Chapter 1

The Category of Graded
Rings

1.1 Graded Rings

Unless otherwise stated, all rings are assumed to be associative rings and any
ring R has an identity 1 € R. If X and Y are nonempty subsets of a ring R
then XY denotes the set of all finite sums of elements of the form zy with
x € X and y € Y. The group of multiplication invertible elements of R will
be denoted by U(R).

Consider a multiplicatively written group G with identity element e € G.
A ring R is graded of type G or R, is G-graded, if there is a family {R,, o €
G} of additive subgroups R, of R such that R = ®,cc Ry and R, R, C Ryr,
for every o,7 € (. For a G-graded ring R such that R,R, = R, for all
0,7 € G, we say that R is strongly graded by G.

The set h(R) = Uyeg R, is the set of homogeneous elements of R;
a nonzero element x € R, is said to be homogeneous of degree ¢ and
we write : deg(z) = 0. An element r of R has a unique decomposition as
r= ZUGG r, with r, € R, for all 0 € G, but the sum being a finite sum i.e.
almost all r, zero. The set sup(r) = {o € G,r, # 0} is the support of r in
G. By sup(R) = {0 € G, R, # 0} we denote the support of the graded
ring R. In case sup(R) is a finite set we will write sup(R) < oo and then R
is said to be a G-graded ring of finite support.

If X is a nontrivial additive subgroup of R then we write X, = X N R,
for o0 € G. We say that X is graded (or homogeneous) if : X =3 . X,. In
particular, when X is a subring, respectively : a left ideal, a right ideal, an
ideal, then we obtain the notions of graded subring, respectively : a graded
left ideal, a graded right ideal, graded ideal. In case I is a graded ideal
of R then the factor ring R/I is a graded ring with gradation defined by :
(R/I)g = Ry +I/I, R)I = Ggea(R/I),.
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1.1.1 Proposition

Let R = ®,cqRs be a G-graded ring. Then the following assertions hold :

1. 1 € R, and R, is a subring of R.

2. The inverse 7~ ! of a homogeneous element r € U(R) is also homoge-

neous.

3. R is a strongly graded ring if and only if 1 € R, R, -1 for any ¢ € G.

Proof

1. Since R.R. C R., we only have to prove that 1 € R,. Let 1 =3 r, be

the decomposition of 1 with r, € R,. Then for any sy € Ryx(A € G),
we have that sy = s,.1 = ZUEQ SATo, and s 7o € Ry,. Consequently
sare = 0 for any o # e, so we have that sr, = 0 for any s € R.
In particular for s = 1 we obtain that r, = 0 for any ¢ # e. Hence
1=r.€R,.

. Assume that r € UR) N Ry. If ' =3 _o(r™ ') with (r~ '), € Ry,

then 1 =rr=t =3 _or(r'),. Since 1 € R. and r(r~ '), € Ryo, we
have that r(r—!), = 0 for any o # A\~!. Since r € U(R) we get that
(r~1)s #0 for o # A7, therefore r=! = (r71)y\-1 € Ry-1.

. Suppose that 1 € R, R,-: for any ¢ € G. Then for 0,7 € G we have:

Ry = ReRyr = (RoRafl)Ro‘r = Ro’(RoflRUT) C R,R;

therefore R, = R,R., which means that R is strongly graded. The
converse is clear. O

1.1.2 Remark

The previous proposition shows that R.R, = R,R. = R,, proving that R,
is an R.-bimodule.

If R is a G-graded ring, we denote by U®'(R) = Uyeq(U(R) N R,) the set of
the invertible homogeneous elements. It follows from Proposition 1.1.1 that
U®'(R) is a subgroup of U(R). Clearly the degree map deg : U8"(R) — G is
a group morphism with Ker(deg) = U(R,).

A G-graded ring R is called a crossed product if U(R)N R, # @ for any o € G,
which is equivalent to the map deg being surjective. Note that a G-crossed
product R = ®,cc R, is a strongly graded ring. Indeed, if u, € U(R) N Ry,
then u;' € R,-1 (by Proposition 1.1.1), and 1 = u,u;' € RyRy-1.
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1.2 The Category of Graded Rings

The category of all rings is denoted by RING. If G is a group, the category
of G-graded rings, denoted by G-RING, is obtained by taking the G-graded
rings for the objects and for the morphisms between G-graded rings R and S
we take the ring morphisms ¢ : R — S such that p(R,) C S, for any o € G.

Note that for G = {1} we have G-RING=RING. If R is a G-graded ring,
and X is a non-empty subset of G, we denote Rx = ©,cx R;. In particular,
if H < G is a subgroup, Ry = ®necg Ry is a subring of R. In fact Ry is
an H-graded ring. If H = {e}, then Ry = R.. Clearly the correspondence
R — Ry defines a functor (—)g : G — RING — H — RING.

1.2.1 Proposition

The functor (—)g has a left adjoint.

Proof Let S € H—RING, S = ©pepSy. We define a G-graded ring S as
follows: S = S as rings, and S, = S, if ¢ € H, and S, = 0 elsewhere. Then
the correspondence S — S defines a functor which is a left adjoint of (—)g.

O

We note that if S € RING = H — RING for H = {1}, then the G-graded ring
S is said to have the trivial G-grading. Let H < G be a normal subgroup.
Then we can consider the factor group G/H. If R € G — RING, then for
any class C € G/H let us consider the set Rc = @®zecR,. Clearly R =
©cea/uRe, and RoRor € Roer for any C,C" € G/H. Therefore R has
a natural G/ H-grading, and we can define a functor Ug g : G — RING —
G/H — RING, associating to the G-graded ring R the same ring with the
G/H-grading described above. If H = G, then G/G — RING = RING, and
the functor Ug/q is exactly the forgetful functor U : G — RING — RING,
which associates to the G-graded ring R the underlying ring R.

1.2.2 Proposition
The functor Ug,p : G — RING — G/H — RING has a right adjoint.

Proof Let S € G/H — RING. We consider the group ring S[G], which is a
G-graded ring with the natural grading S[G], = Sg for any g € G. Since S =
®cea/nSc, we define the subset A of S[G] by A = ©ceq/uSc[C]. If g € G,
there exists a unique C' € G/H such that g € C; define A; = Scg. Clearly
the A4’s define a G-grading on A, in such a way that A becomes a G-graded
subring of S[G]. We have defined a functor F': G/H — RING — G — RING,
associating to S the G-graded ring A. This functor is a right adjoint of the
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functor Ug, . Indeed, if R € G — RING and S € G/H — RING, we define a
map
¢ Homg,g_rine(Ug/u(R), S) — Homg_rinG (R, F(95))

in the following way: if u € Homg,/g_rine(Ug/ua(R),S), then ¢(u)(ry) =
u(ry)g for any ry € Ry. Then ¢ is a natural bijection; its inverse is defined by
¢ ' (v) =eoiow for any v € Homg_ring (R, A), where i : A — S[G] is the
inclusion map, and € : S[G] — S is the augmentation map, i.e. €(3_ . Sq9) =
> gec Sg- In case S is a strongly graded ring (resp. a crossed product, then
the ring A, constructed in the foregoing proof, is also strongly graded (resp.
a crossed product). O

Clearly if H < G and R is a G-strongly graded ring (respectively a crossed
product), then Ry is an H-strongly graded ring (respectively a crossed prod-
uct). Moreover, if H <G is a normal subgroup, then Ug/ g (R) is a G/H-
strongly graded ring (respectively a crossed product). O

1.2.3 Remark

The category G-RING has arbitrary direct products. Indeed, if (R;);er is
a family of G-graded rings, then R = @,cq([[;(Ri)s) is a G-graded ring,
which is the product of the family (R;);ecs in the category G-RING. Note that
R is a subring of [],.; R, the product of the family in the category RING.
The ring R is denoted by [, R;. If G is finite or I is a finite set, we have

gr J— .
i€l R = HiEI R;.

1.2.4 Remark

Let R = ®,cc Ry be a G-graded ring. We denote by R° the opposite ring of
R, i.e. R has the same underlying additive group as R, and the multiplication
defined by r o7’ = 7'r for r,7’ € R. The assignment (R°), = R,-1 makes
R into a G-graded ring. The association R — R° defines an isomorphism
between the categories G — RING and G — RING.

1.3 Examples

1.3.1 Example The polynomial ring

If A is a ring, then the polynomial ring R = A[X] is a Z-graded ring with
the standard grading R,, = AX™ for 0 < n, and R, =0 for n < 0. Clearly R
is not strongly graded.

1.3.2 Example The Laurent polynomial ring

If Ais aring, let R = A[X, X '] be the ring of Laurent polynomials with the
indeterminate X. An element of R is of the form > .. ~a;X® with m € Z

i>m
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and finitely many non-zero a;’s. Then R has the standard Z-grading R,, =
AX"™ n € Z. Clearly R is a crossed product.

1.3.3 Example Semitrivial extension

Let A be a ring and 4 M4 a bimodule. Assume that o =[—,—] : M ®4 M —
A is an A — A-bilinear map such that [mq, ma]ms = my[mz, ms] for any
my,mo, m3 € M. Then we can define a multiplication on the abelian group
A x M by

(a,m)(@,m') = (ad + [m, m'), am’ + ma’)
which makes A x M a ring called the semi-trivial extension of A by M and
¢, and is denoted by A x, M. The ring R = A x, M can be regarded as

a Zs-graded ring with Ry = A x {0} and R; = {0} x M. We have that
R1 Ry = Imgp x {0}, so if ¢ is surjective then R is a Zs-strongly graded ring.

1.3.4 Example The “Morita Ring”

Let (A, B,a Mp,5 Na, ¢,%) be a Morita context, where p : M @ g N — A is
an A — A-bimodule morphism, and ¥ : N ® 4 M — B is a B — B-bimodule
morphism such that p(m@n)m’ = mip(n@m') and Y(n@m)n' = np(men’)
for all m,m’ € M,n,n’ € N. With this set-up we can form the Morita ring

(4 %)

where the multiplication is defined by means of ¢ and 1. Moreover, R is a
Z-graded ring with the grading given by:

A0 0 M 0 0
we(op) me(bw) (v o)

and R; =0 for i # —1,0, 1.

Since R{R_1 = ( In(m) ¥ 8 ) and R_1R; = ( 8 In(l)dj ), then R is not

strongly graded.

1.3.5 Example The matrix rings

Let A be a ring, and R = M,,(A) the matrix ring. Let {e;;|1 < 4,5 < n} be
the set of matrix units, i.e. e;; is the matrix having 1 on the (i, j)-position
and O elsewhere. We have that e;jer; = d;jre, for any ¢, 5, k, [, where 61, is
Kronecker’s symbol. Fort € Z set R, = 0if [t| >n, Ry =), ,, _, Rej i if
0<t<mn,and Ry =3, ., Rejiss if —n <t < 0. Clearly R = &z Ry,
and this defines a Z-grading on R.
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On the other hand we can define various gradings on the matrix ring. We
mention an example of a Zs-grading on R = M3(A), defined by :

A A 0 00 A
Roy=| A A 0 and Ry=[ 0 0 A
00 A A A 0

Since R1R1 = Ry, R is a strongly Z»-graded ring; however R is not a crossed
product, since there is no invertible element in R;. It is possible to define
such “block-gradings” on every M, (A).

1.3.6 Example The G x G-matriz ring

Let G be a finite group and let A be an arbitrary ring. We denote by R =
M¢(A) the set of all G x G-matrices with entries in A. We view such a matrix
asamap « : G X G — A. Then R is a ring with the multiplication defined
by:
(Ozﬂ)(l‘, y) = Z O‘(x7 2)5(27 y)
zeG
fora,BE€R, z,ye G. If

R, = {a € Mg(R)|a(z,y) =0 forevery z,y € G with 2™y # g}

for g € G, then R is a G-graded ring with g-homogeneous component R,.
Indeed, let « € Ry, 3 € Ry. Then for every z,y € G such that ™'y #
gg', and any z € G, we have either 2712 # g or z7ly # ¢/, therefore
(aB)(x,y) = X .cqalz, 2)B(z,y) = 0, which means that af € Ry, If for
z,y € G we consider e, , the matrix having 1 on the (z,y)-position, and 0
elsewhere, then e; yey ., = 0y uro. Clearly e; g € Ry, €ygy € Ry-1, and
(X zeq €x,29)(2oyeq €ygy) = 1, hence R is a crossed product.

1.3.7 Example FEzxtensions of fields

Let K C F be a field extension, and suppose that £ = K(a), where « is
algebraic over K, and has minimal polynomial of the form X™ — a, a €
K (this means that F is a radical extension of K). Then the elements
1,a,0?,...,a" ! form a basis of E over K. Hence E = @®;—¢ ,—1Ka’, and this
yields a Z,-grading of F, with Ey = K. Moreover E is a crossed product
with this grading.

As particular examples of the above example we obtain two very interesting
ones:

1.3.8 Example

Let k(X) be the field of rational fractions with the indeterminate X over
the field k. Then the conditions in the previous example are satisfied by the
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extension k(X™) C k(X), where n > 1 is a natural number. Therefore k(X)
may be endowed with a Z,-grading, which even defines a crossed product.

1.3.9 Example

Let P be the set of the positive prime numbers in Z, and let {n,|p € P}
be a set of positive integers. Let &, = p'/™ and K, = Q(,)the extension
of @ obtained by adjoining ,. Then there exists a natural Z,, -grading
on K,, which defines a crossed product. If we denote by E the extension
of @) obtained by adjoining all the elements &,, p € P, we obtain a field
with a G-grading, where G = @pepZy,,. The grading is given as follows: if
o € (G has the non-zero entries k1, ko, ..., k, at the positions p1, ps, ..., pn, then
E, = Qﬁ,’;ll...f]’;:.

1.3.10 Remark

We observe that in the previous examples some fields have a non-trivial G-
grading, where G is a finite or an infinite torsion group. We prove now that any
Z-grading of a field K is trivial. Indeed, if we assume that K = ®,cz K, is
a non-trivial grading of K, let us pick some n # 0 and some non-zero a € K.
Then a=! € K_,,, so we may assume that n > 0. Since K is a field, 1 — a is
invertible, so there exists b € K with (1 —a)b = 1. Let b = by, + ... + by,
with nj < ... < ng, the decomposition of b as a sum of non-zero homogeneous
components. Then by, +...+b,, —ab,, —...—ab,, = 1. Looking at the degrees
in the expression on the left hand side, ab,, (resp. ab,_) is the unique term of
the sum of smallest (resp. greatest) degree, and this is a contradiction, since
1 is homogeneous.

1.3.11 Example Tensor product of graded algebras

Let A be a commutative ring. Then R = @,cqR, is called a G-graded A-
algebra if R is a G-graded ring and R is an A-algebra with a.1 = 1.a € R, for
any a € A. If R is a G-graded algebra, and S is an A-algebra, then we may
consider the tensor product R® 4 S, which is an A-algebra with multiplication
given by (r ® s)(r' ® s') = r' @ ss’ for r,7’ € R,s,s € S. Since any R, is
an A — A-bimodule, we obtain R® S = Y - R, ®4 S, and this yields a
G-grading of R®4 S.

Assume now that G is an abelian group and that R = ®,cq Ry, S = GoccSs
are two G-graded A-algebras.Then the tensor algebra R ®z S is a Z-algebra
having a G-grading defined as follows: for any ¢ € G let (R ®z S), =
Bry=cRz @z Sy. Clearly Rz S = ®oca(R®z 5)s, and since G is abelian
this defines a G-grading. Now R®4 S is the abelian group R®z S/I, where I
is the subgroup of R® z S generated by the elements of the form ra®s—r®as,
withr € R,s € S,a € A. Since I is a homogeneous two-sided ideal of R®z S,
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the A-algebra R® 4 S has the natural G-grading defined by: (R®4 S), is the
abelian subgroup generated by the elements r, ® sy, with 7, € Rz, s, € Sy,
and zy = 0.

Assume now that R = @,cq R, is a G-graded A-algebra, and S = ®,cyS-
is an H-graded algebra. The tensor product algebra R ® 4 S has a natural
G x H-grading with (R®4 S)(4,7) = Rs ® S; for any (0,7) € G x H.

1.3.12 Example Group actions on rings

Let R be a ring and o € Aut(R) a ring automorphism of R of finite order
n. Denote by G the cyclic group < ¢ >, and assume that n.1 is invertible in
R and that R contains a primitive nth—root of unity, say w. We consider the
character group G = Hom(@, < w >) of G, and for any v € G we consider
the set

R, ={r € Rlg(r) =v(g)r forall g€ G}

If x € G is the identity element, i.e. x(g) =1 for any g € G, then R, = R®,
the G-invariant subring of R, R® = {r € R|g(r) = r forall g € G}.

1.3.13 Proposition

With notation as above we have that R = D, e oRy, and RyRy C Ry for
any 7,7 € G, i.e. Ris a G-graded ring.

Proof

If r € Ry,r" € R, then we have that g(r’) = g(r)g(r") = (v(9)r)( (g)r") =
v(9)Y (g)rr" = (vy')(g)rr’ for any g € G, therefore R,R, C R,,. On the
other hand G ia a cyclic group generated by vo € G, where Y(g) = w.1, so
G = {x=3,7, ...,76%1}. If r € R, since n.1 is invertible in R, we can define
the elements:

ro=n"tr+gr)+..+g" r
rr=n"tr+w" lg(r) + w2y

N ~—
~—

ooy =T (4 wg(r) + @ (r) + .+ 0" g ()

Since 1 +w+w?+...+w" ! = 0, we have that ro +7r14+...+7rp—1 = 7. On the
other hand for any g € G g(ro) = n=(g(r) + ¢*(r) + ... + r) = 10, therefore
1o € Ry, g(r1) =n~ (g(r)+w" T g?(r)+w" " 2g% (r)+...+wr) = wri = 0(g)r1,
therefore m € R,,.

In a similar way, we prove that ro € Rﬁyg, vy Tn—1 € anfl, and we obtain
0
R = Zweﬁ R,. It remains to show that this sum is direct. Let rg € Ry, €
Ry,..,mh—1 € R,Ynfl be such that rg +r1 + ... + rn,—1 = 0. By applying
0
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2 n—1

g9,9%, ..., g we obtain a set of equations :

ro+ri+-+rp_1=0
rotwri+---4+w ry_1=0
ro4+wr + -+ Vr, 1 =0

ro+w ey 4 - g DEhe =

If we define the matrix A by :

1 1 1
A— 1 w e w”_'l
1 w1 u)(nfl)(nfl)

The determinant of A is of Vandermonde type, thus :

det(A4) = H (W' — w?)

0<i<j<n

We prove that det(A) is an invertible element of R, and for this it is enough
to show that d =[], ,_,,(1 — ") is invertible in R.

Let us consider the polynomial f(X) = 1 + X + X? + ... + X"~ !. Then
F(X) = [1i<icp1(X — w?), in particular f(1) = d. On the other hand
f(1) = n.1, which is invertible. Hence det(A) is invertible, and then so is A.
We obtain that:

To
At L ph=o
Tn—1
which shows that rg =r1 = ... =r,_1 =0. O

1.3.14 Remarks

1. It is possible to state a more general result : Assume that G is a finite
abelian group acting by automorphisms on the ring R. If R is an algebra
over Z[n~',w], where n is the exponent of G' and w is a primitive n'®
root of unity, then R = @veaRV’ where G = Hom(G, < w >) is the
character group of G, and R, = {r € R|g(r) = v(g)r for all g € G}.
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The proof goes by induction on s, where G = G X --- X G5 and G; are
cylic groups.

Such an example arises from the consideration of a finite abelian group
G of automorphisms of the ring R, such that the exponent n of G is
invertible in R. If w is a primitive n*® root of unity, we can construct
R’ = R® Z|w]. The ring R’ satisfies the conditions in the above remark,
and R'¢ = R® @ Z|w].

. Let R be a ring and G = {1, g} where g is an automorphism of R such

that ¢g> = 1. Assume that 2 is invertible in R. Since —1 € R is a
primitive root of unity of order 2, then R = Ry ® R,, where Ry = R¢
and R, = {r € R|g(r) = —r}, i.e. R is a G-graded ring.

We obtain such an example by taking R = M, (k), k any field of char-
acteristic not 2, and letting ¢ € Aut(R) be the inner automorphism
induced by the diagonal matrix

1

with m entries equal to —1, and n—m entries equal to 1 (where 1 < m <
n). We have g : M,,(k) — My(k),g(X) =UXU™!. Then G =< g > has
order 2, and R has the grading R = R; @ R, where Ry = RY is the set

of all matrices of the form ( 61 g > with A € M, (k), B € My,_pn(k),

and R, is the set of all matrices of the form < 2 3 >

1.4 Crossed Products

In Section 1.1. a G-crossed product has been defined as a G-graded ring R =
@seca R, such that there exists an invertible element in every homogeneous
component R, of R. We now provide a general construction leading to crossed
products. We call (A, G,0,a) a crossed system if A is a ring, G is a group
with unit element written as 1, and 0 : G — Aut(A4),a : G x G — U(A) are
two maps with the following properties for any z,y,z € G and a € A :

i) “(Ya) = a(z,y) “ao(z,y) ™"

il) a(z,y)alay,2) = aly, z)a(z, y2)

i) a(z,1) =a(l,z)=1



1.4 Crossed Products 11
where we have denoted o(x)(a) by “a for z € G,a € A.

The map o is called a weak action of G on A, and « is called a o-cocycle. Let

G = {glg € G} be a copy (as a set) of G. We denote by AZ[G] the free left

A-module with the basis G, and we define a multiplication on this set by:
(a17)(a2y) = a,"aza(z, y)TY

for a1,a0 € A, z,y € G.

1.4.1 Proposition

The foregoing operation makes the set A7[G] into a ring. Moreover, this ring
is G-graded by (AZ[G])y = Ag, and it is a crossed product.

Proof In the first part we establish that the multiplication is associative.
Indeed, if a1,a9,a3 € A and z,y, z € G, then:

(a17)((a2y)(as7))

= (a17)(ay" asaly, 2)7z)

= a,%(ay"aza(y, 2))a(z, y2)Tyz

=a;"ay"(Yas) “aly, z)o(r, yz)Tyz

= a,%az0(x,y) “ago(x,y) ' “aly, 2)a(z,y2)TyE  (by i)

= ay"aza(z,y) WazTalzy, 2)Tyz - (by ii)

= (a,"aza(z, y)TY)(asz)

= ((a17)(a29))(as?)

Clearly the element 1 4€ is the identity element of AZ[G] (here 14 is the unity

of A and e is the identity of G). We have by construction that AZ[G] =
©reqAT, and (AT)(Ay) = ATy, therefore AZ[G] is a G-graded ring. Since

Zr—! = a(r, 271, 2717 = a(z7 !, 2)1, and a(z,z7!),a(z™ !, x) are invert-
ible elements of A, we obtain that T and 2! are invertible elements of A%[G],

and this shows that AZ[G] is a G-crossed product. O

‘We now consider some particular cases of the above construction.

a. Assume first that a : G x G — U(A) is the trivial map, i.e. a(z,y) =1
for all z,y € G. Then ii and iii hold, and i means that ¢ : G — Aut(A4)
is a group morphism. In this case the crossed product AZ[G] will be
denoted A %, G, and it is called the skew groupring associated to o.
In this case the multiplication is defined by :

(aT)(by) = ao(x)(b)Ty

for a,b€ A, xz,y € G.
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b. Assume that o : G — Aut(A) is the trivial map, i.e. o(g) = 1 for any

g € G. In this case the condition i) implies that a(z,y) € U(Z(A))
for any =,y € G, where Z(A) is the center of the ring A. Also the
conditions ii. and iii. show that a is a 2-cocycle in the classical sense,
ie. a € Z2(G,U(Z(A))). The crossed product AZ[G] is in this situation
denoted by A,[G], and it is called the twisted groupring associated
to the cocycle . The multiplication of the twisted groupring is defined
by :
(a)(by) = aba(z, y)Ty

Let us consider again a general crossed product. We have seen in Section
1.1 that a G-graded ring R = $,cq R, is a crossed product if and only
if the sequence

1-UR) —-U(R)—-G—1 (1)

is exact (here U9" = {J,cq(RgU(R)) , the second map is the inclu-
sion, and the third map is the degree map).

1.4.2 Proposition

Every G-crossed product R is of the form AZ[G| for some ring A and
some maps o, .

Proof Start by putting A = R.. Since R, NU(R) # 0 for any g € G,
we may choose for g € G some u, € Ry NU(R). We take u. = 1. Then
it is clear that Ry = R.uy = ugR., and that the set {u,y|lg € G} is a
basis for R as a left (and right) R.-module. Let us define the maps:

o:G — Aut(R.) by o(g)(a) = ugau;1 for g € G, a € R,,

and

a:GxG—U(R,) by a(z,y) = uxuyu;yl for z,y € G

We show that ¢ and « satisfy the conditions i.,ii.,iii. Indeed,

a(z,y)¥aa(r,y) "
= uwuyu;yl (ug;yau;yl)uxyuy_

-1
T

1 1

Uy
= ug (uyau, ' u
—" (%0

therefore i. holds. Next

_ -1 -1 -1
O‘(Ia y)OL(l‘y7 Z) = UgUyUgy UpyUzUyy, = UgUyUzUgpy,
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On the other hand:

oy, z)a(r,yz) = uzaly, Z)“z_:luruyzu;ylz

= umuyuzu;;uyzu = Ug Uy U U,

TYZ TYz

so ii holds, too.

Finally a(z,e) = a(e,x) = 1 since u, = 1, therefore iii. holds. Let
a € R; and b € R, be homogeneous elements of R. We compute the
product ab via the maps o,a. We have that a and b can be uniquely
expressed as a = aiu, and b = byuy, with a1,b1 € R.. Then

ab = (ayug)(biuy) = a1 (ugbruy uzu,
= al(uxblugl)(uwuyu;yl)uwy = a1 bra(x, Y)ugy

This entails that the ring R is isomorphic to (R.)Z[G]. O

e}

1.4.3 Remarks

1. If the exact sequence (1) splits, i.e. there exists a group morphism
¢ : G — U9 (R) such that deg o ¢ = Idg, then u, = p(x) is an invert-

ible element of R,, for any 2 € G. In this case a(z,y) = uzuyuy, =
o(x)p(y)e(zy)~t = 1, therefore ¢ is a group morphism and R is iso-
morphic to the skew group ring R, *, G. Conversely, if R = A *, G is

a skew group ring over GG then (1) is a split exact sequence.

2. If R = ®y,cc Ry is a G-graded ring, we denote by Cr(R.) the centralizer
of R, in R, i.e. Cr(R.) = {r € Rlrre = rer forall r. € R.}. Assume
that for any x € G we can choose an invertible element u, € R, such
that u, € Cr(R). Then clearly o(z) =1 for any z € G, and «a(z,y) €
u(Z(R.)), so « is a 2-cocycle and R is isomorphic to a twisted group
ring. Conversely, it is easy to see that a twisted group ring A,[G] has
the property that every homogeneous component contains an invertible
element centralizing the homogeneous part of degree e.

1.5 Exercises

1. Let R = ®,cc Ry be a G-graded ring and (0;);¢5 a set of generators for
the group G. Then the following assertions are equivalent :

i) R is a strongly graded ring.
ii) Re = Rs,R,-1 = R -1 R, for any i € I.

2. Let R = ®y,cqRs be a G-graded ring and H a subgroup of G. Prove
that U(Ryg) = Ry NU(R).
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. Let R, S be two objects and ¢ : R — S a morphism in the category

G-RING. Prove that the following assertions are equivalent :

i)  is an epimorphism in the category G-RING.
ii) ¢ is an epimorphism in the category RING.

Hint: ii. = i. is obvious.

i.= ii. Let us consider T another object in the category RING, and
u,v : S — T morphisms in this category such that wo @ = vo p. Let
T'[G] be the group ring associated to T' with the natural G-grading. We
define the maps @, : S — T[G] by u(sy) = u(s)g, and T(sy) = v(s)g.
Then u, v are morphisms in the category G-RING, and wo ¢ = v o ¢.
We obtain that @ = v, hence u = v.

. Let (R;)ier be a family of G-graded rings. Prove that :

i) If I is finite, then the direct product R = []%; R; is a strongly
graded ring if and only if R; is a strongly graded ring for every

el

ii) If I is an arbitrary set, then the direct product R = []%; R;
in the category G — RING is a crossed product if and only if
R; is a crossed product for every i € I.

. Let A be a commutative ring, R a G-graded A-algebra, and S an H-

graded A-algebra (G and H are two groups). We consider R ® 4 S with
the natural G x H-grading (see Example 1.3.17). If R and S are strongly
graded (resp. crossed products), then R® 4.5 is a G x H-strongly graded
ring (resp. a crossed product).

. A ring R is called almost strongly graded by the group G if there

exists a family (R,)s,eq of additive subgroups of R with 1 € R., R =
> wec Roy and R, R: = Ry, for all 0,7 € G. Prove that :

i) If R is an almost strongly graded ring and I is a two-sided
ideal of R, then R/I is also an almost strongly graded ring.
In particular if R = @,cq R, is a G-strongly graded ring and
I is a two-sided ideal of R, then R/I is an almost strongly
graded ring.

ii) If S is an almost strongly graded ring (by the group G), then
there exist a strongly graded ring R and an ideal I of R such
that S ~ R/I.

iii) If R = ) . Ry is almost strongly graded, then R, is an
R.-bimodule for every ¢ € G. Moreover, R, is a left (and
right) finitely generated projective Rj-module.
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Hint : Since 1 € R,-1 R,, we can find some a;’s in R,, b;’s in R,—1
such that 1 =3 b;a;. Define the maps :

i=1,n
u: Ry — RZ, u(ro) = (’I‘Ubl, ...77’gbn)

and
v: R = Ry, (A1, An) = Z @i
1=1,n
Then u and v are morphisms of left R.-modules and vou = Id, therefore
R, is a direct summand of the left R.-module R].

7. Let R = ®,eqRs be a G-strongly graded ring such that R is a commu-
tative ring. Prove that GG is an abelian group.

Hint : Since R is strongly graded, we have that R, R, = R,, # 0 for
any 0,7 € GG. Therefore there exist r, € R, and r, € R; such that
rorr # 0. We have that r,r, = r;r, # 0, and this implies o7 = 70.

8. Let R = ®,ca R, be a ring graded by the abelian group G. Prove that
the center Z(R) of R is a graded subring of R.

9. Let (A,G,0,a) be a crossed system (see Section 1.4). If (4,G,o’,a)
is another crossed system, we say that (A4, G, o, «) and (A4, G, 0’,a’) are
equivalent if there exists a map u: G — U(A) with the properties :

i) ule) =1
ii) 0'(9) = Qu(g)o(g), where gy € Aut(A) is defined by ¢,y (a) =
u(g)au(g)~* for any a € A,g € G
iii) o' (z,y) = u(@)®u(y)a(z, y)u(zy)~! for all z,y € G.

Prove that :

a. The above defined relation between crossed systems (with the same
A and G) is an equivalence relation.

b. The crossed systems (A, G, 0, a) and (4, G, 0’,a’) are equivalent if
and only if there exists a graded isomorphism f : AZ[G] — A%, [G]
such that f(a) = a for every a € A.

c. If Z(A) is the center of the ring A and (A, G,o0,«) is a crossed

system, prove that the map o defines a group morphism G —
Aut(U(Z(A))), i.e. U(Z(A)) is a G-module.

10. Let (A,G,0,a) be a crossed system. We denote by Z2(G,U(Z(A)))
the set of all functions 8 : G x G — U(Z(A)) satistying the following
conditions :

i) B(z,y)B(zy,z) =7 By, z)a(z, yz) for every z,y, 2 € G (recall
that by *a we mean o(x)(a)).
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i) B(e,e) = fle,a) = 1.

Prove that :

a.

Z%(G,U(Z(A))) is an abelian group with the product defined by
(B)(,y) = Bz, y)B (z,y) for every §,8" € Z*(G,U(Z(A))).

The elements of this group are called 2-cocycles with respect to
the action of G on U(Z(A)) defined by o.

If B € Z2(G,U(Z(A))) then (A, G, 0, Ba) is also a crossed system.

. If for every map t : G — U(Z(A)) with t(e) = 1 we define

the 2-coboundary &t by (6t)(z,y) = t(x)%t(y)t(zy)~!, and we de-
note by B?(G,U(Z(A))) the set of 2-coboundaries, prove that
B?(G,U(Z(4))) is a subgroup of Z?(G,U(Z(A))). Prove also
that for 3 € Z?(G,U(Z(A))) the crossed systems (4, G, o, «) and
(A, G, 0,[a) are equivalent if and only if 3 € B2(G,U(Z(A))).

If (A,G,0,a) and (A, G, 0,d’) are two crossed systems, prove that
there exists 8 € Z2(G,U(Z(A))) with o/ = Ba.

We denote by
H*(G,U(Z(A)) = Z*(G,U(Z(A4)))/B*(G,U(Z(A)))

which is called the second cohomology group of G over U(Z(A)).
If 8 € Z*G,U(Z(A))) then 3 denotes the class of ( in the fac-
tor group H?(G,U(Z(A))). Prove that the map associating to
B € H2(G,U(Z(A))) the equivalence class of the crossed system
(A,G,o0,pa) is bijective (here o is the weak action of G on A).

11. Let (A, G, 0, ) be a crossed system such that a(x,y) € Z(A) for every
z,y € G. If H*(G,U(Z(A))) = {1}, prove that the graded ring AJ[G]
is isomorphic to a skew group ring.

Let G be a group ring with identity 1. A ring R is said to be G-
system if R = dea Ry, where R, are such additive subgroups of R
that RgR, C Rgp for all g,h € G. If for all g,h € G, RyRy = Rgp, R is
called Clifford system (or almost strongly graded ring - see exercise

6.)

12. Prove the following assertions :

i) If I is two-sided ideal of R then R/I is also a G-system (resp.

a Clifford system).

ii) Every a G-system (resp. a Clifford system) is an image of a

G-graded ring (resp. of a G-strongly graded ring).
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(P. Greszczuk, [91]) Prove that if the the G-system R = )
unity 1 and the group G is finite then 1 € R,.

e Ry has

Hint : (Proof of author). For any nonempty subset S of G we put R, =
Y oscg Bi. If ;T C G are two nonempty sets we have Rs.Rr C Rsr.
We prove by induction on |G — S| that ife € S then 1 € Rg. If S = G, it
is clear. Assume that the result is true for subsets of cardinality > |S].
Let z € G — S, then |SU {z}| > |S] and |[z71S U {e}| > |S|. Hence by
the induction assumption : 1 € Rg+ R, and 1 € R,-15 + R;. Hence
l=a+b=c+d wherea € Rg,b€ Ry, C € R,-1g and d € R;. So,
(1-a)(1—-d) € RyR,-15 C Rg. Since (1 —a)(1—-d)=1—-a—d+ad
since e € S we have R, C Rg and therefore ad — a — d € Rg. Hence
1 € Rg. Thus, since S = {e} satisfies the hypothesis it results that
1€ R.. For n =1 it is clear.

(P. Greszczuk) Let R =3 _; Ry be a G-system with unity 1 (G is a
finite group). To prove :

a. If T is a right (left) ideal of R, then IR = R (resp. RI = R) if
and only if I = R,.

b. An element z € R, is right (left) invertible in R if and only if « is
right (left) invertible in R..

c. J(R)N R, C J(R.) where J(R) (resp. J(R.)) is the Jacobson
radical of R (resp. R.).

Hint : a. f R=IR=) IRy, IR=3 ;IR is a G-system. By
exercise 13. 1 € JR. C I. For b. and c. we apply a.

Let R = ®,cg Ry be a G-graded ring. Prove that the polynomial ring
R[X]is a G-graded ring with the grading R[X], = R,[X] for any o € G.
Moreover if R is a strongly graded ring (respectively a crossed product)
then R[X] is strongly graded (respectively crossed product).
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1.6 Comments and References for Chapter 1

This chapter is of a preliminary nature. It contains the definitions of a G-
graded ring and G-strongly graded ring for an arbitrary group G, together
with the main examples. In Section 1.2 the category of G-graded rings is in-
troduced, i.e. G-Ring, and properties of functorial nature are being looked at.
As a special class of strongly graded rings, G-crossed products are introduced
in Section 1.4. Crossed product constructions appear in different areas of
Algebra, in particular the crossed product results in the theory of the Brauer
group and Galois cohomology are well-known, see also exercise 1.5.10 before.
The interested reader may also look at the book by S. Caenepeel, F. Van Oys-
taeyen, Brauer Groups and Cohomology of Graded Rings, M. Dekker, New
York. Let us also mention that crossed products also appear in C*-algebra
theory, it is a type of construction with a rather general applicability. In this
chapter we included some properties of crossed products as an initiation to
the vast field of possible applications, we complete this by several exercises in
Section 1.5

Some References

- M.Cohen, L.Rowen, Group Graded Rings, [42].
- E. C. Dade, Group Graded Rings and Modules, [49].

- C. Nastasescu, F. Van Oystaeyen, Graded and Filtered Rings and Modules,
[147].

- C. Nastasescu, F. Van Oystaeyen, Graded Ring Theory, [150].

- C. Nastasescu, F. Van Oystaeyen, On Strongly Graded Rings and Crossed
Products, [149].

- D. Passman, Infinite Crossed Products and Group Graded Rings, [169).

- D. Passman, Group Rings, Crossed Products and Galois Theory, [170].



Chapter 2

The Category of Graded
Modules

2.1 Graded Modules

Throughout this section R = @®,cc R, is a graded ring of type G for some fixed
group G. A (left) G-graded R-module (or simple graded module) is a left R-
module M such that M = &,cc M, where every M, is an additive subgroup of
M, and for every o € G and x € G we have R, M, C M,,. Since ReM, C M,
we see that every M, is an R.-submodule of M. The elements of Uycq M,
are called the homogeneous elements of M. A nonzero element m € M, is
said to be homogeneous of degree z, and we write deg(m) = z. Every m € M
can be uniquely represented as a sum m = Y~ m,, with m, € M, and
finitely many nonzero m,. The nonzero elements m, in this sum are called
the homogenous components of m. The set sup(m) = {z € G|m, # 0}
is called the support of m. We also denote by sup(M) = {z € G|M, # 0}
the support of the graded module M. If sup(M) is a finite set (we denote
by sup(M) < oo0) we say that M is a graded module of finite support.

An R-submodule N of M is said to be a graded submodule if for every n €
N all its homogeous components are also in N, i.e. : N = @,eq(NNM,). For
a graded submodule N of M we may define a quotient- (or factor-) structure
on M/N by defining a gradation as follows : (M/N), = M, + N/N, for
o € G. For an arbitrary submodule N of a graded module M we let (N),,
resp. (N)9, be the largest, resp. smallest, graded submodule of M contained
in N, resp. containing N. It is clear that (N), equals the sum of all graded
submodules of M contained in N, while (N)9 is the intersection of all graded
submodules of M containing N. We have : (N)y C N C (N)9. Of course,
when N itself is a graded submodule of M then (N), = N = (N)?. The set of
R-submodules of a given module M is usually denoted by Lr(M); in case M

C. Nastasescu and F. Van Oystaeyen: LNM 1836, pp. 19-79, 2004.
(© Springer-Verlag Berlin Heidelberg 2004
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is a graded R-module we look at the set L% (M) of all graded R-submodules
of M. It is easily verified that Lr(M) is a lattice with respecty to the partial
ordering given by inclusion and the operations N and U; moreover L% (M) is
a sublattice of Lr(M).

Note that (N), = @peq(N N M,) is the submodule of M generated by N N
h(M); on the other hand (N)? is the submodule of M generated by the set
Unen{no,,o € G}, where {n,,oc € G} is the set of homogeneous components
of n € N.

From these observations it is also clear that an R-submodule N of M is a
graded R-submodule if and only if N has a set of generators consisting of
homogeneous elements in M. All of the foregoing may be applied to left
ideals L of R and two-sided ideals I of R, in particular (I), and (I)Y are
two-sided when [ is.

2.2 The category of Graded Modules

When the ring R is graded by the group G we consider the category G — R-
gr, simply written R-gr if no ambiguity can arise, defined as follows. For the
objects of R-gr we take the graded (left) R-modules and for graded R-modules
M and N we define the morphisms in the graded category as :

Homp_g (M, N) = {f € Homg(M, N), f(M,) C N,, for all o € G}

From the definition it is clear thet Homp_g (M, N) is an additive subgroup
of Hompg (M, N).

At this point it is useful though not really essential to have knowledge of a few
basic facts in Category Theory; we include a short introduction in Appendix

A.

The category R-gr has coproducts and products. Indeed, for a family
of graded modules {M;,i € J} a coproduct S; = B,ceS, may be given
by taking S, = ®;cs(M;), and a product P; may be obtained by taking
Py =1l;c;(M;)s, 50 Py = @occ [ ;e s (Mi)o-

Since for any f € Hompg_g (M, N) we have a kernel, Kerf, and an image
object, Imf, which are in R-gr and such that : M/Kerf = Imf are naturally
isomorphic in this category, the category R-gr is an abelian category. It also
follows that a graded morphism f is a monomorphism, resp. epimorphism, in
this category if and only if f is injective, resp. surjective in the set theoretic
sense.

In a straightforward way one may verify that R-gr satisfies Grothendieck’s
axioms : Ab3, Ab4, Ab3*, Ab* and also Ab5.
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For M € R-gr and o € G we define the o-suspension M (o) of M to be the
graded R-module obtained from M by putting M (o), = M., for all T € G.
This defines a functor T, : R-gr — R-gr by putting T,,(M) = M(o). The
family of functors {7,,0 € G} satisfies :

1. T,0T, =Ty, forallo,7 € G
2. T,o0T, 1 =T, 10T, =1d., for all 0 € G.

In particular it follows that each T, is an isomorphism in the category R-
gr. The left R-module rR is of course a graded R-module, hence it is clear
that the family {gR(c),0 € G} is a set of generators of the category R-gr
(see Appendix A, for the definition of a family of generators). Therefore the
category R-gr is a Grothendieck category (see appendix A). One easily checks
that each rR(c) is a projective object in R-gr, such objects will be referred
to as graded projective modules, hence R-gr has a projective family of
generators. The general theory of Grothendieck categories then implies that
R-gr has enough injective objects, these are referred to as graded injective
modules (or gr-injective modules). Now F € R-gr is said to be gr-
free if it has an R-basis consisting of homogeneous elements, equivalently
F >~ ®,cjR(0;), where {0y,7 € J} is a family of elements of G

Since a graded module M has a set of homogeneous generators it is in an
obvious way isomorphic to a quotient of a gr-free object of R-gr. Note that
any gr-free object in R-gr is necessarily a free R-module when viewed as an
R-module by forgetting the gradation. A more detailed treatment of the
forgetful functor U : R-gr — R-mod, associating to a graded R-module M
the underlying R-module U(M), is given in Section 2.5. If P is gr-projective
then it is isomorphic to a direct summand of a gr-free F'; in fact find a gr-free
F mapping to P epimorphically in R-gr and use the projectivity of P in R-gr.
Hence it follows that a gr-projective in R-gr is just a graded and projective
R-module. A similar property will fail for gr-free modules ! Indeed, taking
R = Z x Z with trivial gradation and taking for F' the R-module R endowed
with the gradation given by Fy = Z x {0}, F1 = {0} x Z and F; = 0 for
i # 0,1, then it is clear that F' cannot have a homogeneous basis | Hence
gr-free is a stronger property than “graded plus free”.

2.2.1 Remark

The category of right G-graded R-modules, G-gr-R (or shortly gr-R) may
be defined in a similar way. However, if we let R°P be the opposite graded
ring with respect to the opposite group G°P, then G-gr-R is exactly the cat-
egory G°P-R°P-gr and so we need not repeat any “right” versions of earlier
observations.

For a given M € R-gr we define G(M) = {oc € G,M = M(0)}. It is an easy
exercise to establish that G(M) is a subgroup of G. The latter subgroup is
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called the stabilizer (or inertia group) of M. In case G(M) = G we say
that M is G-invariant. The subgroup G(M) is connected to sup(M).

2.2.2 Proposition

With notation as before, if {0;,7 € I} is a left transversal of G(M) in G then
there is a J C I such that : sup(M) = U;ey 0;G(M). Note that J = () may
be allowed. Moreover the cardinality of J does not depend on {o;,i € J}.

Proof If 7 € G(M) then M = M(7) in R-gr. Take J C I such that
o; € sup(M) for any ¢ € J. Then : M(7),, = M,, # 0, hence also M, #0
and U;e jo,G(M) = sup(M). Conversely, , if o € sup(M) then it follows from
G = Uie10;G(M) that o € 0;G(M) for a certain ¢ € I. Thus o = o;7 for
some 7 € G(M). Now from M, = My, = M(7)s, = M,, and M, # 0 we
derive that o; € sup(M) and thus ¢ € J, or sup(M) = Ujcjo;G(M). The
final part of the statement is clear. O

In view of the foregoing proposition we may put |J| = [sup(M) : G(M)].

2.2.3 Proposition

For M € R-gr and any 0 € G we obtain : G(M (o)) = oG(M)o~t. Also
sup(M (o)) = sup(M)o 1.

Proof Look at A € G(M(0)), then M(o) = M(o)(A) = M(M\o) for every
o € G. Therefore M = M(A\o)(c~!) = M(c~*\o) and so o~ *\o € G(M) or
A € oG(M)o~1. This proves the inclusion G(M (o)) C oG(M)o~! and the
reversed inclusion may be established in formally the same way. The last part
of the proposition is clear. O

2.3 Elementary Properties of the
Category R-gr

In this section we focus on some elementary properties of the category of
graded R-modules for an arbitrary G-graded ring.

2.3.1 Proposition

Consider M, N, P in R-gr with given R-linear maps, f: M — P, h: M — N,
g: N — P, such that f = goh and f is a morphism in R-gr. If g, resp. h is
a morphism in the category R-gr, then there exists a morphism A’ : M — N,
resp. ¢’ : N — P, in R-gr such that f = goh/, resp. f =g oh.
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Proof Let us prove the case where g is a morphism in R-gr. Pick an
homogeneous m € M, for some o € G. We decompose h(m) as h(m)
> rcq h(m)r. The assumption f = goh entails that f(m) =3 .. g(h(m),
with g(h(m),) € P;. Since f(m) € P, we may define the morphism (in R-gr
K’ by putting h'(m) = h(m),. That f = g o b/ follows easily.

O

2.3.2 Corollary

If M € R-gr is projective (resp. injective), when considered as an ungraded
module then M is also projective, resp. injective in the category R-gr.

Proof Let us prove the statement concerning projectivity, the version for
injectivity is dual. Consider an epimorphism w : N — N’ in R-gr and any
morphism f : M — N’ in R-gr. Since u is also surjective as a morphism in
R-mod, there exists an R-linear g : M — N such that f = uog. Applying the
foregoing proposition yields the existence of a morphism ¢’ in R-gr, ¢ M — N
such that f = uo ¢’ and this establishes the projectivity of M in R-gr. O

2.3.3 Remark

We have observed in Section 2.2. that a gr-projective R-module P is also pro-
jective when viewed as an ungraded R-module. However, if ) is gr-injective,
that is an injective object in the category R-gr, then @) need not be injective
in R-mod when viewed as an R-module. Particular cases where a positive
solution exists are encountered in Corollary 2.3.2 and Corollary 2.5.2. For
now let us just provide the following easy example. Over an arbitrary field
k, consider the Laurent polynomial ring R = k[T, T~1] with Z-gradation de-
fined by R, = {aT™,a € k} for n € Z. In view of the graded version of
Baer’s theorem, cf. Corollary 2.4.8, it is easy to check that g R is gr-injective
but not injective. A note about the language; we often refer to “the graded
version of X”, e.g. in the foregoing or in the corollary hereafter, to indicate
that a result is in some way a graded version of some “well-known” result in
module theory or general algebra. Even though, for the logical understanding
of this text, knowledge of such results is not assumed (in fact, by restricting
to the case of a trivial gradation one does recover a proof for the classical
result referred to) it is of course beneficary to have studied some elementary
algebra course as we pointed out in the introduction. This will provide more
insight and shed light on the origin of some of the problems we encounter and
why certain modifications have been made.

For M € R-gr we define the projective dimension of M in the category
R-gr similar to the definition of projective dimension in R-mod and we adapt
the notation gr — pdimz (M) for this (writing pdimg (M) for the projective
dimension of M viewed as an ungraded module). That this is not really a
new invariant follows from the foregoing Corollary 2.3.2 and remark 2.3.3.
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2.3.4 Corollary (A graded version of Maschke’s theorem)

Consider a graded submodule N of the graded module M. Then N is a graded
direct summand of M (i.e. a direct summand as an R-gr object) if and only
if NV is a direct summand of M viewed as ungraded R-modules.

Proof If N is a direct summand of M as an R-module then there is an
R-linear f : M — N such that f oi = 1y, where ¢ is the canonical inclusion
N — M. In view of Proposition 2.3.1. we may find a graded morphism
f"+ M — N such that f' oi = 1x. But this shows exactly that i splits as
a morphism in R-gr and thus M = N @ N’, where N’ = Ker(f'), in R-gr.
The other implication is trivial enough, so the properties in the statement are
indeed equivalent. O

Recall that in any category C a subobject N C M is said to be an essential
subobject if for every other non-zero subobject L C M we have LN N # 0
(we assume C has a suitable initial object 0). In particular for the category
R-gr a graded submodule N of M is gr-essential if it is an essential subobject
in the above sense for the category R-gr, this is obviously equivalent to : for
every nonzero homogeneous element m € M we have N N Rm # 0, in other
words there is an a € h(R) such that am # 0.

2.3.5 Proposition

Let N C M in R-gr. Then N is gr-essential in M if and only if N is essential
in M in R-mod. Moreover, in this case we have that for every m € M there
is a homogeneous a, € R, such that a;m € N and a,m # 0.

Proof First it is clear that an essential submodule N of M in R-mod is
certainly gr-essential (M and N as in the statement). Conversely, assume
that N C M is essential in R-gr. Pick m # 0 in M, write supp(m) =
{01,...,on},m = mg, + ...+ Mg, with 0 # my, € My, i =1,...,n. By
induction on n, we now establish RmNN = 0, in fact we establish that there is
an a € h(R) such that : am € N, am # 0. In case n = 1 this follows from gr-
essentiality of NV in M. In general, applying the induction hypothesis we select
b € h(R) such that b(m—m, ) # 0in N. If b, = 0 then bm = b(m—m,,) #
0 in N and we are done, so assume that bm,, # 0. Take ¢ € h(R) such that
cbmgy, # 0 in N and look at cbm = ¢bmy, + ... + cbm,, ; since ¢b € h(R) the
latter is the homogeneous decomposition of cbm and as cbm,, # 0 we must
have ¢bm # 0. Since cbm € N follows from b(my, + ... + m,, ) € N and
cbm,, € N, the claim has been established. O
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2.4 The functor HOMz(—, —)

Let R be a G-graded ring and M = ®,caM, and N = $,ccN, two objects
from the category R-gr. An R-linear f : M — N is said to be a graded mor-
phism of degree 0,0 € G, if f(M,) C N, for all x € G. Graded morphism
of degree o build an additive subgroup HOM (M, N), of Homg(M, N). The
following equalities hold :

HOM (M, N). = Homp_g (M, N)
HOMg(M,N), = Hompg_g (M, N(0)) = HOHlR_gr(M(O'_l), N)

Also, if we put HOMg(M,N) = > .- HOMg(M, N),, then we have
HOMpg(M,N) = ®cHOMR(M, N), so HOMg(M, N) is a graded abelian
group of type G. At places in the literature the Hom is used in stead of HOM.
e.g. in [84], [85].

Denote by G-gr-Ab the category of graded abelian groups of type G. The cor-
respondance (M, N) — HOMpg (M, N) defines a left exact functor : (R—gr)° x
(R—gr) - G—gr—Ab. If M,N,P € Rgrand f : M - Nand g : N —
P are morphisms of degree o, respectively 7, then go f : M — P is a
graded morphism of degree or. It follows that for N = M, the abelian
group HOMg(M, M) with the multiplication : f x g = go f where f,g €
HOMpg(M, M) is a G-graded ring. This ring is denoted by ENDg(M). In
general, the inclusion of HOMg(M, N) in Homg(M, N) is proper as can be
seen in the following example.

2.4.1 Example

Let R = ®pezR, be a Z-graded ring such that R, # 0 for any n € Z.
Then there exists an element a = Zn an such that a, € R, and a, # O.
Put M =g R%), then M is graded R-module. Define f € Homg(M, R) by
putting f((Tn)nez) = D ,cz Tiai, where (z,), € M. If f € HOMg(M, R)

then there exist fp,,..., fn, such that each f,, is a morphism of degree n;
for 1 < i < s. In this case we have f(My) C > | Ry,. But My = R(()Z) and
we counsider (x,)nez € My such that x,, = 1 where ng # {ni,...,ns} and

xn, = 0 for n # ng. In this case we have f((zn)nez) = any & ®i_1Rn,- The
connection between HOMpg(M, N) and Hompg(M, N) can best be expressed
by topological methods.

For this it is necessary to introduce some considerations concerning the “finite
topology”. Let X and Y be arbitrary sets and Y the set of all mappings from
X to Y. It is clear that we may view YX as the product of the sets Y, =Y,
where x ranges over the index set X. The finite topology of Y ¥ is obtained
by taking the product space in the category of topological spaces, with each Y
being regarded as a discrete space. A basis for the open sets of this topology
is given by the sets of the form {g € YX|g(z;) = f(z;),1 < i < n}, where
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{x;]1 <1i < n} is a finite set of elements of X and f is a fixed element of YX.
Every open set is a union of sets of this form.

If X and Y are abelian groups, and Homg(X,Y) is the set of all homo-
morphisms from X to Y, then Homgz(X,Y) is a subset of YX. In fact
Homz(X,Y) is a closed set in YX. Indeed if f € YX belongs to the clo-
sure of Homgz(X,Y) and z,2’ € X, there exist ¢ € Homg(X,Y) such that
g(x) = f(x),9(z') = f(2') and g(z + ') = f(z + 2’). From this it follows
that f(z +2') = f(z) + f(2’) thus f € Homg(X,Y). Homg(X,Y) is in fact
a topological abelian group for the topology induced by the finite topology.

If f € Homg(X,Y), then the sets
V(fiz1,...,2n) = {9 € Homgz (X,Y)|g(z;) = f(x:),1 <i<n}

form a basis for the filter of neighbourhoods of f, where {z;|]1 < i < n}
ranges over the finite subsets of X. Note that V(f,z1,...,z,) = Mi=a V(f, 2;)
and V(f,z1,...,2,) = f+V(0,21,...,2,). Moreover V(0,21,...,2,) is a
subgroup of Homgz(X,Y).

Assume now that R is a G-graded ring, and M, N € R-gr. We have the
inclusion :

HOMg(M, N) C Homg(M,N) C Homgz (M, N)

It is easy to see (same argument as above) that Hompg(M, N) is a closed
subset of Homgz (M, N) which is a topological abelian group with respect to
the topology induced by the finite topology. If m € M and m = my, +...my,
where {mg,|1 <1i < s} is the set of homogeneous components of m, then we
clearly have the inclusion V' (f,my,,...,mz,) C V(f,m) and therefore the
sets V(f,m1,...,m;) form a basis for the filter of neighbourhoods of f when
{m;|1 < i <t} ranges over the finite subsets of h(M).

2.4.2 Proposition

For any 0 € G, HOMp(M, N), is a closed subset of Homp (M, N) in the finite
topology.

Proof Assume that f belongs to the closure of HOMg (M, N). If m, € M,
then there exist ¢ € HOMg(M, N), such that g € V(f, m,) and f(my) =
g(my). Since g(M;) C Nuo, we have that f(my) = g(ms) € Ny hence
f(M,) C N,,, for every x € G, and thus f € HOMgz(M, N),.

Select f € Homp(M, N) and 0 € G. We define a map f, : M — N in the
following way. If m, € M, for some z € G, we put f,(mz) = f(Mmz)zo, i-€.
fo(myg) is the homogeneous component of degree xzo of the element f(m,) €
N. Then, if ay € Ry is a homogeneous element of R we have aym, €
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My, and so f,(axms) = f(axmg)rzo. On the other hand, ayf,(m,) =
axf(mg)ze. But since ayf(my).o is the homogeneous component of degree
Azxo of the element ay f(ms) = f(axms), we see that fo(axm,) = axfo(ms)
thus f, is R-linear. Furthermore, since f,(M,) C M,,, it follows that f, €
HOMp(M, N),. O

Recall that if (G,+) is a topological abelian group, z € G and (x;);cr a
family of elements of G, then this family is said to be summable to z if|
for any neighbourhood V' (x) of z, there exists a finite subset Jy of I such
that ), ;x; € V(z) for any finite subset J of I such that Jo C J. If the
family (z;)ics is summable to x then we write ) .., #; = 2. We have the
following result, establishing the topological relation between HOMg(M, N)
and Homp (M, N).

2.4.3 Theorem

Let R be a G-graded ring, M, N € R-gr and f € Homg(M,N). Then the
following assertions hold :

i) The family (f,)scq is summable to f in the finite topology, i.e.
[ =3 ,cq fo, where the f, are uniquely determined by f, that is,
if (95)oecq, with g € HOMg(M, N), is another family summable
to f, then f, = g, for any o € G.

ii) Hompr(M, N) is the completion of HOMg(M, N) in the finite
topology.

Proof It is clear that in the definition of summable family of Hompg (M, N)
with respect to the finite topology we may restrict to considering neighbour-
hoods of f of the form V(f,m), where m is a homogneous element of M.
Assume that m € M, for some = € G. By definition of the maps f, there
exist a finite subset J, of G such that f(m) = (3_,c; fo)(m) and, moreover,
for any o & Jy, fo(m) = 0. Thus, for any finite subset J of G such that Jo C J
we have > ., fo € V(f,m) and hence the family (f,)sec is summable to
f. Now, for the uniqueless property, assume that (g )seq is another family
summable to f such that there exist o9 € G with f;, # go,. Then there exist
a homogeneous element m, € M, such that fs,(my) # go, (M) and if we con-
sider the neighbourhood V (f, m,,) of f, there exists a finite subset Jy of G such
that for any subset J of G that contains Jo we have that ) . ; fo € V/(f,ma)
and > 90 € V(f,ms). I oo & Jo we put J = JoU{oo}; so we may
assume :0g € J. Then we have (3 . ; fo)(mz) = (3 ,c; 9o)(mz) and since
fos 90 € HOMR(M, N), we obtain that f,(m,) = go(m,) for any o € J. The
latter is a contradiction and it completes the proof of the uniqueness. Finally,
in order to prove ii. observe first that, since the finite sum ) _ 7o Jo belongs
to HOMg(M, N), it follows from i. that V(f,m) N HOMg(M,N) # 0 and
hence that HOM (M, N) is dense in Homp (M, N). Now, it is wellknown that
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NM _ being a topological product of discrete topological groups, is complete
in the finite topology. Thus Hompg (M, N) being a closed subgroup of N,
is complete in the induced topology and therefore Hompg (M, N) is the com-
pletion of the Hansdorff topological group HOMg(M, N) endowed with the
topology induced by the finite topology of Hompg(M, N), that is exactly the
finite topology of HOMRg (M, N). O

2.4.4 Corollary
If M, N € R-gr and M is finitely generated then

HOMg(M, N) = Hompg (M, N)

Proof Since M is finitely generated, Hompg(M, N) is a discrete abelian
group in the finite topology. Now by Theorem 2.4.3. the assertion follows.
O

2.4.5 Corollary

Let M, N € R-gr such that both M and N have finite support. Then
HOMpg(M,N) = Homg(M, N).

Proof Assume that sup(M) = {o1,...,0.} and sup(N) = {ry,...,7s}. If
f € Homg(M, N), then by Theorem 2.4.3 we have that ) .. f, = f in the
finite topology. If o € G and o ¢ {o; '7;li = 1,...,7;5 = 1,...,s} then
for any ¢,1 < ¢ < r we have f,(M,,) C Ng,s, and since in this case o;0 ¢
supp(N), fo(M,,) = 050 f; = 0. Then it is clear that f =377 3%, forts,
and hence f € HOMg(M, N). '

2.4.6 Corollary

Let R be a G-graded ring where G is a finite group. If M, N € R-gr then we
have
HOMg (M, N) = Homg(M, N)

Proof Apply Corollary 2.4.5. O

Since the functor HOMpg(—, —) is left exact we can define the right derived
functor denoted by EXT%(—,—) where n > 0 (for the functor Homp(—, —)
the right derived functors are denoted usually by Extp(—, —)).

Let R be a G-graded ring and M € R-gr.

A Noetherian (resp. Artinian) object in R-gr will be called gr-Noetherian
(resp. gr-Artinian). As in the ungraded case it is very easy to prove that M
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is gr-Noetherian if and only if every graded submodule is finitely generated, if
and only if every ascending chain of graded submodules terminates. Similarly,
M is gr-Artinian if and only if every descinding chain of graded submodules
terminates.

When the graded left R-module R is gr-Noetherian, resp. gr-Artinian, we say
that R is left gr-Noetherian, resp gr-Artinian. Left-right symmetric versions
of these definitions may be phrased in a similar way.

2.4.7 Corollary

Consider graded R-modules M and N and assume that one of the following
conditions holds :

i) The ring R is left gr-Noetherian and M is finitely generated.
ii) the group G is a finite group.
Then, for every n > 0 we have :

EXT? (M, N) = Exty (M, N)

Proof The case where G is a finite group follows as a consequence of Corol-
lary 2.4.6. So let us assume we are in the situation i. The assumptions then
allow to construct the free resolution :

— I —>F —>F,—M-—0

where each F; is a free graded R-module of finite rank. As a consequence of
Corollary 2.4.4., and using the well-known calculus of right derived functors,
the statement follows. O

A graded R-module M is said to be gr-injective, resp. gr-projective, if M is in-
jective, resp. projective, as an object of R-gr. The property of gr-projectivity
is a very well-behaved one, see Corollary 2.3.2. and Remark 2.3.3.

From loc. cit. it is easy to obtain that M is gr-projective if and only if the
functor Hompg_g, (M, —) is exact, if and only if the functor HOMg (M, —) is
exact, if and only if M is a direct summand in R-gr of a gr-free R-module.
Remark 2.3.3. already pointed at the more erratic behaviour of the notion
“gr-injective”.

2.4.8 Corollary
The following statements are equivalent for some @ € R-gr :
i) @ is a gr-injective R-module

ii) The functors Homp_g(—, Q) as well as HOMg(—, Q) are exact.
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iti) (Graded Version of Baer’s theorem) For every graded left ideal L
of R we obtain from the canonical inclusion ¢ : L — R a surjective
morphism :

HOM(i, 1) : HOMg(R, Q) — HOMz(L, Q)

Proof The equivalence i. < ii. as well as the implication ii. = iii. are clear.
The proof of iii. = ii. is formally similar to the proof given in the ungraded
case so we delete it here. O

It is possible and easy to construct a theory of graded bimodules with respect
to two graded rings of type G (for the same group; more general situations
may be considered too but that is out of the scope of this book). Let us just
introduce some basic notions and a version of the hom-tensor relation.

Consider the G-graded rings R and S. An abelian group M is said to be a
graded R-S-bimodule if M = @,c¢M, is an R-S-bimodule such that the
structure of a left R-module makes it a graded R-module and the structure
of right S-module makes it into a graded right S-module, i.e. for o,7,7v € G
we have Ry MR, C Myr~.

For N € R-gr we have that Homg(M, N) is a left S-module by putting :
(s.f)(m) = f(ms) for s € S, f € Homp(M,N) and m € M. Moreover, if
f+ M — N is R-linear of degree ¢ and s € Sy then s.f : M — N has
degree Ao. Indeed, for m, € M, we obtain : (s.f)(m,) = f(m:s) € N:xs
and (s.f)(M,) C N:as, or s.f has degree Ao. The foregoing establishes that
HOMpg (M, N) is in fact a graded left S-module.

Now look at M €gr-R and N € R-gr. We may consider the abelian group
M ®pr N, which may be G-graded by putting (M ® g N), equal to the additive
subgroup generated by all elements x®y with x € M., y € N, such that 7y =
o. To see that this is well-defined (the tensor product over a noncommutative
ring always is to be handled with some care !) we may start the construction
from the abelian group M ®z N which is G-graded by putting :

(M%)N)U = & (M.®N,), foreacho € G

T,vEG
Ty=0

In this G-graded abelian group M ® z N the additive subgroup K generated by
all elements of the form mr@n—m®rn, withm € M,n € N,r € R, is a graded
subgroup of M ®z N. By definition we have that M @ g N = (M ®z N)/K
and the gradation we have defined on M ®pg N is just the one induced by
the G-gradation of the abelian group M ®z N. Considering Z with trivial
G-gradation as a graded ring, the object M ®r N € Z-gr defined is called
the graded tensor product of M and N.

Now if pNg is a graded R-S-bimodule then M ®p N inherits the structure
of a graded right S-module defined by putting : (m ® n)s = m ® ns, for any
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m € M,n € N,s € §. There is a well-known relation between the functors
Homp(—,—) and — @ —, often referred to as the hom-tensor relation, we do
have a graded version of such a relation.

2.4.9 Proposition

For M €gr-R, P € gr-S, N € R-gr-S we obtain a natural graded isomor-
phism :
HOMg(M ®r N, P) 2 HOMgz(M,HOMg(N, P)

defined as follows : form € M,n € N, f € HOMg(M®gN, P) : o(f)(m)(n) =
f(m ®n) In particular we obtain a canonical isomorphism :

Homg_g (M ®g N, P) = Homp_g (M, HOMg(N, P))

This means that the functor — ®r N : gr—R — gr—S is left adjoint of the
functor HOMg(N, —) :gr—S — gr—R.

Proof The argument is an absolutely straightforward graded version of the
classical (ungraded) argument in the classical situation. This may be found
in any textbook on homological algebra or basic algebra, e.g. N. Bourbaki, so
we refer to the literature for this. O

Let R = @®yecqRs and S = ®yeaSs be two G-graded rings and ¢ : R — S is
a graded morphism of rings (i.e. p(R,) C S, for any o € G). We denote by
©§ : S-gr — R-gr the functor of “restriction of scalars” so if M € S-gr, then
0 (M) = M where M has the following structure as left R-module : if a € R
and m € M, then a x m = ¢(a).m. We denote by S ®p — : R-gr — S-gr,
M — S ®pr M the functor induced by ¢ and by

HOMg(gSgr,—) : R—gr — S—gr

the coinduced functor.

2.4.10 Corollary

With notation as above, the functor S®g- is a left adjoint of the functor ¢§"
and the functor HOMg(gSs, —) is a right adjoint of the functor §".

Proof We apply Proposition 2.4.9, because ¢ ~ S5 ®s — and also ©§ ~
HOM5s(sSr, —)-
2.5 Some Functorial Constructions

Maybe it is surprizing to learn that the forgetful functor R-gr — R-mod is in
fact useful at places. Perhaps the most obvious reason for this is that we may
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construct a right adjoint functor for it. The first part of this section deals
with this. In a second part induced and coinduced functors are the topic of
study.

To a G-graded ring R we have associated several categories, e.g. R-mod, R-gr,
Re-mod,. ... The study of relations between these categories is the main topic
of “graded module theory”. Let us write U : R-gr — R-mod for the forgetful
functor (forgetting the graded structure on the R-modules). We know, from
the basic properties of R-gr, that U is an exact functor. We may define a
right adjoint F' : R-mod — R-gr for the functor U, in the following way. To
M € R-mod, associate the G-graded abelian group “M = @®,cc’M where
M is just a copy of M indexed by o, but with R-module structure given
by : r.”m =°" (rm) for "'m €™ M and r € R,, i.e. 7."m is the element rm
viewed in the copy "M of M. It is obvious that the foregoing does define
a structure on @M making it into a G-graded R-module. The latter graded
object is denoted by F(M), F(M) = @®,ecF(M),, where F(M), is nothing
but M as an abelian group.

To an R-linear map f : M — N we correspond F(f) : F(M) — F(N),
such that for z € M,0 € G we have F(f)(°z) =° f(z). Obviously, F(f) is
a morphism in R-gr. By construction F' is an exact functor. Observe that
UF(M) = ®sec’M, but this is not a direct sum of copies of M as an R-
module because each “M is not an R-submodule of F(M) (it is of course an
R.-submodule).

2.5.1 Theorem

The functor F' is a right adjoint for U. In case G is a finite group, then F' is
also a left adjoint for U.

Proof

Consider M € R-gr and N € R-mod. Define ¢(M,N) : Homr(U(M),N) —
Homp_g (M, F(N)), by putting : (M, N)(f)(ms) =7 (f(ms)) for m, € M,
and f : U(M) — N an R-linear map. Clearly (M, N)(f) is also R-linear
and in fact even a morphism in the category R-gr as it preserves degrees.
If f is such that (M, N)(f) = 0 then we must have (M, N)(f)(mys) = 0
for all m, € M,, all 0 € G, hence 7(f(my,)) = 0 and thus f(m,) = 0
for each m, € M and each 0 € G. Consequently p(M,N)(f) = 0 entails
that f = 0 and (M, N) is an injective map. On the other hand, look at
a given g € Homp_g (M, F(N)). Now define ay : F(N) — N by putting :
an((“n)oea) = Y ,eqn (since F(N) is a direct sum, the latter sum is
defined). Clearly ay is R-linear and if we define f = an o g we have an
R-linear map f : M — N. One easily verifies that (M, N)(f) = g and it
follows that (M, N) is an isomorphism. The system {¢@(M, N), M € R-mod,
N € R-gr} does define a functorial isomorphism.
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For the second part, assume that G is a finite group. For M € R-mod and
N € R-gr we now define :

(M, N) : Homp_ g (F(M), N) — Homp (M, U(N))

in the following way. Define aps : M — F(M),m +— (°m),ce where “m =m
for any 0 € G. Tt is clear that for Ay € R,,ap(Aom) = (7% (Aom))zce =
Ao (*m)zeq. Observe that finiteness of G is used in the construction of ajs
because (“m),cq must be in the direct sum ! Now to f € Hompg_g (F' (M), N)
we associate (M, N)(f) = f o apy in Homg(M,U(N)). Again (M, N) is
injective because whenever (M, N)(f) = 0 we have (f o a)(m) = 0 for all
m € F(M),, all 0 € G, thus f((°m)seq) = 0 and as f preserves degrees
this leads to f(0,...,m,0...,0) = 0 with m in the ¢*"-position. The latter
means f(F(M),) =0 for all 0 € G, or f = 0. On the other hand, for a given
g € Homp(M,N) we define the map f : F(M) — N by f(°m) = g(m),,
where “m € F(M), =% M. For any m € M we have (f o apr)(m) =
F("m)oca) = Xyeqg(m)s = glm). Thus Y(M, N)(f) = g and it follows
that (M, N) is also surjective, thus an isomorphism. One verifies that the
system {¢(M,N), M € R-mod, N € R-gr} defines a functorial morphism. [J

2.5.2 Corollary

Let R be graded by a finite group G and let ) € R-gr. Then @ is gr-injective
if and only if U(Q) is injective in R-mod.

Proof One implication has been proved in Corollary 2.3.2. Assuming that
@ is gr-injective and using the exactness of U and the properties of adjoints
(see Appendix A), it is easy to see that U(Q) is injective in R-mod. O

The reader may already have noticed that often we write @ for U(Q) (we
forget to forget !) when there is no danger of confusion; often we will say “Q
viewed as an R-module”.

There is a partial converse to Theorem 2.5.1. :

2.5.3 Proposition
If U : R-gr — R-mod has a left adjoint then G is finite.

Proof When U has a left adjoint then U commutes with arbitrary di-
rect products in the sense that the natural R-morphism f : U([]%, M;) —
[I;c; U(M;) is an isomorphism for any set J, and any family of graded R-
modules {M;,i € J}, where [[ & M; = ®sea([[;c;(Mi)s). Take J = G and
icJ
M; = R(i7!) for i € G and m; € M;,m; = 1, hence m; is of degree i € G.
In this case(m;)ics € [[;c; U(M;) cannot be in Imf unless G is finite, so
necessarily G must have been a finite group. O
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2.5.4 Proposition

For M € R-gr we have : FU(M) & ®y,ecM (o).

Proof Let us consider *m in *M for m € M and a fixed z € G. Write
m = 3 coMze With mys € My,. Define o : F(UM)) — ©yecM/(0),
T — (Myo)oeq Where my, € M(0),; this is allowed because only finitely
many of the {m.,,0 € G} are nonzero. For A\, € R,,7 € G, we calculate :
a(A"m) = a((ArMyo)oeca) = Ar(Mao)oca = Ara(*m). Consequently, o
is R-linear. Moreover,

a(F(U(M))z) C (BoeaM(0))s

hence « is in fact a morphism in the category R-gr. A standard verification
learns that « is also bijective and thus an isomorphism. O

In the remainder of this section we study induced and coinduced functors.
Let R = ®,cqR, be a G-graded ring, and N € R.-mod. We consider the
graded R-module M = R ®g, N, where M has the gradation given by :
M, = R, ®r, N, for 0 € G. The graded R-module M = &,cqM, is called
the R-module induced by the R.-module N. We denote this module by
Ind(N). It is obvious that the mapping N — Ind(N) defines a covariant
functor Ind : R.-mod — R-gr, called the induced functor. This functor is
right exact. Moreover, if R is a flat right R. module (i.e. R, is a flat right
R.-module for any o € G), then the functor Ind is exact.

