

SOURCEBOOK
OF PARALLEL
COMPUTING

JACK DONGARRA
University of Tennessee

IAN FOSTER
Argonne National Laboratory

GEOFFREY FOX
Indiana University

WILLIAM GROPP
Argonne National Laboratory

KEN KENNEDY
Rice University

LINDA TORCZON
Rice University

ANDY WHITE
Los Alamos National Laboratory

Senior Editor Denise Penrose

Publishing Services Manager Edward Wade

Production Editor Howard Severson

Editorial Coordinator Emilia Thiuri

Cover Design Frances Baca

Text Design Detta Penna

Illustration Dartmouth Publishing, Inc.

Composition Windfall Software, using ZzTEX

Copyeditor Barbara Kohl

Proofreader Carol Leyba

Indexer Steve Rath

Printer The Maple-Vail Book Manufacturing Group

Cover credit: Paul Klee, Green church steeple at center, 1917. © Nimatallah/Art Resource, NY.

Designations used by companies to distinguish their products are often claimed as trademarks

or registered trademarks. In all instances in which Morgan Kaufmann Publishers is aware of a

claim, the product names appear in initial capital or all capital letters. Readers, however, should

contact the appropriate companies for more complete information regarding trademarks and

registration.

Morgan Kaufmann Publishers

An imprint of Elsevier Science

340 Pine Street, Sixth Floor

San Francisco, CA 94104-3205

www.mkp.com

© 2003 by by Elsevier Science (USA)

All rights reserved.

Printed in the United States of America

07 06 05 04 03 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in

any form or by any means—electronic, mechanical, photocopying, or otherwise—without the

prior written permission of the publisher.

Library of Congress Control Number: 2002107244

ISBN: 1-55860-871-0

This book is printed on acid-free paper.

PREFACE

During its 11-year lifetime, the Center for Research on Parallel Computation (CRPC),
a National Science Foundation (NSF) Science and Technology Center, was focused on
research and technology development that would be needed to make parallel com-
puting “truly usable.” Over that period, a remarkable number of applications were
converted to work on scalable parallel computers, and an equally remarkable num-
ber of software tools were developed to assist in that process. These developments
emerged both from within CRPC and from the community at large. Although the
tools and strategies developed and refined during this period are widely known in the
community of professional parallel application developers, to our knowledge there
exists no compendium of material describing these advances in a form suitable for
use by a newcomer to the field. This volume attempts to fill that gap by bringing
together a collection of works covering both applications and the technologies used
to convert them to run on scalable parallel systems.

The principal goal of this book is to make it easy for newcomers to the field
of parallel computing to understand the technologies available and how to apply
them. The book is intended for students and practitioners of technical computing
who need to understand both the promise and practice of high-performance parallel
computation. It assumes that the reader has a good background in either applications
or computational science, but not in parallel computation. Thus, the book includes
a significant amount of tutorial material.

We also intend that the book serve as a useful reference for the practicing parallel
application developer. Thus, it contains in-depth treatments of specific technologies
and methods that are useful in parallel computing. These methods are easily accessi-
ble by starting from the application overview sections or by reading the technology
overview chapters provided at the beginning of each major part.

xiii

xiv Preface

We hope that you find this book useful and that it helps you exploit the knowledge
gained over the past fifteen years, while avoiding some of the pitfalls that we
ourselves encountered in gaining that knowledge.

Overview of Content

The book is organized into five major parts. Part I, entitled Parallelism, is a tutorial
introduction to the field of parallel computers and computing, with separate chapters
providing a broad overview of the field, an in-depth treatment of the architecture of
modern parallel computer systems, and a survey of the issues that should be taken
into consideration when programming them.

Part II, Applications, is designed to help new developers understand how high-
performance computation can be applied in a variety of specific application areas. It
consists of an overview of the process by which one identifies appropriate software
and algorithms and the issues involved in implementation. This treatment is com-
plemented by chapters containing in-depth studies in the areas of computational
fluid dynamics, environmental engineering and energy, and computational chem-
istry, and by a separate chapter with 11 vignettes that briefly describe successful uses
of parallel systems in other areas. These have been chosen to cover a broad range of
both scientific areas and numerical approaches. The applications are cross-referenced
to the material in later chapters that cover the needed software technologies and
algorithms in depth.

Part III, Software Technologies, discusses the progress made on a variety of techno-
logical strategies for application development, including message-passing libraries;
run-time libraries for parallel computing, such as class libraries for HPC++, languages
like HPF, Co-Array Fortran, and HPC++; performance analysis and tuning tools such
as Pablo; and high-level programming systems. The goal of this part is to provide a
survey of progress with hints to the user that will help in selecting the right tech-
nology for use in a given application.

Part IV, Enabling Technologies and Algorithms, treats numerical algorithms and cov-
ers parallel numerical algorithms for a variety of problems in science and engineer-
ing, including linear algebra, continuous and discrete optimization, and simulation.
Each chapter covers a different algorithmic area. The goal here is to serve as a resource
for the application developer seeking good algorithms for difficult problems.

The final part of the book is devoted to a summary of the issues and a discussion
of important future problems for the high-performance science and engineering
community, including distributed computing in a grid environment.

Using This Book

This book can be used in several different ways. The newcomer to parallel compu-
tation seeking a tutorial introduction should read all of Part I, along with Chapters
4, 9, 16, 17, and 25. Chapters 4, 9, and 17 provide overviews of Parts II, III, and IV,

Preface xv

respectively, so these may provide hints on other chapters that may be of interest to
the reader.

On the other hand, the developer wishing to understand technologies that can
help with a specific application area should start with Part II, which covers a number
of applications along with the strategies used to parallelize them. Once the developer
has identified a similar application, he or she can follow the cross-references to find
in-depth treatments of the useful technologies in Parts III and IV.

Finally, the parallel computing professional can use the book as a reference. The
introductory chapters at the beginning of each major part provide excellent guides
to the material in the rest of the part.

The book should serve as a resource for users of systems that span the range from
small desktop SMPs and PC clusters to high-end supercomputers costing $100 mil-
lion or more. It focuses on software technologies, along with the large-scale appli-
cations enabled by them. In each area, the text contains a general discussion of the
state of the field followed by detailed descriptions of key technologies or methods.
In some cases, such as MPI for message passing, this is the dominant approach. In
others, such as the discussion of problem-solving environments, the authors choose
systems representing key concepts in an emerging area.

Supplementary Online Material

Look for links to the Sourcebook of Parallel Computing website at www.mkp.com,
where you can find numerous supplementary materials. In addition to updates and
corrections discovered after publication, the reader will find links to servers (such as
Netlib) from which software tools and libraries can be downloaded.

