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Preface

Combinatorial optimization problems arise everywhere, and certainly in
all areas of technology and industrial management. A growing awareness
of the importance of these problems has been accompanied by a combina-
torial explosion In proposals for their solution.

This,  book is concerned with combinatorial optimization problems
which can be formulated in terms of networks and algebraic structures
known as matroids. My objective has been to present a unified and fairly
comprehensive survey 01‘ solution techniques for these problems, with
emphasis on “augmentation” algorithms.

Chapters 3 through 5 comprise the material in one-term courses
on network flow theory currently offered in many university departments
of operations research and industrial engineering. In most cases, a course
in linear programming is designated as a prerequisite. However, this is
not essential. Chapter 2 contains necessary background material on linear
programming, and graph theory as well.

Chapters 6 through 9 are suitable for a second course, presumably
at the graduate level. The instructor may wish to omit certain sections,
depending upon the orientation of the students, as indicated below.

The book is also suitable as a text, or as a reference, for (courses on
combinatorial computing and concrete computational complexity  in de-
partments (of  computer science and mathematics. Any computer scientist
intending to do serious research on combinatorial algorithrns should have
a working knowledge of the material in this book.

The reader should be aware that certain algorithms are easy to
explain, to understand, and to implement, even though a proof of their
validity may be quite difficult. A good example is the “primal” matroid
intersection algorithm presented in Section 10 of Chapter 8. I can well
imagine situations in which an instructor might legitimately choose to
present this algorithm and its applications, without discussiqg  its theoretical
justification in Section 9.
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Conversely, there are algorithms whose theoretical justification is
not too hard to understand, in principle, but whose detailed implementa-
tion is quite complex. An instructor might well (choose to discuss the
duality theory underlying the weighted non bipartite matching algorithm,
going as far as Section 9 of Chapter 6 and skipping the material in Sections 10
and 11. I might mention, incidentally, that the algorithm in Section 11 is
the one instance in which I have had cause to regret using a simple iterative
description of the algorithms in this book. In this case, a few simple pro-
cedure declarations would have simplified matters substantially.

I began work on this book in the fall of 1968. In my innocence, I
contemplated a two-year project. I did not know that, after many inter-
ruptions, I would still be  laboring on the book more than seven years later.

Needless to say, there was much progress in the technical area
during this seven-year period. I managed to make a few contributions
myself, including the development of matroid intersection algorithms and
an O(n3) implementation of Edmonds’ algorithm for weighted nonbipartite
matching. Naturally, these are in the book. There are some results which
I did not put into the book, and possibly should have. These include the
O(n5’* ) algorithm for unweighted bipartite matching of Dinic and of
Hopcroft  and Karp, and its recent generalization to the nonbipartite case
by Even and Kariv. These must await a second edition, if there is to be one.

Because the writing of this book extended over such a considerable
period, I have had the opportunity to recelive  advice, assistance, and en-
couragement from a large number of people. A special word is necessary
for some of them.

Ray Fulkerson was very kind in giving me advice in the early stages
of writing. I am most fortunate to have received his counsel. His untimely
death in January 1976 was a blow to all of us who k.new  him, as a scholar
and as a friend.

The last half of this book exists only because of the pioneering insights
of Jack Edmonds. He originated the key ideas for nonbipartite matching,
matroid optimization, and much, much more. I am happy to acknowledge
my personal debt to his creative and fertile mind.

Victor Klee, as consulting editor, was extremely helpful. His crit-
icisms, based on classroom use of the manuscript, were particularly useful
in revising Chapter 4.

Harold Gabow helped me avoid a number of blunders in Chapter 6.
(I, of course, retain sole proprietorship over the errors which remain, as
elsewhere in the book.)

Stein Krogdahl, whose name is seen in many lemmas in Chapter 8,
provided may definitions and proofs where mine were either incorrect or
incomprehensible.



Donald Knuth somehow found time to communicate many useful
suggestions and provided much appreciated encouragement.

The Air Force Office of Scientific Research provided support which
contributed to the writing of this book. I am indebted to that office and to
Captain Richard Rush.

I am also indebted to Nicos Christofides, Stuart Dreyfus, Alan
Frieze, Dan Gussfield, T.C. Hu, Richard Karp, Sukhamay Kundu. Ben
Lageweg, Howard Landeman. Jan Karel Lenstra, Francesco Maffioli,
Colin McDiarmid,  George Minty, Katta Murty, Alexander Rinnooy Kan,
Arnon Rosenthal, Phil Spria, John Suraballe, Robert Tarjan,  Roger Tobin,
Klaus Truemper, Robert Urquhart, Dominic Welsh, Lee White, and
Norman Zadeh.

The manuscript was typed and retyped by Sharon Bauerle, Doris
Simpson, Ruth Suzuki, and many others. I thank them all.

Rocquencourt, France
July 1976
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ONE

Introduction

1
What is Combinatorial Optimization?

Combinatorial analysis is the mathematical study of the arrangement,
grouping, ordering, or sele’ction  of discrete objects, usually finite in number.
Traditionally, combinator ialists have been concerned with questions of
existence or of enumeration. That is, does a particular type of arrangement
exist? Or, how many such arrangements are there?

Quite recently, a new line of combinatorial investigation has gained
increasing importance. The question asked is not “Does the arrangement
exist?” or “How many arrangements are there?“, but rather, “What is a best
arrangement?” The existence of a particular type of arrangernent is usually
not in question, and the number of such possible arrangements is irrelevant.
All that matters is finding an optimal arrangement, whether it be one in a
hundred or one in an effectively infinite number of possibilities.

The new study of combinatorial optimization owes its existence to
the advent of the modern digital computer. Most currently accepted meth-



2 Introduction

ods of solution to combinatorial optimization problems would hardly have
been taken seriously 25 years ago, for the simple reason that no one could
have carried out the computations involved. Moreover, the existence of the
digital computer has also created a multitude of technical problems of a
combinatorial character. A large number of combinatorial optimization
problems have been generated by research in computer design, the theory of
computation, and by the application of computers to a myriad of numerical
and nonnumerical problems which have required new methods, new ap-
proaches, and new mathematical insights.

2
Some Representative Optimization Problems

Perhaps the best way to convey the nature of combinatorial optimization
problems is to give some specific examples. The first six problems listed
below involve graphs. We assume that a connected undirected graph G is
given, together with a nonnegative length for each arc (when applicable). If
the reader is not already familiar with graphic terminology, he should con-
sult Chapter 2.

ARC-COVERING PROBLEM

An arc (i, j) is said to “cover” nodes i and j. What is the smallest possible
subset of arcs that can be chosen, such that each node of G is covered by at
least one arc of the subset?

ARC-COLORING PROBLEM

It is desired to paint the arcs of G various colors, subject to the constraint
that not all the arcs in any cycle are painted the s,ame  color. What is the
smallest number of colors that will suffice?

MIN-CUT PROBLEM

It is desired to find a subset of arcs (a “cut”) such that when these arcs are
removed from G, the graph becomes disconnected. For what subset of arcs
is the sum of the arc lengths minimized?

SPANNING-TREE PROBLEM

It is desired to find a subset of arcs such that when these arcs are removed
from G, the graph remains connected. For what subset of arcs is the sum of
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the arc lengths maximized? (The complementary set of arcs is a “minimal
spanning tree.“)

SHORTEST PATH PROBLEM

What is the shortest path between two specified nodes of G’?

CHINESE POSTMAN’S PROBLEM

It is desired to find a tom (a closed path) that passes through each arc in
G at least once. 1Nhat  is the shortest such tour?

ASSIGNMENT PROBLEM

An n x PI matrix W = (w j) is given. It is desired to find a subset of the
elements in W, with exactly one element in each row and in each column.
For what subset is the sum of the elements minimized?

MACHINE SEQUENCING PROBLEM

A number of jobs are to be processed by a machine. For each job a processing
time and a deadline are specified. How should the jobs be sequenced, so
that the number of late Jobs  is minimized?

A “TWENTY QUESTIONS” PROBLEM

Consider the following game, not unlike the parlor game of Twenty Ques-
tions. One player chooses a “target” object from a known set of n  objects.
The probability that he chooses object i is p+  These probabilities are known
to the second player, who is to identify the target object by formulating a
series of questions of the form, “Is the target contained in subset S of the
objects?“, for some specified S. Assuming the first player answers these “yes
or no” questions truthfully, how can the second player minimize the mean
number of questions he must ask’?

“RESTRICTED” SATISFIABILITY PROBLEM

A Boolean expression is given, in conjunctive normal form (i.e.. “product-of-
sums” form), with at most two literals in each term (sum) of the expression.
For what assignment of 0. 1 values to the variables does the expression take
on a “maximum” value? (The expression is satisfiable if and only if there is
an assignment for which the expression takes on the value 1.)
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3
When is a Problem Solved?

Of the ten problems listed in the previous section, the first seven can be
solved by algorithms described in this book and the last three by well-
known algorithms referenced at the lend  of this ch.apter.

But what does it mean to “solve” one of these problems? After all,
there are only a finite number of feasible solutions to each of these problems.
In a graph with m arcs and n nodes there are no more than 2” possible subsets
that might be arc coverifigs,  no more than nl” possible arc colorings, no
more than 2” possible cuts, no more than nnp2  possible spanning trees, no
more than 2” possible paths, and no more than (2nz)!  tours of the type re-
quired for the Chinese Postman’s Problem. There are no more than n!
feasible solutions to the assignment problem, no more than n!  feasible
sequences for n  jobs, no more than (n!)2  solutions to the Twenty Questions
problem, no more than 2” possible assignments of values to n  Boolean vari-
ables in the satisfiability problem. In order to solve any one of these prob-
lems, why do we not just program a computer to make a list of all the
possible solutions and pick out the best solution frlom  the list?

As a matter of fact, there may still be a few (very pure) mathematicians
who would maintain that the problems we have listed are actually nonprob-
lems, devoid of any real mathematical content. They would say that when-
ever a problem requires the consideration of only a finite number of
possibilities the problem is mathematically trivial.

This line of reasoning is hardly satisfying to one who is actually con-
fronted with the necessity of finding an optimal solution to one of these
problems. A naive, brute force approach simply will not work. Suppose that
a computer can be programmed to examine feasible: solutions at the rate of
one each nanosecond, i.e., one billion solutions per s,econd.  Then if there are
n! feasible solutions, the computer will complete its task, for n = 20 in
about 800 years, for n  = 21 in about 16,800 years, and so OIL  Clearly, the
running time of such a computation is effectively infinite. A Icombinatorial
problem is not “solved” if we cannel.  live long enough to see the answer!

The challenge of combinatorial1 optimization is to develop algorithms
for which the number of elementary computational steps is acceptably small.
If this challenge is not of interest to “mathematicians,” it most certainly is
to computer scientists. Moreover, the challenge will be met only through
study of the fundamental nature of combinatorial algorithms, and not by
any conceivable advance in computer technology.
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4
The Criterion of Polynomial Boundedness

Suppose an algorithm is proposed for a combinatorial optimization prob-
lem. How should we evaluate its effectiveness’?

There is a very pra.gmatic  (and realistic) point of view that can be
taken. When the algorithm is implemented on a commercially #available com-
puter, it should require only a “reasonable” expenditure of computer time
and data storage for any instance of the combinatorial problem which one
might “reasonably” expect to solve. It is in exactly this sense that the simplex
method of linear programming has been proved to be effective in solving
hundreds of thousands, perhaps millions, of problems over a period of
more than 20 years.

The “rule of reason” is an accepted principle of adjudication in the
law. But more objective, precise standards should be possib’le  in a mathe-
matical and scientific discipline. One generally accepted standard in the
realm of combinatorial optimization is that of “polynomial boundedness.”
An algorithm is considered “good” (f  the required number qf elementary  com-
putational steps is  bounded by a polynomial in the size qf the problem.

The previous statement should raise a number of questions in the
reader’s mind. What is an elementary computational step‘? Does not that
depend on the type of computer to be used? What is meant by the “size” of
a problem? Might not there be more than one way to define size? .4nd,  most
important, why i:s a polynomial bound considered to be important?

Consider first the significance of polynomial bounds. A polynomial
function grows much less rapidly than an exponential function and an ex-
poncntial  function grows much less rapidly than a factorial function.
Suppose one algorithm for solving the arc-covering problem requires 100 n3
steps, and another requires 2” steps, where n is the number of nodes. The
exponential algorithm is more efficient for graphs with no more than 17
nodes. For larger graphs, however, the polynomial algorithm becomes in-
creasingly better, with an exponentially growing ratio in running times. A
50-node problem may be quite feasible for the polynomial ,algorithm,  but
it is almost certain to be impossible for the exponential algorithm.

This is not to say that such comparisons may not be misleading. The
crossover point may be ~1~11 beyond the feasible range of either algorithm,
in which case the exponential algorithm is certainly better in practice.
Moreover, there are algorithms which are theoretically exponential, but
behave like polynomial algorithms for all practical purposes. Prime ex-
amples are the simplex algorithms. which have empirically been observed to
require an amount of computation that grows algebraically with the number
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of variables and the number of constraints of the linear programming prob-
lem. Yet it has been shown that for a properly contrived class of problems
the simplex algorithms require an exponentially growing number of opera-
t ions.

However, polynomial-bounded algorithms are, in fact. almost always
“good” algorithms. The criterion of polynomial boundedness has been
shown to have both theoretical and practical significance.

The other questions concerning the nature of elementary computa-
tional steps and the definition of problem size can be given formal and pre-
cise answers. But to do so is unnecessary for our purposes and beyond the
scope of this book. We simply mention .that  theoretical studies of the
complexity of computations, e.g.. the “machine independent” theory of
M. Blum, have indicated that it is relatively unimportant what computer
model is considered and what “el~cmentary  computational steps” are
available in its repetoire. If an algorithm is found to be polynomial bounded
when implemented on one type of computer, it will be polynomial bounded
(perhaps by a polynomial of a different degree) when implemented on
virtually any other computer.

When estimates of algorithmic compYexity  are made in this book. we
have in mind a hypothetical computer of the following type. The computer
has unlimited random access memory. Input data reside in this memory at
the beginning of the computation and output data are left in it at the end.
Thus. there is no need to consider input-output operations. The memory
stores logical constants and integers in words of any required size. We assume
that the access time for these words is constant, unaffected by the size of
the words and the number of words stored.

The hypothetical computer is ‘capable of exe’cuting  instructions of a
conventional and mundane type, e.g., Imteger  arithmetic operations, numeri-
cal comparisons, branching operations, and so on. We do not find it neces-
sary to indicate explicitly what these instructions are. Ordinarily, we assume
that each executed instruction requires one unit of time, regardless of the
size of the operands involved.

Now let us consider the question of problem size. The reader may have
already noted two different uses of the word “problem.” For example, we
speak of “the” arc-covering problem. and “an” arc-covering problem, i.e..
an “instance” of the arc-covering problem, represented by a given graph.
(The same sort of distinction exists in game theory between a “game,” e.g..
chess. and a “play” of the game.) The exact manner in which problem in-
stances are to be encoded as input data is considerecl  to be  part of the prob-
lem definition. Thus, in the case of the arc-covering !nroblem  we may decree
that graphs are to be represented by adjacency matrices. For the purpose of
evaluating algorithmic complexity, ihe  size qf  a problem instance is the
number qf bits (i.e., symbols) required to encode it.
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In the case ofa  problem involving the specification of various numeri-
cal parameters, e.g.. arc lengths, the magnitudes of these parameters should,
strictly speaking, be taken into account. For example, approximately
log, uij  bits are Irequired  to specify an arc length aij. Ordinarily. we do not
take explicit notice of this fact and we pretend that the magnitudes of these
parameters do not matter. Thus, in the case of the shortest path problem,
we take n,  the number of nodes in the graph, to be the natural measure of
problem size. whereas n.‘cr,  where

ct  = max log, aij.
1.j

(4.1)

would be a more accurate measure. (Note that if an algorithm is polynomial
bounded in n.  it is polynomial bounded in n”  as well.)

Suppose II is taken to be the measure of problem size and the number
of computational steps .required  by a certain algorithm is found to be

uhnk  -1 almln ‘-’ + + a,n + uo, (4.2)

where uk  > 0. Then we sa,y that the algorithm is “of order n’,” written O(d).
The reader will so13n  discover that we are not much concerned with

the magnitude of the leading coefficient uk  in (4.2). Similarly, he will learn
that we greatly prefer an O(d)  algorithm to any O(nk+‘)  algorithm. Our
reasons for doing so are largely the same as those that cause us to prefer any
polynomial-bounded algorithm to an exponentially bounded one. Yet it is
admittedly hard to claim that an O(n3)  algorithm which requires lOIon
steps is better than on O(n4)  algorithm which requires 10 n’ + 20 n3 steps,
only because the O(n3)  algorithm requires less running time for very large n.
In practice one rarely, if ever, is confronted by such bizarre alternatives. In-
sights that are sufficient to obtain a solution method of lower degree are
almost invariably sufficient to provide an acceptable size for the leading
coefficient of the polynomial (4.2).

A cautionary note is in order. We have mentioned that all arithmetic
operations are assumed IO require unit time, regardless of the size of the
operands. And we have admitted that we shall often ignore the magnitudes
of numerical parameters in measuring problem size. This so:metimes results
in an underestimate of the complexity of a computation. F‘or  example, in
Chapter 3 we shall state that certain shortest path algorithms are O(n”),
whereas O(n3cx)  would be a more accurate measure, where 2 is defined by
(4.1). We consider that this is an inconsequential error. In practice, arithmetic
operations can be considered to require unit time. One expects to perform
either single precision or double precision or triple precision arithmetic.
Between these quantum jumps. the complexity of a shortest path algorithm
is, in fact. essentially O(n”).

It is important tha. our somewhat casual attitude toward the evalua-
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tion of algorithmic complexity does not cause us to declare that an algorithm
is polynomial bounded when it is not. In Chapter 4 we solve the so-called
min-cost network flow problem. The input data include an n-node graph.
various arc parameters, and a specified flow value c’.  The complexity of one
algorithm is estimated to be O(n%).  This is not a polynomial-bounded
algorithm, although in practice it is a fairly good one. The number of bits
required to specify u  is log,o,  so the complexity of the algorithm should be
polynomial in log,r,  not c,  in order for the algorithm to be considered to be
polynomial bounded.

5
Some Apparently Nonpolynomial-Bounded Problems

We must not give the impression that all significant combinatorial opti-
mization problems have been effectively solved, in the sense described in the
previous section. The “NP-complete” problems listed below have defied
solution in a polynomial-bounded number of computational steps, and we
strongly suspect that polynomial-bou.nded algorithms do not exist.

NODE-COVERING PROBLEM

A node i is said to “cover” all arcs (i, j) incident to it. What is the smallest
possible subset of nodes that can be chosen, such that each arc of G is
covered by at least one node in the subset’?

CHROMATIC NUMBER PROBLEM

It is desired to paint the nodes of G various colors, subject to the constraint
that two nodes i and j are not painted the same cololr  if there is an arc (i, j)
between them. What is the smallest number of colors that will suffice? (This
is the “chromatic number” of G.)

MAX-CUT PROBLEM

It is desired to find a minimal cut such that the sum of the arc lengths is
to be maximized.

STEINER NETWORK PROBLEM

This is the same as the spanning tree problem of Section 2, except that a
specified subset of the nodes of G are to remain connected.
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LONGEST PATH PROl3LEM

What is the longest path, without repeated nodes. between two specified
nodes of G?

TRAVELING SALESMAN PROBLEM

This is the same as the Chinese Postman’s Problem, except that the tour is
to pass through each node (rather than each arc) of G at least once.

THREE-DIMENSIONAL. ASSIGNMENT PROBLEM

This is the same as the assignment problem in Section 2, except that the
matrix W is three dimensional, with the obvious generalizations of the
problem statement.

MACHINE SEQUENCING PROBLEM

This is the same as the machine sequencing problem in Section 2, except that
for each job then: is, in addition, a specified penalty cost which is incurred if
the job is not completed  on time. How should the jobs be sequenced, so that
the sum of the incurred penalty costs is minimized’? (In the previous problem
each penalty cost was, in effect, unity.)

CONSTRAINED TWENTY QUESTIONS PROBLEM

This is the same as the twenty questions problem in Section 2, (except that
the second player is constrained to choose questions from a specified list of
questions.

SATISFIABILITY  PROElLEM

This is the same as the corresponding problem in Section 2, except that there
is no restriction on the number of literals that may appear in each term of the
Boolean express ion.

No one has yet been able to prove that the problems listed above
cannot be solved in a polynomial number of computational steps. However,
it is possible to elicit strong circumstantial evidence to that effect. It is also
possible to show that either all of these problems can be solved by a poly-
nominal-bounded algorithm or none of them can be.

These results have been obtained by a set of clever problem reduc-
tions. mostly due to R. M.  Karp. That is. it has been shown that for any pair
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of problems A and B on the list. the existence of a polynomial-bounded
algorithm for problem B implies the existence of a polynomial-bounded
algorithm for problem A. The technique of problem reduction is employed
repeatedly in this book, generally with respect to the problems listed in
Section 2.

6
Methods of Solution

We have indicated something about thl:  types of problems we wish to solve,
and something about how we intend to evaluate algorithms for their solu-
tion. Let us now consider some of the mathematical techniques which can
be employed in these algorithms.

One can classify solution methods into five broad categories: (1)
linear programming, (2) recursion and enumeration, (3) heurist:ics.  (4) statis-
tical sampling, (5) special and ad hoc techniques.

Linear programming as the reader probably already knows, is con-
cerned with extremization of a linear objective function subject to linear
inequality constraints. From a geometric point of view, the linear inequality
constraints describe a convex polytope. The “simplex*’ computation of linear
programming proceeds from one vertex of this polytope to another, with an
accompanying monotone improvemeni in the value ofthe objective function.

One way to solve a combinatorial1 optimization problem by linear pro-
gramming is to formulate a system of linear inequality constraints which will
cause the vertices of the convex polytope to correspond to feasible solutions
of the combinatorial problem. Sometimes this results in a relatively small
number of constraints which can be listed explicitly in advance of the com-
putation. Problems for which this is the case include the network flow prob-
lems, with the shortest path, min-cut, and assignment problems as special
cases. For example, 2n inequalities, together with nonnegativity constraints
on n2  variables, describe a convex polytope with n! vertices, corresponding
to the n! feasible solutions of an 11 x ,U assignment problem.

There are other problems for which there exists a good characteri-
zation of the inequality constraints, but the constraints are far too numerous
to list. Instead, inequalities are generated as necessary in the course of the
computation. Problems which are solved by this aplproach  include certain
matroid problems, with the arc-covering, arc-coloring, and spanning-tree
problems as special cases. For example, there are 2” constraints that describe
a convex polytope with nnm2 vertices. corresponding to the C2 possible
spanning trees in a complete graph on n nodes.

Even though the number of constraints of these linear programming
problems are sometimes exceedingly large and the structures of the convex
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polytopes exceedingly complex, it has been possible in many cases to devise
algorithms requiring only a polynomial-bounded number of computational
steps. These algomrithms  are not obtained by simply invoking the simplex
method. Special techniques are necessary, and the duality theor,y  of linear
programming is of fundamental importance in algorithmic analyses and
proofs of convergence.

Combinatorial optimization problems can also be solved by linear
programming methods, even in cases where there is no good characterization
of the necessary Inequality constraints. In the approach of “‘integer” linear
programming, one formulates a set of linear inequalities which describe a
convex polyhedron enclosing points (with integer coordinates) correspond-
ing to feasible solutions of the combinatorial problem. A variant of the
simplex method is applied and additional inequality constraints are generat-
ed as needed in 1 he course of the computation. These additional inequali-
ties or “cutting planes” ordinarily bear little predictable relation to each
other or to the original set of constraints.

Integer linear programming algorithms usually do not exploit any
special combinatorial structure of the problem at hand. For this reason,
they are sufficiently general to “solve” virtually any combinatorial optimi-
zation problem. But there is no possibility of establishing good a priori
bounds on the length of computations, and practical experience with these
algorithms has been very uneven.

Under the heading of recursion and enumeration. we include dynamic
programming and branch-and-bound. Dynamic programming, as popular-
ized by Bellman, is a technique for determining optimal policies for a sequen-
tial decision process. A surprisingly large number of optimization problems
can be cast into this form and some of the most useful applications of this
technique are in l.he combinatorial realm. In some cases, dynamic program-
ming can be applied to solve problems with a factorial number of feasible
solutions. e.g., the traveling salesman problem, with an exponentially
growing number of computational steps. Other dynamic programming
algorithms are polynomial bounded. Interestingly, most of the shortest-
path algorithms described in Chapter 3 can be given either linear program-
ming or dynamic programming interpretations.

Branch-and-bound methods have been developed in a variety of
contexts, and under a variety of names, such as “backtrack programming”
and “implicit enumeration .”  Essentially, the idea is to repeatedly break the set
of feasible solutions into subsets, and to calculate bounds on the costs of the
solutions contained within  them. The bounds are used to discard entire
subsets of solutions from further consideration. This simple but effective
technique has scored a number of notable successes in practical computa-
tions. However, it is rarely possible to establish good bounds on the length
of the computation.

Under the heading of heuristics we include algorithrns whose justi-
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hcation is based on arguments of plausibility, rathier  than mathematical
proof. Often, these algorithms permit good computati~onal  bounds. However,
generally speaking, only solutions which are “close” to optimal or, at best,
not demonstrably optimal, are obtained.

By statistical sampling, we mean the random generation of a number
of solutions from the population of all feasible solutions for the purpose of
making some sort of statistical inference about the closeness of the best
solution sampled to the actual optimum. ‘This type of solution method
appears to be in its infancy.

The heading of special and ad hoc methods includes those techniques
which do not conveniently fall into one of the other categories. Examples
are Moore’s method for the machine sequencing problem and Huffman’s
coding method for solving the Twenty Questions problem, referenced at the
end of this chapter.

In brief, this book is concerned with linear programming techniques
for which good computational bounds exist. and incidentally with recursion
and enumeration. We do not discuss integer linear programmmg  nor heuris-
tics nor statistical sampling. Nor is any comprehensive survey of special
and ad hoc methods attempted.
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Mathematical Preliminaries

I
Mathematical Prerequisites

Some background in graph theory and in linear programmling  is essential
for reading this book. This chapter provides a review of some of the more
important background concepts, as well as a consistent set of definitions
and notational conventions.

The most important concepts from graph theory, for our purposes,
are those which hlave  to do with connectivity properties. Before attempting
the study of network flows, the reader should be familiar with the notions of
path, directed path, tree, directed tree, cycle. directed cycle, cocycle, and
directed cocycle, and the duality relations between them. The study of
matroids is also made much easier if one is able to make graphic interpreta-
tions of the matroid generalizations of these same concepts.

The linear programming concepts we draw upon most frequently
concern duality relations. The reader should be able to formulate the dual
of a linear program and determine the orthogonality conditions which are

1 5
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necessary and sufficient for optimality of primal and dlual  solutions. Familiar-
ity with the simplex method is not mcessary. However, the reader should
have some appreciation of convex polytopes and polyhedra. and know that
the simplex computation proceeds from one vertex Iof  the feasible region to
another. In later chapters some emphasis is placed on the fact that certain
convex polyhedra have integer vertices. This is proved by showing that an
integer optimal solution is obtained for any possible objective function. The
reader should be equipped to follow this line of reasoning.

In addition to strictly mathematical background, the reader should
have some familiarity with the principles of computation. He should under-
stand the concept of an algorithm. and how an algorithm is coded in machine
language and executed by a computer. He should be able to count the number
of levels of nesting of iterative loops in an algorithm and thereby estimate
its complexity. No serious attempt is made to explain these matters in this
chapter or elsewhere in this book. IF the reader is unfamili,ar with these
concepts, he should consult a text on computer programming.

2
Sets and Relutions

We assume that the reader is familiar with basic set loperatiom and conven-
tional set notation: f5 #.  -. u, n. c, C,  I;3, etc. We write s’  c T if S is a
proper subset of 7: i.e., S c T but S #  7: We use braces {,}  to indicate a set,
and parentheses (J to indicate an ordered set or se’quence.  For notational
convenience. we use “ +” and ” -” as follows :

a n d
s + e = s u [Ii,)

s - e = s - {ei.

The symmetric d@ence  of two sets is indicated by the s,ymbol  0, i.e.,
S @ T is the set of all elements contained in S or in 7: but not both. By an
abuse of notation. we occasionally apply set operations to ordered sets,
as though they were unordered. For example, if

and
s = (4. 1, o., 5)

T= (1,3.2.,4),

t h e n

S 0 T = jO.2.3.5).
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We let ISI  denote the number of elements in S, the cardinality of S. For ex-
ample, if e #  S, then IS  + rl = ISI  + 1. We let Y(S) denote the I;‘o”er  set of S,
the set of all subssets  of S. 1.9(S)/  = 2”, where IZ = ISI.  Thus j~p(@)I  = 1.

Suppose 9. is a family of sets. We say that SE,?  is minimal  in 3- if
there is no TE  .? such that T c S. Similarly S is maximal in r if there is no
TE  .F such that S c 7: Obviously, a minimal set is not necessaril:y  unique
nor does it necessarily have minimum cardinality. A set may also be both
minimal and maximal in .T. For example, if Y = ( (0, 1 } , (0, I, .3}, (4))  { 33,
{ 1,3} }. then the minimal s’zts  in 9  are (0, l},  (31, and (4). ‘The maximal
sets are (0, 1,3)  and (4). Quite often we have occasion to speak of a set S
which is minimal (maximal) with respect to some property P. Such a set is
minimal in the family of all sets conforming to the property in question.

The same concepts of minimality and maximality are applicable to
ordered sets. For example, suppose we define a “d-sequence” to 'be a sequence
of integers in which two successive elements of the sequence differ by no
more than d. For the given sequence S = (0, - 1,3, 1,6. 8, lo., 2, 7., O),  both
(0,3,6,8,10,7)  and (0, - 1. 1,2,0)  are maximal three-subsequences of S.

If S is a finite set of numbers, min S (max S) denotes the numerically
smallest (largest) element in S. Thus if S = { - 1, 2, 3, 81, min S = - 1 and
max S = 8. By definition, min @ = + CC and max Iz, = - X. Alternative
notations for min A. where

A = {aI,  a2,. . . , a,]

are

or

min{a,ll  I i 5  n)

min (ai}
1c1sn

or simply

min a,

where the range of i is understood from the context.
As a further example. suppose A is a matrix whose typical element is

aij,  written

A = (aij).

Then

min  aij
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is the smallest element in row i and

max aij
I

is the largest element in column j. In the matrix

‘ 0 4 3

A = i 2 1 79 8 6 1 ’/
max min  aij = 6.

I j

min max aij = 7.
j L

The reader is assumed to be familiar with the algebra.ic concepts of
relations and functions, and with equivalence relations and partial orderings
in particular. He should know thaf  an equivalence relation is reflexive,
symmetric, and transitive; also, that a.n equivalence relation on a set induces
a partition of that set and that, conversely, a partition induces an equivalence
relation. He should know that a partial ordering is :reflexive,  antisymmetric.
and transitive and that a partial ordering can be represented by a Hasse
diagram.

Suppose I is a total ordering of A, i.e., a partial ordering such that
for each pair of elements a, b, in A either u  I b or b la.  Then this total
ordering induces a lexicographic ordgzring  “<”  of A”, the set of all n-tuples
of elements of A. (That is, A” is the n-fold cartesian  product of A.) Let

and

a = (a,, u2,. . . , a,)

b = (b,, b,,  . b,).

Then a < b if either u  = b or there is some k, 1 I k 5  n, such that Ui  = bi,
i =: 1,2 , . , k - 1, and a, < b,.

Suppose %d  = A u A’ u A3  IJ  . . . We can define a lexicographic
ordering on ,d as follows. Let

and

11 =  (al,  132,.  ,  a , )

b = (b,,  b’. . . . b,),

where m I n. Then a < b if a < (i51, bZ, . . , b,), as defined above, and
b < u otherwise.
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Or, suppose .d G .?(A). Let

cl =  (u,u2...  , a , ) ,

!I = {b,b,,  . , b,).

where m I n.  Assume, without loss of generality, that

a n d

Then a 4 b if (a,, a2,.  , a,,) < (b,, b,, . . . , b,).
A lexicographic ordering of any one of these three types is a total

ordering. This pro.perty  is handy for “breaking ties.” For example, suppose
we pose the follow’ing optimization problem. Given a positive integer n,  for
what factorization of n  is the sum of the factors a minimum? (Assume only
positive factors.) For II = 8,2  x 2 x 2 and 2 x 4 are both optimal. However,
if we wish there to be a unique optimum, 2 x 2 x 2 can be declared the
smaller of the two by lexicography.

Lexicographic ordering of n-tuples (“vectors”) should ,not  of course
be confused with the more common partial ordering: i.e., if a = (a,, az,  . . ,
a,,) and b = (b,,b,,. .., b,), then a I b if a, I b, for i = 1,2,.  , n. We
commonly make use of this type of relation when we write

Ax i b,

where A = (uij)  is an m x M matrix and A and b are, respectively. an n-
vector and an m-vector. The vector inequality above means that

for i = 1,2, . . , m.

PROBLEMS

2.1 Verify each of the following :
( a ) min S u T = min (min S, min T),
(b) min S n T 2 max (min S. min T).
(c) If S !L  7;  then min S L min 7:
(4 min (s,  r) := - max (- s,  - t).

2.2 Formulate a duality prinl:iple  whereby “min” and “max.’  can b’e interchanged
in relations like those stated in Problem 2.1. Rewrite each relation <according
to this principle.
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3
Graphs and Digraphs

A graph G = (N, A) is a structure consisting of a l’lnite  set fV  of elements
called nodes and a set A of unordered pairs of nodes called urcs.  A directed
gYap/i  or digraph  is defined similarly, except that each arc is an ordered pair.
giving it direction from one node to another. In the literature of graph
theory (where terminology is quite unstandardized), nodes ate also referred
to as vertices or points and arcs as edges or lines.

Any system or structure which may be considered abstractly as a
set of elements, certain pairs of which are related in a specified way, has a
representation as a graph or digraph. Thus graph theory is really of a theory
of relations, with graphs representing symmetric relations and digraphs
asymmetric relations.

In many applications in the physical, biologica\  social, and engin-
eering sciences, graphs or digraphs are not sufficient to adequately specify
the system or structure under study. Numerical values may be attached to
the nodes or arcs of a graph to represent construction costs, flow capacities,
probabilities of destruction, and so on. In general, any graph to which such
additional structure has been added is called a “network.”

For both undirected and directed graphs, an arc from node i to
node j is denoted by (i, j), even though {i:  j] would be more appropriate
for undirected graphs. An arc (i, i) is called a loop. (Ordinarily we deal with
undirected graphs with no loops and at most one arc between a given pair of
nodes i, j. Thus, if INI = n and (Al  = m, it follows that m I n(n - 1)/2.  In
the case of directed graphs, we permit both (i, j) anld  (j, i), so m I n(n  - 1).

We commonly represent a graph by a drawing in which nodes are
points (drawn as circles) and arcs are lines connecting pairs of points. If the
graph is directed, the arcs are drawn with arrow heads. It should be kept
clearly in mind that two drawings of the same grap.h  may be ‘quite  different,
as shown in Figure 2.1.

People find drawings useful. Computers do not. Some of the repre-
sentations of graphs that are appropriate for computers are an arc list, an
incidence matrix, and an adjacency matrix.1 2

Ea
3

4 5 Figure 2.1 Two draw-

ings of the same graph
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An arc list simply contains an entry for each arc (i, j). In the case of
the graph in Figure 2.1, such a list contains (I, 2), (1,3),  (1,4),  (2,3),  (2,5),
(3.4) (3, 5) (4,5).  Arc lists may be sorted, ordered, and manipulated in
various ways within the computer.

An arc (i, j) is said to be incident to each of the nodes i and j, and
conversely. Each row of the node-arc incidence matrix is identified with a
node and each column with an arc. If the arcs are numbered by the index k.
then the incidence matrix 1: = (bik) is defined as follows:

b,,  = 1 if node i is incident to arc k,

= 0 otherwise.

The incidence matrix of the graph in Figure 2.1 is

5\0  0 0 0 10 111
-----h-eP4rnbrilobvsv,
c*s< Pi N”  cc  m’ 4vvvvv

Note that each column contains exactly two 1’s.
In the case of a directed graph the arc (i, j). directed from i to j, is

said to be incident .from i and incident to j. The arc-node incidence matrix
B = (bik)  is defined. as follows :

bi, = + 1 if arc k is incident to node i

=- 1 if arc k is incident from node i

= 0 otherwise.

The incidence matrix of the directed graph in Figure 2.2 is

1 -1 -I 1 0 0 0 0

2 i I 1 0 -1 -1 -1 1 0

3 0 10 1 o-1

4 ! 0 0 0 0 1 0 -1  s

1

z :2 l-i v  hi  v  rj v  CL 5

Note that each column contains exactly one + 1 and one -- 1.
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Figure 2.2
examPIe

Di rec ted for

If there exists an arc (i, j) we say that nodes i and j are adjacent. By
definition, no node is adjacent to itself. For an undlirected  graph, the adju-
cency matrix A = (Uij) is defined as follows:

aij = 1 if there is an arc (i, j) between nodes i and j

= 0 otherwise.

The adjacency matrix for the graph i:n Figure 2.1 is

1 /o  1 1 1 o\

2 i 1 0 1 0 1

3 1 1 0 1 1

4 1 0 1 0 1 I
5 \,o 1 1 1 ol

1 2 3 4 5

Note that the adjacency matrix is necessarily symmetric, i.e., aij = aji.
In the case of a directed graph, if there is an arc (i, j) we: say that node

i is adjacent to node ,j and node j is adjacent ,from  node i. The adjacencqj
matrix A = (aij) is defined as follows:

aij  = 1 if there is an arc (i, j) from i to j

= 0 otherwise.

The adjacency matrix for the digraph in Figure 2.2 is

1

i

0 1 01

2

1 0 1 1

3 0 1 0 0

4 ,o 0 1 0i
1 ;!  3 4
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Figure 2.3 Two drawings of a bipartite graph

Of special interest is the biprtitr  graph, such as that shown in Figure
2.3. The nodes of a bipartite graph can be partitioned into two sets S and
T. such that no two nodes in S or in Tare adjacent, i.e., all arcs extend
“between S and T.” If a graph G = (N, A) is bipartite, we commonly denote
it as G = (S, IT:AI where IV  = Su T.

Proposition 3.1 G is a bipartite graph if and only if its nodes can be num-
bered in such a way that it:j adjacency matrix takes on the form

A = (3.1)

In (3.1). A’r denotes. the transpose of the submatrix ,q.  Thus, for a
bipartite graph G = (S, T, A), with ISI  = p and IT/ = q,  the nodes can be
numbered in such a way that A is a p  x q  submatrix and A1‘  is q  x p. We
often represent a bipartite graph simply by the adjacency submatrix A.

P R O B L E M S

3.1 (R. M. Karp) The  following is a representative list  of systems or structures for
which graph models are appropriate. In each case, decide whether a graph or
digraph is called for. Determine what additional mathematical structure, if
any, is necessary to adequately model the more important aspects of each
system. Which of the gr,lphs,  if any are bipartite?

System or Structure Nodes
Nodes i and j Are Connected

by an Arc If

Road map

Molecule
Cities

Atoms
i and j are connected by a road
There is a chemical bmond

between i and j
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System or Structure

Electrical network

Binary relation R over a set N

Game or puzzle

Discrete-state  system

Business orgamzation
United States national

economy
Computer program

Information retrieval
system

Convex polyhedron
System of simultaneous

equations

Node;

Termir als of
elements

Ellements of N
Positions or

configura-
t i o n : ,

States

Employees
Goods and

services
Instructions

Index terms,
documents

Extreme points
Variables

Nodes i and j Are Connected

by an Arc If

i and j are connected by a
network element

(i. j ) E .R

i can be reached from j in one
move

A direct  transition IS possible
from i to i

i is j‘s manager
i is required  in the production ofj

The execution of j can directly
follow the execution of i

Term I is relevant 1.0  document j

i is adjacent to j
j is an independeni  variable in the

equation for i

3 . 2 If A is the adjacency matrix and B the incidence matrix of a given graph. what
is the relation between A and BBT?  (Ele  sure to cons&r  the relation between the
diagonal elements of the two matrices.) Under what special condition is A =
BBT?

3.3 Devise an O(n’)  algori thm to test  a  graph for  bipart i tness.  (Hint :  Start  by
labeling on arbitrary node S.  then label the adjacent nodes T,  and so on.)

4
Subgraphs, Cliques, Multigraphs

The degree di  of node i is the number of arcs incident to the node. Note that
if B is the incidence matrix,

di  = c b,,.
k

In the case of a digraph. the out-&gvrJe  ni (Out’  of node i is the number of arcs
incident from the node, and the in-degree di (G”)  is the number of arcs incident
to the node. Note that

djout)  - din’  = 1 bik.
h

The complete graph K, has n nodes any two of which are adjacent.
The complete graph has n(n  - 1)/2  arcs. The complete digra,ph  on n nodes
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has n(n - 1) arcs. The ccvnpletr bipartite graph K,,, is a bipartite graph
G = (S, T,  11).  wit.h  ISI  = /J.  ITI  = q,  and 1~1 = py.

A graph G = (N’, /I’)  is called a subgruph of the graph G = (N. A) if
N’ c N and A’ CI A. If N’ E N. then the subgraph  of G induced by N’ has
the node set N’  and all arcs (i. j) in A such that both i and,j are in N’. If a
subgraph  of G is a complete graph it is a complete subgraph. A maximal
complete subgraph  is called a clique.

Given the graph G = (N. A), the subgraph obtained by the deletion
of the arcs A’ & ,l is simply the graph G’ = (N, A - A’). The complement of
the graph G = (N, A) is thiz graph G obtained by deleting the arcs of G from
the complete gra.ph  on the same nodes.

The contrttction  of an arc (i, j) is accomplished by replacing nodes i
and j by a single node k. An arc (k, r)  is provided in the contracted graph
for each arc (i, I) or (,j, I) in the original graph, except arc (i, ,j). The con-
traction of a graph may well result in a graph with multiple arcs between
nodes. Such a structure we call a multigraph.

The above definitions are illustrated by the example in Figure 2.4.

(b)

Cd)

1

g-::i
~%ix3

2

(e)

cl@--@
(f)

Figure 2.4 (a) Graph G.  (b) Complementary graph G.  (c) Three cliques in (;. (d) Sub-
graph induced by N = (1, 2. 41. (e) Deletion of arc (1, 3).  (f) Contraction of arc (I, 3).
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P R O B L E M S

4 . 1 Prove that every graph has an even number of nodes of odd degree.
4.2 If G  = (S, 7:  A)  is  a  b ipar t i te  graph,  character ize  the  (c l ique s t ructure  of  G and

of G.
4.3 The incidence matrix ofa mult igraph is  def ined as  for  an ordinary graph and the

adjacency matrix can be generalized :jo  t ha t  uij = the number of arcs between
between i and ,j. What is the relation between A and BBT?  (Cf. Problem 3.2.)

5
Connectivity in Graphs

In this section we define path, cycle, component, etc., for graphs. In the
next section the analogous notions for digraphs are discusseld.

A pat/z  between s and t,  or simply an (s, t)  path, is a sequence of arcs
of the form (s, ir),  (ii, i2), . . . . (ik, 1).  If .s, ii, i,, . . . . i,, t are distinct nodes, we
say that the path is minimal or without repeated nodes. We shall often use
only the word “path,” adding the words “minimal’” or “without repeated
nodes” where this is not clear from the context.

An (s, t)  path is open if s #  t and closed if s = t.  A cq’cle is an (s, s)
path containing at least one arc, in w:hich no node except s is repeated. In
an ordinary graph (as opposed to a multigraph or ,a  graph with loops), a
cycle must contain at least three arcs. A graph which contains no cycles
is acyclic.

Two nodes i and j are said to be connected if there exists an (i, j)
path. A graph G is said to be connected if all pairs of nodes are connected.
A component of a graph G is a maximal connected subgraph, i.e., it is not a
subgraph  of any other connected subgraph  of G. A graph is connected if
and only if it has exactly one component.

Each node or arc of G belongs to exactly one component. It follows
that the components of a graph determine a unique partition. of its nodes
and arcs.

Proposition 5.1 If a graph G has p components, then its nodes can be
numbered in such a way that its adjacency matrix takes on the block diagonal
form

A =

0

cA,’

0

0
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Figure 2.5 All trees on five nodes

A tree is a connected acyclic graph. All trees on five nodes are ex-
hibited in Figure ;!.5. The following proposition gives a number of equivalent
characterizations of trees.

Proposition 5.2 ‘The following statements are equivalent for a graph G
with IZ nodes :

(1) G is a tree.
(2) Every two nodes of G are connected by a unique path.
(3) G is connected and has II - 1 arcs.
(4) G is acyclic and has n - 1 arcs.
(5) G is acyclic and if any two nonadjacent nodes of G are joined by an
arc e, then G + e has exactly one cycle.
(6) G is connected, is not K,  for y1  2  3, and if any two nonadjacent nodes
of G are joined by a new arc e, then G + e has exactly one cycle.

A tree in G is,  a conne’sted  acyclic subgraph on the nodes of G. A.fc~est
in G is an acyclic subgraph on the nodes of G, i.e., each component of the
forest is a tree. A maximal forest in a connected graph is a spanning tree. (It
“spans” or connects together all nodes.) Two important theorems follow.
The reader should be able to prove the first by induction. The second is
difficult; its proof can be found in any standard work on graph theory.

Theorem 5.3 Every maximal forest in a graph with y1  nodes arud  p  com-
ponents contains n  - p ar:s.

Theorem 5.4 (C. W.  Borchrdt) K, contains nn-2  distinct spanning trees.

P R O B L E M S

5.1 Show that a tree  on n 2.  2 nodes has at least two nodes with qdegxe  one.
5.2 Prove  tha t  a  graph i s  b ipar t i te  i f  and only  i f  each  of  i t s  cycles  1:s  o f  even  length .
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5.4 Show that  i f  C is  a  cycle  of  a  graph G,  then the columns of  the incidence matr ix
corresponding  to  the  a rcs  in  C are  l inear ly  dependenl.,  w i th  r e spec t  to  add i t ion
and multiplication in the field of two elements. (That is, 0 + 0 = 1 + 1 = 0,
0-t 1 =  1 + 0 =  l,O.O=O.l=  l.O=O,l.l=  1 . )

6
Connectivity in Digraphs

Each of the definitions given in the previous section is applicable to digraphs,
by simply ignoring the directions of arcs. However, for every definition for
graphs, there is a specialized definition for digraphs in which the directions
of the arcs are taken into account.

Thus a directed path from s to t,  or simply an (s, t) path, is a sequence
of arcs from s to t,  where the pth arc is incident to the same node from which
the (p + 1)st  arc is incident. That is, all arcs are directed from s toward t.
A directed cycle is a minimal nonempty  closed directed path. We shall often
drop the word “directed” from directed paths, direlcted  cycles, and so on,
when no confusion will result.

A node i is said to be connected to node j, and,i  is said to be connected
from i if there exists an (i,  j) path. A digraph G is said lo be strongly connected
‘if, for all pairs of nodes i and j, i is connected to j and j is connected to i. A
strong component of a graph G is a strongly connected subgraph  of G which
is maximal, i.e., it is not a subgraph  of any other strongly connected subgraph
of G. A graph is strongly connected if and only if it has one strong component.

Each node (but not each arc) of G belongs to exactly one strong com-
ponent. It follows that the strong components of a graph determine a unique
partition of its nodes. Suppose we contract all those arcs which lie in strong
components. Then the resulting contraction digraph has the a.ppearance  of
the graph in Figure 2.6. That is, each node is identified with a strong com-
ponent and these nodes are, in effect., partially ordered. If there is a path
from i to j, there is no path fromj to i. In other words the resulting contraction
digraph has no directed cycles.

Proposition 6.1 If a directed graph G has p strong components, then its
nodes can be numbered in such a way that its adjacency matrix takes on the
form

A =

cl

i

Al
0

0

0

clA2
0

0

III
0 0iA, ’

where the entries above the block diagonal submatrices are O’s and 1’s.
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(b)
Figure 2.6 (,a)  Diagraph G and strong components. (b) G after contrac

tion of strong components.

A directed tree is either rooted to a node or from a node. A tree
rooted.fiom  node i is a tree in which the in-degree of i is zero, and the in-degree
of each of the other nodes is at most one. A tree rooted to node i is a tree in
which the out-degree of i is zero and the out-degree of the other nodes is at
most one. A directed spwning  tree is just as its name suggests.

A directed graph is called ucyclic  if it contains no directed cycles.
Each strong component of an acyclic digraph contains exactly one node. It
follows from Proposition 6.1 that there exists a numbering of the nodes such
that the adjacency matrix is upper triangular, i.e.. zero below the main
diagonal. This observation is equivalent to the following proposition.

Proposition 6.2 A directed graph is acyclic if and only if its nodes can be
numbered in such a way that for all arcs (i, j). i < ,j.

In order to show that the nodes of an acyclic graph can be so ordered,
one first observes that there is at least one node with in-degree zero. Such a
node is found, numbered 1, and all arcs incident from the node are deleted.
A node with in-degree zero is found in the resulting subgraph. This node is
numbered 2, and all arcs incident from it are deleted, and so on.

This procedure can be implemented by a computation whose com-
plexity is O(n’). We suppose that the graph is described by its adjacency
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matrix A and that the rows and columns of this matrix are ordered according
to the given arbitrary numbering of the nodes. Let I; denote the new
number of node j.

Initially dgi”)  is computed for all nodes j, by forming the sum of the
entries in columnj  of matrix A. A node k for which df”’  = 0 is found, and
v(k) is set to 1. The in-degrees are revised by subtracting the entries in row
k of A. and the process is repeated. This is summarized below.

RENUMBERING THE NODES OF AN ACYCLIC DIGRAPH

Step 0 (Start)

Set $“)  = i aij, j = 1.2. . . . , n.
i= 1

SetN=  il.2 . . . . . n).
Setm=  1.

Step 1 (Detection qf’Node  with Zero In-Degree)
Find k E  N such that &“) = 0. If there is no such k, stop; the digraph is
not acyclic.
Set u(k) = m.
S e t m = m +  1 .
Set N = N - k.
If N = @, stop; the computation is completed.

Step 2 (Reoision qf’  In-Degrees)
Set rP’ = dy”)  - akj,
Ret&n  to Step l.//

for all ,j E  N.

The complexity of the compul.ation  is estimated as follows. Step 0
requires n(n  - 1) additions. Step 1 requires at most II comparisons to deter-
mine k, and various other operations independent of n.  Step 2 requires at
most n  - 1 subtractions. Step 0, which is O(n”),  is performed exactly once.
Steps 1 and 2. which are both O(n), are performed at most II times. It follows
that the overall complexity is O(n’).

Some of the definitions given in this section are illustrated by examples
in Figure 2.7.

P R O B L E M S

6.1 Devise a procedure for determining the strong components of ;i  digraph from
its adjacency matrix.

6.2 Show that if C is a directed cycle of a digraph G, then the columns of the node-
arc incidence matrix corresponding to the arcs in C  are linearly dependent.
with respect to addition and multiplication in the field of reals.
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Cd)

(e)

Figure 2.7 (a) (s, t) path with ivepeated  node. (b) Minimal (s, t) directed path. (c) Cycle.

(d) Directed cycle. (e) Tree rooied  from i.  (f) An acyclic digraph.

7
Cocycles an.d  Direcfed  Cocycles

Let G = (N, A) be a graph, or a directed graph in which the directions
of the arcs are ignored. A subset C E A, such that G’ = (N, A - C) contains
more components than G, is a separatiny set of G. A minimal separating
set is a cocycle of G. (The reason for the term “cocycle” is evident in the next
section.)

For any cocycle C, there exists a partition of the nodes of the graph
into two sets S ancl  T, such l.hat  C contains just those arcs extending between
S and T.  The deletion of t’le arcs in C destroys any (s,  t)  path, where s ES
and I E  T.

However, the converse is not true. That is, given an arbitrary node
partition S, ‘7: the set of arcs extending between S and T is not nlecessarily
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a cocycle. (Consider a three-node graph with arcs (1,2),  (1,3).  The partition
S = {l}, T = {2,3)  determines a nonminimal separating set.) We call a
separating set determined by such a partition a cutset  and we may refer to
it by any one of the node partitions S, T which determines it. ,4n (s. t)-curser
is any cutset  (S, T), where s E  S and t E 7:

Proposition 7.1 Every cutset  is a union of disjoint cocycles.

A cutset  or cocycle of a digraph in which all the arcs a.re  oriented in
the same direction, i.e., either. all from S to T or all from T to S, is called a
directed cutset  or directed cocycle.

Theorem 7.2 (Minty) Let G be a diirected  graph with a distinguished arc
(s,  t). Then, for any painting of the arcs green, yellow, and red, with (s, t)
painted yellow, exactly one of the following alternatives holds:

(1) (s, t)  is contained in a cycle of yellow and green arcs, in which all
yellow arcs have the same direction.
(2) (s, t)  is contained in a cocycle of yellow and red arcs, in which all
yellow arcs have the same direction.

P R O O F Think of the graph as a network of streets, in which green arcs are
two-way streets, yellow arcs are one-way streets (according to the directions
of the arcs), and red arcs are streets b!ocked to traffic. Now starting at the
street intersection represented by node t,  either it is possible for traffic to
move from t to s,  or it is not. If there is some way, then there exists a minimal
(t,  s) path of yellow and green arcs, with all yellow a.rcs  directed from t to s.
This path, together with the arc (s, t),  forms a cycle satisfying condition (1).

If there is no way for traffic to get from t to s Ithen  a cocycle satisfying
the condition (2) can be constructed as follows. Let T be the set of all nodes
accessible to traffic from t and let S be  the complementary set. There can
be neither yellow arcs directed from T to S nor green arcs between S and
T in either direction. Otherwise, one or more of the nodes in S would be
accessible to traffic from ?: contrary to assumption. It follows that all arcs
between S and Tmust be red arcs, in either direction, or yellow arcs including
(s, t),  directed from S to ?: By Proposition 7.1, the (S, T) cut,set  contains a
cocycle satisfying condition (2).//

8
Planarity and Duality

A graph G is called planar if it can be drawn so that its node:3  are points in
the plane and each arc (i, j) is drawn so that it intersects no other arcs and
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KS

Figure 2.8 Kuratowski graphs

passes through no other nodes. Example of nonplanar graphs are the
Kuratowski graphs K,,  Kc;,, shown in Figure 2.8. Every nonplanar graph
contains one or the other Iof  these Kuratowski graphs, in the sense that it
can be obtained by contraction and deletion of arcs.

The drawing of a planar graph in the plane is called a $ane  graph. (A
plane graph is not a graph ; it is a drawing.) We refer to the regions defined
by a plane graph as its.fuct.s,  the unbounded region being the exterior,fac.e.
Given a plane graph G, its geometric dual G* is constructed as follows.
Place a node in each face, including the exterior face. If two faces have an
arc e in their common boundary, join the nodes of the corresponding faces
by an arc e* crossing only I:. The result may be a plane graph with loops or
with multiple edges. as seen in Figure 2.9. In any case, the graph or multi-
graph G” for which G* is a plane graph is said to be a dua2  of G.

The plane graph of G is not unique, and so its dual GD is not unique,
as shown in Figure 2.10. Yet we have the habit of referring to “the” dual
of a graph G, and in practice there is not much harm in this.

The procedure for dualizing digraphs is essentially the same as for
graphs, except that we must be able to assign directions to the arcs in the
geometric dual. We do this as follows. Imagine that the arc e* dual to the arc

Figure 2.9 A plane graph and its

geometric dual
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d*

Figure 2.10 Two plane
graphs of the same graph
and their duals

e is rotated clockwise in the plane. Place an arrowhead on the end of e*  which
would first touch the arrowhead of e. This rule is illustrated in Figure 2.11.

For our purposes, the most significant property of dualization is that
it interchanges cycles and cocycles. The proof of the following theorem is
quite nontrivial, and we refer the reader to the literature.

F i g u r e  2 . 1  1 Dualization of digraph
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Theorem 8.1 ‘Let C be a subset of the arcs of G and C* be the dual subset of
arcs of GD. If C is a cycle, directed cycle, cocycle, or directed cocycle in G,
then C* is, respectively, a cocycle, directed cocycle, cycle, or directed cycle
in GD, and conversely.

We ofr.en  have occasion to deal with graphs with two designated
terminal nodes. s and t.  In some cases, it is possible to construct a dual graph
with corresponding terminal nodes s*  and t* by the following procedure.

The graph G  is augmented by adding a special arc e = (t. s),  to obtain
the graph G t-  e.  (G  may alrlzady  have an arc (r,  s). in which case e is parallel
to it.) If G + f! is planar, the? (G + e)D  is obtained and the arc e*,  dual to r.
is by definition directed from s*  to t*.  Now note the relationship between
GU and (G + e)” - e*.  The addition of e to G simply subdivides IInto two

parts some face F of G that has nodes s and t on its boundar,y.  Hence, GD
differs from (G + e)” - e*  only in that the node in GD corresponding to F
is split into two nodes s*  and t*. See Figure 2.12.

---
b *

Cc)

Figure 2.‘12 (a) D graph G with terminals s, t.  (b) Addition  of
(t,  S)  to G and dualization. (c) Dual digraph G” with terminals
s*,  t*.
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By defining e*  to be directed from :i* to t*  rather than the opposite,
we obtain the following results. Suppose C is a directed path from s to t,  with
no repeated nodes. Then C + e is a directed cycle in G + e anid,  by Theorem
8.1, (C + e)*  = C* + e*  is a directed cocycle in (G + e)“. But then C* is a
directed (s*,  t*)-cocycle in (G + e)D  -- e*.  Thus a d.irected  (s.  t)  path in G is
found to correspond to a directed (s*,  t*)  cocycle in (G + e)” - e*.  The
reader can employ Theorem 8.1 to work out other correspondences.

This technique of two-terminal dualization is obviously valid only if
the graph G remains planar after the addition of the arc e =: (t, s).  A graph
for which this is true is said to be (.Y,  t) planur.

The operations of contraction. and deletion are also interchanged by
dualization. That is, the contraction of an arc in G correspond,s  to its deletion
in the dual, and vice versa. Further reference to this property is made in
Chapter 7.

9
Eulerian  and Hamiltonian Graphs

Graph theory is said to have been founded in 1736 when Euler settled a fa-
mous unsolved problem known as lthe Ktlinigsberg  Bridge Problem. Two
islands were linked to each other and to the banks of the Pregel River by
seven bridges. The question posed was whether it was possible to begin at
any of the four land areas. walk across each bridge exactly once, and return
to the starting point.

The general question, for a gl.ven  graph G, is whether there exists a
closed path which contains each arc exactly once. Such a path, if it exists, we
call an Euler path, and we say the graph is a Euler gruph, or Eulerian. Euler
was able to answer the question nega,tively  for the specific Kiinigsberg  graph
of Figure 2.13 and also to resolve the issue for all graphs. as follows.

Figure  2.113  Graph  o f  t he  Kijnigsberg  Br idge

Problem



Eulerian  and Hamiltonian Graphis 37

Theorem 9.1 A graph (or multigraph) G is Eulerian  if and onl,y  if G is
connected and each node of G has even degree.

PROOF If G is Eulerian, then clearly it is connected and each node has even
degree. (An Euler path enters each node exactly as many times as it leaves and
contains each arc exactly once, implying the degree of each node is even.)

The converse is proved by induction on the number of arcs. The
theorem is true for graphs with zero arcs. Assume it is true for graphs with
m - 1 arcs. A connected graph with m 2  1 arcs and in which each node has
even degree must contain a cycle C. (Show this!) The deletion of C from G
produces a graph with one or more components. each of which is Eulerian
by inductive assumption. An Euler path for G is formed by joining C with
the Euler paths of these components. (The reader should work out a detailed
plan for the order in which the  various parts of the Euler path a:re traversed,
if this is not clear to him.)//

Sir William Hamilton once investigated the existence of a cycle
passing through each vertex of a dodecahedron exactly once. We call a cycle
that passes through each node of a graph exalctly  once a Hamilfon  CJ&,
and the graph which contains it a Hamilton graph, or Hamiltonian. In con-
trast with the extremely tidy necessary and sufficient conditi’ons  for Euler
graphs, Hamilton graphs seem to defy effective characterization. There are,
however, a few useful sufficient conditions. For example:

Theorem 9.2 (Chucital) Let G be a graph with rr 2  3 nodes and no loops or
multiple arcs in which the nodes are numbered so that d,  I ~1~  I . . . < (i,.
G is Hamiltonian if

d,  5  k =,  d,,_.  j(  L n - k. for 1 I k I i.

The reader is referred to Chvatal’s  paper for a proof.
Let S be a set and .Y := {S,, S2,  , S,J be a family of distinct non-

empty subsets of S whose union is S. The intersection graph @“.v’  is a graph
whose nodes are identified Twil:h  sets in .Y, with Si and Sj adjacent whenever
i #  j and Si n Sj + 0. A graph G is an intersection graph on S if there exists
a family .Y of subsets of S. with G the intersection graph of :;P.

Theorem 9 . 3 Every graph G = (N. A) is an intersection graph.

PROOF Let S = N u A an,d  for every node j Iof  G, let Sj be the unilon  of
{j i and the set of arcs incident to j. //

Recall that an arc of a graph is defined as a subset of two n’odes.  Hence.
for a given graph G = (N, A). we can let S = N and Y’ = A. The intersection
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graph of A is called the line graph qf‘G, denoted L(G). A graph G’ is called a
line graph  if there exists a graph G, with G’ - L(G). Sometimes L(G) is called
the “arc-to-node dual” of G. Hence a line graph is a graph for which a node-
to-arc dual exists. Examples of graphs and their li,ne graphs are shown in
Figure 2.14.

One characterization of line graphs is indicated by the following
theorem, the proof of which is left for the reader.

Theorem 9.4 G is a line graph if and only if the arcs of G can be partitioned
into complete subgraphs in such a way that no nodle  lies in more than two
of the subgraphs.

Some relations between line graphs, Euler graphs, and Hamilton
graphs are indicated by the following theorems. the proofs of which are left
to the reader.

Theorem 9.5 G is Eulerian  if and only if L(G) is Hamiltonian

Theorem 9.6 If G is Eulerian, then L(G) is Eulerian.

Figure 2.14 Two graphs and their line graphs
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PROBLEMS

9.  I Prove that every connected graph with WI  arcs possesses a clos~eti  path of length
not exceeding 2m which passes through each arc at least once.

9.2 Formulate the equivalent of Euler’s conditions for digraphs.
9.3 Prove  that  a  b ipar t i te  graph  wi th  an  odd number  of  nodes  i s  not  Hamil tonian .
9.4 Prove Theorem 9.5.
9.5 Prove ‘Theorem 9.6.

10
Linew  Programming Problems

The general problem of linear programming is to find values for real variables
x,.x2 ,.... x, which will, yield an extreme value (maximum or minimum)
for a linear function

j= 1

subject to the satisfaction of constraining linear relations.

C uij?cj2hi. i=l,2  . . . . . p,
jz 1 I

i uijxj  = hi, i = p  + 1,  p + 2, . . . , I;IZ. l, (10.1)
j= 1

xi 2  0. .i = 1,2 . . . . . 4,
f

xj unrestricted, ,j = q  + 1.9 + 2,. . . II. /

In an econometric or operations research contew.t,  ea.ch  variable xj
is identified with an “activity” within a business enterprise or economic
system. e.g., the purchase of a particular raw material or the production of a
certain good or service. A set of variables constitutes a “program” of opera-
tion in terms of “levels” for the various activities. (Note that it is quite natural
for certain variables to be nonnegative; e.g.. one cannot produce a negative
amount of a good or service.) And since the constraints on the choice of a
program are linear. the term “linear programming” is used. We shall, how-
ever, use the term *‘linear program” to refer to a linear programming
problem, rather than a solution to such a problem.

The reader should be familiar with the various techniques for trans-
forming linear programs from one form to another. ‘For example, an in-
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equality of the form

i: uijxj  2  hi
j= I

is equivalent to a linear equality of the form

E aijxj - -  s;  =  bi,
j= 1

where si  2  0 is introduced as a nonnegative slack wwiuble.  Conversely. a
linear equality

i uijxi  = bi
j= I

is equivalent to the two inequalities

C aijxj  L bi
jz 1

and
n

- c uijxj L - 6;.

A variable xj which is not sign restricted can be replaced by two
variables xj’ and xj . where

xj = x,+ - xj 5

and

A problem calling for the maximization of clxl + . + c,x, is the
same as one calling for the minimization of - C~X~  - . - c,x,,. and
conversely.

It follows that any linear programming problem is equivalent to a
problem involving only equality constraints in nonnegative va.riables.  That
is. in matrix notation,

minimize
2  = (‘x

subject to

Ax ==  b.

x 2: 0,
(10.2)
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where c = (cl, c2.. . . c,)  is the cost erector. cx is  the objecthe  ,function,
A = (aij)  is an m x n coqfjcient  matrix, and b = (b,, b,, . ,, b,,,)  is the
consrraint  cector. (We avoid indicating whether vectors are “row” vectors
or “column” vectors. assuming that the reader will make the cosrrect  inter-
pretation from context. ‘Thus in (10.2), c is understood to be a 1 x II row
vector, x an n x I column vector, and b an m x 1 column vector.)

It is a relatively easy matter to minimize a linear function subject to
linear equations. At first glance, one might think that the solution of linear
programming problems should not be too much more involved, just because
the variables are constrained to be nonnegative. But. in fact, the situation is
very much more complicated. We will now proceed to introduce some deiini-
tions and concepts which are fundamental to the theory of linear program-
ming, before proceeding to a description of the simplex method of solution.

A vector X 2  0 for which AZ  = b is said to be a,feasible  solution to
(10.2). A feasible solution x*  is an optimal solution if there: Iexists  no other
feasible solution X such that CX  < cx*.  There may be feasible solutions but
no (finite) optimal solution. (See Problem 10.2.)

We recall from linear algebra that p vectors x1, x2, . . . , .xp am-e  said to be
linear/J%  dependent if there exist scalars CI~, c(~,  . . . . up.  not all1 zero, such that

!xlX’  + M2X2  + . . + c4pxp  = 0. (10.3)

Vectors which are not linearly dependent are linearly independent. In any
linearly dependent set there is at least one vector which can be expressed as a
linear combination of -the others. For example, if CI~  #  0 in (10.3). then

1
x1 =  - -&x2 +  cc3x3 +  .  .  + clpxP).

El

Also recall that the maximum number of linearly inldependent  rows
of a matrix A is equal to the maximum number of linearly independent
columns, and this is called the rank of A. Assume that the rank of the m x n
matrix A is m, where m I n. If this is not so. one or more of the rows of A
can be expressed as linear combinations of the others. Depending upon the
coefficients bi,  the constraints represented by these rows are either redundant
and can be eliminated from the problem, or else they represent inconsistencies
such that the linear system Ax = b has no solution.

Any m linearly independent columns of A will be referred to as a
basis of the linear system Ax = b. Let B denote the submatrix of A corre-
sponding to a given basis. The m variables identified with the columns of B
are called basic uariubles; they constitute a subvector xB of :c.  The remaining
variables are called secondary variables,  and they constitute the subvector
xK, complementary to xB in X.

If, for a basis B, we suppress the n - m secondary ,variables.  the
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linear system Bx’ = b is obtained, and this system po;ssesses  a unique solu-
tion xB = B- ‘b.  The basic solufion  associated with B is defined as xB =
B-lb,  xR = 0, but often we refer to the basic solution as simply xB. A basic
solution xB which is feasible (i.e., xi’ 2  0) we call a basic feasible dution  and
a basic solution which is optimal we c,all a basic optimal solution.

Theorem 10.1 If there exists a feasible :solution  to (10.2). there exists a basic
feasible solution.

PROOF Similar to that of Theorem 10.2.//

Theorem 10.2 If there exists an optimal solution to (10.2), there exists a
basic optimal solution.

P R O O F Suppose x” is an optimal soluti’on,  where. without loss of generality,
xy>Oforj==1,2 ,..., pandxj=Oforj=p+1,p+2  ,..., n.Ifcolumns
1 through p of A are linearly independent, we can choose m - p additional
linearly independent columns so as to form a basis, and x* is the basic
solution associated with this basis.

Now suppose columns 1 through p of A are not. linearly independent.
Then there exists a vector CI such that ilcc = 0, where xj #  0 for at least one
j 5  p,  and aj  = 0, ,j > p.  Choose

1
-= ma,<  k!..
E l<j:Cp Xj*

Then both x* + ECI  and x* - EC(  are feasible solutions and at least one of
them has at least one fewer nonzero  variable than x*.  Moreover, it must be
the case that CCI  = 0 and both x* + &a:  and .Y*  - EC!  are optim.al  solutions.
(If this were not the case, one or the other would be  less costly than x*,
contrary to the assumption x* is optimal.) The procedure is repeated on
whichever optimal solution has a smaller number of nonzero  variables than
x*.  Eventually (after no more than p -- m repetitions), an optimal solution
is obtained in which the nonzero  variables are identified with a linearly
independent subset of columns of A. At this point a basic optimal solution
can be constructed.//

P R O B L E M S

10.1 (Diet Problem) A dietitian  is concerned with no issue other than that of
provid ing  adequate  nour ishment  a t  the  lowest  poss ib le  cos t .  There  are  n foods
to choose from, and m  nutr ients  that  must  be  accounted for .  Let  cj  denote  the
cost of one unit of the jth food, bi  the minimum daily requirement of the ith
nut r ien t ,  and  aij the  amount  of  the  r ’ th  nut r ien t  conta ined  in  one  uni t  o f  the
j th food.  Formulate the problem as a l inear program. How many foods need
be purchased for a minimum-cost  diet?
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10.2 For each of the fol lowing l inear programs.  determine the number ( i .e . ,  none.
one.  or  an  unbounded number)  of  solut ions ,  feas ib le  solut ions ,  and opt imal
solutions.
(a) minimize 2 = x,

sub jec t  t o
x , + x , =  I
Xl zz 2

x,.x2 2 0.
(b) minimize z = x1

sub jec t  t o
x1 + x2 = 1
XI zz 2

XI 20
xz arbitrary.

(cl minimize 2 = x,
sub jec t  t o

x, + x2 + x3 = 1
XI + x , = 2

XI 20
x2,  x3 arbitrary.

(d) minimize z = .- x,
sub jec t  t o

x, + x2 + XJ  =  1
Xl + x , = 2

x, 20
.x2.  xj arbitrary.

10.3 Given any basic feasible solution x* of the system Ax = h,  does there exist
a cost vector such that x* is the unique optimal solution’!

The Simplex Method

Theorem 10.2 shows that the search for an optimal solution (can  be narrowed
to a search among basic solutions. For an m x n linear system, with m I II,
there are no more than

n

c 1

n!
=

m m!(n - m)!

bases. and for each basis there is a unique and readily co!mputable  basic
solution. Thus we have at least succeeded in reducing the line,ar  program-
ming problem to a finite combinatorial problem.

The simplex method (named after the simplex, a geometric structure)
of George Dantzig is a method for carrying out the search for an optimal
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basic solution. The computation proceeds from one basic feasible solution
to another, with monotonic improvement in the objective function. When no
further improvement can be made, the final basic solution is optimal.

Suppose we are given a linear program in n .- m variables and m con-
straints in inequality form, i.e.,

Ax 12  b,

where, for convenience, we assume bi  ,? 0, i = 1,2,.  . . , m. We can introduce
m slack variables to convert the constraints to equalities. For convenience,
let us designate these slacks as xi, x2,. . . , x,, and renumber the remaining
variables accordingly, ‘Then we have a linear program in the form of (10.2) :

minimize 2  = (‘m+lXm+l  +  .‘.  +  c,xn

subject to

Xl +a lJn+l-~,+l  +  “’ +a1nxrl = br  ’

X2 +  u~,~+ 1.~,+  1 +  .  .  +  aznx, = b,

i
(11.1)

x, +a m,m+1.GI+1 + ‘..’  +  %nX,*  =  bn

xj 2 0, j =  1.2,...,I?. I

An initial basic feasible solution is x’ = (xl, x2,  . , x,) = (b,, h,,  . . ,
b,). The first m columns of A are the initial basis B for the simplex com-
putation.

We proceed to a new basic feasible solution by choosing to bring a
nonbasic column s into B. As a result, we must remove some column r from
B. (Thus, two successive bases in the simplex method always differ by
exactly two columns.)

Intuitively, we believe that we should bring in a new column s for
which c,  < 0, because this should result in a decrease in the value of the
objective function. (As a nonbasic variable. x, = 0, but as a basic variable
x, may take on a strictly positive value.) Suppose we choose such a column
s, and we try to bring it into the basis in place of column r.

The change in basis is effected by a pivot step, for which urs  is the pivot
element. In order to make the basis change, the pivot element a,, must be
nonzero. If ars = 0, then column s is linearly dependent on the m - 1 col-
umns 1,2..  . . , r - 1, r + 1.. . , m, and the proposed change in basis is not
possible.

The pivot step is carried out as follows. First divide equation r by
u~,~ This changes the coefficient of x, ‘to unity in equation r. Then subtract
a, times equation P  from the ith constraint equation, for i + r. This changes
the coefficient of x, to zero in each of these equations. Finally, subtract c,
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times equation r from the equation for the objection function

- z -t cm+ 1x,+ 1 + . + c,x, = 0. (11.2)

This changes the coefficient of x, to zero in equation (11.2) and changes the
right-hand side to the negative of the new value of z.

The result of the pivot computation is, in effect, a refo~rmulation  of
the linear program:

minimize

z = c,x, +C m+lXm+l +  .  .  .  +  c,v-1x s... ]

+ ~.5+7xs+7 + + 7,x,

subject to
x1 + a,,x,

4,x,  .

+ti 1,m+1%n+1  +  .”  +  ~,,,-,x,-,

+  51,s+7-%+7  + .  ” + LSlnX,  ==  b,

+ 4,m+  1x,+  1 + . + a,,,-,+,

+ xs + 4L~.7x,+7
+ . . + ti,7nx,  = h,

-+x,  +  %.m+1-%+1  +  .‘.  +  &,s-1.G1

+L5 ms+Z + . . + rs,,x,  = 6,.

xi  2 0, j = 1,2,  . . . , n.

(11.3)

The new basic solution is feasible if and only if bi  :Z 0, for all i.
Notice that

a n d

hi =  bi - a ,  5 , i + r.
u i-s

We have assumed that b, 2  0, for all i. If b, > 0, it is clear that urs
must not be negative else 6, < 0. (The annoying case in which x, = b,.  = 0

is discussed later.) So let us demand that urs  be strictly positive. But then if

b

ai,+ > bi,

a IS
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hi  will be negative. Accordingly, we must demand that

~- < -!Lbr whenever lzis :> 0
4s ‘lis ’

We restate these observations as follows.