Since R is an R, — R-bimodule, we may consider the left R-module M’ =
Homp, (R, N). If f € Homp_ (R, N) and a € R, the multiplication af is given
by (af)(z) = f(za),x € R. For any 0 € G, we define the set M, = {f €
Hompg, (R, N)|f(Ry) = 0 for any o’ # o~ '}. It is obvious that M. is a
subgroup of M’ (in fact M/ ~ Hompg, (R,-1,N)). The sum M* =% . M]
is a direct sum. Indeed, if f € M7 N (3_, ., M), we have that f € M and
f=> 15 fr € M], thus if € R, we have f(z) = >, fi(z) =0,
so f(R,-1) = 0. Since f(R,;) = 0 for any 7 # o~ !, we obtain that f = 0.
Now we prove that R,M* C M}_for any 0,7 € G. Indeed if a € R, and
f € M, we have for any € Ry, where A\ # (o7)™! = 771071 : (af)(x) =
f(xa) = 0since wa € Ry, and Ao # 7~ L. Therefore, af € M} _. Consequently
M* = @yeaM] is an object in the category R-gr. This object is called the
coinduced module for N, and is denoted by Coind(V). It is obvious that
the mapping N — Coind(N) defines a covariant functor Coind : R.-mod— R-
gr, called the coinduced functor. It is obvious that Coind is a left exact
functor. Furthermore, if R is a projective left R.-module, then Coind is an
exact functor. Now if o € G is fixed, we can define the functor (—), : R-gr
— R.-mod, given by M — M,, where M = @®,.ccM,; € R-gr. It is obvious
that (—), is an exact functor.
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We recall that by T, : R-gr — R-gr we have denoted the o-suspension functor.
The main result of this section is the following :

2.5.5 Theorem

With notation as above we have :

a. The functor T, -1 oInd is a left adjoint functor of the functor(—),. More-
over, (—)y 0 Ty—1 0Ind ~ 15, _mod

b. The functor T,-1 o Coind is a right adjoint functor of the functor (—),-.
Moreover, (=), 0 T,—1 0 Coind ~ 1g, _mod-

Proof

a. Since (—); = (—)e 0 T, and T, is an isomorphism of categories with
inverse T,,-1, it is enough to prove a. and b. when ¢ = e. So for a. we
prove now that Ind is a left adjoint functor of the functor (—).. For this
we define the functorial morphisms

Homp_ g (Ind, =) _— Hompg,(—, (—)e)
B

as follows :

if N € Re-mod and M € R-gr, then a(N, M) : Homp_g(Ind(N), M) —
Homp, (N, M.) is defined by (N, M)(u)(z) = u(l®x) where u: R®pg,
N — M is a morphism in R-gr. Clearly u(1® x) € M., since 1 ® x €
(R®p, N)e = Re ®, N ~ N.

Now we define G(N, M) : Hompg, (N, M1) — Homp_g (Ind(N), M) as
follows :

if v € Hompg, (N, M), we put B(N,M)(v) : R®gr, M — M defined by
BN, M)(v)(A ®@ x) = Mv(z). It is clear that (N, M)(v) € Homp_g
(Ind(N), M). Tt is easy to see that « and 3 are functorial morphisms
and B(N, M) is inverse to a(N, M), hence o and ( are functorial iso-
morphisms with 3 inverse to a. So Ind is a left adjoint functor of (—)..
The last assertion of a. is obvious. O

b. We define the functorial morphism

v

Homp, ((—)e, —) —__ Hompg_g(—, Coind)

4

as follows :
if N € Re-mod and M € R-gr, then v(M,N) : Homp_(M.,N) —
Homp_g (M, Coind(NN)) is defined by putting for each u € Hompg, (M.,
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N) and m, € M, y(M,N)(u)(my;) : R — N, v(M,N)(u)(mz)(a) =
u(az-1my) where a =3 s aq € R, ag € Ry.

It is clear that (M, N)(u)(M,) C Coind(N), for any = € G, hence
v(M, N)(u) € Hompg_g (M, Coind(N)) and therefore the map (M, N)
is well-defined.

Conversely, if v € Homp_g (M, Coind(N)), we define (M, N)(v) :
M, — N by §(M, N)(v)(me) = v(me)(1).

If @ € R. we have 6(M,N)(v)(am.) = v(am.)(1) = (av(me))(l) =
v(me)(a) = av(me)(1) = ad(M, N)(v)(me) and therefore §(M, N)(v) €
Hompe (M., N) so 6(M, N) is well defined. Now if u € Hompg,_ (M., N),
we have that (6(M, N)o~(M,N))(u) = §(M,N)(y(M,N)(u)). If m, €
M, then we have 6(M, N)(y(M,N)(u))(me) = v(M, N)(u)(me)(1)
u(L.me) = u(me), 6(M,N) o y(M,N) = ltomp, (N.,n)- Conversely, if
v € Hompg_g (M, Coind(N)) the we have (y(M,N)) o §(M,N))(v)
(M, N)(6(M,N)(v)). Now if m, € M, and a € R then we have
A(M, N)(3(M, N)(0)(m2)(0) = 6(M, N)(0)(ag-rmq) = v(a,2)(1) =
(ar*”}(mz))(l) = U(mr)(Laz*l) = U(mm)(azfl) = U(mr)(a) (because
v(my)(ay) = 0 for any y # x~1). Consequently (y(M,N)o§(M,N) =
IHomR—gr (M, Coind), Finally, the functor Coind is a right adjoint of the
functor (—).. The last assertion of b. is obvious. O

2.5.6 Corollary
1. If N is an injective R.-module, then Coind(N) is gr-injective.
2. If M = @,eaM, is gr-injective, and for any ¢ € G, R, is a flat right
Re-module, then M, is an injective R.-module for each o € G.
Proof

1. In view of Theorem 2.5.5., the functor Coind is a right adjoint of the
functor (—).. Since the latter functor is exact, the general theory of
adjoint functors (see Appendix A.) implies that Coind (V) is an injective
object in R-gr.

2. Again from Theorem 2.5.5. it follows that (=), is a right adjoint of
the functor T,-: o Ind. Since R is a flat R.-module, Ind must be an
exact functor and therefore T,-1 o Ind is then an exact functor too.
Consequenty, M, is an injective R.-module.

O

2.5.7 Corollary

For a G-graded ring of finite support R, every R-module may be embedded
into a graded R-module.
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Proof Consider M € R-mod and consider g, M by restriction of scalars with
respect to R. — R. Since Supp(R) < oo we have Coind(M) = Homp, (R, M).
On the other hand there is a canonical map :

o(M): M — Hompg, (R, M)

given by
o(M)(m)(r) =rm, for me M,r € R

Obviously ¢(M) is R-linear and injective. Since Homp, (R, M) = Coind(M)
and the latter is a graded R-module, the assertion follows. O

2.6 Some Topics in Torsion Theory on R-gr

In commutative algebra, in fact in Ring Theory in general, localization is a
useful technique. It has become customary to present the theory of localiza-
tion in its abstract categorical form mainly because it allows a very unified
approach to the concept of localization. In the literature one may find “lo-
calization” applied to rings, algebras, modules, groups, topological spaces.
Obvious problems dealing with properties of objects that may be preserved
under localization may best be dealt with by viewing the localization as a
localization in a specific category of those objects with the property under
consideration and morphisms preserving that property. There are however
still several different, but equivalent ways to introduce the localization the-
ory in a categorical setting e.g. via Serre’s localizing subcategories, torsion
theories on Grothendieck categories and their generalizations to additive cat-
egories, torsion radicals (B. Stenstrom [181]) Gabriel topologies (P. Gabriel
[67]),...

Before focusing on localization in R-gr we provide a short introduction to
the theory of localization in a Grothendieck category, along the way we point
out how several of the concepts, mentioned above, do appear in the theory
and we give a hint about the interrelations between these. We shall return
to general localization theory for graded rings in Chapter 8. The preliminary
results we present in this section are necessary to relate the category of R.-
modules to a suitable full subcategory of R-gr (see Proposition 2.6.3) related
to a certain localization. This in turn will be applied to the problem of
recognizing strongly graded rings.

Let A be a Grothendieck category and C be a full subcategory of A. C is
called a closed subcategory of A if it is closed under subobjects, quotients
objects and arbitrary direct sums. Moreover, if C is also closed under tak-
ing extensions, then it is called a localizing subcategory of A. A closed
subcategory C of a Grothendieck category A is also a Grothendieck category.
Indeed, if U € A is a generator of A, then the set

{U|K|K € A such that U|K € C}
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is a family of generators of C, and then the direct sum of this family is a
generator of C. For any closed subcategory C of A and for any M € A we can
consider the greatest subobject t¢(M) of M belonging to C. In fact, tc(M)
is the sum of all subobjects of M which belong to C, and it exists because
C is closed under taking quotient objects and arbitrary sums. The mapping
M — tc(M) defines a left exact functor t¢ : A — A. If M = tc(M) ie.
M € C we say that M is a C-torsion object. If t¢(M) = 0, M is called a
C-torsion free object. Moreover, if C is a localizing subcategory then for
any M € M, we have t¢c(M/tc(M)) = 0 i.e. M/tc(M) is C-torsion free. In
this case t¢ is called the radical associated to the localizing subcategory C.

If A is a Grothendieck category and M € A an object then we denote by
oa[M] (or shorthly o[M]) the full subcategory of all objects of A which are
subgenerated by M, i.e. which are isomorphic to a subobjects of quotient
objects of direct sums of copies of M.

2.6.1 Proposition
With notation as introduced above :
1. o[M] is a closed subcategory

2. o[M] is the smallest closed subcategory of A, containing M

Proof

1. Since the direct sum functor is exact, we obtain that o[M] is closed
under taking direct sums. Now consider :

0—-Y =Y -Y"—=0

an exact sequence in A such that Y € o[M]. By the definition of o[M]
it follows immediately that Y’ € o[M]. Since Y € o[M], there exists
an epimorphism f : M(/) — X and a monomorphism u : Y — X. We
have Y ~Y/Y' and Y/Y' C X/Y' = X", so X" is a quotient object
of X, it is also a quotient object of M) and Y € o[M]. Thus o[M] is
a closed subcategory of A.

2. Assume that C is a closed subcategory of A and M € C. Then for Y, f
and u as above, we have that M) € C, so X € C, showing that Y € C.
Therefore o[M] C C. O

Now we consider the case : A = R-gr, where R = @) cg R, is a G-graded
ring. Fixing 0 € G. We define the subclass C, to be

Co = {M € R—gr|M = ®reag My, with M, = O}
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A graded left module M = @xcqg M) is said to be o-faithful if R -2z, #0
for any nonzero x, € M,.. We say that M is faithful if it is o-faithful for
all 0 € G. The graded ring R is left o-faithful, respectively faithful if
rR is. Similarly, the notion right o-faithful respectively faithful may be
introduced for the ring R. When R is a strongly graded ring, Proposition
1.1.1. yields that R is left and right faithful. Now, if M € R-gr, the functorial
isomorphisms o and 3 (see Section 2.5.) define the canonical graded functorial
morphism.

1 p(M) : Ind(My(c™') — M, p(M)A®z) = MAx,\ € R, * € M,.
Analogously, the functorial isomorphisms v and § define the canonical
graded functorial morphism

2. v(M) : M — Coind(M,(c~ 1)), v(M)(zx)(a) = ay\-17x, Where x5 €
My,a =3 cqar,ay € Ry,

2.6.2 Proposition

With notation as above : Imv (M) is an essential submodule of Coind(M,)(c~1).

Proof Since M may be changed to the o-suspension M (o) it is sufficient to
deal with the case where o0 = e. Let f € Coind(M.)x, f # 0, for some A € G.
So we have f € Hompg, (R, M,.) such that f(R,) =0 if 7 = A~!. Since f # 0,
there exist ay-1 € Ry—1 such that f(ay-1) #0. We put z. = f(ay-1) € M.
We have v(M)(xe)(b) = bewe = bef(ay-1) = f(bear-1) where b =3 b,
is an arbitrary element from R. On the other hand (ay-1f)(b) = f(bay-1) =
Y oreq flbray-1) = f(bear-1) so we have ay-1 f = v(M)(x.) € Imv(M). Since
v(M)(z.)(1) = x. # 0, we have ay-1f € Imv(M) and ay-1f # 0. Now
by Proposition 2.3.6. it follows that Imwv(M) is an essential submodule in
Coind(Me). O

2.6.3 Proposition

With notation as before :

a. For every o € G, C, is a localizing subcategory of R-gr which is closed
under arbitrary direct products.

b. If M = &,egM,, then M € C, if and only if for every =z, € M.,
RUT—IIT =0.

c. If M = ®,egM, is a nonzero graded module, then M is C,-torsion
free if and only if M is o-faithful if and only if every non-zero graded
submodule of M intersects M, nontrivially.

d. M is faithful if and only if M is C,-torsionfree for any o € G.
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e. If u(M) and v(M) are the morphisms of 1. and 2. then Ker(u(M)),

Ker(v(M)), coker(u(M)) and coker(v(M)) are in Cy.

Moreover Ker(v(M)) = te, (M) and Im(u(M)) is the smallest graded
submodule L of M, such that M/L € C,.

f. If M is o-faithful then Ker(u(M)) = tc, (Ind(M,)(c~1).

g. C, = 0 if and only if R is a strongly graded ring.

Proof

a. That C, is a localizing subcategory of R-gr follows from the fact that

(=)o is an exact functor. Now let (M;);c; be a family of objects from
Cy. If M is a direct product in R-gr of the family (M;);cr, then M =
®aeag My where My = [],c;(M;)x. Therefore, M; € Co yields (M;), =0
and therefore M, =0, so M € C,.

. This is routine.

. Assume that M is C,-torsionfree and let x, € M, z, # 0. Then Rz, is

also C,-torsion free and therefore (Rz;), # 0. But (Rx;)s = Ryr—12.
Hence R, -1x, # 0; i.e. M is o-faithful. Conversely, assume that M
is o-faithful. If t¢, (M) # 0, then there exists x, € (tc, (M))-, . # 0,
for some 7 € G. Thus R,,-1z,; # 0. On the other hand (t¢, (M)), =
0, and from R,,-1z, C (t¢,(M)), we obtain that R ,—1x; = 0, a
contradiction. Hence t¢, (M) = 0, i.e. M is C,-torsion free. That M
is o-faithful if and only if every nonzero graded submodule of M is
intersecting M, non-trivially, is obvious.

. This follows directly from c.

. Since Ind(M,)(c7 1)y = Ind(M,)e = R. @r, My =~ M,,

Coind(M,)(c7 1)y = Coind(M,). = Hompg, (Re, M,) =~ M,, and be-
cause the functor (=), is exact it follows that Ker(u(M)), ker(v(M)),
coker(u(M)), coker(v(M)) belong to C,. In particular it follows that
Kerv(M) C t¢, (M). Conversely, let zx € tc, (M). Hence (Rzy)s =0
$0 Roy—1x) = 0. Therefore v(M)(z))(a) = agr-12x = 0 for any
a € R. Consequently, v(M)(zx) = 0 so zx € Kerv(M) and hence
Kerv(M) = tc, (M). On the other hand, note that Im(u(M)) = RM,,
and since (M/RM,), = 0 we have M/RM, € C,. Now if L is a graded
submodule of M such that M/L € C, then (M/L), = 0 and hence
L, =M, so RM, =RL, C L.

. Easy enough.

. Assume tat C, = 0 and let M ©,cc My be a nonzero graded module.

So M, # 0 and since (M/RM,), = 0 it follows that M = RM, and so
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we have RyM, = M), for any A € G. Now, if we replace M by the 7-
suspension M (1) we obtain M (7) # 0 so we have Ry (M (7))s = M (T)xo
and thus Ry\M,, = My, for any \,7 € G. Putting 7 = 0716 yields
RyMy = Mg for \,0 € G. In particular for M = R we obtain that
RyRy = Ryg for any A\,0 € G so R is a strongly graded ring. The
converse is obvious. O

2.6.4 Remark

A strongly graded ring is left and right faithful (see the first part of this
section). The following example proves that there are left and right faithful
rings which are not strongly graded. Let K be a field and let R = K[X] be
the polynomial ring in the indeterminate X. R becomes a Z,-graded ring
by putting Ry = K[X"] and R; = XEK[X™), for every k=1,...,n—1. Ris
not strongly graded, as RyR— = X"K[X"] # R On the other hand R is
a faithful ring, being a commutative domain.

Let M = &,eaM, be an object from the category R-gr. The tp; : M — M.,
t(m) = me, where m = ) __,mg is an element from M is called the trace
map. It is clear that tjp; is Re-linear. Also ifa € R, a =) a, then we
have tyr(am) = Y oo Go-1M0.

ceG

We denote by rad(tar) = {m € M|ty (am) = 0 for any a € R}. It is clear
that rad(tas) is a submodule of M. Also if m = ) __,mo € rad(tyr), then
we have for A € G that Ry-1my = 0. Hence tp(Rmy) = Ry-1my = 0 and
therefore my € rad(tys). Hence rad(tas) is a graded submodule of M, called
the radical of the trace map t,,;.

In fact we have that rad(tar) = te (M). In particular it follows that M is
e-faithful if and only if rad(tp) = 0. If M = rR we have the trace map
tr : R — R. (denoted by t). Clearly t : R — R, is left and right R.-linear.
In this case we may define the left radical, l.rad(t), and right radical r.rad(t)
of t.

So we have l.rad(t) = {a € R|t(Ra) = 0} and r.rad(t) = |{a € R|t(aR) = 0}.
We remark that t(ab) = > . ap-1.bs for any a,b € R.

An object M € R-gr is called C.-closed if M is Ce-torsionfree and has the
following property : for any diagram in R-gr

u

0 X' X coker u ——=0

|

M

where coker u € C., there exists a unique morphism g : X — M such that
gou=f.
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2.6.5 Proposition
The following assertions hold :

1. If N € R.-mod then Coind(N) is C.-closed.

2. If M € R-gr is Ce-closed then M ~ Coind(M.).

3. If we denote by A the full subcategory of all C.-closed objects of R-gr,

then the functor Coind : R, — mod — A is an equivalence of categories.

Proof

1. If K =t¢, (Coind(N)), then by Theorem 2.5. we have

Homp_4 (K, Coind(N)) ~ Hompg, (K., N) =0

since K, = 0. Since K C Coind(N) it follows that K = 0 so Coind(N)
is Ce-torsionfree. We consider the diagram in R-gr :

u

0 X' X coker u ——=10

|

Coind(N)

where coker u € C.. By Theorem 2.5.
Hompg_g (X', Coind(N)) ~ Homp, (X., N)

Since (coker u). = 0 then u, : X, — X, is an isomorphism. Using the
same Theorem 2.5. it followsthat there exists g : X — Coind(NN) such
that gou = f.

2. We consider the canonical morphism
v(M) : M — Coind(M.),v(M)(zx)(a) = ay-1z
where xy € My,a =) ;00,05 € Ry Since kerv(M) € C,, and M is
Cc-closed, then kerv(M) = 0. Now from the diagram

0 —— M —Eoind(M,) —— coker(M) —— 0
|
M
where cokerv(M) € C. implies that there exists a morphism
g : Coind(M,) — M

such that g o v(M) = 1p. Therefore Imv(M) is direct summand of
Coind(M,). By Proposition 2.6.2., Imv(M) is essential in Coind(Me,).
hence Imv(M) = Coind(M.) and therefore v(M) is an isomorphism.
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3. If we consider the functor
(=)e: A— Re—mod, M — M,

then it is clear that (—). o Coind ~ 1g_mod and by assertion 2. it follows
also that Coind o (—)e ~ 1 4. O

2.6.6 Remark

Using the notion of quotient category (see P. Gabriel [67]), assertion 3. in
the foregoing proposition states that R.-mod is equivalent to the quotient
category R—gr/C..

Let N € Re-mod, if M = Ind(N) = R ®g,_ N, then the morphism v(M)
defines the canonical morphism n(N) : Ind(N) — Coind(N),n(N)(a®z)(b) =
> gec(bg-1ag).x where a,b € R and € N. So n(N)(a ® z)(b) = t(ba).z. It
is easy to see that the class of morphisms {n(N), N € R.—mod} defines a
functorial morphism 7 : Ind — Coind. Also for any N € R.-mod, we have
kern(N) = te, (Ind(N)) and cokern(N) € C.. Moreover, Imn(N) is an essential
subobject of Coind(N).

2.6.7 Proposition
If R is a strongly graded then 7 : Ind — Coind is an functorial isomorphism.

Proof From C. = 0 it follows that kern(N) = cokern(N) = 0 for any N €
R.-mod. Thus n(N) is an isomorphism.

2.6.8 Remark

Let G be a non-trivial group i.e. G # {e} and let R be an arbitrary ring. Then
R can be considered as a G-graded ring with the trivial grading. Obviously,
in this case we have Ind ~ Coind but R is not strongly graded.

Thus, in this case, we may ask the following question “If R is a graded ring
and the functors Ind and Coind are isomorphic, how close is R to being a
strongly graded ring ?”

2.6.9 Theorem
Let R be a G-graded ring. The following assertions are equivalent :
a. The functors Ind and Coind are isomorphic.

b. The canonical morphism 7 : Ind — Coind is a functorial isomorphism.

c. The map n(R) : R — Coind(R.),n(R)(a)(b) = t(ba) is an isomorphism
and for every g € G, R, is projective and finitely generated in R.-mod.
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d. There exists an isomorphism ¥ : R — Coind(R,) in R-gr that is also a
morphism in mod-R,. and for every g € G, R, is finitely generated and
projective in R.-mod

Proof

a. = b. Assume that there exists a functorial isomorphism ¢ : Ind — Coind.
Hence for any N € R.-mod, ¢(N) : Ind(N) — Coind(N) is an isomorphism.
Since Coind(N) is Ce-closed, it follows that Ind(N) is C.-closed. In particular
Ind(N) is C.-torsionfree so Kern(N) = 0. From the diagram

0 —— Ind(N) ) Coind(N) —— coker n(N)

lllnd(N)

Ind(N)

we conclude that there exists a morphism v : Coind(N) — Ind(NN) such that
von(N) = lmamy. So, Imp(N) is a direct summand of Coind(N). Since
Imn(N) is essential in Coind(N), we have that Imn(N) = Coind(N), so (V)
is an isomorphism.

b. = c. It is clear that n(R) is an isomorphism. Now Theorem 2.5. and
the fact that Ind ~ Coind imply that the functors Ind and Coind are exact.
By the properties of adjoint functors (see Appendix A.) it follows that the
functor (=) : R—gr — Re-mod has the following property : if P € R-gr is a
finitely generated projective object then P, € R.-mod is a finitely generated
projective object in R.-mod. In particular if P = gR(o) then P. = R, is a
projective and finitely generated R.-module.

c. = d. obvious.

d. = a. If N € R.-mod, then the fact that Hompg, (R, R.)®pg, N is canonical
isomorphic to Hompg, (Ro, N) entails that :

Y®1y: R®gr, N — Coind(R.) ®g, N ~ Coind(N) for N € R.—mod

defines a functorial isomorphism. O

2.6.10 Theorem

Let R be a G-graded ring. Assume that Ind ~ Coind and let g € sup(R).
Then there exist elements a; € Ry, b; € Rg—1, 1 <4 < n, such that for every
a € Ry, be Ry we have

a = (i aibi)a, b= b(i azbz)
i=1 =1
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Proof From Theorem 2.6.9 we retain that the map
n(R)g : Ry — Homp, (Rg-1, Re) n(R)g(rg)(sg-1) = sg-174

is an Rc-isomorphism. Since R,-1 is finitely generated and projective in R.-
mod, the dual basis lemma entails the existence of by,...,b, € R,-1 and
Ji,-- o, fn € Hompg, (Ry-1, Re), such that for each b € R,~1 we have

b= fi(b)bi
=1

For every i = 1,...,n, there is an a; € R, such that f; = n(R)4(a;). Hence
b =321 n(rR)g(ai)(b)b; = 307, basbi = b(30;_, aib). Let ¢ = 3500, abi,
then b = be for every b € Ry-1 and thus R,-1(1 —¢) = 0. It follows that
Ry-1(1—=c)Ry; = 0so that n(R),((1 —c)Ry) = 0. Since n(R), is injective, we
get (1 —¢)Ry = 0 and hence a = (3°1_; a;b;)a for every a € R,. O

2.6.11 Corollary

Let R = ®geqRy be a G-graded ring. Assume that Ind ~ Coind. If every
Ry, g € sup(R) is faithful as left (or right) R.-module, then H = sup(R) is a
subgroup of G and R = @pep Ry is an H-strongly graded ring.

Proof If g € sup(R) then g=! € sup(R) and it follows from the theorem
above that RyR,-1 = R.. If now g,h € sup(R) and gh ¢ sup(R). Then
0 = RgpRp-+ 2 RyRyR,-1 = Ry, contradiction. Hence H = sup(R) is a
subgroup of G and R = @pep Ry is an H-strongly graded ring.

If A is a ring, we denote by 4 the set of all isomorphism classes of simple
objects in A-mod ie. Q4 = {[5]|S is a simple left A-module }, and [S] =
{8 € A—mod|S’ ~ S}.

We recall that the ring A is called local if A/J(A) is a simple artinian ring
(J(A) is the Jacobson radical). O

We conclude this section with two useful corollaries.

2.6.12 Corollary

For a graded ring R = @®,cc R, we assume that Ind ~ Coind. If |Qg, | =1
(in particular if R, is a local ring), then H = sup(R) is a subgroup of G and
R = ®reg Ry is an H-strongly graded ring.

Proof Since |Qg,| = 1 every finitely generated and projective module in
R.-mod is a generator and hence is faithful. Apply now Corollary 2.6.11. O
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2.6.13 Corollary

Assume that for a graded ring R, we have Ind ~ Coind. If R, has only two
idempotents 0 and 1 (in particular when R, ia a domain), then H = sup(R)
is a subgroup of G and R = @, cg Ry, is an H-strongly graded ring.

Proof By Theorem 2.6.10, if g € sup(R), there exist elements a;, € R,
bi € Ry—1 (1 <i < n) such that for every a € Ry we have a = (3", a;b;)a.
We put ¢ = Z?:l a;b;. In particular for every 1 < r < n, a, = ca, so
a,b, = ca,b, and therefore ¢ = ¢. Since Ry # 0, ¢ # 0 and hence the
hypothesis forces ¢ = 1, so RgR,-1 = R, for any g € sup(R). O

2.7 The Structure of Simple Objects in R-gr

We consider a G-graded ring R = @,cqRs. A nonzero object ¥ € R-gr is
said to be a gr-simple object if 0 and X are the only gr-submodules of ¥. An
object M € R-gr is called gr-semisimple if M is a direct sum of gr-simple
modules.

A gr-submodule N of M is said to be a gr-maximal submodule whenever
M/N is gr-simple. Clearly N is gr-maximal in M if and only if N # M
and N + Rx = M for any « € h(M),z ¢ N. Observe that a gr-maximal
submodule of M need not be a maximal submodule; indeed the zero ideal
in K[X, X" !] = R, endowed with the natural Z-gradation R, = KX" for
n € Z, is gr-maximal (because every homogeneous element is invertible)
but not maximal (because not every element is invertible). A more complete
answer, elucidating the structure of gr-simple rings is given in Theorem 2.10.10
(deriving from general results in Chapter 4.).

A G-graded ring A is a gr-division ring, or a gr-skewfield, if every nonzero
homogeneous element of A is invertible. For example, the ring of Laurent
series K[X, X 1], where K is a field, is a gr-skewfield in fact a gr-field. If we
write H = sup(A) = {0 € G, A, # 0}, then it is easily verified that H is a
subgroup of G and A = &,cgA,. It follows that as an H-graded ring, A is
a crossed product. gr-skewfields appear naturally in the study of gr-simple
modules because of a graded version of Schur’s lemma, contained in 3. of the
following Proposition.

2.7.1 Proposition

Consider a gr-simple module ¥ in R-gr.
1. For o € G either ¥, = 0 or X, is a simple R.-module.

2. If ¥, #0. Then ¥ = (R/I)(0c~!) for some gr-maximal I of R.
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3. Put A = ENDg(X), then A is a gr-skewfield such that A = ©,cqn)As
where G(X) is the stabilizer subgroup of G for ¥.

4. When o € sup(¥), ¥ is o-faithful.

Proof

1. In case X, # 0 we can take an x, € ¥, , # 0. Then Rz, is a nonzero
graded submodule of ¥ and therefore ¥ = Rz, and ¥, = R.z,. This
establishes that ¥, is a simple R.-module.

2. Again choose z, # 0 in ¥,. The canonical morphism f : R — X,
T — %y, is a nonzero graded map of degree o. Thus f : R — X(o0),
obtained by taking the o-suspension, is a morphism in R-gr. Of course,
Y (o) is gr-simple too and hence f must be surjective. It follows that
Y(0) 2 R/I where I = Kerf € R-gr; obviously I is then a gr-maximal
left ideal of R such that ¥ = (R/I)(c™1).

3. Take f # 0 in A,, i.e. f is a nonzero morphism in R-gr when viewed
as a map X — X(c). The latter is a gr-simple module since it is a
o-suspension of 3. Therefore f is necessarily an isomorphism and as
such it is invertible in A. Finally observe that A, # 0 if and only if
o€ G{Z}.

4. The gr-simplicity of ¥ entails that t¢, (¥) = ¥ whenever t¢_ () # 0,
so one would obtain that X, = (t¢c, (X)), = 0 but that contradicts
o € sup(X).

Consequently, we must have t¢_ (%) = 0 and therefore ¥ is o-faithful.

O
We now aim to describe explicitely the structure of gr-simple modules; the
torsion-reduced induction fiunctor will play the important part here.

Recall that we have the induction functor :
Ind = R®p, —: Re—mod — R—gr

where Ind(N) is graded by putting Ind(N), = R, ®r, N. Let us denote
by t. the radical tc, associated to the localizing subcategory C.. It is not
hard to verify that the corresponce N — R®pg, N, where R®gr N = R ®g,
M/t.(R®pg, N), defines a functor R®g,— : R.-mod — R-gr.

Note, in the particular case where R is a strongly graded ring, that then
R®r,— =R ®pg, —.
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2.7.2 Theorem. (Structure theorem for gr-simple mod-
ules)

1. If N € R.-mod is a simple R.-module then RQ g, N is gr-simple in R-gr.

2. If ¥ = ®pecXs is gr-simple in R-gr such that ¥, # 0 for at least one
o € G, then we have : ¥ = (R®p ,)(c ).

Proof

1. Let us write M = R®g, N; by definition of the gradation on M we have

that M, = R, ® g, N = N (taking into account that (tc,(R®pg, N)). =
0).
In particular M # 0 and also we have that M is e-faithful (cf. Propo-
sition 2.6.2.). Consequently if X # 0 is a gr-submodule of M then
X N M, # 0 and it follows that X, # 0. Now M. = N is a simple
R.-module and thus X, = M., or RX, = RM, = M. However, we
must have RX, C X and thus X = M follows. This establishes that M
is a gr-simple R-module, as desired.

2. Start with a gr-simple R-module ¥ such that ¥, # 0 for a certain
o € G. Up to passing to the gr-simple 3(o) we may assume that o = e,
i.e. X # 0. Then, in view of Proposition 2.6.2., R®g, X, is a nonzero
gr-essential submodule of ¥. As the latter is gr-simple we must have
¥ = R®g, Y. O

For a graded R-module M we let soc8 (M) be the sum of the gr-simple gr-
submodule of M; we call soc8" (M) the gr-socle (graded socle) of M. By
soc(M) we refer to the socle of the R-module M (i.e. the sum of the simple
submodules of M).

2.7.3 Proposition
With notation as introduced before :

1. soc® (M) equals the intersection of all gr-essential gr-submodules of M.

2. We have the inclusion soc(M) C soc8"(M).

Proof

1. Let L be the intersection of all gr-essential gr-submodules of M. It
is obvious that soc® (M) C L. First we establish now that L is gr-
semisimple i.e. every gr-submodule K of L is a direct summand in R-gr.
Consider a gr-submodule X in M, maximal with respect to X N K =
0. Clearly, K @ X is then gr-essential in M and so Proposition 2.3.6.



2.7 The Structure of Simple Objects in R-gr 49

entails that K @ X is essential as an R-submodule of M. It follows that
L C K@ X and from K C L it then also follows that L = K & (LN X).
Hence, L is gr-semisimple as claimed but then L = soc® (M) is clear.

2. Tt is well-known that soc(M) is the intersection of all essential submod-
ules of M. Since gr-essential implies essential in the ungraded sense, the
inclusion soc(M) C soc8 (M) follows directly from statement i. O

Remark If we consider the Laurent polynomial ring R = R[T, T~ with
Z-gradation R, = RT",x € Z where R is a field, it is easy to see that rR
is a gr-simple object so Soc® (R) = R. Since R is domain then soc(R) = 0.
2.7.4 Corollary

In case R is G-graded, with finite support, we obtain :

1. For every simple R-module, S say, there exists a gr-simple ¥ in R-gr
such that S is isomorphic to an R-submodule in 3.

2. Any S as before is a semisimple R.-module of finite length.

Proof

1. We have seen, cf. Corollary 2.5.5., that there exists a graded R-module
M such that S is isomorphic to a simple R-submodule of M. Then part
ii. of Proposition 2.7.3. finishes the proof.

2. Let ¥ be the gr-simple in R-gr the existence of which is stated in i.
Proposition 2.7.1. yields that X is a semisimple R.-module and there-
fore S is a semisimple R.-module too. On the other hand, ¥ is an epi-
morphic image of g R(o) for some o € G. If sup(R) = {o1,...,0,} then
sup(grR(0)) = {o1071,... 0,071} and therefore sup(¥) C {o107%,...,
0,01}, hence it follows that the R.-length of ¥ is at most n.

O

2.7.5 Corollary
If o € sup(X) for a gr-simple ¥ in R-gr then : Endg_g (X) = Endg, (X,).
Proof We may define a ring morphism ¢ by :
¢ Endp_g (X) — Endpg, (X5), u — u|Zs
If u|3, = 0, then w(X) = u(RE,) = Ru(X,) = 0. Therefore ¢ is injective.

On the other hand, if f € Endg, (3.) then we define u = 1®f : X(0) —
Y (o). From the fact that the o-suspension functor is a category isomorphism,
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it follows that Endp_g(X) = Endr_g(2(0)). Consequently, u = 1®f €
Endg_g(X). But we have ¢(u) = f as it is the restriction of 1®f to X,,
hence ¢ is also surjective and thus an isomorphism. O

2.8 The Structure of Gr-injective Modules

Let R be a G-graded ring and @ € R-gr an injective object. Assume that @ is
o-faithful, where o € G. With notation as in Section 2.6., we have t¢_(Q) = 0,
and therefore the canonical morphism v(Q) : @ — Coind(Q,)(c™?) is a
monomorphism.  Again, by Proposition 1.6.1., Imy(Q) is essential in
Coind(Q,)(c1). Since Q is gr-injective it follows that v(Q) is an isomor-
phism. We now prove that @, is an injective R.-module. Let F(Q,) be the
injective envelope of @, in R.-mod. Since Coind is a left exact functor, there
is a monomorphism Coind(®,) C Coind(E(Q,)) in R-gr. Since Coind(Q,) ~
Q(0), Coind(Q,) is gr-injective and therefore Coind(E(Q,)) = Coind(Q,)®X
for some X € R-gr. In particular we have Coind(E(Q,)). = Coind(Q,) ® X,
thus E(Q,) = Q», & X, and X, = 0. Hence F(Q,) = Qo, and therefore Q,
is an injective R.-module. We have in fact the following result.

2.8.1 Proposition

Let Q = ByccQs be a gr-injective module. If Q is o-faithful, then Q. is an
injective R.-module and Q ~ Coind(Q,)(c~1).

2.8.2 Corollary
Let M = @,egM, be a graded R-module. If M is o-faithful, then

E9(M) ~ Coind(E(M,))(c™1)

(recall that F9(M) denotes the injective envelope of M in R-gr).

Proof Since M is o-faithful and E9(M) is an essential extension of M,
E9(M) is o-faithful too. By Proposition 2.8.1, we have that FI9(M) =
Coind(E9(M),)(0c™1) and EI(M), is an injective R.-module. But since
E9(M) is o-faithful, Proposition 2.6.1 entails than M, is an essential R.-
submodule of E9(M),, and therefore E(M,) = E9(M), in R.-mod. O

2.8.3 Lemma

Let M € R-gr be a nonzero graded R-module such that sup(M) < co. Then
there exists a o € sup(M) and a nonzero graded submodule M’ of M such
that M’ is o-faithful.
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Proof By induction on the cardinality of sup(M). Noting that the claim
holds when sup(M) consists of one element only, assume that the result holds
when [sup(M)| < n and consider an M € R-gr with sup(M)| =n > 1. Choose
g € sup(M); if M is g-faithful we were lucky and stop the proof, otherwise
there exists a nonzero graded submodule N of M such that N; = 0. Then
sup(N) ; sup(M) and the induction hypothesis applied to N ylelds the result.

O

2.8.4 Corollary

If M € R-gris gr-injective and sup(M) is finite, then there is a graded nonzero
submodule @ of M such that @ is gr-injective and @ is o-faithful for some
o € G. In particular, every injective indecomposable object of finite suport
of R-gr is o-faithful for some o € G.

Proof In view of Lemma 2.8.3 there exist o € sup(M) and a nonzero graded
submodule N of M such that N is o-faithful. We put Q@ = E9(M) and it is
clear that @ is o-faithful and @ C M (in fact it is a direct summand).

O

For M € R-gr we put F(M) = {N, N a graded subobject of M such that N
is o-faithful for some o € G}.

2.8.5 Proposition

If M € R-gr has finite support then there is a finite direct sum of elements of
F (M) which is essential as an R-module in M.

Proof Let F(M) = {N;|i € I} and A = {J|J C I such that the sum
Zle s Ni is direct }. Inclusion makes A into an inductively ordered set ,
using Zorn’s lemma we may select a maximal element J of A. If § = ZZE J

is not gr-essential in M, then there is a nonzero graded submodule N of M
such that SN N = 0. Lemma 2.8.3 entails the existence of i € I with N; C N,
hence J U {i} € A. But the latter is a contradiction. Therefore S is gr-
essential in M, hence also essential as an R-submodule. Since the direct sum
of o-faithful graded modules it is o-faithful and the result now follows because
sup(M) is finite. O

2.8.6 Lemma

Let Q € R-gr be gr-injective of finite support and o-faithful for some o € G.
Then @ is injective in R-mod.
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Proof By Proposition 2.8.1, @, is injective in R.-mod and @ ~ Coind(Q,)
(0~1). Now we know that Coind(Q,)={f € Hompg, (R,Q,), f(R)) = 0,\ #
o~ '}, Since @ has finite support only a finite number of the components
Coind(Qyg), is nonzero. Therefore, we arrive at Coind(Q,) = Homg, (R, Q,)
which is injective in R-mod, hence @ is injective in R-mod too. O

The following provides apartial converse to Corollary 2.3.2., under the hy-
pothesis that modules having finite support are being considered. It is also
an extension of Corollary 2.5.2.

2.8.7 Theorem

If M € R-gr is gr-injective and of finite support, then M is injective as an
R-module.

Proof Proposition 2.8.5 provides us with M;®,... & M, essential in M,
M; € F(M;),i=1,...,n. Let E9(M;) be the injective hull of M;(1 <i <n)
in R-gr. Clearly : M = E9(M) = @, E9(M;). On the other hand, E9(M;)
has finite support for any 1 < ¢ < n and therefore Lemma 2.8.6 entails that
E9(M;) is an injective module in R-mod. Thus M is injective in R-mod. O

2.8.8 Corollary

Let M € R-gr be gr-injective having finite support. Then there exist o1, ...,
on € supp(M) and injective R.-modules Ni,..., N, such that M ~ &,
Coind(N;)(o;1).

i

Proof Directly from the proof of Theorem 2.8.7 and Proposition 2.8.1.

2.9 The Graded Jacobson Radical
(Graded Version of Hopkins’ Theorem)

Let R be a G-graded ring. If M is a graded R-module we denote by J9(M) the
graded Jacobson radical of M, that is the intersection of all gr-maximal
submodules of M (if M has no gr-maximal submodule then we shall take, by
definition, J9(M) = M).
2.9.1 Proposition

Let M be a nonzero graded R-module.
i) If M is finitely generated then J9(M) # M.

ii) J9(M) = {Kerf|f € Homp_g (M, X), X is gr-simple} = N{Kerf |
f € HOMp_g (M, X), X is gr-simple}.
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iii) If f € HOMp_g (M, N) then f(J9(M)) C J9(N).
iv) J9(grR) = N{Anng(X), ¥ is graded simple}.
v) J9(rR) is a (two-sided) graded ideal.

vi) J9(grR) is the largest proper graded ideal I such that any a € h(R)
is invertible, if the class of a in R/I is invertible.

Vii) Jq(RR) = Jq(RR)

Proof The proofs of the first five statements in the graded and ungraded
case are similar, so we shall omit them. Obviously, vi. implies vii., hence we
have to prove vi.

To this end, let 7 : R — R/JY9(rR) be the canonical map. Let a be a
homogeneous element in R such that its class in R/JI(rR) is invertible. If
Ra # R then there exists a gr-maximal left ideal M of R containing Ra. Since
J9(grR) € M and 7(a) is invertible it follows that R = M, a contradiction.
Hence Ra = R, i.e. there is b € R such that ba = 1, and we obviously may
assume that b € h(R). Moreover, m(b) is the inverse of w(a) in R/J9(gR), so
there exists ¢ € h(R) such that ¢b = 1 = ba. Therefore a = ¢, which implies
that a is invertible in R.

Let us prove that J9(gR) is the largest graded ideal of R having this property.
Suppose, if T is a left ideal of R, such that any a € h(R) is invertible if its
class in R/I is invertible. Let p : R — R/I be the canonical projection. If
we suppose that I Z J9(grR) then there exists a maximal graded left ideal
M which does not contain I. One gets I + M = R, so we may select two
homogeneous elements, a € I and b € M, with a +b = 1. As p(1) = p(b), it
follows that b is invertible in R, hence M = R, a contradiction. In conclusion,
I=J9gR). O

We have proved that J9(Rg) = J9(rR). We denote this graded ideal by
J9(R) and call it the graded Jacobson radical of R. The following corollary
is the graded version of Nakayama’s Lemma.

2.9.2 Corollary (Graded Version of Nakayama’s Lemma)
If M is a finitely generated graded left R-module then J9(R)M # M.

Proof By the second assertion of Proposition 2.9.1, J9(R)X = 0, for any
gr-simple module ¥. In particular, if we take N to be any proper maximal
graded submodule of M, we obtain J9(R)(M/N) =0, so J9(R)M C N # M.
O
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2.9.3 Corollary

If R is a G-graded ring then J9(R) N R. = J(R.). Moreover, J9(R) is the
largest proper graded ideal of R having this property.

Proof If ¥ € R-gr is a gr-simple module then, by Proposition 2.7.1, ¥ is
a semi-simple R.-module, so J(R.)X = 0. Thus J(R.) € R. N JI(R). To
prove the other inclusion, let NV be a simple left R.-module. Then ¥ = RN
is gr-simple and e-faithful, therefore J9(R)X = 0. Since ¥, ~ N we obtain
(J9(R)N Re)N =0, thus J9(R)( Re € J(Re).

Let us prove that any proper graded ideal I, with I (| R. = J(R.), is contained
in J9(M). Let a € h(R) be such that the class @ in R/I is invertible. There
exists a homogeneous element b in R, ab = ba = 1. Therefore, 1 — ab and
1—ba belong to INR, = J(R,). Then ab=1—(1—ab) and ba = 1— (1 —ba)
are invertible in R.. Let ¢, respectively d, be the inverses. We have a(bc) =
1 = (db)a, so a is invertible. By Proposition 2.9.1, a € J9(R), and this implies
that I C J9(R). O

2.9.4 Corollary

Let R = @,caRs be a G-graded ring of finite support. Assume that n =
|sup(R)|. Then :

i) J9(R) C J(R), where J(R) is the classical Jacobson radical.

ii) If (J(R)), is the largest graded ideal contained in J(R) (see Section
2.1) then (J(R))y = J9(R).

iii) J(R)™ C J9(R).

Proof
i) Follows from Corollary 2.7.4.

ii) By i. we have J9(R) C (J(R))y. Now if ¥ is a gr-simple R-
module then ¥ is finitely generated as an R-module and we have
J(R)E # X, thus ((J(R))sX # X. Since (J(R)), is a graded
ideal, (J(R )) ¥ is a graded submodule of X. But ¥ is gr-simple,
thus (J(R))yX = 0 and we have (J(R)); € J9(R). Therefore
(J(R)g = JO(R).

iii) If ¥ is gr-simple then (see Proposion 2.7.1), ¥ is a semisimple
R, of finite length. As an object in the category R-mod, X is
Noetherian and Artinian, hence ¥ is an R-module of finite length.
Clearly Ig_ (¥) < n. Since we have [r(X) < n hence J(R)"YX =0
and therefore J(R)" C J9(R). O
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We recall that M € R-gr is said to be left gr-Noetherian (respectively left
gr-Artinian) if M satisfies the ascending (respectively descending) chain
condition for graded left R-submodules. A graded ring R is called left gr-
semisimple if and only if :

(%) R=0L1&...® L,,

where L; are minimal graded left ideals of R, ¢ = 1,...,n. Obviously, if
R is a gr-semisimple ring, then R, is semisimple and Artinian. It is easy
to see, by using the decomposition (x), that a gr-semisimple ring is left gr-
Noetherian and gr-Artinian. A G-graded ring is called gr-simple if it admits
a decomposition (x) with HOMg(L,, L;) # 0, for 7,5 € {1,...,n}. The last
condition is satisfied, of course, if and only if there are o;; € G such that
Lj ~ Lz(O'”)

If R is gr-semisimple, having the decomposition (x), for any L; we consider the
sum of all L; which are isomorphic with L;(oyj), for a certain o;; € G. This
sum is a graded two-sided ideal of R, so any gr-semisimple ring is a finite direct
product of gr-simple rings. A gr-simple ring R is said to be gr-uniformly
simple if R has a decomposition (x), where L; ~ L; in R-gr,4,j € {1,...,n}.
In this case the ring R, is simple Artinian (if R is an arbitrary gr-simple ring
then R, is not in general a simple Artinian ring).

2.9.5 Proposition

Let R be a G-graded ring. R is left gr-semisimple if and only if R is right-gr-
semisimple.

Proof If R is left gr-semisimple then JY9(R) = 0. By the decomposition
(%), there are some orthogonal idempotents e;, i = 1,...,n, such that L; =
Re;. Moreover, e; € R, and it is easy to see that A; = e;Re; is a gr-
division ring. Let K; denote the right graded R module e; R. Obviously,
Rr =K1 ® ... K,, so to end the proof it suffices to show that each K;
is gr-minimal. To this end we shall prove that K = eR is gr-minimal, for
any graded ring R and any homogeneous idempotent e such that JI(R) =0
and A = eRe is a gr-division ring. Indeed, let 0 # J C K be a graded right
ideal of R. Since J = eJ and J # 0, eJ # 0. If eJe = 0 then (eJ)?) = 0,
hence eJ C J9(R) = 0, a contradiction. In conclusion, eJe # 0. On the
other hand (eJe)(eRe) = eJeRe C eJe, proving that eJe is a right graded
ideal in A. By the assumption, A is a gr-division ring, so eJe = A. It results
e=elece =J (A€ J), therefore eR=JRC J,ie. J=eR=K. O

2.9.6 Proposition
Let R = ®,cqRs be a G-graded ring. The following assertions hold :
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i) If R is gr-semi-simple then R is left and right e-faithful.

ii) Conversely, if R is left e-faithful and R, is semisimple Artinian
ring, then R is gr-semi-simple.

Proof

i) The above proposition entails that pR = ®_; L; where the L; are
graded minimal ideals L; = Re;, e; is homogeneous idempotent.
Since €? = e;, ¢; € Re 50 (L;)e = Ree; # 0. Hence, any L; is
left e-faithful and therefore R is left e-faithful. In a similar way it
follows that R is right e-faithful.

ii) We have R, = ®?_,S; where the S; are simple left R.-modules.
Since R is left e-faithful then R®r, Re = R ®gr, R ~ R. On
the other hand R®p, R. ~ ®! R®p,S; where R®p S; = ¥; is
gr-simple left module. So rR is a gr-semisimple left module.

The next corollary is the graded version of Hopkins’ Theorem.

2.9.7 Corollary
If R is left gr-Artinian then it is left gr-Noetherian.

Proof We shall adapt the proof of Hopkins’ Theorem to the graded case.
Because, R is gr-Artinian, J9(R) is a finite intersection J9(R) = MyN...NM,
of gr-maximal left ideals. In particular, R/JY9(R) is a gr-semisimple ring. The
descending chain

JI(R)DJI(R)?*D...DJY(R)"D...

must terminate, so there exists n € IN such that J9(R)" = JI(R)"T! =

If J9(R)™ # 0 then there exists an homogeneous = € JY9(R)" such
that J9(R)z # 0. We can choose the element x € J9(R)" such that Rx
is minimal with the property that J9(R)x # 0. By Nakayama’s Lemma
we have J9(R)xr = J9(R)Rx # Rz. If a € J9(R) is a homogeneous el-
ement we have Rax C JI9(R)x C Rz and Rax # Rx. Therefore ax =
0, which implies J9(R)z = 0, contradiction. One gets J(R)™ = 0. For
each i = 1,...,n—1, J9(R)!/JI(R)"! is annihilated by JI(R), so it is an
R/J9(R)-module. Since the ring R/J9(R) is gr-semisimple it follows that
JI(R)"/J9(R)"! is a gr-semisimple module. It is also a gr-Artinian module,
thus it is left gr-Noetherian, so the corollary is proved. O

A Grothendieck category A is said to be semisimple if every object is
semisimple, i.e. a direct sum of simple objects. For any semisimple abelian
category, a subobject of an object M is a direct summand of M. The converse
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is not necessarily true in general but for a locally finitely generated one, i.e.
whenever there exists a family {U;,i € J} of generators for A such that each
U, is finitely generated, it is true that the property for subobjects of an object
to be direct summands does imply the semisimplicity of A.

We are interested in the particular case A = R-gr, then A has the family
of generators {gR(0),0 € G} and each rR(0) is of course finitely generated.

2.9.8 Proposition
The following statements hold for a G-graded ring R :

i) R is left gr-semisimple if and only if R-gr is semisimple.

ii) R is gr-simple if and only if R-gr is semisimple and there exist
a gr-simple object ¥ such that every gr-simple object of R-gr is
isomorphic to X(o) for some o € G.

iii) R is uniformly gr-simple if and only if there exists a gr-simple
object X such that gR = X" for some n > 1 € IN. In that case
sup(R) = sup(X) and sup(R) is a subgroup of G.

iv) R is uniformly gr-simple if and only if R is gr-semisimple and R,
is a simple Artinian ring.

Proof Both i. and ii. follow from the definitions.

iii. Look at the decomposition (x) and put ¥ = L. We have L; & ¥ for
1 <4 <n and thus pR = ¥". It is clear enough that sup(R) = sup(Z).
Since ¥, # 0, e € sup(X) follows. Assume that 0,7 € sup(o). Since
Yr # 0 then RY; = X and therefore ¥, = R,,-1X;. Since Xs+o then
R,s-1 # 0. On the other hand from the isomorphism rpR & X" it
follows that ¥,,-1 # 0 so o7~ ! € supp(X). Hence sup(X) is a subgroup
of G.

iv. If R is uniformly gr-simple then the statements in iv. do follow trivially.
For the converse assume that R, is simple Artinian; then R, = S™ for
some simple R.-module S. But R®pg, R, = (R®g,S)" (R is e-faithful).
If we put ¥ = R®p_S then R = X" and it follows from iii. that R is
uniformly gr-simple.

2.10 Graded Endomorphism Rings and Graded
Matrix Rings

For a G-graded ring R and an M € R-gr the ring ENDr(M) = HOMpg (M, M)
is a G-graded ring with obvious addition and multiplication defined by ¢.f =
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f o g. In this section we provide necessary and sufficient conditions for the
graded ring ENDg(M) to be strongly graded or a crossed product

First we have to introduce a few general notions.

Let A be an abelian category and M, N € A. We say that N divides M in A if
N is isomorphic to a direct summand of M, i.e. there exists f € Hom 4(M, N)
and g € Hom4 (N, M) such that fog = 1y. We say that N weakly divides
M in A if it divides a finite direct sum M? of copies of M. It is clear that
N weakly divides M in A if and only if there exist fi,..., ft € Hom4(M, N)
and ¢1,...,9: € Hom4(N, M) such that 1y = fiog1 + ...+ ft o gs.

We say that M, N € A are weakly isomorphic in A (we denote this by
M ~ N) if and only if they weakly divide each other in A. Thus M ~ N
if and only if there exist positive integers n, m and objects M’', N’ € A such
that M @ M’ ~ N™ and N @ N' ~ M". Clearly ~ is an equivalence relation
on the class of objects of A.

Let us consider A = R-gr in particular. An object M € R-gr is said to be
weakly G-invariant if M ~ M(o) in R-gr for all o € G.

2.10.1 Theorem

Let M € R-gr. Then the G-graded ring ENDg (M) is strongly graded if and
only if M is weakly G-invariant. In particular R is a strongly graded ring if
and only if R is weakly G-invariant in R-gr.

Proof

ENDg(M) is strongly graded if and only if 1 € ENDgr(M)\ENDg(M)x-1
for any A € G. This condition is equivalent to the fact that there exist
g1,---,9n € ENDg(M)y and f1,..., fn € ENDR(M)x-1 such that

ly= Y gi-fi=Y fiog (1)
i=1,n i=1,n
But
ENDg(M)x = Homp_g4 (M(0), M(cX))
and
ENDgr(M)y-: = Hompg_ 4. (M (o)), M(0))

for any 0 € G. The equation (1) is equivalent to the fact that M (o) weakly
divides M (o)) for any o, A € G. For o = e this means that M weakly divides
M()) for any A € G. Also, for A = o7, it means that M (o) weakly divides
M for any o € G. Therefore M ~ M (o) for any o € G. The last part of the
theorem follows from the fact that Endr(R) ~ R as graded rings. O

An object M € R — gr with the property that M ~ M(o) for any o € G is
called a G-invariant graded module.
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2.10.2 Theorem

Let M € R-gr. Then ENDg(M) is a crossed product if and only if M is
G-invariant. In particular, R is a crossed product if and only if R ~ R(o) for
any o € G.

Proof ENDg(M) is a crossed product if and only if ENDg (M), contains an

invertible element for any o € G. Since ENDg(M), = Homg_ 4. (M, M(0)),

we see that ENDg (M) is a crossed product if and only if M is G-invariant.
O

For any object M € R-gr we denote by M = @,cqM (o) and M = [15cc M(o).
Clearly M and M are G-invariant graded modules, so the rings ENDg (M)

and ENDg(M) are crossed products. The next result describes the structure
of these rings more precisely.

2.10.3 Theorem

ENDR(M) (respectively END R(ﬁ)) is a skew groupring over the ring
Endg_g (M) (respectively End g, (M)).

Proof Let us consider a family (M?®)zecq of copies of M as an R-module
indexed by the group G. Let [] . M® be the direct product of this family
in the category R-mod, and define for any g € G a map

H M* — H M*, g((m")sec) = ((n")zec)

zeG zeG

where n* = m9" for any z € G, which is clearly a morphism of R-modules.
If g,h € G we have that gh = hg. Indeed (h o g)((m*)zec) = h((n)zeq)
Where n® = m9”. If we put h((n")scc) = (P")zeq, then p® = nh* = = m9he) =

“ for any = € G. Hence gh = hg. In particular gg—! = g~'g =1, and g
is an 1somorphlsm. Then we can define

¢ :G— UEndp([] M"), ¢(9) =7
zeG

Clearly ¢ is a group morphism and §(®,ccM®) = ®reaM?®.

We consider the case where M € R-gr and M* = M(z) for any € G. Let

M = ireG (z) be the direct product of this family in the category R-gr.

We have M = @)\egM)\, where

M)\: HM(:L‘),\Z HM,\Q;
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Ifm = (m%)geq € ﬁ,\, then m* € M)y,, hence g(m) = (n®)zcq, where
n® = m9% € Myg,. Since

ﬁkg = H M(z)yg = H Mg

zeG zeG

we obtain that §(ﬁ>\) C ﬁAg. In particular §(ﬁ) C ﬁ, thus g is a morphism

of degree g when considered as an element of END (M ). The construction of

the map ¢ yields group morphisms ¢ : G — U&(ENDg(M)) and ¢" : G —

U#"(ENDR(M)), now we just apply the results of Chapter I. O

Now we focus our attention on matrix rings with entries in a graded ring,
and investigate how these can be made into graded rings themselves. Let
R = ®,cc R, be a G-graded ring, n is a positive integer, and M,,(R) the ring

of n X n-matrices with entries in R. Fix some 7 = (01,...,0,) € G". To any
A € G we associate the following additive subgroup of M, (R)
Rol)\ofl RO’] /\0';1 RUl)\U;l
Mn (R))\(E) — R02)\01—1 Razx\o';l Ronggl
R, Aor ! R, Aogl R, oo

2.10.4 Proposition

The family of additive subgroups {M,(R)A(c)| A € G } defines a G-grading
of the ring M, (R). We will denote this graded ring by M, (R)(7).

Proof It is easy to see that M, (R)x()M,(R),.(G) C My(R)x.(7) for any
A € G. Since RaiAU;l N (ZWD‘ Rgiﬂg;l) = 0 for any 4,5 € {1,...,n},
we see that M, (R)A(T) N (32,0 Mn(R)u(@)) = 050 Y o\co Mn(R)A(0) =
@rcaMp(R)A(F) To finish the proof it is enough to show that M, (R) =
Y e Mn(R)A(T). Any matrix in M, (R) is a sum of matrices with a homo-
geneous element on a certain entry, and zero elsewhere, therefore it is enough
to show that any such matrix belongs to > .o M, (R)A(7). Let A be such a
matrix, having the element r € R, on the (4, j)-entry, and zero elsewhere. If
we take A\ = o} 'go;, we have that A € M, (R),(7), which ends the proof.

O

If we take 01 = ... = 0, = e, we simply denote the resulting graded
ring structure on M, (R)(€) by M,(R), In this case the grading is given by
Mn(R) = @,\egMn(R))\, where

Ry ... Ry
M,(R)x=1| ... ... ...
Ry ... Ry
for any A € G.
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2.10.5 Proposition

Let M € R-gr be gr-free with homogeneous basis e1, . . ., e,, say deg(e;) = 0;.
Then ENDg(M) ~ M, (R)(c), where & = (01,...,0p).

Proof If f € ENDr(M)x, A € G, then f(M,) C M,y for any 0 € G. In
particular f(e;) € My, forany i = 1,...,n. Hence f(e;) =>_ a;je; with
a;; homogeneous of degree Ui)\a;l. Therefore the matrix (a;;) associated to
fis in M, (R)A (7). O

j=1n

2.10.6 Remarks

i) If 7 = (01,...,00) € G", put M = R(o7 ") @ ...® R(o;, '), where
e; is the element of M with 1 on the i-th slot and 0 elsewhere,
then e; is a homogeneous element of degree o; and eq,...,e, is a
basis of M.

ii) It follows from Propositions 3.5.4 and 3.5.5 that if M € R-gr is gr-
free with finite homogeneous basis, then Endr(M) = ENDgr(M).

iii) Let @ = (01,...,0n) € G™ and ¢ € S, a permutation. Put
o(7) = (Op(1)r - 2 O(y) Then My (R)(@) = M (R)(o(@)) as G-
graded rings. Indeed, by the first remark, we have M, (R)(T) ~
ENDg (M), where M = R(o; ")&...@R(c;!). If we put o,y = 74
and N = R(1; ') @... @ R(r;; ') then clearly M ~ N in R-gr. The
assertion follows from the fact that M, (R)(p(d)) ~ ENDg(N)
and ENDz(M) ~ ENDg(N).

iv) Let ¢ = (01,...,0,) € G™ and 7 € Z(G), the centre of the
group G. We put o7 = (017,...,0,7). Then we have that
M, (R)(@) = M,(R)(@7). Indeed, since 7 € Z(G), we clearly
have that M, (R)x(T) = M, (R)A(cT)

O

2.10.7 Example

Let K be a field and G = Zs. Regard K as a trivially G-graded ring. From
the preceding remark, we obtain the following. If n = 2, then My(K) has two
G-gradings. The first one is the trivial grading, i.e. My(K); = M2(K) and

M;(K); = 0. The other one is the grading given by My (K)y = < [0( [()( >

and My (K); = < [0< IO< > For n = 3, on M3(K) we have two gradings.
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The first is the trivial one, M3(K); = M3(K) and M3(K); = 0. The second
one is given by

K K
My(K)y=| K K
0 0

2.10.8 Corollary

If R is a G-strongly graded ring and & = (071, ...,0,) € G, then the G-graded
ring M, (R)(7) is strongly graded.

Proof Consider the gr-free module M = R(07 ") @ ... ® R(o;,'). We know
from Theorem [!] that R is strongly graded if and only if R ~ R(c¢) for any
o € (G. Since ~ is an equivalence relation, we have that
M@) = Rei)0)®... o R(o;") (o) (2.1)
= R(oo;H)@...® R(oa,t) (2.2)
Since R is strongly graded, R ~ R(co; ') and R ~ R(o; '). By transitivity
we obtain that R(co; ') ~ R(o; ') for any 1 < i < n. Clearly :

@z‘:l,nR(UUfl) ~ @i:17nR(0'71)

therefore M ~ M (o) for all 0 € G. Then by Theorem 1.9.2 and Proposition
1.9.5 it follows M, (R)(7) is a strongly graded ring. O

2.10.9 Corollary

If R is a G-crossed product (respectively a skew groupring over G), then for
any o = (01,...,0,) € G", M,(R)() is a crossed product (respectively a
skew groupring over G).

Proof For any A € G we have

Rol)\ofl RO’] /\0';1 RUl)\U;I

R -1 R —1 R —1
Mn (R))\(E) — o020 020, Tado,,

R, st Ry ypo R, o

Since R is a G-crossed product, there exists an invertible element u__, -1 €

R —1. Then the matrix

oiAo;
ual /\01—1 0
Ay = 0 Ugyros ! 0
0 0 uanM 1
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is an invertible element of M, (R)A(7), so M, (R)(7) is a G-crossed product.
Now assume that R is a skew groupring over (G. Then there is a group
morphism ¢ : G — U9(R) such that dego ¢ = 1g, i.e. p(g9) € Ry for any
g € G. In this case we consider the matrix

(o hoyt) e 0
Ay = 0 loaayt) ... 0
0 0 oo plopAant)

Then for any A, € G we have that AyA, = A,,, so the map ¥ : G —

U9 (M, (R)(7)) defined by B(\) = Ay for any A € G, is a group morphism

with the property that deg o @ = 1. Hence M, (R)(7) is a skew groupring.
O

2.10.10 Theorem (Graded version of Wedderburn’s The-
orem)

Let R be a graded ring of type G. Then the following statements are quiva-
lent :

i) R id gr-simple (resp. gr-unifromly simple)

ii) There exists a graded division ring D and a & = (01,...,0,) € G"
such that R ~ M, (D)(7) (resp. R ~ M, (D)).

Proof A full proofis given in Chapter I'V. In fact, by Corollary 4.5.8, putting
D =End(g¥) = END(gY) and V = Xp, we have R = End(Vp) here Vp is a
graded vector space of finite dimension. O

2.11 Graded Prime Ideals. The Graded Spec-
trum

An ideal P of a ring R is prime if P # R and if IJ C P implies that I C P or
J C P, for ideals I and J of R. Equivalently P # R is prime if for a,b € R,
aRb C Pifand only ifa € P or b € P. The set of prime ideals of R is denoted
by SpecR; it is called the prime spectrum of R.

Using Zorn’s lemma, we may find for P € SpecR a minimal prime ideal
Q@ € SpecR such that P D Q. The prime radical rad(R) of R is defined
as : rad(R) = N{P, P € SpecR}. It is clear that rad(R) is the intersection
of all minimal prime ideals of R. A basic fact in elementary Ring Theory
states that rad(R) is exactly the set of all strongly nilpotent elements in
R, i.e. those a € rad(R) such that for every sequence ag, a1, ..., a,, such that
ag = a,a1 € agRag, as € a1 Ray,...,a, € an_1Ra,_1, there is an n > 0 such
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that a,, = 0. In particular, every element of rad(R) is nilpotent. For a simple
R-module S the annihilator anng(.S) is certainly a prime ideal, consequently
it follows that rad(R) C J(R), the latter being the Jacobson radical of R. If
rad(R) = 0 then R is said to be a semiprime ring. It is not difficult (see
Exercises, Section 2.12) to verify that R is semiprime if and only if R has no
nonzero nilpotent ideals.

A proper ideal T # R is said to be semiprime if the ring R/I is a
semiprime ring.

In a G-graded ring R a graded ideal P of R is gr-prime if P # R and for
graded ideals I and J of R we have I C P or J C P only when IJ C P. A
graded ideal P is gr-prime if and only if aRb C P with a,b € h(R) implies
a € Porbe P. The ring R is said to be gr-prime when (0) is a gr-prime
ideal of R. The set of all gr-prime ideals of R is denoted by Spec?(R) and it
is called the graded (prime) spectrum of R. Every gr-prime ideal contains
a minimal gr-prime ideal. We write rad?(R) for N{P, P € Spec!(R)} and
call it the gr-prime radical of R. Just like in the ungraded case we obtain
rad?(R) C J9(R), where J9(R) is the graded Jacobson radical of R. The
ring R is said to be gr-semiprime whenever rad?(R) = 0. Again, as in the
ungraded case we have that R is gr-semiprime if and only if R has no nonzero
nilpotent graded ideals.

With these conventions and notation we have :

2.11.1 Proposition
1. If P € Spec(R) then (P), € Spec?(R).
2. If @ € Spec?(R) then there exists a P € Spec(R) such that Q = (P),
3. rad?(R) = (rad(R)),

Proof
1. Easy.

2. In view of Zorn’s lemma we may choose an ideal P maximal with respect
to the property that @ = (P),. First we establish that P is a prime
ideal, therefore look at ideals I,.J of R such that IQP, J;P. By

the maximality assumption on P it follows that (I), QQ and (J), 2 Q

and thus (I),(J)g ¢ Q. Since (I)4(J)y C IJ it follows that IJ ¢ P
and therefore P is a prime ideal (for arbitrary ideals I and J such that
I1J C P we may always look at I+ P and J+P with (I+P)(J+P) C P).

3. Follows directly from 1. and 2. O

We include some specific results in case R is G-graded of finite support.
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2.11.2 Lemma (Cohen, Rowen)

Assume that R = ®,cqR, is a G-graded ring of finite support with n =
[sup(R)|. Consider d > 1in IN and Ay, ..., \,d € G. We define a; = [[;_; A
and assume that «; € sup(R), 1 < i < nd. Then there exists a sequence :
0<jo<J1<...<jqg<nd, such that :

62)\j0+1...>\j1 :)\j1+1...>\j2 =... :)\jd—l"l‘l"')\jd
Proof We consider the elements 1,aq,...,anq. Since |sup(R)| = n there
are least d 4+ 1 elements o; that are equal, say o, = o5 = ... = «a,

with 1 < jo < j1 < ... < jqg. If0 <k <d—1 then from A;... N\, =
()\1 .. ')‘jk)()‘jk+1 .. ')‘jk+1)’ hence e = )‘ijrl .. 'Ajk‘Fl'

2.11.3 Proposition. (Cohen and Rowen)
Let R be G-graded of finite support, say n = |sup(R)].

1. If S C R is a graded subring such that S, = 0 then S™ = 0.

2. If L C R, is a left ideal such that L? = 0 then (RL)*! = 0.

Proof

1. Write sup(R) = {x1,...,2n}. Since S = @' S5,, we obtain S" =
> 8y, ... Sy, where the (y1,...,yn) range over all choices of n elements
from {x1,...,2,}. If for ¢ < n, y1y2...y:+ & sup(R) then we have
Sy Sy, - .- Sy, = 0. On the other hand if now 1,y1,¥1%2,---,%1..-Yn €
sup(R) then by lemma 2.11.2, for d = 1, it follows that there ex-
ist 1 <r < s < nsuch that ypq1...9s = 1. So Sy, Sy, ... Sy, C
Sy, - Sy, Sy Sy..19y, = 0 since Sy, .ys = S1 = 0. Hence
S" =0

r4+1--Ys ™ Ys+1 r+1 "

2. If we put S = RL, S is a left graded ideal of R where S. = RLN R, = L.
We get Ai,...,A\nd € G. By Lemma 2.11.2, we have Sy, ...S5y,, C
AL?B = 0 where A, B are suitable subproducts. Hence S™* = 0.

2.11.4 Theorem

Let R be a G-graded ring of finite support. Assume that R is gr-semiprime.
Then

1. R is e-faithful
2. If o0 € sup(R) then o~1 € sup(R)

3. R. is a semiprime ring
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Proof

1. We denote by I = te, (rR); then I is a graded left ideal of R, such
that I, = 0. Then by Proposition 2.11.3 we have I™ = 0. Since R is
gr-semiprime we must have I = 0 so R is left e-faithful. In a similar
way, it follows that R is also right e-faithful

2. If R, # 0, pick z, € Ry,x, # 0. Since R is left e-faithful we have
R, 125 #0. So R,-1 # 0 and therefore 0~ ! € sup(R).

3. Follows from Proposition 2.11.3, assertion 2.

2.11.5 Corollary
Let R be a G-graded ring. Then
1. rad(R) N R, =rad?(R) N R, C rad(R,)

2. If sup(R) < oo then rad?(R) N R, = rad(R.)

Proof

1. The equality rad(R)N R, = rad?(R)N R, follows from Proposition 2.11.1
assertion 3. Let a € rad?(R)NR,; to prove that a € rad(R.) it suffices to
show that a is strongly nilpotent. Indeed let the sequence ag, aq,...,an
of elements from R, such that ag = a,a1 € agReaq,...a, € ap_1Reay_1,

Clearly a1 € agRag,...,an € an_1Ran_1,.... Since a € rad?(R) there
exists an n such that a,, = 0 so a € rad(R).

2. Direct from Theorem 2.11.4. assertion 3. O

Assume now that R = ®,cc R, is a strongly graded ring. We denote by
Mod(R,, R) the set of all two-sided R, submodules of R. If A € Mod(R,, R)
and o € G then put A° = R,-1AR,. It is clear that A° € Mod(R,, R), we
say that A% is the o-conjugate of A.

2.11.6 Lemma

Fixing o € G, the map ¢, : Mod(R., R) — Mod(R., R), A — A7 is bijective
and it preserves inclusion, sums, intersection and products in R of elements
of Mod(R., R).
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Proof For 0,7 € G we obtain (A7)" = A°7 for all A € Mod(R,, R). From
this it follows that ¢, is bijective with the map ¢,-1 as an inverse. Now, if
we consider (A;);er, a family of elements from Mod(R,, R), then N;crA; =
RURU—l(ﬂiein)RgRo—l - Rg(ﬂiejAg)RU—l o) Rg—l(ﬂiein)Ro - ﬂieIAg
hence (NA;)? C NierAY. Therefore (ﬂieIAg’)fl C Nierd; and N;er A% C
(NA;)7, thus (NA;)7 = Nier A?. In a similar way one checks that ¢, preserves
sums and poducts. O

We say that A € Mod(Re, R) is G-invariant if A7 = A for all 0 € G. It
is straightforward to check that any ideal of R is a G-invariant element of
Mod(Re, R). If A C R, is an ideal then A € Mod(R,, R). Clearly, A° is also
an ideal of R.. If P is a prime ideal of R., then P is also a prime ideal of
R.. If P is a G-invariant ideal of R., then P is called G-prime if and only
if A1 Ay C P for G-invariant ideals A;(i = 1,2) of R, implies that A; C P or
Ay, C P.

2.11.7 Proposition

Let R be a strongly graded ring of type G and let I be a graded ideal of R.
Then I, is an ideal of R,, it is G-invariant and I = RI. = I.R. Moreover

1. The correspondence I — I, defines a bijection between the set of graded
ideals of R and the set of G-invariant ideals of R,.

2. The above correspondence induces a bijection between the set of gr-
prime ideals of R and the set of G-prime ideals of R..

