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1 Introduction.

A recent newcomer to the the center stage of modern mathematics is the
area called combinatorics. Although combinatorial mathematics has been
pursued since time immemorial, and at a reasonable scientific level at least
since Leonhard Euler (1707–1783), the subject has come into its own only in
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the last few decades. The reasons for the spectacular growth of combinatorics
come both from within mathematics itself and from the outside.

Beginning with the outside influences, it can be said that the recent de-
velopment of combinatorics is somewhat of a cinderella story. It used to be
looked down on by “mainstream” mathematicians as being somehow less re-
spectable than other areas, in spite of many services rendered to both pure
and applied mathematics. Then along came the prince of computer science
with its many mathematical problems and needs — and it was combinatorics
that best fitted the glass slipper held out.

The developments within mathematics that have contributed to the cur-
rent strong standing of combinatorics are more difficult to pinpoint. One
is that, after an era where the fashion in mathematics was to seek general-
ity and abstraction, there is now much appreciation of and emphasis on the
concrete and “hard” problems. Another is that it has been gradually more
and more realized that combinatorics has all sorts of deep connections with
the mainstream areas of mathematics, such as (to name the most important
ones) algebra, geometry, probability and topology.

Our aim with this article is to give the reader some answers to the ques-
tions “What is combinatorics, and what is it good for?” We will do that not
by attempting any kind of general survey, but by describing a few selected
problems and results in some detail. We want to bring you both some ex-
amples of problems from “pure” combinatorics, some examples illustrating
its interactions with other parts of mathematics, and a few glimpses of its
use for computer science. Fortunately, the problems and results of combina-
torics are usually quite easy to state and explain, even to the layman. Its
accessibility is one of its many appealing aspects. For instance, most popular
mathematical puzzles and games, such as Rubik’s cube and jigsaw puzzles,
are essentially problems in combinatorics.

To achieve our stated purpose it has been necessary to concentrate on
a few topics, leaving many of the specialities within combinatorics without
mention. The choice will naturally reflect our own interests. The suggestions
for further reading point to some more general accounts that can help remedy
this shortcoming.
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With some simplification, combinatorics can be said to be the mathe-
matics of the finite. One of the most basic properties of a finite collection of
objects is its number of elements. For instance, take words formed from the
letters a, b and c, using each letter exactly once. There are six such words:

abc, acb, bac, bca, cab, cba.

Now, say that we have n distinct letters. How many words can be formed?
The answer is n · (n − 1) · (n − 2) · · · 3 · 2 · 1, because the first letter can
be chosen in n ways, then the second one in n − 1 ways (since the letter
already chosen as the first letter is no longer available), the third one in n−2
ways, and so on. Furthermore, the total number must be the product of the
number of individual choices.

The number of words that can be formed with n letters is an example
of an enumerative problem. Enumeration is one of the most basic and im-
portant aspects of combinatorics. In many branches of mathematics and its
applications you need to know the number of ways of doing something. One
of the classical problems of enumerative combinatorics is to count partitions
of various kinds, meaning the number of ways to break an object into smaller
objects of the same kind. The study of partition enumeration was begun by
Euler and is very active to this day. We will exposit some parts of this theory.
All along the way there are interesting connections with algebra, but these
are unfortunately too sophisticated to go into details here. We also illustrate
(in Section 11) the relevance of partitions to applied problems.

Another, more recent, topic within enumeration is to count the number
of tilings. These are partitions of a geometric region into smaller regions
of some specified kinds. We will give some glimpses of recent progress in
this area. The mathematical roots are in this case mainly from statistical
mechanics.

Combinatorics is used in many ways in computer science, for instance for
the construction and analysis of various algorithms. (Remark: algorithms are
the logically structured systems of commands that instruct computers how
to perform prescribed tasks.) Of this young but already huge and rapidly
growing area we will give here but the smallest glimpse, namely a couple of
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examples from complexity theory. This is the part of theoretical computer
science that concerns itself with questions about computer calculations of
the type “How hard is it?”, “How much time will it take?” Proving that
you cannot do better than what presently known methods allow is often
the hardest part, and the part where the most mathematics is needed. Our
examples are of this kind.

To illustrate the surprising connections that exist between combinatorics
and seemingly unrelated parts of mathematics we have chosen the links with
topology. This is an area which on first acquaintance seems far removed
from combinatorics, having to do with very general infinite spaces. Never-
theless, the tools of algebraic topology have proven to be of use for solving
some problems from combinatorics and theoretical computer science. Again,
the theme of enumeration in its various forms pervades some of this border
territory.

Our final topic is a glimpse of progress made in the combinatorial study of
convex polytopes. In three dimensions these are the decorative solid bodies
with flat polygon sides (such as pyramids, cubes and geodesic domes) that
have charmed and intrigued mathematicians and laymen alike since antiquity.
In higher dimensions they can be perceived only via mathematical tools, but
they are just as beautiful and fascinating. Of this huge subject we discuss
the question of laws governing the numbers of faces of various dimensions on
the boundary of a polytope.

To understand this article should for the most part require hardly any
knowledge of mathematics beyond high-school algebra. Only some details in
the boxes and in the last few sections (having to do with topology) are a bit
more demanding.

2 Partitions.

A fundamental concept in combinatorics is that of a partition. In general,
a partition of an object is a way of breaking it up into smaller objects. We
will be concerned here with partitions of positive integers (positive whole
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numbers). Later on we will encounter also other kinds of partitions. The
subject of partitions has a long history going back to Gottfried Wilhelm
von Leibniz (1646–1716) and Euler, and has been found to have unexpected
connections with a number of other subjects. A partition of a positive integer
n is a way of writing n as a sum of positive integers, ignoring the order of the
summands. For instance, 3 + 4 + 2 + 1 + 1 + 4 represents a partition of 15,
and 4+4+3+2+1+1 represents the same partition. A partition is allowed
to have only one part (summand), so that 5 is a partition of 5. There are in
fact seven partitions of 5, given by

5
4 + 1
3 + 2
3 + 1 + 1
2 + 2 + 1
2 + 1 + 1 + 1
1 + 1 + 1 + 1 + 1.

We denote the number of partitions of n by p(n), so for instance p(5) = 7.
By convention we set p(0) = 1, and similarly for related partition functions
discussed below. The problem of evaluating p(n) has a long history. There
is no simple formula in general for p(n), but there are remarkable and quite
sophisticated methods to compute p(n) for “reasonable” values of n. For
instance, as long ago as 1938 Derrick Henry Lehmer (1905–1991) computed
p(14, 031) (a number with 127 digits!), and nowadays a computer would
have no trouble computing p(1012), a number with 1,113,996 digits. It is
also possible to codify all the numbers p(n) into a single object known as a
generating function. A generating function (in the variable x) is an expression
of the form

F (x) = a0 + a1x + a2x
2 + a3x

3 + · · · ,
where the coefficients a0, a1, . . . are numbers. (We call an the coefficient of
xn, and call a0 the constant term. The notation x0 next to a0 is suppressed.)
The generating function F (x) differs from a polynomial in x in that it can
have infinitely many terms. We regard x as a formal symbol, and do not
think of it as standing for some unknown quantity. Thus the generating
function F (x) is just a way to represent the sequence a0, a1, . . ..

It is natural to ask what advantage is gained in representing a sequence in
such a way. The answer is that generating functions can be manipulated in
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various ways that often are useful for combinatorial problems. For instance,
letting G(x) = b0 + b1x + b2x

2 + · · ·, we can add F (x) and G(x) by the rule

F (x) + G(x) = (a0 + b0) + (a1 + b1)x + (a2 + b2)x
2 + · · · .

In other words, we simply add the coefficients, just as we would expect from
the ordinary rules of algebra. Similarly we can form the product F (x)G(x)
using the ordinary rules of algebra, in particular the law of exponents xixj =
xi+j. To perform this multiplication, we pick a term aix

i from F (x) and a
term bjx

j from G(x) and multiply them to get aibjx
i+j. We then add together

all such terms. For instance, the term in the product involving x4 will be

a0 · b4x
4 + a1x · b3x

3 + a2x
2 · b2x

2 + a3x
3 · b1x + a4x

4 · b0

= (a0b4 + a1b3 + a2b2 + a3b1 + a4b0)x
4.

In general, the coefficient of xn in F (x)G(x) will be

a0bn + a1bn−1 + a2bn−2 + · · ·+ an−1b1 + anb0.

Consider for instance the product of F (x) = 1 + x + x2 + x3 + · · · with
G(x) = 1− x. The constant term is just a0b0 = 1 · 1 = 1. If n > 1 then the
coefficient of xn is anb0 + an−1b1 = 1 − 1 = 0 (since bi = 0 for i > 1, so we
have only two nonzero terms). Hence

(1 + x + x2 + x3 + · · ·)(1− x) = 1.

For this reason we write

1

1− x
= 1 + x + x2 + x3 + · · · .

Some readers will recognize this formula as the sum of an infinite geometric
series, though here the formula is “formal,” that is, x is regarded as just a
symbol and there is no question of convergence. Similarly, for any k ≥ 1 we
get

1

1− xk
= 1 + xk + x2k + x3k + · · · . (1)

Now let P (x) denote the (infinite) product

P (x) =
1

1− x
· 1

1− x2
· 1

1− x3
· · · .
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We may also write this product as

P (x) =
1

(1− x)(1− x2)(1− x3) · · · . (2)

Can any sense be made of this product? According to our previous discussion,
we can rewrite the right-hand side of equation (2) as

P (x) = (1 + x + x2 + · · ·)(1 + x2 + x4 + · · ·)(1 + x3 + x6 + · · ·) · · · .
To expand this product as a sum of individual terms, we must pick a term
xm1 from the first factor, a term x2m2 from the second, a term x3m3 from
the third, etc., multiply together all these terms, and then add all such
products together. In order not to obtain an infinite (and therefore mean-
ingless) exponent of x, it is necessary to stipulate that when we pick the
terms xm1 , x2m2 , x3m3 , . . ., only finitely many of these term are not equal to
1. (Equivalently, only finitely many of the mi are not equal to 0.) We then
obtain a single term xm1+2m2+3m3+···, where the exponent m1+2m2+3m3+· · ·
is finite. The coefficient of xn in P (x) will then be the number of ways to write
n in the form m1 + 2m2 + 3m3 + · · · for nonnegative integers m1,m2,m3, . . ..
But writing n in this form is the same as writing n as a sum of m1 1’s, m2

2’s, m3 3’s, etc. Such a way of writing n is just a partition of n. For instance,
the partition 5 + 5 + 5 + 4 + 2 + 2 + 2 + 2 + 1 + 1 + 1 of 30 corresponds to
choosing m1 = 3,m2 = 4,m4 = 1,m5 = 3, and all other mi = 0. It follows
that the coefficient of xn in P (x) is just p(n), the number of partitions of n,
so we obtain the famous formula of Euler

p(0) + p(1)x + p(2)x2 + · · · = 1

(1− x)(1− x2)(1− x3) · · · . (3)

Although equation (3) is very elegant, one may ask whether it is of any
use. Can it be used to obtain interesting information about the numbers
p(n)? We will first show how simple manipulation of generating functions
(due to Euler) gives a surprising connection between two types of partitions.
Let r(n) be the number of partitions of n into odd parts. For instance,
r(7) = 5, the relevant partitions being

7 = 5 + 1 + 1 = 3 + 3 + 1 = 3 + 1 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1 + 1 + 1.

Let
R(x) = r(0) + r(1)x + r(2)x2 + r(3)x3 + · · · .
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Exactly as equation (3) was obtained we get

R(x) =
1

(1− x)(1− x3)(1− x5)(1− x7) · · · . (4)

Similarly, let q(n) be the number of partitions of n into distinct parts, that
is, no integer can occur more than once as a part. For instance, q(7) = 5,
the relevant partitions being

7 = 6 + 1 = 5 + 2 = 4 + 3 = 4 + 2 + 1.

Note that r(7) = q(7). In order to explain this “coincidence,” let

Q(x) = q(0) + q(1)x + q(2)x2 + q(3)x3 + · · · .

The reader who understands the derivation of equation (3) will have no trou-
ble seeing that

Q(x) = (1 + x)(1 + x2)(1 + x3) · · · . (5)

Now we come to the ingenious trick of Euler. Note that by ordinary “high
school algebra,” we have

1 + xn =
1− x2n

1− xn
.

Thus from equation (5) we obtain

Q(x) =
1− x2

1− x
· 1− x4

1− x2
· 1− x6

1− x3
· · ·

=
(1− x2)(1− x4)(1− x6)(1− x8) · · ·
(1− x)(1− x2)(1− x3)(1− x4) · · · . (6)

When we cancel the factors 1−x2i from both the numerator and denominator,
we are left with

Q(x) =
1

(1− x)(1− x3)(1− x5) · · · ,

which is just the product formula (4) for R(x). This means that Q(x) = R(x).
Thus the coefficients of Q(x) and R(x) are the same, so we have proved that
q(n) = r(n) for all n. In other words, for every n the number of partitions
of n into distinct parts equals the number of partitions of n into odd parts.
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The above argument shows the usefulness of working with generating
functions. Many similar generating function techniques have been developed
that make generating functions into a fundamental tool of enumerative com-
binatorics.

Once we obtain a formula such as q(n) = r(n) by an indirect means like
generating functions, it is natural to ask whether there might be a simpler
proof. For the problem at hand, we would like to correspond to each partition
of n into distinct parts a partition of n into odd parts, such that every
partition of n into odd parts is associated with exactly one partition of n
into distinct parts, and conversely every partition of n into distinct parts is
associated with exactly one partition of n into odd parts. In other words, we
want a one-to-one correspondence or bijection between the partitions of n into
odd parts and the partitions of n into distinct parts. Such a bijection would
yield a bijective proof of the formula q(n) = r(n). Exhibiting a bijection
between two different (finite) sets is considered the most elegant and natural
way to show that they have the same number of elements. Such bijective
proofs can involve considerable ingenuity, while the method of generating
functions often yields a more mechanical proof technique.

We now would like to give a bijective proof of Euler’s formula q(n) = r(n).
Several such proofs are known; we give the perhaps simplest of these, due
to James Joseph Sylvester (1814–1897). It is based on the fact that every
positive integer n can be uniquely written as a sum of distinct powers of
two — this is simply the binary expansion of n. For instance, 10000 =
213 +210 +29 +28 +24. Suppose we are given a partition into odd parts, such
as

202 = 19 + 19 + 19 + 11 + 11 + 11 + 11 + 9 + 7 + 7 + 7 + 5

+5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 1 + 1 + 1 + 1 + 1 + 1.

We can rewrite this partition as

3 · 19 + 4 · 11 + 1 · 9 + 3 · 7 + 13 · 5 + 6 · 1,
where each part is multiplied by the number of times it appears. This is just
the expression m1 + 2m2 + 3m3 + · · · for a partition discussed above. Now
write each of the numbers mi as a sum of distinct powers of 2. For the above
example, we get

202 = (2 + 1) · 19 + 4 · 11 + 1 · 9 + (2 + 1) · 7 + (8 + 4 + 1) · 5 + (4 + 2) · 1.
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Expand each product into a sum (by the distributivity of multiplication over
addition):

202 = (38 + 19) + 44 + 9 + (14 + 7) + (40 + 20 + 5) + (4 + 2). (7)

We have produced a partition of the same number n with distinct parts.
That the parts are distinct is a consequence of the fact that every integer n
can be uniquely written as the product of an odd number and a power of 2
(keep on dividing n by 2 until an odd number remains). Moreover, the whole
procedure can be reversed. That is, given a partition into distinct parts such
as

202 = 44 + 40 + 38 + 20 + 19 + 14 + 9 + 7 + 5 + 4 + 2,

group the terms together according to their largest odd divisor. For instance,
40, 20, and 5 have the largest odd divisor 5, so we group them together. We
thus recover the grouping (7). We can now factor the largest odd divisor d out
of each group, and what remains is the number of times d appears as a part.
Thus we have recovered the original partition. This reasoning shows that we
have indeed produced a bijection between partitions of n into odd parts and
partitions of n into distinct parts. It provides a “natural” explanation of the
fact that q(n) = r(n), unlike the generating function proof which depended
on a miraculous trick.

The subject of partitions is replete with results similar to Euler’s, in which
two sets of partitions have the same number of elements. The most famous of
these results is called the Rogers-Ramanujan identities, after Leonard James
Rogers (1862–1933) and Srinivasa Aiyangar Ramanujan (1887–1920), who
proved these identities in the form of an identity between generating func-
tions. It was Percy Alexander MacMahon (1854–1929) who interpreted them
combinatorially as follows.

First Rogers-Ramanujan Identity. Let f(n) be the number of par-
titions of n whose parts differ by at least 2. For instance, f(13) = 10, the
relevant partitions being

13 = 12 + 1 = 11 + 2 = 10 + 3 = 9 + 4 = 8 + 5 = 9 + 3 + 1

= 8 + 4 + 1 = 7 + 5 + 1 = 7 + 4 + 2.
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Similarly, let g(n) be the number of partitions of n whose parts are of the
form 5k + 1 or 5k + 4 (i.e., leave a remainder of 1 or 4 upon division by 5).
For instance, g(13) = 10:

11 + 1 + 1 = 9 + 4 = 9 + 1 + 1 + 1 + 1 = 6 + 6 + 1 = 6 + 4 + 1 + 1 + 1

= 6 + 1 + 1 + 1 + 1 + 1 + 1 + 1 = 4 + 4 + 4 + 1 = 4 + 4 + 1 + 1 + 1 + 1 + 1

= 4+1+1+1+1+1+1+1+1+1 = 1+1+1+1+1+1+1+1+1+1+1+1+1.