Acknowledgments

This book was inspired by the research carried out in the high-performance paral-
lel computing commmunity during the lifetime of the CRPC, an NSF Science and
Technology Center that included Rice University, California Institute of Technology,
Argonne National Laboratory, Los Alamos National Laboratory, Syracuse University,
the University of Tennessee–Knoxville, and the University of Texas–Austin. With-
out the original grant from the NSF that established CRPC, the book would not
have been possible. In addition, the support for research provided through other
grants and contracts from NSF, the Department of Energy, the Department of De-
fense (especially the Defense Advanced Research Projects Agency), and the National
Aeronautics and Space Administration has been critical to the advances described
in this volume. Substantive additional support for research and technology devel-
opment was provided by the CRPC home institutions, and the home institutions
of many of the chapter authors. In particular, matching funds for CRPC from Rice
University were used to provide technical support for the completion of this volume
after the NSF funding for CRPC ended.

xvi Preface

The editors would also like to thank the people who helped us finish this volume.
Teresa Parks improved the entire manuscript with her editorial and technical writing
skills. Sarah Gonzales provided technical support and prepared the graphics for pub-
lication. Gail Pieper carefully and knowledgeably edited some of the chapters. Keith
Cooper consulted with us on the deeper mysteries of LaTEX. Ellen Butler and Shiliang
Chang collected, collated, merged, and corrected the bibliographic entries for this
volume. Penny Anderson managed a number of production tasks on the Rice side,
including assembling author biographies and collecting copyright transfer forms and
permissions for use of copyrighted materials. Ellen Butler, Kathryn O’Brien, Penny
Anderson, and Theresa Chatman arranged the meetings and teleconferences, han-
dled the correspondence, managed the many contact lists, and lent hands wherever
they were needed. All these people deserve our thanks; without their efforts, this
volume would not have been finished.

Denise Penrose, our editor at Morgan Kaufmann, provided valuable advice on
the preparation of the manuscript and arranged for independent reviews of the
manuscript that were very helpful. Emilia Thiuri provided editorial support and
extensive guidance as the final manuscript neared completion. Howard Severson,
the production editor, did a superb job of bringing the book to completion on a
tight schedule and managed to keep his sense of humor throughout the process.
The production staff, including the copyeditor Barbara Kohl, the proofreader Carol
Leyba, and the indexer Steve Rath, were tireless in their efforts to bring out a high-
quality book on time. We are also grateful to those who contributed to the overall
appearance of the book: Detta Penna for text design, Frances Baca for cover design,
Dartmouth Publishing for illustration, and Windfall Software for composition. We
especially appreciate the compositor’s efforts to incorporate the substantive number
of changes we made late in the production cycle. Finally, the reviewers provided
many intelligent and helpful comments on the book that significantly affected its
structure, content, and quality.

To all of these people, and to the authors of individual chapters in this text, we
extend our heartfelt thanks.

Part I Parallelism 1..
Introduction 3..

Parallel Computing Hardware 4..................................
What Have We Learned from Applications? 8............
Software and Algorithms 11..
Toward a Science of Parallel Computation 13..............

Parallel Computer Architectures 15........................
Uniprocessor Architecture 16..

The CPU 17..
Memory 21..
I/O and Networking 25..
Design Tradeoffs 26...

Parallel Architectures 26...
Memory Parallelism 26...
Interconnects 33...
CPU Parallelism 35..
I/O and Networking for Parallel Processors 38.........
Support for Programming Models 39........................
Parallel Architecture Design Tradeoffs 39................

Future Directions for Parallel Architectures 40..............
Conclusion 41...

Parallel Programming Considerations 43...............
Architectural Considerations 45....................................

Shared Memory 45...
Distributed Memory 46...
Hybrid Systems 47...
Memory Hierarchy 47...

Decomposing Programs for Parallelism 49...................
Identi.cation of Parallelism 49...................................
Decomposition Strategy 50......................................
Programming Models 51..
Implementation Styles 51...
A Simple Example 54...

Enhancing Parallel Performance 56..............................
Scalability and Load Balance 57..............................
Pipeline Parallelism 59...

Regular versus Irregular Problems 60......................
Memory-Hierarchy Management 63..............................

Uniprocessor Memory-Hierarchy Management 63...
Multiprocessor Memory Hierarchies 65....................

Parallel Debugging 66...
Performance Analysis and Tuning 67...........................
Parallel Input/Output 69..
Conclusion 70...
Further Reading 70...

Part II Applications 73...
General Application Issues 75................................

Application Characteristics in a Simple Example 75.....
Communication Structure in Jacobi�s Method for
Poisson�s Equation 79..
Communication Overhead for More General
Update Stencils 82..
Applications as Basic Complex Systems 84.................
Time-Stepped and Event-Driven Simulations 87..........
Temporal Structure of Applications 88..........................
Summary of Parallelization of Basic Complex
Systems 89...
Meta-Problems 90...
Conclusion 91...

Parallel Computing in Computational Fluid
Dynamics 93...

Introduction to Computational Fluid Dynamics 94.........
Basic Equations of Fluid Dynamics 94.....................
Physical Regimes and Dimensionless
Variables 95..
The Role of High-Performance Computing 97.........

Incompressible Flows 98...
Semi-discrete Formulation 99...................................
Spectral Element Methods 100..................................
Basic Operations 108...
Global Matrix Operations 111.....................................
Data Structures 113..

Solution Techniques 116..
Adaptive Mesh Re.nement 121..................................
Implementation for Parallel Architectures 126............
An Example�The Cylinder Wake 129..........................

Compressible Flows 132...
Governing Equations of Motion 133...........................
Numerical Methods for Hyperbolic
Conservation Laws 134..
An Application: The Richtmyer �Meshkov
Instability 137..
Adaptive Mesh Re.nement 138..................................

Conclusion 144...
Parallel Computing in Environment and
Energy 145..

Subsurface-Flow Modeling 146.......................................
IPARS Motivation 147..
IPARS Description 148...

IPARS and Grid Computing by NetSolve 152.................
Integrating IPARS into NetSolve 153.........................
Client-Side Web-Browser Interface 154.....................

Tracking and Interactive Simulation in IPARS 155.........
An Interactive Computational Collaboration:
DISCOVER 157..
Integrating IPARS with DISCOVER 158.....................

Surface-Water Simulation 159..
A Water Quality Model: CE-QUAL-ICM 159...............
A Parallel Water-Quality Model:
PCE-QUAL-ICM 160..
Parallel Algorithm 161..