RATIO TEST

If column s is to be brought into the basis, then to preserve feasibility we
must choose as our pivot element urs.  where a,, > 0 and

(11.4)

Now let us see how the objective function 1s affected by a pivot step.
Equation (11.2) becomes

- z + (‘rx, + Cm+ IX, + 1 + . . + c,7- 1x,- 1 + cs+.,xs+, + + c,x, = F,,

where

6, = - c,  b,.
al.7

is the negative of the new value of z. Since h,/a,  can be assumed to be positive,
the value of the objective function is decreased only if c,  < 0, as we intuitively
expected. Algebraically, C = c - cBB -‘A,  where cB  is the subvector of c
identified with the new basis B.

It is now clear that we can renumber variables and constraints to put
(11.3) into exactly the form of (11.1). A new pivot element LE,  can be chosen
and we can proceed to still another b,asic  feasible solution.

Thus, the essence of the simplex method is as follows. Start with any
feasible basis. Choose a nonbasic column s for which c,  < 0. Choose a pivot
element ars  by the ratio test (11.4), and perform a pivot step to obtain a new
feasible basis. Repeat the procedure until a final feasible basis is obtained
for which each cost coefficient is nonnegative. This is an optimal feasible
basis, since no increase in the values of the nonbasic variables can further
reduce the value of z.

Each feasible basis uniquely determines a value of z. At each pivot
step. z is decreased by a finite amount (provided X, > 0 for that pivot step).
Thus no feasible basis can be repeakd.  Since there are a finite number of
possible bases, the procedure must terminate with an optimal solution after
a finite number of pivot steps.

A number of technical questions still remain. How does one find an



The S imp lex  Wethod 4 7

initial feasible basis? (Recall that we conveniently assumed that the con-
straints were of the form Ax I b, with b 2  0.) What if there is no feasible
solution at all? What if, having chosen column s,  there is no positive element
a,,? What if the ratio test selects a pivot element u,  for which x, = O? Does
not this void the argument of finite convergence? Have we real!ly  proved that
the final feasible basis is optimal? What if there is no finite optimal solution?
How does that become apparent?

One technique for obtaining an initial feasible solution is as follows.
First put the constraints into equality form. Multiply by - 1 any constraint
equation for which bi  < 0. Then introduce “artificial” variables yi, y2,. . . ,y,,
to obtain the system Ax -t ly = b. Give each of these variables a very large
coefficient h/l  in the objective function (assuming minimization). The arti-
ficial variables provide an initial basic feasible solution. Because of their
great cost, the artificial variables eventually all become nonlbasic.  If this
is not so, there is no feasible solution to the original problem.

The preceding is sometimes called the “big hil”  method. Other, more
sophisticated techniques appear in the literature.

Suppose column s contains no strictly positive element Q,,,;.  Then x,~
can be increased without bound. That is, increasing x, does not cause any
basic variable to decrease in value. If c,~  < 0, the problem does not have a
finite optimum.

Now suppose the pivot element a, is chosen according to the ratio
test, but b, =: 0. Then we have encountered degeneracy. This occurs,  when the
constraint vector b is a linear combination of fewer than m of lthe basis col-
umns (in fact, precisely those columns corresponding to nonz,ero basic
variables.)

In this situation none of the variables change values with the basis
change. It is indeed possible that the computation can “circle”, repeating
bases and making no progress to an optimal solution.

In practice, degeneracy seldom results in circling. Moreover, there
are several schemes for insuring that no basis is repeated, so that finite
convergence is assured. Possibly the mose elegant of these involves a “lexi-
cographic” condition which is incorporated into the ratio test. However, to
describe this scheme would require more space than the issue deserves here.

We should mention that nearly all of the linear programs formulated
in later chapters are highly degenerate. Yet this creates no difliculty for the
algorithms we shall describe.

The argument that the final feasible basis is optimal is intuitively
compelling. And, indeed, our intuition is further strengthenled  b:y  the geo-
metric interpretations presented in Section 12. A proper proof is provided
by duality theory in Section 13.
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PROBLEMS

11.1 For any system ,4.x  = h,  x 2 0. show that i t  i s  poss ib le  to  pass  f rom any  g iven
bas ic  feas ib le  so lu t ion  x1 to  any  o ther  bas ic  feas ib le  so lu t ion  x2 by means of a
sequence of  p ivot  s teps ,  each of  which preserves  feas ibi l i ty .  (H in t :  Consider
choos ing  a  cos t  funct ion  for  which  x2 is  opt imal . )

11.2 Carry out the simplex computation for each of the following:
(4 minimize z =:  - 3x, - 2x,

sub jec t  t o
-2x, -t x2 I 1

Xl 52

x1 -t x2 I 3

X,,X2  2 0.
(b) minimize z =:  - 3x, - 2x,

sub jec t  t o
-2x,  + .x2  I 1

Xl - 2x,  I 0

-x1 - x2 5 -2

x,, x2 2 0.

12
Geometric Interpretation

It is often worthwhile to give a geom’etric  interpretation to linear program-
ming problems and the computational procedures which are applied to them.
In this section we provide a very brief #and intuitive introduction to this topic.

Consider the program given in Problem 11.2a.

maximize 2 = 3x,  + 2x,
subject to

-2x, + x,5  1

Xl 1 2 1
x1  + x2 I 3

x1, x2 2 0. I

(12 .1)

We draw straight lines in the Euclidean plane whose equations are the
constraints of the linear program (including nonnegativity constraints on
xi,  x2)  in “tight” form (5 replaced by =).  On each of these lines we indicate
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Figure 2.15 Representation of program (12.1)

by an arrow the half-plane that is feasible with respect to the constraint in
question. The intersection of all these half-planes is a polygon, whose bound-
ary and interior contain all feasible solutions to the linear program, as shown
in Figure 2.15.

The object of the linear programming problem is to find a point on
or within the polygon for which 3x, + 2x, is maximum. Consider the
family of parallel straight lines

3x,  + 2X,  = z,

where z is a parameter. The maximum value of z will be obtained tfz  is chosen
so that the straight line passes through point A, as shown in the figure.

The coordinates of A are determined by the two tight constraints

x , zz 2

I
(12 .2 )

x1  + x2  = 3.

A is an extreme point or vertex of the feasible polygon.
Now consider the program given in Problem 11.2b.
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maximize  z = 3x, + 2x,
subject to

-2x ,  +  x2 I 1

Xl -  2x, I 0

-x1  - x* I - 2

Xl, x2 1  0.

When a similar drawing is made for ithis problem, the result is as shown in
Figure 2.16. The region of feasible solutions is unbounded, and there is no
finite maximum value for z.

Finally, consider the problem

maximize z = .3x, + 2.x,
subject to

Figure 2.16 Representation of program (12 2)
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When a drawing is made for this problem (a task we leave to the reader). it is
seen that the feasible region is empty. The constraints are contradic,tory  and
the program has no feasible solution.

These concepts generalize naturally to problems with n variables and
their representations in n-dimensional space. For n  = 2 the tight form of a
constraint defines a straight line, for n = 3 it defines a plane, and for n  > 4
a hyperplane. ‘The feasible region on one side of a hyperplane is ZL  half-space.
The intersection of the half-spaces defines a convex  polytope. If the convex
polytope is bounded, it is a conuex  polyhedron, the n-dimensional generaliza-
tion of a convlex  polygon.

A set of points in n-space is said to be convex  if, for any two points
x1 and x2 in the set, all points on the line segment joining x1 and x2 are also
in the set. An example of a nonconvex region in the plane is shown in Figure
2.17. Algebraically, this condition is stated as follows. A set C is convex if
x1 EC, x2 E C, 0 I /1  I 1 implies )Lxl + (1 - 2)x2 EC.

A vector /Ix’  + (1 - 2)x2,  where 0 I i. I 1, is said to be a convex
combination of the vectors x1 and x2. It is easy to see that for any linear
programming problem, any convex combination of two feasible solutions is
also a feasible solution. Accordingly, the polytope defined by its inequality
constraints is convex.

An extreme point of a convex set is a point that is not the convex com-
bination of any two distinct points in the set. The extreme points of a convex
polytope occur at its vertices. We shall use the terms vertex and extreme point
synonomously.

Now let us investigate the correspondence between the basic feasible

Figure 2.17 Example of

nonconvex region
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solutions of a linear programming problem and the extreme points of its
convex polytope. Suppose, for example, we add slack variables to (12.1) to
convert its constraints to equality form:

maximize z = 3x, + 2x2
subject to

- 2 x ,  + x2 +  Sl = 1 ’

Xl +s,  =2

Xl  + x2 +s,=3

-~l,x2Jl,~~,‘~3 L 0 .  ,

(12.3)

Then we see that the choice of x1, x2, sl, as basic variables causes the equa-
tions in (12.2) to be satisfied, since the nonbasic slack variables s2,  s3  must
take on zero values. This results in the basic feasible solution x1 = 2, .x2 =
l,s,  = 3, which corresponds to vertex A of the polygon in Figure 2.15.

The following is a complete 1i:st  of all basic feasible solutions, ancl  the
corresponding vertices of the polygon shown in Figure 2.15.

Basic Feasible Solution Vertex of Polygon

x1 =: 2.,x,  =  I,,,, =  4 A
x, =: 2, SI  = 5..s,  = I B
SI  =:  I. s* = 2. .A3  = 3 C

x2  =:  1, .SL  = 2.s,  = 2 D
x, =:  3.  .x2  = :, s2 = $ E

The same situation exists in higher dimensions. That is, each basic
feasible solution corresponds to an extreme point of the convex polytope of
the linear program. It may, however, be the case that several basic feasible
solutions correspond to the same extreme point.

For example, suppose that we add to (12.1) the constraint

2x, + x2 I 5. (12.5)

Then vertex A  of the polygon is determined, not only by equations (12.2) but
by two other sets of equations :

Xl =2)

2x, + .X2  = 5 I
a n d

(12.6)

x1 + x2 =  3
(12.7)
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This is simply because there are now three nonparallel straight lines inter-
secting at the point A, and any two of them are sufficient to determine A.

Equivalently, there are three distinct basic feasible solutions of the
augmented linear program which correspond to the extreme point A. They
are :

X ) = 2, x2 = 1, si  = 4, .sz  = 0.

Xl =2,x,=1,.s,=4,s,=0.
a n d

x I = 2, x2 = 1. si  = 4, sq  = 0.

This is a simple example of degeneracy.
Except when degeneracy is encountered, each pivot step Iof  the simplex

method effects a move from one vertex of the convex polytope to an adjacent
vertex. The ratio test (1 1.4) dictates that this move is made along an edge of
the polytope for which the rate of improvement in the objective function is
maximal. For example, if the simplex computation for (12.3) is begun at
vertex C in Figure 2.15, the first pivot step results in a move to vertex B,
and the next pivot step to vertex A, which is optimal.

For a given set of linear inequalities, it is intuitively clear that if the
inequalities determine an unbounded convex polytope, then there is some
objective function for which a finite optimum does not exist. It is also in-
tuitively clear that for each extreme point of the polytope there is an objective
function for which that point is a unique optimal solution.

Sometimes we wish to show that a certain set of linear inequalities
determines a convex polyhedron whose vertices are in one-to-one corre-
spondence with the feasible solutions to a particular combinatorial optimi-
zation problem. We probably will have formulated the linear inequality
constraints in such a way that it is clear that any integer solution to the
inequalities is a solution to the combinatorial problem and conversely.
It then becomes of interest to know whether or not the inequalities deter-
mine a convex polyhedron, all of whose vertices have integer coordinates.

Proposition 12.1 A system of linear inequalities determines a convex poly-
hedron with integer vertices if and only if, for all possible choices of an
objective function. there exists a finite optimal solution in integers.

1 3
Dualit~~  Theory

The theory of duality is one of the more interesting mathematical aspects
of linear programming, and certainly the most important for our purposes.
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It is essential for the understanding of many of the computational pro-
cedures presented in this book.

The basic idea of duality is that every linear programming problem
has associated with it another problem, called its dual, and that the two
problems bear such a close relationship that whenever one problem is
solved the other problem is, in effect, solved as well.

For a given primul  linear programming problem with n variables
xi, x2,. . , x,,  and m constraints there is a &a/  problem with m variables
Ul,  l.4 2.....u,. and n constraints, obtained as follows:

Primal Problem

Minimize z =

Subject IO

Dual Problem

m

Minimire  w = C  (- h,)u,

I= ’Subject to

11~  unrestricted

x ,  2 0 5 (- Uzj)U,  2  -cj
I= I

x, unrestricted. ; (-q,)rr, = - (‘,.
I= 1

Thus, for every inequality (equality) constraint in the primal problem
there is a nonnegative (unrestricted) variable in the dual problem, and vice
versa. (In general, changing a problem by tightening its constraints results
in loosening the constraints in its dual.) The coefficient matrices of the
primal and dual problems are negative transposes of each other. and the
roles of the b and c vectors are reversed.

It is evident from this definition that duality is reflexive, i.e., the dual
of the dual is the primal. For given pair of dual problems, the designation of
one as “primal” and the other as “dual” is an essentially arbitrary matter.

We have defined duality in such a way that both problems involve
minimization of the objective function and all inequality constraints are of
the form “ 2  .”  Of course, minimizing - bu is equivalent to maximizing bu,
and the direction of inequalities can be reversed. Thus, it is quite equivalent
to say that the following pairs of problems are duals:

minimize cx maximize ub
subject to subject to I

A x  rb uA I c
(1.3.1)

x 2  0. u 2  0.



minimize cx
subject to

Ax = b
x 2  0.
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maximize ub
subject to

uA I c
u  unrestricted. J

(13.2)

minimize cx maximize ub
subject to subject to I

Ax = b uA  = c 1
(13.3)

x unrestricted. u unrestricted.

Duality relations in this form are indicated schematically in Figure
2.18, and are used in the statement of the theorems below.

Theorem 13.1 (Weak Duality) If X and U  are feasible solutions to dual
problems, then cx  2  tib.

P R O O F Suppose the problems are in the form of (13.1). Since AZ 2  b and
ii 2  0, it follows that CA%  2  iib.  Similarly, z7AZ  < cX,  so CX  2  Lib.

The proof for problems not in the form of (13.1) is simrlar.//

U20

1

I
u

unrestricted
Figure 2.18 Schematic I
representation of duality I

Min imize  a

Maximize
ub
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Corollary 13.2 If X and U are feasible solutions to dual problems ant1  cX  =
tib,  then 2 and U  are optimal solutions.

We can now establish the optimality of the final basic feasible solu-
tion obtained by the simplex method. Let B be the final basis. The cost vector
expressed in terms of this basis is C := c - cBB-  ‘A 2  0. Then ii = cBBp  1
is a feasible dual solution. (Note that. u  is not sign restricted, because the
primal problem is in equality form.) But c.y = cBxB = cBB-’  b = Lib, and
so by Corollary 13.2 the final solution is optimal.

The converse of Corollary 13.2 is also true. The following theorem
is the principal result of the duality theory.

Theorem 13.3 (Stroql Duality) If either problem of a dual pair of prob-
lems has a finite optimum, then the other does also and the two optimal ob-
jective values are equal; if either has an unbounded optimum, the other has
no feasible solution.

P R O O F Assume that the dual pair of problems are in the form (13.2). Sup-
pose that the primal problem has a finite minimum solution X achieved at a
basis B. From the simplex method, we know that for an optimal basis B,
c - cBB- ‘A 2  0. Let U  = cBB- ‘. Then c - GA 2  0, and G  is a feasible dual
solution. Moreover, c.? = cBxB = cBK  ’ b = iib. Hence, by Corollary 13.2,
U is an optimal dual solution with an equal objective function value.

Suppose that U  is a finite maximum solution to the dual problem in
(13.2). Convert the problem to equality form with nonnegative variables.
(This does not affect the optimality of the solution.) Then the argument
above holds with U  in the role of X.  This establishes the existence of an
optimal primal solution with an equal objective function value.

The case of an unbounded olptimum is simple. By Theorem 13.1,
cx 2  tib.  But if CX  -+  -- m, this implies that z?b  is negative infinite no matter
what U  we use. Yet any feasible solution U yields a finite value for zib.//

Optimal solutions to dual problems are “orthogonal”, in the sense
of the following theorem.

Theorem 13.4 (Orthogonulity  of‘ Opt,imal  Solutions) If X and ii are feasible
solutions to (13.1) then x and ii are optimal if and only if (tiA - c) x’ =
G(AZ  - b) = 0. That is, if and only if, for .i = 1,2,.  . . , n.

m
Xj > 0 implies 2 tiiaij = cj

i= 1

and,fori= 1.2 ,..., m,
m

Ui > 0 implies, C aii.xj = bi.
j=l
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PROOF It follows from (27.4  - c)X  = ti(A.?  - b) = 0 that fi4.Y = c.U = fib.
Hence, by Corollary 13.2. if X,  LI are feasible, X.  E are optimal.

Conversely. suppose 2, U  are optimal. Then by Theorem 13.3. cX-  =
tib.  Since czC := Lib  = tiA,Y. the orthogonality conditions follow immediately.//

Duality theory suggests a number of alternative proceldures  for
solving linear programming problems. The (primal) simp1e.x  method de-
scribed in the previous section proceeds from one feasible primal solution
x = B- ‘b to another. with monotonic improvement of the prirnal objective
function. The corresponding dual solutions u = cBB-’  are infeasible until
the very end of the computation. There is also a dual simplex method in which
row and column operations in the primal method are interchanged. This
proceeds from one feasible dual solution to another, with a monotonic
improvement of the dual objective function. The corresponding primal
solutions are infeasible until the very end of the computation.

In addition to the primal and dual simplex methods, there are
primal-dual methods, in which both primal and dual solutions are main-
tained, and at some stages of the computation changes are made in the
primal solution and at others in the dual.

In the so-called Hungarian method, the computation is begun with
feasible primal and dual solutions. (These solutions bear no special relation
to each other. i.e., they do not correspond in the sense that :c = BP ‘b and
u = cB-  ‘.) ‘The computation proceeds from one pair of feasible solu-
tions to another, with monotonic improvement of both objective functions.
Whenever there is not strict improvement in either objective function, the
two solutions are made more nearly orthogonal, and improvements in
orthogonality are also monotonic throughout the computation.

In the more general out-ojkilter method, the computation is begun
with arbitrary (possibly infeasible) primal and dual solutions. Throughout
the computation, there is monotonic improvement in the feasibility of the
two solutions and in their relative orthogonality. There is not, however,
monotonic improvement of the two objective functions, unless the initial
solutions are feasible.

The out-of-kilter method is described in detail in Chapter 4, for the
case of network flow computations. The Hungarian method is introduced
in Chapter 5  for bipartite matchings. and is employed extensively in later
chapters. These methods can be applied to general linear programming
problems, but to do so is beyond the scope of this book.

PROBL.EM

12.1 For eacll  of the linear programs in Problem 10.2, formulate the dual program.
Determine the relations between primal and dual problems, e.g., primal
infeasible, dual unbounded, and so on.
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Shortest Paths

1
Introduction

Suppose each arc (i,j)  of a directed graph is assigned a numerical “length”
aij. A natural and intuitively appealing problem is to find a shortest possible
directed path with no repeated nodes, from a specified origin to a specified
destination.

Problems of this type are possibly the most fundamental and im-
portant of all combinatorial optimization problems. A great variety of
optimization problems can be formulated and solved as shortest-path
problems. In addition, a number of more complex problems can be solved
by procedures which call upon shortest-path algorithms as subroutines.

One of the first observations we make in this chapter is that it appears
to be as easy to compute shortest paths from a specified origin toI  all other
nodes as it is to compute a shortest path from the origin to one specified
destination. We shall discover that there is a very real difference between
shortest-path problems in which arc lengths are restricted to positive values
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and problems in which arc lengths may be positive or negative. We shall
also discover that, in the latter case, there is no efficient procedure known
for solving the problem, if the network contains directed cycles which are
negative in length. The detection of such negative cycles is an important
problem in its own right.

We shall discuss several other variations of the basic shortest path
problem in this chapter. Among these is the problem in which “transit
times” are assigned to the arcs, and, in effect, we wish to find a directed
cycle around which one can travel at the fastest possible velocity. We also
describe procedures for “ranking” solutions to a shortest-path problem,
i.e., finding the shortest path, the second shortest path, the third shortest
path, and so on.

The dominant ideas in the solution of these shortest-path problems
are those of dynamic programming. Thus, in Section 3 we invoke the
“Principle of Optimality” to formulate a set of equations which must be
satisfied by shortest path lengths. We then proceed to solve these equations
by methods that are, for the most pa.rt,  standard dynamic programming
techniques.

This situation is hardly surprising. It is not inaccurate to claim that,
in the deterministic and combinatorial realm, dynamic programming is
primarily concerned with the computation of shortest paths in networks
with one type of special structure or another. What distinguishes the net-
works dealt with in this chapter is that they have no distinguishing structure.

Finally, at the risk of introducing confusion where clairty prevails,
we must emphasize that this chapter is concerned exclusively with shortest-
path problems in directed networks. If all arc lengths are positive, then an
undirected shortest path problem can be reduced to a directed one, by
replacing each undirected arc (i, j) b:y a symmetric pair of directed arcs
(i, j) and (j, i), each with the same length as the original. However, if the
length of (i, j) is negative, such a transformation would introduce a negative
directed cycle into the network.

Nevertheless, it is entirely feasible to compute shortest paths for
undirected networks with positive and negative arc lengths, provided such
a network contains no negative (undirected) cycles. The theory is much
more sophisiticated than that of this chapter, and not at all dynamic-
programming-like. See Section 2 of Ch,apter  6.

PROBLEM

1.1 (V. Klee) Consider an undirected network with an origin, a destination,
and 100 additional nodes, with each pair of nodes connected by an arc. Show
that the number of different paths (,without  repeated nodes, of course) from
origin to destination is
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100

loo!
+ 100(99!) -1 ( > 100

(98!) + +
( >

2! + 100 i-2 9* 1,

where the nth term counts the paths from origin to destination which omit
n - 1 of the other nodes. Show that this sum is the greatest integer in lOO!e.
Use Stirling’s formula to represent lOO!  in the form a. lob,  where b  is a positive
integer, 1 I a < 10 and u  is accurate to two significant digits. Stirling’s formula
asserts

J&p+l/2e-n  < n!  < J2rmn+112e-” 1 + &
( >

2
Some Problem Formulations

Let us consider some optimization problems that can be formulated as
shortest-path problems and variations.

MOST RELIABLE PATHS

In a communications network, the probability that the link from i to j is
operative is pij. Hence the probability that all the links in any given path
are operative is the product of the link probabilities. What is the most
reliable path from one designated node to another?

This problem becomes a shortest path problem in the conventional
sense by replacing each probability pij  with a “length” aij = -log  pij.

PERT NETWORKS

A large project is divisible into many unit “tasks.” Each task requires a
certain amount of time for its completion, and the tasks are partially ordered.
For example, the exterior walls of a house must be framed in before the
rafters can be raised.

One can form a network in which each arc (i,j)  is identified with
a task and the nodes are identified with “events,” i.e., the completion of
various tasks. If (i, j) and (j, k) are arcs, then task (i, j) must be completed
before task (j, k) is begun. (It may be necessary to insert “dummy” arcs
with zero completion times in order to properly represent the partial
ordering of tasks.)

This network is sometimes called a PERT (for Project Evaluation
and Review Technique) or CPM (Critical Path Method) network. Many
types of analyses can be performed with such a network. For example,
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Figure 3.1 PERT network

we may determine the shortest possible time in which the entire project

can be completed.
Let uij  2  0 denote the length of time required to complete the task

identified with arc (i,j)  of the PERT network. The shortest possible com-
pletion time for the project is determined by a longest (or “critical”) path
from a specified origin (corresponding to the “event” of starting) to a
specified destination (corresponding to the event of completion). A critical
path of the PERT network shown in Figure 3.1 is indicated by bold arcs.

A PERT network is necessa:rily  acyclic. Otherwise there would
be an inconsistent ordering of the tasks; e.g., job (1,2)  precedes job (2.1).
Thus, the PERT problem illustrates a situation in which it is important
to be able to find optimal paths in acyclic networks. It also illustrates a
case in which it is desired to find a longest path (with respect to nonnegative
arc lengths). As we shall see in Section 4, the acyclic network happens to
be one exceptional type of network for which this is possible.

A TRAMP STEAMER

A tramp steamer is free to choose its ports of call and the order in which
it calls on them. A voyage from port i to port j earns pij  dollars profit.
Presumably, pij > 0 if there is a cargo available at port i to be taken to
port j and pij < 0 if the steamer must sail empty. The most profitable path
from one designated node to another corresponds to a shortest path in
a network in which each arc (i, j) has a “length” aij = -pij.

This problem illustrates a ca:se  in which it is reasonable for arc
lengths to be either positive or negaltive.  Unfortunately, the network for
the tramp steamer problem is almost certain to have directed cycles which
are negative in length (positive in profit), and this causes great computational
difficulties.

See Section 12 for a further discussion of tramp steamers.

THE KNAPSACK PROBLEM

Suppose there are n  objects, thejth object having a positive integer “weight”
uj and “value” pj. It is desired to find the most valuable subset of objects,
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subject to the restriction that their total weight does not exceed b, the
capacity of a “knapsack.” This problem can be formulated as an integer
linear programming problem of the form

maximize

subject to
.i

C ajxj I b,

where
xj = 1 if object j is chosen

= 0 otherwise.

This problem can be formulated as one of finding a longest path
in an acyclic network. Let the network have n(b  + 1) nodes denoted jCk),
where j = 1,2,  . , II,  and k = 0, 1,2,  . . . , b. The nodej (k)  has two arcs directed
into it, one from (j - l)‘k’, the other from (j - l)(k-aj),  provided these nodes
exist. The length of the first arc is zero, and that of the second is pj.  An
origin node s is also provided, and it is joined to 1”’ and l@l) by arcs of
length zero and pl. Then each path from node s to node jck)  corresponds to
a subset of the first j objects whose total weight is exactly k:, the length of
the path being the value of the subset.

A destination node t is also provided,with an arc of length zero
from each node nCk) to t.  Then paths from s to t are identified with subsets
of the n ob.jects  whose total weight is at most b. The length of a longest
path from s to t is equal to the value of an optimal solution to the knap-
sack problem.

The structure of the network is suggested in Figure 3.2.

THE TRAVELING SALESMAN PROBLEM

Recall that the traveling salesman problem is to find a minimum-length
Hamiltonian cycle, i.e., a cycle passing through each node: exactly once.

Suppose we replace some node of the network, say node n, by two
nodes s and t,  where s has incident from it all of the arcs which were directed
out of n, and t has incident into it all of the arcs which were directed into
n. Then the traveling salesman problem becomes that of finding a shortest
path from s to t,  subject to the restriction that the path passes through each
of the nodes 1,2,  . . . , n - 1 exactly once.

Now suppose in this same network we replace aij,  the length of arc
(i, j), by ai,; - K where K is a suitably large number. The -problem now
becomes that of finding a shortest path from s to t,  subject to the restriction
that the path passes through each node at most once. If a shortest path con-
tains fewer than n arcs, then no Hamiltonian cycle exists.

The difficulty in finding a shortest path with no repeated nodes is
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Figure 3.2 Network for knapsack problem

that the network has negative directed cycles. The problem of finding
such a shortest path is a perfectly well-defined problem, and it can, of course,
be “solved” by various methods. However, it cannot be solved efficiently,
unless it has a very special structure.

We can, equivalently, let each arc have length K - rrij and view this
as a longest path problem, with all arc lengths positive. But, as we have
commented, there is no efficient method for solving a longest path problem,
unless the network is acyclic.

PROBLEMS

2.1 What changes must be made in the network formulation of the knapsack
problem if  an arbi trar i ly  large number of  copies  of  each object  can be placed in
the  knapsack?  That  i s ,  xj i s  cons t ra ined  to  be  nonnegat ive  in teger ,  ra ther  than
merely 0 or 1.

2.2 Genera l ize  the  knapsack problem so  as  to  provide  two const ra in ts ,  e .g . ,  one
on weight  and another  on  volume.  Formulate  th is  problem as  a  longes t  pa th
problem giving an  expl ic i t  def in i t ion  of  the  nodes ,  a rcs ,  and arc  lengths .
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3
Bellman’s Equations

There seems to be no really good method for finding the length of a shortest
path from a specified origin to a specified destination without, in effect,
finding the lengths of shortest paths from the origin to all other nodes
(or, symmetrically, from all nodes to the destination). So let us suppose that
we do, indeed, wish to compute shortest paths from the origin to all other
nodes, and let us formulate a set of equations which must be satisfied by
the shortest path lengths.

Let

aij = the (finite) length of arc (i, j), if there is such an arc

= t co,  otherwise.

uj = the length of a shortest path from the origin to node j.

Suppose the origin is numbered 1, and the other nodes are numbered
2, 3, . . . ) II. If there are no directed cycles with negative length (and, there-
fore, no negative closed paths), it is clear that ui  = 0. For each node j,
j #  1, there must be some final arc (k, j) in a shortest path from 1 to j.
Whatever the identity of k, it is certain that uj = uk  + ukj.  This follows
from the fact that the part of the path which extends to node k Imust  be  a
shortest path from 1 to k; if this were not so, the overall path to j would
not be as short as possible. (This is the “Principle of Optimality.“) But
there are only a finite number of choices for k, i.e., k = 1,2,  . . . ,j - 1, j +
1 > . ..> n. Clearly k must be a node for which uk  + akj  is as small as possible.
Thus, we ha.ve  established that the shortest path lengths mu:st  satisfy the
following system of equations, which we refer to as Bellman’s equations.

a n d
u1 =  0 ,

uj = pj: (uk + akj} (j = 2,3, . . . . n).
I

(3.1)

We have argued that the equations (3.1) are necessarily satisfied
by the shortest path lengths, provided the network contains no negative
cycles. Are these equations also sufficient to determine the lengths of the
shortest paths?

Assume that the network is such that there is a finite-1e:ngth path
from the origin to each of the other nodes. Also assume that all directed
cycles are strictly positive in length. Under these conditions, it is intuitively
clear that the shortest path lengths are all finite and well defined. We shall
also show that under these conditions the equations (3.1) have a unique
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finite solution. It follows that the solution to (3.1) yields the lengths of the
shortest paths.

Before proceeding to prove the uniqueness of a finite solution to
(3.1) first let  us indicate something of the character of such a solution.
Suppose ul,uZ,  . . . . u,  satisfy (3.1). Then we can construct paths to nodes
1,2, . , n  having these lengths, as follows. To find a path of length uj to
node j, find an arc (k,j)  such that uj = uk  + akj.  Then find an arc (I, k)
such that uk  = u1  + alk.  Continue in ,this  way until the origin is reached.
The sequence of arcs must eventually reach back to the origin. If this were
not the case we would have found a cycle of zero length. But, by assump-
tion, there are no such cycles.

The reader should be able to establish that if we repeat this process
for all nodes j, a total of exactly n - 1 arcs can be picked out for member-
ship in the various paths and that these n - 1 arcs form a tree rooted
from the origin. See Figure 3.3.

There is such a tree for any finite solution to Bellman’s equations.
And since the true shortest path lengths are such a solution, it follows that
we have proved the following.

Theorem 3.1 If the network contains no nonpositive directed cycles, then
there exists a tree rooted from the origin, such that the path in the tree from
the origin to each of the other nodes is a shortest path. (We call such a tree
a tree of shortest paths.)

Now let us consider the uniqueness question. Let ul,  u2,  . . . , a, be
shortest path lengths, and let U,, U,,  . . . , U,  be any other finite solution to

uk OkI

Figure 3.3 Tree of shortest paths
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equations (.3.1) such that izj + uj, for some j. From the construction above,
it follows that U,, U,, . , ii, represent lengths of actual paths, although
not necessarily shortest paths. Accordingly, if Uj  #  uj,  it must be the case
that iij > uj.  Choose j to be such that Uj  > uj,  but U, = ilk, where (k, j)
is an arc in the tree of shortest paths. (There must be at least one such arc
(k, j); note that U, = ui.)  Then Ej > i&  + akj,  contrary to the assumption
that Ui,&, . . . . U,  satisfied (3.1). We have thus proved the following.

Theorem 3.2 If the network contains no nonpositive cycles, and if there
is a path from the origin to each of the other nodes, then there is a unique
finite solution to the equations (3.1), where uj is the length of a shortest
path from the origin to node j.

Unfortunately, Bellman’s equations do not lend themselves to solu-
tion as they stand, because they are nonlinear and imply implicit functional
relationships. That is, each of the uj’s is expressed as a nonlinear function
of the other uj’s.  Much of the remainder of this chapter is devoted to methods
for overcoming these difficulties, and to special situations in which the
equations are particularly easy to solve.

In discussing these computational methods, we shall presume to
have solved the shortest path problem by simply solving the equations
(3.1). The actual construction of a tree of shortest paths can be carried out
from the Uj values, as we have indicated above. This is facilitated by storing
with each j a value of k for which uk  + akj is minimal. However, in the ac-
cepted tradition of dynamic programming, we shall view such an issue
as a housekeeping chore to be attended to by the computer programmer.

Finally, we note that although Theorems 3.1 and 13.2  require the
network to contain no nonpositive cycles, the computational procedures
we shall propose are actually effective for networks which contain no
negative cycles. That is, although the solution to Bellman’s equations is
not unique, the computation will terminate with the correct solution. (See
Problem 3.3.)

P R O B L E M S

3.1 Rewri te  equat ions  (3 .1)  for  each of  the  fol lowing cases:

(a) uij ==  the probability that arc (i,j) is intact.
uj  ==  the probability associated with a “most reliable” path from the

origin to node j.
(b)  aij  =:  the  “capaci ty”  of  arc  (i,.j).

uj  ==  the capacity of maximum capacity path from the origin to node j.

(The capacity of a path is  the minimum of the capacit ies of  i ts  arcs.)
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3.2 Let the arc lengths of a certain five.-node  network be given by the matrix:

r 0 -1 3 x, 61

Assuming that the shortest path lengths are ur = 0, u2  = - 1, u3  = 3, uq = 5,
u5  =  6 ,  cons t ruc t  a  t ree  of  shor tes t  pa ths .

3.3 Consider the network shown in Figure 3.4. Show that for this network the
equations (3.1) do not have a uniqo:  finite solution. Characterize the set of
all solutions.

Figure 3.4 Network for Problem 3.3

One special situation in which it is particularly easy to solve Bellman’s
equations is that in which the network is acyclic.

Recall that in the previous chapter we showed that a directed graph
is acyclic if and only if there exists a numbering of its nodes such that there
exists an arc directed from i to j only d i < j. Let us assume that the nodes
of the network are so numbered. Then it is easy to see that the equations
(3.1) can be replaced by

and
U -  0,1-

Uj  = yir  { Uk + ukj}, (j = 2,3,  . . , ?I).
(4.1)

The equations (4.1) are easily solved by substitution. That is, u1
is known, u2 depends on u1  only, us depends on u1  and u2, . . . , uj depends
on ur,  u2,  . . . , uj-r, and so on. The lsolution  of all n equations requires
0 + 1 + 2 + + n -- 1 = n(n  - 1)/2 additions and 0 + 0 + 1 + 2 +
. . . + n - 2 = (n - 1) (n - 2)/2  comparisons. Thus the acyclic shortest
path problem can be solved by an O(n*) computation. (Note that if the nodes
have not been properly numbered, this task can also be accomplished in
O(n2) operations. See Chapter 2, Section 6.)

Obviously, a network with no cycles can have no negative cycles,
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regardless of the lengths of its arcs. Thus, one can replace each arc length
by its negative value and still carry out the computation successfully.
This is equivalent to finding longest, rather than shortest, paths in the
original network. The acyclic network is the one special type of network
for which we can solve the longest path problem.

The acyclic network may seem to be an extremely special case.
However, the general method we shall describe in Section 6 for solving
Bellman’s equations can be viewed as a technique for converting networks
to acyclic form.

P R O B L E M S

4.1 Solve the shortest path problem for the acyclic network in Figure 3.5, con-

arc  l eng ths  g iven  by

structing the tree of shortest paths “as you go.”
4.2 Repeat  Problem 4.1 for  the longest  path problem.
4.3 Solve the shortest path problem for the network with

the matrix:

I

0 4 3 5 ‘rn  9 6 -

3) 0 -1~ 6 4 0

s;  oz 0 2 -10 3 -9

A=Y,XJ’X:X  8 2 8

‘X x zc x 0 1 6
x Yd ‘X x m 0 3

cc  3= ‘X cc x ‘X 0

Carry  out  the  computa t ions  “a lgebra ica l ly ,”  i . e . ,  as  they  would  be  in  the  corn.
pu te r ,  wi thout  a t t empt ing  to  d raw the  ne twork .

- h

Figure 3.5 Network for Problem 4.1
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4.4 Let

aij = 1 if there is an arc (i. j)

= 0 otherwise.

Revise  the  equat ions  (4 .1)  for  each of  the  fol lowing cases:

( a ) Uj  =  the  se t  of  a l l  pa ths  f rom the  or ig in  to  node j .
(b) uj = lUjl

= the  number  of  d is t inct  paths  f rom the  or ig in  to  node j

5
Networks with Positive Arcs: Djjkstra’s  Method

Another situation in which it is espelcially  easy to solve the shortest path
problem is that in which all arc lengths are positive. The 0(n’) algorithm
we shall describe for this case is due to Dijkstra.

We shall apply “labels” to the nodes of the network. At each stage
of the computation, some of the labels will be designated as “permanent”
and the others as “tentative.” A permanent label on a node represents
the true length of a shortest path to that node. A tentative label represents
an upper bound on the length of a shortest path.

Initially, the only permanently labeled node is the origin, which
is given the label ui = 0; each of the other nodes j is given the tentative
label uj = aij.  The general step of the procedure is as follows. Find the
tentatively labeled node k for which uk is minimal (if there is a tie, break
it arbitrarily). Declare node k to be permanently labeled, and revise the
remaining tentative labels Uj  by comparing uj with uk + akj, and replacing
uj by the smaller of the two values. The procedure terminates when all
nodes are permanently labeled. (Note that if one wishes to find a shortest
path to some designated node, the procedure can be terminated at the mo-
ment at which a permanent label is assigned to that node.)

The proof of the validity of the method is inductive. At each stage
the nodes are partitioned into two sets, P and T Assume that the label of
each node in P is the length of a shortest path from the origin, whereas
the label of each node j in T is the length of a shortest path, subject to the
restriction that each node in the path t(except  j ) belongs to P. Then the node
k in T with the smallest label can be transferred to P, because if a shorter
path from the origin existed, it would have to contain a first node that is
in 7: However, that node must be further away from the origin than k,
since its label exceeds that of node k. The subsequent use of node k to reduce
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the labels of adjacent nodes belonging to T restores to Lr the property
assumed above.

Dijkstra’s algorithm can be summarized as follows.

SHORTEST PATH COMPUTATION FOR NETWORKS WITH
POSITIVE ARC LENGTHS

Step 0 (Start)
Set a1  = 0.
Set uj = aij, for j = 2, 3, . . . . n.
SetP  = {1}, T= {2,3,  . . . . n}.

Step I (Designation of’ Permunent Label)
Find k E  7: where uk  = min {uj >

jE-T
S e t T = T - k ,  P = P + k .
If T := 0, stop; the computation is completed.

S t e p  2 (Revision of Tentative Labels)
Set uJ  = min {uj,  uk  + akj  ) . for all j E 7:
Go to Step l.//

Note that the first time Step 1 is executed, n - 2 comparisons are
called for, the second time n - 3, the third time n - 4, and so on, for a total
of (n - 1) (n - 2)/2 comparisons. The first time Step 2 is executed, n - 2
comparisons and n - 2 additions are required, then n - 3 comparisons
and n - 3 additions, for a total of (n - 1) (n - 2)/2 comparisons and the
same number of additions. An overall total of (n - 1) (n - 2) comparisons
and (n - 1) (n - 2)/2 additions is necessary, and the method is clearly
0 (n’)  in complexity.

It is perhaps interesting to make some comparisons between Dijkstra’s
method and the method for acyclic networks.

Suppose that the nodes of the network happen to be numbered in
such a way that u1  I ~1~  I uJ  I . I u,. (Of course, we have no way
to so number the nodes in advance of the calculation. For the moment,
suppose a “birdie” provided this numbering.) If all arc lengths are positive,
we can again replace Bellman’s equations by equations (4.1) used for solv-
ing acyclic networks.

Thus, if we knew how to order the nodes, an O(n2)1  computation
would be possible. There are two important points involved in Dijkstra’s
procedure. The first is that it is possible to order the nodes by maintaining
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the sets P and 7; such that at each stage of the computation,

max {uj)  5E min {uj }.
jtP jeT

The second is that it is possible to determine each successive node in the
ordering of the nodes (i.e., to transfer one node at a time from T to P),
by means of O(n) additions and comlparisons,  thereby implying an overall
O(n2) computation.

Of course, Dijkstra’s procedure does not simply determine an
ordering of the nodes and then apply equations (4.1). However, the Dijkstra
algorithm does suggest the following alternative computation for the
acyclic shortest path problem.

I.#)  = 0,

uy  = lllj, j = 2,3 ,..., n, (5.1)

up+  ‘)  = min {uy’,  up’  + akj), k=:2,3  ,..., n- l,j>k+ 1. 1

We can view uj” > uj” 2  . . . 2  I#)  as successive approximations of uj,
with u(ij’  = uj,  for all j. Note that these equations imply exactly the same
number of additions and comparisons as (4.1).

We combine the computational procedure of Chapter 2, Section 6
for ordering the nodes of an acyclic nletwork with the computation implied
by equations (5.1) in the algorithm below. We let

Zij = 1 if aij < “o, i.e., there is an arc (i, j),

= 0. otherwise.

ALTERNATIVE SHORTEST PATH COMPUTATION FOR
ACYCLIC NETWORKS

Step 0 (Start)
Set u1  = 0.
Set uj = aij, for j = 2, 3, . . . , ~1.
SetP  ={l}, T={2,3  ,..., n}.

Setdj  = i Zii, for j = 2,3  ,..., n.
i=2

Step I (Designation qf Permanent  Label  )
Find a k E  7: such that d,  = 0. If there is no such k, stop; the network

is not acyclic.
SetT=  T - k ,  P=P+k.
If T = @, stop; the computation is completed.
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S t e p  2 (Revision of  Tentative Labels)
Set uj  = min { uk, uk  -+  llkj i, for all j E 7:
Set dj  = dj  - 

m  < n(n  - 1) arcs. Carry out a detailed
est imate  of  the  number  of  addi t ions  and compar isons  required  by Di jks t ra’s
algori thm, as a  function of  m  and  n .
(P. Spira) Show how to use the Dijkstra algorithm to find a shortest path
from node 1 to node n in only (n - 2)’  comparisons (instead of (n - 1) (n -- 2)
comparisons). Hint: First find shortest paths from node 1 to nodes 2, 3, . . . .
n - 1.
(V. Klee) Let G be any function defined for all sequences of nonnegative
numbers such that

(9 G(u,,a,,  . . ..a..,~,,+,)  = G(G(al,u2,  ...,4,a,+l),

(ii) G(u,, a2,  . . . . a,,,  a,,,,)  2 G(u,,  a,,  . . . . 4.

Let  each  pa th  in  a  ne twork  wi th  nonnegat ive  a rc  lengths  be  g iven  a  G-va lue
determined by the sequence of arc lengths in the path. Show that paths of
minimum G-value can be found by a Dijkstra-like procedure, provided that
G satisfies conditions (i) and (ii).

Figure 3.6 Network for Problem 5.1
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6
Solution by Successive Approximutions.
Bellman- Ford Method

We now consider a general method of solution to Bellman’s equations.
That is, we neither assume that th’e network is acyclic nor that all arc
lengths are positive. (We do, however, continue to assume that there are
no negative cycles.) The method can be attributed to Bellman and to Ford,
and possibly others.

We propose to solve the equations (3.1) by successive approxima-
tions. That is, initially we set

14:” = 0,

u’.l) = L71j,,j #  1,J

(6.la)

and then compute the (m + 1)st  order approximations from the mth order,
as follows:

UT+‘) = min {uim): min {u$/)  + akj}}.
k+j

(&lb)

Clearly, for each node j, successive approximations of uJ  are monotone
nonincreasing:

u!” 2  u:.”  2 us”’  2  ...,
J

How are we assured that the successive approximations converge to the
correct value of uj? Or, for that matter, that they converge to any value
at all?

A simple intuitive argument can be made as follows. Apply the
interpretation that

UP) = the length of a shortest path from
the origin to j, sub.iect  to the condition
that the path contains no more than m arcs.

Clearly this interpretation is valid for us”.  Either a shortest path of no more
than m + 1 arcs from the origin to node j has no more than m arcs, in which
case its length is tP’J , or else it contains m + 1 arcs and has some final
arc, say (k, j). The portion of the path from the origin to node k contains
no more than m arcs and its length is uk  .(*)  The final arc contributes length
akj.  Hence, minimizing up’ + akj over all possible choices of k, one obtains
u(.”  + 1)

J .
If the network contains no negative cycles, then there exists a shortest

path from the origin to each node j with no repeated nodes. In the case
of a network with n nodes, this means that there will exist shortest paths
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with no more than n - 1 arcs. In other words, we can be assured that, for
allj u(Pel)  = u.

’ J
The eq&tions  (6.lb) must be solved for m = 1,2, . . , IZ -- 2. For

each value of m there are II equations to be solved. The solution of each
equation requires y1  - 1 additions and minimization over n alternatives.
It follows that approximately n3  additions and n3  comparisons are required
overall, and the computation is clearly O(n3).  (Note that the computation
may be terminated whenever u$+l)  = uY’  for all values of j. In this case,
we are fortunate to have obtained early convergence to uj.)

We should point out that this computational approach can be  viewed
as recasting the general n-node network problem into the form of an acyclic
network problem with n2 - n + 1 nodes, as indicated in Figure 3.7. That
is, the acyclic network can be imagined to have n copies, l(O), l”‘,  . . . , l(‘~-‘),
of the origin and n - 1 copies j(l),  jc2),  . . , j(‘-i)  of each of the other nodes j.
For each arc (1, j) of the original network, there are n  arcs (l(O),  j(l)),
(lc2’, jt3)),  ...l (1(“-2), j@-‘)),  each with length alj.  For each arc (i, j),
i #  1, there are n - 1 arcs (i(l),  jt2)),  (iC2’,  jC3)),  . . ..(P’). j’“-‘)).  each with
length aij. In addition, there are arcs of the form (jcm’, j(“‘+‘)) with zero
length. The length of a shortest path from the origin to j(‘n)  is UT’. The
equations (6.1) are essentially the same as equations (4.1), suitably modified
to take into account the special structure of the acyclic network.

P R O B L E M S

6.1 Solve the shortest path problem for the network with arc lengths given by
the matrix:

x: 4 10 3

-3 2 II 0

0 8 3 2 1

Organize your computations as you think they would be carried out in the
computer. Construct the tree of shortest paths.

6.2 Suppose we want to let UT’  denote the length of a shortest path from  1 to j,
subject to the condition that the path contains exactly m arcs. (Repeated nodes,
and possibly repeated arcs, are permitted.) How should equations (6.1) he
modified‘?

6.3 Assume that the in-degree of the origin is zero and that there is a path from
the origin to each of the other nodes. Show that such a network contains a
negative cycle if and only if $” < u$‘-“,  for some j.
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Figure 3.7 Acyclic network obtainesd  from construction

7
Improvements in l$iciency  : Yen ‘s Mod$ca  tions

A close examination of the computat’.ons implied by equations (6.1) reveals
that these computations may not be as efficient as they could be. They do
not make use of the best information available at each iteration. For example,
I.&“‘+~’  is computed as a function of Q’, @‘,  . . , @‘, even though u(;l+“,

J
(m+l’

u2 , .., , I,$!~”  have presumably already been computed. Making use
of these (m + 1)st  order approximations, when available, might accelerate
convergence. This is the idea behind an improvement suggested by J. Y. Yen.

Suppose we call an arc (i, j) ~rpward  if i < j and downward if i > j.
(Cf. Figure 3.7.) A path is said to contain a change  in direction whenever
a downward arc is followed by an upward arc, or vice-versa. Note that
because node 1 is the first node of any path, the first arc is upward and the
first change in direction (if any) must be up to down.

Let us assign a new interpretation to the mth order approximation
of uj. Let

u(.“”  = the length of a shortest path from theJ

origin to node j, subject to the condition
that it contains no more than m - 1 changes
in direction.

The appropriate equations for u$“”  are as follows:

@’ = 0

ZP  = a,j,  j #  1 (by definition),J

u(,m+l)  = min  ,$(,WI’
J J , min {I&+~’ + akj>}, m even,

k<j (7.1)
and

rP’+”  = min {uy’,  min {I&+”  + akj}},J
m odd.

k>j
I
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There exists a shortest path to any node j with no more than n - 1
arcs and hence no more than n - 2 changes in direction. It follows that
z&p  - ‘i = uj, as before.J

Each of the equations (7.1) is solved by a minimization over about
n/2 alternatives, on the average, instead of n, as in (6.1). Accordingly,
the length of the computation is reduced by a factor of approximately
two: about n3/2  additions and n3/2  comparisons are required.

Another, possibly less important, advantage is that storage require-
ments are also reduced by a factor of approximately two, since not both
@“ii  and UP’ must be stored. (As soon as UT+  ‘)  is computed, it replaces
U’“‘.)J

Yen has pointed out that the computation can be reduced even
further, to approximately n3/4, by exploiting the fact that, at each iteration,
one additional u?’  becomes a correct shortest path length ant1  thereafter
ceases to affect the calculations. Let

K, = (2,3  ,..., n},
and

K m+l  =  {klz&+‘)  < I&‘)},  m > 1 .

Then the minimizations indicated in equations (7.1) are taken ‘over  all
k <j (or k > j) such that kEK,+l. It can be shown (cf. Section 11) that
IK,+i\  5  n - (m + l), and that the n3/4  result follows from this fact.

7.1
1.2

7.3

7.4

P R O B L E M S

Resolve  Problem 6.1 ,  us ing equat ions  (7 .1) .
Suppose Yen’s computation (7.1) is applied to an acyclic network. At what
i tera t ion  does  the  computa t ion converge  i f  the  nodes  are  numbered so  tha t  a l l
a rcs  a re  upward?  What  i f  the  ne twork  i s  “a lmost”  acycl ic ,  wi th  a l l  a rcs ,  upward ,
except for p downward  a rcs?
Modify the acyclic network identified with the Bellman-Ford method, and
pictured in Figure 3.7, to fit Yen’s modification.
Invest igate  the  s ta tements  made in  the  las t  paragraph of  th is  sect ion,  and jus t i fy
in detail.

8

Linear .Programming  Interpretation
and Relaxation Procedures

Each of the equations (3.1),

uj  = y&  {uk  + ukj}, 63.1)
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implies a system of n  - 1 inequalities. That is, for fixed j and for k =
1,2, . ..) j - 1, j + 1,  . . ..n.

U j  I L/k  +  akj, (8.2)

Conversely, if ui,  u2,  . . . , Uj- i, Uj+ i, . . . , u,,  are given fixed values and uj
is maximized subject to the inequalities (8.2), then the equation (8.1) is
satisfied.

This suggests the following linear programming problem:

maximize u2  + uj  + . + u,

subject to

l.41  = 0, 1

and,fori=1,2  ,..., n; j=2,3  ,,.., n; i+j,

uj - ui I aij. i

(8.3)

We assert that a finite optimal solution to (8.3) is a finite solution to Bellman’s
equations (3.1), and conversely.

In Chapter 4 we shall observe that the dual of (8.3) is a minimum
cost flow problem, and that the dual variables identified with the inequality
constraints of (8.3) have natural and intuitive interpretations in terms of
arc flows. For the present we are not (concerned with exploring these duality
relations. We state, without proof or justification, that the basic variables
of a basic feasible solution to the (dual  problem are identified with the
arcs of a directed spanning tree rooted from the origin of the network.

We also assert that the application of the dual simplex method to
the linear programming problem (8.3) can be interpreted as follows. The
procedure is begun by finding any spanning tree rooted from the origin.
This tree is identified with a basic feasible solution to the dual problem.
Each variable uj is set equal to the length of the path to node j in this tree.
At each pivot step, an unsatisfied inequality Uj  - ui  > aij  is identified,
and the arc (i, j) is brought into the tree, replacing whatever arc (k, j)
had been directed into j. (If there are no negative cycles, this exchange of

Figure 3.8 Example network
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arcs results in a new spanning tree rooted from the origin.) Each1  variable
uj  is set equal to the length of the path to node ,j in the new tree. Each uj
is monotone nonincreasing during the computation. An optimal solution
is found when feasibility is first obtained; i.e., there are no unsatisfied in-
equalities. At this point, the tree rooted from the origin is a tree of shortest
paths.

As an example, consider the network shown in Figure 3.8. For this
network we have the problem:

maximizeu, + u3  + u4  + u5
subject to

Ul = 0

U2 - u,I 5

u2  - uq I - 3

u3 -Ml< 2

U3 -u21 3

U3 -uu,S 6

U d-u25  4

u4  - u;r  5

Us  - Ll3  I - 4

u5 - lib  I 4.

(8.4)

A sequence of rooted spanning trees is indicated in Figure 3.9. In each
tree the arc (i, j) to be brought into the tree next is shown by a dashed line.

It is now appropriate to observe that the dual simplex method, and
virtually all the other methods described in previous sections, can be con-
sidered to be specializations of a general relaxation procedure for solving
the linear programming problem (8.3). The relaxation procedure is as fol-
lows.

RELAXATION PROCEDURE FOR SHORTEST PATH PROBLEM

Step 0 (Start)
Set u1  = 0. Set uj, j = 2, 3, . . . , IZ,  to any sufficiently large value (at

least as large as the optimal value).

Step 1 (Test Inequalities)
If all inequalities of (8.3) are satisfied, stop; the solution is optimal.
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113 =  2

(b)

Figure 3.9 Sequence of rooted spanning trees

Otherwise, find i, j such that
uj  - ui > aij.

Step 2 (Relax Inequality)
Set uj  = Ui + U,j.

Return to Step 1. //

Step 1 of the relaxation procedure does not specify which inequality
should be chosen for relaxation, if there are several unsatisfied inequalities
in (8.3). As a practical matter, the nondeterministic character of the method
actually makes it very attractive for #solving  small problems by hand “on
the network.” In this case, one can exploit intuition and insight into the
structure of the network to obtain rapid convergence to an optimal solution.
There is, however, a serious theoretical question of the rate of convergence
to an optimal solution. This can perhaps be answered best by interpreting
each of the shortest path algorithms we have studied as a specialization
of the relaxation method in which the degree of nondeterminism is reduced.

Let us say that an inequality is processed whenever it is tested for
satisfaction and then relaxed if it is not satisfied. That is, uj  is compared
with ui + aij and then, if ui + aij is smaller, uj  is set equal to ui + a,j.

The algorithm for acyclic networks in Section 4 calls for the com-
putation of

uj  = y$ {uk + akj},
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which is equivalent to the processing of inequalities corresponding to
the arcs (1, j), (2,j),  . . . . (j - 1, j). The algorithm implies that it is sufficient
to process each inequality of (8.3) exactly once, and the order of processing
can be determined in advance of computation. In other words, at most
(n - 1) n/2 relaxations, in predetermined order, are sufficient to solve the
shortest path problem for an acyclic network.

Similarly, Dijkstra’s method shows that if all aij are nonnegative,
it is sufficient to process each of the (n - 1)’  inequalities of (8.3) exactly
once. However, the order in which the inequalities are processed cannot
be predetermined (unless the relative values of the uj‘s are all known in
advance of computation). (Note that Dijkstra’s method actually requires
only (n - 1) (,z  - 2) comparisons because each of the inequalities nj I a,j,
j = 2, 3, ..,, n  is satisfied initially by setting uj = ulj.)

The Bellman-Ford method does not lend itself to interpretation as
a relaxation procedure of the type we have described, because, in effect,
when a new value for uj is determined, this value is not immediately sub-
stituted into all the inequalities of (8.3). It is precisely this fact which Yen
exploited in formulating the equations (7.1). Yen’s modification demon-
strates that in the general case, i.e., when the network is neither acyclic
nor has only positive arcs, it is sufficient to process each inequality of (8.3)
only n/2 times. Moreover, the order of processing is predetermined.

Each pivot step of the dual simplex method is equivalent to the
processing of several inequalities. When the out-of-tree arc (i, j) is exchanged
for the in-tree arc (k, j) the inequality (i, j) is relaxed. This may cause a
number of inequalities identified with other in-tree arcs to become un-
satisfied, and these are all relaxed before the next pivot step is performed.
The relaxation of these inequalities is presumably carried out by algebraic
techniques quite different from the sequential processing of inequalities.
Nevertheless, it is correct to conclude, as a result of the analysis of Yen’s
modification, that the linear programming problem (8.3) can be solved
with no more than n3/2  pivot steps of the dual simplex method. (Undoubted-
ly, this bound can be lowered substantially.)

The dual simplex method is a nondeterministic algorithm, in that
there is no well-defined choice of a pivot element at each pivot s’tep.  The
above-mentioned optimistic bound on the number of pivot steps is based
on an intelligent choice. At the other extreme, Edmonds has shown that if
one makes a pathologically poor choice, the number of pivot steps can
grow exponentially with n. A fortiori, the relaxation method may require
one to relax an exponentially growing number of inequalities.

Finally, we comment that if any feasible solution to the linear program
(8.3) could be  obtained in fewer than O(n3)  steps, then an important result
would follow. Note that if we replace aij by a,, = aij + ui  -- ujz for any
numbers u1  , . . , u,, then the shortest path lengths are essentially unchanged.
I f  u 1,  ..., u,,  are feasible solutions to (8.3), then 2iij 2  0 and Dijkstra’s
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procedure can be applied. Thus, the shortest path problem with negative
arc lengths (but no negative cycles) could be solved in fewer than O(n3)
steps.

P R O B L E M S

8.1 Resolve Problem 5.1  by the dual simplex method. Indicate the tree identified
with each successive dual feasible solution.

8.2 Resolve Problem 5.1 by the relaxation method, working “on the network.”
That  i s ,  ind ica te  in i t i a l  uj  va lues  a t  the  nodes ,  and revise  them downward by
inspection of unsatisfied inequalities.

8 . 3 Let T be a spanning tree rooted from the origin and let (i, j) E 7;  and (k, j) $  7:
What are necessary and sufficient conditions for T-  (i,  j) + (k, j) also to be
a tree rooted from the origin?

8.4 Suppose  the  ne twork  conta ins  a  negat ive  cycle .  What  happens  when the  dual
s implex method is  appl ied? The rela rat ion method?

9
Shortest Paths between All Pairs qf Nodes.
Matrix Multiplication

Let us now turn to the problem of finding shortest paths between all pairs
of nodes in the network. Instead of computing shortest paths from an origin
to each of the other II - 1 nodes, we seek to compute shortest paths from
each of the y1  nodes to each of the other n  - 1 nodes, n(n - 1) shortest
paths in all.

We can, of course, choose n separate origins and carry out n separate
computations of the type we have described in the preceding sections.
However, it is more appealing to try to develop a single integrated pro-
cedure.

Let

uij  = the length of a shortest path from i to j.

I&” = the length of a shortest path from i to j, subject
to the condition that the path contains no more
than m arcs.

Then we have, if a,, = 0,

u!?’  = 0II

uiy)  =  +cx:  ( i  +j)

~4~~“’  = rnin {I&’  + akj}. I

(9.1)
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If we carry out the indicated computations, we obtain convergence at the
(n - 1)st  approximation, i.e., u{;-  i) = uij. The overall computation is
O(n4), which is just what we should expect for II repetitions of the O(n3)
Bellman-Ford computation.

However, there is something which should pique our interest.
Equations (9.1) are very suggestive of the definition of matrix multiplica-
tion. We are accustomed to defining the product P of two dimensionally
compatible real matrices A and B as follows:

where

P = (Pij)  = AB,

Pij = 1 ai&kj.
k

Now suppose we define a new type of matrix multiplication “(X4” as follows:

P = (Pij)  = A 0 B,

where

Pij = mjn  (aik  + bkj}.

That is, let ordinary addition take the place of multiplication and min-
imization take the place of addition.

Now let U(“‘)  be the matrix of mth order approximations, ie:., UCm)  =
(u$“). Note that

commm I

I:x? co  32 O.J
Let A = (aij) be the matrix of arc lengths. Then we see that

u”’  = u(O)  @ A

u(2)  = u’” @ A = (ZP  @ A) @ A

zP-1’  = W-2’ 0 A = (((U’O’  @ A) @A) . . 0 A).

Two important things to know about this type of matrix multiplication
are that UC” is the identity matrix, i.e., U(O)  @ A = A, and that the multi-
plication is associative. Together, these facts mean that we can write

UP-l’=  p-1

where by A”-’ we mean the (n - 1)st  power of the A matrix. It does not
matter how we obtain this n - 1 power. Since A’”  = A”-’  for any 2k >
n - 1, it seems appropriate simply to square A until a sufficiently high
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power is obtained. That is, compute A2  = A (8 A, then A4  = A;!  @ A2,
. . . A2’,  for 2k 2 n - 1.

This method requires log, n  matrix multiplications, each of which
is an 0(113)  computation. It follows that we have a computation which is
0 (n3  log n)  overall.

As an example, consider the network of Figure 3.10. For this net-
work, A, A2,  etc., are as indicated.

A =

a 0 6 3 10 CE x

x 32 0 4 ‘K 9 x

x %3063~~

cc m x; 4 0 3 2

m m c(? m 2 0 2
c*l)  x cc  cc  cc  cc  0-

A2=mm30535

i cc  m ‘a2  0 cr  m 0 4 a; 0 6 5 4 6 3 7

cc

10 14 2 9 14 0 6 7 11 12 m- 2

E74032

x nc:  K cc  cc  c*3 0

0 4 5 7

co063

‘cc  cc  0 4
A4= L #cc  cc  3 0

12 10 12-

8 6 8

9 7 9
5 3 5

cx:  cc  7 4 0 3 2

x x 9 6 2 0 2

cc x cc  x az  o-  0

0 4 5 7

a063868

cc cc  0 4
:  n3  cx,  3 0

12 10 1:

9 7 9

U=A8= 5 3 5

m m 7 4 0 3 2

co  cc  9 6 2 0 2

cc  cc  cc  x m x 0
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Figure 3.10 Example network

Note that it also is possible to interpret the Bellman-Ford method
in terms of matrix multiplication. That is, let ~6’“)  be a row vector, with

l.P) = (fly’.  up,  . . . , up  I

and

Then

u(O)  = (0, x;, a,  . . . ) cc).

Um+l) = U(w @ ‘4,

= u(O)  @ ‘4”.

9.1

9 . 2

9 . 3

9 . 4

9 . 5

P R O B L E M S

Apply the  matr ix  mul t ipl icat ion method to  the  matr ix  of  arc  lengths  in  Problem
5.1.
Let pij represent the probability that arc (i, j) is intact. Modify the equations
(9.1) and the definition of matrix multiplication to solve the most reliable
path problem. (That  is ,  in terms of the pij values .  Do not  use  the  t ransformat ion
aij = -log  Pij.)
Let cjj,  represent the “capacity” of arc (i, j). Modify equations (9.1) and the
defimtton  of matrix multiplication to solve the maximum capacity path prob-
lem.
Suppose we want a$”  to represent the length of a shortest path from i to j,
sub jec t  to  the  cond i t ion  tha t  the  pa th  con ta ins  exac t ly  m arcs. (The path may
conta in  repeated nodes . )  How should  the  computat ion be  modif ied?
Suppose we s imply want  to  determine which pairs  of  nodes  of  a  di rected graph
G  are connected. How might we simplify the matrix multiplication method?
Let A be the adjacency matrix.  What is  the form of A”-‘? What are  necessary
and sufficient conditions for G to be strongly connected, in terms of A”-‘?

9.6 Prove that the network contains a negative cycle if and only if A” # A”-‘.
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10
Floyd- Warshall Method

A computational method, due to Floyd and to Warshall, finds shortest
paths between all pairs of nodes in 0(n3)  steps, compared with 0(n3 log n)
for the matrix multiplication method.

We redefine u@’  as follows:IJ

u$” = the length of a shortest path from i to j, subject
to the condition that the path does not pass
through nodes m, no  + I, . , II (i and j excepted).

A shortest path from node i to node j which does not pass through nodes
m + I, nz + 2, . , n  either (a) does not pass through node m, in which
case t&“’  = ~17’  or (b) does pass through node m, in which case u):+”  =
uj;’  + uy  .

Thus we have

and

and, clearly, u$  + ‘)  = Uij, the length Iof  a shortest path from i to j.
We note that z&’  = 0, for all i and all m. It follows that there are

exactly n(n - 1) (n - 2) equations in (10.1) which require explicit solution,
each by a single addition and a single comparison. (I.e., equations for
which i, j, m = 1, 2, . . . , n; i #  j, i #  m, j #  m.) Thus, the Floyd-Warshall
method requires exactly n(n - 1) (n - 2) additions and n(n - 1) (n .- 2)
comparisons. This is the same order of complexity as the Bellman-Ford
method, which yields shortest paths only from a single origin. But, curiously,
if all arc lengths are positive, and we apply the Dijkstra method n times
for n separate origins, we will perform exactly the same number of com-
parisons and only about half as many additions as the Floyd-Warshall
method. (There are other housekeeping operations which, in practice, may
prevent the n-fold Dijkstra computation from being competitive with
Floyd-Warshall.)

The Floyd-Warshall computation requires the storage of a single
n x n array. Initially this is UC” = ‘4. Thereafter, U@“+‘) is obtained from
UC”‘)  by using row m and column m to revise the remaining elements. That
is, uij  is compared with nim + u,,,~  and if the latter is smaller, uim  -t uj  is
substituted for uij  in the matrix. This is suggested schematically in Figure
3.11.

We illustrate the computation with the same example used for the
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Column m

0

Row m 0

-

0 0 0 0

0 0 0 0

0 0 0 0

0 @uqo  0 1

Figure 3.1 1 Operations on matrix

matrix multiplications method. Initially, we have

4 5 rx cc cc cc-
6 3 10 E CC

0 4 01: 9 x
3 0 6 3 x

cx cc x 4 0 3 2
~x:xXX202

As it turns out, Ut2’  = U’  ‘). Thereafter, we have,
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0

I  a

4 5 7 1 4 1 4 cc-
cc 0 6 3 1 0 15 CC
cc cc 0 4 w 9 cc

1/C‘+)  = cc, 3 0 6 3 cc
CE a m 4 0 3 2
xacoE202
cc cxc:  a a cx) cc 0

0 4 1 0 7 x
U(5)  = 3 0 6 3 cc

x cc m 2 0 2

4 5 7 1 3 10
0 6 3 9 6
m 0 4 1 0 7
cc 3 0 6 3
x 7 4 0 3
cc 9 6 2 0
m z cc ccl m

-0 4 5 7 1 2 1 0 12-
~0063868
CE cx 0 4 9 7 9
a x 3 0 5 3 5
Cox74032
E m 9 6 2 0 2
co x cc  m c/3  a 0

This is the same result as thal: obtained by the matrix multiplica-
tion method.

We can derive some further insight into the Floyd-Warshall method
from the theorem below.
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Theorem 10.1 An n x n  matrix U = (uij) is a matrix of shortest path
lengths if and only if

uii  =  0

for all i, ,j,  k.
(10.2)

The proof is left to the reader.
For any matrix A not satisfying the conditions of the theorem, but

for which no negative cycles are implied, there exists a unique largest matrix
U I A which is a matrix of shortest path lengths. This fact suggests that
we might formulate a linear programming problem, analogous to (8.3):

maximize C C uij
1 j

subject to

I

(10.3)
uij 5  aij,

uij - Uik  - Llkj  I 0.

We can imagine a procedure which checks a matrix U and computes
the matrix of shortest path lengths, if U does not satisfy the inequalities
(10.2) or (10.3). That is, one simply makes a choice of i, j, k and compares
uij with uik + ukj.  If uij  is larger, a relaxation is performed by reducing
uij in value to uik + ukj.  When no further relaxations are necessary, the
matrix of shortest path lengths has been obtained.

We call the relaxation operation which replaces uij  by

min {Uij,  Uik  + Ukj}

the triple operation for i. j, k. Note that the equivalent of ~1(n  - 1) (n - 2)
triple operations are required simply to verify that a matrix Ii satisfies
the inequalities (10.2) or (10.3), and this is exactly the number required
by the Floyd-Warshall method.

The matrix squaring method can be expressed as follows:

zt!?’  = a.,
and IJ 1J (10.4)

uif”’  =  m,‘n (~1:’  +  t&)}.
1

In effect, this method calls for the equivalent of n(n - 1) (n -- 2) triple
operations to be performed at each of log, n  iterations.

It follows that the matrix multiplication method, in effect, calls
for an inefficient ordering of triple operations. The Floyd-Warshall method
prescribes a clever order of triple operations in which each such operation
must be performed only once. Another ordering of this type has been pro-
posed by G. B. Dantzig; others are possible.
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P R O B L E M S

10.1

10.2
10.3
10.4
10.5

Apply the Floyd-Warshall method ‘to  the matrix of arc lengths in Problem
5.1.
Resolve Problem 9.2,  for  the  Floyd-Warshal l  method.
Resolve Problem 9.3,  for  the  Floyd-Warshal l  method.
Prove Theorem 10.1.

10.6

10.7

(P. Spria) Show how, with appropriate preconditioning of data, one can
apply the Dijkstra algorithm n times to obtain shortest paths between all
pairs of nodes in only k(n - 1) (n -- 2) n + O(n.’  log n) comparisons. (Hint:
Sort the arc lengths first.)
Suppose that, along with the matrix U, a second n x n matrix K is main-
tained. Initially, U’” = A, the matrix of arc lengths, and K(l)  = 0, the zero
matrix. Thereafter, the K matrix is updated at each iteration as follows. If
the triple operation i, j, m  is performed and it is found that u!y’  > uii’ t u!$,
then I$‘+” is set to m. Otherwise, kij~+l)  = k!‘!“.  Show how to use the matrix
K(“+‘)  to construct the actual sequence of ‘Arcs in a shortest path from i
to  j  in  O(n)  opera t ions .  ( I t  i s  a  very  s imple  and  c lean  procedure ;  a  pushdown
stack is helpful.)
Suppose the shortest path from i to j is not unique. For example, suppose
there are two shortest paths: one path contains arc3  (i, lo), (10, l), (1, j) and the
other contains arcs (i, 2),  (2,4), (4, j). Which path is chosen by the Floyd-
Warshall  a lgor i thm? (Assume a  pa th  cons t ruc t ion  technique  l ike  tha t  deve l -
oped in  the  previous  problem.)  Sta te  a  s imple  ru le  for  answer ing th is  ques t ion
in general.

11
Detection qf’  Negative Cycles

Up to this point we have avoided the question of how negative cycles affect
the various shortest path computations and how we should go about de-
tecting negative cycles if that is our objective. This question becomes of
great importance in Section 13.

Although the results we state do not strictly require it, it is reasonable
to suppose that the network is strongly connected. If this is not the case,
it may be best to identify the strong components and analyze the components
separately.

We leave the proof of the theorem below as an exercise for the reader.

Theorem 11.1 Let the network have a path from node 1 to each of the
other nodes. Then the network contains a negative cycle if and only if,
in (6.1) or (7.1), u(p)  < u@-”  for at least one j = 1,2, . . . , n.J J ’
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Theorem 11.1 suggests that to detect the existence of negative cycles,
all that is necessary is to carry out the Bellman-Ford or Yen computation
for one additional iteration. Thus, the complexity of the computation
remains at 0  (n”)  .

It may be possible to halt the computation earlier by testing for
other conditions which are sufficient to indicate the existence or nonexistence
of negative cycles. One condition is that u””  < 0, for any m (there is a
negative cycle containing node 1). Another such condition is that $‘+i)  =
u!“’  for all j and for any m (there are no negative cycles). Still another setJ ’

of such conditions is given by the following theorem.

Theorem 11.2 The network contains a negative cycle if, in (6.1), u$““‘)  <
u?‘, for some m = 1,2,  3, . , n  - 1, and for at least n  - m distinct nodes j.

These sufficient conditions may well enable the computation to
be ended earlier, but they do not affect the worst-case bound of n3  additions
and n3  comparisons, in the case of (6.1).

Note that Theorem 11.2 is actually a statement of the property
which yields a n3/4  algorithm, as described in the last paragraph of Section 7.

In the case of the matrix multiplication and Floyd-Warshall methods,
we have the following theorem.

Theorem 11.3 The network contains a negative cycle if and only if, in
(9.1) or (10. I), u!T’  < 0, for some i = 1,2,  . . , n  and some m = 1,2, 3, . , ~1.

The Floyd-Warshall method has essentially the same upper bound
on the number of computational steps as the (unmodified) Bellman-Ford
algorithm. However, in practice, it appears that the Bellman-Eyord algorithm
is more likely to terminate early, and should be preferred for the detection
of negative cycles.

If the network contains no negative cycles, then we can. compute
the length of a shortest cycle, as follows.

Theorem 11.4 If the network does not contain a negative cycle, then the
length of a shortest cycle is given by

min {L&+“},
I

where u~$‘+‘)  is determined by (9.1), or (lO.l),  with aii = + CC, for all i.

PROBLEMS

11.1 Test  each of  the fol lowing matr ices  of  arc  lengths for  negat ive cycles  by the
Bellman-Ford method:
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0 1 10 3= x

x 0 x % 20

x, - 2 0 - 3 x

x - 1 2 6 0 1

x r; 1 x 0

-0 - 8 1 X X

3c‘ 0 % x 20

x - 3 0 0 x

x - 1 2 6 0 1

x x 1 % 0

11.2 ProveTheorem  11.1.
11.3 Prove Theorem 11.2.
11.4 Prove Theorems 11.3 and I 1.4.
11.5 Reduce the traveling salesman problem to the problem of finding a mnst

negative cycle.
11.6 Obtain the proper analog of Theorem 11.2 for equations (7.1).

12
Networks cvith  Transit Times

Suppose, in addition to a length aij,  a positive integer transit time ti,  is
identified with each arc (i, j). There are a number of interesting problems
associated with such networks. For example, suppose we seek to find
a shortest path from the origin, subject to the condition that no more than
T units of time are required.

Let

uj(t)  = the length of a shortest path from the origin to node j,
subject to the condition that the path requires no more
than t units of time.

We can easily establish the equations

uj(t) = + co, for t < 0,

u,(O) = 0

t

(12.1)

uj(t) = min {uj(t  - l),min  {uk(t  - tkj)  + akjJ  ).
1

The equations (12.1) can be viewed as a generalization of the Bell-
man-Ford equations (6.1); they imply an 0  (n2  T) computation to determine
uj (T) for all j.