Then f(n) = g(n) for every n.

Second Rogers-Ramanujan Identity. Let u(n) be the number of par-
titions of n whose parts differ by at least 2 and such that 1 is not a part. For
instance, u(13) = 6, the relevant partitions being

13 = 11 + 2 = 10 + 3 = 9 + 4 = 8 + 5 = 7 + 4 + 2.

Similarly, let v(n) be the number of partitions of n whose parts are of the
form 5k + 2 or 5k + 3 (i.e., leave a remainder of 2 or 3 upon division by 5).
For instance, v(13) = 6:

13 = 8+3+2 = 7+3+3 = 7+2+2+2 = 3+3+3+2+2 = 3+2+2+2+2+2.

Then u(n) = v(n) for every n.

The Rogers-Ramanujan identities have been given many proofs, but none
of them is really easy. The important role played by the number 5 seems
particularly mysterious. For a long time it was an open problem to find
a bijective proof of the Rogers-Ramanujan identities, but such a proof was
finally given in 1980 by Adriano M. Garsia (b. 1928) and Stephen Carl Milne
(b. 1949). However, their proof is very complicated, and it would still be of
great interest to find a simple, conceptual bijective proof.

The Rogers-Ramanujan identities and related identities are not just num-
ber-theoretic curiosities. They have arisen completely independently in sev-
eral seemingly unrelated areas. To give just one example, a famous open
problem in statistical mechanics, known as the hard hexagon model, was
solved in 1980 by Rodney James Baxter (b. 1940) using the Rogers-Ramanujan
identities.
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7 4 4 4 2 2 1 1 1 1
7 4 4 2 2 1 1 1 1
6 3 2 2 2 1 1 1 1
4 2 2 1 1 1
2 2 1 1 1
2 1 1 1 1
1 1 1 1 1
1 1

Figure 1: A plane partition

3 Plane partitions.

A partition such as 8 + 6 + 6 + 5 + 2 + 2 + 2 + 2 + 1 + 1 may be regarded
simply as a linear array of positive integers,

8 6 6 5 2 2 2 2 1 1

whose entries are weakly decreasing, i.e., each entry is greater than or equal
to the one on its right. Viewed in this way, one can ask if there are interesting
“multidimensional” generalizations of partitions, in which the parts don’t lie
on just a line, but rather on some higher dimensional object. The simplest
generalization occurs when the parts lie in a plane. Rather than having the
parts weakly decreasing in a single line, we now want the parts to be weakly
decreasing in every row and column. More precisely, let λ be a partition with
its parts λ1, λ2, . . . , λ` written in weakly decreasing order, so λ1 ≥ λ2 ≥ · · · ≥
λ` > 0. We define a plane partition π of shape λ to be a left-justified array
of positive integers (called the parts of π) such that (1) there are λi parts in
the ith row, and (2) every row (read left-to-right) and column (read top-to-
bottom) is weakly decreasing. An example of a plane partition is given in
Figure 1.

We say that π is a plane partition of n if n is the sum of the parts of
π. Thus the plane partition of Figure 1 is a plane partition of 100, of shape
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(10, 9, 9, 6, 5, 5, 5, 2). It is clear what is meant by the number of rows and
number of columns of π. For the example in Figure 1, the number of rows is
8 and the number of columns is 10. The plane partitions of integers up to 3
(including the empty set Ø, which is regarded as a plane partition of 0) are
given by

Ø 1 2 11 1 3 21 111 11 2 1
1 1 1 1

1
.

Thus, for instance, there are six plane partitions of 3.

In 1912 MacMahon began a study of the theory of plane partitions.
MacMahon was a mathematician well ahead of his time. He worked in virtual
isolation on a variety of topics within enumerative combinatorics that did not
become fashionable until many years later. A highlight of MacMahon’s work
was a simple generating function for the number of plane partitions of n.
More precisely, let pp(n) denotes the number of plane partitions of n, so
that pp(0) = 1, pp(1) = 1, pp(2) = 3, pp(3) = 6, pp(4) = 13, etc. Then
MacMahon established the remarkable formula

pp(0) + pp(1)x + pp(2)x2 + pp(3)x3 + · · ·

=
1

(1− x)(1− x2)2(1− x3)3(1− x4)4 · · · . (8)

Unlike Euler’s formula (3) for the generating function for the number p(n) of
ordinary partitions of n, MacMahon’s formula is by no means easy to prove.

MacMahon’s proof was an intricate induction argument involving manip-
ulations of determinants. Only much later was a bijective proof found by
Edward Anton Bender (b. 1942) and Donald Ervin Knuth (b. 1938). Their
proof was based on the Schensted correspondence, a central result in enu-
merative combinatorics and its connections with the branch of mathematics
known as representation theory. This correspondence was first stated by
Gilbert de Beauregard Robinson (1906–19??) in a rather vague form in 1938
(with some assistance from Dudley Ernest Littlewood (1903–1979)), and later
more explicitly by Craige Eugene Schensted (b. 19??) in 1961. Schensted’s
motivation for looking at this correspondence is discussed in Section 5. The
version of Schensted’s correspondence used here is due to Knuth.
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We now give a brief account of the proof of Bender and Knuth. Using
equation (1), the product on the right-hand side of (8) may be written

1

(1− x)(1− x2)2(1− x3)3(1− x4)4 · · · = (1 + x + x2 + · · ·)(1 + x2 + x4 + · · ·)

(1+x2+x4+· · ·)(1+x3+x6+· · ·)(1+x3+x6+· · ·)(1+x3+x6+· · ·) · · · . (9)

In general, there will be k factors of the form 1 + xk + x2k + x3k + · · ·. We
must pick a term out of each factor (with only finitely many terms not equal
to 1) and multiply them together to get a term xn of the product. A bijective
proof of (8) therefore consists of associating a plane partition of n with each
choice of terms from the factors 1 + xk + x2k + · · ·, such that the product of
these terms is xn.

Our first step is to encode a choice of terms from each factor by an array
of numbers called a two-line arry. A typical two-line array A looks like

A =
3 3 3 2 2 2 2 2 1 1 1 1 1
3 1 1 2 2 2 1 1 4 4 3 3 3

. (10)

The first line is a (finite) weakly decreasing sequence of positive integers.
The second line consists of a positive integer below each entry in the first
line, such that the integers in the second line appearing below equal integers
in the first line are in weakly decreasing order. For instance, for the two-
line array A above, the integers appearing below the 2’s of the first line are
2 2 2 1 1 (in that order). Such a two-line array encodes a choice of terms
from the factors of the product (9) as follows. Let aij be the number of
columns i

j
of A. For instance (always referring to the two-line array (10)),

a33 = 1, a31 = 2, a13 = 3, a23 = 0. Given aij, let k = i + j− 1. Then choose
the term xaij ·k from the ith factor of (9) of the form 1 + xk + x2k + · · ·. For
instance, since a33 = 1 we have k = 5 and choose the term x1·5 = x5 from the
third factor of the form 1 + x5 + x10 + · · ·. Since a31 = 2 we have k = 3 and
choose the term x2·3 = x6 from the third factor of the form 1 + x3 + x6 + · · ·,
etc. In this way we obtain a one-to-one correspondence between a choice of
terms from each factor of the product (9) (with only finitely terms not equal
to 1) and two-line arrays A.

We now describe the part of the Bender-Knuth bijection which is the
Schensted correspondence. It will be described as an algorithm that we call
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the Schensted algorithm. We will insert the numbers in each line of the two-
line array A into a successively evolving plane partition, yielding in fact a
pair of plane partitions. These plane partitions will have the special property
of being column-strict, that is, the (nonzero) entries are strictly decreasing
in each column. Thus after we have inserted the first i numbers of the first
and second lines of A, we will have a pair Pi and Qi of column-strict plane
partitions. We insert the numbers of the second line of A successively from
left-to-right by the following rule. Assuming that we have inserted the first
i − 1 numbers, yielding Pi−1 and Qi−1, we insert the ith number a of the
second row of A into Pi−1, by putting it as far to the right as possible in the
first row of Pi−1 so that this row remains weakly decreasing. In doing so,
it may displace (or bump) another number b already in the first row. Then
insert b into the second row according to the same rule, that is, as far to the
right as possible so that the second row remains weakly decreasing. Then
b may bump a number c into the third row, etc. Continue this “bumping
procedure” until finally a number is inserted at the end of the row, thereby
not bumping another number. This yields the column-strict plane partition
Pi. (It takes a little work, which we omit, to show that Pi is indeed column-
strict.) Now insert the ith number of the first row of A (that is, the number
just above a in A) into Qi−1 to form Qi, by placing it so that Pi and Qi

have the same shape, that is, the same number of elements in each row. If
A has m columns, then the process stops after obtaining Pm and Qm, which
we denote simply as P and Q.

Example. Figure 2 illustrates the bumping procedure with the two-line
array A of equation (10). For instance, to obtain P10 from P9 we insert 4
into the first row of P9. The 4 is inserted into the second column and bumps
the 2 into the second row. The 2 is also inserted into the second column and
bumps the 1 into the third row. The 1 is placed at the end of the third row.
To obtain Q10 from Q9 we must place 1 so that P10 and Q10 have the same
shape. Hence 1 is placed at the end of the third row. From the bottom entry
(i = 13) of Figure 2 we obtain:

P =
4 4 3 3 3 1
3 2 2 2 1
1 1

, Q =
3 3 3 2 2 2
2 2 1 1 1
1 1

. (11)

The final step of the Bender-Knuth bijection is to merge the two column-
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i Pi Qi

1 3 3

2 3 1 3 3

3 3 1 1 3 3 3

4 3 2 1 3 3 3
1 2

5 3 2 2 3 3 3
1 1 2 2

6 3 2 2 2 3 3 3 2
1 1 2 2

7 3 2 2 2 1 3 3 3 2 2
1 1 2 2

8 3 2 2 2 1 1 3 3 3 2 2 2
1 1 2 2

9 4 2 2 2 1 1 3 3 3 2 2 2
3 1 2 2
1 1

10 4 4 2 2 1 1 3 3 3 2 2 2
3 2 2 2
1 1 1 1

11 4 4 3 2 1 1 3 3 3 2 2 2
3 2 2 2 2 1
1 1 1 1

12 4 4 3 3 1 1 3 3 3 2 2 2
3 2 2 2 2 2 1 1
1 1 1 1

13 4 4 3 3 3 1 3 3 3 2 2 2
3 2 2 2 1 2 2 1 1 1
1 1 1 1

Figure 2: The Schensted correspondence
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strict plane partitions P and Q into a single plane partition π. We do this by
merging column-by-column, that is, the kth columns of P and Q are merged
to form the kth column of π. Let us first merge the first columns of P and Q
in equation (11). The following diagram illustrates the merging procedure:

r r r

r r r r

r r r r

@
@

@
@

@
@@

The number of dots in each row on or to the right of the main diagonal
(which runs southeast from the upper left-hand corner) is equal to 4, 3, 1,
the entries of the first column of P . Similarly, the number of dots in each
column on or below the main diagonal is equal to 3, 2, 1, the entries of the
first column of Q. The total number of dots in each row is 4, 4, 3, and we let
these numbers be the entries of the first column of π. In the same way, the
second column of π has entries 4, 3, 3, as shown by the following diagram:

r r r

r r r

r r r r

@
@

@
@

@
@@

When this merging procedure is carried out to all the columns of P and
Q, we obtain the plane partition

π =
4 4 3 3 3 1
4 3 3 3 2 1
3 3 1

. (12)

This gives the desired bijection that proves MacMahon’s formula (8). Of
course there are many details to be proved in order to verify that this pro-
cedure has all the necessary properties. The key point is that every step is
reversible. A good way to convince yourself of the accuracy of the procedure
is to take the plane partition π of equation (12) and try to reconstruct the
original choice of terms from the product 1/(1− x)(1− x2)2 · · ·.
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By analyzing more carefully the above bijective proof, it is possible to
extend the formula (8) of MacMahon. Write [i] as short for 1− xi. Without
going into any of the details, let us simply state that if pprs(n) denotes the
number of plane partitions of n with at most r rows and at most s columns,
where say r ≤ s, then

1 + pprs(1)x + pprs(2)x2 + · · · =
1

[1][2]2[3]3 · · · [r]r[r + 1]r · · · [s]r[s + 1]r−1[s + 2]r−2 · · · [r + s− 1]
. (13)

For instance, when r = 3 and s = 5 the right-hand side of equation (13)
becomes

1

(1− x)(1− x2)2(1− x3)3(1− x4)3(1− x5)3(1− x6)2(1− x7)

= 1+x+3x2+6x3+12x4+21x5+39x6+64x7+109x8+175x9+280x10+· · · .
For example, the fact that the coefficient of x4 is 12 means that there are
12 plane partitions of 4 with at most 3 rows and at most 5 columns. These
plane partitions are given by

4 3 1 2 2 2 1 1 1 1 1 1 3 2 2 1 1 1 1 1 1 2 1 1
1 2 1 1 1 1 1 1

1 1
.

By more sophisticated arguments (not a direct bijective proof) one can extend
equation (13) even further, as follows. Let pprst(n) denote the number of
plane partitions of n with at most r rows, at most s columns, and with
largest part at most t. Then

1 + pprst(1)x + pprst(2)x2 + · · · =
[1 + t][2 + t]2[3 + t]3 · · · [r + t]r[r + 1 + t]r · · · [s + t]r[s + 1 + t]r−1[s + 2 + t]r−2 · · · [r + s− 1 + t]

[1][2]2[3]3 · · · [r]r[r + 1]r · · · [s]r[s + 1]r−1[s + 2]r−2 · · · [r + s− 1]
.

(14)

Note that the right-hand sides of equations (13) and (14) have the same
denominator. The numerator of (14) is obtained by replacing each denomi-
nator factor [i] with [i+t]. Equation (14) was also first proved by MacMahon,
and is the culmination of his work on plane partitions. It is also closely related
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to the representation theory of Lie groups and Lie algebras, a subject that at
first sight has no connection with plane partitions. (See Box.) MacMahon’s
results have many other variations which give simple product formulas for
enumerating various classes of plane partitions. It seems natural to try to
extend these results to even higher dimensions. Thus a three-dimensional
analogue of plane partitions would be solid partitions. All attempts (be-
ginning in fact with MacMahon) to find nice formulas for general classes of
solid partitions have resulted in failure. It seems that plane partitions are
fundamentally different in behavior than their higher dimensional analogues.

As a concrete example of equation (14), suppose that r = 2, s = 3, and
t = 2. The right-hand side of (14) becomes

(1− x3)(1− x4)2(1− x5)2(1− x6)

(1− x)(1− x2)2(1− x3)2(1− x4)

= 1 + x + 3x2 + 4x3 + 6x4 + 6x5 + 8x6 + 6x7 + 6x8 + 4x9 + 3x10 + x11 + x12.

The Schensted correspondence has a number of remarkable properties
that were not needed for the derivation of MacMahon’s formula (8). The
most striking of these properties is the following. Consider a two-line array
A such as (10) which is the input to the Schensted correspondence. Now
interchange the two rows, and sort the columns so that the first row is weakly
decreasing, and the part of the second row below a fixed number in the first
row is also weakly decreasing. Call this new two-line array the transposed
array A′. For the two-line array A of equation (10) we have

A′ =
4 4 3 3 3 3 2 2 2 1 1 1 1
1 1 3 1 1 1 2 2 2 3 3 2 2

(15)

Thus the Schensted correspondence can be applied to A′. If (P, Q) is the
pair of column-strict plane partitions obtained by applying the Schensted
correspondence to A, then applying this correspondence to A′ produces the
pair (Q,P ), that is, the roles of P and Q are reversed! Keeping in mind the
totally different combinatorial rules for forming P and Q, it seems almost
miraculous when trying a particular example such as (10) and (15) that
we obtain such a simple result. We can use this “symmetry property” of the
Schensted correspondence to enumerate further classes of plane partitions. In
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particular, a plane partition is called symmetric if it remains the same when
reflected about the main diagonal running from the upper left-hand corner in
the southeast direction. An example of a symmetric plane partition is given
by

5 3 3 2 1 1 1
3 3 3 2 1
3 3 2 1 1
2 2 1
1 1 1
1
1

Let s(n) denote the number of symmetric plane partitions of n. For instance,
s(5) = 4, as shown by

5 31 21 111
1 11 1

1
.

Without going into any details, let us just say that the symmetry property of
the Schensted correspondence just described yields a bijective proof, similar
to the proof we have given of MacMahon’s formula (8), of the generating
function

s(0) + s(1)x + s(2)x2 + · · ·

=
1

(1− x)(1− x3)(1− x4)(1− x5)(1− x6)(1− x7)(1− x8)2(1− x9)(1− x10)2 · · · .

The exponent of 1−x2k−1 in the denominator is 1, and the exponent of 1−x2k

is bk/2c, the greatest integer less than or equal to k/2.