A Coupled Simulation of Flow and Transport with
ADR 162..

The Active Data Repository 163.................................
Implementation 164..

Conclusion 165...
Parallel Computational Chemistry: An
Overview of NWChem 167.......................................

Molecular Quantum Chemistry 168.................................

The NWChem Architecture 171......................................
NWChem Parallel Computing Support 174.....................

The Global Array Toolkit 174......................................
Parallel Linear Algebra: PeIGS 176............................

NWChem Chemistry Modules 178..................................
Hartree�Fock Self-Consistent Field 180......................
Resolution of the Identity Second-Order,
Many-Body Perturbation Theory 182..........................

NWChem�s Place in the Computational
Chemistry Community 186..
A Larger Perspective: Common Features of
Computational Chemistry Algorithms 188.......................
Conclusion 192...

Application Overviews 195..
Numerical (General) Relativity 195.................................

Current Situation 197..
Numerical Simulations in Lattice Quantum
Chromodynamics 199...

Lattice QCD Simulation Setup 201.............................
Computational Requirements 204..............................
Implementation Considerations 205...........................
Recent Developments and Future Prospects 206......

Ocean Modeling 207...
Surface-Pressure Formulation of the
Barotropic Mode 208..
Free-Surface Formulation 209....................................
Pressure Averaging 210...
Latitudinal Scaling of Horizontal Diffusion 210...........
Code Designed for Parallel Computers 211...............
General Orthogonal Coordinates and the
Displaced-Pole Grid 211...
High-Resolution Simulations Enabled by POP 211....

Simulations of Earthquakes 212.....................................
Typical Computational Problems 215.........................
Computational Resource Requirements 218..............

Cosmological Structure Formation 219...........................
The Problem to be Solved 219...................................

Computational Issues 219..
Parallel Unigrid Code: Kronos 220.............................
Parallel AMR Code: Enzo 222....................................
Parallelization of Enzo 223...
Performance 224..
Future Work 227...

Computational Electromagnetics 227.............................
Asymptotic Methods 229..
Frequency-Domain Methods 229...............................
Time-Domain Methods 230..
Hybrid Methods 231...
State of the Art 232...

Parallel Algorithms in Data Mining 232...........................
Parallel Algorithms for Discovering
Associations 233..
Parallel Algorithms for Induction of
Decision-Tree Classi.ers 236.....................................
State of the Art 242...

High-Performance Computing in Signal and
Image Processing 243..

Examples of HPC Use in Signal and Image
Processing 244...
State of the Art 249...

Deterministic Monte Carlo Methods and
Parallelism 249..

Motivation for Using Quasi-Random Numbers 250....
Methods of Quasi-Random Number
Generation 252...
A Fundamental Problem with Quasi-Random
Numbers 255..
State-of-the-Art Quasi-Random Number
Generators 255...
A Parallel Quasi�Monte Carlo Application 256............
State of the Art 258...

Quasi�Real Time Microtomography Experiments
at Photon Sources 258..

The Computational Processing Pipeline
Framework 259...
Scienti.c Challenges 260..
Bene.ts of Real-Time X-Ray Microtomography
Experiments 263...
Future Work 265...

WebHLA-Based Meta-Computing Environment
for Forces Modeling and Simulation 265.........................

DoD Modeling and Simulation 266.............................
Forces Modeling and Simulation 266.........................
High-Level Architecture 267.......................................
WebHLA 268..
Example WebHLA Application:
Parallel/Meta-Computing CMS 272............................
Next Steps 278...

Computational Structure of Applications 280..................
Applications from This Book 280................................
Applications from 284...
[573] 284...
Applications from 287...

Conclusion 290...

Part III Software Technologies 291............................
Software Technologies 293......................................

Selecting a Parallel Program Technology 294................
Parallel Programming Models 295.............................
Parallel Programming Technologies 297....................
Decision Rules 308...

Achieving Correct and Ef.cient Execution 308................
Dealing with Nondeterminism 309..............................
Performance Modeling 309..

Conclusion 310...
Clusters and DSM 310...
Grids 310..
Ultra-Scale Computers 311..
Programming Productivity 311...................................
Further Reading 312...

Message Passing and Threads 313.........................
Message-Passing Programming Model 314...................

The Message Passing Interface Standard 315..........
Parallel Virtual Machine 322.......................................
Extensions to the Message Passing Interface 322.....
State of the Art 323...

Multithreaded Programming 323.....................................
POSIX Threads 325...
OpenMP 327..

Conclusion 329...
Parallel I/O 331...

Parallel I/O Infrastructure 333...
Basic Disk Architecture 333..
Parallel I/O Architecture 334.......................................
File Systems 335..
The API Problem 336...
I/O Libraries 338...
Language-Based Parallel I/O 339..............................

Overview of MPI-IO 339..
Simple MPI-IO Example 340......................................
Main Features of MPI-IO 342.....................................
Noncontiguous Accesses in MPI-IO 343....................
MPI-IO Implementations 343......................................

Parallel I/O Optimizations 344...
Data Sieving 344..
Collective I/O 346...
Hints and Adaptive File-System Policies 347.............

How Can Users Achieve High I/O Performance? 348....
General Guidelines 348..
Achieving High Performance with MPI-IO 349...........

Conclusion 355...
Languages and Compilers 357.................................

Automatic Parallelization 359..
Data-Parallel Programming in High Performance
Fortran 361..
Shared-Memory Parallel Programming in
OpenMP 366...

Single-Program, Multiple-Data Programming in
Co- Array Fortran 371...
Supporting Technologies 377...

Programming Support Tools 377................................
Libraries 378...

Future Trends 378...
Conclusion 379...
Further Reading 380...

Parallel Object-Oriented Libraries 383......................
Object-Oriented Parallel Libraries 384............................

Abstraction 384...
Parallelism 386...
Encapsulation 387..
Generic Programming 388...
A POOMA Example 389...

Object-Oriented Parallel Programming in Java 391........
Multithreaded Computation in C++ 396..........................

The Execution Model 397...
Thread and Synchronization 398................................

Remote Function Calls, Global Pointers, and
Java RMI 401..
Component-Based Software Design 403........................

The DOE Common Component Architecture 404......
Conclusion 406...

Problem-Solving Environments 409..........................
NetSolve: Network-Enabled Solvers 411........................

The NetSolve Philosophy 412....................................
NetSolve Infrastructure 412..
Some Applications of NetSolve 416...........................
Current Developments and Future Research 417......

