems.
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Theorem 33 Let I, I,,; be intersections of M,, M, with p, p + 1 ele-
ments. respectively. Then there exists an augmenting sequence S € I, ®
I, +, with respect to 1,.

Theorem 34  An intersection is of maxirnum cardinality if and only if it
admits no augmenting sequence.

Theorem 35 For any intersection I there exists a maximum cardinality
intersection 1*, such that sp, (I) € sp, (I*) and sp,({) S sp,([*).

proor  The definition of augmenting sequences is such that sp, (/) ©
o, (I @), sp,(I) =sp,(I @ S). Apply this result and Theorem 3.4 transi-
tively. //

4

Cardinality Intersection Algorithm

The essential ideas of the cardinality intersection agorithm should now
be clear. In fact, the attentive reader should be able to write down the steps
of the algorithm for himself.

Any “breadth-first” labeling procedure that fans out from source
nodes in BG(I) will find a source-sink path: without shortcuts, if such a path
exists. The usual method for constructing alternating trees, as described
informally in the previous section, is equivalent to such a procedure.

CARDINALITY INTERSECTION ALGORITHM

Step () (Start) Let | be any intersection of M,, M,, possibly the empty
set. No elements are labeled.

Step / (Labeling)

(1.0) For each element ¢; € E = |, find C\V, C!?) if these circuits exist.
Apply the label “(J* " to each element ¢; € E -- sp, (I).

(1)) If al labels have been scanned, go to Step 3. Otherwise, find the
element ¢; with the oldest unscanned label. If the label isa “ -+ label

goto Step 1.2; if itisa™ —" label, go to Step 1.3.

(12) Scanthe “+" label on ¢; as follows. If | 4 ¢;.,, go to Step 2.

Otherwise, give the label “i~" to each unlabeled element in Ci*. Return
to Step 1.1.

(1.3) Scanthe“ " label on ¢; by giving the label “i*" to each unlabeled
element ¢; such that ¢; ¢ Cj"’. Return to Step 1 1.
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Step 2 (Augmentation) An augmenting sequence S has been discovered,
of which ¢; (found in Step 1.2) is the: final element. Identify the elements in
S by backtracing from the label on e;. Augment I by adding to | al elements

in the sequence with “+" labels and removing from I all elements with
“_" labels. Remove all labels from elements and return to Step 1.0.

Step 3 (Hungariun Lubeling) No augmenting sequence exists and | is
of maximum cardinality. The labeling is “Hungarian” and can be used to
construct a minimum-rank covering, dua to I. (See Section 5.) Halt. //

Let us now estimate the complexity of the algorithm. Suppose the
ranks of the matroids M,, M, are R, R,, respectively, and let R =
min {R,, R,). Thus, no intersection can contain more than R elements
and there can be no more than R augmentations.

Assume there are subroutines available for independence testing in
M, M,. Suppose the running times of these subroutines are ¢, (m), c,(m),
respectively, where m = |E|. Let ¢(m) = max {c, (m), c.(m)}. For each aug-
mentation, and each subsequent application of the labeling procedure,
there is a computation of C!), (X2 far.each ¢, ¢ E [, The running time
for this task is no greater than 0 (mRc(m)).

The labeling procedure, exclusive of circuit computation, is Q(m?)
and backtracing, if an augmenting sequence is found, is O(m). Since there
are O(R) applications of the labeling procedure, the overall running time
of the algorithm is no greater than O(m*R + mR*c(m)).

In the case of bipartite matching in a graph with n nodes and m
arcs, where m is O(n*), R can be taken to be m!/2, The computation of the
circuits C{V',(4? is trivial, and can be ignored. (C{! contains al arcs of the
matching incident to the same S-node as arc ¢!, C!? all arcs incident to the
same T-node.) The overal running time is O(m?*?®) or O(n®). The difference
between O(n®) and O(n?), the running time for the conventional matching
agorithm, is attributable to the fact that labels are applied to arcs of the
graph rather than to nodes. This observation serves as an example of the
value of exploiting the special structure which may exist for a particular
problem.

PROBLEMS

4.1 Show that for the case of bipartite matching in G the border graph BG(1) is
the line graph of G, with an appropriate orientation of arcs. How does the
orientation change with each augmentation?

42 Specialize the cardinality intersection algorithm to bipartite matching, writing
down an explicit statement of the steps to be performed, using only graphical,
not matroid, terminology.

43 Repeat Problem 4.2 for the intersection of the graphic matroids of two graphs
G, andG,,
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5

Duality Theory

‘The cardinality intersection computation provides a constructive proof
of a duality theorem for matroid intersections. This theorem is of the max-
min variety, similar to the max-flow min-cut theorem. of network flows
and the Konig-Egervary theorem, of which it represents a proper gen-
eralization.
We say that a pair of subsets E,, E, of E isa covering of E if E; u

E, = E. With respect to a given pair of matroids M,, M,, we define the
rank of a covering § = (E,, E,) to be r(&) = r{(E;) + ry(E;).

Lemma 5.1 For any covering & and any intersection |, r(&) > |I|.

prooF Let |, =1 nEy,, and I,= I n(E, E,). Clearly |I,| < (E))
and |I,| < r,(E,) which implies |I| = |I,| + |I,| < r8). //

Theorem 5.2 (Matroid Intersection Duality) For any two matroids M,

M,, the maximum cardinality of an intersection is equal, to the minimum
rank of a covering.

procr By the lemma, the rank of a covering cannot be less than the
cardinality of an intersection. The intersection algorithm enables us to
construct a covering whose rank is equal to the cardinality of an inter-
section, asfollows.

At the conclusion of the algorithm (when the labeling has become
“Hungarian”), let the set I, contain the elements of | that are labeled and
Iy contain those which are not. Let E, = sp,(Iy), E; = sp,(I;). Suppose
e, € E L If ¢ is labeled, then ¢; esp,{l;), by Step 1.2 of the agorithm.
(The scanning of ¢; labels all elementsin C{* ¢, Hence ¢; e sp, (C'*'  e;) <
sp, (IL).) If ¢, is unlabeled, then e; e sp, (1), by Step 1 .0 and hence e; € sp, (1,),
by Step 1.3. (The scanning of any labeled element in C{!' — ¢; would label
e;. Hence (D n.] =0 OV = ¢, < 1,.) It follows that ¢, € E; u E, and
& = (E, E;) isa covering. with r(&) = |1|. /

A duality theorem for the max-min intersection. problem follows
from Theorem 5.2 in exactly the same way that the duality theorem for
the max-min bipartite matching problem is derived from the Kénig-
Egervary theorem.

Theorem 53 Let M, = (E, 4,), M, = (E, #,) be any two matroids and
w(e) be any weighting of the elements. Then, for any k,

eel,led n gy =k

= min max {we)lee E = (A, U 4,),r(4)) +r,(4;) = k = 1).

mlaxmin {w(e)
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PROOF Let I*, |I*| = k be an intersection which is max-min optimal with
respect to all intersections containing k elements. Let ¢* be such that

w(e*) = min {w(e)|eeI*}.
and let
A* = {ecE|lw(e) > wle*)}.

Clearly a maximum cardinality intersection contained within A* has at
most k — 1 elements, for otherwise I* would not be optimal. It follows
from Theorem 5.2 that A* can be partitioned into two sets, 4%, A% such
that r, (4¥) + r, (4%) < k = 1. (Apply the theorem to the two matroids
after deleting al elements not in A *)) But e is the element with largest
weight not in AT U A%. Hence we have established that

mpx min {w(e)} > :ni4n max {w(e)}.

Conversely, let A¥, A%, ry (AF) + r,(A%) = k = 1, be a min-max
optimal solution to the dual covering problem. Let e* be such that

w(er) = max {we)le el —~ (4} v AT)}.

It follows from Theorem 5.2 that a maximum-cardinality intersection con-
tained within A* has at most k — 1 elements. Thus, any intersection with
k elements must contain at least one element not in A*. At best this is ¢*
Hence we have established that

max min {w(e)} < min max {w(e)}.
1 A1, A4y

This establishes inequality in both directions and the proof is complete. //

PROBLEMS

51 For a bipartite matching over agraph G = (S, T. A), a covering consists of
two subsets of acs E; ad E,, such that every arc in A dither meets one of the
arcs in E, at an S-node or one of the arcsinE, at a T-node. Obtain similar
characterizations of coverings for each of the following types of matroid inter-
section problems:

(a) M, and M, are graphic matroids.
(b) The directed spanning tree problem.
(c) The common transversal problem.

52 Write out the steps of a max-min matroid intersection algorithm and estimate

its complexity.
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6

Generalized Mendelschn-Dulmage Theorem,
Matroid Sums and Matroid Partitions

The Mendelsohn-Dulmage Theorem (Theorem 4.1, Chapter 5), generalizes
to the case of matroid intersections as follows.

Theorem 6.1 (Kundu and Lawler) Let M;, M, be 1wo matroids on E,
and I, I, two intersections. Then there exists an intersection | < I, u I,
such that sp, (1) 2 sp; (I;) and sp, (I) 2 sp,{/5).
proce  If sp,(I,) = I, there is nothing to prove. Let ec I, -~ sp,(/,),
where [, + eisin #,. If I, + e belongs to .# let I} = I, + e. Otherwise,
there exists a M -circuit C suchthate eC=l,+e NowC —e ¢ 1, n |,
isin .#,.Choose € € C n (I; = I,) and define

IN =1, =-¢ + e

We have I € .#, and sp, {I}) = sp, (I;) and also I} is trivially independent
in M,, However,

ILnl] > ALl

Thus we can apply the same procedure to define 1Y, k=1, 2, . . . such that
sp; (1) 2 sp; (1), Mes ns,

until sp,(I%) = 1,. Then [ = J®_//

Suppose 0, and 8, are two different criteria of optimality, such

that
sp;( A) 2 sp; (B)
implies
A = B (0), i=1,2

i.e, A isto be preferred to B with respect to criterion 6,. Let 1,, I, be sets
in the family .#, n .#,, which are maximal with respect to 8,, 0,, respective-
ly. Then by Theorem 6.1 there existsaset | €., n .#,, I < I, u I,, which
is maximal with respect to both 6, and 6,.

Theorem 6.1 provides a relatively simple and direct proof ofa theorem
of Nash-Williams.

Theorem 62 (Nash-Williams) Let M, =(E, .#,) be a. matroid and h: E -
E, be a mapping of E into E,. Then M, = (E,, #,) is a matroid, where

4, = {I, < Ey| for some I, e.#, h(l;) = 1}.
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prooF It issufficient to show that if I, 1,4, aretwo sets in 4,. respectively
with p and p + 1 elements, there exists a set h(I) € .#, with p + 1 or more
elements such that I, = h(l) <= 1, u I,, ;. Let M, = (E, .#,) be a partition
matroid where

4, =L, S ELnh™" ()

< Lfordl ¢ e E,}

Let I, I, be sets in .4, respectively with p and p + 1 elements, such
that fz)(I;,) =I,and h (I, +,)=1,.,. Thesets [, I+ are independent in
M, aswell as M, and we can apply Theorem 6.1.. Thus thereisa set | ¢
£, n .4, such that

spy (1) = spy(L,41).
Hence |I|= p + 1, and
sp2(1) 2 h(sp, (1)),
from which it follows that
h(I) 2 sp,(I)).
and hence

h@) 2h(Iy) =1,

Also h is one-to-oneon Jand | < [, v I,,,, which implies that lh(D)| =
p+1and hil)ycsI,ul,,,. Thus #, defines the independent sets of a
matroid. //

The rank functions in M, and M, are in the relation:
ro(Eo) = min {r, (™! (4)) + [Eq - A} (6.1)
AS
We leave the proof of this relation for the reader.