4 Standard Young tableaux.

There is a special class of objects closely related to plane partitions that
are of considerable interest. Let λ be an ordinary partition of n with parts
λ1 ≥ λ2 ≥ · · · ≥ λ`. A standard Young tableau (SYT) of shape λ is a left-
justified array of positive integers, with λi integers in the ith row, satisfying
the following two conditions: (1) The entries consist of the integers 1, 2, ..., n,
each occurring exactly once, and (2) the entries in each row and column are
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increasing. An example of an SYT of shape (4, 3, 2) is given by

1 3 4 6
2 7 8
5 9

(16)

There are exactly ten SYT of size four (that is, with four entries), given by

1 2 3 4 1 2 3 1 2 4 1 3 4 1 2 1 3 1 2 1 3 1 4 1
4 3 2 3 4 2 4 3 2 2 2

4 4 3 3
4

Standard Young tableaux have a number of interpretations which make them
of great importance in a variety of algebraic, combinatorial, and probabilistic
problems. Here we will only mention a classical problem called the ballot
problem, which has numerous applications in probability theory. Given a
partition λ = (λ1, . . . , λ`) as above with λ1 + · · · + λ` = n, we suppose that
an election is being held among ` candidates A1, . . . , A`. At the end of the
election candidate Ai receives λi votes. The voters vote in succession one
at a time. We record the votes of the voters as a sequence a1, a2, . . . , an,
where aj = i if the jth voter votes for Ai. The sequence a1, a2, . . . , an is
called a ballot sequence (of shape λ) if at no time during the voting does any
candidate Ai trail another candidate Aj with j > i. Thus the candidates
maintain their relative order (allowing ties) throughout the election. For
instance, the sequence 1, 2, 1, 3, 1, 3, 4, 2 is not a ballot sequence, since at the
end A2 and A3 receive the same number of votes, but after six votes A2 trails
A3. On the other hand, the sequence 1, 2, 1, 3, 1, 2, 4, 3 is a ballot sequence.
Despite the difference in their descriptions, a ballot sequence is nothing more
than a disguised version of an SYT. Namely, if T is an SYT, then define
aj = i if j appears in the ith row of T . A little thought should convince the
reader that the sequence a1, a2, . . . , an is then a ballot sequence, and that
all ballot sequences come in this way from SYT’s. For instance, the SYT of
equation (16) corresponds to the ballot sequence 1, 2, 1, 1, 3, 1, 2, 2, 3.

It is natural (at least for a practitioner of combinatorics) to ask how many
SYT there are of a given shape λ. This number is denoted fλ. For instance,
there are nine SYT of shape (4, 2), which we write as f 4,2 = 9. These nine
SYT are given by

1 2 3 4 1 2 3 5 1 2 3 6 1 2 4 5 1 2 4 6 1 2 5 6 1 3 4 5 1 3 4 6 1 3 5 6
5 6 4 6 4 5 3 6 3 5 3 4 2 6 2 5 2 4
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A formula for fλ (stated in terms of ballot sequences) was given by MacMa-
hon in 1900. A simplified version was given was James Sutherland Frame
(1907–1997), Robinson (mentioned earlier in connection with the Schensted
correspondence), and Robert McDowell Thrall (b. 1914) in 1954, and is
known as the Frame-Robinson-Thrall hook-length formula. To state this
formula, we define a Young diagram of shape λ as a left-justified array of
squares with λi squares in the ith row. For instance, a Young diagram of
shape (5, 5, 2) looks like

.

An SYT of shape λ can then be regarded as an insertion of the numbers
1, 2, . . . , n (each appearing once) into the squares of a Young diagram of
shape λ such that every row and column is increasing. If s is a square of a
Young diagram, then define the hook-length of s to be the number of squares
to the right of s and in the same row, or below s and in the same column,
counting s itself once. In the following figure, we have inserted inside each
square of the Young diagram of shape (5, 5, 2) its hook-length.

7 6 4 3 2

6 5 3 2 1

2 1

The hook product Hλ of a partition λ is the product of the hook-lengths of
its Young diagram. Thus for instance from the above figure we see that

H5,5,2 = 7 · 6 · 4 · 3 · 2 · 6 · 5 · 3 · 2 · 1 · 2 · 1 = 362, 880.

The Frame-Robinson-Thrall hook-length formula states that

fλ =
n!

Hλ

, (17)

where λ is a partition of n and n! (read “n factorial”) is short for 1 · 2 · · ·n.
For instance,

f 5,5,2 =
12!

362, 880
= 1320.
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It is remarkable that such a simple formula for fλ exists, and no really
simple proof is known. The proof of Frame-Robinson-Thrall amounts to sim-
plifying MacMahon’s formula for fλ, which MacMahon obtained by solving
difference equations (the discrete analogue of differential equations). Other
proofs were subsequently given, including several bijective proofs, but none
is as simple as the proof we have sketched of equation (8) using Schensted’s
correspondence.

In addition to their usefulness in combinatorics, SYT also play a signifi-
cant role in the theory of symmetry. This important theory was developed
primarily by Alfred Young (1873–1940), who was a clergyman by profes-
sion and a fellow of Clare College, Cambridge, a Canon of Chelmsford, and
Rector of Birdbrook, Essex (1910–1940). Roughly speaking, this theory de-
scribes the possible “symmetry states” of n objects. See the Box entitled
“Connections with representation theory” for more details. An immediate
consequence of this theory is that the number of ordered pairs of SYT of the
same shape and with n squares is equal to n!, the number of permutations
of n objects. For instance, when n = 3 we get the six pairs

(
1 2 3 1 2 3

) (
1 2 1 2
3 3

) (
1 2 1 3
3 2

)

(
1 3 1 2
2 3

) (
1 3 1 3
2 2

) (
1 1
2 2
3 3

)
.

The fact that the number of pairs of SYT of the same shape and with n
squares is n! can also be expressed by the formula

∑

λ`n

(
fλ

)2
= n!, (18)

where λ ` n denotes that λ is a partition of n. A combinatorialist will imme-
diately ask whether there is a bijective proof of this formula. In other words,
given a permutation w of the numbers 1, 2, . . . , n, which may be regarded as
simply a way of listing them in some order, such as 5, 2, 7, 6, 1, 4, 3 (or just
5276143 when no confusion can arise), can we associate with w a pair (T1, T2)
of SYT of the same shape and with n squares, such that every such pair oc-
curs exactly once? In fact we have already seen the solution to this problem
— it is just a special case of the Schensted correspondence! There is only one
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1 3 4 9 7 6
2 6 8 8 4 2
5 9 5 1
7 3

Figure 3: An SYT and its corresponding reverse SYT

minor technicality that needs to be explained before we apply the Schensted
correspondence. Namely, the column-strict plane partitions we were dealing
with before have every row and column decreasing, while SYT have every
row and column increasing. However, given a plane partition whose entries
are the integers 1, 2, . . . , n, each appearing once (so it will automatically be
column-strict), we need only replace i by n + 1− i to obtain an SYT of the
same shape. We will call a plane partition whose (nonzero) parts are the
integers 1, 2, . . . , n, each appearing once, a reverse SYT. An example of an
SYT and the corresponding reverse SYT obtained by replacing i with n+1−i
is shown in Figure 3.

So consider now a permutation such as 5, 2, 6, 1, 4, 7, 3. Write this as the
second line of a two-line array whose first line is n, n− 1, . . . , 1. Here we get
the two-line array

A =
7 6 5 4 3 2 1
5 2 6 1 4 7 3

.

When we apply the Schensted correspondence to this two-line array, we will
obtain a pair of column-strict plane partitions of the same shape whose parts
are 1, 2, . . . , n, each appearing once. Namely, we get

7 4 3 7 6 4
6 2 1 5 3 1
5 2

.

If we replace i by 8− i, we get the following pair of SYT of the same shape
(3, 3, 1):

1 4 5 1 2 4
2 6 7 3 5 7
3 6

.
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The process is reversible; that is, beginning with a pair (P, Q) of SYT of
the same shape, we can reconstruct the permutation that produced it. (The
details of this argument are left as an exercise.) Therefore the number of
pairs of SYT of the same shape and with n entries is equal to the number
of permutations a1, . . . , an of 1, 2, . . . , n, yielding the formula (18). This
remarkable connection between permutations and tableaux is the foundation
for an elaborate theory of permutation enumeration. In the next section we
give a taste of this theory.

BOX: Connections with representation theory. In this box we
assume familiarity with the fundamentals of representation theory. First we
consider the group G = GL(n,C) of all invertible linear transformations on
an n-dimensional complex vector space V . We will identify G with the group
of n × n invertible complex matrices. A polynomial representation of G of
degree N is a homomorphism ϕ : G → GL(N,C), such that for A ∈ G,
the entries of the matrix ϕ(A) are polynomials (independent of the choice
of A) in the entries of A. For instance, one can check directly that the map
ϕ : GL(2,C) → GL(3,C) defined by

ϕ

[
a b
c d

]
→




a2 2ab b2

ac ad + bc bd
c2 2cd d2


 (19)

preserves multiplication (and the identity element), and hence is a polynomial
representation of GL(2,C) of degree 3. Let ϕ : GL(n,C) → GL(N,C) be a
polynomial representation. If the eigenvalues of A are x1, . . . , xn, then the
eigenvalues of ϕ(A) are monomials in the xi’s. For instance, in equation (19)
one can check that if x1 and x2 are the eigenvalues of A, then the eigenvalues
of ϕ(A) are x2

1, x1x2, and x2
2. The trace of ϕ(A) (the sum of the eigenvalues)

is therefore a polynomial in the xi’s which is a sum of N monomials. This
polynomial is called the character of ϕ, denoted char(ϕ). For ϕ as in (19),
we have

char(ϕ) = x2
1 + x1x2 + x2

2.

Some of the basic facts concerning the characters of GL(n,C) are the follow-
ing:
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• Every polynomial representation (assumed finite-dimensional) of the
group GL(n,C) is completely reducible, i.e., a direct sum of irreducible
polynomial representations. These irreducible constituents are unique
up to equivalence.

• The characters of irreducible representations are homogeneous sym-
metric functions in the variables x1, . . . , xn, and only depend on the
representation up to equivalence.

• The characters of inequivalent irreducible representations are linearly
independent.

The effect of these properties is that once we determine the character of
a polynomial representation ϕ of GL(n,C), then there is a unique way to
write this character as a sum of irreducible characters. The representation
ϕ is determined up to equivalence by the multiplicity of each irreducible
character in char(ϕ). Hence we are left with the basic question of describing
the irreducible character of GL(n,C). The main result is the following.

Fundamental theorem on the polynomial characters of GL(n,C).
The irreducible characters of GL(n,C) are in one-to-one correspondence with
the partitions λ = (λ1, . . . , λn) with at most n parts. The irreducible character
sλ = sλ(x1, . . . , xn) corresponding to λ is given by

sλ(x1, . . . , xn) =
∑

T

xT ,

where T ranges over all column-strict plane partitions of shape λ and largest
part at most n, and where xT denotes the monomial

xT = xnumber of 1’s in T
1 xnumber of 2’s in T

2 · · · .

For instance, let n = 2 and let λ = (2, 0) be the partition with just one
part equal to two (and no other parts). The column-strict plane partitions
of shape (2, 0) with largest part at most 2 are just 11, 21, and 22. Hence
(abbreviating s(2,0) as s2),

s2(x1, x2) = x2
1 + x1x2 + x2

2.

26



This is just the character of the representation defined by equation (19).
Hence this representation is one of the irreducible representations of GL(2,C).

As another example, suppose that n = 3 and λ = (2, 1, 0). The corre-
sponding column-strict plane partitions are

2 1 2 2 3 1 3 1 3 2 3 2 3 3 3 3
1 1 1 2 1 2 1 2 .

Hence

sλ(x1, x2, x3) = x2
1x2 + x1x

2
2 + x2

1x3 + 2x1x2x3 + x2
2x3 + x1x

2
3 + x2x

2
3.

The fact that we have eight column-strict plane partitions in this case is
closely related to the famous “Eightfold Way” of particle physics. (The
corresponding representation of GL(n,C), when restricted to SL(n,C), is
just the adjoint representation of SL(n,C).)

The symmetric functions sλ(x1, . . . , xn) are known as Schur functions
(in the variables x1, . . . , xn) and play an important role in many aspects of
representation theory, the theory of symmetric functions, and enumerative
combinatorics. In particular, they are closely related to the irreducible rep-
resentations of a certain finite group, namely, the symmetric group Sk of all
permutations of the set {1, 2, . . . , k}. This relationship is best understood by
a “duality” between GL(n,C) and Sk discovered by Issai Schur (1875–1941).

Recall that we are regarding GL(n,C) as acting on an n-dimensional
vector space V . Thus GL(n,C) also acts on the kth tensor power V ⊗k of V .
The group Sk also acts on V ⊗k by permuting tensor coordinates. Schur’s
famous “double centralizer” theorem asserts that the actions of GL(n,C) and
Sk centralize each other, i.e., every endomorphism of V ⊗k commuting with
the action of GL(n,C) is a linear combination of the actions of the elements
of Sk, and vice versa. From this one can show that the action of the group
Sk ×GL(n,C) on V ⊗k breaks up into irreducible constituents in the form

V ⊗k =
∐

λ

(
Mλ ⊗ Fλ

)
, (20)

where (a)
∐

denotes a direct sum of vector spaces, (b) λ ranges over all
partitions of k into at most n parts, (c) Fλ is the irreducible GL(n,C)-
module corresponding to λ, and Mλ is an irreducible Sk-module. Thus when
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k ≤ n, λ ranges over all partitions of k. The p(k) irreducible Sk-modules Mλ

are pairwise nonisomorphic and account for all the irreducible Sk-modules.
Hence the irreducible Sk-modules are naturally indexed by partitions of k.
Using the Schensted correspondence (or otherwise), it is easy to prove the
identity

(x1 + x2 + · · ·+ xn)k =
∑

λ

fλsλ(x1, . . . , xn),

where λ ranges over all partitions of k and fλ denotes as usual the number
of SYT of shape λ. Comparing with equation (20) and using the fact that
the character of GL(n,C) acting on V ⊗k is (x1 + · · · + xn)k, we see that
dim Mλ = fλ. Thus the fλ’s for λ a partition of k are the degrees of the
irreducible representations of Sk. Since the sum of the squares of the degrees
of the irreducible representations of a finite group G is equal to the order
(number of elements) of G, we obtain equation (18) (with n replaced by k).

We have only given the briefest glimpse of the connections between tableaux
combinatorics and representation theory, but we hope that it gives the reader
with sufficient mathematical background the flavor of this subject.

5 Increasing and decreasing subsequences.

In this section we discuss an unexpected connection between the Schensted
correspondence and the enumeration of a certain class of permutations. This
connection was discovered by Schensted and was his reason for inventing his
famous correspondence. If w = a1a2 · · · an is a permutation of 1, 2, . . . , n,
then a subsequence v of length k of w is a sequence of k distinct terms of
w appearing in the order in which they appear in w. In symbols, we have
v = ai1ai2 · · · aik , where i1 < i2 < · · · < ik. For instance, some subsequences
of the permutation 6251743 are 2573, 174, 6, and 6251743. A subsequence
b1b2 · · · bk of w is said to be increasing if b1 < b2 < · · · < bk, and decreasing if
b1 > b2 > · · · > bk. For instance, some increasing subsequences of 6251743 are
67, 257, and 3, while some decreasing subsequences are 6543, 654, 743, 61,
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and 3.

We will be interestested in the length of the longest increasing and de-
creasing subsequences of a permutation w. Denote by i(w) the length of the
longest increasing subsequence of w, and by d(w) the length of the longest
decreasing subsequence. By careful inspection one sees for instance that
i(6251743) = 3 and d(6251743) = 4. It is intuitively plausible that there
should be some kind of tradeoff between the values i(w) and d(w). If i(w) is
small, say equal to k, then any subsequence of w of length k + 1 must con-
tain a pair of decreasing elements, so there are “lots” of pairs of decreasing
elements. Hence we would expect d(w) to be large. An extreme case occurs
when i(w) = 1. Then there is only one choice for w, namely, n, n− 1, . . . , 1,
and we have d(w) = n.

How can we quantify the feeling that that i(w) and d(w) cannot both be
small? A famous result of Pal (??) Erdős (1913–1996) and George Szekeres
(b. 1911), obtained in 1935, gives an answer to this question and was one of
the first results in the currently very active area of extremal combinatorics.
Let w be a permutation of 1, 2, . . . , n. The Erdős-Szekeres theorem states
that if p and q are positive integers for which n > pq, then either i(w) > p
or d(w) > q. Moreover, this result is best possible in the sense that if
n = pq then we can find at least one permutation w such that i(w) = p and
d(w) = q. An equivalent way to formulate the Erdős-Szekeres theorem is by
the inequality

i(w) · d(w) ≥ n,

showing clearly that i(w) and d(w) cannot both be small. For instance, both
can’t be less than

√
n, the square root of n.