WebFlow-Object Web Computing 418............................
WebFlow Architecture 421...
WebFlow Applications 424...

WebPDELab 429..
The WebPDELab Server 429.....................................
WebPDELab Security Issues 437..............................
WebPDELab Features and Issues 438......................

Other Grid-Computing Environments 440.......................
Meta-Computing Systems 440...................................
Seamless Access and Application Integration 441.....

Conclusion 442...
Tools for Performance Tuning and Debugging 443..

Correctness and Performance Monitoring Basics 444....
Pro.ling and Program-Counter Sampling 445.............
Event Counting 446..
Interval Timing 448...
Event Tracing 448..
Control Breakpoints 450...

Measurement and Debugging Implementation
Challenges 451...

Clocks and Timing 451...
Event Orders and Time 451.......................................

Deep Compiler Integration 453.......................................
A Motivating Example 453..
Performance Modeling and Prediction 455................

Software Tool Interfaces and Usability 456.....................
Tool Scalability 457..
User Expectations and Recommendations 457.........

Software Tool Examples 459..
Jumpshot Event Visualization 459..............................
SvPablo Source Code Correlation 460.......................
Thinking Machines Prism 462....................................
Etnus TotalView 465...

Challenges and Open Problems 466..............................
Conclusion 466...
Further Reading 467...

The 2-D Poisson Problem 469..................................
The Mathematical Model 469..
A Simple Algorithm 470...
Parallel Solution of Poisson�s Equation 470...................

Message Passing and the Distributed-Memory
Model 470...
The Single Name-Space, Distributed-Memory
Model 472...

The Shared-Memory Model 475.................................
Comments 476...

Adding Global Operations 477..
Collective Operations in MPI 477...............................
Reductions in HPF 478...
Reductions in OpenMP 478..
Conclusion 480...

Part IV Enabling Technologies and
Algorithms 481..

Reusable Software and Algorithms 483....................
Templates: Design Patterns for Parallel Software 483...
Communicators and Data Structure Neutrality 484.........
Standard Libraries and Components 485.......................

Load Balancing and Grid Generation 485..................
Mesh Generation 486...
Software for Scalable Solution of PDEs 486..............
Parallel Continuous Optimization 486........................

Automatic Differentiation 486..
Templates and Numerical Linear Algebra 487................
Conclusion 489...

Graph Partitioning for High-Performance
Scienti . c Simulations 491..

Modeling Mesh-Based Computations as Graphs 493.....
Computing a 495..
Way Partitioning via Recursive Bisection 495............

Static Graph-Partitioning Techniques 495......................
Geometric Techniques 496..
Combinatorial Techniques 501...................................
Spectral Methods 506...
Multilevel Schemes 509..
Combined Schemes 513..
Qualitative Comparison of Graph Partitioning
Schemes 513..

Load Balancing of Adaptive Computations 516..............
Scratch-Remap Repartitioners 518............................
Diffusion-Based Repartitioners 522............................

Parallel Graph Partitioning 525.......................................
Multiconstraint, Multiobjective Graph Partitioning 526....

A Generalized Formulation for Graph
Partitioning 531...

Conclusion 538...
Limitations of the Graph-Partitioning Problem
Formulation 538..
Other Application Modeling Limitations 539...............
Architecture Modeling Limitations 539........................
Functionality of Available Graph Partitioning
Packages 540...

Mesh Generation 543...
Mesh-Generation Strategies and Techniques 544..........

Cartesian Meshes 544..
Structured Meshes 544..
Unstructured Meshes 547..
Hybrid/Generalized Meshes 549................................
Meshless Methods 550...

Mesh-Generation Process and Geometry
Preparation 550...
Adaptive Mesh Generation 552.......................................

Structured Mesh Adaptation 552................................
Generalized Mesh Adaptation 555.............................

Parallel Mesh Generation 560...
Mesh Software 561...
Mesh Con.gurations 564...
Mesh Web Sites 567...
The Pacing Obstacle: Geometry/Mesh
Generation 569...
Desiderata 571..
Conclusion 572...

Templates and Numerical Linear Algebra 575..........
Dense Linear Algebra Algorithms 576............................

Loop Rearranging 577..
Uses of LU Factorization in Science and
Engineering 577...
Block Algorithms and Their Derivation 578................

The In.uence of Computer Architecture on
Performance 580...

Discussion of Architectural Features 580...................
Target Architectures 582..

Dense Linear Algebra Libraries 583................................
The BLAS as the Key to Portability 583.....................
Overview of Dense Linear Algebra Libraries 587.......
Available Software 589...

Sparse Linear Algebra Methods 590...............................
Origin of Sparse Linear Systems 590.........................
Basic Elements in Sparse Linear Algebra
Methods 591...

Direct Solution Methods 591...
Matrix Orderings 592..
Use of Level-3 BLAS Kernels 594..............................
Available Software 594...

Iterative Solution Methods 596..
Stationary Iterative Methods 596................................
Krylov Space Methods 596...
Preconditioners 598..
Libraries and Standards in Sparse Methods 600.......
Available Software 602...

Sparse Eigenvalue Problems 603...................................
Algorithms and Software for Large Eigenvalue
Problems 603...
= 603..
Additional Available Software and Future
Directions 618...

Conclusion 619...
Future Research Directions in Dense
Algorithms 619..

Software for the Scalable Solution of Partial
Differential Equations 621...

PDE Background 622..
Challenges in Parallel PDE Computations 623...............

Software Complexity 624..
Data Distribution and Access 624..............................

Portability, Algorithms, and Data Redistribution 626..
Parallel Solution Strategies 627......................................
PETSc Approach to Parallel Software for PDEs 628......

Sample Applications 629..
Mathematical Formulation 632...................................
Composability and Interoperability 639......................
Performance Issues 640...

Software for PDEs 645..
Conclusion 647...

Parallel Continuous Optimization 649.......................
Local Optimization 651..
Global Optimization 653..

Protein Folding 655..
Cluster Simulation 656...
Distance Geometry 656..
Stochastic Global Optimization 657............................
Effective-Energy Simulated Annealing 657................
Global Continuation 658...

Direct Search Methods 659...
The Surrogate Management Framework 661.............
Asynchronous Parallel Search 662............................

Optimization of Linked Subsystems 663.........................
Variable and Constraint Distribution 666.........................

Variable Distribution 667..
Constraint Distribution 668...

Conclusion 669...
Path Following in Scientific Computing and Its
Implementation in AUTO 671....................................

Local Continuation 673...
Global Continuation and Degree Theory 675..................
Folds and Bifurcations 677..
Practical Path Following 679...
Branch Switching at Bifurcations 683..............................
Computational Examples: AUTO 686.............................