Another important way to form a new matroid is to take the “sum”
of two matroids.

Theorem 6.3 (Nush-Williams) Let M, == (E, .#,), M, = (E,, .J,) be
matroids and E= E, u E,,

J={I=1ul, I ef . 1,€5,]}.
Then M = (E, .#), the sum of M, and M,, is a matroid.

prooF Let E; be a new set obtained by priming each element of E, and
let M, = (E3, .#) be defined in the obvious way. Because El, and E, are
digoint, it follows amost immediately from definitions that M’ = (E’, .#')
is a matroid, where E’ = E, u E’, and

F={Il'=1viyled lhed;).
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Now apply Theorem 6.2 to M’ and M, with h: E’ -» E defined by the rela-
tion

h(e) = e,ecE,

he)=¢e, ¢ € E;.
By Theorem 6.2, M is a matroid. //

From the fact that the sum of two matroids is a matroid, it follows

that the sum of any finite collection of matroids M;, M,,, M, is aso

a matroid. A relation between the rank function r in the new matroid and
the rank functions of the matroids entering into the sum is given by

rE) = min{ Y ori(A) + [E = 4] } (6.2)

AGE L j=1

As in the case of relation (6.1), we leave the proof to the reader.

Now suppose M = (E, .#)isthesumof M;=(E;, 4),i=1,2,....k
We have available subroutines for determining whether or not a given
subset A ¢ E is independent in any one of the matroids M, M,, .., M,
How can we determine whether or not a given subset A < E is independent
in M?

Clearly A is independent in M if and only if 4 can be partitioned
into k blocks I,, I,,....1, where I, € .#,. This is one variation of the
matroid partitioning problem. A special case of the partitioning problem
is. given a single matroid M = (E, -#) and a subset A C E, is it possible to
partition A4 into k independent sets I,, I,, . . . . 1,? (Consider taking the
sum of M with itself k 1 times) Or., what is the smallest number k of
independent sets into which A can be partitioned?

Partitioning problems can be reduced to cardinality intersection
problems, as follows. If the sets E,. E,, . ., E, are not dligoint, make them
sa by creating extra copies of the elements. Let M’ be the matroid ob-
tained by summing the k matroids over these disjoint sets. For a given
set A which is to be partitioned, let M® be a partition matroid in which
each independent set contains at most one copy of each element in A and
no element from E — A. Now solve the cardinality intersection problem
for MY and M, The maximum cardi:nality of an intersection is equal to
the cardinality of A if and only if partitioning is possible. If partitioning
is possible, a feasible partition can be determined directly from such a
maximum-cardinality  intersection.

Now let us consider the reduction of the intersection problem to
the partitioning problem. Let M; = (E. #,) and M, = (E, .#,) be the two
matroids for which a maximum-cardinality intersection is to be found.
Suppose we partition E into three blocks, I, I,, I3, where I; 1§ a base in
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M?, the dual of m, |, isindependent in M,, and I, is arbitrary (independent
in the trivial matroid for which every subset of E is independent). Then
L, is an intersection of M, and M,. As it turns out, it is easy to arrange for
Edmonds partitioning algorithm (described in the next section) to yield
a maximum-cardinality block I,, subject to the condition that I, is a base
of wmf.

PROBLEMS

6.1 Show explicitly that the Mendelsohn-Dulmage theorem is a corollary of The-
orem 6.1.

6.2 Let G be an acyclic but otherwise arbitrary directed graph. Let the nodes of
G with in-degree zero be identified with the elements of a matroid M, =
(E, ). Let E, be the subset of nodes with out-degree zero, and #, be a family
of subsets such that I, 2 E,isin.#,if and only if there exists a set of node-
disjoint paths from an independent set I'in ¢ to the nodes in I,. Use Theorem
6.2 to show that M, = (E,, .#,) isamatroid.

6.3 Provethat a matroid is atransversal matroid if and only if it is the sum of
matroids of rank one. (A matroid M = (E, .#) is of rank one if r(E) = 1)

6.4 Prove reations (6.1) and (6.2).

6.5 Let G be an arbitrary directed graph. Let us say that a subset of arcs § covers
a given subset of nodes | if for each riodej in | there is an arc (i, j) in § directed
into j. Use Theorem 6.2 to show that the family of subsets of nodes which are
covered by forests constitutes the family of independent sets of a matroid.
Show that the problem of determining whether or not there exists a forest
covering a given subset of nodes is a matroid intersection problem. (Note:
A forest is a subset of arcs which contains no undirected cycle)

7

Matroid Partitioning Algorithm

Let M;=(E 4),i=12 ...,k be k given matroids. The algorithm of
Edmonds given below constructs a partition of E into k blocks 1, i =
1,2,..) k where I, € .4, if such a partition exists. Moreover, the partition
constructed is lexicographicaly maximum, in that |I;] is maximum, |I,|
is as large as possible subject to |Il| being maximum, and so on.

MATROID PARTITIONING ALGORITHM (EDMONDS)

Step() (Start) Setl;=.fori=1,2,...,k SetU=E. (U is the subset
of elements which have not been assigned to blocks I,.)
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Step/ (Computation of Sequence S, Sy, - - )

(1.0) SetS, = Eand j = 1.

(1) Find the smallest index i such that |I,~ NSy <rdS,-1)- If there
is no such block I;, halt; E is not partitionable. (See the text following.)
(L2) Set §;=9-;nsp(linS;_ ) Setl() = i.

(13 IfUc=S;. setj=j+1andgoto Step 1.1; otherwise choose e
to be any element in U = §; and go to Step 2.

Step 2 (Augmentation of Partition)

(200 Remove e from U.

(21) Addeto Iy.If I, isindependent in M,;, ,go to Step 2.3.

(22) Find the unique circuit C < I,; and choose ¢' to be any element
inC - §;_;. (Suchan dement € must exist; see the following text.)
Remove € from Iy;, sete=¢, setj=j — 1, and go to Step 2.1.

(23) If U is nonempty, go to Step 1. If U is empty, al elements of E
have been assigned to blocks of the partition, and the computation is
completed. //

The reader will readily see that I(j) acts as a “labeling function,”
which serves to direct a form of backtracing in Step 2. Note that this back-
tracing may involve the same block rnore than once; i.e., it can be that
(i) = I(j), fori #].

In Step 1.1, if it is not possible to find a block I; such that 1]‘1- NS;_1 <
ri(S;-1), it follows that

1S, 2 1S, 1) 2 rA),

fordl i andal A< §;_;. If we choose e to be any element in U N §;_,
and let

A = {ef u(Sj__ s O 11>,
i

then it follows that
k k
4] > Y [0 851 2 ¥ ri(4). (79)
i=1 i=1
This inequality will be used in the proof of Theorem ‘7.1.

In Step 2.2 the circuit C in [, must of course be unique because I,
was independent before e was added to [, ;. Moreover not all elements of
C can bein Si-1- If they were, then they would all be in §; as well, by the
construction of §; in Step 1.2. But the element e was chosen (either in Step 1.3
or in the previous execution of Step 2.2) not to be a member of §;.
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It is not possible for I,,, to be dependent in Step 2.1. If I, were
dependent, it would contain a circuit C, and by the observation above,
at least one element of C would not be contained in S,. But S, = E, and
clearly this is an absurdity; thus, the decrementing of j in Step 2.2 never
proceeds below j = 1.

We can evaluate the complexity of the agorithm as follows. Each
subset §; is a proper subset of its predecessor, because of the condition in
Step 1.1, subject to which [; is chosen. Hence, the inner loop, Steps 1.1
through 1.3, is performed at most m times for each execution of Step 1. Like-
wise, the inner loop, Steps 2.1 and 2.2 of Step 2, is performed at most m times
for each execution of Step 2. Steps 1 and 2 are themselves executed at most
m times, once for each element in E. Hence, the overall computation grows
as m’c(m)" where c(m) is the maximum number of steps required to test
for independence in any one of the k matroids M, M,, ..., M,,.

Both the cardinality intersection algorithm and the matroid par-
titioning algorithm have been seen to be 0(m3c'(m) ) in complexity. However,
this does not mean that the algorithms have the same complexity when
applied to the opposite type of problem. For example, consider the applica-
tion of the partitioning algorithm to the intersection problem Recall that
it is necessary to determine whether ¢r not a set A is independent in M%.
But A ¢ #Yif and only if r,(E = A) = r,(E), and testing for this condition
requires O(mc(m)) steps, where c(m) steps are required for independence
testing in M,. Thus, the complexity of the intersection computation actually
becomes 0 ( m*c (m)) when performed by the partitioning algorithm.

Conversely, suppose the cardinality intersection algorithm is ap-
plied to the problem of partitioning a set A into k independent sets, where
k is of order m. Then independence testing in the matroid M'!’ (recall the
notation from the previous section) becomes O(mc(m)) in complexity,
where c¢(m) is the number of steps required for independence: testing in a
single matroid M, M,, ..., M,. Thus, the complexity of the partitioning
computation becomes O(m*c(m)) when performed by the intersection
agorithm.

The partitioning algorithm provides a constructive proof of the
following theorem.

Theorem 7.1 (Edmonds und Fulkerson) LetM;=(E, #,),i=1,2, ...,k
be k given matroids. A set I < E can be partitioned into k subsets I, i =
1,2 ...,k wherel;c.9,,if and only if For al A <1,

4] < _; ri(4). (7.2)

PROOF Suppose I is partitionable into subsets I, i= 1,2, .., k. Clearly,
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foral A <1,

k]

k
4| =Y [Iin4
i=1

i=

and, for each I,
|1 v A] < ri(A).

from which (7.2) follows immediately.

Conversely, suppose (7.2) is satisfied for all 4 < E. Then the par-
titioning algorithm will construct a partition of E, since an appropriate
subset I; can always be found in Step 1.1. (If this were not the case (7.1)
would be satisfied in contradiction to (7.2).) The result for arbitrary I S E
is obtained by applying the algorithm to the matroids M, i= 1,2, ., Kk,
restricted to the elements I (i.e., delete E = 1.) //

The celebrated Philip Hall Theorem of transversal theory follows
as a corollary of Theorem 7.1.

Theorem 7.2 (Philip Hull Theorem) There exists a transversa (SDR) of
the family Q = {¢;; =1, 2,, m}if and only if for r = 1,2, ..., m, the
union of any r of the sets ¢; contains at least r distinct elements.

PrRoOOF For each element ¢;, let M; = (Q,.#;) be such that
S = Jju {{qj}|eieqj}'
There exists an SDR of Q if and only if Q can be partitioned into sets |, € .#,.
For any A < Q,
ri(A) = 1, if ¢; is contained in the
union of the subsetsg,
inA,
=0, otherwise.

Hence Y r;(A) counts the number of distinct elements, in the union of the
sets g; in A. The desired result follows immediately from Theorem 7.1. //

PROBLEMS

71 Formulate the cardinality intersection problem solved in Section 3 as a matroid
partitioning problem, and solve by Edmonds’ algorithm.

72 Carry out adetailed analysis of the partitioning algorithm when it is applied
to the problem of computing atransversal of a givenfamily Q. Show that in
this case the labeling function is such thati= j implies!(i)£1(j).
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8

The Shannon Switching Game

The Shannon Switching Game is played on the arcs of a graph. Two distinct
nodes of an arbitrary graph G are designated as terminal nodes. There are
two players in the game, called short and cut. The players aternately tag
arcs of the graph not already tagged by either player. The short player
wins if he tags all the arcs in some path connecting the terminal nodes,. The
cut player wins if he prevents the short player from obtaining such a path.
Each player has complete information about the other's moves. The game
continues until one player wins.