After Erdős and Szekeres proved their theorem, an extremely elegant
proof was given in 1959 by Abraham Seidenberg (1916–1988) based on a
ubiquitous mathematical tool known as the pigeonhole principle. This prin-
ciple states that if m + 1 pigeons fly into m pigeonholes, then at least one
pigeonhole contains more than one pigeon. As trivial as the pigeonhole prin-
ciple may sound, it has numerous nontrivial applications. The hard part in
applying the pigeonhole principle is deciding what are the pigeons and what
are the pigeonholes.
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We can now describe Seidenberg’s proof of the Erdős-Szekeres theorem.
Given a permutation w = a1a2 · · · an of 1, 2, . . . , n, we define numbers r1, r2,
. . . , rn and s1, s2, . . . , sn as follows. Let ri be the length of the longest in-
creasing subsequence of w that ends at ai, and similarly let si be the length
of the longest decreasing subsequence of w that ends at ai. For instance,
if w = 6251743 as above then s4 = 3 since the longest decreasing subse-
quences ending at a4 = 1 are 621 and 651, of length three. More gen-
erally, we have for w = 6251743 that (r1, . . . , r7) = (1, 1, 2, 1, 3, 2, 2) and
(s1, . . . , s7) = (1, 2, 2, 3, 1, 3, 4).

Key fact. The n pairs (r1, s1), (r2, s2), . . . , (rn, sn) are all distinct.

To see why this fact is true, suppose i and j are numbers such that i < j
and ai < aj. Then we can append aj to the end of the longest increasing
subsequence of w ending at ai to get an increasing subsequence of greater
length that ends at aj. Hence rj > ri. Similarly, if i < j and ai > aj, then
we get sj > si. Therefore we cannot have both ri = rj and si = sj, which
proves the key fact.

Now suppose n > pq as in the statement of the Erdős-Szekeres theorem.
We therefore have n distinct pairs (r1, s1), (r2, s2), . . . , (rn, sn) of positive
integers. If every ri were at most p and every si were at most q, then there
are only pq possible pairs (ri, si) (since there are at most p choices for ri

and at most q choices for si). Hence two of these pairs would have to be
equal. (This is where the pigeonhole principle comes in — we are putting
the “pigeon” i into the “pigeonhole” (ri, si) for 1 ≤ i ≤ n. Thus there are
n pigeons, where n > pq, and at most pq pigeonholes.) But if two pairs
are equal, then we contradict the key fact above. It follows that for some
i either ri > p or si > q. If ri > p then there is an increasing subsequence
of w of length at least p + 1 ending at ai, so i(w) > p. Similarly, if si > q
then d(w) > q, completing the proof of the main part of the Erdős-Szekeres
theorem.

It remains to show that the result is best possible, as explained above. In
other words, given p and q, we need to exhibit at least one permutation w
of 1, 2, . . . , pq such that i(w) = p and d(w) = q. It is easy to check that the
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following choice of w works:

w = (q − 1)p + 1, (q − 1)p + 2, . . . , qp, (q − 2)p + 1, (q − 2)p + 2, . . . , (q − 1)p,

. . . , 2p + 1, 2p + 2, . . . , 3p, p + 1, p + 2, . . . , 2p, 1, 2, . . . , p. (21)

This completes the proof of the Erdős-Szekeres theorem.

Though the Erdős-Szekeres theorem is very elegant, we can ask for even
more information about increasing and decreasing subsequences. For in-
stance, rather than exhibiting a single permutation w of 1, 2, . . . , pq satisfying
i(w) = p and d(w) = q, we can ask how many such permutations there are.
This much harder question can be answered by using an unexpected connec-
tion between increasing and decreasing subsequences on the one hand, and
the Schensted correspondence on the other.

There are two fundamental properties of the Schensted correspondence
that are needed for our purposes. Suppose we apply the Schensted correspon-
dence to a permutation w = a1a2 · · · an of 1, 2, . . . , n, getting two column-
strict plane partitions P and Q whose parts are 1, 2, . . . , n. The first property
we need of the Schensted correspondence is a simple description of the first
row of P .

Property 1. Suppose that the first row of P is b1b2 · · · bk. Then bi is the
last (rightmost) term in w such that the longest decreasing subsequence of w
ending at that term has length i.

For instance, suppose w = 843716925. Then

P =
9 7 6 5
8 3 2
4 1

.

The first row of P is 9765. Consider the third element of this row, which is
6. Then 6 is the rightmost term of w for which the longest decreasing subse-
quence of w ending at that term has length three. Indeed, 876 is a decreasing
subsequence of length three ending at 6, and there is none longer. The terms
to the right of 6 are 9, 2, and 5. The longest decreasing subsequences ending
at these terms have length 1, 4, and 4, respectively, so 6 is indeed the right-
most term for which the longest decreasing subsequence ending at that term
has length three.
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See the Box for a proof by induction of Property 1.

BOX. Proof of Property 1. Recall that w = a1a2 · · · an. We prove
by induction on j that after the Schensted algorithm has been applied to
a1a2 · · · aj, yielding a pair (Pj, Qj) of column-strict plane partitions, then
the ith entry in the first row of Pj is the rightmost term of the sequence
a1a2 · · · aj such that the longest decreasing subsequence ending at that term
has length i. Once this is proved, then set j = n to obtain Property 1.

The assertion is clearly true for j = 1. Assume true for j. Suppose
that the first row of Pj is c1c2 · · · cr. By the induction hypothesis, ci is the
rightmost term of the sequence a1a2 · · · aj such that the longest decreasing
subsequence ending at that term has length i. We now insert aj+1 into the
first row of Pj according to the rules of the Schensted algorithm. It will bump
the leftmost element ci of this row which is less than aj+1. (If there is no
element of the first row of Pj which is less than aj+1, then aj+1 is inserted at
the end of the row. We then set i = r + 1, so that aj+1 is in all cases the ith
element of the first row of Pj+1.) We need to show that the longest decreasing
subsequence of the sequence a1a2 · · · aj+1 ending at aj+1 has length i, since
clearly aj+1 will be the rightmost element of a1a2 · · · aj+1 with this property
(since it is the rightmost element of the entire sequence).

If i = 1, then aj+1 is the largest element of the sequence a1a2 · · · aj+1, so
the longest decreasing subsequence ending at aj+1 has length one, as desired.
If i > 1, then there is a decreasing subsequence of a1a2 · · · aj of length i− 1
ending at ci−1. Adjoining aj+1 to the end of this subsequence produces a
decreasing subsequence of length i ending at aj+1. It remains to show that
there cannot be a longer decreasing subsequence ending at aj+1. If there
were, then there would be some term as in w to the left of aj+1 and larger
than aj+1 such that the longest decreasing subsequence ending at as has
length i. Thus when as is inserted into Ps−1 during the Schensted algorithm,
it becomes the ith element of the first row. It can only be bumped by terms
larger than as. In particular, when aj+1 is inserted into the first row, the
ith element is larger than as, which is larger than aj+1. This contradicts the
definition of the bumping procedure and completes the proof.
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Figure 4: The Young diagram of a partition and its conjugate

The second property we need of the Schensted correspondence was first
proved by Schensted. To describe this property we require the following
definition. If λ is a partition, then the conjugate partition λ′ of λ is the
partition whose Young diagram is obtained by interchanging the rows and
columns of the Young diagram of λ. In other words, if λ = (λ1, λ2, . . .), then
the column lengths of the Young diagram of λ′ are λ1, λ2, . . .. For instance,
if λ = (5, 3, 3, 2) then λ′ = (4, 4, 3, 1, 1), as illustrated in Figure 4.

Property 2. Suppose that when the Schensted correspondence is applied
to a permutation w = a1a2 · · · an, we obtain the pair (P, Q) of reverse SYT.
Let w̄ = anan−1 · · · a1, the reverse permutation of w. Suppose that when
the Schensted correspondence is applied to w̄, we obtain the pair (P̄ , Q̄) of
reverse SYT. Then the shape of P̄ (or Q̄) is conjugate to the shape of P (or
Q).

Actually, an even stronger result than Property 2 is true, though we don’t
need it for our purposes. The reverse SYT P̄ is actually the transpose of P ,
obtained by interchanging the rows and columns of P . (The connection
between Q and Q̄ is more subtle and has led to much interesting work.) The
proof of Property 2 is too complicated for inclusion here, though it is entirely
elementary.
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We now have all the ingredients to state the main result (due to Schen-
sted) on longest increasing and decreasing subsequences. If we apply the
Schensted correspondence to the permutation w and get a pair (P, Q) of
reverse SYT of shape λ = (λ1, λ2, . . .), then Property 1 tells us that

d(w) = λ1.

In words, the length of the longest decreasing subsequence of w is equal to the
largest part of λ (the length of the first row of P ). Now apply the Schensted
correspondence to the reverse permutation w̄, obtaining the pair (P̄ , Q̄) of
reverse SYT. When we reverse a permutation, increasing subsequences are
changed to decreasing subsequences and vice versa. In particular, d(w̄) =
i(w). By Property 1, d(w̄) is just the length of the first row of P̄ . By Property
2, the length of the first row of P̄ is just the length of the first column of P .
Thus i(w) = `(λ), the number of parts of λ.

We have shown that for a permutation w with i(w) = p and d(w) = q,
the shape λ of the corresponding reverse SYT P (and Q) satisfies `(λ) = p
and λ1 = q. Hence the number An(p, q) of permutations w of 1, 2, . . . , n with
i(w) = p and d(w) = q is equal to the number of pairs (P,Q) of reverse SYT
of the same shape λ, where λ is a partition of n with `(λ) = p and λ1 = q.
How many such pairs are there? Given the partition λ, the number of choices
for P is just fλ, the number of SYT of shape λ. (Recall that the number of
SYT of shape λ and the number of reverse SYT of shape λ is the same, since
we can replace i by n + 1− i.) Similarly there are fλ choices for Q, so there

are
(
fλ

)2
choices for (P, Q). Hence we obtain our main result on increasing

and decreasing subsequences:

Schensted’s Theorem. The number An(p, q) of permutations w of

1, 2, . . . , n satisfying i(w) = p and d(w) = q is equal to the sum of all
(
fλ

)2
,

where λ is a partition of n satisfying `(λ) = p and λ1 = q.

Let us see how the Erdős-Szekeres theorem follows immediately from
Schensted’s theorem. If a partition λ of n satisfies `(λ) = p and λ1 = q, then

n = λ1 + λ2 + · · ·+ λp

≤ q + q + · · ·+ q (p terms in all)

= pq.
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Hence if n > pq, then either `(λ) ≥ p + 1 or λ1 ≥ q + 1. If we apply the
Schensted correspondence to a permutation w of 1, 2, . . . , n then we get a
pair of reverse SYT of some shape λ, where λ is a partition of n. We have
just shown that `(λ) ≥ p + 1 or λ1 ≥ q + 1, so by Schensted’s theorem either
i(w) ≥ p + 1 or d(w) ≥ q + 1.

We can evaluate each fλ appearing in Schensted’s theorem by the hook-
length formula. Hence the theorem is most interesting when there are few
partitions λ satisfying `(λ) = p and λ1 = q. The most interesting case occurs
when n = pq. The fact that there is at least one permutation satisfying
i(w) = p and d(w) = q (when n = pq) shows that the Erdős-Szekeres theorem
is best possible (see equation (21)). Now we are asking for a much stronger
result — how many such permutations are there? By Schensted’s theorem,
we first need to find all partitions λ of n such that `(λ) = p and λ1 = q.
Clearly there is only one such partition, namely, the partition with p parts

all equal to q. Hence for this partition λ we have An(p, q) =
(
fλ

)2
. We may

assume for definiteness that p ≤ q (since An(p, q) = An(q, p)). In that case
the hook-lengths of λ are given by 1 (once), 2 (twice), 3 (three times), . . ., p
(p times), p + 1 (p times), . . ., q (p times), q + 1 (p− 1 times), q + 2 (p− 2
times), . . ., p + q − 1 (once). We finally obtain the amazing formula (for
n = pq)

An(p, q) =

[
(pq)!

1122 · · · pp(p + 1)p · · · qp(q + 1)p−1(q + 2)p−2 · · · (p + q − 1)1

]2

.

For instance, when p = 4 and q = 6 we easily compute that

A24(4, 6) =

[
24!

11 22 33 44 54 64 73 82 91

]2

= 19, 664, 397, 929, 878, 416.

This large number is still only a small fraction .00000003169 of the total
number of permutations of 1, 2, . . . , 24.
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6 Reduced decompositions.

There is a remarkable and unexpected connection between standard Young
tableaux and the building up of a permutation by interchanging (transposing)
two adjacent entries. We begin with the identity permutation 1, 2, . . . , n.
We wish to construct from it a given permutation as quickly as possible by
interchanging adjacent elements. By “as quickly as possible,” we mean in
as few interchanges (called adjacent transpositions) as possible. This will
be the case if we always transpose two elements a, b appearing in ascending
order. For instance, one way to get the permutation 41352 from 12345 with
a minimum number of adjacent transpositions is as follows, where we have
marked in boldface the pair of elements to be interchanged:

12345 → 13245 → 13425 → 14325 → 41325 → 41352. (22)

Such sequences of interchanges are used in some of the sorting algorithms
studied in computer science (see Section 11), although there it is natural
to consider the reverse process whereby a list of numbers such as 41352 is
step-by-step converted to the “sorted” list 12345. Note that the five steps
in the sequence (22) are the minimum possible, since in the final permuta-
tion 41352 there are five pairs (i, j) out of order, i.e., i appears to the left
of j and i > j (namely, (4, 1), (4, 3), (4, 2), (3, 2), (5, 2)), and each adjacent
transposition can make at most one pair which was in order go out of order.
It would be inefficient to transpose a pair (a, b) that is in order in the final
permutation, since we would only have to change it back later. A pair of
elements of a permutation w that is out of order is called an inversion of
w. The number of inversions of w is denoted inv(w) and is an important
invariant of a permutation, in a sense measuring how “mixed up” the per-
mutation is. For instance, inv(41352) = 5, the inversions being the five pairs
(4, 1), (4, 3), (4, 2), (3, 2), (5, 2).

A sequence of adjacent transpositions that converts the identity permu-
tation to a permutation w in the smallest possible number of steps (namely,
inv(w) steps) is called a reduced decomposition of w. Equation (22) shows
one reduced decomposition of the permutation w = 41352, but there are
many others. We can therefore ask for the number of reduced decomposi-
tions of w. We denote this number by r(w). The reader can check that
every permutation of the numbers 1, 2, 3 has only one reduced decomposi-
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tion, except that r(321) = 2. The two reduced decompositions of 321 are
123 → 213 → 231 → 321 and 123 → 132 → 312 → 321.

The remarkable connection between r(w) and SYT’s is the following. For
each permutation w, one can associate a small collection Y (w) of Young
diagrams (with repetitions allowed) whose number of squares is inv(w), such
that r(w) is the sum of the number of SYT whose shapes belong to Y (w). We
are unable to explain here the exact rule (based on a variant of the Schensted
correspondence) for computing Y (w), but we will discuss the most interesting
special case. We also will not explain exactly what is meant by a “small”
collection, but in general its number of elements will be much smaller than
r(w) itself.

Example. Here are a few examples of the collection Y (w).

(a) If w = 41352 (the example considered in equation (22)), then Y (w)
consists of the single diagram

of shape (3, 1, 1). Since there are six SYT of this shape (computed from
the hook-length formula (17) or by direct enumeration), it follows that
there are six reduced decompositions of 41352.

(b) If w = 654321 then again Y (w) is given by a single diagram, this time

.

Hence

r(w) = f (5,4,3,2,1)
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=
15!

15 · 34 · 53 · 72 · 9
= 292, 864.

(c) If w = 321654, then Y (w) consists of the diagrams whose shapes are
(writing for instance 42 as short for (4, 2)) 42, 411, 33, 321, 321, 3111,
222, 2211. Note that the shape 321 appears twice. We get

r(w) = f 42 + f 411 + f 33 + 2f 321 + f 3111 + f 222 + f 2211

= 9 + 10 + 5 + 2 · 16 + 10 + 5 + 9

= 80.

Clearly the formula for r(w) will be the simplest when Y (w) consists of
a single partition λ, for then we have r(w) = fλ, given explicitly by (17). A
simple though surprising characterization of all permutations for which Y (w)
consists of a single partition is given by the next result. Such permutations
are called vexillary after the Latin word vexillum for “flag,” because of a
relationship between reduced decompositions and certain objects in algebraic
geometry known as flag varieties.

Vexillary theorem. Let w = w1w2 · · ·wn be a permutation of 1, 2, . . . , n.
Then Y (w) consists of a single partition λ if and only if there do not exist
a < b < c < d such that wb < wa < wd < wc. Moreover, if αi is the number
of j’s for which i < j and wi > wj, then the parts of λ are just the nonzero
αi’s.

As an illustration of the above theorem, let w = 526314. One sees by in-
spection that w satisfies the conditions of the theorem. We have (α1, . . . , α6) =
(4, 1, 3, 1, 0, 0). Hence λ = (4, 3, 1, 1) and r(w) = f (4,3,1,1) = 216.

It is immediate from the above result that all the permutations of 1, . . . , n
for n ≤ 3 are vexillary, and that there is just one nonvexillary permutation
of 1, 2, 3, 4, namely, 2143. It has been computed that if v(n) denotes the
number of vexillary permutations of 1, 2, . . . , n then v(5) = 103 (out of 120
permutations of 1, 2, . . . , n in all), v(6) = 513 (out of 720), v(7) = 2761 (out
of 5040), and v(8) = 15767 (out of 40320). Simple methods for computing
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and approximating v(n) have been given by Julian West (b. 1964) and Amitai
Regev (b. 1940).