Now suppose we seek to find shortest paths between all pairs of
nodes. It is possible to apply equations (12.1) YI times, for n distinct origins,
yielding an O(n3T)  computation. Or a single set of equations analogous
to the matrix multiplication equations (9.1) can be formulated. These also
imply an O(n3T) computation. Unfortunately, however, the computation
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which is implied by this approach is not a simple matrix multiplication.
Hence a simple matrix squaring technique, which would be O(n3  log T)
in complexity, does not seem to be feasible.

However, it is sometimes possible to do better than O(n3T).  Suppose
each tij 5  5.  Then we have the following proposition.

Proposition 12.2 Let Pij be a path from i to j which requires no more than
2t units of time. Then Pij can be broken into two paths P, and P, (where
possibly i =: k or k = j), which respectively require no more than t - 6
and t + 6 units of time, for some 0 I 6 5  z.

Define uij(t)  in the obvious way, and obtain the equations

Uii(t)  = 0
Uij(2t)  = min  {rnp  {Uik(t  - 6) +  u,j(t  +  S)]},

(12.2)
056ST

that may be considered to be, formally, a generalization of the matrix
squaring equations (10.4).

More generally, we have

Uii(t)  = 0

llij(2t  + 6’) = min { min {z+(t  + 6’ - 8) + ukj(t + 6)) )
I

(12.3)
OiG6<r  k

Uij(2t  - 6’) = min { min iLlik(t  - 6) + Ukj(t  - 6’ + 6)) 1.
056r  k

I

Equations (12.3) imply that uij(T)  can be computed for all i, j, in
O(r~~.r*  log T) steps. If z is sufficiently small, i.e. zz B T/log, 7: this is an
improvement.

As an application of these methods, consider the following problem,
which requires  a two-stage shortest path computation. We wish to route
a vehicle through a network in which there are only certain nodes at which
it can refuel. The travel time between successive refuelings must not exceed
T units of time.

Suppose there are M refueling nodes, and the origin and destination
for the vehicle are among them. We first apply equations (12.1) or (12.2)
to obtain uij(T), for all nodes i, j. We then solve a conventional (not time
constrained) shortest path problem over an m-node network of refueling
nodes, in which the length of arc (i, j) is Uij (T). The length of a shortest
path in this network is the length of a shortest path in the original network,
subject to refueling constraints. The overall computation is O(n3T) or
O(n3z2 log ‘r), depending upon whether (12.1) or (12.2) are used.
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PROBLEMS

12.1

12.2

Determine the structure of an (nTi-  I)-node acyclic network identified with
equa t ions  (12.1),  jus t  as  the  ne twork .  in  F igure  3.‘7  i s  iden t i f ied  wi th  the  equa-
tions (6.1).
Some practical problem situations suggest that it may be useful to permit
both transit times and arc lengths to be time-varying. For example, at time
t,  there may be an air l ine connect ion from ci ty i  t o  cityj cos t i ng  aij(tl)  do l l a r s
and requiring tij(t,)  hours. At another time t,  there may be a train, costing
aij(tz)  dollars and requiring tij(t2)  hours, where IQ~(~,)  > aij(t2) and ti,  (t,) <
tij  (tz).  One may wish to  know the minimum cost  to  t ravel  f rom ci ty  1  to  c i ty  n
in time 7:
To be precise, let

tij (t)  = the transit  t ime of an arc from node i
to node j, terminating at j at time t
(and originating at i at time t - tij  (t)).

12.3
12.4

12.5

In order to simplify matters, assume that for any i,  j,  t, there is at most one
arc (i, j) directed into node j at time t.  Modify the time-invariant equations
(12.1) to fit the time-varying case, and show that the complexity measure
remains 0 (n2 T)
P rove  P ropos i t i on  12 .2 .
Justify, in detail, the complexity measure of O(n3z2  log T)  for the equations
(12.3).
Suppose there is one arc in the network which has a much longer transit
t ime than any of  the others .  One way to reduce the magnitude of  z,  and  thereby
speed  up  the  computa t ion  by  equa t ions  (12.3),  i s  t o  subd iv ide  t h i s  a r c  i n to
smal ler  a rcs ,  each  wi th  shor ter  t rans i t  t imes .  Now suppose  we subdivide  a l l
the  arcs  in  the  ne twork  in to  arcs  wi th  uni t  t rans i t  t imes .  Then a  pa th  requi res
no more than T units of time if and only if it contains no more than T arcs.
Show how to  apply  matr ix  squar ing to  compute  ui,(T),  and  ob ta in  a  bound
on the  length  of  the  computa t ion .

aij = the length (cost)  of  an arc from node i
to  node j ,  te rminat ing a t  j  a t  t ime t,
if there is such an arc;

= + co, otherwise

13
The Minimal Cost-to-Time Ratio Cycle Problem

Consider the following problem formulation due to Dantzig. A tramp
steamer is free to choose its ports of call and the order in which it calls
on them. A voyage from port i to port j earns pij  dollars profit, and requires
ti,i  days time (including time for loading cargo at i and unloading at ,j).
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What ports should the steamer visit, and in what order, so as to maximize
its mean daily profit?

A solution to this optimization problem is found by identifying a
directed cycle within the network for which the ratio of total profit to total
travel time is as large as possible. The tramp steamer then sails from its
starting point to any port within this cycle, and then continues to sail
around the cycle indefinitely.

We are accustomed to minimizing rather than maximizing. Ac-
cordingly, we shall continue to deal with a network in which each arc
(i,j)  has a length or cost uij  (let aij = -pij)  and a transit time tij and we
shall seek a directed cycle C for which

C aij

q(c)  = @
(13.1)

is minimum. This is called the “minimal cost-to-time ratio cycle problem.”
For the special case in which tij = 1, for all i, j, the following method

suggests itself. Set a,, = + x and compute t@’  for i = 1,2, . . , n  and M =
2, 3, . . , n  by the matrix multiplication method (9.1). Then the minimum
value of q (C) is equal to

u!m)
m in  min  JL  .

I m i Im

This technique can be generalized. However, even in the special
case that tij = 1, an O(n4) computation is implied. We shall now develop
a computational procedure which is essentially 0 (n3  log n).

In the following several paragraphs, we do not assume that the tij
values are necessarily positive integers, or even positive. Although we may
allow some fij’s to be negative (the physical interpretation of negative time
is admittedly not clear), we do make the not unreasonable assumption
that

C tij > 0, (13.2)
(i,j)d

for all cycles C.
Suppose we guess a minimum value I for the cost-to-time ratio

(13.1) and give each arc (ij) a new cost Zij = clij - Atij.  There are three
situations that may exist with respect to these modified cost coefficients
ii,  :

Case I There is a negative cycle in the network.

Case 2 There is no negative cycle, and the cost of minimal-cost cycle
is exactly zero.
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Case 3 There is no negative cycle, and the cost of a minimal-cost cycle
is strictly positive.

Suppose that Case 1 holds. Let C be a negative cycle. Then

C siij  = C (aij  -  /2tij)  < 0.
C C

By assumption (13.2),  it follows that

C aij

In other words, the guessed value of ,1  is too large and C is a cycle for which
the cost-to-time ratio is strictly smaller than /2.

By similar analysis, we see that in Case 2 the guessed value of ;1
is exactly equal to the minimal cost-to-time ratio, and in Case 3 1 is too
small.

These observations suggest a search procedure based on the testing
of successive trial values of 1. Them  are two principal types of searches
we might conduct: “monotonic” and “binary.”

One can organize a monotonic search by choosing an initial value
1”’ at least as large as the minimum cost-time ratio, and then, by successive
applications of Case 1, obtain A(‘) > 2”) > A(“’ > . . . , until some ;i”‘) is
found for which Case 2 holds. This must occur in a finite number of steps,
because there are only a finite number of cycles. Hence there are only a
finite number of possible cost-time ratios.

Actually, it will be shown below that a monotonic search requires
only 0 (n3)  trial values of A. Since each trial value requires an 0 (n3)  negative
cycle computation, the monotonic search procedure is 0 (n6)  overall.

The binary search provides a much better bound and is possibly
more effective in practice. The binary search proceeds as follows. Suppose
we know that the optimum cost-time ratio is contained in the interval
(a, b). We first try the trial value of 2 = (a + h)/2.  If Case 1 holds, we know
that the optimum ratio is contained in the interval (a, (a + b)/2). If Case 3
holds, the optimum ratio is in the interval ((a -F  b)/2,  b). If Case 2 holds,
we have, of course, found the optimum value of the cost-time ratio at the
first try.

We continue in this way, halving the remaining interval with each
trial value. After k trial values the length of the remaining interval can be
no greater than (b - a)/2k.  Or, to put it another way, the number of trial
values required to reduce the length of the interval to E  is log, (b .- a) -
log, E.

We continue the interval-hailving procedure until the remaining
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interval is so small that only one distinct cost-time ratio can be contained
within the interval. Then one additional trial value of J. is sufficient to
find the cycle with this minimal ratio. (The final value of A is chosen to be
equal to the largest value in the s-interval; either Case 1 or Case 2 must hold.)

Now let us suppose that all the parameters Uij and tij are integers
and that laij)  I y  and ItijI I ,  fr or all i, j. Each cycle contains at most n
arcs, and the smallest possible value for the sum of the transit times around
any cycle is unity. Hence the minimum and maximum attainable cost-to-
time ratios are a = - ny  and b = ny,  respectively.

Furthermore, if the cost-to-time ratios for two cycles are unequal,
those ratios must differ by at least E = l/n2z2.  This can be seen as follows.
Let A/T and A//T’  be two distinct cost-to-time ratios. Then

The difference between the ratios is minimized by letting AT’ - A’T = 1
and TT’ = pi2r2.  (It is possible that cost-to-time ratios for closed paths
other than cycles may differ by less than l/n2r2,  but this does not affect the
convergence ,arguments.)

It immediately follows from the above observations that there can be
no more than 2n3yz2  distinct ratios in all, or 0 (n”)  distinct ratios if we assume
y  and z to be invariant with n.  This yields the bound of 0 (n6)  for monotonic
search.

It also follows that the binary search procedure requires no more
trial values of 1 than log,,(b - a) - log, s = log, (2ny) - log, (l/n2r2)  =
1 + 3 log, n + log, y  + 2 log, z. Thus, the number of negative-cycle prob-
lems which must be solved is 0 (log n + log y  + log 7).

Suppose we are concerned with networks of various sizes, but with
similar cost and time parameter values. If we assume that y  and z are in-
variant with n (or even if y  and r increase as polynomial functions of n)
then. the number of negative cycle computations is simply proportional
to log, n and the overall computation is 0 (n3  log n).

Even if we make no assumptions about the nature of the parameters
aij and tij, it is clear that the number of computational steps is bounded
by a polynomial function in the number of bits required to specify an
instance of the problem. In this sense, the minimal cost-to-time ratio prob-
lem can be considered to be a well-solved combinatorial optimization
problem.
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1 4
M Shortest Paths: Dreyfia  Method

Sometimes it is useful to be able to compute in addition to the shortest
path, the second, third, . . . . Mth shortest paths between a specified pair of
nodes. For example, there may be some complex set of constraints associated
with paths. By simply ignoring the constraints and listing paths in order
from the shortest onward, we may be able to determine the shortest path
satisfying the constraints in question.

In order to simplify our analysds,  we make a number of assumptions.
In particular, paths containing repeated nodes are admissible paths and
even the origin may be visited more than once. Two paths are considered
distinct if they do not visit precisely the same nodes in the same order.
This does permit two distinct paths to possess precisely the same arcs.
However, all paths have different lengths. Ties are broken by a lexlco-
graphic ordering.

The method we shall describe, due to S. E. Dreyfus, computes the
A4 shortest paths from an origin (node 1) to each of the other n  - 1 nodes
of the network, and does so in O(h4n log n)  running time.

Let

#$“‘I  = the length of the mth shortest path from the origin
to node j

and

p(k, j, m) = the number of p,aths  in which (k, j) is the final
arc, in the set of lst, 2nd,  . . . , mth shortest
paths from node: 1 to node j.

By definition,

~(k, j, 0) = 0.

During the course of the computation p(k, j, m) will be updated quite
simply:

p(k,  j, m + 1) =

I

p(k,  j, m) -t 1, if (k, j) is the final arc in the
(m + 1)st  shortest path from the origin to j,
p(k,  j, m), otherwise.

The (m + 1)st  shortest path from 1 to j has some final arc (k. j).
The length of this path from the origin to k must be ~~(~,j,““+~~.  Accordingly,
by minimizing over all possible choices of k, we obtain

ut.m+  11  = min  (Up(kjm)+  11  +.  ukj}
J

k
(14.1)
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with the initial condition
f.4’1’1 = 0.

Equations (14.1) are clearly equivalent to Bellman’s equations (3.1)
for the case m = 0 (except that the condition k + j is eliminated, because
we permit loops). The reader will also note that, as in (3.1), there is a prob-
lem of implicit functional relationships. That is, uy+‘]  may be defined in
terms of UP’  ‘I, which may in turn be defined in terms of z@”  ’ I. We learned
how to resolve this problem for m = 0 in Section 6, and possibly we could
use a similar technique here. There is, however, a simpler solution.

Let us consider the computation of uyl,  for all j. The value of u\‘]
(which may be infinity) is given by

u[lzl  = min {up1  + ukl}.
k

For each node j whose shortest path from the origin contains only one
arc, (14.1) is equivalent to

u”’  = min {u[:’  + ulj,  min {up’  + ukj}}.J
k+l

For each node j whose shortest path from the origin contains two arcs,
say (1, i) and (i, j), (14.1) is equivalent to

utJ1  = min {ui’l  + aij, min (zQ1  + akj}).J kfi

We can continue, computing ujt21 for nodes j whose shortest paths from
the origin contain three, four, . . . , II - 1 arcs. At no time is the value of UPI
required on the right-hand side of equations (14.1), unless it has already
been computed.

In general, UP  + ‘I appears on the right-hand side of equations (14.1)
only if the arc (k, j) is the final arc in each of the lst, 2nd,  . . . , lnth  shortest
paths from the origin to node j. But since (k, j) is the final arc of the shortest
path to j, it follows that the number of arcs in a shortest path to node k
is one less than the number of arcs in a shortest path to j. Therefore, if the
nodes j are processed in order of the number of arcs in their shortest paths
from the origin, the value of Us”‘+‘] will be known when it is needed in the
computation of uj .tm+ll Hence the functional relationship in (14.1) is ex-
plicit.

The initial computation of uj ,[11 for all j, requires either O(n2) or
O(n3) running time using the Dijkstra or the Bellman-Ford method, de-
pending upon whether or not the network contains negative arcs. The
computation Of Ujrm+ll  by (14.1), for a given j, seems to require O(n) addi-
tions and comparisons, but this can be reduced to O(log n)  running time,
as described in Problem 114.2. Thus, to compute ujM1,  for all j, requires
O(Mn log n)  running time, in addition to the time required for the initial
shortest path computation.



100 Shortest Paths

The algorithm requires that u/$  be stored, for m = 1,2, . . . , M, for
which Mn words are needed. In addl.tion  at each iteration, p(k, j,  m) must
be  stored for each arc (k,j). Thus, Mn + m’ words of storage are required,
where m’ is the number of arcs in the network. This, of course, is in addition
to the storage required for the specification of the network itself.

P R O B L E M S

14.1 Consider the network shown in Figure 3.12, in which the tree of shortest
paths is indicated with bold arcs. Use Dreyfus’ method to compute fourth
shor tes t  pa ths  to  each of  the  nodes .  How many of  these  paths  conta in  repeated
n o d e s ?

14.2 (D.  E.  Knuth) By using a priority queue for each node, show that it is possible
to  reduce the running t ime for  each i terat ion of  Dreyfus’  method to  O(n  log  n) .

I
2 -

Figure 3.12 Network for Problem ‘I 4.1

15
M Shortest Paths without lilepeated  Nodes

We now consider the problem of computing the first, second, . . , Mth
shortest paths between a specified pair of nodes, where we do not permit
these paths to contain repeated nodes. The procedure is possibly conceptual-
ly simpler than that described in the previous section, but is computationally
more arduous. The computation is O(Mn’) in length, and requires O(Mn)
words of storage, in addition to thle storage ordinarily required for the
shortest path problem.

Our strategy is essentially as follows. Let .Y denote the set of all
paths (without repeated nodes) from node 1 to node n. Initially we find
Pi, the shortest path in 9. (Here and in the sequel we assume that ties be-
tween paths of equal length are resolved by an unspecified tie-breaking
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rule, perhaps by lexicography. Thus P, is uniquely determined.) We then
partition 9 -- {P, } into subsets PI, 8,, . . , Pk,  where k 5  n -- 1, in such
a way that we are able to determine the shortest path in each subset. The
shortest of these shortest paths is clearly P,, the second shortest path from
node 1 to node n.  Suppose P, ~9~.  We then partition ,Pj -- {P2} into
subsets, in the same way that we partitioned B - {P, }. The subsets ob-
tained from the partitioning of .Yj - {P2},  together with PI, PZ, . . . .
.Yj-l,Pj+l )...) Yp,,1 constitute a partition of 9 - (P,, P,  1. The shortest
of the shortest paths found in the subsets which partition 9’ - {P,, P2}
is clearly P,,  the third shortest path.

At the general step of the procedure, .9 - {:P,, P,, . . , P,,} has been
partitioned into subsets PI, 8,, . . , .Yk. The shortest of the shortest paths
found in any of these subsets is P,+l,  the (m + 1)st  shortest path. If P,+1 E
Pj,  then  .Pj - {Pm+,> is partitioned into no more than n -- 1 subsets.
These subsets, together with .Y1,  :Y2,  . 9 .-)I  J 1, Yp.i+  r, . , .Yk, yield a parti-
tion of.? - {PI,  P,, . . . . P,+l>.

The procedure can be visualized in terms of a rooted tree, as shown
in Figure 3.13. Each node in the tree is identified with a subset of paths.
A node is given the label P,  if that path was found in the corresponding
subset. The arcs directed from a node point to subsets formed by further
partitioning. Note that 9 -- {PI,  P,, . . , P,) is partitioned into no more
than m(n  - 2,) + I subsets, corresponding to the number of leaves of the
tree at that point in the computation.

The key to the procedure is the ability to partition .Yj - {Pm+l}
into subsets in such a way that it is easy to compute the shortest path in

Figure 3.13 Search tree for computation
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each of the subsets. This is accomplished through the forced inclusion and
exclusion of arcs.

Each subset .Yj in the partition of .Y - {Pi, P,,  . . . , P,: contains
all paths which (a) include the arcs in a certain specified path from node 1
to another node p,  and (b) from which certain other arcs from node p are
excluded. Without loss of generality, suppose the specified path from 1
to p contains arcs (1,2),  (2,3),  . , (p - 1, p). A shortest path in :ipj is found
by simply finding a shortest path from p to n in the given network, after
the deletion of nodes 1,2, . . . . p - 1,  and the arcs excluded in condition (b).
Clearly, this requires nothing more than the application of an ordinary
shortest path computation to the reduced network.

Now suppose P,, 1 E  ‘Pj, and again without loss of generality, sup-
pose P,+i  contains arcs (1,2),  (2,3),  . . . . (y - l., q),  (q,  n): where q L p. If
q = p,  then pi  - {P,,,) contains all paths which include the arcs (1,2),
(2,3),  . . . (p - 1, p). and from which (p,  n) is excluded, along with the arcs
from p excluded from .Yj. If q > p,  ,then  9, - {P,,, } is partitioned into
q - p + 1 subsets 9P;,  .&, . . . , .Y&,+  i .,‘P’, contains all paths which include
(1,2),(2,3),  . . ..(p - 1,  PI, and from which (p, p + 1) is excluded, along
with the arcs from p excluded from Bj. 9;,  1 <: k < q - p + 1,  contains
allpathswhichincludethearcs(l,2),(2,3),...,(1;~+k-2,p+k-  l),and
from which (p + k -- 1,~  + k) is excluded. Y;-,+, contains all paths
which include arcs (1,2),  (2, 3), . . . , (q - 1, q), .and  from which (q, H)  is
excluded.

The reader should be able to verify that this scheme yields a valid
partition of .Yj - {P,,)  , and that the conditions defining each subset of
the partition arc of the same form as (a) and (bj for Pi.

The solution of the shortest path problem for each subset requires
an O(n’)  computation if all arc lengths are nonnegative. If this is not the
case, an initial O(n3) computation suffices to determine shortest path
lengths ui  from the origin, and each arc length u,~  can be replaced by Zii =
uij + ui  -- uj 2  0. (See the final paragraph of Section 8.) This trick is
utilized in the summary of the algorithm below.

COMPUTATION OF M SHORTEST PATHS WITHOUT
REPEATED NODES

Step 0  (Stat-t) If all arc lengths are nonnegative, find the shortest path
from node 1 to node II by Dijkstra’s method. If not all arc lengths are non-
negative, find the shortest paths from node 1 to each of the other nodes,
using the Bellman-Ford method, and then replace aij by uij  + 11~ - 11~ ,? 0
for each arc in the network.
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Place: the shortest path from node 1 to node IZ in LIST as the only
entry. Set m = 1.

Step  I (Output rnth  Shortest Path) If LIST is empty, stop; there are no
more paths from 1 to n.  Otherwise, remove the shortest path in LIST and
output this path as P,.

If m := M, stop; the computation is completed.

Step 2 (Augmenfation qf  LIST) Suppose, without loss of generality, that
P,  contains arcs (1,2),  (2,3),  . . . , (q - 1, q),  (q, n)  and that P, is the shortest
path from node 1 to node n subject to the conditions that it is forced to
include arcs (1,2),  (2,3),  . . , (p - 1, p), where p I q, and that certain arcs
from node p are excluded. (These conditions are stored with I’,,,  as part of
the same entry in LIST.)

If p =: q, apply Dijkstra’s method to find the shortest path from 1 to
n,  subject to the conditions that arcs (1,2),  (2,3),  . . . . (p - 1,/1) are included,
and that (p,  n) is excluded. in addition to the arcs from p excluded for P,.
If there is such a shortest path, place it in LIST together with a record of
the conditions under which it was obtained.

If p ;>  q, then apply Dijkstra’s method to find the shortest path from
1 to n, subject to each of the following sets of conditions:

(1)

(2)

Arcs (1,2),  (2, 3), . . , (p - 1,  p)  are included and arc (p, p + 1)
is excluded, in addition to the arcs from IJ excluded for
pm.
A r c s (1, 2),(2,  3), . . . . (p, p + 1) are included: and arc
(p + 1,  p  + 2) is excluded.

(q - p - 2) Arcs (1,2),  (2, 3), . . . . (q - 2, q - 1) are included, and arc
(q - 1,  q)  is excluded.

(q  - p - 1) Arcs (1, 2), (2, 3), . . . . (q - 1, q)  are included. and arc (q, II)
is excluded.

Place each of the shortest paths so obtamed in LIST, together with
a record of the conditions under which it was obtained.

Set m = m + 1 and return to Step 1. //

In order to compute the Mth shortest path, O(Mn) shortest path
computations, each of O(d)  must be carried out. Thus O(Mn3)  running time
is required for these computations.

The algorithm may generate as many as O(Mn) entries for LIST.
If the value of M is known in advance (as is assumed in the description of
of the algorithm), all but the shortest M - m paths in LIST can be discarded
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at the mth iteration. Moreoever, even if the value of M is not known in
advance (e.g., the algorithm may be allowed to run until the shortest path
satisfying certain conditions is found), a storage reduction scheme can be
implemented which reduces the size of list to O(M) entries, but doubles
the number of shortest path computations. (An explanation of this storage
reduction scheme can be found in the references.) In either case, the number
of entires in LIST can be assumed to be O(M),  and since each entry re-
quires 0 (n) space, the total storage requirement for LIST is O(Mn).

There are various data structures that can be used for LIST. Per-
haps the most appropriate is a priority queue, which permits either removal
of the shortest path in LIST or the insertion of a new entry in O(log M)
time. Since there are at most O(Mn) entries to be removed or inserted,
the time required for these operations is at worst 0 (Mn log M). But log M I
M log n,  since M I n !. Hence the 01:Mn  log M)  running time for these
operations is dominated by the runn-ing time for the shortest path com-
putations, and the algorithm may fairly be said to be O(Mn3).

PROBLEM

15.1 Apply the algorithm to find the 1st. 2nd,  . . . . 4th shortest paths from node 1
to node 6 for the network in Figure 3.12.
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F O U R

Network F1ow.r

I
In troduc tiorz

Network flow problems are linear programs with the particularly useful
property that they possess optimal solutions in integers. This permits a
number of interesting and important combinatorial problems to be formu-
lated and solved as network flow problems. Some of these combinatorial
problems have little, if any, obvious connection with the physical reality
of flows.

In this chapter we review “classical” network flow theory, including
the max-flow min-cut theorem, the computation of minimum cost flows,
conditions for the existence of feasible circulations, and finally, the “out-
of-kilter” method of Minty and Fulkerson.

The out-of-kilter method is of special interest to us because of the
way in which it exploits the concepts of linear programming duality. Many
of the algorithms in this book can be viewed as specializations, variations,
or extensions of this computational procedure.

109



110 Network Flows

We conclude this chapter with a discussion of some important
applications of network flow theory, e.g., the PERT, or critical path method,
of project scheduling. Some further topics, such as multiterminal and
multicommodity flow problems, are also indicated.

2
Maximal Flows

Suppose that each arc (i, j) of a directed graph G has assigned to it a non-
negative number cij, the capucit~~  of (i, j ). This capacity can be thought of
as representing the maximum amount of some commodity that can “flow”
through the arc per unit time in a steady-state situation. Such a flow is
permitted only in the indicated direction of the arc, i.e., from i to j.

Consider the problem of finding a maximal flow from a SOUI’C~
node s to a sink node t,  which can be formulated as follows. Let

xij = the amount of flow through arc (i,  j).

Then, clearly,
0 I xij I cij. (2.1)

A conserzution  law is observed at each of the nodes other than s or t.  That
is, what goes out of node i,

C .rij3

must be equal to what comes in,

So we have
- /I, j 2: s

1 Xji  - 1 Xij = 0,  i 9:  S, t (2.2)
j j L‘, i ==  t.

We call any set of numbers 3: = (?cij) which satisfy (2.1) and (:!.2)
a fhible  JON, or simply a JUW,  and u  is its tialr~e.  The problem of finding
a maximum value flow from s to t is a linear program in which the objective
is to maximize u  subject to constrain,ts  (2.1) and (2.2).

Let P be an undirected path from s to t.  An arc (i, j) in P is said to
be a forward arc if it is directed from s toward I’ and backward otherwise.
P is said to be a flow rrugmenting  puth  with respect to a given flow x = (.uij)
if xij  < cij for each forward arc (i, j)  and xij > 0 for each backward arc
in P.
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Figure 4 .1 Feasible flow

Figure 4.2 Augmenting path

Figure 4.3 Augmented flow

Consider the network shown in Figure 4.1. The first number beside
each arc (i, j‘) indicates its capacity cij and the second number indicates
the arc flow .xij. It is easily verified that the flow satisfies conditions (2.1)
and (2.2), with s = 1 and t = 6, and that the flow value is 3.

An augmenting path with respect to the existing flow is indicated
in Figure 4.2. We can increase the flow by one unit in each forward arc
in this path and decrease the flow by one unit in each backward arc. The
result is the augmented flow, with a value of 4, shown in Figure 4.3. Note
that the conservation law (;!.2)  is again satisfied at each internal node.

Recall from Chapter 2 that an (s, t)-cutset  is identified by a pair
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(S, T) of complementary subsets of nodes, with :i ES and t E  T The capaci~
of the cutset  (S, T) is defined as

c(S, T) q = 1 c cij,

itS  jtT
i.e., the sum of the capacities of all arcs which are directed from S to 7:

The value of any (s, t)-flow cannot exceed the capacity of any (s, t)-

cutset.  Suppose x = (Xij)  is a flow and (S, T) is an (s, t)-cutset.  Sum the equa-
tions (2.2) identified with nodes i E  S to obtain

v = c (2 xij - 1: Xji)
id  j _i

= 2 z txij  - x.ii)  + C C txij  - “ji) (2.3)
ieS je7

= C C (Xij  - Xji).
iaS je7

That is, the value L’ of any flow is equal to the net flow through any cutset.
But xij 5  cij and xji :? 0, so

V ( C C Cij  = C(S, T). (2.4)
id  jtT

In the case of the augmented flow shown in Figure 4.3, there is an
(s, t)-cutset  with capacity equal to the flow value. For example, S ==  { 1,2},
T = (3,4,  $6). It follows from the preceding analysis that the flow is maxi-
mal and that the cutset  has minimal capacity. Notice that each arc (i, j)
is saturated, i.e., xij  = cij, if i E  S, j 12 T and void, i.e., xij  = 0, if i E  7;  j E  S.

We now state and prove three of the principal theorems of network
flow theory. They will later be applied to prove other combinatorial results
and to yield good algorithms for maximal flow problems.

Theorem 2 . 1 (Augmenting Path Theorem) A Flow is maximal if and only
if it admits no augnienting path from s to t.

PROOF Clearly, if an augmenting path exists the flow is not maximal.
Suppose x is a flow that does not admit an augmenting path. Let S be the
set of all nodes j (including s) for which there is an augmenting path from
s to j, and let T be the complementary set. From the definition of augmenting
path and from the definition of S and 7: it follows that for all i E  S and J E T,
xij  = cij and xji = 0. It follows from (2.3) that

V = ‘,3  C Cij,
ic:S  jsT

the capacity of the cutset  (S, T). From (2.4) it follows that the flow is maxi-
mal. //
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Theorem 2.2 (Integral Flow  Theorem) If all arc capacities are integers
there is a maximal flow which is integral.

PROOF Suppose all capacities are integers and let xs = 0, for all i and j.
If the flow x” = (x;)  is not maximal it admits an augmenting path and
hence there is an integral flow x1 whose value exceeds that of x0. If x1 is
not maximal it admits an augmenting path, and so on. As each flow obtained
in this way exceeds the value of its predecessor by at least one, we arrive
eventually at an integral flow that admits no augmenting pat‘h  and hence
is maximal. //

Theorem 2.3 (Max-Flow Min-Cut Theorem) The maximum ,value  of an
(s, t)-flow is equal to the minimum capacity of an (s,  t)-cutset.

PROOF The proofs of the previous two theorems, together with (2.4),
are sufficient to establish the max-flow min-cut result for networks in which
all capacities are integers and hence for those in which all capacities are
commensurate (i.e., there exists some c > 0 such that every cij is an integral
multiple of c).

To complete the proof of the max-flow min-cut result, we must
show that every network actually admits a maximal flow. (Note that the
existence of a minimum capacity cutset  is not open to question,. There are
only a finite number of (s, t)-cutsets,  and at least one of them rnust be min-
imal.) We shall present an algorithm for computing maximal flows in the
next section, and in Section 4 we shall prove that the algorithm always
obtains a maximal flow in a finite (in fact, polynomial-bounded) number
of steps, for any real number capacities. This will be sufficient to complete
the proof. //

P R O B L E M S

2.1 Find all  minimum capacity (s ,  t)-cutsets  of  the  ne twork  in  Figure  4 .3 .
2.2 Characterize the maximal flow value 1:  as  a  function of cZ4  and  cj5  for  the  net -

work  in  F igure  4 .4 .
2.3 A recursive characterization of the set S of all nodes reachable from node s

by  augment ing  pa ths  i s :
s E s .

Figure  4.4 Network for Problem 2.2
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2.4

2.5

2.6

Network Flows

Obtain a  s imilar  recursive character izat ion of  thle  set T of al l  nodes from which
node  t i s  reachable  by augment ing Ipaths.
Which of the following statements is true?

(a) If x = (xi,) is a maximal flow, then either qj = 0 or xii = 0.
(b) There exists a maximal flow for which either xi, = 0 or xii = 0.

Expla in .
If a flow network is symmetric, i.e.. cij = cji, and (s, t)-planar, then a minimum
capaci ty  (s ,  t)-cutset  cor responds  to  a  shor tes t  (s*,  t* ) -pa th  in  the  dua l  ne twork ,
What  i f  the  network is  p lanar  but  not  symmetr ic?  Devise  a  var iant  of  a  shor tes t
path computation to find a minimal cutset for a nonsymmetric (s, [)-planar
ne twork .
Define a most  viral  arc in a network as an arc whose deletion reduces the
maximum flow value at least as much as the deletion of any other arc. True
or ~%lsr:  A most vital arc is an arc: of maximum capacity in an (s, t)-cutset  of
minimum capacity.  Explain.

The problem of finding a maximum capacity flow augmenting path is
evidently quite similar to the problem of finding a shortest path, or, more
precisely, a path in which the minimum arc length is maximum. We can
make the similarity quite clear, as follows. Let

Fij = max {Cij - Xij,  Xji},

where cii = 0, if there is no arc (i j). Let

ui = the capacity of a maximum capacity augmenting
path from node s to node i.

Then the analogues of Bellman’s equations are :

us= +x

ui = m;x min {uk, Cki i, i + s.

It is clear that the ui values and the corresponding maximum capacity
paths can be found by a Dijkstra-like computation which is O(n*).

Actually, we shall be satistie’d with a computation which does not
necessarily compute maximum capacity paths. We propose a procedure
in which labels are given to nodes. These labels are of the form (i’, Sj)
or (i-, Sj).  A label (i’,  Sj) indicates that there exists an augmenting path
with capacity 6j from the source to the node j in question, and that (i, j)
is the last arc in this path. A label (i-, Sj) indicates that (j, i) is the last arc
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in the path, i.e., (j, i) will be a backward arc if the path is extended to the
sink t.  Initially only the source node s is labeled with the special label
( -, x). Thereafter, additional nodes are labeled in one of two ways:

If node i is labeled and there is an arc (i,  j) for which qj  < cii,
then the unlabeled node j can be given the label (i’,  S,), where

~5~ := min {S,, cij - xij).

If node i is labeled and there is an arc (j, i) for which x’~) > 0, then
the unlabeled node j can be given the label (i-, d,), where

tTj  = min {Si, Xji).

When the procedure succeeds in labeling node t,  an augmenting
path has been found and the value of the flow can be augmented by 6,.
If the procedure concludes ,without  labeling node t, then no augmenting
path exists. A minimum capacity cutset  (S, T) is constructed b,y  letting S
contain all labeled nodes and T contain all unlabeled nodes.

A labeled node is either “scanned” or “unscanned.” A node is scanned
by examining all incident arcs and applying labels to previously unlabeled b
adjacent nodes, according to the rules given above.

MAXIMAL FLOW ALGORITHM

Step  0 (Srcrr.t) Let .Y  = (xii)  be any integral feasible flow, possibly the zero
flow. Give node s the permanent label (-, x).

Step 1 (Labeling and Scannirzg)

(1.1) If all labeled nodes have been scanned, go to Step 3.
(1.2) Find a labeled but unscanned node i and scan it as follows: For
each arc (i,  j), if xij  < cij and j is unlabeled, give j the label (is-,  Sj), where

6, = min jcij - xij, Si).

For each arc (j, i), if xji ;. 0 and j is unlabeled, give j the label (i-, S,),
where

hj  = min jxji, Si}.

(1.3) If node t has been labeled, go to Step 2; otherwise go to Step 1.1.

Step 2 (Alrgrllentcrtion) Sta.rting  at node t,  use the index labels to construct
an augmenting path. (The label on node I indicates the second-to-last node
in the path, the label on that node indicates the third-to-last node. and so
on.) Augment the flow by increasing and decreasing the arc flows by 6,, as
indicated by the superscripts on the index labels. Erase all labels, except
the label on node s.  GO to Step 1.
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Step 3 (Constnrctiorz oj’ Minimul  (7~) The existing flow is maximal. A
cutset  of minimum capacity is obtained by pla.cing  all labeled nodes in S
and all unlabeled nodes in 7: The computation is completed. //

We can estimate the complexity of the computation as follows. Let
m be the number of arcs. At most 2171  arc inspections, followed by possible
node labelings, are required each time an augmenting path is constructed.
If all capacities are integers, at most u  augmentations are required, where
o  is the maximum flow value. Thus the algorithm is O(mu)  in complexity.

PROBLEMS

3.1 Apply the max-flow algorithm to the network ,with  capacity matrix- 1 3 2 -
4 ~~ 2 1

C =
6 3 ~~~ 5

7 2 1 --__

Let s = 1, t = 4 and start with the zero flow.
3.2 Modify Step 1 of the max-flow algorithms so that a maximum capacity aug-

menting path is found. (Note: In the Dijkstra shortest path computation a
node i is, in effect, “scanned” at the time it is placed in the set 1’ of permanently
labeled nodes. The scanning operation consists of comparing ui  + aij  with
uj  fo r  a l l  t en ta t ive ly  labe led  nodes  j  in  the  se t  7Y)

3.3 Modify the labeling procedure of the maximal tlow algorithm to perlmit  each
arc to have a lower bound Iii on flow as well as an upper bound cij. Assume
Step 0 begins with a feasible flow, i.e., li, I xij ~2  cij.

3.4 Develop an efficient procedure for finding all of the minimum capacity (s,  t)-
cutsets  of a network and estimate its complexity as a function of nt,  n,  and M,
the number of minimal cutsets.  Assume a maximal flow x = (xij) is available
as  input  da ta .  (Suggestion:  Consul t  Chapter  3 ,  Sec t ion  15 .  An O(Mn)  procedure
is possible.)

4
Eficiency of the Maximal .Flow  Algorithm

The complexity of the maximal flow computation was shown to be O(mu),
but this is an unsatisfactory result in that it depends on the integer character
of the arc capacities as well as the underlying digraph structure. Or, to
put it differently, this bound depends on the very quantity c’  that the algo-
rithm is intended to determine. We would greatly prefer a bound depending
only on the number of nodes and arcs in the network.

We also need to establish that the algorithm obtains a maximum
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flow even when capacities arc irrational, in order to complete thme  proof of
the max-flow min-cut theorem. This is no trivial matter. For example,
Ford and Fulkerson have devised an example to show that with irrational
capacities a nonconvergent sequence of flow augmentations is;  possible.
That is, with a pathologically poor choice of augmenting paths, an infinite
sequence of finite augmentations is possible, without converging to the
maximum flow value.

Even in the case that arc capacities are integers, a poor choice of
augmenting paths can produce an exasperatingly lengthy computation.
For example, if starting with zero flow one alternately chooses the alternat-
ing paths (1,2),  (2, 3),  (3,4)  and (1. 3), (2, 3),  (2,4)  in the network in Figure
4.5, two million augmentations of one unit each are required. B:y  contrast,
the augmenting paths (1,2),  (2,4)  and (1,3),  (3,4)  yield the same: result with
only two augmentations.

It is therefore reassuring, and somewhat surprising, to learn that
the maximal flow computation is O(m’n),  provided each flow augmenting
path contains as few arcs as possible. Moreover this can be accomplished
quite simply by modifying Step 1.2 of the algorithm so that nodes are scanned
in the same order in which they receive labels, i.e., “first labeled, first scanned.”

The computation of each augmenting path is O(m). The overall
efficiency of O(m’n)  is assured by the following theorem of Eclrnonds and
Karp, which holds without regard to arc capacities, which may be irra-
tional.

Theorem 4.1 (Edmonds  and  Karp) If each flow augmentation is made
along an augmenting path with a minimum number of arcs, then a maximal
flow is obtained after no more than mn/2 I (n”  - n2)/2 augmentations,
where m is the number of arcs in the network and H  is the number of nodes.

Before attempting a proof of the theorem, we provide the following
lemma. Let

crj”’  = the minimum number of arcs in an augmenting pa.th
from s to i after k flow augmentations
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Figure 4.5 Example network YY3
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and

7:“’  q = the minimum number of arcs in an augmenting path
from i to t after k flow augmentations.

Lemma 4.2 If each flow augmentation is made along an augmenting path
with a minimum number of arcs, then

and

for all i, k.
PROOF OF LEMMA 4.2 Assume that ~1”“) < gi”‘, for some i, k. Moreover, let

ofi+ ‘1 = min  {g$k+‘)loy+l) < ojk)j. (4.1)
j

Clearly ~71”’  ’ ) 2  1 (only os (k +  ” = 0), and there must be some final arc
(i,  j) or (j, i) in a shortest augmenting path from s to i after the (k + 1)st
flow augmentation. Suppose this arc is (j. i), a forward arc, with ,xji < cji
(the proof is similar for (i, j)). Then 0;““)  = $+‘) + 1 and because of
(4.1), r$“’  2 UT’  + 1. It must have been that xji = cji after the kth aug-
mentation; otherwise ,~j”’  5  cjk’ + 1 5  aik+‘), contrary to the assumption.
But if xji  = cji after the kth augmentation and xji < Cji  after the (k + 1)st
augmentation, it follows that (j, i) was a backward arc in the (k + 1)st  flow
augmenting path. Since that path contained a minimum number of arcs,
c#’  = atk) + 11 and as we have seen $) + 1 I ~1”’  ‘), so crck) + 2 5  o!~+‘),
&ntrary  to the assumption. The assumption that G:““’ <’ ai”’  is therefore
false.

The proof that r:“+ ‘)  2  T\“’  parallels the above. //

PROOF OF THEOREM 4.1 Each time an augmentation is made, at least one
arc in the augmenting path is critical in the sense that it limits the amount
of augmentation. The flow through such an arc (i,  j) is either increased to
capacity or decreased to zero. Suppose (i, j) is a critical arc in the (k + 1)st
augmenting path. The number of arcs in the augmenting path is 01”’  +
$’ = $’ + q.

The next time arc (i, j) appears in an augmenting path, say the
(I + l)st,  it will be with the opposite orientation. That is, if it was a forward
arc in the (k + l)st,  it is a backward arc in the (/ + l)st,  and vice versa.
If (i, j) was a forward arc in the (k + 1)st  path,

+’ = @’ + 1

and
($) LIZ g:.”  + 1,
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Because of the lemma, c?’  L up’,  and ,!I) 2  zlk), so  that .!I) .+ z!”  > c!~)  +
zl”’  + 2. It follows that each succeedink  augmenting pah in khich  ‘(i,  j)
is a critical arc is at least two arcs longer than the preceding one.

No flow augmenting path may contain more than IZ - 1 arcs.
Therefore, no arc may be a critical arc more than n/2 times. But each aug-
menting path contains a critical arc. There are m 5  n2  - IIN  distinct arcs.
Therefore there can be no more than mn/2 I n!,r? - n)/2  flow augmenting
paths and this completes the proof. //

N. Zadeh has been able to characterize a class of networks for which
O(n3) augmentations are necessary, when each flow augmentation is made
along a shortest augmenting path. Thus the upper bound in Theorem 4.1
cannot be improved upon except for a linear scale factor. (Note: Edmonds
and Karp obtained a bound of mn/4,  instead of mn/2,  by, in effect, consider-
ing each symmetric pair of arcs (i j), (j, i) to be a single arc.)

Edmonds and Karp have also obtained, by different reasoning, a
comparable result for the case in which each augmenting pa.th  is chosen
to produce a maximum increase in the flow value. A maximum flow is
obtained after no more than about O(log u)  augmentations if the arc capac-
ities are integers. Except when the arc capacities are very large, this is a
better bound than that given by Theorem 4.1, so there may be some ad-
vantage in computing maximum capacity augmenting paths.

It is conceivable that there may be better ways to choose augmenting
paths than by either of the two policies we have mentioned, i.e., minimum
number of arcs of maximum flow increment. In fact, if one is sufficiently
clever in the choice of augmenting paths and in the choice of 6  for each of
them, no more than m flow augmentations are necessary to achieve a max-
imal flow.

Theorem 4.3 For any flow network (with possibly nonintegral capacities),
there exists a sequence of no more than m (a [)-flow  augmenting paths,
augmentation along which yields a maximal flow. Moreover, all of these
augmenting paths contain only forward arcs.

PROOF An alternative linear programming formulation of the maximal
flow problem is obtained as follows. Suppose we list all the possible (s, t)
directed paths and form an arc-path incidence matrix P = (P(~,~),~),  where

1
P(i,j),k  =

if arc (i,  j) is contained in path k,

0 otherwise.
Let

6, = the amount of flow through path k,

and 6 = (6,) be the vector of these flow values. Let c = (cij) be the vector
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of arc capacities. Then the maximal flow problem is
maximize

subject to

6 I> 0.

There are m constraints to this problem, one for each arc, hence
there exists an optimal basic solution in which at most m of the 6, are strictly
positive. These nonzero  variables are identified with the flow augmenting
paths of the theorem, and the 6, values indicate the amount of augmenta-
tion through each of them. //

Of course, Theorem 4.3 gives us no insight at all into how an ap-
propriate sequence of augmenting paths might be found. It does suggest,
however, there might exist a max-flow algorithm that is as good as, say
O(m’).  And, of course. there might be still better algorithms based on some
other concept than that of successive flow augmentation.

PROBLEM

4.1 Suppose not a l l  augmentations t h rough  the  kth  are  made along shortes t  aug-
ment ing  pa ths ,  bu t  the  (k + 1)st  is .  Does the proof of Lemma 4.2 remain valid?

5
Combinatorial Implications of Max-Flow Min-Cut
Theorem

A number of combinatorial results can be viewed as consequences of the
max-flow min-cut theorem. In order to show this, it is helpful to provide
a generalization of the original theorem.

Let us consider a flow network in which there are arc capacities
cij 2  0 and, in addition, node capacities Ci 2  0. Flows are required to satisfy
not only the conservation conditions and arc constraints (0 I xii 5  cij)
but also the node constraints,

C Xij I Ci, i + S, t.

That is, the outflow (and hence the inflow) at any interior node does not
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exceed the capacity of the node. (If all node capacities are infinite, the
situation is as before.)

It is natural to impose node capacities in certain applications. For
example, nodes might be points of transhipment (transportation of goods),
supply points (movement of troops), cleansing stations (overland pipe-
lines), or relay stations (communication networks).

For a node having node capacities as well as arc capacities, we define
an (s, t)-it  as a set of arcs and nodes such that any path from s to t uses at
least one member of the set. The capacity of a cut is the sum of the capacities
of its members.

As this notion of an (s, [)-cut  appears to be different from the previous
one of an (s,  t)-cutset,  it is necessary to show that in a network. whose node
capacities are all infinite, the minimum cut capacity in the new sense is
equal to the minimum cutset  capacity in the old sense. Let (S, :r) be a cutset
and let C be the set of all arcs directed from a node in S to a node in 7:
Then C is a cut in the new sense and its capacity is equal to that of (S. T).
Let C be a cut, consisting entirely of arcs, let S be the set of a.11 nodes that
can be reached by directed paths from s not using any member of C, and
let T be the remaining nodes. Then (S, T) is a cutset  and C (contains every
arc from S to 7; so the capacity of (S, T) is at most that of C.

Theorem 5.1 (Generulized  Max-Flow  Min-Cut Theorem) In a network
having node capacities as well as arc capacities, the maxim.um  value of
an (s, t)-flow is equal to the minimum capacity of an (s,  t)-c:ut.  Moreover,
if all capacities are integers, there is a maximal flow that is integral.

P R O O F Expand the network by replacing each interior node i ‘by an in-node

i’, an out-node i”, and an arc (i’, i”) of capacity ci.  For each arc (i, j) of the
original network. there is ;an  arc (i”,  j’) of capacity cij in the expanded net-
work. (Let s’  = S” = s,  t’  = t”  = t.)  An example of such an expansion is
shown in Figure 4.6.

In the expanded network, nodes are uncapacitated  (and  hence the
original version of the max-flow min-cut theorem applies. As all flow entering
i’  must go to i”, and all flow leaving i” must come from i’, there is a natural
one-to-one correspondence between flows in one network and flows in
the other. The theorem follows readily by applying the original max-flow
min-cut theorem to the expanded r.&work.  //

A celebrated result of graph theory, and a precursor of many other
duality theorems, is a theorem of K. Menger. This theorem was originally
stated in terms of undirected graphs, but for convenience we give a formula-
tion in terms of digraphs.

A digraph G is said to be k-connected Ji-om  s to t if for any set C of
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Figure 4.6 Expansion of network with node capacities

k - 1 nodes missing s and t there is ai  directed path from s to t missing C.
In other words, it is not possible to disconnect s from t by removing any
fewer than k nodes.

Two (s,  t)  paths are said to be independent if they have no nodes in
common except s and t.

Theorem 5.2 (Menger) If digraph C; is k-connected from s to t and does
not contain arc (s, t),  then G admits, k independent directed paths from
s to t.

P R O O F Give each node a capacity of one and each arc an infinite capacity.
Because of the nonexistence of arc (s,  t), the minimum cut capacity is finite.
From the k-connectivity of the digraph, it follows that the minimum cut
capacity is at least k.

From Theorem 5.1, it follows that there is an integral maximal
flow of value at least k. The structure of the flow network is such that this
flow yields k pairwise independent directed paths from s to t.  /,I

Although network flows theory appears to be concerned solely
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with digraphs, it also yields a good deal of information about the structure
of undirected graphs.

Theorem 5 . 3 The maximum number of arc-disjoint (s,  t)  paths in an un-
directed graph G is equal to the minimum number of arcs in an (s, t)-cutset.

PROOF Construct from G a flow network in which for each arc of G there
is a symmetric pair of arcs (I, j) and (,j, i), each with unit capacity. An integral
maximal (s,  t)  flow exists in which at least one arc of each symmetric pair
is void. Accordingly, such a flow yields a maximum number of disjoint
(s,  t)  paths in G. Application of the max-flow min-cut theorem completes
the proof. //

By applying Theorem 5.3 to the dual of G and reinterpreting the
results in the original graph, we obtain the following.

Theorem 5.4 If G is (s,  t)  planar, then the minimum number of arcs in
an (s,  t)  path is equal to the  maximum number of disjoint (s,  f)-cutsets.

6
Linear Programming Interpretation qf Max-Flow
Min-Cut Theorem

The max-flow min-cut theorem can be viewed as a consequence of linear
programming duality and specifically, as a corollary of Theorem 13.3 of
Chapter 2. The primal linear programming problem is

maximize ~1
subject to

1 xji - C xij  =
i j

xij I cij

.xij  2 0.

Let ui  be a dual variable identified with the ith node equation and
wij be a dual variable identified with the capacity constraint on arc (i, j).
Then the dual problem is
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minimize

1 cijwij
i,j

subject to

uj  - ui + wij  2  0

II, - u, I>  1

wij I>  0

ui  unrestricted.

(6.1)

For any (s, t)-cutset  there is a feasible solution to the dual problem
whose value is equal to the capacity of the cutset.  Let (S, T) be such a ‘cutset,
and let

ui  = 1, ifiES

=O,  ifiET

wij = 1, ifiES,jET

= 0, otherwise.

Moreover, there is an optimal solution to the dual problem whrch
corresponds to an (s, f)-cutset.  For such an optimal solution we may assume
that U,  = 0. This is equivalent to dropiping  the redundant equation for node
t from the primal problem. Also assume U,  = 1. (The reader can verify that
there is no reason for U,  to be greater.) Then the remaining variables are
forced to take on 0, 1 values. For each arc (i, j), it is the case that ~~~~  ==  1
if and only if ui  = 1 and uj = 0. (Note that cij > 0.) Then let

S  =  jilui  =  11.

T= (j/uj = 0).

The capacity of the cutset  (S, T) is exactly equal to the value of the optimal
dual solution.

Thus, the dual problem, in effect, finds a minimum capacity (s,  t)-
cutset.  The max-flow min-cut theorem follows immediately from Theorem
13.3 of Chapter 2.

From Theorem 13.4 of Chapter 2, it follows that primal and dual
solutions are optimal if and only if

.Yij > 0 * uj  -- ui + wij  = 0

wij  > 0 =2  xij  := cij.

Suppose we view ui  as a “node potential.” e.g., altitude or fluid
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pressure. Then, for an optimal pair of primal and dual solutions, exactly
one of three cases exists for each arc (i, j):

C~sr  I The potential at i is less than at j. There is zero flow m (i, ,j).

Case 2 The potential at i is equal to that at j. There may or may not be
positive flow in (i, j).

Case  3 The potential at i is greater than at j. The flow in (i, j) is equal
to its capacity cij.

These conditions correspond very well indeed with our intuitive
notion of the relationships that should exist between node potentials and
arc flows. These ideas, in generalized form, are the basis fi2r the out-of-
kilter method presented in Section 10.

It is just as important to be able to recognize combinatorial problems
that can be formulated as min-cut problems as it is to be able to recognize
those which can be formulated in max-flow form. Generally speaking, one
should watch for problems with constraints involving sums or differences
of pairs of variables. The following problem is an excellent example.

A PROVISIONING PROBLEM

In formulating the knapsack problem of Chapter 3, Section 2,  we assumed
that the benefit to be gained from the selection of any given item is inde-
pendent of the selection of the other items. This is clearly a simplistic view
of utility. For example, the benefit to be gained from a kerosene lantern
without fuel is rather small.

A more sophisticated view can be taken. Suppose there are II items
to choose from, where item j costs cj  > 0 dollars. Also suppose there are
m sets of items, S,,  S,,  . . . . S,,  that are known to confer special benefits.
If all of the items in set Si are chosen, then a benefit of hi  > 0 dollars is gained.
The sets are arbitrary and need not be related in any particular way, e.g.,
a given item may be contained in several different sets.

There is no restriction on the number of items that can be purchased,
i.e., there is no limiting k.napsack.  Our objective is simply to maximize
the net benefit, i.e., total benefit gained minus total cost of items purchased.

Even without any c:onstraints  on the selection of items the problem
appears to be unreasonably difficult. Yet it can be cast intlo  the mold of
a min-cut problem and can therefore be solved quite easily.

Let
rj = 1 if item ,j is purchased

= 0 otherwise,
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and let

ui  = 1 if all of the items in set Si are purchased

= 0 otherwise

Tl‘hen the problem is to
maximize

z = c b,u, - 1 cjuj
I j

(6.2)

subject to

uj  - ui  2  0 (6.3)

for each pair i, ,j such that j E  Si, and

Iii, uj  E to,  1).

Because of the 0, 1 restrictions on the variables and constraints
(6.3),  it is not possible for a benefit bi  to be earned unless all items j in the
set Si are purchased.

Let us make matters more complex by introducing m + n new vari-
ables, wr, w2,  . , w,  and zr,  z2, . . . , z,.

Consider the problem :
minimize

Z = C biw,  + C CjZi (6.4)
L j

subject to

uj  - ui  L 0, jESi

ui  + wi 2  1, i = 1,2, . . ..m (6.5)

-Uj  + Zj 2  0, j =  1,2>. . . . n (6.6)

Ui,  Uj, Wi?  Zj E (0, 13.

Suppose U  = (UJ-  V = (rj)  is a ifeasible solution to the original prob-
lem. Let W = (1 - Ui),  Z = V. Then U,  i&  W,  Z is a feasible solution to the new
problem. Moreover,

z = c b,w,  + c cjZj
L j

= C bi(l - Ui) + 1 CjUj
L j

= Cbi  - 2.

Now suppose U,  U,  w, z IS a minimal solution to the new problem.
From (6.5) and bi  > 0 it follows that Ei = 1 - Ui.  From (6.6) and cj  > 0 it
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- -.follows that Zj  = tij. Clearly u,  G’  IS a feasible solution to the original problem
and again z = xi bi  - Z. It follows that a minimal solution to the new
problem yields a maximal solution to the original problem.

We need to make a few more changes to put the problem into the
form of a min-cut problem. We introduce two new variables u0  and u,+~
and mn new variables wij.  Let K be a large number. Consider the problem:

minimize

z ==  c biWi  t c cjzj + 2 KWij
I j i.j

subject to
I

uj  - ui  + wij 2 0, je Si

ui  - u(J  + wi  2 0, i = 1,2, . . ..m
>

u,+1 - cj + zj 2 0, j =  1,2, . . ..n

uo  - %+1  ->l

ui,  uj,  wi,  zj, wij E {O,  1). /

(6.7)

These changes make no essential difference in the problem. Because
u.  and u,,+~ are restricted .to  0, 1 values, the constraint u.  - L,+,  > 1 can
be  satisfied if and only if u,~ = 1, u,,+~ = 0. If K is sufficiently large, all the
variables wij are zero in a minimal solution.

Except for the 0, 1 restrictions on the variables, (6.7) is in the same
form as the min-cut problem (6.1). There is only a superficial difference in
the designations of variables and their indices. But we know that Problem
(6.1) admits an optimal solution with 0, 1 values for its variables. It follows
that we can drop the 0, 1 restrictions from equation (6.7), retaining only
the nonnegativity constraints on wi, zj,  wij.

Sets s, Items j

Figure 4.7 Network for provisioning problem
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The network for the min-cut formulation of the provisioning prob-
lem is shown in Figure 4.7.

P R O B L E M S

6.1 Solve  the  provis ioning problem for  t h e  fo l lowing  da ta  :

Item j Cost cj

1 4
2 5
3 1 2
4 6
5 1 0
6 5

Set S, Benefit  h,

12 I
I,5 4
2,3,4 9
3,4 3
3,4,5 8
4, 6 6
536 3

6.2 The provisroning  problem, as formulated, does not provide any restriction
on the number,  weight ,  or  cost  of  the i tems which may be purchased.  Suppose,
as in the knapsack problem, item j weights aj  pounds and we are restricted
to a total weight h,  that is,

We might  t ry  to  incorpora te  such  a  cons t ra in t  in to  the  ob jec t ive  func t ion  by
means of a Lagrange multiplier, i .e.,  maximize

z = 1 hiUi  - 1; (hj  + c,) rj.
1 j

What  are  the  d i f f icul t ies  tha t  might  be  encountered  wi th  th is  approach?
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7
Minimum Cost Flows

Suppose in addition to a capacity “ij, each arc of a flow network is assigned
a cost aij.  The cost of a flow x = (xij)  is

-
z aij  xLj.
I..,

We now pose the problem of finding a minimum cost flow for  a given flow
value U.

ASSIGNMENT PROBLEM

There are n  men and n jobs. The cost of assigning man i to jobj is uij.  For
what man-job assignment is the total cost minimized?

Construct a directed bipartite graph with n nodes in each of its
parts, and give arc (i, j) cost aij and infinite capacity. Add a source node
s with an arc (s, i) to each node in the first part, and a sink node t with an
arc (j, t)  from each node in the second part. Set csi  = 1, a,, ==  IO., for all i,
and cjr = 1, ajt = 0, for all j. A minimum cost integral flow of value II yields
a solution to the problem.

The flow network for the assignment problem is shown in Figure
4.8. The first number of each arc represents its capacity hnd  lthe second
number is its cost.

Let us define the cost oJ‘  UII  uugmrnting  path to be the sum of the costs
of forward arcs minus the sum of costs of backward arcs. Thus the cost of
a path is equal to the net change in the cost of flow for one unil.  of augmenta-

men i ioh/

Figure 4.8 Network for assignment problem
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tion along the path. An augmenting cy’cle is a closed augmenting path. The
cost of an augmenting cycle is computed in the obvious way, with respect
to a given orientation of the cycle, i.e., clockwise or counterclockwise.

Theorem 7.1 A flow of value u  is of minimum cost if and only if it admits
no flow augmenting cycle with negative cost.

PROOF The only if part of the theorem is obvious. For the converse, sup-
pose that x0 = (xc) and x1 = (xt) are two flows, both of value u,  where
x0 is less costly than x1. The difference between these two flows, y = x0 -
x1, can be expressed as a sum of flow augmenting cycles with respect to
x1. Because the cost of x0 is less than that of x1, at least one of these cycles
must have negative cost. ,‘/

Theorem 7.2 (Jewell,  Busacker and Glowan) The augmentation by ti of a
minimum cost flow of value u  along a minimum cost flow augmenting path
yields a minimum cost flow of value u  -- 6.

PROOF By Theorem 7.1, it suffices to show that the flow resulting from
augmentation along a minimum cost augmenting path does not admit a
negative augmenting cycle. Suppose such a cycle C were introduced. Then
C must contain at least one arc (i, j) of the minimum cost augmenting path
P. But then (P u C) - (i, j), or some subset of it, would be  an augmenting
path with respect to the original flow, and would be less costly than P,
contrary to the assumption that P is minimal. //

A minimum-cost augmenting path can be found by means of a
shortest path computation. Specifically, for a given flow x = (xij)  and arc
costs aij,  let

(aij, ifxij < cii, xji = 0

zij =

I

min (aij,  - aji}, if xij  < cij, xji  > 0

-ajit ifxij = cij, xji  > 0
(7.1)

+x, if xij = cij, xii  = 0,

where we understand that aij = + co  if (i, j) is not an arc of the flow network.
A shortest (s, t)  directed path with relspect  to arc lengths 5, corresponds
to a minimum cost (s, t)  augmenting path. A negative directed cycle corre-
sponds to an augmenting cycle with negative cost.

We can now outline an algorithm for solving the minimum cost
flow problem. This algorithm combines ideas of Klein and of Busacker
and Gowen.
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MlNlMUM  COST FLOW ALGORITI-IM

Step 0 (StarT) Let x = (a~,~)  be any (s,  t)  flow with value c’  5, P, where c is
:he  desired flow value. ‘Fhis initial flow can be the zero flow, or a i30vu  of value

15  perhaps determined by the max-flow algorithm. Or if a Ilow  .x’ = (xij)
Zf  value u’  > u  is known, one can let x = (V/L;‘)  x’.

Step 1 (Elimination of’ Negqative  Cycles)

(1.1) Apply a shortest path algorithm with respect to arc lengths Zij
with the objective of detecting negative cycles. If no negative cycle exists,
go to Step 2.
(1.2) Augment the flow around the corresponding augmenting cycle
to obtain a less costly flow of the same value I:‘,  then return to Step 1.1.

S t e p  2 (Minimum Cost Aulgmentation)

(2.0) If the existing flow value U’ = U,  the existing flow is optimal and
the computation is completed. Otherwise, proceed to Step 2.1.
(2.1) Apply a shortest path algorithm with respect to ar’c lengths aij
with the objective of finding shortest path from s to t.  If no shortest path
exists, there is no flow of value v and the computation is halted.
(2.2) Augment the flow by 6, where c”  + 6  i v, along a minimum cost
(s, t)  augmenting path as determined by the shortest path computation.
Return to Step 2.0. J/

Note that ,the procedure has two phases. In the first phase negative
cycles are eliminated and in the second phase a succession of minimum
cost augmentations are made, until the desired flow value v is achieved.
If one begins with the zero flow and no negative cycles exist with respect
to the arc costs aij, then at most v augmentations are required, provided
all capacities are integers. Each augmentation requires a shortest path com-
putation which is O(n3).  Hence in this situation the overall complexity
is O(n3v).

Edmonds and Karp have shown that, once negative cycles are elim-
inated, it can be arranged for the shortest path computation, to be carried
out over nonnegative arc lengths. Thus, Dijkstra’s O(d)  shortest path
algorithm can be applied. ‘The complexity bound of O(n3v)  is then reduced
to O(n2v).

Suppose all arc costs aij are nonnegative. The computation is begun
with an initial flow x0 = (0). An initial shortest path computation is carried
out over arc lengths z$’  =: aij and an initial flow augmentat ion is made to
obtain a flow x1.
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Thereafter, let

and

u)~)  =: the length of a shortest path from s to i, with respect
to arc lengths ii$)

(7.2)

where Zij is defined in (7.1) with respect to flow xii.
Clearly a shortest (s, t)  path with respect to G$) is also a shortest

path with respect to arc lengths aij, differing in length by rc”’  - rci”‘.  (For
each node i #  s,  t in an (s, t) path, rr(ik) is both added and subtracted from the
path length.) It remains to be shown that each Z$) is nonnegative. We leave
this as an exercise for the reader in Problem 7.4. (Note: In constructing a
proof, it simplifies matters to assume that the network contains at most
one arc, i.e., (i, j) or (j, i), between any given pair of nodes i, j.)

Even a bound of O(n’u)  is not satisfying, for the same reasons we
disliked a similar bound for the max-flow algorithm. Moreover, we have
not attempted to obtain a bound at all for the case in which there are negative
cycles with respect to the initial flow. We shall not overcome these difficulties

*
,

Figure 4.9 Plot of a(v)
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for the present algorithm. However, in Sections 9 and 10 we shlow  that the
out-of-kilter ,algorithm  can solve the minimum cost flow problem, even in
the case of negative cycles.. with a polynomial-bounded number of steps.

Nore: It is possible to show, by a generalization of ‘Theorem 4.3,
that there exists a sequence of no more than m minimum cost augmenting
paths which are sufficient to yield a minimum cost flow of any given value
1’. (See Problem 7.58.)

Finally, we should note that the minimum cost flow algorithm is
well-suited to a p,arametric  analysis of minimum flow cost as a function
of flow value c.

Let U(U)  denote the minimum cost of an (s,  t)  flow of due  U. A plot
of a(c) versus c,  obtained from successive minimum cost augmentations, is
shown in Figure 4.9. Intuitively, we expect each successive augmenting
path to be at least as costly as the previous one, so the a(v)  curve should be
convex. Indeed, the convexity of U(U)  is easily demonstrated. For suppose
x, x’ are minimum cost flows with values L’, c’.  Then 2x + (1 -. 2) x  is  a
feasible flow with value in + (1 - A)  u’  and its cost is AU(U)  + (1 -- A)  a(~;‘),
where 0 I 2 I 1. It follows that u(2c.  + (1 - %) L.‘) 5  MU  -t-  (1 - 1.) u(c’)
and the function U(G) is convex.

7.1

1 . 2

7 . 3

7 . 4

7 . 5

PROBLEMS

(Caterer Problem) A caterer requires rj L 0 fresh napkins on leach  of II
successive days, j = 1, 2, _.  , n. He can meet his requirements either by pur-
chas ing  new napkins  or  by  us ing  napkins  prev ious ly  laundered .  Moreover ,
the  laundry  has  two k inds  of  se rv ice :  qu ick  serv ice  requi res  p dlays  and  s low
service requires q days, where, presumably, p I q. Suppose a new napkin
costs a cents, quick laundering costs b cents, and slow laundlering  costs c
cents. How should the (caterer, starting with no napkins, meet his require-
ments with minimum COSI:?  Formulate as a minimum cost network flow problem.
(This problem had its origin as an aircraft maintenance problem, with the
poss ib i l i ty  o f  qu ick  and  z,low  overhaul  of  engines . )
Suppose a minimum cost flow of maximum flow value is desired. Let (S, T)
be a minimum capacity cutset.  Show that a maximal flow x is of minimum
cost if and only if x admits a negative cost augmenting cycle within neither
S nor 7:  (It is unnecessary to consider cycles with nodes in both S and 7Y)
Why?
Devise a  special ized version of  the minimum cost  f low algori thm rfor  the  ass ign-
ment  problem,  with  a l l  operat ions  “on the matr ix .”  Est imate  the  computat ional
complexity. (An n x n problem can be solved in O(n3)  steps.)
Prove the nonnegativity of li$‘. as defined in (7.2). (Su,~~gestio,n:  Try a proof
simi lar  to  tha t  (of  Lemma 4.2.)
Restate and prove Theorem 4.3 for minimum cost f lows.
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8

Networks with Losses and G,ains

Suppose that flow is not necessarily conserved within arcs. If xij  units of
flow go into the tail of arc (i, j). then mijxij  comes out at the head, where
mij is a nonnegative flow ntultiplier  associated with that arc. If 0 < mij <: 1,
the arc is lossy,  and if 1 < mij < 8x, the arc is gainy.  In a conventional flow
network, of course, mij = 1 for all arcs. (The case mij = + 1 is a “bidirected”
flow and is discussed in Chapter 6.)

Let

xij = the amount of flow into arc (i, j).

We require the satisfaction of capacity constraints,

0 I xii I cij

and the satisfaction of conservation conditions at each node other than
sor t :

I
-z‘s, i = s

C mjixji  - C Xij  ‘= 0, i # s, t
j j +  v,, i = t.

Note that v,  is not necessarily equal to u,,  because of flow losses and gains
within arcs. All of the equations above are necessary; none of them is im-
plied by the others, unless the rank of the coefficient matrix is less than n.

Define U,  - u,  to be the loss of the flow. We shall be concerned with
the problem of finding a minimum loss flow for a given flow value us  or
u,,  That is, given v,  maximize v,,  or given U,  minimize u,.

CURRENCY CONVERSION

An exchange rate has been established such that for each unit of currency
i one receives nrij units of currency j. There is a bound cij on the number of
units of currency i that one can so convert.

The network in Figure 4.10 exemplifies a hypothetical currency con-
version problem, in which the first number on arc (i, j) is its capacity cij
and the second number is its multiplier mij.  The largest number of rubles
that can be purchased with $10,000 is given by a minimum loss flow of
value v,  = 10,000. What would be the significance of a directed cycle for
which the product of the multipliers is greater than unity‘?
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Ihlculas
3000: IO A

10,000:  0.1510,000:  0.15 /”/”
Dol larsDol lars

dd

//

\\
10,000; 60010,000; 600

\\ 1 .
cc

Lira \’ 105:  0.001 wForints

Figure 4.10 Hypothetical currency conversion network

WORK ASSIGNMENT

There are p men and q jobs. Any man is capable of performing all the work
on any given job, or the work can be apportioned among ,several  men.
One hour of time by man i is sufficient to complete a fraction mij of job j.
Man i is available to work no more than Ci hours. How should the men be
assigned to the jobs so that the jobs can be completed with the smallest
possible total number of man-hours of labor?

Let xij = the number of hours man i works on job j. The problem is
t o

minimize 1: xij

i,j
subject to

;< xij  I ci i = 1,2 ,..., p,

Cnlijxij  = 1 j = 1,2,  . . ..q.

and
xij 2  0.

This is equivalent to finding a minimum loss flow of value U,  = q for the
network shown in Figure 4.11.

The theory of minimum loss flows is quite parallel to the theory of
minimum cost flows, and we can develop a computational procedure parallel
to that presented in the previous section.

A flow  augmenting path is defined as before. That is, xi, < cij for
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Figure 4.1 1 Work assignment network

each forward arc (i j) and xij > 0 for each backward arc. The multiplier
of a path is the product of the multipliers for forward arcs and the reciprocals
of multipliers for backward arcs. A minimum loss (s,  t)  augmenting path is
one for which the multiplier is maximum.

The capcity  of an (s, t)  augmenting path i.e., the amount of aug-
mentation that is permissible, is determined as follows. The capacity at
node s is S, = + co.  If (i, j) is a forward arc and the capacity at node i is
6,, then the capacity at node j is

dj = qj  min {Si, cij - xij).

If (j, i) is a back ward arc. then

6, = mini  $&.xjij.

The (overall) capacity of the path is 6,.
A peculiar feature of networks ,with  losses and gains is that a directed

cycle can act as a source or as a sink, depending upon whether the product
of the multipliers in the cycle is greater than unity or less than unity.

Let C be an augmenting cycle, i.e., an augmenting path from some
node i to itself, and let the multiplier of this cycle be greater than unity.
Let P be an augmenting path, arc disjoint from C, from any node of C to
the source s or to the sink t.  Then C u  P is said to be an endogrnous flow
augmenting path.

Two endogenous augmenting paths are illustrated in Figure 4.12.
The first number by each arc represents its multiplier mij and the second
number is an increment 6, to arc flow xij. (We ignore capacities in this
figure.) Note that the multiplier of each flow-generating cycle is 2, and that
conservation conditions at all nodes other than s or t are observed.
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Figure 4.12 Endogenous augmenting paths

The following theorems are analogous to Theorems 7.1 and 7.2 and
admit similar proofs.

Theorem 8.1 In a network with losses and gains, a flow 01‘ source value
I’,,  is of minimum loss if and only iiit admits no endogenous flow augmenting
path to t.  A flow Iof  sink value u,  is of minimum loss if and only if it admits
no endogenous flow augmenting path to s.

Theorem8.2 In a network with losses and gains, the augmentation of a
minimum loss flow of sink value I;,  along a minimum loss augmenting path
of capacity 6, yields a minimum loss flow of value U,  + 6,.

A minimurn  loss augmenting path can be found by means of a shortest
path computation. Let

-- log mij, if xij  < cij, xji  = 0

zij = I min  {-log mij, +log mji), ifxij < cij, xji  > 0-t log  ?Flji, if xij  = cij, xji > 0

-t x ) ifx,j = cij, xji = 0.

Then a shortest (s,  t)  directed path with respect to arc lengths aij corre-
sponds to a minimum-loss (s, t)  augmenting path. A negative directed cycle
from which the source or the sink is reachable yields an endogenous ilow
augmenting path.

There may of course be many augmenting cycles witlh  multipliers
greater than unity from wlhich  the source or sink is not reaclhable.  It is the
reachability condition which enables endogenous augmenting paths to be
obtained effectively by shortest path algorithms which compute shortest
paths from a single origin. Except that to find endogenous paths to s or
to t one should compute shortest paths to s or to t. rather than J’~YJIV  these
nodes as origins.

We leave it to the reader to provide the outline of a minimum-loss
flow algorithm, parallel to the algorithm in Section 7. When this algorithm
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is applied to a parametric analysis of flow, a plot of minimum loss, /(o,)
versus u,,  can be obtained. The function /(c,)  is piecewise linear and convex,
by the same arguments used for the  convexity of a(~‘) for minimum cost
flows.

Up to this point, there has been a fairly close parallel with the theory
of minimum cost flows. The question of algorithmic complexity is, how-
ever, much more bleak than before.

Reference to (8.1) shows that although the existing flow x := (xij)
is integral and all capacities cij and multipliers mij are integers, an aug-
mentation may necessarily be fractional. Thus, unfortunately, successive
augmentations may increase the flow value v,  or z+  by very small increments.
Can we even be assured that the proce’dure  obtains an optimal solution with
a finite number of augmentations?

There are a finite number of possible augmenting paths (but a very
large number, of order n!). If we can insure that no augmenting path is
used more than once, then at least the algorithm is finite.

There are at least two ways to accomplish this objective. One (messy)
way is to perturb the arc multipliers slightly so that no two augmenting
paths can have exactly the same multiplier. Another, essentially equivalent,
way is to use lexicography to break ties between augmenting paths with
equal multipliers. This can be implemented easily as part of the shortest
path computation.

In any case, it is not possible to obtain a bound as attractive as
O(n%,). The minimum loss flow problem appears to be decidedly non-
polynomial bounded, in spite of the fact that it can be shown that m aug-
mentations are sufficient. (See Problem 8.1.)

PROBLEM

8.1 Restate and prove Theorem 4.3 for minimum loss flows in networks with
losses and gains.

9
Lower Bounds and Circulations

Some combinatorial problems can lnz  successfully formulated as network
flow problems only if lower bounds on arc flow are imposed. That is, in
addition to a capacity cij for each arc (i, j) we may designate a lower bound
lij and require that Iij I xij 5  cij.