It is clear that any such game must have a winner. When all the arcs
have been tagged, either the short player has succeeded in connecting the
terminal nodes, or he has not. Moreover, any given instance of the game
can be characterized as cut, short, or neutral, depending upon the nature of
the graph G. A cut (short) game is one that can always be won by the cut
(short) player, playing second. (If a cut (short) player can win by playing
second, he can certainly win by playing first.) A -neutral game is one that
always can be won by the first player, whether cut or short.

Let us indicate the terminal nodes of the graph by connecting them
with a special arc e, which is not to be tagged by either player. Using this
convention, very simple examples of cut, short, and neutral games are
shown in Figure 8.9.

€

O Figure 8.9 Examples of cut, short, neutral games
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Lehman applied matroid theory to the analysis of the Shannon
Switching Game, suggested the classification into cut, short, a.nd neutral
games, and characterized a winning strategy for the short player. Edmonds
improved this analysis and provided a good characterization of a winning
strategy for the short player. The statement of Theorem 8.1 is a further
refinement due to Bruno and Weinberg.

We say that two subsets A, A’ < E are cospanning in a matroid
M = (E, #) if they have the same spans, i.e., sp(4) = sp(4').

Theorem 8.1 Let G be the graph of a Shannon Switching Game in which
e is the nonplayable edge. Then exactly one of the following statements
holds :

(8.1) G contains two disjoint cospanning trees spanning but not con-
taining ¢. The spans are taken with respect to the graphic matroid of
G. Equivaently, the game is a short game.

(8.2) G contains two disjoint cospanning cotrees spanning but not
containing e. The spans are taken with respect to the cographic matroid

of G. Equivalently, the game is a cut game.

(8.3) G contains two digjoint cospanning trees, and e is a member of
one of the trees. The spans are taken with respect to the graphic matroid
of G. G aso contains two disjoint cospanning cotrees and e is a member
of one of the cotrees. The spans are taken with respect to the cographic
matroid of G. Equivalently, the game is a neutral game.

We shall not prove this theorem, but we should comment on some
of its implications. First, it seems evident that a variation of the matroid
partitioning algorithm can be used to (determine whether any given game
is cut, short, or neutral. Bruno and Weinberg make use of a procedure due
to Kishi and Kgjitani which can be viewed as a variant of the matroid
partitioning agorithm.

Second, the digjoint cospanning trees and cotrees mentioned in
(8.1) and (8.2) of the theorem provide clues to the winning strategies for
the short and cut players in short and cut games. For example. in the case
of a short game, each time the cut player tags an arc in one of the cospanning
trees, the short player tags an arc € in the other tree, so that when ¢’ is
contracted in G, the arcs of the two trees untagged by the cut player are
again cospanning. If the cut player tags an arc that is not in either cospanning
tree, the short player’s move is arbitrary.

It is not hard to devise variations of the switching game which are
effectively unsolved. For example, suppose that neither player is alowed
to have more than k arcs tagged at any time. One can imagine that there
are a fixed number of markers, and at each move a player is alowed to
move one marker.
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Also, very little is known about the game of Hex, which is -played
on a sguare tesselation of hexagons, similar to the tiles in -the floor of a
public washroom (where the game allegedly originated at M.I.T.). The
players alternately tag hexagons, with one player attempting to form a
chain from one side of the tesselation to the other, and the other player
attempting to block him.

9

Weighted Augmenting Sequences

We now return to the weighted matroid intersection problem. The “primal”
procedure we shall propose is analogous to the algorithm of Busacker,
Gowan, and Jewel1 for computing minimum cost network flows;. The matroid

algorithm proceeds by computing maximum weight intersections contain-
ing successively larger numbers of elements. Having obtained 1,, a maxi-
mum weight intersection with p elements. I,,; is obtained from I, by
constructing a “maximum weight augmenting sequence,” i:n exactly the
same way that the corresponding network flow algorithm proceeds from
a minimum cost flow of value v to ore of value v + ¢ by means of a mini-

mum-cost flow augmenting path.

The agorithm is characterized as “prima” because: it does not
involve dual variables or the calculation of a dua solution, as is the case
with the “primal-dual” method described in Sections 12 and 13. The primal
method is certainly conceptually much simpler, and possibly more efficient
than the primal-dual method.

For any subset A ¢ E we let w(A) denote the sum of the weights
of the elementsin A. That is,

W(A) = ) w;
ejed
Given an intersection |, and a set S < E, we define the incremental weight
of Sto be

AS) =w(S =1 —wSnl.

Clearly,
w( @9 = w(l) + A(S).

In order to establish the validity of the primal algorithm, we: must
introduce some additional definitions and terminology. A border path is
either (1) a directed cycle in BG(I) or (2) a directed path (without repetition
of nodes) in BG(I) from a node that is either in I or a source in E -- I to
anode that is either in I or asink in E = I. A, border path is said to be either
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“positive, ® “neutral,” or “negative,” according to the following classifica-
tion :

(91) A source-sink path S is positive.|I @ S|= |I| + 1.

(92) A directed cycle is neutral, as is a path from a source to a node
in I, or path from anode in ] to asink. If Sisa neutral path, then |I @ S| =
1.

(93 A path S between two nodes in I is negative. [I @ S|= |I| - 1.

The reader should refer to Figure 8.8 and identify each path in the
figure as positive, neutral, or negative.

Let S be a border path in BG(I). A simple border cycle with respect
to S is an undirected cycle in either BG | (I) or BG,(I) which uses arcs in
S adternately. An example of a simple border cycle is shown in Figure 8.10.
Arcsnot in S are dashed in the figure.

Lemma 9.1 (Krogdahl) Let S be a border path in BG(I). If S admits
no simple border cycle, then I @ S is an intersection. In particular, if S
is a source-sink path which admits no simple border cycle, then S is an aug-
menting sequence with respect to I.

N /
RV
/ N
OswranO
</
VAN -
/ ~

Figure 8.10 A border path with simple border cycle in BG, (/)
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ProoF  Without loss of generality, let S = (ey, e,. .., €). (If Sis adirected
cycle, choose an arbitrary node e, and let ¢, be the last node reached before
returning to e,.) If S admits no simple border cycle in BG, (1), then it is
possible to induce a partial ordering, “ <™ on node pairs, where for e, ¢; €
E =1 (e, €+ 1) < (e, €j41) if there Is an arc (e;, €;+1) in BG,(I). One can
then use this partial ordering to redraw the subgraph of BG,(I) induced
on the nodes of S so that there are no “downward” arcs, as in the proof
of Lemma 3.1. The proof that ] @ S is independent in M, then follows by
a construction similar to that used in Lemma 3.1. The proof of independence
in M, is, of course, similar. //

The reader should be able to verify that if a border path S admits
no shortcuts, then S admits no simple border cycle. (If Sis a directed cycle,
any chord is a shortcut.) Thus Lemma 9.1 is a strict generalization of
Lemma 3.1

We say that an intersection I is p-maxima/ if ‘I| = p and I is of maxi-
mum weight with respect to all intersections containing p elements.

Lemma 92 (Krogdahl) Let I be p-maxima and S be a border path in
BG(1). If any shortcut of S yields a path with strictly less incremental weight,
then I @ Sis an intersection.

proor We wish to show that S does not adrnit a simple border cycle,

so that Lemma 9.1 applies. So we shall assume that S admits a simple border
cycle and show that this assumption leads to a contradiction.

Again without loss of generality, suppose S = (e,, €5, .., €). Any
simple border cycle must contain at least one shortcut of S and at least one
“cutback,” an arc directed in the sense opposite to S. A shortcut yields a
border path with strictly less incrementa. weight. Hence if (e;, e;) is a
shortcut,

A({eis1,€i42,....€;,1)>0. 94

A cutback (e;, ¢;) forms a directed cycle in BG(I) with the subpaih of S
which lies between ¢; and ¢;. If this directed cycle admits no simple border
cycle, then
A({eneiry.--..€;})<0, (95)

because 1 is p-maximal. (Otherwise | @ {e;, ¢;4 1. - , € i woulld be an inter-
section with p elements, but with strictly greater weight than ].)

It is not difficult to show that inequalities (9.4) and (9.5) yield a
contradiction for any simple border ‘cycle. For example, in the case of the
simple border cycle in Figure 8.10,

wles) + wles) > wlel) + wie,),

wles) + wileg) > wieg) + wieg),
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by (9.4), whereas
wiey) + wles) + wie;) + wleg) < wiey) + wley) + wieg) + wieg).
by (9.5).
It only remains to show that if S admits a simple border cycle, S

must admit a simple border cycle for which inequality (9.5) is valid for each
cutback in the cycle. Thisis a hit tricky.

Suppose a simple border cycle C contains nodes e;), €i2)» - - -, €
in E-—1,wherei(l) <i(2 < ...<i(k). Define the “extension” of C to be
the subpath of S between e;;, and e;,,. (Recal S= (e;. e,. . . .. ¢,).) Since

S is assumed to admit a simple border cycle, there must be a simple border
cycle C such that the extension of C is minimal and C contains a maximum
number of arcs with respect to all other simple border cycles with the same
extension. That is, if C' is any other simple border cycle, then the extension
of C' is not a proper subpath of the extension of C, and if C' has the same
extension as C, then C' contains no more arcs than C.

Now consider any cutback arc in C. Suppose the directed cycle S
formed by this cutback were to admit a simple border cycle C'. The aternate
arcs of S which appear in C' cannot be a subset of the alternate arcs of S
which appear in C. Otherwise C' would also be a simple border cycle of S§,
with smaller extension than C. Hence the alternate arcs of §' in C' must
include the cutback itself plus arcs of S “in between” the alternate arcs of
Sin C. But if this were the case, it would be possible to construct a simple
border cycle of S, either with smaller extension than C, or with a larger
number of arcs than C. We leave details to the reader.

It follows that if S admits a ssimple border cycle, it admits a simple
border cycle for which inequality (9.5) holds for each cutback in the cycle.
But this is a contradiction. Therefore, S admits no simple border cycle. //

If 1 is p-maximd, it follows immediately from Lemma ‘9.2 that a
maximum (incremental) weight source-sink path S in BG (1) is an augment-
ing sequence. We now wish to show that I @ Sis (p + 1)-maximal.

In proving the following key lemma we make use of two observa-
tions. First, if S; and S, are node-disjoint border paths, where §, is positive
and §, is negative, then S, v S, can be treated as a single neutral border
path. Second, if S is a border path. then repeated shortcutting of S (with
weight nondecreasing shortcuts) yields a path S < S such that A(S) = A(S)
and | @ S' is an intersection.

Lemma 93 (Krogdahl) Let I be a p-maximal intersection and J be any
intersection with H = |I + 1. Then there exists a source-sink path S €
1@ JinBG(I)such that §is an augmenting sequence and w(l @ S) = w(J).
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proor If J contains an element that is not in sp, () U sp,(I), then e,
is both a source and a sink in BG(I) and S = (¢,) is a source-sink path.
Since J — ¢, is an intersection with p elements, w(J = ¢;) < w(Z), which
implies that w(I -+ ¢;) = w(J), as required. So assume J < sp, (I) U sp,(I).

Now carry out exactly the same construction used in the proof of
Lemma 3.2. That is, form the subgraph H < BG(I) with node set | @ J
and arc set X, u X,, where X,, X, are matchings found as in the proof
of the lemma. Each connected component of H is a border path. Since
J = 1I|=|I J]+ 1, the number of positive border paths is one greater
than the number of negative border paths,. Choose any one of the positive
(source-sink) paths S and pair the remaining positive and negative paths
to obtain neutral border paths. For any neutral path S', A(S') < 0, because
I is p-maximal. The sum of the incremental weights of al border paths is
equal to w(J = I) = w(l — J). It followsthat w (I & §) = w(J). //

The key theorem below follows almost immediately from the lemma.