There is one class of vexillary permutations of particular interest. These
are the permutations w0 = n, n−1, . . . , 1, for which λ = (n−1, n−2, . . . , 1).
There is an elegant bijection between the SYT of shape (n−1, n−2, . . . , 1) and
the reduced decompositions of w0, due to Paul Henry Edelman (b. 1956) and
Curtis Greene (b. 1944). Begin with an SYT of shape (n − 1, n − 2, . . . , 1)
and write the number i at the end of the ith row, with n written at the
bottom of the first column. We will call the numbers outside the diagram
exit numbers. An example is given by:

5

7

5

2

1

4

9

8

3

3

10

4

2

6 1

Now take the largest number in the SYT (in this case 10) and let it “exit”
the diagram to the southeast (between the 2 and 3). Whenever a number
exits the diagram, transpose the two exit numbers that it goes between.
Hence we now have:
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5

7

5

2

1

4

9

8

3

2

4

3

6 1

In the hole left by the 10, move the largest of the numbers directly to the
left or above the hole. Here we move the 8 into the hole, creating a new hole.
Continue to move the largest number directly to the left or above a hole into
the hole, until such moves are no longer possible. Thus after exiting the 10,
we move the 8, 3, and 1 successively into holes, yielding:

5

7

5

2

4

9

3

1

2

8

4

3

6 1

Now repeat this procedure, first exiting the largest number in the diagram
(ignoring the exit numbers), then transposing the two exit numbers between
which this largest number exits, and then filling in the holes by the same
method as before. Hence for our example 9 exits, 5 fills in the hole left by 9,
and 2 fills in the hole left by 5, yielding:
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5

7

2

2

5

3

1

4

8

4

3

6 1

Continue in this manner until all the numbers are removed from the
original SYT. The remarkable fact is that the exit numbers, read from top to
bottom, will now be n, n− 1, . . . , 1. We began with the exit numbers in the
order 1, 2, . . . , n, and each exit from the diagram transposed two adjacent
exit numbers. The size (number of entries) of the original SYT is equal to
n ( n − 1 ) / 2, which is the number of inversions of the permutation
n, n − 1, . . . , 1. Hence we have converted 1, 2, . . . , n to n, n − 1, . . . , 1 by
n(n−1)/2 adjacent transpositions, thereby defining a reduced decomposition
of w0. Edelman and Greene prove that this algorithm yields a bijection
between SYT of shape (n − 1, n − 2, . . . , 1) and reduced decompositions of
w0. For the above example, the reduced decomposition is given by 12345 →
13245 → 13425 → 14325 → 14352 → 41352 → 41532 → 45132 → 45312 →
45321 → 54321.

7 Tilings.

The final enumerative topic we will discuss concerns the partitioning of some
planar or solid shape into smaller shapes. Such partitions are called tilings.
The combinatorial theory of tilings is connected with such subjects as geom-
etry, group theory, and logic, and has applications to statistical mechanics,
coding theory, and many other topics. Here we will be concerned with the
purely enumerative question of counting the number of tilings.
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The first significant result about the enumeration of tilings was due to
the Dutch?? physicist P. W. Kasteleyn (1???–19??) and independently to
the British physicist Harold Neville Vazeille Temperley (b. 1931) and the
British-born physicist Michael Ellis Fisher (b. 1931). Motivated by work re-
lated to the adsorption of diatomic molecules on a surface and other physical
problems, they were led to consider the tiling of a chessboard by dominos
(or dimers). More precisely, consider an m× n chessboard B, where at least
one of m and n is even. A domino consists of two adjacent squares (where
“adjacent” means having an edge in common). The domino can be oriented
either horizontally or vertically. Thus a tiling of B by dominos will require
exactly mn/2 dominos, since there are mn squares in all, and each domino
has two squares. The illustration below shows a domino tiling of a 4 × 6
rectangle.

Let N(m,n) denote the number of domino coverings of an m × n chess-
board. For instance, N(2, 3) = 3, as shown by:

We have in fact that
N(2, n) = Fn+1, (23)
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where Fn+1 denotes a Fibonacci number, defined by the recurrence

F1 = 1, F2 = 1, Fn+1 = Fn + Fn−1.

To prove equation (23), we need to show that N(2, 1) = 1, N(2, 2) = 2,
and N(2, n + 2) = N(2, n + 1) + N(2, n). Of course it is trivial to check
that N(2, 1) = 1 and N(2, 2) = 2. In any domino tiling of a 2 × (n + 2)
rectangle, either the first column consists of a vertical domino, or else the
first two columns consist of two horizontal dominos. In the former case we
are left with a 2 × (n + 1) rectangle to tile by dominos, and in the latter
case a 2 × n rectangle. There are N(2, n + 1) ways to tile the 2 × (n + 1)
rectangle and N(2, n) ways to tile the 2 × n rectangle, so the recurrence
N(2, n + 2) = N(2, n + 1) + N(2, n) follows, and hence also (23).

The situation becomes much more complicated when dealing with larger
rectangles, and rather sophisticated techniques such as the “transfer-matrix
method” or the “Pfaffian method” are needed to produce an answer. The
final form of the answer involves trigonometric functions (see Box), and it is
not even readily apparent (without sufficient mathematical background) that
the formula gives an integer. It follows, however, from the subject known
as Galois theory that N(2n, 2n) is in fact the square or twice the square of
an integer, depending on whether n is even or odd. For instance, N(8, 8) =
12, 988, 816 = 36042, while N(6, 6) = 6728 = 2 · 582. It is natural to ask
for a combinatorial reason why these numbers are squares or twice squares.
In other words, in the case when n is even we would like a combinatorial
interpretation of the number M(2n) defined by N(2n, 2n) = M(2n)2, and
similarly when n is odd. While a formula for M(2n) was known making it
obvious that it was an integer (so not involving trigonometric functions), it
was only in 1992 that William Jockusch (19??– ) found a direct combinatorial
interpretation of M(2n). In 1996 Mihai Adrian Ciucu (b. 1968) found an even
simpler interpretation of M(2n) as the number of domino tilings of a certain
region Rn, up to a power of two. The region Rn is defined to be the board
consisting of 2n − 2 squares in the first three rows, then 2n − 4 squares in
the next two rows, then 2n − 6 squares in the next two rows, etc., down to
two squares in the last two rows. All the rows are left-justified. The board
R4 is illustrated in Figure 5.

If T (n) denotes the number of domino tilings of Rn, then Ciucu’s formula
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Figure 5: The board R4.

states that
N(2n, 2n) = 2nT (n)2.

If n is even, say n = 2r, then N(2n, 2n) = (2rT (n))2, while if n is odd,
say n = 2r + 1, then N(2n, 2n) = 2(2rT (n))2, so we recover the result that
N(2n, 2n) is a square or twice a square depending on whether n is even or
odd.

BOX. Kasteleyn’s formula for the number N(2m, 2n) of domino tilings
of a 2m× 2n chessboard:

N(2m, 2n) = 4mn

m∏
s=1

n∏
t=1

(
cos2 sπ

2m + 1
+ cos2 tπ

2n + 1

)
.
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Although the formula for the number of domino tilings of a chessboard
is rather complicated, there is a variant of the chessboard for which a very
simple formula for the number of domino tilings exists. This new board
is called an Aztec diamond, and was introduced by Noam David Elkies (b.
1966), Gregory John Kuperberg (b. 1967), Michael Jeffrey Larsen (b. 1962),
and James Gary Propp (b. 1960). Their work has stimulated a flurry of
activity on exact and approximate enumeration of domino tilings, as well as
related questions such as the appearance of a “typical” domino tiling of a
given region.

The Aztec diamond AZn of order n consists of two squares in the first
row, four squares in the second row beginning one square to the left of the
first row, six squares in the third row beginning one square to the left of the
second row, etc., up to 2n squares in the nth row. Then reflect the diagram
created so far about the bottom edge and adjoin this reflected diagram to
the original. For instance, the Aztec diamond AZ3 looks as follows:

Let az(n) be the number of domino tilings of the Aztec diamond AZn.
For instance, AZ1 is just a 2× 2 square, which has two domino tilings (both
dominos horizontal or both vertical). Hence az(1) = 2. It’s easy to compute
by hand that az(2) = 8, and a computer reveals that az(3) = 64 = 26,
az(4) = 1024 = 210, az(5) = 32768 = 215, etc. The evidence quickly becomes
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overwhelming for the conjecture that

az(n) = 2
1
2
n(n+1). (24)

It is rather mysterious why Aztec diamonds seem to be so much more nicely
behaved regarding their number of domino tilings than the more natural
m× n chessboards.

A proof of the conjecture (24) is the main result of Elkies et al. mentioned
above. They gave four different proofs, showing the surprising connections
between Aztec diamonds and various other branches of mathematics. (For

instance, it is not a coincidence that 2
1
2
n(n+1) is the degree of an irreducible

representation of the group GL(n + 1,C).) Of course a combinatorialist
would like to see a purely combinatorial proof, and indeed Elkies et al. gave
such proofs. Other combinatorial proofs have been since given by Ciucu
and Propp. We will sketch the fourth proof of Elkies et al., called a proof
by domino shuffling. The domino shuffling procedure we describe will seem
rather miraculous, and there are many details to verify to see that it actually
works as claimed. Nevertheless, we hope that our brief description will take
some of the mystery out of equation (24).

We first color the squares of the Aztec diamond AZn black and white in
the usual chessboard fashion, with the first (leftmost) square in the top row
colored white. Here is a tiling of AZ3 with the chessboard coloring shown.
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Each domino will have one white square and one black square. There are
four possible colorings and orientations of a domino, shown in the illustration
below. With each of these four possible colored dominos we associate a
direction: up, down, right, and left, as indicated below by an arrow.

We can enlarge the Aztec diamond AZn to AZn+1 by adding squares
around the boundary. Add one square at the beginning and one square at
the end of each row, and two squares at the top and bottom. The next
illustration shows the earlier tiling of AZ3, with an arrow placed on each
domino according to its coloring and orientation, and the boundary of new
squares to give AZ4. We have also numbered each domino for later purposes.
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Now move each domino one unit in the direction of its arrow. This is
the shuffling operation referred to in the name “domino shuffling.” It can
be shown that (a) the dominos do not overlap after shuffling, and (b) the
squares of AZn+1 that are not covered by dominos can be uniquely covered
with exactly n + 1 2 × 2 squares. The next figure shows the dominos after
shuffling (with the same numbers as before), together with the leftover four
2× 2 squares.
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We now complete the partial tiling of AZn+1 to a complete tiling by
putting two dominos in each 2 × 2 square. There are of course two ways to
tile a 2×2 square, so there are 2n+1 ways to tile all n+1 of the 2×2 squares.
Therefore we have associated 2n+1 tilings of AZn+1 with each tiling of AZn.
The amazing fact is that every tiling of AZn+1 occurs exactly once in this
way! In other words, given a tiling of AZn+1, we can reconstruct which of
the dominos were shuffled from a tiling of AZn and thus also the n + 1 2× 2
squares that were left over. Since there are exactly 2n+1 tilings of AZn+1

associated with each tiling of AZn, we obtain the recurrence

az(n + 1) = 2n+1az(n).

The unique solution to this recurrence satisfying az(1) = 2 is easily seen (for
instance by mathematical induction) to be

az(n) = 2
1
2
n(n+1),

proving equation (24).
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Figure 6: The hexagonal board H(2, 3, 3)

8 Tilings and plane partitions.

We have discussed several examples of unexpected connections between seem-
ingly unrelated mathematical problems. This is one of the features of math-
ematics that makes it so appealing to its practitioners. In this section we
discuss another such connection, this time between tilings and plane parti-
tions. Other surprising connections will be treated in later sections.

The tiling problem we will be considering is very similar to the problem
of tiling an m× n chessboard with dominos. Instead of a chessboard (whose
shape is a rectangle), we will be tiling a hexagon. Replacing the squares of
the chessboard will be equilateral triangles of unit length which fill up the
hexagon, yielding a “hexagonal board.” Let H(r, s, t) denote the hexagonal
board whose opposite sides are parallel and whose side lengths (in clockwise
order) are r, s, t, r, s, t. Thus opposite sides of the hexagon have equal length
just like opposite sides of a rectangle have equal length. Figure 6 shows the
hexagonal board H(2, 3, 3) with its 42 equilateral triangles. In general, the
hexagonal board H(r, s, t) has 2(rs + rt + st) equilateral triangles.
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Instead of tiling with dominos (which consist of two adjacent squares), we
will be tiling with pieces which consist of two adjacent equilateral triangles.
We will call these pieces simply rhombi, although they are really only special
kinds of rhombi. Thus the number of rhombi in a tiling of H(r, s, t) is rs +
rt+ st. The rhombi can have three possible orientations (compared with the
two orientations of a rectangle):

Here is a typical tiling of H(2, 3, 3)

LW

F

F

RW

RW

This picture gives the impression of looking into the corner of an r×s× t
box in which cubes are stacked. The brain will alternate between different
interpretations of this cube stacking. To be definite, we have labelled by F
the floor, by LW the left wall, and by RW the right wall. Shading the rhombi
according to their orientation heightens the impression of a cube stacking,
particularly if the page is rotated slightly counterclockwise:
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Regarding the floor as a 3×2 parallelogram filled with six rhombi, we can
encode the cube stacking by a 3× 2 array of numbers which tell the number
of cubes stacked above each floor rhombus:

2 3

0 2

20

Rotate this diagram 45◦ counterclockwise, erase the rhombi, and “straighten
out,” giving the following array of numbers:

3 2 2
2 0 0 .

This array is nothing more than a plane partition whose number of rows
is at most r, whose number of columns is at most s, and whose largest
part is at most t (where we began with the hexagonal board H(r, s, t))! This
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correspondence between rhombic tilings of H(r, s, t) and plane partitions with
at most r rows, at most s columns, and with largest part at most t is a
bijection. In other words, given the rhombic tiling, there is a unique way to
interpret it as a stacking of cubes (once we agree on what is the floor, left
wall, and right wall), which we can encode as a plane partition of the desired
type. Conversely, given such a plane partition, we can draw it as a stacking
of cubes which in turn can be interpreted as a rhombic tiling.

An immediate corollary of the amazing correspondence between rhombic
tilings and plane partitions is an explicit formula for the number N(r, s, t)
of rhombic tilings of H(r, s, t). For this number is just the number of plane
partitions with at most r rows, at most s columns, and with largest part at
most t. If we set x = 1 in the left-hand side of MacMahon’s formula (14)
then it follows that we just get N(r, s, t). If we set x = 1 in the right-hand
side then we get the meaningless expression 0/0. However, if we write

[i] = 1− xi = (1− x)(1 + x + · · ·+ xi−1),

then the factors of 1 − x cancel out from the numerator and denominator
of the right-hand side of (14). Therefore substituting x = 1 is equivalent to
replacing [i] by the integer i, so we get the astonishing formula

N(r, s, t) =

(1 + t)(2 + t)2 · · · (r + t)r(r + 1 + t)r · · · (s + t)r(s + 1 + t)r−1(s + 2 + t)r−2 · · · (r + s− 1 + t)

1 · 22 · 33 · · · rr(r + 1)r · · · sr(s + 1)r−1(s + 2)r−2 · · · (r + s− 1)
.

9 Combinatorics and Topology

On first acquaintance combinatorics may seem to have a somewhat different
“flavor” than the mainstream areas of mathematics, due mainly to what
mathematicians call “discreteness.” Nevertheless, combinatorics is fortunate
to have many beautiful and fruitful links with older and more established
areas, such as algebra, geometry, probability and topology. We will now
move on to discuss one such connection, perhaps the most surprising one,
namely that with topology. First, however, let us say a few words about
what mathematicians mean by discreteness.
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In mathematics the words “continuous” and “discrete” have technical
meanings that are quite opposite. Typical examples of continuous objects are
curves and surfaces in 3-space (or, suitably generalized, in higher-dimensional
spaces). A characteristic property is that each point on such an object is
surrounded by some “neighborhood” of other points, containing points that
are in a suitable sense “near” to it. The area within mathematics that deals
with the study of continuity is called topology. The characteristic property
of discrete objects, on the other hand, is that each point is “isolated” —
there is no concept of points being “near.” Combinatorics is the area that
deals with discreteness in its purest form, particularly in the study of finite
structures of various kinds.

Several fascinating connections between the continuous and the discrete
are known in mathematics — in algebra, geometry and analysis. A quite
recent development of this kind, the one we want to talk about here, is that
ideas and results from topology can be put to use to solve certain combi-
natorial problems. We will soon exemplify this with two problems coming
from computer science. However, first we will discuss in greater detail the
connection between topology and combinatorics that will be used.

Let us take as our example of a topological space the torus, a 2-dimensional
surface that is well known in ordinary life in the form of an inner-tube, or as
the surface of a doughnut (see Figure 7).

b

a

Figure 7: The torus

There is a way to “encode” a space such as the torus into a finite set sys-
tem, called a triangulation. It works as follows. Draw (curvilinear) triangles
on the torus so that each edge of a triangle is also the edge of some other
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triangle, and the 2 endpoints of each edge are not the pair of endpoints of
any other edge. The triangles should cover the torus so that each point on
the torus is in exactly one of the triangles, or possibly in an edge where two
triangles meet or at a corner where several triangles meet. We can think
of this as cutting the rubber surface of an inner tube into small triangular
pieces. Figure 8 shows one way to do this using 14 triangles. In this figure
the torus is cut up and flattened out — to get back the original torus one
has to roll this flattened version up and glue together the two sides marked
1-2-3-1, and then wrap around the cylinder obtained and glue together the
two end-circles marked 1-4-5-1. Note that the two circles 1-2-3-1 and 1-4-5-1
in Figure 8 correspond to the circles marked a and b that are drawn with
dashed lines on the torus in Figure 7.