As an example, consider the following problem.
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AIRCRAFT SCHEiDULING

An airline wishes to use the smallest possible number of planes to meet
a fixed flight schedule. A digraph is constructed with two nodes i, i’  and an
arc (i, i’) for each flight. An arc (i’, j) is provided if it is feasibllt  for a plane
to return from the destination of flight i to the starting point for flight j
and be ready in time for its :scheduled  departure. (Planes are assumed to be
identical and capable of making any of the flights.) In addition, there are
dummy nodes s’  and t,  with arcs (s’, i) and (i’, t), for all i and i’.

Set iii, = cii. = 1, for all arcs (i,  i’) and Ii,,j = 0, c~,,~  = 1 for all other
arcs (i’, j). The minimum number of airplanes required to mleet  the flight
schedule is determined by an integral (s’, t)-flow of minimum value.

Up to this point in our study of network flows we have not had to
be concerned with the existence of feasible flows. The zero flow, if no other,
always satisfied arc capacity constraints. Now, however, the tmnexistence
of a feasible flow is a distinct possibility. For example, a network with only
two arcs, (s, l), (1, t), with c,i < Ii,, has no feasible (s, t)-flow.

It is useful to approach the feasibility problem throu,gh  the study
of “circulations.” A. circulation is simply a flow in a network in which con-
servation conditions are observed at all nodes. That is, there ifs  no source
or sink.

To convert a conventional flow problem to circulation form, add
an arc (t,  s) to the network, with I,, = 0, ct,  = + ~13.  Then a rmtximal  (s, t)
flow is simply a circulation for which xt, is maximum.

Here is how to find a feasible circulation in a network: with both
lower bounds and capacities, if such a circulation exists. Begin with the
zero circulation. If all lower bounds are zero, this circulation is feasible.
Otherwise, find an arc (p, 4) for which xpq < I,,.  Construct a flow augmenting
path from q to p where this path is of the conventional type, except that we
require xij > I, for each backward arc and 6 is chosen such that 6  I xij -
lij. Augment the flow from q to p by 6,  and repeat until x,,,] 2  I,,. Then
repeat for another arc for which the arc flow is infeasible. Eventually a
feasible circulation. is obtained, if the network admits such a circulation.

But suppose at som’e  point an augmenting path cannot be found.
Let (t,  s), with xt, .< 1,,, be the arc for which the augmenting path cannot
be found. Let S be the set of nodes which can be reached from s:  by an aug-
menting path, and T those which cannot. For each arc (i, j) directed from
S to IT:  xij  = cij, and for each arc directed from T to S, Xij 5  Iij;.  (See Figure
4.13.) The net flow across the cutset  (S, T) is zero, i.e.,
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But

and

Figure 4.13 Infeasibility of circuhtion

C xij ‘= iszET  “ij
ieS.jtT

with strict inequality because of arc (t, s). We have constructed a cutset
(S, T) for which

We have thus proved the following theorem.

Theorem 9.1 (Hoffmun) In a network with lower bounds and capacities
a feasible circulation exists if and only if

(9.1)

for all cutsets  (S, T).

Corollary 9.2 (Generalized Max-Flow Min-Cut Theorem) Let G be a flow
network with lower bounds and capacities and which admits a feasible
(s,  t)-flow. The maximum value of an (s, t)-flow in G is equal to the minimum
capacity of an (s, t)-cutset,  where the capacity of cutset  (S, TI is defined  as

C(S, T) =  C  Cij  - C  lij.
id, js : r ieT,jsS

PROOF Convert the flow problem to circulation form by adding an arc
(t,  s) to the network, with 1,, = u,  cf,  = +x. Because a feasible (s, t)-flow
exists in the original network, a feasible circulation exists in the new net-
work for sufficiently small (s,  t)-flow values I;.  By Theorem 9.1, the largest
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value of 2; for which there exists a feasible circulation is that which satisfies
the inequalities (9.l)  for all (s, t)-cutsets,  with strict equality in the case of
at least one (s, t)-cutset.  But this value of c’  is precisely the minimum capacity
of an (s, t)-cutset,  as defined in the statement of the corollary. ,‘/

As we notecl  in the statement of the aircraft scheduling problem, it
is sometimes desired to find a minimum  value flow, rather than a maximum
value flow.

Corollary 9.3 (Min-Flow n/lax-Cut  Theorem) Let G be a flow network
with lower bounds and capacities and which admits a feasible (s,  [)-flow.
The minimum value of an (s, t)-flow in G is equal to the maximum of

over all (s, t)-cutsets  (S, T), or equivalently, the negative of thse  minimum
capacity of a (t,  s)-cutset.

PROOF Repeat the construction for the preceding corollary, this time
letting I,, = O.,  cr5  = c.  //

We can use Corollary 9.3 to prove a well-known theorem of Dilworth.
This theorem concierns  the minimum number of paths in an acyclic directed
graph which are sufficient to cover a specified subset of arcs. (A set of paths
“covers” a set of arcs A if each arc in A is contained in at least one path.)

Theorem 9.4 (Dilwrtk) Let G be an acyclic directed graph and let A be
a subset of its arcs. The minimum number of directed paths required to
cover the arcs in 11  is equal to the maximum number of arcs in .A,  no two
of which are contained in a directed path in G.

P R O O F Add nodes s and f to G, and arcs (s, i), (i, t),  for all j: + s, r.  For
each arc (i, j) E A, set Iij = 1, cij = + E, and for all other arcs,  set Iij = 0,
cij = + X. A minimum value (s, t)-flow  yields the minimum number of
directed paths required to ‘cover  all the arcs in A. (Note that ;if  the graph
contained directed cycles, some of the arcs in A could be covered by flow
circulating around those cycles.) Apply Corollary 9.3 and the result follows
immediately. //

When the Dilworth Theorem is applied to the aircraft scheduling
problem, it yields the result that the minimum number of planes required
by the flight schedule is equal to the maximum number of flights, no two
of which can be made by the same plane.

Let A be the entire set of arcs of G, apply the Dilworth Theorem
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to the dual of G, and reinterpret th’e results in the original graph. Then
the following theorem is obtained, parallel to Theorem 5.4.

Theorem 9 . 5 If G is an acyclic, (s,  t)  planar digraph, then the maximum
number of arcs in an (s,  t)  directed path is equal to the minimum number of
(s,  t) directed cutsets  covering all the arcs of G.

9.1

9 . 2

9 . 3

PROBLEMS

Using the Edmonds-Karp results, obtain a polynomial bound (in n) on the
number  of  s teps  required by the procedure for  construct ing a  feasible  c i rcula-
t i on .  A l so  ob ta in  a  bound  in  n and  L= &j  lrj. (Assume a l l  lower  bounds  and
capaci t ies  are  integers . )
Sometimes the Dilworth Theorem is stated in terms of partial orderings.
For  a  g iven par t ia l  order ing (S,  0,  a chain of  elements  is  a  sequence sr  , s2. _.  _,
s,, where si  I s, + r. Apply Theorem 9.4 to show that the minimum number
of  chains ,  such that  every  e lement  i s  conta ined in  a t  leas t  one  chain ,  i s  equal
to the maximum number of incomparable elements. (Elements si  and sj  are
incomparable if neither si  5 sI  nor si  < si.)
Suppose ,  hypothet ica l ly ,  the  Di lwor th  Theorem could  be  genera l ized  to  apply
to digraphs with cycles.  For example “The minimum number of  directed paths
required to cover the arcs in A is equal to the maximum number of arcs in a
subset AD  G  A ._.  [where AD has :some  specified dual structure] . ...’  Show
that such a theorem would yield n’ecessary  and sufficient conditions for the
exis tence of  a  Hamil tonian cycle  in  an arbi t rary  digraph.

10
The Out-of-Kilter Method

We shall now describe a general computational  procedure, developed in-
dependently by Fulkerson and Minty, for finding minimum cost circulations.

The minimum cost circulation problem is to

minimize C aijxci \

id

subject to

C Xji - 1 Xij  =: 0, all i (10.1)
i .i

0 5  lij I xij 5  cij, all i, j. ,

All of the flow problems we have studied so far, and many others,
can be cast into the form of (10.1). For example:
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MAXIMAL FLOW PROBL.EM

To the given flow network with source s and sink t add a return arc (t,  s)
with (,, = 0, c,,  = -t cx, and a,, = - 1. For all other arcs (i j)., the lower
bounds (if any) and capacities are as given and Uij = 0. (For a minimum
flow problem, set u,,~ = 1.)

MINIMUM COST FLOW PROBLEM

Add a return arc (t,  s) with it, = 0, cl,  = u,  and a,, = 0. The lower bounds,
capacities, and costs of all other arcs are as given.

FEASIBLE CIRCULATION PROBLEM

Set aij = 0 for all arcs (i, j).

SHORTEST PATH PROBLEM

To find a shortest path from s to t in a network with arc lengths aij, add
a return arc (t, s) with 1,, = ct,  = 1. For all other arcs (i, j), li,i  = 0, cij =
+ K,  and aij is as given.

To find shortest paths from s to all other nodes, add return arcs
(j, s) from all nodes j + s,  with 1, = cjs = 1.

The out-of-kilter algorithm is a primal-dual linear programming
method. The problem dual to (10.1) is :

maximize
\

subject to

C lijAij  - C cijYij

i.j Lj

uj - ui  + iij  - yij 5  uij
>

(10.2)

iij,  yjj  > 0

ui  unrestricted. ,

The dual variables Lii and y,j are identified with the prim,al  constraints
xij 2  1, and -xij >_ -cij.‘(The  variable yjj  is analogous toI  wij in (6.1),
but there the primal constraints were of the form xij I cij, hena:  the change
in sign in the inequalities of (10.2).)  The dual variables ui  are identified
with primal node equations., as in (6.1).

Applying Theorem 13.4 of Chapter 2, we obtain the following orthog-
onality conditions which are necessary and sufficient for olptimality of
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primal and dual solutions:

x,~ > 0 * u, - ui  + i.ij -- yij = uij

iij  > 0 *  xij = lij

yij > 0 *  s,J  = ,cij.

The nonnegative variables iij  and yij can effectively be dispensed
with by noting that the above conditions are equivalent to the following:

xij = lij :* uj - ui  5 aij

lij < xij < cij * uj - ui  = uij

xij  = cij r* llj - ui  2  uij. 1

(10.3)

For example, suppose x = (xij)  is a primal solution and for some
arc (i, j), 0 < lij = xij < cij. Then

Xij  > 0 ~ Uj - I~,  + 3”ij - Yij  = Uij.

But

xii < cij *  yij  = 0

and from the nonnegativity of ILiJ it follows that uj - ui  I uij. A similar
analysis of other cases establishes that conditions (10.3) are satisfied if
and only if the primal and dual solutions are optimal.

We refer to conditions (10.3) as kilter conditions and represent them
by a kilter  diagram for each arc as shown in Figure 4.14. Points (xij,  ~1~ - ui)
on the crooked line are in kilter and those which are not are out of kilter.
To each point (xij,  uj - ui) we assign a kilter number K(xii)  equal to the
absolute value of the change in xij necessary to bring the arc into kilter.
Thus ,

’ lxij  - lij/  > if Ilj - ui  < ,yij

Iii - xij , if xij  < I,,, ui - ui  = 6iij

K(Xij)  = ’ X,, - Cij  , ifxij > cij. uj - ui  = (iiJ

0, if Iij I xiJ f cij, uj - 11~ := uij

ly,j  - cijI> if uj - ui  > (gij.

The objective of the out-of-kilter method is to obtain a circulation
x = (x,~)  and a set of node numbers or’  = (ui) for which the kilter conditions
(10.3) are satisfied. As conditions (10.3) are satisfied if and only if all kilter
numbers are zero, the sum of the kilter numbers can be used as a measure
of progress toward an optimal pair of solutions.
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Figure  4.l4  Kilter diagram

The out-of-k.ilter computation is begun with any circulation, feasible
or not, provided node conservation conditions are satisfied, and with any
set of node numbers whatsoever. At each iteration a change is made either
in the circulation or in the node numbers. The type of change that is made
is determined by the application of Minty’s painting theorem, described
as follows.

Recall the statement of the painting theorem, Theorem 7.2, Chapter
2. For any green-yellow-red coloring of the arcs of a digraph, and any
given yellow arc (t,  s),  there exists exactly one of the following: A yellow-
green cycle containing (t,  s)  and in which all yellow arcs are oriented in
the same direction as (t,  s), or a yellow-red cocycle containing (t,  S) and in
which all yellow arcs are oriented in the same direction as (t.,  s).  We shall
color the arcs according to a scheme described below and then focus our
attention on an out-of-kilter yellow arc (t, s). Then if we find a yellow-green
cycle, we shall modify the circulation around that cycle. If we find a yellow-
red cocycle, we shall use that cocycle as a basis for revising the node num-
bers.

Here is how we propose to color the arcs, and also change the direc-
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tions of some of them :

(10.4) Paint an arc green if it is in kilter and it is possible to either
increase or decrease the arc flow without throwing the arc out of’ kilter.
For such an arc,

lij < xij  < ~ij and ~j  - ZAP  = ~ij.

(10.5) Paint an arc yellow if it is possible to increase the arc flow, but
not to decrease it, without increasing the arc kilter number. For such
an arc, either

xij < cij and uj - ui  > aij

or

or

Xij I 1, and uj  - ui = aij

xii < lij and uj - ni  < aij.

(10.6) Paint an arc yellow and also reverse its direction if it is possible
to decrease the arc flow, but not to increase it, without increasing the
arc kilter number. For such an arc, (either

xij > cij  and uj - LIP > aij

or

xij 2  cij and uj - ui  = aij

or

xij > lij and uj - ui  < aij.

(10.7) Paint an arc red if the arc flow can be neither increased nor de-
creased without increasing the kilter number. For such an arc, either

xij = cij and uj - ui  > aij

or

xij = lij and uj - ui  < aii.

These cases account for all possibilities and are summarized in
Figure 4.15. Note that all green and red arcs are in kilter. A yellow arc
(i, j) is in kilter only if (Xij,  Uj  - ui) is a “corner” point in the kilter diagram
for the arc.

Let us focus attention on an out-of-kilter yellow arc (t,  s) and apply
‘the painting theorem. Suppose there is a yellow-green cycle C, in which
all yellow arcs are oriented in the sarne direction as (t,  s). Reorient all arcs
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YdlOW,

i

G r e e n
(

Red-~
I

.-“ij
Figure 4.15 Painting of arcs

whose directions were reversed at the time they were painted yellow. An
increase by a small amount 6  > 0 in the flow through (t,s)  will decrease
its kilter number by a like amount, assuming the kilter number is finite.
(If (t,  s) is one of the yellow arcs whose direction was reversed, we mean
to decrease the flow through (s, t),  and the discussion below must be ap-
propriately modified.) An increase by 6 in the flow through the arcs of C
oriented in the same direction as (t,  S)  and a decrease by 6 in tlhe other arcs
will not increase the kilter number of any arc, and may decrease the kilter
numbers of some. In other words C - (t,  S) describes an augmenting path
from s to t.

As an example, consider the cycle shown in Figure 4.16a. ,4fter  re-
orientation of the yellow arc (1,2),  the cycle is as shown in Figure 4.16b.
Changes in the kilter diagrams for arcs in this cycle are indicated in Figure
4.17. Note that the largest permissible value for 6  is determined by the yellow
arc (2, 1).

An analysis of cases shows that the kilter diagrams of the yellow and
green arcs in the cycle can be affected only in the manner suggested by the
arrows in Figure 4.18. Therlc  is no increase in the kilter number of the arc,
provided 6 is sufficiently small. Let us now consider such a choice of 6.
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(a) (b)
Figure 4.16 (a) Typical yellow-green cycle. (b) Flow tncrements  after re-

orientation.

Figure 4.17 Kilter diagrams for yellow-green cycle
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Figure 4.18 Possible changes in kilter diagrams  of arcs in
yellow-green cycle

For a given :yellow-green  cycle C, let Y  G denote the subsets of yellow
and green arcs in C. Let superscripts + and - indicate subsets of I: G
for which arc flow is to be respectively incremented and decremented by
6. No in-kilter arc will be thrown out of kilter if 6  is no greater than 6,, tT,,
where

6, = min {cij  - xijl  (i,  j) E  Y + u G+,  llJ  - ui = aij  },

6, = min {.xij - !ijI(i, j)E  Y- u  G-, 11~ - ui  = aiji.

The increment 6  will not be any greater than necessary to bring an out-of-
kilter arc into kilter if 6  is chosen to be no greater than

6, = min i /“ij - Xijl /(i,  j) E  Y + U Y -.  Uj  -  cli  > U,“i),

6, = min { I.xij - lij / 1 (i, j ) E  Y + u Y -, uj - ui  < ai, ).

Accordingly, we choose

6 = min {6,,  6,, 6,, 6,). (10.8)

If in (10.8) S is unbounded, i.e. each of 6,, . . . ,6, is determined by
minimization over an empty set, there is no finite optimal circulation.
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s T

Figure 4.19 (a) Typical yellow-red cocycle.  (b) Reorientation of yellow arc and incre

ments to node numbers.

Figure 4.20 Kilter diagrams for yellow-red cocycle

This can occur when capacities of arcs in the cycle are infinite and the net
cost of circulation around the cycle is negative.

Now suppose there is a yellow-red cocycle (S, T) with s E  S, t E  7;
in which all yellow arcs are oriented in the same direction as (t,  s). Reorient
all arcs whose directions were reversed at the time they were painted yellow.
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An increase by a small amount E > 0 in the node numbers of all nodes i
in T affects the value of uj - ui  only for the arcs in the cocycle. Moreover,
such a change will not increase the kilter number of any arc, and may de-
crease the kilter numbers of some.

As an example, consider the cocycle shown in Figure 4..19a.  After
reorientation of the yellow arc (4,3),  the cocycle is as shown in Figure 4.19b.
Changes in the kilter diagrams for arcs in this cocycle are indicated in Figure
4.20. Note that the largest permissible value for E is determined by the red
arc (2.3). which will be colored yellow, and its direction reversed, the next
time it is painted.

An analysis of cases shows that the kilter diagrams of the yellow
and red arcs in such the cocycle can be affected only in the manner suggested
by the arrows in Figure 4.21. In each case, there is no increase in the kilter
number of an arc, provided E is chosen sufficiently small. Let us now con-
sider such a choice of c.

For a given yellow-red cocycle C let I: R denote the subsets of yellow
and red arcs in the cocycle. Let superscripts +, - indicate subsets of
arcs for which uj - ui  will be respectively increased and decreased by the
s-increment to the node numbers. No in-kilter arc will be thrown out of
kilter if E is no greater than Ed, e2, where

81  = {Uj - Ui - ~ijI(i,  j)~  R-, “ij  =  cij)

E2 = {Uij - Uj + Uil(i,j)ER',Xij  .= lij}.

Figure 4.21 Possible

in kilter diagrams of

yellow-red cocycle

changes

arcs In
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The increment e will not be any greater than necessary to bring an out-of-
kilter arc into kilter if E is chosen to be no greater than +, .Q, where

Ej=(Uj--i-Uijl(i,jIEY-,lijIXij<Cij}

&a$  =  {Ui,j  - Ilj  +  ldil(i3,j)E  Y+,li,j  <  Xjj I  Cij).

Accordingly, we choose

E = min {E~,E~,E~,E~}.

There are three possible cases:

(10.9)

Case I E is unbounded, i.e., each of e,,  . . , a4  is determined by minimiza-
tion over an empty set. This can occur only if xij  2  cij for all arcs from S
to T and xij 5  Iij for all arcs from T to S and xt, < I,,. Net flow from S
to T is zero, so

C ‘ij ’ Y&is  “ij.
id,jcT

It follows from Theorem 9.1 that no feasible circulation exists.

Case 2 E is finite and equal to either s3  or Ed.  At least one out-of-kilter arc
is brought into kilter. No kilter numbers are increased and some may be
decreased.

Case 3 E is finite and less than both sj  and s4.,  No out-of-kilter arc is
brought into kilter. No kilter numbers are increased and some may be
decreased. At least one red arc will ble colored yellow the next time it is
painted. For such an arc (i, ,j), if i E  S, ,j E 7: then lij = xij < cii and if i E  7:
Jo S, then Iij < xij = cij. In addition, some arcs may change color from
yellow to red. For each of these arcs, i E  S, j E  T implies Iii < .xij = cij and
i E IT;  ,j E S implies lij = xij < cij. NO green arcs, of course, are affected.

A labeling procedure can be used, as in the proof of the painting
theorem, to construct a yellow-green cycle or a yellow-red cocycle. The
node s is initially labeled, and all nodes reachable from s are successively
labeled. To use the analogy of the proof of the painting theorem, green
arcs are viewed as two-way streets, yellow arcs as one-way streets, and red
arcs as streets blocked in both directions. If t is reachable from s,  back-
tracing from the label on t yields a yellow-green cycle. If t is not reachable,
let S contain all labeled nodes and Tthe remaining nodes. The desired yellow-
red cocycle is (S,  T). (Actually, (S, T) IIS  a cutset  not necessarily a cocycle,
but this is just as good for our purposes.)

We are now ready to establish the convergence of the algorithm,
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provided all lower bounds and capacities are integers and the initial circu-
lation is integral.

Each discovery of a yellow-green cycle results in the reduction of
at least one kilter number by some 6 L 1. Thus, no,  more than ,K  revisions
of the circulation are necessary, where K is the sum of the kilter numbers
for the initial circulation.

Assuming a feasible circulation exists, each time a yellow-red co-
cycle is discovered, either an out-of-kilter arc is brought into kilter (Ca:se  2)
or at least one red arc changes color to yellow (C,ase  3). The former case
reduces at least one positive kilter number to zero, so this cannot occur
more than min (m, K) times in all. The latter case cannot occur more than
II - 1 times in succession, by the the following reasoning.

Suppose the same arc (t,  s) is used for the application of the painting
theorem until a yellow-green cycle is discovered. Then each timle a cocycle
is discovered and Case 3 occurs, at least one red arc changes color to yellow
in such a way that an additional node i in T will become reachable from s
the next time the labeling procedure is applied. Al.1 nodes reachable from
s remain reachable. (Changes from yellow to red are of no consequence.)
Thus Case 3 can occur at most n  - 1 times in succession before either a
cycle is discovered or else an out-of-kilter arc is brought into kilter (Case 2).

To summarize: K is an upper bound on the total number of dis-
coveries of either a yellow-green cycle or a yellow-red cocycle for which
Case 2 applies. There can be no more than n - 1 discoveries in succession
of a yellow-red cocycle for which Case 3 applies. Thus the labeling procedure
is applied at most nK  times overall. Since the labeling procedure requires
O(m) time, and no other operations require more time, it follows that
O(mnK)  is an upper bound on the running time of the out-of-kilter algorithm.

The algorithm can be  made more efficient by exploiting the fact that
labels can be preserved after the discovery of a cocycle for which Case 3
applies. (Recall that all nodes reachable from s remain reachlable.)  ‘This
means that we can, in effect, make one application of the labeling procedure
serve for each succession of Case 3 cocycles. Thus at most K complete
labelings are required, yielding a bound of O(mK).

A little cleverness is required in order to obtain this result. We shall
apply two types of labels: “permanent” and “tentative.” A permanent
label indicates that the node to which it is applied can be reached from s
by means of a yellow-green path, with all yellow arcs oriented in the forward
direction. A tentative label indicates that the node will be reachable by a
yellow-green path, once the node numbers are revised by a sufficient value

E. This value of E will be indicated by a number 7cj  associated with a. tentativel:y
labeled node ,j.

The procedure is summarized as follows.



154 Network Flows

OUT-OF-KILTER ALGORITHM

Step 0 (Sturt)  Let x = (xij)  be any circulation. possibly infeasible, but
satisfying conservation conditions, and let 11 = (Ui) be any set of node num-
bers. It is desirable to start with x, II such that the sum of the kilter numbers
is small, but x =: (0). II I=  (0) will do.

Step I (Painting and Luheling)

(1 .O) If all arcs are in kilter, halt; th,e  existing circulation is optimal and
11 is an optimal dual solution. Otherwise paint the arcs green, yellow,
and red, in accordance with rules (10.4) through (10.7). Set xi = + :r_
for all nodes i. Choose any arc (t, s) which is out of kilter and apply the
permanent label “0” to s.  No other nodes have labels.
(1.1) If all permanently labeled nodes have been scanned, go to Step 3.
Otherwise, find a permanently labeled but unscanned node i and scan it
as follows: For each yellow or green arc (i,  ,j) and for each green arc
(,j, i),  ifj does not already have a permanent label, give j the permanent
label “i” (replacing any existing tentative label). For each red arc (i,  j),
if .xrj = lij and 14,~ - fdi  - uij  < zj give ,j the tentative label “i”  (replacing
any existing label) and set nj  = fdj - iii - tlij. For each red arc (,j, i),

if xji = cji and aji + uj - ui -1 zj give j the tentative label “i”  (replacing
any existing label) and set 11~ = aji + uj - 11~.
(1.2) If node t has been given a permanent label, go to Step 2; otherwise,
go toStep  1.1.

Stc~p  2 (Change in Cirmlatiorz)  Iden,tify  a yellow-green cycle C by using
the label on t to backtrace to s. Determine 6 by (10.8). If 6 is unbounded,
there is no finite optimal solution a,nd  the computation is terminated.
Otherwise, increment or decrement the flow in each arc in C by 6. Erase all
labels on nodes and go to Step 1.0.

Step 3 (Change in Node N~mbrrs) Let S contain the all permanently
labeled nodes and T contain the remaining nodes. (S, T) is a yellow-red
cutset.  Determine c by (10.9). If c is unbounded, no feasible circulation exists
and the computation is terminated. Otherwise. add E to 11~ for each node i
in 7: If Case 2 applies, go to Step 1.0. If Case 3 applies, subtract E from xi
for each node i in T and make the labels permanent on all nodes for which
xi = O.ThengotoStep l.l.//

The out-of-kilter method is easily adapted to handle piecewise
linear convex arc costs. A typical arc cost curve of this type and its corre-
sponding kilter diagram are shown in Figure 4.22. It is left to the reader
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Figure 4.22 Typical arc cost function and its kilter diagram

in Problem 10.2 to determine how the algorithm should be generalized and
to show that the order of complexity of the computation is unaffected,
provided lower bounds, capacities, and breakpoints bi.i  are integers.

In Section 13, it will be seen that a problem in project scheduling
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involves nonlinear costs. A possibly simpler application in which such
costs arise is the following.

OPTIMAL AUGMENTATION OF CAPACITY

Suppose that it is desired to augment the arc capacities of a flow network
in the least costly way, so that the maximum flow value is increased to u’  > U,
where u is the existing maximum flow value. If the cost of increasing the
capacity of each arc is linear and there is a nonnegative cost aij to increase
the capacity of (i, j) by one unit, then the problem is

minimize C aijyij
id

subject to
f-u’, i =: s

CXji  - CXij  = 0, i #  S,t
i i i VI, i = t.

0 5  xij I cij + yij.

Add a return arc (t,  s) to the network with 1,, = cf,  = c.‘,  and the prob-
lem becomes one of finding a minimum cost circulation, where the cost of
flow in arc (i, j) is Zij (xii),  where

Zij(Xij) =
i

0, xij  I cij

Uij (Xij .- Cij), Xij > Cij.

Since aij 2  0, the function Zij(xij)  is convex.

10.1

10.2

10.3

10.4

PROBLEMS

Try to relate the up’  variables in the Edmonds-Karp technique for solving
the minimum cost flow problem to the dual variables in the linear pro-
gramming formulation of the problem. Do the f inal  values of these variables
y ie ld  an  op t imal  dua l  so lu t ion?
Indicate how the out-of-kilter algorithm should be generalized to accom-
modate  convex arc  cost  funct ions.  How should arcs  be colored with reference
to  F igure  4.22?
(For electrical engineers) Let u,  denote potential, uj  - ui  voltage drop, and
xij current. The plot of the “e  - i characteristic” of a network element is
equivalent  to  a  k i l ter  d iagram.  What  are  the  ki l ter  d iagrams for  ideal  bat ter ies ,
resistors, diodes? Determine how y’ou  could employ the out-of-kilter algo-
rithm to compute the characteristics of two-terminal networks composed
of such devices .  What  types  of  devioes  cannot  be  accommodated?  (See paper
by Minty  on  e lec t r ica l  ne twork  computa t ions . )
Try  to  genera l ize  the  out -of -k i l te r  method to  ne tworks  wi th  losses  and  ga ins .
What difficulties arise?



Theoretical improvement in Efficiency of Out-of-Kilter Method 15r

1 1
Theoretical Improvement in Eficiency  of
Out-oflKilter  Method

We concluded the discussion of the out-of-kilter method by eistablishing
a bound of O(Km)  on the number of steps, where K is the sum of the arc
kilter numbers for the initial primal and dual solutions. If x = 0, u  =  0
are taken as initial solutions, then K may be as large as the sum of all arc:
capacities, which are assumed to be integers.

In order to qualify as a bona fide polynomial-bounded colmputation.,
the number of steps required by the out-of-kilter method shou1.d  be poly-
nomial not in the magnitudes of the arc capacities but in their logarithms.,
i.e., the number of bits required to specify them as input data.. A similar
observation holds for the minimum cost flow cornput,ation of Section 7,
for which a bound of O(mo)  was obtained. It is quite possible that the desired
flow value r could approximate the sum of the arc capacities.

We shall not show that either algorithm is polynomial bounded (in
fact, they are not). Instead we shall describe a “scaling” technifque  due to
Edmonds and Karp whereby the out-of-kilter algorithm is applied to a
series of problems which provide successively closer approximations to
the given problem. A polynomial bound of the desired type is then ob-
tained.

Suppose we wish to apply the out-of-kilter method to a problem
with integer lower bounds and capacities and for which the maximum arc
capacity is no greater than 2P. We first replace the original problem by a
problem (0) in which r 7

@’ = ‘ii
IJ

I I2p ’

I..p = ‘I
IJ

L  I2p ’

and arc costs are as given. (Here “r 7’ means “least integer no less than”
and “L  _I”  means “greatest integer no greater than.“) All lower bounds
and capacities are 0 or 1.

This O-order approximation of the original network admits a feasible
circulation, if a feasible circulation was possible in thle original, for note
that



158 Network Flows

If we take u = 0, x = 0 as an initial circulation, in this crude approximation
of the original network, all kilter numbers are 0 or 1. Hence K 5  m, where
m is the number of arcs. Accordingly, the out-of-kilter method requires
no more than O(m2) steps to obtain optimal primal and dual solutions
x0, u”.

We now construct a problem (1) in which
-7

c(,J)  = .cijIJ I 12P-1  ’

I I

lij
/t!)  =  __

IJ 2P-1  ’

and arc costs remain as given. All lower bounds and capacities are either
0, 1, or 2. If we take 2x(O),  U(O) as an initial primal and dual solutions, all
arc kilter numbers are again 0 or 1 and again K I m. The out-of-kilter
method requires no more than O(rr2)  steps to obtain primal and dual
solutions x(l), u(l).

We continue in this way, passing from problem(k) to problem (k + l),
taking 2xCk’,  u’~) as initial solutions for problem (k + 1). Finally, problem
(p) is for a network identical to the original and we will have obtained a
circulation for it in O(m’p) steps overall. Since p = l-log,  cij 1 for the
largest cij, we have obtained the desired result.

Kilter diagrams for a typical arc with 1, = 7, cij = 20 are shown
in Figure 4.23. The diagrams for successive problems are resealed so at to
best display their relationship with the original. The reader can verify that
the I$) and c$’  values are easily determined from the binary representation
of Iij and cij.

It does not seem possible to apply this scaling technique to the
minimum cost flow algorithm, unless the algorithm is generalized in some
way. That is, if xCk)1s an optimal solution to problem (k). then 2~‘~) may ex-
ceed capacity constraints for problem (k + 1). Some technique must be
used to restore feasibility before problem (k + 1) can be solved. Edmonds
and Karp proposed a limited number of iterations of the out-of-kilter meth-
od, but this seems a bit devious.

We should conclude by saying that this scaling technique, although
easy enough to implement, is probably of very limited practical importance.
Its significance appears to be largely theoretical, but in this realm it provides
a very satisfying result.
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Figure 4.23 Scaled kilter diagram
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1 2
Integrality of Flows and the Unimodular Property

The nature of the out-of-kilter method is such that it provides a constructive
proof of the ;bllowing theorem, of which the integral flow theorem is a
corollary:

Theorem 12.1 (Integral Circr~lation  Theorem) If all lower bounds and
capacities are integers and there exists a finite optimal circulation, then
there exists an integral optimal circulation (whether or not arc costs are
integers).

The integrality of optimal circulations is in contrast to the situation
encountered for networks with losses and gains, studied in Section 8.
One is not assured of an integral minimum loss flow, even though all arc
capacities and multipliers are integers.

Some insight into Theorem 12.1 is obtained by an examination of
the algebraic structure of the circulation problem from the viewpoint of
linear programming.

Let us convert the lower bound and capacity constraints in (10.1)
to equality form by introducing nonnegative slack variables rij  and sij :

-xij +  rij =  -lij,

Xij  + .jij = Cij.
Then (10.1) is in the form

minimize ax
subject to

A (x, I’,  s) = b

x, I’, s 2  0,

where A and h are structured as below

Here G is the arc-node incidence matrix of the network, I,, I,, are m x m
and n x n identity matrices, and 1 and c are vectors of lower bounds and
capacities.

It so happens that the matrix A is totally unimodular, meaning that
every subdeterminant of A is either + 1, - 1, or 0. From this unimodular
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property it follows that every basis inverse B-’ is integral and so xB =
B- ‘b is integral if b is integral. Thus, no matter what integral lower bounds
and capacities are chosen, all basic feasible solutions, including a basic
optimal solution, are integral.

Theorem 12.2 (Hoffman and Kruskal) Let a linear program have con-
straints Ax = b, x 2  0, where A is an integer matrix with linearly inde-
pendent rows and b is an integer vector. The following three conditions are
equivalent:

(12.2) The determinant of every basis B is + 1.
(12.3) The extreme points of the convex polytope C defined by Ax = b,
x 2  0 are integral, for all integer vectors b.
(12.4) The inverse B- ’ of every basis B is integer.

PROOF This proof is due to Veinott  and Dantzig. (12.2) implies (12.3).
Let x = (xB, xR) be an extreme point of the convex polytope C and B be
the associated basis. By Cramer’s rule, det B = f 1. implies that Bml  is
integral. Hence if h  is integral, .-Y’ = B-lb  is integral.

(12.3) implies (12.4). Let B be a basis and y be any integer vector
such that y + B -‘e, 2  0, where ei  is the ith unit column vector. Let z =
y + B- ‘e,  2  0. Then Bz  = By + e,  is an integer vector since B, y, and ei
are all integral. Because b can be any integer vector, we shall let b = Bz.
Now Bz = b and z 2  0, which shows that z is an extreme point of the convex
polytope C defined by Ax = b, x > 0. By (12.3), z is ‘an integer vector.
But z - y = B-‘ei,  from which it follows that B-‘e,  is integral. The vector
B- ‘e,  is the ith column vector of B- ‘, and the argument can be repeated
for i = 1,2, . . . . m to show that BP1  is an integer matrix.

(12.4) implies (12.2). Let B be a basis. By assumption B is an integer
matrix and det B is an integer. By condition (12.4) Bmm’  is an integer matrix
so det B-’  is also an integer. But (det B) (det B-‘)  =: 1 which implies that
det B = det B-’ = fl.

Corollary 12.3 Let C’ be the convex polytope defined by the inequality
constraints A’x I b, x > 0, where A’ is an integer matrix. The following
three conditions are equivalent:

(12.2’) A’ is totally unimodular.
(12.3’) The extreme points of C’ are all integral for any integer vector b.
(12.4’) Every nonsingular submatrix of A’ has an integer inverse.

PROOF Let A = (A’, I). It is not hard to establish the equivalence of (12.2)
to (12.2’), (12.3) to (12.3’), and (12.4) to (12.4’). For example, if M is any
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submatrix of A’ of rank m - k, then a basis of A can be found, after permuting
rows, of the form

B =

where I, is a k x k identity matrix. Then det B = det M, so that det B =
+ 1. Similar transformations suffice to establish other equivalences. //

If we can establish that the (coefficient rnatrix A in (12.1) is totally
unimodular, then Theorem 12.1 follows from Theorem 12.2. We will then
have an algebraic, rather than algorithmic proof of the integrality of optimal
circulations.

Unfortunately, there do not seem to be any easily tested necessary
and sufficient conditions for total unimodularity. Perhaps the most elegant
such conditions are due to Camion,  which we state without proof.

A matrix is said to be Euleriarr  if the sum of the elements in each row
and in each column is even.

Theorem 12.4 (Cumion)  A (0, + l.,  - 1) matrix is totally unimodular if
and only if the sum of the elements in each Eulerian  square submatrix is
a multiple of four.

There is also an easily testeld  set of sufficient (but not necessary)
conditions for total unimodularity.

Theorem 12.5 .4 (0, + 1, - 1) matrix A is totally unimodular if both of the
following conditions are satisfied:

(12.5) Each column contains at most two nonzero  elements.
(12.6) The rows of A can be partitioned into two sets A, and .4, such
that two nonzero  entries in a column are in the same set of rows if they
have different signs and in different sets of rows if they have the same
sign.

PROOF A submatrix of a (0, + 1, - 1) matrix satisfying the conditions of
the theorem must also satisfy the s,ame  conditions. Hence it is sufficient
to prove that det A = 0, + 1, for all. square matrices satisfying the condi-
tions. For any 1 x I matrix A, clearly det A I=  0, f 1. Now suppose, by
inductive hypothesis. that det A = 01, f 1 for all (n - 1) x (n - 1) matrices
A. Let A be n x IZ.  If A contains a zero column, det A = 0. If some column
of A contains exactly one nonzero  entry, then det A = + det A’ = 0, f 1,
where A’ is the cofactor of that entry. If every column of A contains exactly
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two nonzero  entries, then

C Uij = iz2  Uij, for j = 1,2, . . , II.
itAl

This implies that det A = 0 and the proof is complete. //

Corollary 12.6 A (0, + 1, -- 1) matrix A is totally unimodular if it contains
no niore than one + 1 and no more than one - 1 in each column.

The incidence matrix G is a (0, + 1, - 1) matrix with exactly one + 1
and one -- 1 matrix in each column. It follows immediately from Corollary
12.6 and G is totally unimodular.

Theorem 12.7 A matrix A is totally unimodular if and only if any one of
the matrices AT, -A, (A, A), (A, I) is totally unimodular.

PROOF The proof is left to the reader. //

We thus see, from any one of several possible sequences of trans-
formations, using Theorem 12.7, that the matrix

is totally unimodular. The matrix A in (12.1) is a submatrix of this last
matrix and hence is also totally unimodular. We have thus established the
desired result.

A linear programming problem with a totally unimodular coefficient
matrix yields an optimal solution in integers for any objective vector and
any integer vector on the right-hand side of the constraints. There are non-
unimodular problems which yield integral optimal solutions for any ob-
jective vector but only certain integer constraint vectors. Nearly all the
problems studied in Chapters 6 through 8 are of this variety. There are still
other nonunimodular problems which yield integral optimal solutions for
any integer constraint vector but only certain objective vectors. As an
example of the latter type consider the following problem.

As we noted in Section 4, any (s, t)-flow can be expressed as a sum
of flows in (s, t)  directed paths and circulations around directeld  cycles.
Let us suppose the network we are dealing with is acyclic, so that we need
not be concerned with cycles. Let P = (P~~,~),J  be an incidence matrix
of arcs and (all possible) directed paths from s to t,  where

1 if arc (i, j) is contained in path k
P(i,j)k  = 0 otherwise.
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This is an m x p matrix, where p is a very large number. Then the max-
flow problem is equivalent to a linear program of the form:

maximize

v=CYk
\

k

subject to
(12.8)

F p(i,j),kJ’k 5  cij> for all arcs (i, ,i)

yk  2 0,

where the arc flows identified with a solution 1.0 (12.8) are in the relation

xij  = 1:  P(i,j),kJ’k.
k

Consider the network shown in Figure 4.24. There are eight (s, t)
paths in this network and the path incidence matrix is:

(1.2)

(1.3)

(2.  3)

(3>4)

(3.5)

(4.5)

(5.6)
67)

(6 7)

‘0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

0 0 1 0 0 1 1 0

1 1 0 1 1 0 0 1

0 0 1 0 0 1 1 0

1 0 0 0 0 1 1 1
0 1 1 1 1 0 0 0

1 0 0 0 0 1 1 1

PI  p, p3 p4 p5  p,  p,  p,
This matrix is not totally unimodular, since the determinant of the

submatrix

(13  3)

(3>5)

(5>7)

Figure 4.24 Flow network for example
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is two. Nevertheless (12.8) does admit an optimal solution in integers,
for any choice of integer arc capacities. Moreover, for any choice of arc
costs whatsoever, we can let ck  denote the negative sum of the costs in
path P,. Maximization of & ckyk  yields an optimal solution in integers.

The coefficient matrix P is not totally unimodular. Yet for any choice
of arc costs and integer arc capacities an integral optimal solution is ob-
tained. This result seems to be in conflict with Corollary 12.3. What is the
reason?

The answer is simply that we can construct an objective function
that does not correspond to any assignment of arc cos,ts.  For example,
let all capacities be unity and let ci  = c2  = cj = + 1, clr  = 0. 4 5  k 5  8.
Then maximization of c c,y, yields the unique optimal solution y,,  = y2  =
y3  = j, y,  = 0,4  I k I 8.

PROBLEMS

12.1 Try to devise an efficient procedure for testing an arbitrary matrix for total
unimodular i ty ,  us ing the  condi t ions  of  Theorem 12.4 .

12.2 Prove Theorem 12.7.
12.3 Prove that a graph is bipartite if and only if its arc-node incidence matrix

is  to ta l ly  un imodular .

1 3
Application to Project Scheduling

One of the more celebrated and useful applications of network flow theory
is in the area of project scheduling. Various techniques have been developed
under such titles as CPM (Critical Path Method) and PER.T (Project Evalu-
ation and Review Technique). We outline here the basic: ideas of this ap-
plication.

Suppose that a large project can be broken into a number of tasks.
The precedence relations between these tasks are indicated by identifying
the tasks with the arcs of a directed graph. All tasks directed into a node
must be completed before any task directed out is begun. (It may be nec-
essary to insert “dummy” tasks having zero completion time, in order to
be able to adequately model all the precedence relations of a given set of
tasks.)

Associated with each task (i, j) are its “normal” completion time
aij,  its “crash” completion time hij  and the cost Cij  of shortening the task
by one time unit (presumably by the application of overtime of  a larger
work force). Thus if tij is the actual duration of the task, then bij  5, tij 5  tzij,
and the cost required to complete the task in that time is cij (aij -- tij).
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Associate a variable fli with each node i of the project network,
where ui  denotes the time at which the “event” i occurs. We let node s mark
the initial event of the project, and node t mark the final event. Then the
problem of finding the minimum cost C of shortening the project to a given
duration T is:

minimize
c = 1 Cij(Uij  - fij)

or, equivalently,
maximize

i,j

1 cijtij

i,j

(13.1)

(13.2)

subject to

4 - u., ST

ui - uj + tij IO

“1

for all arcs (i, j)

hij  I tij I uii

ui, tij unrestricted.

Associate nonnegative variables u,  xij, scij,  /Iij with constraints
U, -  U,  I 7; ldi -  Uj -t tij ~ 0, tij ~ Uij,

linear programming problem is:
-tij  I - hij  and the dual of this

minimize

subject to

C’  = C Uij”ij  - C hi: Bij  + TC (13.3)
i,j i,j

- 1’ i = s
1 xji - 1 xij := 0 ifs,t
j j 1 i=t

xij +  zij - pij =  cij (13.4)

xjj, ccij.,  pij 2  0.

From aij L bij 2  0 and (13.4,) it follows that an optimal solution
must satisfy the conditions

xij I cij *  ccij  = cij - xii, pij = 0

xij > cij =s aij = 0, pij = xi,  - Cij.

Accordingly, an equivalent flow problem is
minimize

C = 1 Tj(Xij)  + TL’
i,j

(13.5)
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subject to

i

-1 j=s
-)xji  - cxij = 0 i#s,t

j j 1 i = t

Xij  L  0,

where Tj (xij)  has the form shown in Figure 4.25.
Note that we dropped a constant in passing from (13.1) to (13..2)

and restored the same constant in going from (13.3) to (13.5). .Accordingly
for optimal solutions the objective functions (13.1) and (13.5) are in the
relation C = -c.

We can visualize each task (i, j) of the project as being represented
by two parallel arcs from i to j in the flow network, one with cost -aij
and capacity cij and the other with cost -b,,  and unbounded capacity. If
there existed directed cycles in the project network the flow problem would
not have a finite optimal solution, for any flow value u.  But of course the
task precedence relations are such that the network is necessa.rily  acyclic.

We can add to the flow network a return arc (t, S)  with unbounded
capacity and cost 7: the flow through this arc being ,I;.  For any specified
7; the circulation problem can be solved by the out-of-kilter method. The
kilter diagram for a typical arc (i, j) is as shown in Figure 4.26. 14s  we noted
in Problem 10.2, the out-of-kilter method is easily adapted to handle such
kilter diagrams.

We propose to vary the parameter Tand observe the optimal circula-

I
I - -

x i ,

Figure 4.25 Plot of Tj(  Xij)
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Figure 4.26 Kilter diagram

tions which result. If T is chosen very large, we expect that the zero circula-
tion will be optimal, reflecting the fact that if the project duration is permitted
to be sufficiently long, no money should be spent to shorten tasks. This will
be true for any T as large as a critical or longest path from s to t with respect
to arc lengths aij. (Recall the discussion :in Chapter 3, Section 4.)

On the other hand, if T is chosen sufficiently small, we expect that
there will be no finite optimal circulation, corresponding to the fact that
no finite expenditure of money can reduce the project duration below a
certain point. This will be the case for any value of 1”smaller than the length
of a longest path from s to t with respect to arc lengths bij.

We begin the parametric analysis by solving a longest path problem
with respect to arc lengths aij. The node numbers ui  so determined to-
gether with the zero circulation provide optimal primal and dual solutions
for T > u,. The parameter Tis then reduced. All arcs remain in kilter except
arc (t,  s). The out-of-kilter method is then applied to bring (t, .s)  back into
kilter. The procedure is repeated for swcessively smaller values of T until
no finite optimal circulation exists.

The product of this computation is a prqject cost curve, such as
that shown in Figure 4.27. This curve ifs  piecewise linear and convex, since
u  increases as T decreases and we know that plot:s  of minimum flow cost
against u  have this characteristic. The negative slope at T is equal  to the
marginal cost of decreasing the project duration by one time unit, and we
should expect this marginal cost to increase as T is decreased.

The physical interpretations of the variables ui, event times, and
tij, task durations, are obvious. Not so obvious, however, is the  interpreta-
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4
c = cost
of shortening

Min Project Max Project T
Duration Duration

Figure 4.27 Typical project cost curve

tion of xij.  The variable xij represents the amount we are willing to spend
to shorten tij by one unit. Thus if 0 < xij < cij we are :not willing to spend
at a rate sufficient to shorten tij. If xij  = cij we are willing to spend at exactly
the rate necessary to shorten tij. And if xij  > cii we ,would  be willing to
spend at a rate greater than cij to reduce tij, but it is impossible to reduce
tij any further since xij = b,,, the crash duration.

1 4
Transhipment and Transportation Problems

A transhipment problem is a form of minimum cost flow problem in which
for each node i there is a given number hi  and instead of the ordinary con-
servation condition it is required that

C xji  - C xij  >_  bi.
.i j

If bi < 0, > 0, = 0, then node i is respectively a supply node, a demand
node, or a transhipment node. Each arc (i,  j) has an assigned flow cost aii,
and arc capacities are assumed to be infinite. If this is not the case, then the
problem is said to be capacitated.

A Hitchcock- Koopmans transportation problem is a transhipment
problem on a bipartite graph G = (S, T,  A) with all supply nodes in S,
all source nodes in 7: and all arcs directed from S to 7: (Transhipment nodes
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are eliminated.) The assiy/rment  problem is a special case of the transporta-
tion problem in which the number of supply nodes is equal to the number
of demand nodes and each hi  is i 1.

It is quite evident that the transhipment problem can be reduced
to a conventional minimum cost flow problem with a single source-sink
pair s,  t.  First, notice that if the problem is to be feasible, the sum of the
supplies must be no less than the sum Iof  the demands. That is,

-1 hi  2  1 hi  = c.
b, < 0 h, >O

Assume that the cost of any directed path from a supply node to a demand
node is nonnegative, so that there exists an optima1 solution in which de-
mands are met with equality. Provide a source node s with an arc (s, i),
C,i  = - bi,  U,i = 0 to each supply node i and a sink node t with an arc (j, t),
cjr = bj,  ajr = 0 from each demand node j. Restablish conservation con-
ditions at all nodes. Then a minimum cost flow of value u  yields a solution
to the transhipment problem. (If some supply-demand paths are negative,
it is necessary to introduce lower bounds on the arcs (j, t).)

It is also quite clear that the minimum cost flow problem is a capac-
itated transhipment problem (For a desired flow value u,  set h,  = -0,  hi  =
0.) What is really surprising is that the cupucifuted  trunshipmt>nt  problem,
and therefore the minimum cost ,jlow  problem, CUFF be reduced to the uncupac-
ituted Hitchcock-Koopwluns  trunsportution problem. There are many trans-
formations that provide this reduction and any of them serves to prove
the dictum that “network programming is bipartite programming.” This
is the basis upon which the theory of ‘bipartite matching presented in the
next chapter can be considered to be coextensive with the theory of network
flows we have developed to this point.

In the remainder of this section we indicate the reduction of the
capacitated transhipment problem to the uncapacitated  Hitchcock-
Koopmans problem and conclude witlh some observations about the ap-
plication of the out-of-kilter method to the latter type of problem.

REDUCTION OF CAPACITATED TRANSHIPMENT  PROBLEM
TO CAPACITATED HITCHCOCK-KOOPMANS PROBLEM

First note that, without loss of generality, we may assume that all supplies
and demands in the transhipment problem must be satisfied with strict
equality, i.e., the sum of the supplies is equal to the sum of the capacities.
If this is not so, introduce an additional demand node with arcs directed
to it from the sources, each such arc having large capacity and zero cost.
This yields a problem of the form

minimize
aijxi,
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subject to

4 Xji - C Xij = bi
.i

0 I xij  I cij,

where b,  is either negative, positive or zero, depending upon whlether  node i
is a supply, demand, or transhipment node.

Now create a new 2n-node network G, in which each node i of the
transhipment network G is represented by two nodes 1’,  i’ and an arc (i, i’),
with Cii.  = +m,  Z&  = 0. For each arc (i, j) of G there is an arc (i,j’)  in
G, with Cij, = cij and aij, = aij. Assign values bi  to the nodes in the new
network such that the absolute value of each ci  is suitably lar,ge  and b,  -t
hi,  = bi.

As an example, consider the transhipment network G shown in
Figure 4.28a  and the equivalent transportation net work G in Figure 4.28b.
The first number on each arc is its capacity and the second number is its
cost. Numbers on nodes are bi  and hi  values.

The reader can verify that this transformation is generally effective
and yields a correct result for the networks in Figure 4.28.

ELIMINATION OF CAPACITY CONSTRAINTS

Capacity constraints are removed from the network G by the following
simple trick. Subdivide each arc (i, j) of G into three arcs (i, k) (k’. k), (k’, j),
where k and k’ are new nodes introduced by the subdivisioc  l(Notice=that
k has cut-degree zero and k’ has in-degree zero.) Set Fi = hi, b,  = Cij,  b,.  :=
-Cij, Sj = hj.  Set Uik  = aij, and all other arc costs to zero. All arc capac-
ities are infinite. See Figure 4.29.

If C is bipartite with n nodes and m arcs, then F is bipartite with
n + 2m nodes and 3m arcs. The reader can easily verify that ??  is equivalent
to G, provided the numbers 6i in C are sufficiently large.

APPLICATION OF OUT-OF-KILTER METHOD TO
HITCHCOCK-KOOPMANS TRANSPORATION  PROBLEM

The transportation problem, in capacitated or uncapacitated  form, is
easily converted to a circulation problem by introducing a source s with
arcs (s, i), csi  = -bi,  a,, = 0 to each supply node i, a sink t with arcs (,j, t),
cjZ = bj, ajr = 0 from each demand node, and a return arc (t, s), with
a,, = 0, I,, = c~,~  = c’,  where u  is the sum of the supplies (= the sum of the
demands).

For this circulation network, the primal and dual solutions x = (0),
u  = (0) are feasible and only arc (t,  s) is out of kilter (with kilter number 21).
As the out-of-kilter computation proceeds, arc (t, s) is the on1.y  arc that is
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(b)

Figure 4.28 (a) TranshipmeW  network G. (b) Correspond-
ing transportation network G.

ever out of kilter, just as was the situation with respect to the project sched-
uling problem in the previous section.

The principal point we want to make is that virtually all existing
computational procedures for the transportation problem can be interpreted

Figure 4.29 Elimination of arc capacity
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as adaptations, variations, or specializations of the out-of-kilter method
when it is applied in this way.

PROBLEM

1 4 . 1 In the transformation from the transhipment problem to the transportation
problem, what does “suitably large” mean in the defin.ition  of b,?  What, in
genera l ,  i s  the  smal les t  va lue  which  can  be  g iven to  bi?

I.5
Multiterminal and Multicommodity Flows

Up to this point, we have been concerned exclusively with network problems
involving the flow ofa  single commodity. Thus, for example, in the Hitchcock
transportation problem any source of supply can be used to satisfy the de-
mand at any sink (given requisite capacities and network structure). This
enabled us to reduce the transportation problem to a flow pra’blem  with
one source and one sink, and then to transform it to a circulation problem.

It is obvious that many real world problems involve flows of multiple,
differentiated commodities. For some of these problems,  the generaliza-
tion of single-commodity flow theory is simple and direct. For others,
rather severe complications arise. In this section we attempt a brief survey
of both types of problems.

Generally speaking there are two ways in which multiple commodities
may flow in a network. At any point in time, a network can be dedicated
to the flow of a single commodity. For example, a railroad train may cross
a switchyard from point 1 to point 2. Then switches can be thrown and a
second train cross from point 3 to point 4. Problems with this characteristic
have come to be known as multiterminal Jlow  problems. On the other hand.
several commodities may flow in the network simultaneously. For example.
a telephone network is expected to handle a great multiplicity  of messages
simultaneously, each message with distinct source-sink pair. Such problems
are referred to as multicommodity flow problems.

In engineering terminology, multiterminal flows involve time-
sharing of the network and multicommodity flows, space-sharing. Mixed
time- and space-sharing is, of course, also possible but is not our concern
here.

We can also differentiate problems of analysis and problems of
synthesis. Up to this point we have been primarily concerned with analysis,
i.e., finding an optimal flow within a given network with certain fixed capac-
ities, and so on. Many of these analysis techniques can also be applied to
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network synthesis, e.g., the problem of minimum cost augmentation of
capacity discussed in Section 10.

Let us consider the four types of analysis and synthesis problems.

MULTITERMINAL ANALYSIS

For a given network, we may wish to know the maximum value flow, or
the minimum cost flow, between all pairs of nodes, or some specified set
of node pairs. This can. of course, be accomplished by carrying out a separate
max-flow or min-cost computation for each node pair. However, some
shortcuts are possible. For example, Gomory and Hu have shown that
p - 1 max-flow computations, instead of p(p - 1)/2, are sufficient to de-
termine maximum flow values betwleen  all pairs of a specified set of p
nodes in a symmetric n-node network.

The following realizability result has also been obtained. For a
given network, let

uij = the maximum value of a flow from node i to node j.

Then V = (Uij) is the flow matrix of the network.

Theorem 15.1 (Gomory and Hu)  A. necessary and sufficient condition
for there to exist a network with a given symmetric matrix I,‘= (uij)  as its
flow matrix is that

for i, j, k.

uij 2  min { uikr  fikj  1,

PROOF

Necessity by considering i to be the source and j to be the sink, it follows
from the max-flow min-cut theorem that there is a cutset  (S, T), ie S,
j E  7; with

uij =  c x, cij =  cij.
id js7”

If k E S, then

Vkj  2  cij  = Vij,

and if k E  T, then

Uik I Cij = Vii.

Since either (15.1) or (15.2) must hold,

Uij 2  min {Uik,  Vkj}.

(15.1)

(15.2)
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Suficiency It can be shown that there exists a network in the form of a
tree which realizes the flow values indicated by the matrix. This tree net-
work can be constructed by means of the maximal spanning tree algorithm
discussed in Chapter 7. The reader is invited to supply a proof. //

MULTITERMINAL SYNTHESIS

Let R = (rij)  be a given matrix of flow requirements, and A = (aij) be  a
given matrix of arc costs. The cost of providing cij units of capacity in arc
(i, j) is aijcij.  What assignment of capacities to arcs will provide a minimum
cost network with flow matrix I/ 2  R?

For the special case that R is symmetric and each aij = 1, Gomory
and Hu have devised an efficient algorithm, discussed in Chapter 7. The
more general case can be solved by linear programming, but vastly less
efficiently.

MULTICOMMODITY ANALYSIS

We wish to induce a flow of one commodity between one specified pair of
nodes, a flow of a second commodity between a second pair of nodes,
and so on. Find a flow which satisfies certain specified node-pair flow
values, subject to the constraint that the sum of the flows of all commodities
through any given arc does not exceed its capacity. Or, in another version
of the problem, maximize the sum of the commodity flow values.

These problems can be formulated and solved as linear programming
problems. However, for one special case of the two-commodity flow prob-
lem, Hu has obtained a more effective procedure.

Suppose the sum of the flows of the two commodities in either
direction cannot exceed the given capacity of an arc. That is, if xij  is the
flow of the first commodity from i  to j and yij  is the flow of the second, then

xij + xji + yij  + yji  I cij = cji

The objective is to maximize the sum v1 + u2,  where ur  is the value of
flow of the first commodity from node 1 to node 1’ and u2  is the value of
the flow of the second commodity from 2 to 2’.

Let or  be the minimum capacity of a cutset  separating 1 and l’,
CJ~  be the same for 2 and 2’, and cr12  be the minimum capacity of a cutset
separating both 1 and 1’ and 2 and 2’ (1 and 2 may be on one side of the
cutset  and 1’ and 2’ may be on the other, or else 1 and 2’ on one side and
1’ and 2 on the other).

The necessity of the conditions in the theorem below is obvious.
Sufficiency is proved constructively by Hu’s algorithm, which we do not
present.
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Theorem 15.2 (Hu) A two-commodity flow of amount z’i  in the first
commodity and Q in the second is attainable if and only if

v:,  5  01,

VI! I ci2,

and

VI + v;!  I rJ12

We note that CJ~  + cz  2  CJ~~, and this enables us to obtain a two-
commodity max-flow min-cut theorern as a corollary.

Corollary 15.3 The maximum total value of a two-commodity flow is
o12,  i.e.,

max {vi  + v2} = f7i2.

It should be noted, however, that integer capacities are not sufficient
to guarantee integer flows. Two conditions which are sufficient are that
all capacities are even, and that the sum of the capacities of the arcs incident
to each node is even.

MULTICOMMODITY SYNTHESIS

As in the case of multiterminal synthesis, let R = (rij)  be a given matrix
of flow requirements and A = (Uij) be a given matrix of arc costs. The cost
of providing cij units of capacity in arc (i, j) is aijcij.  What assignments of
capacities to arcs will provide a minimum cost network which admits
multicommodity flows as large as tho:se  specified by R?

The problem as stated is quite simple. Compute shortest paths be-
tween all pairs of nodes, with respect to arc costs aij. If P,, a shortest path
from s to t provide v’,~  units of capacity in each arc (i, j) E P,, for the flow
of the commodity from s to t.  The total capacity that should be provided
for each arc is the sum of the capacities needed for the individual commod-
ities. That is, obtain a superposition of the shortest paths.

Things become immensely rnore difficult when additional con-
straints are placed on the problem, s,uch  as bounds on total arc capacities,
nonlinearities of arc costs, and so on. A problem of enormous economic
significance, and also of enormous complexity, is the so-called TELPAK
problem. A reasonable approximation of this problem is that of a multi-
commodity network synthesis problem with concave arc capacity costs,
i.e., there is economy of scale in the construction of arc capacity.

Much remains to be done in this area.
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Bipartite Matching

Introduction

Let G = (S, T,  A) be an undriected bipartite graph. A subset X c;  A is said
to be a matching if no two arcs in X are incident to the same node. The term
“matching” derives from the idea that nodes in S are matched with nodes in
i? For example, the nodes in S may be identified with men and those in T
with ,jobs.  Hence men are matched with jobs.

With respect to a given ma,tching  X, a node j is said to be mulched or
cocered  if there is an arc in X incident to j. If a node is not matched, it is said
to be unmatched or exposed. A matching that leaves no nodes exposed is
said to be complete.

In this chapter we are concerned with methods for obtaining match-
ings that are optimal in one sense or another. In particular. we consider the
following problems.

182
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CARDINALITY  MATCHING PROBLEM

Given a bipartite graph, find a matching containing a maximum number of
arcs.

MAX-MIN MATCHING PROBLEM

Given an arc-weighted bipartite graph. find a maximum-cardinality match-
ing for which the minimum of weights of the arcs in the matching is maximum.
(This is sometimes called the “bottleneck” problem.)

WEIGHTED MATCHING PROBLEM

Given an arc-weighted bipartite graph, find a matching for which the sum
of the weights of the arcs is maximum.

Matchings in bipartite graphs have long been a subject of investiga-
tion in both operations research and classical combinatorial analysis, al-
though with rather different terminology and different motivations by inves-
tigators. One of the earliest optimization problems to be studied in the field
of operations research was the assignment problem. Recall that this prob-
lem was introduced in Chapter 4, and was defined as follows. Given an
M x II matrix, find a subset of elements in the matrix, exactly one element in
each column and one in each row, such that the sum of the chosen elements
is minimal. The reader should have little difficulty in establishing the equi-
valence of this problem to the weighted matching problem. We do not
hesitate to refer to the weighted matching problem and the assignment
problem almost interchangeably, when that seems appropriate.

An important topic in combinatorial analysis is that of “systems of
distinct representatives.” Let Q = {qi; i = 1, 2, . . . , m} be a family of (not
necessarily distinct) subsets of a set E = {ej  ; j = 1,2,  . , n)  . A set 7’=
[ej(,,, . ) ej,,,;,  0 2  t I ~1, is called a purtial  transuersul  of Q if Tconsists of
distinct elements in E and if there are distinct integers i(l), , i(t). such
that ejtk)  E  qi,,,  for k = 1, , t.  Such a set is called a tranxersd  or a system
qfdistinct  rrpresentutires  (SDR) of Q if t = m.

Typical of the viewpoint of combinatorial analysis is a classic theorem
of Philip Hall which states necessary and sufficient conditions for the exis-
tence of an SDR. (Not surprisingly, the Philip Hall Theorem can be shown
to follow from the max-flow min-cut theorem of network flows.)

From our point of view, the problem of determining an SDR is equi-
valent to the cardinality matching problem. Consider a bipartite graph in
which nodes correspond to subsets qi  and elements ej. There is an arc (i, j)
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between qi  and ej  if and only if ej  E qi. A matching in this graph yields a
partial transversal. If the cardinality of the matching is m, the matching is
an SDR. (More precisely, the set of nodes ej  covered by the matching is
the SDR.)

It should come as no surpris’e  to the reader that the network flow
algorithms of the previous chapter are quite sufficient to solve the matching
problems we have defined above. The cardinality matching problem can be
solved as a maximal flow problem and the weighted matching problem
yields to a minimal cost flow computation. Thus, from a theoretical point
of view, we break no new ground in this chapter.

We propose to study bipartite matching problems because they are
important and interesting in their own right, and also because the special
computational procedures we shall develop for them are a helpful introduc-
tion to later topics. The algorithms described in the remainder of this book,
including the matroid computatio,ns, are patterned after the bipartite
matching algorithms of this chapter.

In Section 2 we first attempt to clarify the relationship between bi-
partite matchings and network flows. We then indicate exact counterparts.
for matchings, of the augmenting path theorem, the integrality theorem,
and the max-flow min-cut theorem of network flows. We then proceed to
develop algorithms for solving the cardinality. max-min, and weighted
matching problems. The chapter concludes with a discussion of a matching
problem with a novel and interesting optimization criterion. due to Gale
and Shapely.

PROBLEM

1.1 Demonstrate explicitly  the  equivalence  of  the  weighted  matchmg  problem and
the assignment  problem. Specif ical ly.  i f  a  weighted matching problem is  de-
fined for a graph G = (S, 7;  A), with /.S  < ITI  =:  n,  show how to add dummy
nodes and arcs so that an equivalent n x n assignment problem can be ob-
ta ined .

2
Problem Reductions and Equivalences

We propose to show the following. For every cardinality matching problem
on m + n nodes, there is a corresponding maximal flow problem in an
(m + rt + 2)-node flow network. Similarly, for every II x n assignment prob-
lem, there is a corresponding min-cost flow problem in a (2n + 2)-node flow
network. Accordingly. there is a polynomial-bounded reduction of weighted
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matching problems to network flow problems and, indirectly, to the shortest
path problem.

Conversely, we shall show that for every maximal flow problem there
is a reduction to a cardinality matching problem, and a reduction of every
min-cost flow problem to a weighted matching problem. Thus, network flow
theory and bipartite matching theory are, for our purposes, essentially
equivalent.

REDUCTION OF CARDINALITY  MATCHING PROBLEM
TO MAXIMAL FLOW PROBLEM

The reduction of the cardinality matching problem to the maximal flow prob-
lem is simple and direct. Consider the bipartite graph shown in Figure 5.1.
From it, we construct the flow network with capacities as indicated on the
arcs. These capacities permit at most one unit of flow to enter each of the
nodes 1,2,3  and at most one unit to leave each of the nodes 4,5,6.  From the
integrality theorem of network flows it follows that there exists a maximal
value solution in which the flow through each arc is either 0 or 1. The arcs
(i, j), i #  s,  j f t,  assigned flow values of unity, are identified with the arcs
of a maximum cardinality matching in the original bipartite graph.

Figure 5.1 Bipartite graph

and corresponding flow net-

work
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It is important to note that the integrality theorem plays an essential
role in each of the problem reductions even though we may not explicitly
mention that fact.

REDUCTION OF ASSIGNMENT PROBLEM TO MIN-COST
FLOW PROBLEM

We have already referred to the fact that the weighted matching problem is
equivalent to the assignment problem. The assignment problem can  itself be
reduced to a min-cost flow problem by a construction similar to that used for
the cardinality matching problem. For example. if an assignment problem
is defined by the 3 x 3 matrix

4 6 -3’
A=21 0 .[ 17; 5 2

we obtain the flow network shown in Figure  5.2. As before, the first number on
each arc denotes its capacity and the second its cost. It should be clear that a
min-cost flow of value 3 corresponds to an optimal solution to the assign-
ment problem.

We know that the min-cost flow problem corresponding to an n x PZ
assignment problem can be solved with exactly n flow augmentations. Each
augmentation can be determined by a shortest path computation of O(n”)
complexity. Thus, the assignment problem is. at worst. O(rr”)  in complexity.

REDUCTION OF SHORTEST PATH PROBLEM TO
ASSIGNMENT PROBLEM

Conversely. and not surprisingly, any algorithm for solving the assignment
problem can be used to solve the shortest pa.th  problem. Suppose we wish

Figure 5.2 Flow network
for assignment problem
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to find a shortest path from node 1 to node n in an n-node directed network.
Let A be the II x n matrix of arc lengths, with a,, = 0, for all i. We delete
column 1 and row n from this matrix. Any feasible solution to the (11  - 1) x
(n - 1) assignment problem. so defined, selects arcs forming a path from
node 1 to node n, plus a number of other node-disjoint directed cycles. some
of which may be loops. If there are no negative cycles in the network. then
an optimal solution to the assignment problem yields a shortest path from
node 1 to node n, plus directed cycles, each of zero length.

REDUCTION OF MIN-COST FLOW PROBLEM TO WEIGHTED
MATCHING PROBLEM

We recall that in Chapter 4 the general min-cost flow problem was reduced
to the transportation problem. By reducing the transportation problem
to the weighted matching problem, we provide a reduction of the general
min-cost flow problem to the weighted matching problem.

Every (uncapacitated)  transportation problem is equivalent to a
weighted matching problem on 2u nodes. where 2; is the sum of the demands
at the sinks (assuming supplies and demands are in equality form). To show
this, we merely replace each node i of the transportation network by lbil
copies of the node, where hi  is the integer-valued supply or demand at that
node. An undirected arc with cost K - aij (where K is sufficiently large) is
furnished between each copy of node i and each copy of node j. provided (i,,j)
existed in the transportation network. A feasible solution to the transporta-
tion problem exists if and only if there is a complete matching in the bipartite
graph, and an optimal solution corresponds to a maximum weight matching.

PROBLEMS

2.1 Suppose  an  n-node  graph conta ins  negat ive  cyc les .  What  in te rpre ta t ion  can  be
given to an optimal solution to the assignment problem defined by the n x I I
matrix A of  arc  lengths? Suppose there  is  some node i ,  such  tha t  every  negat ive

Figure 5.3 Flow network for Problem 2.2
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cyc le  conta ins  node  i .  Can we solve  the  “most  negat ive”  cycle  problem under
this condition?

2.2 Consider  the  f low network shown in Figure 5.3.  Transform the min-cost  f low
problem for  th is  ne twork.  wi th  node 1  as  source :  and  node  6  as  s ink .  to  an  un-
capaci ta ted t ransporta t ion problem.  Transform the t ransporta t ion problem to
a ureighted  matching problem.

2.3 Is  the  reduct ion of  the  min-cost  f low problem to  the  weighted matching problem
of such a form that the existence of a polynoml!al-bounded  algorithm for the
matching problem impl ies  the  exis tence of  a  polynomial-bounded algor i thm
for the  f low problem‘?  Discuss .

3
Counterparts of Network Flow Theorems

We propose to restate the essential theorems of network flow theory in the
context of bipartite matchings. We are concerned particularly with the aug-
menting path theorem. the integrality theorem, and the max-flow min-cut
duality theorem.

With respect to a given matching X, an ulternating  path is an (un-
directed) path of arcs which are alternately in X and not in X. An atlgmenting
puth is an alternating path between two exposed nodes.

AUGMENTING PATH THEOREM

A matching X contains a maximum number of arcs if and only if it admits
no augmenting path.

When we formulate the weighted matching problem as a minimal cost
flow problem. the integrality theorem of network flows assures us that there
is an optimal solution in which the flow through each arc is either zero or one.
This is equivalent to saying that there exists an optimal solution to the linear
programming problem

maximize

c wijxij (3.1)
i.j

subject to
CXij  I 1, (i = 1,2, . . . ..m)
j I
C Xij  I 1 (.j  =  1,2, . . . . ?I)

I

Xij  L 0, 1

(3.2)
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in which each variable xij takes on the value zero or one, regardless of the
coefficients in the objective function (3.1). This establishes the following
theorem.

INTEGRALITY THEOREM FOR BIPARTITE MATCHING

The “matching” polyhedron defined by the constraints (3.2) has only (0.1)
vertices.

If m = n, then any feasible solution X = (xii)  which satisfies con-
straints (3.2) with equality is a doubly-stochastic matrix,  i.e., a nonnegative
matrix in which the sum of the entries in each row and in each column is
unity. A feasible solution of zeros and ones is in the form of a permutution
matrix, i.e., a (0, 1) matrix with exactly one 1 in each row and in each column.
Thus, we obtain the following as a corollary of the integrality theorem.

BIRKHOFF-VON NEUMANN THEOREM

Any doubly-stochastic matrix is a convex combination (cf. Chapter 2, Sec-
tion 12) of permutation matrices.

The Birkhoff-von Neumann theorem has been cited as a “proof” that
monogamy is the best of all possible systems of marriage. Suppose we have
a society of n  men and n women. Let wij represent the benefit to be derived
from full-time cohabitation of man i with woman j, and let xij  denote the
fraction of time that man i actually cohabitates with womanj. If the objective
is to maximize total benefit, so the argument goes, there is an optimal solu-
tion in which each xij is 0 or 1, i.e., a solution in which marriage is monoga-
mous. (It has been pointed out by cynics that the Birkhoff-von Neuman
theorem also shows that monogamy can result in a minimization of total
benefit.)

We shall restate the max-flow min-cut theorem in terms of “cover-
ings” of arcs by nodes. A subset of the nodes of a graph is said to couer  the arcs
if each arc of the graph is incident to at least one of the nodes in the subset. (It
is essential to distinguish between a covering of arcs by nodes and a covering
of nodes by arcs !)

The relationship between matchings and coverings may be a bit
obscure, and it is perhaps helpful to refer to the graph and the flow network in
Figure 5.1 as an example. By inspection, we see that the arcs (1, 5) and (2,6)
constitute a maximum cardinality matching in the graph. This matching
corresponds to unit flows in the paths (s, l), (1, 5), (5, t)  and (s, 2),  (2,6),  6, t)
in the flow network, all other arcs having zero flows. The minimal capacity
cut corresponding to this maximal flow is shown in Figure 5.4.

The minimal cut has a capacity of two: the sum of the capacities of
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5.4 Minimum capacity  cutset

arcs (5, t)  and (s,  2). WC next observe that if (i.j)  is an arc. where both i and,j
belong to S, then either i = s,  and (i, j) does not correspond to an arc of the
bipartite graph. or else ,j = 5, and th’z arc is covered by node 5. A similar
situation holds for arcs, both ends of which are in T; node 2 is the covering
node in that case. The only arc (i.j)  with i in 7’and.j  in S is (2. 5). This arc is
clearly covered by both nodes 2 and 5. Thus, nodes 2 and 5 cover all arcs of
the bipartite graph from which the flow network was constructed.

For the example. we have constructed a covering of arcs by nodes
that is equal in cardinality to that of a maximal cordinality  matching. We
observe that this can be done more generally. That is, such a covering con-
tains all nodes i andj. where (s.j)  and (i. t)  are arcs in a minimal capacity cut
of the flow network. This gives us the clesired  duality theorem for matchings :

KijNIG-EGERVARY  THEOREM

For any bipartite graph. the maximum number of arcs in a matching is equal
to the mmimum  number of nodes in a covering of arcs by nodes.

An equivalent statement of this theorem is as follows. Consider any
m x n matrix of O’s and 1’s.  Refer to a. row or a column of the matrix by the
common term “line.” A set of lines “covers” the l’s of the matrix if each 1
belongs to some line of the set. A subset of the l’s is “independent” if no two
l’s lie in the same line. The Kiinig-Egervary  Theorem states that the maxi-
mum cardinality of an independent se1  of l’s’is equal to the minimum number
of lines that cover all 1’s.