Theorem 9.4 Let I be a p-maximal intersection and S be a maximum
incremental weight source-sink path in B (). Then S is a maximum weight
augmenting sequence and / @ Sis (p + 1)-maximal.

In the next section we shall show that maximum weight augmenting
sequences can be computed by a procedure that is essentially a shortest
path agorithm. Thus, it is clearly possible to start with the empty set and
find maximum weight augmenting sequences to obtain Iy, I3, I, ..., max-
imum weight intersections with 1,2,3, elements, respectively, stopping
when no further augmentation is possible. One can then compare the weights
of these various intersections so as to determine an intersection which has
maximum weight without restriction on the number of elements.

However, “the maximum weight of intersections is concave in the
number of elements,” just as “the minimum cost of flows is convex in the
value of the flow.” This means that if one seeks to compute a maximum
weight intersection without restriction on the number of elements, such a
set is given by I,. where p is the smallest number of elements such that
wil,) = w(l,yy).

In order to establish this concavity result, we need two additional
lemmas.

Lenma 95 (Krogdahl) Let I be a p-maximal intersection with p = 1
and J be any intersection with |J| - = |I| -- 1. Then there exists a negative
border path S < | @ J in BG(I) such that I @ S is an intersection and
w(l @ S) = w(J).

proor The proof is essentially similar to that of Lemma 9.3, except that
after pairing positive and negative border paths, there is one negative path
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left over. The other important difference is that we must provide for the
case J ¢ sp, (I) usp, (I) by using (J = 1) n (sp; (1) u sp, (1)) instead of
J = | when the partition into sets J;, .f,, J3 is made. This means that
there may be degenerate positive border paths consisting of single elements
which are neither sources nor sinks, but this makes no difference. //

Lemma 96 (Krogdahl) Let I be a p-maxima intersection with p > 1
Let S be a positive border path and S’ be a negative border path in BG{(I).
Then A(S) + A(S) 10.

prooF If the two paths are digjoint, then S w S acts, as a neutral path
and the lemma follows immediately. So assume S and §' have at least one
node in common. Take the subpath of S before this node and the subpath

of S after this node to obtain a neutral path R. Lkewise, take the subpath

of S' before this node and the subpath of § after this node to obtain a second

neutral path R. (There may be repeated nodes in R and R, but this is of
no consequence.) Now A(R) < 0 and A(R’) < 0O, because I is pmaximal.
But

AR) + A(R) = A(S) + A(S).

so the lemma follows. //

Theorem9.7 Let I, 4, 1,, I,,, be intersections which are (p = I)-, p-,
and (p + 1)-maximal, respectively. Then

w(l,) = wl,.y) =“(1,,,) =w(,).

PROOF By Lemma 9.3, there is a positive border path S in BG(J,) such
that w(l,) + A(S) = w(l,,). By Lemma 95, there is a negative border
path S in BG(I,) such that w(l,) + A(S")= w(I,_,). Hence,

W(Ip+1) - W(Ip) = A(S)
w(l,) = w(,_,) = -A(S).

But by Lemma 9.6, A(S) + A(S’) < 0, which yields the desired result. //

As a fina note, we might mention that Theorem 9.7 also follows
immediately from the linear programming formulation of the weighted
intersection problem, discussed in Sections 1 | through 13. That is, I,_ y,
I,1,,, can be shown to be feasible solutions of a certain linear programming
problem. The convex combination 1,_,+ 31,. | is aso a feasible solution
and is dominated by an optimal solution at an extreme point of the poly-
hedron identified with a p-maximal intersection. This line of reasoning
parallels that used in Chapter 4 to show that the minimum cost of flows
is convex in the value of the flow.
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10

Primal Weigh ted Intersection Algorithm

A maximum incremental weight source-sink path in a border graph can
be found by a procedure that is similar to a shortest path computation.
Each node ¢; € E — |, in BG (1)) is given weight w; and each node ¢; ¢ I,
is given weight — w;. One then wishes to find a source-sink path of maximum
total node weight. Since |, is assumed to be p-maximal, there are no directed
cyclesin BG(1,) with positive node weight.

Let

A(e;) = the weight of a maximum weight alternating sequence, with
¢; as the last element.

We propose to compute A(e;) by successive approximations, as in the Bell-
man-Ford shortest path algorithm. In effect, at successive iterations we
compute  A(e;), A'?(e)),. ... A™(e;), where

A% (e;) = the weight of a maximum weight alternating sequence
containing no more than k elements, with ¢; as the
last element.

Since no alternating sequence contains more than m elements, where
|E| = m, it is clear that a maximum weight augmenting sequence has weight
A(S), where

A(S) = max {A™(e))|I, + e;e #,}.
el

A labeling procedure for computing these successive approxima-
tions to A(ej) can be implemented as follows. (Superscripts on Afe;) are
eliminated for conciseness.)

Initially, apply the label “@f*™ to each element ¢; € E = sp, (I,) and
set Afe;) = w;. For al other elements ¢;, set Ae;) = — 0.

Thereafter, find an element ¢. with an unscanned label and scan it
as follows. If the label isa “+ ™ label and I + ¢; is dependent in M,, apply
the (unscanned) label “i™" to each element ¢; € C?' = ¢, for which A(e;) =
w; > Afe;), and set

Afe;) = Ale) - w;.
If the label isa*“—" label, apply the (unscanned) label “j*” to each element
¢; such that e, € C{" and A(e;) + w; > Afe;), and set
Ale;) = Ale;) + w;.
Continue scanning and labeling until all labels are scanned. We
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assert that at that point A(e;) has attained the correct value for al e;.
(Labels may be scanned in any order. However, in order to achieve a bound
of 0(m?) on the labeling procedure, it is. necessary that labels be scanned
in the order in which they are applied.)

We now summarize the prima algorithm.

PRIMAL WEIGHTED INTERSECTION ALGORITHM
Step @ (Start) Let I = (J. No elements are labeled.
Step / (Labeling)

(L0) For each element ¢; € E — [, find Ci"’ {2 if these circuits exist.
Set A(S) = 0, Ale;) = —oc, for al ¢; € sp; (I). ' Apply the label “F*™

to each element ¢; ¢ E — sp, (I) and set Afe;) = w;.
(11) If there are no unscanned labels and A(S) > — 0, go to Step 2.
If there are no unscanned labels and A(S) = ¢, go to Step 3. Other-
wise, from among the elements whose labels are unscanned, find that
element ¢; whose label was first to be applied. If the label isa “+" labdl,
go to Step 1.2; if itisa “—" label, go to Step 1.3.

(12) Scan the “+™ label on e, as follows. If I+ ¢, is independent in

M, and Ale;) > A(S), set A(S) = Ale;) and s = i. Otherwise, apply the
(unscanned) label *“i™™ (replacing any existing label) to each element
e;e (1P — ¢ for which A(e;) < Afe)  w; and set A(e;) = Afe) — w;.

Return to Step 1.1

(1.3) Scan the “ —™ label on e, as follows. Apply the (unscanned) label
“i*" (replacing any existing label) to each element e, such that ¢; € C}"
and Ale;) + w; > Afe;), and set Afe;) = Ale;) + w;. Return to Step 1.1.

Step2  (Augmentation) A maximum weight augmenting sequence S can
be identified by backtracing from e,. If A(S) < 0, stop; the existing inter-
section | is of maximum weight. Otherwise, augment I, remove al labes
from elements, and return to Step 1.0.

Step 3 (Hungarian Labeling) No augmenting sequence exists. | is not
only of maximum weight but of maximum cardinality. The labeling is
“Hungarian” and can be used to construct a minimum-rank covering dual
to 1. Halt. ////

It is quite easy to estmiate the complexity of the primal agorithm.
Le R = min (r(E), r,(E)). Consider the running time for each of R
possible applications of the labeling procedure. The computation of C{V,
Ci?, for @l ¢; € E ~ | requires O(mRc(m)) running time. Each of the m
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€3

Figure 8.1 1  Multigraphs  for
Problem 10.1

elements may receive O(R) labels (corresponding to A(e;), A®(¢;), . ..)
and the scanning of each label requires, 0 (M) running time. Hence the labeling
procedure consumes O(m*R) running time per augmentation. Backtracing
and other operations are dominated by those already mentioned. It follows
that the overall running time is O(m*R? + mR?¢(m)).

PROBLEM

101 Let M, M, be the graphic matroids of the multigraphs G, G, shown in
Figure 8.11. Let the arcs of thess multigraphs be given weights w, = 3,
w, =5, wy=6, w, = 10. wy = 8. Find a maximum weight intersection,
starting with the 2-maximal intersection |, = {e,, ¢,}, indicated by wavy
lines in the figure

11

Matroid Polyhedra

In order to formulate the weighted intersection problem as a linear pro-
gramming problem, we first formulate a system of linear inequalities
which are satisfied by an independent set of a single matroid M = (E, 4).
Clearly, if | is an independent set, then

sl <ns, (11.1)

for any subset § < E, and in particular for any closed set S.
Equivalently, let A be an incidence matrix of closed sets and ele-
ments of E. In other words, each row i of A corresponds to a closed set of
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the matroid (the indexing of these sets being arbitrary) and each column j
corresponds to an element ¢;. We set

a; = 1, ife;belongsto closed seti,
= 0, otherwise.
Let r=(ry,1y,....1,) beavector, where r; is the rank. of closed set i. We

shall show that the vertices of the convex polyhedron defined by the in-
equalities
Ax <r
x=0

are in one-to-one correspondence with the independent sets of M. That is
to say, if x is a vertex, then each component x; is either O or [, where x; = 1
if element € is a member of the independent set identified with the vertex,
and x; =0, if it is not.

As a simple example, consider the graphic matroid of the graph shown
in Figure 8.12. There are nine nontrivial closed sets of this matroid (i.e.,
closed sets other than the empty set) and the incidence matrix A and rank
vector r are the following:

oA

~

S

Nt

>

1
P P O O b O O O B
D B OFP O OO FRrR O
P b P OO O R oo
P ok kP P Rr ooo

i

L) NN NN R = e =

e, e, €3 €4
It is not difficult to show that the only feasible solutions to the system
Ax <r

xj=00r1

Figure 8.12 Example graph
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are those which correspond to independent sets, and vice versa. What is
more surprising is that when these constraints are used to define a linear
programming problem, the (0, 1) restriction on the variables can be dropped,
and the existence of an optimal integer solution is guaranteed.

Theorem 11.1 (Edmonds) For any matroid M, all vertices of the convex
polyhedron defined by the system of inequalities
AX <,
X 2 0,

have integer components. Moreover, the vertices and the independent sets
of the matroid are in one-to-one correspondence.

prock It is sufficient to show that for any set of element weights, w =

(Wy.w,, . ... W,), the linear programming problem
maximize Wx
subject to
Ax <r
X =0

has an integer optimal solution.

It is known that for any given set of weights, one can find a maximum
weight independent set by applying the greedy algorithm. In other words,
from among the elements whose weights are strictly positive, choose the
element of greatest weight, then second greatest weight, and so on, unless
the selection of an element would cause the set of chosen elements to be
dependent. If we can show that such a maximum weight independent set
chosen by the greedy algorithm yields an optimal solution to the linear
programming problem, the theorem will have been proved.

The dual linear programming problem is

minimize ru
subject to

ATuzw
u=>0.