Proof Ifo € G,since R,-1I.R, C [ and R,-1I.R, C R, then R,-1I.R, C
I, s0 I? C 1. Since I, = (I7)° ' C I? ' we obtain (because o is arbitrary)
that I, C I7  where 7 = o', So I, C I¢ and I, = I7, thus I, is a G-
invariant ideal of R.. Since R is strongly graded we have I = RI, = I R.
Consequently, if A is a G-invariant ideal of R, then ] = RA = AR is a graded
ideal of R. Moreover if P is a gr-prime ideal of R, then P, is a G-prime ideal
of R.. Indeed, if A.B C P, where A, B are G-invariant ideals of R, then we
have (RA)(BR) C RP.R = P. Since RA = AR and BR = RB so we have
RACPorBRCPsoACP,or BCP,. Now the statements 1. and 2.
follow. O

2.11.8 Corollary

If R is a strongly graded ring, then the Jacobson radical of R., J(R,), and
the prime radical rad(R.) are both G-invariant.

Proof We have J(R.) = R.N J9(R) and rad(R.) = R, Nrad?(R) hence we
may apply Proposition 2.11.7 O
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2.11.9 Corollary

Let R be a G-strongly graded ring. If P is a prime ideal of R, then P N R,
is a G-prime ideal of R.. Conversely, if @) is a G-prime ideal of R, then there
exists at least one prime ideal P of R such that PN R, = Q.

Proof Just apply Proposition 2.11.1 and Proposition 2.11.7. O

2.11.10 Corollary

When R is strongly graded by a finite group G then rad(R.) is exactly the
intersection of all G-prime ideals of R..

Proof Apply Corollary 2.11.5.2 and Proposition 2.11.7 O

A graded ring R of type G is almost strongly graded R = ) __ Ry, where
each R, is an additive subgroup of R such that 1 € R, and R, R, = Ry, for
all o,7 € . Such rings have also been termed Clifford systems in the
literature.

Any epimorphic image of a strongly graded ring is an almost strongly graded
ring (in fact they may be characterized as such). In particular, an epimorphic
image (factor ring) of an almost strongly graded ring is again almost strongly
graded. For an almost strongly graded ring R = ) ., R,, every R, is an
invertible R, — R.-bimodule and in particular R, is (left as well as right) a
projective and finitely generated R.-module.

In the sequel of this section we assume that R is almost strongly graded by
a finite group G. Consider an R-module M and N an R.-submodule of M,
we let N* = NyeqgR,N denoted the “largest” R-submodule of M contained
in N.

2.11.11 Lemma

Let R be almost strongly graded by a finite group G and consider an R-module
M. Then M contains an R.-submodule N which is maximal with respect to
the property N* = 0.

Proof Let (N;)ier be a chain of R.-submodules of M such that N = 0
for each i € I. If (UjerN;)* # 0 there is an x € (UjerN;)*,z # 0 ie.
Rz C (UjerN;)* C UjerN;. Hence Rox C UierN; for all o € G. Since R, is
a finitely generated R.-module it follows that for ¢ € G, there exists an i
such that R,z C N,,. Since G is finite we can assume that R,z C N;, for
any o € G hence z € N ie. N # 0, contradiction. Therefore we must have
(UjerN;)* = 0 and then Zorn’s Lemma may be applied in order to yield the
existence of an N as desired. O
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2.11.12 Theorem

Let R =3 . Rs be an almost strongly graded ring (G is a finite group). If
P is a prime ideal of R there exists a prime ideal Q of R, such that PN R, =
Noec@’. Moreover, @ is minimal over P N R,.

Proof Since the ring R/P is also an almost strongly graded ring, we may
assume that P = 0. We view R as an R, — R-bimodule. Using Lemma 2.11.11
we may choose an R, — R subbimodule Y maximal with respect to Y* = 0.
Hence NyegRsY = 0. First we note that aR.b C Y for a € R.,b € R,
implies a € Y or b € Y. Suppose that a,b ¢ Y. By maximality of Y we
have I = (ReaR+Y)* #0 and J = (R.DR+Y)* # 0. Clearly I and J are
ideals of R. Since I # 0, J # 0 and R is prime we have IJ # 0. On the
other hand we obtain : IJ C (RecaR+Y)J C ReaJ +YJ C ReaJ+Y C
Re.a(ROR+Y)+Y C ReaR.DR+Y CY. Hence 0 # IJ C Y, and therefore
0 # IJ C Y* which leads to a contradiction.

Put Q = YNR.. As a consequence of the preceding statement it follows that @
is a prime ideal of R.. From Nycg®? = NpegRs-1QRs C NpegRs-1Y R, C
NycagRs-1Y = Y* = 0, it then follows that Nycq@? = 0. For the second
statement, consider a prime ideal ' minimal over PNR,. From Q' D Nyeqg@’
we derive that Q" O [], ., Q7 and hence Q" O Q7 for a certain 0 € G.
However, Q¢ is prime too, so by the minimality assumption on @), we arrive
at Q' = Q7. Consequently, Q = (Q’)"fl. Of course, Q° D PN R, and so it
follows that @ is a prime ideal minimal over P N R,.

O

2.11.13 Corollary

If the almost strongly graded ring R with respect to a finite group G is
semiprime, then R, is a semiprime ring.

2.11.14 Corollary

Assume that R is strongly graded by a finite group G and consider a prime
ideal @ of R.. There exists a prime ideal P of R such that PN R, = Q if and
only if @ is G-invariant.

Proof Apply Corollary 2.11.9 and Theorem 2.11.12. O

2.11.15 Corollary

In the situation of Corollary 2.11.14, there exists a prime ideal P of R such
that @ is in the set of minimal primes over P N R,.
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Proof Put A = N,eqQ?. Clearly A is G-invariant and a G-prime ideal of
R.. Now, there exists a prime ideal P of R such that PN R, = A. Clearly @
is a minimal prime ideal over P N R,.

2.12 Exercises

Let G be a multiplicative group with identity element e. We recall that a left
G-set is a non-empty set, say A, together with a left action G x A — A of G
on A given by (o,x) — oz, such that e.x = x and (o7)r = o(7z) for every
0,7 € Gix € A. If A and A’ are left G-sets, then a map o : A — A’ is a
morphism of G-sets if p(ox) = op(z) for every 0 € G,z € A. We denote
by G-SET the category of left G-sets. Analogously, we define the category of
right G-sets denoted by SET-G.

1. Prove that G-SET is a category with coproducts and products.

2. If Ais a left G-set, we denote by A°P the right G-set where A°P? = A (as
the set) and the right action is defined by = * 0 = 0~ 12. Prove that the
correspondence A — A°P is an isomorphism between categories G-SET
and SET-G.

3. If H < @ is a subgroup of G, we denote by G/H (resp. G\H) the set of
all left H-coset o H, (resp. the set of all right H-coset Ho) with o € G.
Prove that G/H is a left G-set if we put 7(0cH) = (70)H for any 7 € G.
Prove that, if G acts transitively on A ((i.e. for any x,y € A, there
exists o € G, such that y = ox), then A is isomorphic with a G-set of
the form G/H for some subgroup H of G.

4. Prove that in the category G-set every object is the coproduct of G-sets
of the form G/H.

5. Let R = @,ec R, be a G-graded ring and A a left G-set.

A (left) A-graded R-module is a left R-module M such that M =
BrecaM,, where every M, is an additive subgroup of M, and every
o € G, x € A we have R,M,, C M,,. We can define the category
(G, A, R)-gr of A-graded R-modules as follows : the objects are all A-
graded R-modules; if M = @,ca M, and N = ©,ca N, are A-graded left
R-modules, the morphisms between M and N on the category (G, A, R)-
gr are the R-linear f : M — N such that f(M,) C N, for every z € A

i.e.
Hom(G7A7R)_gr(M, N) ={f € Homg(M,N)|f(M,) C N,,Vx € A}

If H < G is a subgroup of G, we denote by (G/H, R)-gr the category
(G,G/H, R)-gr.

i) Prove if A is singleton (G, A, R)-gr is just R-mod.
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ii) Prove that (G, A, R)-gr is equivalent to a product of categories
[I,c;(G/H;, R)-gr where (H;)ier is a family of subgroups of
G.

iii) Prove that (G, A, R)-gr is a Grothendieck category with a
family of projective generators.

Hint : To show that (G, A, R)-gr is an abelian category, use the same
argument as for the case when A = G. But, in order to prove that
(G, A, R)-gr has a family of projective generators, we procede in the
following way : if R = ®,cqRs is a G-graded ring, for each z € A we
define the a-suspension R(z) of R to be the object of (G, A, R)-gr which
coincides with R as an R-module, but with the gradation defined by

R(z)y = ®{R,loc € G,ox =y} forye A

The family {R(x),x € A} is a family of projective generators for the
category (G, A, R)-gr.

. Prove that if M € (G, A, R)-gr then M is a projective object if and only
if M is projective as left R-module.

Hint : Apply exercise 5.

. Let A and A’ be G-sets and ¢ : A — A’ a morphism of G-sets. To ¢, we
associate a canonical covariant functor T, : (G, A, R)-gr — (G, A’, R)-
gr, defined as follows : T, (M) is the R-module M with an A’-gradation
defined by

M, = ®{M,|z € A, p(x) =2} for 2’ € A’

where we put M, = 0if 2’ € p(A). If f € Hom(g,a,g)—g(M, N), we
put T,(f) = f. To prove that T, has a right adjoint S¥ and the latter
is an exact functor. Moreover, if ¢~!(2') is a finite set for all 2’ € A’,
then S¥ is also a left adjoint for T,.

Hint : The same proof as in section 2.5. (the first part).

. If A is a finite G-set prove that @ € (G, A, R)-gr is an injective R-
module.

. Let G be a group and H < G a subgroup of G. If R = ®,ccRs
is a G-graded ring we consider the category (G/H,R)-gr. We de-
note by Ty : (G/H,R)-gr — Rpy-mod (here Ry = @,cpR,) the
exact functor Ty(M) = My where M = ®ceg/pMc and if f €
Hom(G’/H7R)—gr(Ma N) then TH(f) = f/MH : My — Npg.

Prove that Ty has a left adjoint functor Indy : Ry—mod — (G/H, R)-
gr, called the induced functor and also a right adjoint functor Coindy :
Ry-mod — (G/H, R)-gr, called the coinduced functor.
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Prove also that when R is a strongly graded ring, Indy is an equivalence
of categories having Ty for its inverse.

Hint : The construction of Indy is simple; if N € Rpy-mod then
Indgy(N) = R®p, N with the G/H-gradation

IndH(N) = @GGGH(IndH(N))C where (IndH(N))C = Rc ®pry, N. For
the rest we apply the techniques used in Section 2.5.

With notation as in exercise 9, put Cy = {M = ©ceq/uMc € (G/H, R)-
gr, such that My = 0}.

i) Prove that Cp is a localizing subcategory of (G/H, R)-gr which
is also stable under direct products. We denote by ty the
radical associated to Cp, i.e. if M € (G/H, R)-gr, ty(M) is
the sum of all subobjects of M which belong to Cx. Now if
N € Ry-mod we have Indy(N) = R®pg, N. We denote by
R®p,N = R®g,, N/tg(R®Rr, N). So we obtain the functor

R®pg, —: Ru—mod — (G/H, R)—gr

ii) Prove the following assertions :

a. If N € Ry-mod is simple module then R®p,, N is a sim-
ple object in (G/H, R)-gr.

b. If ¥ = ®ceq/uXc is a simple object in (G/H, R)-gr such
that Xy # 0 then prove that Yy is simple in Ry-mod
and in this case

Y~ R®RH EH

Hint : For i. see section 2.6. and for ii. use the same proof as in Section
2.7.

Let R be a graded ring and N € R-gr; N is called gr-flat if the functor
— ®pr N : gr—R — Z-gr is exact. Prove that N is gr-flat if and only if
N is flat in R-mod.

Hint : The implication < is obvious. Conversely if NV is gr-flat, as in
the non-graded case N is the inductive limit in R-gr of gr-free modules.
The implication then follows easily.

If M € R-gr we write gr-w.dimgpM for the gr-flat dimension (defined
as the corresponding ungraded concept which is denoted by w.dimpgM).
Prove that gr.w.dimpM = w.dimgM.

Hint : Apply exercise 10.
Assume that R = )] _, R, is an almost strongly graded ring over

a finite group G. Because R,-1 R, = R, for all ¢ € G, there exist
al € R,-1, bY € R, such that for some finite set T,

(1) 1=>"afb]

€T,
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Assume also that M, N € R-mod and f € Hompg, (M, N). We define
the map f: M — N as follows :

(2) Fm) =33 aZf(07m

oceGiel,

Then prove

i) fis an R-linear map

ii) Assume that n = |G| < oo. Let N C M be a submodule of M
such that N is a direct summand of M in R.-mod. If M has
no n-torsion, prove there exists an R-submodule P of M such
that N @ P is essential in M as an R.-module. Furthermore,
if M =nM, then N is a direct summand of M as R-module.

Hint : (Following the proof of Lemma 1. from [122]). We
have f : M — N as R.-modules such that f(m) = m for all

m € N. Let f M — N be as in assertion 1. If x € N, then
f(x) = nx. We put P = Kerf and prove that NN P =0
(since M has no n-torsion) and N ¢ P is essential in M as an
Re-module. The last part of the exercise is clear.

iii) Assume that N is an R-submodule of M and M has no n-
torsion. Prove there exists an R-submodule P C M, such
that N @ P is essential on M as R.-submodule.

iv) If M is semisimple as a left R.-module and M has n-torsion
then M is semisimple as R-module.

Hint : Apply 2.
v) If R. is a semisimple Artinian ring and n is invertible in R,
then R is a semisimple Artinian ring.
(Compare to Section 3.5. for similar ideas).

14. Assume that R is a ring with identity. Prove :

i) R is semiprime if and only if has no nonzero nilpotent ideals.

ii) Assume that R is a G-graded ring. Then a € rad?(R) and
a € h(R) < a is gr-strongly nilpotent element i.e. for
any sequence ag = a, a1 € agRag,...,a, € an_1Rap_1,...
where ag, a1, ...a, € h(R) there is an n > 0 such that a,, = 0.

iii) R is gr-semiprime if and only if R has no nonzero nilpotent
graded ideals.
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Hint :

i) “=” is obvious. “<” Let a € rad(R),a # 0,1 = RaR # 0.
Then I? # 0, Since I? = RaRaR then aRa # 0 = there ex-
ists a1 € aRa,a1 # 0. If we put J = Ra1R # 0 then J? #
0 = ai1Ra; # 0 = there exists as € a3 Ray,as # 0. So by in-

duction we obtain the sequence ag = a,a1 € agRqq -+ -, 0ny - - -
such that a, € a,_1Ra,_1 for any n > 1 and a, # 0(n > 0),
contradiction.

ii) and iii. are similar to the non-graded case.

(Levitzki) If R is a ring with identity and I is a nonzero nil ideal of
bounded index, there exists a nonzero ideal J C I such that J? = 0.

Hint Assume that there exists n > 1, such that 2" = 0 for any x € I.
For element x € I, we can assume that 2" = 0 and 2"~ ! # 0. If we
can assume that 2 = 0 and 2"~ ! # 0. If we put J = Rz" ', then
J #0,J C1Iand J? =0. Indeed if a € R, then y = az" ! € I
and yr = 0. So (y+2)"t =y Ly 2 + ..+ a2y + 2L
Hence xy" 2 + ...+ 2" 2y = (y + )" 1 —y" 1 — a1 = (a2 ! +
)"t 4 (axn )"t — 27 =t with t € I. Since 0 = (y + )" =
oy 422y 2 4 2" 2y? 4+ 2"y, then ta™ 'y + 2"y = 0 and
therefore (1 4 t)z" 'y = 0. Since ¢ € I, ¢ is nilpotent and hence 1 + ¢
is invertible. Hence z" 'y = 0 and so 2" 'az" ! = 0. Consequently
(Rz"'R)? =0.

Let R = ®,cq R, be a graded ring of finite support. If I is a nonzero
graded ideal of R such that it is a gr-nil ideal of bounded index (i.e.
there exists an n > 1 such that a™ = 0, for anyhomogeneous element
a € I) then R contains a nonzero nilpotent graded idal J C I.

Hint I = ®,eqly. If I, = 0 then I7 = 0, where s = |supp(R)|. If
I. # 0, by exercise 15. there exists J. C I, J. # 0 a nonzero nilpotent
ideal of R.. But J = RJ.R is a nilpotent nonzero graded ideal of R and
JCI.

The following exercises are related to small objects and steady cat-
egories. The notion of “small object” will also be used later in the
text.

Let A be an abelian category with arbitrary direct sums (i.e. an AB3
category Appendix) and M an object of A. M is called small when the
functor Hom4 (M, —) preserves direct sums. Prove that the following
assertions are equivalent :

i) M is small.

ii) The functor Hom 4 (A, —) preserves countable direct sums, i.e.
any morphism f : M — @;enX; factors through a finite
subcoproduct @®;cpX; of ®;cnX; where F is a finite subset
of N.
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iii) For any ascending chain M; C My C ... C M, C ... of
proper subobjects of M, the direct union )., M; is a proper
subobject of M. B

Hint : For detail see [181], p. 134).

If M € R-mod is countable generated then M is small if and only if M
is finitely generated.

Hint : We apply assertion iii. of 17.

More generally we will say that M is X-small (or small relative to X
where X is an object of A such that Hom4 (M, —) preserves (countable)
direct sums of copies of X.

Let M € A. Prove that M is small < M is X-small for every object of
A.

Hint : The necessity id obvious. To prove sufficiency, let A = ®;e v X;
and f: M — A a morphism in A. Let ¢; : X; — A,7 € IN, be the
canonical injections. Then we have monomorphism u = ®;cpne; : A —
AW and since M is A-small, Im(uo f) € AY) for some finite subset F
of IN. This implies Imf C ®;cr X;.

Let A and B be AB3 categoriesand M € AN € B. Let F': A — B and
G : B — A be functors such that F' is left adjoint of G and G preserves
direct sums.Prove the following assertions :

i) M is GN-small in A < FM is N-small in B.

ii) If M is small in A then FM is small in B.

iii) If furthermore we assume that G o F' ~ Id4, then M is small

in A< FM is small in B

Hint :

i) Since G preserves coproducts, we have the canonical isomor-
phism Homp(FM, N™) ~ Homu(M,G(NY)) ~ Hom, (M,
(G(N))™)) from which i. follows.

ii) and iii. follow from i. and exercise 19.
Let R be a G-graded ring and M, N € R-gr. Prove that the following
assertions hold :

i) M is small in R-gr if and only if M is small in R-mod.

ii) M is N-small in R-gr if and only if M is N-small in R-mod.

iii) If G is a finite group and M € R-mod is a small object then
F(M) is small in the category R-gr. (F' : R-mod— R-gr is
the right adjoint of the forgetful functor U : R-gr — R-mod
(see Section 2.5).
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Hint : We apply the foregoing exercise, Theorem 2.5.9 and Proposition
2.5.4.

A Grothendieck category A is called a steady category if every small
object of A is finitely generated (every finitely generated object in A is
small). Recall that a Grothendieck category is called locally Noetherian
when it has a set of Noetherian generators.

Prove that every locally Noetherian Grothendieck category is a steady
category.

Hint : Let M be a small object of A and X; C Xo C ... X, C ...
an ascending chain of subobjects of M, with X = .., X;. For any
k € IN let m : [[,,»; X/Xn — X/X} be the canonical projections
and m : X — [[,»; X/X, the canonical morphism induced by the
canonical projections p, : X — X/X,. If we set Y,, = m(X,,) then
7k (Yn) = pe(Xk) and hence 7 (Y,,) = 0 for each k > n. Therefore
we have Y, € @n>17m(Xn) = > ey Yn € @nenX/X,. Now for each
n € IN consider v, : X/X,, = E(X/X,,) Since A is a locally Noetherian
category, @n,ew E(X/X,,) is an injective object of A and so there exists
a morphism f : M — @,enE(X/X,) satisfying foi = f where 4 is the
inclusion of X in M. As M is a small object of A, f factors through
a finite subcoproduct ®*_; E(X/X,) and so we see that X/X,, = 0 for
every n > k, i.e. the chain (X,),>1 is stationary and M is Noetherian
and hence, in particular M is finitely generated.

Assume that R is a G-graded ring. If R is gr-Noetherian and M € R-gr,
then M is small in R-gr if and only if M is finitely generated.

Hint : The category R-gr is locally Noetherian and we can apply the
exercise 20.

Let R be a G-graded ring with G a finite group. Prove that the category
R-gr is steady if and only if the category R-mod is steady.

Hint : The implication “<=" follows from assertion i. of exercise 19.
and “=" follows from assertion iii. of exercise 21.

Let R be a G-graded ring and M, N € R-gr such that M is N-gr-small
(i.e. M is N small in the category R-gr). Prove that HOMgr(M, N) =
Hompg(M, N).

Hint : If Homg(M,N) and ¢ € G we have the morphism f, €
HOMRg(M,N), = Hompg_g (M, N(0)) defined by fo(mx) = f(ma)re
for every A € G,my € My. Then f =3 _. foie. the family (f,)seq
is sumable to f in the finite topology (see Section 2.4). We can define a
morphism g € Hompg_g (M, ®ocaN(0)) by g(z) = (fo(z))seq for every
x € M. Since M is N small in R-gr, then there are 01, ...,0, € G such
that g(M) C ®?_,N(0;). Therefore f, = 0 for every o & {o1,...,0n}
and hence f = >"" | fs,, and therefore f € HOMg(M,N).
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26. Let R be a G-graded ring, where G is an infinite group and let M € R-gr.
Prove that the following statements are equivalent :

i) M is small in R-gr (or R-mod).
ii) HOMg(M, N) = Homg(M, N) for every N € R-gr.

Hint : The implication i. = ii. follows from exercise 25. For implica-
tion ii. = 4. the first step is to show that if g € Hompg_g (M, GocaN(0))
there are some 71,...,7, € G such that Img C @7 ;N(r;). Let now
f M — ®ienX; be a morphism in R-gr and let A = ®;envX; and
N = ®,ecA(o). Then N is G-invariant i.e. N(o) ~ N in R-gr for
every o € (G. Since G is infinite, we may assume that IV is a subset of
G. In this case there is a monomorphism in R-gr :

v: N @, caN(o)

Ifu;: Ale) = A — N andg; : X; — A,i € N be the canonical injection
we set u = @iez(ui og;) : A — N(IN). We obtain a morphism in
R-gr,vouof: M — ®reaN(0) so Im(vouo f) C @ N(o;) for
some elements o1, ...,0, € G. This implies that imf C ®;cpX;. where
F=INn{o1,...,0,} and therefore M is small in R-gr.
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2.13 Comments and References for Chapter 2

Focus in Chapter 2 is on the categorial language. For a group G with identity
element e, a G-graded ring R has three module categories associated to it in
a natural way : R-gr, R-mod and R.-mod. The connections between these
categories may be studied by considering various pairs of adjoint functors
between them. For example, the forgetful functor U : R-gr — R-mod has a
right adjoint F' : R-mod — R-gr. Between R.-mod and R-gr we study the
functors :

(=)e : R-gr — Re.-mod
Ind : R.-mod — R-gr

Coind : R.-mod — R-gr

The construction of these functors is inspired by Representation Groups The-
ory. The functor Ind, resp. Coind, is a left, resp. right, adjoint of the functor
(—)e; we study the relations between these functors in Section 2.5 and in Sec-
tion 2.8. apply this to describe the structure of gr-injective modules. Up to
a minor modification, Ind is applied in Section 2.7 in order to elucidate the
structure of the simple objects of R-gr. Using a functorial isomorphism be-
tween the functors Ind and Coind, we provide a characterization for a graded
ring R to be strongly graded in Section 2.6. Moreover in Section 2.6. the
methods from Torsion Theory are introduced.

The graded version of the Jacobson radical is as important in the theory
of graded rings as its ungraded equivalent is in classical (noncommutative)
algebra. For graded rings of finite support there is a stringent relation between
the Jacobson radical and its graded version, cf. Corollary 2.9.4; a graded
version of Hopkins’ theorem (corollary 2.9.7) is obtained.

Section 2.10 deals with some theory about graded endomorphism rings; this
leads to graded matrix rings and applications, e.g. to a graded version of
Wedederburn’s theorem (Theorem 2.10.10). We point out that Section 2.10
may be seen as a motivation for the study of the graded HOM functors in
Section 2.4.

For a certain version of the local-global methods of commutative algebra the
consideration of prime spectra is important, needless to say that prime and
semiprime ideals have been cornerstones of most theories in Ring Theory. In
Section 2.11, gr-prime ideals are being studied and the relation between the
prime spectrum and the gr-prime spectrum of a graded ring is being studied.
Here Theorem 2.11.4 and Theorem 2.11.12 may be viewed as main results.
Finally, the exercises in Section 2.12 complete and clarify some of the results
in this chapter.
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A broad area is covered in this chapter, we just mention some papers from
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- M. Cohen, S. Montgomery [43], [44]
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Chapter 3

Modules over Strongly
Graded Rings

3.1 Dade’s Theorem

Recall that, for a G-graded ring R, we have the induction functor : Ind =
R ®p, (—) : Re-mod — R-gr, appearing as a special case of the general
induction functor in Section 2.5. To M € R.-mod there coresponds R ®@pr, M
graded by (R®g, M), = R, Qr, M, for o € G.

For any o € G we define (—), : R-gr — R.-mod to be the functor given by
M — M, and f — f, where for f : M — N in R-gr, we define f, as f|M,.
We have observed that the functor Ind is a left adjoint of the functor (—)e,
cf. Theorem 2.5.3., and moreover (—), o Ind = Idg, —mod-

The main result of this section provides us with a characterization of strongly
graded rings in terms of equivalences of certain categories.

3.1.1 Theorem (E. Dade)

The following statements concerning the G-graded ring R are equivalent :
1. R is strongly graded

2. The induction functor Ind : R.-mod — R-gr is an equivalence of cate-
gories

3. The functor (—). : R-gr — R.-mod is an equivalence of categories.

4. For any o € G, the functor (—), : R-gr— R.-mod is an equivalence of
cetegories.

C. Nastasescu and F. Van Oystaeyen: LNM 1836, pp. 81-113, 2004.
(© Springer-Verlag Berlin Heidelberg 2004
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5. For M = @&,ccM, in R-gr to say that M = 0, is equivalent to M, =0
or to M, = 0 for some o € G.

Proof We have (—), = (=) o T, where T, is the o-suspension functor,
therefore it is clear that equivalence of 3. and 4. follows from the fact that
T, is an isomorphism of categories. The implications 3. = 5, and 4. = 5.
are obvious. The equivalence of 2. and 3. follows directly from (—), o Ind =
Idgr, —mod- The implication 1. = 2. is consequence of Proposition 2.6.2, indeed
for M € R-gr we have that the canonical morphism pu(M) : R®gr, M, — M,
r®m — rm, for r € R, m € M., is a functorial isomorphism because
Keru(M) = Cokerp(M) = 0. Finally, the assertion 5. = 1. is a consequence
of proposition 2.6.2. g. O

Recall that an R’-bimodule rMp is said to be an invertible R-bimodule
if there exists an R-bimodule g Nr such that M g N = R = N Qr M as
R-bimodules.

3.1.2 Corollary

For a G-strongly ring R we have for every o, 7 in G, that the canonical mor-
phisms :
for : Rs ®r. Ry — Ryr,a®b— ab

are isomorphisms of R.-bimodules. In particular, R, is an invertible R.-
bimodule for every o € G.

Proof Consider the graded R-module R(o), for o € G. Since R(7). = R,
it follows from Theorem 3.1.1., that the canonical morphism p(R(7)) : R®g,
R, — R(7), defined by r @ b — rb for r € R, b € R, is an isomorphism
in the category R-gr. Consequently, the restriction u(R(7))s : Ry ®pr, Ry —
R(7)s = R,r must be an isomorphism of R.-bimodules. That f, = u(R(7))s
needs no explanation and the first part of the statement in the Corollary
follows from the foregoing. Furthermore, note that R, ®pr, R,-1 = R, =
R,-1 ®r, Ry as R.-bimodules, hence R, is an invertible R.-bimodule with
“inverse” in fact given by R,-1 (we wrote “inverse” because it is not unique;
this follows from the fact that we are considering objects up to isomorphism
and so the term inverse should more correctly be applied to the isomorphism
classes of R.-bimodules). O

3.1.3 Corollary

Consider a right R-module M and a graded left R-module N over the strongly
graded ring R. The canonical set map :

a:M®r, No—= M QrN,xQr, y— TQRY

where x € M, y € Ng, is an additive group isomorphism.
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Proof Consider the canonical map :
w(N): R®gr, Ne = N,r @y —ry

forr € R,y € N.. Asa consequence of Theorem 3.1.1, u(N) is an isomorphism
of additive groups. Using the canonical isomorphism M = M ® g R, we obtain
a as the composition of the following isomorphisms :

M ®gr, Ne ~ (M ®r R) ®gr, Ne = M ®r (R®g, Ne) = M ®r N
and therefore « is an isomorphism. O

Again, let R be strongly graded by G. Consider an R.-module N. Since R,
is an R.-bimodule it makes sense to define G{N} = {oc € G, R, ®r, N = N}.
That G{N} is a subgroup of G follows from Corollary 3.1.3. We call G{N}
the stabilizer- (or inertia) subgroup for N.

An N € R.-mod is said to be G-invariant whenever G{N} = G.

3.1.4 Corollary

With notation as above, put M = R®p, N € R-gr. If R is strongly graded
then the stabilizer group for M in R-gr equals the stabilizer group of N in
R.-mod.

Proof An immediate consequence of Theorem 3.1.1. O

3.1.5 Corollary

If R is strongly graded then for every o € G, the functor :
R, ®r, —: Re—mod — R,—mod, X — R, ®r, X

for X € R.-mod, is an equivalence of categories.

Proof An easy consequence of Corollary 3.1.2. O

3.2 Graded Rings with R-gr Equivalent to
R.-mod

If we have an equivalence between categories for R-gr and R.-mod, but one
that is not necessarily given by the functor Ind, does it follow that R is
necessarily strongly graded ? This does not hold in general, but we present
some positive results in particular cases.
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First some general definitions and notation. Let A be an abelian category.
Denote by Q4 the set of isomorphism classes of simple objects of A; for a
simple object S of A we let [S] denote its isomorphism class. In case A = A-
mod we write Q4 instead of Q4 _moq-

3.2.1 Theorem

Suppose that F': R-gr — R.-mod is an equivalence of categories. If Qg is a
finite set then R is strongly graded.

Proof As a consequence of assertion 5. in Theorem 3.1.1. it will suffice
to show that C. = 0. Assume C, # 0. From Theorem 2.7.2, it follows that
there is a bijective correspondence between Qg  and the subset of all [S]
in Qp_g where S is gr-simple and e-faithful. The hypothesis about F' yields
that g, and {2r_g, correspond bijectively too, hence in view of the foregoing
it follows that every gr-simple in R-gr is e-faithful. Consequently Qc. = 0.
On the other hand, since C. # 0 there must be a nonzero M in C, and M
is finitely generated. There exists a maximal gr-submodule N of M with
N # M (Zorn’s lemma). We then obtain a gr-simple ¥ = M/N in C. and
that is a contradiction. O

The set Qr, will be examined further in Chapter 4, e.g. Theorem 4.2.5 and
Section 4.3.

3.2.2 Corollary

Let F' : R-gr— R.-mod be an equivalence. If R. is a semilocal ring, then
R is strongly graded (recall that a ring A is semilocal whenever A/J(A) is a
semisimple Artinian ring).

Proof If R. is semilocal then g, is a finite set. O

The theorem may be slightly extended by allowing an equivalence between
R-gr and any module category A-mod.

3.2.3 Corollary

If there exists a ring A such that [24] = 1 and R-gr becomes equivalent to
A-mod, then R is strongly graded.

Proof Since |[Qgr_g| = |Q4], the same argument as in the proof of theorem
3.2.1 may be used to derive that either C, = 0 or C, = R-gr. In case C, = R-gr
we have M (o) € C. for any nonzero M € R-gr and o € G. Thus M (o). =
M, =0 for all 0 € G, hence M = 0 and that is a contradiction. So we must
have C. = 0 and it follows that R is strongly graded. O
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To end this paragraph, we provide an example of a graded ring that is not
strongly graded but nevertheless the categories R-gr and R.-mod being equiv-
alent.

3.2.4 Example

Let k be a field and I an infinite set. We consider the direct product R = k',
R is a ring. Since [ is infinite R ~ R x R as rings. We consider the group
G = {1, g} where g> = 1. On R we consider the trivial gradation i.e. Ry = R
and R, = 0. Clearly R-gr ~ R-mod xR-mod. Since R ~ R x R then R-gr is
equivalent with the category R.-mod. But it is clear that R is not a strongly
graded ring. Of course, the ring R = k! with I infinite is not a semi-local
ring.

3.3 Strongly Graded Rings over a Local Ring

The main result of this paragraph is the following .

3.3.1 Theorem

Let R = @®)eq Ry be astrongly graded ring. If R, is alocal ring (i.e. Re/J(R.)
is a simple Artinian ring), then R is a crossed product.

Proof We consider the graded ring R/J9(R), which is also strongly graded.
By Corollary 2.9.3 J9(R) N R, = J(R,) therefore (R/JY(R)). = Re/J(R.).
Using Proposition 2.9.1 assertion 6. we may suppose J9(R) = 0. In this case
R, is simple and Artinian. Obviously, any strongly graded ring as before is
gr-uniformly simple, hence by Corollary 3.1.5 for any ¢ € G, the left R.-
module R, is isomorphic to R.. Let f : R, — R, be such an isomorphism.
If u, = f(1) then R, = f(Re) = Reuys an f(a) = auy,,a € R. Similarly,
taking the right R.-module R,-1 we find an element v, € R,-1 such that
Vg Re = R,-1. Since R,-1.R, = R., there exists a € R, such that 1 = v,au,
S0 Wy = Vga € R -1 is a left inverse of u,. From u,w,u, = u, we obtain
(upws — uy = 0 and u,w, — 1 € Kerf = 0. Hence u,w, = 1 and therefore
u, is invertible for all o, so it follows also that R is a crossed product.

Another proof : Since R, ~ R in as left R.-modules (R is strongly graded)
we have R(0) ~ R in R-gr so gR is G-invariant. By Theorem 2.10.2 it follows
that R is a crossed product. O

The foregoing result has applications in the theory of the Brauer group of a
commutative ring where the crossed product structure has importance.
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3.3.2 Example

If R, is not a local ring then R is not necessarily a crossed product, as the
following example shows.

Let K be a field and R be the ring of 3 x 3 matrices over K. We define a
Z o-grading on R as follows :

K K O 0O 0 K
Rs=| K K O |sBr=[ 0 0 K
0O 0 K K K K

Clearly, Ryl = Ry, hence R is a strongly graded ring, which is not a crossed
product (there is no invertible element in Ry). Also R ~ M>(K) x K, Ry is
not a local ring. We observe that R is a gr-simple ring, but Ry is not a simple
ring (in fact it is only semi-simple).

3.4 Endomorphism G-Rings

For rings S C T we let the centralizer of S in T be Cp(S) = {t € T, st = ts
for every s € S}. Clearly Cp(S) is a subring of T and SNCr(S) = Z(S), the
center of S.

In particular if R is a G-graded ring then Cr(R,) is a graded subring of R.

In general an abelian group A is called a G-module for the group G if there
is a group morphism ¢ : G — Aut(A). When A is a ring and Aut(A) is the
group of all ring automorphisms of A then we say that A is a G-ring if a ¢
as before exists. We denote ¢(g)(a) by ga for g € G and a € A. An abelian
group A is a (left) G-module exactly when A is a Z[G]-module, where Z[G]
is the groupring of G over Z.

First we introduce some general terminology and notation. For an arbitrary
ring S and R — S-bimodules g Mg and gNg we let Hompg g(M, N) denote
the group of bimodule morphisms. In case M = N, Hompg s(M, M) will
be denoted by Endg s(M). In the sequel of this section R will be strongly
graded by G. An R — S-bimodule is also an R, — S-bimodule and we have
an inclusion Homp (M, N) — Hompg, s(M.N). The fact that R is also an
R. — R-bimodule in the obvious way entails that Endg, r(R) = Cr(R.).

3.4.1 Theorem (Miyashita)

With notation and terminology as above, consider R — S-bimodules M, N and
P, then the following assertions hold :

1. For any 0 € G and f € Hompg, g(M,N) there exists a unique f7 €

Homp, s(M, N) such that f7(A\,z) = Ay f(z) for any z € M and A, €
Ry.
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2. The map (o, f) — f9 is an action of the group G on the additive group
HOmRms(M, N)

3. For any subgroup H of G, we have Homp,_ s(M, N)# = Hompg,, s(M,N).
In particular Homp, s(M, N)¢ = Hompg s(M, N).

4. For any o € G, f € Homg, ¢(M,N), and g € Hompg, s(N, P), we have
(go f)? = g% o f7. In particular, Endg, ¢(M) is a G-ring.

Proof

1. Since R,R,-1 = R., there exist elements aj,...,a, € R, and by,...,
bn € R, such that Y-, a;b; = 1. If f7(A;z) = A f(x) for any
xz € M and A\, € R, then we have

Fom) =170 abim) = Y aif (bim)
i=1,n i=1,n

therefore f¢ is uniquely determined by f and o. Hence we define f by
fo(m) =321, aif(bim). If \s € R,, then we have

FFQem) = Y aif(bidgm)
i=1,n

= Y abidf(m)

i=1,n

= )\O'f(m)

since b;\, € R, forany i =1,...,n.

We show now that f? € Hompg, (M, N). Indeed, if A € R., then :
fo(>‘>\om) = )‘Aof(m) = )‘fU(Aom)
Since R, M = M, we obtain for x € M, that x = )
FIOx) = T Aoma)

i=1,s

AD D FTGm)

i=1,s

AP Nomy)

i=1,s
= Af7(x)

which shows that f? is a morphism of R.-modules. The fact that f7 is
an S-morphism is clear.

i=1.s \om;. Hence :
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2. If 0 = e, we clearly have f¢ = 1. Pick 0,7 € G. If A\, € Rs, \r €

R;, we have that fo7(A;Arm) = A A+ f(m), and (f7)7(AsArm) =
Ao fT(Arm) = Ao\ f(m) Since R,R; = Ry, we obtain that fo7 =
(f7)?, i.e. (o7)f = o(rf), therefore the group Hompg, s(M,N) is a
G-module.

. If f € Homp, (M, N) we have f° = f for any 0 € H. Hence if

As € R, with o € H, then f(A,m) = f7(Asm) = A\s f(m) showing that
f is an Ry-morphism. The converse is obvious.

4. If A\, € R, and m € M, we have that

(g0 f)7(Aem) = As(go f)(m)
= Ag(f)(m)
= ¢°(Asf(m))
= 9°(f7(Aem))
= (972 f7)(Aem)
so (go f)7 =g70 f7. O

3.4.2 Remark

. The map f7 has the following property : A,—1f7(x) = f(A,—12) for all

Ay—1 € R,—1 and & € M, which follows immediatelly from part 1. of
the previous theorem. Indeed, if we write 1 = ", a;b; with a; € R,
and b; € R, then

fp—x) = Z aibif(Ag-1)

Z aifo(biAU—1 :L‘)
= Z aibiAg—1 f7(2)

= )‘o'*lfo('r)

. If A and B are two G-modules, then by Theorem 3.4.1 it follows that the

abelian group Homg (A, B) is a G-module. Indeed, if f € Homgz(A, B)
and o € G, then (of)(x) = of(c~x). Thus, we obtain the canonical
functor

Hompg, (-,-) : (R — mod)° x R — mod — Z[G] — mod,
(M,N)— Hompg, (M,N), M,N € R—mod
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3.4.3 Corollary

The ring Cr(R.) is a G-ring with the G-action defined as follows : if o € G,
then a, : Cr(Re) — Cr(Re), as(2) = > ,_,, aizb;, is an automorphism,
where a; € R,-1 and b; € R, are such thatyzizlvn a;b; = 1. Moreover,
Cr(R.)¢ ~ Z(R). In particular Z(R.) is a G-ring: if ¢ € Z(R,) and o € G,
then oc € Z(R.) is the element with the property that (oc)A, = Asc for any
Ao € R;.

Proof We have that Cr(R.) ~ Endg, r(R). If z € Cr(R.), we define
¢, € Endg, r(R) by ¢,(\) =z for any A € R
Then

¢7(N) Z a;$z(biX)

i=1,n

= Z azzbl)\

i=1,n

The element of Cr(R.) associated to ¢Z(A) is ¢Z(1) = 3°,_, ,, aizb;. Hence
0z = 3,y ,0i2b;, le. ¢7 = oz is an automorphism. Since Cr(R.) =~
Endg, r(R), we have that

Cr(R.)¢ ~Endg, r(R)® ~ Endg r(R) ~ Z(R)
Now if z € Cr(R.), then oz\, = A\,2z. Indeed, we have

0z = ZaiZbi)\o

i=1,n

Z aibi)\gz

i=1,n

= Aoz

3.4.4 Remark

Let RMp be an R-bimodule. If a € Cr(R.), then ¢q : M — M, ¢q(z) = ax,
is an R. — R-bimodule morphism. If ¢ € G, then ¢ = ¢,4. Indeed, we have
&7 (o) = Aoda(z) = Apax

Tal, T

= ¢oa(Ao)
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therefore since R,M = M we obtain that ¢J = ¢sq. O

If H is a subgroup of G of index s, let (0;);=1,s be a system of representatives
for the left H-cosets of G. Thus G = U;—; s0;H, a disjoint union. For any
R — S-bimodules M and N, we define the trace map

t& . Hompg,, s(M, N) — Homp s(M, N)by t5(f) = Z % = Z oif

i=1,s 1=1,s

We will write ¢z instead of t% whenever there is no danger of confusion. The
definition of ¢ty does not depend on the choice of the elements o7q,...,05.
Indeed, if o;H = o}H for any i = 1,...,s, then we have o; = o}h; for some
h; € H for any ¢. Then

ta(f) =D f7 =" frh=3 ()=

1=1,s 1=1,s i=1,s i=1,s
since f" = f for any i = 1,...,s and f € Homg,, s(M, N).
We show now that ¢ty (f) € Homp g(M, N). Indeed, if o € G, we have that
tu(f)7 =) 7= [
1=1,s i=1,s
But oo; € Uj=1,50;H, so
{oH|i=1,....,s }={ooH|i=1,...,s}

showing that ¢ (f)? = tg(f). In particular, if M = N, we have the applica-
tion

tH El’ldR(H)vs(M) — EndR7S(M)
and Im(tg) is an ideal of the ring Endg s(M). Indeed, if g, h € Endg, s(M),
then

gotu(f)=go Y f7 = gof =Y g7of7 = (9of)7 =tulgof)

i=1,s i=1,s i=1,s i=1,s

Analogously we have Iy (f)oh =1g(f oh) When H = {1} and G is finite,
we denote t?l} by t©.

3.5 The Maschke Theorem for Strongly Graded
Rings

Throughout this section R = @,cc R, will be a strongly graded ring, and
H a subgroup of G of finite index s. We denote by (0;)i=1,s a system of
representatives for the left H-cosets of G.
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3.5.1 Theorem

Let M be a left R-module having no s-torsion, and N an R-submodule of
M. If N is a direct summand of M as an Ry-module, then there exists an
R-submodule P of M such that N @ P is essential in M as an Ry-submodule.
Furthermore, if sM = M (for example if s is invertible in R), then N is a
direct summand of M as an R-module.

Proof We know that there exists a morphism f: M — N of Ry-modules
such that foi = 1y, where i : N — M is the inclusion map. Let f =t (f) =
>iz1,s [7 We calculate :

foi=3 (f7oi)=Y (f7oi®)= Y (foi) = Y (In)7" =s-1n

i=1,s 1=1,s i=1,s 1=1,s

Therefore we have f(z) = sz for any # € N. Put P = Ker(f). Ifz € NN P,
then sx = 0, and since M has no s-torsion we obtain that x = 0. Thus
N NP =0. We show now that N & P is essential in M as an Rpy-module.

Let x € M, and y = f(x) € N. Then :

flsa) = sf(x) = sy = f(y)

so f(sx —y) = 0 and sz —y € P. This shows that sz € N & P. Thus
sM C N @& P, and N @ P is an essential Ry-submodule of M. The second
part is clear. O

3.5.2 Corollary

Let M € R-mod such that M is semisimple as an Rg-module. If s is invertible
in R, then M is semisimple as an R-module.

Proof Let N be an R-submodule of M. Since M is semisimple as an Ry-
module, N is a direct summand in M as an Ry-submodule. Now Theorem
3.51. entails that N is a direct summand of M as an R-submodule. O

3.5.3 Corollary

If Ry is a semisimple ring and s is invertible in R, then R is a semisimple
ring.

The foregoing results generalize the classical result due to Maschke, stating
that for a finite group G with n = |G| being invertible in the ring A, the
groupring A[G] is semisimple whenever A is semisimple.
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3.5.4 Remarks

1. For A[G] = R with n = |G| < oo, the invertibility of n in A follows from

the semisimplicity of R. To prove this, look at ¢ € G and assume o is
of order m in G, i.e. ¢™ = e. We claim that the left annihilator of 1 — o
in Ris exactly R.(1+0+...4+ 0™ 1) where we have written 1 again for
the unit 14.e of R. Indeed from (X,ecqr,7)(1 — o) = 0 it follows that
rr = T.o-1 for all 7 € G, hence r; = 1,5 = 1752 = ... = Trom—1 (n0te :
o=t =o™"1) for all 7 in G. Since m divides n we have established that
YrearT=1r"(1+0+...+ 0™ ") for some ' € R.

The semisimplicty of R entails that R is so-called von Neumann regular,
cf. [24], hence there exists an » € R such that (1 — o)r(l — o) =
1—o0, hence (1 — (1 —0o)r)(1 — o) = 0. The foregoing then yields that
1-(1—o)yr=r"1+0+...4+ 0™ ') for some 7’ € R. Applying the
augmentation ¢ : A[G] — A, g — 1, to the foregoing relation yields :
1 = e(r")m. This proves already that the order of any o € G is invertible
in A, hence the exponent of G is invertible in A. However n and the
exponent of G have the same prime factors, therefore also n is invertible
in A.

. Recall that if R = A[G] is left Artinian then |G| < cc.

. For a strongly graded ring R with G finite, the semisimplicity of R does

not necessarily yield that |G| is invertible in R. As an example one
may consider the well-known Z /nZ-gradation on the rational function
field k(X), where k is any field, given by k(X )> = k(X") and k(X )> =
Xk(X™). Obviously this gradation is a strong gradation, k(X) is a field
thus certainly semisimple Artinian and if chark = n # 0, which we are
free to consider, n is not invertible in k.

We return to the consideration of a strongly graded ring R with respect
to a finite group G. For an R.-submodule N in an R-submodule M, we
define N* = NyegRsN.

3.5.5 Lemma

N* is an R-submodule of M. Moreover, if N is an essential R.-submodule of
M, then so is N*.

Proof For any A\ € G we have Ry\N* C NyegRARsN = NpegRre N = N*.

Clearly N* is the largest R-submodule of M contained in V.

Assume now that N is an essential R.-submodule of M. Let X be a non-
zero Re-submodule of M. Then R,-1X # 0 since R,R,-1 = R.. Hence
R,-1 X NN # 0, and then R,(R,~1 X N N) # 0. Since R,(R,-1 X N N) =
R,N N X, we have that R, N N X # 0. We have obtained that R, N is an
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essential R.-submodule of M. Since G is finite, N* is also essential as an
R.-submodule of M. |

3.5.6 Corollary

Let R be a strongly G-graded ring, where n = |G| is finite. If M is an R-
module without n-torsion and N an R-submodule of M, then N is essential in
M as an R-submodule if and only if it is essential in M as an R.-submodule.

Proof Clearly if N is R.-essential, it is also R-essential. Assume now that
N is R-essential in M. Using Zorn’s Lemma, we can find an R.-submodule L
of M maximal with the property that NNL = 0. Then N& L is essential in M
as an R.-submodule. Lemma 3.5.5 shows that (N@ L)* = N*® L* = N L*
is essential in M as an R.-submodule. On the other hand K = N @ L* is an
R-submodule of M,and NC K C N®L,so K = N&® (KNL). By Theorem
3.5.1 there exists an R-submodule U of K such that N @ U is essential in
K as an R.-submodule. Then N & U is essential in M as an R.-submodule,
therefore it is essential in M as an R-submodule. This shows that U = 0, so
N is R.-essential in M. O

Let R = @,eqRs be a graded ring and M € R-mod. We say that M is
component regular whenever 0 # m € M, implies R,m # 0 for all o € G.
We note that if R is a strongly graded ring, then every R-module is component
regular.

The following result is another version of the essential Maschke Theorem for
graded rings which generalize Corollary 3.5.6.

3.5.7 Theorem (D. Quinn [174])

Let R = ®,crRs be a graded ring, where n = |G| < co. Let N < M be
left R-modules, and suppose that M is component regular and has no n-
torsion. Then there exists P C M, an R-submodule, such that NN P = 0 and
N @ P is an essential R.-submodule of M. In particular, if NV is an essential
R-submodule of M, then N is an essential R.-submodule of M.

Proof By Zorn’s Lemma, there exists an R.-submodule L C M such that
L is maximal with respect to the property that NN L = 0. Thus N @ L is
an essential R.-submodule of M. Since M is component regular, then for any
0 € G,R,(N@®L) is also an essential R.-submodule of M. Indeed, if m € M,
m # 0, then R,-im # 0, thus R,—1m N (N @ L) # 0. Thus R, (Rs-1m N
(N@® L)) # 0, and hence R,R,~1m # 0 and R,R,-1m N R, (N @& L) # 0.
Since RyR,-1 C R., there exists a € R, such that 0 # am € R,(N @& L).
We denote by K = NyegRs(N @ L) = Npec(N + RsL). Since G is finite,
K is obviously an essential Re-submodule of M. If 7 € G, we have R, K C
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NeccR+ (N + RoL) C Nyeag(N + R;-L) = K, hence K is an R-submodule
of M. Since N < K < N@® R,L, we have K = N&® (KNR,L)=N®® L,
where L = K N R,L. Let m, be the projection from K to N relative to
this decomposition, and let f : K — N, f(m) = > o 7s(m),m € K. We
prove that f is R-linear; let m € K and write m = n+1I,n € N,l € L°.
Then m,(m) = n. If A € Ry, we get Am = An + A, where An € N and A €
R,L° CR,KNR;R,L C KNR,;,L=L". Thus 7,,(Am) = An = Ar,(m).
Summing over all ¢ € G, we obtain Y . m-o(Am) = XY ., 7me(m), so
f(Am) = Af(m), i.e. f is R-linear.

Put P = Kerf, which is an R-submodule of M. If m € N N P, we have
f(m) = 0, and 7m,(m) = m for any 0 € G. Hence f(m) = |G|m. Since M
has no |G|-torsion, we obtain m = 0. Hence N N P = 0. Also, if € K and

y = f(z), we have f(y) = ny, and therefore f(nz —y) = nf(z) — f(y) =
nf(x) —ny =nf(z) —nf(x) =0. Thus nx —y € P, i.e. nx € N @ P. Since
K is an essential R.-submodule of M, we obtain that N & P is an essential
R.-submodule of M.

3.6 H-regular Modules

Throughout this section R is again a strongly graded ring of type G and we
consider a subgroup H having finite index s in G. We let {0;,i = 1,...,s}
be a left transversal of H in G, i.e. a system of representatives of the left
H-cosets in G.

An R-module M is said to be H-regular if there exists f € Endg, (M) such
that t%(f) = 1p. When H = {e} we say that M is regular (instead of {e}-
regular). If M is a left R-module, we denote by Res% (M) the module M
considered as an Rpg-module by restricting the scalars.

3.6.1 Proposition

The following assertions hold :

1. If M € (G/H, R)-gr, then M is H-regular (the definition of the category
(G/H, R)-gr and some detail is given in Section 2.12)

2. If M = ®;erM;, then M is H-regular if and only if M; is H-regular for
any @ € I.

3. If M is H-regular, then M is 0 Ho~!-regular for any o € G.

4. Let K < H < G be subgroups such that K has finite index in G. If M
is K-regular, then M is H-regular.

5. Let K < H < G be subgroups such that K has finite index in G. If M
is H-regular and Res% (M) is K-regular, then M is K-regular.
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6. Let M, N € R-mod, and H a normal subgroup of G. If M or N is
H-regular, then the abelian group Hompg,, (M, N) is H-regular as a G-
module.

Proof
1. Since M € (G/H, R)-gr, then we have M = ®.cq/pM.. If m € M, we
can write m = 3° ¢/ mc. Then define f € Homp,, (M, M) by f(m) =

mpy We have that t&(f) = Zi:l,s f% and f7(m) = ijlvn a; f(b;m)
where 1 =) ajbj,a; € Ry,,b; € R_—1 We remark that f(bym) =

bime, 50 f7'(m) = 32,1, ajbjme,m = mg,u. Therefore t%(f)(m) =
Dim1,s MoyH = M Le. tS(f) = 1u.

Jj=1n

2. Let M € R-mod be H-regular and N a direct summand of M. There
exists f € Endg, (M) such that t%(f) = 1p. Since N is a direct
summand of M, there exists p € Hompg(M, N) such that poi = 1y,
where ¢ : N — M is the inclusion. If we put g = po f oi, then

tg(g) = Z gffi — Z (pOfOi)‘” — Z pcri OfO'i 0 4%

1=1,s i=1,s 1=1,s
= Zpof‘”oi:po(zf”i)oi:poi:h\[
1=1,s i=1,s

so N is H-regular.
Assume that M = ®;c;M; and M; is H-regular for any i € I. Then
)

there exists for any 7 € I some f; € Endg,, (M;) such that t%(f, =1y
If we put f = @f;, then it is easy to see that t%(f) = 1as.

3. Since M is H-regular, there exists f € Endg, (M) such that t5(f) =
1ps. Then f7 € Endgr_, (M). Indeed, for any A, € R,,u € Ry and
Ay-1 € R -1 we have that

F7Aoprg—17) = Ao f(pAg—12) = Ao ptf (Ao-12) = Ao piro-1 f7 ()

Now the set { oco;o™! | i = 1,...,s } is a set of representatives for
the left cHo !-cosets of G. Indeed, we have that G = Ui=1,s0,H. If
g € G, then 0~ 'goc = o;h for some h € H. Thus g = oosho™! =
(oo;07 Y (oho™), s0 G = U=y s(00;0 1) (0 Ho™t). On the other hand,
if (co;071) Y (oj0™!) € cHo™!, we obtain that o; 'o; € H, ie. o; =
0. Thus we have that

[ed

e (f7) = 3 ()7 = | Y| =18 =1

i=1,s i=1,s
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4. There exists f € Endig, (M) such that t&(f) = 1p. Let (15)j=1,» be a

set of representatives for the left K-cosets of H. Then (0;7;)i=1,s, j=1,r
is a set of representatives for the left K-cosets of G. Thus we have

Drimtys 2ojmt e ST = Aar 50 30y (D05 o (f7)7 = 1 If we denote
by g=>;_,, f7, then g € Endg, (M), and t%(g9) = 1.

. Notation as in 4. Since Res$ (M) is K- regular, there exists f €

Endg, (M) such that tH(f) = 1, ie. > je1,s [T = 1y. Since M
is K-regular, there exists g € Endg,, (M) such that t%(g) = 1a, ie.
>iz1597 =1m. Let h=go f. Then h € Endg, (M) and

t%}(h) = Z Z hoiTi = Z Z gUiijO'iTj

i=1,s j=L,r i=1,5 j=1,r
= DD @TUT)T=d0 > ()
i=1,s j=1,r i=1,s j=1,r
= D g e(D_ ) =) ¢ =1u
i=1,s =1, i=1,s

. Assume that M is H-regular. Then there exists f € Endg, (M) such

t%(f) = 1p. We denote by A = Hompg,, (M, N) and define f*: A —
A by f*(u) = uwo f for any u € Homg, (M,N). Then t%(f*) =
> iz1.s0if", where

(0if*)u) = oif (o, u) = oif*(u’ )
(f-*(ua'; ))a‘i — (uo'; of)ai — u0f"i

Hence

G =Y uof=uo Yy f7=u

i=1,s i=1,s

so t%(f*) = 14. The situation where N is H-regular can be dealt with
in a similar way. O

3.6.2 Corollary

If N € Ry-mod, then nd%(N) (or Coind%(N)) is H-regular. Recall that
Ind%(N) = R®g,, N, see Section 2.12)

Proof Apply 1. of Proposition 3.6.1. O

Let R = ®,cq R, be a graded ring and H a subgroup of G of finite index s.
For M € R-mod, we have a surjective morphism of R-modules

a:RQp, M - M, ad@m)= m, N\é R, me M
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and an injective morphism of R-modules
8: M — Hompg, (R,M), B(m)(A)=Im, Ne R, me M

Then « is a split surjection and 3 is a split injection in Ry-mod. Indeed,
define o/ : M - R®p, M by o/(m) =1® m, and 8’ : Hompg, (R, M) - M
by ' (u) = u(1l). We have aoa/ =13 and 3’ o § = 1. Moreover, o/ and
are clearly Rpy-linear.

If n € Z, we say that n is invertible in M if the morphism ¢, : M —
M, ¢ (x) = nz is bijective.

3.6.3 Proposition
Let M € R-mod. If s =[G : H] is invertible in M, then M is H-regular.

Proof With notation as above, define v = s7't%(a’). Then v is R-linear

and
/.
aoy=s1 g aoa =g 1 g (aoda) 1p

i=1,s i=1,s

so M is H-regular. O

If M, N € R-mod, we say that M divides N (or M is a component of N), and
write M|N, if M is isomorphic to a direct summand of N in R-mod. If H is a
subgroup of G, then M is said to be Ry-projective (respectively Ry-injective)
if M divides an induced (respectively coinduced) R-module R®p,, L for some
Ry-module L. It is obvious that the two concepts coincide in the case where
R is a strongly graded ring.

3.6.4 Theorem

Let R = ®,cq R be a strongly graded ring and H a subgroup of G of finite
index s. If M € R-mod, then the following assertions are equivalent.

1. M is H-regular.

2. M is Ryg-projective.
Proof 2. = 1. follows from Corollary 3.6.2 and assertion 2. of Proposition
3.6.1. In order to prove that 1. = 2., assume that M is H-regular, and let
f € Endg,, (M) such that t5(f) = 157. We consider the map a : R®g,, M —

M defined before, and define v: M — R®pg, M, v(m)=1& f(m) We have
aoy = f and v is Ry-linear. Then

aotf(y) =tG(aoy) =t5(f) =1u

showing that « is a split surjection in R-mod. O
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3.6.5 Corollary

If M is a projective (respectively injective) R-module, then M is H-regular.

Proof If M is projective then « is a split surjection, and if M is injective
then ( is a split injection in R-mod, and we can apply Theorem 3.6.4. O

3.6.6 Corollary

Let H be a subgroup of G and N an Ry-module which is K-regular for some
subgroup K of H. Then Indg (N) is a K-regular module.

Proof Since N is K-regular, there exists L € Rx-mod such that N is a
component of Ry ®g, L. Thus Ind§ = R®p,, N is a component of

R®p, (Ry ®pry, L) > R®p, L

and the assertion follows from Theorem 3.6.4. O

Assume now that G is a finite group. If M € R-mod, we denote by B(M) the
set of all subgroups H of G such that M is H-regular. B(M) is not empty
since M is clearly G-regular. Since B(M) is a finite set, it has at least one
minimal element. We denote by V(M) the set of all minimal elements of
B(M). By assertion 3) of Proposition 3.6.1, we know that V(M) is closed
under conjugation. An R-module M is said to be indecomposable if M
is not a direct sum of two non-zero submodules. M is said to be strongly
indecomposable if Endg(M) is a local ring. Obviously, if M is strongly
indecomposable, then M is indecomposable.

Let n = |G|, and write n = p’fl ...pF, where py,...,p, are distinct primes.
If we denote u = p’fl and v = p§2 ...pF . we have that (u,v) = 1, so there
exist integers k and [ such that ku + lv = 1. Thus ¢x, + ¢, = 1p7, and since
Endg(M) is a local ring, either ¢y, or ¢y, is invertible. If ¢y, is invertible,
then p’;?, ...,pkr are invertible on M. If u is invertible, then we repeat the
procedure with pgz, ...,pF, until we obtain that at most one of the elements
plfl, ...,pF is not invertible on M. Hence we can write n = p*m, where p is
prime, (m,p) = 1, and m is invertible on M.

3.6.7 Proposition

Let R = @,eq R, be a strongly graded ring, where G is a finite group of order
n. If M € R-mod is strongly indecomposable, then any element of V(M) is a
p-subgroup of G for some prime divisor p of n.
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Proof Let n = p*m, where (p,m) = 1 and m is invertible in M. Let
H e V(M) and K < H, K a Sylow-p-subgroup of H. Then K is p-subgroup
of G and [H : K] is prime with p. Since [H : K] divides n = |G|, then
[H : K] divides m and therefore [H : K] is invertible on M. Now clearly
[H : K] is invertible on Res§ M, too. Hence Res$ (M) is K-regular. Since M
is H-regular Proposition 3.6.1 yields that M is K-regular. But H € V(M)
and K C H,so H =K. O

3.7 Green Theory for Strongly Graded Rings

The finitely generated indecomposable modules for a group ring have a rep-
resentation theoretic meaning. In the case R = k[G] where k is a field of
characteristic p and G a finite group, a characterization of the finitely gener-
ated indecomposable modules is part of the work of J. A. Green, [88], [89],
that became known as “Green Theory”. The idea(s) of proof used by J. A.
Green may be extended to the case of certain strongly graded rings. We also
made use of E. Dade’s paper [55]; for some generalities the reader may also
consult G. Karpilowsky [112] or Curtis, Reiner [46].

In this section, R is strongly graded by G such that the following conditions
hold :

G.a. R. is an algebra over a commutative Noetherian complete local ring A
with residue field k£ of nonzero characteristic p.

G.b. G is a finite group.

G.c. For every 0 € G, R, is a finitely generated A-submodule of R.

From G.c. it follows that R is a finitely generated A-module (in fact a Noethe-
rian A-module) hence any finitely generated R-module M is a Noetherian
A-module and moreover Endg(M) as well as Endg, (M) are Noetherian A-
modules.

To start off the theory we need a few lemmas of group theoretic nature dealing
mainly with double cosets in G.

3.7.1 Lemma

Let G be a finite group, and H, K two subgroups of G. Let KgH be a double
coset of g € G relative to H and K. If {hy...,hs} is a set of representatives
for the left cosets of gHg™"NK in K, then KgH = US_, hjgH and {h;gH|j =
1,...,s} are the left cosets of H contained in KgH.
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Proof If z = zgy € KgH, then © = hjghg™" so z = hjghg gy = hjghy

so z € U hjgH. On the other hand, if hjgH N hjygH # 0, then there
j=1

exists z = hjghy = hjghs, and hence h,'h; = ghshy'g™ € gHg™' N K, so

hj/ = hj. Hence hng = hj/gH.

3.7.2 Lemma

Let R = @,cqRs be a strongly graded ring, where G is a finite group. Let
H, K be two subgroups of G. If M is an Ry-module, then we have the
isomorphism of Ry-modules

Rigr @ry M ~ Rk ®r Ry ®py M)

gHg*lﬁK (

Proof Let us denote for the sake of simplicity M(9) = Ry ®r, M for each
g€ G.
We have Rgn ®r,y M = @5_y M"9) as R.-module, R ®r M9 =

gHg—1nK
@§:1th(9H971nK) ®RgHg*1r‘vK M(g) = @;:1(th ®RC RgHgian) ®R9H9*10K
M) =~ @jzl(th Qr, Rgrr) @ gy M = @jle(hjg), as R.-modules. Now it
is easy to see that the above isomorphism is an Rg-isomorphism. O

3.7.3 Lemma (Mackey formula)

If {g1,92,...,9r} is a set of representatives for the double cosets of K and H
in G, then

KnNg;Hg,

R®ry, M =¢]_, (RK QR N (RgiH QR M))

as Ri-modules.

Proof R®g, M = ®]_1Rkg¢,uH ®ry M as Rix-modules, and apply Lemma
3.7.2. O

3.7.4 Lemma

Let M € R-mod be a finitely generated R-module. If M is an indecomposable
R-module, then M is strongly indecomposable.

Proof Put: T =Endgr(M). Let m be the maximal ideal of A, and consider
the m~adic topology on T : (miT)iZO. It is obvious that each m*T is an ideal
of T. By assertion 8. p. 302 of [150], we have that T is complete in the
m-adic topology. Then every idempotent of T/mT may be lifted to T (see
Lemma VII.1 of [157], page 312). Since M is an indecomposable R-module
T has only two idempotent elements, 0 and 1, and hence T'/mT has only two
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idempotent elements, 0 and 1. We show now that T'/J(T) is a field, where
J(T') denotes the Jacobson radical of T. We have mT C J(T) (see [136], page
299, Property 3.). Since T/mT is a finitely generated (A/m)-module, then
T/mT is an Artinian algebra, and therefore T/ J(T') is a semisimple Artinian
ring. Since there exists a natural number k such that J(T)¥ C mT, every
idempotent of T/J(T) may be lifted to T'/mT. Therefore, T/J(T') has only
trivial idempotents, (0 and 1), i.e. T/J(T) is a field. Thus, T is a local ring,
i.e. M is a strongly indecomposable R-module.

3.7.5 Corollary

Let R be a strongly graded ring satisfying G.a, G.b, G.c. If M is a finitely
generated R-module, then M is a finite direct sum M; & M, ... & M,, of
indecomposable R-modules M;. Moreover, this decomposition is unique up
to order and isomorphisms.

Proof The fact that M is a finite direct sum of indecomposable modules
follows from the fact that M is a left Noetherian R-module. Apply Lemma
3.7.4 and the classical Krull-Schmidt theorem.

In Section 3.6, we defined the set B(M) of all subgroups H of G such that M
is H-regular, and we denoted by V(M) the set of minimal elements of B(M).
From now on, all modules will be finitely generated.

3.7.6 Theorem

Suppose that R is a strongly graded ring which satisfies conditions G.a., G.b.
and G.c.. Let M € R-mod be an indecomposable module. If H € V(M) and
K € B(M), then the following assertions hold :

1. H is a p-group, where p = chark, k is the residue class field of A (see
condition G.a).

2. There exists o € G such that cHo™ ! < K.

3. The elements of V(M) form a unique conjugacy class of p-subgroups of
G.

Proof

1. Let n = |G|. Then we can write n = p*m, where (p,m) = 1. But it is
easy to see that m is invertible in the ring A i.e. m is invertible in R.
Now we apply Proposition 3.6.7.

2. Since M is H-regular, there exists N € Ry-mod such that M divides
R ® RgN. Since M is indecomposable, we may assume that N is an
indecomposable Rg-module. On the other hand we can write Res?(M =
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Mi&...®M,;, where M; € Rg-mod and M; are indecomposable. Using
Lemma 3.7.3, each M; divides Rx ®g . (Rg, @Ry, N) for some

Kng;Hg~
gi- But M divides RQgr,, M =2 RQ®p, M1 ® ... & ROr, M;. Since M
is indecomposable, there exists ¢ such that M divides R ®g, M;. Thus,
M divides

R QR (RK ®R _, (R, 1 @Ry N))

Kng;Hg;

~ R®g ., (Rg;n @ry N)

Kng;Hg,

Consequently, M is (K N g;Hg; ')-regular i.e. (KN g;Hg; ') € B(M).
Since H is minimal in B(M), g;Hg; * is minimal in B(M), and (since
KﬂgJIg;l - gngfl) we have Kﬂgngfl :gngfl, ie. gng;1 -
K.

3. This follows from 2.

A subgroup H of G which is minimal in B(M) is called a vertex of M, and
an indecomposable Ry-module N such that M divides R ®pg,, N is called a
source of M.

3.7.7 Theorem

Assume that H is a vertex of the indecomposable R-module M. If N, N’ €
Rp-mod are two sources of M, then there exists o € N(H) (N(H) is the
normalizer of H) such that N' = R,y ®p,, N (as Rg-modules).

Proof Write Reng =M @ ... D® M, where the M, are indecomposable
Rp-modules. On the other hand, M divides R ®pg,, N. If we apply Lemma
3.7.3 for the case K = H, we have

R®r, N = @i, (RH ®Rr,, 1 (Rgn Ory N)>

9iHg
where g1, 92, -..,9r is a set of representatives for the double cosets of H and
H in G. Then M; divides R ®g, N, and therefore there exists g; such that
M; divides Ry ®r . (R, ®ry N). Since M is a direct summand

HNg;Hg,~
in R®r, M = &!_|R ®r, M;, and M is indecomposable, M is a direct
summand in R ®g, M; for some i. Thus M divides R ®g, (Ry ®RHn

(Rgom @7 @, N)) = Rog

-1
gngi

L (Rym ®RyN). So M is (HNg;Hg; ')-

HNg;Hg,
regular, and since H is a vertex, we have H N (gngfl) =H,so H = gngfl.
Concequently, g; € N(H), and M; is a direct summand in Ry ® g, Ry, 0 Qry
N) = Rg,n ®r, N. Because Ry, p @ R -1 = Ry, then Ry, y ®p,, N is also
an indecomposable Rg-module. Hence Mi = Ry,H Qry N.
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Analogously, if we replace N by N', there exists g; such that M; = Ry, g ®g,,
N’. Thus Ry g ®Qry N = joH QORy N’, and therefore N’ = R,y ®ry N,
where o = gjflgi € N(H).

If K, H are subgroups of G, we write K C. H (inclusion by conjugation) if
there exists ¢ € G such that K C cHo™'. If K = cHo ™! we write K =, H.

3.7.8 Theorem

Let M be an indecomposable R-module, H a vertex of M and K a subgroup
of GG such that M is Rx-projective. Let us write Resg’;M =M &...& M,
where M; are indecomposable Rx-modules, and for each i,1 < i < s, let K;
be a vertex of M;. Then :

a. K;C, Hfor1<i<s

b. There exists an M; such that M is a direct summand in R®pg, M;, and
for this 7 we have :

C. Kz =c H.

Proof

a. Let N € Ry-mod be a source of M. By Lemma 3.7.3 we have R ®r,,
N =@l Rk ®R(ngng'71) (Rg,u ®ry N) as Rg. Since M; is a direct
summand of R® g, N, there exists a g; such that M; is a direct summand
of Rk ®r,__ (Rgiit ®Ryy @Ry N). Therefore M; is (K N g;Hg; ')-

gngfl

regular. Since K is a vertex of M;, then K ﬂgng;1 contains UJ(,»U{l

for some o; € K. But it is easy to see that K; C cHo !, where
-1

o =0, 4.

b. Since M is a direct summand of R®pr, M = ®_R®gr, M;, and since
M is indecomposable, there exists an M; such that M divides R® g, M;.
Since K; is a vertex of M;, M; is a direct summand in Rg @Ry, M;.
Hence M is a direct summand in R®g, (Rx ®r,, M), and therefore M
is K;-regular. Since H is a vertex of M, and K; C, H, then K; =, H.
An indecomposable R-module M is called principal if M is isomorphic
to a direct summand of gR.

3.7.9 Corollary

If R, is a semisimple Artinian ring (R = ®,eqRs is strongly graded, and
satisfies G.a., G.b. and G.c), M is a principal indecomposable R-module, and
K is a subgroup of G, such that M is K-regular, then

ResiM =M, @ My @ ... & M,

where the M; are principal indecomposable Rx-modules.
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Proof Since M is a principal indecomposable R-module, then {e} is a vertex
of M. From Theorem 3.7.3. it follows that K; = {e}. If N; is a source of M;,
then N, is an indecomposable R.-modules, and M; is isomorphic to a direct
summand of Rx ®pr, N;. But N; is isomorphic to a minimal left ideal of R..
Thus M; is isomorphic with a direct summand of Rx ®r, R. = Rx.

We end this section by the following fundamental result :

3.7.10 Theorem (J.A.Green)

Let R = ®,cc R, be a strongly graded ring satisfying conditions G.a, G.b,
and G.c. Let P be a p-subgroup of G and let H be a subgroup of G containing
N(P). Then there is a one-to-one correspondence between the isomorphism
classes [M] of finitely generated indecomposable R-modules M with vertex
P, and the isomorphism classes [N] of finitely generated indecomposable Rpy-
modules with vertex P. Here [M] corresponds to [N] if and only if M divides
R ®g,, N, which occurs if and only if N divides Res$ M.

Proof

Step 1.

P is not G-conjugate to a subgroup of zPz~' N P for all z € G — H. Indeed,
if P is G-conjugate to a subgroup of Pz~ N P, then there exists y € G, such
that yPy~* C 2Pz~ N P. Thus yPy~! C P and therefore yPy~! = P, so
y € N(P). Hence P C Pz~ ', so P = xPz~!i.e. x € N(P), a contradiction.
Step 2.