PROBLEMS

3. I For  LI  given bipartite graph. let X,, and  X,,,  , bc  matchings  wi th  r and  p i- 1  a rcs .
respectively.  Consider the forln  of X,, @ X,,- ,. i.c.. the set of arcs contained in
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T
Figure 5.5 Graph for Problem 3.4

one matching  but  not  the  o ther .  (Xp  @ X,,  1 cons i s t s  o f  a l t e rna t ing  pa ths  and
cycles . )  What  observat ions  are  necessary  to  provide  a  “di rec t”  proof  of  the
augmenting path theorem for  matchings?

3.2 Provide a direct proof of the Birkhoff-von Neumann theorem. Specifically.
show that any given doubly-stochastic matrix which is not a permutation
matrix can be expressed as a convex combination  of two other doubly-stochastic
matrices. each of which contains fewer nonzero elements than the original.
This  provides  the  key s tep for  an induct ive  proof .

3.3 Provide  a  s imple  demonstra t ion that  the  number  of  nodes  in  an) cover ing  of
arcs  by nodes must  be a t  least  as  great  as  the  number  of  arcs  in  any matching.
(This  proof  should  be  va l id  for  nonbipar t i te  graphs . )

3.4 (V. Klee)  The Kiinig-E:gervary  equality holds for some graphs which are not
bipartite, Prove that a graph G is such that the maximum number of arcs in a
matching is equal to the minimum number of nodes in a covering if and only if
G is of the form shown in Figure 5.5. plus some other arcs (not shown). where
the cardinalities of S and s’  arc unrestricted. the cardinality ol’ T is of course
equal to that of S, and the other arcs all go from S u s’  to T or from T to 7;
but not from S u s’  to S u S’.

4
Mendelsohn-Dulmage Theorem

An interesting theorem about bipartite matchings follows.

Theorem 4.1 (hlendelsohn-D~tlmtryr)  Let G = (S, 7: 11) be a biparti te
graph and let X,, X, be two matchings in G. Then there exists a matching
X c X, u X,, such that X covers all the nodes of S covered by X,  and all
the nodes of T covered by X,.

PROOE Form the symmetric difference X,  @ X2.  It consists of the five types
of paths and cycles shown in Figure 5.6. In each case it is possible to select a
matching X’ 5  X, @ X,  such that X’ covers all the nodes of S covered bq
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Xi  - X,  and all the nodes of T covered by X, - Xi. Then X =: X’ u
(Xi  n X,) is the desired matching. //

As an application of the theorem, let S, T represent men and jobs to
be matched, where the arcs denote the compatibility relation. It is not possible
to match all men to all the jobs. But suppose the union proposes a matching
which employs as many men as possible, subject to a system of seniority.
And suppose management proposes a matching which assigns men to jobs
according to a system ofjob  priorities. It is gratifying that there is a matching
which will be satisfactory to both union and management. This matching
gives jobs to all the men the union wants employed and will assign men to all
the jobs nranagement  wants done.

The following theorem and corollary follow directly from Theorem
4.1.

Theorem 4.2 Let X be any matching in G = (S, T, A). Then there exists a
maximum cardinality matching X* which covers all the nodes of G covered
by X.

Corollary 4.3 For any nonisolated node i (degree greater than zero)., there
exists a maximum cardinality matching which covers i.

Suppose that a factory manager has made a feasible assignment of
men to machines. It then follows from Theorem 4.2 that there exists a maxi-
mum cardinality (“full production”) matching in which all the men and
machines employed under the manager’s solution remain employed.

Nodes covered by X1

Nodes covered by X2

Other nodes

Figure 5.6 Symmetric difference Xl 0 X2
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Figure 5.7 Graph for Problem 4.1

P R O B L E M S

4.1 In the bipartite graph shown in Figure 5.7. let X, be represented by wavy lines
and X, by straight lines. Find a matching X z X, u X, that covers all the
nodes of S covered by X, and all the nodes of Tcovered  by X,.

4.2 (a) Use Theorem 4.1 to prove Theorem 4.2.
(b) Use the augmenting path theorem to Prove Theorem 4.2.

5
Cardinality Matching Algorithm

The computational procedure for cardinality matching corresponds exactly
to the maximal flow computation for the problem. However, we introduce
some terminology which is appropriate for matching.

For a given bipartite graph G = (S, ?: A) and a given matching X & A,
we define an alternating tree relative to the matching to be a tree which
satisfies the following two conditions. First, the tree contains exactly one
exposed node from S, which we call its roof. Second, all paths between the
root and any other node in the tree are alternating paths. (Cf. Section 3.)

The computational procedure is begun with any feasible matching,
possibly the empty matching. Each exposed node in S is made the root of
an alternating tree and nodes and arcs are added to the trees by means of a
labeling technique. Eventually, one or the other of two events must occur.
Either an exposed node in T is added to one of the trees, or else it is not pos-
sible to add more nodes and arcs to any of the trees. In the former case, the
matching is augmented and the tree-building procedure is repeated with
respect to the new matching. In the latter case, the trees are said to be
Hungarian and can be used to construct an optimal dual solution consisting
of the union of all out-of-tree nodes in S and all in-tree nodes in IT:

As an example, consider the matching shown in Figure 5.8. in which
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wavy lines represent arcs in the matching. and straight lines those which are
not. Alternating trees are constructed, with the exposed S-nodes 1 and 5 as
roots, as shown in Figure 5.9. An augmenting path is found, as indicated in
the figure. (Note that several different sets of alternating trees could have
been constructed. For example, the tree rooted to node 1 could have con-
tained the arc (24.)

The augmented matching is shown in Figure 5.10. When an alternat-

Figure 5.8 Graph for example

I - - A u g m e n t i n g  p a t h +I Figure 5.9 Alternatmg trees

Figure 5.10 Augmenting matching
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Figure 5.11 Alternating tree for augmented matching

ing tree is constructed for the augmented matching, as shown in Figure 5.11,
it becomes Hungarian. It follows that the matching in Figure 5.4 can be
used to construct an optimal dual solution. The only out-of-tree node in
S is 3. The in-tree nodes in Tare 7.8, and 10. The reader can verify that these
four nodes do indeed cover all the arcs of the graph.

The cardinality matching algorithm is summarized as follows. (We
leave it as an exercise for the reader to show that the computation is O(m%).
where (SI  = m, ITI = n. m I n.)

BIPARTITE CARDINALITY  MATCHING ALGORITHM

Step 0 (Stc~) The bipartite graph G = (S, 7; A) is given. Let X be any
matching, possibly the empty matching. No nodes are labeled.

Step I (Labeling)

(1.0) Give the label “@’ to each exposed node in S.
(1.1) If there are no unscanned labels, go to Step 3. Otherwise. find a node
i with an unscanned label. If i E S, go to Step 1.2; if i E 17: go to Step 1.3.
(1.2) Scan the label on node i (i E S) as follows. For each arc (i,  j)$  X
incident to node i, give node j the label “i,” unless node ,j is already
labeled. Return to Step 1.1.
(1.3) Scan the label on node i (i E T) as follows. If node i is exposed, go
to Step 2. Otherwise, identify the unique arc (i, j) E X incident to node
i and give node j the label “i.” Return to Step 1.1.

Step 2 (Azcgmentation) An augmenting path has been found, terminating
at node i (identified in Step 1.3). The nodes preceding node i in the path are
identified by “backtracing.” That is, if the label on node i is “j,” the second-to-
last node in the path is j. If the label on node j is “k,”  the third-to-last node is
k, and so on. The initial node in the path has the label ‘<@.” Augment X by
adding to X all arcs in the augmenting path that are not in X and removing
from X those which are. Remove all labels from nodes. Return to Step 1.0.

Step 3 (Hungarian Labeling) The labeling is Hungarian, no augmenting
path exists, and the matching X is of maximum cardinality. Let L s S u  T
denote the set of labeled nodes. Then C = (S - L) u (Tn L) is a minimum
cardinality covering of arcs by nodes. dual to X. Halt.//
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Figure 5.12 Graph for Problem 5.1

PROBLEM

5.1 Apply the algorithm to obtain a malcimum  cardinality matching. and a mini-
mum cardinality covering of arcs by nodes. for the bipartite graph shown in
Figure 5.12.

6
A Special Case: Convex Graphs

The cardinality matching problem is particularly easy to solve for a special
type of graph which F. Glover calls “convex.” A bipartite graph G = (S, 7: A)
is said to be UWIWX  if it has the property that if (i,j)  and (k,j) are arcs. Twhere
i < k. then (i + 1, j). (i + 2,j), . , (k -- 1.j)  are also arcs. Such a graph is
shown in Figure 5.13.

As an example, suppose a certain product requires one machined part
from a set S and a second from a set 1: An S-part of length a, can be fitted

Figure 5’.13 Convex bipartite graph
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with a T-part of length hj if and only if

(ui -- bj( I E.

where t:  is some specified tolerance. This situation leads to a convex matching
problem, and, in fact, to a “doubly-convex” problem. (See Problem 6.3.‘)

The cardinality matching problem can be solved by the following
procedure. For each node j E  7: let

7rj  = max jil(i,j)E  A).

Start with the empty matching and iterate over i = 1.2,.  . , rn.  If there are
any arcs (i. j), wherej  is an exposed node, add to the matching the arc (i. j)
for which ni is as small as possible.

Application of this procedure to the convex graph in Figure 5.13
results in the matching indicated by wavy lines.

PROBLEMS

6.1 Prove the validity of Glover’s computational procedure.
6.2 Show that Glover’s procedure is O(mn).  where ISI  = 111. ITI  = n.
6.3 A doubly-convex bipartite graph is one which is convex “in both S and T:”

Determine how Glover’s procedure can be made more efficient  for this  case.
and es t imate  the  computat ional  complexi ty .

7
Max-Min Matching

A commonly cited example of max-min or “bottleneck” matching is the
following. There are n  workers to be assigned to n stations on a conveyorized
production line. Let wij denote the rate at which worker i can perform the
task at station j. The rate at which production can proceed is limited by the
rate of the slowest worker. What assignment of workers to work stations
will maximize the production rate?

This problem calls for the computation of a maximum cardinality
matching for which the minimum arc weight is maximum. A procedure
which computes max-min matchings for all possible cardinalities, including
the maximum cardinality, is as follows.

Start with the empty matching and a suitably large “threshold” kV
At the general step of the algorithm, a max-min matching of cardinality k
has been obtained. One then tries to find an augmenting path in the subgraph
containing all arcs (i. j) for which wij >.wI  If augmentation is possible. a
max-min matching of cardinality k + 1 results. If augmentation is not
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possible. the threshold W is reduced just  enough to permit augmentation
to occur.

The number of threshold values which must be considered certainly
does not exceed the number of distinct arc weights, i.e.. mn,  where ISI  = m.
/TI = n.  For each threshold value, the augmentation computation is 0(mn).
Thus. this naive thresholding procedure is O(m2n2).

However, it is possible to do better. In particular, it is foolish to throw
away the alternating trees which have been constructed as part of an unsuc-
cessful augmentation computation. The same alternating trees must simply
be reconstructed after the threshold is reduced.

In the algorithm that is summarized here, a number rrJ  is associated
with each nodei  in ‘T:  This number indicates the level to which the threshold
must be reduced, so that j may be added to an alternating tree. In other
words, rcj  is set equal to the largest wij. such that (i, j) is an arc and ncide  i is
in an alternating tree. Nodes are labeled fully, but no labeled nodej  in T
is scanned unless rrj  I? W When there are no further nodes eligible for
scanning, Wis reduced to the maximum value of rj strictly less than II/:  This
permits at least one additional node to be added tlo a tree. Eventually either
augmentation must occur, or the trees become Hungarian.

The algorithm also yields the construction of a solution dual to the
max-min matching. Let X,  denote any matching containing k arcs. Let
H, _  i denote any subgraph obtained from G  by deleting k - 1 node:s.

Theorem 7.1 (Gross) For any bipartite graph NC.

maxmin j~~~,l(i.,j)~X,)  =minmax  {WiiI(i,j)EHk-1)
Xk Hk-I

Note that the dual of the empty matching is undefined.
The proof of the theorem follows directly from the K&rig-Egervary

theorem. (See the proof of Theorem 7.3 in Chapter 16 for a more general case.)
We leave it as an exercise for the reader to verify that the algorithm

requires O(m’n)  steps, the same as for cardinalit,y  matching.

THRESHOLD METHOD FOR MAX-MIN MATCHING

Step 0 (Start) The bipartite graph G = (S, 7; A) and a weight wij for each
arc (i.,j) E A are given. Set X = a.  14’ = + oc,  and rtj = - myu‘  for each
node j E  7.’ No nodes are labeled.

Step I (Labeling)

(1 .O) Give  the label “Qr” to each exposed node in S.
(1.1) If there are no unscanned la.bels,  go to Step 3. If there are un-
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scanned labels, but each unscanned label is on a node i in T for which
n,  < lV,thenset  W= max {rclrci  < W}.
(1.2) Find a node i with an unscanned label, where either ieS  or else
iETandni21VIfiES,gotoStep  1.3;ifi~T,gotoStep1.4.
(1.3) Scan the label on node i (i E  S) as follows. For each arc (i, j) p  X
incident to i, if nj < w,~  and 7tj  < w then give nodej the label ‘3” (re-
placing any existing label) and set rrj  = wij. Return to Step 1.1.
(1.4) Scan the label on node i(i  E  T) as follows. If node i is exposed. go
to Step 2. Otherwise, identify the unique arc (i, j) E X incident to node i
and give node j the label “i.” Return to Step 1.1.

step 2 (Augmentation) An augmenting path has been found, terminatrng
at node i (identified in Step 1.4). The nodes preceding nocle  i in the path are
identified by “backtracing” from label to label. Augment X by adding to
X all arcs in the augmenting path that are not in X, and removing from
X those which are. Remove all labels from nodes. Set rrj = - “;,  for each
node j in 7: Return to Step 1.0.

Step 3 (Hungarian Lahehg) No augmenting path exists, and the match-
ing X is a max-min matching of maximum cardinality. Let L g  S LJ T
denote the set of labeled nodes. Let (i’, j’) E  X be such that

fi’i,j. = min (wijl(i.,j)  E  Xl.

The subgraph obtained by deleting the nodes in (S -- L) u (T n I,) -
{i’, j’) is a min-max solution dual to X. Halt.//

We should mention that an alternative, and perhaps conceptually
simpler, approach to ma-x-min  matching is as follows. Given a max-min
matching X,, one obtains X,, i by means of an augmenting path for which
the minimum of the weights of the arcs is maximized. Such a path can be
computed by an adaptation of the shortest path techniques described in
Chapter 3. (Cf. comments about “maximum capacity” paths.) In particular
one can develop a Dijkstra-like computation for this purpose. Once this is
done, however, it is discovered that the algorithm looks remarkably like
the threshold method. Specifically, Step 1.1 of the threshold method corre-
sponds to the operation of finding the largest “tentative” label in the Dijkstra
method, for the purpose of making the label permanent.

The two approaches to the max-min matching problem lead to
essentially similar algorithms. However, to the extent that they are concept-
ually different, we can draw something of a parallel between the threshold
method for max-min matching and the Hungarian method for weighted
matching on the one hand, and the max-min (Dijkstra-like) augmenting
path and the “primal” method for weighted matching on the other. This
question is discussed further in Section 8.
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PROBLEMS

7.1 Apply the max-min matching algori thm to the w’eighted  b ipa r t i t e  g raph  shown
in Ftgure 5.14. Find both a max-min matching of maximum cardinality and a
min-max dual  solut ion.

7.2 Prove Theorem 7.1.
7.3 Wri te  out .  in  deta i l .  the  s teps  of  a  rnax-min matching a lgor i thm based on the

approach of  max-min augmenting paths.  Make a detai led comparison with the
threshold algorithm.

7.4 (Klein  and Takamori )  Consider  the  fo l lowing genera l iza t ion of  the  product ion
line problem. There are n workers to be assigned to stations on two parallel
lines, with a total of n stations. As before, let wij denote the rate at which worker
i can perform the  task a t  s ta t ion j .  The ra te  a t  which product ion can proceed on
each l ine  i s  determined by the  ra te  of  the  s lowest  worker  on that  l ine .  The to ta l
ra te  of  product ion is  the  sum of  the  ra tes  of  product ion for  the  two l ines .  What
assignment of workers to work stations will maximize the total production rate‘?

As a  genera l iza t ion  of  the  above,  suppose  tha t  each arc  of  a  b ipar t i te
graph  on  2n nodes is  colored ei ther  red or  green.  The problem is  to  f ind a com-
plete matching which maximizes the sum of the minimum weight red arc and
the minimum weight green arc in the matching.

One  way  to  so lve  the  match ing  prob lem i s  to  es tab l i sh  two th resho lds .
W,  and W,, for red and green arcs, respectively. One can then test for the existence
of a  complete matching in the subgr aph composed of  al l  red arcs ( i ,  j )  for  which
wii I?  W,  and all green arcs for which wij I?  W,. If a complete matching exists,
then clearly there is a feasible solution with a value of W,  + W,.  By testing for all
poss ib le  combinat ions  of  W,  and  wq.  one  can  ob ta in  an  op t imal  so lu t ion .

The process of  test ing for  choices of  U;  and  W, i s  great ly  accelera ted  by
taking advantage of an obvious dominance relation. Namely, if W, + b f$ is
feasible, then so is Wr’  + W;,  for any Wr’  5 W, a.nd  Wi  2 WY.  And if W,  + W,
is infeasible, then so is W,’  + W;,  for W,’  2 ‘W, and Wi  > W,.  Moreover,
the total number of W,  and W,  values which must be tested cannot possibly
exceed the number of distinct arc weights wii.  which is n2  at most. Thus, an

Figure 5.14 Network for Problem 7.1
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optimal value of IV,  + W,  must occur at one of the corners of the “staircase”
boundary separating the “feasible” and “infeasible” regions in Figure 5.15.

There are no more than nz po in ts  on  th i s  s ta i rcase  boundary .  The  s ta i r -
case points can be identified by a search procedure which moves from one
corner  point  to  another .  Each move requires  a  s ingle  augment ing path  compu-
t a t i on  wh ich  i s  O(n’) in  complexi ty .  Hence the  ent i re  s ta i rcase  boundary can
be determined, and an optimal solution located. with an O(n”)  computation.
(Hint: If W,  + W,  is infeasible, move “down” in the diagram of Figure 5.15 by
reducing  W,  unt i l  a  feas ib le  so lu t ion  i s  found.  Then  move  “r igh t”  by  increas ing
the value of  W,  unt i l  in feas ib i l i ty  resu l t s . )
( a ) Work  out  the  de ta i l s  of  th i s  computa t iona l  procedure ,  and  wr i te  out  the

steps of  the algori thm.
(b) Attempt to generalize the procedure to three or more parallel produc-

tion lines. What computational complexity seems to be required’?
7.5 For Problem 7.4.  f ind.  and prove,  an appropriate  generahization  of  the  dual i ty

theorem for max-min matching.

W,
t

Figure 5.15 Feas ib l e  and  i n feas ib l e
reg ions I
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The Hungarian Method for Weighted Matching

The procedure we propose for the weighted matching problem is a primal-
dual method, called “Hungarian” by H. W. Kuhn in recognition of the
mathematician Egervary.

For simplicity, assume a complete bipartite graph G = (S, 7; S x T),
with (SI =  m. ITI  =  n. m < FL  A linear programming formulation of the
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weighted matching problem is :

maximize C “ijXij

i,j
subject to

with the understanding that

xij = 1 q a (i, j) E X.

⌧ij  = 0 q * (i,  j) 6 ⌧.

T’he dual linear programming problem is

minimize C Ui + C cj
I j

subject to
ui  + cj  2  wij.

ui  LO,

cj  2.0.

Orthogonality conditions which are necessary and sufficient for
optimality of primal and dual solutions are:

Xij  > 0 j ‘Vi + Z;,i  = Wij, (8.1)

uj  > 0 =a 1 xij = 1, (8.2)

r;j>o=.cxi,  = 1. (8.3)

The Hungarian method maintains primal and dual feasibility at all
times, and in addition maintains satisfaction of all orthogonality conditions,
except conditions (8.2). The number of such unsatisfied conditions is de-
creased monotonically during the course of the computation.

The procedure is begun with the feasible matching X = @ and with
the feasible dual solution ui  = W where W 2  max {wij), and uj  -=  0, for
all i, j. These initial primal and dual solutions clearly satisfy all of the condi-
tions (8.1) and (8.3)  but not the conditions (8.2).

At the general step of the procedure, X is feasible, Lli and L’~ a.re dual
feasible, all conditions (8.1) and (8.3) are satisfied: but some of the conditions
(8.2) are not. One then tries, by means of a labeling procedure. to find an
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augmenting path within the subgraph  containing only arcs (i.j)  for which
ui  + cj  = u’ij  In particular, an augmenting path is sought from an exposed
node i in S for which (necessarily) ui  > 0. If such a path can be  found. the
new matching will be feasible, all conditions (8.1) and (8.3) continue to be
satisfied. and one more of the conditions (8.2) will be satisfied than before.
If augmentation is not possible, then a change of 6  is made in the dual vari-
ables, by subtracting 6 > 0 from rdi for each labeled S-node i and adding 6
to rj to each labeled T-node j.

It is always possible to choose 6 so that at least one new arc can be
added to an alternating tree, while maintaining dual feasibility. unless the
choice of 6  is restricted by the size of ui  at some S-node. But ui  takes on its
smallest value at the exposed S-nodes. The exposed nodes have been exposed
at each step since the beginning of the algorithm, and hence their dual vari-
ables have been decremented each time a change in dual variables has been
made. It follows that when ui is reduced to zero at these nodes, the conditions
(8.2) are satisfied, and both the primal and dual solutions are optimal.

The augmentation computation is such that only arcs (i, j) for which
ni  + rj = wij are placed in the alternating trees. If the construction of the
alternating trees concludes without an augmenting path being found, then
one of two things has occurred. Either the trees are truly Hungarian and the
matching is of the maximum cardinality, or else it is not possible to continue
adding to the trees because all arcs (i. j) available for that purpose are such
that U; + ~j  > Wij.

Let us deal with the latter case first. Any arcs which we should like
to add to the alternating trees are arcs not in the matching X. (Because con-
dions (8.1) are satisfied, arcs in X are such that IQ t-  tij = wi,.) Such arcs
are incident to an S-node in an alternating tree and a Anode  not in any
tree. In the max-min problem. we lowered the threshold in the comparable
situation. thereby permitting at least one arc to be added to an alternating
tree. In the present case. we manipulate the values of the dual variables so
as to achieve the desired effect.

Suppose we subtract 6  > 0 from ui for each S-node i in a tree and add
fi to L‘~ for each T-node j in a tree. Such a change in the dual variables affects
the net value of ui  + L’~ only for arcs which have one end in a tree and the
other end out. If such an arc is incident to a T-node of the tree, Lli + Cj is
increased by 6.  which is of no consequence (note that such an arc cannot be in
the current matching). If the arc is incident to an S-node of a tree, cli + cJ is
decreased by 6, possibly to wi> in which case it can be added to the tree.

The effect of the changes in the dual variables is summarized in
Figure 5.16. Under each node in that figure is indicated the change in cli or
rj On each arc is indicated the net change in ui  + I:~ for that arc. All possibili-
ties are accounted for. (Note that it is not possible for an arc in the matching
to have one end in an alternating tree and the other end out.)

If the alternating trees are truly Hungarian, then the choice of 6  is
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Figure 5.16 Effect of change

in dual variables

indeed determined by the value of ui  at the exposed S-nodes. In this case. the
values of the dual variables are changed, as indicated above, conditions
(8.2) are satisfied, and both the primal and dual solutions are optimal.

The algorithm begins with the empty matching X,, and then pro-
duces matchings Xi, X,, . . . , X,, containing 1, Z!,  . , k arcs. Each of these
matchings is of maximum weight, with respect to all other matchings of
the same cardinality, as is shown below. (Incidentally, note that the maxi-
mum weight matching existing at the end of the computation does not
necessarily have maximum cardinality.)

Suppose we were to demand a maximum weight matching, subject
to the constraint that it contains no more than k arcs. Then we could add a
single constraint to the primal linear programming problem:

This constraint is identified with a dual variable A.  and, after appropriate
modifications in the dual problem, the orthogonality conditions become

xij > 0 *  ui  -- cj  + /L = wij,

Ui>Oj CXij=  1,

fJj>O’  cxij= 1 .

2  > 0 * ; xij  = k.
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Let X, be the matching of cardinality k obtained by the algorithm, and tii,
fij be the dual solution. Choose i = min {tiii,. Then X-,, Ui - A.  UPi- are
feasible primal and dual solutions for the k-cardinality problem and satisfy
the new orthogonality conditions indicated above. It follows that X, is
of maximum weight, with respect to all matchings containing k arcs.

As in the case of the threshold algorithm for max-min matching,
a number nj is associated with each node j in 7: This number indicates the
value of 6  by which the dual variables must be changed, in order that
j may be added to an alternating tree. The labeling procedure progressively
decreases nj until nj is equal to the smallest value of ui  + tij - wij, for
arcs (i, j) with i E  S labeled. A node j in T may receive a label if 7cj  > 0,
but its label is scanned only if nj  = 0. In other words, j is “in tree” if and only
if7rj = 0.

The algorithm is summarized below. We leave it as an exercise for
the reader to verify that the number of computational steps required is
0(&n), the same as for cardinality matching and max-min matching.

BIPARTITE WEIGHTED MATCHING ALGORITHM

Step 0 (Start) The bipartite graph G = (S, 7; A) and a weight Wij  for each
arc (i, j) E  A are given. Set X = a.  Set ui  = max {wij> for each node i E  S.
Set uj  = 0 and nj  = + x for each node j E 7: No nodes are labeled.

Step I (Labeling)

(1.0) Give the label “I;3”  to each exposed node in S.
(1.1) If there are no unscanned labels, or if there are unscanned labels, but
each unscanned label is on a node i in T for which xi > 0, then go to
Step 3.
(1.2) Find a node i with an unscanned label, where either i E  S or else
i E Tand 7~~ = 0. If i E  S, go to Step 1.3; if i E  7: go to Step 1.4.
(1.3) Scan the label on node i (i E S) as follows. For each arc (i, j) F X
incident to node i, if ui  + vj  - Wij  < nj, then give node j the label ‘7”
(replacing any existing label) and set nj  = ui  + L’~ - wii. Return to
Step 1.1.
(1.4) Scan the label on  node i (i E  T) as follows. If node i is exposed, go
to Step 2. Otherwise, identify the unique arc (i, j) E  X incident to node
i and give node j the label “i.” Return to Step 1.1.

Step 2 (Augmentation) An augmenting path has been found terminating
at node i (identified in Step 1.4). The nodes preceding node i in the path are
identified by “backtracing” from label to label. Augment X by adding to X
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all arcs in the augmenting path that are not in X and removing from X
those which are. Set xi = + x, for each  node j in 7: Remove all labels from
nodes. Return to Step 1.0.

Step 3 ~,C’hanye  in Dud Variables) Find

ii, = min juili E  S),

6, = min {nj  17cj  > 0, j E  :r).

6  = min 16,. 6,;.

Subtract 6  from Ui,  for each labeled node i E  S. Add 6 to “ j for each node j E  T
with nj = 0. Subtract 6 from 7Cj  for each labeled node jE %  with zj > 0.
If 6  < h1  go to Step 1.1. Otherwise, X is a maximum weight matching and
the ui  and L’~ variables are an optimal dual solution. Halt. //

There is an alternative, “primal” approach to weighted matching.
This is to perform successive augmentations of the matching X by means of
a maximum weight augmenting path (where the weight of arc (i,j) i:j  taken
to be wij if (i,j)  EX and -- bvij  if (i,j)$  X). This iapproach  is essentially the
same as that used in the previous chapter to compute min-cost flows by suc-
cessive min-cost augmentations. We refer to this as a “prima.1”  method be-
cause it involves no dual variables or other considerations of duality.

It is easy to devise a procedure for determining maximum weight
augmentations. In fact, a method essentiall,y  like that of Bellman and Ford
can be implemented very nicely within the framework ofa labeling procedure.
The computation of a maximum weight augmenting path requires O(m’n)
steps, when carried out in this way. Since O(m) augmentations are called
for, the overall complexity is O(rn3n).,  compared with O(m2n)  for the Hun-
garian method.

The efficiency of the primal method can be improved, by making use
of node numbers, as described in the previous chapter. The number ;rcf  indi-
cates the weight of a maximum weight alternating path from an exposed
S-node to node i,  relative to matching X,. These node numbers are used to
modify the arc weights. so that all arc weights are negative when a maximum
weight augmentation is sought. relal.ive  to matching Xk+  1. (Negative arc
weights are desired, since a maximum weight path is sought.) It follows that
a Dijkstra-like procedure can be used to find an optimal augmenting path.

When the details have been ,worked  out, it is discovered that the
Dijkstra-like procedure looks very much like the Hungarian method. Speci-
fically, the computation of 6, in Step 3 of the Hungarian method corresponds
to the operation of finding. in the Dijkstra computation, that “tentative”
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label which is next to be made permanent. Thus, the Hungarian method
and the modified primal method are essentially similar.

We noted a similar situation in the previous section, with respect
to the threshold method and the max-min augmeating path method for
max-min matching. The reader is referred to that discussion.

x.1

8.2

8.3

8.4

8.S

8.6

PROBLEMS

Apply the  Hungarian algorithm to the weighted bipartite graph shown in
Figure 5.14 to find a maximum weight matching and an optimal dual solution.
lnterprct each step of the  Hungarian algorithm. as nearly as possible.  as a
step of  the out-of-ki l ter  method.  Where do the two algori thms differ?
Gcnerali/e  the algorithm to the case

c rij  I cl,.

1  x,, 5 hi

(D. Gale) There are ITI  potential house buyers and II potential house sellers.
where m  5 II.  Buyer i evaluates house j and decides that its value to him is
wij dollars. If sellerj  puts a price of [‘j on his house, buyer i will bz willing to
buy only if wij 2 I:~. Moreover. if there is more than one house ,j for which
\Vij 2 I’,’ he will prefer to buy a house for which wi, - rj is maximal. A set of
prices is said to be “feasible” if it is such that for every buyer i there is at least
one housej  for which wLj  2 ci. Show that. with respect to all other feasible
sets of prices, there is one set of prices which maximizes both the sum of the
to ta l  p ro f i t s  to  the  buyers ,

~(w;,  - Pi)

and total proceeds to the sellers, 1 cj.
Devise a simple example of a matching problem in which a maximum weight
matching does  not  have maximum cardinal i ty .  (All  arc  weights  are  to  be s t r ic t ly
pos i t ive . )  How should  the  Hungar ian  method  be  modi f ied  so  as  to  p roduce  a
maximum cardinality matching which is of maximum weight (relative to all
other such matchings)‘?
Wri te  out .  in  de ta i l ,  the  s teps  of  a  weighted  matching a lgor i thm based on the
approach of finding maximum-weight augmenting paths by a Dijkstra-like
procedure. Make a detailed comparison with the Hungarian algorithm.

9
A Special Case: Gilmore-Gomory Matching

Consider two examples of weighted matching problems which have parti-
cularly simple solutions.
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SKIES AND SKIERS

A ski instructor has II pairs of skis to assign to n novice skiers. The length of
the skis assigned to a skier should be proportional to his height, and for
simplicity, we assume that the constant of proportionality is unity. How
should the instructor match skis to skiers so that the resulting differences
between ski length and height of skier are as sm.all  as possible?

The obvious solution to this problem is optimal. The shortest pair
of skies should be assigned to the shortest skier, the second shortest pair to
the second shortest skier, . . . , the kth shortest pair to the kth shortest skier,
and so on. This assignment minimizes the sum of the absolute differences
of ski length and skier height. Perhaps more importantly, it also minimizes
the maximum of the differences.

SCHOOL BUSING (R. B. POTTS)

A bus company has n morning runs and n afternoon runs to assign tom  n bus
drivers. The runs vary in duration, and if a driver is given a morning run and
an afternoon run whose total duration exceeds 7’hours, he is to be paid a
premium on the overtime hours. The problem, from management’s point of
view, is to match morning runs with afternoon runs so as to minimize the total
number of overtime hours. This is accomplished by matching the kth longest
morning run with the kth shortest afternoon run, for k = 1,2,.  . , 1~.

The bus drivers’ union has different optimization criteria. One of the
union demands is that the minimum number of hours worked by any driver
should be maximized. And, more generally, that the number of hours worked
by the various drivers should be as uniform as possible.

As it turns out, management’s solution to the problem also happens
to maximize the minimum number of hours and minimize the maximum
number of hours worked by any driver. Thus, there exists a solution which
is both management-optimal and union-optimal. (Recall that a similar
situation was discussed in Section 4.)

Both of these weighted matching problems can be formulated as fol-
lows. Let G = (S, 7; S x T) be a complete bipartite graph with ISI  = 17’ = n.
Each node i ES has associated with it a real number a, and each node j E  T
a real number pi. For all i, j, the weight of arc (i, j) is taken to be

s
SJwij  = .f (y) dy, tai ’ Dj)

21

=s

a,
CI(Y)  dy. (1jj  < cci)3

0,

(9.1)



A Special Case: GIlmore-Gomory  Matching 209

where j’(4)  and g(y)  are given integrable functions. A matching problem
with arc weights determined as in (9.1) will be referred to as a Gilmc~e-
Gomory matching problem.

In the example of skies and skiers, let a, be the length of the ith pair
of skies, pj be the height of the jth skier, and ,f(,y)  ==  g(,y)  = 1. This yields.
by (9.1). the weights

Wij  = Jai  - ~jjl.

It is desired to find a complete matching for which the sum of these weights
is minimized.

In the case of school busing let a, and bj denote the length of the ith
morning run and the jth afternoon run respectively. Then let q  = T -~  ai,
pj  = bj..f(4j) = 1 and g(J))  = 0. By (9.1),

wij = max {O.ui  + bj  - Tj,

is the amount of overtime occasioned by a matching of morning run i with
afternoon run j. Management seeks a complete matching for which the sum
of these weights is minimized.

For the union’s problem, let cq  = - a,, pi  = h, and ,f(y) = g(y) = 1.
Then, by (9.1), wij = ai  + bj,  and a complete matching is sought for which
the minimum of the weights is maximized.

The optimality of the solutions to the example problems can be
shown by applying the theorems below. In the statement of each of these
theorems, we assume that c(,  L cx2 L 2  a, and fi, SZ  pZ  L . . . 2  p,,. In
each case. we demand a complete matching which is optimal with respect
to all other complete matchings.

Theorem 9.1

X = {(i.i)li  = 1,2 . . . . . ~2;

is a minimum-weight complete matching, if .f (J) + g(y)  2  0 for all 4.

Theorem 9.2

X =  ((i-n-i+  l)li=  1,2 ,.... H)

is a maximum-weight complete matching, if ,f(~j)  + g(y)  L 0 for a11  J:.

Theorem 9.3

X = {(i,  i)/i  = 1.2.. . _,  nj

is a min-max optimal complete matching, if j’(y) > 0, go,) > 0, for a]] ~a.
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Theorem 9.4

X = [(i. i)li =r  1.2.. . . , rzi

is a max-min optimal complete matching if either f(y) 2  0, g(y)  < 0, for
all y, or .f’(y)  I 0, g(y) 2  0, for all y.

It helps to visualize Gilmore-Gomory  mat’chings  if the nodes of the
graph are arranged on two vertical axes, with the nodes in Sand Tpositioned
according to the values of cli and /Jj  If a complete matching differs from
X = {(i. i)), then it contains at least one pair of “crossed” arcs (i, j), (A, I). as
illustrated in Figure 5.17. The proof of Theorem 9.1 is based on the effect of
“uncrossing” such pairs of arcs.

PROOF OF THEOREM 9.1 Let X’ be a complete matching. If X1  #  X =
{(i,  i)}, then X’ contains arcs (i,j)  and (k, 1).  with i < k, ,j > 1. Let

X2 = X1  + (k.j)  + (i. I) -- (i.j)  - (k, I),

and let ,c(X’).  w(X’)  denote the weights of the matchings X1. X2.  It can be
shown that

w(X’)  = w(X’)  -
s

“(f(y)  +  ~(4.1) dy.  i f y ,  < y,,
Yl

= w(X’). ifyl  2  y,,

where J’l = max i~i.  /?[),  y2  = min jq.  pj)

Since ,f(y) + g(y) 2  0, clearly w(X’)  :I w(X-‘). If X2 + X. repeat the pro-

II Figure 5.17 “Crossed” arcs
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cedure a finite number of’ times. obtaining matchings X3, X”. . . . X” = X.
showing that w(X’)  2 \v(X).//

We leave the proofs of the other theorems as problems for the
reader.

In Problem 9.5 we suggest a method for solving Gilmore-Gomory
problems for graphs in which IS\ # ITI.

PROBLEMS

9.1 Let 0 = (a,. (iI.. . u,,) and h = (h,. h,.  . h,)  be positive real vectors. We wish
to permute the elements of (I in  such  a  way  tha t  the  inner  product

U’ h = c u,h,

is minimized. Formulate the problem asa  Gilmore-Gomory matchmg  problem
9.2 Prove Theorem 9.2.
9.3 Prove Theorem 9.3.
9.4 Prove Theorem 9.4.
9.5 Let  G  = (S, 7:  A) bea  b ipar t i t e  g raph  wi th  an  a rb i t ra ry  (not  necessar i ly  Gilmore..

Gomory) weighting of the arcs. Suppose we seek to find  a maximum weigh1
matching, subject to the conditions that it contains no crossed arcs (with respecl
to a given numbering of the nodes in S and in 7). Let

W(p.  q) = the maximum weight of an uncrossed matching containing
only arcs (i. j), where i I p.,j  I q.

( a ) Obtain a recursion formula for W(p.  q) which can be used :o find a maxi..
mum-weight uncrossed matching in O(mrl)  computational steps. where
/sI  = m. 17-I = Il.

(b) Obtain a  s imilar  recursion formula which can be used  to  find  a minimum-
weight uncrossed matching with exactly ,TI  arcs. assuming m 5  n, also in
O(mn)  steps.

(c) Now suppose that the graph is complete and that arc weights are de-
termined by formula (9.1),  with f’(r) + g(y) I> 0. Generalize Theorem
9.1 by showing that  there  exis ts  a  minimum weight  matching wi th  exact11
m arcs in which no arcs are crossed.

(d) Obtain results parallel to those of parts (b) and (c), for the case of maximum
weight  matching .

10
A Novel Optimization Criterion:
Gale-Shapley Matching

D. Gale and L. S. Shapley have proposed a novel optimization criterion
for matching which does not depend in any way on arc weights. We can
perhaps illustrate their approach best with their own example.
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A certain community consists of n  men and n women. Each person
ranks those of the opposite sex in aosordance with his or her preferences
for a marriage partner. For example, suppose there are three men, c(,  8, and
y,  and three women, A, B, and C. Their preferences can be illustrated by a
“ranking matrix” such as that below:

A B C

I

22 31
; :::  1:3  212
7 2.2 3.1 1.3

The first number of each pair in the matrix gives the ranking of women by
men, the second number gives the ran king of men by women. Thus M ranks
A first, B second, C third, while A ranks /? first, y  second, and a third.

There are as many possible sets of marriages as there are complete
matchings of three men and three women. (i.e., 3!).  Some of these matchings
are unstable. For suppose CI marries B, p marries .4, and y  marries C. 1Jnder
such an arrangement, ,8 would like to leave A, hi:3  third choice. in favor of
C, his second choice, while C would be willing to break up with y,  her third
choice, in order to join /3, also her second choice.

Definition A complete matching of men and women is said to be unstable
if under it there are a man and a woman who are not married to each other
but prefer each other to their assigned mates.

It is by no means clear that a istable  matching need exist. However.
not only does a stable matching exist, for any set of rankings, but also a
matching which is optimal, in a very strong sense.

Definition A stable matching of men and women is said to be (man) optimal
if every man is at least as well off under it as under any other stable matching.

Theorem 10.1 (Gale, Shapley) For any set of rankings, there exists a (man)
optimal matching of men and women

The following algorithm yields a man-optimal matching. and thereby
provides the basis of a constructive proof of Theorem 10.1. To quote Gale
and Shapley :

To start, let each boy propose to his favorite girl. Each girl who receives
more than one proposal rejects all but her favorite from among those who have
proposed to  her .  However ,  she  does  not  accept  h im yet .  but  keeps  h im on a  s t r ing
to allow for the possibility that someone better may come along later.
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We are now ready for the second stage. Those boys who are rejected now pro-
pose to their second choices. Each girl receiving proposals chooses her favorite from
the group consisting of the new proposees and the boy on her string. if any. She
rejects all the rest and again keeps the favorite in suspense.

We proceed in the same manner. Those who are rejected at the second  stage
propose to their second choices, and the girls again reject all but the best proposal
they have had so far.

Eventually (in fact in at most nz -- 2n + 2 stages) each girl will have received
a proposal. for as long as any girl has not been proposed IO there will be rejections
and new proposals. but since no boy can propose to the same girl more than once.
every girl is sure to get a proposal in due time. As soon as the last girl gets her pro-
posal, the ‘courtship’ is declared over. and each girl is now required to accept the
boy on her string.

We first must show that the algorithm yields a stable set of marriages.
This is easy. “Namely. suppose John and Mary are not married to each other,
but John prefers Mary to his own wife. Then John must. have proposed to
Mary at some stage and subsequently been rejected in favor of someone that
Mary liked better. It is now clear that Mary must prefer her husband to
John and there is no instability.”

Now let us show that the set of marriages is (man) optimal. We call a
woman “possible” for a man if there is a stable matching that marries him to
her. The proof is by induction. Assume that up to a given point in the proce-
dure no man has as yet been rejected by a woman that is possible for him. At
this point suppose that a woman A. having received a proposal from a man b
she prefers, rejects man CL  We must show that A is impossible  for a.  We know
that /3  prefers A to all the others. except for those who have previously re-
jected him, and hence (by assumption) are impossible for him. Consider a
hypothetical matching in which a is married to A, and fi  is married to a wo-
man who is possible for him. Under such an arrangement /3 is married tr  a
woman who is less desirable to him than A. But such a hypothetical matching
is unstable since fl  and A could upset it to the benefit of both. The conclusion
is that the algorithm rejects men only from women that they could not possi-.
bly be married to under any stable matching. The resulting matching is
therefore optimal.

Note that. by symmetry, a woman-optimal matching is obtained b)
having the women propose to the men. (Women’s lib take note.)

The procedure is easily generalized to match students with colleges
or football players with professional teams. However, it is not possible to
apply the procedure to obtain optimal marriages for a group of homosexuals.
In fact. no stable set of homosexual marriages may exist. (One is free to
draw whatever sociological conclusions one will.) See Problem 10.4.
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PROBLEMS

10.1 Find a (man) optimal matching for the ranking matrix below

A i? C 13

1.3 2.3 3.2 4,3
1.4 4.1 3.3 2.2
2.2 1.4 3,4  4.1
4.1 2.2 3.1 1.4

Veri fy  tha t  the  opt imal  ass ignment  i s  the  only  s table  ass ignment .
10.2 Verily Gale and Shapley’s statement that at most n2 - 2n  t 2 iterations of

their procedure are required. Estimate the overall computational complexity
of the algorithm.

10.3 Modify the algorithm for the case of colllege admissions. That is. suppose
1.  /L..  .CU are prospective students and A, R,. , % are colleges, where each
college can accept q students. Deal with both student-optimal and college-
opt imal  matchings .

10.4 The Gale-Shapley results hold only for bipartite matchings. To quote Gale
and Shapley  :

A problem similar  to the marriage problem is  the “problem of the room-
mates .”  An even number  of  boys wish to  divide up into  pairs  of  roommates .  A
set of pairings is called stub/r  if under it there are no two boys who are not
roommates and who prefer each other to their actual roommates. fh easy
example shows that there can be situations in which there exists  no stable
pairing. Namely consider boys s(.  /I, y,  and 6.  where z ranks /? first, /I ranks ;
first, y ranks x first, and c(.  /S. y all rank 6 last

Show that  regardless  of  8’s preferences ,  there  can be no s table  pair ing.
10.5 Show that a set of marriages is both man-optimal and woman-optimal if and

only  i f  i t  i s  the  only  s table  se t  of  marr iages .
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SIX

Nonbipartite Matching

Introduction

The theory and algorithmic techniques of the previous chapter have been
generalized by Edmonds to apply to matchings in nonbipartite graphs.
This also provides a proper generalization of network flow theory to
“bidirected” network flow theory.

As we shall see, the augmenting path theorem can be extended to
nonbipartite matchings. However, the computational problems involved
in finding augmenting paths are more formidable than in the bipartite
case, and can be solved only by the proper treatment of “blossoms,” as
shown by Edmonds. Nevertheless, the nonbipartite cardinality matching
problem, the max-min problem, and the weighted problem can all be solved
in O(n3) steps, as in the bipartite case.

The nonbipartite matching problem is a special case of an apparently
more general type of problem that we refer to as the degree-constrained
subgruph  problem. This is the problem of finding an optimal subgraph of
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a given graph, subject to the constraint that the subgraph observes certain
constraints on the degrees of its nodes. If there is a lower and upper bound
on the permissible degree of each node, but no other restrictions, the prob-
lem is reducible to the ordinary matching problem. This reduction, similar
to the reduction of the transportation problem 1.0 the assignment problem,
is explained in Section 3. A degree-constrained subgraph problem in which
the lower and upper degrees are equal is sometimes called a factors prob-
lem.

2
Problem Formulations

Nonbipartite matching problems ari,se  in a variety of contexts. We indicate
below some applications for cardinality, max-min, and weighted m,atching
algorithms.

OPTIMAL SCHEDULING OF TWO PROCESSORS

There are two identical processors and n -jobs,  each requiring one unit of
processing time. A partial ordering relation “I” is given, which prescribes
precedence constraints for the jobs. For example, if i <j, then job i must
be completed before job j can be begun by either processor. How should
the jobs be scheduled on the two processors, so that all the jobs can be
completed at the earliest possible time?

A simple set of precedence constraints on seven jobs is indicated
by the acyclic directed graph in Figure 6.1. Each node is identified with a
job. Job i must precede job j if there is a directed path from i to j.

For any acyclic directed graph G representing precedence constraints
on jobs, we can construct a “compatibility” graph G*,  as follows. G* has
the same nodes as G, and there is an (undirected) arc (i, j) in G* if and only
if there is no directed path from i to j or from j to i in G. In other words,
if i and j are adjacent in G*,  then jobs i and j can be processed at the same
time.

A maximum cardinality matching in G* indicates the maximum
number of pairs of jobs that can be simulta.neously processed and therefore
yields a lower bound on the total processing tirne. Fujii  et al., have shown
that a maximum matching can be used to obtain a schedule that meets
this lower bound and is therefore optimal.

As an example, the nonbipartite compat.ibility  graph in Figure 6.1
permits a matching of three arcs. Hence a lower bound on the length of a
schedule is four. But suppose the m,atching contains arcs (1,6),  (2,5),  and
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Figure 6.1 Precedence con-
straints on jobs and associat-
ed compatibility  graph

(3,4). I t  i s  not  poss ible  to  process  both  jobs  1.  and  6  and jobs  3
and 4 simultaneously. However, it is possible to effect an interchange
of jobs between the pairs (1,6)  and (3,4)  to obtain the pairs (1,3)  and
(4,6).  and these pairs, together with (2, 5), constitute a feasible arrange-
ment. Fujii  et al. show such an interchange of jobs can always be carried
out. (See Problem 2.1.)

SYMMETRIC BIPARTITE MATCHING

There are situations in which an optimal bipartite matching is sought,
subject to the condition that it be  symmetric. That is, arc (i, j), i E  S, j E  7:
is to be in the matching if and only if (j, i), j E  S, i E: 7: is in the matching.

Consider the following situation. Each of y1  workers has a regular
job. However, the factory manager believes that each worker should be
able to perform a second job should the need arise. He decides that the best
plan is to arrange a “buddy” system, where worker A trains worker B in
A’s regular job, and B does the same for A.

Clearly, the factory manager’s problem is one of symmetric bi-
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partite matching (cardinality, max-min, or weighted, as the case may be).
But symmetric matching in a Zn-node  bipartite graph is really no dlifferent
from matching in an rz-node nonbipartite graph. (The reader should be
clear on this point.) Or, to put it another way: Just as the weighted bi-
partite matching problem is equivalent to the assignment problern, so is
the weighted nonbipartite matching problem equivalent to the symmetric
assignment problem. Some of the diffic,ulties  resulting from sylmmetry
are discussed in the following.

HOMOSEXUAL MARRIAGE

The (heterosexual) marriage problem was discussed in the previous chapter
in connection with the integrality theorem of bipartite matching. It was
shown that there exists a monogamous set of marriages that maximizes
total happiness in the community.

We may consider the analogous situation with respect to a com-
munity of homosexuals. Let there be n individuals, and let haij  represent
the benefit to be derived from full-time cohabitation of individual i with
individual j. Let xij  denote the fraction of timl:  that i spends with ,j.  We
must require that xij  = xji.  Or in other words, we seek a symmetric doubly-
stochastic matrix X = (xij)  such that 1 wijxij  is maximal.

The fact is that the Birkhoff-van  Neumann theorem does not apply
to symmetric matrices. That is, a symmetric doubly-stochastic m.atrix is
not necessarily a convex combination of symmetric permutation matrices.
In other words, it is not necessarily true that there exists a mono,gamous
set of homosexual marriages that is (optimal. (It is, however, true that there
exists an optimal solution to the pr’oblem  in which each xii is either 0, $,
or 1.)

This is the second “proof” of the instabil.ity  of monogamous homo-
sexual marriages. (See also Chapter 5, Section 10.) We need not assign any
particular social significance to these results in order to conclude that
matching in nonbipartite graphs is rather different from matching in bi-
partite graphs.

UNDIRECTED SHORTEST PATHIS

Suppose we wish to find a shortest path between two nodes in an undirected
network. If all arc lengths are nonnegative, it is possible to replace each
undirected arc (i, j) by a pair of directed arcs (i.,  j) and (j, i), each with the
same length as the original arc, and solve as a conventional shortest path
problem in O(n’)  steps. However, if any of the arc lengths are negative, this
transformation creates negative ditected ‘cycles, and even the O(n3) pro-
cedures of Chapter 3 are inapplicable.
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It is possible to solve the undirected shortest path problem as a
nonbipartite weighted matching problem. Negative arc lengths are per-
missible. but there must be no undirected cycles which are negative in
length. We illustrate the transformation to a matching problem by the ex-
ample network shown in Figure 6.2.

By inspection, a shortest undirected path from node 1 to node 6
contains arcs (1,2)  (2,3)  (3,.5)  and (5,6),  and has length -6. This path is

Figure 6.2 Undirected shortest path problem and equivalent weighted matchmg  problem



222 Nonbipartite Matching

obtained by solving a degree-constrained subgraph problem in which each
of the nodes 2, 3, 4, 5 is provided with a loop of length zero. Lengths are
interpreted as costs, and a minimum-cost subgraph is sought, in which
nodes 1 and 6 are to have degree one and each of the other nodes is to have
degree two. Such a subgraph is in the form of a path between nodes 1 and 6,
plus a node-disjoint set of cycles (some of which ma.y be loops). If there are
no negative cycles in the network, thle  path contained in suc:h  a minimum
cost subgraph is a shortest path.

The reduction of the degree-constrained subgraph problem to a
weighted matching problem is indicated by the network in the lower portion
of Figure 6.2. All arc weights are zero, unless otherwise indicated. The
solution to the minimum cost degree-constrained subgraph problern indi-
cated by wavy lines in the original network corresponds to the maximum
weight matching indicated in a like rnanner in the second network.

A general procedure for transforming degree-constrained subgraph
problems to ordinary matching problems is described in the next section.

THE CHINESE POSTMAN’S PROBLEM

A postman delivers mail along a set of streets represented by the arcs of
a connected graph G. He must traverse each street. at least once, in either
direction. He starts at the post office (one of the nodes of G‘)  and must re-
turn to this starting point. What route enables the postman to walk the
shortest possible distance?

This problem, dubbed “Chinese” by Edmonds in recognition of the
mathematician Mei-ko  Kwan who Iproposed  it, can be solved efficiently
by a procedure which employs the weighted nonbipartite matching algo-
rithm as a subroutine. The problem is discussed in Section 11.

2.1

2.2

2.3

PROBLEMS

Describe a systematic technique for interchanging jobs between the pairs
determined by a maximum cardinality matching in the compatibility graph
of a  two-processor  schedul ing problem.  In  par t icular ,  consider  the  case  where
i, j and k, I are paired, and there is a conflict because i 5 k and 1 I j. Then
show that there is no conflict in pairing i with I and k with j. Show that the inter-
change problem can be  complete ly  avoided by solving a  weighted matching
problem on the  compat ib i l i ty  graph,  for  a  su i tably  chosen se t  of  arc  weights .
Verify that the Birkhoff-von Neumann Theorem does not apply to the sym-
metr ic  ass ignment  problem.  That  is ,  show that  a  symmetr ic ,  doubly-s tochast ic
permutation matrix is not necessarily a convex combination of symmetric
permutation matrices.  (A 3 x 3 counterexample suff ices to show this .)
(Norman and Rabin) A maximu.m  cardinalit,y  matching can be Iused  to
obta in  a  minimum cardina l i ty  cover ing  of  nodes  by  arcs .  Prove  tha t ,  g iven  a
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maximum cardinal i ty matching which leaves a  certain set  of  nodes exposed,
one can add one arc at each exposed node to achieve a minimal covering.
Prove that ,  conversely ,  g iven a  minimum cardinal i ty  cover ing,  one can re ta in
one arc from each component of the solution to achieve a maximal matching.
(The problem of  cover ing nodes  wi th  arcs  should  not  be  confused wi th  the
problem of  cover ing arcs  wi th  nodes .  There  i s  no  known polynomial -bounded
algori thm for  the lat ter  problem, except  in  special  cases.)

2.4 Show that a minimum cardinality covering of nodes by arcs in G yields a
minimum cardinality covering of arcs by nodes in L(G). In other words,
there is a polynomial-bounded reduction of the covering problem for line
graphs  to  the  card ina l i ty  matching problem for  nonbipar t i te  graphs .

3
Bidirected Flows

We noted in the previous chapter that bipa.rtite  matching theory is essentially
coextensive with network flow theory. Eldmonds  has ‘observed that non-
bipartite matching theory is coextensive with “bidirected” network flow
theory.

A directed graph is a graph in which each arc has both a “head”
and a “tail.” A bidirected graph  is a graph in which each arc can have a
head or a tail, or two heads or two tail,s.  The node-arc incidence matrix
of a bidirected graph is, as for a directed graph, a matrix A = (uij),  where

i

1 , if arc j has a tail at node i

‘ij= - I, if arc j has a head at node i

0, otherwise.

(We can also provide for arcs which have two tails or two heads at the same
node, by setting aii = 2 or -2, respectively. However, this is not necessary
for our present development.)

A bidirected network flow problem is an integer linear programming
problem of the form

minimize

C ajxj

subject to
Ax = TV

XCC

xj nonnegative integer,
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where A is the incidence matrix of a bidirected graph, aj  is the cost of one
unit of “flow” through arc j, c = (cl, cZ,  . . . . c,,)  is a vector representing
arc “capacities,” and b = (b,, b,,  . . b,) is a vector in which b,  represents
the net supply (if bi  > 0) or demand [if bi  5: 0) at node i. (Hopefully, it does
not cause confusion to let aj  denote the unit coast  of flow in arc j, to let aij
be an element of the incidence mat.rix A, nor to refer to arcs by a single
index j, where elsewhere double indices are used.)

Nonbipartite matching problems ;are  reduced to bidirected 110~
problems by a simple procedure. If the number of nodes is odd, a dummy
node is added to the graph. Then “slack” arcs with zero weight are added
to convert the matching problem to a degree-constrained subgraph problem
in which each node of the subgraph is to have degree one (a “one-factor”
problem). Each undirected arc becomes a bidire:cted  arc with two tail ends
and unit capacity. Arc weights are converted to costs, bi  is set to unity at
each node i, and the transformation is complete.

The reduction of bidirected flow problems to matching  problems
requires a few more steps. First, the bidirected fl’ow  problem is transformed
to a problem involving an undirected network. For each node i in the bi-
directed network G, let there be two nodes, 1) and i’  in the undirected network
G*.  Let all the bidirected arcs which have tails at i be identified with un-
directed arcs which are incident to i in G*,  and all the arcs which havIe  heads
at i be identified with arcs which are incident to i’  in G*,  and let their costs
and capacities be as they were before. Let there also be arcs of the form
(i, i’), for all i. each with zero cost and infi.nity  capacity. Let. br  and bp?  be
appropriately large, and such that b* - b: = bi.

We now have a problem of the form
minimize

subject to

A*x = b*
x I c*

Xj nonnega.tive  integer,

where A* is the node-arc incidence matrix of the: 2rt-node  undirected graph
we have just constructed. The construction at this point is parallel to that
described in Chapter 4 for transforming tra.nshipment problems into trans-
portation problems. The reader can verify that if the bidirected network G
is directed, then G* is bipartite.

The second step is to eliminate arc capacities, by essentially the same
technique used in Chapter 4 to eliminate arc capacities in the capacitated
transportation problem. Subdivide #each  arc (i, j) with finite capacity cij
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by replacing (i, j) by (i, k), (k, k’), (k’, j). where k and k’ are new nodes.
Set bt  = b$  = cij, air, = a~~j  = 0, and u&  = a:,  and leave b: and bT  un-
changed. (Note that now a$  denotes the cost of arc (i, j); we have reverted
to double index notation.)

The third step is to convert the problem to one in which a complete
matching is demanded. Construct a new network G** in which for each
node i of G* there are b* copies of node i. For each arc: (i, j), an arc with
the same cost is provided between each copy of i and each copy of j. Set
br* = 1 at each node i. This is similar to the transformation used to convert
the transportation problem to the assignment problem in Chapter 4,
Section 14.

The fourth and final step is to set wij = M  - u$*  in G**,  for a suitably
large M. A maximum weight matching is then a complete matching, if a
complete matching exists, and corresponds to a minimal cost flow in the
original network G. If no complete matching exists, there is no feasible
solution to the original bidirected flow problem.

It has been shown that a bidirecred flow problern can, in principle,
be solved as a nonbipartite matching problem. However., it would probably
be unwise to do so, just as it would be unwise to solve a transhipment prob-
lem by first transforming it into an assignment problem. Although we shall
not discuss computation procedures for the bidirected flow problem, we
note that such procedures have been developed and successfully programmed
for a computer. They make use of essentially the same ideas as those pre-
sented in this chapter.

P R O B L E M S

3.1 In the transformation of the network 6 to G*,  what does it mean for b:  and
b:  to be “suitably large?” Is the redu(stion  to a matching probl,em  really a
polynomia l -bounded reduct ion?

-2

Figure  6 .3  B id i rec ted  f l ow

network (Problem 3.5)
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3.2

3.3

3.4

3.5

How large does hl have to be, in order to insure that a maximum weight
matching is  a  complete matching?
In  the  reduct ion  of  the  undirec ted  shor tes t  pa th  problem to  a  matching prob-
lem, some simplifications were made in the final network, in order to obtain
the  graph shown in  Figure  6 .2 .  Trace  through the  reduct ion ,  a.ccording to  the
rules  presented in  th is  sect ion.  Determine the  nature  of  the  s impl i f ica t ion,  and
verify that it is valid.
Consider  a  weighted matching problem in a  graph in the form of a  three-cycle,
with arc  weights  - -  1 ,  2 ,  5 .  Reduce this  problem to a  bidirected f low problem.
Reduce the bidirected flow problem for the network shown in Figure 6.3 to
a matching problem. The numbers  by each arc  represent  i ts  capaci ty and cost .
The number by each node i is the value of b,.

4
Augmenting Paths

It has been pointed out that the (bipartite) integrality theorem and the
Kiinig-Egervary  theorem do not apply to nonbipartite graphs. However,
some of the theory of bipartite matching does carry over intact. In particular,
the concepts of “alternating paths,” “augmenting, paths,” and the au,gment-
ing path theorem generalize without change.

Theorem 4.1 (Brrge,  Normun  und Rabin) A matching X in a nonbipartite
graph contains a maximum number of arcs if and only if it admits no aug-
menting path.

PROOF If there exists an augmenting path with respect to X, then clearly
X does not contain a maximum number of arcs. Conversely, suppose X

and X* are matchings and that 1x1 <: 1X*1.  The arcs in the symmetric dif-
ference X @ X* form a subgraph  with a number of components. Each
component is either an alternating path or an alternating cycle. as indicated
in Figure 6.4. Each cycle must contain an equal number of arcs from X
and from X*. And since /XI < IX*l, it follows that there must be at least
one alternating path that contains more arcs from X* than from X. Such
a path extends between two nodes that are exposed by X, and is therefore
an augmenting path with respect to X. //

Augmentation of a matching X by means by an augmenting path
does not expose any nodes covered by X. It follows that successive aug-
mentations of X results in a maximum-cardinahty  matching which covers
all nodes covered by X. Thus, Theorem 4.2 of Chapter 5 generalizes to
nonbipartite graphs.
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Figure 6.4 Components of X @ X*

Theorem 4.2 Let X be any matching in the nonbipartite graph G = (N, A).
Then there exists a maximum cardinality matching X* which covers all
the nodes of G covered by X.

Corollary 4.3 For any nonisolated node i, there exists a maximum car-
dinality matching which covers i.

Theorem 4.1 was at one time thought sufficient by itself to provide a
solution to the nonbipartite matching problem. Indeed, for small graphs it is
not at all difficult to discover augmenting paths, or to solve matc:hing prob-
lems “by inspection.” However, it seems that when one tries 1.0 devise a
systematic procedure for discovering augmenting paths, all the “obvious”
approaches either contain pitfalls or else involve an exponentially growing
amount of computation. The following indicates some of these inadequate
approaches.

One way to solve the problem is to partition to the nodes into an
“S” set and a “T” set, making sure thal:  each arc of the matching extends
between an S-node and a T-node. One can then apply the procedures of
the bipartite matching algorithm to the induced bipartite subgraph. If
there exists an augmenting path, then there exists an S, Tpartition for which
the path can be discovered in this way. However, the number of partitions
grows exponentially with the number of nodes, and to test all possible
partitions clearly requires a nonpolynomial-bounded number of com-
putational steps.

Another approach is to assign S and T designations to nodes, as
dictated by a labeling procedure. Thus one can start by giving an exposed
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node the label “S :@.” Thereafter, when an S-la.bel  on node: i is scanned,
for each arc (i, j) $ X incident to i, the label “T: i”  is given to node j, unless
node ,j already has a 7llabel.  When a T-hbel is scanned, the unique arc
(i,  ,j) E X is identified, and the label “S : i’  is given to node j. The procedure
is continued until either an exposed node .is given a T-label or no further
labels can be applied. In the first case an augmenting path has presumably
been found. In the latter case, the “tree” of labeled nodes is Hungarian,
and another tree can be grown from another exposed node.

This procedure, which, of course, works perfectly well for bipartite
graphs, can lead to the false discovery of an augmenting path as shown in
Figure 6.5.

One might suspect that the labeling procedure fails because nodes
are permitted to take on both S-labels and ‘I-labels. It is quite simple to

Figure 6.5 False discovery of augmenting path

T:3

Figure 6.6 Farlure  to discover augmenting path
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add the restriction that once a node is given one type of label, it cannot be
given the other. This does, indeed, elimi:nate the possibility of false paths.
But it may also prohibit the discovery of valid augmenting paths, as shown
in Figure 6.6.

A still further refinement would be to permit double labeling of
nodes but in such a way that the sequence of labels so generated does not
“loop back” on itself. For example, nodes 4 and 5 in Figures 6.5 and 6.6
would be permitted to have double labels, but not node 3.

This last refinement is actually fairly close to a solution to the prob-
lem, but is still not quite sufficient to permit the discovery of all valid aug-
menting paths. In the next section we indicate a solution to this problem.

PROBLEM

4.1 Suppose there exists an augmenting path with respect to a matching X in
a  nonbipar t i t e  g raph  G  = (N,  A) .  Show that  an augment ing path  can be found
by applying the bipartite labeling procedure to the bipartite subgraph  ob-
ta ined  by  appropr i a t e ly  pa r t i t i on ing  the  nodes  in to  se t s  S and  ?:  and  de le t ing
all arcs that do not extend between an S-node and a Tnode.

5
Trees and Blossoms

An elegant solution to the problem of hnding augmenting paths has been
devised by Edmonds. Briefly, Edmonds’ approach involves the construction
of alternating trees (much as in bipartite matching), the detection of certain
odd cycles called “blossoms,” and the “shrinking” of these bllossoms  by
contraction of the graph.

Definition 5.1 Let X be a matching in the graph G = (N, A). Let N, G N
be a subset of 2r + 1 nodes, r 2  1, and let B be the set of all arcs., both ends
of which are incident to nodes in Ng.  B is said to be a blossom with respect
to the matching X if

@la) 1X  n B\  = r,

i.e., the matching X is maximal within B. The unique node h of NB left
exposed by X A B is the base of the blossom.
(5.lb) There exists an alternating path S, called the stem of the blossom,
where IS\  is even and S n  B = a,  extending between the base of the
blossom and a node exposed by X, called the root of the stem.
(5.1~) For each node i E N,,  there is an alternating path S,,i Al  B, where
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ISb,il  is even, between node i and the base of the blossom. It follows that
there is an alternating path of the form S, Sb,i between the root of the
stem and node i.

The simplest form of blossom is one in which B is an odd cycle.
Thus the arcs (3,4),  (3,5),  (4,5)  forrn a blossom in Figures 6.5 and 6.6,
with arcs (1, 2), (2,3)  as its stem and node 3 as its base.

The stem of the blossom may be empty, in which case we say that
the blossom is rooted. If the stem is not empty, it contains an arc in X inci-
dent to the base. Thus, the base of a blossom is exposed if and only if the
blossom is rooted.

Suppose we use a labeling procedure to construct alternating trees,
approximately as suggested in the previous section. Then a blossom is
formed whenever there is an arc (i, j) $ X between two nodes with S-labels
or an arc (i, j) E  X between two nodes with T-labels. (The two nodes are
assumed to be in the same tree.) Whenever a blossom B is detected, we
propose to “shrink” it by replacing the graph G with G ctr B. The node
corresponding to B in G ctr B is referred to as al  pseudonode, and is given
an S-label for the purpose of further tree construction.

The tree construction process may involve a number of shrinking
operations. In fact, blossoms may be shrunk within blossoms several, levels
deep. However, if an augmenting path is found in the (blossomless) alternat-
ing trees which ultimately result, there is an augmenting path in the original
graph G. The existence of such a path is guaranteed by the transitive applica-
tion of Theorem 5.2.

Theorem 5.2 Let B be a blossom with respect to X in G. There exists an
augmenting path in G ctr B with respect to X - B, if and only if there exists
an augmenting path in G with respect to X.

PROOF Let P be an augmenting path in G ctr B. Xf P does not pass through
the pseudonode corresponding to B, then clearly P is also an augmenting
path in G. If P does pass through the pseudonode, and the pseudonode is
not exposed, then P is of the form P,,  (i, b), P,,  where (i, b) E X is the arc
of the matching incident to the base b of the blossom in G. Then there exists
an alternating path S’ E B such that P1, (i, 27),  S’, P,  is an augmenting path
in G. Similarly, if the pseudonode is exposed, there exists an S’ E 13 such
that S’, P is an augmenting path in G. (,4n example is indicated in Figure 6.7.)

Conversely, suppose there is an augmenting path Pin G. It is possible,
by a rather complicated case analysis, to show that there exists an aug-
menting path in G ctr B. However, it is easier to show, as a consequence of
Theorem 7.1, that if there does not exist an augmenting path in G ctr B
then there does not exist an augmenting path in G. This line of reasoning
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PI (i, b)o----c+%/
Pseudonode

Blossom

/ B’

Figure 6.7 Example for Theorem 5.2

is analogous to invoking the K&rig-Egervary  theorem to prove the aug-
menting path theorem for bipartite graphs. //

The outlines of an algorithm, which we will illustrate by an example,
have now been sketched out. Consider the matching in the graph shown
in Figure 6.8. There exists an augmenting path from node 1 to nodes 3, 5,
9, 8, 7, 6, 4, 2, and then 10. Our task is to construct this path systematically.

We begin by establishing node I as the root of an alternating tree,
with the label “S: @.”  Nodes 2 and 3 are given the label “T: 1,” and so on.
Eventually nodes 6 and 7 are given T-labels, and an arc of th’e matching
is discovered between them, as shown in the first diagram of Figure 6.9.

Figure  6.8 Graph for example
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S:# T:B3

Figure 6.9 Alternating trees for example

Thus, the blossom B, is formed and replaced by a pseudonode, A,, as
indicated in the second diagram. The pseudonode B, is given the same
S-label as the base of B,,  and this label is considered to be unscanned. Con-
tinuation of the labeling procedure results in the detection a.nd  shrinking
of blossoms B, and B,,  as shown in the third diagram. Finally, an aug-
menting path is found in G ctr B, ctr  B, ctr B,, as shown rn the fourth
diagram.
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The construction of an augmenting path in the original graph G,
starting from the augmenting path in G ctr B, ctr B,  ctr B,, proceeds as
follows. First, backtracing in the final graph yields the sequence of nodes
B,, 10. It is then necessary to find an alternating path through B, in the
graph G ctr B,  ctr B,. The appropriate alternating path passes through
nodes 1, 3, 5.  B,, 2. The desired path through B,  in G ctr B,  is B,  , 8, 9, and
the path through B,  in G is 7,6,4.  Putting all these pieces together, we obtain
the desired sequence 1,3,  5, 9, 8, 7, 6, 4, 2, 10.

It is seen that there are two principal elaborations required of the
bipartite cardinality matching algorithm. First, it is necessary to detect
and shrink blossoms. Second, it must be possible to discover appropriate
alternating paths through shrunken blossoms, so that an augmentinlg path
in the original graph can be reconstructed. The detection of blossoms is
simple, and shrinking is really no problem. (The reader should be ,ible to
think of mbre than one way to write a subroutine for graphical contraction.)
However, it is a nontrivial matter to perform these operations in the most
efficient manner.

In the next section, we go into some details of impleme:ntation  of
the algorithm, and we carry out an analysis of its complexity. We show that
the algorithm can be programmed in such a way that its complexity is
O(n3), as in the case of bipartite matching.

6
Cardinality Matching Algorithm

We now concern ourselves with the implementation of Edmonds’ algorithm
for the computer. We shall develop a labeling procedure that does not
require the actual contraction of blossoms in the graph; instead blossoms
are treated “as though” they were shrunk. The labeling technique provides
a systematic and efficient method for backtracing through blossorns.

RECORDING OF BLOSSOMS

We need to keep a record only of outermost blossoms, and these blossoms
are identified by their base nodes. Associated with each node i lis am index
b(i) indicating the base node of the (outermost) blossom in which it is con-
tained. If a node i is not contained in a blossom, then b(i) = i. Thus two
nodes i, j are in the same outermost blossom if and only if b(i) = b(j).

When a new blossom is formed, the base node b of the new b’lossom
is identified, and b(i) is set to b, for all nodes i in the blossom. This means
that it is necessary to maintain a listing of all the nodes withlin ,,I  given
blossom, and it must be possible to merge these listings efficiently.
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DETECTION OF AUGMENTING PATHS AND BLOSSOMS

It is possible to grow one alternating tree at a time, and when one tree
becomes Hungarian to begin another at a new root node. Or, we may
begin by rooting an alternating tree at each exposed node and grow all
alternating trees simultaneously. There are technical reasons, concerning
the modification of dual variables, why the latter alternative is preferable
for the weighted matching problem. Hence we adopt this plan here.

Initially the label “S:@”  is given tat  all exposed nodes. Thereafter,
S-labels and T-labels are applied to nodes. An S-label indicates the existence
of an even-length alternating path to the root node, and a T-label indicates
the existence of an odd-length path. (A node receives both types of labels
if and only if it is a nonbase  node of an outermost blossom.) Augmenting
paths extend between the root nodes of two different trees, as suggested in
Figure 6.10.

Now, suppose the labeling procedure discovers an arc (i j) $ X
where i and j have S-labels or an arc (i, j) E X, where i and j have T-.labels.
Assume h(i) + b(j), i.e., nodes i and j are not contained within the same
blossom. Then an augmenting path has been found if i and j a.re in different
alternating trees, and a new outermost blossom has been formed if i and
j are in the same tree. The question of which one of these situations exists
is resolved by backtracing from the labels on i and j. If different root nodes
are reached, then an augmenting path has,  been found. If the same root
node is reached in both cases, then a blossom has been formed.

Figure 6.10 Example of  augmentmg path
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LABELING PROCEDURE

Rules covering the detection of augmenting paths and blossoms, in ac-
cordance with the preceding paragraph, are incorporated into tlhe  labeling
procedure. Other than these, the rules for labeling are quite similar to those
for bipartite matching.

That is, when an S-label on node i is scanned, the following pro-
cedure is carried out for each arc (i,  j) 6  X incident to i. If l)(i) = b(j),
then nothing is done, because i and j are contained within the same blossom.
(All possible labels are applied within a blossom at the time the blossom
is formed; see below.) Otherwise, if node j has an S-label, backtracing is
carried out from i and from j to detect either an augmenting, path or a
blossom. If node j has neither an S-label nor a T-label., then the labI:  “T: i”
is applied to j.

When a T-label on node i is scanned the unique arc (i,  j) E X ncident
to i is found. If b(i) = b(j), then nothing is done. Otherwise, if no’de  j has
a T-label, backtracing is carried out from i and from j to detect either an
augmenting path or a blossom. If node j has neither an S-label nor a T-
label, then the label “S: i”  is applied to j.

CONSTRUCTION OF BLOSSOMS

Once a new blossom has been detected, it is necessary to de:termine its
membership and the identity of its base node. This is done as follows.

Backtracing from nodes i and j produces two sequences of nodes

i,, i 2,  . . . . i p’

.il,  j,. . ...&,

where i,  = j, (the root node of the alternating tree) and i,  = i, jq = j (where
backtracmg began). Since i,  = j, and zP + j4, there is some index m, such
thati,  =jl,i,=j,,...,i,=j,,andeitlneri,=iorj,,=j,ori,,+,#j,+,.
The base of the new blossom is i,, 1 I m, where i, = b(i,,),  and its stern passes
through the nodes i,, i,, . . . , i,.

The new blossom contains all nodes k, such that

b(k)E{b(i,),b(i,+l),  . . ..b(i.),b(j,+,),b(j,+,), . . ..b(j.)). (6.1)

Accordingly, b(k) is set to i,  for all nodes k in the new blossom. This, plus
the addition of missing labels to nodes within the blossom (to be described
below), is all that is necessary to “shrink” the blossom.