The orthogonality conditions which guarantee optimality of feasible
primal and dual solutions are:

x; >0 = (ATu); = w;,
u; >0 = (Ax); = r;.

Suppose, without loss of generality, the elements chosen by the
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greedy algorithm are ey, e,, . . . . ¢, where wy = w, = . . . 2 w,, and that
Uy, U,,.... u, are the dual variables corresponding to the closed sets

Sy = sp(ier}).

S, = sp({ey. e1}).

S, =sp({eq,eq,...,e}),
respectively. We shall show that

=1 (=12...k
0 (j=k+1,..,n

is an optimal primal solution.
From the nature of the greedy algorithm, it is clear that

I

r(sy) =i
= (AX),‘
= r
1
so it is permissible for 4, >0,i=1,2, ..., k. If we set
uk = Wk’

Up—1= W1 — Uy,

we find that

Furthermore,
ATu = w,

because of the “greedy” nature of the algorithm.
This establishes that each vertex of the polyhedron corresponds
to an independent set. Conversely, each independent set is a unique maxi-

mum weight set for some weighting of the elements, and therefore corre-
sponds to a vertex of the polyhedron. //
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Let M,, M, be two matroids over the same set of elements E and
let A and B be the closed set incidence matrices of M; and M ,. respectively.
Let » and s be the rank vectors associatedl with these two matrices. We
propose to solve the weighted intersection problem by solving the linear
programming problem

maximize wx
subject to
Ax <r
Bx ~ S
X = 0.

If this linear programming problem has an integer optimal solution,
then this is a valid approach. At this point it is by no means clear that the
integrality property holds. However, the primal-dual weighted intersection
algorithm will provide a constructive proof of the integrality property,
just as the greedy algorithm provided a constructive proof of Theorem 11.1.

Theorem 11.2 (Matroid Polyhedral Intersection Theorem-Edmonds)
For any two matroids M, and M,, al vertices of the convex polyhedron
defined by the system of linear inequalities

AX

Bx <s

r

A

x =0

have integer components. Moreover, the vertices and the intersections of
the two matroids are in one-to-one correspondence.

An equivalent statement of the theorem is that the intersection of
two matroid polyhedra is a polyhedron whose vertices are vertices of’ each
of the two intersected polyvhedra. Note, however, that the intersection poly-
hedron is not necessarily a matroid polyhedron, so the theorem, unhappily,
does not extend to three or more polyhedra.

PROBLEMS

111 Deemine the exact ndure of the closed St incidence marices and the closed
sat-rank  inequdities for each of the following types of maroids Which in-
equdities, if any, ae redundant in each case?

(a) Partition matroid
(b) Transversal matroid
(c) Graphic matroid
(d) Cographic matroid
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112 Suppose, in addition to the inequality (constraints,

we add the constraint

Z X; = r(E).

Show that the resulting system defines a polyhedron whose vertices corre-
spond to the bases of the matroid.

12

Explanation of Primal-Dual Method

The primal-dual algorithm described below provides a constructive proof
of the polyhedral intersection theorem of Edmonds. That is, it is shown
that, regardless of what element weights w = (w,, w,, . . ., w,) are chosen,
the linear programming problem

maximize wx
subject to
Ax <r

(12.1)
Bx <s

x=0

has an optimal solution in zeros and ones.
The prima problem is as indicated in (12.1). The dua problem is

minimize ru + sv
subject to
Alu+ Bv > w (12.2)
u,v =0,

where each dual variable u; is identified with a closed set of M, and v,
with a closed set of M,.

Orthogonality conditions necessary and sufficient for optimality
of a pair of feasible primal and dual solutions are

X;> 0= (A"u+ B'v); = w, (123

u; > 0 = (Ax);

vy > 0= (Bx)k

" (124)
Spe (125)
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The agorithm begins with the feasible primal solution x, = 0, for
j=12..,m (e, I = &), and with the feasible dual solution in which
each dual variable u; or v, is zero, except y,, the dua variable identified
with the closed set E. We set u; = max {w;}. Thus, at the beginning of
the computation the only orthogonality condition which is violated is

ug > 0= |I| = r, (E). (12.6)

The algorithm proceeds in stages. At each stage either the primal
solution is revised by augmenting the existing intersection, or the values
of the dual variables are revised. At all limes, both primal and dual feasibility
are maintained. Moreover, at each stage the only orthogonality condition
which is not satisfied is (12.6). After a finite number of stages (in fact, a
number bounded by a polynomia function in the number of elements
in E), the condition (12.6) is also satisfied, and the primal and dual solutions
existing at that point are optimal.

For a given pair of primal and dual solutions, a. variant of the labeling
routine of the cardinality intersection algorithm is applied, in an attempt
to augment the primal solution. Clearly, the use of any augmenting sequence
will result in a new feasible prima solution. However, the labeling routine
must be modified in such a way that the only augmenting sequences which
can be discovered are those for which all the orthogonality conditions
except (12.6) continue to be satisfied.

If the application of the labeling routine, as restricted, does not
result in the discovery of an augmenting sequence, then the dual solution
is modified. The change in the dual solution must be such as to maintain
dual feasibility, maintain satisfaction of all orthogonality conditions except
(12.6), and also provide some progress toward the termination of the algo-
rithm with optimal primal and dual solutions.

As a consequence of the fact that (12.6) is the only unsatisfied orthog-
onality conditions, the intersection | existing af uny intermediute stage OF  the
computation is of maximum weight, relative to all intersections containing
M or fewer elements. For suppose there were an additional constraint of

the form
Y x; <k,
j

and we were to incorporate this constraint with the objective function via
a Lagrange multiplier 4. Then an intermediate solution is easily shown to
Ix optimal for = uy and therefore fer a value of k equal to |I].

At each stage of the computation, no more than 2m dual variables
are permitted to be nonzero. These nonzero variables, except ug ae
identical with spans of subsets of | in two different families % and ¥".
Notationally, we let

U={Uy Uy . ) U,
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and
2= (Vo Vi LV
where
Up = B U, c Uy, U, =1,
Vo = & hee Vi, V=1

Associated with subsets U, and ¥, are dual variables u; and v;, where u;
is identified with the closed set sp, ( U;) and v, with sp; (V).
Suppose the primal solution I is augmented by the application of

an augmenting sequence S = (e, ¢;, . . ., €). We propose to revise the
families 9 and ¥~ as follows. For j = 3. 5, . ., sreplace e;_, by ¢; in each
of the subsets U; in which ¢;_, is contained. For j = 1,3,...,s =2 replace

e;+y by e; in each of the subsets ¥ in which ¢;,  is contained. If », =0,
set U,=1@ S Otherwise, (if u, > 0), set p= p + 1 and then set U, =
I'® s Fndly,if v,=0,set V,=1® S Andif v,>0,set ¢ =¢ + 1 and
set V=1 @S

Of course, this revision of the families 4, ¥~ does not affect the
dual solution, in the sense that the values of no dual variables u;, v, are
affected. However, unless the augmenting sequence S is of a restricted type,
a proper relation will not be maintained between the sets U, }, and the
dual variables u;, v,. Specifically, it is necessary that the spans sp, (U;),
sp,( V) be unaffected by the changes in membership of U; and ¥,. This
objective is attained by a modification of the labeling procedure.

The labeling procedure is modified in two ways. First, no element
isgiven alabel, unlessit belongs to the set

E* = {¢;| (A"u + B'v); = w;}.

This insures that any augmenting sequence discovered by the labeling
procedure will maintain satisfaction of the orthogonality conditions (12.3).

Second, the rules for scanning are modified so as to maintain in-
variance of the spans of the sets in %, ¥ after augmentation. When a “—"
label on ¢; € | is scanned, find the smallest set U; in which ¢; is contained.
Denote the index of this set by u(j). Then apply the label “j+™ to each
unlabeled element e; € E* such that ¢; e C\V and C{" - ¢; = Uy,

When a “ +" label on ¢; € E¥ — [ is scanned, determine if | + ¢; is
independent in M,. If so. an augmenting sequence has been found. Other-
wise, find the smallest set ¥} such that C\? — ¢; < I Then apply the label
“j —" to each unlabeled element in C{¥ - ¥ . .

We assert that this system of labeling. in conjunction with the
previously mentioned system of replacement of elements in %, ¥ ', does
indeed maintain invariance of spans after augmentation.

Alternating sequences constructed by this modified labeling pro-
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cedure are valid alternating sequences. For example, suppose we seek a
maximum weight intersection of the graphic matroids M,, M, of the multi-
graphs G,, G, shown in Figure 8.11. with ‘element weights w, = 3, w, = 5,

wy = 6, w, =10, w, = 8. Assume that the computation has progressed
to the point that | = {e,, e,}, with the following dual solution:

Up = 2,
Ul - {6)4}, Ll1 = 4,
U2 - {92764} s U, = 2'
Vi = {ed}, o=,
sz{ez, 64}, V2 :l.
The reader can easily verify that the dual solution is feasible. In
fact, E* = E= {e,¢,,. .., e5 }. Moreover, it satisfies al orthogonality con-

ditions except (12.6).

Now if the unmodified labeling procedure of the cardinality inter-
section algorithm is applied. the only augmenting sequence constructed
is S = (ey, e4, e5), yielding the three-‘element intersection | © S =
leq, €, es}. with weight 16. However, when the modified labeling procedure
is applied, the only augmenting sequence constructed isS =(ey, €,,€3,€4,¢5).
which yields the three-element intersection / @ S = {e,. ¢, ¢5} With weight
17.

The reader should be able to verify that the existing dual solution
fails to satisfy orthogonality condition (12.5) for I @ S. However, the dua
solution does satisfy all orthogonality conditions, except (12.6),for I @ S.
Hence I @ S is a maximum weight intersection of three elements.

If the labeling procedure, as modified above, terminates without
the discovery of an augmenting sequence, then the dual solution is revised.
Thisisdone asfollows.

First, we create additional sets in the families %, ¥, in such a way
that each set U; U;_,or ¥, V,  will contain only labeled elements
or only unlabeled elements. Let | be partitioned into subsets I;, I, of
labeled elements and unlabeled elements. For each set U, such that U; —
U;_ , contains both labeled and unlabeled elements, add one to the indices
of thesets U, U; + , , Up, and then create a new set

U= Uiy w (Ui 0 Iy),

and set u; = 0. (In the expression for the new set U;, U,,, is the old U,
with incremental index.) For each set V,. such that V,  V,_, contains
both labeled and unlabeled elements, add one to the indices of the sets
Vio Vis1, --+» V,, @nd then create a new set

Vi=Viciw Mewr 0 1),

and set p, = 0.
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Let 4 be a positive number yet to be determined. ‘The dual variables
are changed as follows. Variable u is decreased by §. If the elements of
U, = U,_; are unlabeled, u, is increased by o. If, fori=1,2,.., p=1,
the elements of U; U,;_, are labeled (unlabeled) and those of U;,,; — U,
are unlabeled (labeled), then U; is decreased (increased) by 6. If the elements
of V, = V,_, ae labeled, v, is increased by o.If for k= 1.2,...,q9 =1,
the elements of V, = V,_, are labeled (unlabeled) and those of V. ; = ¥,
are unlabeled (labeled), then V; is increased (decreased) by J. No other
dual variables are changed in value.

The reader should convince himself that if the elements in U; —
U;_, are labeled, then the effect of the changes in the dual variables is to
decrease (AT ); by 6, for each ;€ sp; (U;) - spi(U;-,). However, if the
elements in U; = U;_, are unlabeled there is no change in (47u),. Smi-
larly, if the elements in V, ¥, _, are labeled, the effect of the (changes in
the dual variables is to increase (B"v), by 6, for each e;esp, (Vi) =spa(Vi—y).
And if the elementsin I, = V, _ | are unlabeled. there i |s no change in (BTU)

Quite clearly, then, for each element ¢; e | (for which x; = 1) there is
no change in (4'u + B'p); caused by the Tevision of the dual solution.
Hence conditions (12.3) continue to be satisfied.