Let N € Ry-mod be finitely generated indecomposable, such that N is P-
regular. Then N is the only possible component of Resg(R ®pry N) in the
sense that any other indecomposable component which is not isomorphic to
N is (zPz~'N H)-regular for some z € G— H. Indeed, since R = Ry ®Rg—n
as Ry-bimodules, there exists N’ € Ry-mod such that Res% (R ®p, N) =
N @ N'. Since N is P-regular, there exists an Rp-modules L such that
Ry ®r, L = N @ N” for a suitable Ry-module N”. Then R ®pr, L =
R®pry (Ry ®pp L) 2 (ROry N)®(RQpy N')=N&®N & N"®N'" as
Rpg-modules for a suitable Rg-module N”’. On the other hand, by Lemma
3.7.3. we have R®p, L = @]_,V;, where V; = Ry ®r _, (Rg;p®gp L),

Hng; Py,
and {g1 = 1,92,...,9-} is a set of representatives for the double cosets of
H and Pin G. Now V} = Ry ®rp, L = N&® N”. Thus N& N & N" &
N" = N & N"® @®!_,V;, and so we have N' & N = @I _,V;. If we write
N' = N{ @& ... ® N! are indecomposable Rp-modules, then we obtain that
each N, is a component of a suitable V;, hence Nj, is (H N gy Pg;, *)-regular
for some gx, € H. Now R®p,, N = N @ N’, and the assertion follows.
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Step 3.

Let M € R-mod be an indecomposable R-module. By Theorem 3.7.3. Reng
has at least one indecomposable component N € Rpy-mod such that N
has vertex P and M is a component of R ®g, N. By Step 2., N is the
unique component of Res$ (R ®g,, N) which is not (zPz~' N H)-regular for
all x € G — H. We prove that N is the unique indecomposable compo-
nent of Res$ M, with vertex P, such that N is not (zPz~' N H)-regular
for all z € G — H. Indeed, let N’ be any indecomposable component of
Res% M, with vertex P. Thus N’ is component of Res% (R ®g,, N). If N’ is
(xPz~! N H)-regular for some # € G — H, then since N’ has vertex P, there
exists y € H such that yPy~! C zPx~'NH, and hence P C y~lzP(y~tx)~ 1,
so P = (y~lz)P(ytz)~!. Thus y~'z € N(P) C H. Sincey € H, z ¢ H
follows, contradiction. Thus N’ is not (xRz~! N H)-regular for allz € G — H.
By Step 2. since N’ is also a component of Res% (R ®g,, N) we obtain that
N = N

Step 4.

We denote by Cr,p the set of all classes [M] of finitely generated indecompos-
able R-modules M with vertex P, and by Cg, p the set of all classes [N] of
finitely generated indecomposable Ry-modules with vertex P. We define the
map f : Cr.p — Cry.p, f([M]) = [N], given by Step 3. Let N be an indecom-
posable Rp-module with vertex P. Decompose R ®pr, N = M1 & ... D M,,
where M, are indecomposable R-modules. Since N has vertex P, then it is
obvious that NN is not (x Pz~ N H)-regular for all # € G — H. Step 2. implies
that N is the only indecomposable component of Res& (R ®g,, N) which is
not (xPz~' N H) regular for all x € G — H. Hence there exists a unique
M € {M,..., M} such that N is a component of RestM. We prove now
that M is unique in {M;, ..., M;} with vertex P. Since N is P-regular, there
exists N’ € Rp-mod such that N is a component of Ry ®p, N'. Thus RQp, N
is a component of R ®g, N’, therefore R ®p,, N is P-regular. In particular,
M is P-regular. Let O C P be a vertex of M. If there exists xt € G — H
such that M is (xPx~! N P)-regular, then O is G-conjugate to a subgroup
of zPxz~1 N P, so there exists y € G such that yOy~—! C 2Pz~ N P, hence
OCPnyPynytaP(ytz)~t But, sincex ¢ Hyyd Hor y o & H.
Therefore O C PNy Py or O C PN (y 'z)P(y~'x)~!. Consequently there
exists z € H such that O C PNz~ 'Pz C 2~ 'PzN H. We consider X to be
an indecomposable component of ResICf}M . By Theorem 3.7.8. there exists an
indecomposable Y € Ry-mod with vertex O such that Y is a component of
Res% M, and M is a component of R®p,, Y. Thus Y is (z~' Pz N H)-regular
and therefore X is (271Pz N H)-regular. In particular, N is (z7'Pz N H)-
regular for some z ¢ H, a contradiction. Therefore O is not G-conjugate to a
subgroup of 2Pz~ 'NP for all + € G— H. Since N is the only indecomposable
component of Res$ M which is not (zPz~' N H)-regular for all z € G — H,
we obtain that P is a vertex of M. Suppose now that any W € {My,..., M}
has vertex P. Then there exists an indecomposable component of Reng
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which is not (zPz~! N H)-regular for all x € G — H. Hence W = M. From
the above considerations we obtain g : Cr,.p — Cg.p,g([N]) = [M], and go f
and f o g are identical maps. O

The map f : Cr,p — Crun p given above is called a Green correspondence.

3.8 Exercises

The standing assumption here is that R = ) .. R, is an almost strongly
graded ring over a finite group G. Because R,-1 R, = R, for all 0 € G, then
there exists af € R,-1, by € R, such that

(1) 1= Z alb?, I, is a finite set

171
i€l,

Assume also that M, N € R-mod and f € Homp, (M, N). We define the map
f: M — N by the equality

(2) Fm)=>"3" af f(b7m)

oceGiel,

Then prove the following statements :

1. ]?is R-linear map

2. Assume that n = |G| < co. Let N C M be a submodule of N such

that IV is a direct summand of M in R.-mod. If M has no n-torsion,
prove there exists an R-submodule P of M such that N & P is essential
in M as an Re-module. Furthermore, if M = nM, then N is a direct
summand of M as R-module.
Hint : (Following the proof of Lemma 1. from [122]). We have f : M —
N as Re-modules such that f(m) = m for all m € N. Let f : M — N
be as in Exercise 1. If z € N, then f(z) = nz. We put P = Kerf
and we prove that N N P = 0 (since M has no n-torsion) and N @ P is
essential in M as an R.-module. The last part of the exercise is clear.

3. Assume that N is an R-submodule of M and M has no n-torsion. Prove

i) There exists an R-submodule P C M, such that N @ P is
essential in M as an R.-submodule

ii) N is essential in M as R-module if and only if N is essential
in M as R.-module.

Hint : (Following the proof of Lemma 2 from [122])

i) Let L be an R.-submodule of M maximal with respect to the
property that NN L = 0. Then N & L is essential in M as
R.-module. Let (N®L)* = NoeaRs(NPBL) = Npeq(ReN +
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R,L) = Nyec(N + R,L). By Lemma 3.5.5, (N & L)* is
essential in M as R.-module. If K = (N @ L)*, then N C
KCN@®L,so K=N&(KNL). By exercise 2. there exists
an R-submodule U of K such that N @ U is essential in K as
Rc.-module. Hence N @ U is essential in M as R.-module.

ii) follows directly from i.

4. Let R =) .o R be an almost strongly graded ring with n = |G| < oo
and M a simple left R-module. Prove :

i) The restriction g, M of M over the ring R, contains a simple

submodule W and we have p, M =" . ReW
ii) g, M is semi-simple in R.-mod.
Hint : If x € M,z # 0, then M = Rz = ) __, Rox. Since R, is a

finitely generated R.-module (see Section 1.) for any o € G, then R,z
is a finitely generated R.-module for any ¢ € G. So M is a finitely
generated R.-module. Then there exists a maximal R.-module K of
rM. If we put Ko = NpegR,K then Ky is an R-submodule of M,
hence Ky = 0. From the exact exact sequence

0——M —— @UEGM/RO'K

results that M is a semisimple R.-module (since M/R, K is also max-
imal for any o € G). Let W be a simple R.-submodule of M. On the
other hand since ) .. Rs;W is also a nonzero submodule of M, we
have M =3 . R, W.

5. Let R = ) . Ro be an almost strongly graded ring n = |G| < oo.
Prove :

i) If R is a semisimple Artinian ring, then R, is a semisimple
Artinian ring.

ii) If n is invertible in R. and R, is a semisimple Artinian ring,
then R is a semisimple Artinian ring

Hint :

i) Results from exercise 4.

ii) We can apply exercise 2.

6. Let R = ®,cqRs be a strongly graded ring, where n = |G| < oo.
Prove :

i) If R is a von Neumann regular ring, then R, is a von Neumann
regular ring (it is not necessary that n is finite). (Recall that
the ring R is Von Neumann regular if for any * € R, there
exists y € R such that x = zyz).
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ii) If n is invertible in R and R, is a von Neumann regular ring
then R is a von Neumann regular ring.

Hint :

i) If a € R, then a = aba with b € R. Since a is a homogeneous
element, then a = ab.a where b, is a homogeneous composand
of degree e of b.

ii) Let a € R and I = Ra. Because R is finitely generated and a
projective left R.-module and because [ is a finitely generated
Re-submodule of R, since R, is von Neumann regular results
that Ra is direct sumand of gR as R.-module. By exercise
2 results that I = Ra is direct sumand of gR as R-module
so R is von Neumann regular (we remark that for ii. we can
assume that R is only an almost strongly graded ring).

7. Let R = ®,cq Ry be a strongly graded ring where n = |G| < co. If M €
R-mod we denote by Zr(M) (resp. Zg,(M)) the singular submodule
of M in R-mod (resp. in R.-mod) (we recall that Zr(M) = {x €
M|}Anng(x) is an essential left ideal of R). Prove :

1) Zr. (M) C Zr(M)
ii) If R has no n-torsion then Zp_ (M) = Zr(M).

iii) If M € R-gr and R has no n-torsion then Zr(M) is a graded
submodule of M and Zr(M) = RZg, (M.).

Hint :

i) If € Zr_ (M), then J = Anng, () is an essential left ideal
of R.. If we put I = RJ, since R is strongly graded then I is
an essential left ideal of R clearly Iz = 0 and © € Zr(M)

ii) If z € Zr(M) then I = Annpg(z) is an essential left ideal of
R. By Exercise 3. results that I is essential in R as left R.-
module. Clearly J = I N R, is essential left ideal of R, and
Jrx=0sox e Zr,(M).

iii) Follows from ii.

8. Let R = ®,eq R, be a strongly graded ring where n = |G| < co and n
is invertible in R.. Then R is a left hereditary (resp. semi-hereditary)
ring, if and only if R, is left hereditary (resp. semi-hereditary).

An extensive study of tame orders in relation with the strongly graded
situation is contained in [138].

Hint : Suppose that R is a left hereditary (resp. semi-hereditary) ring.
If I is a left ideal (a left finitely generated ideal) of R., then RI is a left
ideal (resp. a left finitely generated ideal) of R and therefore RI is a
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projective module. Because RI is a left graded ideal, then (RI). = I'isa
projective R.-module. Conversely, we assume that R, is a left hereditary
(resp. semi-hereditary) ring. Let K C R be a left ideal (resp. finitely
generated) of R. There exists a set (resp. a finite set) I such that

RD 2 KR

where ¢ is a surjective R-linear. Because R is a finitely generated projec-
tive left R.-module, then K is also a projective R.-module and therefore
there exits an Re-homomorphism 1 : K — R such that p o ¢ = 1.
Using the result of exercise 1. we may consider an R-homomorphism
¢ : K — RU. But (poly)(z) == forany z € K so po iy =1k. In
conclusion : K is a left projective R-module.

In the following exercises R = ) . R, is an almost strongly ring over a
finite group G.

Notations :

1.

If M € R-mod, then by Lr(M) (resp. Lr, (M)) we denote the lattice
of R-submodule of M (resp. R.-submodules of M).

. By K-dimg(M) (resp. K-dimpg, M) we denote the Krull dimension of

M over the ring R (resp. over the ring R.).

By G-gM (resp. G-dimpg, M) we denote the Gabriel dimension of M
over the ring R (resp. over the ring R, - see appendix B).

Let M € R-mod and N be an R.-submodule of M. We denote by N* =

NeccRoN and N** = 32

vcc BoN. Clearly N* is the largest R-submodule

of M contained in N and N** is the smallest R-submodule of M such that
N C N**,

9. Let M € Z-mod and L be an R.-submodule of M. Then

i) Lgr.(M/RsL)~ Lp, (M/L)
11) ERE (RUL) ~ ERe (L)
Hint
i) If X/L € Lr,(M/L) then X/L — R,X/R,L is an isomor-

phism of lattice. The inverse isomorphismisY/R,L — R,-1Y/L
where Y/R,L € Lr, (M/R,L)

ii) Is clear

If M € R-mod, we let rankp M, rankr_ M denote the Goldie dimension
of M over these rings.
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10.

11.

12.

13.

14.
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Let |G| = n and rankgM = m. Then rankp, M < mn.

Hint : Let N be a R.-submodule of M maximal with the property
N* =0. Let Ay,...,A; be R.-submodules of M strictly containing N
whose sum is direct modulo N. Then A # 0foreach1 <¢ <t Ift >m

then for some 4 (32, ; A7) N A7 # 0. Because ((Zj# Aj) ﬂAi)* 2

(32 Aj)NA] it follows that ((Zj# Aj)nN Ai) #0andso ) ; AjN
AiiN, a contradiction. Then rankg, (M/N) < m. By Exercise 9.

rankp (M/R,N) < m for all 0 € G. Because 0 = N* = NyeqR, N we
have 0 - M — ®,ecM/R,N and so rankg, M < mn.

If R has finite Goldie dimension, then R, has finite Goldie dimension.
Hint : We apply Exercise 10.

Let M € R-mod. Then rpM is Noetherian in R-mod if and only if r, M
is Noetherian in R.-mod.

Hint : The inplication ” < is clear. So assume that rpM is Noetherian.
Let N be the R.-submodule of M maximal such that N* = 0. Since
0=N*=NyegRsN then 0 = M — @,caM/R,N. So by exercise 9
it is sufficient to prove that M /N is R.-Noetherian.

Let My/N C My/N C ... C M,/N C ...an ascending chain of non-zero
R.-submodules of M/N. Then N C M;, and therefore M # 0. Since

M7 is a nonzero R-submodule of M, using the Noetherian induction, we
have that M /M7 is R.-Noetherian. Since M; C M; then there exists n
such that M, /My = M, y1/M; for any i >nso M; = M;y1 = ...

Let M € R-mod and N C M be an R.-submodule of M such that
N* = 0. Then

i) K-dimp, M = K-dimpg, (M/N) if either side exists.
i) G-dimr, M = G-dimpg,_(M/N) if either side exists.

Hint : Since 0 = N* = NyecgRsN then there exits in R.-mod the
canonical monomorphism 0 - M — ®,egM/R,N. Now we can apply
exercise 9.

Let M € R-mod. Then K-dimpM = K-dimp, M if either side exists.
In particular M is an Artinian R-module if and only if M is an Artinian
R.-module.

Hint If K-dimp, M exists, clearly K-dimrM exists and moreover K-
dimpM < K-dimg, M. Assume that K-dimrM = « and by induction
on a we prove that K-dimp, M < a. Clearly we can reduce the problem
when M is a-critical (see Appendix B). Let N be an R.-submodule of
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M, maximal with the property that N* = 0. If X is R.-submodule of
M such that N ; X, then X* # 0 and therefore K-dimpM/X* < « and

by induction we have K-dimpr, M/X* < a. Since X* C X, we have K-
dimp, M/X < a. Using the Appendix B, yields that K-dimg, M/N < «
so by exercise 13. we have K-dimp, M < «a. Conversely if we assume
that K-dimpM exists then K-dimpg, M exists, cf. [119] or [157].

Let M € R-mod, then G-dimgpM = G-dimp, M if either side exists. In
particular M is a semi-Artinian R.-module if and only if pM is semi-
Artinian.

Hint : See [20], [21], [141], [157].
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3.9 Comments and References for Chapter 3

Strongly graded rings have enjoyed a growing interest in connection to the
theory of graded rings and generalized crossed products; also it turned out
that the property of being strongly graded is exactly providing a tool for
introducing “affine” open sets in the study of the noncommutative geometry
of a projective noncommutative scheme.

It is unnecessary to repeat most of the material about strongly graded rings
already included in the book [150], so we focussed on the study of the cat-
egory R-gr for a strongly graded ring R. The first main result is “Dade’s
Theorem” mentioned in Section 3.1; it provides an equivalence of categories
between R-gr and R.-mod, defined via the induction functor. In Section 3.2
the foregoing subject is elaborated upon and necessary conditions are given
such that a category equivalence between R-gr and R.-mod would force R to
be strongly graded (see Theorem 3.2.1). Example 3.2.4 establishes that an
arbitrary equivalence of categories between R-gr and R.-mod does not lead
to R being strongly graded in general.

In Section 3.4 we study the endomorphism ring Endgr(M) where R is a
strongly graded ring and M is an R-module (not necessarily a graded one).
Theorem 3.4.1 (Miyashita) is essential to this study. In particular it follows
that G has a natural action on Cr(R.) (that is the centralizer of R, in R).
This theorem also allows the definition of a trace for an arbitrary morphism
of R-modules. In section 3.5 we use this trace to arrive at an extension of
Maschke’s theorem for graded modules; Theorem 3.5.7, “essentially Maschke’s
theorem” closes the section. The idea of the proof of this result belongs to
M. Lorenz and D. Passman (see [122]).

Section 3.6 is dedicated to H-regulated modules, where H is a subgroup of
G, a concept first introduced in representation theory of groups. This allows
the introduction for strongly graded rings of J.A. Green’s theory originating
in the study of indecomposable representations of finite groups over a field.
The fundamental results of this section are phrased in Theorems 3.7.6, 3.7.7,
3.7.8 and 3.7.10 Exercises in Section 3.8 extend the applicability of the results
in this chapter.
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Chapter 4

Graded Clifford Theory

Throughout this section R is a G-graded ring and ¥ = ®,cqX, will be a
simple object of R-gr.

4.1 The Category Mod(R|Y)

The full additive subcategory generated by ¥ in R-mod will be denoted by
Mod(R|X), that is the subcategory consisting of epimorphic images of direct
sums of copies of 2.

4.1.1 Lemma

Every M € Mod(R|Y) is semisimple as an R.-module and every simple R-
submodule S of M is R-isomorphic to X, for some o € sup(%).

Proof Let M be an epimorphic image of a direct sum X for some index
set I. Proposition 2.7.1 entails that X(/) is semisimple as an R.-module and
» = @UGGEE,”. Consequently M is a semisimple R.-module too and every
simple R.-submodule S of M is necessarily isomorphic to one of the ¥,. O

4.1.2 Lemma (The key lemma, cf. E. Dade [52])

For M € Mod(R|X) and ¢ € sup(X), any Re-linear ¢ : 3, — M extends to a
unique R-linear ¢ : Y — M.

Proof First we check the uniqueness of p¢. Assume that both ¢ and ' :
¥ — M are R-linear maps with 9|3, = ¢'|X,. Since X, # 0 there is an
T € Yo,  # 0, and Rz is a nonzero graded submodule of 3. Therefore
3 = Rx because ¥ is gr-simple. Any y € 3 is of the form y = ax with a € R.

C. Nastasescu and F. Van Oystaeyen: LNM 1836, pp. 115-145, 2004.
© Springer-Verlag Berlin Heidelberg 2004
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We calculate :

U(y) = ¥(ax) = ay(z) = a’(z) = ¢'(ax) = ¢(y)

hence ¢ = 1’ follows. Now we establish the existence of an R-linear map
¢ = ¥ — M such that ¢¢|¥, = ¢. There exists an R-epimorphism, ¢ :
¥ — M, for some index set I. As X(!) and M are semisimple R.-modules,
see Lemma 4.1.1, there exists an R.-linear map, 0 : ¥, — () such that
@ = 1 o6. In order to show that ¢ may be extended it suffices to extend
6, hence we may assume that M = X)), We may assume that I is finite
because ¥, is a finitely generated R.-module, say I = {1,2,...,n}. For
jed{l,....,n}leti; : ¥ — X" and 7; : " — X be the canonical injection resp.
projection. The identity 1sn : 3™ — 3™ decomposes as Z;.lzl ijom;, therefore
©= Z?Zlijo(ﬂ'jogo), where for j =1,...,n, mjop: X, — X. If every mjo¢
extends to (mj0p)¢ : ¥ — X then we may define ¢° by ¢ = 7 ijo(mj0p)°.
Obviously ¢¢ is R-linear and also we have that ¢¢|X, = ¢. Consequently we
may assume that M = ¥. Since ¥, is a finitely generated R.-module there
exists a finite subset F of sup(X) such that Imp C ®,cpX,. For 7 € F put
ir 1 X7 — ®yerX,y, resp. M, : GycpXy — 2, for the canonical injection,
resp. projection. Again the identity of ®,crX, decomposes as Z’yGF i, 0T,
and we put ¢, = 7, op. This leads to ¢ = ZTeFiT o, with ¢, : X, — X, .
Now, in view of Theorem 2.7.2 there exists a unique R-linear ¢ = 1r®pr, ¢r,
R®p,YXs — R®pr.X,;. Since R®p, %, ~ YX(o) and R ®pr, ¥, ~ X(7), we
obtain an R-linear ¢ : ¥ — X. Moreover, ¢|X, = i, o ¢,. Putting ¢¢ =
Yrepps we have (X, =3 07 |Ee =3 cpiropr = . O

4.1.3 Propostion

The subcategory Mod(R|X) is closed under taking : R-submodules, R-quotient
modules and direct sums. Thus Mod(R|X) is a closed subcategory. Moreover,
Y is a finitely generated projective generator of Mod(R|X), hence the latter
is a Grothendieck category.

Proof

It is clear that quotient objects and direct sums of objects of Mod(R|X) are
again in Mod(R|X). Now let N be a nonzero R-submodule of M and M in
Mod(R|X). Since M is semisimple as an R.-module, so is N. Let N be decom-
posed as N = ®;¢1.S;, where (S;)ier is a family of simple R.-submodules of N
In view of Lemma 4.1.1, every S; is isomorphic to X, for a suitable o € sup(X),
let o : ¥, — S; be this R.-isomorphism. It follows from Lemma 4.1.2 that
there exists ¢f : ¥ — M such that |3, = ;. Since ¥ = RY, we ob-
tain : (X)) = pf(RE,) = Rp$(Xs) = Rpi(Xs) = RS; = N. Consequently,
we may consider ¢f : ¥ — N. The family {¢¢,€ I} defines an R-linear
¢ : ) — N such that Tmy = > icr RSi = N and therefore N € Mod(R|X).
It is clear that ¥ is a finitely generated R-module and a generator for the
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category Mod(R|X). In order to establish projectivity of ¥ in Mod(R|X) we
consider the following diagram in the category Mod(R|X) :

where f # 0. For some o € sup(X) we have f|X, # 0. Semisimplicity of
both M and N as R.-modules yields that there exists g : ¥, — M such
that 7 o g = f|¥,. In view of Lemma 4.1.2 there exists an R-linear map
g€ : ¥ — M such that ¢¢|X, = g. It is obvious that 7 o ¢¢|X, = f|X, and
from the uniqueness statement in Lemma 4.1.2 it follows that m o ¢¢ = f.
Therefore, ¥ is projective in Mod(R|X). That Mod(R|X) is a Grothendieck
category follows from the fact that it is a closed subcategory of R-mod having
a projective generator of finite type. O

Put A = Endg(¥) = ENDg(X); this is a G-graded ring with multiplication
f*xg given by go f for f and g in A. From Proposition 2.7.1, it follows
that A is a gr-division ring and A = @, ¢ (x)Ar where G(X) is the stabilizer
subgroup of ¥. On X there is a natural structure of a graded R-A-bimodule
and so we have the usual additive functors :

Homp(rXa,—): Mod(R|X) — A—mod
Y ®a—: A—mod — Mod(R|X)

Mitchel’s theorem (cf. [181], Theorem ?) states that a Grothendieck category
A with a small projective generator U is equivalent to A-mod where A =
End 4 (U). The equivalence is given by the functor Hom(U, —) : A — A-mod.
Recall that the multiplication of A is given by the opposite of composition.
Now we are ready to phrase the main result in this section, as a consequence
of the foregoing results and observations.

4.1.4 Theorem

Let ¥ be simple in R-gr and A = Endg(X2). The categories Mod(R|X) and
A-mod are equivalent via the functors :

Homp(rXa,—): Hom(R|X) — A—mod
RYA QA — A—mod — MOd(R|E)
4.1.5 Remarks

1. Notation is as in Section 2.6. Proposition 4.1.3 entails that Mod(R|X) =
o[X].
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2. Consider a gr-semisimple M = @;c13;. From Lemma 4.1.2. we derive a
result similar to Proposition 4.1.3 i.e. Mod(R|M) is a closed subcategory
of R-mod and {X;,7 € I'} is a family of finitely generated and projective
generators. So M is a projective generator of Mod(R|X) but not finitely
generated in general ! We obtain again : Mod(R|M) = o[M].

4.2 The Structure of Objects of Mod(R|X) as
R.-modules

Let ¥ = ®,ceX, be simple in R-gr and let M # 0 be in Mod(R|X). From
Lemma 4.1.1 we retain that M is semisimple as an R.-module. For a simple
Rc.-submodule S in M there exists a o € sup(X) such that S = X, as R-
submodules.

4.2.1 Lemma

Forre G, R;S=%Y,,.

Proof There exists an Re-linear ¢ : ¥, — M such that ¢(3,) = S. We
may consider ¢ : 3 — M such that ¢¢|3, = ¢ (see Lemma 4.2.2). Now
we calculate : p*(R;%,) = R,¢%(Xs) = Rrp(Xs) = R.S. Since X, # 0
we have RY., = X. Thus for any 7 € G we have R;¥, = X.,, hence
¢ (Xr5) = R.S. In case ¥, = 0, then R.S = 0 and again R, S = ¥ ,. If
Sre # 0 then Ry -15,5 = . If 09(315) = 0 then ¢(Ey) = ¢¢(R,-15,,) =
R, -1¢%(X75) = 0, hence ¢°(3,) = p(Xs) = S = 0, a contradiction. There-
fore we must have ¢¢(X;,) # 0, so, putting ¥ = ¢¢|3,,, ¥ : X0 — RS is
an R.-isomorphism. O

4.2.2 Lemma

If S is a simple R.-submodule of M and 7 € G, then either R;S = 0 or
R;S is a simple R.-submodule of M. In the latter case, for all v € G :
R,R;S=R,;Sand also R, -1 RS = S.

Proof For some o € sup(X) we have S = ¥,. The first statement in the
lemma follows from Lemma 4.2.1. Assume that R.S # 0. Then R,S =
Yro # 0 and we may use Lemma 4.2.1 again to obtan that RyR.S = X,;5.
On the other hand R,;S = X,;,. Since RyR, C Ry;, RyR;S C R,;S.
Now if ¥y, = 0 then RyR,;S = R;S = 0. If ¥, # 0 then R\R;S # 0
would lead to R, RS = R,;S because we already know that R.,,S is a simple
R.-submodule of M. Finally, putting v = 77! leads to R,-1 R, S = S. O
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4.2.3 Lemma

For any o € sup(X) there exists a simple R.-submodule of M isomorphic to
Yo

Proof Since ¥ generates Mod(R|X) there exists a nonzero R-linear u : ¥ —
M. Put ¢ = u|%,,,p: Xy — M. If ¢ = 0 then u(X,) = 0 implies u(X) =
u(RY,) = Ru(X,) = 0 and this leads to a contradiction v = 0. So we must
accept that ¢ £ 0 or S = ¢(X,) is a simple R.-submodule of M. O

For any M € Mod(R|X) we let Qg (M) be the set of isomorphism classes
of simple R.-submodules of M. We use the notation w = [S] € Qg (M)
to denote the class {S" € R.-mod S” = S}. For any nonzero object M in
Mod(R|Y) it is clear that Qg (M) = Qg, (X). For M € Mod(R|X) and w €
Qr.(X) look at M,, = X.5’, the sum ranging over the simple R.-submodules
belonging to w. We call M, the isotypic w-component of M. In case
M = M, we say that M is w-isotopic (sometimes S-primary, where S € w).

The semisimplicity of M in R.-mod entails that :
M = ®yeap, (5)Mw

However, for w € Qg (X) there exists a o € sup(X) such that ¥, € w.
Consequently we may write : M, = ®;c1S;, where S; &£ X, for any i € I.

For another decomposition M,, = &,c;S; then |I| = |J| and the latter number
(cardinality) is called the length of M,,, denoted by g, (M,y).

4.2.4 Lemma

Assume tat M, = @ierS; with S; 2 3,. If v € G then R,M,, = ®ic1R,S;
with R,S; = ¥,,. Moreover, if yo ¢ sup(X), then R,M,, = 0. When
vo € sup(X) then Ry M, = M, where v’ is the class containing the simple
Re-submodule X,.

Proof Clearly, R, M, =}, ; R,S; where R,S; = X, (see Lemma 4.2.1).
Hence, if yo ¢ sup(X) we have R,M,, = 0. Assume that yo € sup(X), then
we are about to establish that ), ; R,S; is a direct sum. Start from the
assumption that R,.S; N (Zj# R,S;) # 0 for some i € I. Since R,S; = X,
is a simple Re-submodule of M it follows from the foregoing assumption that
R,S; C >4 RySj. From Lemma 4.2.2. it follows that S; C R,-1R,S;
hence S; C 32, Ry-1RyS; = 3, Sj, a contradiction. Threfore we have
established that R,M,, = ®;crR,S;. Furthermore, it is clear that R,M,, C
M,,,. Hence we may write :

M, = R»YMw D (@ngTj)
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where T; = ¥, for every j € J.

The above argumentation yields : R,-1M,, C M,. On the other hand
R,Y—l w = EBiEIRFy*IR’ySi S¥) (@jGJR’yflTj)- Therefore, EB]‘GJR,-Y—IT]‘ =0,
but R,-1Tj ~ X, # 0, hence J = ). Finally, we arrive at M,» = R,M,. O

4.2.5 Theorem

Consider a nonzero M in Mod(R|Y).

i) M decomposes as a direct sum of isotypical components M, # 0,
M = &{M,,w € Qg (2)}.

ii) For any w,w’ € Qg_ () we have lg_ (My) =g, (My).
i) [Qr, ()] = [Sup(X) : G{Z}] < [G: G{X}].

iv) M may be viewed, in a natural way, as an object of the category
of G/G{X}-graded R-modules.

Proof
i) Clear enough.

ii) Consider w and w’ in Qp,_(X). There exist o, 7 € sup(X) such that
Yo €wand X, € w'. Puty= 7o~!, then we have 7 = yo and
lr,(My) = lg, (M,) follows from Lemma 4.2.4

iii) Considering o and 7 in sup(X), we may apply Theorem 2.7.2 and
derive from it that ¥, = ¥, as R.-modules if and only if (o) =
() in R-gr, if and only if o =17 € G{X}. It follows directly from
this that : |Qg, ()] = [sup(Z) : G{Z}].

iv) Take C € G/G{X}, say C = 0G{XZ}, say C = oG{X} for some
o € G. In case o & sup(X), put M¢ = 0, otherwise put M¢c = M,
where ¥, € w. It is completely clear now that M = &cca/aizy Mo
and for any v € C we also have R, M¢c C M, ¢ (using Lemma 4.2.2
once more). O

4.3 The Classical Clifford Theory for Strongly
Graded Rings

In this section R is strongly graded by G. For o € G the functor Ro®p, — : Re-
mod — R.-mod, X — R, ®pg, X is an equivalence of categories with inverse :
R,-1 ®r, — : Re-mod— R.-mod.

We say that X and Y in R.-mod are G-conjugate if there exists o € G such
that Y = R, ®g, X. An R.-module X is said to be G-invariant if and only
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if X 2 R, ®r, X for every 0 € G. For a simple R.-module X and for any
o € G the R.-module R, ®p, X is again simple. Recall that Qp, stands for
the set of isomorphism classes of simple left R.-modules. It is easy to define
an action of G on g, as follows :

G xQr, — Qg (9,[5]) = [Ryg ®r, 5]
where [S] is the class of S.
Consider a semisimple R.-module M. We use the notation Qg (M) as in the

foregoing section.

4.3.1 Proposition
For M and R as above we have :

i) For a simple R.-submodule N in M and any o € G we have :
Ro‘ ®RE N = RO-N.

ii) The G-action defined on Qg induces a G-action on Qg (M).

Proof

i) Look at the canonical R.-linear a : R, ® g, N — R, N given by
a(A®x) = Mz, for A € R,,z € N. Since « is surjective, R, N # 0
and R, ®p_ N is a simple R.-module, thus « is an isomorphism.

ii) Follows in a trivial way from i.

4.3.2 Theorem (Clifford)

Consider a strongly G-graded ring R and a simple left R-module M. Assume
that there exists a nonzero simple R.-submodule N of M.

a. We have M = R,N and M is a semisimple R.-module.

oeG
b. The G-action on Qg (M) is transitive.

c. Let us write H for the subgroup G{N} in G, then :
H={0ceG R,N=N}
d. If M = ®;e1 M,,, where the M,,, are the non-zero isotypical components

of M as an R.-module, then we have :

i) I(My,) = 1(My,) for any 4,5 € I.
i) |I| =[G : H].
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In particular, if M is a finitely generated R.-module, then [G : H] < oo
and I(M,,,) < oo for any i € I.

e. Assume that w € Qg (M) is such that N < M,,. Then M, is a simple
Rp-module and R ®p,, M, ~ M.

Proof
We consider ¥ = R®p, N € R-gr. Since N is a simple R.-module, ¥ is
gr-simple. On the other hand the canonical map :

a:R®r, N> M,a(A®z)=Ix,\€ R,x € N

Since a(R, ®r, N) = Ro N we have M = > .~ R;N. Hence M € Mod(R[X)
(in fact M is a simple object in the category Mod(R|X)). Since R is strongly
graded, sup(X) = G and G{X} = H. Now the assertions a., b. and d. follow
from Theorem 4.2.5.

(b) If w,w" € Qg (M), then there exist two simple R.-submodules S, S’ of M
such that w = [S] and w’ = [S’]. Assertion a. implies that there exist o, 7 in
G such that S 2 R,N 2 R, ®p, N and S’ 2 R.N 2 R, ®p, N. It is clear
that S’ = R,,-1 ®pg, S, hence the action of G on Qg (M) is transitive.

(e) Assertion iv. of Theorem 4.2.5 implies that M = ©ceq/pMc is a G/H-
graded R-module. In fact {M¢,C € G/H} consists exactly of all isotypical
components of M as a semisimple R.-module. Now exercise 9 in Section
2.12 allows to finish the proof. On the other hand, a direct proof using the
same argument as in Dade’s Theorem (Theorem 3.1.1) may also be given from
hereon. O

4.3.3 Remarks

1. For R and M as in the theorem, the assumption that M contains a
nonzero simple R.-module holds in the following situations :

a. R is a left Artinian ring.

b. G is a finite group.
Indeed, the case a. is obvious and b. follows from Corollary 2.7.4.

2. Consider a field K and a normal subgroup H of G. The group ring
KIG] has a natural G/H-gradation, K[G] = ©cequK[Glc, where
K[Gle = K[C] = ®4ecKy. The component of degree € € G|H is
exactly K[H]. An irreducible representation of G, V say, corresponds
to a simple K[G]-module V with finite K-dimension. We may consider
V' as a representation space for H too, by restriction of scalars. Since
dimgV is finite, V' contains a nonzero simple (left) K[H]-module and
so Theorem 4.3.2 is applicable to this case.
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Given a strongly G-graded ring R together with a simple left R.-module S.
One of the aims of classical Clifford theory is to provide a description of all
simple left R-modules M isomorphic to direct sums of copies of the given .S
as R.-modules i.e. to obtain all S-primary R-modules M in an explicite way.

Put ¥ = R®p, S. Since R is stronly graded, ¥ is gr-simple. Put A =
Endg(X). From Proposition 2.2. we retain that A is a gr-division ring and
A = ®pegAp where H = G{Z} = G{S}. In case S is G-invariant we have
H=G.

4.3.4 Theorem

Consider a strongly graded ring R together with a G-invariant simple R.-
module S. There is a one-to-one correspondence between the set of iso-
morhism classes of simple A-modules and the set of isomorphisms classes
of simple R-modules that are S-primary as R.-modules.

Proof Consider Mod(R|X). Since S is G-invariant it follows that every M €
Mod(R|X) is S-primary as an R.-module. The result thus follows directly
from Theorem 4.1.4 O

4.3.5 Example (E. Dade)

Let A be a discrete valuation ring with field of fractions K. Let w = Ap
be the maximal ideal of A. Consider a cyclic group < ¢ >= G of infinite
order. The group ring A[G] has the usual G-gradation. We may view K as
an A[G]-module in the following way : o%(\) = p‘\, for i € Z and ) € K.
Let us verify that K is a simple R = A[G]-module. Take A # 0 in K. For
pw#0in K, \™'p € K, say A1y = ab™! where a,b € A. Write ab~! = up’
where u € A — w, hence p = A\up® = uo'(z) and K = R\ or K is simple.

Consider K as an A-module via restrition of scalars for A — A[G], we obtain
the structure of K as an A-module (making it the fraction field of A). Assume
that K contains a simple A-module X, then XNA # {0} and X = XNA C A.
Since A is a domain we must have X = 0. This example shows that the
hypothesis in Theorem 4.3.2 is essential !

4.4 Application to Graded Clifford Theory

In this section we aim to elucidate further the structure of a gr-simple ¥ in
R-gr when viewed as an ungraded module in R-mod. In Section 4.2. we
have already described the structure of any R-module M from Mod(R|X)
considered as an R.-module, we continue here using the same notation and
conventions. We will obtain an answer to the problem posed above in case
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R is a G-graded ring of finite support, hence in particular when G is a finite
group.
First notation : for M in R-mod we let Specy (M) be the set of isomorphism

types [S] of simple R-modules S such that S = P/Q where Q C P C M are
submodules. In a similar way we define Specp_(M).

4.4.1 Proposition

Let R be a graded ring of type G and consider gr-simple R-modules ¥ and
P

The following assertions are equivalent :
i) Hompg(3,%') # 0.
ii) There exists a 0 € G such that ¥’ = 3(0).
iii) Specy(X) and Specg(X') have nontrivial intersection.
iv) We have an equality : Specy(X) = Specy(¥).
v) Specg, () and Specg_(X’) have nontrivial intersection.

vi) We have an equality : Specp_(X) = Specy_(X')

Proof

i. = ii. : If Hompg(X,X) # 0, there exists a nonzero R-homomorphism
f:X — X' Since X is a finitely generated R-module, then Hompg (X, ¥') =
HOMRg(%, %), hence f = > 4 fo where f; : ¥ — ¥ is a morphism of degree
o. Since f # 0, there exists a ¢ € G such that f, # 0. But f, : ¥ — ¥/(0)
is a nonzero morphism in R-gr. Since ¥ and ¥'(o) are simple objects in R-gr
we have ¥/(0) ~ ¥ or ¥/ ~ ¥(o71).

The assertions ii. = i., ii. = iv., iv. = iii. and vi. = v. are easily
verified. We prove iii. = v. Let S be a simple R-module such that [S] €
Specg(X) N Specg (X).

In view of Lemma 4.1.1. it is clear that Specp (X) N Specy, (X') # 0.
We now establish the implication v. = ii. There exist 0,7 € G such that
Y, ~ ¥7. In this case, see Theorem 2.7.2., we have that R®p X, ~ 3(0)
and R®p, Y. ~ ¥'(1). Hence X(0) ~ ¥'(7) and therefore ¥/ ~ %(0)(771) =
S(r71o). O

4.4.2 Remark

With notation as in Section 4.2. we have that Specy () = Qr, (X).
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4.4.3 Corollary

Assume that R has finite support and S is a simple R-module, then there
exists a gr-simple module ¥ such that S is isomorphic to an R-submodule of
Y. Moreover ¥ is unique up to a o-suspension i.e. if S embeds in another

gr-simple module ¥, then ¥’ ~ ¥(o) for some o € G.

Proof The first part is a direct consequence of Corollary 2.7.4. The second

part follows from Proposition 4.3.1.

4.4.4 Theorem

Let R be a graded ring such that sup(R) < oco. If ¥ is a gr-simple module,

then the following assertions hold :

i)

ii

—-
iy
=3y

~— ~— ~—

vi)

¥ has finite length in R-mod
G{X} is a finite subgroup of G
A = Endg(Y) is a quasi-Frobenius ring.

If n = |G{X}| and ¥ is n-torsion free, then ¥ is semisimple of
finite length in R-mod.

If G is a torsionfree group, then ¥ is a simple R-module. Moreover,
every simple R-module can be G-graded.

If S € Specg(X), then S is isomorphic to a minimal R-submodule
of 3.

Proof

i)

ii)

iii)

iv)

Clearly : sup(¥) < co. By Lemma 4.1.1. ¥ is a semisimple left
Re.-module of finite length. So ¥ as an R-module is Noetherian
and Artinian, then ¥ has finite length in R-mod.

By Proposition 2.2.2., G{X} is a finite subgroup of G (since sup(X) <
00).

Since A = @yeq{x}As where A, is a division ring and A is a
G{X}-crossed product, it follows that A is left and right Artinian.
Moreover it is both left and right self-injective. Hence A is a
quasi-Frobenius ring.

Since ¥ is n-torsionfree, the morphism ¢, : ¥ — X ¢, (z) = nx
is an isomorphism. Thus n is invertible in A. It follows from
Maschke’s theorem (Section 3.5) that A is a semi-simple Artinian
ring. Now by 4.1.4 it follows that ¥ is semisimple in Mod(R|X)
hence semisimple in R-mod too.
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v) If G is torsionfree, then G{X} = 1, and thus A = A,, i.e. Aisa
division ring. As a consequence of Theorem 4.1.1 we obtain that
> is a simple R-module. The second part of this assertion derives
from Corollary 4.3.3.

vi) From Proposition 4.1.3., if S € Specy (), there exists a nonzero
morphism f : ¥ — S which must be an epimorphism. Now, since
A is a QF ring, every simple A-module is isomorphic to a minimal
left ideal of A. Then Theorem 4.1.1 entails that S is isomorphic
to a minimal submodule of X.

4.4.5 Corollary

Let R = ®,ecRy be a G-graded ring with n = |G| < co. We denote by
J(R) the Jacobson radical of R. If a € J(R) and a = ) . a0, 05 € Rs
then na, € J(R) for any o € G. In particular if n is invertible in R, then
J(R) = J9(R).

Proof Let ¥ be a gr-simple left R-module. We put m = |G{X}|, then m
divides n. If m¥ = 0 also n¥ = 0, hence (n-a) = 0. If m¥ # 0 then
mX = X and ¥ is m-torsion free. By assertion iv. of Theorem 4.3.4 it follows
that ¥ is semisimple in R-mod. Since a € J(R), aX = 0, thus (n.a)X = 0.
Therefore na € J9(R). Since na = ) ., nas we obtain :na, € J9(R). Now
J9(R) C J(R) entails na, € J(R) for any o € G. The last statement of the
Corollary is clear. O

4.4.6 Theorem

Let R = ®,cq R, be a G-graded ring where G is a torsion free abelian group.
Then the Jacobson radical J(R) is a graded ideal of R.

Proof First assume that G has finite rank, thus G ~ Z"(n > 1); we prove
the assertion by recurrence on n. We start with the case n = 1. Let a € J(R)
and write @ = a;, + ...+ a;, where a;,,...,a;, are the nonzero homogeneous
components of a. Assume i; < i1 < ... < i5. Clearly there exist two prime
numbers p, q such that p and ¢ do not divide i; — i, for any 1 < r <[ < s.
In this case a;,,...,a;, remain the homogeneous components of @ when R is
considered as a Z, respectively Z,-graded ring. Corollary 4.3.5 yields that
pa;, and qa;. are in J(R) for 1 <r < s. Since p and ¢ are prime and p # ¢
it follows that (p,q) = 1 and therefore a;, € J(R) for any r =1,...,s. Thus
J(R) is a graded ideal. Assume now that G ~ Z" with n > 1 and suppose
that the assertion is true for n — 1. We write G = H @ K where H and K are
two subgroups of G such that H ~ Z" ' and K ~ Z. Let a € J(R) and a =
quG ag where ay € Ry. Let g € G and consider R with the grading of type

G|K ~ H. The induction hypothesis leads to ag4x = >, gtz € J(R). If
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x,y € K,z # y then we have g+ & # g + y in the quotient group G/H ~ K.
Since K ~ Z the first step of induction establishes that a4y, € J(R) for any
z € K. In particular for x = 0 we obtain a, € J(R), hence J(R) is a graded
ideal of R. Now assume that G is torsion free. Let a € J(R), a = a4, +...+ag,
where ag,,...,a,, are nonzero homogeneous components of a. There exists
a subgroup H of G such that ¢1,...,9: € H and H ~ Z" for some n > 1.
Clearly R = Ugcx Rk where K is an arbitrary finitely generated subgroup
of G such that K contains H. Since J(R)NRx C J(Rk) and a € J(R)NRx
then a € J(Rg) and by the above argument a4, € J(Rg), (i < i < t). If
b € R), there exists a subgroup K, finitely generated such that H C K and
b€ Rk. So 1 — bag, is invertible on Ry so invertible in R. Hence a4, € J(R)
forany 1 <i < t.

4.4.7 Corollary

Let R = @,eccRo be a G-graded ring where G is an abelian torsion free group.
Then :

J(R) € JY(R)

Proof Let ¥ be a gr-simple module. Since X is finitely generated as an
R-module, J(R)X # X. Since J(R) is a graded ideal (Theorem 4.4.6), then
J(R)X =0 and J(R) C J9(R). O

4.4.8 Remark

Let R = ®,cq R, be a G-graded ring where G is a torsion free abelian group.
If M € R-gr is a finitely generated graded R-module then the above results
are true for the Jacobson radical of M. So we have the following assertions :
i) J(M) is a graded submodule of M.
i) J(M) C JI(M)

The proof of these assertions is identical to the proofs of Theorem 4.4.6 and
Corollary 4.4.7

4.4.9 Corollary

Let R be a G-graded ring, where G is a torsionfree abelian group. If ¥ is a
gr-simple module then J(X) = 0.

Proof By Remark 4.4.8 ii., we have J(X) C J9(X) = 0.
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4.4.10 Proposition

Let R = ®,eqR, be a G-graded ring with n = |G| < oo and M € R-
gr. We denote by s(M) (respectively by s8"(M)) the socle of M in R-mod
(respectively in R-gr). Then :

i) s(M) C s8"(M)
i) ns® (M) C s(M)

iii) If n is invertible on M then s(M) = s8"(M)
)

iv) If m € s(M), m =)
o €q.

vear Mo € My then nmg € s(M) for any

Proof

i) Straight from Proposition 2.7.3. We have that s8"(M) is the sum
of all graded simple submodules ¥ of M. But n¥ = 0 or ¥ is
semisimple in R-mod. Hence we have nX C s(M) and therefore
ns8 (M) C s(M).

ii) Is clear and iv. is obvious from i. and ii.

4.4.11 Theorem

Let R be a G-graded ring, where G is a torsionfree abelian group. If M € R-gr,
then s(M) is a graded submodule of M.

Proof Same proof as in Theorem 4.4.6, using Proposition 4.4.10.

4.5 Torsion Theory and Graded Clifford The-
ory

Let R be a G-graded ring and R-gr the category of all (left) graded R-modules.
Let C be a closed subcategory of R-gr (see Section 2.6); C is called rigid if
for any M € C, we have M (o) € C for any o € G.

4.5.1 Examples

i) If C is the class of all semisimple objects of R-gr, then it is clear
that C is a rigid closed subcategory (if M is semisimple, then
M (o) is also semisimple, because T, the o-suspension functor, is
an isomorphism of categories.
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ii) If M € R-gr is a graded G-invariant, i.e. M ~ M(o) in R-gr
for any o € G, then it is easy to see that o[M] is a rigid closed
subcategory of R-gr. Now for M € R-gr, ®,ecM (o) is a G-
invariant graded module, putting :

o8 [M] =0 [BoccM(0)]

we have that o8 [M] is also a rigid closed subcategory. In fact, it
is the smallest rigid closed subcategory of R-gr containing M.

iii) There exist closed subcategories of R-gr which are not rigid. For
example let G # {1}, take 0 € G and let C, = {M = @®reaM) €
R—gr|M, = 0}. Then C, is obviously a closed subcategory of R-
gr (in fact it is a localizing subcategory) but is not rigid, unless
C, = 0. Let C be a rigid closed subcategory of R-gr. Denote the
smallest closed subcategory of R-mod containing C by C.

4.5.2 Proposition

For M € R-mod the following assertions are equivalent :
i) MeC

ii) F(M) € C, where F is a right adjoint functor for the forgetful
functor U : R-gr— R-mod.

iii) There exists NV € C such that M is isomorphic to a quotient mod-
ule of N in R-mod.

Proof PutC = {M € R—mod|F(M) € C}. Since F is an exact functor, C is
a closed subcategory of R-mod. If M € C, F(M) ~ &,ccM (o) then rigidity
of C entails M € C, then C CCandC CC. If M € C, then F(M) € C CC. On
the other hand M is a homomorphic image of F(M) in R-mod, hence M € C.
Therefore C = C. So we have the equivalences i.< ii. and i.= iii. Assume
now that M is isomorphic to a quotient of N where N € C. Consequently, we
have the exact sequence :

N—->M-—0

Since F' is exact, F'(N) — F(M) — 0 is also an exact sequence. Since N € C,
F(N) ~ ®,ecN(0) € C and thus F(M) € C or M € C = C. Hence iii.= i. O

4.5.3 Corollary

With notation as above we obtain : C is a localizing subcategory in R-gr if
and only if C is a localizing subcategory in R-mod.
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Proof We apply Proposition 4.5.2 and the fact that the functor F is exact.
O

If A is a Grothendieck category and M, N € A then N is said to be M-
generated if it is a quotient of a direct sum M) of copies of M. If each
subobject of M is M-generated, then we say that M is a self-generator. It
is easy to see that M is self-generator if and only if, for any subobject M’ C
M there exists a family (f;)ier of elements of End4(M) such that M’ =

Zie[ fl(M)

Assume now that A = R-gr and N, M € R-gr, we say that N is gr-generated
by M, if there exists a family (0;);cs of elements from G such that N is a
homomorphic image of ®;c; M (0;) in R-gr. Clearly N is gr-generated by M
if and only if N is generated by ®,caM (o) in R-gr. If each subobject of
M is gr-generated by M then we say that M is a gr-self generator. It is
easy to see that M € R-gr is a gr-self generator if and only if, for any graded
submodule M’ of M there exists a family (f;)iesr of elements of ENDg(M)
such that M’ =3, fi(M).

4.5.4 Proposition

Let C be a rigid closed subcategory of R-gr and M € C. The following
assertions hold :

a. If M is a projective object in the category C then M is a projective
object in the category C.

b. If every object of C is gr-generated by M then M is a generator for the
category C.

Proof

a. Proposition 4.5.2 entails that there are canonical functors U : C — C
and F : C — C where U (respectively F) is the restriction of the functor
U : R—gr — R-mod (resp. the restriction of functor F' : R-mod — R-
gr). Obviously F is still a right adjoint of U. Since F is an exact functor,
U(M) = M is a projective object in C.

b. Direct from assertion iii. of Proposition 4.5.2.

When we consider M € R-gr, it is clear that 08" [M] = og[M] where op[M] is
the smallest closed subcategory of R-mod which contains the left R-module
M. O

4.5.5 Proposition

Let M be a graded R-module and assume that M is finitely generated pro-
jective in 08" [M]. Then the following conditions are equivalent.
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i) M is a gr-self generator.

ii) M is a projective generator of or[M].

Proof Since M is finitely generated it is easily seen that ii. = 1i.

i. = ii. Proposition 4.5.4 allows to reduce the problem to proving that
every object of o8 [M] is gr-generated by M. Put U = @,caM(0); U is
projective in o8 [M] = o[U]. Let X be an object from o[U], then there
exists an epimorphism f : UY) — X and a monomorphism v : Y — X. If
we put Z = f~1(U(Y)) then f induces an epimorphism Z Y —0. In
order to prove the assertion that Y is U-generated it is sufficient to prove
that Z is U-generated. We may assume that Y is a subobject of U). Since
Y= ,,,YnN U J ranging over all finite subsets of I, we may assume
also that I is a finite set. Now since U = @,c¢M (o), by the same argument,
it is sufficient to prove that Y is U-generated for Y a subobject of a direct
sum @7 ;M (o;) where {o;,i = 1,...,n} is a system of elements from G..
Now we establish the assertion by induction. If n = 1, then Y C M(0),
so Y(o7!) € M and therefore, by the hypothesis, Y (c~!) is U-generated.
Since U is G-invariant it follows that Y is U-generated. Assume that the
assertion is true for n — 1 we have Y/Y N M(01) ~ Y + M(01)/M(01) C
@ M(0o;)/M(0o1) ~ & 5M(0;). So, by the induction hypothesis it follows
that Y/Y N M(oy) is U-generated. Since Y N M(o1) — M (o) we have that
Y N M(o;) is also U-generated. So we arrive at the diagram :

U U(J)

lu |

0—=YNM(o1)) —Y—=Y/YNM(c1) —=0

T

0

for some sets I and J where u, v are epimorphisms. Now both U() and U/
are projective on the category o[U] hence there exists an epimorphism

vDaoud Ly o

proving that Y is U-generated. Finally it follows that U is a generator in the
category o[U]. O

4.5.6 Remark

The implication i. = ii. does not need the hypothesis for M to be finitely
generated.
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Let M € R-gr, we denote (as in Section 4.1) by Mod(R|M) the full subcat-
egory of R-mod whose objects are the R-module which are M-generated in
R-mod. We put A = Endgr(M).

4.5.7 Theorem

Let M € R-gr be a finitely generated and projective object in o8 [M]. If M
is a gr-self generator, then or[M] = Mod(R|M) so Mod(R|M) is a closed
subcategory of R-mod. Moreover the canonical functors :

Homp(M, —) : Mod(R|M) — A—mod
M ®a — : A—mod — Mod(R| M)

are inverse equivalence of categories.

Proof From Proposition 4.4.5 it follows that og[M] = Mod(R|M) and M
is a finitely generated projective genrator for the category Mod(R|M). Now
from Mitchel’s Theorem (cf.[179]) it follows that the above functors define an
inverse equivalence of categories. O

4.5.8 Corollary

Let X be a gr-semi-simple object of R-gr, such that X is finitely generated
as left R-module (for instance a gr-simple module). If A = Endgr(X) =
ENDR(X) then Homp(M, —) : Mod(R|¥) — A-mod and ¥®a : A-mod—
Mod(R|X) are inverse equivalence of categories.

Proof Since ¥ is gr-semisimple, it is clear that every object of o8"[X] is
gr-semisimple (in fact every object has the form @®;c ;X (0;) where (0;)ier is
a family of elements from G). Hence X is projective and a self-generator in
o8 [X]. Now we apply Theorem 4.5.7. In particular, we obtain that Theorem
4.5.7 generalizes Theorem 4.1.4. O

4.6 The Density Theorem for gr-simple
modules
Recall first that a graded ring D = @,eq D, is called a gr-division ring when

every nonzero homogeneous element of D is invertible. It is clear that in this
case sup(D) = G{D} and D is an e-faithful graded ring.

4.6.1 Proposition

Let D be a gr-division ring. If V' is a nonzero graded left D-module, then V is a
free D-module with a homogeneous basis. Moreover, every two homogeneous
bases of V' have the same cardinality.
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Proof Since V' # 0, there exists a nonzero homogenous element z, € V
for some o € G. Thus if rz, = 0 for some r € R, r = >\ o7r,7x € Dy,
we have ryz, = 0 for every A € G, and, since D is a gr-division ring this
implies ry = 0, for every A € G, Hence r = 0. From Zorn’s Lemma (as in
the ungraded case) we get that V has a homogeneous basis. Using the same
argument as in the non-graded case we may conclude that two homogeneous
bases of V' have the same cardinality. O

We denote by dim% (V') the cardinality of a homogeneous basis of V. In the
sequel we need the following obvious assertions.

If D is a gr-division ring, then the following conditions are equivalent :
i) pV is finitely generated
ii) pV has a finite basis
iii) pV has a finite homogeneous basis

It is natural to ask whether the cardinality of a finite non-homogenous basis
of pV must be equal to the cardinality of any finite homogeneous basis, i.e.
whether a gr-division ring has the IBN (invariant basis number) property.
For some particular cases we can give a positive answer to this question.
For example, let D = @®,ccD, be a gr-division ring with G being a locally
finite group i.e., such that every subgroup generated by a finite number of
elements is finite. Then D has [.LB.N. Indeed, assume first that G is finite.
If V is a graded left D-module, with a basis {ej,...,e,} then, since D, is a
division ring and |G| is finite then sup(D) is a finite subgroup of G. Since
dimp, (D)| = |sup(D)| then dimp (V) = n| - |sup(D)| and therefore n =
dimp (V) is independent of the chosen basis. Next, suppose that G is just
locally finite and let {e1,..., e} and {f1,..., fn} be two finite bases of a free
left D-module V. We may consider V' as a graded D-module (for example,
with the grading induced by an isomorphism V = D™). Let then V =
®oecVo and for each . € V,x = Y 25,2, € V5. Recall that sup(z) =
{g € G|z, # 0}. Since G is locally finite, there exists a finite subgroup H < G
such that sup(e;) C H(i <i <m) and sup(f;) C H(i < j < n). We consider
Vi = ®secuVy, then Vg is a graded Dg-module. Furthermore, it is easy to
see that {e1,...,en} and {f1,..., fn} are, in fact, two bases of Vi over the
G-gr-division ring Dy. Since H is finite then m = n. For some other cases
consult the Exercises of Section 7.6.

Let ¥ = ®,e¢Xs € R-gr be a gr-simple module. If A = End(gY) =
END(pX) then A = @®reqs is a gr-division ring and A; = Endg_g (%)
is a division ring. Obviously, for any o € sup(X), X, is a right vector space
over A,. On the other hand , in view of Proposition 2.2.2 we may write
sup(X) = Ujejo;G{X}, where J C I and (o)1 is a left transversal for G{X}
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in G. Since ¥ is a right graded A-module (in fact gXa is a graded R — A-
bimodule) we have the following result (Xa as a right A-module is called the
countermodule of ¥).

4.6.2 Proposition
dim% (2a) = 3,y dima, (Zo, ).

Proof Leti € J and assume that {e; ,}rca, is a basis of the right A.-module
Yo, We clain that B = U;ej{e; r|r € 4;} is a homogeneous basis for Xa. To
verify this, we first prove that B is linearly independent over A. Consider an

equality of the form :
Y eurir =0 0
ieJ reA;

where u;, € A and the family {u;.|i € J,r € A;} has finite support. Note
that, since the e; , are homogeneous, we may assume that the u; , are homo-
geneous too. Since deg(e; ) = o; for each r € A;, and deg(u; ,) € G{E} and
because 0;G{X} No,;G{X} = 0 for i # j, it follows from equality (1) that, for

any ¢ € J,
Z eimuim = O (2)
reA;

Now, for any o € G{X} we consider A7 = {r € A;|deg(u;,) = o} so that
Ai = Ugeaqny A7 and A7 N A7 = 0 for 0,7 € G{X},0 # 7. Then it follows
from (2) that we have :

Z riruir =0, for any o € G{X} (3)
reA?

But, since A, # 0, A, contains an invertible element u, and from (3) we get
the equality :

> eirtizugt =0 (4)

reAy

Since u”ugl € A, it follows from (4) that u”ugl = 0 for every r € A7 and
so u; , = 0 for every r € A?. This shows that u;, = 0 for every r € A;, so
that in fact u;, = 0 for each ¢ € J and each r € A;, completing the proof
of the linear independence. It remains to establish that B is a generating
set for ¥a. To prove this, let x, € ¥, be a homogeneous element with
o € sup(X). Then there exists an element o; € G(i € J) such that ¢ = o;h
where h € G{X}. Since Ay, # 0, there exists a nonzero (and hence invertible)
element up, € Aj and therefore xougl € X,,. Since {e;,|r € A;} is a basis
for 3, over A, we have that xc,u,:l = ZreAi eirVi,r for some V;, € A, and
hence 2, = X,ca,€irVirup. Therefore B is a generating set for ¥ and this
completes the proof. O
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4.6.3 Corollary

Let ¥ be a gr-simple module. Then the following statements are equivalent :
i) The countermodule XA is finitely generated

i) a. [sup(X): G{Z} <

b. For any o € sup(X) the countermodule ¥ , is finitely

UEndRC (Zo
generated.

Proof i. =ii. If ¥ is finitely generated, then XA has a finite homogeneous
basis as A module. Then ii. follows from Proposition 4.5.2 using the fact that
EndR,gr(E) >~ EndRE (Eg).

ii. = i. This follows from Proposition 4.5.2.

4.6.4 Corollary

If ¥ € R-gr is gr-simple module with A = End(rX), then the following
assertions are equivalent.

i) XA is finitely generated
ii) R/Anng(Y) is a gr-simple ring
iii) R./Anng, (X) is a semisimple Artinian ring.
Proof i. = ii. Let {x1,...,z,} be a generating set of ¥ao. Then ¥a =

o, 2;A and we may assume that the z; are homogeneous with deg(z);) =
o;. Since Anng(X) = N, Anng(z;), we have the exact sequence :

0— R/ADDR(Z) — @?:12(0'1‘)
and hence R/Anng(Y) is a gr-simple ring.

il. = iii. Since Anng,_ (X) = R.NAnng(X) and R./Anng, (X) = (R/Anng(X))e,
it follows that R./Anng_(X) is semisimple Artinian.

ili. = i. Denote I = Anng(X) and I. = I N R.. The for every o € sup(X)
we have that I.X, = 0 and hence X, is an R./I.-module (in fact a simple
Rpr/I.-module). Since R./I. is semisimple Artinian it follows that X, is
finitely generated right Endg, (3, )-module. On the other hand, using again
the fact that R./I. is a semisimple Artinian ring we say that the family
{Es]o € sup(X)} has only a finite number of nonisomorphic R.-modules and
hence [sup(X) : G{X}] < oo, since this index is equal to the cardinality of the
set of isotopic components of the R.-semisimple module X (see Section 4.2).
Therefore we may apply Corollary 4.6.3 to complete the proof. O
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Let pM be a left graded R-module. We denote by A = END(gM) and
A = End(rM). We recall that A is a dense subring of A (see Section 2.4). If
M is finitely gnerated then A = A. Clearly M is a right A-module and also
a right A-module if we put :

z.u=u(z), forany x € M,u € A

Moreover M is a right graded A-module. We define BIEND (g M) = END(Ma)
and Biend(gM) = End(M, ). BIEND(gM) is a graded ring with the grading :

BIEND (g M), = {f € END(Ma)|f(Mx) C M, VA € G}
for each o € G.

Since A is a dense subring of A it follows that BIEND(gM) is a subring of
Biend(gr M) and we have a canonical morphism of rings :

¢: R— Biend(r M), o(r)(z) =rx forr € R,x € M

Now, if r, € Ry, ¢(r,) € BIEND(gM), thus Imp C BIEND(gM). If M is a
left R-module, then R is said to operate densely on M if for each finite set
of elements z1,...,z, € M and o« € Biend(gM) there exist an r € R such
that rz; = a(x;)(1 < i <n). We have the following result.

4.6.5 Proposition
Let g M be a left graded R-module such that g M is a gr-self generator and a

projective object of og[M]. Then R operates densely on M.

Proof By Proposition 4.5.5 and Remark 4.5.6, M is a projective generator
of the category or[M]. Let z1,22,...,2, € M. In M™ we have the R-
submodule N = R(x1,...,2,). Since N is M-generated and finitely generated
as an R-module, there exists £ > 0 and an epimorphism :

MF 2N — M (1)

Since the canonical map ¢ : Biend(gM) — Biend(M™) o(b)(y1,..-,yn) =
(b(y1), .- .,b(yn)) is an isomorphism of rings, we derive from (1) that

Biendz(M)(N) C N

Therefore a.(x1,...,2,) € R.(x1,...,2,) and hence there exists an r €
such that a(z;) =ra; 1<i<n.

O =

4.6.6 Corollary
If ¥ € R-gr is a gr-simple module then R operates densely on X.
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4.6.7 Corollary (The graded version of Wedderburn’s
theorem)

Let R be gr-simple ring. There exist a gr-division ring D and a graded finite
vectorspace Vp such that :
R ~End(Vp)

Proof Let X be a gr simple R-module. We put D = End(gX) = END(gX)
and V = ¥Xp. We have the canonical ring morphism :

¢: R—FEnd(Vp), o(r)(z) =r.a

where r € R,z € V. Since Kerp = Anng(X) = 0 (R is a gr-simple ring i.e.
rR = @7 ,%(0;) for some elements o1,...,0, € G). Corollary 4.6.4 then
entails that Vp is finitely generated and Corollary 4.6.6 yields that ¢ is also
surjective, hence an isomorphism. O

4.7 Extending (Simple) Modules

For a G-graded ring R we let U(R), resp. U9(R), denote the set of all in-
vertible, resp. invertible homogeneous elements of R. Obviously U9(R) is a
subgroup of U(R) and the sequence :

Er(R):1—U(R,) —UI(R) 25 G —e

is exact everywhere except possibly at G. Moreover, Eg(R) is exact if and
only if R is a crossed product. For M € R-gr, ENDr(M) = HOMg(M, M) is
a G-graded ring with multiplication defined as in Chapter 2, Section 2.10, :

g.f = fogfor f,g € ENDr(M). Recall also from Section 2.10 that M is
G-invariant exactly when the sequence

Er(M) : I — U(Endp—_g(M)) — UY(ENDR(M)) - G — e
is exact.

A splitting morphism v for Eg(M) is a group homomorphism v : G —
U9(ENDg(M)) for which degy(o) = o for all o € G.

If M € R.-mod then an extension M® of the R.-module is an R-module
yielding M by restriction of scalars for the canonical ring morphism R. — R.
Hence M© is M as an additive group but with multiplication ® : R x M©® —
M@ satisfying r. ® m = rom for r, € R, and m € M©.

We now consider the case of a strongly graded ring R and M € R.-mod. Let
N = R®@pr, M be G-graded by putting N, = R, ®g, M, for o € G. For every
o € G we have a canonical group isomorphism for any 7 € G :

ENDg(N), = Hompg, (N;, Nro)
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4.7.1 Theorem

Assume that R = @,cqR, is a strongly graded ring and M € R.-mod.
Then M can be extended to an R-module if and only if the sequence Eg(N),
where N = R ®p, M, is both exact and split. Indeed there is a one-to-one
correspondence between extensions M© of M and splitting homomorphisms
v of Er(N), in which M® correspond to 7 if and only if :

re ©m =y(c N(r, @m) € M

for allme M,r, € R,.

Proof Suppose that M® is an extension of M to an R-module. We have
the multiplication :
®:Rx M®— M®

which yields the restriction :
Ro XxM— M, (ro,x)=r, 0O

If e € R we have : (1,7¢) @& = 15 @ (Te ® ) = r5 @ Tex and therefore
we obtain Re-homomorphism u, of N, = R, ® M into M, mapping r, ® x
to re ® 2. Since ENDg(N),-1 ~ Hompg, (N,, N. = M) there exists a unique
v(0~t) € ENDR(N),-1 such that v(o=1)| N, is uy, s0 y(0 1) (1, @) = 75O
If o = e then u, = 1) and therefore y(e) = 1. For any 0,7 € C, the product
’y(Tﬁl).’y(Uil) lies on HOMR(N)Tfl.HOMR(N)Ufl - HOMR(N)T—IO-—I =
HOMR(N)T—IO-—I = HOMR(N)(O.T)fl. Ifx € M,r, € Ry, € R we have :

YT (eNrer, @ 2] = (y(a71) o V( "o (rr @ 7))
= ’V(U_l) (TU’V(T_I)(TT ® x)) =7y(o~ ) (ro(ro ®2)) =
Yo (re @ (rr O ) =15 O (rr O ) = (ro77) @ &

Since R,R; = R, we have that (y(7~ )’y(a ))()\ ®x) = A ®x for any
A € R,R; and © € M. Therefore (7~ )*y( Y = y(r7to~1) and hence
7 is a homomorphism. In particular y(oc~!) is invertible and therefore the
sequence Eg(N) is exact and splits. Conversely, let v be any splitting ho-
momorphism for Ex(N). For any o € G, z € M, r, € R, the element
7(o~1) € ENDRg(N),-1 and therefore y(o~1)(r,®z) € Ng = R.®@r, M = M.
Thus we define the multiplication ® : Rx M — M by 7,0z = y(o 1) (r,®x).
If o = ethenvy(e) = 1ny. Wehaver.®z = 1y(re®z) = r.@x = r.x. Because
v is a homomorphism, we have :

TeTr @z =7((0 7') Brerr @ x) =~y L Y (rer, @ 2)
=90 (re(r- @ 2)) =

—7(0_1)(%7(7 1)(TT®$)) Vo) (re.(r- © 7))
=70 )(re ® (R, ©x)) =75 O (r; © x)
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The group U(Endg_g(N)) = U(Endg, (M)) acts naturally on the set of
all splitting homomorphisms for E(NV). Indeed u € U(Endg_g (INV)) acts by
mapping any such homomorphism 7 to the conjugate splitting homomorphism
y* for E(N) defined by v*“(0) = u~1v(o)u. O

4.7.2 Theorem

Two extensions of the R.-module M to R-modules are isomorphic as R-
modules if and only if the corresponding splitting homomorphisms for Eg(N),
as in Theorem 1, are U(Endg_g (N))-conjugate. Thus the correspondence of
Theorem 4.7.1 induces a one-to-one correspondence between all R-isomorphism
classes of extensions of M to R-modules and all U(EnDg_g, (N))-conjugacy
classes of splitting homomorphisms for Eg(R @, M).

Proof Let M® and M® be two extensions of M to R-modules and ~ and
~" be their respective corresponding splitting homomorphisms for Eg(N) =
Er(R®p, M). Any R-isomorphism of M©" to M® is also an Re-automorphism
of M i.e. a unit of Endg_g (R ®p, M) = Endg, (M). If u: M® — M® is
R-isomorphism, we have u € Endg, (M) and moroever u(r, @ x) = re © u(r)
or u(y' (e (r, ®x)) = v(07 1) (ry @ u(x)). But 7, @ u(r) = u(r, ® z) where
u corresponds to u in Endg_g (R®g, M)u = 1®u. Hence (wov'(c71))(r, @
) = (y(c7t o) (ry, ® z) and so UWo Y/ (67!) = y(0~!) o and therefore
wovy' (07 ) ou ! = v(c71). Hence v/ = v*. The converse follows in a similar
way. |

4.7.3 Corollary

Let R = @®,ccRs be a G-strongly graded ring. Then the left R.-module
R. can be extended if and only if the sequence Er(R) is exact and split.
Indeed, there is a one-to-one correspondence between all extensions RS of R,
to R-modules and all splitting homomorphisms 7y of Eg(R). The extension
R® corresponds to « if and only if : ay ® ae = apacy(c~?t) for all a. €
Re,as € Ry,0 € G. Moreover this correspondence induces a one-to-one
correspondence between all R-isomorphism classes of such extension R and
all U(R.)-conjugacy classes of such homomorphism +.

Proof We apply Theorems 4.7.1 and 4.7.2 to the case M =pg_ R.. In this
case N = R®p, R, ~ R and ENDR(N) ~ R.

4.7.4 Example

Let A be a ring, G a group and ¢ : G — Aut(A4) a group homomorphism.
We denote by R = A *, G the skew group ring associated to A and ¢. R
has multiplication defined by : (ag)(bh) = ap(g)(b)(gh) where a,b € A and
g,h € G. Moreover R is a G-graded ring with grading R = ®4cq Ry where
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Ry, = Ag. By Corollary 4.7.3, A has a natural structure of left R-module given
by the rule (ag) ® = = ap(g)(x) where a € A,g € G,z € A. If the action of
G on A is trivial, i.e. ¢(g) =14 for any g € G, then R = A, G is the group
ring A[G]. If we denote by ¢ : A[G] — A, the augmentation map i.e.e(g) =1
for any g € G, then we have e 0i = 14 where i : A — A[G] is the inclusion
morphism. In this case if M € A-mod, then M has a natural structure as an
A[G]-module if for any o € A[G] and m € M we put o ® m = e(a).m. For
a =a € A we obviously have a ® m = am.

4.7.5 Remark

If R = ®,ecRy is a strongly graded ring and M € R.-mod is extended to
an R-module then, by Theorem 4.7.1, M is necessary G-invariant i.e. M ~
R, ®r, M for any 0 € G. Let R = @,eqRs be a strongly graded ring
and S a left simple R.-module. We put ¥ = R ®p, S; ¥ is a gr-simple
object in R-gr. Assume that S is G-invariant so ¢ is G-invariant in R-gr.
We put by A = Endg(X) = ENDg(X); A is a gr-division ring. If we put
A = ByegAys, then, since S is G-invariant, A, # 0 for any 0 € G. We
denote by A*" = U, (A, — {0}); A8 is a subgroup of U(A). In this case S
is extended to R if and only if there exists a morphism of groups vy : G — A*&"
such that y(g) € A, for any g € G. Moreover if S® is an extension of S to
R, then S© is a simple R-module.

Now assume that k is an algebraically closed field and R is a G-graded finite
dimensional k-algebra. Consider a left G-invariant simple R.-module S. With
notation as before, we now obtain from Schur’s lemma that A. = k, because
k is algebraically closed.