76

5

44

1321

5

1321

Figure 8: A triangulated torus

Having thus cut the torus apart we now have a collection of 14 triangles.
The corners in Figure 8 where triangles come together are called vertices,
and we can represent each triangle by its 3 vertices. Thus each one of our 14
triangles is replaced by a 3-element subset of {1,2,3,4,5,6,7}. For instance,
{1,2,4} and {3,4,6} denote two of the triangles. The full list of all 14 triangles
is

124 126 135 137 147 156 234
235 257 267 346 367 456 457

(25)
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A family of subsets of a finite set which is closed under taking subsets
(i.e., if A is a set in the family and B is obtained by removing some elements
from A then also B is in the family) is called a simplicial complex . Thus,
our fourteen 3-element sets and all their subsets form a simplicial complex.

An important fact is that just knowing the simplicial complex — a finite
set system — we can fully reconstruct the torus! Namely, knowing the 14
triples we can manufacture 14 triangles with vertices marked in corresponding
fashion and then glue these triangles together according to the blueprint of
Figure 8 (using the vertex labels) to obtain the torus. To imagine this you
should think of the triangles as being flexible (e.g., made of rubber sheet) so
that there are no physical obstructions to their being bent and glued together.
Also, the torus obtained may be different in size or shape from the original
one (smaller, larger, deformed), but these differences are irrelevant from the
point of view of topology.

To sum up the discussion: The simplicial complex coming from a trian-
gulation is a complete encoding of the torus as a topological object. Every
property of the torus that topology can have anything to say about is also a
property of this finite set system!

Why would topologists want to use such an encoding? The main rea-
son is that they are interested in computing certain so called invariants of
topological spaces, such as the “Betti numbers” which we will soon comment
on. The spaces they consider (such as the torus) are geometric objects with
infinitely many points, on which it is usually hard to perform concrete com-
putations. An associated simplicial complex, on the other hand, is a finite
object which is easily adapted to computation (except possibly for size rea-
sons). Topological invariants depend only on the space in question, but their
computation may depend on choosing a triangulation or other “combinato-
rial decomposition”. The part of topology that develops this connection is
known as combinatorial topology. It was initiated by the great French math-
ematician Jules Henri Poincaré (1854–1912) in the last years of the 1800’s
and greatly developed in the first half of this century. Eventually the subject
took on a more and more algebraic flavor and in the 1940’s the area changed
name to algebraic topology.

The Betti numbers of a space are topological invariants that can be said
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to measure the number of “independent holes” of various dimensions. It is
impossible to give the full technical definition within the framework of this
article. Let it suffice to say that the definition depends on certain algebraic
constructions and to give some examples. If T is a d-dimensional topological
space then there are d + 1 Betti numbers

β0(T ), β1(T ), ..., βd(T ),

which are nonnegative integers. Once we have a triangulation of a topological
space the computation of Betti numbers is a matter of some very simple (in
principle) linear algebra.

For instance, the d-dimensional sphere has Betti numbers (0, ..., 0, 1), re-
flecting the fact that it has exactly one d-dimensional “hole” (its interior) and
no holes of other dimensions. The torus has Betti numbers (0, 2, 1) because
there are two essentially different 1-dimensional holes (corresponding to the
circles a and b in Figure 7) and one 2-dimensional hole (the interior). Note
that the two circles a and b are genuine “holes” in the sense that they cannot
be continuously deformed to single points within the torus, and that they are
“different” holes since one cannot be continuously deformed into the other.

The concept of a 0-dimensional hole is perhaps not so clear on an intuitive
level, but having β0 = 0 means that the space hangs together in one piece (is
connected), and in general β0(T )+1 is the number of connected components
of the space T . (Note to specialists: Our βi(T )’s are really the reduced
Betti numbers of T , differing from the “ordinary” Betti numbers only in that
β0(T ) + 1 rather than β0(T ) is the number of connected components of T .)

We have seen that finite set systems are of use in topology as encodings
of topological spaces. But the connection between spaces and simplicial com-
plexes opens up a two-way street. What if the mathematics we are doing
deals primarily with finite set systems, as is often the case in combinatorics?
For instance, say that a combinatorial problem we are dealing with involves
the fourteen 3-element sets listed in (25). Could the properties of the asso-
ciated topological space — the torus — be of any relevance? For instance,
could its Betti numbers (measuring the number of “holes” in the space) have
something useful to say about the set system as such? We will show that
this may indeed be the case, and this is in fact one of the cornerstones for
the “topological method” in combinatorics.
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The idea to use topological reasoning in combinatorics is quite old but had
a somewhat unfortunate start. It seems to have first occurred in connection
with a famous problem of Euler. The following configuration is called a
Graeco-Latin square of order n: An n × n-matrix of ordered pairs (a, b) of
numbers a and b from 1, 2, ..., n such that the first entries a are distinct in
every row and column, the second entries b are distinct in every row and
column, and all n2 possible pairs occur. For instance, here is a Graeco-Latin
square of order 3:

1, 1 2, 2 3, 3

2, 3 3, 1 1, 2

3, 2 1, 3 2, 1.

Euler stated without proof in his paper “Recherches sur une espèce de
carrés magique” from 1782 that such configurations cannot exist for n =
6, 10, 14, 18, .... His claim was proven correct for n = 6 by G. Tarry (18??–
19??) in 1901. In 1922 Harris F. MacNeish (18??–19??) published a paper
in Annals of Mathematics supposedly proving Euler’s claim for all remaining
values of n. His argument, which was based on topology, was unfortunately
incorrect. In fact, subsequent research has shown that Euler’s claim itself is
false, except for the single case of n = 6 !

After this unsuccessful start it took a long time before the idea resurfaced
— topological proofs for combinatorial results have come to the fore only in
the last two decades. Let us now go on to see a couple of concrete examples.

BOX: Borsuk and combinatorics

The Polish mathematician Karol Borsuk (1905–1982) made some fun-
damental contributions to the early development of topology. In 1933 he
published a paper entitled (in translation) “Three theorems about the n-
dimensional euclidean sphere”. That paper contains, among other wonderful

58



things, a famous theorem and a famous open problem. Let us state them
(within this box we will assume familiarity with the topological terminology
used).

Borsuk’s Theorem. If the k-dimensional sphere is covered by k +1 closed
sets, then one of these sets must contain a pair of antipodal points.

Borsuk’s Problem. Is it true that every set of diameter one in k-dimensional
real space Rk can be partitioned into at most k + 1 sets of smaller diameter?

This work of Borsuk has interacted with combinatorics in a remarkable
way. In 1978 László Lovász (b. 1948) solved a difficult combinatorial problem
— the “Kneser Conjecture” from 1955 — by using Borsuk’s theorem. Then,
in 1992 the debt to topology was repaid when Jeffry Ned Kahn (b. 1950)
and Gil Kalai (b. 1955) solved Borsuk’s problem using some results from
pure combinatorics. By stating the relevant results on the combinatorial
side we hope to give a small glimpse of these interactions, which are quite
unexpected.

The answer to Borsuk’s problem is definitely “yes” when k = 1, the
statement then comes down to dividing a line segment of length 1 into two
shorter segments, which is clearly possible. It was also long known that the
statement is true for k = 2 and k = 3, and it was generally believed that
the statement is true for all dimensions k — this became known as Borsuk’s
conjecture.

It therefore came as a great surprise that the answer to Borsuk’s prob-
lem is actually “no”, contrary to what “everyone” had believed for nearly
60 years. But one has to go to very high dimensions (k ≈ 1, 000) to find
counterexamples with the Kahn-Kalai method. The problem is still open for
k = 4.

The combinatorial result from which the solution to Borsuk’s problem
follows is this 1981 theorem of Peter Frankl (b. 19??) and Richard Michael
Wilson (b. 1945).

Frankl-Wilson Theorem. Let k be a power of a prime number, and let F
be a family of 2k-element subsets of {1,2,. . . ,4k} such that no two members
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of F have k elements in common. Then F has at most 2 · (4k−1
k−1

)
members.

The Kneser conjecture — now a theorem of Lovász — is the following
statement:

Lovász’ Theorem. If the n-element subsets of a (2n + k)-element set are
partitioned into k + 1 classes, then some class will contain a pair of disjoint
n-element sets.

The details of how this conclusion is derived from Borsuk’s theorem, as
well as the argument for solving Borsuk’s problem using the Frankl-Wilson
theorem, must unfortunately be left aside. See the suggested reading for
further information.

10 Complexity of graph properties.

A major theme in theoretical computer science is to estimate the complex-
ity of computational tasks. By “complexity” is here meant the amount of
time and of computational resources needed. By constructing algorithms one
shows that a task can be done in a certain number of steps. It is often the
more difficult part to show that there is no “faster” way, i.e. requiring fewer
steps.

Examples of this will be given in this and the following section. We
begin by considering algorithms that test whether graphs have a certain
given property P. For example, P could be the property of being connected,
meaning that you can get from any node to any other node by walking along
a path of edges. The left graph in Figure 9 is connected whereas the right
one is disconnected, since there is no way to get from nodes 1, 2 or 3 to nodes
4 or 5.

Connectedness is a very basic property of graphs which can be decided
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Figure 9: A connected and a disconnected graph

at a glance on small examples represented as a drawing. But say you have
a graph with 1 million nodes, coming perhaps from a communications net-
work or a chip design, which is presented only as a list of edges (adjacent
pairs of nodes) — then it is not quite so clear what to do if one wants to
decide whether the graph is connected, making efficient use of computational
resources. Among the interesting questions one can ask is whether it is pos-
sible to decide connectedness of the graph without checking for all possible
pairs of nodes (there are nearly 500 billion of them) whether they are edges
of the graph or not? If this were so it could conceivably lead to valuable
saving of time and resources.

A basic general question to ask then is this: For a given property P of
graphs, is there some algorithm that decides for every graph G whether it
has property P without knowing for every pair of nodes whether they span
an edge of G or not? If this is not the case, i.e. if every P-testing algorithm
must for at least some graph have complete knowledge about all its edges,
then P is said to be an evasive property.

For instance, connectedness is an evasive property. To see this we can
argue as follows. Imagine that we have a computer running a program that
tests graphs for connectedness. The graphs to be tested, whose nodes we may
assume are labeled 1, 2, ..., n, are presented to the computer in the form of an
n× n upper-triangular matrix of zeros and ones, with a 1 entry in row i and
column j, for i < j, if (i, j) is an edge of the graph and a 0 entry otherwise.
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For instance, here are the matrices representing the graphs in Figure 9:

∗ 1 0 0 0 ∗ 1 1 0 0
∗ 1 0 1 ∗ 1 0 0
∗ 0 1 ∗ 0 0
∗ 1 ∗ 1
∗ ∗

The computer is allowed to inspect only one entry of this matrix at a time,
and what we want to show is that for some graph it must in fact inspect
all of them. To find such a worst-case graph we can imagine playing the
following game with the computer. Say that instead of deciding on the graph
in advance, we write the zeros and ones specifying its nonedges and edges
into the matrix only at the last moment, as the computer demands to inspect
them. Say furthermore that we do this according to the following strategy:
When the computer goes to inspect the (i, j) entry of the matrix (according
to whatever algorithm it is using), then

• write 0 into position (i, j) if it is not possible to conclude from the
partial information known to the computer at that time — including
this last 0 — that the graph is disconnected,

• otherwise, write 1 into position (i, j).

It is an elementary but somewhat tricky argument to show that this
strategy will force the computer to inspect all entries of the matrix before
it can decide whether the corresponding graph is connected or not. We will
now outline a proof for readers who are developing a taste for combinatorial
reasoning, and who understand what is meant by a proof by finite induction.

The crucial step will be to prove the following statement: Suppose that at
some stage 1 is written into position {i, j}. Let A be the set of nodes that are
at that stage connected to i by 1-marked edges, and let B be the set of nodes
connected to j by 1-marked edges. Then all possible edges between nodes in
A ∪ B have been inspected at that stage. Note that A ∩ B = Ø, and that
|A∪B| ≥ 2 since i ∈ A and j ∈ B. The statement is clearly true if |A∪B| = 2,
and we proceed by induction on |A ∪ B|, that is, the number of elements of
A∪B. Suppose that |A∪B| > 2. Since 1 (and not 0) is written into position
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{i, j} that means that there is some partition C ∪ D = {1, 2, . . . , n} into
nonempty disjoint subsets C and D such that i ∈ C , j ∈ D and all possible
edges {c, d} with c ∈ C , d ∈ D and {c, d} 6= {i, j} are already marked
with 0. Clearly, we must have A ⊆ C and B ⊆ D, so in particular all edges
between a node in A and a node in B have already been inspected. Also, all
edges between two nodes both in A have by the induction assumption been
inspected, and similarly for B. This covers all possible edges between nodes
in A ∪B and the claim follows.

Suppose now that connectedness/disconnectedness can be decided after
inspection of k matrix entries, and that k is the minimum such number.
According to our strategy for writing 0 or 1, the outcome can never be
that the graph is disconnected. Also, if the kth entry is 0 and the graph
is connected we have a contradiction, since then the information needed to
conclude connectedness would have been available already before the kth
entry was inspected. So, the kth entry is 1, and since the conclusion is that
the graph is connected the claim above implies that all other entries have
already been inspected before the kth one. This proves that connectedness
is an evasive graph property.

It has been decided for many graph properties whether they are evasive. It
turns out that among the evasive ones are many that are monotone, meaning
that if the property holds for some graph then it will also hold if more edges
are added. For instance, connectedness is an example of a monotone property.
Mounting evidence from work in the late 1960’s by several researchers led to
the following conjecture.

Evasiveness Conjecture. Every monotone nontrivial graph property is
evasive.

By “nontrivial” is here meant that there is at least one graph that has the
property and one that doesn’t. Since monotonicity is usually completely
trivial to verify whereas evasiveness is not, this conjecture — if true — would
simplify deciding evasiveness for many graph properties.

The best general result known to date on this topic is the following theo-
rem of Jeffry Kahn, Michael Ezra Saks (b. 1956) and Dean Grant Sturtevant
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(b. 1955) from 1984:

Kahn–Saks–Sturtevant Theorem. The evasiveness conjecture is true
for graphs on pk nodes, for any prime number p and integer k ≥ 1.

This verifies the conjecture for infinitely many values of n, the number of
nodes, but leaves it open when n is the product of at least two distinct primes.
Thus, the smallest values of n left open are 6, 10, 12, 14, 15, ...; however the
case of n = 6 was also verified by Kahn et al.. The general conjecture remains
open, beginning with the case n = 10.

The proof of Kahn et al. makes surprising use of topology. The key
idea is to view a monotone graph property for graphs on n vertices as a
simplicial complex with a high degree of symmetry, to whose associated space
a topological fixed point theorem can be applied. Here is how.

We will keep in mind some particular monotone graph property P and
consider graphs on the nodes 1, 2, ..., n. Such a graph is specified by the pairs
(i, j) of nodes that are connected by an edge. Let us take the set of these
pairs as the ground set for a set family ∆P

n , whose members are the edge-sets
of graphs not having property P. The set family ∆P

n is closed under taking
subsets, since monotonicity implies that removal of edges from a graph that
doesn’t have property P cannot produce a graph having that property.

Let us illustrate the idea for the case n = 4, taking as our monotone
property connectedness. There are 6 possible edges in a graph on the nodes
1, 2, 3, 4; see Figure 10.
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Figure 10: The 6 edges spanned by 4 nodes
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The simplicial complex ∆conn
4 of disconnected graphs on four vertices is

shown in Figure 11.

14

34

24

13 23

12

Figure 11: The complex of disconnected graphs on 4 nodes

In the rubber-sheet model depicted it consists of 4 triangles and 3 edges
(curved line segments) glued together. To understand this picture the reader
should think how to translate the vertices, edges and triangles of ∆conn

4 into
disconnected graphs. For instance, the edge between 14 and 23 in Figure 11
corresponds to the disconnected graph

w w

w w

1

2 3

4

and the triangle with vertices 13, 14 and 34 corresponds to the disconnected
graph
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Observe in Figure 11 that the space represented by the complex ∆conn
4 has

many holes — in the terminology used before this means that ∆conn
4 has some

nonzero Betti numbers. It turns out to be a general fact, not hard to prove,
that if the property P is not evasive then ∆P

n is acyclic, meaning that all
Betti numbers of ∆P

n are equal to zero.

There are several theorems in topology to the effect that certain mappings
f of an acyclic space to itself must have fixed points, i.e. points x such that
f(x) = x. The best known one — one of the classics of topology — is
Luitzen Egbertus Jan Brouwer’s (1881–1966) theorem from 1904, which says
that every continuous mapping of an n-dimensional ball to itself has a fixed
point. The one needed for the present application is a fixed point theorem
of Robert Oliver (b. 19??) from 1975, which (stripped of some technical
details) says that for certain groups G of symmetry mappings of an acyclic
simplicial complex ∆ to itself there is a point x in the associated space such
that f(x) = x for all mappings f in G.