Bursting Oscillations 688..
Some Navier �Stokes Flows 690................................
Kolmogorov Flows 691...

Parallel AUTO 694..
Parallel Implementation 695.......................................

Conclusion 699...
Automatic Differentiation 701....................................

Overview of Automatic Differentiation 703......................
How Automatic Differentiation Works 704..................
When Automatic Differentiation Works 706................

Automatic-Differentiation Implementation
Techniques 707...

AD via Operator Overloading 708..............................
AD via Source-to-Source Transformation 708............

Automatic-Differentiation Software 709...........................
ADOL-C 709...
Adifor 3.0 710...

Automatic Differentiation of Message-Passing
Parallel Codes 711..

Activity Analysis 711...
Differentiation of Communication Operations 711......
Differentiation of Reduction Operations 714...............

Advanced Use of Automatic Differentiation 714..............
Computing Sparse Jacobian Matrices with
Known Sparsity 714..
Computing Sparse Jacobian Matrices with
Unknown Sparsity 716..
Strip-Mining of Derivative Computations 716.............
Exploiting Coarse-Grained Chain Rule
Associativity 717...
Checkpointing for the Reverse Mode 717..................

Conclusion 719...

V Conclusion V..
Wrap-Up and Signposts to the Future 723...............

Computational Resources 723..
Applications 724..
Software 725...
Templates, Algorithms, and Technologies 727...............
Signposts 727...

REFERENCES 729..
INDEX 791..
ABOUT THE AUTHORS 833....................................

P

A

R

T I Parallelism

Chapter 1 INTRODUCTION

Jack Dongarra, University of Tenneesee . Ken Kennedy,
Rice University . Andy White, Los Alamos National Laboratory

Chapter 2 PARALLEL COMPUTER ARCHITECTURES

William Gropp, Argonne National Laboratory . Rick Stevens,
Argonne National Laboratory . Charlie Catlett,
Argonne National Laboratory

Chapter 3 PARALLEL PROGRAMMING CONSIDERATIONS

Ken Kennedy, Rice University . Jack Dongarra,
University of Tennessee . Geoffrey Fox, Indiana University .

William Gropp, Argonne National Laboratory .

Dan Reed, University of Illinois at Urbana-Champaign

C

H

A

P

T

E

R

1 Introduction

Jack Dongarra . Ken Kennedy .

Andy White

“Nothing you can’t spell will ever work.”
—Will Rogers

Parallel computing is more than just a strategy for achieving high performance—
it is a compelling vision for how computation can seamlessly scale from a single
processor to virtually limitless computing power. This vision is decades old, but it
was not until the late 1980s that it seemed within our grasp. However, the road to
scalable parallelism has been a rocky one and, as of the writing of this book, parallel
computing cannot be viewed as an unqualified success.

True, parallel computing has made it possible for the peak speeds of high-end
supercomputers to grow at a rate that exceeded Moore’s Law, which says that pro-
cessor performance doubles roughly every 18 months. Unfortunately, the scaling of
application performance has not matched the scaling of peak speed, and the pro-
gramming burden for these machines continues to be heavy. This is particularly
problematic because the vision of seamless scalability cannot be achieved without
having the applications scale automatically as the number of processors increases.
However, for this to happen, the applications have to be programmed to be able to
exploit parallelism in the most efficient possible way. Thus, the responsibility for
achieving the vision of scalable parallelism falls on the application developer.

The Center for Research on Parallel Computation (CRPC) was founded in 1989
with the goal of making parallel programming easy enough so that it would be
accessible to ordinary scientists. To do this, the Center conducted research on
software and algorithms that could form the underpinnings of an infrastructure for
parallel programming. The result of much of this research was captured in software
systems and published algorithms, so that it could be widely used in the scientific
community. However, the published work has never been collected into a single
resource and, even if it had been, it would not incorporate the broader work of the
parallel-computing research community.

3

4 Chapter 1 Introduction

This book is an attempt to fill that gap. It represents the collected knowledge of
and experience with parallel computing from a broad collection of leading parallel
computing researchers, both within and outside of the CRPC. It attempts to provide
both tutorial material and more detailed documentation of advanced strategies
produced by research over the last 2 decades.

In the remainder of this chapter we delve more deeply into three key aspects of
parallel computation—hardware, applications, and software—to provide a founda-
tion and motivation for the material that will be elaborated later in the book. We
begin with a discussion of the progress in parallel computing hardware. This is fol-
lowed by a discussion of what we have learned from the many application efforts
that were focused on exploitation of parallelism. Finally, we briefly discuss the state
of parallel computing software and the prospects for such software in the future. We
conclude with some thoughts about how close we are to a true science of parallel
computation.

1.1 Parallel Computing Hardware

In the last 50 years, the field of scientific computing has undergone rapid change—
we have experienced a remarkable turnover of vendors, architectures, technologies,
and systems usage. Despite all these changes, the long-term evolution of perfor-
mance seems to be steady and continuous, following the famous Moore’s Law rather
closely. In Figure 1.1, we plot the peak performance over the last 5 decades of comput-
ers that could have been called “supercomputers.” This chart shows clearly how well
Moore’s Law has held over almost the complete life span of modern computing—we
see an increase in performance averaging two orders of magnitude every decade.

In the second half of the 1970s, the introduction of vector computer systems
marked the beginning of modern supercomputing. These systems offered a perfor-
mance advantage of at least one order of magnitude over conventional systems of
that time. Raw performance was the main, if not the only, selling point for supercom-
puters of this variety. However, in the first half of the 1980s the integration of vector
systems into conventional computing environments became more important. Only
those manufacturers who provided standard programming environments, operating
systems, and key applications were successful in getting the industrial customers
who became essential for survival in the marketplace. Performance was increased
primarily by improved chip technologies and by producing shared-memory multi-
processor systems.

Fostered by several government programs, scalable parallel computing using
distributed memory became the focus of interest in the late 1980s. Overcoming the
hardware scalability limitations of shared memory was the main goal of these new
systems. The increase of performance of standard microprocessors after the RISC
revolution, together with the cost advantage of large-scale parallelism, formed the
basis for the “attack of the killer micros” [143]. The transition from ECL to CMOS
chip technology and the usage of “off-the-shelf” microprocessors instead of custom
processors for massively parallel systems was the consequence.