The only dual variables u; and 3, whose values are increased are
those which are associated with sets U,, V. For all such sets U; and V,,
it is the case that (Ax;) = r; and (Bx), = s,. Hence conditions (12.4) and
(12.5) continue to be satisfied by the revision of the dual solution.

We next need to show that there is a strictly positive value of ¢,
such that dual feasibility is maintained. First, we confirm that the only
dual variables u;, v, which are decreased by ¢ are those which are associated
with sets U,, I, existing before the creation of new setsin 4, ¥ . The dual
variables identified with these sets had strictly positive values before the
revision of the dual solution. Hence there exists a § > 0 such that the non-
negativity of y, ¢ is maintained.

Now let us consider inequalities of the form (ATu + BTp) > w. We
have already disposed of the case that e;€ I. Suppose ¢;€ E = sp, (/).
There is no set U; such that ¢; e sp, (U;), hence the only change in (ATu);
is that occasioned by the change in ug by -6. The element ¢; is labeled if
and only if (A"u+ B™v ); = w;. If ¢; is labeled, then there is some smallest
set ¥, such that ¢; € sp, (), and aII the elements in V, -- V,_; are labeled.
(There must be such asetV,, else S = (¢;) would be an augmenting sequence.)
In this case the net effect on By is +5 and the net change in (47u + B'v v);
is zero. If ¢; is unlabeled, the net change in (A"u + B'v); may be either
zero or -6. (The reader should verify that the change is zero if and only
if the labeling and scanning of ¢; would not result in the labeling of any
previously unlabeled elements.) In any case, if ¢; is unlabeled then (ATu +
B™1 ); > w;, SO there is some strictly positive value of & which will not cause
the dual inequality for e; to be violated.
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Now suppose ¢; €1, but e; € sp, (1), from which it follows that there
is a smallest set U; such that ¢; € sp, (U)). If ¢, is labeled, the labeling re-
sulted from the scanning of a labeled element e¢;_; < I contained in U,
but not in U;_ {. Hence, the elements in U; - U';_, are labeled and the net
change in (47u); is — d. There must be a smallest ¥; such that e;€sp2 (W),
else ¢; would be the final element of an augmenting sequence. The elements
in ¥, — V,_, are labeled, hence the net change in (B"u)j is +0 and that
in (4"u+ B'p); is zero. This is appropriate since the fact that ¢; is labeled
implies (47u + B'v); = w;.

Finally, suppose e; £ 1, ¢ € sp, 1, and e is not labeled. Let U,
be the smallest set in % such that e;esp, (U;). It is the case that either the
elements in U; — U,_, are unlabeled or the elements in U, — U,_, ae
labeled and (4"« + B"v); > w;. In the first case, (4"u); is unchanged, and
in the second (ATu)j is decreased by 6. Without analyzing the effects of the
changes in the dual variables on (B'v);, we observe that (4"u - Bv); is
decreased only if (4"u + B'v); > w;.

We now conclude that there does exist a strictly positive value of
¢ which can be chosen, such that dual feasibility is maintained. Let I~
denote the indices of dual variables y,, other than wug, which are to be de-
creased by ¢, K~ the indices of dual variables u, which are to be decreased
by é.and J~ the indices of elements ¢; for which (A7u + Bv); is to be
decreased by §. Then we may choose

6 =min {ug, 6. §,,0,} >0,
where
8, = min {u;liel™},
6, = min {y|ke K™},
S, = min {(A"u + BTv); -~ w;|jeJ " }.

If § = ug, then condition (12.6) is satisfied, the prima solution and
the new dual solution are orthogonal and optimal, and the computation
is completed. If § < ug, but §=4,0r g, one or more of the dual variables
u;, v, are reduced to zero and the corresponding sets U, ¥, (except U, V,)
are removed from the families %, ¥~ before the labeling procedure is re-
sumed. This may enable additionzl €lements to be labeled. If 6 = 6.,
then at least one more element ¢; enters E* and is eligible for labeling.

If al the element weights ¢; are integers, al arithmetic is integer,
and each revision of the dual solution reduces uy by an integer amount.
This observation is sufficient to establish finite termination for the algo-
rithm. However, a more sophisticated argument is given in the next section.

PROBLEM

121 Show that the spans of setsin #, ¥ remain unchanged by augmentation
of the intersection.
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13

Primal-Dual Weighted Intersection Algorithm

The labeling scheme described in the previous section can be interpreted
in terms of the border graph BG(I), as follows. The graph is constructed
exactly as for the cardinality intersection problem, except that only nodes
for elements in E* are provided. In effect, two numbers u(j), u(j) are as-
signed to each node ¢;e 1. These indicate the indices of the smallest sets
U;, , inwhich ¢; is contained.

The labeling procedure amounts to a search for a source-sink path
according to the following scheme. Each source node in E* — | is given
the label “@*.” In effect, when the label on a node e; € E* — | is scanned,
the maximum value of v(;) is found, for al arcs (e;, ¢;), directed from e,
and the label “i ~ " is applied to al unlabeled e; with this maximum vaue.
When the label on a node ¢; € | is scannzd, the label “i+" is applied to an
unlabeled node ¢;, provided u(i) is maximum for &l arcs directed into
e;.

! We now specify the steps of the primal-dual algorithm in detail.
In the statement of the algorithm we let w; = (47u + BTv); — w;.

PRIMAL-DUAL ALGORITHM FOR
WEIGHTED MATROID INTERSECTIONS

Step 0 (Start) Set

=g,
uE:mc’j_\X w;l,

U ={Uy} = (T},

/ Z{Vo}z{@}~
Ug=0o=0, p=q=0,

Wj= ug = w, ji=L2,..,m
E* ::{ej‘W = 0).

No elements are labeled.

Step | (Labeling)

(1 0) Compute Cj!) Ct? fordl ¢;e E* I Give each element in E* —
sp, (1) the label “@*.”
(1.1) If there are no unscanned labels, go to Step 3. Otherwise, find
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an element ¢; with an unscanned label. If the label isa “+7 label go to
Step 1.2; if itisa“-- " label go to Step 1.3.
(12 Scan the “+ " label on ¢; as follows. If | + ¢; is independent in
M,. go to Step 2. Otherwise, find the smallest set v, such that CP=¢; =
¥, and give each unlabeled element in C‘Z) V.- ; the label * ]— " Return
to Step 1.1.
(1.3) Scan the “-." label on ¢; as follows Find the smallest set U,
in which ¢ is contained. Apply the label “j+” to each unlabeled element
e; ¢ E* such that e;e CVand Gl = ¢, bw), Return to Step 11.1.
Step 2 (Augmentation of Primal Solution) An augmenting sequence S
has been discovered, of which ¢; (found in Step 1.2) is the last element.
The elements in S are identified by backtracing. Augment { by adding to
1 al elements in the sequence with “+" labels and removing from | all
elements with « " labels.

Suppose, without loss of generality, the augmenting sequence S =
(e, ¢,, . , &). Revise the families %, " as follows. Forj = 3,5, . . . , s replace
e;_1 by e; in each of the subsets U; in which ¢;_, is contained. For j =
1,3 .,s 2 replace €j+1 by e; in each of the subsets V, in which ¢;, |
is contained. If u, = 0, set U, = I. Otherwise (if u, > 0), set p=p+ 1
and then set U, = 1. If v, =0, set J = I. Otherwise, set ¢ = ¢ 4 1 and
set b, = L

Remove all labels from elements and return to Step 1.0.

Step 3 (Revision of’ Dual Solution) Let I, I, denote the subsets of |abeled
and unlabeled elements of 1. for each set U; e # such that U; - U;_, con-

tains both labeled and unlabeled elements, add one to the indices of the
sts U, U; 1y, .. ..U, andthen create: anew set

Ui=U_,wU, NI,
and set u; = 0. For each set V, such that ¥, ¥, _, contains both labeled

and unlabeled elements, add one to the indices of the set V. Vi, .. .., ¥,
and then create a new set

Ve=Vicy (Vg n 1),

and set ¢, = 0.
FormsetsI*.I~, K*, K™, as follows:

I* ={ili=pU,—U,_y clyori<p Uy, —U,cI,U—U,_, Sy},
I_:{i‘i<pa Ui+1_Uig|”y Ui“Ui—lgIL}s
Kt = {klk=q.V,~V,_, Sl ork<q Voo — Vi Iy Vo= Veey S 1L}
K‘:{k‘k<q’ I/;(+1_ngl”l/;(-- I/l'(—lgln}'
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Form sets J*, J~ as follows. For each element ¢, let U, Vi
denote the smallest sets, if any, in%,7" such thate; e spi (U,;),¢;€5p,(Vy;)-
If these sets do not exist (because ¢; € E —sp; (I'), ¢; € E = sp, (1), respective-
ly), let Uy Uuiy- 1= 1. Vs, Vet~ 1= lu

Set
F =1 Uy = Uuy-1 = I Vigy = w1 = 1
J7={i Uy =Uyj-1 S lis «i» = Vo1 S Iu}-
Set
§ = min {ug, d, 6,, 8,,},
where
6, =min {ulie I"},
d, = min {ylke K™},
8, = min {w;|jed }.
Set
Up = up 9
u; = u; + o, foriel”

u; = u; = o, foriel”
ve = vy + O forke K*
vy = U =0, forke K~
w; =w; + 0,forjeJ?
w;=w; — d,for jeJ".

If up = 0, stop; the primal and dua solutions are optimal. Other-
wise, remove from %, ¥ al sets U, W, other than U, ¥, for which u; = 0,
v, = 0 and renumber the sets in %, ¥ accordingly. Set E* = {e; w; = 0}.

Remove all labels and return to Step 1 .0. //

Let us now estimate the complexity of the algorithm. We make the
same assumptions about R and c¢(m) as in Section 4. Fo:r each augmentation,
the computation of circuits C{", C{* requires O(mRc(m)) running time,
as before.

There may be many revisions of the dual variables, each revision
requiring O(m) steps for the revision itself, plus a reapplication of the
labeling procedure, which is O(m?). If al dement weights w, are integer,
then the maximum number of revisions of the dual variables is W =
max {w;}, where W is the initial value of uz. There is also an application
of the labeling procedure for each of the R possible augmentations. Thus,
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we conclude that the overall running time is no greater than O (m*(R + W) +
mR*c(m)).

Even if the element weights are not integral, or even rationa, a
bound that is polynomial in m and ¢(m) can be obtained. Each time a re-
vision is made in the dual solution, at least one of the dual variables u;, v,
or one of the w; is reduced to zero With this observation and a careful
analysis of the algorithm, we can conclude that at most O(R?) revisions of
the dual solution are possible between successive augmentations. This
yields a bound of O(m*R* + mR*c(m)), the same as the bound for the
primal agorithm.

PROBLEMS

13.1 Carry out a detailed analysis to show that at most O(mz) revisions Of the
dual solution are possible between augmentations.

132 Show that labels which have been applied prior to a revision of the dual solu-
tion remain valid after revision.

14

A Special Case: Directed Spanning Trees

Recall the formulation of the directed spanning tree problem from Section
2. An arc-weighted directed graph G = (N, A) is given, and it is desired to
find a maximum weight spanning tree directed from a specified root node
with in-degree zero. Any subset of arcs | forming such a tree must be in-
dependent in the graphic matroid of G, and must also be independent in
the partition matroid which has as its independent sets all subsets of arcs,
no two of which are directed into the same node.