As an example consider the situation shown in Figure 6.11. There
are T-labels on nodes 8 and 9, and (8.,  9) E  X. Hence a blossom has been
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___-
New I.~lossom

Figure 6.1 1 Example of blossom constructIon

detected. Backtracing from nodes 8 and 9 yields the sequences

1, 2, 3, 4, 6, 8
and

1,2,3,4,6,9.

In this case, i, = j, = 6 and b(6) = 3, since node 6 is already part of a
blossom, with node 3 as its base. The nodes 3,4,5,6,  ‘7,8, and 9 are in the new
blossom, node 3 is its base, and nodes 1, 2, and 3 are in its stem.

LABELING OF NODES IN BLOSSOMS

Between each nonbase  node in the new blossom and the root of the alternat-
ing tree there exists both an even-length and an odd-length alternating
path. This fact should be indicated by the existence of both an S-label and
a T-label on each such node.

Suppose the blossom was detected bly  backtracing from nodes i = i,
and j = j,,  where i and j have S-labels an.d (i, j) $: X. (We leave  it to the
reader to supply rules for the case i and j have T-labels and (i,  j) E  X.)
We concern ourselves only with nodes i,, 1,  i,, 2.  . . . , i,. (The rules for nodes

jm+1Am+2,  ..., j, are, of course, similar.) The S-labels on i,, i,-,, . . , im+2,
and the T-labels on i,-,,i,-,, . . . . imfl were actually used in backtracing.
Hence any missing labels must be T-labels on i,, ipe2,  . , im.,.2, or S-labels
on  +1,fp-3, . . . . z,+~. The label assigned to arry  node i,  will be such that
backtracing from that label yields the sequence of nodes i,, i,, 1,  . . . , i,,
.i4,j4-1, .“.,jl.

Let us assign missing labels to i,, , , im+2r  . . . , i, in order. Suppose
i, lacks an S-label. We assert that necessarily (i,, i,,,)~ X and that ir+l
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Ftgure  6.12 Labeling within blossom
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lacks a T-label. We give i,  the label “S: i,, 1”. The T-label we shal:l  assign
to  iril will cause backtracing to be carried out correctly.

Now suppose i, lacks a T-label. We assert that necessarily (i,, i,,. 1)  # X.
If also i,  + 1 lacks an S-label, then we give the label “T: i,, 1” to i,. The S-label
we shall assign to ir+l will cause backtracing to be carried out  correctly.

But now suppose i, lacks a T-label and ir+l has an S-label already.
Then i, must be the base node of a previously existing blossom, containing
l,+ 1,  and backtracing from the S-label on i, + 1 will lead back to i,. It is there-
fore quite wrong to give the label “T: i,.. 1” to node i,.

What we do to resolve this problem is to find the last node ik in the
sequence l,+ 1,  l,., 2, . . . , i,  that is contained in this previously existing outer-
most blossom with i, as base. Necessarily k I? r + 2. We then assign a
special label “T: i,  + 1,  i,” to i,. This late1 is interpreted as follows: There
exists an odd-length alternating path between i, and the root node. To
find this path, backtrace from the S-label on node ik+  1  to the root, and also
from node i, to i,  itself. The arcs thus discovered, together with the arc
(ik,  ik+  1),  properly ordered, constitute the desired alternating path.

An example of the application of labels within a blossorn is shown
in Figure 6.12.

BACKTRACING ROUTINE

The introduction of special T-labels wil:h double indexes does complicate
backtracing a bit, and a recursive routine is called for. For example, in
backtracing one may encounter the label “T:i, j” at node k. Backtracing
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from j to k, one may then encounter “T: ii, jl” at 21,.  Backtracing from j,
to k,,  one may encounter “T: i,, j2” at k,,  and :so  on. This may continue
for as many levels as blossoms are nested. Suffice it to say that the back-
tracing routine can be efficiently and eleg,antly  implemented on a com-
puter, and that backtracing from a given node to the root of the alternating
tree is no more than O(n) in running time.

The complete cardinality matching algorithm can now be sum-
marized as follows.

NONBIPARTITE CARDINALITY  MATCHING ALGORITHM

Step 0 (Start) The graph G = (N, A) is given. Let X be any matching,
possibly the empty matching. Set b(i) = i, for a.11 nodes iE  N. No nodes
are labeled.

Step I (Labeling)

(1 .O) Apply the label “S: ~8’ to each exposed node.
(1.1) If there are no unscanned labels, go to Step 4. Otherwise, find a
node i with an unscanned label. If the label is an S-label, go to Step 1.2:
if it is a T-label, go to Step 1.3.
(1.2) Scan the S-label on node i by carrying out the following procedure
for each arc (i j) 6 X incident to node i. If b(i) = b(j)., do nothing.
Otherwise, if node j has an S-label, backtrace from the S-labels on nodes
i and j and if different root nodes are reached go to Step 2; if the same
root node is reached, go to Step 3. If node j has neither an S-label nor
a T-label, apply the label “T: i”  to j.

When the scanning of node i is complete, return to Step 1.1.
(1.3) Scan the T-label on node i as follows. Find the unique arc (i, j) E  X
incident to node i. If b(i) = b(j), do nothing. Otherwise, ifnodej has a
T-label. backtrace from the T-labels on nodes i and j and if different root
nodes are reached, go to Step 2; if the same root node is reached, go to
Step 3. If node j has neither an S-label nor a T-label, apply the label
“S: i” to j.

Return to Step 1.1.

Step 2 (.4ugmentation) An augmenting path has been found in Step 1.2
or 1.3. Augment the matching X. Remove all labels from nodes and set
b(i) = i, for all i. Return to Step 1 .O.

Step 3 (Blossoming) A blossom has been formed in Step 1.2 or 1.3.
Determine the membership and base node of the new blossom, as described
in the text. Supply missing labels for all nonbase  nodes in the new blossom.
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Reset b(i) for all nodes i in the new blossom. Return to Step 1.2 or 1.3, as
appropriate.

Step 4 (Hungarian Labeling) The labeling is Hungarian. No augmenting
path exists, and the matching X is of maximum cardinality. The labels
and blossom numbers can be used to construct an optimal dual solution
(cf. Section 7). Halt.//

Let us consider the complexity of the algorithm. For a graph with
n nodes, there can be no more than O(n)  augmentations and applications
of the labeling procedure. Each application of the labeling procedure calls
for the labels on each of the n nodes to be scanned at most once, and each
scanning operation requires at most O(n)  steps (ignoring backtracing, and
so on). Hence simple scanning and labeling contributes O(n”)  steps overall
to the algorithm.

There can be no more than O(n) blossoms formed per augmentation,
or O(n’)  overall. Each augmentation and each blossom requires, back-
tracing, which is O(n) in complexity. Hence backtracing contrib’utes  O(n3)
steps overall. The other operations for blossom construction, including the
determination of blossom membership by (6.1) and the application of missing
labels, require 0 (n) steps per blossom or 0  (n3)  steps overall. The complexity
of other operations is dominated by those mentioned above. Hence we
conclude that the overall running time of the algorithm is O(n3).

7
Duality Theory

We now wish to formulate and prove a duality theorem for nonbipartite
matching, generalizing the Konig-Egervary  theorem for bipartite matching.
The appropriate dual structure is suggested by the notion of blossoms, and
the cardinality intersection algorithm provides a constructive proof for the
duality theorem.

Let G = (N,A)  be a given graph and let .M = {N,,N,,  . . ..Np}  be
a family of subsets of nodes, i.e., Ni c N, where each Vi contains an odd
number of elements. If (Nil  = 1, then N, is said to cover all arcs incident
to the node in Ni, and the capacity of Ni is one. If lNil = 2r + 1, r 2 1,
then Ni is said to cover all arcs, both ends of which are incident to nodes
in Ni, and the capacity of Ni is r. The family .,1/” is said to be an odd-set cover
if each arc of the graph is covered by at least one subset Ni E  .J‘. The capacity
of A!‘,  denoted c(./lr),  is the sum of the capacities of the odd set!3  contained
within it.
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We assert that (XI I c(  t‘) for any matching X and any odd-set
cover 1 ‘. (Prove this.) We now seek to show that max 1x1 = min c(.  r’).

Consider the situation at the conclusion of the matching computa-
tion, as described in Section 5. There is a Hungarian tree rooted at each
exposed node. Whatever pseudonodes exist have been given S designations.
A typical case is shown in Figure 6.13, in which pseudonodes are drawn
as squares. We assert that, for any given arc of the graph, exactly one of the
following cases holds :

(1) The arc is incident to a T-labeled node in a tree.
(2) The arc is contained within a blossom, shrunken to a pseudonode.
(3) Both ends of the arc are incident to unlabeled (out-of-tree) nodes.

Hence we can construct an odd-set cover, .I/‘,  with capacity equal
to the number of arcs in the matching, ;as  follows. Each T-labeled node
becomes a singleton set in ..-C’.  There are exactly as many such nodes as
there are arcs of the matching in the Hungarian trees. The nodes in each
blossom become an odd set in ..I“, and its caLpacity  is equal to the number of
arcs of the matching contained within it. There are 2k unlabeled (out-of-

Remainder

Figure 6.13 Example for  dual i ty  theorem
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tree) nodes and k arcs of the matching between them. If k = 0, the cover .j$’
is complete, and IX/  = c(.,k”), as claimed. If k = 1, one of the out-of-tree
nodes is chosen arbitrarily as a singleton set, and this completes the odd-set
cover. If k > 2, one of the out-of-tree nodes is arbitrarily chosen as a singleton
set, and the remaining 2k - 1 nodes are chosen as an odd set with capacity
k - 1. This completes the cover.

We have thus proved the following theorem.

Theorem 7.1 (Erfmonds) For any graph G, the maximum number of arcs
in a matching is equal to the minimum capacity of an odd-set cover.

An older theorem of Tutte giving necessary and sufficient conditions
for the existence of a complete matching can be obtained from Theorem 7.1
as a corollary. Let S c N be a subset of the nodes of G = (N, A). Let c(S)
denote the number of components of G de1  S which contain an odd number
of nodes.

Corollary 7.2 (Butte)  G = (N, A) contains a complete matching if and
only if there does not exist an S c N such that c(S) > IS].

P R O O F The proof is left to the reader as an exercise.//

Theorem 7.1 also enables us to prove a max-min duality theorem
for nonbipartite matching, just as the K&rig-Egervary  Theorern could be
used to prove Gross’s max-min duality theorem in the bipartite case.

Let Hk-i denote any graph obtained from G by contracting odd
sets of three or more nodes and deleting single nodes, where the capacity
of the family of odd sets (not necessarily a cover of G) is k -- 1. Let X,
denote any matching containing k arcs. Each arc (i,j)  has a weight wjj.

Theorem 7.3

maxmin {wij)(i,j)EXk} = En-n  max {WijI(i,  j)EHk-l}.
XI,

PROOF Let X: be max-min optimal, with respect to matchings with k
arcs. Let (p, q)  E X,  be such that

Wpy  = min  {Wijl(i,j)EXk*},

where the weights of the arcs are assumed to be distinct. Let G;F- i contain
all arcs (i,,j)  such that wij > wpq.  Clearly a maximum cardinality matching
in G:- i contains at most k - 1 arcs, and G:-,  can be covered by an odd-set
cover with capacity k - 1. Appropriate contraction and deletion operations
with respect to this odd-set cover of Cc- r yields an E-l,- r such that

W Pq  = maxIwij((i,j)EH,-,).//
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P R O B L E M S

7.1 Prove the assert ion that  the maximum cardinal i ty of  a  matching cannot  exceed
the minimum capacity of an odd-set  cover.

7.2 Prove Corollary 7.2.

8

Linear Programming Formulation of
Weighted Matching Problem

The matching duality theorem gives an indication of how the matching
problem should be formulated as a linear programming problem. That
is, the theorem suggests a set of linetar inequalities which are satisfied by
any matching, and it is anticipated that these inequalities describe a convex
polyhedron with integer vertices corresponding to feasible matchings.

Let xij=  1 ifarc (i, j) is chosen for the matching

= 0 otherwise.

Let R,  be any set of 2r,  + 1 nodes. Then it is (clear  that the inequality

must be satisfied by any matching. We represent the set of all possible con-
straints of this form by

Rx I r,

where R denotes the incidence matrix of odd sets of nodes vs. arcs. That is,
the kth row of R is the incidence vector of R,; when necessary, we also denote
this incidence vector by Rk.  The vector r = (r,,  rz, . , r,) is such that
l&l = 2r,  + 1; rk  is the capacity of the set R,.

Let us proceed to investigate the linear prograLmming  problem

maximize

subject to

U’X

Ax 2 1,

Rx I r,

x 2 0,
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where, as before, A is the node vs. arc incidence matrix of the graph for
which the matching is to be computed, and the vector w represents the
weights on the arcs.

We know, from Edmonds’ theorem, that the linear programming
problem yields an integer solution for the case of unit weights, i,e.,  the
cardinality problem. However, it bus  noI  been established that it yields an
integer solution in the more general case. We will prove that it does, by
developing a procedure that computes an integer primal solution and an
orthogonal dual solution for any given set of arc weights.

The dual to the linear programming problem #above  is
minimize

subject to

7 ui + ; rkZk

ATu + RTz 2  w,

u,  z 2  0.

The dual variables Ui and zk are identified with node i and the odd set of
nodes Rk,  respectively.

Orthogonality conditions which are necessary and sufficient for
the optimality of primal and dual solutions are

Xij  > 0 =j  Ui + Uj + C Zk  zrz  w..
11' (8.1)

J:k~Ki,A)

ui > 0 =a 1 xij = 1, w4

zk > 0 =+ R,x  = rk. (8 .3)
As in the bipartite case, the computational procedure maintains

primal and dual feasibility at all times, and in addition maintains satis-
faction of all orthogonality conditions, except conditions (8.2). The number
of such unsatisfied conditions, i.e., the number of exposed nodes i for which
ui is strictly positive, is decreased monotonically during the course of the
computation.

The computation is begun with the feasible matching X = 0 and
with the feasible dual solution

ui = W, for all i,

zk = 0, for all k,

where W is suitably large, say

W = 4 max {wij).
i,j
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These initial primal and dual solutions clearly satisfy all of the conditions
(8.1) and (8.3), but not the conditions (8.2).

At the general step of the procedure, X is feasible, all conditions
(8.1) and (8.3) are satisfied, but some of the conditions (8.2) are not. One then
tries, in effect, to find an augmenting path within the subgraph obtained
by shrinking all blossoms k for which zk > 0 and from which all arcs (i, j)
are deleted for which ui  + uj + c zk ;a “ij.

If an augmenting path is found, it extends between two exposed
nodes i andj for which ui  = uj > 0. Thus, after augmentation of the match-
ing two less of the conditions (8.2) fail to be satisfied. Changes in the match-
ing within each of the shrunken blossoms are such that the matching
continues to be maximal within each blossom. Thus, each of the conditions
(8.3) continues to be satisfied after augmentation. Because the augmenting
path involves only arcs (i,j)  for which ui  + Uj  + C zk  = M’ii,  all of the
conditions (8.1) continue to be satisfied.

If augmentation is not possible, then an appropriate value 6 > 0
is chosen, and the following changes are made in lthe dual variables. For
each node i with an S-label and each node i contained within an outermost
blossom whose pseudonode is given a S-label, 6  is subtracted from ui.
For each node i with an T-label and e,ach  node i contained within an outer-
most blossom whose pseudonode is ,,(Jiven  a T-label, 6  is added to ui. For
each outermost blossom k whose pseudonode is igiven  an S-label, 26 is
added to zk, and for each outermost blossom k whose pseudonode is given
a T-label, 26 is subtracted from zk.

If an arc (i,  j) is contained within a blossom there is no effect at all
on ui  + uj + C z, caused by the changes in the values of the dual variables.
But if i is given an S-label or i is contained within an outermost blossom
whose pseudonode has an S-label and j is unlabeled, then the net effect
is -6. Other cases are indicated in :Figure 6.14. As before, square boxes
are used to represent pseudonodes.

Recall that in the case of bipartite matching there were two con-
straints on the maximum value of 6. First, for all S-nodes i, it was required
that ui  - 6 2  0. Second for each arc (i,  j) where i was a labeled S-node
and j an unlabeled T-node, it was required that (ui - 6) + ui 2  Wij. NOW

there are no less than the following four constraints:

(8.4) If i is a node with an S-label or is contained within an outermost
blossom whose pseudonode has an S-label, it is re’quired  that I(i  - 6 2  0.
(8.5) If (i j) is an arc such that both i and j either have S-labels or are
contained within different outermost blossoms whose pseudonodes have
S-labels, it is required that

("i - 4 + (Uj  - 6)2  Wij.
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Nodes
and pseudonodes

+S l-6 in trees

not in trees

Figure  6.14 Effect of change in dual variables

(8.6) If the pseudonode for an outermost blossom k has a T-label,
then it is required that

Zk - 26 2  0.

(8.7) If (i, j) is an arc such that i is a node with an S-label or is con,tained
within an outermost blossom whose pseudonode has an S-label, whereas
node j is either unlabeled or contained within an outermost blossom
whose pseudonode is unlabeled, then it is required that

(Ui-6)+  ~j LWij.

Suppose 6 is chosen to be as large as possible subject to conditions
(8.4) through (8.7). If condition (8.4) is controlling, then the new dual solu-
tions is such that all of the conditions (8.2) are satisfied. Both lthe primal
and dual solutions are optimal, and a maximum matching has been ob-
tained. (Recall that uniform initial values were chosen for the ILL variables.
Hence the same minimum value of 11~ exists at each exposed node i.)
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If condition (8.5) is controlling, then either an augmenting path
can be found or a new blossom formed. If condition (8.6) is controlling,
an outermost blossom can be expanded (unshrunk). If condition (8.7)
is controlling, at least one new arc can be added to one of the alternating
trees.

We can now outline the algorilthm as follows:

SUMMARY OF WEIGHTED MATCHING ALGORITHM

Step 0 (Start) Start with X = Qr and 14~ = 4 max {wij}  as primal and
dual solutions.

Step 1  (Labeling) Root an alternating tree at each exposed node, and
proceed to construct alternating trees by labeling, using only arcs (i,j)
for which

Ui + “j + :~ Zk  = U’ij.

If an augmenting path is found, go to Step 2. If a blossom is formed, go to
Step 3. If the trees become Hungarian, go to Step 4.

Step 2 (Augmentation) Find the augmenting path, tracing the path
through shrunken blossoms. Augment the matchiing,  remove all labels
from nodes and pseudonodes, and return to Step 1.

Step 3 (Blossoming) Identify the blossom and shrink it in the graph.
The pseudonode representing the blossom receives an S-label, and its
z-variable is set to zero. Return to Step 1.

Step 4 (Change in Dual  Vmiubles)  Determine the maximum value of
6, according to conditions (8.4) through (8.7), and make the appropriate
changes in the dual variables. If condition (8.4) is controlling, halt; the
matching and the dual solution are optimal. Otherwise, expand outermost
blossoms for which zk = 0 and return to Step 1. //

PROBLEMS

8.1 Using the l inear  programming formulat ion of  the weighted matching problem
as a guide,  obtain a l inear programming formulation of the symmetric matching
problem.  Star t  wi th  the  problem

maximize

1 w,  jxi,
i.j
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subject to

1  xij  I 1
j
cxij I1

xi, = xj,

What linear inequality constraints must be added to insure that there exists
an optimal solution in integers when each xi, is simply required ‘to b’e non-
negative?

8.2 Show that each successive augmentation yields a matching which is 01‘  maxi-
mum weight relative to all other matchings with the same number of arcs.
(Consider the addition of a constraint of the form ~i,j:ci, = k into the linear
programming formulation, and the role of the dual variable identified with this
constraint.)

9
An O(n”) Weighted Matching .4lgorithm

We now consider the implementation of the weighted matching #algorithm
outlined in the previous section. In this section we detail only those features
which are necessary to attain O(n4) running time. In the next section we
shall describe additional elaborations necessary to reduce the complexity
to O(n3).

RECORDING OF BLOSSOMS

The management of blossoms is much rnore involved than in tlhe case of
cardinality matching. It is not sufficient to record only the outermost blos-
soms. When an outermost blossom is expanded, it is necessary to know
which blossoms are nested immediately within it, so that these blossoms
can be restored to the status of outermost blossoms. When auglmentation
occurs, blossoms with strictly positive dual variables must be maintained
for use in the next application of the labeling procedure.

It follows that it is necessary to maintain an explicit record of all
blossoms, their base nodes, and their nesting relationships. It #seems  un-
necessary to specify the exact form in which these records are to1  be main-
tained. A variety of data structures are appropriate. It is necessary only
that the reader be convinced that the necessary record-keeping tasks can
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be accomplished in a manner consistent with the asserted complexity esti-
mates.

As before, we identify the base node of the outermost blossom in
which a given node i is contained by b(i). Nested blossoms may have the
same base node (hence blossoms are not uniquely identified by their base
nodes), but two distinct outermost blossoms cannot have the same base.

For brevity, we call a node i a base node if b(i) = i. even though such
a node may not be contained within a blossorn. Similarly, we may speak
of “nodes contained in the same outermost blossom as i.,”  even though
i is not in a blossom. In this case, we refer only to the node i itself.

TYPES OF BLOSSOMS

In cardinality matching only outermost blossoms are of consequence, and
the base nodes of these blossoms have S-labels but not T-labels. There are
now four distinct types of blossoms:

(1) Unlabeled blossoms, corresponding to unlabeled pseudonodes. The
base node has no label. The blossom is outermost, and its dual variable
is strictly positive.
(2) S-blossoms, corresponding to S-labeled pseudonodes. The base node
has an S-label, but not a T-label. The blossom is outermost, and its dual
variable may be either zero or positive.
(3) T-blossoms, corresponding to T-labeled pseudonodes. The base node
has a T-label, but not an S-label. The blossom is outermost, and its dual
variable is strictly positive.
(4) Inner blossoms, correspondng  to pseudonodes shrunken inside
pseudonodes. The base node may have both an S-label and a T-label
and the dual variable is strictly pofsitive.

LABELING OF T-BLOSSOMS

Suppose the S-label on node i is scanned and an arc (i, j)$ X is found,
where ui  + uj - wij = 0, b(j) #  b(i), b(j) #j, and b(j) is unlabeled. In
this situation, j is contained in an unlabeled blossom which should receive
a T-label from i. Accordingly, we a.pply  t.he label “T:i,  j” to b(j), where
this label has exactly the same interpretation as,  in Section 0.

For ease of description, we shall place the label “?‘:i,  j” on node
b(j), even when b(j ) = ,j.  This is harmless, the second index being ignored
in backtracing.



An 0 (n”) Weighted Matching Algorithm 249

CORRECTION OF LABELS FOLLOWING AUGME!NTATION

After each augmentation, blossoms must be retained for use in the next
application of the labeling procedure. We also wish to retain labels on nodes
within blossoms. But the labels on nodes through which the augmenting
path passes are no longer valid, and must be corrected.

We carry out this task as follows. First, identify al2 the blossoms
(not just the outermost ones) through which the augmenting path Ipasses.
For each blossom, find its new base node. (The augmenting path extends
between the old base node and the new base node of each blossom through
which it passes.)

For all nodes in the augmenting path which are neither new base
nodes nor old base nodes, simply interchange the indices of the labels.
That is, if the labels on such a node are “S: i” and “T: j..” the new labels are
“S: j ” and “T : i.”

For a node b that is a new base node, find the innermos,t blossom
in which it is contained and the old base node b’ of this. blossom. Find arcs
(b. i) and (b’.j) of the augmenting path, where i, ,j are not contamed  in the
blossom. The new labels for b are “S: i”  and “T: j, b’.”

/ ,’ ~4b--k-+6~ /I II

/ ./'  / T:3 \ T:10,9  w, Is:

\ 1T.3 i T:9, IO/ T ;

Figure 6.15 Augmenting path passing through blossoms
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F‘or a node b’ that is an old base node, fincl  the innermost blossom
in which it is contained, and the new base node b of this blossom. If b = b’,
simply interchange the indices of the labels on li’.  Otherwise, backtrace
from the (old) T-label on b, to discover an arc (b’, j)$  X, where j is in the
blossom. Let (b’, i) be the arc of the augmenting path, where i is in the blos-
som, incident to b’. The new labels for b’  are “S:Y  and “T: j.”

An example of the effect of the label correction procedure is shown
in Figures 6.15 and 6.16. An augmenting path, extends between nodes 1
and 10 in Figures 6.15. After augmentation and correction of labels, the
labels on nodes within the outermost blossom are as shown in Figure 6.16.

It should be clear that the procedure requires no more than O(n’)
running time, which is all that is required to attain the overall level of
complexity of O(n3) asserted for the algorithm developed in the next section.

A-VARIABLE

A variable A is introduced and updated by the labeling procedure. This
variable is to indicate the maximum value of 6  which can be chosen. con-
sistent with conditions (8.5) and (8.7)

Figure 6.16 Corrected labels after augmelitatlon
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Finally we should note that, for conciseness, Wij  is used to represent
ui  + uj - wij. Each time Zij is referred t,o  in the computation, the .values
of ui, uj, and wij are found and Wii  = ui  + uj - wij is computed. The -values
of gij are not maintained in storage, else they would all have to be recom-
puted with each revision of the dual solution, defeating the O(n3) com-
plexity estimate sought in the next section.

0 (n4) WEIGHTED MATCHING ALGORITHM

Step 0 (Start) The graph G = (N. A) is given, with a weight wij for each
arc (i,j).  Set ui  = imax  {wij}, for each node HEN.  Set A = +SG. Set
X = a.  There are no blossoms and no nodes are labeled.

Step I (Labeling)

(1.0) Apply the label “S: @”  to each exposed node.
(1.1) If there are no unscanned labels, go to Step 4. Otherwise, find
a node i with an unscanned label. If the label is an S-label, go to Step 1.2;
if it is a T-label, go to Step 1.3.
(1.2) Scan the S-label on node i by carrying out the following procedure
for each arc (i, j) $ X incident to node i:

If b(i) = b(j), do nothing; otherwise continue.
If node b(j) has an S-label and Wij  = 0. backtrace from the S-

labels on nodes i and j. If different root nodes are reached, go to Step 2;
if the same root node is reached, go to S’tep  3.

If node b (j ) has an S-label and Wij  > 0, set A = min {A, $ Wij  } .
If node b(j) is unlabeled and Wij  = 0, apply the label “T:i,  j”

to b(j).
If node b(j) is unlabeled and Miij  > 0, set A ==  min {A, Wij‘i  .
When the scanning of node i is complete, return to Step 1.1.

(1.3) Scan the T-label on node i by carrying out the following Iprocedure
for the unique arc (i, j) E  X incident to node i.

If b(i) = b(j), do nothing; otherwise continue.
If node j has a T-label, backtrace from the T-labels on nlodes  i and

j. If different root nodes are reached, go to Step 2; if the same root node
is reached, go to Step 3.

Otherwise, give node j the label “S:i.”  The S-labels on all nodes
within the outermost blossom with base node j are now considered to
be unscanned.

Return to Step 1.1.

Step 2 (Augmentation) An augmenting path has been found in Step 1.2
or 1.3. Augment the matching X. Correct labels on nodes in the augmenting
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path, as described in the text. Expand blossoms with zero dual variables,
resetting the blossom numbers b(i). Remove labels from a.11 base nodes.
Remaining labels are set to “scanned” state. Set A = + cx).  <io to Step 1.0.

Step 3 (Blossoming) A blossom has been formed in Step 1.2 or 1.3.
Determine the membership and base node of the new blossom, as described
in the text. Supply missing labels for all nodes, except the base node, in
the new blossom. Reset blossom numbers. Set the z-variable to zero for the
new blossom.

Return to Step 1.2 or 1.3, as appropriate.

Step 4 (Revision of Dual Solution) Let K,  denote the set of S-blossoms
and K,  denote the set of T-blossoms.

Find

6, = min {ui],,

6, = +min {z,lk~  KT},

6 = min{6,,6,,A).

Set ai  = ui  - 6, for each node i such that b(i) has an ,S-label.
Set cli = ui  + 6, for each node i such that b(i) has a T-label.
Set zk = zk - 26, for each blossom k E  K,,
Set zk = zk + 26, for each blossom k E K,.
If 6  = 6,,  halt; X is a maximum weight matching, and the values of

q,  zk yield an optimal dual solution.
If 6  = 6,,  expand each T’-bloss80m  k for which zk = 0 by determining

the blossoms nested immediately within the T-blossom and resetting b(i)
for all nodes within the blossom. Remove labels from all new base nodes
within the expanded blossom.

All labels on base nodes, and S-labels on nodes within S-blossoms,
are now “unscanned.” Remaining labels are in a “scanned” state.

SetA = +m.
Return to Step 1.1. //

10
An O(n3)  Weighted Matching Algortihm

Several features must be added to the algorithm presented in the previous
section, in order to reduce its complexity to 0 (ti3).  Each of these features
has as its objective the avoidance of rescanning labels after revision of the
dual solution.
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There are three reasons why labels must be rescanned in the O(n4)
algorithm :

(1) T-labels Suppose Wij  is reduced to zero for an arc (i. j) $  X, where
i has an S-label and b(j) is unlabeled. Rescanning the S-label on node i
results in the application of a T-label to b(j).
(2) Augmenting paths and blossoms Suppose Wij  is reduced to zero for
an arc (i, j) $ X, where both i and j have S-labels. Rescanning the S-label
on either i or j results in the discovery of either an augmenting path or
a new blossom.
(3) Expansion of T-blossoms Suppose a T-blossom is exp,anded  be-
cause its z-variable is reduced to zero. Rescanning the S-labels, on nodes
adjacent to the expanded blossom may result in the labeling of nodes
and blossoms contained within the e;cpanded  blossom.

These three situations are provided for by the introduction of special
variables ni,  yi, and Zi  and two arrays C’(i,  j) and t(i), as descri’bed  in the
following. The variable A is dispensed with.

rci  VARIABLES

The role of the xi variables is exactly tlhe same as in bipartite matching.
Suppose the S-label on node i is scanned, and an arc (i, j) $  X is found,
where b(i) #  b(j) and b(j) has no S-label. Then if iGij < Q,), th’e label
T:i,  j is applied to node b(j), and nbcj)  is set to Wij.

In other words, if ni > 0, then the T-label on node i is “undeserved.”
The value of 7ci  indicates the value of 6  by which the dual solution must be
revised, in order for the T-label on node i to become “deserved.” The T-label
on node i is scanned only if xi = 0.

yi  VARIABLES, C(i,  j) ARRAY

Let us call an arc (i, j) q! X critical if i and j are contained in different S-
blossoms. Such an arc is found in the course of scanning the S-label on i
or j. If Wij  = ui  + uj - wij = 0, either an augmenting, path has been dis-
covered or a new blossom formed. On the other hand, if Wij  ;b  0, a later
revision of the dual variables may reduce Wij  to zero, and access to an-c  (i,  j)
is needed at that time.

Critical arcs can be recovered by rescanning all S-labels after each
revision of the dual variables. But, as we know, this technique causes the
algorithm to be O(n4) in complexity. Clearly another strategy is called for.

We associate a variable yi  with each node i. For each base node i,
yi  indicates the minimum value of WP4, for any critical arc (p, 4) extending
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between the S-blossom containing i and any other S-blossom (or S-labeled
base node). The variable yi  is continually update’d  by the labeling and blos-
soming procedures.

When the dual solution is revised, yi  is reduced by 26. (The u-variable
at each end of a critical arc is decreased by 8.) If yi  becomes zero at a base
node i, then we recover the critical arc which yields either an augmenting
path or a new blossom by utilizing an array C(i,  j) of critical arcs which is
maintained for this purpose.

For each pair of base nodes i and j, C(i,  j) is a critical arc (p, q)
extending between the S-blossoms c’ontaining  i and j, and i?,, is minimal
with respect to all such arcs. When yi  = 0 for base node i. the desired critical
arc can be found by retrieving all arcs C(i, j) = (p, q),  where i is fixed and
j ranges over all other base nodes, and evaluating WP4  for each such arc.
(If C(i,  jl does not exist, denoted C(i, j) := @, then WP4  = +x.) For at
least one of these arcs (p, q),  it must be the case that WP4  = 0. Recovering
this arc requires O(n) running time.

Initially, and after each augmentation, yi  = +x and C(i,  j) = @.
Updating is performed by the labeling procedure as follows. Suppose the
S-label on node i is scanned and an arc (i.,  j)# X is found, where \“L’ij  > 0,
b(i) + b(j),andb(j)hasanS-label.Set

Yb(i)  = min {Yb(i)?  $Sij}.

Yb(j) = min  {Yb(j)s  :rI Wij)

Find C(b(i), b(j)) = (p,  q)  and evaluate WP4.  If wij < VVP4, then  se t
C(b(i),  b(j))  = (i, j), (Th e array is symmetric; we assume resetting C(i,  j)
also resets C(j, i).)

Now suppose a new blossom is formed. with base node b.  Let I
denote the set of (old) base nodes which are to be contained in this blossom,
and let J be the complementary set of base nodes. We musl  revise yb  and
C(b,  j), for each je J. (yj,  for jE J, and C(i,  j) for all pairs ,i,  jg J are un-
changed.) This is done as follows.

For each j E J, find an arc C( i, j ) = (p’,  q’)  for which

(10.1)

and set C(b,  j) = (p’,  4’). Then set

Yb =  2; {$$‘(b, j)  =  (I’, d$

At first glance, it might appear that this procedure causes us trouble
in attaining the desired degree of complexity for the algorithm. The revision
of C(b,  j) by (10.1) requires O(n’)  running time for any single blossom,
and 0 (n’) blossoms may be formed overall, seem:ing  to imply 0 (n”)  r turning
time for the algorithm. This is not, however th.e case, as we shall show.
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Suppose 111 = k,,  IJI = k,. Then k,k, node pairs i, j enter into the
evaluation of (10.1) for all j E J, and the evaluation is O(k,k,)  in complexity.
At least (k, - 1) k, of these pairs can never enter into any later evaluation
of (10.1). (That is, not until after the next augmentation.) Also k, L 3.
It follows that for every three node pairs entering into the evaluation of
(lO.l),  at least two other node pairs will not enter into any later evaluation.
The total number of node pairs is less than 111  ,1 2  hence the total number of
node pairs processed by (10.1) between augmentations is boundled  by

$n’  + in’  + +8n2  + . . . .

which is O(n2). The total running time attributable to (10.1) between aug-
mentations is thus O(d)  or O(n3) overall. The other operation:s involved
in maintaining the variables yi  or array C(i, j) are easil:y  seen to have equal
or less complexity.

zi VARIABLES, t(i) ARRAY

When the z-variable identified with a 7rblossom  is reduced to zero, that
blossom must be expanded. Any blossoms immediately within the blossom
now become outermost blossoms, and the base number b(i) for each node
i within the blossom must be reset accordingly.

We must now take care that the base nodes of the new outermost
blossoms have correct labels. This task is complicated by the fact that
certain of these new base nodes would ha.ve  been entitled to receive irlabels
from the scanning of S-labels on nodes outside the expanded blossom,
except that at the time those S-labels were scanned, the base nodes were
contained within the now expanded blossom. If we were to rescan all exist-
ing S-labels, the appropriate T-labels would now be applied. However,
this would not enable us to achieve the desired degree of complexity for
the algorithm.

We resolve this problem by providing a variable zi and an index
t(i) for each node i. At the beginning of the labeling procedure. zi = + CC
and t(i) is undefined. Thereafter, suppose the S-label on node i is scanned,
an arc (i, j)$ X is found to exist, b(i) #  b(j), and I?(j) has no S-label.
We compare Wij  with 7j. If Wij  < ‘j, we set ‘j = gij and t(j) = i. Then,
when a T-blossom is expanded, we perform the following operations. First,
any existing labels are removed from the base nodes of the new outermost
blossoms. Then, for each new outermost blossom, w’e  find the minimum
of zj over all nodes j within the blossom. Suppose zk =: min zj and t(k) = i.
Then the label “T: i, k”  is applied to the base node b(k)1 and n,,(k)  is set to tk.

Each time a change in 6 is made in the dual variables, ‘si  is reduced
by 6 for each node i within an unlabeled blossom and is unchanged for
each node within a T-blossom.
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O(n3)  WEIGHTED MATCHING ALGORITHM

Step 0 (Start) The graph G = (N, A) is,  given, with a weight ‘wij  for
each arc (i, j). Let W = i max (wij}.  Set u,; = I${ yi  = rc,  = ri = + cx, and
b(i) = i for each node i E  N. For each node pair i, j set C(i,  j ) = !a. Set
X = 0. There are no blossoms and no nodes are labeled.

Step I (Labeling)

(1.0) Apply the label “S: la”  to each exposed node.
(1.1) If there is no node i with an unscanned S-label or an unscanned
T-label with rri = 0. go to Step 4. Otherwise, find such a node i. If the
label is an S-label, go to Step 1.2; if it is a T-la.bel,  go to Sl.ep  1.3.
(1.2) Scan the S-label on node i by carrying out the following procedure
for each arc (i, j ) $ X incident to node i :

Ifb(i)  = b(j), do nothing; otherwise continue.
If node b(j) has an S-label and Wij  = 0, backtrace from the S-

labels on nodes i and j. If different root nodes are reached, go to Step 2;
if the same root node is reached, go to Step 3.

If node b(j) has an S-label and Wij  > 0, then carry out the follow-
ing procedure. Set

Yb(i) = min  {Yb(i),  iMiij},

Yb(j)  = min  (Yb(j),  $Eij}.

Find C(b(i), b(j)) = (p, q). If aij < WPy, then set C(b(i), b(j)) = (i,  j).
If node b(j) has no S-label and ~Vij  < rcbLi,,  then apply the label

“T:i,  j” to b(j), replacing any exitsting  ‘Flabel, and set x!,(j) = Wlj.
If node b(j) has no S-label and Wij  < zj, then set Zj  = Wij  a.nd  set

f(j) = i.
When the scanning of node i is complete, return to Step 1.1.

(1.3) Scan the T-label on node i (where ni  = 0) by carrying out the follow-
ing procedure for the unique arc (i, j) E  X incident to node i.

If b(i) = b(j), do nothing; otherwise continue.
If node j has a T-label and rcj  = 0, backtrace from the Tlabels

on nodes i and j. If different root nodes are reached, go to Step 2; if the
same root node is reached, go to Step 3.

Otherwise, give node j the label “S:i.”  The S-labels on all nodes
within the outermost blossom with base node j are now ‘considered to
be unscanned.

Return to Step 1.1.

Step 2 (,4mgmentation)  An augmenting path has been found in Step 1.2,
1.3, or 4.2. Augment the matching X Correct labels on nodes in the aug-
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menting path, as described in the text. Expand blossoms with zero dual
variables, resetting the blossom numbers. Remove labels from all base
nodes. The remaining labels are set to the “scanned” state. Set yi  ==  ni  =
~~  = +cc,  for all i, and C(i, j) = @,  for all i, j. Go to Step 1.0.

Step 3 (Blossoming) A blossom has been formed in Step 1.2, 1.3, or 4.2.
Determine the membership and base node of the new blossom, as described
in the text. Supply the missing labels for all nodes, except the base node,
in the new blossom. Reset the blossom numbers. Set the z-variable 1.0 zero
for the new blossom.

Let b be the base node of the new blossom, and I be the set of (old)
base nodes contained in the blossom. Let J be the complementary set of
base nodes. For each j E  J, find arc C(i, j) = (p’, q’), for which

-
wP’q’ = YE?  {W,,(C(.i,j)  =  (p,d),

and set C(b, j) = (p’, q’). Then set

“tb  =  ye5  {~,,\c(b,j)  =  (Pdl)~~

Return to Step 1.2, 1.3, or 4.2, as appropriate.

Step 4 (Revision of Dual Solution)

(4.1) Let K,  denote the set of S-blossoms and K, denote the set of
T-blossoms, i.e., outermost blossoms whose base nodes b have l--labels
with nb  = 0.

Find
6, = min (ui}

SZ  = + min {z$ E KT}

6, = min {y,(b(i)  = i}

S4 = min (7~~1~~  > 0)

6 = min {6,,  EN,,  6,,  6,).

Set ui  = ui  - 6, for each node i such that b(i) has an S-label.
Set ui  = ui  + 6, for each node i such that b(i) has a T-label and

7rb@)  = 0.
Set yi  = yi  - 26, for each node i such that b(i)1  = i.
Set 7ci  = q - 6, if ni > 0.
Set zi = zi - 6, for each node i such that q,(i)  ‘>  0.
Set zk = zk - 26, for each blossom k E K,.
Set zk = z + 26, for each blossom k E  K,.
If 6  = 6, halt; X is a maximum weight matching, and the values

of ui, zk yield an optimal solution.
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If 6  = 6,,  carry out the f(Dllowing  procedure to expand each
T-blossom k for which zk = 0. Determine the blossoms nested immediately
within the T-blossom and reset b(i) for all nodes within the blossom.
Remove labels from all new base nodes within the blosslom.  For each
new base node h,  find

si  = min j~“~lb(,j)  = b),

and if 7i < +x, apply the (unscanned) label “T:t(i),  i”  to b and set
7cb  = 7,. Remaining labels on nodes within the blossom are in a “scanned”
state.
(4.2) If y6  > 0, for all base nodes,  b, go to Step 1.1. Otherwise, find a
base node b for which yb  = 0 and a base node b’  such that Wij  ==  0 for
(i,,j)  = C(b,  b’). Backtrace from the S-labels on i and j. If different root
nodes are reached, go to Step 2. If the sa.me  root node is reached, go to
Step 3, later returning to Step 4.2. //

We can now verify the complexity estimate of O(n3) for lihe algorithm.
For simplicity, let us estimate running time between each of the O(n)
augmentations, and show that this is O(n2).

The scanning operations performed in Step 1, exclusive of back-
tracing, are O(n) for each label scanned. At most ‘two labels are scanned for
each node, hence labeling and scanning account for O(n2) running time.
(Note that new labels applied to new base nodes created by the expansion
of T-blossoms replace T-labels that are in a “scanned” state, but which have
not been scanned since the previous augmentation.)

The correction of labels following augmentation requires O(n2)
running time.

At most n/2 blossoms are formed, and the backtracing and la.beling
operations are O(n) in complexity. The revision of yi  and C(i,  j) requires
O(lz2)  running time per augmentation, as shown previously. Hence blossom-
ing operations require O(n2)  running time.

There can be at most O(n) revisions of the dual solution. (Each change
in the dual variables results either in a new 7llabel with xi = 0. in the forma-
tion of a new S-blossom, the expansion of a T-blossom, in the discovery
of an augmenting path, or in termination of the computation. None of these
things can occur more than O(n) times.) All operations that are required
for each revison of the dual solution are O(IZ),  except for those which are
0 (~1~)  overall between augmentations, e.g., expansion of T-blossoms.

We thus conclude that the algorithm is indeed O(n3)  in complexity.

PROBLEM

10.1 Using the weighted matching algorithm as a guide, write out a procedure
for max-min matching, parallel to that in Chapter 5, Section 7.
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11
The Chinese Postman ‘s Problem

Recall the statement of the Chinese Postman”s Problem given in Se’ction  2.
The problem is to find a minimum leng;th  closed path, with repeated arcs
as necessary, which contains each arc of a given undirected network.

We assume that the network is tconnccted  and that all arc lengths
are nonnegative. If the degree of each node is even, then the network is
Eulerian  and the solution is simply an Euler path. (See Chapter 2, Section 9.)
Such a path, which contains each arc exactly once, is certainly as short as
any closed path which contains each arc at least once.

Now suppose that the network G is not Eulerian. Consider any
feasible closed path, and use it to construct a network G*,  where G* has
the same nodes as G, and as many copies of an arc (i, j) as the arc (i j)
appears in the path. The graph G* (or “multi-graph,” since it has multiple
arcs) is Eulerian. Also, if the path is optimal then no arc (i, j) appears in
G* no more than twice. (Why?) This means, of course, that it is unnecessary
for the postman to traverse any street more than twice.

These observations enable us to reformulate the Postman’s problem.
as follows. Given a connected network G, where ea.ch  arc is ass#igned  a
nonnegative length, find in the graph a r;et  of arcs of minimum tota. length.
such that when these arcs are duplicated, the degree of each node becomes
even. That is, find a set of arcs such that an odd number of arcs in the set
meets each odd-degree node and an even number in the set meets each
even-degree node.

One possible solution method is to start with any given fe:asible  solu-
tion, and then to make successive improvements in it through the modifi-
cation of arc weights and the discovery of negative cycles, described as
follows. This was the technique originally proposed by Mei-ko  Kwan.

Consider, for example, the network shown in Figure 6.17a. It has
four odd-nodes: 1, 2, 4, and 5. A feasible set of arcs for duplication is the
set  C(1,3),(3,4),(2,3),(3,5)}.  Now a new network is constructed., exactly
like the original, except that each of the arcs which we propose to duplicate
is given the negative of its original length, as shown in Figure 6.17b.  If
this new network contains a negative cycle, such a cycle can be used to
improve the solution. All we have to do is work our way around the cycle,
duplicating each arc which was previously not duplicated, and unduplicat-
ing each edge which was. Without much difficulty, we can show that the
converse is also true, and thereby establish an “augmenting path” theorem:
The duplicated arcs have minimum length if and only if there is no negative
cycle.

The only trouble with these observations, as Edmonds  pointed
out, is that it is not apparent how one should detect negative cycles in an
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(k’)

Figure 6.17 Network with duplicated arcs and discovery of negative cycle

undirected network. The ordinary fshortest  path computations do not
apply to undirected networks in which some arcs have negative length.
And any apparent process of enumeration involvles  a lengthy computation.

By contrast, Edmonds’ solution of the Chinese Postman’s Problem
is O(n3). It employs both shortest path and weighted matching computa-
tions as subroutines, and proceeds as faollows  :

ALGORITHM FOR CHINESE POSTMAN’S PROBLEM

Step I (Ident$cation  of Odd Nodes) Identify the nodes of odd degree
in the graph G. If there are none, go to Step 4.
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Step 2 (Shortest Paths) Compute the shortest paths between all pairs
of odd-nodes.

Step 3 (Weighted Matching) Partition the odd-nodes into pairs, so that
the sum of the lengths of the shortest paths joining the pairs is rninjmal.  Do
this by solving a weighted matching problem over the complete g,raph  G*
whose nodes are the odd-nodes of the network, and in which wiJF,  the weight
of arc (i j), is given by the relation

wij = A4  - aii

where uij  is the length of a shortest path between i and j, and M is a large
number. (Note that there is a complete matching in a. complete graph with
an even number of nodes.) The arcs of G in the paths identified with arcs
of the matching are arcs which should be traversed l.wice.  Duplicate these
arcs in G.

Step 4 (Construction of TOW) Use any efficient procedure to construct
an Euler path in G. / /

PROBLEMS

11.1 Apply Edmonds’ algorithm to the network shown in Figure 6.17a.
11.2 Show that  no arc  can appear  in  more  than one of  the  shor tes t  pa ths  p icked

out by an optimal solution to the matching problem in Step 3 of the algo-
rithm.

11.3 Formulate the Postman’s Problem for directed networks, and show that
i t  can  be  so lved  by  ne twork  f low techniques .  What  do  you  suppose  can  be
done for  the case of  a  “mixed” graph. ,  ie . ,  one in which some arcs are directed
and some are undirected?

11.4 Suppose that  the  length  of  an  arc  i s  a  funct ion of  thme number of times it  has
been t raversed.  Does  th is  change the  formula t ion  and solut ion  of  the  prob-
lem? Does i t  change the directed vers ion of  the problem?

11.5 Devise  a  procedure  to  detec t  a  negat ive  cycle  in  an  undirec ted ,  arc-weighted
graph .
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SE\/EN

Matroids  and the
Greedy Algorithm

Introduction

Matroid theory was founded by Hassler Whitney in 1935 as a product of
his investigations of the algebraic theory of linear dependence. This theory
has since been found to have ramifications in graph theory, lattice .theory,
projective geometry, electrical network theory, switching theory, and linear
programming. In particular, Jack Edlmonds,  has been respons,ible  for point-
ing out the siginficance of matroid theory to combinatorial optimization
and has provided many pioneering results.

Our objective in this book is simply to present those basic defini-
tions and theorems of matroid theory which have most immediate applica-
tion in the area of combinatorial optimization. Specifically, we shall try
to show how matroid theory provides an interesting and potentially powerful
generalization of network flow theory.

In this chapter we concentrate on rnatroid problems which can be
solved by the simple and elegant approach known as the “greedy”algorithm.
In the following chapter we present more elab’orate,  but computa.tional-
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ly efficient, algorithms for more complex matroid problems. Included among
these are the partitioning algorithm of Edmonds and the  cardinality inter-
section and weighted intersection algorithms of the present author.

2
Three Apparently Unrelated Optimization Problems

Let us consider three problems which at first glance seem to have very
little in common except for their solution procedures.

A “SEMIMATCHING” PROBLEM

Let W = (wij)  be an m x II nonnegative matrix. Suppose we wish to choose
a maximum weight subset of elements, subject to the constraint that no
two elements are from the same row of the matrix. Or, in other words, the
problem is to

maximize
C WijXij

i,j

subject to

4 xij  s l (i ==  1, 2, . , m)

XijE  {O,  l}.

This “semimatching” problem can be solved by choosing the largest
element in each row of I/c!  Or alternatively: choose the elements one at a
time in order of size, largest jirst, rejecting an element only if an element
in the same row has already been chosen. For example, .let

4@4  5

6

w=

2 9 2 @

3@1 I
123@

The elements chosen by the algorithm are encircled.

A SEQUENCING PROBLEM

A number ofjobs  are to be processed b,y a single machine. All jobs require
the same processing time, e.g., one hour. Each job j has assigned to it a dead-
line dj,  and a penalty wj, which must be paid if the job is not compl,eted  by
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its deadline. What ordering of the jobs minimizles  the total penalty costs?
It is easily seen that there exists an optimal sequence in which all

jobs completed on time appear at the beginning of the sequence in order
of deadlines, earliest deadline first. The late jobs follow, in arbitrary order.
Thus, the problem is to choose an optimal set ofjobs which can be completed
on time. The following procedure can he shown to accomplish that objective.

Choose the jobs one at a time in order of penalties, largest jirst,
rejecting u job only if its choice would mean that it, or one of tC;le  jobs already
chosen, cannot be completed on time. (This requires checking to see that the
total amount of processing to be completed by a particular deadline does
not exceed the deadline in question.)

For example, consider the set of jobs below, where the processing
time of each job is one hour, and deadlines are expressed in hours of elapsed
time.

Job Deadline Penalty

.i (r, WI

1 I 10
2 1 9
3 3 7
4 2 6
5 3 4
6 6 2

Job 1 is chosen, but job 2 is discarded because the two together
require two hours of processing time: and the deadline for job 2 is at the
end of the first hour. Jobs 3 and 4 are chosen, job 5 is discarded, and job 6
is chosen. An optimal sequence is jobs 1, 4, 3, and 6, followed by the late
jobs 2 and 5.

THE MAXIMAL SPANNING TREE PROBLEM

A television network wishes to lease video links so that its stations in various
cities can be formed into a connected network. Each link (1’, j) has a dif-
ferent rental cost aij.  How can the network be c’onstructed  with minimum
total cost’?

Clearly, what is wanted is a rninimum cost spanning tree of video
links. In order to turn this into a maximization problem, replace aii by
a weight wij = N - aij,  where N is a large number, and find a maximum
weight spanning tree. Kruskal has proposed the following solution: Choose
the arcs one at a time in order of their weights, largest ,firs,r,  rejecting an
arc only if it forms a cycle with arcs already chosen.
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For example, suppose the network is as shown in Figure 7.1. The
arcs chosen by the algorithm are indicated b,y  wavy lines.

Each of the algorithms described ablove  can be characterized as
“greedy,” because at each step they attempt to add the  choicest possible
morsel to the solution. A curious aspect of this procedure is that the com-
putation does not in any way depend upon the actual numerical values
of the weights involved, but only on their relative magnitudes.

Our goal in the next several secti,ons  isi  to introduce enough mathe-
matical machinery to enable us to justify all three of the,se  greedy algorithms
in one fell swoop, and to explain such facts as the unimportance of the
actual numerical values of the weights.

P R O B L E M S

2.1 Construct a simple example to show that the greedy algorithm is not valid
for the weighted matching problem. That is, no two elements of W are to be
chosen from the same row or the same column.

2.2 Find an opt imal  select ion of  jobs which can al l  be performed on t ime.

Job Deadline Penalty

j d, Iw

I I 10
2 3 9

3 2 ‘ 7
4 I 6
5 4 5
6 5 4

Figure 7.1 Network wl’h maximal span

nlng  tree
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3
Matroid  Dejinitions

Consider a matrix whose elements are from an arbitrary field. Any subset
of the columns of the matrix is either linearly independent or linearly de-
pendent; the subsets thus fall into two classes. As Whitney pointed out in
his classic paper, “On the Abstract Properties of Linear Dependence,”
these classes are not at all arbitrary. IFor  instance, any subset of an inde-
pendent set is independent. Also, if I, and jfp+r  are independent sets of p
and p + 1 columns respectively, then I, together with some column  of
I p+  1 forms an independent set of p + 1 columns.

On the other hand there are systems that satisfy these two proper-
ties but do not correspond to subsets of columns of any matrix. Algebraic
systems which generalize these properties of matrices are known as
“matroids.”

Definition A matroid M  = (E, 4) is a structure in which E is a finite set
of elements and 9 is a family of subsets of E, such that

(3.1) ,@  E  .f and all proper subsets of a set I im ,f  are in 9’.
(3.2) If I,, and 1,+i are sets in ,Y  (containing JYJ  and p + 1 elements re-
spectively, then there exists an element e E  ,I,+ 1 -- I, such that I, + e E  .f.

The system M = (E, 9)  is said to be the matroid of the matrix A
if E corresponds to the set of colum-as of .4, and ,6 contains all linearly
independent subsets of columns. A matroid is said to be matric if it is the
matroid of some matrix A.

Matroids also have a close connection with graphs, as we can see
by considering the matroid of the node-arc incidence matrix of the graph G,
where the 0, 1 elements of the matrix are taken to be elements of the field
of integers modulo 2. In this case, a. linearly independent :subset  Iof  the
columns corresponds to a subset of arcs which is cycle-free, i.e., a tree, or
a forest of trees, in the graph. A matric matroid M = (E, Y) is said to be the
matroid oj’  the gruph G if E is the set ‘of  arcs of G and a subset I c 12  is in
.a if and only if 1  is a cycle-free subset of arcs. Such a matroid is said to be
graphic.

Much of the terminology of rnatroid theory is drawn from linear
algebra. For example, a subset I in 2 is said to be an independent set of
the matroid M = (E,  .Y).  (“Independence” is a property stemming from
membership in 9, and not the other way around.) A maxima:1 independent
set is said to be a base of the matroid., and the rank r(A)  of a subset .4 z E
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is the cardinality of a maximal independent subset of .A. (All maximal in-
dependent subsets of A must have the same cardinality; see Problern 3.1.)
A subset of E which is not independent is dependent.

Other terminology is drawn from graph theory. For example, a
minimal dependent set is called a circuit. Still other terminology is common
to both linear algebra and graph theory. Thus, the sFlan  of a set rl E E,
denoted sp(A),  is the maximal superset  of A having the same rank as A.
Clearly, if B is a base, then sp (I?)  = E; i.e., “‘a base spans the matroid.”
A set A which is equal to its own span, i.e.. A ==  sp(A), is said to be a closed
set.

Theorem 3.1 The span of a set is unique.

PROOF Let A be given and assume A, and A, are distinct maximal sulpersets
of A such that r(A) = r(A,)  = r(A2) = p. Let e2  E ,4,- A,. Then r(.4,  i-e,) >
r(A), else A, would not be maximal with respect to the property of having
equal rank. Let I, z A and Ip+l  _c A, + e2  be independent sets .having
p and p + 1 elements respectively. By (3.2), there must be an element
eElp+l - I, such that I, + e is independent. But the only such element
can be  e2.  Hence I, + e2  is independent. But I, + eII  & A,, contrary to
the assumption that r(A,)  = p. It follows that the ass,umption  that there
can be two distinct spans A, and A, is false. //

As an example, consider the matroid of the graph G shown in Figure
7.2. Arcs (1, 2), (1, 3),  and (4, 5) form an independent set. These arc:s,  plus
any one of the arcs (1,4),  (2, 5),  (3,4),  (3, 5) form a base. The arcs (1, 2),
(1,3),  (4,5) plus both the arcs (1,4)  and (2,5)  form a dependent set, since
it contains the cycle (1,2),  (2,5),  (4, 5), (1,4).  This cycle is a circuit of the
matroid. Each cycle of a graph G is a circuit of its matroid. Since cycles

Figure 7.2 Example graph
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may contain differing numbers of arcs, it follows that not all circuilts  have
the same cardinality.

Consider the dependent set A = { (1,2),  (1, 3), (2, 3)., (2, 5)}. Note
that r(A) = 3 and that arcs (1,5)  and (3,5).  but no others, can be added
to A without increasing its rank. Hence sp (A) ==  { (1,2),  (1, 3),  (1, 5), (2. 3),
(2,5),  (3, 5)}. Another characterization of the span of a set is that sp (A)
contains all elements in A plus all elements e such that A’ + e is a circuit,
for some A’ G A.

Another useful theorem that follows almost directly from thle defi-
nitions is the following.

Theorem 3.2 If I is independent and I + e is dependent, then I + e con-
tains exactly one circuit.

PROOF Suppose there are two distinct circuits C,  and C, in I + e. Ob-
viously e E C,  n  C,  and (C, u C,) - P is independent. Choose r’ E  C, - C,.
C,  - e’ is independent and can be augmented with elements of (C, u C,) -
e (by repeated application of (3.2), using subsets of (C, u C,) - e) to obtain
an independent set I’ c C,  u  C2 such that iI’1  = /(C, u  C,) - el. Thus
there is only one element e” of C,  L-I  C,  not in I’. Either e”  E C,  - C, or
e”  = e’. In the first case C, would be independent and in the second case
C,  would be. This contradiction rules out the exis,tence  of two circuits. //

3.1

3.2

3.3

3.4

PROBLEMS

Let E be an arbitrary subset of II  elements. (a) For given p,  0 I p < II,  let .B
contain all subsets of E with p or fewer elements. Is (E, 9) a matroid? (b) For
given Pi, e2, let .P contain all subse1.s  of E which do not contain both e,  and
e2. I s  (E, .g)  a matroid?
Let M  = (E,.f)  be a matroid and S be an arbitrary subset 01‘  E. Prove that
A4  del S = (E - S, .#‘)  is a matroid, where

9’= (1’IZ’d.Z  c E - - S } .

(M del  S is the matroid obtained by “deletlmg”  the elements of S.)
Let I: = 1. 2. . 7, and let .P contain as bases all fsubsets  of three elements,
except {1,2,4),  {1,3,5),  {1,6,7},  {2,3,6),  {2,5,7),  {3,4,7}, a n d  (,4,5,6}.
Verify that (E,.P) is a matroid. Does  this rnatroid have any circuits with two
elements? (This is cited by Whitney as an example of a nonmatric matroid;
it corresponds to a well-known example of a finite projective geometry. If
you are  ambi t ious ,  t ry  to  demonstra te  that  i t  i s  nonmatr ic . )
Const ruct  a  s imple  example  to  show that  two nonisomorphic  graphs  can have
the same matroid.
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4
Matching, Transversal, and Partition Matroids

In the previous section two types of matroids were defined: matric  matroids
and graphic matroids. We now introduce three other types of matroids:
matching, transversal, and partition matroids, in order of increasing
specialization.

Theorem 4.1 (Edmonds  and Fulkerson)  Let G = (N, A) be a graph and
E be any subset of N. Let ,9  be the family of all subsets I c E  such that there
exists a matching which covers all the nodes in I.  Then M = (E,9) is a
matroid, called a matching matroid.

PROOF Clearly axiom (3.1) is satisfied.
Now suppose I, and IP+  i are r,ets  in .f  containing p and p +  1

nodes, respectively. Let X,  and X,  + i be matchings covering I,  and I,,  i ,
respectively. Assume that for all e E I,,  1 - I,, e is not covered by X,,
else X,  covers I,  + e, for some e E I,,  , - I,, and (3.2) is verified imme-
diately. Consider the symmetric difference of the matchings X,  and X,,  r,
which is composed of alternating cycles and alternating paths (as in the
proof of Theorem 4.1 in Chapter 6). At least one of the alternating paths
must extend between a node not in I, and a node e E I,,  i - I,. The sym-
metric difference of this alternating path and X,  yields a matching which
covers I,  + e. Hence axiom (3.2) is verified and M is a matroid. /i

As a simple example, consider the graph pictured in Figure 7.3.
The set I, is covered by the matching containing the two arcs drawn as
wavy lines and I,  by the matching containing the three arcs; drawn as
straight lines. The alternating path containing arcs (3,6),  (3,4),  and (4,7)
enables us to obtain the matching (1,2),  (3,6),  (4,7),  which covers nodes
1, 2, 3, 6, and 7. Thus, nodes 6 or 7 (or both) can be added to I,.

Recall the definitions of partial transversals, transversals, and sys-
tems of distinct representations given in Section 1, Chapter 5. Let

Q = iqiJi  = 1. 2, ...)  m}

be a family of (not necessarily distinct) subsets of a set

E= {ejJj=  1,2 ,..,, n).

Let G = (Q, E, A) be a bipartite graph where arc (i, j) E A if and only if
ej  ~q~.  By applying Theorem 4.1 to the bipartite graph we obtain the
following corollary.
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Figure 7.3 Example of matching matroid

Corollary 4.2 For any family Q of subsets of E, M = (E, 9) is a matroid
where 9’ is the set of partial transversals of Q.

Let us say that a subfamily Q’ c:  Q is assigrzable  if there is a matching
in G = (Q, E, A) which covers all the node;s  in Q’. By letting Q now play
the role of E in Theorem 4.1 and ag,ain  applying that theorem to the bi-
partite graph G, we have :

Corollary 4.3 For any family Q of subsets of E, A4 = (Q,  9) is a matroid,
where Y is the set of assignable subfamilies of Q.

Any matroid whose structure is like that Iof  the matroids of Corol-
laries 4.2 or 4.3, we call a transversal matroid.

Now let 7c be a partition which separate:s  the finite set E into m
disjoint blocks B,, B,, . . . , B,, and let di,  i = 1,2, ., m be m given non-
negative integers.

Corollary 4.4 For any E, n,  and di,  i := 1,2,  . . , m, n/r  = (E, 9) is a matroid,
where

.Y = {Ill  S E, II n B,I I di,  i = l.,  2, . . . . m).
P R O O F Let Q contain each block B, z E exactly di  times and apply Cor-
ollary 4.2. //

Any matroid whose structure is like that of the matroids;  of Corollary
4.4 is called a partition matroid. Quite commonly, we assume that each
of the numbers di,  i = 1, 2, . . . . m, is unity, and fail to mention this fact
explicitly.
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As an example, let G = (N, A) be a directed garph. Then M, =
(A, X1) is a partition matroid, where 9, contains all subsets of arcs, no
two of which are incident to the same node. M,  = (A, Y2) is also a partition
matroid, where 9, contains all subsets of arcs., no two of which are incident
from the same node. Any set I E  Y1 n  Y2 consists of a node-disjoint set
of directed paths and cycles.

PROBLEMS

4.1 Formulate the “semimatching” problem of Section 2 as a problem involving
a par t i t ion  mat ro id .

4.2 Formulate the sequencing problem of Section 2 as a problem involving a
transversa l  matroid .  Show that  th is  t ransversa l  matroid  has  a  specia l  “convex”
s t ruc ture ,  l ike  tha t  descr ibed  in  Sec t ion  6,  Chapter  5 .

5
Matroid Axiomatics

Some insight into matroid structures can be gained by examining alternative
axiom systems.

Theorem 5.1 Let f be the family of independent sets of a matroid. Then:

(5.1) For any A c E, if I and I’ are maximal subsets of A in 9, then
III  = 11’1.

Conversely, if M  = (E, 9) is a finite structure satisfying (3.1) and
(5.1), then M  is a matroid.

PROOF Suppose (3.2) holds. Let A be given and suppose I and I’ are
maximal subsets of A in .O such that I)  < )I’).  Let I” _C  I’ be such that
111 + 1 = II”\.  By (3.2), there exists an e E  I” - I such that I + e E Y,
contrary to the assumption that I is maximal in A. This is a contradiction.
Hence there can exist no such maximal sets 1  and I’ with 111 < II’\.

Conversely, suppose (5.1) holds. Let I,.  1,+1 be sets in JJ with p
and p + 1 elements, respectively. Let A = I,, u l,+l. It follows from (5.1)
that I, cannot be maximal in A. Hence there must exist an e E: 1,+1 - I,
such that I, + e E  Y, and (3.2) is established. //

Theorem 5.1 asserts that for any A c E, all maximal independent
sets in A have the same cardinality. The rank function r(A) is thus well
defined.
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The specialization of Theorem 5.1 to graphic matroids yields the
following corollary.

Corollary 5.2 All spanning trees of a connected graph conl.ain the same
number of arcs.

Theorem 5.1 shows that condition (5.1) i:s an alternative to axiom
(3.2). There are other alternative characterizations of matroids, as indicated
below.

Theorem 5.3 (Whitney) Let 9?I  be the set of bases ‘of  a matroid. Thlen:

(5.2) 98 #  @ and no set in ,%I  contains another properly.
(5.3) If B, and B, are in 9’ and e, is any element of B,. then there exists
an element e2  in B,  such that B, - ‘?I  + e2 is in 98’.

Conversely, if (E, 98) is a finite structure: satisfying (5.2) and1  (5.3),
then M = (E, .Y) is a matroid, where:

4  =  {III  2  B ,  forsorneBE%).

PROOF The proof is left as an exercise. //

The specialization of Theorem 5.3 to graphic matroids yields the
following corollary.

Corollary 5.4 Let TI and T2  be two spanning trees of a connected graph
and let e,  be any arc in TI.  Then there exists an alrc  e2  in T2  such that Tl -
e, + e2  is also a spanning tree.

Theorem 5.5 (Whitney) Let r be the rank function of a matroid. Then:

(5.4) r(D)  =  0
(5.5) For any subset A c E, and any elernent t’  not in A, either

r(A + e) = r(A)
or

r(A + e) = r(A) + 1.

(5.6) For any subset A c E and elemen1.s  e,, e2  not in A, if

r(A + e,) = r(r1  + e2) = r(A),

then
r(A + e, + e2) = r(A).

Conversely, if r is a function over the finite set E satisfying (5.4)
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through (5.6), then M = (E, 4) is a matroid, where

4  =  {+-(I)  =  111)

PROOF It is not too difficult to verify that conditions (5.4) through (5.6)
are satisfied by a matroid. The converse, however, i,s  more difficult, and
the reader is referred to Whitney’s original paper. //

Theorem 5.6 (Whitney) Let % be the family of circuits of a given matroid.
Then:

(5.7) @ 6 % and no set in % contains another properly.
(5.8) If C, and C,  are in %,  C,  #  C,  and e E  C, n  C,, e’ E C’, - C,,
then there is a set C,  c (C, u C,) - P  E%  such that e’ E  C,.

Conversely, if (E, %?)  is a finite structure satisfying (5.7) and (5.8),
then M = (E, J) is a matroid, where

.a =  {IlC  $  I ,  forall  CE%j.

PROOF The reader should be able to ‘prove that (5.7) and (5.8) are satis-
fied by any matroid. However, proving the converse is more difficult. The
reader is referred to Section 8 of Whitney’s original paper, where Whitney
defines the “rank” of a subset of E in terms of the sets C in which it contains,
and then shows that this notion of rank satisfies (5.4) through (5.6). //

As an example of the application of Theorem 5.6, consider again
the matroid of the graph G shown in Figure 7.2. Let C, = { (1, 3), (2, 3),
(2,5),(4,5),(1,4)],C,  =  {(1,2),(1,3),(2,3)},andletebe(1,3).ThenC,  =
j(l,2),(2,5),(4,5),(1,4)}.

PROBLEMS

5.1 Prove Theorem 5.3.
5.2 Prove  tha t  condi t ions  (5 .4)  through (5 .6)  a re  sa t i s f ied  by  a  matro id .
5.3 Prove  tha t  condi t ions  (5 .7)  and (5 .8)  a re  sa t i s f ied  by  a  matro id .
5.4 Devise an algorithm, based on conditions (5.7) and (!i.8),  to determine, for a

given set E and a family of subsets VT,  whether W  is the set of circuits of a matroid.
Estimate computational complexity as a function of II;1  and 1%1.

6
The Matroid  Greedy Algorithm

Let M = (E, Y) be a matroid whose elements e,  have been given weights
\v(ei)  L 0. We wish to find an independent set for which the sum of the
weights of the elements is maximal.
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Any weighting of the elements induces a lexicographic ordering on
the independent sets. Thus, suppose

I, = {q,  . . ..a.} and I, = {b,, b,,  . . . . b,}

are two independent sets, where the elements are listed in order of weight,
i.e., w(ar ) > w(uJ  > . . . ~(a,,,) and w(b,)  2  w(b:!)  1’ . . . L wN(b,).  Then we
say that I, is lexicographical/y greater than I, if there is some k such that
w(q) = w(b,),  for 1 5  i I k - 1 and ~(a,)  > w(b,J  or else w(ai) = w(b,),
for 1 I i I n and m > II. A set which is not lexicographically less than any
other set is said to be  lexicoyraphicdy  maximum. Clearly, such a lexico-
graphically maximum independent s’et  must be a base, and if all element
weights are distinct this base is unique.

Theorem 6.1 (Rado,  Edmonds)  Let 4 be the family of independent sets
of a matroid. Then:

(6.1) For any nonnegative weighti:ng  of t’he elements in E, a lexicographi-
tally  maximum set in 9 has maximum weight.

Conversely, if A4 = (E,  9) is a finite structure satisfying (3.1) and
(6.1), then M is a matroid.

PROOF Let 9 be the family of independent sets of a weighted matroid.
Let B be a lexicographically maximum base and let I = {‘I~, u2,  . . . , a,}
be any other independent set, where the elements are indexed in order of
weight, i.e., w(b,)  2  w(b2)  L . . > w(b,) and w(ur) 12 w(u2)  2  . . . L ~(a,).
It cannot be the case that w(bk)  < WI:Q),  for any k. For then1  consider the
independent sets

B,-,  = {b,,  b,, . . . . b,-,)

1,  = {~I,~,, . . ..Qk}

By (3.2), the set {b,, b2,  . . . . b,- r, uij , for some i, 1 I i 5  II,  is an inde-
pendent set, and is lexicographically greater than B. This contradicts the
assumption that B is lexicographically maximum. It follows that w(b,)  2
w(uP)  for all p, and B is clearly a maximum weight independenli  set.

Conversely, suppose M is not a matroid. Then, by Theorem 5.1
there must be a subset A c E and two maximal subsets I and I’ of A in
#,  where 111 < IZ’I.  Let each element in Z have weight 1 + E, where 8  > 0
is small, each element in I’ - Z have weight 1, and each of t.he remaining
elements in E have zero weight. Then Z is contained in a lexicographically
maximum set whose weight is less than that of I’. Hence (6.1) does not
hold. //
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The proof of Theorem 6.1 suggests that a lexicographically maximum
base has an even more impressive property than that of simply having
maximum weight. Such a base is element-by-element weightier than any
other independent set. That is, if B  is a lexicographically maximum base
and I is any other independent set, then the ,weight  of the kth largest ele-
ment of B is at least as great as that of the kth largest element of I, for all
k. We shall say that a set B in 9 is Gale optional  in JJ if, for any other set
I in 9 there exists a one-to-one mapping h:Z ---f  B such that w(e) I w(h(e)),
for all e in I. (Note that, by this definition, only bases can be Gale optimal.)

Theorem 6 . 2 (Gale) Let 9 be the fami1.y  of independent sets of a matroid.
Then :

(6.2) For any weighting of the elements in E, there exists a set B which
is Gale optimal in J.

Conversely, if A4  = (E, X) is a finite structure satisfying (3.1) and
(6.2), then M is a matroid.

PROOF The proof uses essentially the sa.me  reasoning as that for Theorem
6.1. (Note that a Gale-optimal set must be lexicographically maximal.) //

Theorems 6.1 and 6.2 show that a lex.icographically maximal base
is of maximal weight (if weights are nonnegative), and is Gale optimal.
A lexicographically maximal base can be found by the matroid greedy
algorithm. Namely, choose the elements of the matroid in order to size,
weightiest element Jirst, rejecting an element only ij its selection would
destroy independence of the set of chosen elements. The problem of applying
the greedy algorithm to any particular matroid thus reduces to the prob-
lem of being able to decide whether or not (any  given set is independent.
This issue, and some applications, are dealt with in later sections.

In the case that some element weights are negative and one seeks
a maximum-weight independent set, the grlzedy  algorithm is applied to
the point where only negative elements remain, and all of these are re-
jected. This is equivalent to applying the greedy algorithm to the matroid
obtained by deleting negative elements.

There are several possible variations of the greedy algorithm. We
postpone mentioning these until we have discussed matroid duality.

PROBLEM

6.1 Show tha t  when the  greedy a lgor i thm has  chosen  k  ele:ments,  these  k elements
are of maximum weight with respect to all independent sets of k or fewer
elements .
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7
Applications of the Greedy Algorithm

Recall the problems discussed in Section 2.

A “SEMIMATCHING” PROBLEM

The elements of the matrix Ware elements of a partition matroid and their
weights are equal to their numerical valules.  The independent sets of the
matroid contain at most one element from each r’ow  of W.

A SEQUENCING PROBLEM

The jobs to be processed are elements of a transversal matroid and their
weights are the penalty values. This transversal rnatroid has a simple struc-
ture, so that testing for independence is Iparticularly easy (cf. Section 6,
Chapter 5).

THE MAXIMAL SPANNING TREE PR0BLE.M

The video links are elements of a graphic rnatroid. The problem of testing
for independence is equivalent to the problem of testing a subset of arcs
for the existence of a cycle. In Section 10 we see that the naive greedy
algorithm for this case can be improved upon.

In addition to these problems consider the following application
of the greedy algorithm to a matric  matroid.

EXPERIMENTAL DESIGN

An agronomist knows that II minerals are important for improving the
production of a certain crop. He assumes that there is a linear relation
between the amount of minerals addl:d to the soil and the improvernent in
crop yield. Specifically, the added yield Y i:s given by the formula

Y = UlXl  + U2.K2  + . . . + t&X,,

where xi is the amount of the ith mineral applied in the form of chemical
fertilizers. His problem is to design a set of experiments to determine the
coefficients a,, a,, . . . . a,.