1.1 Parallel Computing Hardware 5

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2002

EDSAC 1
UNIVAC 1

IBM 7090

CDC 6600
CDC 7600

IBM 360/195

Cray 1
Cray X-MP

Cray 2
TMC CM-2

TMC CM-5
Cray T3D

ASCI Red

1 KFlop/s

1 MFlop/s

1 GFlop/s

1 TFlop/s

Earth simulator

Figure 1.1 Moore’s Law and peak performance of various computers over time.

In the early 1990s, while the multiprocessor vector systems reached their widest
distribution, a new generation of massively parallel processor (MPP) systems came on
the market, claiming to equal or even surpass the performance of vector multiproces-
sors. To provide a more reliable basis for statistics on high-performance computers,
the Top500 [287] list was begun. This report lists the sites that have the 500 most
powerful installed computer systems. The best LINPACK benchmark performance
[282] achieved is used as a performance measure to rank the computers. The Top500
list has been updated twice a year since June 1993. In the first Top500 list in June
1993, there were already 156 MPP and single-instruction multiple-data (SIMD) sys-
tems present (31% of the total 500 systems).

The year 1995 saw remarkable changes in the distribution of the systems in
the Top500 according to customer type (academic sites, research labs, industrial/
commercial users, vendor installations, and confidential sites). Until June 1995, the
trend in the Top500 data was a steady decrease of industrial customers, matched by
an increase in the number of government-funded research sites. This trend reflects
the influence of governmental high-performance computing (HPC) programs that
made it possible for research sites to buy parallel systems, especially systems with
distributed memory. Industry was understandably reluctant to follow this path,
since systems with distributed memory have often been far from mature or stable.
Hence, industrial customers stayed with their older vector systems, which gradually
dropped off the Top500 list because of low performance.

Beginning in 1994, however, companies such as SGI, Digital, and Sun began
selling symmetric multiprocessor (SMP) models in their workstation families. From

6 Chapter 1 Introduction

SIMD

Vector

Scalar

Jun
'93

Nov
'93

Jun
'94

Nov
'94

Jun
'95

Nov
'95

Jun
'96

Nov
'96

Jun
'97

Nov
'97

Jun
'98

Nov
'98

Jun
'99

Nov
'99

Jun
'00

Nov
'00

Nov
'01

Jun
'02

Jun
'01

0

100

200

300

400

500

Figure 1.2 Processor design used as seen in the Top500.

the very beginning, these systems were popular with industrial customers because
of their architectural maturity and superior price–performance ratio. At the same
time, IBM SP2 systems began to appear at a reasonable number of industrial sites.
While the SP was initially intended for numerically intensive applications, in the
last half of 1995 the system began selling successfully to a larger commercial market,
with dedicated database systems representing a particularly important component
of sales.

It is instructive to compare the performance growth rates of machines at fixed
positions in the Top500 list with those predicted by Moore’s Law. To make this
comparison, we separate the influence of increasing processor performance and the
increasing number of processors per system on the total accumulated performance.
(To get meaningful numbers, we exclude the SIMD systems for this analysis, as
they tend to have extremely high processor numbers and extremely low processor
performance.) In Figure 1.3, we plot the relative growth of the total number of
processors and of the average processor performance, defined as the ratio of total
accumulated performance to the number of processors. We find that these two
factors contribute almost equally to the annual total performance growth—a factor
of 1.82. On average, the number of processors grows by a factor of 1.3 each year and
the processor performance by a factor 1.4 per year, compared to the factor of 1.58
predicted by Moore’s Law.

Based on the current Top500 data (which cover the last 9 years) and the assump-
tion that the current rate of performance improvement will continue for some time
to come, we can extrapolate the observed performance and compare these values

1.1 Parallel Computing Hardware 7

Jun
'93

Nov
'93

Jun
'94

Nov
'94

Jun
'95

Nov
'95

Jun
'96

Nov
'96

Jun
'97

Nov
'97

Jun
'98

Nov
'98

Jun
'99

Nov
'99

Jun
'00

Nov
'00

Jun
'01

Nov
'01

Jun
'02

1 Mflop/s

1 Gflop/s

10 Gflop/s

100 Gflop/s

1 Tflop/s

10 Tflop/s

100 Tflop/s

1 Pflop/s

1.167 TF/s

59.7 GF/s

0.4 GF/s

220 TF/s

35.8 TF/s

134 GF/s

N = 500

N = 100

N = 10

N = 1

Sum

Figure 1.3 Performance growth at fixed Top500 rankings.

with the goals of government programs such as the High Performance Computing
and Communications initiative. In Figure 1.4, we extrapolate observed performance
using linear regression on a logarithmic scale. This means that we fit exponential
growth to all levels of performance in the Top500. This simple curve fit of the data
shows surprisingly consistent results. Based on the extrapolation from these fits, we
can expect to see the first 100 teraflop/s system by 2005, which is about 1 to 2 years
later than the original ASCI projections. By 2005, no system smaller than 1 teraflop/s
should be able to make the Top500.

Looking even further in the future, we speculate that based on the current
doubling of performance every year, the first petaflop/s system should be avail-
able around 2009. Due to the rapid changes in the technologies used in HPC sys-
tems, there is currently no reasonable projection possible for the architecture of the
petaflop/s systems at the end of the decade. Even as the HPC market has changed
substantially since the introduction 3 decades ago of the Cray 1, there is no end in
sight for these rapid cycles of architectural redefinition.

There are two general conclusions we can draw from these figures. First, parallel
computing is here to stay. It is the primary mechanism by which computer perfor-
mance can keep up with the predictions of Moore’s Law in the face of the increasing
influence of performance bottlenecks in conventional processors. Second, the archi-
tecture of high-performance computers will continue to evolve at a rapid rate. Thus,
it will be increasingly important to find ways to support scalable parallel program-
ming without sacrificing portability. This challenge must be met by the development

8 Chapter 1 Introduction

Jun
'93

Nov
'94

Jun
'96

Nov
'97

Jun
'99

Nov
'00

Jun
'02

Nov
'03

Jun
'05

Nov
'06

Jun
'08

Nov
'09

1 Mflop/s

1 Gflop/s

10 Gflop/s

100 Gflop/s

1 Tflop/s

10 Tflop/s

100 Tflop/s

1 Pflop/s

N = 500

N = 10

N = 1

Sum

ASCI

1 Tflop/s

1 Pflop/s

Earth
simulator

Figure 1.4 Extrapolation of Top500 results.

of software systems and algorithms that promote portability while easing the burden
of program design and implementation.