The complex ∆P
n of a monotone graph property has a natural group of

symmetries, namely the symmetric group Sn of all permutations of the set
of nodes 1, 2, ..., n. Permuting the nodes amounts to a relabeling (node i
gets relabeled f(i), etc.), and it is clear that such a relabeling will not affect
whether the graph in question has property P. Therefore every permutation
of 1, 2, ..., n induces a self-symmetry of the complex ∆P

n of graphs not having
property P.

The pieces needed for the proof of Kahn et al. are now at hand. Here is
how they argued.

Suppose P is a monotone property for graphs on n nodes that is not
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evasive. Then, as was already mentioned, the associated complex ∆P
n is

acyclic. If furthermore n = pk then due to some special properties of prime-
power numbers (the existence of finite fields) one can construct a subgroup
G of Sn having the special properties needed for Oliver’s fixed point theorem.
Hence there is a point x in the space associated to ∆P

n such that f(x) = x for
all permutations f in G. However, this means that there is a nonempty set
A in the complex ∆P

n (that is, a graph with edge-set A not having property
P ) such that f(A) = A for all f in G. Since G is transitive (meaning that if
u and v are two vertices of ∆P

n then u = f(v) for some mapping f in G), A
must consist of all vertices of ∆P

n ; that is, A is the complete graph. We have
obtained that the complete graph on nodes 1, 2, . . . , n does not have property
P , and since P is monotone that means that no graph on 1, 2, . . . , n can have
property P , so P is trivial.

The argument shows that for monotone P nonevasive implies trivial, or
which is logically the same: nontrivial implies evasive.

Viewing a graph property (such as connectedness) as a simplicial complex
and submitting it to topological study may seem strange. One can wonder if
this point of view is of any value other than — by remarkable coincidence —
for the evasiveness conjecture. It has recently become clear that this is indeed
the case. Namely, the complexes ∆conn

n of disconnected graphs on n vertices
have arisen and play a role in the work of Victor Anatol’evich Vassiliev (b.
1956) on knot invariants. Also some other monotone graph properties have
naturally presented themselves as simplicial complexes in other mathematical
contexts.

11 Complexity of sorting and distinctness

The following is a very basic situation studied in complexity theory. A string
of real numbers x1, x2, . . . , xn is given. A computer is asked to decide some
property of the sequence or to restructure it using only pairwise comparisons.
This means that the computer is allowed to learn about the input sequence
only by inspecting pairs xi and xj and deciding whether xi > xj, xi <
xj or xi = xj. The question then is: How many such comparisons must

67



the computer make in the worst case when using the best algorithm? This
number, as a function of n, is called the complexity of the problem.

The following notation is used to state such results. To say that the
complexity is Θ(f(n)), where f(n) is some function, means that there exist
constants c1 and c2 such that

c1 · f(n) < complexity < c2 · f(n).

While this notation doesn’t give the exact numerical value of the complexity
(which is often hard, if not impossible, to determine) it reveals its order of
growth, which is what is usually taken as the main indication if a problem is
computationally easy or hard. In the following formulas the function “log n”
will frequently appear. Readers not familiar with the logarithm function can
take this to mean roughly the number of digits needed to write the number
n in base 10, so that for instance log 1997 ≈ 4.

Here are some basic and well-known examples.

1. Sorting. To rearrange the n numbers increasingly xi1 ≤ xi2 ≤ · · · ≤
xin requires Θ(n log n) comparisons.

2. Median. To find j such that xj is “in the middle”, meaning that half
of the xi’s are less than or equal to xj and half of the xi’s are greater
than or equal to xj, requires Θ(n) comparisons. In fact, it has been
shown that 2n comparisons are needed and that 3n comparisons suffice.

3. Distinctness. To decide whether all entries xi are distinct, that is
whether xi 6= xj when i 6= j, requires Θ(n log n) comparisons.

The problem we wish to discuss, which was only recently resolved, is a
generalization of the distinctness problem. Namely,

k-equal problem: for k ≥ 2, decide whether some k entries are equal, that
is, can we find i1 < i2 < · · · < ik such that xi1 = xi2 = · · · = xik?

For example, are there nine equal entries in the following list of numbers?
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Answer: Yes, there are nine copies of the number “4”. Are there ten equal
entries? Answer: No. If pairwise comparisons are the only type of operation
allowed, how should one go about settling these questions in an efficient
manner, and how many comparisons would be needed?

Here are a few immediate observations. If k = 2 the problem reduces to
the distinctness problem, so the complexity is Θ(n log n). At the other end of
the scale, if k > n

2
the complexity is Θ(n), because we can argue as follows.

The median xj can be found using 3n comparisons. If there are k > n
2

equal entries then the median must be one of them. Thus after comparing
xj with the other n − 1 entries xi we gain enough information to conclude
whether there are some k entries that are equal. This procedure requires in
all 4n−1 comparisons. On the other hand it is easy to see that at least n−1
comparisons are needed in the worst case, so there are both upper and lower
bounds of the form “constant times n” to the complexity.

We have seen that the complexity of the k-equal problem decreases from
Θ(n log n) to Θ(n) when the parameter k grows from 2 to above n

2
, so the

k-equal problem seems to get easier the larger k gets. The exact form of this
relationship is given in the following result from 1992 of Anders Björner (b.
1947), László Lovász and Andrew Chi-Chih Yao (b. 1946).

Theorem. The complexity of the k-equal problem is Θ(n log 2n
k

).

The upper bound is obtained via a partial sorting algorithm based on re-
peated median-finding. It generalizes what was described for the case k > n

2

above. We shall leave it aside.

The lower bound — proving that at least n log 2n
k

comparisons are needed
(up to some constant) by every algorithm in the worst case — is the difficult
and mathematically more interesting part. The proof uses a combination of
topology and combinatorics. A detailed description would take us too far
afield, but we will attempt to get some of the main ideas across.

69



Let us look at the situation from a geometric point of view. Each equation
xi1 = xi2 = · · · = xik determines an (n− k + 1)-dimensional linear subspace
of Rn, the n-dimensional space consisting of all n-tuples (x1, x2, . . . , xn) of
real numbers xi. The k-equal problem is from this point of view to determine
whether a given point x = (x1, x2, . . . , xn) lies in at least one such subspace,
or — which is the same — lies in the union of all the subspaces xi1 = xi2 =
· · · = xik .

Removal of linear subspaces disconnects Rn. For instance, removal of a
plane (a 2-dimensional subspace) cuts R3 into two pieces, whereas removal
of a line (a 1-dimensional subspace) leaves another kind of “hole”. These
are precisely the kinds of holes that are measured by the topological Betti
numbers (as was discussed in Section 9). Going back to the general situation,
it seems clear that if all the subspaces xi1 = xi2 = · · · = xik are removed from
Rn then lots of holes of different dimensions will be created. This must mean
that the sum of Betti numbers of Mn,k, the part of space Rn that remains
after all these subspaces have been removed, is a large number:

β(Mn,k) = β0(Mn,k) + β1(Mn,k) + · · ·+ βn(Mn,k).

The idea now is that if the space Mn,k is complicated topologically, as
measured by this sum of Betti numbers, then this ought to imply that it
is computationally difficult to determine whether a point x lies on it. This
turns out to be true in the following quantitative form.

Fact 1. The complexity of the k-equal problem is at least log3 β(Mn,k).

Here log3 denotes logarithm to the base 3, which differs by a constant factor
from the logarithm to the base 10 that was mentioned earlier.

So, now the problem has been converted into a topological one — to com-
pute or estimate the sum of Betti numbers β(Mn,k). This can be done via a
formula of Robert Mark Goresky (b. 1950) and Robert Duncan MacPherson
(b. 1944), which expresses these Betti numbers in terms of some finite sim-
plicial complexes associated to certain partitions. To get further we need to
introduce a few more concepts from combinatorics.

We began this paper by discussing partitions of numbers, and we shall
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return once more to the ubiquitous concept of partitions. Here we need,
however, the notion of partitions of sets. A partition of a finite set A is a
way of breaking it into smaller pieces, namely a collection of pairwise disjoint
subsets whose union is A. (None of these subsets is allowed to be empty —
in other words, all the subsets have at least one element.) For instance, here
are the 15 partitions of the set {1, 2, 3, 4}:

1234, 12—34, 13—24, 14—23, 1—234, 2—134, 3—124, 4—123,
12—3—4, 13—2—4, 14—2—3, 23—1—4, 24—1—3, 34—1—2,

1—2—3—4

In the following we will use {1, 2, . . . , n} as the ground set and for fixed k
(an integer between 2 and n) consider the collection of all partitions of this
set that have no parts of sizes 2, 3, . . . , k− 1. Denote this collection by Πn,k.
For instance, Π4,2 is the collection of all partitions of {1, 2, 3, 4} (there are no
forbidden parts), while Π4,3 is the following subcollection (now parts of size
2 are forbidden):

1234, 1—234, 2—134, 3—124, 4—123, 1—2—3—4

There is a natural way to compare set partitions, saying that partition π
is less than partition σ (written π ≤ σ) if π is obtained from σ by further
partitioning its parts. This way we get an order structure on the set Πn,k,
which can be illustrated in a diagram. Figure 12 shows the order diagram of
Π4,2 and Figure 13 shows that of Π4,3.

These diagrams are to be understood so that a partition π is less than a
partition σ if and only if there is a downward path from σ to π in the order
diagram, corresponding to further breaking up of σ’s parts.

Now, consider the Möbius function (see BOX) computed over the poset
Πn,k. Let µn,k denote the value that the Möbius function attains at the par-
tition with only one part, which is at the top of the order diagram. For
example, computation as demonstrated in the BOX over the posets in Fig-
ures 12 and 13 shows that µ4,3 = 3 and µ4,2 = −6.

71



134 2

1234

123 4 13 24 12 34 14 23 234 1

12 3 4 13 2 4 14 2 3 23 1 4 24 1 3 34 1 2

1 2 3 4

124 3

Figure 12: Π4,2
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Figure 13: Π4,3
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We can now return to the discussion of the k-equal problem. Where we
left off was with the question of how to estimate the sum of Betti numbers
β(Mn,k). The formula of Goresky and MacPherson mentioned earlier implies,
by an argument involving among other things the topological significance of
the Möbius function, the following relation:

Fact 2. β(Mn,k) ≥ |µn,k|.

Putting Facts 1 and 2 together, the complexity question for the k-equal
problem has been reduced to the problem of showing that the combinatorially
defined numbers |µn,k| grow sufficiently fast. For this we turn to the method
of generating functions, already introduced in the early sections on counting
number partitions. Certain recurrences for the numbers µn,k lead, when
interpreted at the level of generating functions, to the following formula:

exp

(∑
n≥1

µn,k
xn

n!

)
= 1 + x +

x2

2!
+ · · ·+ xk−1

(k − 1)!
. (26)

To make sense of this you have to imagine inserting the series y =
∑

n≥1 µn,k
xn

n!

into the exponential series exp(y) =
∑

n≥0
yn

n!
, and then expanding in pow-

ers of x. Also, since µn,k has so far been defined only for k ≤ n we should
mention that we put µn,k = 0 for 1 < n < k and µ1,k = 1.

From this relation between the numbers µn,k and the polynomial on the
right-hand-side (which is a truncation of the exponential series) we can ex-
tract the following explicit information.

Fact 3. Let α1, α2, . . . , αk−1 be the complex roots of the polynomial 1 + x +
x2

2!
+ · · ·+ xk−1

(k−1)!
. Then

µn,k = −(n− 1)!
(
α−n

1 + α−n
2 + · · ·+ α−n

k−1

)
.

For instance, if k = 2 there is only one root α1 = −1, and we get

µn,2 = (−1)n−1(n− 1)!.
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Also, in this case the formula (26) specializes to

exp

(∑
n≥1

(−1)n−1xn

n

)
= 1 + x,

which is well-known to all students of the calculus in the equivalent form

log(1 + x) =
∑
n≥1

(−1)n−1xn

n
.

If k = 3 there are 2 roots α1 = −1 + i and α2 = −1− i, where i =
√−1, and

using some formulas from elementary complex algebra we get

µn,3 = −(n− 1)!
(
(−1 + i)−n + (−1− i)−n

)
= −(n− 1)! 21−n

2 cos
3πn

4
. (27)

We have come to a point where we know on the one hand from Facts 1
and 2 that

the complexity of the k-equal problem ≥ log3 |µn,k|,

and on the other that the Möbius numbers µn,k are given in terms of the roots
α1, α2, . . . , αk−1 as stated in Fact 3. It still remains to show that the numbers
|µn,k| are large enough so that log3 |µn,k| produces the desired complexity
lower bound. For this reason it comes as a chilling surprise to discover that
these numbers are not always very large. In fact, formula (27) shows that

µn,3 = 0, for n = 6, 10, 14, 18, 22, . . . .

It can also be shown that µ2k,k = 0 for all odd numbers k.

So, we are not quite done — but almost! With a little more work it can
be shown from the facts presented so far that |µn,k| is, so to say, “sufficiently
large for sufficiently many n” (for fixed k). With this, and a “monotonicity
argument” to handle the cases where |µn,k| itself is not large but nearby
values are, it is possible to wrap up the whole story and obtain the initially
stated lower bound of the form “constant times n log 2n

k
”.
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Let us mention in closing that it is possible to work with Betti numbers
the whole way, never passing to the Möbius function as described here. This
route is a bit more complicated but results in a better constant for the lower
bound.

BOX: The Möbius function.

The Möbius function is one of the most important tools of algebraic com-
binatorics. It assigns a very significant integer to every finite “poset”. This
word is an abbreviation which stands for “partially ordered set”; for sim-
plicity we will assume that all posets considered have a bottom and a top
element. Figure 14 shows a poset of eight elements with bottom element “a”
and top element “h”.
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Figure 14: A small poset

The Möbius function µ(x) is recursively defined for any finite poset as
follows: Put µ(x0) = 1 for the bottom element x0 of the poset, then require
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that
µ(x) = −

∑
y<x

µ(y)

for all other elements x. This formula means that we are to define µ(x) so
that when we sum µ(y) for all y less than or equal to x the resulting sum
equals zero. This can clearly be done as long as one knows the values µ(y) for
all elements y less than x. The reader can see how this recursive definition
works by computing the Möbius function of the poset in Figure 14, starting
from the bottom. We get recursively:

µ(a) = 1, by definition,
µ(b) = −µ(a) = −1,
µ(c) = −µ(a) = −1,
µ(d) = −µ(a) = −1,
µ(e) = −µ(a) = −1,
µ(f) = −µ(a)− µ(b)− µ(c)− µ(d) = −1 + 1 + 1 + 1 = 2,
µ(g) = −µ(a)− µ(d) = −1 + 1 = 0,
µ(h) = −µ(a)− µ(b)− µ(c)− µ(d)− µ(e)− µ(f)− µ(g)
= −1 + 1 + 1 + 1 + 1− 2− 0 = 1.

Figure 15 shows the same poset with computed Möbius function values.

The Möbius function has its origin in number theory, where it was intro-
duced by August Ferdinand Möbius (1790–1868). (Möbius is best known to
nonmathematicians for his eponymous connection with the “Möbius strip.”
The Möbius strip itself was well-known long before Möbius, but Möbius was
one of the first persons to systematically investigate its mathematical prop-
erties.) The posets relevant to number theory are subsets of the positive
integers ordered by divisibility. For instance, see the divisor diagram of the
number “60” in Figure 16. A calculation based on this diagram, analogous
to the one we just carried out over Figure 14, will show that µ(60) = 0. In
the case of the classical Möbius function of number theory there is however a
faster way to compute. Namely, for n > 1 one has that µ(n) = 0 if the square
of some prime number divides n, and that otherwise µ(n) = (−1)k where k
is the number of prime factors in n. Hence, for example: µ(60) = 0 since
22 = 4 divides 60; and µ(30) = −1 since we have the prime factorization
30 = 2 · 3 · 5 with an odd number of prime factors.
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Figure 15: Values of the Möbius function

The Möbius function is very important in number theory. Let it suf-
fice to mention — for those who have the background to know what we are
referring to — that both the Prime Number Theorem and the Riemann Hy-
pothesis (considered by many to be the most important unsolved problem in
all of mathematics) are equivalent to statements about the Möbius function.
Namely, letting M(n) =

∑n
k=1 µ(k), it is known that

Prime Number Theorem ⇐⇒ lim
n→∞

M(n)

n
= 0,

Riemann Hypothesis ⇐⇒ |M(n)| ≤ n1/2+ε, for all ε > 0 and all sufficiently large n.

The Möbius function is an indispensable tool in enumerative combina-
torics because it can be used to “invert” summations over a partially ordered
index set. Here is a statement of the “Möbius inversion formula” in a special
case. If a function f : P → Z from a poset P to the integers is related to
another function g : P → Z by the partial summation formula

f(x) =
∑
y≥x

g(y),
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Figure 16: The divisors of “60”.

then the value g(x0) at the bottom element x0 of P can be expressed in terms
of f via the formula

g(x0) =
∑
y∈P

µ(y)f(y).