A particularly simple and elegant procedure has been devised
for solving this specia case of a weighted matroid intersection problem.
The procedure is illustrated with reference to the network in Figure 8.13.

First apply the greedy algorithm to find a maximum weight solution
with respect to the partition matroid only. That is. for each node choose
the heaviest arc directed into that node. In the case of the graph in Figure
8.13, these arcs are indicated by wavy lines. If the arcs chosen in this way
do not contain a cycle, then the problem is solved.

However, it is seen in the example that arcs ¢, ¢4, and ¢, form a cycle
passing through nodes 3, 4, and 5. (Note that any such cycle must be a
directed cycle.) The next step is to contract the arcs of such a cycle, so that
nodes 3, 4, and 5 are replaced by a single pseudonode. All self-loops created
by this contraction are discarded. The weights of the arcs in the contracted
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Figure 8.13 Example network

network are the same as in the origina network, except for the weights
of arcs directed into the pseudonode. These weights are modified as follows.

Suppose (i, j) is an arc of the original network, wherej is contained
in the cycle C, but j is not. Then arc (i, j) is represented in the contracted
network by an arc (i, k) directed into the pseudonode f resulting from the
contraction of C. In the contracted network set w; == Wij = (Wigy,; = 0),
where (i,(j), j) is the unique arc of C directed into node j and

0 = min {w;, .}
peC

In the example, the minimum of the arc weights in the: cycle is 9.
Hence in the contracted network the weight of arc ¢, becomes 1 -- (11 — 9) =
— [, the weight of arc e, becomes [0 - (11 — 9) = 8, the weight of arc
e;, becomes 5 ~ (9 — 9) = 5, and the weight of arc e¢,; becomes 9
(12 - 9) = 6. The complete contracted network is shown in the upper
part of Figure 8.14.

The procedure is now repeated for the contracted network. That
is, for each node (or pseudonode) the heaviest arc directed into that node
is chosen. If this solution contains one or more cycles, these cycles are
contracted and weights are modified. In the example, this results in the
network shown in the lower part of Figure 8.14.

The process is repeated until finally a contracted network is ob-
tained for which the arcs chosen do not contain a cycle. An optirnal directed
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e9, 6 Figure 8.14 Contracted networks
spanning tree is then constructed by expanding the pseudonodes in the
opposite order from that in which tihey were formed. The arcs chosen in
the final network are entered into the solution. Thereafter, as each pseudo-
node is expanded, al but one of the: arcs in the cycle identified with the
pseudonode are entered into the solution. We discard the unique arc of
the cycle whose entry into the solution would cause two arcs to be directed
into the same node.

The expansion of the example network is illustrated in Figure 8.15.
Arcs ¢; and e, are entered into the solution from the final contracted net-
work in Figure 8.14. The pseudonode (2, 3, 4, 5) is expanded to obtain pseudo-
nodes (2) and (3, 4,5), Arc ¢, is entered into the solution and. arc e, is dis-
carded, because arc e, of the solution is directed into node 2. Pseudonode
(3,4,5) is expanded to obtain nodes (3,4) and (5) and arcs e, and eg are
entered into the solution, and e is discarded because arc e, is directed
into node 3. Arcs e;, ¢4, €5, €g, and ¢4 form an optimal directed spanning
tree with aweight of 43.
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Figure 8.15 Optimal directed tree

The agorithm as we have described it yields a maximum weight
spanning tree, which is not necessarily a maximum weight matroid inter-
section. That is. for a given network there may be a forest of directed trees
which has greater total weight than any single spanning tree. If a maximum
weight forest is desired, the procedure is modified to ignore any arcs whose
weights become negative as a result of network contractions. This means
that for a given pseudonode in one of the contracted networks, no arc
directed into that pseudonode may be (chosen for the solution because all
such arcs have negative weights. When such a pseudonode is expanded,
the lightest arc in the cycle identified with that pseudonode is discarded.

The reader should also be able to solve the problem in which there
is no prescribed root node for the directed spanning tree. The first set of
arcs chosen must necessarily contain a cycle, because there will be n such
arcs and a tree can contain only n — 1. The network must be contracted
until a pseudonode is created with in-degree zero in the solution.

The procedure is quite elegant and relatively easy to implement.
However, a proof of its validity is another matter. A. proof by Edmonds.
based on linear programming duality, is rather tortuous. Even a “simple’
proof due to Karp is fairly involved. The interestedl reader should refer
to the original papers for these proofs.
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PROBLEMS

141  Resolve the example problem in Figure 8.13. with arcs ¢
1,23 12,20. 18 2,16, 1, 3,2,

142  Solve the example problem by the primal matroid intersection algorithm.

143 Formulate the dual to the directed spanning tree problem. (Note that a maxi-
mum weight intersection is not necessarily a spanning tree: another constraint
is necessary.) Find a dual solution for the example network.

144 The following simple procedure determines whether or not there exists a
directed spanning tree from node 1

1o €7, 0iven weights

Step 0 Apply the label “™ to node 1.

Step / If all nodes are labeled. halt; there exists a directed spanning tree.

If all labels are scanned, but some nodes are unlabeled, halt; there is no
directed spanning tree. Otherwise, find a node i with an unscanned label
and go to Step 2.

step 2 Scan the label on node i as follows. For each arc (j, j) incident
to nodei, apply the label “;" to node j, unless node j already has alabel.
Return to Step 1.1.

(a) Estimate the complexity of this algorithm as a function of wi and n,
the number of arcs and nodes.

(b) Generalize this algorithm to solve the max-min directed spanning
tree problem. Estimate the complexity of the algorithm.

(c) Generalize the algorithm still further to solve the max-min version
of the “directed” Steiner network problem. Estimate the complexity of
the algorithm.
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The Matroid Parity Problem

1

Introduction

Let M = (E, 4) be a matroid whose elements are arranged in pairs That
is, every element e ¢ E has a uniquely specified mate ¢ € E. A parity set
A < E is aset such that, for each element e, e € 4 if and only if e A. The
object of the matroid parity problem is to find an optima (maximum car-
dinality or maximum weight) independent parity set in M.

The matroid parity problem is a generalization of both the matroid
intersection problem and the nonbipartite matching problem, as we show
in the next section. Thus. matroid parity theory embraces virtually all of
the problem types we have studied so far, as shown in Figure 9.1. We have
included the “semimatching” problem in that figure because it appears to
be a greatest common specialization of the other problem types.

It appears that matroid parity problems should be amenable to
solution by augmentation methods employing the methodology of the
matroid intersection algorithms and the nonbipartite matching algorithms.

356
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However, there are a number of technical problems which must be over-
come in the development of an algorithm with polynolmial-bounded running
time. Although we conjecture that such an algorit’hm exists.,, we present
here only limited evidence.

We conclude this chapter and book with a discussion of generaliza-
tions of the matroid parity problem. One such generalization is obtained
by arranging the elements of the matroid into triples, rather than pairs.
A polynomial-bounded solution procedure for this problem would imply
a solution to all of the hard problems listed in Chapter 1. But that is very
unlikely to occur, to say the least. Hence we conclude that the matroid
parity problem, as we have defined it, is probably about as far as we can
go with the type of theory presented in this book.
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2

Problem Formulations

Let us first consider the reduction of the matroid intersection problem and
the nonbipartite matching problem 1o the matroid parity problem. Then
let us consider an equivalent problem. we call the “matroid matching prob-
lem,” and some representative problern formulations.

MATROID INTERSECTION PROBLEM

Let M, = (E, #))and M, = (E, .#,) be two matroids for which an optimal
intersection is sought. Create a matroid M,, isomorphic to M,, over a
set E digoint from E, with a natural None-one correspondence between ele-
ments e in £ and ¢ in E_ It is apparent that there is a one-one correspondence
between intersections of M, M, and parity sets of M, + M, =(E U E, .¥).
(Cf. Theorem 6.3 of Chapter 7.) It fcllows that any algorithm for solving
the parity problem can be applied to solve the intersection problem.

We can characterize those parity problerns which can be reduced
to intersection problems as follows. Let M = (E, .#) be a matroid with its
elements arranged in pairs. M is said to be separable with respect to the
pairing of the elements, if it is possible to partition E into two sets E; and
E, such that:

(21) For eachelement e € E, e ¢ £, if and only if e E,.
(22) For each circuit C of the matroid, either C < E, or C < E.

Clearly, if M is separable, then M = M, + M,, where M, =
M del E, =M ctr E; and M, =M del E; =M cir E;. It is clear that under
these conditions the parity problem reduces to an intersection problem
for M, M,, after the elements of one of these two matroids are renamed
to correspond to elements of the other

NONBIPARTITE MATCHING PROBLEM

Let G = (N, A) be a graph in which an optimal matching is (desired. Sub-
divide the graph to obtain a graph G* = (N*, 4*), in which each arc of G is

replaced by a pair of arcs ¢ and e. Let M = (A*, .#) be a partition matroid

induced by incidences of arcs in G* on the (original) set of nodes N < N*,
It is clear that there is a one-one correspondence between independent
parity sets of M and matchings in G. Thus, an algorithm fo:r solving the
parity problem can be applied to solve the matching problem.
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A matroid parity problem reduces to a matching problem if and
only if the matroid is a partition matroid. If the partition matroid is separable,
then the matching problems is bipartite.

MATROID MATCHING PROBLEM

We define the matroid matching problem as follows. Let G = (N, A) be a
graph and M = (N, .#) be a matroid over the nodes of the graph. For any
matching X € A in G, let I(X) = N denote the set of nodes (covered by
the matching. The object of the problem is to find an optima (maximum
cardinality or maximum weight) matching X, subject to the condition that
I(X) is independent in M.

Clearly, if M isthe trivial matroid of rank m =|E|, (M has no circuits)
then the matroid matching problem is nothing more than an ordinary
graphic matching problem.

The matroid matching problern reduces to the matroid parity
problem with the following construction. If G is a graph in which each node
has degree one, then the matroid matching problem is already equivalent
to a matroid parity problem. Otherwise, replace the graph G by a graph
G* in which each node of degree d is replaced by ¢ copies of the node,
with exactly one arc incident to each of these new nodes. Replace the matroid
M by a matroid M*, in which each element of M is represented by d “paral-
lel” copies in M*, Then the matroid matching problem for G, M, becomes
a parity problem for M*,

CREW SELECTION PROBLEM

A spaceship is being made ready for a long voyage and the process of crew
selection is underway. Each space voyager must be assigned a job for
which he or she is qualified and every job aboard ship must be filled.

Ordinarily we could choose a crew from among the set of applicants
by simply solving an assignment problem. But there is a complication.
Some of the applicants are married and it is agreed that a husband will
be chosen if and only if his wife is chosen as well. Also, since it isto be a
long voyage, each unmarried crew member should be provided with a
suitable conjugal partner in the crew.

The solution is to construct a graph G = (N, A) whose nodes are
applicants and whose arcs extend betwzen feasible conjugal partners. (This
graph can be arbitrary, and not even bipartite.) We seek an optimal match-
ing in G, subject to the constraint that the matched applicants can be as-
signed jobs aboard ship. In other words, the set of nodes covered by the
matching must be independent in the transversal matroid induced by the
relation between applicants and jobs for which they are qualified.
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GENERALIZATION OF SEQUENCING PROBLEM

Recall the statement of the sequencing problem given in Chapter 7, Section
2. Let all of the specifications of the problem be the same, except that jobs
have processing times of one hour or two hours. A two-hour job can be
interrupted and processed in two nonconsecutive one-hour periods.