1.2 What Have We Learned from Applications?

Remarkable strides have been taken over the last decade in utilization of high-end,
that is, parallel, computers. Federal agencies, most notably the National Science
Foundation, Department of Energy, National Aeronautics and Space Administration,
and Department of Defense, have provided increasingly powerful, scalable resources
to scientists and engineers across the country. We discuss a handful of lessons learned
that punctuate the lifetime of the CRPC and provide important context for the next
millennium.

Parallel computing can transform science and engineering. Scalable, parallel com-
puting has transformed a number of science and engineering disciplines, including
cosmology, environmental modeling, condensed matter physics, protein folding,
quantum chromodynamics, device and semiconductor simulation, seismology, and
turbulence [447]. As an example, consider cosmology [729]—the study of the uni-
verse, its evolution and structure—where one of the most striking paradigm shifts
has occurred. A number of new, tremendously detailed observations deep into the
universe are available from such instruments as the Hubble Space Telescope and the
Digital Sky Survey. However, until recently, it has been difficult, except in relatively

1.2 What Have We Learned from Applications? 9

simple circumstances, to tease from mathematical theories of the early universe
enough information to allow comparison with observations.

However, scalable parallel computers with large memories have changed all of
that. Now, cosmologists can simulate the principal physical processes at work in
the early universe over space–time volumes sufficiently large to determine the large-
scale structures predicted by the models. With such tools, some theories can be dis-
carded as being incompatible with the observations. High-performance computing
has allowed comparison of theory with observation and thus has transformed the
practice of cosmology.

To port or not to port. That is not the question. “Porting” a code to parallel archi-
tectures is more than simply bringing up an existing code on a new machine. Because
parallel machines are fundamentally different from their vector predecessors, port-
ing presents an opportunity to reformulate the basic code and data structures and,
more importantly, to reassess the basic representation of the processes or dynamics
involved. As an example, consider ocean modeling, where the standard Bryan–Cox–
Semtner (BCS) code was retargeted from Cray vector architecture to the CM-2 and
CM-5 [874]. The BCS model was inefficient in parallel for two reasons: the primary
loop structure needed to be reorganized, and global communications were required
by the stream-function formulation of the BCS representation. The latter feature of
the BCS model required that independent line integrals be performed around each is-
land in the calculation. The model was reformulated in surface-pressure form, where
the solution of the resulting equations does not require line integrals around is-
lands and is better conditioned than the mathematically equivalent stream-function
representation. An additional change to the original model relaxed the “rigid-lid”
approximation that suppressed surface-gravity waves (and allowed longer time steps)
in the BCS model.

In addition to a more efficient code on either a vector or parallel architecture, this
reformulation brought several remarkable benefits:

1. Islands were treated with simple, pointwise boundary conditions, thereby
allowing all island features to be included at a particular resolution.

2. Unsmoothed bottom topography could be used without adverse effects on
convergence.

3. A free-surface boundary at the ocean–air interface made the sea-surface height
a prognostic variable and allowed direct comparison with Topex–Poseidon
satellite altimeter data.

Satellite data have become a key feature in the verification and validation of global
ocean models [104].

Parallel supercomputing can answer challenges to society. Computational science
has just begun to make an impact on problems with direct human interest and on

10 Chapter 1 Introduction

systems whose principal actors are not particles and aggregations of particles, but
rather are humans and collections of humans.

Perhaps the most oft-asked and rarely answered question about scientific com-
puting concerns predicting the weather. However, there are some things that can
be said. Hurricane tracks are being more accurately predicted [561], which directly
reduces the cost of evacuations and indirectly reduces loss of life. This increased fi-
delity is equal parts computation and observation—more accurate and detailed data
on hurricane wind-fields is available using dropwindsondes that report not only
the meteorological variables of interest, but also an accurate position by using the
Global Positioning System. Another significant development over the last decade has
been the Advanced Regional Prediction System [826] developed by the NSF Science
and Technology Center for the Analysis and Prediction of Storms (www.caps.ou.edu).

However, basically this work still concerns modeling of physical systems, in this
case severe weather, which have significant impacts on society. A more difficult
job is effectively modeling society itself, or a piece thereof. For example, detailed
environmental impact statements are required prior to any significant change in
metropolitan transportation systems. In order to meet this regulatory requirement,
the Department of Transportation commissioned development of a transportation
model. The result, TRANSIMS [940], models traffic flow by representing all of the
traffic infrastructure (e.g., streets, freeways, lights, and stop signs), developing a
statistically consistent route plan for the area’s population, and then simulating
the movement of each car, second by second. The principal distinction here is
that we believe that precise mathematical laws exist that accurately characterize
the dynamics and interplay of physical systems. No such systems of laws, with the
possible exception of Murphy’s, is contemplated for human-dominated systems.

It’s not the hardware, stupid. The focus has often been on computing hardware.
The reasons are straightforward: Big systems cost a lot of money and take a lot of
time to acquire; they have measurable, often mysterious except to the fully initiated,
properties; and we wonder how close they are getting to the most famous computer
of all, HAL. However, if we contrast the decade of the Crays to the tumultuous days
of the MPPs, we realize that it was the consistency of the programming model, not
the intricacies of the hardware, that made the former “good old” and the latter
“interesting.”

A case in point is seismic processing [247]. Schlumberger acquired two, 128-
node CM-5s to provide seismic processing services to their customers. They were
successful simply because it was possible, in this instance, to write an efficient
post-stack migration code for the CM-5 and provide commercial-quality services to
their customers, all within the 2 to 4 year operational window of any given high-
end hardware platform. Those programs or businesses that could not profitably,
or possibly, write new applications for each new hardware system were forced to
continue in the old ways. However, the Schlumberger experience teaches us an
important lesson: a successful high-end computing technology must have a stable,

1.3 Software and Algorithms 11

effective programming model that persists over the lifetime of the application. In
the case of the Stockpile Stewardship Program, this is on the order of a decade.

In conclusion, applications have taught us much over the last 10 years.

1. Entire disciplines can move to a firm scientific foundation by using scalable,
parallel computing to expand and elucidate mathematical theories, thus al-
lowing comparison with observation and experiment.

2. High-end computing is beginning to make an impact on everyday life by
providing more accurate, detailed, and trusted forecasts and predictions, even
on human-dominated systems.

3. New approaches to familiar problems, taken in order to access high capacity,
large memory parallel computers, can have tremendous ancillary benefits
beyond mere restructuring of the computations.

4. A persistent programming model for scalable, parallel computers is absolutely
essential if computational science and engineering is to realize even a fraction
of its remarkable promise.

5. The increase in the accuracy, detail, and volume of observational data goes
hand in hand with these same improvements in the computational arena.