Let us look at the case where G =< g > is a finite cyclic group of order n,
Le. g" =e. Pickug #0in Ay. Since uy € Agn = A, =k there existsa { € k
such that u? = £". Putting vy = £ 'uy € Ay leads to v} = 1. Therefore we
may define v : G — A*& by ~(g%) = v;. Since v is a group map, Theorem
4.7.1 yields that S can be extended to an R-module.

For further application of the theory of extending simple modules in the rep-
resentation theory of finite groups the reader may consult E. C. Dade’s paper
[50].

4.8 Exercises

1. Let R be a G-graded ring where G is a torsionfree abelian group. If M
is a maximal left ideal of R, then (M), is the intersection of all maxinal
left ideals containing it.

Hint : If we put J(R/(M),) = K/(M)4 then K is a left graded ideal
of R such that (M), € K C M. Then K = (M), and therefore
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J(R/(M)g) = 0.

. Let R be a G-graded ring, where G is a free abelian group. If I < Ris a
primitive (resp. semi-primitive) ideal of R, then (I), is a semi-primitive
ideal of R.

Hint : If [ is a primitive ideal, there exists a left simple R-module
S such that I = AnngS. Then (I)y = Nges(Anng(z)),. The above
exercises may be used to prove that J(R/(I)y) = 0.

. Let A be an arbitrary ring, T a variable commuting with A; then
J(A(T)) = I|T] where I = J(A[T]) N A is a nil ideal of A.
Hint : If we consider the polynomial ring A[T] with natural grading

over the group G = Z, then J(A[T]) is a graded ideal. So we can write
JAT) = Iy LT & LT*® ... & I,T" & ... such that Iy C I C

. C I, C .... Consider the automorphism ¢ : A[T] — A[T] such
that o(T) = T + 1. Since p(J(A[T])) = J(A[T]) it follows easily that
Ly=hL=...=1=... fweput I = Iy then I = JA[T]) N A. If

a € I, then it follows from T € J(A[T]) that 1 — aT is invertible in
A[T]. That a is a nilpotent element then follows easily.

. (S. Amitsur) Let A be an algebra over the feld R and R(T") be the field
of rational functions in one variable over R. We have : J(A®gr R(T)) =
I®r R(T), where I = AN J(A®pg R(T)) is a nil ideal of A.

Hint : (Following G. Bergman). Obviously : I ® R(T) C J(A ®r
R(T)). Conversely, any element of J(A @ R(T")) can be written as
p(T) Y amT™ + ... + ag) where p(T) € R[T] is nonzero and a; € A.
If n > 1, R(T) is Z/nZ-graded if we put : K(T); = T'K(T") for
n > 0,i € Z/nZ. Looking at the induced gradation of A®pg R(T') and
applying Corollary 4.3.5 we obtain for all n > m, na;T* € J(A®gR(T)).
Thus a; 7% € J(A ®g R(T)) and therefore a; € I. Pick € I, then
(1+2T)"' =1—2T+2°T?...in A®g R(T). However the coefficients
have to sit in a finite dimensional R-subspace of A i.e. x is algebraic
over R. If x were no nilpotent then the polynomial equation satisfied
by a would give rise to a nonzero idempotent element in the Jacobson
radical, a contradiction.

. Let A be a ring and M a left finitely generated A-module. If T is a
commuting variable with A, prove that J(M|T]) has the form N[T]
where N is a submodule of M, N # M (here M[T] = A[T] ®4 M). In
particular if M is a simple A-module then J(M[T]) = 0.

Hint : Similar to the proof of exercise 3.

. Let A be a local domain with maximal ideal M # 0. Prove that in the
graded ring A[X] with the natural grading we have

i) J(A[X]) =0
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if) J9(A[X]) = M[X]
iii) J(A[X]) # JY(A[X))

Hint : For assertion i. use the exercise and ii. ans iii. are obvious.

Let R be a G-graded ring with G a finite group. Show that if M is
gr-semi-simple then M is quasi-injective in R-mod. We recall that
M is quasi-injective in R-mod, for any submodule M’ of M and ev-
ery R-homomorphism f : M’ — M, then f is extended to the R-
homomorphism g : M — M, ie. g|M' = f.

Hint : We consider the closed subcategories 08 [M] of R-gr and o [M]
of R-mod. Clearly M is a injective object in the category o8"[M]. Since
the functor F': R-mod — R-gr is a left adjoint for the forgetful functor
U : R-gr — R-mod, resulting that U(M) = M is an injective in the
category or[M].

. A G-graded ring R = ®,¢c¢ R, is said to be gr-Von Neumann regular

(or gr-regular, for short) if, for any 0 € G and any homogeneous
element a € R,, there exists b € R (which can be supposed to be
also homogeneous such that a = aba. Then prove that the following
assertions hold :

i) If R if gr-regular, then R is e-faithful.
ii) If R is gr-regular and o € G, then o € sup(R) if and only if
o~1 € sup(R).
iii) If D is a gr-division ring and Vp a graded right D-module,
then END(Vp) is regular.
Hint :

i) Let a € Ry,a # 0. Then there exists a homogeneous element
b € R,-1 such that a = aba. Clearly a # 0 implies that ab # 0
and ba # 0 so Ry-1a # 0 and aR,-1 # 0 i.e. R is e-faithful

ii) Is clear.
iii) Is proved as in the non-graded case.
A graded ring R is called gr-primitive, if there exists a gr-simple mod-

ule g% such that Ann,(zgX) = 0. Then prove that if R is gr-primitive,
R is e-faithful.

Hint : If we put A = End(gY) and S = END(XA) then S is gr-regular.
On the other hand, R is dense in the ring S. Now we can apply exercise
8.

Let R be a G-graded ring and M € R-gr. If (0;);cr is a family of
elements of the group G, prove that the map

¢ : BIEND (M) — BIEND g (@i 1 M (7))
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given by ¢(L)(x;) = (b(x;))ier where b € BIENDg(M) and (z;)ier €
@icrM(o;) is a isomorphism of rings.

Hint :

It is easy to see that if o € G, then BIENDg(M) = BIENDg(M (0)). As
in the non graded case we can prove first that ¢(b) € BIEND r(®icrM(0;))

and also ¢ is a graded morphism of rings. Clearly ¢ is an injective map
and the fact that ¢ is surjective it is analogue to the nongraded case.

Let ¥ be a gr-simple module in R-gr, with A = End(gX) and H C G
be a subgroup such that H Nsup(X) # @. Prove that the following
assertions hold :

1

) X g is a simple object in Ry-gr.
ii) sup(Xy) = H Nsup(X)
iii) Endp, (Sg) = Agy.
) G{Sk} = HNG{S}

)

iv
If the countermodule XA is finitely generated, then the coun-
termodule (Xf)a,, is also finitely generated.

%

Hint : i. and ii. are obvious.

ili. We define ¢ : Ay — Endg,(Zg),o(f) = f|Zy where f € Ag.
Clearly ¢ is correctly defined and from i. yields that ¢ is injective. To
prove that ¢ is surjective see exercises from Section 2.12;

iv. follows from iii. and v. from Corollary 4.5.4.

With notation as in exercise 10, the functor :
R®RH — RH—mod —>(G/H, R)

(see exercise 9., Section 2.12) has the property that if N € Mod(Ry|Xx)
then R®p,, N € Mod(R|X).

Hint : Use exercise 10, Section 2.12.

With notation as in exercise 11. If H = G{X} then the functor :
R®p,— : Mod(Ry/Xx) — Mod(R/X) is an equivalence.

(Dade) Let G be any group, H a subgroup of G and (0;H );cr a family
of left cosets of H in G. If we put P = U;c;0;H prove that there exists
a G-graded ring R, a left gr-simple R-module ¥ such that sup(X) = P
and G{¥} = H.

Hint : First we show that we can assume that H C P. Indeed if
there exists M € R-gr such that sup(M) = P and G{M} = H, let
oc€P. If H¢g Pthen HNP =(. Put P = Po~! and H = cHo ™.
Clearly H' C P’. In this case if M’ = M(c), then sup(M’) = Po~!
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and G{M'} = H'. So to prove the assertion in exercise 13. we may
assume that H C P i.e. there exists a o; = 1. Now we follow the
proof of Proposition 8.1 of [52] and arrive at the following construction :
Let R be a field, G a group and A a left G-set, A # (). Consider
the direct product T = R? so T = {(z4)aca,rs € R}. We define
©: G — Aut(T) ©(9)((a)aca) = (Tg-14)aca. It is easy to see that ¢
is a homomorphism of groups. Then we can define the skew group ring
S =T % G with multiplication : (tg)(t'g") = te(t')gyg’.

The ring S is a G-graded ring with natural gradation S, =T - g for any
g€G.

For any subset B C A, B # () we denote by ep the idempotent element
of T : Cp = (¢q)aca where ¢, = 1ifa € B and 2z, = 0if a & B.
If B # 0 we put eg = 0. Clearly if B, B’ are two subjects of A then
ep.ep = ep.eg = epnp/.- S0 in particular if B N B’ = () we have
ep.ep = 0. If B ={a} we denote eg = e,. It is easy to see that in T
we have the equality g.e, = e, for any g € G. Let B C A, B # (), we
denote by R = epSep, R is G-graded ring where R; = egSgep. It is
easy to see that Ry.R;, C Ry, and R, = egTep = Rep. If b € B we
put ¥ = Reyp; clearly ¥ is a left graded R-module (in fact it is a left
graded ideal of R).

The following assertions hold :

i) sup(X) = {g € G|gb € B}.

iil) G{X} = stabg(b) = {g € G|gb = b}.

iii) ¥ is gr-simple in R-gr.
Indeed if g € G, we have ¥, = Rgep, = eg(T * g)ep.epy = ep(T * g)ep =
(egTeg)g = (Reg)g if gb € B Therefore sup(X) = {g|gb € B}

gb)9 0 if gp B - p g19 .

Now if ¢ € G we have X(g) ~ ¥ if and only if ¥, ~ ¥.. Assume
g € G{X}, then we have an isomorphism « : £, — X; of R.-modules.
Since e € R, then a(ep.x) = ep.ax). Since X, = key, then X, = .
and hence €2, # 0, s0 ep.€g, = 0 and therefore gb = b. Hence G{X} C
stabg(b). On the other hand if g € stabg(b) then gb = b. Clearly
the map §: X, — 3, B(Aes) = Aegpg is an isomorphism of R.-modules.
Hence stabg(b) C G{X} i.e. G{¥} = stabg(b). Let now g € sup(X) and
xy € Xy, axy # 0, then x4 = (Aeg)g where gb € B and A € R, A # 0.
If h € sup(X) and yp, € Tp,yn # 0, then y, = (uepy)h where hb € B.
Clearly we have y, = (eguA"'hGlep)(Aegg) and therefore ¥ = Tz,
so X is a gr-simple T-module.

Now, if we consider A = G/H; A is a left G-set. Moreover if b = {H}
(we can assume H C P), we obtain the construction for exercise 13.
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4.9 Comments and References for Chapter 4

The structure of simple objects in R-gr is given in Section 2.7. by Theorem
2.7.2, connecting the simples of R-gr to simple R.-modules via the functor
R.®(—). The purpose of Chapter 4 is to describe the structure of simple
objects of R-gr when viewed as R-modules without gradation. For a simple X
in R-gr the category Mod(R|X) of X-generated R-modules is introduced. Its
structure is analyzed in Theorem 4.1.4 by means of the ring A = Endg(X).
The key to this theorem is a lemma due to E.C. Dade (cf. Lemma 4.1.2).

In Section 4.2, objects of Mod(R|X) are viewed as R.-modules by restriction
of scalars, yielding Theorem 4.2.5. as a main result. Foregoing results are
applied in Section 4.3 to strongly graded rings and their Clifford theory (see
Theorem 4.3.2). The results of Section 4.1 are applied in Section 4.4 to yield
a clarification of the structure of ¥ as an R-module in particular cases (cf.
Theorem 4.4.4) and knowledge about this structure in turn is useful in the
study of the Jacobson radical of R (cf. Corollary 4.4.5. Theorems 4.4.6 and
4.4.11). Making use of torsion theories it is possible to extend the results of
Section 4.1. (cf. Theorem 4.5.7).

A density theorem for simple objects of R-gr is obtained in Section 4.6 and a
new graded version of Wedderburn’s theorem is derived from this. At the end
of Chapter 4 we present the theory of extending (simple) modules for strongly
graded rings, following E.C. Dade [50]. The results in Chapter 4 provide useful
general techniques, e.g. applications to Graded Clifford Theory and beyond
establish that this theory is a powerful instrument in the theory of graded
rings. This instrument stems from Representations of Groups Theory.
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M. Beattie, P. Stewart [12]

- A. H. Clifford [41]

- A.C. Dade [49], [50], [51], [52], [53]
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- C. Nastasescu [139], [140]

- C. Nastasescu, F. Van Oystaeyen [151], [153]
- C. Nastasescu, B. Torrecillas [162], [163]



Chapter 5

Internal Homogenization

5.1 Ordered Groups

An ordered group or an O-group is a group G together with a subset S of
G (the set of positive elements) such that the following conditions hold :

OGl. e¢ S

O0G2. IfaeGthena€ S,a=e,ora ' €8
OG3. If a,b € S then ab € S

0G4. aSa=' c S for any a € G.

It is easy to check that OG4 is equivalent to aSa~! = S for any a € G.
For a,b € S write b < a if b"'a € S. From OG4 we have b(b=ta)b™! € S
so ab~! € S. Therefore b='a € S is equivalent to ab~! € S. From OG3
we see that < is a transitive relation on G and by OG2 we have that for
a,b € G exactly one of a < b, a=0bor b < aholds. If b < a and ¢ € G then
(eb)1(ca) = b~ta € S, hence cb < ca and in similar way be < ac. Also if
b < a then ab~! € S, hence (a=!)71b~! € S and thus a=! < b~1. Conversely,
if the elements of G are linearly ordered with respect to a relation < such
that b < a implies that bc < ac and ¢b < ca for any ¢ € G, then the set
S ={z € G| e <z} satisfies OG1-4.

5.1.1 Example

1. Any torsion-free nilpotent group is ordered.

2. Every free group is an ordered group.

C. Nastasescu and F. Van Oystaeyen: LNM 1836, pp. 147-165, 2004.
(© Springer-Verlag Berlin Heidelberg 2004
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5.1.2 Remark

Recall from D. Passman ([167], pag 586) that a group G is said to be a right
ordered group or an RO-group if the elements of G are linearly ordered
with respect to the relation < and if, for all z,y, z € G, x < y implies xz < yz.
It is clear that if G is an O-group then G is a RO-group. From ([167], pag
587, Lemma 1.6), it follows that a group G with finite normalizing series.

{e} =Gp<G1<4...<G, =G

where consecutive quotients G;y1/G; are torsion-free abelian groups, is an
RO-group.

The following result ([167], Lemma 1.7, pag 588) will be useful : if G is an RO
group and A and B are finite nonempty subsets of G, then there exists b’ and
b” € B such that the products amaxb’ and apiyb” are uniquely represented in
AB (here, amax and ami, denote the largest and the smallest element in A,
respectively).

5.2 Gradation by Ordered Groups. Elemen-
tary Properties

Throughout this section G is an O-group. Let R be a graded ring of type G.
An @®,eaM, is said to be left limited (or right limited) if there isa o9 € G
such that M, = 0 for all 0 < g (resp. o¢g < o). If M, = 0 for each o < ¢,
then M is said to be positively graded and if M, = 0 for all ¢ > e then M
is negatively graded. If M = ®,cqM, is a nonzero left graded module, M
is called left (right) strongly limited if there exists a g € G such that
My, # 0 and M, = 0 for any x < g (resp. o9 < z). Clearly if M is left
(right) limited and sup(M) C G has a least (upper) element then M is left
(right) strongly limited (for example when G = Z). If ¢ € G then denote
by M>, (resp Ms,) the sum @y>o M, (resp @gz>oMy). In the same way we
define M<, (resp M<,). Also we use My for M. (and M_ for M..).

5.2.1 Proposition

Assume that R is left limited and M € R-gr. Then the following properties
hold :

1. If M is finitely generated then M is left limited.

2. If M is left limited, there exists a free resolution
.o F,— .. —>F—>F —>F—>M-—0

where all F; are gr-free and left limited.
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Proof

1. Assume that there exists o9 € G, such that R, = 0 for any o < gg. Also
suppose that M is generated by homogeneous elements x1, ..., z,, such
that degz; = 7, and 1, < ... < 7,. Then if 0 < o¢g7; and z € M, we
have z = Z?Zl a;r; where ay,...a, are homogeneous. Clearly dega; =
0'7'1_1 < ogsoa; =0 forall i, 1 <i < n and therefore M, = 0 for any
o < o0gT].

2. Assume that there exist a 79 € G such that M, = 0 for any = < 7. Let
(2;)ier a family of homogeneous generators of M. If we put 7; = deg x;
then we have 79 < 7;. Consider the gr-free module

Iy = @ieIR(Ti_l)

It is easy to see that (Fp), = 0 for any x < o971 so Fy is left limited.
Clearly we have the canonical epimorphism fy : Fy — M — 0 in R-gr.
Since Ko = ker fy is also left limited, we may repeat the argument. [

5.2.2 Proposition

Assume that R is strongly graded ring and M = @,caM, is left (right)
limited. If G # {e} then M = 0.

Proof Since R is strongly graded ring we have R, M, = M, for any z,y €
G. Since M is left limited, there is o¢g € G such that M, = 0 for any x < 0.
If00<ethen08<anndwehaveMz =0so M =0. If e < gg then
M, = 0 and therefore M = 0. If og = ¢ then since G # {e} thereisa o € G,
o # e. We may assume o < e, (otherwise take 0=! < e), so M, = 0 and thus
M =0. O

5.2.3 Proposition
Let R be a positively graded ring and let M € R-gr be a nonzero left strongly
limited module. Then R~gM # M.

Proof If M # 0 then there is 09 € G such that M,, # 0 and M, = 0 for
any x < gg. Since My, N R>oM = 0, we have R-oM # M. O

5.2.4 Proposition

Let R = &,cq R, be a positively graded ring. If ¥ is gr-simple then there is a
oo € G such that ¥ = ¥,,. In particular, we have that J9(R) = J(R.) ® R>o.
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Proof Since ¥ # 0, there is a 09 € G such that ¥,, # 0. Then RY,, = 3.
But R¥,, C Y54, so £; = 0 for any < 0g. On the other hand ¥, is a
graded submodule of ¥. Since ¥,,N¥s,, = 0 then ¥5,, = 0 so we have ¥, =
0 for any x # o¢. Since J9(R)NR, = J(R.) then J9(R) C J(R.)® R~¢. Now
if ¥ is gr-simple then ¥ = ¥, for some g € G. Clearly R~ = R>0X5, =0
so we arrive at R~ C J9(R). O

5.2.5 Proposition

Let R be a G-graded ring, where G is an O-group. If ¥ is a gr-simple module,
then J(X) = 0. In particular we have J(R) C J9(R).

Proof From the graded Clifford theory (Section 4.1) it follows that it is
enough to prove that J(A) = 0, where A = Endg(X). But A = ©,cqx} A0
and every nonzero homogeneous element of A is invertible. If G{X} = {e},
then A = A, is a division ring and so J(A) = 0. On the other hand, if
G{X} # {e} then G {2} is infinite since an O-group is torsion-free. Let a € A
an invertible element. We prove that a is a homogeneous element. Indeed,
assume that there is b € A such that ab = 1. We can write @ = a,, + ... + ao,,
where 0 # a,, € Ay, and 01 < ... < 0, and similarly b = b, + ...b;,, where
0#b, €A;, and 11 < ... < Ty,. Then if n > 2, the product ab has at least
two nonzero homogeneous components a,,b-, and a,, b, which contradicts
the fact that ab = 1. Therefore we have n = 1 and a is a homogeneous el-
ement. Assume now that a is a nonzero element of J(A) such that 1 — ba
is invertible and hence homogeneous for any b € A. If a = a, + ... + a0,
with a,, € Ay, then since G {X} is an infinite group, there is a homogeneous
element 0 # b € A, with 0 € G{X¥} such that e ¢ {001,...,00,} and hence
1 — ba has at least two nonzero homogeneous components. But on the other
hand we have seen that 1 — ba is homogeneous and this is a contradiction
which shows that a = 0, so J(A) = 0.

5.2.6 Proposition

Let R be a G-graded ring where G is an O-group. Then :

1. If P is a gr-prime ideal of R then P is prime. In particular we have
Spec?(R) C Spec(R).

2. rad?(R) = rad(R), so rad(R) is a graded ideal of R.

3. R is a domain if and only if R has no homogeneous zero-divisors.
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Proof

1. Let a,b € R such that aRb C P. Assume that a ¢ P. We may write
a4 = 4y, + ... + ao, With 0 # a5, € R,, and 01 < ... < 0, and also
b="br+..+0b;, with0#b;, € R;, and 7 < ... < 7. We may assume
that a,, ¢ P because otherwise we get (a — a,, )Rb C P and in this
case we can replace a with a —a,,,. From aRb C P we get a,, b, C P
and then b, € P (because a,, ¢ P). Replacing b with b — b, we may
repeat the same argument and finally get that b.,,...b,,, € P so b€ P.

2. follows from i. and iii. is obvious. O

5.3 Internal Homogenization

Throughout this section G will be an O-group and R a graded ring of type
G. Let M € R-gr and X C M a submodule. Any x € X may be written
in a unique way as * = %, + ... + 5, with 01 < ... < g,. Denote by XN7
respectively X _ the submodule of M generated by x, , respectively x,,, that
is, X is the submodule of M generated by the homogeneous components of
the highest degree of all the elements in X, a similar description holds for
X

5.3.1 Lemma

1. If x € X~ (resp € X_) is a nonzero homogeneous element then there
isaye X withy =y +... +yr, such that m < ... <7, and x =y,
(resp = = yr,).

X" and X _ are graded submodules of M.

X = X (resp X = X_) if and only if X is a graded submodule.
X =0 if and only if X~ =0, and also if and only if X = 0.
fXCYCMthenX CY and X_CVY_.

If L is a left ideal of R and N is a R-submodule of M then L™ N~ C
(LN)” and L_N_ C (LN)_. Therefore if L is an ideal then L™~ and L _
are ideals.

XA o

Proof i. Assume that € X~ is a nonzero homogeneous element of X .
Then we can find the elements z1, ..., 25 € X such that x = Aja1 + ... + Asa
where Ay, ..., A; are homogeneous elements from R and «; (1 < i < s) are the
components of the highest degree in z;. We can assume that \;«; # 0 for all
the ¢’s. In this case A\jaq + ... + Asa; is the component of the highest degree
of the element A1z1 + ... + A\szs € X. Now put y = A\121 + ... + As2s and this
satisfies the required conditions.

The assertions (ii), (iii), (iv) and (v) are obvious and (vi) follows from (i). O
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5.3.2 Proposition

Let R be a graded ring of type G, (G is an O-group as stated in the beginning
of this section). Let g € G and assume that sup(M)N{z € G| oo < z} is
a well ordered subset of G. Consider the R submodules X C Y C M. The
following assertions are equivalent :

1. X=Y.
2. X =Y and XN M.y, =Y N Mg,

Proof 1i)=-ii) is obvious.

il)=i) Let y € Y. Then y = y5, + ... + Yo, With o1 < 02 < ... < 0, and
Yo, #0. lf 0, <opgtheny € YN Moy, = X N Moy, and so y € X. Assume
that o, > o¢. Since y,, € Yy~ = XN, we have that there is x € X such
that ¢ = 2o, + ... + 21, , + Yo, With 71 < ... < Tie1 < 0p. It follows
that y — 2z € Y has a homogeneous decomposition in which the largest degree
appearing is less than o,,. Since sup(M)N{zx € G | g < z} is a well ordered
subset of G, after a finite number of steps we find z!,...,2¥ € X such that
y— (et +..+2¥)eYnNM.,,=XnNM,,, and therefore y € X. O

5.3.3 Corollary

If M is a graded R-module such that sup(M) is a well ordered subset of G,
then for any two submodules X C Y C M we have X = Y if and only if
X =Y.

For a left R-module pM, we put : Z(gM) = {z € M | Anng(x) is a left
essential ideal of R}. Tt is easy to see that Z(gM) is a submodule of M;
Zr(M) is called the singular submodule of M. If Z(grM) = 0 then pM is
called nonsingular module.

5.3.4 Corollary
Let R be a G-graded ring. Then :
1. If I is a left essential of R then I™ and I. are left essential ideals of R.

2. Z(rM) is a graded submodule of M.

Proof

1. Let a € R be a nonzero homogeneous element. Then there is a b € R
such that 0 # ba € I because [ is essential. If we write b = by, +...+b,,, ,
by, € Rs,, by, # 0 (1 < i < n) such that o1 < ... < o, then ba =
bsya + ... + by, a. Since ba # 0, there is a maximal k, 1 < k < n
such that b,,a # 0, so by,,,a = ... = by, a = 0 and thus b, a is the

Ok+1
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homogeneous component of the highest degree appearing in ba. Since
ba € I then by, a € I” and bs,a # 0, so by Proposition 2.3.6 we get that
I” is essential in R. The fact that I_ is essential may be proven in a
similar way.

2. Let ¢ € Z(rM), © # 0. If we write £ = 2,5, + ... + x5, such that
Xy, € My,, T, Z0and o1 < ... < 0, Since I = Anng(z) is an essential
left ideal of R it s easy to see that I x,, = 0. By (i) I is an essential left
ideal, so z,, € Z(rM). Repeating the same argument for the element
T — Z,, instead of x we obtain by induction that z,,, ..., 2., € Z(rM).
(]

5.4 Chain Conditions for Graded Modules

Let R be a graded ring of type G; M € R— gr is said to be left gr-Noetherian,
respectively gr-Artinian (see Section 2.10), if M satisfies the ascending, re-
spectively descending chain condition for graded submodules of M. 1t is
straightforward to see that M is left gr-Noetherian if and only if every graded
submodule is finitely generated and also if and only if each non-empty fam-
ily of graded submodules of M has a maximal element. Dually, M is left
gr-Artinian if and only if each non-empty family of graded submodules of
M has a minimal element and also if and only if each intersection of graded
submodules may be reduced to a finite intersection of the same family.

Let G be an arbitrary group, H a subgroup of G and {o; | ¢ € I} a set
of representatives for the right H-cosets of G. If R is a G-graded ring
and M = ®yeagM, is an object from R-gr, then for each ¢ € I we put
Mpys, = ®heaMps,. It is clear that My, is a H-graded Ry-module with
the gradation (Myy, ) = My, for any h € H.

5.4.1 Lemma

Let P be a graded R™) submodule of Mpys,. Then RPN My,, = P.

Proof If y € RPN Mpy,, is a homogeneous element, then y = Y ), Mg
with Ay € h(R), z € h(P), k =1,..,n. Put 7, = degzy (1 <2z <n). Then
T = hypo; for some hy € H. Let 0 = degy. Since y € My,, then ¢ = ho;
for some h € H. Then for any 1 < k < n we have ho; = deg A\ - (hro;) so
deg A\, € H. Therefore A1,....,\x € Ry soy € Pie. RPN My, C P. Since
the converse inclusion is clear, we have the equality RP N Mpy,, = P.
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5.4.2 Proposition

If M is a left gr-Noetherian (resp gr-Artinian) module then for every i € I,
My, is a left gr-Noetherian (resp gr-Artinian) Ry. Conversely if [G : H] <
oo and My, is left gr-Noetherian (resp gr-Artinian) for any ¢ € I, then M is
gr-Noetherian (resp Artinian).

Proof The first part follows easily from Lemma 5.4.1. If [G : H] < oo then
I is finite. Since M = ®ierMp,, as left Ry-modules, then if N is a gr-
submodule of M it follows that N = ®;c1Ng,, so M is gr-Noetherian (resp
Artinian). O

5.4.3 Corollary

Let G be a finite group and R be a G-graded ring. If M € R — gr then the
following assertions are equivalent :

1. M is gr-Noetherian (resp gr-Artinian).
2. M is Noetherian (resp Artinian) as an R. module.

3. M is Noetherian (resp Artinian) in R-mod.

Proof It follows from Proposition 5.4.2 if we take H = {e}.

5.4.4 Corollary

If R is gr-Noetherian (resp gr-Artinian) and H < G is a subgroup of G then
Ry is H-gr-Noetherian (resp. H-gr-Artinian). Here G is an arbitrary group).

5.4.5 Proposition

Let G be an O-group, R a G-graded ring and M € R — gr. The following
assertions hold :

1. If sup(M) is a well ordered subset of G then M is gr-Noetherian (resp
gr-Artinian) if and only if M is Noetherian (resp Artinian) in R-mod.

2. Assume that R is positively graded ring. If M is gr-Noetherian then
sup(M) is a well ordered subset of R and in particular M is strongly
left limited and Noetherian in R-mod.

Proof

1. Follows from Corollary 5.3.3
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2. Let 09 > 092 > ... > 0, > ... be a descending chain of elements from
sup(M). Then M,, # 0 for all ¢ and pick x, € M, , z, # 0. We have
the ascending chain of graduated submodules of M

Since M is gr-Noetherian, there is an n such that
Rxy + Rxo + ...+ Rxy, = Rx1 + Raxo + ... + Ry, + Rrpga

So Tpy1 = @121 + ... + apxy, where ag,...,a, are homogeneous. Since
dega; > e, (1 < i < n) then op,41 = degxpt1 > 0y S0 0y = Opy1.
Hence sup(M) is a well-ordered subset of G. The last part of assertion
(2) follows from (1). O

5.4.6 Proposition
Let R be a graded ring of type Z. If M € R — gr is left gr-Noetherian then :
1. M>q is left Noetherian in R>g-mod.

2. M« is left Noetherian in R<¢-mod.

Proof

1. By Proposition 5.4.5 it is enough to show that M>( is gr-Noetherian in
R>o-mod. Let N be a graded R>(¢ submodule of M>y. Since RN is
finitely generated as a graded R-submodule we may assume that RN =
Rx1+...+ Rxs with 21, ..., zs € N being homogeneous elements. Assume
that degax; = n; > 0(1 < i < s). Put n = max(ny,...,ns). If y,, €
N,,, m > n then there are some \1,...,A\s € h(R) such that y,, =
Zle Aix;. Since m > n, we get A\; € R>q for any ¢, 1 <i <s. On the
other hand by Proposition 5.4.2, M; is a left Ry Noetherian module so
@o<i<mN; is a finitely generated Ry submodule of ®o<j<mM; and let
{y1, ..., yr } be a family of generators. Since N = Bo<icmNi & B;>mN;
it is clear that {x1,...,zs,y1, ..., yr } is a family of generators for N over
R>q. Therefore M>¢ is a gr-Noetherian R>p-module.

2. is similar to (1). O

5.4.7 Theorem

Let R be a graded ring of type Z. If M € R— gr then the following assertions
are equivalent :

1. M is gr-Noetherian

2. M is Noetherian in R-mod.
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Proof As (2.)=(1.) is obvious, we show (1.)=-(2.). Consider an ascending
chain of R-submodules of M, X; C X3 C ... C X, C .... By Proposition 5.4.6
there is an ng € N such that M<oNX; = M<oNX;41 = ... and XiN = X;-1 =
... for i > ngy. By Proposition 5.3.2 it follows that X; = X;11 = ... (i > ng). O

A group G is called polycyclic-by-finite if there is a finite series {e} =
Gop <Gy <...4G, = G of subgroups such that each G;_1 is normal in G; and
G;/G;_1 is either finite or cyclic for each i. The main result of this section is
the following

5.4.8 Theorem

Let R be a strongly graded ring of type G, where G is a polycyclic-by-finite
group. Let M = ®;cgM, be a left graded R-module. If M, is a left Noethe-
rian R.-module, then M is Noetherian as an R-module. In particular if R, is
a left Noetherian ring, then R is a left Noetherian ring.

Proof Since R is strongly graded, by Dade’s Theorem (Section 3.1) we have
that M is gr-Noetherian. Consider the subnormal series {e} = G <Gy <... <
G, =G. If n =1 then G = G is finite or cyclic and by Corollary 5.4.3 and
Theorem 5.4.7 we obtain that M is left Noetherian. We prove the statement
by induction on n assuming that it holds for subnormal series of length less
than n. Put H = G,,—1, G’ = G/H. By the induction hypothesis we have
that My is a Noetherian Ry-module. Since R with the grading over G/H
is also strongly graded, since G/H is finite or cyclic, it follows that M is a
Noetherian R-module. O

5.5 Krull Dimension of Graded Rings

For definitions and properties of Krull dimension of an object from an abelian
category we refer to Appendix B. Let R be a G-graded ring and R — gr the
category of graded left R-modules. If M € R— gr and M has Krull dimension
in the category R — gr we denote by K.dim% (M) (or shortly K.dim?"(M))
its Krull dimension in this category and call it the gr-Krull dimension. We
also denote by K.dimgrM the Krull dimension of M in R-mod. (in case it
exists). If M is a-critical in R — gr then we say that M is gr-a-critical.

5.5.1 Proposition

Let R be a G-graded ring where G is an O-group and M € R — gr. Assume
that sup(M) is a well ordered subset of G. Then :

1. M has gr-Krull dimension if and only if M has Krull dimension in R-
mod and in this case we have

K.dim? (M) = K.dim(M)
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2. M is gr-a-critical if and only if M is a-critical (in R-mod).

Proof
1. Apply Corollary 5.3.3 and Lemma 1.1 (Appendix B).

2. It is enough to show only the “if”-implication. If X # 0 is any sub-
module of M, then X~ # 0 and hence K.dim(M/X ) < a. By Corol-
lary 5.3.3 and Lemma I.1 (Appendix B) we get that K.dim(M/X) <
K.dim% (M/X") < a. Consequently M is a-critical (in R-mod). O

5.5.2 Proposition

Let R be a G strongly graded ring and M = ®,ccM, € R—gr. Then M has
Krull dimension if and only if M, has Krull dimension in R.-mod and if this
is the case then K.dim%" M = K.dimp, M..

Proof Apply Theorem 3.1.1. O

5.5.3 Proposition

Let R be a G graded ring and H < G a subgroup of G. Let {o; | i € I}
a set of representatives for the right H-cosets of G. If M € R-gr has Krull
dimension in Ry-gr and K.dim% M, < K.dim% M. If H has finite index in

G then K.dim% M = sup{K.dim% My, }.
el

Proof The first statement follows from Lemma 5.4.1. and Lemma I.1 (Ap-
pendix B). On the other hand, the lattice of graded submodules of M maps
into the product of lattices of graded submodules of Mp,,, ¢ € I as follows :

N+ (Nuo, )icr-

This map is strictly increasing and we may apply Lemma 1.1 (Appendix B).
O

5.5.4 Corollary

If R is a ring graded by a finite group G and M € R-gr has gr-Krull dimension
then M has Krull dimension (in R-mod) and

K.dimgpM = K.dim% M = sup{K.dimp, M, | 0 € G}

Proof It follows from Proposition 5.3.3 for H = {e}. O
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5.5.5 Corollary

If the G-graded ring R has left Krull dimension in R-gr, then for any sub-
group H of finite index in G, the ring Ry has Krull dimension in Ry-gr and
K.dim$ R = K.dim%HRH.

Proof By Proposition 5.5.3 we get that Ry has gr-Krull dimension (in R-
gr). Since K.dim%, Rpyo, < K.dim% Ry then by the same Proposition 5.5.3
we have K.dim% R = K.dim?{H Ry. O

5.5.6 Proposition

Let R = ®;cz R; be a graded ring of type Z and M = ®;cz M, a Noetherian
graded left R-module. Assume that K.dim% M = «. Then :

1. K‘dimRzoMZO <a+1 and K-dingoMgo <a+1.

2. a < KdimpM < o+ 1.

Proof By Theorem 5.4.7 M is gr-Noetherian if and only if M is Noetherian.
It is clear that assertion (2) follows from Proposition 5.3.2 and Lemma I.1
(Appendix B).

We now prove assertion (1). We intend to show by transfinite induction on
a that K.dimp>oM>o < a+ 1. In of view Lemma 1.7 (Appendix B) we may
assume that M is Noetherian and gr-a-critic. If « = —1, then M = 0 and the
assertion is obvious. Assume « > 0 and pick z # 0 a homogeneous element
of M>o. We have K.dim% (M/Rx) < a since M is gr-a-critical. Assume that
degz = n > 0. In this case we have (M/Rz)>o = M>o/ ®i>_n R;x. Since
R>ox C (Rx)>o we have the exact sequence

(RLL‘)ZO MZO M
0— — — [ = —0
R>oz R>oz Rz /-,

But (Rz)>0/Rs0r ~ R_,x & ...® R_jx C @  M,. By Proposition 5.5.1
K.dim((Rz)>0/R>0x) < «a as Re-module so K.dimp((Rx)>0/R>0z) < «
as R-module. Since K.dim% (M/Rx) < a by the induction hypothesis, we
get that K.dim(M/Rz)>o < «. By the above exact sequence and using
Lemma 1.3 (Appendix B) we obtain that K.dim(M>o/R>oz) < . By Lemma
1.6 (Appendix B) we find that K.dimM>¢o < a + 1. In a similar way,
K~dimR<oM§O <a+1.

O

We recall that a group G is polycyclic-by-finite if G has a subnormal series

{e} =Gp<aG1<4...4Gp =G (%)
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such that G;_; is normal in G and G;/G;_1 is either finite or cyclic infinite
for each i. It is wellknown that the number of all the factors G;/G;_1 that are
infinite is an invariant (it does not depend on the chosen subnormal series of
G); this number is denoted by h(G) and is called the Hirsch number of G.
If h(G) = n then G is called poly-infinite cyclic group. If H is a subgroup
of G, then the series {¢} = HNG,<«HNG1<...«<HNG, = H is also a
subnormal series of G. We clearly have that if G is polycyclic-by-finite (resp
poly-infinite cyclic) then H is polycyclic-by-finite (resp poly-infinite cyclic)
(see [167] for details). The following is the main result of this section.

5.5.7 Theorem

Let R be a G strongly graded ring with G a polycyclic-by-finite group. If
M = ®,eaM, € R— gr is gr-Noetherian (which is equivalent to the fact that
M. is a left Noetherian R.-module) and K.dimg, M, = « then

a < KdimgM < a+ h(G)

Proof Let {e} = Gy<G1<...<G,, = G be a subnormal series of the group
G. We proceed by induction on n. If n = 1 then we have by Proposition
5.5.6, Proposition 5.5.2 and Corollary 5.5.4 that K.dimpM < a+1if G = G
is cyclic infinite or K.dimpM = « if G is a finite group. Assume that the
assertion is true for n — 1. If we put H = G,,_; then we have K.dimp,, My <
a+ h(H) where h(H) is the Hirsch number of the group H. Now consider the
ring R with gradation of type G/H, so R = ®cecq/nRc, where Ro = ©zcc R,
for any x € C and also M = ©ccq g Mc which is an R-graded module of type
G/H. Since H is the identity element of the group G/H, using the induction
hypothesis for n = 1 we get that K.dimpM < a+ h(H) + 1 if G/H is cyclic
infinite or K.dimpM < o + h(H) if G/H is finite. Since h(G) = h(H) + 1
if G/H is cyclic infinite and h(G) = h(H) if G/H is finite, we finally obtain
K.dimpM < a+ h(G). The inequality o < K.dimgM is obvious by Lemma
I.1 (Appendix B). O

5.5.8 Proposition

Let R = ®,cc R, be a crossed product such that R, is a domain. If G is a
poly-infinite cyclic group, then R is a domain.

Proof Let {e} = Gy <G1<...<4G, = G be a subnormal series of G such
that Gi41/G; = Z for every 0 < i < n. If n = 1 then G ~ Z and hence
R = ®iczR; is Z-graded. Proposition 5.2.6 now implies that R is a domain.
The assertion now follows by induction on n. O
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5.5.9 Theorem

Let R be a G graded ring and ¥ a gr-simple left R-module. If G is a poly-
infinite cyclic group, then ¥ has Krull dimension in R-mod. Moreover, ¥ is
k-critical with 0 < k < h(G{X}) < h(G).

Proof Since G{X} is a subgroup of G, it is poly-infinite cyclic too. Since
the ring A = Endg(X) is a crossed product of type G{X} and A, is a division
ring, it follows by Theorem 5.5.7 that A has Krull dimension (on the left)
and that K.dimaA < h(G{X}), by Lemma 1.7 (Appendix B). We have now
that A contains a k-critical left ideal I, with & < h(G{X}). Moreover by
Proposition 5.5.8, A is a domain. Then if 0 # a € I, the map p : A — [
given by ¢(\) = Aa is a monomorphism and so A is also k-critical. It follows
now from Graded Clifford Theory (Section 4.1) that ¥ is k-critical. O

5.6 Exercises

1. Let ¢ be an automorphism of a ring A and consider the skew polynomial
rings AX, ] and A[X, X1, ¢]. For an A-module M, we write M[X, ¢]
for A[X,p] ®4 M and similarly for

MIX, X7 ¢l = AIX, X, gl @4 M
Establish the following claims :
i) If M is left Noetherian then M[X, ] resp. M[X, X1 ¢], is

a left Noetherian A[X, ¢]- resp. A[X, X 1, ¢]-module.

ii) M is left Noetherian if and only if M[X] has Krull dimension
over A[X].

iii) Suppose that M is left Noetherian. Then we have :

Kdim gpx o) M[X, ¢] = Kdima M + 1
Kdim gy, x—1, o) M[X, X 7, ¢] < KdimaM +1

Moreover if M is a-critical, then M[X, ¢] is an (a+1)-critical
A[X, p]-module.

Hint

i) M[X, ¢] has the natural Z-gradation by putting M[X, ¢, =
{X"®@m,m € M} forn > 0, M[X,p], =0ifn < 0. It
is clear how that the natural Z-gradation of M|[X, X 1 ¢]
has been defined. But A[X, X 1 ] is strongly graded with
A[X, X1 plop = A, so i. follows from Theorem 5.4.7.
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ii) If M is left Noetherian then M[X] is left Noetherian as an
A[X]-module and so it has Krull dimension. Conversely when
M[X] has Krull dimension look at a possibly infinite ascend-
ing chain : My C My C ... C M, C ... C M of A-
submodules of M. It is clear that K = M1 @ XM>® ..., L =
Mo+ XMi+...+X"M, +..., are A[X]-submodules of M[X]
such that XK C Land K/L =21 gk e  alatig It

M,
follows that K/L has infinite Goldie dimension. On the other

habd the fact that M[X] has Krull dimension implies that
K/L has finite Goldie dimension (Appendix B); this contra-
dicts the possibility that the original chain is infinite.

iii) Theorem 3.3.7 yields : KdimA[Xxflw]M[X,X’l, ¢] <
Kdima M +1, and also : Kdim4(x M [X.¢] < KdimsM + 1.
Look at the infinite strictly decreasing sequence, putting

N=MX,p] : NDXNDX?ND...DX"ND...

From the lattice isomorphisms

XN N
LA, (m) = Lax,e) (ﬁ) = La(M)

it follows that Kdimpaix,,M[X, ] > KdimaM + 1, so we
have Kdim 4y, ) M [X, ¢] = 1 + Kdim4 M.

Next, assume that M is a-critical. Since N = MI[X, ] is
Z-graded we only have to establish that N is (« + 1)-critical
in Rgr, R = [A[X,¢]. Consider a homogeneous z € h(N),
say z = X*m # 0. We have the following sequence in R-gr :
N> XN >D...D>XFN D Rz, where we have :

v k
m. = O[7KdlmR

Kdimpg N < Kdimpg ( < a,

)

the latter because Kdimy M/Am < «. Thus KdimRW <
a and hence N = M[X, ¢] is (a + 1)-critical.

2. Let D = ®;cz D; be a Z-graded division ring. Prove that either D = Dy
or else there exists an automorphism ¢ : Dy — Dy and an X € D with
degX > 0 such that D 2 Do[X, X !, ¢] where Dy is a division ring and
X is a variable.

Hint Assume D # Dy, then there is an ¢ > 0 such that D; # 0. We
may pick n € IN, such that D,, # 0 and n is minimal as such, and pick
a# 0in D,. For any o € Z, Dyq = Doa® = aqDy and D; = 0 for
j € Z such that n does not divide j. From D,, = Dya = aDy it follows
that for a given A € Dy there exists a unique p(A\) € Dy such that
aX = ¢(A)a. The correspondence A — ¢(\) is an automorphism of the
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division ring Dy. It is then easy enough to verify D = Do[X, X1, o], X
an indeterminate with degX = n.

Let X be gr-simple over a Z-graded ring R. Prove that any submodule
of ¥ is generated by one element.

Hint Suppose M # 0 is an R-submodule of ¥ and put A = Endg ().
Clearly A is a gr-division ring and A is a left and right principal ideal
ring because of exercise 2. Consider the functors T, S, obtained in Clif-

T
ford theory (see Section 4.1), (R/X)-mod , _ A-mod Then T'(M) is a

s
left ideal of A, thus since the latter ring is a principal ideal domain, there

exists a nonzero morphism : A —% T(M) — 0 in A-mod. We arrive at

the exact sequence : ¥ = S(A) MST(M) — 0, where ST(M) = M.

Put v = S(u), then we arrive at a nonzero epimorphism ¥ —— M — 0.
Since M # 0, Kerv # X follows and hence there is an n € Z such that
¥, NKerv = 0. Pick a nonzero z € ¥,,, then v(z) # 0. From ¥ = Rz it
follows that M = v(X) = v(Rz) = Rv(x).

4. With notation as in the foregoing exercise, put R>o = @®;>0R; and

¥>0 = Pi>02;. Prove that every R>g-submodule of ¥ is generated
by a simgle element.

Hint Let X # 0 be a submodule of ¥>¢. In case X is a graded sub-
module then it is easy to see that there exists p > 0 in IV such that
X =Y5p = ®izpXi. If we pick x € ¥, v # 0, since R = ¥ it fol-
lows that for all i > p : ¥; = R;_px, hence X = R>oz. In case X is
not graded we may look at X~ in ¥>. Since X~ is generated by one
element, it follows that X is generated by one element.

. Let M be a nonzero left A-module over an arbitrary ring A. A prime

ideal of A is said to be associated to M if there is a nonzero submod-
ule N of M such that P = Anng(N) = Anns(N') for every nonzero
submodule N’ of N. Let Ass(M) denote the set of prime ideals of A
associated to M. Consider an ordered group G and let R be a G-graded
ring and M # 0 a graded R-module. Establish the following claims :

i) If P € Ass(M) then P is a graded ideal.
ii) If R is left gr-Noetherian, then Ass(M) # .

Hint

i) Easy.

ii) Let a =ay, + ...+ ap,,, 01 < ... < op, be the homogeneous
decomposition of a € P. Pick b € h(R). Assume that P =
Anng(N), N a submodule of M. Since ab € P we have abz =
Oforxe N. Writez =2, +... 42, , 711 <...<T,. Clearly
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we have a,, bxr;, = 0. Let ¢ € h(R) be such that dege = o.
Since ac € P we also have acx = 0. If 0,,07,_1 = Omm_10Tn,
we obtain a,,, ctr, , + Gy, _,cTs, = 0; in case 0po0Th_1 #
Om-10Tn We have a,, cr;, , = 0. Now we may change c
to ca,, b and obtain in all cases that (a,,, R)?z,,_, = 0. It
follows that for some p € IN, (a,,, R)Px,, = 0 for all 7,7 =
1,...,n. Thus (as,, R)?z = 0 and thus (a,,, R)? Rz = 0. Since
P € Ass(M), P = Anng(Rz) and hence (a,,, R)? C P. Con-
sequently, a,,, € P and it follows that a — a,,, € P. By
recurrence we obtain a,, € P for 1 < v < m and this means
thet P is a graded ideal.

iii) Consider the set @ = {Anng(N), N # 0 a graded submodule
of M}. We have Q # ) and since R is left gr-Noetherian
the family Q has a maximal element, say P = Anng(Ny).

It is easily checked that P is a prime ideal and moreover :
P e Ass(M).

6. Let R be a ring, I an ideal of R. The Rees ring with respect to I is
the ring R(I) = R+ IX +...+I"X™ +... C R[X], which is obviously
a graded subring of R[X]. A ring T is an overring of R if R C T and
17 = 1g. An ideal I of R is an invertible ideal if there is an overring
T of R containing an R-bimodule J such that : IJ = JI = R. If
I is an invertible ideal of R then we define the generalized Rees ring
R(I) = ®pezI" X", where ™' = J. Tt is clear that R(I) is a graded
subring of R[X, X ~!]. For an invertible ideal I of R, prove the following
statements :

i) R(I) is a strongly graded ring.
ii) If R is left Noetherian then R(I) and R(I) ate both left
Noetherian rings.

iii) If R is a Noetherian commutative ring and I is an arbitrary
ideal, then R(I) is a Noetherian ring.

Hint :

i) Easy enough.

ii) We have (R(I))o = R and R(I)so = R(I). Since R is a left
Noetherian ring, i. implies that R(I) is left gr-Noetherian
and so Theorem 5.4.8. applies, e.g. (I) and R(I) are left
Noetherian rings.

iii) If I is generated by as,...,a, then R(I) is a homomorphic
image of a polynomial ring R[X7, ..., X,].

7. Consider a prime left Noetherian ring R. Let a € R be a nonzero

normalizing element, i.e. aR = Ra. Prove that I = Ra is an invertible
ideal of R.
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Hint : If ab = 0 then Rab = 0 yields aRb = 0, hence a =0 or b =0
because R is a prime ring, thus b = 0. Similarly, from ba = 0, b = 0
follows. We may conclude that a is a (left and right) regular element.
Goldie’s theorem entails that a is invertible in the ring of quotients @ of
R. Now putting J = Ra~! = a 'R we obtain IJ = JI = R as desired.

We include a few exercises involving filtrations.

8. Consider a filtration F'R on a ring R, given by an ascending chain of
additive subgroups F,Rof R: C ... C F,R C F,; 1R C ... C R,
(assume F,,R = 0 for m < 0) F,RF,,R C F,ymR,1 € FoR,R =

UnFR. To FR we associate the abelian group G(R) = @®,>0 Ffﬁ?R. If

a € FpR let a(py be the image of a in G(R), = %. Define a(;)b(;) =
(ab)i4+; and extend it to a Z-bilinear map u : G(R) x G(R) — G(R).
Prove the following statements :

i) G(R) is a Z-graded ring with respect to p. In particular
G(R)o = FoR and FyR is a subring of R.

ii) If G(R) is a left Noetherian ring then R is a left Noetherian
ring too.

Hint

i) Easy enough.
ii) Let L be a left ideal of R and define :

LNF,R

G(L) = —r
(L) =0 paE "R

Verify that G(L) is a left ideal of G(R). Moreover if L C L’

are left ideals of R then G(L) C G(L') and L = L’ if and only

if G(L) = G(L'). Now conclude that R is left Noetherian if

G(R) is.

9. Let ¢ be an automorphism of a ring R and § a ¢-derivation i.e. 4 : R —
R is additive and for a,b € R, 0(ab) = (a)d(b) + d(a)b. Define the
skew polynomial ring R[X, ¢, §] by introducing multiplication according
to the rule : Xa = ¢p(a)X +6(a). Verify that A = R[X, ¢, d] is a filtered
ring with filtration given by : F,, A = { polynomial expressions of degree
< n}. Prove that A is left Noetherian when R is left Noetherian.

Hint : Apply exercise 8 and also exercise 1.
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5.7 Comments and References for Chapter 5

Internal homogenization for Z-graded rings appeared under a somewhat dif-
ferent form. For a Z-graded module M with an R-submodule X one may
induce a filtration (ascending) on X by putting F,, X = X N (&;>_,M;) such
that the associated graded module with respect to this filtration is exactly

X~. In a similar way X. may be realized by inducing a descending filtration
on X(F!'X = X N(®i<nM;)).

This technique cannot be extended to gradation by arbitrary groups but it
does extend successfully in case G is an ordered group (Lemma 5.3.1). After
some introductory facts about ordered groups in Section 5.1., the basic con-
cepts of rings graded by ordered groups are introduced in Section 5.2. We
can apply this theory for various types of G-graded rings, where G is not
necessarily an ordered group but is very close to an ordered group and that
is, for example, when G is a polycyclic-by-finite group. The Noetherian and
Artinian objects in R-gr, in case R is graded by an ordered group G, are top-
ics under consideration in Section 5.4. As main results of the chapter let us
quote Theorems 5.4.7. and 5.4.8. In Section 5.5. the Krull dimension of rings
graded by an ordered group G is studied, culminating in 5.5.7. Generalities
on Krull dimension and related concepts have been included in Appendix B.

Some References
- A. Bell [17]

~ V. P. Camillo, K.R. Fuller [38]
- C. Nastasescu [140], [139]

- C. Nastasescu, F. Van Oystaeyen [150], [148]



Chapter 6

External Homogenization

6.1 Normal subsemigroup of a group

Let G be a group with identity element e € G and let S be a normal sub-
semigroup of G, i.e. if z,y € S then xy € S. We say that S is a normal
subsemigroup of G if gSg~! C S for any ¢ € G. We note that in this case
we have S C g=1Sg for any g € G and in particular S C (¢71)"1Sg = gSg~*.

Hence S is a normal subsemigroup if and only if gSg~

' = G for any g € G.

6.1.1 Examples

1.

If S is a subsemigroup (resp normal subsemigroup) of G then the set
S=t = {#7! | € S} is a subsemigroup (resp normal subsemigroup)
too.

Clearly if S is a subsemigroup (resp normal subsemigroup) of G then
S U{e} is a subsemigroup (resp normal subsemigroup) of G.

If H <G is a normal subgroup of G, then H is a normal subsemigroup of
G. Now if S is a normal subsemigroup then if we denote by H =< .S >
the subgroup generated by S then H is a normal subgroup of G.

If G is an abelian group then every subsemigroup of G is normal.

Let G be an O-group (section 5.1). Then the set S of positive elements
of GG is a normal subsemigroup of G.

6.2 External homogenization

Let R = ®,ca R, be a G-graded ring and S a normal subsemigroup of G.
Also assume that e € S. Denote by

R¥[S] = @ses R

C. Nastasescu and F. Van Oystaeyen: LNM 1836, pp. 167185, 2004.
(© Springer-Verlag Berlin Heidelberg 2004
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where R®* = R for any s € S. So we can identify
R¥[S] = {ers, r® € Rfor any s € S}
s€S

On R#'[S] we define the multiplication as follows :
(ag8)(art) = aga,((771s7)t) (1)

where a, € Ry, ar € R, and s,t € S. It is clear that the multiplication defined
in (1) may be extended to any two elements from R$"[S] by additivity. Also
if G is abelian then (1) is the classical multiplication for a semigroup algebra.
For any o € G put R®[S]y = ®scsRys—15 (2). With this notation we have :

6.2.1 Proposition
The following assertions hold :

1. Re"[S] with the multiplication (1) is G-graded ring (the grading is given
by (2)).

2. The component of degree e is (R®'[S])e = PscsRs-15. Also the map
¢ : Rg-1 — (R®"[S]). defined by ¢(Xscsrs—1) = Tsegrs-18 is an iso-
morphism of rings (recall that Rg-1 = @ cg-1 Ry).

3. If S = G then R®'[G] is a crossed product. Moreover if S is a normal
subsemigroup, then R8"[S] is a graded subring of R&'[G].

Proof

1. Consider the elements a,,s;, ¢ = 1,2,3 where a,, € Ry, and s; € S
(1 <4< 3). Then we have :

-1

Ao 81 - (Aop82 - U3 83) = oy 81 (GoyG0403  S20383)
-1 -1

Qo Qo OG0y (05 05 8102)

-1 _—1
= Qo 00,00, (05 05 $102520353)

On the other hand we haxlfe (?0151 Uy 52)  gy53 = (o, gy (05 15109 -
52))00sS3 = Gy GoyGoy (05 05 S§102820353) hence aq, 1-(A0, S2-00y53) =
(g, 81+ G0y S2) - Gy 83 and so the multiplication of R8"[S] is associative.
Since

(Ryo-15)-(Rpy-1t) C Ryg-1 Rpy 1 (7t 7)) (7t ™t C Ryg-1py 1t s =

= Ryry-1u where u =t 'st € S

we get that (R&[S]),(R&'[S]), C (R&[S])sr so RE[S] is a G-graded
ring with gradation given by (2). Obviously R is a subring of R8*[S].
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2. Since S is a basis of R'[S] as a left R-module and since (ry-15)(r;-1t) =
re-1rp1ts 1 = r,ir,_1ts we obtain that ¢ is an isomorphism of
rings.

3. Clear. O

The graded ring R8'[S] is called the graded semigroup ring associated to
graded ring R and to the semigroup S.

6.2.2 Remarks

1. The set S is also a basis for R8"[S] as right R-module. Indeed, con-
sider the sum Y, s;a; where s; € S, a; € R. Since {s; | i =1,...,n}
are homogeneous elements we may suppose the a;’s are homogeneous

elements of R. Assume that a; = a,, € Ry,. Then Y . | s;a,, =
Yo Qo (U{lsiai). Since deg(siaq,) = deg(s2aq,) = ... = deg(spae,)
then sjo0;1 = 8909 = ... = s,0, and therefore the elements

{0;181'02'}2':1 _____ n are pairwise distinct.

Then from Y7, a,,(0; 's;0;) = 0 we obtain a,, = 0,4 =1,...,n.

2. Any element s € S commutes with any element of (R#[S])., therefore
R#'[S] is the semigroup ring of R&'[S]), for the semigroup S in the classi-
cal sense. Indeed let t € S and a,-15 be an element from (R&[S]).. We
have t(a,-18) = ag-1(s71)"lts7ls = a,-1st = (a,-15)t and therefore
R#7[S] is the semigroup ring (R&'[S]).[S] in the classical sense.

Let now M = @®,ccM, be a left graded R-module. Denote by M8 [S] =
®sesM?® where M*® = M for any s € S. We identify M#&[S] = {> . 4m® s
m® € M, s € S}. We define on M8'[S] a left R&'[S] multiplication by :

(ags)(mqt) = (agm;) (7 s7t) (3)
where a, € Ry, m; € M, and s,t € S. Also for any o € G we put(M®&[S]), =

@SESMUS*”S‘

6.2.3 Proposition
With notation as above we have :

1. M#"[S] is a left graded R&'[S]-module with the gradation given by (4).

2. The correspondence M — M#®[S] define an exact functor from the
category R-gr to the category R®'[S]-gr.

3. Mé#r[S] is isomorphic to @sesM (s™1) in the category R-gr.
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4. (M#[S])e = ®sesM,-1s and the mapping ¢ : Mg—1 — (M8&[S])e where
YD segMs—1) = D g Ms—18 is ap-isomorphism (¢ is the isomorphism
from Proposition 6.2.1).

5. If N C M is a graded R-submodule of M, then N&'[S] is a R&"[S]-graded
submodule of M#&'[S] and N&'[S] N (M?&[S])e = (Ng-1).

6. M#'[S] is isomorphic to the graded tensor product R8'[S] ®r M.

Proof
1-4 For assertions (1) and (4) we have the same proof as in Proposition 6.2.1
2. is obvious.

3. If 0 € G we have (©sesM(s71))y = BsesMye—1 and (M&[S]), =
®sesM, 415 and it is clear that M [S] is isomorphic to ®secgM (s71)
in R-gr.

5. is clear.

6. Define o : R&[S] ®@g M — M8'[S] by : a(ass @ my) = axmx(A"1s)),
where a, € Ry, s € S and m) € M). It is easy to see that « is well
defined. Now if ¢t € S we have a(t(ars @ my)) = atass ® my) =
alago™os @ my) = agmaA"to tosA = ta(ass ® my). From this it
follows that « is R8"[S]-linear.

If o € G, then (R®[S] ®r M), is generated by elements of the form
ux ® m, with Ay = o where uy € (R#[S])x and m, € M,. (see
section 2.4), hence « is a graded morphism. It is obvious that « is
surjective. By remark 6.2.2 (i) every element from R&'[S] ® g M has
the form y = Z?:l s; ® m; where s; € S, m; € M for any 1 < i < n.
Assume that degy = 0. Then m; € M_—:_. If a(y) = 0 then we have
aly) = S0 mio sisis; o = Y mo~tsio = 0. Since s; # s; for
any i # j then 0~ 's;0 # o~ 's;o fori # jsom; =0forany i =1,...,n,
hence y = 0 and « is an injective map too. O

Assume now that S = G; if a € R and m € M we put p(a) = a* and
(m) = m*. Clearly a* and and m* are homogeneous elements of degree e in
R#*[G] and respectively R [M]. a* (resp m*) is called the homogenized of a
(resp m).

If N is an R-submodule of M, then Re'[G]¥(N) is denoted by N* and N*
is a graded submodule of M8"[G]. In fact N* is generated by all elements
n*,n € N. N* is called the homogenized of N. It is easy to see that if
a € R,m € M then (am)* = a*m*. Now using Remark 6.2.2 we get that
N* = RE[GIY(N) = > cq ¥ (N) = ©gecgip(N). Define eg : RS[G] — R

(resp epr @ ME[G] — M) the map er(z) =1 (resp ep(x) = 1) for any = € G.
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Now if r € R#'[G] and v € M®'[G] we denote by 1. = egr(r) and u, = epr(u);
T+ (resp u) is called the dehomogenized of r (resp u). Clearly (ru). = riu..
Now suppose that L is a graded submodule of M#'[G] and write L, = epr(L).
Then L, is an R submodule of M; L, is called the dehomogenized of L.

6.2.4 Proposition

The correspondence N — N* has the following properties :
1. N=(N*),.
2. N*NM = (N),.
3. f LC N, L% N then L* C N* and L* # N*.
4. If N is a graded submodule then N* = N&'[G].

5. If I is a left ideal of R then (IN)* = I[*N*.

The correspondence L — L, satisfies :
1. (L)*DL
2. If Lc L' then L, C L,

3. If J is a left graded ideal of R8"[G] then (JL), = J.L..

Proof

- 1. and 3. are clear since (n*). = n for any n € N.

- 2. If n € (N)4 is a homogeneous element of degree o then n* = no~!.

But on* =nson € N*NM and therefore (V), C N*NM. Conversely
let z € N*N M with degz = . There is an n € N such that z = On*.
Assume n = > N then z =0n* = 0% __neo ' =3 _ 00
Since z € My, we have n, =0 for o # 6 and thus n = ng so z = 0nj =
Ongd=—' = ngy so n € (N),. Therefore we have (N), = N* N M.

- The assertions 4. and 5. are obvious.

- 1. Let | € L be a homogeneous element of degree z, x € G. Then | =
> e Mao-10 where my € M. Then I, =) _nmg,—1. We see that
(L)* =Y myg-1(xo )™ =3 m,,-1027! and therefore | = z(1,)* so

l € (L.)* and hence L C (L,)*.

- The assertions 2. and 3. are obvious. O
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6.2.5 Example

Let R = ®;czR; be a graded ring of type Z and ¢ > 0 a natural number. Let
S = {nc| n € N} be the submonoid of Z generated by c. In this case R8'[S] is
the polynomial ring R[T] where deg T' = ¢ and the grading is given by R[T}],, =
ZiJrcj:n R;T7 for any n € Z and j > 0. In particular if ¢ = 1 we obtain the
polynomial ring R[T'] with the classical grading R[T], = >_,, ._, R,T7, j > 0.

6.3 A Graded Version of Maschke’s Theorem.
Applications

In this section R = ®,cqR, will be a graded ring of type G where G is a
finite group with | G |= n unless otherwise mentioned. Let M = @ ca M,
and N = EBUE(;N be two graded modules and f € Homp_g (M, N). We

define the map f: M — N by f( ) = deag_lf(gx) for any z € M.

6.3.1 Lemma

f € Homper ) e (M, N).

Proof If # € M, then gr € Mgy, hence f(gxr) € N,y and therefore

g 'f(gx) € N, so f(M,) € N,. We show now that f is an R®[G]-ho-
momorphlsm ie. f(ax) = af(z) for every a € R&[G]. It is enough to prove
the assertion for a = A\;7, Ay € R, 7 € G. We have

F(Qem)z) = D g7 f((gho7)7)

geqG

= > 9 (o gor)a)

geG

= Y g NS0 gor)x)

geG

= Y Aoy o) (0 gora).

geqG

1

Putting h = ogo~'7, we have 0 'go = 7h~! and so

F(Aem)m) =Y Aoth ™ f(ha) = Ao Y W7 f(ha) = (AoT) - f(2)

geG heG
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6.3.2 Proposition

Let M be a graded R®[G]-module and let N < M be an R&[G]-graded
submodule of M. Assume that M has no n-torsion for n =| G | (as stated
in the beginning). If N is a direct summand of M in R-gr, then there is
an R [G]-submodule P of M such that N @ P is essential in M as an R-
module. Furthermore, if M = nM, then N is a graded summand of M as an
R#'[G]-module.

Proof (Following the proof of Theorem 3.5.1)

There is an f € Homp_g (M, N) such that f(z) = x for any z € N. Let
f € Homper(g)—g:(M,N) be as in Lemma 6.3.1. If x € N then we have
f(x) = na. Put P =ker f. It is clear that P is a graded R®[G]-submodule
of M. Now as in the proof of Theorem 3.5.1 we obtain that nM C N & P so
N & P is essential in M as an R-module. The last part of the statement is
clear. O

6.3.3 Corollary

Let M be a gr-semisimple module. If M has no n-torsion, then M is semisim-
ple in R-mod.

Proof It suffices to prove the statement under the assumption that M is
gr-simple. Consider the graded R&"[M]-module M#'[G]. By Proposition 6.2.3,
M#[@] is isomorphic to @yegM (071) in the category R-gr. Hence M#[G]
is gr-semisimple in R-gr. Since M is a gr-simple and M has no n-torsion,
M = nM, hence M®&'[G] = nM#'[G]. From Proposition 6.3.2 we obtain that
M#'[G] is a semisimple object in the category R8'[G]-gr. Now it follows from
Proposition 6.2.1, since (R8"[G]). ~ R, that M8"[G]. is semisimple in R-mod.
From (M#®'[G]). ~ M it follows that M is semisimple. O

6.3.4 Corollary

Let R = ®,ccR, be a graded ring of type G such that n =| G | is invertible
in R. If R is gr-semisimple then R is a simple Artinian ring.

6.3.5 Corollary

Let R = @ycqRo be a G-graded ring where n =| G | is invertible in R. If Ris a
left gr-hereditary (resp gr-semi-hereditary, resp gr-regular von Neumann) ring
then R is a left hereditary (resp semi-hereditary, resp regular von Neumann)
ring.
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Proof Let K be a left graded ideal (resp finitely generated graded left ideal)
of R#'[G]. There is a gr-free module L (resp a gr-free module with finite basis)
in the category R®'[G]-gr such that

¢: L — K C R¥[G]

where ¢ € Hompgerjg)—g:(L, K) and ¢ is surjective. Since R®'[G] is gr-free in
R-gr then L is gr-free in R-gr. Since R®'[G] = ®,eqR(0) in R-gr by hypoth-
esis we get that K is gr-projective (resp. finitely generated gr-projective) in
R-gr. Hence there is 1 : K — L a morphism in R-gr such that ¢ o9 = 1.
Using Lemma 6.3.1 we find ¢ o (%J) = 1x and i/;: K — L is a morphism

in R&'[G]-gr. Therefore K is projective in R&[G]-gr and thus R[G] is left
gr-hereditary (resp gr-semi-hereditary, resp gr-von Neumann regular). O

We recall that if R = ®,cqRo is a graded ring, we denote by gl.dim R (resp
gr — gl.dim R) the left homological global dimension of the category R-mod
(resp. R-gr).

6.3.6 Corollary

Let R = @secqR, be a G-graded ring such that n =| G | is invertible in R.
Then

gr —gldim R = gl.dim R

Proof The inequality gr — gl.dim R < gl.dim R is obvious. Suppose now
that ¢t = gr — gl.dim R < co. Let M € R8'[G]-gr and let

fn f1 fo

- P, — .. — P — P — M — 0

be a projective resolution of M in the category R®'[G]-gr. Since R#'[G] is
a free R-module, the P;’s are projective R-modules for every ¢ > 0. Since
gr—gldimR = t, K = ker f;_1 = Im f; is a projective R-module. There-
fore there exists g € Hompg_g (K, P;) such that f; o gt = 1x. By Lemma
6.3.1 we have f; o 1g; = 1x so K is gr-projective R®"[G]-module. Hence
gr — gl.dim R#'[G] < t. Now from 6.2.3 (4) we obtain that gl.dimR <¢. O

6.3.7 Remark

Corollaries 6.3.3 and 6.3.4 were also proved in Section 4.3 (Theorem 4.3.4)
using Graded Clifford Theory.

If M € R-gr and K < M is a graded submodule of M, then K is called gr-
superfluous (or gr-small) in M if and only if whenever L < M is a graded
submodule of M such that K + L = M we must have L = M.
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6.3.8 Lemma
Let (M;)i=1,...n be graded R-modules and K; C M; be gr-superfluous sub-

modules in M; for every i = 1,...,n. Then @] ,K; is gr-superfluous in
i1 M;.

Proof Using induction it suffices to prove the assertion for n = 2. Let L be
a graded submodule of M; & My such that (K1 ® K3) + L = M; & Ms. Tt is
easy to see that K7 + (Ko + L)N My = M. Since K is gr-superfluous in M,
(Ko+L)NM; = My so My C Ko+ L. Since K3 C My C (Kz—‘rL) C My ® Mo,
we have Ky + L = My & My. Hence Ky 4+ (L N M) = Ms and since Ko is
superfluous in My we get LN My = Ms so Ms C L. Similarly, we obtain that
M, C L and so L = M1 & M. [

6.3.9 Proposition

Let R = ®,cq R, be a G-graded ring where G is a finite group and let M be
a graded R-module and K < M be a gr-superfluous submodule in M. Then
K is a superfluous submodule in M.

Proof From Lemma 6.3.8 and Proposition 6.2.3 we obtain that K&'[G] is
gr-superfluous in M#'[G] as a graded R-module then K#'[G] is gr-superfluous
in M#[G] as a graded R#[G]-module. Therefore Proposition 6.2.3 entails
that ¥(K) = (K8 [G]). is a superfluous submodule in (M) = (M®&[G]). as
an R&[G]-module. Hence K is a superfluous submodule in M. O

6.3.10 Remarks

1. Proposition 6.3.9 is false if the group G is infinite. For example if k is
a field and R = k[X] is the polynomial ring with the natural gradation
(i.e. G =Z) then (X) is small in the graded sense but not in R-mod.

2. If M is finitely generated graded module, then the graded Jacobson
radical J9(M) is the (unique) largest gr-superfluous submodule of M
so if M € R-gr where R is G-graded with G a finite group then by
Proposition 6.3.9 we obtain that J9(M) C J(M), a result which is
known from Section 2.9.

6.3.11 Corollary

Let R = @,eccRo be a G-graded ring where G is a finite group and let M € R-
gr. If
!
P — M — 0
is a projective cover of M in the category R-gr, then it is a projective cover
of M in the category R-mod.
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Proof The map P M defines a projective cover in R-gr if and only if
ker f is gr-superfluous. Now Proposition 6.3.9 applies and completes the proof.
O

6.3.12 Lemma

Let M be a R#'[G]-module and let N < M be a graded R-submodule of M.
If we put
N = maGGO'N

then :
1. N is a graded R®[G]-submodule of M.

2. If N is an essential R-submodule of M, then N is essential in M as
R-module.

Proof

1. Clearly if g € G, then gN C N. Now ay € Ry yields axN C ayoN C
AATIN 50 axN C NyegAdA™'N = N. Therefore N is an R®[G]-
submodule submodule of M. Since every oN is graded as an abelian
group, we have that N is also graded (as a group) so N is R&"[G]-
submodule of M.

2. Assume that N is an essential R-submodule of M. Let 0 # x4, € M,
be a nonzero homogeneous element of M and suppose G = {01, ...,0,}.
If we put ¢ = (01 + ... + on)zy € M, then z # 0. By Proposition
2.3.6 there exists ay € Ry such that ayz # 0 and ayx € N. Hence
a\oiTg = )\Ui)\’laA:L"Q € N, so axzy € /\0;1)\71]\7' Therefore ayz, €
ﬂnizlAaflk_lN = N. Since ayz # 0, it is clear that axzg 7 0. Thus
we obtain that N is an essential R-submodule of M. O

6.3.13 Proposition

Let N < M be two graded R8[G]-modules having no n-torsion (n = |G|).
Then :

1. There is a graded R& [G]-submodule P C M such that N @ P is essential
in M as an R-module.

2. N is essential in M as an R®'[G]-module if and only if N is essential in
M as an R-module.

Proof Using Lemma 6.3.12, we follow the lines of proof used in the proof
of in Corollary 3.5.5.
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6.3.14 Corollary

Let R be a G-graded ring n = |G|, and M € R-gr such that M has no n-
torsion. If N < M is an essential R-submodule of M, then (N), is essential
in M.