The reader should be able to reformulate this generalized form of
the sequencing problem as one calling for a maximum weight independent
parity set in a transversal matroid. (Note that one-hour jobs should be
paired with dummy jobs to obtain a proper problem formulation.)

RADIALLY SYMMETRIC SPANNING TREE

Suppose the 2n + 1 nodes of a graph G are arranged in radially symmetric
pairs, i, i, around a central node 0. We seek to find a maximum weight
spanning tree in this graph, subject to the constraint that an arc is chosen
if and only if the arc between the symmetric pair of nodes is chosen.

This problem is quite clearly a matroid parity problem for the
graphic matroid of G. A typical radially symmetric tree that results from
a solution to such a problem is indicated by wavy lines in Figure 9.2.

Figure 9.2 Radially symmetric spanning tree
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GENERALIZATION OF NETWORK SYNTHESIS PROBLEM

Recall the statement of the network synthesis problem given in Chapter
8, Section 2. This problem caled for an optimal intersection of two co-
graphic matroids. One of these matroids was induced by the graph of cities
to be connected during odd time periods and the other during even time
periods.

Now suppose the reduced two-period rental can be obtained by
renting a video link for any two time periods, consecutive or not. The reader
should easily be able to reformulate the problem to one calling for a max-
imum weight independent parity set in a single cographic matroid.

MINIMAL CONNECTED HYPERGRAPH

A kypergrapk H = (N, A) is like an ordinary graph, except that its arcs
may be incident to arbitrary subsets of nodes, instead of to exactly two
nodes. Many of the conventional definitions of graph theory carry over
to hypergraphs. For example, a path from i to j is a sequence of arcs a, € A.
k=1,2,....p,such that iea, jea, and a, N a4y # &, fork=1,2, .. ..
p — 1. A hypergraph is said to be connected if there is a path between each
pair of nodes.

Let H be a given arc-weighted connected hypergraph in which each
arc is incident to exactly three nodes. Suppose we wish to find 2 minimum
weight subhypergraph of H which connects all the nodes of H.

Let us form a (multi)graph G from H in which each arc a = (i. j, k)
of H is represented by a mated pair of arcs ¢ = (i, j), e = (j, k). (Or e =

Figure 9.3 Example of hyper-
graph problem. (a) Hypergraph
H. (b) Graph G

L‘a\
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(b) Figure 9.4

(i, K, e= (k j)ore={(,j), e= (i, k); we are indifferent as to which pair
is chosen.) Let arcs e, ¢ be assigned weights so that w(e) 4+ w (&) = w(a).
The problem of finding a minimum weight connecting subhypergraph is
equivalent to that of finding a maximum weight independent parity set
in the cographic matroid of G.

An example of such a problem is illustrated in Figure 9.3.

PROBLEMS

2.1 Let G=(N, A) be as shown in Figure 943 and M = (N, #) be the graphic
matroid of the graph G’ = (N’, N) shown in Figure 9.4b. Show that the matroid
matching problem for G, M reduces to a matroid intersection problem. (Note:
G isclearly nonbipartite. I's there a node that can be deleted from G without
affecting the problem?)

22 Recall the “semimatching” problem formulated in Chapter 7, Section 2.
Suppose it is desred to solve the problem subject to the additional constraint
that elements are chosen insymmerric pairs, i.e., w;; is chosen if and only if
w;, is chosen as well. Formulate as 3 matroid matching problem. (Be sure to
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provide for diagonal elementsy,,.) ISthere any straightforward way to solve
this  problem?

23 Let M =(E, 4) beamatroid andr be a partition on E. Suppose we wish to
find an optima independent set [ of M, subject to the congdrant that | contains
an even number of elements from each block of z. Reduce this problem to
a maroid paity problem.

3

Augmenting Sequences

The notion of augmenting sequences seems to generalize to matroid parity
problems in a straightforward way. The only real difference would seem
to be that mated element pairs, ¢;, ¢; replace single elements in the definition
for matroid intersections.

Let M = (E, #) be a matroid with paired elements, and let I be

an independent parity set. Let S= (¢, &, ¢4, &,, . . . , €, &) be a sequence
of distinct elements, where ¢;, ¢; € E - I for i odd, and ¢, ¢; € | for i even.
LetS; = (ey,eq,e5,€5,...,€,_1,€_1,¢),for i <s Sissaid to be an alternat-

ing sequence with respect to I if

(B1) | + e, 1.

(32 Foradl i<s sp(I ®S)=sp(/+ e) Notethat I @ S;|= Il + 1,
and hence 1 @ §; ¢ # foral i < s. It follows that for odd i < 5, I @
(Si+ &) ¢ s

If, in addition to (3.1) and (3.2), it is the case that

(33) sisoddand| @S¢ ., Sissaid to an augmenting sequence with
respect to |. In this case, |/ @ S| = |i| + 2 and sp(/ @ S) 2 sp(]).
Unfortunately, however, this definition is defective. If [ is an inde-
pendent parity set with less than a maximum number of elements, then
it is not true that an augmenting sequence must exist, as can be shown by
counterexample.
Virtually the only result we are able to state is the following theorem.

Theorem 3.1 Let I be any independent parity set. Then there exists an
independent parity set I* of maximum cardinality such that I = sp{/*).

proor Let J be a maximum cardinality independent parity set such
that [J| > |I|. If I < sp(J), there is nothing to prove. Otherwise, choose
any element e ¢ I — sp(J). It must be the case that ¢ € sp(J), else J would
not be of maximum cardinality. Find any element f « C | where C is the
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unique circuit in J + e. (There must be such an element f, else I would be
dependent.) Then J' = (J ={ f, f}) U f, & is dso a maximum cardinality
parity set, and |I  J'| < |I - J|. Iterate until a set J' is found, with I <
sp(J') and let I* = J'. j/

4

Generalizations

The matroid parity problem generalizes al of the polynomial-bounded
problems studied in this book, and it is conjectured to be polynomial
bounded as well. What further generalizations might also be polynomial
bounded?

The fondest wish of workers in the area of combinatorial optimiza-
tion is to find a polynomial-bounded algorithm for one, and therefore,
al of the problems on the “hard” list given in Chapter 1. A suitably ef-
ficient algorithm for the three-dimensional assignment problem would do
the job. Yet we can show, by the constructions given below, that a poly-
nomial-bounded algorithm for the three-dimensional assignment problem
would imply a similar algorithm for the n-dimensional assignment problem,
for arbitrarily large n. This reinforces our opinion that such an algorithm
will not be forthcoming (and perhaps also suggests something about the
mystical power of “twoness’).

The three-dimensional assignment problem is equivalent to a prob-
lem involving the intersection of three partition matroids. The three-
matroid intersection problem is a special case of a matroid parity problem
in which each element e has not one but two mates e and &. That is, an
independent set is to be found, subject to the constraint that ¢ is a member
if and only if 2 and & are members.

Let us refer to a matroid parity problem in which each element
may have as many as k = 1 mates as a k-parity problem. We shall now
indicate the reduction of the problem of finding a maximum cardinality
k-parity set to the problem of finding, a maximum cardinality three-parity
set in a different matroid.

First consider the reduction of the four-parity problem to the three-
parity problem. Let the given matroid be M = (E, .#), with IE\ = 4m, and
suppose ¢,, e,, €3, e, are mates. Define a partition matroid M’ over the
set of elements A = gy, , as |, digoint from E, where no more than
three of the elements a,, . . ., a5 are in an independent set. Replace M by
M + M’ and reassign mates so that a,, e,, e; are mates, a,, €3, €, are mates
and as, a4, a; are mates. By similar transformations, replace all sets of four
mates with sets of three mates.
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Now notice that a maximum cardinality independent parity set
I in the new matroid with 9m elements cannot contain al three of the
parity sets A, = {a;, ey, e,}. A, ={a, es, e,}, and A, = {ay,a4,a5}. 1f I
contains both A, and A, it does not contain A,. If [ contains A5, it does
not contain either A, or A,. If J contains A, but not A, or A,, then I’ =
(I U A;) = A, with |I'| = |I|,is 4 so an independent parity set. Similarly,
if I contains A, but not A, or A,. We conclude that a solution to the three-
parity problem for the new matroid yields a solution to the origina four-
parity problem.

Now consider the reduction of the 2k-parity problem to the (k + 1)-
parity problem. Suppose ¢y, e,. ..., ¢, are mates. Define a partition matroid
over the set of elements A = (a,, dy, ., dy43), Wwhere no more than k + 1
of the elements a,, ..., q,,; are in an independent set. An analysis similar
to that given above with respect to the parity sets

- )

A=y ere o )

A, = {ay.e €2}
) 20 k410 ree 0 B2k

Ay = {as, 045 - Ukis)

shows that a solution to the (k -+ 1)-parity problem for the new matroid
yields a solution to the original 2k-parity problem.

Repeated application of the above procedure yields a reduction
of the k-parity problem to the three-parity problem. Moreover, if the given
k-parity problem is one for a matroid with km elements ( m parity sets of
k elements each), the three-parity problem will be one for approximately
k'5m elements. We have thus proved the following theorem.

Theorem 4.1 A maximum cardindity k-parity problem on km elements
reduces to a maximum cardinality three-parity problem on approximately
k' ®m elements.

Notice that the construction is such that if one begins with a parti-
tion matroid for the k-parity problem, one obtains a partition matroid
for the three-parity problem. Hence the previous comment about the re-
duction of the n-dimensiona assignment problem to the three-dimensional
assignment problem.

The construction we have given does not lend itself well to the
weighted case. But for this case there is a much simpler and more efficient
construction.

Suppose we seek a maximum weighted independent parity set for
the matroid M = (E, .#). where ¢, e,, . . ., ¢, ae maites. Let M' be a rank
k matroid over the set A= {a;,a,, . ... a}, digoint from E, for which all
subsets of A are independent. Let M; = M+ M = (Eu A, 4,). Let
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M, =(EuA, .#,) be apartition matroid, where I, ¢ .#, if and only if not
both ¢, a; belong to I,, for =12 ..., k. Let M, = (EUA, 4;)be a parti-
tion matroid, where |, ¢ .#; if and only if not both ¢; and a;, ,i=1,2,, .,
k - 1, or ¢ and a, belong to I,. By smilar transformations dea with all
other sets of k mates, and thus obtain three matroids over a set of 2m ele-
MeNts, €1,€2. ..., €ms A, 3y, ..., p

As a consequence of this construction, a maximum cardinality
intersection of M,, M,, and M, contains exactly m elements. Moreover,
there is a one-one correspondence between these m-element intersections
and independent parity sets in the origina matroid M.

If the weight of ¢; in the origina parity problem was w(e;), let its
weight in the three-matroid intersection problem be w(e;) + K. Let the
weight of each of the elements ¢, be K. If K is suitably large, a maximum
weight intersection in the intersection problem is necessarily a maximum
cardinality intersection. We thus have the following theorem.

Theorem 4.2 A weighted k-parity problem on m elements reduces to a
weighted three-matroid intersection problem on 2m elements, where two
of the matroids are partition matroids.

It follows immediately from the theorem, and the construction in
Section 2, that a weighted k-parity problem on m elements reduces to a
weighted three-parity problem on 6m elements.

We have shown that k-parity problems and k-matroid intersection
problems are equally difficult for all k, with respect to the criterion of poly-
nomial boundedness. We can reasonably conjecture that these problems
are nonpolynomia and we know that they are no worse than exponential.
(There are only 2" possible solutions for an m element problem and these
can be inspected exhaustively.) It appears that methods of partial enumera-
tion may be the best approach to these problems.

PROBLEM

41 The statement is made that the construction for Theorem 4.1 produces a three-
parity problem with k!'m elements. Justify.
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