Suppose that the agronomist can make a number of separate ex-
periments, each with a different commercially available fertilizer. Fertilizer
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j contains aij units of mineral i and its application to a standard test plot
costs cj  dollars. What is the least costly choice of fertilizers that will enable
the agronomist to determine the coefficients a,‘?

The various fertilizers correspond to the colu.mns  of the matrix
A = (aij). The agronomist must choose a subset of Icolumns  which has
rank n. But if he chooses for his experiment a subset of the columns which
is linearly dependent, he is doing more than is necessary to determine the
desired information (assuming the accuracy of the model and disregarding
experimental error); the production for at least one of the fertilizers could
have been predicted from the production of the others. Thus, what he
seeks is a linearly independent subset of y1  columns, for which the sum of
the cis is as small as possible.

Let column j have “weight” wj  = W - cj  where W is suitably large.
Then the problem is to find a lexicographic maximum set of linearly inde-
pendent columns. The testing of linear independence can be carried out
quite systematically, using Gaussian elimination. The following procedure
can be used.

GREEDY ALGORITHM FOR MATRIC  MATROIDS

Step 0 (Start) Order the columns of the matrix so that the largest is at
the left and the smallest at the right, i.e., w1 > w2 2  . . . 2  w,. Set k = 1.

Step I (Elimination)

(1.1) If column k is zero, go to Step 1.2. Otherwise, choose any nonzero
entry in the column, say uik, and use it to eliminate nonzero  entries to
the right, i.e., subtract aij/a,  times column k from each column j > k.
(1.2) If k < n, set k = k + 1 and return 1:o  Step 1.1. Otherwise, stop.
The nonzero  columns are identified with an optimal base, and the number
of such nonzero  columns is equal to the ra.nk  of the matrix. //

PROBLEMS

7.1 Find a maximum-weight linearly independent subset of columns for the real
matrix below:

1  0 2 0 1

Weigh t s

0 -1 -1 1 1

3 2 8 1 4

2 1 5 0 2

lo  9 8 4 1
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7.2 Estimate the computational complexity of the greedy algorithm for matric
matroids .

8

Matroid Duality

For any given matroid M = (E, Y), there i:s a dual matroid MD  = (E, YD),
in which each base of MD  is the complement of a. base (a cobase)  of M,
and vice versa. The circuits of MD  are called1  cocircuits  of M, and vice versa.

Theorem 8.1 If M = (E, 9) is a matroid, then R/ID  = (E, .YD)  is a matroid.

PROOF Axiom (3.1) is clearly satisfied by MD. Moreover, ~6~  f /zl since
0~9~.  Let I,, ZP+r be two sets in YD containing p, p + 1 elements, re-
spectively. Let B,, Bp+i be bases of M disjoint from I,, I,,  1.  respectively.

Case 1 Suppose ZP+ r - (ZP  u BP)  :f a. Let e E Z,+i - (I,, u BP).  Then
I, + e is disjoint from B,, I,  + e E 9” and iaxiom (3.2) holds.

Case 2 Suppose I,,,  - (ZP u BP)  = @.  We first wish to show that
B P+ I - (B, u I,)  is nonempty. Assume BP+ 1 - (BP u I,)  = ,@. i.e., B,, 1  E
B, u I,. Then we have the relations

(B P+l - Jp)  u (Ip+ 1 - Zp) c BP,

(B p+ 1 n Zp) u Up+ 1 f-  Zp) c:  I,,

from which it follows that

and

B p+~  uI,+, cBp(~Ip

I&+,  I + P  + 1 2  IJq + P ‘Z I&.1 I + P>
which is a contradiction. Hence B, + , - (BP  u II,)  f 0.

Now choose any element e E B,,  r - (B, u ZJ. B, + e contains a
unique circuit in M. Let e’ be any element of this circuit other than e. The
set Bb = B, + e - e’ is a base of M disjoint. from1  I,.  If ZP+l  -- (ZP  u Bk) #
0,  then Case 1 applies. If I,,,  - (Z,, J Bb)  = 0,  then repeat the arg,ument
with Z3; in the role of B, until a base B; is obtained such1  that J,,, -
(ZP  u B;) # 0.  This must occur in a finite number of iterations or else
we will run out of elements in B,,  r - (B, u U,).  //

Theorem 8.2 The rank functions o!F  a matroid M and its dual MD  are
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in the relation

rD(A)  = (A(  + r(E  -- A) - r(E) (8.1)
for all A E E.

PROOF The rank of A in MD  is determined by a base of M with a minimum
number of elements in A. The maximum cardinality of an independent set
of M, disjoint from A, is r(E  - A). Such a set is contained in a base with
r(E) elements, of which r(E) - r(E - A) are contained in A. The number
of elements in A not contained in this base is (Al  + r(19  - A) - r(E). //

In the special case of a graphic rnatroid M, the dual ma.troid MD
is said to be cogruphic. If the graph is connected, the spanning trees of the
graph are bases of M, and the cotrees are bases of MzD.  The cycles of the
graph are circuits of M and the cocycles are circuits of MD.  (Note that it
is not necessarily true that a cocycle is th.e complement of a cycle, nor is it
necessarily true for a matroid that the complement of a circuit is a co-
circuit.) If the graph has n nodes, m arcs, and p components, the number of
elements in a base of M is n  - p and in a base of MD  is YM - n + p.  In terms
of the two rank functions,

r(E) = n - p

rD(E)  = m - n + p

= IE\  -- r(E).

The more general relation (8.1) holds for an arbitrary set of arcs A.
Thus, there are two matroids a;ssociated  with every graph G, a

graphic matroid M and a cographic matroid MD.  If the graph G has a dual
GD, then the roles of M and MD  are reversed for GD: MD  is the graphic
matroid of GD and M is the cographic matroid. This is consistent with our
knowledge that each cycle of G is a cocy’cle  of CD, and vice versa.

What if G does not have a dual? Then the graphic matroid M is
not the cographic matroid of any graph, and the cographic matroid MD
is not graphic. A necessary and sujicient  condition for (a graph to be planar
is that its graphic matroid be cographic or, eyuivalentl.y,  that its cographic
matroid be graphic. (Note that this statlement  is of no particul,ar help in
testing graphs for planarity; testing a graphic matroi’d for cographicness
is essentially the same problem as testing for the existence of a dual graph.)

Now consider the relation between the operations of deletion and
contraction when performed on a matroid and its dual. Given a subset
of elements S 5  E, the deletion of the elements S from M = (E, 9)  yields
the matroid M de1  S = (E - S, I’), where 9’ contains all subsets I’ c E - S
which belong to -0,  i.e., all subsets I’ z  E - S such that r(1’)  := (I’\.  The
contraction of the elements S yields the matroid M ctr S = (E  - S, Y”),
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where .Y” contains all subsets I” z E - S such that r(Z”  u S) = II”/  + r(S).
The application of the deletion operation to a matroid corresponds to
contraction operation on its dual, and vice versa.

Theorem 8.3 For any matroid A4  =: (E, 9) and1  subset S c E

(M de1  S)D = MD  ctr S.

(M ctr S)D = MD  de1  S.
PROOF Omitted. //

This theorem is illustrated for a planar graph in Figure 7.4. We
note that in this case G de1  {a, b}  and GD’ctr  (12,  b}  are indeed graphical
duals.

The following theorem illustrates still fu.rther  relations between a
matroid and its dual.

Theorem 8.4 (M&y) Let E be an arbitrary finite set of elements and %
and $3 be two families of subsets of .E. %?  and $3  contain circuits of a dual
pair of matroids if and only if the following conditions are satisfied:

(1) No set in % contains another properly; no set in 9 contains another
properly.

a

b

E3

dc e

f

G del  {II,  b} @ctr {a, b}

Figure 7.4 Example of contractiorl  and deletion
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(2) For any C E% and any DE 9, their intersection does not contain
exactly one element, i.e., IC n D( = 0,2, 3, . . . .
(3) For any painting of the elements of E red, yellow, and green, with
exactly one element painted yellow, precisely one of the following con-
ditions holds :

(a) There is a set in $9 containing the yellow element, but no red ones
(i.e., a yellow-green circuit) or

(b) There is a set in 9 containing the yellow element, but no green
ones (i.e., a yellow-red cocircuit).

We shall not prove this theorem, but merely observe its relation
to the more specialized painting theorem for undirected ,graphs.  The matroid
properties observed in the theorem have been used by Minty as the basis
for a self-dual axion  system for matroids. Systems (E, %,  9) which satisfy
the properties of the theorem he calls graphoids.

PROBLEMS

8.1 Prove that if C and D are a circuit and a cocircuit of the same matroid, then
lCnD\  # 1.

8.2 What type of matroid is the dual of a partition matroid? What is the effect
of  contrac t ion on a  par t i t ion  matroid?

9
Variations of the Greedy Algorithm

Suppose, for some ordering of the elements of E. A is a lexicographic maxi-
mum base. Then E-A is a lexicographic minimum cobase. It is clear that
solving a maximization problem for the primal matroid also solves a mini-
mization problem for the dual matroid; a greedy algorithm for the primal
corresponds to an “abstentious” algorithm for the dual, and vice versa.

Each element which is discarded by the greedy algorithm is the
smallest element of at least one circuit of the matroid. For suppose A =
e,,  e2,  . , ek  have already been chosen 13~ the greedy algorithm, but A +
ek+ r is found to be dependent, and ek.+  r is therefore discarded. Since A
is independent and A + ek+  1 is dependent, it follows that ekt.r forms a
circuit with some subset of the elements of A, and all of these elements are
known to be larger than ek+  r, because of the order of processing. Similarly,
each element which is discarded by the abstentious algorithm applied to
the dual matroid is known to be the largest element of (at  least one cocircuit
of the primal matroid.
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These duality relations have bleen  noted by various authors, particu-
larly Rosenstiehl, who made the following (observation about spanning-tree
computations. All algorithms for computing the rnaximum spanning tree
of a graph are governed by two princl.ples :

(9.1) No arc of the maximum spanning tree is the smallest arc of any
cycle of the graph.
(9.2) Each arc of the maximum spanning tree is the largest arc of at
least one cocycle of the graph.

For matroids in general, we can faormulate  a computational pro-
cedure which requires only the construction of circuits and/or cocircuits.
For example, consider the following procedure.

VARIANT OF GREEDY ALGORITHM

Step 0 (Start) Set A = A’ = 0, 19 = E. (A and. A’ are to contain ele-
ments of the optimal set and its complement; B is to contain elements about
which no decision has been made.)

Step 1 (Selection of  Elements) Perform either one of the following steps
in any order:

(1.1) Try to find a circuit of elements in A u B. If a circuit C exists,
move the smallest element of C from H to 4’. Otherwise (if no circuit
exists), move the remaining elements of B to A, and stop.
(1.2) Try to find a cocircuit of elements in A’ u B. If a cocircuit L) exists,
move the largest element of D from B ~to  A. Otherwise (if no cocircuit
exists), move the remaining elements of B to A’, and stop.//

A further variation makes use of the deletion and contraction opera-
tions. For example, the following can be substituted for Steps 1.1 and 1.2
in the previous algorithm.

(1.1) Try to find a circuit of elements of B. If a circuit C exists,,  move
the smallest element of C from B to A’ and delete the elelment  from the
matroid. Otherwise, move the remaining elements of B to A, and stop.
(1.2) Try to find a cocircuit of elements of B. If a cocircuit D exists,
move the largest element of D from B to A and contract the elernent in
the matroid. Otherwise, move the remaining elements of B to ,4’, and
stop. //

Such questions as to whether it is easier to construct circuits and
cocircuits, or to perform deletions and contractions, or to ,work  with the
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matroid or its dual, must be determined for the particular problem at
hand.

The properties of matroid greedy algorithms are useful for proving
and interpreting various theorems of graph theory and other mathematical
specialties. For example, consider the following theorem: Let B, and B,
be minimal or maximal (in total number of arcs) basis systems of the vector
cycles of a graph G. Then there exists a length-preserving mapping $ of
the set of cycles C,, . . , C,.(c) of B, onto the set of cycles C;,  . . . , C&c,  of
B,.  (Here v(G) is the cyclomatic number of the graph.) This theorem was
proved by Stepanets by finding a complete matching in a certain bipartite
graph that he assigns to a pair of bases of vector cycles. However, the same
result could have been obtained quite easily by noting that the extremal
bases can be obtained by the greedy algorithm, and that the greedy algorithm
has the property that the kth largest element selected always has the same
size, regardless of how ties are resolved in the course of the algorithm.

PROBLEM

9.1 For a given graph G, to what matroid should the greedy algorithm be applied,
in order to obtain an extremal basis of vector  cycles?

10
Prim Spanning Tree Algorithm

Since every graphic matroid is matric. the matric greedy algorithm de-
scribed in Section 7 can be used for maximal spanniqg tree computations,
by operating on the node-arc incidence matrix of the graph. However, this
would imply an O(n”)  computation for the complete graph on n nodes,
whereas an O(n2) computation is possible.

A procedure proposed by Prim constructs a larger and larger set of
optimally connected nodes. This set of nodes we denote by the letter P,
to correspond with the permanently labeled set of nodes in Dijkstra’s
related shortest path computation, described in Chapter 3. The comple-
ment of the set P is denoted 7:

We begin with an arbitrary node in the set P, and find the heaviest arc
between this node and any of the nodes in 7: This node is added to the solu-
tion, and the node k at the other end of t:he arc is added to P. We then com-
pare, for each node i in ‘I:  the weight of the arc (i, k) with the weight of the
heaviest arc from i to any other node in P, as previously recorded, and then
find the maximum weight of all arcs extending between T and P. This yields
us the heaviest arc in the (IT;  P)-cutset,  and this arc is brought into the
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solution. The T-node to which this arc is incident then becomes node k;
it is added to the set P and the process is repeated.

The Prim algorithm is as follows.

MAXIMAL SPANNING TREE ALGORITHM (PRIM)

Step 0 (Start) The connected graph G == (N, A) is given, with a weight
wij  for each arc (i, j) E A.

Seti  = landuj  = wljrforJi  = 2,3  ,...,  n.
SetP  = {l},  T=  {2,3,  . . . . n}.
Set S = @.

Step 1 (Addition of Arc to Tree) Find k E T,  where uk  = mEa;  {uj>.

SetT=  T -  k,P=  P +  k .
Set S = S + (i(k), k).
If T = @,  stop; the arcs in S form  a. maximal spanning tree.

Step2 (Reuisionofhbels)  ForalljE  T,ifwkj  > uj,setuj  = wkjandi(j)  =
k. Go to Step 1. //

PROBLEMS

10.1 Verify that the Prim algorithm is O(n’) in complexity for a complete graph.
Est imate i ts  complexi ty as  a  funct ion of  n a.nd  m = IAl.

10.2 Apply  the  Pr im a lgor i thm,  s tep  by  s tep ,  to  the  ne twork  in  F igure  7 .1 .

1 1
An Application: Flow Network Synthesis

An interesting application of maximal spanning tree computations has
been found in flow network synthesis. Suppose we are given a sym.metric
n x n matrix R = (rij)  of jh  requirements. We shall call a network fi?asible
if it is possible to induce a flow of value qrj between nodes , i and j, where
uij 2 rij.  A problem which suggests itself is that of constructing a feasible
network which minimizes some prescribed1 function of the arc capacities
cij,  e.g.,

C a:jcij>
i.j

where aij may be thought of as the cost of providing one unit of capacity
in an arc between i and j.
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The above is a linear programming problem, and can be solved by
applying the dual simplex method to a s,ystem  of 2” - 1 linear inequalities
of the form,

C Cij  2  max {Y(j),
id id

jcT jsT

one for each cutset  (S, T) of the network. Gomory and Hu have suggested
a computational procedure that does not require an explicit enumeration
of these constaints. We shall not discuss this general synthesis problem
here. Instead, we shall describe the simpler version of the problem which
arises when all the aij’s  are equal.

The Gomory-Hu procedure will be illustrated by reference to the
following requirements matrix.

4 0 6 5 3
(11.1)

NETWORK SYNTHESIS ALGORITHM (GOMORY AND HU)

Step 1 (Dominant Requirement Tree) Let rii  represent the weight of the
arc (i,  j) in a graph on the n nodes and solve the maximal spanning-tree
problem. The resulting tree is called thbe  dominunt requirement tree. (The
dominant requirement tree for (11.1) is shown in Figure 7.5.)

Step 2 (Decomposition of Dominant Requirement Tree) Decompose the
dominant requirement tree into a “sum” of a “uniform” requirement tree
plus a remainder, by subtracing the smallest in-tree requirements. De-
compose each remaining nonuniform tree in the same way, until the tree
is expressed as a sum of uniform requirement subtrees. (For the example,
this results in the decomposition shown in Figure 7.6.)

Figure  7.5 Dominant requirement  tree w-b
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Figure  7.6 Decomposition  of dominant requirement tree

Step 3 (Cycle Synthesis) Synthesize each1  uniform tree of the decomposi-
tion as a cycle through its nodes, in any order. Each arc of a cycle has c:apacity
equal to one half of the uniform requirement. (See Figure 7.7.) Superpose
the resulting cycles to form the final network and add the corresponding
arc capacities. (See Figure 7.8.) Each arc of the final network corresponds
to an arc of the required capacity in each direction. (The final network
for the example is shown in Figure 7.9.) //

To justify the algorithm, it is first necessary to prove that the final
network is feasible, and then that it is optimal. To do the latter, note that
for any feasible network,

C Cij 2  max {rij  >, i = 1, Z!,  . . . . II.
j j

That is, the sum of the capacities of arcs incident from any node i must be
at least as great as the maximum of the flow requiremenlts  out from i.

+

Figure 7.7 Cycles corresponding to decomposition
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Figure 7.8 Superposition of cycles

Figure 7.9 Final network

Yet this inequality is satisfied with equality for the network synthesized
by the algorithm. Therefore, the network is optimal.

The final network is not unique, ‘becawe  of the different trees which
may be obtained in Step 1, and the many different choices of cycles in
Step 3. However, any one of the networks which results from the algorithm
is optimal.

P R O B L E M S

11.1 Prove that the final network is indeed feasible.
11.2 Of all the minimal capacity networks which can be obtained from the con-
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struction, there is one whose flow  function dominates all others. That is,
there  i s  a  ne twork  G* such that

7; 2 L‘..1,  ’
where uij is  the f low funct ion of  any other  feasible ,  minimal  capaci ty  network.
Show tha t  th i s  dominant  ne twork  ‘can be  ob ta ined  by  app ly ing  the  a lgo r i thm
to a requirements matrix R*,  where

r$ = min {max rik, max rkj}
k k

2 r..
‘J

12
The Steiner Problem and Other Dilemmas

We have seen that the minimal spanning tree problem can be solved in
O(n2) steps. However, a problem which appears to be closely related has
resisted solution in a polynomial-bounded nurnber of steps. The Steiner
Problem is to find a minimum length tree which spans n given points in the
Euclidean plane. Such a minimum tree, called a Steiner tree, may contain
nodes other than the points which are to be spanned; these are called Steiner
points. Consider the situation in Figure 7.10, in ,which the points to be
connected (indicated by double circles) are at the corners of a unit square.

The Steiner Problem has been solved for three points. Let the three
points to be spanned be denoted A, 13, and C. A fourth point P is sought so
that the sum a + b + c is a minimum, where a. b, c denote the three dis-
tances from P to A, B, and C, respectively. If in the triangle MK  all angles
are less than 120”, then P is the point frorn which each of the three sides,
AB, BC, CA subtends an angle of 120”. If, however, an angle of ABC, e.g.,
the angle at C, is equal to or greater than 120”, then the point P coincides
with the node C.

The generalization of these ideas to more than three points appears
to be difficult.

A problem which is easier (at least because it can be solved by enu-
meration) is the Steiner network problem. Here n specified nodes of an

Figure  7.10 Steiner problem for

unit square
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(n + s)-node weighted graph are to be spanned by a tree of minimum weight.
The tree may include any of the other s nodes as Steiner points.

The Steiner network problem (or semi-Steiner problem, as it is
sometimes called) has an interesting matroid interpretation. Let T be a
tree with n - 1 arcs spanning the II specmed nodes. (If the network does not
contain such a tree, add sufficient arcs to the network and give them very
large weights.) The problem can now be formulated as follows. In the
graphic matroid of the network, find a minimum-weight independent set
I such that sp (I) 2  sp (T).

Although no polynomial-bounded algorithm for the Steiner net-
work problem is known, we are able to describe two algorithms, where one
is polynomial in n,  the number of nodes to be spanned, and thle other is
polynomial in s,  the number of possible Steiner points. Thus, if one holds
s constant and increases n,  or vice-versa, the number of Icomputational steps
grows as a polynomial function.

We present first an algorithm which is polynomi,al in II and exponen-
tial in s. It is based on the idea that one can solve a minimal spanning tree
problem for each of several possible choices of Steiner points.

Lemma 12.1 Suppose the arc lengths 6tij  of a network satisfy the metric
requirement, i.e., they are nonnegative an’d

aij 5  aik $  akj,

for all i, j, k. Then, for any n points to be spanned, there exists a Steiner tree
in the network which contains no more than n - 2 Steiner points.

PROOF Let p denote the number of Steiner points in a minimal tree. Let
x denote the mean number of tree arcs incident to a Steiner point, and
y denote the mean number of tree arcs incident to the II points to be spanned.
The number of arcs in the tree is

but, because of the metric condition, x 2: 3; and certainly y 2  1. It follows
that

3p + n

and

We now have a way (although not a very good one) to solve the
Steiner network problem. We illustrate the algorithm by reference to the
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‘7.11 Example network

network in Figure 7.11. The nodes 1, 2, and 3 are to be connected; the re-
maining nodes are possible Steiner pomts.

STEINER NETWORK ALGORITHM

Step I (Shortest Path Computation) If the arc weights do not satisfy
the metric conditions, compute shortest paths between all pairs of nodes,
and replace the arc weights with shortest path lengths, adding arcs to the
network where necessary.

In the example, we have as the original arc lengths,

These distances do not satisfy the conditions of a metric, so we solve the
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shortest path problem for all pairs of nodes, which yields as arc lengths

1 2 3 4 5 6 7

-1 5 4 1 3 6 2

5 0 7 4 2 3 5
4 7 0 3 5 6 2

1 4 3 0 2 5 1

3 2 5 2 0 5 3

6 3 6 5 5 0 4

2 5 2 1 3 4 0.

Step 2 (Minimum Spanning Tree Computation) For each possible subset
of n - 2 or fewer Steiner points, solve a minimal spa.nning  tree problem.

In the case of the example, there are five spanning tree problems to
solve, as follows:

P r o b l e m Nodes to be Spanned
Weight of kllnimum

Spanning Tree

(1) Cl,2 3) 9
(4 (1.2.3,4) 8
(3) (1.2.  3.5) 9
(4) Cl.  2. 3.6) 12
(5) (1.2>3,7) 9

Step 3 (Construction qf  Steiner Tree) Select the least costly spanning
tree from among those computed in Step 2, and transform it into a tree of
the original network, i.e., replace each arc of the spanning tree with the
arcs of the shortest path between the nodes in question.

The least costly tree obtained in Step 2 is shown in Figure 7.12, and
the Steiner tree is shown in Figure 7.13. ,‘/

Q0 \I a3

b
3/

4

Figure 7.12 Minimum cost tree
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Figur’e  7.13 FInal  netowrk

The preceding algorithm requires the solution of a minimal spanning-
tree problem on no more than 2n - 2 nodes for each of (T  choices of Steiner
points, where

n - 2  ’

0 = c
0

; 5  2”.
i=O  \’

It follows that the overall computational complexity is no worse than
O(n2F),  which is polynomial in n, as claimed. (This does not count the
shortest path computation of Step 1 which is 0 (n + ,s)~)  .)

We now present a computational met hod due to Dreyfus and Wagner,
where the number of computational steps is polynomial in s and exponen-
tial in n. This method employs a recursive relation between the length of
an optimal Steiner tree for a given subset of nodes and the lengths of optimal
Steiner trees for smaller subsets. Or, in other words, having obtained op-
timal Steiner trees for all subsets of I.,  2, . , p - 1 nodes, we shall be able
to use these trees to construct optimal Steiner trees for subsets of p nodes.
Finally, we shall be able to construct an optimal Steiner tree for the set
N itself.

Let N be the set of nodes to be spanned and S be the set of possible
Steiner points, where INI  = n, ISI  = s. Let K GI N and i E N u S. (Thus
K + i contains at most one node from S.) Let

T (K + i) = the length of an optimal Steiner tree spanning the set
K +  i.

q(K)  = the length of an optimal Steiner tree spannirrg  K + i,
subject to the constraint that i is an interior node of
the tree, i.e., the degree of node I is at least 2.
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We first note a simple functional relationship for K(K).  Since node
i is to be an interior node, an optimal lSteiner  tree spanning K + i is the
union of two subtrees, one of which is an optimal Steiner tree for K’ + i
and another that is an optimal Steiner tree for (K - K’) + i, where K’ is
a nonempty  proper subset of K. (See Figure 7.14.) By rninimizing over all
possible choices of K’, we have

T(K) = @-II K {T(K’  + i) + T(K  - K’ + i)}. (12 .1 )c
Now let us obtain a functional relationship for T(K  + i).  Assume

Lemma 12.1 applies. There are three possible cases for an optirnal Steiner
tree spanning K + i:

Case I Node i is an interior node of the tree. In this case, T(K  + i) =
T(K).

Case 2 Node i is a leaf of the tree, and the only arc incident to node i
is (i, j), where j# K.  Node j is a Steiner point in an optimal Steiner tree for
K + i, and has degree at least three, b;y Lemma 12.1. The tree for K + i
is thus composed of the arc (i,  j) plus an optimal Steiner tree for K + j,
where it is known that j is an interior point. In this,  case, 7‘(K  + i) =
Uij + q(K).

Case 3 Node i is a leaf of the tree and the only arc incident to node i is
(i, ,j),  where j E K. In this case, T(K  + i) = aij  + T(K).

Putting these observations together, and minimizing over all alter-
natives, we obtain

%f  faij + .I;(W:i]

p; {uij  + T(K))  J . (12.2)

(Note that Case 1 is accounted for by j = i$ K, where ,zii = 0.)
Equations (12.1) and (12.2),  together with appropriate initial con-

ditions, e.g., T(B) = 0, imply a straig,htforward  computation for T(N),

Figure 7.14 Steiner tree for K + i
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with no implicit functional relationships. Let us ‘consider how much work
is involved. The number of additions and comparisons  occasioned by
equations (12.1) is of the same order as the number of possible choices of
i, K, and K’. Each of the n nodes in N belongs to exactly oa:  of the three
sets K. K’, or N - K. Hence the number of computational steps attributable
to (12.1) is O((n  + s) 3”).

There are (n + s) 2” equations of the form (12.2). Each equation
involves minimization over at most n  + s alternatives. Hence the com-
putation attributable to equations (12.2) is O((n + s)’  2”).

Thus, the overall computation is O((n  + :;)  3” + (n + s)’  2”),  which
is polynomial in s,  as claimed. (An initial shortest path computation which
is 0( (n + s)~)  may be required, so that Lernma 12.1 applies, and the final
solution transformed into the original set of arcs, as in the previous algo-
rithm.)

In addition to the Steiner problem, it is possible to cite a number
of other unsolved problems concerning trees and forests of networks.
Among these are the degree-constrained spanning-tree problem, about which
we will have more to say in a later chapter. There are several versions
of the star-forest problem. A star tree is a tree which contains at most one
node of degree greater than unity. Olne  may wish to find a forest of star
trees which is minimal with respect 1:o the sum of the arc weights of the
trees, plus the sum of certain node weights assigned to their “centers.”

PROBLEM

12.1 Show that, for fixed n,  the first algorithm given in this sectio’n  is also poly-
nomial in s,  by establishing a bound of O(n’s”-‘).
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Matroid  htersections

1
Introduction

The greedy algorithm is an efficient method for computing, a maximum
weight independent set of a single given  matroid. The comparable problem
for two matroids is as follows. Given M,  = (E, -lai) and M,  = (E, X2),
two matroids over the same weighted set E, find a maximum weight inter-
section I E  Y1 n  Y2. In this chapter we are concerned with the development
of efficient computational procedures for solving such intersection prob-
lems.

It is a simple matter to show that the bipartite matching problem
is a matroid intersection problem invo1vin.g  two partition rnatroids over
the set of arcs of the given bipartite graph. Since network flow problems
are reducible to bipartite matching problems, it follows that matroidl inter-
section theory provides a generalization not only of bipartite matching
theory but of network flow theory as well.

It is perhaps not surprising that the augmenting path methods of
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bipartite matching are suggestive of a similar procedure: for matroid inter-
section problems. The notion of an “au.gmenting sequence” is introduced
in Section 3 of this chapter, and an efficient procedure for solving the “car-
dinality” intersection problem is descrj.bed  in Sectio:n  4. This procedure
yields a constructive proof of a duality theorem w’hich  generalizes the
K&rig-Egervary  theorem of bipartite matching.

Interestingly, the cardinality intersection problem is equivalent to
a matroid “partitioning” problem, as follows. Given k matroids, M, =
@,JJ,),M,  = (E,.Ya,), ..., M, = (E, 9,) over the same set E, does there
exist a partitioning of E into k sets I,, I,, . . , I,, whlere  Ii E  .ai, for i  =
1,2, . ..) k? The relationship between the cardinality intersecticm problem
and the partitioning problem is discussed in Section 7, and an efficient
partitioning algorithm due to Edmonds is presented.

Two different methods for solving the weighted intersection prob-
lem are presented. A “primal” algorithm, based on the notion of weighted
augmenting sequences, is described in Sections 9 and 10. This, algorithm
is analogous to the procedure of Busacker, Gowan  and Jewel1 for finding
minimum cost network flows. A “primal-dual” algorithm is described in
Sections 13 and 14. This method is analogous to the Hungarian method
for finding maximum weight matchings.

2
Problem Formulations

Let us consider some examples of matroid intersection problems.

BIPARTITE MATCHING

Let G = (S, ?: A) be a given bipartite graph. Let rci  be al  partition of A which
places two arcs in the same block if and only if they are incident to the same
S-node. Similarly, let rr2  be defined by the T-node incidence relationships.
Let M, = (A,Y1)  and M,  = (A, X2) be partition matroids determined
by the partitions rcr  and x2. A subset I c A is a matching in G if and only
if I is an intersection of M i and M *.

The nonbipartite matching problem can be forrnulated (as  an inter-
section problem involving two partinon  matroids, but with additional
constraints in the form of symmetry conditions. The construction parallels
that used in Chapter 6 to show equivalence to the symmetric assignment
problem. In the next chapter we shall show how the nonbipartite matching
problem can be formulated as a matroid problem with “parity conditions.”
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MATRIC  MATROID  INTERSECTION

Let C be an m x n matrix. Suppose ,a  horizontal line is drawn through C
so that there are m, rows above the line and m2  below. We can speak of a
subset of the columns as being linearly independent both “above the line”
and “below the line.” In other words, the projections of those columns are
independent in an “upper” m,-dimensional space, and also in a “lower”
m,-dimensional space. Any such subset of columns is an intersection of
two matric matroids.

COMMON TRANSVERSALS

A set of elements that is a transversal of each of two different families of
subsets is known as a common transuersa/  of those families. Clearly, the
computation of a common transversal is a problem involving the inter-
section of two transversal matroids. Just as in the case of bipartite matching,
specialized methods have been developed for this problem.

A NETWORK SYNTHESIS PROBLEM

Suppose G, = (N,,  A) and G, = (N,, A) are two connected graphs con-
structed from the same set of arcs A. A subset I E A is an intersection of
the two cographic matroids if and only if the arcs in A-Z form connected
subgraphs in both G,  and G,.

Suppose, as in Chapter 7, a broadcasting network wishes to rent
video links to connect together various cities. Except now we shall com-
plicate the situation (perhaps quite artificially). Each month there is a
different set of cities to be connected, as broadcasting stations enter and
leave the network. (These changes are known for some time in advance.)
Moreover, each video link can be rented for a single month at one rate or
for two consecutive months at a cost somewhat less than twice the single-
month rate. The network wishes to plan the rental of video links for several
months in advance so as to minimize the total rental charges.

The problem can be formulated in the following manner. For month
t construct a multigraph G(t) = (N(t,i, A(t)) as follows. The nodes in N(t)
represent cities to be connected together that month. There may be as many
as three arcs joining each pair of cities i and j in N(t), depending upon
whether or not i and j also appear in N (t  - 1) and N(r  + 1). One arc,
which appears in G(r) only, is assigaed a cost equal to the single-month
rental for that particular link. Another arc joins the same two cities in
N (t  - 1) and is assigned a cost equal ‘to the two-month rental. Still another
arc joins the same two cities in N (t  f 1) and is also assigned a cost equal
to the two-month rental.
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Treat N(l), N(2), . . . as disjoint sets of nodes. Let G, be the graph
obtained by taking the union of G(l), Gc3’, . . . , GiZk+” and let G2 be obtained
by taking the union of Gt2’, Gc4’. . . . . G”“‘. The network synthesis problem
becomes a weighted intersection problern involving cographic matroids of
Gi and Gz. The reader should be able to fill in the details.

As a simple example, consider the two-period problem indicated
in Figure 8.1. The number shown with each arc e,,  i q = 1,2,  . . , 14. is its
rental cost. If the arc appears in the network for both time periods, the rental
cost is for two periods. If an arc appears in the network for the first time
period, but not in the network for the s,econd,  it can be considered to be
a self-loop in the second network, and vice versa. The problem of finding
a minimum cost subset of arcs connecting all cities in both tirne periods
can be solved by the algorithm given in Section 10.

PAINTING A GRAPH

We wish to paint each arc of a given graph G either red, white, or blue,
subject to the constraint that not all the arcs of any cycle are painted the
same color. Depending upon the graph, it may or may not be possible to
paint the graph in this manner.

An equivalent formulation of this problem calls for a partitioning
of the arcs into three forests. Create a graph G* which is,  the union of three
copies of G, i.e., a “red,” a “white,” and a “blue” copy. There are thus three
copies of each of the m arcs of G, one in each copy o’f  the graph. Let M 1
be the graphic matroid of G* and let M,  be a partitilon matroid over the
3m arcs. Each independent set of M,  contains no mo’re  than one copy of
each of the arcs of G. There exists a feasible painting of G! if and only if there
exists an m-element intersection of M i and M,.

Assuming that a feasible painting exists, an optimization problem

MinneaDdis

New Orleans

Figure 8.1 Example of network synthesis problem

Francisco es.  6- - Boston

- -

New Orleans
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can be defined as follows. For each arc (i,.j)  let there be three parameters
rij, wij, hij  indicating the number of quarts of red, white, and blue paint,
respectively required to paint that arc. What painting requires the smallest
total amount of paint? The reader should have no difficulty in formulating
this as a weighted intersection problem.

DIRECTED SPANNING TREES

Let G = (N, A) be an arc-weighted directed graph. Suppose we wish to
find a maximum weight spanning 1:ree directed from a prescribed root
node with in-degree zero. Any subset of arcs I forming such a tree must
satisfy two conditions. First, it must contain no cycle. Hence I must be an
independent set of the graphic matroid of G (in which the directions of the
arcs are ignored). Second, it must contain no more than one arc into  any
given node. Hence I must be an independent set of the partition matroid
which is defined by a partition of the arcs which places all the arcs directed
into a given node in the same block. A directed spanning tree exists if
and only if there is an (n - 1)-element intersection of these two matroids.
(Actually, testing for the existence of such a spanning tree is quite simple,
see Problem 14.1.)

A weighted version of the dl.rected  spanning tree problem is the
following: A military commander wishes to form a directed tree, rooted
from himself, for the propagation of orders to all the men under his com-
mand. (Edmonds has called such an organization a “branchocracy.“)
There is a weight associated with each directed arc that indicates its de-
sirability for use in such a tree. What directed tree is optimum?

It turns out that this particular matroid intersection problem permits
an especially simple and elegant method of solution, which is described
in Section 14.

THE TRAVELING SALESMAN PROBLEM

Supoose we wish to find a Hamiltonian cycle in a given graph G. Create
an (n + l)st  node, and let each arc directed into node 1 be redirected into
node n + 1. There exists a Hamiltonian circuit in G if and only if there
exists a path from node 1 to node n + 1 which passes through each of the
other nodes exactly once.

Let M, be the graphic matroid of the (II + I)-node graph. Let M,
be a partition matroid whose independent sets contain no more than one
arc directed into  any given node and M,  be a partition matroid whose
independent sets contain no more than one arc directed 0~1  of any given
node. There exists a Hamiltonian cycle in the n-node graph G if and only
if there exists an n-element intersectilon  of M,, M,, and M,.
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The formulation of the traveling salesman problem as a problem
calling for a maximum weight intersection of M,,  M,,  and M, should be
evident.

Unfortunately, there is no known polynomial-bounded algorithm
for computing optimal intersections of three or more matroids. The traveling
salesman problem, the three-dimensional assignment problem, and others
like them, are beyond the scope of the methods described in this chapter.

P R O B L E M S

2.1 Formulate  the  three-dimensional  ass ignment  problem as  a  problem involving
the  in tersect ion of  three  matroids .

2.2 A university department chairman must recommend the appointment of a
departmental  representat ive to each of  m interdepartmental  committees.  For
each faculty member,  he has a l is t  of  the committees for  which that  person is
qualified and interested. However, before solving the bipartitle  matching
problem which is implied by these data, it occurs to the chalirman  th;at  he should
limit the number of committee appointments within each rank, i.e., no more
than  m, appoin tees  should  be  ass i s tan t  professors ,  no  more  than  m, s h o u l d
be associate  professors ,  and no more than m3 should be ful l  professors .  Formu-
late the problem of obtaining a feasible assignment as a cardinality inter-
sect ion problem (wi th  two matroids) .

2.3 Try to solve “by inspection” the network problem illustrated in Figure 8.1.

3
Augmenting Sequences and Border Graphs

Bipartite matching algorithms solve intersection probllems involving two
partition matroids. These algorithms (can  be generalized to solve inter-
section problems involving arbitrary pairs of matroids. Our first task in
generalizing the bipartite matching algorithms is to find an appropriate
generalization of the idea of an augmenting path.

Let I be any intersection of two matroids, Ail:,  and M,.  We can
construct an “augmenting sequence” with respect to Z as follows. The
first element e, of such a sequence is ,such  that I + r, is independent in
M,. If Z + e, is independent in M, as well. the sequence is completed.
Otherwise I + r, contains a unique circuit in M, anld  we choose e2  to be
an element other than e, in that circuit. I + tpl  - e2  is clearly independent
in both M, and M,. Now we try to find an element e3  such that I + e, -
e2  + e3  is independent in M,, whereas I + e3  is not. Such an element
e3  is in spl  (I) - sp,  (I - e,),  where “spl”  denotes spawn  in M,.  If Z + e1  -
e2  + e3  is independent in M,, we are done. Otherwise Z + e, - e2  + e3
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contains a unique circuit in M,  and we choose e4  to be an element in that
circuit, and so on.

In other words, the addition to I of the lst, 3rd,  5th,  . elements
preserves independence in M, but creates dependence in M,,  whereas the
removal of the 2nd,  4th,  6th,  . elements restores independence in M,. This
manner of playing off independence in M, against independence in M,
is quite analogous to the way that we played off incidence of arcs to nodes
in one part of a bipartite graph against incidence of the same arcs to nodes
in the other part in the construction of an augmenting path in the matching
problem.

These ideas may become clearer by actually working out an example.
Each of the multigraphs G, and Gz shown in Figure 8.2 is constructed
from the same arcs E = {e,, e2,  . . , ei3}. We wish to find the largest possible
subset of arcs which contains a cycle in neither G1 nor Gz. In other words,
we wish to solve the cardinality intersection problem for the graphic matroids
of G, and G,.

Note that I = {e,, e5 } is a mczximal  intersection, since the addition
of any single arc to I creates a cycle in either G1 or G,. For example, I ==  e,
contains the cycle C, = {e,, e,j  in G,, I + ez  contains the cycle C,  =
{ez, e4}  in GZ, and so on. However, I is not a maximum-cardinality inter-
section, as we shall see.

One can carry out a search for an “augmenting sequence” with
respect to I, by growing “alternating trees,” much as in the case of bipartite
matching. Each node of these trees corresponds to a matroid element,
i.e., one of the arcs of G,, Gz. Each tree is rooted to an element e,  such that
ei  E  E - sp, (I), i.e., ei  can be added to I without forming a cycle in G,.
There are three trees, rooted to e2,  e,,  and e8,  respectively. Each tree will

(‘7
(:...:-:e2 e7($,,+,e8

e6

e6GlGl G2G2

Figure 8.2Figure 8.2 Multigraphs for intersection problemMultigraphs for intersection problem
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be constructed in such a way that any path from the root will pass through
an alternation of nodes, corresponding to elements in Z and not in I.

Now consider how the trees can be extended from each of the roots
e2,  e,,  e,. The addition of arc e2  forms a. cycle in G,, the cycle containing
the arcs e2  and e4.  Thus, if arc e2  is addled to I, arc e,, must be removed.
Accordingly, we extend the tree rooted 1:o  e2  by adding an arc lleading to
e4.  The addition of arc e, forms a cycle containing arcs e5  and e, in G2,
so if arc e, is added to I, e5  must be removed. Accordingly, we extend the
tree rooted to e, by adding an arc leading to e5.  The: addition of arc e,
forms a cycle containing arcs e4  and es  in GZ.  But e4  is already in the tree
rooted to e2,  so we do not extend the tree rooted to es.

Now consider the effect in G, of removing either one of the arcs
e4  or e5  from I. Removing arc e4  permits any one of the arcs e,,  e3,  or e6
to be added to Z without forming a cycle in G,. Accordingly, we extend the
tree by adding arcs leading from e4  to L’~,  e3,  e6.  On the other hand, re-
moving arc e5  does not permit any arc Ito  be added to I without forming
a cycle in G1, other than arcs which already appear in the tree. ‘Therefore,
the tree is not extended beyond the arc e5.  The situation is now as shown
in Figure 8.3.

We now consider the effect in G2 of adding any one of the arcs e,,
e3,  e6.  The addition of any one of these arcs to Z doles’  not form a cycle
in G,. By tracing back to the root of the tree from e,,  e3,  e6,  we identify
three distinct augmenting sequences (e,, #oh,  e,),  (e,,  e4,  e,),  and (e,,  e4,  c~).
Arbitrarily choosing the first of these, ‘we  augment Z by adding arcs e2
and e, and removing arc e4  to obtain a new intersection Z = {e,, e2,  e5  $ .
This new intersection is indicated by wavy lines in Figure: 8.4.

The repetition of the tree construction process for the new set

(3
es

Figure 8.3 Alternating trees
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Figure 8.4 Augmented intersections

1 = (e,,e,, e5  1 yields the alternating trees shown in Figure 8.5. No aug-
menting sequences are discovered, and we assert that I = {L’,, e2,  e,} is a
maximum-cardinality intersection.

We note that arcs e2, e5  of 1  are in the Hungarian trees in Figure
8.5, but arc e, is not. Now,

spl(jelS)  = tet,e3,e4,e6>

and

so that

spl({el}  usp,({e2,e5))  = E.

We will show in Section 5 that these two spans constitute an optimal
solution for a covering problem dual to the intersection problem for which
I = (e, , cq,  e5) is optimal.

We are now prepared to formalize some of these ideas. Let I’ be an
intersection of two matroids M, = (E, 3,)  and M2  = iE,  *F2).  Let S =

e-5) F i g u r e  8 . 5  Hungarian t rees
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(e1,  e 2, . . .) e,) be a sequence of distinct elements, where ei  E  E -- I, for i
odd, and e,  E I, for i even. Let Si = (e,,  e:!,  . . . , e,), for i II s.  We say that S
is an alternating sequence with respect to I if

(3.1) I + ei  EYi.
(3.2) For all even i, sp,(Z @ Si) = SP,~  (I). Hence Z (3 Si E  .Y2.
(3.3) For all odd i > 1, spr  (I @ Si) =: spi  (I + er).  Hence I (8 Si E  X1.

If, in addition,

(3.4) ISI  = s is odd and I 0 S E Y2,  we say that S is an augmenting
sequence with respect to I.

It is clear that if an intersection admits an augmenting sequence,
then that intersection does not contain a maximum number of elements.
The converse, however, is not so evident. In order to facilitate the study of
this and other related questions, we introduce the notion of the “border
graph” of an intersection.

For a given intersection I, the border graph Z%(Z)  is a directed
bipartite graph constructed as follows. For each node ei~  E - Z such that
e,  E spi  (I), there is an arc (ej, ei)  directed from each ej  E Ci”  - e,,  where
Ci”  is the unique Ml-circuit  in Z + ei.  If ei$  sp,(Z), then ei  is a source
in BG(Z)  (in-degree zero). For each node e,  E E - Z such that ei  E  sp,(Z),
there is an arc (e,,  ej) directed to each ej  E  Ci2’ - ei, where Cj2’ is the unique
M,-circuit  in Z + e,.  If ei  tf  sp2(Z),  then e, is a sink in BG(Z) (out-degree
zero).

We shall have occasion to refer to two special subgraphs of Z?G(Z).
The subgraph BG,(Z)  contains all arcs directed from Z to E - 1 and sub-
graph BG,(Z)  contains all arcs directed from E - Z to 1.  These fsubgraphs
indicate incidences of elements in E - Z with M,-circuits  and M,-circuits,
respectively. We call BG, (I), BG,(Z)  simple border graphs.

The border graph for the intersection Z = {e,, es}  of the example
is shown in Figure 8.6. Note that e2,  e,: es  are sources, and e,,  e3,  e6  are
sinks. Each of the augmenting sequences (e,,  e4,  e,),  (e2., eb,  es), (e,,  e4,  e6)
is identified with a directed path from a source to a sink. The reader should
be able to pick out other source-sink paths which also yield augmenting
sequences.

It is true that every augmenting sequence is identified with a source-
sink path in BG(Z), However, the converse is not true. A source-sink path
(without repetition of nodes) does not necessarily yield an augmenting
sequence. One way to insure that a path does yield an augmenting sequence
is to require that it admit no shortcuts.

Suppose that S is a source-sink path in BG(Z)  and S passes through
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Figure  8.6 Border graph for example

nodes el,e2,  . . . . e,. The path is said to admit a shortcut if there exists an
arc (ek,  ej) in BG(Z), where 1 .5 k f j - 2 5  s - 2.

In the statement of the lemma which follows, and in other discussions
concerning border graphs, we shall use the terms “element” and “node”
interchangeably. We shall let a path be defined by the sequence of nodes
through which it passes, e.g., S = (e,,  e2,  . . . . e,) is the path from e, to e,,
passing through intermediate nodes e2,  e3,  “.. , e,-  i. Thus, we may say that
a source-sink path S “is” an augmenting sequence.

Lemma 3.1 (Krogdahl) If S is a source-sink path in BG(I)  which admits
no shortcut, then S is an augmenting sequence with respect to I.

PROOF Without loss of generality, let S = (e,,  e,,  . . . . e,). Since e, is  a
source, I + e, E  Y1 and (3.1) holds.

Now let i be even. We wish to show that sp2(I @ Si) = sp,(l).
We shall do this by dealing with pal.rs  of elements in “reverse” order, i.e.,
first adding e,-i  to I and deleting e:,  then adding eim3  and deleting eie2,
and finally adding e, and deleting e,.  As an aid in visualizing the process,
consider the subgraph of BG2(I)  induced on Si = (e,, e2,  . . . , ei). Because
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Figure  8.7 Subgraph  of BG,  (I)  in proof of Lernma 3.1

S admits no shortcuts, when this subgraph is drawn as in Figure 8.7, there
are no arcs directed downward. That is, e’j $ Ci’), for any ‘odd j, k,j < k.

Z + pi-1 contains  the  unique !tiz-circuit  C{2’,,  where e.  E Cl?,.
Hence sp2  (I + ei-  1 - ei) = sp,(Z). By inductive hypothesis, ‘assume
s~,(Z’~‘)  = spz(Z),  where Zck’  = Z + ek  - ek+l + ek+2  - . . . + eiel  - ei.
Zck’  + ek-2 contains a unique M,-circuit.  Moreover, this circulit  is CL?!,,
because Ci212_  c Zck’  + ek-2.  It follows that ~p,(l’~-~‘)  = sp,(Z). Hence
sp,(Z’“) = sp2(Z),  where Z (I) = I @ Si and condition (3.2) holds.

The proof for condition (3.3) is, of course, similar. //

Lemma 3.2 (Krogdahl) Let I, J be intersections such that 111 + 1 = /JI.
There exists a source-sink path S in BG(Z), where S C_  Z @ J.

PROOF If J contains an element e, that is not in spl(Z) u sp,(Z), then e,
is both a source and a sink in BG(Z) and S = (el) is thie  desireld  path. So
assume .Z  c spl  (I) u sp,  (I).

Partition J - Z into three sets J1, J,,  J,,  consisting of the sources, the
sinks, and the other elements in .Z  - I. ‘Consider now the subgraph HI  c
BG,  (I) induced on the nodes in Z @ J. IEach  node in .I;:  u J, has nonzero
in-degree in H,. Moreover, for any sub!jet  J’ & J, u J,, there are at least
IJ’I  nodes in I - J with arcs directed to nodes in J’, because J’ cannot be
spanned in M, by fewer than (J’I  1e emenls in Z - J. For the moment, ignore
the directions on arcs in H, so as to consider H,  to be an undirected graph.
We have shown that the conditions of the well-known Philip Hall theorem
(Theorem 7.2) have been satisfied in such a way as to guarantee the existence
of a matching X,  in H, which covers all the nodes in J, u J,.
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J-l I - J

n

W L e m m a  3 . 2

Ftgure  8.8 Typical components of H in proof of

Similarly, we can form the subgraph H,  E BG,(I) induced on the
nodes in I @ J and show that there is a matching X, in H,  covering all
the nodes in J, u J3.

Now consider the subgraph H g  BG(I)  with node set I @ J and
arc set X,  u X, (with the directions of the arcs restored). Each connected
component of H is either a directed path or a directed cycle. (See Figure 8.8.)
Since IJ  - 11  > II - JI, at least one: component must contain one more
node in IJ  - 11 than in 11  - JI. Such a component is the desired source-
sink path S in BG (I). //

If S is a source-sink path in BG(I).  then there exists a source-sink
path S’ c S, where S’ admits no shortcuts. The p,ath  S’ is obtained from
S by simply “shortcutting” S until no further shortcuts remain. This ob-
servation, together with Lemmas 3.1 and 3.2, enable us to establish the
following theorems.



Cardmality  lntersectlon  Algorithm 3 1 3

Theorem 3.3 Let I,, 1,+i be intersections of M,,  M, with p,  p + 1 ele-
ments. respectively. Then there exists an augmenting sequence S c I, @
I p  + i with respect to 1,.

Theorem 3.4 An intersection is of maxirnum cardinality if and (only  if it
admits no augmenting sequence.

Theorem 3.5 For any intersection I there exists a maximum cardinality
intersection I*, such that sp,(l)  E sp,(Z*)  and spz(l)  c sp,(l*).

PROOF The definition of augmenting sequences is such that sp,(l)  s
sp, (I @ S), sp2(I) z sp,(l  @ S). Apply this result and Theorem 3.4 transi-
tively. IJ

4
Cardinality Intersection Algorithm

The essential ideas of the cardinality intersection algorithm should now
be clear. In fact, the attentive reader should be able to write down the steps
of the algorithm for himself.

Any “breadth-first” labeling procedure that fans out from source
nodes in BG(I)  will find a source-sink path: without shormuts,  if sulch  a path
exists. The usual method for constructing alternating trees, as described
informally in the previous section, is equivalent to such a procedure.

CARDINALITY  INTERSECTION ALGORITHM

Step  0 (Start) Let I be any intersection of M,,  M,, possibly the empty
set. No elements are labeled.

Step 1 (Labeling)

(1.0) For each element e,  E  E - I, find Ci ,(l) Ci2) if these circluits  exist.,  ,
Apply the label “@‘” to each element (‘i E E -- sp,  (I).
(1.1) If all labels have been scanned, go to Step 3. Otherwise, find the
element ri with the oldest unscanned label. If the la.bel  is a ” +” label
go to Step 1.2; if it is a ” -” label, go to Step 1.3.
(1.2) Scan the “+”  label on ei  as follows. If I + eiIfX2,  go to Step 2.
Otherwise, give the label “i-” to each unlabeled element in Ct.“. Return
to Step 1.1.
(1.3) Scan the “ - ” label on e,  by giving the label “i+” to each unlabeled
element ej  such that e,  E Ci’ ). Return to ;Step  1 1.
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Step 2 (Augmentation) An augmenting sequence S has been discovered,
of which e,  (found in Step 1.2) is the: final element. Identify the elements in
S by backtracing from the label on e,.  Augment I by adding to I all elements
in the sequence with “+”  labels and removing from I all elements with
“ -” labels. Remove all labels from elements and return to Step 1.0.

Step 3 (Hungariun Lubeling) No augmenting sequence exists and I is
of maximum cardinality. The labeling is “Hungarian” and can be used to
construct a minimum-rank covering, dual to I. (See Section 5.) Halt. //

Let us now estimate the complexity of the algorithm. Suppose the
ranks of the matroids M,,  M,  a:re  R,, R,,  respectively, and let R =
min {R,, R,). Thus, no intersection can contain more than R elements
and there can be no more than R augmentations.

Assume there are subroutines available for independence testing in
M,,  M,. Suppose the running times of thlese  subrloutines  are c1  (m), c,(m),
respectively, where m = I,??/.  Let c(m) = max {cl(m),  c,(m)}. For each aug-
mentation, and each subsequent application of the labeling procedure,
there is a computation of Ci ,(l’ C!”  for eaLch  ei  E I: - I. The running time
for this task is no greater than 0 (&c(m)).

The labeling procedure, exclusive ‘of  circuit computation, is O(m2)
and backtracing, if an augmenting sequence is found, is O(m). Since there
are O(R) applications of the labeling procedure, the overall running time
of the algorithm is no greater than O(m’R:  + mR’c(m)).

In the case of bipartite matlshing in a graph with II nodes and m
arcs, where m is O(n”),  R can bc  taken to be ml/‘.  The computation of the
circuits C!”  C!‘)  is trivial, and can be ignored. (Ci’) contains all arcs of the
matching ‘i&iient  to the same S-node as arc e!, Ci2’ all arcs incident to the
same T-node.) The overall running time is O(m2’5)  or O(n5). The difference
between O(n5) and O(n3j,  the running time for the conventional matching
algorithm, is attributable to the fact that labels are applied to arcs of the
graph rather than to nodes. This observation serves as an example of the
value of exploiting the special structure which may exist for a particular
problem.

P R O B L E M S

4 . 1 Show that for the case of bipartite matching in G the border graph BG(I) is
the line graph of G, with an appropriate orientation of arcs. How does the
or ienta t ion  change wi th  each augmenta t ion?

4.2 Specia l ize  the  card ina l i ty  in te rsec t ion  a lgor i thm to  b ipar t i te  matching ,  wr i t ing
down an expl ic i t  s ta tement  of  the  s teps  to  be  performed,  us ing only  graphical ,
not  matroid ,  te rminology.

4.3 Repeat  Problem 4.2 for  the  intersect ion of  the  graphic  matroids  of  two graphs
G, and G,.
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5
Duality Theory

‘The cardinality intersection computation provides a constructive proof
of a duality theorem for matroid intersections. This theorem is of the max-
min variety, similar to the max-flow min-cut theorem. ‘of  network flows
and the KBnig-Egervary  theorem, of which it represents a proper gen-
eralization.

We say that a pair of subsets E,, E, of E is a couNerirlg  of E if E, u
E, = E. With respect to a given pair of matroids M,,  M,,  we define the
rank of a covering 8 = (E,, E,) to be r(8)  = r,(E,)  + r,(E,).

Lemma 5.1 For any covering B and any intersection i’.  r(6)  2 111.

PROOF Let I, = I n  E,. and I, = I n  (E2 - E,) .  Clearly 11,1  5  r,(E,)
and (I,1 I r,(E,)  which implies 111 = 11~1 + \I,( I r(8). ,i/

Theorem 5.2 (Mntroid  Intersection Duality) For any two matroids M,,
M,,  the maximum cardinality of an intersection is equal, to the Iminimum
rank of a covering.

PROOF By the lemma, the rank of a covering cannot be less than the
cardinality of an intersection. The intersection algorithm enables us to
construct a covering whose rank is equal to the cardinality of an inter-
section, as follows.

At the conclusion of the algorithm (when the labeling has become
“Hungarian”), let the set I, contain the elements of I that are labeled and
I, contain those which are not. Let E, := sp,(l,),  E, = sp,(l,).  Suppose
e,  E  E - I. If e,  is labeled, then ei  ESPY, by Step 1.2 of the algorithm.
(The scanning of e,  labels all elements in Ci”’  - ei. Hence f>i  E sp, (Ci*’  - ei) E
sp2  (IL).) If ei  is unlabeled, then e,  E spl  (I), by Step 1 .O anld  hence e,  E spl  (I,),
by Step 1.3. (The scanning of any labeled element in Ci”  - e,  would label
e.. Hence C!‘)  n  I, = @ C!”  - e,  c I,.) It follows that ei  E  E, u E, and
i = (E,, Ezj is a coverin;.  dith  r(8)  = 111. //

A duality theorem for the max-min intersection. problelm  follows
from Theorem 5.2 in exactly the same Iway  that the duality theorem for
the max-min bipartite matching problem is derived1  from th,e KBnig-
Egervary theorem.

Theorem 5.3 Let M, = (E, ,Y,),  M, = (E, J,) be any two matroids and
w(e) be any weighting of the elements. Then, for any k,

maxmin {w(e)IeE I, 1~9~ n  .Y2, (II  = k)
I

= min max(w(e)\eEE - (A, u A,),r,(A,)  + r2(A2) = k - 1).
AI.AL
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PROOF Let I*, [I*1  = k, be an intersection which is max-min optimal with
respect to all intersections containing k elements. Let e*  be such that

w(e*) = min {w(e)leEZ*},

and let

A* = (eEE\w(e)  :z=-  w(e*)j.

Clearly a maximum cardinality intersection contained within A* has at
most k - 1 elements, for otherwise I* would not be optimal. It follows
from Theorem 5.2 that A* can be partitioned into two sets, A:, A: such
that rl  (AT)  + r2 (AT)  I k - 1. (Apply the theorem to the two matroids
after deleting all elements not in A *.) But e* is the element with largest
weight not in AT  u  A;. Hence we have established that

mpx min {w(e)}  2  Ami; max {w(e)}.
I.  I

Conversely, let AT,  AT,  rl  (AT)  + r,(AT)  ==  k - 1, be a min-max
optimal solution to the dual covering problem. Let e* be such that

w(e*) = max {w(e)  le E  I - (AT  u  AT)}.

It follows from Theorem 5.2 that a :maximum-cardinality  intersection con-
tained within A* has at most k - 1 elements. Thus, any intersection with
k elements must contain at least one element not in A*. At best this is e*.
Hence we have established that

rn?  min {w(e)} I Fi; max {w(e)}.
1. 1

This establishes inequality in both directions and the proof is complete. //

PROBLEMS

5.1 For a bipartite matching over a graph G  = (S,  Z:  A), a covering consists of
two subsets of arcs E, and E2,  such that every arc in A either meets one of the
arcs in E, at an S-node or one of the arcs in E, at a T-node. Obtain similar
character izat ions of  coverings for  each of  the fol lowing types of  matroid inter-
sec t ion  problems:
(a) M,  and M,  are graphic matroids.
(b)  The directed spanning tree problem.
(c) The common transversal problem.

5.2 Write  out  the s teps of  a  max-min matroid intersect ion algori thm and est imate
i t s  complexi ty .
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6
Generalized Mendelsc;hn-Dulm(age  Theorem,

Matroid Sums and Matroid Partitions

The Mendelsohn-Dulmage Theorem (Theorem 4.1, Ch,apter  5),  generalizes
to the case of matroid intersections as follows.

Theorem 6.1 (Kundu  and Law/u)  Let M,,  M,  be IWO matroids on E,
and !i,  I, two intersections. Then there exists an intersection I c I1 u I,
such that sp, (I) 2  spi  (Ii)  and spZ(l) 2  sp,(l,).

PROOF If sp,(l,)  1  I, there is nothing to prove. Let eE I, - sp,(l,),
where I, + e is in J2.  If I, + e belongs to .F,  let I’,  =: I, + e. Otherwise,
there exists a M,-circuit  C such that e E C G I, + e. Now C - e P I, n  I,
is in -0,.  Choose e’ E  C n (Ii  - I,)  and define

1; = I, - e’  + e.

We have Z;  E  J, and sp,  (I;)  = sp,  (II)  and also 1; is trivially independent
in A/I,,  However,

IG n121 > 11,  n  121.

Thus we can apply the same procedure to define I\“‘, k ==  1,2,  . . . such that

SPI U’:‘)  2  SPl (I,), Iik)E~Yl  n4 2

until sp,(l’$‘) 2  I,. Then I = Zck’.  //

Suppose 8i and O2  are two different criteria of optimality, such
that

spit  A)  2  3?i  tB)
implies

A 2  B (S,), i = 1,2,

i.e., A is to be preferred to B  with respect to criterion Oi.  Let Ii,  I, be sets
in the family Y1 n Y2, which are maximal with respect to f3i, 02,  respective-
ly. Then by Theorem 6.1 there exists a set I ~.fli  n .Y2, .I  c I, ~1 I,,  which
is maximal with respect to both 8, and 8;,.

Theorem 6.1 provides a relatively simple and direct proof ofa  theorem
of Nash-Williams.

Theorem 6.2 (Nash-Williams) Let M, = (E, 9,) be a. matroid and h: E +
E, be a mapping of E into E,.  Then A4,  = (E,, YO)  is a matroid, where

4, = {I, c E,I for some I, E,gi,  k(1,) =: I,}.
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P R O O F It is sufficient to show that if ,rp,  I,, 1 are two sets in 4,. respectively
with p and p + 1 elements, there exists a set h(Z)  E  9, with p + 1 or more
elements such that I, c /t(Z)  E I, u ,I,+ 1.  Let M,  := (E, X2) be a partition
matroid where

4, = [I, c El II,  n hK’  (e)l  12  1, for all e E  E,),

Let Zb,  lb+  1 be sets in .gI, respectively with p an’d p + 1 elements, such
that /I  (IL) = I, and h (lb + 1) = I,, 1.  The sets lb,  Zb  + 1 are independent in
M, as well as M,, and we can apply Theorem 6.1.. Thus there is a set I E
.Y1 n  Y2 such that

sP,(Z) 2  sPl(Zb-+I).
Hence 111 L p + 1, and

sPz(Z)  1  qsP,(Z;)),

from which it follows that

h(Z)  2 sp,U;).

and hence

h(Z) r>  h(Z;)  = I,

Also h is one-to-one on Z and Z c Zb  u  Zb.+l,  which implies that Ih(~)l  2
p + 1 and /I(Z)  G Z,uZ,+,. Thus J”, defines the independent sets of a
matroid. //

The rank functions in M, and M,  are in the relation:

ro(E,)  = A$$(h--‘(A))  + IE,  -- Al).
0

(6.1)

We leave the proof of this relation for the reader.
Another important way to form a new matroid is to take the “sum”

of two matroids.

Theorem 6.3 (Nush-Williams) Let M, == (E,, .Y,),  M,  =: (E2,  .Y2)  be
matroids and E = E, u E,,

.f = jzlz  = I, u z,,z,  ErY,,Z,E.Y1).
Then M = (E, 4),  the SZMI  of M, and M,, is a matroid.

PROOF Let E; be a new set obtained by priming each element of E, and
let M; = (E;,  Y;)  be defined in the obvious way. Because El, and E; are
disjoint, it follows almost immediately from definitions that M’ = (E’, .Y’)
is a matroid, where E’ = E, u E; and

4’=  {Z’lZ’= I, ul’;,z,E:.~l,z;E.~;:.
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Now apply Theorem 6.2 to M’ and M, with h: E’ -+  E defined by the rela-
tion

h(e) = e,eEEl

h(e’)  = e, e’  E  E;.

By Theorem 6.2, M is a matroid. i/

From the fact that the sum of two matroids is a matroid, it follows
that the sum of any finite collection OF  matroids M,,  M,,  , M, is also
a matroid. A relation between the rank function r in the new matroid and
the rank functions of the matroids entering into the sum is given by

r(E) = min
AGE

{ i: r&l)  + (E - Al  1.
i=l

As in the case of relation (6.1), we leave the proof to the reader.

(6 .2 )

Now suppose M = (E, 9)  is the sum of M, = (I$,  ,a,), i =:  1,2,  . . . . k.
We have available subroutines for determining whether or not a given
subset A c E is independent in any one of the matroids M,,  A4,,  . . , M,.
How can we determine whether or not a given subset /I  E E is independent
in M?

Clearly A is independent in M if and only if A can be Ipartitioned
into k blocks I,, I,, . . . . I,, where Ii E Xi. This is one variation of the
matroid partitioning problem. A special case of the partitioning problem
is: given a single matroid M = (E, 9) and a subset A z E, is it possible to
partition A  into k independent sets I,, I,, . . . . I,? (Consider taking the
sum of M  with itself k - 1 times.) Or., what is the :smulle,st  number k of
independent sets into which A can be partitioned?

Partitioning problems can be reduced to cardinality intersection
problems, as follows. If the sets E,. E,,  . . , E, are not dlisjoint, Imake  them
SO. by creating extra copies of the elements. Let M”’ Ibe  the matroid ob-
tained by summing the k matroids over these disjoint sets. For a given
set A which is to be partitioned, let M‘2) be a partition matroid in which
each independent set contains at most one copy of each element in A and
no element from E - A. Now solve the cardinality intersection problem
for M(l)  and Mc2).  The maximum cardi:nality of an intersection is equal to
the cardinality of A if and only if partitioning is possible. If partitioning
is possible, a feasible partition can be determined directly from such a
maximum-cardinality intersection.

Now let us consider the reduct:lon  of the intersection problem to
the partitioning problem. Let M, = (E. Ji) and M,  = (E, J,) be the two
matroids for which a maximum-cardinality intersection is to be found.
Suppose we partition E into three blocks, I,,  I,,  I,, where I, IIS a base in
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Mf’,  the dual of M 1,  I, is independent in M,, and I, is arbitrary (independent
in the trivial matroid for which every subset of E is independent). Then
I, is an intersection of M, and M,. AS  it turns out, it is easy to arrange for
Edmonds’ partitioning algorithm (described in the next section) to yield
a maximum-cardinality block I,, subject to the condition that I, is a base
of Mf.

6.1

6.2

6.3

6.4
6.5

PROBLEMS

Show expl ic i t ly  tha t  the  Mendelsohn-Dulmage  theorem is a corollary of The-
orem 6.1.
Let G be an acyclic but otherwise arbitrary directetd  graph. Let the nodes of
G with in-degree zero be identified with the elements of a matroid M,  =
(E, 9).  Le t  E, be  the  subset  of  nodes,  wi th  out-degree  zero ,  and Y,,  be a family
of subsets such that I, c E, is in 9,  if and only if there exists a set of node-
dis jo in t  pa ths  f rom an  independent  set  I i n  .P to  the  nodes  in  I , .  Use Theorem
6.2 to show that M,  = (E,,  X0)  is a matroid.
Prove that a matroid is a transversal matroid if and only if it is the sum of
matroids of rank one. (A matroid M’  = (E, 9) is of rank one if r(E) = 1.)
Prove relations (6.1) and (6.2).
Let  G be  an arbi t rary  di rec ted graph.  Let  LIS say that  a  subset  of  arcs  S  cmers
a given subset of nodes I if for each nodej  in I there is an arc (i, j) in S  directed
into j .  Use Theorem 6.2 to  show that  the  family of  subsets  of  nodes which are
covered by forests constitutes the family of independent sets of a matroid.
Show that the problem of determining whether or not there exists a forest
covering a given subset of nodes is a matroid intersection problem. (Note:
A forest is a subset of arcs which contains no undirected cycle.)

7
Matroid Partitioning Algorithm

Let Mi  = (E, .a,),  i = 1, 2, . . . , k, be k given matroids. The algorithm of
Edmonds given below constructs a partition of L: into k blocks Ii, i =
1,2, . ..) k, where Ii E  .fi, if such a partition exists. Moreover, the partition
constructed is lexicographically maximum, in that iI,1 is maximum, [Z,l
is as large as possible subject to Iz,\ being maximum, and so on.

MATROID  PARTITIONING ALGORITHM (EDMONDS)

Step 0 (Start) Set Ii = @,  for i = 1,2, . . . , k. Set #U  = E. (C’ is the subset
of elements which have not been asslgned  to blocks Ii.)



Matroid Partitioning Algorithm 321

Step I (Computation of‘ Sequence SO,  S1,  . . )

(1.0) Sets,  = Eand j = 1.
(1.1) Find the smallest index i such that (Ii  n  Sj-l  1 < ri(S,  -i).  If there
is no such block Ii, halt; E is not partitionable. (See the text following.)
(1.2) Set Sj = Sj- i n  Sp,(Z, n Sj-  1).  Set l(j) = i.
(1.3) If U G Sj, set j = j + 1 and go to Step 1.1; otherwise choose e
to be any element in U - Sj and go to Step 2.

S t e p  2 (Augmentation of Partition)

(2.0) Remove e from U.
(2.1) Add e to Zlcj,.  If Ilcj) is independent in Jv~,(~,,  ,go to Step 2.3.
(2.2) Find the unique circuit C c lLcj,  and choose ta’  to be any element
in C - S,-i.  (S UC an element e’ must exist; see the following text.)h
Remove e’ from Zlcj,,  set e = e’, set j = j - 1, and go to Step 2.1.
(2.3) If U is nonempty, go to Step 1. If U is empty, all elements of E
have been assigned to blocks of the partition, and the computation is
completed. //

The reader will readily see that l(j) acts as a “labeling function,”
which serves to direct a form of backtracing in Step 2. .Note  that this back-
tracing may involve the same block rnore than once; i.e., it can be that
I(i) = I(j),  for i #  j.

In Step 1.1, ifit is not possible to find a block Ii such that (li n  Sj- 1 1 <
ri(Sjel),  it follows that

lZi n Sj-ll 2  Y~(!;~-~)  L ri(A),

for all i and all A c S,-i.  If we choose e to be any element in Cl n Sj-l,
and let

A = {ef u
(

sj-.  1 n (J li ,
i=z  1 1

then it follows that

IAl  > il llin  Sjl 2 ilri(AJ. (7.1)

This inequality will be used in the proof of Theorem ‘7.1.
In Step 2.2 the circuit C in Ilcj) must of course Ibe unique because Ilcj)

was independent before e was added to Zlcj).  Moreover not all elements of
C can be in Sj- 1.  If they were, then they would all be in Sj as well, by the
construction of Sj in Step 1.2. But the element e was chosen (either in Step 1.3
or in the previous execution of Step 2.2) not to be a member of Si.
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It is not possible for I,,,, to be dependent in Step 2.1. If I,(,,  were
dependent, it would contain a circuil C, and by the observation above,
at least one element of C would not be contained in S,. But S, = E’,  and
clearly this is an absurdity; thus, the decrementing of j in Step 2.2 never
proceeds below j = 1.

We can evaluate the complexity of the algorithm as follows. Each
subset Sj is a proper subset of its predecessor, because of the condition in
Step 1.1, subject to which li is chosen. Hence, the inner loop, Steps 1.1
through 1.3, is performed at most m times for each execution of Step 1. Like-
wise, the inner loop, Steps 2.1 and 2.2 of Step 2, is performed at most m times
for each execution of Step 2. Steps 1 and 2 are themselves executed at most
m times, once for each element in E. Hence, the  overall computation grows
as m3c(m),  where c(m) is the maximum number of steps required to test
for independence in any one of the k matroids M,,  M2,  . . . , M,,.

Both the cardinality intersection algorithm and the matroid par-
titioning algorithm have been seen to be O(m,3c(m)  ) in complexity. However,
this does not mean that the algorithms have the same complexity when
applied to the opposite type of problem. For example, consider the applica-
tion of the partitioning algorithm to the intersection problem Recall that
it is necessary to determine whether or  not a set A is independent in Mf.
But A E  4: if and only if r,(E - A) = r2(E), and testing for this condition
requires O(mc(m)) steps, where c(m) Isteps  are required for independence
testing in M,.  Thus, the complexity of the intersection computation actually
becomes 0 ( m4c  (m)) when performed by the partitioning algorithm.

Conversely, suppose the cardinality intersection algorithm is ap-
plied to the problem of partitioning a set A into k independent sets, where
k is of order m. Then independence testing in the matroid MI” (recall the
notation from the previous section) becomes O(mc(m)) in complexity,
where c(m) is the number of steps required for independence: testing in a
single matroid M,,  M,,  . . . , M,. Thus, the complexity of the partitioning
computation becomes O(m4c(m)) when performed by the intersection
algorithm.

The partitioning algorithm provides a clonstructive  proof of the
following theorem.

Theorem 7.1 (Edmonds und Fulkerson) Let Mi  = (E, 9J,  i = 1,2, . . . , k,
be k given matroids. A set I c E can be partitioned into k subsets Ii, i  =
1, 2, . . . , k, where Ii E .8,, if and only if For all A c I,

k

IAl  12 1, vi(A).
i=l

(7.2)

PROOF Suppose I is partitionable inio  subsets Ii, i = 1,2, . . , k. Clearly,
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for all A G I,

and, for each Ii,

pi  n  Al  <I  r,(A),

from which (7.2) follows immediately.
Conversely, suppose (7.2) is satisfied for all /4  c E. Then the par-

titioning algorithm will construct a partition of E, since an appropriate
subset Ii can always be found in Step 1.1. (If this were not the case (7.1)
would be satisfied in contradiction to (7.2).) The result for arbitrary 1  z E
is obtained by applying the algorithm to the matroids Mi, i = 1,2, . , k,
restricted to the elements I (i.e., delete I!: - 1.) //

The celebrated Philip Hall Theorem of transversal theory follows
as a corollary of Theorem 7.1.

Theorem 7.2 (Philip Hull Theorem) There exists a transversal (SDR) of
the family Q = {qj; ,j = 1, 2, , m) if and only if for r = 1, 2, . . . , m, the
union of any r of the sets qi  contains at least r distinct elements.

PROOF For each element ei,  let Mi  = (Q,.Yi) be such that

pi = (Iz/J  U {‘[qj;lriEqjj.

There exists an SDR of Q if and only if #Q  can be partitioned into sets Ii E  Yi.
For any A c Q,

Vi(A)  = 1, if ei  is contained in the
union of the subsets qj
in A,

= 0, otherwise.