Proof It is clear that (N) is essential in (M) = (M®&[G]). as (R#[G]).-
module. Since R#'[G] is a crossed product then Dade’s Theorem (section 3.1)
implies that R8'[G]|y(N) is essential in M®'[G] as an R&'[G]-module. Now
by Proposition 6.3.13, R&'[G]¥(N) is essential in M as an R-module. Hence
(N)y = M N RE[GJp(N) is essential in M as an R-module. O

6.3.15 Corollary

Let R be a G-graded ring with n = |G| and M € R-gr. Suppose that R has no
n-torsion. Then Z(M), the singular submodule of M, is a graded submodule
of M.

Proof Letx € Z(M) and z =3 oz, where zg € My. If I = Anng(z)
then I is an essential left ideal of L. Corollary 6.3.4 entalls that (I), is an
essential left ideal of R. Since Iz = 0 it follows that (I),z, = 0 for any o € G.
Hence z, € Z(M) and therefore Z(M) is a graded submodule of M.

O

6.3.16 Corollary

Let R be a G-graded ring such that n = |G| is invertible in R. If P C I are
two ideals of R such that P # I and P is a prime ideal then (P)g # (I),.

Proof Let P* and respectively I* be the homogenized of P respectively I.
Clearly P* C I*, P* # I* and P* is a gr-prime ideal in R®[G] and I* is
a two sided ideal. It is easy to see that I*/P* is an essential left ideal in
R[G]/P*. Using Corollary 6.3.14 we get that I*/P* is essential in R®'[G]
as left R-module. Since I* N R = (I)y and P* N R = (P),, it follows that
(I)g/(P)g is essential in R/(P)g. Therefore (P)y # (I)g, (and (P)g C (I)g)-

O

6.3.17 Corollary
Let R be a graded ring of type G, where n = |G|.

1. If R has no torsion, then rad(R) = rad9(R) (see Section 2.11) In par-
ticular we obtain that R is semiprime if and only if R is gr-semiprime.

2. Moreover if R is a strongly graded ring and R, is semiprime, then R is
a semiprime ring.
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Proof

1. Since rad?(R) = (rad(R)), we may replace R with the ring R/rad?(R).

Now it is enough to prove that R/rad?(R) has no n-torsion. Indeed
if n-a@ = 0 for some a € R, then n-a, = 0 for all the homogeneous
components of a. So n-ay € rad?(R). If a4 ¢ rad?(R) then there is a
homogeneous sequence ag, @1, ..., Gy, ... such that ag = a4, a1 € agRayo,...,
an € apn—1Ran—_1,... such that a, # 0 for any n > 0. Consider the
sequence nag, n’ar,....,n**tlay,... Since nag = nag € rad?(R), there is
a k such that n*tlqy = 0. Since R has no n-torsion then ap = 0,
contradiction. Hence from n-a, € rad?(R), it follows that a, € rad?(R)
hence a € rad?(R). Therefore R/rad?(R) has no n-torsion. Hence we
may assume that rad? (R) = 0, We shall prove that rad? (R8"'[G]) = 0 and
therefore that R8"[G] is gr-semiprime. Let N be nilpotent graded ideal of
R#[G] and put I = Annpgec)(N). Then I is a right ideal of R®#"[G] and
moreover, I is an essential right ideal in R®'[G].Let a, € Ry, a, # 0.
We may assume that a, ¢ I thus a,N # 0. Since N is nilpotent,
as Nt = 0 for some t > 1 and azN*™' # 0. Thus 0 # a,N*"1 C I
and therefore I is a right essential ideal. From Proposition 6.3.3 we
conclude that I is right essential as an R-module. Hence I N R is right
essential in Rpr. In particular we have I N R # 0. Since rad?(R) = 0
then [r(/ N R) = rr(I N R) = 0. Indeed if we put J = Igr(I N R)
then if K = JN (I NR) # 0 then K? = 0 and thus K = 0, since
R is gr-semiprime. Hence J N (I N R) = 0 and since I N R is right
essential in R and J is an ideal we arrive at J = 0. Similarly we
prove that rgr(I N R) = 0. Since I N R is a graded ideal, it is easy to
see that Iger(q)(I N R) = rgrerjg)(I N R) = 0 and therefore lgerj)(I) =
rrec)(I) = 0. Since N C 7ger[](I), we obtain N = 0 and hence R®"[G]
is gr-semiprime. Thus (R#"[G]). is semiprime and R is semiprime.

. If R is strongly graded and R, is semiprime then rad?(R) = 0 and thus

rad(R) = 0. O

6.4 Homogenization and Dehomogenization

Functors

In this section R = ®,cqR, is a G-graded ring and H < G is a normal
subgroup. As explained in Section 1.2, R has a G/H canonical gradation

R = @CGG/HRC where Ro = ®,co Ry (1)

We may consider the categories G-gr-R (or simply gr-R) of all G-graded R-
modules and G/H-gr-R, the category of all G/H-graded R-modules, where
R is considered with the G/H-gradation as in (1).
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Fix (9c)cea/u C G a set of representatives for the classes of H in G, i.e. C =
gcH = Hgc. Consider M € R-gr. From Section 6.1 it follows that M&'[H] is
a graded R®'[H]-module. Consider m¢ = >, 5 Mgen, a G/H homogeneous
element of M ie. mc € Mg (here M = ©ceq/uMc, Mo = DreccMs).
We define m§, = 3", .y mgenh™ € MS[H]; m, is called the homogenized
of meg in M8 [H| (in fact m§, € (M®[H])yo). If me, mp € Me, clearly
(mec + mp)* = m& +mg. Also if ac € Re and mer € Mcer then we
have : (ac - mer)* = af - m& (95609c9c) ™t To check this it suffices to
establish that deg (ac-me/)* = gocr and deg (agme,) = goger thus deg (ag -
mg,(gaé,gcgc/)) = gocr. Let M,N € R-gr and v € Hom(g g, g)—gr(M, N)
i.e. u(M¢g) C N¢ for any C € G/H. We define u* : M8 [H| — N [H] by

u(mgon - k) = (ul(mgen))” - (hk)  (2)

From (2) we have that if m¢ € Mc then uw*(m{) = (u(me))*. Moreover
if w: M — N is a morphism in R-gr, then u* = u®[H| where ugr[H] :
MS$'[H] — N&[H], us'[H](my-h) = u(my) - h for any m, € M,, h € H. Tt is
easily verified that «* is a morphism in R [H]-gr. Now let M € (G/H, R)-gr.
We may select an exact sequence

where the L1, L are free objects in R-gr and p, ¢ are morphisms in the cate-
gory (G/H, R)-gr. From (3) we obtain the graded morphism in R8"[H]-gr :

L [H) 25 L [H]

We put M* = cokerp*. It is clear that M* € Re®'[H]-gr. M* is called the
homogenized of the object M € (G/H, R)-gr. If u: M — M’ is a morphism
in the category (G/H, R)-gr and we take an exact sequence

Ly ny M —o0 (3"

where L}, L, are free objects in R-gr and p’, ¢’ are morphisms in the category
G/H, R)-gr then there exists a commutative diagram
(G/H,R)-g g

Ly Ly M 0
lul luo lu (4)
Ly =Ly —— M’ —=0

where wug, u; are morphisms in (G/H, R)-gr. From (4) we obtain the diagram

*

L [H] —— L&'[H] M* 0

lur ) lus Lu (5)




180 6 External Homogenization

where u* : M* — M'* is a morphism in the category R®'[H]|-gr. By standard
arguments we can show that u* does not depend on the choice of the mor-
phisms ug, u1. Moreover, if u,v are morphisms in the category (G/H, R)-gr
then (v o u)* = v* ou*. Therefore the correspondence M — M* u — u*
defines a covariant functor (—)* : (G/H,R)-gr— G — R&[H]-gr. (—)* is
called the homogenization functor. From diagram (3) it follows that, if
M € R-gr, then M* = M#'[H].

Now consider the augmentation morphism ¢ : R&"[H| — R wheree(} .-, a'h;)
Sor,a', where a; € R, hy € H for any 1 < i < n. So g(h) = 1 for
any h € H. It is easy to see that ¢ is a surjective morphism of rings and
e((R¥[M]¢)) € Re for any C € G/H. So € € gr—G/H — RINGS. There-
fore kere is an object in (G/H, R [H])-gr. Also kere is generated as left
(right) ideal by elements 1 — h, h € H. Using the morphism ¢ : R&'[H] — R
we obtain the functor R @ gerg) — : (G, R®'[H])—gr — (G/H, R)—gr, M —
R @perpg) M = M/kere - M. The functor (—). = R ®per(p) — is called the
dehomogenized functor. The main result of this section is the following

6.4.1 Theorem

The functors (—)* and (—). define an equivalence between the categories
(G/H, R)-gr and (G — R®"'[H])-gr.

Proof Since R® gerjg) M®'[G] ~ M, the exactness of the sequence (3) yields
(=)s o (=)* = Id(g/H|R)—gr- On the other hand by Proposition 2. we have
that R&'[H]®@r M ~ M#®'[H] and this implies that for any o € G we have an
isomorphism M (0)8* [H] ~ (M®'[H])(c). Therefore a gr-free module over the
graded ring R®'[H] is isomorphic to a L8 [H| where L is a gr-free module in
R-gr. From the foregoing it easily follows that

(=)0 (=)x = Idper () —gr

Recall that for a G-graded ring R we denote by gr.dimR (resp gr.gl.dim R)
the left homological global dimension of the category R-mod (resp. of the
category R-gr). Using Theorem 6.4.1 we obtain the following application :

6.4.2 Corollary
Let R be a G-graded ring with G = Z". Then

gldim R < gr.gldim R+ n

Proof There is a subgroup H of G such that H ~ Z and G/H ~ Z> 1.
From Theorem 6.4.1 we obtain that the global dimension of the category
G/H — R-gr is equal to the global dimension of the category R[H]-gr. Using
induction it is enough to prove that gr.gl.dim R[H] < gr.gl.dim R 4+ 1 where



6.5 Exercises 181

H is a subgroup of G and H ~ Z. But it is easy to see that R[H]| ~ R[T,T~1]
where T is a variable over R. Since R[T,T~!] = S™IR[T] where S is the
multiplicative system of homogeneous elements S = {1,7,72,...} we have
gr.gl.dim R[T, T~ < gr.g.dim R[T]. Consider M € R[T]-gr. Then the fol-
lowing sequence is exact in R[T]-mod :

0 — M[T)™5" M[T] — M — 0
where my_1 is the right multiplication by 7' — 1. Assume that gr.gl.dim R =
t < oo, since M € R-gr then gr.p.dim M[T] = p.dim M[T] < ¢ so using the
long exact Ext(—, —) sequence in R[T']-mod we obtain that p.dim g M < t+1
and therefore gr.p.dimpM < p.dimpM <1+ 1.
Hence gr.gl.dim R[T,T7!] < gr.gl.dim R[T] <t + 1.

6.5 Exercises

1. Let A be a Grothendieck category and (M;);ecs a family of objects from
A. Assume that for every i € I, N; < M; is an essential subobject of
M;. Prove that ®;crN; is essential in @©;crM;.

Hint : Assume that X is a nonzero subobject of ®;c;M. Since A
satisfies axiom AB5 (see Appendix A) iwe have that X = Y, (X N
®jesM;) where J ranges over all finite subsets of I. Thus we may
assume that I is a finite set. If |I| = n then using induction it is
enough to prove the assertion for n = 2. For X C My & M2, X # 0
and X N My # 0, then clearly X NNy # 0so X N (N, @ No) #0. If
X N M; =0 then X is a subobject of Ms so we get that X N Ny # 0.
Hence N1 @ N is essential in M7 @ Ms.

2. Let R be a G-graded ring, M € R-gr and let N be a graded submodule
of M. Prove that N is gr-essential in M if and only if N is essential M.

Hint : N®&'[G] C M®[G]. Since N&[G] = @reaN (o) and M&[G] =
@occM(o) in the category R-gr, we may use exercise 1 and conclude
that N&'[G] is essential in M#'[G] in the category R-gr and therefore
N&'[G] is essential in M8"[G] in the category R8'[G]-gr. Hence (N[G]). is
essential in (M#'[G]). as an R&[G]. module, consequently N is essential
in M in the category R-mod.

Remark A different proof is given in Proposition 2.3.6. In fact the
proof of exercise 2. also yields all the results in Proposition 2.3.6.

3. Let Q € R-gr gr-injective and sup(Q) < oo. Prove that @ is injective in
R-mod.
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Hint : Corollary 2.4.10 and the properties of adjoint functors (see
Appendix A), entail that HOMg(R®'[G], Q) is an injective object in
R [G]-gr. Since sup(Q) < oo we have ¥(Q) ~ (HOMg(R®'[G],Q))e =
Homp._y, (RG], Q) ~ Homp_(SrecR(0), Q) ~ (Q¥[G)).

as (R®'[G])e-modules (where ¢ : Q@ — (Q®¥[G]) is the canonical mor-
phism ¥(z) = (X, cq 9™ ") Where z = 30z, and z, € Qg for
g € G). Hence @ is injective in R-mod.

Let R = @,eqRs be a G-graded ring with G a finite group. If M €
R#'[G]-gr is a simple object, then M is semisimple of finite length in
R-gr.

Hint : It is easy to see that M is finitely generated as an R-module.
Let N C M be a gr-maximal submodule of M. We define N = N,cgoN.
Then N is a graded R®[G]-submodule of M. Since N < N we have
N = 0. Then from the exact sequence in R.-mod :

0> M — @®yeaM/oN

we derive that M is semisimple of finite length in R.-mod. Thus M
is gr-Noetherian and gr-Artinian (in R-gr). There exists a gr-simple
submodule P of M. It is clear that there is an exact sequence in R®'[G]-
gr :

PGl - M —0

Since P8'[G]| = @ycePlo] in R-gr we finally get that M is gr-semisimple
of finite length in R-gr.

. Let M be a G-graded ring. Then :

i) If @ is a gr-prime ideal of R®"[G], then @ N R is gr-prime in
R.

ii) If P is a gr-prime ideal of R, then there is a gr-prime ideal @
of R#'[G]such that P = QN R.

iii) rad?(R) = rad’(R®[G]) N R.

Hint :

i) Is obvious.
ii) Since P#'[G]NR = P, by Zorn’s Lemma there is an ideal @ of
R$'[G] which is maximal among ideals satisfying @ N R = P.
It is easy to see now that @ is a gr-prime ideal of R&'[G].
iii) From (ii) we get that rad?(R®'[G]) N R C rad(R). Con-
versely, we prove that (radyR)#[G] C rad?(R8"[G]). To do so
it suffices to show that if I is a nilpotent graded ideal, then
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Ig"[@] is a nilpotent ideal of RE'[G]. Assume that I™ = 0;
then if as,,...,a5, € I are homogeneous elements of I and
Tiy o'y Tm € G then (ag,71)...(Go,, Tm) = (G5, ..-00,, )T = 0 for
some 7 € G. Hence (I#'[G])™ = 0.

6. Let R = @,cc R, be a G-graded ring with n = |G| < oo. Let M € R-gr.
Prove that M has finite Goldie dimension in R-gr if and only if M has
finite Goldie dimension in R-mod. Moreover if we denote by gr.ranky M
(resp rankp M) the Goldie dimension of M in the category R-gr (resp.
in R-mod) then we have

rankpM < n-grrankp M

Hint : Let (IV;);csa family of submodules of M such that the sum
> ier Ni is direct ie. N; N (32, Nj) = 0 for any i € I. Then we
have the family of homogenized submodules (N);c; in M#[G] and

?

the sum ., N7 is direct. Since M®'[G] = ©yeaM (o), if M has finite
dimension in R-gr then M#'[G] has finite Goldie dimension in R-gr since

G is finite. Hence |I| < n - gr.rankp M, and rankpM < n - gr.ranky M.
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6.6 Comments and References for Chapter 6

So-called “external homogenization” is a technique stemming from algebraic
geometry related to embedding affine varieties in projective ones or to “blowing-
up” techniques.

Ring theoretically, for a Z-graded ring R, the relevant construction comes
down to viewing R as a graded subring of R[X] with gradation defined
by R[X]n = > - R;X7. For an arbitrary group G and a normal sub-
semigroup S of G we construct a G-graded ring R8"[S] containing R as a
G-graded subring. The construction of R8'[S] is similar to the semigroup ring
RI[S], in fact when G is abelian then those rings are isomorphic. The case
S = G allows to apply R®'[G] in the theory of R-gr, making fruitful use of
the embedding 7 : R < R&'[G],n(r) = >, cqro0 t forr =3 oo € R.
Observe that n is not a graded (degree zero) embedding, in fact 1 defines an
isomorphic between R and R8'[G].. i.e. R®[G]. = ®yegRo0~'. The non-
commutative technique stems from work on Rees ring extensions (e.g. [197]
related to special subgroups of the Picard group of the degree zero part, sub-
sequently used in the study of orders over arithmetically graded rings (cf.
[156], and other references there).

Section 6.1. starts off with the definition and examples of normal sub-semigroups
of a group. In Section 6.2. the technique of external homogenization is ex-
pounded. Since elements of G became invertible homogeneous elements in
R#'[G] we may obtain a graded version of Maschke’s theorem (cf. Lemma
6.3.1, Proposition 6.3.2, Corollary 6.3.3.)

Further interesting applications are presented in Section 6.3.. For a normal
subgroup H of G, R#'[H] is a subring of R8"[G]. Unfortunately, if H is not
normal, then the foregoing need not hold. This is a drawback because external
homogenization cannot be iterated for normal series: {e} = Hy C H; C ... C
H, = G where each H;_; is normal in H; but not necessarily in G.

The construction of R8'[G] and all the results from Sections 6.1-6.3 appeared
in the paper [142] and [184].

The main result in Section 6.4. is Theorem 6.4.1., stating that for a normal
subgroup H of G the categories (G/H, R)-gr and (G, R&[H])-gr equivalent
via the homogenization and the dehomogenization functors.

Finally let us point out a positive property of external homogenization, in
some sense making up for the drawback mentioned before. If G is abelian and
the G-graded ring R is commutative then R®'[G] is again commutative ! This
makes the technique extra useful in commutative algebra (e.g.[128]).
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Chapter 7

Smash Products

7.1 The Construction of the Smash Product

Let R = ®,cc R, be a G-graded ring. We denote by M¢(R) the set of row
and column finite nonzero elements matrices over R, with rows and columns
indexed by the elements of G. If & € M¢(R), then we write a(z,y) for the
entry in the (x,y) position of a. For a, 8 € Mg (R), the matrix product «f
given by

(@B)(w,y) =Y alz,2)(z,y) (1)

zeG

is correctly defined i.e. aff € Mg(R). Therefore Mg(R) is a ring with identity
I, where I is the matrix having I(z,y) = d,,, for any ,y € G, where 0, , is the
Kronecker symbol. If 2,y € G we denote by e, ,, the matrix with 1 in the (z, y)
position and zero elsewhere. We put p, = e, . Clearly e, , € Mg(R) for any
z,y € G so in particular p, € Mg(R). We also see that e, yey v = 0y u€qo-
In particular the set {p, | z € G} are orthogonal idempotents elements.

We denote by M (R) the set of matrices of Mg (R) with only finitely many
nonzero entries. From (1) one easily obtains that Mg (R) is a two sided ideal
of Ma(R). We have that e, , € M (R) for any z,y € G and also if G is a
finite group we have M (R) = M (R).

Define the map

n:R— MG’(R) — by 77(7") =7 where 7 = Z Tey—1€xy (2)
z,ye€G

where r =3 o1y, 7 € R, rg € Rg for any g € G. In fact (2) implies that
7 is the matrix of Mq(R) for which 7(z,y) = r,,-1, i.e. having the element

Tzy—1 i0 the (z,y) position. In particular we have n(1) = I. When G is an

Ty~

C. Nastasescu and F. Van Oystaeyen: LNM 1836, pp. 187-221, 2004.
(© Springer-Verlag Berlin Heidelberg 2004
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infinite group and r # 0, then 7 ¢ Mg (R). For r,s € R we have :

n(r+s) = n(r)+n(s)
n(r-s) = n(r) n(s)

The first equality is obvious. For the second we write

n(r)-n(s) = (D rayreay)( D Sup-1€un)

r,yeG u,veG

= E Txy71suv71€w7y€u’v

T,Y,u,v

= E Twy—lsyv—1€w7y

z,y,v
= Z (Ts)rvflez,v
z,wEG
= 1(rs)
On the other hand if n(r) = ¥ = 0, then we may apply (2) and obtain
ryy—1 = 0 for any z,y € G, hence r = 0. Hence 7 is an injective morphism of
rings, called the matrix embedding morphism of the graded ring R. We
put R = Imn and we denote by R#G or shortly R#G the subring of Mg (R)
generated by R and the set of orthogonal idempotents {p, | * € G}. The

ring E#G is called the smash product of R by the group G. The group G
embeds in Mg (R) as the group of permutation matrices; each g € G maps to

g where :
g= Z €z,zg (3)
zeG

Hence g is the matrix with 1 in the (x,2zg) position for any x € G and zero
elsewhere. For g, h € G we obtain :

gﬁ = Z €x,zg " Z €y yh = Z €x,xgh :g_h

zeG yeG zeG

Therefore if we put G = {g | g € G} then G is a subgroup of the group units
of M¢(R), isomorphic to G.

7.1.1 Proposition

Let R be a G-graded ring. The following assertions hold :

1. If r,s € R then (7p.)(Spy) = T'syy-1py for any z,y € G. If r, € R, then
PaTe = ToPy—1, for any z € G.

2. If G is an infinite group, then R#G = R&® (BrecRps) or R#G is a left
and right free R-module with basis {I} U {p, | ¢ € G}. Furthermore
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@zggépm is an ideal of R#G which is essential both as a left and as a
right ideal.

3. If G is a finite group then R#G = @zegépz.

Proof

1. It is enough to prove that p,(spy) = s;,—1py. Since 5 = n(s) =
Y uw Suv—1€u,n We have :

Pm(SPy) = €Ezx § Syv— 16uv6yy = €zx,x § Suy—1€u,y
ueG
= Z Suy—1€z,xCu,y = Szy-1C€zy = Z Szy—1€z,yCy,y =
ucG
Szy—lpy

For the second equality we write p,7e = €4 4 ZyGG To€oyy = ToCy o1y =

(roez,aflr)paflr =ToPo—1z-

2. Tt is clear that R#G = R+ Y owec Rp,. Now if r € R is such that 7p, =
0, then we have 0 = 7p, = (Zu’veg Tup—1€yp)Dy = ZueG Tuz—1€yu,z SO
Typ—1 = 0 for any u € G and hence r = 0 or ¥ = 0. Since fipx C ME(R)
for any 2 € G, it follows that > . Rp, C ME(R). On the other hand
we have RN Mg(R) = 0 (because if € R, r # 0, 7 ¢ MA(R)). If
we had a relation 71 + Y, . 7*p, = 0 where r € R, r” € R, then the
foregoing remarks would entail that 7 = 0 and ) . 7%p, = 0. Since
{pz | x € G} is a set of orthogonal idempotents we have that r;p, =0
for any x € G, so r* = 0. Hence {I} U {p, | z € G} is a left basis
of R#G over R. A similar argument may be used to establish that
{I} U{ps | = € G} is also a right basis of R#G over R. Using (1.)
we may infer that @xengw is an ideal of R#G Clearly @xengx is
essential as a left ideal and also as a right ideal by assertion (1.).

3. If G is finite, then I = ) .. p, and therefore we obtain that INI#G =
Drec Rps- (]

7.1.2 Proposition
1. If g € G and a € Mg (R) then
(G og)(z,y) = alzg™",yg™")
for any z,y € G. In particular, g 'p,g = pyg and g '7g =7, r € R.

2. @ acts by conjugation on R#G and (R#G)% = R
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(R#G)G = deg(R#G)g is a direct sum of additive subgroups of
Ma(R).

(R#G)G is a subring of Mg(R). Moreover, (R#G)G is a skew group
ring of the group G over the ring (R#G).

. If G is an infinte group, then

(R#G)G = (yecRy) ® ME(R)

as additive groups and M¢(R) is an ideal of (ﬁ#G)@ which is essential
both as a left and a right ideal.

. If G is a finite group then (R#G)G = Mq(R).

Proof

1

1. We have (77107) (@) = X\ vea 7 (@ w)a(u, 0)(v, ). Since F(v, y) =

1 if and only if v = yg ! !

and g~ (z,u) = 1 if and only if u = zg~!, we
have that (g7 'ag)(z,y) = a(zg™!,yg™!). If we put @ = p, = e, then
we clearly have g~ 'p,g = puy- In fact G ey G = €sgyg- Thusif r € R
then we have §g~17g = Zx’yeGrzyflgfleLyy = ZLyEG Toy—1€egyg =

ZWJE@ T'(29)(yg)~1€xg,yg = T~ Therefore RC (E#G)G.

. Let o € (R#G)Y; then §~'ag = a for any g € G. Since a € R#G then

o =T+, ccr*ps where r € R, r” € R and the family {r” | z € G}
has only finitely many nonzero components. Since g 'ag = g '7g +
Yaec@ GG PaT) = T+ Lpeq 7Py Because §lag = o for
any g € G, we have that > . D, = Y owec %Dy, for any g € G, or

e = r””f:l for any g € G. Now if G is infinite, since only finitely many
of the r* are nonzero, we obtain that r* = 0 for any x € G. Hence
a =71 € R. If G is finite then r* = r¥ for any z,y € G. Thus if we put
s =1% =7rY then we have : a =7 +35(3 , .;Pz) =7 +5 =1+ 5 (since
I =3 ccps). Hence, (R#G)® = R.

3. Since Y . Rp, = > wyeq Bay-1€zy, it follows that

(R#G)G = > (R#G)g

geG
= Y (R+ Y Ryy1€:,)7
geG z,yeG

= Y Rg+ Y Ryyrex,3

geG z,yeG
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Note that Zx,y,geG Rzy—1617y§ e ZRzy—1617yg e Zau,g Rzgu—l €ru =
Y wee Reau = ME(R). Thus (R#G)G = ¥, Rg + ML(R). 1If

geG
r € R then :
g = g Toy—1€eyd = E Toy—1€eyg = E Twgu-1€z,u (4)
z,yeG z,yeG T,

Consequently, every nonzero element from ]A%;@ has infinitely many

geG
nonzero entries, and therefore : > ., RgN M&(R) = 0. From the

above eiquality (4)7~ it follows that the sum 3 o Ry is direct, hence
> gec BG = ©gecRg. Again from (4) we obtain that

(R#G)F N (D _(R#G)R) =0

h#g
and thus (R#G)G = S (R#G)g is a direct sum.

).

4. Follows from (1.) and (2.
5. Follows from (3.) and (6.) is clear. O

Let us write R{G} for (E#G)@. The foregoing proposition yields, for an
infinite group @, that R{G} = (®,e¢Rg) ® M&(R) and if G is a finite group
then R{G} = M¢(R). More general, if H C G is a subgroup of G we
put R{H} = (R#G)H = ®nep(R#G)h. The arguments of Proposition
7.1.2, assertion (3.) yield that R{H} = @GneyRh & R*{H} where R*{H} =
{a € ME(R) | o, y) € Rypry—1, for x,y € G}. If G is a finite group then
R{G} = (R#G)G = Mg(R). If n =| G | then Mg(R) ~ M,(R). Since
(R#G)G ~ (R#G) = G (cf. Proposition 7.1.2), we get that (R#G) * G ~
M, (R). This isomorphism yields the duality for coactions’ theorem stated in
[43] by M.Cohen and S. Montgomery.

7.2 The Smash Product and the Ring
EndR_gr(U)

Assume that R = @,cq R, is a G-graded ring, G a finite group. From Section
2.2 we retain that the set {R(0) | o € G} is a family of projective generators
for the category R-gr. Put U = ) __, R(0). Since G is a group, U a is
finitely generated projective generator of R — gr. Since U is finitely generated
we have that Endr(U) = ENDg(U) (see Section 2.4), therefore Endg(U) is
a G-graded ring where the multiplication is given by :

fag=gof,VfgeEnd{U)
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If we put G = {g1 = e,92,...,9n}, then from Section 2.10 we retain that
Endg(U) is isomorphic to the matrix ring M, (R), considered with the grading
given by M, (R) = ®xeaMn(R)x where :

R91 Mgyt R91 Mgy R!Jl Py
g2rgy " Rgzx\gf;l R!Jz)\grfl
RgnAgfl RgnAggl o By ag

In particular, the ring Endg—_g (U) is isomorphic to the matrix ring

Re ng;l Ry g
My(R). = | Hoart He o Fggn
angfl Rgng;1 Re

7.2.1 Theorem
If G={g1 =e,g2,...,g9n} is a finite group then :
1. The ring End(U) is isomorphic to the skew group ring Endg_g, (U)*G.

2. Endg—g,(U) is isomorphic to the smash product R#G.

Proof
1. Follows from Theorem 2.10.3

2. We put
R, Rglg;1 Rglggl
oo | B RO Ry
Rgnyfl Rgng;1 Re

Define ¢ : R — T as follows : ifa =
then we put

geG Gy g € Ry for all g € G,

a -1 .. a -
9195 " g19n "

o(a) = Ggogrt Ggrgit

a -1 a -1 Qa,
gng; InGg €

It is easy to see that ¢ is an injective morphism. In fact, since M,,(R) ~
Mg(R), the map ¢ : R — T identifies with the map n: R — Mg (R)
given in Section 7.1. Consider the elements pg, (1 < k < n) to be the
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matrix with 1 at (k, k) and all its other entries being 0. If we put S =
@(R) it is chear that T' = Spy, +Spg, +...+5pg, = Pg, S+Pgo S+...4Dg,. S.
Moreover {pg,,...,Pg, } is a left and right basis of T" over the subring S.
Now if g,h € G we may assume that g = g, and h = g;. If s € S we
may assume that :

b b .. b

e 9195 g1gn"

b _ b b _

5 = 9207 " e 9200 "
b 1+ b b
gngy " Ugngy! e

where b = 3" | by, by, € Ry,, is an element of the ring R. A matrix
calculation yields py(spn) = sgn-1pn. The latter equality establishes

that R#G ~ T.

7.2.2 Corollary

Assume that R = ®,cq R, is a G-strongly graded ring (G finite group). Then

Endpg, (R) ~ R#G. Moreover if R is a crossed product then R#G ~ M, (R.)
where n =| G |.

Proof First we show that if 0,7 € G then R,-1, ~ Hompg, (Ry, R;) (as Re-
bimodules). Indeed define 6 : R,-1, — Hompg, (R, R;) such that for = €
R,-1, and y € R, we put 0(x)(y) = yx. If a € R, then we have 0(azx)(y) =
yax = (ab(z))(y) so 6(ax) = af(z). In a similar way we may show that
O(za) = 0(x)a so 6 is a morphism of R.-bimodules. If #(x) = 0 we have yz =0
for any y € R,. Since R,-1R, = R, we get that x = 0 thus 0 is injective.
Assume now that u € Homg, (R,, R,). Since R, 'R, = R, it follows that 1 =
>, aib; where a; € R,-1 and b; € R,. We define z = )" | a;u(b;). Now if
y € Ry we have 0(z)(y) = >2;_, yau(b;) = 3507 u(yaibi) = u(y >;_, aibi) =
u(y) so 6(xr) = u and therefore 6 is an isomorphism. Recall that if M =
M, @ ... ® M,, as R-modules then the ring Endr(M) is isomorphic to the
matrix ring :

A A . A,
Agr Az ... Agy
Anl An2 .- Ann

where A;; = Endr(M;,M;), 1 < i,7 < n. Now if we put G = {01 =
e,02,...,0n} and M; = R_-1 for any 1 < i < n, then we have that R =
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M & ...® M, and thus

R, R -1 ... R__-
0'10'2 010,
R - R. . R
EndRc (R) ~ 020 1 o'go'nl
R,,+ R, ,1 .. R
n0y nTqy

Theorem 7.2.1 (2.) entails that Endg, (R) ~ R#G. If R is a crossed product
then R, ~ R, as a left R, module for any o € G. In this case we have that
Endg, (R) ~ M,(R) and also R#G ~ M, (R.).

7.3 Some Functorial Constructions

Let R be a G-graded ring and ﬁ#G the smash product. If M € E#G—mod
we put by Mo = > cop.M; My is an R#G-submodule of M. Indeed, it
suffices to prove that 7, My C My, where r, € R,. But 7,Mo C > rop, M C
Y PoaTeM C 3 caPoaM = Moy, since {p, | x € G} is a family of orthogonal
idempotents.

Denote now by (R — gr)# the subclass of E#G—mod defined by the property
(R—gr)# = {M € R#G-mod, M =3 p.M}.

7.3.1 Proposition

(R-gr)# is a localizing subcategory of R#G-mod (i.e. (R-gr)#) is closed
undertaking to subobjects, quotient objects, extensions and arbitrary direct
sums). Moreover the radical associated to the localizing subcategory (R-gr)#
is the functor defined by the correspondence M — My, M € (E#G)—mod.

Proof It is obvious that (R-gr)#” is closed under quotient objects and ar-
bitrary direct sums. Let M € (R-gr)# and N ¢ M and R#G-submodule.
If n € N, thenn € M = @ cagp.M and therefore n = Zrerwm””. Thus
pzn = ppm* and thus n = > p,n, so n € Grecap.N, hence N = @ cap. N
ie. N €(R-gr)*.

Consider the exact sequence of E#G—modules

u v

0 M’ M M 0

where M', M" € (R-gr)#. Let m € M; then v(m) € M" = ®yegp.M".

Thus v(m) = > cq pev(m®) = v(3_, o Pom®) and therefore m—3 - p,m*
€ ker(v) = Im(u). Thus there exists m’ € M’ such that m — > _.p.m”* =

u(m’). Since M’ € (R-gr)# we have m' = > _,p.m'™ and thus m —
ercprmz = u(erszm’r) = erszu(m’r). Hence m = Zweapm(mr—k
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u(m'®)), thus M = My and M €(R-gr)#. Therefore (R-gr)# is a localizing
subcategory. It is obvious that for M € (R#G)-mod, Mo = ) . p.M is the
largest submodule of M belonging to (R-gr)#. Hence the radical associated to

the localizing subcategory (R-gr)” is the functor given by the correspondence
M — Mo.

Consider M € R-gr. Then M has a natural structure of f{#G—module ob-
tained by putting, for all ¥ € R and « € G : ¥m = rm and p,m = m, where
mg € M, is the z-homogeneous component of m. Indeed if r;s € R and
x,y € G, then we have 7(sm) = r(sm) = r(sm) = (rs)m = rsm. We also have
(Tp2)((Spy)m) = (Tps)(Spy)m = r(smy), where (smy), is the homogeneous
component of degree = of the element sm,. Since smy, = (3>, . 8z)my =
Y weq SzMy then (smy), = s5-1m,. On the other hand, ((7p.)(5py))m =
(T8py—1py)m = (rSyy-1)my = 7(s5,-1my). Hence M has a natural struc-
ture of E#G—module. We write M# for the R#G—module M with the the
above defined structure. For M, N € R-gr and f € Homg_4.(M, N) the map
f:M# — N# is an fi#G linear morphism. An exact functor (—)# : R-
gr — (E#G)—mod may be defined by the correspondence M — M# and
(f)* = fif f € Homr_g(M,N), M,N € R—gr. If M € R-gr, then
M# € (R—gr)# because M, = YoweaPeM = ©pegM, = M. Therefore
we may regard the functor (—)# as a functor from R-gr to (R—gr)#. Let
M be an R#G—module. We have seen that My = Y . p.M is an E#G—
submodule of M. On Mj a natural structure of G-graded R-module is defined
by putting : (My), = p, M and we consider My as an R-module via the mor-
phism n: R — E#G. It is easy to see that the correspondence M — My
defines an exact functor H : R#G-mod — R-gr.

7.3.2 Proposition

With notation as above we have :
1. The functor (—)# is a left adjoint of the functor H.

2. The corestriction of the functor (—)# : R-gr — (R—gr)¥ is an isomor-
phism of categories.

3. If the group G is finite then (R—gr)# = E#G—mod and the functor
(=)# : R-gr — R#G-mod is an isomorphism of categories.

Proof

1. We define the functorial morphisms
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as follows :

If M € R-gr, N € R#G-mod then let a(M,N) : Homﬁ#G(M#,N) —
Homp_g (M, H(N)) be defined by a(M,N)(u)(z) = u(z) where u :
M# — N and 2 € M. Since M# = @,eqpsM, we have u(M) =
u(@UeroM) = ZUGGPUU(M) C No= H(N)

We also define 3(M,N) : Homg_ g (M, H(N)) — HomR#G(M#,N)
as follows : for v € Hompg_. (M, H(N)), put 3(M, N)(v) =iov, where
i: H(N) = Ny < N is the inclusion map. It is obvious that a and /3 are

functorial morphisms and also co 8 = Id and foa = Id. Consequently,
(—)# is a left adjoint of H.

2. Assume that M € R — gr. Then M = @,egM,. Since p, M# = M,
for any * € G we have that H(M#) = M so H o (—)# = Idp_g.
Conversely if N € (R—gr)# then N = Ng = ®zecgpzN so N is a G-
graded module with the grading N = &,cgN, where N, = p,N. It is
clear that N# = N, hence the functor (—)# : R—gr — (R—gr)¥ is an
isomorphism of categories.

3. Follows from (2.). We have that G is a finite group, in particular
R#G has a natural structure of a graded left R-module with R#G =
Docc(R#G), where (R#G)y = po(R#G) = @my_ngpy O

We may define another functor (—=)## : R-gr — R#G-mod by M## =
[T.cq My for any M = @M, € R — gr, where M## has the following
structure of an R#G—module: ifr, € Rg, Te € Ry, x € Gand M = (My)zea €
[[.cq Mz then put 7,7m = 7 where @ = (ny)yeq, Ny = ToMe-1, and p,m =
m’ = (m)yeq, mj, =0 for y # x, m), = m,. It is easy to see that (M)## =
[l,cq Mz is an R#G-module. It is also obvious that (—)## is an exact
functor. Note that (—)# is a subfunctor of (—)##. Indeed for M € R-
gr, define the map ay : M#* — M## ap(m) = (mg)seq where m =
Y weq Ma, My € My ie. {m; |z € G} are the homogeneous components of
m. It is obvious that as is injective and it is also fi#G—linear. When G is a
finite group we have (—)# = (—)##. With notation as before we obtain :

7.3.3 Proposition

1. The functor (—)#7# is a right adjoint of the functor H.

2. If M € R-gr and sup(M) < oo then ay : M# — M#7# is an isomor-
phism.
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Proof

1. We define the functorial morphisms :

Homp_g(H(—), —) — HomE#G(—, (—)#7#) and
H

omg (= (=) #) = Homp e (H(-), -)
as follows :
If M € R#G-mod, N € R-gr then v(M,N) : Homp_g (Mo, N) —
HomE#G(M7 N#:#) is defined by v(M, N)(u)(m) = (u(pym))zecc where
m € M, u € Hompg_g (Mo, N).
We show that v(M, N)(u) € Homﬁ#G(M, N##). Indeed, if 7 € R,
ry € R, we have :

VM, N)(u)(rom) = (u(ps - (rom)))zec
(u(rope-1,m))zec
('ft;u(pa,lw ! m))zGG
= 7o (u(pam))zec
= 7oy(M, N)(u)(m)

(by the definition of the structure N#:#).

We clearly have that v(M, N)(uw)(py - m) = pyy(M, N)(u)(m). Hence

Y(M,N)(u) € Homﬁ#G(M, N##), and v(M, N) is a correctly defined

functorial morphism. Now if v € HornE#G(M7 N##) we define 6(M, N)
(v) € Homp_ g4 (Mo, N by the equality §(M, N)(v)(mo) = pyv(m) where
mo = p,m with m € M. Note that p,v(m) is actually an element of N.
Also pyv(m) € N, thus we obtain §(M, N)(v)((Mo)z) = (M, N)(v)
(peM) C N,. Hence §(M,N)(v) € Homp_g (Mo, N). It is easy to
see that (6(M,N) o ~(M,N))(u) = u for any v € Homp_g (Mo, N)
so (6(M,N) o~y(M,N)) = Id. Let now v € Homﬁ#G(M,N#v#). If
we put (y(M,N)od(M,N))(v) = v then we have, for any m € M,
pzv'(m) = pyo(m). If we put v(m) = (ny)zeq and v'(m) = (nl)zeq,
then we have that n,,n/, € M, for any z € G. Since p,v'(m) = pyv(m),
we obtain n), = n, for any € G and therefore v(m) = v'(m) so v = v'.
Finally, we arrive at (M, N) o §(M,N) = Id.

2. Is obvious.

7.3.4 Corollary
The following assertions hold :

1. If M € R-gr is gr-projective (resp. gr-flat) then M# is projective (resp.
flat) R#G-module.
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2. If M € R-gr is gr-injective and | sup(M) |< oo then M7 is an injective
R#G-module.

Proof

1. Since (—)# is a left adjoint of H and H is an exact functor, then (cf. Ap-
pendix A) it follows from the gr-projective of M that M7 is a projective

left R#G-module.

2. Now if M is left gr-flat, then M is a direct limit of projective objects
of the category R-gr. Since (—)# commutes with direct limits (see
Appendix A) we obtain that M7 is a flat R#G-module.

3. Since (=)™ is a right adjoint of H and H is exact, (cf. Appendix
A)it follows that the gr-injectivity of M entails that M## is an injec-
tive E#G—module. On the other hand, since M# ~ M## (because
sup(M) < oo) we have that M# is an injective R#G-module. O

7.3.5 Corollary

Assume that € R-gr is gr-injective. If sup(Q) < oo, then @ is injective in
R-mod.

Proof Corollary 7.3.4 implies that Q7 is injective in R#Q—mod. Since E#G
is free over the ring R it follows that Q7 is injective over R i.e. Q is injective
as a left R-module.

7.3.6 Remarks

1. The above result has already been proved by other arguments in Section
2.8.

2. Using Corollary 7.3.4 we obtain the following well-known result: if P
is gr-projective (resp. gr-flat) then P is also projective (resp. flat) in
R-mod.

7.3.7 Proposition

Let M € R— gr and g € G. Then we have M (g)# ~ (R#G)g Druc M#. In

particular, we obtain that the inertial group G{M} of M in R-gr is equal to the
inertial group G{M#} with respect to the skew groupring R{G} = (R#G)G.



7.3 Some Functorial Constructions 199
Proof Since (R#G)g = g(R#G), we have (R#G)g Sruc M# ~7g Druc
M#. Define the map ¢ : M(g)# — @ SRuc M# as follows: if m, €
M(g), then we put ¢(m,) = §® m,. Since {g} is free over R#G, ¢ is
injective. It is obvious that ¢ is surjective. So it is enough to prove that
¢ is a morphism over the ring R#G. If r, € R, and m, € M(g) then we
have ¢(15) =GB Tom = Gro @m = 1§ @ m = Top(m). Since m € M(g),,
we have pym = 0 if y # 2 and p, -m = m if y = 2. On the other hand
pyp(m) = py (GO M) = pyg B m = Gpyg @ M = G & pygm. Since m € My,
we have that pyp(m) = 0 if y # « and pyp(m) = g @& m if y = x. Therefore
©(py - m) = py - o(m) ie. ¢ is an R#G-morphism. The last part of the
proposition is clear. O

Let C be a closed (resp localizing) subcategory of R — gr. We denote by
C#* ={M#* | MeC}.

7.3.8 Proposition

The class C* is a closed (resp localizing) subcategory of R#G—mod. Moreover,
if C is a rigid closed (resp rigid localizing) subcategory of R-gr then C# is a
stable closed (resp stable localizing subcategory) of E#G—mod, with respect
to the skew group ring R{G}. In particular (R — gr)# is a stable localizing
subcategory of E#G—mod.

Proof We apply the fact that the functor (—)# : R — gr — E#G—mod is
exact and Proposition 7.3.7. O

7.3.9 Proposition

Assume that G is a finite group. Then the correspondence C — C# be-
tween the closed (resp localizing) subcategories of R-gr and the closed (resp
localizing) subcategories of E#G—mod is bijective. Moreover, the above cor-
respondence is bijective when considered between the rigid closed (resp rigid
localizing) subcategories of R-gr and the stable closed (resp stable localizing)
subcategories of E#G with respect to the skew groupring R{G}.

For M € R-mod we let by Colg(M) be the set of all column matrices over M
with entries indexed by G and only finitely many entries nonzero. Since the
elements of M (R) are both row and column finite, Colg(M) is a left Mg (R)-
module and hence a left R{G}-module. Hence we obtain the canonical exact
functor

Colg(—) : R—mod — R{G}—mod, M — Colg(M)
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7.3.10 Proposition
With notation as above, the following assertions hold :

1. If m € Colg(M) and A € M¢(R), then there is a B € M} (R) such that
A=B+C and Cm = 0.

2. Every R{G} submodule of Colg(M) has the form Colg(N) where N is
an R-submodule of M.

3. The functor Colg(—) is full and faithful.
4. For M € R — gr, we have a canonical isomorphism of R{G}-modules :

Colg(M) ~ R{G} BFug M#

In particular we have that Colg (M) ~ @ycqM (0)# as R#G-modules.

5. If G is a finite group, then Colg(—) is an equivalence of categories from
R-mod to R{G}-mod.

Proof

1. We denote by Y the set of elements y € G such that in the y position
of m there is a nonzero element i.e. Y = sup(m); Y is a finite set.
For x € G we denote by A, the "z-th” row of the matrix A and by
Zy, ={y € G| A(z,y) # 0}. The column matrix may have a nonzero
element at the z position if Z, NY # 0. It is easy to see that there are
only finitely many elements € G such that Z, NY # (), for otherwise
there would exist a column A with infinitely many nonzero entries, a
contradiction. Let U = {z € G| Z, NY # 0}. Define the matrix B as
follows : if € U then the z-th of B is A,; if ¢ U then the entries
of the x-th row of B are all zero. We put C = A — B. It is clear that
B € M} (R), Am = Bm and Cm = 0.

2. Let N be an R{G}-submodule of Colg(M). Since R{G} contains ME(M),

by assertion (1.) we have that N is also Mg (R)-submodule of Colg(M).
Put :

N={neM|ImeNn=| n —e}

where 7 is a column with the property that the in the e-position we
have the element n. It is easy to see that N is an R-submodule of M.
If

neN,n=
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then we have e, ,,7i € N and therefore e, ,, 7 € N. Alson = Y5_ ey, -
€e,z; N, 80T € Colg(N) and hence N C Colg (V). Since also Colg(N) C
N, we finally get Colg(N) = N.

. The map f ~— Colg(f) from Hompg(M,M') to Homp(g}(Cola(M),
Colg(M') is obviously injective. Let f be an R{G}-morphism from
Colg(M) to Colg(M) to Colg(M’)i. By assertion (1.) it follows that
]? is also an Mg (R)-morphism. Let m € M and consider the column
matrix

0 —
m = m — e wherex #e

Because pein = . we have that f(m) = f(pen) = pef (i) = m/ where
m =1 m —e

m’ € M’ and we put f(m) = m’. It is easy to check that f is an

R-morphism and Colg(f) = f. Thus the map f — Colg(f) is also
surjective. Therefore the functor Colg(—) is full and faithful.

. If M is a graded R-module, we put M* = {v € Colg(M) | vy € M,},
where v, is the entry in the x-position of v. It is easy to see that M*
is an R#G-submodule of Colg (M), isomorphic to M#. Since M =
©rec My, it is straightforward to verify that Colg(M) = > o gM*
and the sum } _ is direct. We obtain that Colg (M) is isomorphic to

R{G}®5 " oM #. The last part of the assertion follows from Proposition
7.3.7.

. By assertion (3.) it is enough to show that if M is a left Mg(R)-
module, there exists a left R-module N such that M ~ Colg(N). We
put N = p.M. Since R is a canonical subring of Mg(R) then N is
an R-submodule of M. Now if n € Colg(N) we denote by n* the
element in the “z-th” position of the column n. Then we define the
map « : Colg(N) — M by a(n) = >, cqeren®. Since preze = €z
then ez .n® € poM. So if a(n) = 0, since M = Gyecap.M we have
ez,en” = 0 for every x € G. So e¢ ez .n" = 0 so pen” = 0. Since
n® € N = p.M, it follows that n* = 0 for any x € G and therefore
n = 0. Hence « is injective. On the other hand if m € M, we define the
column 71 by

n= €ex M —
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We have e, ;m = peeczmson € Colg(N). But a(n) =3 cqercleam =
> wecgPem = m and hence « is an isomorphism. Since a(e,,n) =
eypa(n) for any u,v € G, it follows that « is also an isomorphism of
Mg (R)-modules.

7.4 Smash Product and Finiteness Conditions

We recall that a group G is called polycyclic-by-finite if there exists a
finite subnormal series {e} = Go <G1 <...<G,, = G such that G;_1 <G, and
G;/Gi—1 is a finite or infinite cyclic group for each i,1 < i < n. The number
of all infinite cyclic factor groups G;/G;—1 is called the Hirsch number G and
is denoted by h(G) (it does not depend on the particular chosen series).

7.4.1 Theorem

Let R be a G-graded ring where G is a polycyclic-by-finite group. If M € R-
gr is gr-Noetherian, then M is Noetherian as an R-module. Furthermore
K.dimgp(M) < gr.K.dimg (M) + h(G).

Proof We know (R—gr)# is a localizing subcategory of R#G-mod then the
results of Section 7.3 imply that M# is Noetherian as left R#G—module and
gr. K.dimM = K.dimﬁ#GM#. As R{G} is a skew groupring of the group G
over the ring R#G, it is in particular a strongly graded ring with (R{G}). =
R#G. Theorem 5.4.8 yields that R{G} ®Fuc M# is a Noetherian left R{G}-
module. Moreover, from Theorem 5.5.7 it follows that K.dimpg¢cy (R{G}@)ﬁ#c
M#) < K.dimﬁ#GM# + h(G). Assertion 4., Proposition 7.3.10 yields that
Colg(M) is a Noetherian left R{G} module and K.dimpg{g Colg(M) <
K.dimE#GM# + h(G). Finally assertion (2.) of Proposition 7.3.10 entails
that M is Noetherian in R-mod and K.dimpM < K.dimE#GM# + h(G) =
gr.K.dim(M)+h(G). The inequality gr.K.dim(M) < K.dimpg(M) is obvious.
(]

Let N be a (not necessarily graded) R-submodule of M. We denote by (N),
(resp. (N)9) the largest submodulle of M contained in N (resp. the smallest
graded submodule of M contaied in N) (see Section 2.1). As we have seen
in Section 7.3, each M € R-gr may be considered as an R#G—module. We
have denoted this module by M#. In this case N will be a subset of M# such
that N is an R-submodule of M# by restriction of scalars (R is a subring of
R#G).

7.4.2 Lemma

Assume that G is a finite group. With notation as above :
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1. (N)g = QG(N : Dx)-

2. (N)? = (R#G)N = @ueap.N

Proof

1. Since pyTy = TyPg-14, it follows that Nyeq(V : p,) is an E#G—submodule
of M so Ngeq(N : ps) is a graded submodule of M. Since ) . p, =1
is the identity of the ring E#G, we have that Nyeg(N : p,) € N and
thus Nyeg(N : py) € N and Ngeg(N : py) € (N)g. The converse
inclusion (IV)g € Nzea(V : ps) is obvious.

2. Since (R#G)N is a graded submodule of M and N C (R#G)N, we
get that (R#G)N D (N)?. Now if P is a graded submodule of M,
such that N C P, we have (R#G)N C (R#G)P = P. Therefore
(R#G)N = (N)9. O

Assume that M is in R-gr and N is an R-submodule of M. We define the
maps o : Colg(N) — M# by a(n) =Y, Pan”, where nn € Colg(N) and n®
is the element of the column 7 in the x position, 3 : M# — Colg(M/N) by
B(m) = (pzm)zec i-e. B(m) is the column having the element p,m modulo
the submodule N in the z position.

7.4.3 Lemma
Assume that G is a finite group. Then :

1. « is an R#G-morphism and Ima = (N)s.

2. 3 is an R#G-morphism and ker3 = (N)g.

Proof
1. We must prove that «(7,n) = 7, € Rs,0 € G and a(psn) = pya(n).
Indeed if
n= nY —y
then we have
0
= n* — T
Pan = 0
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and therefore a(psn) = pyn=.

On the other hand, poa(n) = pa(3_,cqPyn?) = pan® so a(p.n) =
pza(n). Putr =r, € Ry; then™ =7, = ZyGG ToCoyy = To Zyea Coyy-
If we put 7’ = 7,7 then 7’ is the column matrix with the component n'®
in the z-position where n'* =% _ . ro(z,u)n® =r,n’ *. We have

ueG
~ -1 ~ -1 ~ —1
a(ren) = pr(ron(’ )= prron” v = Z(pwro)no *
z€G zeG z€G
= Z ﬁpoflxnailw = 7:; Z poflxnoilw = 7:;&(”)
z€G z€G

Therefore a is an R#G-morphism. It is obvious that Ima = (V).

. We must show that S(p;m) = p6(m) and B(rom) = ryB(m) for any

m € M,z € G and R, € R,. Indeed since py(p,m) = 0 for any y # x,
we have that

0
Bpem) = | 77| T = papm)
-
Now
Blrom) = | pogm | —a=| Frgum | — o=

=T | Po-rzm | —x=10(m)

Therefore 3 is an }E#G—morphism. Now B(m) = 0 if and only if p,m €
N for all x € G and therefore by Lemma 7.4.2 we have that m € kerf3
if and only if m € Nyea(IV : pz) = (N)g. O

7.4.4 Theorem

Let R = @,cq R, be a G-graded ring, G a finite group. Let M € R-gr and
N C M an R-submodule of M. Then the following assertions hold :

1.

If N is a Noetherian (resp. Artinian) submodule of M, then (N)9 is a
Noetherian (resp. Artinian) submodule of M.

. If N has Krull dimension then (/N)¢ has Krull dimension. Moreover,

K.dimg(N) = Kdimp(N)9.
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3. If N has Gabriel dimension, then (V)9 has Gabriel dimension. Moreover
GdlmR(N) = GdlmR(N)g

4. If N is a simple submodule then (N)? is gr-semi-simple of finite length.

Proof Since G is finite R{G} = M¢(R). From Proposition 7.3.10 we may
derive that the Noetherian property of N (resp. Artinian, resp. has Krull
dimension, resp. has Gabriel dimension, resp. is simple) it follows that
Colg(N) is a Noetherian R{G}-module (resp. Artinian, resp. has Krull
dimension, resp[. has Gabriel dimension, resp. is simple). Now since R{G}
is a skew group ring over R#G for the finite group G ~ G, it follows that
Colg(N) is Noetherian (resp. Artinian, resp. has Krull dimension, resp. has
Gabriel dimension, resp. is semi-simple of finite length) as an E#G—module.
Now Lemma 7.4.3 and Proposition 7.3.2. imply that (N)¢ is gr-Noetherian
(resp. gr-Artinian, resp. has gr. Krull dimansion, resp. has gr-Gabriel di-
mension, resp. is gr-semisimple of finite length). Moreover in case N has
Krull (Gabriel) dimension, we have that gr-K-dim(N)9 = K.dimﬁ#G(N)g <
KdlmE#G(Colg(N)) = KdlmR{G}(Colg(N)) = KdlmR(N) (in a similar
way, for the Gabriel dimensiuon we observe that gr-G.dim(N)? < G.dimg(N)).
Since G is a finite group, it follows from Corollary 5.4.3 and Corollary 5.5.4
that N9 is Noetherian (resp. Artinian, resp. has Gabriel dimension) as R-
module. Moreover, gr-K.dim(N)? = K.dimgr(N)? (resp. gr-G.dim(N)J =
G.dimgr(N)?) Hence K.dim(N)? < K.dimg(N) (resp. G.dimp(N)?
G.dimg(N)). Since N C (N)9, then we also have K.dimg(N) < K.dimg(N)¢
(resp. G.dimg(N) < G.dim(N)9) so we obtain that K.dimgpN = K.dimg(N)J
(resp. G.dimp(N) = G.dim(N)9).

IN

O

7.4.5 Corollary

Assume that the group G is finite. Then the following assertions hold :

1. If M € R-mod is Noetherian (resp. Artinian), then M is isomorphic to
a submodule of a Noetherian (resp. Artinian) graded R-module.

2. If M € R-mod has Krull dimension (resp. Gabriel dimension) then M
is isomorphic to a submodule of a graded R-module having the same
Krull (resp. Gabriel) dimension.

3. If M is a simple R-module, then M is isomorphic to a submodule of a
gr-simple module.

Proof Corollary 2.5.5. entails that M is isomorphic to an R-submodule of
a graded R-module. Now we apply Theorem 7.4.4.
From Lemma 7.4.3, assertion (2.) we obtain the dual of Theorem 7.4.4.
O
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7.4.6 Theorem

Let R = @zecRy be a G-graded ring, where G is a finite group. If Mis a
graded R-module and N C M is a submodule, then the following assertions
hold :

1. If M/N is a Noetherian (resp. Artinian) module, then so is M/(N),.
2. If M/N has Krull dimension, then so does M/(N), and we have :
K.dimp(M/N) = K.dimg(M/(N),)

3. If M/N has Gabriel dimension, then so does M/(N), and we have :
G.dimgr(M/N) = G.dimg(M/(N),)

4. If M/N is a simple R-module, then M/(N), is gr-semi-simple of finite
length.

The foregoing result may be used to derive a result similar to Corollary 7.4.5.

7.4.7 Corollary

Assume that the group G is finite.

1. If M € R-mod is Noetherian (resp. Artinian), then M is isomorphic to
a quotient of a graded Noetherian (resp. Artinian) R-module.

2. If M € R-mod has Krull dimension (resp. Gabriel dimension) then M is
isomorphic to a quotient graded R-module having the same Krull (resp.
Gabriel) dimension.

3. If M is a simple R-module, then M is isomorphic to a quotient of a
gr-simple module.

It is possible to extend the above results to G-graded rings of finite support
where G may be an infinite group, but having the so-called “finite embedding
property”. A group G is an FE-group (i.e. has the “finite embedding”
property) if for every finite subset X of G, there is a finite group (H, *) such
that X C H and for every z,y € X such that xy € X we have z xy = zy.
Recall that a group is called residually-finite if the intersection if its normal
subgroups of finite index reduces to {e}; G is called locally residually finite
if every finitely generated subgroup of G is residually finite. Some examples
of locally residually finite groups are : abelian groups, polycyclic-by-finite
groups, nilpotent groups, solvable groups, free groups (see the book of D.I.S.
Robinson “A Course in the Theory of Groups” [176]).

7.4.8 Proposition
A locally residually finite group is an F'E-group.
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Proof Let X be a finite set contained in G. Replacing G by the group
< X > generated by X we may assume that G is residually finite. For any
ze€Y ={xy ' 2,y € X and = # y} there is a normal subgroup N, of G such
that IV, has finite index and z € N,. So we obtain N = N,cy N, a normal
subgroup of finite index in G for which N NY = (). Hence the finite group
H = G/N satisfies the conditions, up to identifying X to its image in H. [J

Now let G be an FE-group, R = ®4cq Ry a G-graded ring of finite support X
and M = ®ycaM, be a left graded R-module of finite support Y. In view of
Proposition 7.4.2, there is a finite group (H, x) such that X UY C H and for
any u,v € X UY such that uv € X UY we have u * v = uv. Then we may
view R (resp. M) as an H-graded ring (resp. M as an H-graded module)
by putting Ry, = 0 (resp. My =0), when h ¢ X UY and for g € X UY, R,
(resp. M,) is the homogeneous part of degree g. In this case M is a H-graded
module over the H-graded ring R. Also if N is an R-submodule of M, then
N is a G-graded submodule if and only if IV is an H-graded submodule of M.
The following remarks follow from these facts :

7.4.9 Remarks

1. Consider an arbitrary G-graded ring R where G is an FE-group. If M €
R-gr has finite support then the assertions from Theorems 7.4.4 and
7.4.6 hold again. Indeed if X = sup(M), we put J = R(3_ e xx-1 L2g) R
(here X! = {27!z € X}). Clearly, J is a graded ideal and JM =
0 Moreover, the G-graded ring S = R/J has finite support (in fact
sup(S) € XX~1). (1.) now follows from the above considerations and
the fact that M is an S-graded module.

2. Assume that sup(R) < oo and G is an FE-group. If M € R-mod, we
may embed M in the graded R-module Coindg(M), which is exactly
Homp, (R, M). We recall that this embedding is given by the R-linear
map ¢ : M — Coindg(M), ¢(m)(r) = rm for any m € M, r € R.
We also have that Coindg(M) is a graded R-module of finite support.
Then the assertions in Corollaries 7.4.5 and 7.4.7 also hold in this case.

7.4.10 Example

There are non-FE-groups ! Let A be an infinite simple finitely presented
group (see [159]). If A is presented as < S, R > with finite S and R then
A = F(S)/RF®) | where F(S) is the free group generated by S and RF() is
the normalizer of the set R in F(S). Let p : F(S) — A be the canonical
projection and put X = {p(a) | & € S or « is a subword of an element of R}.
Suppose that X is contained in a finite group (H, *) such that = x y = zy for
every x,y € X for which zy € X. If 7 : F(S) — H is the natural group
morphism then R C kerw and therefore RF(S) C kernw. Consequently, we
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come up to the following commutative diagram :

Hence Imy) ~ A/kery) and since S C Imy) we have keryp # A. Therefore
kery) = e and Imtyp ~ A, contradicting the finiteness of H.

7.5 Prime Ideals of Smash Products

Assume that R = ©,eqR, is a G-graded ring, where G is a finite group.
In this case we have the inclusions R C R#G C R{G} = M¢(R) where
R{G} is a skew group ring of the group G over the ring R#G. We recall
(from Section 7.1) that there is an action of the group G on R#G ' given by
p: G — Aut(E#G) w(g)(a) =g~ ag where g € G and a € R#G. In
partlcular we have g~ 'p,g = pag. Also (R#G)G = R. If I is a two sided ideal

of R#G we write I9 = g~ 1Ig for any g € G. 19 is called the g-conjugate
of I. From Section 2.11 we retain that I9 = (R#G)g I - (R#G)g so 19 is
g-conjugate as in Section 2.11. If we have I = I9 for any g € G, [ is called
G-invariant.

7.5.1 Example

Let A be a graded ideal of R. Then the ideal of R#G generated by Ais
A#G Moreover we have that A#G is G-invariant, R N (A#G) = A and

R/A#G ~ R#G/A#G.

7.5.2 Proposition
Let I be an ideal of R#G. Then :
1. INR = (NgecI9) NR.
2. INR = A where A is a graded ideal of R.

3. If I is G-invariant then I = /T#G.

Proof

1. The assertion of (1.) clearly follows by viewing R as the set of fixed
elements in R#G.
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2. It is clear that there is an ideal A of R such that INR = A. We now prove
that A is a graded ideal. If a € A then we have p,ap, = a,,1p, € I for
any z,y € Ganda =) . a.,a. € R,. Since z is an arbitrary element

we have agp, € I for any g,y € Gso > . agpy € I soay € INR=A.
So ay € A and hence A is a graded ideal.

3. The inclusion /~1#G C I is obvious. Let a = ) . a®p,, where a € I

and a” € R for any € G. Since I is an ideal we have ap, = El\ipy el
Since I is G-invariant we have g’lampﬂg € I for any ¢ € G hence
a*pyg € I for any g € G. Hence ) ., a®pyy = a® € I. Hence a® € A

so I C A#G. O

In Section 2.11 it has been established that the Jacobson radical J(R#G)
and the prime radical rad(R#G) are G-invariant. The following assertions
provide a further characterization of these ideals.

7.5.3 Theorem
1. J(R#G)NR = J?(R) where JY9(R) is the graded Jacobson radical of R.

2. J(R#G) = J9(R)#G.
3. J9(R) C J(R).

Proof

1. Since the functor (—)# : R — gr — R#G-mod is an isomorphism of
categories (see Proposition 7.3.2 (3.)) the simple R#G-modules are all
Y# where X is a gr-simple module. Now (1.) follows easily because of

J(R#G) = NxAmng . (5%) and J9(R) = Nz Anng(%).
2. Apply Proposition 7.5.2

3. This result has been proved in the more general case when R has finite
support (cf. Section 2.9). We include a different proof here, stemming
from ideas of M. Cohen and S. Montgomery, cf. [43]. Let a € JI9(R).
By assertion (1.), 1 — a is invertible in J(R#G) hence there is a b =
> wec b*pe such that b* € R for any 2 € G and (1 —a)b = b(1 —a) =
1. Therefore > (1 — a)brpm Sbhr(l—a)p, =1 =1 = ersz
Hence (1 —a)b* = bz(l —a) =1 for any z € G. Consequently (1 —a)
is invertible also in R and therefore 1 — a is invertible in R, whence
J9(R) C J(R). O

We recall that a graded ring R is called graded semiprime (see Section 2.11)
if R has no nonzero nilpotent graded ideals.
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7.5.4 Proposition

The following assertions are equivalent.
1. E#G is semi-prime.
2. R is graded semi-prime.

3. R, is semi-prime and R is e-faithful.

Proof

(1.) = (2.) Let I be a nilpotent graded ideal such that I? = 0. It is clear
that (I#G)? = 0 and therefore, by hypothesis we have I#G = 0 so
I =0 and hence I = 0.

(2.) = (3.) follows from Theorem 2.11.4.

(3.) => (1.) Assume that R#G is not semiprime; then there is 0 # z € R#G
such that z(R#G)z = 0. Write z = erG a%p,, a* € R. Thereis a x €
G such that a® # 0. Hence zp, = a®py # 0. Then a®p, (R#G)azpz =0.
In partlcular we have that aﬁpx(R#G)awpx =0, so a””(pxRaﬁpw) =0.
But mea Dr = (Rar)epz hence a (Rar)e = 0, therefore (Raz) = 0.

Since R, is semiprime we have (Raz)e = 0, and (Ra”). = 0. Since
R is e-faithful we have Ra® = 0 and thus a¢® = 0. Hence z = 0, a
contradiction. O

7.5.5 Theorem
rad(R#G) = rad?(R)#G where rad?(R) is the graded prime radical of R.

Proof Proposition 7.5.2 entails that rad(R#G) A#G where A is a graded

ideal of R. Since R#G/rad(R#G) ~ R/A#G it follows that R/A#G is
semiprime and Proposition entails that 7.5.4, R/A is graded as well as a
semi-prime ring. Hence rad?(R) C A. Since R/ rad?(R) is graded semiprime,

we obtain that R/rad?(R)#G is also semi-prime and R#G/radg( )#G is
semiprime. ~ Therefore we have rad(R#G) C rad?(R (R)#G thus A#G C
radg( )#G thus A C radg( ) and A =rad?(R). O

7.5.6 Theorem

The following assertions hold :

1. If P is a G-prime (and G-invariant) ideal of E#G then PN R = é,
where @ is a graded prime ideal of R. In particular it follows that if P
is a prime ideal of R#G then PN R= Q, where @ is a gr-prime ideal.
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2. Conversely if @ is a gr-prime ideal of R then Q#G is a G-prime ideal
of R#G. Moreover the correspondence Q@ — Q#G between the set of
all gr-prime ideals of R and the set of all G-prime ideals of R#G is
bijective.

3. If Q is a gr-prime ideal, then there is a prime ideal P of E#G such that
Q=PnNR.

4. If P is a G-prime (G-invariant) ideal of E#G then there is a prime ideal
Q of R such that P = (Q),#G.

Proof

1. Let I, J be two graded ideals of R such that IJ C Q. Then IJC @ and
therefore (I#G)(J#G) C Q#G = P so [#G C Q#G or J#G C Q#G.
Thus I € Q or J C @ and therefore @ is a gr-prime ideal. Assume now
that P is a prime ideal of R#G Then NgegP? is a G- prune ideal of
R#G Now by Proposition 7.5.2 (1.) we obtain that PN R= Q, where
Q is a gr-prime ideal of R.

2. Similar argumentaction establishes that @#G is a G-prime ideal of
R#G.

3. Theorem 2.11.12 and Corollary 2.11.9 yield that there is a prime ideal
P of R#G such that Q#G = NyeqP?. Moreover, P is minimal over
Q#G But RN (Q#G) RN (NgeaP?). By Proposition 7.5.2 we have
that Q = PN R.

4. Since PN R is a gr-prime ideal, cf cf. Proposition 2.11 there is a ‘a prime
ideal Q of R such that PNR = (Q) Thus P = (PNR)#G = (Q) #G.
O

Following considerations depend on two results of M. Lorenz and D. Passman
cf. “Prime Ideals in Crossed Products of finite groups”, Israel Journal of
Mathematics vol. 33, nr.2 (1979), called Theorem A and Theorem B. (see
[123])

Theorem A Assume that R = ®4cq R, is a G-crossed product with respect
to a finite group G. Let I be a ideal of R strictly containing a prime ideal P
thenP N R, # I N Re.

Theorem B Assume that R = ®4cq Ry is a G-crossed product where G is
finite. If R, is a G-prime ring, the following assertions hold :

1. A prime ideal P of R is minimal if and only if PN R, = 0.

2. There are finitely many such minimal primes, P, ..., P, where n <| G |.
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3. If we put I = P, N...N P,, then I is the unique largest nilpotent ideal
of R such that I1¢l = 0.

From Theorem A, we obtain the following result for arbitrary G-graded rings.

7.5.7 Theorem

Let R = ®4cc R4 be a G-graded ring where G is a finite group. If P C I and
P +# I are two sided ideals of R where P is a prime ideal then PNR, # INR,.

Proof Since G is finite we have Mg(P) # Mg(I) inside the matrix ring
Me¢(R). Since (R#G)G = Mg(R) and (R#G)G is a skew groupring over the
ring R#G by G ~ G, then by Theorem A we have

(R#G) N Mg (P) # (R#G) N Mg(I)

Since the ideals (E#G)ﬂMg( P) and (R#G)NMg(I) are G-invariants Propo-
sition 7.5.2 ylelds that R N Mg(P) # RN | Mg(I). On the other hand
RN Mg(I) = I,. Indeed we clearly have (I), = n((I);) € RN Mg(I).

Conversely, if 7 = n(r) € Mg(l), since 7 = > ry-1€4, it follows that
z,ye€G

ryy-1 € I for any x,y € G and therefore r € (I),. Hence RN Mg(I) C (I),
and so (P)g # (I)y. Now consider the G-graded ring S = R/(P),. Since (P),
is a gr-prime ideal then S is a gr-prime ring. Theorem 2.11.4 entails that S is
e-faithful. If we put J = (I)y/(P)g then J # 0 and J is a graded ideal of S,
therefore J NS, # 0. Since S, = R./P N R, we obtain that PN R, # I N R,.
O

7.5.8 Theorem (Cohen and Montgomery [43])

Let R = ®gecglRy be a G-graded ring, where G is a finite group and P a
gr-prime ideal of R. Then the following assertions hold :

1. A prime ideal @ of R is minimal over P if and only if (Q), = P.

2. There are finitely many such minimal prime ideals, say @1, ..., @, where
n<| G|

3. Ifweput I =Q1N...NQ,, then II¢l C P.

Proof By passing to the graded ring R/P we may assume that R is a gr-
prime ring and P = 0. From Theorem 7.5.6 it follows that the ring E#G
is G-prime. A prime ideal @ of R is minimal if and only if Mg(Q) is a
minimal prime ideal in Mg(R) and from Theorem B it follows that @ is
minimal if and only if Mg(Q) N (R#G) = 0. By Proposition 7.5.2 yields
that we have that Mq(Q) N (R#G) = 0 if and only if (Q), = Mg(Q) N R =
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0. Thus @ is a minimal prime ideal if and only if (@), = 0 so we obtain
assertion (1.). Assertion (2.) follows from Theorem B (assertion (2.)) and
the above assertion (1.). If we put I = Q1 N..NQ, (n <| G |) since
Ma(I) = Ma(Q1) N ...N Mg(Qy), then by assertion (3.) of theorem B we
have M (I)!¢! = 0 so Mg(I'!) = 0 and therefore Il = 0.

The smash product construction allows to connect the prime ideals of R and
the prime ideals of R.. The following lemma will prove to be very important.

7.5.9 Lemma (see [123])

Let R be a ring and e € R a nonzero idempotent of R. Let Spec,(R) denote
the set of primitive ideals of R not containing e and let Spec(eRe) be the
set of primes of eRe. Then the map ¢ : Spec,(R) — Spec(eRe) defined by
¢(P) = P NeRe is bijective. Moreover if P,(Q € Spec,(R) then P ; Q if and

only if p(P) ; »(Q) and P is primitive if and only if ¢(P) is primitive.

Proof First we prove that if P € Spec,(R) then P NeRe is a prime ideal
of eRe. Indeed if a,b € eRe such that a,b ¢ P, we have aRb ¢ P. Since
a = eae and b = ebe, then aRb = eaeRebe = a(eRe)b, so a(eRe)b Z P N eRe.
Therefore P N eRe is a prime ideal of the ring eRe. Let P,Q € Spec,(R)
such that P7CLQ. It is clear that (P) C ¢(Q). Thereisa g € Q,q ¢ P.