The Möbius function also has a topological meaning, which is the reason
it turns up in “Fact 2” of this section. The connection is as follows. Let P be
a poset with bottom element b and top element t. Define the set family ∆(P )
to consist of all chains (meaning: totally ordered subsets) x1 < x2 < · · · < xk

in P = P \{b, t}, meaning P with b and t removed. Then ∆(P ) is a simplicial
complex (since a subset of a chain is also a chain), so as discussed in Section
9 there is an associated topological space.

For instance, let P be the divisor poset of the number “60” shown in
Figure 16. Then P = P \ {1, 60} has the following twelve maximal chains

2 — 4 — 12
2 — 4 — 20
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2 — 6 — 12
2 — 6 — 30
2 — 10 — 20
2 — 10 — 30
3 — 6 — 12
3 — 6 — 30
3 — 15 — 30
5 — 10 — 20
5 — 10 — 30
5 — 15 — 30

As was explained in Section 9 these twelve triples of the simplicial complex
should be thought of as describing twelve triangles that are to be glued
together along common edges. This gives the topological space shown in
Figure 17 — a 2-dimensional disc.

4

20 5

15

12 3

2

10

30

6

Figure 17: The simplicial complex of proper divisors of “60”.

So, what does all this have to do with the Möbius function? The relation
is this. Let βi(P ) be the ith Betti number of the simplicial complex ∆(P ),
and let µ(P ) denote the value that the Möbius function attains at the top
element of P . Then,

µ(P ) = β0(P )− β1(P ) + β2(P )− β3(P ) + · · · . (28)
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For instance, the space depicted in Figure 17 is a disc. The important
thing here is that this space has no holes of any kind. Hence, all Betti
numbers βi(P ) are zero, implying via formula (28) that µ(P ) = 0. This
“explains” topologically why µ(60) = 0, a fact we already knew from simpler
considerations. On the other hand, if P is the divisor diagram of “30” (which
can be seen as a substructure in Figure 16), then ∆(P ) is the circle 2 — 6
— 3 — 15 — 5 — 10 — 2 (a substructure in Figure 17). This circle has
a one-dimensional hole, so β1(P ) = 1. All other Betti numbers are zero,
hence formula (28) gives that µ(30) = −1, another fact we have already
encountered.

12 Face numbers of polytopes

Among the many results of Euler that have initiated fruitful lines of develop-
ment in combinatorics, the one that is perhaps most widely known is “Euler’s
formula” for 3-dimensional polytopes from 1752. It goes as follows.

A 3-polytope P (or, 3-dimensional convex polytope, to be more precise) is
for a mathematician a bounded region of space obtained as the intersection
of finitely many halfspaces (and not contained in any plane). For the layman
it can be described as the kind of solid body you can create from a block
of cheese with a finite number of plane cuts with a knife. For instance,
take the ordinary cube shown in Figure 18 — it can be cut out with six
plane cuts. The cube is one of the five Platonic solids: tetrahedron, cube,
octahedron, dodecahedron and icosahedron, known and revered by the Greek
mathematicians in antiquity.

A polytope that is dear to all combinatorialists is the “permutohedron”,
shown in Figure 19. Its 24 corners correspond to the 24 = 4 · 3 · 2 · 1 permu-
tations of the set {1, 2, 3, 4}. The precise rule for constructing the permu-
tohedron and for labelling its vertices with permutations is best explained
in 4-dimensional space and will be left aside. Note that the pairs of permu-
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Figure 18: The cube.

tations that correspond to edges of the permutohedron are precisely pairs
that differ by a switch of two adjacent entries, such as “2143 — 2134” or
“3124 — 3214”. Thus, edge-paths on the boundary of the permutohedron
are precisely paths consisting of such “adjacent transpositions”, giving geo-
metric content to the topic of reduced decompositions, that was discussed in
Section 6.

The boundary of a 3-polytope is made up of pieces of dimension 0, 1 and
2 called its faces. These are the possible areas of contact if the polytope is
made to touch a plane surface, such as the top of a table. The 0-faces are
the corners, or vertices, of the polytope. The 1-faces are the edges, and the
2-faces are the flat surfaces, such as the six squares bounding the cube. The
permutohedron has fourteen 2-faces, six of which are 4-sided and eight are
6-sided.

Euler’s formula has to do with counting the number of faces of dimensions
0, 1 and 2. Namely, let fi be the number of i-dimensional faces.

Euler’s Formula. For any 3-polytope:

f0 − f1 + f2 = 2.

Let us verify this relation for the cube and the permutohedron, see Figures
18 and 19.
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Figure 19: The permutohedron.

f0 f1 f2 f0 − f1 + f2

Cube 8 12 6 8− 12 + 6 = 2

Permutohedron 24 36 14 24− 36 + 14 = 2

From a modern mathematical point of view there is no difficulty in defin-
ing higher-dimensional polytopes. Thus, a d-polytope is a full-dimensional
bounded intersection of closed halfspaces in Rd. Such higher-dimensional
polytopes have taken on great practical significance in the last fifty years
because of their importance for linear programming. The term “linear pro-
gramming” refers to techniques for optimizing a linear function subject to
a collection of linear constraints. The linear constraints cut out a feasible
region of space, which is a d-polytope (possibly unbounded in this case).
The combinatorial study of the structure of polytopes has interacted very
fruitfully with this applied area.

It can be shown that the same definition of the faces of a polytope works
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also in higher dimensions (namely “the possible areas of contact if the poly-
tope is made to touch a plane surface in Rd”), and that there are only finitely
many faces of each dimension 0, 1, . . . , d−1. Thus we may define the number
fi of i-dimensional faces for i = 0, 1, . . . , d − 1. These numbers for a given
polytope P are collected into a string

f(P ) = (f0, f1, . . . , fd−1),

called the f -vector of P . For instance, we have seen that f(cube) = (8, 12, 6)
and f(permutohedron) = (24, 36, 14).

Is there an Euler formula for f -vectors in higher dimensions? This ques-
tion was asked early on, and by the mid-1800’s some mathematicians had
discovered the following beautiful fact.

Generalized Euler Formula. For any d-polytope:

f0 − f1 + f2 − · · ·+ (−1)d−1fd−1 = 1 + (−1)d−1.

However, the early discoverers experienced serious difficulty with proving
this formula. It is generally considered that the first complete proof was
given around the year 1900 by Henri Poincaré.

Having seen this formula it is natural to ask: What other relations, if
any, do the face numbers fi satisfy? This question opens the doors to a huge
and very active research area, pursued by combinatorialists and geometers.
Many equalities and inequalities are known for various classes of polytopes,
such as upper bounds and lower bounds for the numbers fi in terms of the
dimension d and the number f0 of vertices.

The boldest hope one can have for the study of f -vectors of polytopes is
to obtain a complete characterization. By this is meant a reasonably simple
set of conditions by which one can recognize if a given string of numbers is
the f-vector of a d-polytope or not. For instance, one may ask whether

(14, 89, 338, 850, 1484, 1834, 1604, 971, 380, 76) (29)

is the f -vector of a 10-polytope? We find that

14− 89 + 338− 850 + 1484− 1834 + 1604− 971 + 380− 76 = 0,
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in accordance with the generalized Euler formula. Had this failed we would
know for sure that we are not dealing with a true f -vector, but agreeing with
the Euler formula is certainly not enough to draw any conclusion. What
other “tests” are there, strong enough to tell for sure whether this is the
f -vector of a 10-polytope?

An answer is known for dimension 3; namely, (f0, f1, f2) is the f -vector
of a 3-polytope if and only if

(i) f0 − f1 + f2 = 2,
(ii) f0 ≤ 2f2 − 4,
(iii) f2 ≤ 2f0 − 4.

However, already the next case of 4 dimensions presents obstacles that with
present methods are unsurmountable. Thus, no characterization of f -vectors
of general polytopes is known. But if one narrows the class of polytopes to
the so called “simplicial” ones there is a very substantial result that we will
now formulate.

A d-simplex is a d-polytope which is cut out by exactly d + 1 plane cuts.
In other words, it has d + 1 maximal faces, which is actually the minimum
possible for a d-polytope. A 1-simplex is a line segment, a 2-simplex is a
triangle, a 3-simplex is a tetrahedron, and so on; see Figure 20. In general,
a d-simplex is the natural d-dimensional analogue of the tetrahedron.

Figure 20: A d-simplex, d = 1, 2, 3.

A d-polytope is said to be simplicial if all its faces are simplices. It comes
to the same to demand that all maximal faces are (d − 1)-simplices. For
instance, a 3-polytope is simplicial if all 2-faces are triangular, as in Figure
21; so the octahedron and icosahedron are examples of simplicial polytopes
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Figure 21: A simplicial 3-polytope.

but the cube and permutohedron are not. If a polytope is simplicial then its
faces form a simplicial complex in the sense defined in Section 9. The class
of simplicial polytopes is special from some points of view, but nevertheless
very important in polytope theory. For instance, if one seeks to maximize the
number of i-faces of a d-polytope with n vertices, the maximum is obtained
simultaneously for all i by certain simplicial polytopes.

In 1970 Peter McMullen (b. 1942) made a bold conjecture for a characteri-
zation of the f -vectors of simplicial polytopes. A key role in his proposed con-
ditions was played by certain “g-numbers,” so his conjecture became known
as the “g-conjecture.” In 1980 two papers, one by Louis Joseph Billera (b.
1943) and Carl William Lee (b. 1954) and one by Richard Peter Stanley (b.
1944), provided the two major implications that were needed for a proof of
the conjecture. Their combined efforts thus produced what is now known as
the “g-theorem.” To state the theorem we need to introduce an auxiliary
concept.

By a multicomplex we mean a nonempty collection M of monomials in
indeterminates x1, x2, . . . , xn such that if m ∈ M and m′ divides m then m′ ∈
M . Figure 22 shows the multicomplex M = {1, x, y, z, x2, xy, yz, z2, x2y, z3}
ordered by divisibility.

An M-sequence is a sequence (1, a1, a2, a3, . . .) such that each ai is the
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Figure 22: A multicomplex.

number of monomials of degree i in some fixed multicomplex. For instance,
the M -sequence coming from the multicomplex M in Figure 22 is (1, 3, 4, 2).
A multicomplex and an M -sequence can very well be infinite, but only finite
ones will concern us here. If some zeros are added or removed at the end of
a finite M -sequence it remains an M -sequence.

The “M” in M -sequence is mnemonic both for “multicomplex” and for
“Macaulay”, in honor of Francis Sowerby Macaulay (1862-1937) who first
seems to have studied the concept in a paper from 1927. Macaulay’s purpose
was entirely algebraic (to characterize so called Hilbert functions of certain
graded algebras), but the underlying combinatorics of his investigations has
turned out to have far-reaching ramifications.

We are now ready to formulate the g-theorem, characterizing the f -
vectors of simplicial d-polytopes. Let δ be the greatest integer less than
or equal to d/2, and let Md = (mi,j) be the matrix with (δ + 1) rows and d
columns and with entries

mi,j =

(
d + 1− i

d− j

)
−

(
i

d− j

)
, for 0 ≤ i ≤ δ, 0 ≤ j ≤ d− 1.

Here we are using the binomial coefficients, defined by

(
n

k

)
=

n!

k! · (n− k)!
,
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where n! = n · (n − 1) · (n − 2) · · · 2 · 1, and 0! = 1. (The factorial n! was
already used in connection with equation (17), but we repeat the definition
here for the reader’s convenience.)

For example, with d = 10 we get

m2,8 =

(
10 + 1− 2

10− 8

)
−

(
2

10− 8

)
=

9!

2! · 7!
− 2!

2! · 0!
= 36− 1 = 35,

and the whole matrix is

M10 =




11 55 165 330 462 462 330 165 55 11
1 10 45 120 210 252 210 120 45 9
0 1 9 36 84 126 126 84 35 7
0 0 1 8 28 56 70 55 25 5
0 0 0 1 7 21 34 31 15 3
0 0 0 0 1 5 10 10 5 1




These matrices Md determine a very surprising link between M -sequences
and f -vectors.

The g-theorem. The matrix equation

f = g ·Md

gives a one-to-one correspondence between f -vectors f of simplicial d-polytopes
and M-sequences g = (g0, g1, . . . , gδ).

The equation f = g · Md is to be understood as follows. Multiply each
entry in the first row of Md by g0, then multiply each entry in the second row
by g1, and so on. Finally, after all these multiplications add the numbers in
each column. Then the first column sum will equal f0, the second column
sum will equal f1, and so on.

To exemplify the power of this theorem let us return to a question posed
earlier; namely, is the vector f displayed in equation (29) the f -vector of a
10-polytope? This question can now be answered if sharpened from “10-
polytope” to “simplicial 10-polytope”. Easy computation shows that

f = (1, 3, 4, 2, 0, 0) ·Md,
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and we know from Figure 22 that (1, 3, 4, 2, 0, 0) is an M -sequence. Hence, f
is indeed the f -vector of some simplicial 10-polytope.

Having seen this, one can wonder if we were just lucky with this relatively
small example. Perhaps for large d it is as hard to determine if a sequence
is an M -sequence as to determine if a sequence is an f -vector coming from a
simplicial polytope. This is not the case. There exists a very easy criterion
in terms of binomial coefficients that quickly tests an integer sequence for
being an M -sequence. We will however not state it here.

The proof of the g-theorem is very involved and calls on a lot of math-
ematical machinery. The part proved by Billera and Lee — that for every
M -sequence g there exists a simplicial polytope with the corresponding f -
vector — requires some very delicate geometrical arguments. The part proved
by Stanley — that conversely to every simplicial polytope there corresponds
an M -sequence in the stated way — uses tools from algebraic geometry in
an essential way. Here is a brief statement for readers with sufficient back-
ground. There are certain complex projective varieties, called toric varieties,
associated to d-polytopes with rational coordinates, and the fact that the
sequence g corresponding to the f -vector of a polytope is an M -sequence
ultimately derives from a multicomplex that can be constructed in the coho-
mology algebra of such a variety.

The g-vector associated to a simplicial polytope via the g-theorem is
rich in geometric, algebraic and combinatorial meaning, yet it is still poorly
understood and the subject of much current study.

In this paper we have several times commented on the many surprising,
remarkable and mysterious connections that exist between different mathe-
matical objects, different mathematical problems and different mathematical
areas. Take for example the Schensted correspondence described in Section
3, connecting permutations and pairs of standard Young tableaux; or the
connections between combinatorics and representation theory or combina-
torics and topology described in earlier sections. The g-theorem is one more
example of this kind, establishing an unsuspected link between the combina-
torial structure of multicomplexes of monomials and the facial structure of
simplicial polytopes — two seemingly totally unrelated classes of objects.
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In closing, let us once more mention that no characterization is known
for f -vectors of general polytopes of dimension greater than 3. The success
in the case of simplicial polytopes depends on some very special structure,
available in that case but lacking or much more complex in general. Thus,
the study of f -vectors, initiated by Euler’s discovery almost 250 years ago,
is likely to remain an important challenge for many years to come.

13 Further reading (incomplete)

We refer here mainly to general accounts that should be at least partially
accessible to the layman and that give lots of further references.

For a broad view of current combinatorics, with a wealth of information
and references, see

• Handbook of Combinatorics (eds. R. Graham, M. Grötschel and L.
Lovász), North-Holland, Amsterdam, 1995.

A good reference for number partitions is look for
popular
articles• G.E. Andrews, Theory of partitions, ...

The basic theory of enumeration is developed in

• R.P. Stanley, Enumerative Combinatorics, Volume 1 (Wadsworth &
Brooks/Cole, Monterey, CA, 1986) and Volume 2 (Cambridge Univer-
sity Press, Cambridge, UK, to appear in 1997/8?).

The combinatorics of number and set partitions, standard Young tableaux,
generating functions and the Möbius function, together with algebraic ram-
ifications, is discussed there. A briefer account of this material is given in
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• I. Gessel and R.P. Stanley, Algebraic Enumeration, a chapter in the
“Handbook of Combinatorics”, pp. xxx–yyy

A wealth of information about the topic of tilings can be found in

• Grünbaum and Shepard

For enumerative aspects of tilings see

• Elkies-Kuperberg-Larsen-Propp paper in J. Alg. Comb.

The following book is a nice companion to the study of enumeration

• N. J. A. Sloane and S. Plouffe, The Encyclopedia of Integer Sequences,
Academic Press, 1995. There is also an interactive version on the web
at http://www.research.att.com/∼njas/sequences/

For connections between combinatorics and topology, including more details
about the evasiveness and Kneser conjectures, see either of

• A. Björner, Combinatorics and Topology, Notices of the American Math-
ematical Society 32 (1985), 339–345.

• A. Björner, Topological Methods, a chapter in the “Handbook of Com-
binatorics”, pp. 1819–1872.

The disproof of the Borsuk conjecture is reported in

• B. Cipra, Disproving the obvious in higher dimensions, What’s Hap-
pening in the Mathematical Sciences 1 (1993), 21–25,

• A. Skopenkov, Borsuk’s problem, Quantum 7 (1996), 17–21,
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while more about the k-equal problem and its solution can be found in

• A. Björner, Subspace Arrangements, in “First European Congress of
Mathematics, Paris 1992” (eds. A. Joseph et al), Progress in Mathe-
matics Series, Volume 119, Birkhäuser, Boston, 1994, pp. 321–370.

Finally, for convex polytopes and the g-theorem we refer to

• G. M. Ziegler, Lectures on Polytopes, GTM Series, Springer-Verlag,
Berlin, 1995.
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