Hence c r,(A) counts the number of distinct elements, in the union of the
sets qi  in A. The desired result follow!j  immediately from Theorem 7.1. //

PROBLEMS

7.1 Formulate  the  cardinal i ty  in tersect ion problem solved in  Sect ion 3  as  a  matroid
par t i t ioning problem,  and solve  by Edmonds’  a lgor i thm.

7.2 Carry out a detailed analysis of the partitioning algorithm wheln  it is applied
to the problem of computing a transversal of a given ifamily  Q. Show that in
this case the labeling function is such that i + j implies /(i) # /(j).
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8

The Shannon Switching Gam’e

The Shannon Switching Game is played on the arcs of a graph. Two distinct
nodes of an arbitrary graph G are designated as ferrninal  no&s.  There are
two players in the game, called short and cut. Th.e  players alternately tag
arcs of the graph not already tagged by either player. The short player
wins if he tags all the arcs in some path connecting the termina.1  nodes,. The
cut player wins if he prevents the short player from obtaining such a path.
Each player has complete information about the other’s moves. The game
continues until one player wins.

It is clear that any such game must have a winner. When  all the arcs
have been tagged, either the short pla,yer  has succeeded in connecting the
terminal nodes, or he has not. Moreover, any given instance of the game
can be characterized as cut, short, or nmtral, depending upon the nature of
the graph G. A cut (short) game is one that can always be won by the cut
(short) player, playing second. (If a cut (short) player can win by playing
second, he can certainly win by playing first.) A -neutral game is one that
always can be won by the first player, whether cut or short.

Let us indicate the terminal nodes of the graph by connecting them
with a special arc e, which is not to be tagged by either player. Using this
convention, very simple examples of cut, short, and neutral games are
shown in Figure 8.9.

Figure  8.9 Examples of (cut,  short, neultral  games
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Lehman applied matroid theory to the analysis of the Shannon
Switching Game, suggested the classification into cut, short, a.nd neutral
games, and characterized a winning strategy for the short player. Edmonds
improved this analysis and provided a good characterization of a winning
strategy for the short player. The statement of Theorem 8.1 is a further
refinement due to Bruno and Weinberg.

We say that two subsets A, A’ c E are cosp,znning  in a matroid
A4  = (E, 9) if they have the same spans, i.e., sp(A)  = sp(A’).

Theorem 8.1 Let G be the graph of a Shannon Switching Game in which
e is the nonplayable edge. Then exact’ly  one of the following statements
holds :

(8.1) G contains two disjoint cospanning trees spanning but not con-
taining e.  The spans are taken with respect to the graphic matroid of
G. Equivalently, the game is a short ga.me.
(8.2) G contains two disjoint cospanning cotrees spanning but not
containing e. The spans are taken with respect to the cographic matroid
of G. Equivalently, the game is a cut game.
(8.3) G contains two disjoint cospanning trees, and e is a member of
one of the trees. The spans are taken with respect to the graphic matroid
of G. G also contains two disjoint cospanning cotrees and e is a member
of one of the cotrees. The spans are faken with respect to the cographic
matroid of G. Equivalently, the game is a neutral g,ame.

We shall not prove this theorem, but we should comment on some
of its implications. First, it seems evident that a variation of the matroid
partitioning algorithm can be used to (determine whether any given game
is cut, short, or neutral. Bruno and Weinberg make use of a procedure due
to Kishi and Kajitani which can be viewed as a variant of the matroid
partitioning algorithm.

Second, the disjoint cospanning trees and cotrees mentioned in
(8.1) and (8.2) of the theorem provide clues to the winning strategies for
the short and cut players in short and cut games. For example. in the case
of a short game, each time the cut player tags an arc in one of the cospanning
trees, the short player tags an arc e’ in the other tree, so that when e’  is
contracted in G, the arcs of the two trees untagged lby the GUI  player are
again cospanning. If the cut player tags an arc that is not in either cospanning
tree, the short player’s move is arbitrary.

It is not hard to devise variatio:ns  of the switching gamle  which are
effectively unsolved. For example, suppose that neither player is allowed
to have more than k arcs tagged at any time. One can imagine that there
are a fixed number of markers, and at each move a player is allowed to
move one marker.
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Also, very little is known about the game of Hex, which is -played
on a square tesselation of hexagons, similar to the tiles in -the floor of a
public washroom (where the game allegedly originated at M.I.T.). The
players alternately tag hexagons, with one player attempting to form a
chain from one side of the tesselation to the other, and the other player
attempting to block him.

9
Weighted Augmenting Sequences

We now return to the weighted matroid intersection problem. The “primal”
procedure we shall propose is analogous to the algorithm of Busacker,
Gowan, and Jewel1 for computing minimum cost network flows;. The matroid
algorithm proceeds by computing maximum weight intersections contain-
ing successively larger numbers of ellzments.  Having obtained I,, a maxi-
mum weight intersection with p elements. Z,+l is obtained from I, by
constructing a “maximum weight augmenting sequence,” i:n exactly the
same way that the corresponding network flow algorithm proceeds from
a minimum cost flow of value v to one  of v,alue  11  + 6  by means of a mini-
mum-cost flow augmenting path.

The algorithm is characterized as “primal” because: it does not
involve dual variables or the calculation of a dual solution, as is the case
with the “primal-dual” method described in Sections 12 and 13. The primal
method is certainly conceptually much simpler, and possibly more efficient
than the primal-dual method.

For any subset A E E we let w(A) denote the sum of the weights
of the elements in A. That is,

w(A)  = c wJ.

Given an intersection I, and a set S 5;  E, we define the incrrmentul  weight
of S to be

A(S) = w(S - I) - w(S n I).

Clearly,
w(Z  @ S) = ,w(Z)  + A(S).

In order to establish the validity of the primal algorithm, we: must
introduce some additional definitions and terminology. A border path is
either (1) a directed cycle in BG(Z)  or (2) a directed path (without repetition
of nodes) in BG(Z)  from a node that is either in I or a source in E -- Z  to
a node that is either in Z or a sink in E - I. A, bordler  path is sa:id  to be either
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“posit ive, ” “neutral,” or “negative,” according to the following classifica-
tion :

(9.1) A source-sink path S is positice.  11  @ SI  = 111  + 1.
(9.2) A directed cycle is neutral, as is a path from a source to a node
in I, or path from a node in I to a sink. If S is a neutral path, then (I @ So =

111.
(9.3) A path S between two nodes in 1  is negative. 11  @ SI  = 111  - 1.

The reader should refer to Figure 8.8 and identify each path in the
figure as positive, neutral, or negative.

Let S be a border path in BG(1).  A simple border cycle with respect
to S is an undirected cycle in either BG 1 (I) or BG2(I)  ,which  uses arcs in
S alternately. An example of a simple border cycle is shown in Figure 8.10.
Arcs not in S are dashed in the figure.

Lemma 9.1 (Krogduhl)  Let S be a border path in 13G(I). If S admits
no simple border cycle, then I @ S is an intersection. In particular, if S
is a source-sink path which admits no simple border cy’cle,  then S is an aug-
menting sequence with respect to I.

Figure 8.10 A border path with simple border cycle in f3G, (1)
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PROOF Without loss of generality, let S = (ei, e2,  . . , e,). (If S is a directed
cycle, choose an arbitrary node e, and let e,  be the last node reached before
returning to ei.)  If S admits no simple border cycle in BG,(Z), then it is
possible to induce a partial ordering, “ 2” on node pairs, where for e,,  ej  E
E - I, ((I~,  e,,  i) I (ej, ej+i)  if there .is an arc (e,,  ej+i)  in BG,(Z). One can
then use this partial ordering to redraw the subgraph of BG2(Z)  induced
on the nodes of S so that there are no “downward” arcs, as in the proof
of Lemma 3.1. The proof that I @ S is indepenclent  in M,  then follows by
a construction similar to that used in Lemma 3.1. The proof of independence
in M, is, of course, similar. //

The reader should be able to verify that if a border path S admits
no shortcuts, then S admits no simple border cycle. (If S is a directed cycle,
any chord is a shortcut.) Thus Lemma !a.1  is a strict generalization of
Lemma 3.1.

We say that an intersection I is p-maxima/ if 111 = p and I is of maxi-
mum weight with respect to all intersections containing p elements.

Lemma 9.2 (Krogdahl)  Let Z be p-maximal and S be a border Ipath  in
BG(Z).  If any shortcut of S yields a path with strictly less incremental weight,
then Z @ S is an intersection.

PROOF We wish to show that S does not adrnit a simple border cycle,
so that Lemma 9.1 applies. So we shall assume that S admits a simple border
cycle and show that this assumption leads to a contradiction.

Again without loss of generality, suppose S = (e,, e,,  . . , e,). Any
simple border cycle must contain at least one shortcut of S and at le,ast  one
“cutback,” an arc directed in the sense opposite to S. A shortcut yields a
border path with strictly less incrementa. weight. Hence if (ei,  ej) is a
shortcut,

A({ei+i,ei+l,  . . . . cj-1))  I>  0. (9.4)

A cutback (ej, ei)  forms a directed cycle in BG(Z)  with the subpaih of S
which lies between ei  and ej. If this directed cycle admits no simple border
cycle, then

A( {pi, e,+i,  . . . . ej),) < 0, (9.5)

because 1 is p-maximal. (Otherwise Z @ {pi, ei+  i, . , ej  ) woulld be an inter-
section with p elements, but with strictly greater weight than I.)

It is not difficult to show that inequalities (9.4) and (9.5) yield a
contradiction for any simple border ‘cycle. For example, in the case of the
simple border cycle in Figure 8.10,

w(ed  + de51 :> w(e2) + w(eJ,

w(e,)  + w(e,)  > w(e6) + w(e8),
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by (9.4), whereas

w(e3)  + w(e,)  + w(e,)  + w(eg)  5  w(e2)  + w(eJ  + w(e6)  + w(e,),

by (9.5).
It only remains to show that if S admits a simple border cycle, S

must admit a simple border cycle for which inequality (9.5) is valid for each
cutback in the cycle. This is a bit tricky.

Suppose a simple border cycle C contains nodes eitl,, eic2,, . . . , eick)
in E - I, where i(1) < i(2) < . . . < i(k). Define the “extension” of C to be
the subpath  of S between eicl, and eick).  (Recall S = (el, e2,  . . . . e,).) Since
S is assumed to admit a simple border cycle, there must be a simple border
cycle C such that the extension of C is minimal and C contains a maximum
number of arcs with respect to all other s.imple  border cycles with the same
extension. That is, if C’ is any other simple border cycle, lthen  the extension
of C’ is not a proper subpath of the extension of C, and if C’ has the same
extension as C, then C’ contains no more arcs than C.

Now consider any cutback arc in C. Suppose the directe’d  cycle S’
formed by this cutback were to admit a simple border cycle C’. The alternate
arcs of S’ which appear in C’ cannot be a subset of the alternate arcs of S
which appear in C. Otherwise C’ would also be a simple border cycle of S,
with smaller extension than C. Hence the alternate arcs of s’  in C’ must
include the cutback itself plus arcs of S “in between” the alternate arcs of
S in C. But if this were the case, it would be possible to construct a simple
border cycle of S, either with smaller extension than C, or with a larger
number of arcs than C. We leave details to the reader.

It follows that if S admits a simple border cycle, it admits a simple
border cycle for which inequality (9.5) holds for each cutback in the cycle.
But this is a contradiction. Therefore, S admits no simple border cycle. //

If I is p-maximal, it follows immediately from Lemma ‘9.2 that a
maximum (incremental) weight source-sink path S in BG (I) is an augment-
ing sequence. We now wish to show thal.  I @ S is (p + :l)-maximal.

In proving the following key lemma we make ‘use  of two observa-
tions. First, if S, and S, are node-disjoint border paths, where S1  is positive
and S, is negative, then S1 u  Sz can be treated as a single neutral border
path. Second, if S is a border path. then repeated shortcutting of S (with
weight nondecreasing shortcuts) yields a path S’ or  S such that A(S) > A(S)
and I @ S’ is an intersection.

Lemma 9.3 (K~o&hl) Let I be a p-maximal intersection and J be any
intersection with IJI  = (11  + 1. Then there exists a source-sink path S E
1  @ J in BG(I)  such that S is an augmentj.ng sequence and w(l  0 S) > w(J).
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P R O O F If J contains an element that is;  not in sp,(Z) u  sp,(Z), then r,
is both a source and a sink in BG(Z) and S = (el) is a source-sink path.
Since J - e, is an intersection with p elements, ‘vv(.Z - el)  < w(Z), which
implies that w(Z  + e,)  2  w(J), as required. So assume J E sp,(Z) u  sp,(Z).

Now carry out exactly the same construction used in the proof of
Lemma 3.2. That is, form the subgraph H s BG(Z) with node set Z @ J
and arc set X,  u X,, where X,,  X, are matchings found as in the proof
of the lemma. Each connected component of H is a border path. Since
lJ - II = (I - J( + 1, the number of positive border paths is one greater
than the number of negative border paths,. Choose any one of the positive
(source-sink) paths S and pair the remaining positive and negative paths
to obtain neutral border paths. For any neutral path S’, A(S’) I 0, because
Z is p-maximal. The sum of the incremental weights of all border paths is
equal to w(J  - I) - w(Z  - J).  It follows that w (I @ S) 2  w(J). //

The key theorem below follows almost immediately from the lemma.

Theorem 9.4 Let Z be a p-maxim,al  intersection and S be a maximum
incremental weight source-sink path in BG (I). Then S is a maximum weight
augmenting sequence and Z @ S is (p + l)-maximal.

In the next section we shall show that maximum weight augmenting
sequences can be computed by a procedure that is essentially a shortest
path algorithm. Thus, it is clearly p’ossible  to start with the empty set and
find maximum weight augmenting s,equences  to obtain II, I,, I,, . . . , max-
imum weight intersections with 1,2,3,  elements, respectively, stopping
when no further augmentation is possible. One can then compare the weights
of these various intersections so as to dete:rmine an intersection which has
maximum weight without restriction on the number of elements.

However, “the maximum weight of intersections is concave in the
number of elements,” just as “the minimum cost of flows is convex in the
value of the flow.” This means that if one seeks to compute a maximum
weight intersection without restriction on the number of elements, such a
set is given by I,,  where p is the s:mallesl.  number of elements such that
WU,)  2  wU,+,).

In order to establish this concavity result, we need two additional
lemmas.

Lemma 9.5 (Krogdahl)  Let Z be a p-maximal intersection with p 2 1
and .Z  be any intersection with IJI  q = 111  -- 1. Then there exists a negative
border path S c I @ J in BG(Z) such that Z @ S is an intersection and
w(Z  0 S) 2  w(J).
P R O O F The proof is essentially similar to that of Lemma 9.3, except that
after pairing positive and negative baorder  paths, there is one negative path
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left over. The other important difference is that we mus,t  pr0vid.e  for the
case J $  sp, (I) u sp, (I) by using (J - I) n  (spi  (I) u sip,  (I)) instead of
J - I when the partition into sets Jr, -I,, J, is made. This means that
there may be degenerate positive border paths consisting of single elements
which are neither sources nor sinks, but this makes no difference. ,i/

Lemma 9.6 (Krogdahl)  Let I be a p-maximal intersection with p 2  1.
Let S be a positive border path and S’  be a negative border path in BG(I).
Then A(S) + A(S’)  IO.

P R O O F If the two paths are disjoint, then S IJ S’ acts, ;as  a neutral path
and the lemma follows immediately. So assume S and S’  have at least one
node in common. Take the subpath of S before this no’de  and the subpath
of S’ after this node to obtain a neutral path R. Lkewise, take the subpath
of S’ before this node and the subpath of Safter  this node to obtain a second
neutral path R’. (There may be repeated nodes in R and R’, but this is of
no consequence.) Now A(R) I 0 and A[R’)  I 0, because I is pmaximal.
But

A(R) + A(R’) = A(S) + A(S’).

so the lemma follows. //

Theorem9.7 Let I,-,, I,, I,,, be intersections which are (p - l)-, p-,
and (p + 1)-maximal, respectively. Then

w(lp) - w(Z,-.,)  2  “ ( I , , , )  - w&J.

P R O O F By Lemma 9.3, there is a positive border path S in BG(I,)  such
that ~(1,)  + A(S) = w(Z,+,).  By Lemma 9.5, there is,  a negative border
path S’ in BG(I,)  such that ~(1,)  + A(S’)  = ~(1~~~).  He:nce,

W,+,) - NJ = A(S),

w(Z,) - w(I,-,)  = -A(S’).

But by Lemma 9.6, A(S) + A(S)  I 0, which yields the desired result. //

As a final note, we might mention that Theorem 9.7 also follows
immediately from the linear programming formulation of the weighted
intersection problem, discussed in Sections 1 I through 13. That is, I,- i,
I,, I,+1 can be shown to be feasible solutions of a certain linear programming
problem. The convex combination *I,-  r + iI,+ i is also a feasible solution
and is dominated by an optimal solution at an extreme point of the poly-
hedron identified with a p-maximal intersection. This line of reasoning
parallels that used in Chapter 4 to show that the minimum cost of flows
is convex in the value of the flow.
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10
Primal Weigh  ted Intersection A,Igorithm

A maximum incremental weight source-sink path in a border graph can
be found by a procedure that is similar Ito  a shortest path computation.
Each node ej  E  E - I, in BG (I,) is given weight wj and each node ej  E  I,
is given weight - wj. One then wishes to find a source-sink path of maximum
total node weight. Since I, is assumed to be p-maximal, there are no directed
cycles in BG(Z,)  with positive node weight.

Let

A(ej) = the weight of a maximurn  weight alternating sequence, with
ej  as the last element.

We propose to compute A(ej) by successive approximations, as in the Bell-
man-Ford shortest path algorithm. In effect, at successive iterations we
compute A”‘(ej),  Ac2’(ej),  . . . . A’“‘(ej), where

Ack’(ej)  = the weight of a maximum weight alternating sequence
containing no more than k elements, with ej  as the
last element.

Since no alternating sequence contains more than m elements, where
IEl = m, it is clear that a maximum weight ;augmenting  sequence has weight
A(S), where

A(S) = m;;  {A@‘(ej)(Zp  + ejE.Y2j.
‘J

A labeling procedure for computing these successive approxima-
tions to A(ej) can be implemented as follows. (Superscripts on A(ej) are
eliminated for conciseness.)

Initially, apply the label “a+” to each element ej  E  E - sp, (I,) and
set A(ej) = wj. For all other elements ej, set A(ej) = - 8~.

Thereafter, find an element e;  with an unscanned label and scan it
as follows. If the label is a “+”  label and I + e,  is dependent in M,, apply
the (unscanned) label “iC”  to each element ~j  E  Cl” - ei  for which A(ei)  -
wj  > A(cj),  and set

A(ej) = A(ei)  -.-  Wj.

If the label is a “-” label, apply the (unscanned) label “i+”  to each element
ej  such that ei  E  Cji’ and A(ei)  + “‘j >. A(ej),  and set

A(ej) = A(ei)  $- wj.

Continue scanning and labeiling  u.ntil  all labels are scanned. We
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assert that at that point A(ej) has attained the correct value for all ej.
(Labels may be scanned in any order. Ho,wever,  in order to achieve a bound
of O(m”)  on the labeling procedure, it is. necessary that labels be scanned
in the order in which they are applied.)

We now summarize the primal algorithm.

PRIMAL WEIGHTED INTERSECTION ALGORITHM

Step 0 (Stunt) Let I = 0. No elements are labeled.

Step I (Labeling)

(1.0) For each element ei  E  E - I, find Ci ,(l) C(‘)  if these circuits exist.
Set A(S) = - c;o,  A(ei)  = -x, for all ei  E  sp,  (Zi. ‘Apply the label “(Z(+”
to each element ei  E E - sp,  (I) and set A(ei)  = wi.
(1.1) If there are no unscanned labels and A(S) > --m, go to Step 2.
If there are no unscanned labels and A(S) = - X, go to Step 3. Other-
wise, from among the elements whose labels are unscanned, find that
element e,  whose label was first to be applied. If the label is a “+”  label,
go to Step 1.2; if it is a “-” label, go to Step 1.3.
(1.2) Scan the “+”  label on ei  as follows. If I + ei  is independent in
M,  and A(ei)  > A(S), set A(S) = A(ei)  and s = i. Otherwise, apply the
(unscanned) label “i-”  (replacing any existing label) to each element
e,~Ci”  - ei  for which A(ej) < A(ei)  - wj  and set A(ej) = A(ei)  - Wj.
deturn  to Step 1.1.
(1.3) Scan the “ -” label on e,  as follows. Apply the (unscanned) label
“i+” (replacing any existing label) to each element e,  such th.at ei  E C$‘)
and A(e,)  + wj  > A(ej), and set A(ej) = A(ei)  + wj. Return to Step 1.1.

Step 2 (Augment&on) A maximum weight augmenting sequence S can
be identified by backtracing from e,. If A(S) I 0, stop; the existing inter-
section I is of maximum weight. Otherwise, augment I, remove all labels
from elements, and return to Step 1.0.

Step 3 (Hungarian Labeling) No augmenting sequlcnce  exists. I is not
only of maximum weight but of maximum cardinality.  The labeling is
“Hungarian” and can be used to construct a minimum-rank covering dual
to 1. Halt. //

It is quite easy to estmiate the complexity of the primal algorithm.
Let R = min (r,(E), r,(E)). Consider the running time for each of R
possible applications of the labeling procedure. The computation of Cj”,
CI”, for all e,  E  E - I requires O(mRc(nz))  running ,time.  Each of the m
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Fisgure  8.1 1 Multigraphs for

Problem 10.1

elements may receive O(R) labels (corresponding to A”‘(ej),  A”‘(ej),  . ..)
and the scanning of each label requires, 0 (m) running time. Hence the labeling
procedure consumes O(m2R)  running time per augmentation. Backtracing
and other operations are dominated by those already mentioned. It follows
that the overall running time is O(m2R2  + mR2c(m)).

P R O B L E M

10.1 Let M,. M,  be the graphic matroids of the multigraphs G,, GX shown in
Figure 8.11. Let the arcs of thex multigraphs be given weights w1  = 3,
w2  = 5, WJ  = 6, wq = 10. u‘s  = 8. Find a maximum weight intersection,
starting with the 2-maximal intemection  I, = (e.!,  e4), indicated by wavy
lines in the figure.

11
Matroid Poly.‘zedra

In order to formulate the weighted intersection problem as a linear pro-
gramming problem, we first formulate a system of linear inequalities
which are satisfied by an independent set of a single matroid M = (.I?,  4).
Clearly, if I is an independent set, then

II n  SI  5  r(S), (11.1)

for any subset S c E, and in particular for any closed set S.
Equivalently, let A be an incidence matrix of closed sets and ele-

ments of E. In other words, each row i of /I  corresponds to a closed set of
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the matroid (the indexing of these sets being arbitrary) and each column j
corresponds to an element ej. We set

aij = 1, if ej  belongs to closed set i,

= 0, otherwise.

Let r = (ri, rz,  . . . . r,) be a vector, where ri is the rank. (of  closed set i. We
shall show that the vertices of the convex polyhedron defined by the in-
equalities

A x  I r

x 2  0

are in one-to-one correspondence with the independent sets of M.  That is
to say, if x is a vertex, then each componlent xj is either 0 or 1,  whiere  xj = 1
if element ej  is a member of the independent set identified with the vertex,
and xj = 0, if it is not.

As a simple example, consider the graphic matroid of the gr,aph  shown
in Figure 8.12. There are nine nontrivial closed sets of this matroid (i.e.,
closed sets other than the empty set) and the incidence matrix il and rank
vector r are the following:

IelI
Ie21
Ie3 )
{e4)
iel,  e4) A =

ie2,  e41

ie3,  e41

{el,ez,e3)

i el, c2,  e3, e4)

1 0 0 0
0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 1

0 1 0 1

0 0 1 1

1 1 1 0

1 1 1 1

r=

It is not difficult to show that the only feasible solutions to the system

A x  I r

xj = 0 or 1

e2

e1 e4

P-----O
e3

Figure 8.12 Example graph



336 Matroid Intersections

are those which correspond to independent sets, and vice versa. What is
more surprising is that when these constraints are used to define a linear
programming problem, the (0, 1) restriction on the variables can be dropped,
and the existence of an optimal integer solution is guaranteed.

Theorem 11.1 (Edmonds) For any matroid M, all vertices of the convex
polyhedron defined by the system of inequalities

A x  I Y,

x 2  0,

have integer components. Moreover, the vertices and the independent sets
of the matroid are in one-to-one correspondence.

PROOF It is sufficient to show that for any set of element weights, w =
(WI.  w2, . . . . w,), the linear programming problem

maximize wx
subject to

A x  I r

x 20

has an integer optimal solution.
It is known that for any given set of weights, one can find a maximum

weight independent set by applying the greedy algorithm. In other words,
from among the elements whose weights are strictly positive, choose the
element of greatest weight, then second greatest weight, and so on, unless
the selection of an element would cause the set of chosen elements to be
dependent. If we can show that such a maximum weight independent set
chosen by the greedy algorithm yields an optimal solution to the linear
programming problem, the theorem will have been proved.

The dual linear programming proble:m  is

minimize ru
subject to

ATu > w

u 2  0.

The orthogonality conditions which guarantee optimality of feasible
primal and dual solutions are:

xj > 0 =a (.45L)j := wj,

ui  > 0 a (.4x)i = Yi.

Suppose, without loss of generality, the elements chosen by the
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greedy algorithm are e,,  e2,  . . . . ek, where w, > w2 1 . . . > w,‘,  and that
Ul,UZ,  . . . . uk  are the dual variables corresponding to the closed sets

Sl = sP(M),

S2 = v({e19ezt)L

Sk  = sp({el,e:!,  . . ..eki).

respectively. We shall show that

xj = 1 (j = 1,2, . . ..k)

= 0 (,j = k + 1,  . . , n)

is an optimal primal solution.
From the nature of the greedy a.lgorithm,  it is clear that

r(Si)  = li

= I(AX),

= ,ri,

so it is permissible for ui  > 0, i = 1, 2, . . . , k. If we set

& = wk,

k

ui  = wi - 1  14I:
f=i+l

we find that

(ATU)j  = wj (j= 1,2 ,..., k).

Furthermore,

because of the “greedy” nature of the algorithm.
This establishes that each vertex of the polyhedron corresponds

to an independent set. Conversely, each independent set is a unique maxi-
mum weight set for some weighting of the elements, and therefore corre-
sponds to a vertex of the polyhedron. 1,’
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Let M,,  M, be two matroids over the same set of elements E and
let A and B be the closed set incidence matrices of M, and MZ.  respectively.
Let r and s be the rank vectors associated1 with these two matrices. We
propose to solve the weighted intersection problem by solving the linear
programming problem

maximize w.x
subject to

Ax 12  r

x 2  0.

If this linear programming problem hlas  an integer optimal solution,
then this is a valid approach. At this point it is by no means clear that the
integrality property holds. However, the prilmal-dual  weighted intersection
algorithm will provide a constructive proof of the integrality property,
just as the greedy algorithm provided a constructive proof of Theorem 11.1.

Theorem 11.2 (Matroid Polyhedral Intersection Theorem-Edmonds)
For any two matroids M,  and M,, all vertices of the convex polyhedron
defined by the system of linear inequalities

Ax 2  r

have integer components. Moreover, the vertices and the intersections of
the two matroids are in one-to-one correspondence.

An equivalent statement of the theorem is that the intersection oj
two matroid polyhedra is a polyhedron whose vertices are vertices of’ each
of the two intersected pol~~hedra.  Note, however, that the intersection poly-
hedron is not necessarily a matroid polyhedron, so the theorem, unhappily,
does not extend to three or more polyhedra.

PROBLEMS

11.1 Determine the exact nature of the clclsed  set incidenoe  matrices and the closed
set-rank inequalities for each of the following types of matroids. Which in-
equalities, if any, are redundant in leach  case?
(a) Partition matroid
(b) Transversal matroid
(c) Graphic matroid
(d) Cographic matroid
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11.2 Suppose, in addition to the inequality (constraints,

Ax I r

x L  0

we add  the  cons t ra in t

Cxj  2 r(E).

Show tha t  the  resu l t ing  sys tem def ines  a  polyhedron  whose  vertices corre-
spond to  the  bases  of  the  matro id .

12
Explanation o!‘Primal-Dual  Method

The primal-dual algorithm described below provides a constructive proof
of the polyhedral intersection theorem of Edmonds. That is, it is shown
that, regardless of what element weights w = (w,, w;!,  . . . , w,) are chosen,
the linear programming problem

maximize wx

subject to

A x  I r

Bx I s
(12.1)

has an optimal solution in zeros and ones.
The primal problem is as indic,ated  in (12.1). The dual problem is

minimize ru + SD

subject to

A“u + B’v 2  w (12.2)

u,u  2  0,

where each dual variable I.Q  is identified with a closed set of M, and uk
with a closed set of M,.

Orthogonality conditions necessary and sufficient folr  optimality
of a pair of feasible primal and dual solutions are

xj > 0 3  (ATu  + BTuJj  = wj (12.3)

ui  > 0 *  (Ax)~  = ri (12.4)

vk  > 0 =a (Bx)~  = sk. (12.5)



3 4 0 Matrotd  Intersections

The algorithm begins with the feasible primal solution xj = 0, for
j = 1,2,..., m (i.e., I = @), and with the feasible dual solution in which
each dual variable ui  or c’~  is zero, except Q.,  the dual variable identified
with the closed set E. We set uE  = max (Mv’j3.  Thus, at the beginning of
the computation the only orthogonality condition which is violated is

(12.6)
The algorithm proceeds in stages. At each stage either the primal

solution is revised by augmenting the existing intersection, or the values
of the dual variables are revised. At all limes, both primal and dual feasibility
are maintained. Moreover, at each stage the only orthogonality condition
which is not satisfied is (12.6). After a finite number of stages (in fact, a
number bounded by a polynomial function in the number of elements
in E), the condition (12.6) is also satisfied, and the primal and dual solutions
existing at that point are optimal.

For a given pair of primal and dual solutions, a. variant of the labeling
routine of the cardinality intersection algor:ithm is applied, in an attempt
to augment the primal solution. Clearly, the use of any augmenting sequence
will result in a new feasible primal solution. However, the labeling routine
must be modified in such a way that the only augmenting sequences which
can be discovered are those for which all the orthogonality conditions
except (12.6) continue to be satisfied.

If the application of the labeling routine, as restricted, does not
result in the discovery of an augmenting sequence, then the dual solution
is modified. The change in the dual solution must be such as to maintain
dual feasibility, maintain satisfaction of all orthogonality conditions except
(12.6), and also provide some progress toward the termination of the algo-
rithm with optimal primal and dual solutions.

As a consequence of the fact thal:  (12.611  is the only unsatisfied orthog-
onality conditions, the intersection I existing at  uny intermediute stage of the
computation is of maximum weight, relatiue  to all intersections containing
111 01’ fewer elements. For suppose there were an additional constraint of
the form

and we were to incorporate this constl-aint  with the objective function via
a Lagrange multiplier 3,. Then an intermediate solution is easily shown to
lx optimal for ,?  = uE  and therefore for  a value of k equal to 111.

At each stage of the computation, no more than 2m dual variables
are permitted to be nonzero. These nonzero  variables, except uE, are
identical with spans of subsets of I in two different families +Y  and V.
Notationally, we let

‘i!! = {U,,  u,,  . ..) U,}
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and

where

Ul) = @9  Uj  c Uifl, u,  = I,

VII = a v,c l/k+1, “b  = I.

Associated with subsets Ui  and V, are (dual  variables bli and uk,  where ui
is identified with the closed set sp, ( Ui) and vk with sp2  (IQ.

Suppose the primal solution I is augmented by the application of
an augmenting sequence S = (e,, e2,  . . . , e,). We propose to revise the
families J& and V as follows. For j = 3. 5, . . , s replace ej- i by ej  in each
of the subsets Ui  in which ej-i  is contained. For j = 1,  3#, . . . , s - 2, replace
ej+r by ej  in each of the subsets I$ in which ej+i  is contained. If up  = 0,
set U,  = I @ S. Otherwise, (if 11~  > 0), set p = p + 1 and then set U,  =
I @ S. Finally, if vq  = 0, set V, = I 0 S. And if cq  > 0, set q = q + 1 and
set V, = I @ S.

Of course, this revision of the families 4?, 9. cloes  not affect the
dual solution, in the sense that the values of no dua.1  variables ui, uk  are
affected. However, unless the augmenting sequence S is of a restricted type,
a proper relation will not be maintained between the sets Ui, Vk and the
dual variables ui, vk. Specifically, it is necessary that the spans sp, (U,),
sp,(  Vi) be unaffected by the changes in membership of Ui  and I$.  This
objective is attained by a modification of the labeling procedurle.

The labeling procedure is modif[ed in two ways. First, no element
is given a label, unless it belongs to the set

E* = (ej\ (A’u + BTu)j  = wj).
This insures that any augmenting sequence discovered by the labeling
procedure will maintain satisfaction of the orthogonality conditions (12.3).

Second, the rules for scanning are modified so as to m,aintain  in-
variance of the spans of the sets in 4?, ‘L after augmentation. When a “-”
label on ej  E I is scanned, find the smallest set Ui  in wlnich  ej  is contained.
Denote the index of this set by u(j). Then apply the label “ft.’  to each
unlabeled element ei  E E*  such that ej  E C$‘) and Ci”  -- ‘oi  c Uuclj.

When a “ +” label on ej  E  E” - 1 is scanned, determine if I + ej  is
independent in M,. If so. an augmenting sequence has been found. Other-
wise, find the smallest set V, such that c’i” - ej  c V,. Then apply the label
‘:j -” to each unlabeled element in Cy’  -- V, _  i.

We assert that this system of labeling. in conjunction with the
previously mentioned system of replacement of elements in 4, I ‘, does
indeed maintain invariance of spans after augmentation.

Alternating sequences constructed by this modified labeling pro-
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cedure are valid alternating sequences. For example, suppose we seek a
maximum weight intersection of the graphic matroids M,,  M, of the multi-
graphs Gr,  G, shown in Figure 8.11. with ‘element weights %a1  = 3, w2 = 5,
uj3 = 6, w4 = 10, w5 = 8. Assume that the computation has progressed
to the point that I = {e,, e4), with the following dual solution:

UE  = 2,

Ul = {c’419 u1  = ‘I,

U,  = {e,,e,l,, Ll2 = 2,

V, = {e,), 0 = 1,

V2  = {e2,  e,)  , v,  = .I.
The reader can easily verify that the dual solution is feasible. In

fact, E* = E = {e,,  r,, . . . , e, ). Moreover, it satisfies all orthogonality con-
ditions except (12.6).

Now if the unmodified labeling procedure of the cardinality inter-
section algorithm is applied. the only augmenting sequence constructed
is S = (e,, e4,  e,),  yielding the three-‘element intersection I 0 S =
{e,, e2,  e5}, with weight 16. However, when the modified labeling procedure
is applied, the only augmenting seque-ace  co:nstructed  is S’ = (et,  ez, e3,  e4,  es),
which yields the three-element intersection I @ S’ =: {vr,  pj, e5) with weight
17.

The reader should be able to verify that the existing dual solution
fails to satisfy orthogonality condition (12.5) for I ‘3 S. However, the dual
solution does satisfy all orthogonality conditions, except (12.6), for I @ S’.
Hence I @I  S’ is a maximum weight intersection of three elements.

If the labeling procedure, as modified above, terminates without
the discovery of an augmenting sequence, then the dual solution is revised.
This is done as follows.

First, we create additional sets in the families a, V, in such a way
that each set Ui  - Ui-  I or V, - V, - 1 will contain only labeled elements
or only unlabeled elements. Let I be partitioned into subsets I,, I, of
labeled elements and unlabeled elements. For each set Ui, such that Ui  -
Ui-  1 contains both labeled and unlabeled elements, add one to the indices
of the sets Ui, Ui  + r, , U,.  and then create a new set

Ui  = Ui-l  ~I  (Ui+l  n  I”),

and set zli = 0. (In the expression for the new set Ui, Ui+I is the old Ui,
with incremental index.) For each :set  V,. such that V, - VkPl contains
both labeled and unlabeled elements, add one to the indices of the sets
v,,  I/k+1,  ..., V,, and then create a new  set

v,  = K-1 u  (K+, n  I,),

and set L’~ = 0.
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Let 6  be a positive number yet to be determined. ‘The dual variables
are changed as follows. Variable uE  is decreased by 1;.  If the elements of
ZJ, - UP-,  are unlabeled, up  is increasled  by 6. If, for i = 1,2, . . , p - 1,
the elements of Ui  - U,-i are labeled (unlabeled) and those of Ui+l  - Ui
are unlabeled (labeled), then Ui  is decreased (increased) by 6. If thse  elements
of V, - Vy- 1 are labeled, uq  is increased by 6.  If for k  = 1,2, . . . ,q - 1,
the elements of V, - V,_ 1 are labeled (unlabeled) and those of V,,  i - V,
are unlabeled (labeled), then Vk is increased (decreased) by 6. No other
dual variables are changed in value.

The reader should convince himself that if th’e elements in Ui  -
Uiel  are labeled, then the effect of the changes in the dual variables is to
decrease (A’u), by 6, for each ejE  spi  (Vi)  - sp,(U,-,).  However, if the
elements in Ui  - UiPl  are unlabeled, there is no chan,ge  in (A’u)~.  Simi-
larly, if the elements in V, - V,-, are labeled, the effect of the (changes in
the dual variables is to increase (BTt’)k by ti, for each ej  E  sp,  (V,) - sp,(  I$- i).
And if the elements in V, - V, _  i are unlabeled. there is n.o change in (Br’r)j.

Quite clearly, then, for each element ej  E  I (for which xi = 1) there is
no change in (A’u + B’u)~  caused by the revision of the dual solution.
Hence conditions (12.3) continue to be satisfied.

The only dual variables zli and /lk whose values are increased are
those which are associated with sets Ui, I$.  For all such sets L’i  and V,,
it is the case that (Axi) = ri  and (Bx)~  = sk.  Hence clonditions  (12.4) and
(12.5) continue to be satisfied by the revision of the dual solution.

We next need to show that there is a strictly positive value of 6,
such that dual feasibility is maintained. First, we confirm that the only
dual variables ui, ak  which are decreased by 6 are those which are associated
with sets Ui, V, existing before the creation of new sets in a, Y . The dual
variables identified with these sets had strictly positive values before the
revision of the dual solution. Hence there exists a 6  > 0 such that the non-
negativity of 21, o  is maintained.

Now let us consider inequalities of the form (Art.4 + BTtr) 2  w. We
have already disposed of the case that ejE  I. Suppose ejE  E - sp,(l).
There is no set Ui  such that ej  E  sp, (U,),  hence the only change in (AT~)j
is that occasioned by the change in uE  by -6. The element ej  is labeled if
and only if (A’u + BTu)j  = wj. If ej  is labeled, then there is some smallest
set V, such that ej  E  sp2(vk),  and all the elements in V, -- I’,-, are labeled.
(There must lx such a set V,. else S = (ej) would be an augmenting sequence.)
In this case the net effect on Bru  is +6,  and the net change in (A’u + B”‘u)~
is zero. If ej  is unlabeled, the net change in (ATu  + B~u)~  may be either
zero or -6. (The reader should verify that the change is zero if and only
if the labeling and scanning of ej  would not result in the labeling of any
previously unlabeled elements.) In any case, if ej  is unlabeled then (ATu  +
BTt!)j  > wj, so there is some strictly positive value of 6  which will not cause
the dual inequality for ej  to be violated.
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Now suppose ej  #I, but ej  E  sp,  (I), from which it follows that there
is a smallest set Ui  such that ej  E  spl  (Vi).  If ej  is labeled, the labeling re-
sulted from the scanning of a labeled element ej-l  E I contained in Ui
but not in U,-  1.  Hence, the elements in Ui - C’i-l  are labeled and the net
change in (A’r~l)j  is -6. There must be a smallest V, such thiat  ejE spZ(Vk),
else ej  would be the final element of an augmenting sequence. The elements
in V, - V,-, are labeled, hence the net change in (B’u)~  is +6 and that
in (A”u  + B7‘u)j is zero. This is appropriate since the fact that ej  is labeled
implies (ATu  + BT~)j  = wj.

Finally, suppose ej  6  I, ej  E  spl  (I), and ej  is not labeled. Let Ui
be the smallest set in ‘)/ such that ejEsp,(Ui).  It is the case that either the
elements in Ui  - U,-l are unlabeled or the elements in IV,  - Oiml are
labeled and (ATu  + BT~)j  > wj. In the first case, (A*u)~  is unchanged, and
in the second (AT~)j  is decreased by 6. Without analyzing the effects of the
changes in the dual variables on (18Tu)j. we observe that (.4T~ - BTo)j  is
decreased only if (ATm  + BTu,lj > Wj.

We now conclude that there does exist a strictly positive value of
6 which can be chosen, such that dual feasibility is maintained. Let I-
denote the indices of dual variables zli, other than zdE,  which are to be de-
creased by 6, K-  the indices of dual variables u&:  which are to be decreased
by S, and J- the indices of elements ej  for which (ATu  + B’u)~  is to be
decreased by 6. Then we may choose

where
6 = min {llE, 6,. 6,, S,}  > 0,

6, = min {~li~l-j,

6, .= min {1!,IkEK-},

6, = min {(A’u  + BT~)j  - wjIjEJ-}.

If 6  = uE, then condition (12.6) is satisfied, the primal solution and
the new dual solution are orthogonal and optimal, and the computation
is completed. If 6  < uE, but 6  = 6, or a,,,,  one or more of the dual variables
ui, uk  are reduced to zero and the corresponding sets Ui, V, (except U,, V,)
are removed from the families J&,  r‘ before the labeling procedure is re-
sumed. This may enable additi0na.l elements to be labeled. If 6  = 6,.
then at least one more element e,  enl:ers  E* and is eligible folr  labeling.

If all the element weights ej  are integers, all arithmetic is integer,
and each revision of the dual solution reduces uE  by an integer amount.
This observation is sufficient to establish finite termination for the algo-
rithm. However, a more sophisticated argument is given in the next section.

PROBLEM

12.1 Show that the spans of sets in 42, 3’  remain unchanged by augmentation
of the intersection.
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13
Primal-Dual Weighted Intersection Algorithm

The labeling scheme described in the previous section can be interpreted
in terms of the border graph BG(Z), as follows. The graph is constructed
exactly as for the cardinality intersection problem, except that only nodes
for elements in E* are provided. In effect, two numbers u(j), u(j) are as-
signed to each node eiE  1. These indicate the indices of the smallest sets
Ui, V,  in which ej  is contained.

The labeling procedure amounts to a search for a source-sink path
according to the following scheme. Each source node in E* - I is given
the label “a+.” In effect, when the label on a node ei  c: .E*  - I is scanned,
the maximum value of u(j)  is found, for all arcs (ei,  ej), directed from ei,
and the label “i - ” is applied to all unlabeled ej  with this  maximum value.
When the label on a node ei  E  I is scann’ad,  the label “ii-”  is applied to an
unlabeled node ej, provided zc(i) is maximum for all arcs directed into
ej.

We now specify the steps of the primal-dual allgorithm  in detail.
In the statement of the algorithm we let Ej = (ATu  + j3’~‘C)j  - I+‘,,;.

PRIMAL-DUAL ALGORITHM FOR
WEIGHTED MATROID  INTERSECTIONS

S t e p  0 (Sturt)  S e t

I = a

uE  = max {wj),
j

Gj = 1iE - wj, j = 1,2 ,..., m.

E* = {ejl%j  = 0).

No elements are labeled.

Step I (Labehg)

(1 .O)  Compute Cj , J ,(I) C(2) for all ej  E  E* - I. Give each element in E* -
sp, (I) the label “a+.”
(1.1) If there are no unscanned labels, go to Step 3. Otherwise, find
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an element ej  with an unscanned label. If the label is a “-t”  label go to
Step 1.2; if it is a “ -- ” label go to Sl.ep  1.3.
(1.2) Scan the “t-  ” label on ej  as follows. If I + ej  is independent in
M,,  go to Step 2. Otherwise, find the smallest set V, such that Cy’  - ~j  E
V, and give each unlabeled element in Cy)  - V,- i the label ‘j- .” Return
to Step 1.1.
(1.3) Scan the “-” label on ej  as follows. Find the smallest set Uucj,
in which ej  is contained. Apply the label ‘7+” to each unlabeled element
ei  E E* such that e,j E  Cl’) and C$‘:’  - e,  G U,,j,. Return to Step 11.1.

Step 2 (Augmentation of Primal Solution) An augmenting sequence S
has been discovered, of which ej  (found in Step 1.2) is the last element.
The elements in S are identified by backtracing. Augment 1  by adding to
I all elements in the sequence with “+”  labels and removing from I all
elements with “ - ” labels.

Suppose, without loss of gemrality,  the augmenting sequence S =
(e,, e,,  . , e,). Revise the families %,  ti  ̂ as follow,s.  Forj = 3, 5, . . . , s replace
ejP1  by ej  in each of the subsets U;  in which ej-i  is contained. F;or  j =
1, 3, . , s - 2, replace ej+i by ej  in each of the subsets V, in which ej+ i
is contained. If up  = 0, set U,  = I. Otherwise (if up  > 0), set p ==  p + 1
and then set U,  = I. If uq  = 0, set V, = I. Otherwise, set 61 = 4  $- 1 and
set V, = I.

Remove all labels from elements and return to Step 1.0.

Step 3 (Revision of’ Dual Solution) Let I,, I, denote the subsets of labeled
and unlabeled elements of I. for each set Ui  E  % such that Ui  - Ui-  I con-
tains both labeled and unlabeled elements, adcl  one to the indices of the
sets Ui, Ui+l, . . . . U,,  and then create: a new set

Ui  = U,-I ~'(I/,+,  n I"),

and set tli = 0. For each set V, such that V, - V,-, contains both labeled
and unlabeled elements, add one to the indices of the set Vk, V,,  1 ,) . . . , V,,
and then create a new set

and set rk = 0.
Form sets I+,  I-, K+,  K-, as follows:

I+ = jiIi=p,U,-C’,-1  ~I,,ori<:p,Ui+,--liiEILIC’i-Ui-l  E:Iu;,

I-  = (iii < p, Ui+,  - ui c I ” ,  ui - u,-,  z IL],

K+ = rklk=q,I/,-T/,_,cI,,ork.=q,I/,+,-I/,cZ,,V,-  14-lc;ILj,

K- = {klk < q,  v,,,  - v,  E I,, v,  -- v,-,  c_  I,,}.
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Form sets J+, J- as follows. For each element ej, let U,,j,, I/vcj,
denote the smallest sets, if any, in x%, k” such that ej  E  spi  ~(ri,,,,),  ej  E: ~p~(l/v(~)).
If these sets do not exist (because e,i E E - spi  (I‘), ej  E E - sp,(l),  respective-
ly), let  uu(j)  - uu(j)-  1  = Il., C(j)  - b(j)-  1  = IZr.

Set

J+ = {j I ud,j)  - uu(j)-l  E zZi,  K(j)  - I/u(j)- 1  z I,!,},

J- = {j I UuCj)  - uv(j)-l  c zL, K(j) - T/v(j)-1 c IU).

Set

where

6 = min {uE,  6,, 6,,  6,))

Set

6, = min {u,liE  I-},

6, = min{u,\kEK-},

6, = min {iGjljEJ-}.

UE  = ME  - 6

ui  =  ui  +  6,foriEI+

ui  = ui  - 6,foriEI-

L‘~  =  c’~  +  &forkEK+

Vk = Vk - S,forkEK-

Gj=Ej+6,forj~J+

Ej=Wj-6,forj~J-.

If zlE = 0, stop; the primal and dual solutions are optimal. Other-
wise, remove from %,  V’ all sets Ui, V,, other than U,,  1; for which ui  = 0,
uk  = 0 and renumber the sets in a, V accordingly. Set E*  = {tpj  Iwj  = O}.
Remove all labels and return to Step 1 .O.  //

Let us now estimate the complexity of the algorithm. We make the
same assumptions about R and c(m) as in Section 4. Fo:r each aug,mentation,
the computation of circuits Ci”,  C{*’  requires O(mKc(m))  running time,
as before.

There may be many revisions of the dual variables, ea’ch  revision
requiring O(m) steps for the revision itself, plus a reapplication of the
labeling procedure, which is O(m*). If all element weights wi are integer,
then the maximum number of revisions of the dual variables is W =
max {wi},  where W is the initial value of uE.  There is also an ,application
of the labeling procedure for each of the R possible augmentations. Thus,
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we conclude that the overall running time is no greater than O(,M’(R  t-  IV) +
mRZc(m)).

Even if the element weights are not integral, or even rational, a
bound that is polynomial in m and t-(m)  can be obtained. Each time a re-
vision is made in the dual solution, at least one of the dual variables ui,  Q
or one of the Wj  is reduced to zero With this observation and a careful
analysis of the algorithm, we can conclude that at most O(R')  revisions of
the dual solution are possible between successive augmentations. This
yields a bound of O(m2R2 + mR2c(m)),  the same as the bound for the
primal algorithm.

PROBLEMS

13.1 Carry out a detailed analysis to show that at most O(m2)  I-evision:s  of the
dua l  so lu t ion  a re  poss ib le  be tween  sugmentations.

13.2 Show tha t  l abe ls  which  have  been  appl ied  pr ior  to  a  rev is ion  of  the  dua l  so lu-
t ion  remain  val id  af ter  revis ion.

1 4
A Special Case: Directed Spanning Trees

Recall the formulation of the directed spanning tree problem from Section
2. An arc-weighted directed graph G = (N, A) is given, and it is desired to
find a maximum weight spanning tree directed from a specilied root node
with in-degree zero. Any subset of arcs I forming such a tree must be in-
dependent in the graphic matroid of G, and must also be independent in
the partition matroid which has as its independent sets all subsets of arcs,
no two of which are directed into the same node.

A particularly simple and elegant procedure has been devised
for solving this special case of a weighted matroid intersection problem.
The procedure is illustrated with reference to the network in Figure 8.13.

First apply the greedy algorithm to find a maximum weight solution
with respect to the partition matroid only. That is. for each node choose
the heaviest arc directed into that node. In the case of the graph in Figure
8.13, these arcs are indicated by wavy lines. If the arcs chosen in this way
do not contain a cycle, then the problem is solved.

However, it is seen in the example that arcs es,  e,,  and IT*  form a cycle
passing through nodes 3, 4, and 5. (Note that any such cycle must be a
directed cycle.) The next step is to contract the arcs of such a cycle, so that
nodes 3, 4, and 5 are replaced by a single pseudonode. All self-loops created
by this contraction are discarded. The weights of the arcs in the contracted
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Figure 8.13

network are the same as in the original network, except for the weights
of arcs directed into the pseudonode. These weights are modified as follows.

Suppose (i j) is an arc of the original network, wherej is contained
in the cycle C, but i is not. Then arc (ij) is represented in the contracted
network by an arc (i, k) directed into the pseudonode k: resulting from the
contraction of C. In the contracted network set wik ==  Wij  - (w~(~,,~  - 6),
where (i,(j), j) is the unique arc of C directed into node j and

In the example, the minimum of the arc weig,hts  in the: cycle is 9.
Hence in the contracted network the weight of arc e2  becomes 1 -- (11 - 9) =
- I, the weight of arc e4  becomes 10 - (11 - 9) = 8, the weight of arc
eiO becomes 5 - (9 - 9) = 5, and the weight of arc e,,  belcomes  9 -
(12 - 9) = 6. The complete contracted network is shown in the upper
part of Figure 8.14.

The procedure is now repeated for the contracted network. That
is, for each node (or pseudonode) the heaviest arc directed into that node
is chosen. If this solution contains one or more cyNcles,  these cycles are
contracted and weights are modified. In the example, this re;sults  in the
network shown in the lower part of Figure 8.14.

The process is repeated until finally a contracted network is ob-
tained for which the arcs chosen do not contain a cycle. An optirnal directed
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fl. 6 e3,  4

Figure 8.14 Contracted networks

spanning tree is then constructed by expanding the pseudonodes in the
opposite order from that in which tihey were formed. The arcs chosen in
the final network are entered into the solution. Thereafter, as each pseudo-
node is expanded, all but one of the: arcs in the cycle identified with the
pseudonode are entered into the solution. We discard the unique arc of
the cycle whose entry into the solution would cause two arcs to be directed
into the same node.

The expansion of the example network is illustrated in Figure 8.15.
Arcs e,  and e, are entered into the slolution  from the final contracted net-
work in Figure 8.14. The pseudonode (2,3,4,5)  is expanded to obtain pseudo-
nodes (2) and (3,4,5), Arc e4  is entered into the solution and. arc e5  is dis-
carded, because arc e, of the solution is directed into node 2. Pseudonode
(3,4,5)  is expanded to obtain nodes (3,4)  and (5) and arcs e4  and e8  are
entered into the solution, and e7  is discarded because arc e, is directed
into node 3. Arcs e,,  e4,  e5,  e8, and eg  form an optimal directed spanning
tree with a weight of 43.
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The algorithm as we have described it yields a maximum weight
spanning tree, which is not necessarily a maximum weight maltroid inter-
section. That is. for a given network there may be a forest of directed trees
which has greater total weight than any single spanning tree. If a maximum
weight forest is desired, the procedure is modified to ignore any arcs whose
weights become negative as a result of network contractions. This means
that for a given pseudonode in one of the contractled  networks, no arc
directed into that pseudonode may be (chosen for the solution because all
such arcs have negative weights. When such a pseudonode is expanded,
the lightest arc in the cycle identified with that pseudonode is discarded.

The reader should also be able to solve the problem in which there
is no prescribed root node for the directed spanning tree. The first set of
arcs chosen must necessarily contain a cycle, because there will be n such
arcs and a tree can contain only n - 1. The network must be contracted
until a pseudonode is created with in-degree zero in the solution.

The procedure is quite elegant and relatively ‘easy  to implement.
However, a proof of its validity is another matter. A. .proof  by Edmonds.
based on linear programming duality, is rather tortuous. Even a “simple”
proof due to Karp is fairly involved. The interested1 reader should refer
to the original papers for these proofs.
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PROBLEMS

14.1

14.2
14.3

14.4

Resolve the example problem in Figure 8.13.  with arcs  c~i,  _,  , eii g iven  we igh t s
1, 2, 3. 12, 20. 18, 2, 16, I, 3,2.
Solve the example problem by the primal matroid  intersection algorithm.
Formulate  the  dual  to  the  di rected spanning t ree  problem.  (Note  that  a  maxi-
mum weight  in te rsec t ion  i s  no t  necessar i ly  a  spanning  t ree :  another  cons t ra in t
is  necessary . )  Find a  dual  solut ion for  the  example  network.
The following simple procedure determines whether or nolt there exists a
directed spanning t ree  f rom node 1 :

Step  0 Apply the label “a”  to node 1.

Step  I I f  a l l  nodes  are  labeled.  hal t ;  there  exis ts  a  d i rected spanning t ree .
If all labels are scanned, but some nodes are unlabeled, halt; there is no
direc ted  spanning t ree .  Otherwise ,  find a  node i  with  an  unscanned label
and go to Step 2.

step 2 Scan the label on node i as follows. For each arc (i, j) incident
to node i, apply the label “i” to node j, unless node j already has a label.
Return  to  Step  1.1.

( a ) Estimate the complexity of this algorithm as a function of WI and n,
the number of  arcs  and nodes.
(b) Generalize this algorithm to solve the max-min directed spanning
tree problem. Estimate the complexity of the algorithm.
(c) Generalize the algorithm still further to solve the max-min version
of the “directed” Steiner network problem. Estimate the complexity of
the algori thm.
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The Matroid  Parity Problem

1
Introduction

Let M = (E, 4) be a matroid whose elements are arranged i.n  pairs That
is, every element e E E has a uniquely specified mate 2 E  E. A parity set
A E E is a set such that, for each element e, e E  11  if and only if 2  E  /I.  The
object of the matroid parity problem is to find an optimal (maximum car-
dinality or maximum weight) independent parity set in M.

The matroid parity problem is a generalization of both the matroid
intersection problem and the nonbipartite matching problem, as we show
in the next section. Thus. matroid parity theory embraces virtually all of
the problem types we have studied so far, as shown in Figure 9.1. We have
included the “semimatching” problem in that figure because it appears to
be a greatest common specialization of the other problem types.

It appears that matroid parity problems should be amenable to
solution by augmentation methods employing the methodlology  of the
matroid intersection algorithms and the nonbipartite matching algorithms.

356
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Figure 9.1 RelatIonships  be -

tween problem types

However, there are a number of technical problems which must be over-
come in the development of an algorithm with polynolmial-bounded running
time. Although we conjecture that such an algorit’hm exists., we present
here only limited evidence.

We conclude this chapter and book with a discussion of generaliza-
tions of the matroid parity problem. #One  such generalization is obtained
by arranging the elements of the matroid into triples, rather than pairs.
A polynomial-bounded solution procedure for this problem would imply
a solution to all of the hard problems listed in Chapter 1. But that is very
unlikely to occur, to say the least. Hence we conclude that the matroid
parity problem, as we have defined it, is probably about as far as we can
go with the type of theory presented in this book.
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2
Problem Formulations

Let us first consider the reduction of the matroid intersection problem and
the nonbipartite matching problem Ito  the matroid parity problem. Then
let us consider an equivalent problem. we call the “matroid matching prob-
lem,” and some representative problern formulations.

MATROID  INTERSECTION PROBLEM

Let M, = (E, 9,)  and M, = (E, 92)  be two matroids for which an optimal
intersection is sought. Create a matroid M,,  isomorphic to M,,  over a
set i? disjoint from E, with a natural None-one correspondence between ele-
ments e in E and .?  in E. It is apparent that there is a one-one correspondence
between intersections of M,,  M, and parity sets of M, + i’V,  :=  (E  u E,  J).
(Cf. Theorem 6.3 of Chapter 7.) It fc’llows  that any algorithm for solving
the parity problem can be applied to solve the intersection problem.

We can characterize those parity problerns which can be reduced
to intersection problems as follows. Let M = (E, 9) be a matroid with its
elements arranged in pairs. M is said to be separable with respect to the
pairing of the elements, if it is possible to partition E into two sets II, and
E,  such that:

(2.1) For each element r E  E, e E  E, if and only if PE  E,.
(2.2) For each circuit C of the matroid, either C E E, or C s E,.

Clearly, if M is  separable,  then M = ,M,  + M,, where M, =
M de1  E,  = M ctr E, and M,  = M de1  El = M  clr E,.  It is clear that under
these conditions the parity problem reduces to an intersection problem
for M,,  M2,  after the elements of one of these two matroids are renamed
to correspond to elements of the other

NONBIPARTITE MATCHING PROBLEM

Let G = (N, A) be a graph in which an optimal matching is (desired. Sub-
divide the graph to obtain a graph G* = (N”, A*),  in which each arc of G is
replaced by a pair of arcs r and I?.  Let M = (A*, 9) be a partition matroid
induced by incidences of arcs in G* on the (original) set of nodes N !E  N*.
It is clear that there is a one-one correspondence between independent
parity sets of M and matchings in G. Thus, an algorithm fo:r solving the
parity problem can be applied to solve the matching problem.
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A matroid parity problem redulzes  to a matching problem if and
only if the matroid is a partition matroid. If the partition matroid is separable,
then the matching problems is bipartite.

MATROID  MATCHING PROBLEM

We define the matroid matching probh as follows. Let G = (N, A) be a
graph and M = (N, 9) be a matroid over the nodes of the graplh.  For any
matching X c A in G, let I(X) c N denote the set of nodes (covered by
the matching. The object of the problem is to find an optimal (maximum
cardinality or maximum weight) matching X, subject to the condition that
I(X) is independent in M.

Clearly, if A4  is the trivial matroid of rank m = (El, (M has no circuits)
then the matroid matching problem i-,, nothing mo’re  than an ordinary
graphic matching problem.

The matroid matching problern reduces to the matroid parity
problem with the following construction. If G is a graph in which each node
has degree one, then the matroid matdhing problem is already equivalent
to a matroid parity problem. Otherwise, replace the graph G by a graph
G* in which each node of degree d is replaced by d’  copies of the node,
with exactly one arc incident to each of these new nodes. Replace the matroid
M by a matroid M*, in which each element of M is represented by d “paral-
lel” copies in M*. Then the matroid matching problem for G, M,  becomes
a parity problem for M*.

CREW SELECTION PROBLEM

A spaceship is being made ready for a long voyage and the process of crew
selection is underway. Each space voyager must be assigned a job for
which he or she is qualified and every job aboard ship must be filled.

Ordinarily we could choose a crew from among the set of applicants
by simply solving an assignment problem. But there is a complication.
Some of the applicants are married and it is agreed that a hlusband  will
be chosen if and only if his wife is chosen as well. Also, since it is to be a
long voyage, each unmarried crew member should be provided with a
suitable conjugal partner in the crew.

The solution is to construct a graph G = (N, A) whose nodes are
applicants and whose arcs extend betwizen  feasible conjugal partners. (This
graph can be arbitrary, and not even bipartite.) We seek an optimal match-
ing in G, subject to the constraint that the matched applicants can be as-
signed jobs aboard ship. In other words, the set of lnodes  covered by the
matching must be independent in the transversal matroid induced by the
relation between applicants and jobs ,For  which they are qualified.
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GENERALIZATION OF SEQUENCING PROBLEM

Recall the statement of the sequencing problem given in Chalpter  7, Section
2. Let all of the specifications of the problem be the same, except that jobs
have processing times of one hour or two hours. A two-hour job can be
interrupted and processed in two nonconsecutive one-hour periods.

The reader should be able to reformulate this generalized form of
the sequencing problem as one calling for a maximum weight independent
parity set in a transversal matroid. (Note that one-hour jobs should be
paired with dummy jobs to obtain a proper problem formulation.)

RADIALLY SYMMETRIC SPANNING TREE

Suppose the 2n + 1 nodes of a graph G are arranged in radially symmetric
pairs, i, iy around a central node 0. We seek to find a maximum weight
spanning tree in this graph, subject to the constraint that an arc is chosen
if and only if the arc between the symmetric pair of nodes is chosen.

This problem is quite clearl,y  a matroid parity problem for the
graphic matroid of G. A typical radially symmetric tree that results from
a solution to such a problem is indic:ated  by wavy lines in Figure 9.2.

Figure 9.2 Radially symmetric spanning tree
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GENERALIZATION OF NETWORK SYNTHESIS IPROBLEM

Recall the statement of the network synthesis problem given in Chapter
8, Section 2. This problem called for an optimal intersection of two co-
graphic matroids. One of these matroids was induced by the graph of cities
to be connected during odd time periods and the other during even time
periods.

Now suppose the reduced two-period rental can be obtained by
renting a video link for any two time periods, consecutive or not. The reader
should easily be able to reformulate the problem to one calling for a max-
imum weight independent parity set in a single cographic matroid.

MINIMAL CONNECTED HYPERGR.APH

A kypergrapk H = (IV, A) is like an ordinary graph, except that its arcs
may be incident to arbitrary subsets of nodes, inste,ad  of to exactly two
nodes. Many of the conventional definitions of graph theory carry over
to hypergraphs. For example, a path from i to j is a seiquence  of arcs ak  E  A.
k = 1,2, . . . . p,  such that Ida,,  jeuP  and uk I-I LI~+~  + @, for k = 1,2, . . . .
p - 1. A hypergraph is said to be connected if there is a path be:tween  each
pair of nodes.

Let H be a given arc-weighted connected hypergraph in which each
arc is incident to exactly three nodes. Suppose we wish to find ;a  minimum
weight subhypergraph of H which conrtects  all the nodes of H.

Let us form a (multi)graph  G from H in which each arc a = (i. j, k)
of H is represented by a mated pair of arcs e = (i, j), Z = (j, ,k). (Or e =

Figure 9.3 Example of hyper-
graph problem. (a) Hypergraph
H. (b) Graph G
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(b) Figure 9.4

(i, k), 2  = (k, j) or e = (i, j), c’  = (i, k~;  we are indifferent as to which pair
is chosen.) Let arcs e, 2  be assigned weights so that w(e) + w (2) =: w(a).
The problem of finding a minimum weight connecting subhypergraph  is
equivalent to that of finding a maxl!mum weight independent parity set
in the cographic matroid of G.

An example of such a problem is illustrated in Figure 9.3.

2 . 1

2.2

P R O B L E M S

Let G = (N, A) be as shown in Figure 9.4a  and A4  = (N, ~9)  be the graphic
matroid  of  the  graph G’  =  (N’ ,  N)  shown in  Figure  9.4b.  Show that  the  matroid
matching problem for G, A4  reduces to  a  matroid intersect ion problem. (Note:
G is clearly nonbipartite. Is there a node that can be deleted fl:om  G without
affect ing the problem?)
Recall the “semimatching” problem formulated in Chapter 7, Section 2.
Suppose it is desired to solve the problem subject to the additional constraint
that elements are chosen in symmel.ric  pairs, i.e., wij is chosen if and only if
We,  is chosen as well. Formulate as ;I  matroid matching problem. (Be sure to
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provide for diagonal elements wii.) Is I.here  any straiglhtforward  way to solve
this problem?

2.3 Let M = (E, 4) be a matroid and TC  be a partition on E. Suppose we wish to
find an optimal independent set I of M,  subject to the constraint that I contains
an even number of elements from each block of 71. Reduce this problem to
a matroid parity problem.

3
Augmenting Sequences

The notion of augmenting sequences seems to generalize to matroid parity
problems in a straightforward way. The only real difference would seem
to be that mated element pairs, ei,  ~7, replace single elements in the definition
for matroid intersections.

Let M  = (E, X) be a matroid with paired elements, and let I be
an independent parity set. Let S = (e,  , t?,, e,.  Z,, . . . ,, e,, 2,) be a sequence
of distinct elements, where e,,  Ei  E  E - I for i odd, and e,,  Zi  E  I for i even.
LetSi=(e,,?,,e,,?, ,..., eivl,&,, ei), for i I s.  S is said to be an alternat-
ing sequence with respect to I if

(3.1) I + e, E.9.
(3.2) For all i I s,  sp(1  @ Si) = sp(l  + el).  Note that 11  @ Sil = 111 + 1,
and hence I @ Si E  9; for all i 5  s.  It follows that for odd i < s,  I @
(Si + ei)~,a.

If, in addition to (3.1) and (3.;!),  it is the case that

(3.3) s is odd and I @ S E  Y, S is said to an augmenting sequence with
respect to I. In this case, )I @ S\ = 11’1 + 2 and sp(I  @ S) =)  sp(Z).

Unfortunately, however, this definition is defective. If 1  is an inde-
pendent parity set with less than a maximum number of elements, then
it is not true  that an augmenting sequence must exist, as can be shown by
counterexample.

Virtually the only result we are able to state is the following theorem.

Theorem 3.1 Let I be any independent parity set. Then there exists an
independent parity set I* of maximum cardinality such that I G sp(l*).

PROOF Let J be a maximum cardinality independent parity set such
that (Jl  > (I(.  If I E sp(J),  there is nothing to prove. Otherwise, choose
any element e E I - sp(J).  It must be the case that i? E sp(J),  else J would
not be of maximum cardinality. Find any element f E: C - I where C is the
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unique circuit in J + 2.  (There must be such an element f; else I would be
dependent.) Then J’ ==  (J - { f; f} ) CI e,  5) is also a maximum cardinality{
parity set, and )I - J’) < )I -. J). Iterate until a set J’ is found, with I c
sp(J’) and let I” = J’. //

4
Generalizations

The matroid parity problem generalizes all of the polynomial-bounded
problems studied in this book, and it is conjectured to be polynomial
bounded as well. What further generalizations might also be polynomial
bounded?

The fondest wish of workers in the area of combinatorial optimiza-
tion is to find a polynomial-bounded algorithm for one, a.nd therefore,
all of the problems on the “hard” list given in Chapter 1. A suitably ef-
ficient algorithm for the three-dimen,sional  assignment problem would do
the job. Yet we can show, by the constructions given below, that a poly-
nomial-bounded algorithm for the three-dimensional assignment problem
would imply a similar algorithm for the n-dimensional assignment problem,
for arbitrarily large ~1. This reinforces our opinion that such an algorithm
will not be forthcoming (and perhaps also suggests something about the
mystical power of “twoness”).

The three-dimensional assignment problem is equivalent to a prob-
lem involving the intersection of three partition matroids. The three-
matroid intersection problem is a special case of a matroid parity problem
in which each element e has not one but two mates 2  and 2.  That is, an
independent set is to be found, subject to the constraint that L’ is a member
if and only if 2  and Z are members.

Let us refer to a matroid parity problem in which #each  element
may have as many as k - 1 mates as  a k-parity problem. We shall now
indicate the reduction of the problem of finding a maximum cardinality
k-parity set to the problem of finding, a maximum cardinality three-parity
set in a different matroid.

First consider the reduction of the four-parity problem to the three-
parity problem. Let the given matroid be M = (E, .9), with IE]  = 4rn, and
suppose el, e2,  e3,  e4  are mates. Define a partition matroid M’  over the
set of elements A = (ui, , 115  1,  disjoint from E, where nlo more than
three of the elements a,, . . . , a5  are in an independent set. Replace M by
M + M’ and reassign mates so that a,, e,,  e2  are mates, a,, e3,  e4  are mates
and as,  a4,  a5  are mates. By similar transformations, replace all sets of four
mates with sets of three mates.
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Now notice that a maximum cardinality independent parity set
I in the new matroid with 9m elements cannot conf.ain  all th.ree  of the
parity sets A, = ju1,el,e2},  A, = {a,, e3,  e,},  and A, = (u3,a4,u5).  If I
contains both A, and A, it does not contain A,. If I contains ,4,, it does
not contain either A, or A,. If I contains A, but not A, or A,, then I’ =
u  u  ‘43) - A,, with 11’1  = (II,  ’ 1is d so an independent parity set. Similarly,
if I contains A, but not A, or A,. We conclude that a solution to the three-
parity problem for the new matroid yields a solution to the original four-
parity problem.

Now consider the reduction of the 2k-parity  problem to the (k + l)-
parity problem. Suppose e,,  e2,  . . . , ezk  are mates. Define a partition matroid
over the set of elements A = (a,, uz, . , u~+~), where no more than k + 1
of the elements a,, ...,u~+~ are in an independent set. An analysis similar
to that given above with respect to the parity sets

A, = {ul. el,  .,., ek).

A, = {+.ek+l,  ...?e2k)‘,

A,  = {u,,u4,  .4,,,)

shows that a solution to the (k + I)-parity  problem for the new matroid
yields a solution to the original 2k-parity  problem.

Repeated application of the above procedurse  yields a reduction
of the k-parity problem to the three-parity problem. Rdoreover,  if the given
k-parity problem is one for a matroid with km elements (m parity sets of
k elements each), the three-parity problem will be olne  for approximately
k’-6m  elements. We have thus proved the following theorem.

Theorem 4.1 A maximum cardinality k-parity problem on km elements
reduces to a maximum cardinality three-parity problem on approximately
k1’6m  elements.

Notice that the construction is such that if one begins with a parti-
tion matroid for the k-parity problem, one obtains a partition matroid
for the three-parity problem. Hence the previous comment about the re-
duction of the n-dimensional assignment problem to lthe three-dimensional
assignment problem.

The construction we have given does not lend itself well to the
weighted case. But for this case there is a much simpler and more efficient
construction.

Suppose we seek a maximum weighted independent parity set for
the matroid A4  = (E, Y),  where el,  e2,  . . . , ek  are maites. Let M’  be a rank
k matroid over the set A = {~,,a~,  . . . . uk}.  disjoint from E, for which all
subsets of A are independent. Let M, = M + M’  = (E u A, .Y,). Let
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hrl, = (E u A, ,Yz)  be a partition matroid, where I, E Yz if and only if not
both e,, (zi belong to I,, for i = 1,2, . . . , k. Let M,  = (E u A, .Y3) be ;a  parti-
tion matroid, where I, E  Y3 if and only if not both ei  and ai+ 1,  i = 1,2, , . ,
k - 1, or e,  and a,, belong to I,.  By similar transformationls  deal with all
other sets of k mates, and thus obtain three matroids over a set of 2m ele-
ments, e,,  e,,  . . . , e,,  a,, a,, . . . ,a,.

As a consequence of this construction, a maximum cardinality
intersection of M,,  M,, and M,  contains exactly m elements. Moreover,
there is a one-one correspondence between these m-element intersections
and independent parity sets in the original matroid M.

If the weight of ei  in the original parity problem was w(e,).,  let its
weight in the three-matroid intersection problem be w(ei) + K. Let the
weight of each of the elements ai  be K. If K is suitably large, a maximum
weight intersection in the intersection problem is necessaril:y  a maximum
cardinality intersection. We thus have the following theorem.

Theorem 4.2 A weighted k-parity problem on m elements reduces to a
weighted three-matroid intersection problem on 2m elements, where two
of the matroids are partition matroids.

It follows immediately from l.he theorem, and the construction in
Section 2, that a weighted k-parity problem on m elements reduces to a
weighted three-parity problem on 6m elements.

We have shown that k-parity problems and k-matroi’d  intersection
problems are equally difficult for all k, with respect to the criterion of poly-
nomial boundedness. We can reasonably conjecture that these problems
are nonpolynomial and we know that they are no worse than exponential.
(There are only 2” possible solutions for an m element problem and these
can be inspected exhaustively.) It appears that methods of partial enumera-
tion may be  the best approach to there problems.

PROBLEM

4.1 The statement  is  made that  the construct ion for  Theorem 4.1 produces a  three-
par i ty  problem wi th  k1.6m  elements.  .Iustify.
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paint ing theorem,  32
appl ied ,  145

parity problem, matroid, 356
partial transversal, 183
par t i t ion  matro id ,  272
path ,  26
PERT networks ,  61
PERT schedulinn.  165-169
Phi l ip  Hal l  theorem,  323
pivot  element,  l inear  programming,  44
planar  graph,  32
plane  graph,  33
polynomia l  bounded,  5-8
primal-dual algorithm,

linear programming, 57
weighted  mat ro id  in te rsec t ion ,  345-347

primal  a lgori thm, weighted matroid inter-
section, 333

pro jec t  schedul ing ,  165-169
provis ion ing  problem,  125
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t ranshipment  problem,  169-172
transi t  t imes,  arc ,  92-94
t ranspor ta t ion  problem,  169-172
t ransversa l ,  183
transversal  matroid ,  272
travel ing salesman problem, 9,  63,  304
tree,  defined,  27
t ree ,  shor tes t  pa th ,  66
twenty  ques t ions  problem,  2

unimodular matrix, 160

weak dual i ty  theorem,  55
weighted  augment ing  sequences ,  326
weighted matching algorit.hm,  nonbipar-

tite
O(n3),  256
O(r+),  251
summary, 246

weighted matching problem,
bipartite, I83
linear programming formulation,  242

work ass ignment  problem,  135