Since ¢ ¢ P, eRq € P entails that there is a A € R such that e\qg ¢ P.
Hence e AqRe ¢ P and there exists a ; € R such that elque ¢ P NeRe, or

p(R) ; P(Q)-

Conversely if p(P) 7C,g ©(Q), the argument above also yields that P i @ and

therefore P C Q. We now prove that ¢ is injective. Assume that p(P) = ¢(Q)
with P # @ and say Q ¢ P. Using the argument above, we find a ¢ € @,
q ¢ P and the elements A\, u € R such that e(Aqu)e € Q NeRe = v(Q) and
e(Agu)e ¢ PNeRe = ¢(P), contradiction. We now prove that ¢ is surjective.
Assume that @ € Spec(eRe). Since (RQR)N(eRe) = Q, using Zorn’s Lemma
we obtain an ideal P of R which is maximal with respect to the property
that P N (eRe) = . Now we show that P is prime. Let I, J be ideals such
that I ¢ P, J ¢ P and IJ C P. Then if we put A = (P + I) N (eRe),
B = (P+J) C (eRe) then we have QiA Q?B, so AB ¢ (). But AB C

P NneRe = Q, a contradiction. Assume now that P is primitive. There
is a left simple R-module S such that P = Anng(S). Since e ¢ P, then
eS £ 0. If ex € S, ex # 0 then R(ex) = S so (eR)(sz) = eS and hence
(eRe)(ex) = eS and therefore eS is a left eRe simple module. It is obvious
that ¢(P) = P NeRe = Anncg.(eS) so p(P) is primitive. Conversely, let Q
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be a primitive ideal of eRe and let T' be a left simple e Re-module such that
Q = Ann.pe(T). Write T ~ eRe/X for some maximal left ideal X of eRe.
Since R(1 —e) N RX =0 we denote by Y = RX ® R(1 —e). If Y = R then
1=30" Nz + p(l — e) for some elements \; € R, z; € X, (1 <4 <n)and
weE R Soe= Z?:l Aixie. Since x; € X C eRe then ex; = x;e = ex;e for any
1<i<n Soe=e?=>" e\zie=) . e\ex; € X. Hence X = cRe,
a contradiction. Therefore Y # R and denote by M a maximal left ideal of
R such that Y = M. Let S = R/M; then S is a simple left R-module. If
P = Anng/(S) then P is a primitive ideal of R. Since eRe+ M /M < R/M and
eRe+M/M ~ eRe/eReNM ~ T, it follows that PN(eRe) C Anneg.(T) = Q.
Now let us prove the reverse inclusion. Since @ is an ideal of eRe we have
QRe = QeRe C X CY C M. Also QR(1 —e) C R(1 —e) C M. Hence
QR C M and so RQR C RM = M. Therefore RQR C Anng(S) = P. Since
Q = RQRNeRe then Q C PNeRe. So Q = ¢(P). O

7.5.10 Theorem (Cohen and Montgomery [43])
Let R = ®g4ecq Ry be a G-graded ring where G is a finite group.

1. If P is any prime ideal of R, then there are k <| G | prime ideals p1, ..., pk
of R. minimal over PN R, and moreover PN R, = p1 N...Npg. The set
{p1, .., pr.} is uniquely determined by P.

2. Conversely if p is a prime ideal of R, there exists a prime P of R
such that p is minimal over P N R.. There are at most m <| G | such
primes Py, ..., Py, of R; they are precisely those prime ideals satisfying

(Pi)g = (P)g~

Proof If e is the identity element of the group G, then the idempotent
element p. in R#G has the property that p.(R#G)pe ~ R..

1. Since PN R, = (P)y N Re, we may pass to the graded ring R/(P)g.
So we may assume that (P), = 0 and therefore R is gr-prime. In
view of Theorem 7.5.6 we may select a prime ideal @ of E#G such that
QNR = 0. If QY is the g-conjugate of ), since Nge@? is G-invariant and
Ngec@YNR = 0 then NyeeQ? = 0. Lemma 7.5.9 yields Nyeap(Q9) = 0.
It is clear that there is a system of elements g1, . .., gr(k < |G]) such that
N¥_,0(Q9) = 0 and the intersection is irreducible. If we put p; = p(Q9)
then py, ..., p are prime ideals of R, such that 0 = N¥_, p;. Also since Q
is a minimal ideal of R#G, it follows that pi, ..., px are minimal ideals
of R,.

2. Consider a prime ideal p of R.. From Lemma 7.5.9 we retain that
there is a unique prime ideal @ of R#G such that p = ¢(Q). Then
QNR=A (Theorem 7.5.6), where A is a graded prime ideal of R.
In view of Proposition 2.11.1 there exists a prime ideal P of R such
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that A = (P)g, and Theorem 7.5.8 then learns that there are finitely
many such primes Py, ..., Pp(m <| G |) such that A = (P), = (P;),,
being minimal primes over (P),. Applying part (1.), the primes of R,
minimal over P N R, are precisely those in the set {¢(QY) | g € G}.
Since p belongs to this set, p is minimal over P N R,. O

7.6 Exercises

1. Let A be an additive category. An object A € A has an invariant
basis number if and only if A” ~ A™ implies n = m. Establish the
following claims :

i) If F: A — Bis an additive functor which reflects isomor-
phisms then F'(A) has IBN if and only if A has IBN.

ii) A € A has IBN if and only if End4(A) has IBN.

Hint : (ii) Put R = End4(A). If R has IBN (A™ ~ A™ = Hom (4,
A™) ~ Homu4(A,A") — R™ ~ R" = m = n). Conversely assume
Ry ~ R},. Consider the functor S : A — Mod-R given by S(X) =
Hom 4 (A, X).Then S has a left adjoint functor 7: mod-R — A such that
T(Rg) ~ A. It is clear that T(RY) ~ T(R}) = A" ~ A" = m = n.

Let R be a G-graded ring. R is called left gr-IBN if any two finite ho-
mogeneous bases of the same left gr-free module have the same number
of elements i.e. if 01, ...,0, and 71, ..., 7, are two systems of elements of
G such that R(o1) @ ... ® R(op) >~ R(71) ® ... @ R(7,) then m =n. It
is clear that R is left gr-IBN if and only if R is right gr-IBN.

2. Let R be a G-graded ring where G is a finite group. We put U =
®secR(c). The following are equivalent :

i) R has gr-IBN.

) U has IBN as an object in R — gr.
iii) R has IBN in R-mod.

) The smash product fi#G has IBN.

ii

1v

Hint:

(i)==(ii) is clear.

(ii)=-(iii) Assume R™ ~ R™. If F : R—mod — R-gr is the right adjoint
of the forgetful funtor U : R-gr— R -mod (see Chapter 2) then F(R™) ~
F(R™). But F(R) ®ycq R(c) =U. Hence U™ ~ U™ = m = n.
(iii)==(i) is clear.

(ii)<=(iv) We have Endgr_4(U) ~ R#G (Section 7.2).
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Let R be a G-graded ring (where G is an arbitrary group). If R has
IBN in R — gr then R, fas IBN.

Hint: If R’ ~ R} & R®pr R’ ¥~ RQp R} — R™" ~ R" = m =n.

. Let R be a G-strongly graded ring. If R, has finite Goldie dimension

then R has gr-IBN. Moreover if G is finite then R has IBN (by exercise
3).

Remark In the paper [1], G.Abrams has proved that there exists a G-
strongly graded ring R = @,cg R, where | G |= 2, R, has IBN, but R
does not have IBN.

Let R = ©4eq Ry be a G graded ring and A a finite left G-set. We define
the smash product of the graded ring R by the G-set A, denoted by
R#A, as follows: R#A is the free left R-module with basis {p, | z € A},
and with multiplication defined by (7opz)(s:py) = (ToS:)py, if Ty = @
and zero otherwise, for any r, € R,,rr € R.,x,y € A. This makes
R#A into a ring with identity > ., p.. Moreover the ring R can be
embeded in R#A via the map n: R — R#A, n(r) = > c 4 7Pz. We
note that if A = G, then R#A is exactly the smash product defined in
Section 7.1.

. With notation as above prove that that ring R#A has the following

properties :

i) {ps | x € A} is a set of orthogonal idempotents.
) pure = rope-1, forany x € A, 0 € G, ry € R,.

iii) The set {p, | x € A} is basis for R as a right R-module.

Denote by fin,G-set the category of finite left G-sets. If o : A — A’ is
a morphism in the category, we define the map ¢*R#G — R#A by
O (ToDar) =D 70 Zw(x):w, P (with the convention that the sum of an
empty family is zero).

Prove the following facts :

i) ¢* is a ring morphism.
ii) The correspondence A — R#A defines a contravariant func-
tor from fin, G-Set to RINGS.
iii) If ¢ is injective (resp. surjective), then * is injective (resp.
surjective).

Prove that the smash product R#A is a G-graded ring, with its g-
homogeneous component (R#A)y = Y. Rypa.
z€A
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Let R be a G-graded ring and A, B two finite G-sets. Prove that :

i) There exists a ring isomorphism R#(A x B) ~ (R#A)#B
where A x B has the G-set direct product structure.

ii) If AU B is the disjoint union of A and B with the natural
G-structure, then R#(AU B) ~ (R#A) x (R#B).

Hint :

i) Define o : (R#A)#B — R#(Ax B) by a((rpz)py) = mP(a,y)
forany r € R, x € A, y € B. It is easy to see that « is an
isomorphism. Also R#A is a G-graded ring as in exercise 7).

ii) Apply exercise 5.

Let A be a right H-set for some group H. We say that the action of H
on A is faithful if xh = z for all x € A implies h = e. The action of H on
A is called fully faithful if zh = x for some x € A, h € H implies h = ¢
(e is the unity element of H). If G and H are two groups, a G-H-set is
a set which is a left G-set and right H-set such that (gz)h = g(zh) for
anyge G,xr € Aand h € H.

Prove that if A is a G-H-set such that G acts transitively on A and the
action of H on A is faithful, then the action of H on A is fully faithful.

Let R be a G-graded ring and let G and H be two groups. Consider a
finite G — H set A such that the action of H is fully faithful. Prove
that :

i) There exists an action of H on the ring R#A.

ii) If we denote by Oy the set of H-orbits of A, then Oy is a left
G-set.

iii) There exists a ring isomorphism :

Hint : Since the action of H on A is fully faithful and A is finite, H
is finite too. Oy is a left G-set for the G-action defined by : g(aH) =
(gz)H for any g € G, x € A. The map ¢ : A — Oy defined by p(z) =
xH is a surjective morphism of G-sets. Therefore (cfr. Exercise 6.),
©* 1 R#Oy — R#A is an injective ring morphism. For any h € H,
the map aj, : A — A defined by ap(x) = xh is an isomorphism of G-
sets. Hence o} : R#A — R#A is an automorphism of the ring R#A.
We have o (rpg) = mpyp-1. Hence 6 : H — Aut(R#A), a(h) = af is
a group morphism that is clearly injective. A direct verification yields :
(R#H)H = Im, p*. Now let Oy, ...,O, be the H-orbits of A and pick
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x1 € O1,...,x5 € O4. For h € H consider the element e, = 3 py,n. The
i=1

system {ey, | h € H} is a basis of the right Ime*-module R#H. Theorem

1.1 in the paper by F.R de Meyer “Some notes on the general Galois

theory of rings”, Osaka J.Math. 2(1965), 117-127, cf. [36], leads to the

existence of isomorphisms of rings (R#A) * H ~ Endpn,, o« (R#A) ~

M g (R#O2).

Let R be a G-graded ring, G a finite group, and let H be a sub-
group of G. Prove that there is an algebra isomorphism (R#G) « H ~
M g |(R#G/H).

Hint : Put A = G in exercise 10), where G is viewed as a G-H-set.

Assume that the group G acts transitively on the finite set A. Show
that (R#A) * Autg(A) ~ Mg (R#0), where O is the set of orbits of
A with respect to the right action of Autg(A) on A.

Hint : Take H = Autg(A) in exercise 10. Since G acts transitively on
A, Autg(A) has faithful right action on A.

Let R be a G-graded ring and H<K < G subgroups of G such that the in-
dex of H in G is finite. Prove that (R#G/H)*K/H ~ Mg (R#G/K).

Hint : K/H acts from the right on G/H by (¢H)(kH) = (gk)H for any
g € G, k€ K. We also have that Ok »(G/H) is isomorphic to G/K as
a G-set. Now we can apply exercise 10.

Let R be a G-graded ring and A a finite left G-set. Consider the category
(G, A, R)-gr of A graded left modules (see Section 2.12). Show that
(G, A, R)-gr is isomorphic to the category (R#A)-mod.

Hint : For an object M = @®,caM, in the category (G, A, R)-gr we
define M# to be a left R#A-module as follows: M# = M as a group
and if m € M and ap, € R#A, a € R we put (ap,)m = a - my,
where m,, is the z-homogeneous component of m. The correspondence
M — M# defines a covariant functor (G, A, R)—gr — (R#A)-mod. We
can easily verify (as in Section 7.3) that this functor is an isomorphism
of categories.

Let R @4eq Ry be a strongly G-graded ring. If M, N are two right R-
modules, then G acts on Homp_ (M, N) as follows : if f € Homp_ (M, N),
o € G and (a;); € Ry, (b;); € R,-1 are finite sets such that > a;b; =1
then f7(m) = >, f(ma;)b; for any m € M. Then f? does not depend
on the choice of the a;’s and b;’s, f? is a morphism of R;-modules and
(f°)" = f°7 for any 0,7 € G. Therefore Hompg, (M, N) becomes a
left G-module by o - f = f9 for any f € Hompg,(M,N) and o € G.
We also have Hompg, (M, N)¢ = Homp (M, N) (see Chapter 3). As-
sume now that M = ®,cqM, is a G-graded module. We denote by
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my : M — M the projection on the z-th homogeneous component,
ie. my(m) = my for any m € M. For any f € Homp, (M, N), define
f:M — N by f(m,)=f" ' (m,). Show that :

i) If f € Homp, (M, N) and 2,0 € G then (forg)? = fTomys-1.
In particular (7;)7 = Tpp-1.
ii) f is R-linear.
iii) f= ZaeG foom,.
iv) If N = M, then Endg, (M) ~ Endgr(M)#G (in particular,
for M = R, we obtain Corollary 7.2.2).
Hint :
i) If m € M, we have (f om,)7(m) = ) .(f o m)(ma;)b; =
>i f(Mag—1a:)b; = (f7 0 mpp-1)(m).
ii) Ifr, € Ry we have f(more) = fTO (mere) = (f7 )7 (mery)
=3 fol(mTrUai)bi where a; € Ry-1, b; € Ry and Y a;b; =
1. Since f7 ' is Re-linear f(mTrU) =3 fol(mT)rUaibi =

1 ~

fT (my)re = f(m,)rs. Then f € Homg(M, N).
iii) We consider m = m, € M,. We have (3 .. f7 o my)(m) =

Fo(ma) = ()" (ma) = f(ma). S0 f =X e 17 0 7o

iv) Follows from (i.) and (iii.).

16. We recall (see Appendix B) that if M € R-mod has Krull (resp Gabriel)
dimension then for any ordinal o > 0 there is a largest submodule
Ta (M) of M, having Krull (resp Gabriel) dimension less of equal to a.
Let R = Y . R, be a G-graded ring, G a graded finite group. Let
M € R-gr and assume that M has Krull (resp. Gabriel) dimension.
Show that for any ordinal a > 0, 74 (M) is a graded submodule of M.

17. Let R =), 4 R, be a Z-graded ring. Let M € R—gr and assume that
M has Krull (resp Gabriel) dimension in R-mod (for example when M
is Noetherian). Prove that for any ordinal a > 0, 7,(M) is a graded
submodule of M.

Hint : If n is a natural number, n > 0, let Z,, = Z /nZ and consider
R with gradation of type Z,. We denote by (7,(M))9%™ the smallest
graded submodule of M containing 7, (M), where the gradation on R
and M is the Z,-gradation. Exercise 16, yields 7, (M) = (14(M))%"™
for any n > 1. Take now = € 74(M) and write x = x_s + ... + 19 +
...+ x4 where x_g, ..., Tg, ..., x; are homogeneous components of z in the
initial gradation of M. Note that for any n > s+ t,z_g, ..., 20, ..., T¢
are still homogeneous components of x when M is considered with its
Z,, graduation. Since in this case 7,(M) = (7, (M))9", it follows that
gy, Tt € (To(M))9™ = 7o (M). Thus 74 (M) is a graded submodule
of M.
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7.7 Comments and References for Chapter 7

The notion of smash product associated to a Hopf algebra goes back at least
to M. Sweedler’s book “Hopf Algebras”, 1969. Since then other smash prod-
uct concepts have been introduced, e.g. in [183] K. H. Ulbrich noticed that
a G-graded algebra R over a field & may be viewed as a k[G]-comodule al-
gebra where k[G] is the Hopf algebra defined on the group ring. For a finite
group G, R is then a k[G]*-module algebra where k[G]* is the dual Hopf al-
gebra of the Hopf algebra k[G]. In this case we arrive at the smash product
A#E[G)*. This has been used by M. Cohen, S. Montgomery in [43]. Other
developments included an extension to infinite groups via a matrix ring point
of view, c¢f. D. Quinn [174]. In Chapter 7 we develop the theory from this
point of view. Smash products are introduced for arbitrary graded rings in
Section 7.1; in the particular case when G is finite it follows that D. Quinn’s
smash product is isomorphic to the smash product used by M. Cohen, S.
Montgomery, [43]. In Section 7.2. we establish that the smash product is
nothing but Endy, (U) with respect to the canonical generator U of R-gr (G is
a finite group now), cf. [141]. This makes it a very natural object, more so in
view of the Barr-Mitchel theorem in category theory. The latter states that
an Abelian category with arbitrary coproducts and having a small generator
P that is moreover a projective object, is canonically isomorphic to A-mod
where A is the endomorphism ring of P; observe that, when G is a finite group
the generator U = @,cqR(0) is small !

The connections between R-gr and R#G-mod, the latter corresponding to the
smash product as defined by D. Quinn, are highlighted in Section 7.4. This is
achieved via the construction of a series of adjoint functors. The main results,
Theorem 7.4.4. and Theorem 7.4.6, have several interesting applications, e.g.
Corollary 7.4.5., Corollary 7.4.7.

In Section 7.5., prime and gr-prime ideals of a G-graded ring R, G a finite
group, are related to prime ideals of the associated smash product; this section
rests heavily on the work of M. Cohen and S. Montgomery.

Exercises are found in the final section, as usual.

Finally we remark that in general the smash product is a noncommutative
ring, so for the study of commutative properties (for example Cohen Macaulay,
Gorenstein, regular,... properties) it is not an efficient tool.
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Chapter 8

Localization of Graded
Rings

8.1 Graded rings of fractions

Recall that if R is a ring and S is a multiplicatively closed subset of R such
that 1 € S,0 ¢ S then the left ring of fractions S™'R, with respect to S,
exists if and only if R satisfies the left Ore conditions with respect to S :

O, If s € S, r € R are such that rs = 0 then there is an s’ € S such that
s'r=0.

O Forr € R, s € S there is v’ € R, s’ € S such that s'r =1's.

If R is a left Noetherian ring then O; always holds and one only has to
check Os.

If the Ore conditions with respect to S are being satisfied then S™!R =
{% |la €R,se€ S} where the operations are defined by £ 4 ¥ = ”uﬂ where
a,b € R aresuch that u=as =0bt € S, T+ ¢ = 7/ where t; € S, 21 € R are
such that t1x = x1t.

Note that £ = £ if and only if there is a,b € R such that as = bt € S and
ar = by. When R is a commutative ring we have that £ = ¥ if and only if
there is some w € S such that w(tx — sy) = 0.

Recall also that every M € R—mod allows the construction of fractions S~! M

which is a left S~ R-module. Actually S~'M ~ S™'R®gr M.

8.1.1 Lemma

Let R be a graded ring of type G and let S be a multiplicatively closed subset
contained in h(R), i.e. consisting of homogeneous elements, then R satisfies

C. Nastasescu and F. Van Oystaeyen: LNM 1836, pp. 223-240, 2004.
(© Springer-Verlag Berlin Heidelberg 2004
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the left Ore conditions with respect to S if and only if :

Of If r € h(R), s € S are such that rs = 0 then there is an s’ € S such
that s'r = 0.

Of Foranyr € h(R), s € S, thereisanr’ € h(R),s" € S such that s'r = 1’s.

Proof Clearly O; and Oy imply Of and Of. Conversely, consider s € S,r €
R, where r = 14, + ... + 7, with 7, € h(R), 0; € G. If n = 1 then the
left Ore conditions for r, s clearly hold because Of and Of hold. Now we
proceed by induction on n, supposing O; and Oz hold for all » € R having
the homogeneous decomposition of length less than n. By assumption there
is r! € R, s' € S such that s'(ry, +... +7,,_,) =rlsand s> € S, 7> € R
such that s?r,, = r?s. By Of and OF there exist u € S, v € h(R) such that
us! = vs? =t and t € S is non-zero. Then tr = (ur' 4+ vr?)s, and hence Oy
also holds if r has a decomposition of length n. Furthermore, if as = 0 with
a4 =Gy +...+00,, Gy, € Ry, then a,, s = 0and (ay, +...40a5, ,)s = 0. By the
induction hypothesis we may pick ¢; € S such that ¢1(ay, + ... + @0, ,) = 0.
Now from t1a,,s = 0 and Of it follows that there is a to € S such that
tat1a,, = 0. Putting s’ = tot; € S we see that s'a =0 s’ # 0 since 0 ¢ S).

If the graded ring R satisfies the left Ore conditions with respect to some
multiplicatively closed S C h(R), then we can define a gradation on S~ R by
putting (S7'R)x = {%|s € S,a € R such that A = (deg,s) 'deg,a}.

8.1.2 Proposition
S~IR is a graded ring of type G.

Proof If £, 4 € (S7'R)y, then A\ = (deg,s) 'deg,z = (deg,t) 'deg,y.
Putting u = as = bt € S we get £ + ¥ = @. Hence :

deg <M) = (degu) 'deg(ax)
u

= (degs) '(dega)”!(dega)(deg )

= (degs) ‘degx
Therefore (ST'R), is an additive subgroup of S™!'R for each A € G. In a
similar way one verifies (ST'R)\(S7'R),, C (ST'R),. Obviously S7'R =
> vec(ST'R)x and the common denominator theorem yields that the sum is
direct.

8.1.3 Corollary

If R is a strongly graded ring (resp crossed product) satisfying the left Ore
conditions with respect to S C h(R) then S™!R is a strongly graded ring.
(resp crossed product).
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Proof Itisclear that (ST R),(S7'R),-1 = (s7'R). follows from R,-1 R, =
R;R,-1+ = R.. Now if u, € R, is invertible, it is clear that %= is invertible
in ST'R, so if R is a crossed product then S™'R is also a crossed product.

8.1.4 Proposition

Let R be a G-graded ring, G a finite group and let S be a multiplicatively
closed subset of h(R), which satisfies the left Ore conditions. Consider R#G
the smash product associated to R and its G-gradation.

1. R#G satisfies the left Ore with respect to S;
2. STHR#G) ~ STIR#G.

Proof

1. Let =z = deG a’py an arbitrary element from R#G and s € S such
that xs = 0. Hence 0 = xs = deaagsp(,flg where ¢ = deg, s.
Consequently a9s = 0 for any g € G. Assume that sup(z) = {0 €
G | a? # 0} = {g1,..,9n}- Now by induction on |sup(z)| and us-
ing condition O; there exists an s’ € S such that s'a? = 0 for any
g € sup(z). Clearly s’z = 0. Take x = > . a’py € R#G and s € S
with degs = 0. For g1 € sup(z) there are a9 and s} € S such that
s1a% = a''s. Then sz = s1a%" py, +y where y = - = s1a’pg, thus
s1x = a'9' spy, +y = ay, Pog, +y. Since |sup(y)| < [sup(z), and the induc-
tion on |sup(x)| there exist s, € S and y' € R#G such that shy = y's.
In this case we have s58]2 = $50'9 prg, s + shy = (s50'9 pog, +y')s and
therefore S also verifies the condition Os in R#G.

2. As a consequence of (1.) the ring of fractions S™!(R#G) does exist.
Now it is easy to see that the canonical map

0 : STIR#G — STHR#G)

defined by ¢(s tap,) = s (ap,) for all s € S,a € R,z € G is an
isomorphism of rings. O

8.2 Localization of Graded Rings for a Graded
Linear Topology

Let R be a G-graded ring and R-gr the category of all (left) graded R-modules.
Let C be a rigid closed subcategory of R-gr (see Section 2.6 and Section 4.4)
We denote by L(R) (L9 (R)) the lattice of all left ideals (resp of all graded
left ideals) of the graded ring R. We will say that a nonempty subset H of
L9"(R) is a graded linear topology (gr-linear topology) on R if it is a filter
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in L9"(R) and satisfies the following additional condition:

If I € H and r € h(R), then (I : ) € H. Now, in a way similar to the
correspondence between closed subcategories of R-mod and linear topology
on R, it can be proved that there is a bijective correspondence between rigid
closed subcategory of R-gr and graded linear topologies on R, given by

C— He ={I € L*(R) | R/I €C}

(Here lg(x) = {a € R| ax = 0}). If H is a graded linear topology on R, then
set H={I € L(R)|3J € H,J C I} is a left linear topology on R such that
H C H. Actually it is easy to see that H is the smallest linear topology on
R such that H C H.

Let C be a rigid subcategory of R-gr. We denote by C the smallest closed
subcategory of R-mod such that C C C. Assume that the graded linear
topology associated to C is denoted by H. Then we complete Proposition
4.4.2. as follows :

8.2.1 Proposition

The following assertions are equivalent for M € R-gr :
1. M eC.
2. For any z € M, Ig(z) € H.

Proof

1. =(2.) Proposition 4.4.2 applied to M € C, yields that there is N € C
such that M is isomorphic to a quotient module of N in R-mod i.e.
there is an epimorphism :

N—>M—0

If x € M, then there is y € N such that u(y) = x. It is clear that
Ir(y) C lr(z). If we write y = yo, +... + Yo, Where y,, € No, (1 <i <'s)
then I = NS_,lr(ys,) € H. But I Clr(y) Clgr(x) solg(x) € H.

2. = (1.) For any x € M, we have that Ig(x) € H and there is I, € H
such that I, C Ig(x). Thus we have an exact sequence in R-mod

R/I, — R/igr(z) — 0
and since Rz ~ R/Ir(z), we obtain an exact sequence
Ceem R/, — ©repRr — 0

Therefore setting N = ®,epar R/ 1, which obviously belongs to C, we see
that M is a quotient of N in R-mod as it is a quotient of @,ep Rz. (in
R-mod). O
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8.2.2 Proposition

Let C and C be as above and t¢ and tz the corresponding left exact preradicals.
If M € R— gr, then tz(M) = tc(M).

Proof Since C C C it is clear that t¢c(M) C tz(M). On the other hand, if
x € tz(M), then there exists J € H such that Jz = 0 and thus there exists
I'e HwithlI CJand Iz=0.Ifx=)_ .z, with z, € M, then Iz, =0
for any o € G (for I is a graded ideal) and z, € t¢(M) follows. Therefore
te(M) = tz(M). O

Assume now that R = ®,cq R, is a G-strongly graded ring. A closed subcat-
egory C. of R. —mod is called G-stable if and only if for any M € C. we have
R, ®r. M € C, for every o € G. We denote by C = {M = ®,ccRs € R-gr,
M, € C.}. Since the functor (—). is exact, then C is a closed subcategory.
Moreover C is rigid. Indeed if M € C then M(0)e = M, ~ R, ®r, M. (by
Dade’s Theorem) and since C. is G-stable we get that M (o) € C. Moreover
C. is a localizing subcategory, then also C is a localizing subcategory of R-gr.

8.2.3 Proposition

Assume that R is a strongly graded ring. With the above notations, the corre-
spondence C, — C between all closed (resp localizing) G-stable subcategories
of R.-mod and all rigid (resp localizing) subcategories of R-gr, is bijective.

Proof Assume C is a rigid closed subcategory of R-gr and put C. = {N €
Re—mod, R®p, N € C. Since the functor R®p, — : R.—mod — R-gr is exact
(in fact it is an equivalence) we get that C is a closed subcategory of R.-mod.
Since R ®p, (Ry ®r, N) ~ (R®pg, N)(0) it follows that R, ®g, N € Ce, so
C. is G-stable. Now it is clear that the above correspondence is bijective. On
the other hand if C is a localizing subcategory of R-gr, then C. is a localizing
subcategory of R.-mod.

Let C. be a G-stable closed subcategory of R.-mod. We denote by H. the
linear topology associated to C. i.e. H, = {Ileftidealof R., R./I € C.}.
Since C. is G-stable, if I € H, then for any o € G, (R,I : \,) € H,. for every
Ao € R,. Indeed since I € H, then R, ®g, R./I € C.. But R, ®pr, Re/I ~
Rs/R,I so R,/R,1I € C. and therefore we obtain that (R,I : \,) € H, for
any A\, € R,. O

8.2.4 Examples

1. Let S be a multiplicatively closed subset of h(R) not containing zero.
We denote by Cs = {M € R—gr,foranyz € h(M), Ir(z) NS # 0}. Tt
is easy to see that Cg is a rigid localizing subcategory of R-gr. If we
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denote by Hg the graded linear topology associated to Cs then Hg =
{L e L#R) | (L:7)NS # O forallr € h(R)}. Clearly Cs = {M €
R—mod | lg(x) NS # 0, forany z € M}.

2. Let R be a G-graded ring and M € M-gr. Consider Z,(M) ={x € M
there exists an essential left graded ideal I in R such that Iz = 0}.
Obviously Z,(M) is a graded submodule of M; Z,(M) is called the
graded singular submodule of M. It is clear that Z,(M) C Z(M)
where Z(M) is the singular submodule of M in R-mod. On the other
hand if G is an ordered group then Z,(M) = Z(M) (see Section 5.2).
We also define Z2(M) to be the graded submodule of M such that
Zy(M) C Z}(M) and Z}(M)/Zy(M) = Z(M/Z4(M)). The class G =
{M € R—gr,M = Z2(M)} is a rigid localizing subcategory of R-gr. It
is called the Goldie torsion theory of R-gr.

3. Let Q be a gr-injective object in R-gr. Let Cq = {M € R—gr |
HOMpg(M, Q) = 0}. Since the functor HOMpg(—, Q) is exact we may
conclude that Cg is a rigid localizing subcategory of R-gr. Since

HOMR(M> Q) = @UEGHOMR(M> Q)O’
= @JGGHomegr(Mv Q(U))
then Cog = {M € R—gr | Homg_4 (M,Q(c)) = 0 for any o € G}.
In particular if @ is G invariant we have that Co = {M € R—gr |
Homp_g (M, Q) = 0}. In fact every rigid localizing subcategory of R-gr
has the form Cq where @ is some gr-injective object in R-gr, as is easily
verified.

If Q is gr-injective, we denote by E(Q) the injective envelope of @ in
R-mod. We denote by Agq) = {M € R—mod, Homgr(M, E(Q)) = 0}.
Ag(q) is a localizing subcategory of R-mod.

8.2.5 Proposition
With notation as before, let @ be a gr-injective object of R-gr. Then

1. Cq € Ag(q)-
2. If M € R-grand M € .AE(Q) then M € Cq ie. Cg = .AE(Q) N R-gr.

Proof

1. Proposition 8.2.2 entails 5 (Q) = 0 since tc,(Q) = 0. It is clear that

E(Q) is also Cq-torsion free. Hence if M € Cq, we have
Homp (M, E(Q)) = 0 and thus Cq C .AE(Q)

2. Let M € R-gr such that M € Apgg), then Homg(M, E(Q)) = 0.
Since @ < E(Q), we have Hom(M,Q) = 0. But HOMr(M,Q) C
Homp (M, @) and therefore HOMg(M, Q) = 0 and M € Cq. O
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8.2.6 Example

Let k be a field and consider the ring of Laurent polynomials R = k[X, X ~1]
with the natural grading over the group G = Z. R is a gr-field so Q =r R
is injective in R — gr. In this case F(Q) = D the field of fractions of R. it is
clear that Cg = {0} and Ag(q)is a localizing subcategory of torsion modules
(R is a principal ideal ring) Since Cq = {0} we have Cq # Ag(q).

Let R = ®,cqR, be a G graded ring ) € R-gr a gr-injective module of
finite support. We know from Section 2.8 that @ is also injective in R-mod.
We write Hg (resp Fg) for the linear topology associate to the localizing
subcategory Cq (resp Ag) of R-gr (resp of R-mod). Therefore

Cqo ={M € R—gr, HOMg(M,Q) =0} and
Ag = {M € R—mod, Homg(M, Q) = 0}

Consequently

Hg = {I € L¥(R),Homg(R/I,Q) =0} and
Fo = {I € L(R),Homg(R/I,Q) = 0}

8.2.7 Proposition

With hypotheses as before we have Fg = H_Q

Proof Using the structure of gr-injective modules of finite support (Corol-
lary 2.8.8) we may assume that @ is g-faithful for some g € G and of finite
support. In this case Q(g) ~ Coind(Q,) = Hompg, (R, Q,) where @, is an
injective Ri-module. Since Hompg(R/I,Q) = Hompg(R/I,Hompg, (R, Q4)) ~
Homp, (R®rR/I,Q,) = Homg, (R/I,Q4) we obtain that I € Fg if and only
if Homg, (R/I,Q4) = 0. Since for any ¢ € G we have 0 — R,/INR, — R/I
we also obtain Hompg, (R,/I N Ry, Q,) = 0 (Q, is injective in R-mod). If we
put J =3 oI N R, = (I)y then J is a left graded ideal of R such that
J C I. Furthermore

Hompg, (R/J,Qq) = Hompg (PsecRs/(INRy),Qyq)
= ][ Homg. (R,/(I N R,),Qy)

ceG
= 0

whence J € Fg. Then Fg contains a cofinal set of graded left ideals. On
the other hand HOMg(R/J, Q) < Homg(R/J,Q) = 0 and J € Hg follows.
Finally we obtain Hg = Fy. O



230 8 Localization of Graded Rings

8.2.8 Corollary

Let R be a G strongly graded ring where G is a finite group and Q = G,ecc@s
a gr-injective object.

We denote by Fg, = {J left ideal of R., Hompg, (R/J,Qs) = 0}. Then I € Fy
if and only if I N R. € NyegFg,. Moreover if @) is G-invariant then I € Fg
if and only if TN R, € Fg,.

Proof Obviously Q. is an injective R.-module. By the foregoing remarks :
I € Fy if and only if Hompg, (R/I,Q,) = 0 for any 0 € G and this clearly
implies that I N R, € Fg_ for any 0 € G. Conversely the statement follows
from the fact that J = R(I N R,). Since Homg(R/J,Q) = HOMg(R/J,Q) =
@oeccHomp g (R/J, Q(0)) = PsegHomp, (Re/J N Re,Qy) = 0 we obtain
that J € Fg and since J C I we have I € Iy.

8.3 Graded Rings and Modules of Quotients

The general localization theory in a Grothendieck category is well known (we
may refer to [61] [162]). We restrict to recalling the fundamental concepts
and basic results applied to the graded theory. Let R be a G-graded ring
and as usual R-gr the category of (left) graded R-modules. Let C be a rigid
localizing subcategory of R-gr. We denote be H the graded linear topology
associated to C and by t¢ the radical on R — gr associated to C. Then H =
{I € L9"(R),R/I € C} and if M € R-gr then tc(M) is the largest graded
submodule of M contained in C i.e. t¢(M)={zx e M |3 € H, I -z = 0}.
We denote by C (resp H) the smallest localizing subcategory of R-mod (resp
the smallest linear topology of R) that contains C (resp H). By Proposition
8.2.1 we have that H = {J € L(R) | 3] € H, I C J}. Now if M € R-gr, we
put
Qu(M) = lim HOMp(L, M/te(M))

Led
As in the non-graded situation, one can easily see that in M =g R then
Q@ (R) has a natural structure of G-graded ring, whereas for every M € R-gr,
Qu (M) turns out to be a graded Qg (R)-module, i.e. Qu(M) € Qu(R)-gr.
For the linear topology H we have :

Qz(M) = lim Homp(I, M/tz(M))
IeH

Since t¢(M) = tz(M) and H is cofinal in H we obtain
Q= (M) = lim Hompg(L, M /tc(M))
" red

thus Qu (M) C Q7 (M). In particular Qg (R) C Qz(R). In fact Qu(R) is a
subring of Q7 (R). Also R/tc(R) is a subring of Qu(R).
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8.3.1 Proposition

1. If H contains a cofinal system of left finitely generated graded ideals
then for any M € R-gr, then Qu (M) = Qz(M).

2. If the ring R has finite support and M € R-gr has finite support too,
then Q7 (M) = Qg (M).

3. If the ring R has finite support then Qu(R) = Q#(R).

Proof
1. We calculate :
Qu(M) = lm{I e T, Homp(I, M/tc(M))}
= hgl{J finitely generated in H,Hompg(J, M/tc(M))}
= h_H)l{J finitely generated in H,HOMpg (I, M/tc(M))}
= Qu(M)

2. Similar to the Proof of 1., using result from Section 2.

3. Follows from 2.

8.3.2 Corollary

Assume that R is left gr-Noetherian. With the notation as in Proposition
8.3.1, if M € R-gr we have

Qu(M) = Qz(M)

8.3.3 Example

Let S be a multiplicatively closed subset of R contained in h(R). Assume
that 1 € S, 0 ¢ S and S satisfies the left Ore conditions. Let Cg = {M € R-
gr | for any x € h(M),lgr(x) NS # 0} (see Example 8.2.4). In this case
Hs ={L € L&¥(R),(L:r)NS #£0 for all r in A(R)}. In particular if L € Hg
then L NS # 0 so there is s € S such that Rs C L. On the other hand if
I = Rs, where s € S since S verifies the Ore conditions then (Rs:a)N.S # ()
for all a € h(R), so Rs € Hg. Proposition 8.3.1 entails for M € R-gr that

Qus(M) = Q (M) =S"'M

We recall that if A is an arbitrary ring and we consider E(A) the left injective
envelope of 4 A in A-mod and denote by

Fipa) = {I € L(A), Hom4(A/I, E(A)) = 0}
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then F(4) is a linear topology which is associated to the localizing category
Cepa) = {M € A—mod | Homa (M, E(A)) = 0}. In this case the quotient ring
QFp4,(A) is called the left maximal ring of A and is denoted by QL. (A) (or
shortly Qmax(A)). Clearly A is a subring of Quax(A).

8.3.4 Proposition

Let R be a G-graded ring of finite support (in particular if G is a finite
group). Then the left maximal quotient ring Qmax(R) is endowed with a
natural graded structure. Moreover, Qmax(R) has finite support too.

Proof: Let E9(rR) be the injective envelope of rR in R-gr. Assume that
sup(R) = {01,..,0n}. Let o ¢ {0, '0;,1 <i,j < n}. If (F9(rR))y # 0
there exist an element z, € (E9(grR))s, T, # 0. Since E9(R) is an essential
extension of rpR, there is an element a) € R) such that ayz, €r R and
axt, # 0. Hence Ao € sup(R)) also since ay # 0, A € supp(R) we have that
o € A lsup(R), a contradiction. Hence (E9(R)), = 0 and EY(R) has finite
support. In this case E9(R) = F(rR) is an injective object in R-mod. From
Proposition 8.2.7 and 8.3.1 we obtain that Qmax(R) is a graded ring. Since
Qmax(R) C E(rR) we conclude that Qmax(R) has finite support. O

8.3.5 Proposition
Let R = @,cq R, be a strongly graded ring, where G is a finite group. Then :

1. The maximal (left) quotient ring Qmax(R) is a strongly graded ring of
type G.

2. (Qmax(R))e = Qmax(Re)-
3. If R is a crossed product, then Qmax(R) is a crossed product.

Proof

1. Since R C Qmax(R) and R is a strongly graded ring we have 1 €
RO'RJ*1 g (Qmax(R))a Qmax(R))oﬁl, or Qmax(R) is a Strongly graded

ring.

2. Let Q = E9(R) = E(R) be the left injective envelope of gR in R — gr
(the same in R-mod). Since tg(R) = 0 we obtain :

Omax(R) = lim HOM(I, R),
I€Hqg

and therefore :

(Qmax(R))e = lim HOIHR_QT (,[7 R)
IcHqg
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= lim Homg, (I, R.)
IcHqg

Corollary 8.2.8 implies that :

(Qmax(R))e = lim , Hoch(J7 Re) = QmaX(Re)
JeFg,

(here Q. is the injective envelope of r_R.).

3. Obvious. O

8.3.6 Theorem

Let R = ®,cc R, be a graded ring of finite support. Let P be a graded ideal
of R which is a prime ideal of R. If I is an ideal of R such that P C I, P # I,
then P;Ig and PN R, # 1IN R,.

Proof The problem can be reduced to the consideration of R/P. Hence
R, we may assume that R is a prime ring. Then R is e-faithful (see Section
2.11). Put Q = E(gR). Since I # 0 we have Hompg(R/I,Q) = 0. Indeed if
Hompg(R/I,Q) # 0, then there is a nonzero R-morphism f : R/I — Q. Thus
f(1) = 2 € Q and x # 0; there exists a € R such that az € R and ax # 0.
Since Iz = 0, we have I(ax) C Iz = 0. Since R is a prime ring we obtain
I =0, a contradiction. Since I € Fg and in view of Proposition 8.2.7 we have
(I)g € Fg and Hompg(R/(I)4,Q) = 0. Hence (I), # 0. The results of Section
2.11 imply that : TN R, = (I)g N Re # 0.

8.4 The Graded Version of Goldie’s Theorem

It is well-known that Goldie’s theorems are of great importance in Ring The-
ory, particularly in the study of left (right) Noetherian rings. A first study
of Goldie’s theorems for graded rings may be found in [94] and later in the
book [136] for the Z-graded case. A recent extension may be found in [73].
In order to state and prove Goldie’s Theorem, some preliminary ingredients
are needed.

Let R = ®,cq R, be a G-graded ring. R is said to be a left graded Goldie
ring (sometimes written as gr-Goldie ring) if R has finite Goldie dimension in
R-gr and satisfies the ascending chain condition on graded left annihilators.

8.4.1 Lemma

Let R be a graded ring satisfying the ascending chain condition for graded
left annihilators. Then the left graded singular radical of R is nilpotent.
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Proof Write J for the graded left singular radical of R. Then .J is generated
as a left ideal by all homogeneous elements a € R such that [r(a) is an essential
left ideal. Look at the ascending chain of graded left ideals :

Ir(J) Clr(J?) C ... Clp(J™) C ...

The hypothesis implies that [g(J™) = [g(J" ™) for some n € IN. If J" T £0
then aJ™ # 0 for some a € h(R) and we may chose a such that [(a) is maximal
with respect to this property. If b € J N h(R) then Ix(b) N Ra # 0 because
Ir(b) is an essential left ideal of R. Thus there is ¢ € h(R) such that ca # 0
and cab = 0, so lr(a) ; Ir(ab). The hypothesis on a entails that abJ”™ = 0.

Since J is a graded ideal we have aJ"t! = 0 i.e. a € [g(J"!) = [g(J"), a
contradiction. Therefore J"H1 = 0. O

8.4.2 Lemma

Let R be a gr-semi-prime ring satisfying the ascending chain condition on
graded left annihilators. If I is a left (or right) ideal such that every element
of h(I) is nilpotent then I = 0.

Proof For a € h(R) every element of h(Ra) is nilpotent if and only if every
element of h(aR) is nilpotent. It is therefore enough to prove the statement in
case I is aright ideal. If I # 0, thereis a € I, a # 0 such that lz(a) is maximal
among the left annihilators of nonzero elements of h(I). Let A € h(R) such
that a\ # 0. Then by hypothesis there is a ¢t > 0 such that (a\)! = 0 and
(a\)=1 # 0. From lg(a) C Ir((aN)!~1) it follows that Ig(a) = (r((a)!™1).
Therefore ala = 0 and hence aRa = 0, but this contradicts the fact that R is
a gr-semi-prime ring. O

8.4.3 Lemma (Goodearl, Stafford [79])

Assume that R is a gr-semiprime left gr-Goldie ring. Let a € R be a homoge-
neous element such that Ra is gr-uniform. Then its left annihilator Ig(a) is
maximal among all left annihilators of nonzero homogeneous elements of R.

Proof Assume that lg(a) C J =1g(b) and lg(a) # Ir(b) for some homoge-
neous element b € R. Then Ja # 0 and the gr-uniformity of R implies that
Ja is gr-essential in Ra. Therefore Ra/Ja is a gr-singular left R-module. But
Ra/Ja ~ R/J ~ Rb because lg(a) C J. Hence Rb is gr-singular. Lemma
8.4.1 allows to conclude that b = 0.

8.4.4 Theorem (Goodearl and Stafford [79])

Let R be a G-graded ring G an abelian group (semigroup). If R is a gr-prime
and left gr-Goldie ring then any essential graded left ideal I of R contains a
homogeneous regular element.



8.4 The Graded Version of Goldie’s Theorem 235

Proof An element a € h(R) for which Ra is gr-uniform is called gr-uniform
element. Lemma 8.4.2 and the hypothesis imply that there is a non-nilpotent
gr-uniform element a; € R. By induction, suppose that we have found the
non-nilpotent gr-uniform elements a1, ..., a,, € I such that a; € Ni<;<i—1lr(a;)
for 1 <i<m.If X =Nicj<mlr(a;) # 0 then INX # 0. Then Lemma 8.4.1
entails that there is a non-nilpotent gr-uniform element a,,4+1 € I N X. Since
ai € lr(a;) = lr(a?) fori > j (Lemma 8.4.3) we obtain that the sum )., Ra;
is an internal direct sum. Since R has finite graded Goldie dimension the pro-
cess terminates. This implies that for some n we have : N ;lg(a;) = 0.
Since R is gr-prime and the a; are non-nilpotent, Ra?Ra3...Ra? # 0 thus
a?Ra3...Ra? # 0. Hence there exists homogeneous elements sa,...,s, € R
such that a?sqa3ss...spa? # 0. From Lemma 8.4.2 we retain that there is a
homogeneous element s; such that ¢ = sja?sza3...s,a2 is not nilpotent. For
any 1 < ¢ < n define d; = (aisi+1a?+1...sna%)(sla%...siai). Note that the d;
are sub-words of ¢? hence d; # 0 for any ¢ = 1,...,n. Since Rd; C Ra; we
obtain that the sum ) . , Rd; is direct. Lemma 8.4.3 yields that lg(d;) =
ZR(ai), 1 <17 < n. Hence lR(dl + ...+ dn) = m?zllR(di) = ﬂlR(ai) = 0. The
fact that G is abelian entails deg(d;) = deg(c) and therefore d = dy + ... + d,,
is homogeneous. Moreover d € I and [r(d) = 0 hence d is regular. O

8.4.5 Theorem (The Graded Version of Goldie’s Theo-
rem)

Let R be a G-graded ring, where G is an abelian (semigroup) group. If R is
a gr-prime left gr-Goldie ring then R has a gr-simple, gr-Artinian left ring of
fractions.

Proof The proof of this Theorem follows from Theorem 8.4.4 as in the
ungraded case (see [72]).

8.4.6 Corollary

Let R be a G-graded ring, where G is an abelian (semigroup) group. If R
is gr-prime and left gr-Noetherian then R has gr-simple, gr-Artinian ring of
fractions.

Proof It is clear that if R is left gr-Noetherian, then R is a left gr-Goldie
ring. O

In the ungraded context, there also exists a second Goldie’s Theorem in case
R is a semi-prime left Goldie ring. Unfortunately a graded version of Goldie’s
Theorem for gr-semi-prime left gr-Goldie ring does not exist, as the following
example shows.
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8.4.7 Example [103]

Let k be a field and let R be the ring k[X,Y] where the generators X and
Y are subjected to the relation XY =YX = 0. Put R, = kX" ifn >0
and R,, = kY™ if m < 0. It is clear that each 2 # 0 in h(R) with degz # 0
is non-regular. Moreover the ideal (X,Y") is essential in R but it does not
contain a regular homogeneous element. This shows that, although R is a gr-
semi-prime gr-Goldie ring, it does not have a gr-semisimple grArtinian ring
of fractions.

8.4.8 Remark

The book [150], Theorem I. 1.6 provides sufficient conditions for a gr-semi-
prime gr-Goldie ring to have a gr-semisimple gr-Artinian ring of fractions.
Finally we establish that for strongly graded rings, graded by by a finite
group, the second Goldie Theorem does hold.

8.4.9 Theorem

Let R = ®yecRs be a strongly graded ring where n = |G| < co. If R is
a gr-semi-prime left gr-Goldie ring then R, is a semi-prime left Goldie ring.
In this case there exists a left classical ring of fractions Q. (R). In this case
Q. (R) is a strongly graded ring with (Qc(R))e = Qc(Re). Moreover Qe (R)

is a gr-semisimple, gr-Artinian ring.

Proof That R, is a semi-prime ring follows from Theorem 2.11.4. Since
R is a strongly graded ring, R, is also a left Goldie ring thus there exists
the left classical ring Q. (R.) where Q. (Re) a is semisimple Artinian ring.
Now if I is a left graded essential ideal of R, then I N R, is a left essential
ideal of R.. Thus there exist a regular element s € I N R.. We denote by S
the set of all regular elements of R.. Every s € S is also a regular element
in R. Indeed if a,s = 0 for a, € R, then since R;R,-1 = R., we have
1 =", aib; where a; € Ry, b; € R,-1. Then for any 1 < i < n we have
(bias)s = 0. Since bja, € R. we have bja, = 0 so a, = Y (a;b;)as = 0.
Clearly if a € R is an element such that as = 0, we arrive at a = 0. In a
similar way we obtain that sa = 0 implies a = 0. So s in regular in R. Hence
there exist Qu(R) = S™'R and Q.(R) is a gr-semi-prime gr-Artinian ring.
Also (QCl(R))e = SilRe = ch(Re)~ O

8.5 Exercises

1. Let R be a G-graded ring and C be a rigid localizing subcategory of R-
gr. We denote by H the graded linear topology associated to C and by
ty the radical on R-gr associated to C (or to H). Denote by C (resp H)
the smallest localizing subcategory of R-mod (resp the smallest linear
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topology on R) that contains C (resp H). We also denote by tz the
radical of R-mod associated to H. If M € R-mod we denote by Qg (M)
(resp Q7 (M)) the quotient module of M relative to H (resp H) (see
section 8.3). Recall that we denote by E9(M) (resp E(M)) the injective
envelope of M in R-gr (resp R-mod). If M € R-gr, M is called gr-H-
closed if the canonical homomorphisms

M ~HOMg(R, M) — HOMRg(I, M)
are isomorphisms for all I € H. Prove that :

a) M is gr-H-closed.
b) i) M is H gr-torsion free i.e. tg(M) =0
ii) If N € R-gr and P is a graded submodule of N such that
N/P € C, then the canonical homomorphism
Hompg_g (N, M) — Homp_g (P, M)

is an isomorphism.
¢) The canonical morphism U(M) : M — Qg (M) is an iso-
morphism.

Hint : The same proof as the ungraded case (see [167], chapter IX)

. With the notations above prove that if sup(R) < oo and sup(M) < oo,
then Qu (M) ~ Q7(M) (see also Proposition 8.3.1)

Hint : It is necessary to prove that X = Qg (M) is H-closed. Indeed
if J € H, then there is an I € H such that I C J. Since J/I € C
and X is H-torsion free, we have Homg(J/I,X) = 0. On the other
hand since HOMg(I, M) = HOM(I, M) it follows that Hompg (I, M) =
Hompg(J, M), so the canonical morphism M =~ Hompg(R,M) —
Homp(J, M) is an isomorphism.

. With the notations from exercise 1, if M € R-gr is H-torsion free, then
Qu(M)={xe EI(M) |3 € H, Ie C M}

Hint : It is easy to see that Y = {z € E9(M) | 3] € H, Iz C M} is

gr-H-closed.

. Let P € R-gr be a gr-projective module (i.e. P is also projective in
R-mod). We denote by

C}g;r ={M € R—gr | HOMg(P, M) = 0}
Cp={N € R—mod | Homg(P,N) = 0}
Prove that:
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i)
Cy ={M € R—gr | Homp_g(P(c), M) = 0}
for any o € G and C¥ is a rigid localizing subcategory of R-gr.
ii) Cp =C%
Hint :

i) (i) is clear

ii) (ii) C% C Cp. Indeed if M € C% we have HOMp (P, M) = 0.
Using Theorem 2.4.3 we have Homg(P,M) = 0 so C% C
Cp. Conversely, let N € Cp. Since Hompg_g (P, F(N)) =
Hompg(U(P(0)),N) = Hompg(P,N) = 0, it follows that
F(N) e C¥,s0 N €C% (here F is right adjoint to the forget-
ful functor U : R — gr — R — mod).

5. With notation as in exercise 1, prove that, for any o € G :
Qu(M(0)) = Qu(M)(o)
Hint : If A\ € G, we have

Qu(M(o))x = lim HOMg(I, M(0)/tn(M(0)))x
IcH
= limHompg g (I, M(0)(N)/tr(M(o)(X)))
IcH
= limHomp g (I, M(Ao)/t(M(A0))) = Qu(M)ro =
IcH

= Qu(M)(o)x
So Qu(M(o)) = Qu(M)(o).
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8.6 Comments and References for Chapter 8

Localization and local-global methods constitute a very effective tool, par-
ticularly in commutative algebra and algebraic geometry e.g. scheme theory.
Geometrically speaking, passing to local data or phenomena valid in the neigh-
bourhood of a point, is very natural and intuitive. Algebraically speaking this
may be traced to the construction of a ring of fractions of some commutative
ring (e.g. the coordinate ring of some algebraic variety) with respect to a
prime ideal. This localization defines then a new ring of fractions that is in-
deed “local” in the sense that it has a unique maximal ideal and very element
outside it has become invertible in the localized ring. In the noncommutative
case however, even though localization techniques of a general nature do ex-
ist, the result is not always that satisfactory. For prime or semi-prime (left)
Noetherian rings we have the well-known theory related to Goldie’s theorems,
but this is essentially dealing with a localization at the zero ideal ! In the
presence of a gradation the situation becomes more complicated even, because
in Goldie’s theory the existence of regular elements in essential left ideals is
necessary, but for homogeneous left ideals the presence of a regular element
may not imply the presence of a homogeneous regular element. A study of
Goldie’s theorems for graded rings began in [103] and for Z-graded rings in
[150]. Localization theory of a more general type had been applied to Z-
graded rings by F. Van Oystaeyen (a. o. [189]) in an attempt to arrive at a
projective scheme structure e.g. [187].

Section 8.1. contains a brief presentation of graded rings of fractions. In
Section 8.2. and Section 8.3. the more general theory of localization, e.g. in
the sense of P. Gabriel [67], is presented using a homogeneous linear Gabriel
topology. We avoid repetition of the material already well documented in our
book [150], but include some recent results and developments. For example,
in Section 8.4. we include a recent result by K. Goodearl, J. Stafford [79]
providing a generalization of the graded version of Goldie’s theorem in the
gr-prime case for an abelian group, or in the more general case of an abelian
semigroup.

Some References

- P. Gabriel [67]

- K. Goodearl, T. Stafford [79]

- 1. D. Ton, C. Nastasescu [103]

- A. Jensen, Jgndrup [105], [106]

- L. Le Bruyn, M. Van den Bergh, F. Van Oystaeyen [117]

- C. Nastasescu [141], [143]
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Chapter 9

Application to Gradability

9.1 General Descent Theory

Let A and B be two categories and let F' : A — B be a functor. In the
case where A and B are additive categories, we assume that I is an additive
functor. Following the classical descent theory (see [115]) we can introduce a
descent theory relative to the functor F'. Consider an object N € B. We have
the following problems.

i) Existence of F-descent objects : does an object M € A exist such that
N~F(M)?

ii) Classification : if such an F-descent object exists, classify (up to iso-
morphism) all objects M for which N ~ F(M).

9.1.1 Remarks

i) If the functor F is an equivalence of categories, then for any N € B
there exists an unique (up to isomorphism) F-descent object.

ii) Assume that we have two functors F' : A — Band G: B — C. If
for Z € C there exists a G o F-descent object X € A, then F(X)
is a G-descent object for Z.

iii) If F' commutes with finite (arbitrary) coproducts or products, then
any finite (arbitrary) coproduct or product of F-descent objects
is also an F-descent object.

iv) Assume that A and B are abelian categories and F' is a faithful
and exact functor which preserves isomorphisms. If M € B is a
simple object and N € A is an F-descent object for M, then N is
simple in A. Indeed, if i : X — N is a non-zero monomorphism in
A, then F(i) : F(X) — F(N) =~ M is a nonzero monomorphism,

C. Nastasescu and F. Van Oystaeyen: LNM 1836, pp. 241-276, 2004.
© Springer-Verlag Berlin Heidelberg 2004
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therefore F(N) ~ M. Since M is simple we see that F(i) is an
isomorphism, and then so is . Thus N is a simple object of A.

9.1.2 Example

1. Let R and S be two rings and ¢ : R — S be a ring morphism. Let
A = R-mod and B = S-mod be the categories of modules. We have the
following three natural functors :

- S®p —: R-mod — S-mod (the induced functor)
- Homp(gS, —) : R-mod — S-mod (the coinduced functor)

- s 1 S-mod — R-mod (the restriction of scalars)

When § = [, R = k and [ is a commutative faithfully flat k-algebra,
then the descent theory relative to the induced functor is exactly the
classical descent theory.

2. Assume that R C S is a ring inclusion. Then the descent theory rel-
ative to the functor ¢, (here ¢ : R — S is the inclusion morphism) is
exactly the problem of extending the module structure, i.e. of investigat-
ing whether for M € R-mod there exists a structure of an S-module on
M which by the restriction of scalars to R gives exactly the initial R-
module structure on M. In particular, if S = @,caS, is a G-strongly
graded ring and R = S., we obtain the theory of extending modules
given in Section 4.7.

3. Let R = ®,cc Ry be a G-graded ring. We consider the forgetful functor
U : R-gr— R-mod. If M € R-mod and there exists an U-descent object
N € R-gr for M, i.e. U(N) ~ M, then M is called a gradable module.
If G is a finite group, we can consider the smash product R#G and
the natural morphism 7 : R — R#G (see Chapter 7). By Proposition
7.3.10, M € R-mod is gradable if and only if M has an extending relative
to the morphism 7.

Using the structure of gr-injective modules (Section 2.8) we have the following.

9.1.3 Proposition

Let G be a finite group, R a G-graded ring and @ an injective R-module. The
following assertions are equivalent.

i. @ is gradable.

ii. There exists an injective R.-module N such that @ ~ Coind(N) =
Hompg, (R, N) as R-modules.
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Proof (it) = (i) Since Coind(N) has a natural structure of an R-graded
module, we have that @ is gradable.

(1) = (i) If Q is gradable, then there exists an injective object M € R-gr
such that @ ~ U(M) in R-mod. By Corollary 2.8.8 there exist 1,...,0, € G
and Ni,..., N, injective R.-modules such that M ~ @i:LSCOind(Ni)(ai_l)
in R-gr. If we take N = @®;=1 sV;, then we have @ ~ U(N) in R-mod. O

9.2 Good gradings on matrix algebras

Let k be a field and M, (k) be the matrix algebra. We denote by (E; j)i<i j<n
the matrix units of M, (k), i.e. E; ; is the matrix having 1 on the (7, j)-position
and 0 elsewhere.

9.2.1 Definition

A grading of M, (k) is called a good grading if all the matrix units F; ; are
homogeneous elements.

9.2.2 Lemma

Let us consider a good G-grading on M, (k). Then deg(FE;;) = e,
deg(Ei,j) = deg(Ei,Hl)deg(EHLHg) - deg(Ej_l,j) fori < J

and

deg(Eivj) = deg(Ei,17i)71deg(E7;,27i,1)71 - deg(Ej7j+1)71fOI' i> J

Proof Since E;; is a homogeneous idempotent, we see that deg(E;;) =

e. The second relation follows from E; ; = E; ;41 Ei41,i42...Ej_1; for any
i < j. The third relation follows then from E; ;E;; = F;;, which implies
deg(Eivj) = deg(Em-)*l. O

In the following we count the good gradings on M, (k).

9.2.3 Proposition

There is a bijective correspondence between the set of all good G-gradings
on M,(k), and the set of all maps f : {1,2,...,n — 1} — G, such that to a
good G-grading we associate the map defined by f(i) = deg(FE; ;4+1) for any
1<i1<n-—1.

Proof Lemma 9.2.2 shows that in order to define a good G-grading on
M, (k), it is enough to assign some degrees to the elements

Ei12,E23,..., By 15
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The inverse of the correspondence mentioned in the statement takes a map
f:{1,2,....,n -1} — G to the G-grading of M, (k) such that

deg(Em) =€,

deg(E; ;) = f(i)f(i+1)--- f(j — 1), and

deg(Eji) = f(G—1) " fG—2)"" - f(@)~"

forany 1 <i < j <n. O

9.2.4 Corollary

There exist | G |"~! good gradings on M, (k).

In Definition 9.2 good gradings are introduced from an interior point of
view. There is an alternative way to define good gradings, from an exterior
point of view. Let R be a G-graded ring, and V a right G-graded R-module.
For any o € G let

END(V), = {f € End(V) | {(Vg) C V,, for any g€ G}
which is an additive subgroup of Endg (V). Note that
END(V), = Homgp_g(V, (0)V)

where (0)V is the G-graded right R-module which is just V' as an R-module,
and has the shifted grading (0)V, = V4 for any ¢ € G. Then the sum
> e END(V), is direct, and we denote by ENDg(V) = ©secEND(V),,
which is a G-graded ring. A similar construction can be performed for left
graded modules. If R = k with the trivial G-grading, then a right graded R-
module is just a vector space V with a G-grading, i.e. V = EBgeG V, for some
subspaces (Vy)geq. In this situation we denote by END(V) = END (V) and
End(V) = Endk (V). If V has finite dimension n, then END(V) = End(V) ~
M, (k), and this induces a G-grading on M, (k). If (v;)1<i<n is a basis of ho-
mogeneous elements of V', say deg(v;) = g¢; for any 1 < i <, let (F; ;)1<i j<n
be the basis of End(V) defined by F; ;(v;) = 0, v; for 1 <i,5,¢ < n. Clearly
deg(F; ;) = gigj_l. We have an algebra isomorphism between End(V) and
M, (k) by taking F; ; to E; ; for i, 7, and in this way M,, (k) is endowed with
a good G-grading. In fact any good G-grading can be produced this way.

9.2.5 Proposition

Let us consider a good G-grading on M, (k). Then there exists a G-graded
vector space V, such that the isomorphism END(V) 2 End(V) 2 M, (k) with
respect to a homogeneous basis of V', is an isomorphism of G-graded algebras.
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Proof We must find some gi1,...,9, € G such that deg(E; ;) = gl-gj_1 for
any ¢, j. Proposition 9.2.3. shows that it is enough to check this for the pairs
(i,7) € {(1,2),(2,3),...,(n— 1,n)}, i.e. gig;}; = deg(Ei 1) for any 1 < i <
n — 1. But clearly g, = e, g; = deg(E; i+1)deg(Eit1,i+2) ... deg(En—_1,,) for
any 1 <i<mn—1, is such a set of group elements. O

A G-grading of the k-algebra M, (k) is good if all E; ;’s are homogeneous
elements. However there exist gradings which are not good, but are isomor-
phic to good gradings, as the following example shows.

9.2.6 Example
Let R = S = Ms(k) with the Cy = {e, g}-grading defined by

k 0 k
me(n i) m=(io)

> O

Then the map

a b a+c b+d—a—c
s (3 )= (7 )

is an isomorphism of Cs-graded algebras. The grading of .S is not good, since
E 1 is not homogeneous, but S is isomorphic as a graded algebra to R, which
has a good grading. O

We see that in the previous example, although the grading of S is not
good, the element Ej o is homogeneous. A corollary of the following result
shows that in general a grading of the algebra M, (k) is isomorphic to a good
grading whenever one of the F; ;’s is a homogeneous element.

9.2.7 Theorem

Let R be the algebra M, (k) endowed with a G-grading such that there exists
V € R-gr which is simple as an R-module. Then there exists an isomorphism
of graded algebras R = S, where S is M, (k) endowed with a certain good
grading.

Proof As a simple M, (k)-module, V' must have dimension n. Let A =
ENDg(V), as a G-graded algebra with multiplication the inverse map compo-
sition, hence V' is a G-graded right A-module. We may consider BIENDg (V)
= ENDA(V), a G-graded algebra with map composition as multiplication.
Since V' is a simple R-module and A = ENDgr(V) = Endg (V) = k, so A is
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isomorphic to k with the trivial grading. This shows that BIENDg (V) is the
endomorphism algebra of a G-graded k-vector space of dimension n, thus it is
isomorphic to M, (k) with a certain good G-grading. On the other hand, the
graded version of the Density Theorem (see Section 4.6) shows that the map
¢ : R — BIENDg(V), ¢(r)(v) = rvfor r € R, v € V, is a surjective morphism
of G-graded algebras. Because Anng (V) = 0, we see that ¢ is injective, hence
an isomorphism. O

9.2.8 Corollary

If G is a torsion-free group, then a G-grading of M, (k) is isomorphic to a
good grading.

Proof Let V be agraded simple module (with respect to the given G-grading
of M, (k)). Then (see Section 4.4.) V is a simple R-module, and the result
follows from Theorem 9.2.7 O

9.2.9 Corollary

Let R be the algebra M, (k) endowed with a G-grading such that the element
E,; ; is homogeneous for some 4,j € {1,...,n}. Then there exists an isomor-
phism of graded algebras R = S, where S is M, (k) endowed with a good
grading.

Proof Since F; ; is a homogeneous element, then V = RE; ; is a G-graded
R-submodule of R. Clearly V is the set of the matrices with zero entries
outside the j*™ column, so V is a simple R-module, and we apply Theorem
9.2.7. |

9.2.10 Example

There exist gradings isomorphic to good gradings, but where no E; ; is homo-
geneous. Let R be the Cy-graded algebra from Example 9.2.6 and S = M, (k)
with the grading

_ 2a —b —2a+2b
Se = <a—b —a—|—2b> wbek,

_ a—2b —a+4b
Sy = (a—b —a+2b> abek
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Then the map
. a b [ 2a+c—2b—d —2a—c+4b+2d
f.R—>S,f(<c d>)_( a+c—b—d —a—c+2b+2d >

is an isomorphism of Cs-graded algebras. However, none of the elements F; ;
is homogeneous in S. O

We will describe now the good G-gradings making M, (k) a strongly graded
(respectively a crossed-product) algebra.

9.2.11 Proposition

Let us consider the algebra End(V) = M, (k) with a good G-grading such
that deg(E; 1) = h; for 1 < i < mn —1, where V = EBgeGVg is a graded
vector space. The following assertions are equivalent :

i. M, (k) is a strongly graded algebra

ii. Vy#0 for any g€ G

iii. All elements of G appear in the sequence e, hy, h1ha, ..., hiho - hy_1.
Proof We recall that V' is an object of gr — k, where k is viewed as a G-
graded algebra with the trivial grading. Then END(V) = End(V) is strongly
graded if and only if V' weakly divides (¢)V for any o € G. This means that
V is isomorphic to a graded submodule of a finite direct sum of copies of (o)V
in gr — k, and it is clearly equivalent to V; # 0 for any g € G. If g1, ..., g, are

the degrees of the elements of the basis of V' which induces the isomorphism
End(V) = M, (k), then

h=g195", ho =295, hn—1 = gn-1g, ", thus

g =hi'g1, gs=hy"hi'gr,....gn =h, ikt b g

Then V, # 0 for any g € G if and only if all the elements of G appear in the
sequence gi, gs, - - - , gn- Since

g2=hi'g1, gs=h3"h g1 .. gn =Ntk b g

this is equivalent to iii) in the statement. O

9.2.12 Corollary

If M, (k) has a good G-grading making it a strongly graded algebra, then
G| < n.
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9.2.13 Corollary

Let |G| = m < n. Then the number of good gradings on M, (k) making it a

) m
i:l,mfl(_l)H—l i

)(m—i— 1)1,

strongly graded algebra is m" =14+ (m—1)""1-%" (m—

D = Sl -1

m—1
)

Proof Let x; = hy,22 = hiho,...,2y—1 = hiho---h,_71. Clearly the (n —
1)-tuples (h1,ha,...,hp—1) and (21,22,...,2,—1) uniquely determine each
other, so we have to count the number of maps f : {1,2,...,n — 1} — G
such that G — {e} C (f). This is Ny + N3, where N; (respectively Na) is
the number of surjective maps f : {1,2,...,n — 1} — G — {e} (respectively
f:{1,2,....,n—1} = G). A classical combinatorial fact shows that

Ny=m"t— 3 (-1t ( T ) and

i=1,m—1

n— i m—1 . n—

Ny=(m-1""— > (-1)“( . >(m—z—1) !
1=1,m—-2

9.2.14 Proposition

Let End(V) = M, (k) with a good G-grading, where V =
vector space. The following assertions are equivalent :

gec Vg Is a graded

i. M, (k) is a crossed product
ii. dim(V) = |G| - dim(Vy) for any g € G
iii. dim(M,(k)e) - |G| = n?.

Proof END(V) = End(V) is a crossed product if and only if End(V), =
Homy 4 (V, (0)V) contains an invertible element for any o € G, which means
that V' = (0)V as k-graded modules. This is equivalent to dim(V,) =
dim(V,4) for all o,¢g € G, which is just ii. Thus i.<ii.

Clearly i.=iii. Suppose now that iii. holds. As End(V)e = Endi_g (V) =
Dy End(Vy), we find dim(End(V)e) = deG(dim(Vg))z. Then

2

G Y (dim(Vy))® = n? = | Y dim(V;)

geG geG

and the Cauchy-Schwarz inequality shows that all dim(V}), g € G must be
equal. Thus dim(V) = |G| - dim(V;) for any g € G.
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9.2.15 Corollary

Any two crossed product structures on M,, (k) which are good G-gradings, are
isomorphic as graded algebras.

Proof The two graded algebras are isomorphic to End(V), respectively

End(W), where dim(V,) = dim(W,) = 167 for any g € G. Therefore V = W

as k-graded modules, and this shows that End(V) & End(W) as graded alge-
bras. (]

As examples, we give a description of all good Cs-gradings on M (k) and
all good Cy-gradings on M3(k).

9.2.16 Example

Let R = Ms(k), k an arbitrary field. Then a good Cs-grading of R is of one
of the following two types :

i. The trivial grading, R. = Mz (k), Ry = 0;

. (k0 (0 kK
11.Re—<0 k)’Rg_(k O>

9.2.17 Example

Let R = Ms(k), k an arbitrary field. Then a good Cs-grading of R is of one
of the following types :

(i) The trivial grading, R. = M2 (k), Ry = 0;

k k0O 00 k
i) Re=| %k k 0 |, Rg=[ 0 0 &
00 k E kO
k0 0 0 k k
(iil) Re=| 0 k k |, Ry=| k 0 0 |;
0k k E 0 0
k0 k 0 k 0
(iv) Re=[ 0 k 0 |, Ry=[ k 0 &
k0 k 0 k 0

Using Proposition 9.2.11 and Proposition 9.2.14, we see that the examples (i),
(iii) and (iv) are strongly graded rings, but they are not crossed products.

Our aim is to classify the isomorphism classes of good G-gradings.
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9.2.18 Theorem

Let V and W be finite dimensional G-graded k-vector spaces. Then the graded
algebras END(V) and END(W) are isomorphic if and only if there exists
o € G such that W ~ V(o).

Proof Let vy,...,v, be a basis of V consisting of homogeneous elements,
say of degrees ¢1,...,gm. For any 1 < 4,5 < m define F;; € END(V) by
Fij(v) = 6¢;v;. Then F;; is a homogeneous element of degree gigj_1 of

END(V), the set (Fjj)i<i j<m is a basis of END(V), and Fj;F,.s = 6;,Fis
for any ¢,7,7,s. In particular (Fj;)1<i<m is a complete system of orthogo-
nal idempotents of END(V). Let v : END(V) — END(W) be an isomor-
phism of G-graded algebras, and define F/; = u(Fi;) for any 1 <i,j < m.
Denote @Q; = Im(F};), which is a graded vector subspace of W. Since
(F})1<i<m is a complete system of orthogonal idempotents of END(W), we
have that W = @1<;<m@; and F}; acts as identity on @Q; for any i. Com-
bined with the relation F},F7, = F;, this shows that F}; induces an iso-
morphism of degree gig]71 from @; to @;. In particular @Q; =~ (glggl)Ql
in gr — k for any j. We obtain that W ~ @1§j§m(glg;1)Q1, showing
that @1 has dimension 1. Repeating this argument for the identity iso-
morphism from END(V) to END(V), and denoting by Ry = Im(Fi1), we
obtain that V = @1§j§m(g1gj_1)R1. Since ()1 and R; are graded vector
spaces of dimension 1, we have that Q1 ~ Ri(o) for some ¢ € G. Hence
W ~ @1§jgm(g1g;1)Q1 o~ @1§j§m(glg;1)(R1(O’)) ~ V(c). Conversely, it is
easy to see that END(V) ~ END(V(0)) as G-graded algebras. O

The previous theorem may be used to classify all good G-gradings on the
matrix algebra M,, (k). Indeed, any such grading is of the form END(V) for
some G-graded vector space V of dimension m. To such a V we associate
an m-tuple (g1,...,9m) € G™ consisting of the degrees of the elements in
a homogeneous basis of V. Conversely, to any such a m-tuple, associate a
G-graded vector space of dimension m. Obviously, the G-graded vector space
associated to a m-tuple coincides with the one associated to a permutation of
the m-tuple. In fact Theorem 9.2.18 may be reformulated in terms of m-tuples
as follows. If V" and W are G-graded vector spaces of dimension m associated
to the m-tuples (g1,...,9m) and (hi,..., ), then END(V) ~ END(W) as
G-graded algebras if and only if there exist ¢ € G and 7 a permutation of
{1,...,m} such that h; = g¢;yo for any 1 <4 < m. We have established the
following.

9.2.19 Corollary

The good G-gradings of M,, (k) are classified by the orbits of the biaction of
the symmetric group S,, (from the left) and G (by translation from the right)
on the set G™.
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In the particular case where G = C,, =< ¢ >, a cyclic group with n
elements, we are able to count the orbits of this biaction. Let F, ,, be the set
of all n-tuples (ko, k1,...,kn—1) of non-negative integers with the property
that ko +k1+...+kp—1 = m. It is a well-known combinatorial fact that F,, .,

has (mszl) elements. To any element (g1,...,gm) € G™ we can associate an
element (ko,k1,...,kn—1) € F, m such that k; is the number of appearances

of the element ¢’ in the m-tuple (g1,...,gm) for any 1 <i < n. By Corollary
9.2.19 we see that the number of orbits of the (S,,, G)-biaction on G™ is
exactly the number of orbits of the left action by permutations of the subgroup
H =<7 > of S, on the set F,, ,,, where 7 is the cyclic permutation (12 ...n).
This number of orbits is the one we will effectively compute.

If @ = (ko, k1, .-, kn_1) € Fpm and d is a positive divisor of n, then 79a = «
if and only if k;4g = k; for any 0 < ¢ < n —1—d, i.e. the first d positions
of o repeat % times. In particular we must have that % divides m. For any
such d, let us denote by A4 the set of all « € F}, ,,, stabilized by 7¢. Since for
o € Ag we have that ko + k1 +...+ kg1 = de, we see that Ay has (dedt(ifl)
elements.

Let D(n,m) be the set of all positive divisors d of n with the property that
n/d divides m. If dy,ds € D(n,m), then (d1,dz) € D(n,m). Indeed, since n
divides dym and dam, then n also divides (dim,dam) = (d1,d2)m, therefore
(d1,d2) € D(n,m). It follows that D(n,m) is a lattice with the order given
by divisibility. For any d € D(n,m) we denote by D(n,m,d) the set of
all elements d’ of D(n,m) which divide d, and by Dy(n, m,d) the set of all
maximal elements of D(n,m,d). The following is immediate.

9.2.20 Lemma

For any di,d> € D(n,m) we have that Ag, N Ag, = A, d,)-

The following provides a description of the elements with the orbit of
length d.

9.2.21 Lemma

For any d € D(n,m) denote by By the set of all the elements of F,, ,,, having
the orbit of length d. Then

Ba=As— | Aev=4:- |J As

d’'eD(n,m,d) d€Do(n,m,d)

Proof The orbit of an element a has length d if and only if the stabilizer
of a is a subgroup with % elements of H, thus equal to < 7¢ >. The result
follows now from the definition of Ag. O
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9.2.22 Corollary

Let d € D(n,m) and p1,...,ps all the distinct prime divisors of d such that
d ..,pi € D(n,m). Then

iy
B =lAd+ Y Y (VA

. . Piy
1<t<s51<i1<...<4: <s

and this is known taking into account the fact that for any d’ we have that
md’ | g
‘Ad’| — ( wt 1).

d'—1
Proof We have that Dg(n,m,d) = {pil, ce pis}. The result follows now
from Lemma 9.2.21 and by applying the principle of inclusion and exclusion.
|

9.2.23 Theorem

The number of isomorphism types of good C,,-gradings of the algebra M,, (k)

1S
S odBd= Y sad-1 U Al

deD(n,m) deD(n,m) d’€Do(n,m,d)

Ul

Proof The number of isomorphism types of the good gradings is the number
of orbits of the action of H on F}, . We have seen that if the orbit of an
element o € F,, , has length d, then necessarily d € D(n,m). The result
follows since the number of orbits of length d is 4| Bql. O

9.2.24 Example

Let n = p” with prime p and let m be a positive integer. We define ¢ by ¢ = r
in the case where n divides m, or g is the exponent of p in m in the case where
n does not divide m. Then D(n,m) = {p|r — ¢ < i < r} and the number of
isomorphism types of good C),-gradings on M,, (k) is

IR 1 (Pt =1 e T =1
Y S () ()
prri\ prti-1 rgoi<r P pr—1 pt—1
In particular, if n = p, then the number of isomorphism types of good Cp-

gradings on M,, (k) is 1 + %((mﬁ;;l) — 1) if p divides m, and %(m;’_p;l) if p
does not divide m.

Over an algebraically closed field, any grading by a cyclic group on a
matrix algebra is isomorphic to a good grading.
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9.2.25 Theorem

Let k£ be an algebraically closed field and m,n positive integers. Then any
Cy-grading of the matrix algebra M,, (k) is isomorphic to a good grading.

Proof Let R = M,,(k) be the matrix algebra endowed with a certain C,,-
grading, and pick ¥ € R-gr a graded simple module. Then A = Endg(X) =
ENDg(X) is a Cy,-graded algebra. Moreover, A is a crossed product when
regarded as an algebra graded by the support of the C,-grading of A. The
support is clearly a subgroup since it consists of all elements g for which X
and X(g) are isomorphic. Thus A ~ A.#,H for a cyclic group H and a
cocycle 0. On the other hand A, = Endg-4(X) is a finite field extension of
k, so A, = k. Hence A is a crossed product of A, which is central in A, and
the cyclic group H, so A is commutative.

Since R is a semisimple algebra with precisely one isomorphism type of simple
module, say S, we have that ¥ ~ SP as R-modules for some positive integer
p. But then A ~ Endg(SP) ~ M, (k), and the commutativity of A shows that
p must be 1. Then ¥ ~ S| so there exists a graded R-module which is simple
as an R-module. By Theorem 9.2.7, the grading is isomorphic to a good one.

O

9.3 Gradings over cyclic groups

Let n be a positive integer and C,, =< ¢ > the cyclic group of order n.
We assume that a primitive n'" root of unity ¢ exists in & (in particular this
implies that the characteristic of k£ does not divide n).

9.3.1 Theorem

Let A = M,,(k), where k is a field containing a primitive n'" root of unity &.
Then a C),-grading of k-algebra A is of the form A, = { D+ ¢ XDX 1 +
EXX2DX 24 ... 4 ¢ Dixn-Ipx—+tl | D € M, (k) } where X €
GL, (k) is such that X™ € kI,,. For any such matrix X we will denote by
A(X) the algebra A endowed with the grading induced by X.

Proof Let A= @icz, A be a Cy-grading of A = M,,, (k). Define the map
V:A— Aby¥(D)=> iz £'D,i for any D € A. We obviously have that
U is a linear map. Moreover, for any D, B € A we have that

(Y €Da)( Y ¢¥By)

i€Zy, JE€EZn,

Z £i+j Dc’i Bcj

1,j€Zn

U(D)¥(B)
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- Y Y enn,
SEZ, 1+j=s

> &(DB).:

SEZ,,
— U(DB)

showing that ¥ is an algebra morphism. Moreover, for any j we have that
UI(D) = Y ez &' Dei for any D € A. In particular ¥" = Id, and ¥ is an
algebra automorphism of R. By the Skolem-Noether Theorem, an algebra
automorphism ¥ of M,,(k) is of the form ¥(D) = XDX ™! for any D €
M, (k), where X € GL,,(k). In order to have U™ = Id, we must impose
the condition X™ € Z(M,,(k)) = kI, I, the identity matrix. It is possible
to recover the grading from the automorphism V. Indeed, let j € Z,, and
D € A. Multiply the equations

D= D, ¥(D)=> &Dy, ..., 0" (D)= Y "D,

i€Zy, i€Zy, i€Zn,

by 1,677, €727, ... 6 (=1J respectively, and then add the obtained equa-
tions. We find that

D+¢79U(D) + ...+ & DI YD) = nD,;
therefore
D, (D+£7U(D) + ...+ Digr-1(D))

(D+ ¢ XDX 1+ ¢78X2DX 2 4 4 ¢ (mDixn—lpx—ntl)

S|I=3|=

O

9.3.2 Remark

The proof of Theorem 9.3.1 shows that for any D € M,,(k), the homogeneous
components of D in the grading defined by the matrix X as in the statement
are

1 . ) )
Di=—(D+¢'XDX ' 4 2X2DX 24 4 ¢ (mDixn-lpx—ntl)
n
forany 0 <i:<n-—1.
If the characteristic of k divides n, we can not proceed in the same way for
describing Cy,,-gradings of M,, (k) since n is not invertible in A. Nevertheless,

we are able to produce an example of a Cp-grading of M,(Z,) which is not a
good grading.
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9.3.3 Proposition

Let p > 3 be a prime number, A = M,(Z,) and a,b € A, a = (a;;)1<i,j<p:
b= (bi,j)1<i,j<p, Where

Qi = 6i+17j + 61-7,,(—6]-71 + (Sjg), forall 1< 1,] <p

1—1 .
bij = < i1 >, forall 1<4,57<p
(8 ; denotes Kronecker’s delta). Then K = Z,a] is a field, the sum Y7~} Kb
is direct and

A=KoKb®--- & Kb"!

is a C)p-graded division ring structure on A. In particular, this grading is not
isomorphic to a good grading.

Proof Let P(X) = XP — X +1 € Z,[X]. It is well known that P is
irreducible and it is the minimal polynomial of @, which is written in the
Jordan canonical form. So, K = Zy[a] is a field and it has p? elements. The
matrix b has zero entries above the diagonal and b;; = 1, for ¢ = 1, p, thus
the minimal polynomial of b is (X — 1)?» = XP — 1, and b is invertible. An
easy computation shows that

ab=b(a+I,),
so Kb =bK and b ¢ K. Now everything follows if we show that the sum
K+ Kb+ + Kb ?

is direct. We prove by induction that for any 0 < j <p — 1, ()i=0,; € K
such that > o, a;(2b)" = 0, we have a; = 0, for every 0 < i < j.
If j = 0, there is nothing to prove.
Ifj=1and
a0+ a1(2b) =0

then ay(2b) = —ap. If a3 # 0, then o is invertible and b = —2_1a1_1a0.
That means that b € K a contradiction. So a; = 0 implying ay = 0.
Ifl<j<p—1and

j+1

> ai(2b)' =0, (9.1)

then multiplying this relation by 2b,(20)2,...,(20)?~! and adding them, we
obtain

+1
(Z ai> (I, + (2b) + -+ (2b)P71) = 0.
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Because 14 20+ -+ + (2b)P~1 # 0 and 32770 a; € K we obtain

j+1

> a;=0. (9.2)
=0

Substracting (9.2) from (9.1) we get

j+1

S au((26) —1,) = 0
1=0

and since 2b — 1 is invertible
Jj+1 ‘
Zai((2b)l_1 + -+ Ip) = 07
i=0

which means that

j+1 j+1 _
Zai + (ZQZ) (20) + - + a;+1(20)7 =0
i=1 i=2

and a;j11 = 0 by the induction hypothesis aj+1 = 0. Now (9.1) yields a; =0
for every i = 0,5 + 1.

Finally we note that a good Cp-grading on M, (k) cannot be a graded divi-
sion ring, since the elements F; ; are homogeneous, but not invertible. This
establishes that the grading is not isomorphic to a good grading. O

9.3.4 Remark
We can also produce a Cy-graded division ring structure on Ms(Zs9). Indeed,

let A = Ms(Z5), and the matrices D = ( i (1) ) and B = ( (1) 1 ) Then
A, = {0,13,D,D?} and A. = {0,B,DB,BD} define a Cy-grading on A.

Moreover, this clearly defines a gr-skewfield structure.

If k is a field of characteristic p > 0, since M, (k) ~ k ®z, My(Z,), the
Cp-grading of My(Z,) defined in Proposition 9.3.3 and Remark 9.3.4 extends
to a Cp-grading of M, (k), which is not a good grading.

9.3.5 Remark

We can obtain other graded division ring structures on matrix rings in the
following way. Let A = M,,(k), and S € A-mod the (unique) type of simple
A-module. Assume that A has a G-grading such that S is not gradable. Then
let X be a graded simple A-module. Since A is simple Artinian and ¥ is finite
dimensional, we have ¥ ~ S* as A-modules, for some integer . Since S is not
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gradable, we have ¢t > 1. Then M;(k) ~ Endg(S?) ~ Enda(X) = ENDA(Z).
Since ¥ is a simple object in the category A-gr, then so is (o) for any o € G.
Thus any element of EN D 4(X), is either zero or invertible, hence END 4(X)
is a gr-skewfield. This transfers to a gr-skewfield structure on M (k).

The following will be useful for the classification of gradings by cyclic
groups.

9.3.6 Proposition

If X, Y € GL,,(k) with X™, Y™ € kI,,, then A(X) is isomorphic to A(Y")
as Cp-graded algebras if and only if there exist T € GL,,(k) and X € k such
that X = AT~'YT. In particular, A(X) ~ A(Jx), where Jx is the Jordan
form of the matrix X.

Proof We have that A(X) ~ A(Y) as C,-graded algebras if and only
if they are isomorphic as left kC,-module algebras. But this is equiva-
lent to the existence of an algebra isomorphism f : A(X) — A(Y) with
f(XBX~1) = Yf(B)Y~! for any B € M,,(k). By the Skolem-Noether
Theorem an automorphism f of M,, (k) is of the form f(B) = TBT~! for
any B € M,,(k), where T € GLy, (k). Thus, the condition on f becomes
TXBX~'T-! = YTBT-'Y~! for any B € M,,(k), which is equivalent to
T-YY-ITX € kl,,. O

9.3.7 Theorem

(05} 0 0
(i) If X = 0 a2 with af = 1 for all 4 = 1,...,m, then
0 0 ... am

A(X) is a good grading.
(ii)Any good grading is isomorphic to a grading A(X) for a diagonal matrix

(65} 0 0
X = 0 with af =1foralli=1,...,m.
0 0 ... am

Proof (i) By Remark 9.3.2, a matrix in A(X),s is of the form
1
By = —(B4+ ¢ *XBX '+ ¢ 2X2BX 2 .. 4 ¢ (mDsxn-lpx—ntl)
n

for a matrix B € My, (k), B = (bij)1<s,j<n. The element on the position (4, 5)
in the matrix Bgs is

1 _ _ _ _ (- _ _
Bij = E(bij+£ Saibijaj1+£ 2sa§bijaj2+~-~+£ (n 1)sa? 1bijajn+1)
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bij -5 -1 -5 —1)2 -5 —1\n—1
= 7[14—5 i + (EPa; )T 4+ (g )
bij pre—s, -1
= ?P(ﬁ a;)
where P(t) = 1+t +t* 4 ...+ "1 If P(¢ *aa; ') = 0, then obviously
Bi; = 0. If P(ﬁfsozia;l) # 0, then f3;; ranges over the elements of k when

b;; does. Since f’saiagl is an n-th root of unity, we obtain that §;; # 0 if
and only if §_Saia;1 = 1. In order to prove that A(X) is a good grading,
we have to establish for any pair (¢,7) € {1,...,m} x {1,...,m} that there
exists a unique s € {1,...,n — 1} such that f‘saiaj_l = 1, or, equivalently,
oziozj_l = £°. This is true because £ is a primitive n-th root of unity and aiaj_l
is a root of unity. Thus, for any pair (4,j) there exists a unique s such that
P(ﬁ_saiajfl) # 0. Now, taking b;; = nP(ﬁ_saiagl)_l and b,; = 0 for any
(r,1) # (i,7) we obtain that the matrix E;; € A(X)cs, so A(X) is a good
grading.

(ii) A good grading is obtained by assigning some degrees to the matrices
Ev2, Ess,..., Ep_1,m (by Proposition 9.2.3). Thus, for given si, sa,..., Sm—1
with deg(E;i+1) = si, 1 <4 < m — 1, we have to find a diagonal matrix

(65} 0 0
x=| 0 @ with a7 = 1, 1 < i < m, such that A(X) is
0 0 ... am

isomorphic to the initial good grading. We know from the proof of (i) that
forany 1 <i<m—1, E; ;11 € A(X)¢s: if and only if ﬁfsiaia;ll =1, where
A(X)esi is the homogeneous part of degree ¢® of the grading A(X). This
is equivalent to «; = €% ayyq for any 1 < ¢ < m — 1. Taking, for example,
O = 1, Q1 = E5m=1, Qg = ESm—2TSm—1 ) = £S1F82F8m-1 we ob-
tain a diagonal matrix X which satisfies the desired condition. O

As an application we obtain the following.

9.3.8 Corollary
If k is an algebraically closed field such that char(k) does not divide n, then
any C,-grading on M,, (k) is isomorphic to a good grading.

Proof The result follows immediately from the Theorem 9.3.7, since a poly-
nomial of the form X™ — a, a € k — {0}, has only simple roots, therefore a
matrix X € GL,,(k) such that X" € kI, has a diagonal Jordan form. O

Now, the good C,,-gradings on M,, (k) can be classified by the following.
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9.3.9 Proposition

(651 0 0 ,61 0 0
If X = 0 a and Y = 0 B ... O such that
0 0 ... aum 0 0 ... Bm

ol =" =1foralli=1,...,m, then A(X) ~ A(Y) if and only if there exists
an n-th root of unity A such that the m-tuple (51,...,Bm) is a permutation
of the m-tuple (Aaq, ..., Aam).

Proof By Proposition 9.3.6 we have that A(X) ~ A(Y) if and only if there
exists T € GL, (k) and X € k such that X = AT ~'Y'T. But this is equivalent
to the fact that the matrices A™'X and Y have the same Jordan form, and
then (B1,...,0m) can be obtained by a permutation from (Aaq,...,Aay,).
The condition 3; = Aa; implies that A is an n-th root of unity. O

Let us consider the situation where n = p, a prime number. We determine
all the isomorphism types of Cp-gradings on M, (k) and we count them.

9.3.10 Proposition

If p divides m then any C)-graded algebra structure on M,, (k) is isomorphic
to A(X), where X is a matrix of one of the following two types.

(5] 0 . 0
. 0 [05) . 0 . D .
(i) X = with af =1 for any 1 <14 <m.
0 0 ... an
(ii) X =Y,, for some a € k which is not a p-th power in k, where Y, is the
0 1 ... 0
matrix consisting of % blocks of the form O O T 1 along the
a 0o ... 0

diagonal, and 0 elsewhere.

Proof We know from Theorem 9.3.1 that a C,-graded algebra structure on
M., (k) is of the form A(X) for a matrix X € GL,,(k) with X? — al,, =0
for some non-zero a € k. We also know that A(X) ~ A(Jx) where Jx is the
Jordan form of the matrix X. There are two possibilities.

(i) If a is a p-th power in k, then the polynomial t?» — a has p simple roots

(651 0 N 0
. 0 [05) . 0 .
in k, and then Jx = for some p-th roots of unity
0 0 ... am

a1, .., 0. Moreover, A(Jx) ~ A(a_%JX), and A(a_%JX) is a diagonal
matrix with diagonal entries p-th roots of unity.
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(ii) If a is not a p-th power in k, then the polynomial t* — a is irreducible
over k, and then ¢ — a is the minimal polynomial of X, which implies that
Jx =Y. O

9.3.11 Proposition

If p does not divide m, then any Cp-grading on M,,(k) is isomorphic to a
good grading.

Proof Let A(X) be a Cp-graded algebra structure on M,,(k), where X7 —
al,, = 0 for some non-zero a € k. Then (det X)? = a™. Since p and m
are relatively prime there exist integers u,v such that up + vm = 1. Then
a = a"PTVm = g¥P(det X )P = (a¥(det X)V)?, so a is a p-th power in k, and
the proof ends as in case (i) of Proposition 9.3.10. O

Recall by Example 9.2.24 that the number of all isomorphism types of
good Cp-gradings on M, (k) is
(i) 14+ 2((™P71) = 1) if p divides m,
(ii) %(m;fl_l) if p does not divide m.

If we require now one more condition on k then we can classify all the Cp-
gradings on M,, (k). The good gradings (type (i)) have been already classified
by Proposition 9.3.9. Regarding the gradings which are not good (type (ii)),

we have the following.

9.3.12 Proposition

If p divides m and k contains a primitive m-th root of unity 7, then for any
a,b which are not p-th powers in k, we have that A(Y,) ~ A(Y}) if and only
if 7 is a p-th power in k.

Proof Suppose that A(Y,) ~ A(Y,). Then, by Proposition 9.3.6, there
exist T € GL, (k) and A € k such that Y, = AT7'Y,7. This implies
det Y, = X\™det Yy, Since det Y, = ((—1)P"'a)* we obtain that (£)™/? =
AT = (AP)m/P g0 & = WAP for some (m/p)-th root of unity w. Since 7
is a primitive m-th root of unity, #? is a primitive (m/p)-th root of unity,
so w = (nP)* for some integer s. We obtain that ¢ = (n°X)?. Conversely,
if ¢ = AP for some A € k, let T € GL,,(k) be the matrix having on

1 0o ... 0
o m 0 At ... 0
the main diagonal > blocks of the form . Then
0 0 ... apft

Y, = \T7YY, T, so A(Y,) ~ A(Y3). 0
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The classification of the Cp-graded algebra structures on M,, (k) may be
now stated as follows.

9.3.13 Theorem

Let k be a field which contains a primitive m-th root of 1. Then the isomor-
phism types of Cj-graded algebra structures on the matrix algebra M,, (k)
are classified as follows.

(i) If p does not divide m, then there exist %(
of them being good gradings.

(ii) If p divides m, then there exist 1+ %((m;ffl) — 1) isomorphism types of
good gradings, and |k* /(k*)P|—1 isomorphism types of non-good gradings, the
last ones being the A(Y,)’s, where a ranges over a system of representatives
of the non-trivial (k*)P-cosets of k*.

Let us consider the particular case where m = p = 2.

m—+p—1
p—

1 ) isomorphism types, all

9.3.14 Corollary

Let k be a field with char(k) # 2. Then the (different) isomorphism types of
Cy-graded algebra structures on Ms(k) are the following.

i) The trivial grading A, = Ma(k), A. = 0;

.. . kE 0 0 k

ii) The good grading A, = ( 0k ), A. = ( k0 )

iii) The graded algebra A(a) = My (k), with

Ala)e = { lwvek), A@e={( " " ) uvek}
(o) —

av  —u
where a ranges over a system of representatives of the (k*)?-cosets of k* dif-
ferent from (k*)2.

u v
av u

For example, over the field C of complex numbers, there exist two isomor-
phism types of Ca-gradings of Ms(k), namely the two good gradings. Over the
field R of real numbers, there exist three isomorphism types of Cs-gradings,
the two good gradings and the grading corresponding to the negatives if we
look to R*/(R*)%. More precisely, this third grading is A(—1), where

ADe=A( 5, Jlweekh ACDe={(, O, )luwvekr
(5 0) (h %)

Over the field Q of rational numbers there exist two good Cs-gradings on
M>(Q), plus (countable) infinitely many non-good gradings.

9.4 (s-gradings of My(k)

In the previous section we have found all the isomorphism types of Ca-gradings
of My(k), k a field of characteristic different from 2. The purpose of this
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section is to describe all Ca-gradings of Ms(k). In this section we write Cy =

{e, g}

We start with the situation where char(k) # 2.

9.4.1 Theorem

Let k be a field with char(k) # 2, and R = M3(k). Then a Cs-grading of the
k-algebra R is of one of the following three types:

(i)

R, — (au—|—v bu ) wovek
cu —au + v

where a,b,c € k, a # 0 and a? + bc # 0;
(i)

where b, c € k — {0};
(iii) The trivial grading, R. = M2 (k), Ry = 0.

Proof We start by finding all matrices X € My(k), X # 0 such that X? €

kly. Let X = ( CCL Z ) Then X2 = al, for some « € k if and only if

a>+bc=a,d +bc=a,bla+d) =0, cla+d) =0.

Ifa+d#0,thenb=c=0,anda=d. If a+d =0, then d = —a and

a? + bc # 0. Thus there are two types of matrix solutions: X = ( g ,g ),

with 8 € k— {0}, and X = , with a, b, c € k, a® + bc # 0. For the

a b
c —
first type, we obtain the trivial grading, since

Re={A+ XAX "' Ae My(k)} = {24] A € My(k)} = My (k).
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¢ _ba >,witha2+bc7£0. If A= ( f‘z? Y ) € Ma(k), then

Let now X = < ¢

c
the homogeneous components of A in the Cy-grading associated to X are
1
A = §(A + XAXh
B 1
~ 2(a? +be)
(2a% + be)x + acy + abz + bet abx + bey + b?z — abt
acx + c*y + bez — act bex — acy — abz + (2a® + be)t
1 -1
A, = §(A —XAX™Y)
B 1
 2(a? 4 be)
bcx — acy — abz — bet —abx + (2a% + be)y — b2z + abt
—acw — cy+ (2a% + bc)z + act  —bex + acy + abz + bet

We distinguish two possibilities. If a # 0, put
u=(ax+cy+bz—at)/2(a®* +bc), v=(x+1)/2.

Then Ay = < au+v bu >, and w,v can take any values in k, since
cu —au + v
. a ¢ b —a
the matrix < 100 1 ) has rank 2. Thus

On the other hand, putting
v = (—acx — Ay + (24 4 be)z + act) /2(a® + be) |
§ = (—abx + (2a® + be)y — b%z + abt) /2(a® + be)

Aq = ( _ié ; %FY c 0 b )

‘ v 30 + 357
—ac —c? (2a%2 +bc) ac
—ab (2a® + be) —b2 ab

we have

and the matrix ( ) has rank 2, so

— L5 — Ly )
R = 2a 2a ’5€k
! ( gl i“iv) !

2a
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consequently the grading is of type (i).
If a = 0, then bc # 0. In this case A, = < CZ

and v = (z + t)/2 vary over the set of the elements of k. Then writing v =

bﬁ >, where u = (cy+bz)/2bc

(x—1t)/2, 6 = (cy—bz)/2bc, we obtain that A, = < v o

oS _7> v,0 €k,

and this leads to a grading of type (ii). O

9.4.2 Corollary

A (Cs-algebra grading of My (k), char(k) # 2, different from the trivial grading,
stems from a crossed product structure.

Proof It is enough to show that for any grading of type (i) or (i¢) R,
contains an invertible element. But this clearly follows from the fact that
mé? + ndy +py? =0 for any +v,6 € k if and only if m =n = p = 0. O

In the next two propositions we describe which Ca-gradings of My (k) are
isomorphic to a good grading.

9.4.3 Proposition
Let b,c € k — {0}. Then the grading

_ ¥ bo
R, = <—c§ _7> 7,0 €k

of Ms(k) is isomorphic to a good grading if and only if be is a square in k.

Proof Let S = My(k) with the trivial Cy-grading S, = ( la: 2 ), Sy =

( 2 ]()C > If f: S — R is an isomorphism of graded algebras, then there

eXiStS Y S GLQ(:ZC) Wlth f(A) = YAY71 for any A c S Let Y — < f g )
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ThenforA—<2 x)ESgwehave

0

1 _ 2 + 2
_ -1 _ qsy — prx Yy Tpx
fA) =Y AV = ps — qr ( 2y —r2x  —qsy +prx ) € By

and this shows that b(s?y — 72z) + ¢(—q¢?y + p?x) = 0 for any z,y € k. Thus

br? = ¢p? and bs* = cq®. We obtain that be = (£)?, a square in k.
Conversely, suppose that bc = d? for some d € k. Let

Y:< 1d
)
z 0

) € R, we have
0 y

FECN

) S GLQ(k)
Then for A = <

g (@+y/2 dly—2x)/2
vy ‘<d<y—x>/2b <x+y>/2)

and for A = ( 2 g ) € R, we have
VAY -1 — (by + 4cx)/4d  (—by + 4cx)/4e
T\ (by —4dex)/4b —(by+4dex)/4d )

These show that the map f : S — R, f(A) = YAY 1, is an isomorphism of
graded algebras. O

9.4.4 Proposition
Let a,b,c € k such that a # 0,a% + be # 0. Then the grading

R. — (au—|—v bu ) wovek.

cu —au + v

—L5— Ly 5 )
R, = ( 2a 2a c b Y, ) ck
9 Yy %6 + %’7
is isomorphic to a good grading if and only if a? + bc is a square in k.

Proof Keeping the notation from the proof of Proposition 9.4.3, suppose
that f: S — R, f(A) = YAY ! is an isomorphism of graded algebras. Since
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0 z
f(( y 0 >) € Ry, we find that

_ R s 2 _ﬁ 2. .2
gsy —pre. = —o(=q7y +p7w) = o (s"y —177)
o boo 5 b o,
n (Zaq 2a )y (2ap 2ar )
for any z,y € k. In particular
cp b Qy2 o9y _p—
5.0 ~ g 5 =asor C(s) 2a(5) b=0.

If bc = 0, then clearly a? + bc is a square in k. If bc # 0, then in order to have
roots in k for the equation ct? — 2at — b = 0, we need a? + bc to be a square.
Conversely, suppose that a® + bc is a square in k. We first consider the case
where bc # 0. Let t1,t2 be the (distinct) roots of the equation ct? — 2at — b =
0, and X = tf t11 If f: R— S f(A) = XAX 1 is the algebra
isomorphism induced by X, then

f 0 =z _ 1 iy —tox  —t3y + t3z €s,
y O t1 — to Yy—x —t1y + tox k

z 0 1 tox — t1y %(m—y)
f((o y))_tl—t2< r—vy —tiz + 12y € Se

showing that f is an isomorphism of graded algebras. If b = ¢ = 0, then

R = S as graded algebras. If ¢ = 0 and b # 0, then X = (1) _12_a
induces in a similar way a graded isomorphism between R and S. Similarly
for ¢ # 0,b = 0, and this ends the proof. O

9.4.5 Corollary

If k is an algebraically closed field of characteristic not 2, then any Cs-grading
of the algebra M (k) is isomorphic either to R, = < ]g 2 ), Ry = ( 2 ]8 >
or to R, = My(k),R, = 0.

We turn now to the characteristic 2 case.

9.4.6 Theorem

Let R = My(k), k a field of characteristic 2. Then a Cy-grading of R is of one
of the following two types:
(i) The trivial grading, R. = M2(k), Ry = 0;
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(i) Re = (a(azi—y) 5(90;3/)) nyeke

R, = <ozx+ﬂy T

y aa:—i—ﬁy) z,y € k p for some a, 0 € k.

Proof Let us consider a Cs-grading of R. Then for any A, B € R we have
(AB)e = A.B.+ Ay B,
= A.B.+(A—-A.)(B - B,)

= AB+ AB.+ A.B

Let ¢ : R — R, ¢(A) = A.. A straightforward (but tedious) computation
shows that the matrix of ¢ in the basis F11, E12, Fo1, Eas is of the form

X = ﬂ

for some «, 3,7 € k (to see this we let A and B run through elements of
the basis in the previously displayed formula). Since ¢? = ¢, we must have
X? = X, implying that either v = 1,a = 3 = 0 or v = 0. In the first case
X =1, thus ¢ = Id, and we find the trivial grading. Let now

1 o 8 0
X:

SR @
R oo

0
0
g

— Q™

b

a
for o, B € k. IfA—(c d

> € Mg(k), then

B B a+ba+cB  PBla+d)
Ae=0(4) = ( ala+d) d—l—ba—i—cﬁ)

- (a(:vl;ry) ﬂ(x;y) )

where x = a + ba + ¢,y = d + ba + c. Also,ifA—<(Cl Z)EMQ(]C),
then
B B ba + ¢f3 b+ apB +dp
Ag=A-4. = (c+aa—|—da ba + ¢f3

- oz + [y x
; y  ar+fBy
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where x = b+ af + dB,y = c+ aa + da. O
Using Theorem 9.4.6 we obtain the same result for the char(k) = 2 case as

for the char(k) # 2 case (cf. Corollary 9.4.2), albeit by completely different
methods.

9.4.7 Corollary
If char(k) = 2, then any non-trivial Ca-grading of Mz (k) is a crossed product.

Proof If a = =0, then clearly R, contains invertible elements. If at least

0
of Ry. O

. a 1 . . .
one of a and f3, say «, is non-zero, then ( o ) is an invertible element

9.4.8 Proposition
Let char(k) = 2, and R = M»(k) with the grading

x B(x +y)

_ ax + By T
Ry = ( y ozx+ﬂy) r,y€k

Then this grading is isomorphic to a good grading if and only if there exists
t € k such that at®> +t + 3 =0.

Proof We proceed as in the proof of Proposition 9.4.3. If X = ( ;: Z >

is an invertible matrix inducing an isomorphism of graded algebras between
R and Ms(k) with the only non-trivial Cs-grading, then

Blps+rq) = pq
alps+qr) = rs
ap’ +pr* = pr
ag® +ps* = gs.

If o, 8 # 0, then p,q,r,s # 0 (since ps + qr = det(X) # 0). Then « (%)2 +
L+ 8 =0,and we take t = 2. If a = 0 or # = 0, then clearly there is ¢ € k
such that at? +t+ 3 = 0.

Conversely, suppose that at?+t+3 = 0 for some t € k. If a # 0, let t1,t5 € k
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be the (distinct) roots of this equation, and then the matrix X = < bt >
B
1

produces the required isomorphism. If o = 0, we take X = (

also induces an isomorphism as desired. O

9.4.9 Corollary

If char(k) = 2 and k is algebraically closed, then any Cs-grading of M (k) is
isomorphic to a good grading.

9.5 (y-gradings on M,(k) in characteristic 2

Let k be a field of characteristic 2. We keep the notation Cy = {e, g}. All the
Cy-gradings on the algebra M (k) have been described in Section 9.5. In this
section we classify the isomorphism types of such gradings.

Let A = My(k). We have seen that a Cs-algebra grading of A is of one of the
following two types

(i) The trivial grading: A. = My(k), Ay = 0;

(ii) The grading

_ ax + By T
Ay = ( y ax+ﬂy>x’y€k

for some «, 3 € k.
We denote by A(a, 8) the Ca-grading of A described by (ii).

9.5.1 Lemma

Let a, 8,0, 3" € k. The following assertions are equivalent.
(a) The Cy-graded algebras A(a, 8) and A(d/, 5') are isomorphic.
(b) There exist u, v, w,t € k such that ut + vw # 0 and

B (ut +vw) = Bu? + av? + uv (9.3)
o (ut +vw) = fw? + at? + wt (9.4)
(c) There exist u,v,w,t € k such that ut + vw # 0 and
a(ut +vw) = o’'u? + f'w? + uw (9.5)
But + vw) = o'v? + F't? + vt (9.6)
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Proof (b) = (c¢) Denote by d = ut + vw € k. If we add the equation (9.3)
multiplied by "’72 to the equation (9.4) multiplied by 72—2 we obtain the equation
(9.5). Similarly, adding the equation (9.3) multiplied by % to the equation

(9.4) multiplied by % we obtain the equation (9.6).

(¢) = (b) The equation (9.3) can be obtained by adding the equation (9.5)
multiplied by % to the equation (9.6) multiplied by “72. Finally, if we add
(9.5) multiplied by % to (9.6) multiplied by sz we obtain the equation (9.4).
We show now that (a) is equivalent to (b) (and (¢)). Any isomorphism of Cs-
graded algebras ¢ : A(a, 8) — A(d/, ') is, in particular, an automorphism
of Mz(k). Then, by Skolem-Noether Theorem, there exists U € G Lz (k) such
that o(X) = UXU™! for any X € Ma(k). Thus, A(a,8) ~ A(c/,3') if and

only if there exists U = “ 1; ) € My (k) with det U = ut + vw # 0, such
that

UA(a,3) .U C A, B)e (9.7)
and

UA(a, B),U C A, 8, (9.8)

For z,y € k we have

U T Blx+y) Ul 1 bi1 b2
alz +vy) Yy ut +vw \ b2 bao

where
b1 = utz+ avt(z +y) + Buw(z + y) + vwy
bio = woz+a’(z+y)+ Bu(z+y) + uvy
boy = wtz+ at’(z+y) + fuw(z +y) + wty
bae = wvwz+ avt(z+y) + fuw(z +y) + uty

Equation (9.7) holds if and only if for any x,y € k there exist 2/, 4y’ € k such
that by = 2,012 = F'(2' +¥), bar = &/(2' +¥'), and by = y'. This is
equivalent to

ﬂl(bll + b22) = 612 and O/(bll —+ b22) = b21

and these are equivalent to the conditions of (b). Similarly, for z,y € k we

have
U(ax—Fﬂy x )Ul— 1 (du d12>
y azx + By ut +ow \ d21 d22
where
di1 = oautx + PButy + vty + vwz + acvwz + Powy
dis = v2y + ulz
dop = t2y + w?z

des = oautx + PButy + vty + vwz + avwz + Powy
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Equation (9.8) holds if and only if for any x,y € k there exist 2/, 4y’ € k such
that d1; = o/2’ + 'y’ = dag,d12 = 2’ and da1 = y'. Or, equivalently,

'dig + B'dar = dis

for any x,y € k. This is equivalent to the two equations in (c). O

9.5.2 Theorem
A(a, B) and A(d/, 8') are isomorphic as Cs-graded algebras if and only if there
exists z € k such that 22 + 2z + B + o/’ = 0.

Proof Assume that A(«, 3) ~ A(d/, 8). Then, by Lemma 9.5.1, there exist
u,v,w,t € k such that ut + vw # 0 and the conditions (9.3), (9.4), (9.5)
and (9.6) are satisfied. Since ut + vw # 0 we have either u # 0 or v # 0.
Multiplying (9.3) by a and (9.5) by ' we obtain

afu? + o®v? + auwv = o f'u? + 30?4+ fluw
or, equivalently,
(af + o/ B + (aw + B'w)? 4+ u(aw + Fw) =0

Thus, if u # 0 then z = % satisfies 22 + 2z 4+ a4+ o/# = 0. On the other
hand, if we multiply (9.3) by 3 and (9.6) by 5’ we obtain

62u2 _’_a5v2 —i—ﬁuw _ O/,B/’U2 +6/2t2 +5/ﬂ)t
or, equivalently,
(aB + o/ B)0* + (Bu + B'1)* + v(Bu+ B't) =0

Thus, if v # 0 then z = 5“+ﬁ/t satisfies 22 + z + afB + o/ = 0.

Conversely, suppose that there exists z € k such that 22 + z + a3 +o'3 = 0.
Using again Lemma 9.5.1 it is enough to find u, v, w, t € k such that ut+ovw #
0 and (9.3) and (9.4) (or (9.5) and (9.6)) are satisfied. We have the following
cases.

/
1.a—Oanda’—O.ThenwetakeU_<(1) 6';5 >
2~047503nd0/750.ThenwetakeUz(é g).a#Oanda’zo.

Then we takg
v=("9

1 in the case where 3’ # 0,
1)
U - ( X

o )—‘Q|NQ|Q

> in the case where 3/ =0 and 3 =0,
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L.
) in the case 8/ = 0 and 8 # 0, where z; and 25 are

orU-( 1

the distinct solutions of the equation 22 4+ z + a3 = 0.

[

3. @« =0 and o # 0. Similar to the case 3. O

In the following theorem we describe the isomorphism classes of Cs-gradings
on Ms(k) and classify them.

9.5.3 Theorem

Let k be a field of characteristic 2. A Ca-grading of Ma(k) is either the trivial
grading A. = My (k), A, = 0, or isomorphic to a grading A(«) given by

+y
A, = v * ) r,y €k
(a(l’+y) y Y

. ar +y T
Ay = ( y ozgc—i—y)"r’yEk

for some a € k. Moreover, two nontrivial Cs-gradings A(a) and A(a/) are
isomorphic if and only if there exists z € k such that a — o/ = 22 + 2.
Thus, there is a bijective correspondence between the isomorphism types of
nontrivial Co-gradings and the factor group k/S(k), where S(k) = { 2% + 2 |
z€k}.

Proof Let us note first that for o, 3 € k we have A(a,8) =~ A(af,1) (by
Theorem 9.5.2). Thus, in every isomorphism class we can choose a repre-
sentative of the form A(w,1) = A(a). Moreover, A(a, 1) ~ A(a/,1) if and
only if there exists z € k such that 22 + z + a + o/ = 0, or, equivalently,
o —a=z22+2¢€S(k). O

9.5.4 Corollary

If k£ is an algebraically closed field of characteristic 2 then there are two iso-
morphism types of Cy-gradings on Mz (k). More precisely, any Co-grading on
M (k) is either the trivial grading A, = Ma(k), Ay = 0, or isomorphic to the

grading
E 0 0 k
(o) ae(in)
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Proof Since k is algebraically closed we have that S(k) = k, so by Theo-
rem 9.5.3 we obtain that there exist precisely two isomorphism types of Cs-
gradings on Ms(k). Since the trivial grading is not isomorphic to the second
grading in the statement, we obtain the result. O

9.6 Gradability of modules

In this section we use Clifford theory to prove that if R = @,cq R, is a left
Artinian ring graded by a torsion free group G, then a certain class of R-
modules are gradable. We essentially follow the paper [38], where the results
are given for G ~ Z.

9.6.1 Theorem

Let R = ®y,cc R, be a left Artinian ring graded by the torsion free group G.
Then R has finite support.

Proof Since R is a left Artinian ring, R is an object of finite length in R-gr.
Thus in order to show that R has finite support it is enough to prove that for
any graded simple R-module ¥ we have sup(X) < 0.

Indeed, since X is a cyclic left R-module and R has finite length in R-mod,
then so does ¥. Let A = End(gX). Clearly R, is a left Artinian ring. By
Theorem 4.2.5 we have |Qg, (2)| = [sup(2) : G{X}]. Since |Qg, (X)| < oo,
we also have [sup(X) : G{X}] < co. On the other hand A = @,cq(s}Ao-
By Theorem 4.1.4, A is a left Artinian ring. If G{X} # e, then there exists
o€ G{X}, 0 #e. Let H =< o >. Since G is torsion free, we have H ~ Z.
Clearly Ay = ®peg Ay is also a left Artinian ring. On the other hand Ay is
a crossed product, so Ay ~ A [X, 271, ¢]. In particular Ay is a domain and
Ap is not a left Artinian ring, a contradiction. We conclude that G{X} = {e}
and thus sup(X2) < oco. O

9.6.2 Corollary

Let R = ®,cc R, be a ring graded by the torsion free group G. Then R is left
Artinian if and only if R. is a left Artinian ring and g, R is finitely generated.

Proof Assume that R is a left Artinian ring. By Theorem 9.6.1, sup(R) <
oo. If 0 € sup(R) and X is an R.-submodule of the left R.-module R,, we
have that X = RXNR,. It follows that R, is a left R.-module of finite length.
In particular R, is a left Artinian ring and R, is a finitely generated left R.-
module. Since R = @, ceup(r)Flo, we obtain that R is finitely generated as a
left R.-module.

Conversely, since R, is a left Artinian ring, then R has finite length as a left
R.-module. Hence g, R is Artinian, and then so is rR. O
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9.6.3 Corollary

Assume that R = @,cq R, is a semisimple Artinian ring graded by the torsion
free group G. Then sup(R) < co. Moreover, if R, is a simple Artinian ring,
then R, = 0 for any o # e.

Proof By Theorem 9.6.1 we have sup(R) < oo. Since R is semisimple
Artinian, we can write RR = L1 ®...® L, where Lq,..., L, are gr-maximal
left ideals of R. Using Theorem 4.2.5, since R, is a simple Artinian ring, we
have |Qg_ (L;)| = 1. Since G{L;} = {e} (G is torsion free), we have that
|sup(L;)| = 1. Assume that for some o € G we have (L;), # 0 and (L;), =0
for any  # o. If o # e, since sup(R) < oo then there exists ¢ > 1 such
that Lt = 0. Since J(R) = 0 (the Jacoson radical) we have L; = 0. Thus
we must have o = e, and then sup(L;) = {e} for any 1 < i < s, therefore
sup(R) = {e}. 0

We recall that a ring R is called semiprimary if the Jacobson radical J(R) is
nilpotent and R/J(R) is a semisimple Artinian ring.

9.6.4 Proposition

Let R = ®,cc Ry be a G-graded ring of finite support, where GG is a torsion
free group. Assume that R is a semiprimary ring. Then J(R) = J9(R). If
R, is a local ring (i.e. R./J(R,) is simple Artinian), then (R/J(R)), = 0 for
any o # e, i.e. R/J(R) = R./J(R.).

Proof Since sup(R) < oo, we have J9(R) C J(R). On the other hand,
since G is torsion free, we have by Theorem 4.4.4 that if ¥ is a graded simple
R-module, then ¥ is simple as an R-module, therefore J(R) C J9(R). We
conclude that J(R) = J9(R). If we denote S = R/J(R) = R/JI(R), then
S is a graded ring which is semisimple Artinian. By Corollary 9.6.3 we have
S=S5.. O

9.6.5 Theorem

Let R = ®,cc Ry be a G-graded ring, where G is a torsion free group. Let
M € R-gr such that sup(M) < oo and M has finite length in the category
R-gr. Then M is indecomposable in R-gr if and only if it is indecomposable
in R-mod.

Proof

If M is indecomposable, then obviously it is gr-indecomposable. Assume that
M is gr-indecomposable. By Corollary 2.4.5 we have ENDgr(M) = Endr(M)
and also ENDg(M) is a graded ring of finite support. If M = @, csup(ar) Mo,
then M, is an R.-module of finite length, so M is also an R.-module of finite
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length. This shows that M has finite length as an R-module, and Endg(M)
is a semiprimary ring. Since M is gr-indecomposable, Endg_g (M) is a local
ring. Now by Proposition 9.6.4 we see that Endr (M) is a local ring, so M is
indecomposable in R-mod. O

9.6.6 Corollary

Let R be a left Artinian G-graded ring, G a torsion free group. If M € R-gr
is finitely generated, then M is indecomposable in R-gr if and only if M is
indecomposable in R-mod.

The main result of this section is the following.

9.6.7 Corollary

Let R be aleft Artinian G-graded ring, G is a torsion free group. If M, N € IR-
gr are two finitely generated and indecomposable in IR-gr. Then M ~ N (o)
in R-gr if and only if M ~ N in R-mod.

Proof The implication = is clear. Assume that M ~ N in R-mod. Then
F(M) ~ F(N) in R-gr where F' is the right adjoint of the forgetful functor
U: Rgr - R But F(M) & ®,ecM(o) and F(N) = @®,eaN(0). So
BoccM (o) =~ BoeaN(o). Since M (o), N(o) are indecomposable of finite
length, by the Krull-Remak-Schmidt-Azumaya Theorem we have M ~ N (o)
for some o € G. O

9.6.8 Theorem

Let R be a left Artinian ring graded by the torsion free group G. The following
assertions hold.

(i) Every semisimple left R-module is gradable.

(ii) If gM is a gradable finitely generated module, then any direct summand
of M is gradable.

(iii) Every projective left R-module is gradable.

(iv) Every injective left R-module is gradable.

Proof (i) It is enough to show that any simple R-module is gradable. But
this is given in Theorem 4.4.4 assertion 5).

(ii) It follows from Corollary 5.6.6 and the Krull-Remak-Schmidt Theorem.
(iii) It is clear that any free left R-module is gradable. Since a projective
module is a direct summand of a free module, we can apply again the Krull-
Remak- Schmidt Theorem.
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(iv) Let @ be an injective object in R —mod. Since R is also a left Noetherian
ring, @ is a direct sum of indecomposable injective modules. Thus we can re-
duce to the case where @ is indecomposable injective. Since R is left Artinian,
there exists a simple left R-module M such that Q = E(M) (the injective en-
velope). But M is gradable by assertion (i), so we can assume that M is a
graded module. Clearly M has finite support, and then E(M) ~ E8"(M) (see
Section 2.8). Hence @ ~ E&'(M), in particular @ is gradable. Here E&" (M)
denoted the injective envelope of M in R-gr. O

9.6.9 Remark

Since R is a left Artinian ring and @ € R-gr is an arbitrary object in R-gr,
then @ is injective in R-mod. Indeed, @ is a direct summ of indecomposable
injective objects from R-gr. Since sup(R) < 0o, we have that any indecom-
posable injective object from R-gr is injective in R-mod (see Section 2.8).
Since R is left Noetherian, @) is also an injective R-module.

9.7 Comments and References for Chapter 9.

Given a ring R and a group G the problem whether we can introduce a
(nontrivial) G-gradation on R arises. In this chapter we give necessary and
sufficient conditions for some positive results. A detailed study for M, (k) is
included; this is a problem of Zelmanov. The results obtained in Chapter
9 make it a tool for obtaining a series of examples and counterexamples in
graded ring theory. This is done in Sections 2,3 and 4,5. Section 1 is a brief
presentation of the descent theory. Section 6 provides sufficient conditions for
a R-module over a G-graded ring R to be “gradable”, that is, whether we can
introduce a G-gradation on this module making it into a graded R-module.

Some References
- Crina Boboc, [22], [23]
- S. Déscalescu, B. Ton, C. Nastasescu and J. Rios Montes, [61]
- J.L. Gémez Pardo and C. Nastasescu, [74], [76]
- C. Nastasescu and F. Van Oystaeyen, [150]
- S. Caenepeel, S. Dascalescu, C. Nastésescu, [37]

- Yu. A. Bahturin, S. K. Sehgal, M. V. Zaicev [7]



Appendix A. Some Category Theory

A.1. The Categorical Language

A category C consists of a class of objects, and we agree to write X € C
to state that X is an object of C, together with sets (!) Hom¢(A, B) for
any pair (A, B) of objects of C. The elements of Hom¢ (A, B) are said to be
the morphisms from A to B. For A € C there is a distinguished element
I4 € Home(A, A). For any triple A, B, C of objects there is a composition
map :

Homc(A, B) X HOInc(B7 C) — HOch(A7 C)
(f,9)—gof

satisfying the following properties :

1. For f € Home¢ (A, B), g € Home(B, C), h € Home(C, D) the associativ-
ity law holds, i.e. ho(go f) = (hog)o f.

2. For f € Hom¢(A,B),fola=f=1Igof.

3. Whenever (A, B) # (A’, B’), the sets Hom¢(A, B) and Home(A4', B')
are disjoint.

It is customary to write f : A — B for f € Hom¢ (A, B), and it is common to
call T4 the identity morphism of A. Some well-known examples include the
categories :

- Set, the class of all sets and sets of maps for the morphisms.

- Top, the class of all topological spaces and sets of continuous functions
for the morphisms.

- Ring, the class of all rings with identity and ring morphisms for the
morphisms.

- Ab, the class of all abelian groups and sets of group morphisms for the
morphisms.

- Gr, the class of all groups and sets of group morphisms for the mor-
phisms.

- R-mod, for any ring R this is the class of left R-modules with left
R-linear map for the morphisms.
Let C be a category and C' a class of objects of C. We say that C’' is a
subcategory of C if :

1. For A, B € C’, Home/ (A, B) C Home (A4, B).

C. Nastasescu and F. Van Oystaeyen: LNM 1836, pp. 277289, 2004.
(© Springer-Verlag Berlin Heidelberg 2004
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2. Composition of morphisms in C” is the same as in C.
3. For A€ (’, I4 is the same in C’ as in C.

A subcategory is said to be full subcategory of C whenever for A, B € C we
have Hom¢ (A, B) = Home: (A, B).

Consider a family of categories (C;);cs indexed by some index set J supposed
to be nonempty. The direct product of the family (C;);c; is the category
C the objects of which are the families (M;);c; of objects M; of C; for i € J.
If (N;)ics is another object then we define Home (M, N) = {(fi)ics, fi €
Homg, (M;, N;),i € J}. Composition of morphisms is defined componentwise.
We denote this direct product category by [], ; Ci; in case all C; are C we also
write C’ and if J is finite, say J = {1,...,n} then we write C; x Ca x ... x C,
for the direct product.

A morphism f : A — B is called monomorphism if for any object C of C
and morphisms h, g € Home(C, A) such that foh = fog we have g =h. A
morphism f is called epimorphism if for any object D of C and morphisms
h,g € Hom¢ (B, D) such ho f = go f we have h = g. An isomorphism of
C is a morphism f : A — B for which there exists g € Hom¢ (B, A) such that
gof=1I4and fog=Ip. One easily verifies that g is unique if it exists; we
call g the inverse of f and it will be denoted by f~!. As an exercise one may
check that an isomorphism is both a monomorphism and an epimorphism.
Observe that the converse is false e.g. in Ring the inclusion Z — Q is
both a monomorphism and an epimorphism but not an isomorphism. The
property of being monomorphism, resp. epimorphism, resp. isomorphism, is
closed under composition. To C we may associate the category C° having the
smae objects as C but with Homeo (A, B) = Home (B, A); we call C° the dual
category of C. If f: A — B is a morphism in C then f is a monomorphism,
resp. epimorphism, if and only if f is an epimorphism, resp. monomorphism,
when viewed as a morphism from B — A in the dual category C°. Thus,
epimorphism is the dual notion for monomorphism.

Fix an object A of C. For monomorphisms a7 : A7 — A and as : Ay — A
we define o < ag if thgere exists a morphism ~v : A; — Ay such that
apoy = ag. If such y exists it is necessarily unique and also a monomorphism.
Monomorphisms a7 and as are called equivalent if a3 < as and as < ag;
this defines an equivalence relation and the Zermelo axiom allows to choose
a representative in every equivalence class. The resulting monomorphism is
called a subobject of A. The notion of quotient object may be defined
dually.

An object I, resp. F, of C such that Home (1, A), resp. Home(A, F), is a
singleton for every A € C, is called an initial, resp. final object of C. It
is not hard to verify that two initial, resp, final, objects of C are necessarily
isomorphic. An object that is simultaneously initial and final is called a zero
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object of C. A morphism f: A — B is said to be a zero morphism whenever
it factorizes through the zero object. When it exists a zero object is unique
up to isomorphism and it will be denoted by 0. Then each set Hom¢ (A, B)
has precisely one zero morphism, that is denoted by 04p (or simply 0 when
no confusion can arise).

For a family (M;);c; of objects of C we may define the product, denoted by
[1;c; Mi, by specifying a family of morphisms 7; : [[,c, Mi — M;, j € J,
such that for every object M € C and any family of morphisms (fi|ics, fi :
M — M; for ¢ € J, there exists a unique morphism f : M — HieJ M; such
that m; o f = f; for all i € J. In fact we have to guarantee that this product
exists, but if it does, then it is unique up to isomorphism. If J is finite then
the product will be denoted by M; x ... x M,,. The categories : Set, Gr,
Top, R--mod, have products. By duality the notion of coproduct may be
defined, i.e. it is the product in the dual category. It is denoted by [, ; M;
and in case J is finite it is costumary to write My & ... H M,.

Categories cannot be related by “maps” in the set theoretical sense because
we are in general not dealing with sets. A new notion takes the place of maps
here i.e. functors. If B and C are categories then a (covariant) functor from
B — C is obtained by associating to an object B of B an object F(B) of C
and to f € Homp(B1, B2) a morphism F(f) € Home(F(By)F(B2)) such that
the following properties hold :

1. F(Ig) = Ip(p) for any B € B

2. F(go f)=F(g)o F(f)

Inspired by the set-theoretic notation we shall write F' : B — C, meaning that
the correspondence associating F'(B) € C to B € B is a covariant functor as
defined above. A covariant functor C° — D (or from C to D°) is then called
a contravariant functor from C to D.

A covariant functor C — D yields a map Home (A, B) — Homp (F(A), F(B))
for A, B € C, defined by f +— F(f). The functor F is said to be faithful, resp.
full, resp. full and faithful whenever the foregoing map is injective, resp.

surjective, resp. bijective. For any category C we may define the identity
functor 1¢ : C — C by 1¢(A) = A for A € C and morphism.

For functors F, G : C — D we may define a functorial morphism ¢ : F' — G by
giving a family {¢(A), A € C} of morphisms such that ¢(4) : F(A) — G(A)
for A€ C,and for f : A — B we have ¢(B)oF(f) = G(f)o¢p(A). We say that
¢ is a functorial isomorphism if for any A € C, ¢(A) is an isomorphism; if
such ¢ exists we write F' ~ G.

Functorial morphisms ¢ : FF — G,v : G — H may be composed to ¢ o ¢ :
F — H, by putting (¢ o ¢)(A) = (A) o $(A) for all A. By Hom(F,G) we
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denote the class of all functorial morphisms from F to G. If C is a small
category, that is if objects of C are sets then Hom(F, @) is also a set. Note
that there is an identity functorial morphism 1 : ' — F defined by taking
1p(A) = 1p(a) for any A € C.

A covariant functor F' : C — D is an equivalence of categories if there is
a covariant functor G : D — C such that Go F ~ 1¢, F oG ~ 1p. In case
we also have G o F = 1¢, F o G = 1p then F is called an isomorphism of
category or C and D are said to be isomorphic.

A.1. Theorem

A functor F': C — D is an equivalence of categories if and only if :
1. F is full and faithful.
2. For any Y € D there is an X € C such that Y ~ F(X).

A contravariant functor ' : C — D defining an equivalence between C° and
D is called a duality.

One of the most applicable results at this level of generality is the famous
Yoneda lemma. In order to phrase it we have to introduce a few more notions
and notation.

To an object A of a category C we associate a contravariant functor hy : C —
Set by taking :

ha(X) = Home(X, A), ha(u: X — Y): ha(Y) — ha(X)

defined by ha(u)(f) = fowu for any f € ha(Y).

Theorem (The Yoneda Lemma)

For a contravariant functor F' : C — Set and an object A € C, the natural
map «,

a:Hom(ha, F) — f(A),¢ — ¢(A)(14)

is a bijection.

Corollary

Hom(ha, F) is a set. Moreover if A and B are objects of C then A ~ B if and
ifonly if hy ~ hp.
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A.2. Abelian Categories and Grothendieck Categories

A category is said to be pre-additive if :

1. For A,B € C, Hom¢(A, B) is an abelian group, its zero element is
denoted by Oap (simply O if no confusion can arise) and it is called the
zero morphism.

2. For A, B,C € C and w,uy,us € Home(A, B), v,v1,v2 € Home (B, C) it
follows that :

vo (ug +uz) =vou +vous

(v +v2)ou=viou+wve0u

3. There is an X € C such that 1x = O. It is easily verified that such X
is exactly a zero object, which is unique up to isomorphism and usually
denoted by O.

With notation as above 0 — A is a monomorphism, A — 0 is an epimorphism.
It is clear that the dual of a preadditive category is also preadditive.

An additive functor F : C — D between preadditive categories is a functor
such that F(f +g) = F(f) + F(g) for f,g € Hom¢(A, B) and arbitrary
A,B € C. If O is the zero object of C then F(0) is the zero object of D. In
a preadditive category we may define, for every morphism f : A — B in C,
Ker(f), Coker(f), Im(F') and Coim(f) (but these need not always exist).

A preadditive category C is said to satisfy (AB1) if for any morphism f : A —
B in C both Ker(f) and Coker(f) exist. Then f allows a decomposition :

!

Ker(f) — A B = Coker(f)
lA \
Coim(f) — Im(f)

where f = po fo ), ¢ and pu are monomorphisms and 7, A are epimorphisms.
The preadditive category C satisfies (AB2) if for every f in C, f is an isomor-
phism. In a category verifying (AB2) being an isomorphism is equivalent to
being a monomorphism and an epimorphism.

Suppose C is preadditive and (AB1) and (AB2) hold.

A sequence A L, B2, Cis exact if Im(f) = Ker(g) as subobjects of B. An
arbitrary (long) sequence is said to be exact if every (short) subsequence of
two consecutive morphisms is exact in the foregoing sense.
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An additive functor F' : C — D between preadditive categories with (AB1)
and (AB2) is left, resp. right, exact if for any exact sequence of the type

0—A—B—C—0
g

the following sequence is exact :

E(f)

resp
F(A)— F(B) — F(C) ——

(4) F(f) (B) F(g) (©) 0
We say that F' is exact if it is both left and right exact.

An additive category is a preadditive category C with coproducts of any two
objects; if moreover (AB1) and (AB2) hold then C is an abelian category.
Let A; @ Ay be the coproduct of A; and A5 in an additive category C From
the universal property of the coproduct if follows that there exist natural
morphisms i, : A, — A1 & Ag, m, 1 A1 D Ay — A, for n = 1,2, such that
T Odp =14,, T oim =0forn#m,iom +izsom =14,04,.

The foregoing actually establishes that (A; & Ag,m,m2) is a product of A,
and As. Consequently, if C is additive, preabelian, abelian, then so is C°.
Moreover a functor F' between additive categories is additive if and only if it
commutes with finite coproducts.

In [92], A. Grothendieck introduced some extra axioms on abelian categories
leading to the definition of what we now call Grothendieck categories.

(AB3) C has coproducts.
(AB3)* C has products.

If C satisfies (AB3) and J is any nonempty index set, then we define a func-
tor @ics : CY) — C associating to a family of C-objects indexed by J the
coproduct (direct sum) of that family. This functor is always right exact.

(AB4) For any nonempty set J, ®;cs is an exact functor.

(AB4)* For any nonempty set J, [, ; is an exact functor.

In case C is abelian with (AB3) then for a family of subobjects (4;)icsA4;
of A we may consider a “smallest” subobject ). ; A; of A such that all A;
are subobjects of the latter. That subobject is called the sum of the (A);c .
Dually, if C is an abelian category satisfying (AB3)*, then to a family of
subobjects (A;);c; we may associate a subobject N;ec s A; the intersection of
the farmly (AZ)ZGJ

Since in an abelian category finite products do exist, the intersection of a
family of two subobjects exists. We may now formulate a new axiom :
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(AB5) Let C be a category with (AB3). For an A € C and (4;);cs, B subob-
jects of A such that the family (A;);c s is right filtered then (3, ; A1)N
B = ZieJ(Ai nB).

(AB5)* The dual version of (AB5). A category with (AB5) also has (AB4).

Consider an abelian category C. A family (U;);c is called a family of gen-
erators of C if for any A € C and any subobject B of A such that B # A (as
a subobject) there is an ¢ € J and a morphism « : U; — A such that Ima
is not a subobject of B. An object U of C is a generator if {U} is a family
of generators. For an abelian category with (AB3) a family (U;);cs in C is a
family of generators if and only if @;c;U; is a generator. An abelian category
with (AB5) and having a generator is called a Grothendieck category.

Note that (AB5) and (AB5)* do not exist together, indeed an abelian category
with (AB5) and (AB5)* must be the zero category (cf. loc cit). In particular,
if C is a nonzero Grothendieck category then C° is never a Grothendieck
category.

Finally let us recall some basic facts about adjoint functors. Consider functors
F:C—D,G:D — C. We say that F is a left adjoint of G (or G is a right
adjoint of F) if there exists a functorial isomorphism :

¢ : Homp(F, —) — Home(—, G)

where : Homp(F,—) : C° x D — Set associates to (4, B) the set
Homp (F(A), B), Hom¢(—,G) : C° x D — Set associates to (A, B) the set
Home (A, G(B)).

When C and D are preadditive and F,G are additive then we assume that
#(A, B) is an isomorphism of abelian groups for any A € C, B € D.

It is well known that if C is a Grothendieck category, then C has enough
injective objects i.e., if M € C, there exists an injective object @ in C and
a monomorphism 0 — M — Q. Also, as in the case of module category, if
M € C there exists a unique (up to isomorphism) injective object denoted by
E(M), such M is a subobject of E(M) and E(M) is an essential extension of
M; E(M) is called the injective envelope of M.

With these conventions and notation as before we obtain :

A.2. Theorem
Suppose F' is left adjoint to G, then :

1. The functor F' commutes with coproducts and G commutes with prod-
ucts.
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2. If C and D are abelian and F, G are additive then F is right exact, G is
left exact.

3. When D has enough injective objects, that is if for B € D there exixts
an injective Q € D and a monomorphism B — @, then F' is exact if
and only if G preserves injectivity (if @ is injective in D then G(Q) is
injective in C).

4. When C has enough projective objects, that is if for A € C there exists
a projective P € C and an epimorphism P — A in C, then G is exact if
and only if F' preserves projectivity.

The abstract concept of “adjoint functors” is very fundamental and has ap-
plications in different areas of mathematics. A very well-known example of
an adjoint pair of functors is provided by the Hom and ® functors. More
precisely, let R and S be associative rings, R-mod-S, R-mod and S-mod the
respective module categories , then for M € R-mod-S, the tensor functor
M ®g — : S-mod — R-mod, is a left adjoint of Hompg(M, —) : R-mod — S-
mod.



Appendix B. Dimensions in an Abelian Cate-
gory
B.1. Krull Dimension

The Krull dimension of ordered sets has been defined by P. Gabriel and R.
Rentschler in [68], for finite ordinal numbers, and G. Krause generalized the
notion to other numbers, cf. [116]. Let us recall some definitions and elemen-
tary facts.

Let (E, <) be an ordered set. For a,b € E such that a < b we denote by [a, b]
the set
{z € Ela <z <b}

and we put I'(F) = {(a,b)la < b;a,b,€ E}. By transfinite recurrence we
define on I'(E) the following filtration :

I'_1(E) ={(a,b)|a =b},To(E) = {(a,b) € T(E)|[a,b] is Artinian}

supposing I'3(E) has been defined for all § < «, then T'((E) = {(a,b) €
T(E)|Vb > by... > b,... > a, there is an n € IN such that (b;y1,b;) €
Ug<al'3(E) for all i > n}.

We obtain an ascending chain I'_1(E) C T'o(E) C ... C Tw(E) C .... There
exists an ordinal £ such that I'¢ (E) = T'¢11(E) = .. .. If there exists an ordinal
a such that T'(E) = T'o(F) then F is said to have Krull dimension. The
smallest ordinal « with the property that I'(F) = I'(E) will be called the
Krull dimension of E and we denote it by K.dimFE.

Lemma B.1.1.

Let E, F be ordered sets and let f : ' — F be a strictly increasing map. If
F has Krull dimension then E has Krull dimension and K.dimF < K.dimF

(cf. [68]).

Lemma B.1.2

If E, F are ordered sets with Krull dimension then E x F' has Krull dimension
and K.dim(F x F) = sup(K.dimFE, K.dimF') (note that E x F has the product
ordering).

If A is an arbitrary abelian category and M is an object of A then we consider
the set L(M) of all subobjects of M in A ordered by inclusion. In fact L(M)
is a modular lattice. If L(M) has Krull dimension then M is said to have
Krull dimension and we denote it by K.dima4M or simply K.dimM if no
ambiguity can arise. In this case we may reformulate the definition of Krull
dimension as follows : if M = 0, K.dimM = —1; if « is an ordinal and
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K.dimM &£ « then K.dimM = « provided there is no infinite descending
chain M D My D M; D ... of subobjects M; of M in A such that for
1> 1, K.dim(M;—1/M;) £ «. An object M of A having K.dimM = « is said
to be a-critical if K.dim(M/M') < « for every non-zero subobject M’ of M
in A. For example, M is O-critical if and only if M is a simple object of A.
Also, it is obvious that any non-zero subobject of an a-critical object is again
a-critical.

Lemma B.1.3
If M is an object of A and N is a subobject of M then

K.dimM < sup(K.dimN, K.dim(M/N))

and equality holds provided either side exists.

Proof Follows from Lemma B.1.2., cf [68]. O

Lemma B.1.4

If M € A has Krull dimension then it contains a critical subobject.

Proof Cf. [68] and [157]. O

Lemma B.1.5

Every Noetherian object of A has Krull dimension.

Proof See Proposition 1.3. [85] or Corollary 3.1.8 [157]. O

Lemma B.1.6.

Suppose that A is ab abelian category allowing infinite direct sums. If an
object M of A has Krull dimension then M cannot contain an infinite direct
sum of subobjects. In particular M has finite Goldie dimension.

Lemma B.1.7

Suppose that A is an abelian category allowing infinite direct sums and sup-
pose that the object M of A has Krull dimension. Put

a = sup{K.dim4(M/N) 4+ 1|N an essential subobject of M}

Then K.dimM < a.

Proof For B.1.6 and B.1.7 we refer to [68]. O
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Lemma B.1.8

If M € A is a Noetherian object, then there exists a composition series M D
Mj D ... D M, = 0such that M;_1/M;, is a critical object for each 1 < i < n.
Moreover if a; = K.dim(M;_1/M;) then K.dimM = sup{e;|i =1,...,n}.

Proof See [80], [157].

Lemma B.1.9

Assume that U is a generator of the category A and M € A. If U and M
have Krull dimension then K.dimM < K.dimU.

Proof See [80] or [157].

B.2. Gabriel Dimension of a Grothendieck Category

This dimension is first defined by P. Gabriel in his thesis [67] but under the
name of Krull dimension. The actual name “Gabriel dimension” is given
by Gordon and Robson in [80]. In the book [157] the definition of Gabriel

dimension is given for a modular lattice.

We follow the definition given by P. Gabriel using the notion of a localizing
subcategory and its quotient category.

Let A be a Grothendieck category. An object M € A is called semi-Artinian
if for every subobject M’ of M such that M’ # M, M/M' contains a sim-
ple subobject. It is easy to see that the full subcategory of all semi-Artinian
objects is a localizing subcategory. In fact it is the smallest localizing subcat-
egory that contains all simple objects of A. Now, using transfinite recursion
we define the ascending sequence of localizing subcategories of A :

A CcA C...C A, C... (B.?.l)

in the following way : Ag = {0};.A; is the localizing subcategory of all semi-
Artinian objects of A. Let a be an ordinal and assume that for any 8 < « the
localizing subcategory Ag is defined. If « is not a limit ordinal i.e. o = 541,
let A/Ag be the quotient category of A by Az and T : A — A/Ag the
canonical functor; T is an exact functor (for detail see P. Gabriel [62]). Then
Ay, is alocalizing subcategory of all objects M € A, such that T(M) is a semi-
Artinian in A/ Ag. If v is a limit ordinal, then A, is the smallest localizing
subcategory that contains Ug oA (we remark that in general Ug<oAg # Aa,
because Ug<q.A need not be a localizing subcategory; in fact Ug<qAg is not
necessarily stable under arbitrary direct sums). It is easy to see that M € A,
if and only if for any subobject N of M, N # M, M/N contains a non-zero
subobject isomorphic to some object from Ug<q.Ag.
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Since A has a generator there exists an ordinal £ such that Ae = Aeq = .. ..
An object M € A is said to have Gabriel dimension if there exists an
ordinal « such that M € A,. If moreover « is the smallest ordinal such that
M € A, then we say that M has Gabriel dimension a and denote this by
G.dimM = «. In particular G.dimM = 1 if and only if M is a semi-Artinian
object (if M = 0 we put G.dimM = 0). We survey the main properties of
Gabriel dimension.

Lemma B.2.1

Let M € A and N < M is a subobjet. Then M has Gabriel dimension
if and only if N and M/N have Gabriel dimension. Moreover G.dimM =
sup(G.dimN, G.dim(M/N)).

Proof See [67] and [157].

Lemma B.2.2

If (M;);er is a family of objects of A such that each M; has Gabriel dimension
for any i € I, then @;c;M; has Gabriel dimension and G.dim(®;er|M;) =
sup;e; (G.dimM;).

Proof Cf. loc. cit.

Lemma B.2.3
Let M € A an object. Assume that M has Krull dimension. Then M has
Gabriel dimension and K.dimM < G.dimM < K.dimM -+ 1.

Proof Cf. loc. cit.

Lemma B.2.4
If M € Ais a Noetherian object then G.dimM = K.dimM + 1.

A category A has Gabriel dimension if in the series (B.21) there exists
an ordinal « such that A = A,; moreover the smallest ordinal « with this
property is called the Gabriel dimension of the category A and we denote this
by G.dimA = «. If U is a generator of the category A, we have the following
characterization : the category A has Gabriel dimension if and only if U has
Gabriel dimension and in this case G.dimA = G.dimU.

An object M € A is called a-simple if

G.dimM = G.dimN = « and G.dim(M/N) < a,
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for any non-zero subobject of M. This definition implies that for any a-simple
object M, a is a non-limit ordinal. We have in particular that M is 1-simple
if and only if M is a simple object of A.

An object M is called Gabriel simple if M is a-simple for some ordinal «.

Lemma B.2.5

Let M € A and assume that for any non-zero subobject X of M, M/X has
Gabriel dimension. Then M has Gabriel dimension and moreover G.dimM <
a+ 1 where a = sup{G.dim(M/X)|X C M, X # 0}.

Proof Cf. loc. cit. O

Lemma B.2.6

Let M € A, where A is a Grothendieck category. If M has Krull (respectively
Gabriel) dimension then for any ordinal o > 0, there exists a largest subobject
Ta (M) of M, having Krull (respectively Gabriel) dimension less than or equal
to a.

Proof Cf. loc. cit. O
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