1.3 Software and Algorithms

As we indicated at the beginning of this chapter, the widespread acceptance of
parallel computation has been impeded by the difficulty of the parallel programming
task. First, the expression of an explicitly parallel program is difficult—in addition
to specifying the computation and how it is to be partitioned among processors, the
developer must specify the synchronization and data movement needed to ensure
that the program computes the correct answers and achieves high performance.

Second, because the nature of high-end computing systems changes rapidly, it
must be possible to express programs in a reasonably machine-independent way,
so that moving to new platforms from old ones is possible with a relatively small
amount of effort. In other words, parallel programs should be portable between
different architectures. However, this is a difficult ideal to achieve because the price
of portability is often performance.

The goal of parallel computing software systems should be to make parallel
programming easier and the resulting applications more portable while achieving
the highest possible performance. This is clearly a tall order.

A final complicating factor for parallel computing is the complexity of the prob-
lems being attacked. This complexity requires extraordinary skill on the part of the
application developer along with extraordinary flexibility in the developed appli-
cations. Often this means that parallel programs will be developed using multiple
programming paradigms and often multiple languages. Interoperability is thus an
important consideration in choosing the development language for a particular ap-
plication component.

12 Chapter 1 Introduction

The principal goal of the CRPC has been the development of software and al-
gorithms that address programmability, portability, and flexibility of parallel appli-
cations. Much of the material in this book is devoted to the explication of tech-
nologies developed in the CRPC and the broader community to ameliorate these
problems. These technologies include new language standards and language proces-
sors, libraries that encapsulate major algorithmic advances, and tools to assist in the
formulation and debugging of parallel applications.

In the process of carrying out this research we have learned a number of hard but
valuable lessons. These lessons are detailed in the next few paragraphs.

Portability is elusive. When the CRPC began, every vendor of parallel systems of-
fered a different application programming interface. This made it extremely difficult
for developers of parallel applications because the work of converting an application
to a parallel computer would need to be repeated for each new parallel architecture.
One of the most important contributions of the CRPC was an effort to establish
cross-platform standards for parallel programming. The Message Passing Interface
(MPI) and High Performance Fortran (HPF) standards are just two results of this
effort.

However, portability is not just a matter of implementing a standard interface. In
scientific computing, most users are interested in portable performance, which means
the ability to achieve a high fraction of the performance possible on each machine
from the same program image. Because the implementations of standard interfaces
are not the same on each platform, portability, even for programs written in MPI or
HPF, has not been automatically achieved. Typically, the implementor must spend
significant amounts of time tuning an application for each new platform.

This tuning burden even extends to programming via portable libraries, such as
ScaLAPACK. Here the CRPC approach has been to isolate the key performance issues
in a few kernels that could be rewritten by hand for each new platform. Still the
process remains tedious.

Algorithms are not always portable. An issue impacting portability is that an al-
gorithm does not always work well on every machine architecture. The differences
arise because of the number and granularity of processors, connectivity and band-
width, and the performance of the memory hierarchy on each individual processor.
In many cases, portable algorithm libraries must be parameterized to do algorithm
selection based on the architecture on which the individual routines are to run. This
makes portable programming even more difficult.

Parallelism isn’t everything. One of the big surprises on parallel computers was the
extent to which poor performance arises because of factors other than insufficient
parallelism. The principal problem on scalable machines, other than parallelism,
is data movement. Thus, the optimization of data movement between processors
is a critical factor in performance of these machines. If this is not done well, a
parallel application is likely to run poorly no matter how powerful the individual

1.4 Toward a Science of Parallel Computation 13

processors are. A second and increasingly important issue affecting performance is
the bandwidth from main memory on a single processor. Many parallel machines
use processors that have so little bandwidth relative to the processor power that
the processor cycle time could be dialed down by a factor of two without affecting
the running time of most applications. Thus, as parallelism levels have increased,
algorithms and software have had to increasingly deal with memory hierarchy issues,
which are now fundamental to parallel programming.

Community acceptance is essential to the success of software. Technical excellence
alone cannot guarantee that a new software approach will be successful. The scientific
community is generally conservative, in the sense that they will not risk their effort
on software strategies that are likely to fail. To achieve widespread use, there has to
be the expectation that a software system will survive the test of time. Standards
are an important part of this, but cannot alone guarantee success. A case in point is
HPF. In spite of the generally acknowledged value of the idea of distribution-based
languages and a CRPC-led standardization effort, HPF failed to achieve the level of
acceptance of MPI because the commercial compilers did not mature in time to gain
the confidence of the community.

Good commercial software is rare at the high end. Because of the small size of
the high-end supercomputing market, commercial software production is difficult to
sustain unless it also supports a much broader market for medium-level systems, such
as symmetric (shared-memory) multiprocessors. OpenMP has succeeded because it
targets that market, while HPF was focused on the high end. The most obvious
victim of market pressures at the high end are tools—tuners and debuggers—that
are usually left until last by the vendors and often abandoned. This has seriously
impeded the widespread acceptance of scalable parallelism and has led to a number
of community-based efforts to fill the gap based on open software. Some of these
efforts are described in later chapters.

1.4 Toward a Science of Parallel Computation

When the CRPC began activities in 1989, parallel computing was still in its infancy.
Most commercial offerings consisted of a few processors that shared a single memory.
Scalable parallel systems, although long a subject of research, had just graduated
from laboratories to become prototype commercial products. Almost every parallel
computer had a different proprietary programming interface. Since that time, many
machines (and companies) have come and gone.

To deal with the rapid pace of change in parallel systems, application developers
needed principles and tools that would survive in the long term and isolate them
from the changing nature of the underlying hardware. On the other hand, they also
needed new parallel algorithms and an understanding of how to match them to
different architectures with differing numbers of processors. In short, they needed a
science of parallel computation.

14 Chapter 1 Introduction

Fostering such a science was a major goal of the High-Performance Computing
and Communications (HPCC) initiative, launched by the federal government in
1991. With the help of this initiative, the CRPC and the entire parallel-computing
research community have made major strides toward the desired goal. Message-
passing interfaces have been standardized; a variety of higher-level programming
interfaces have been developed and incorporated into commercial products; debug-
ging systems and I/O interfaces have matured into useful standards; and many new
parallel algorithms have been developed and incorporated into widely distributed
libraries and templates.

Why, in the face of these advances, is the science of parallel computation still
interesting to study? In 1989, many of us felt that we could develop a higher-level
parallel programming interface that would supplant the message-passing paradigms
then being used. However, our expectation that explicit message passing would rou-
tinely be hidden from the developer has not been realized. Today, most developers
must use explicit message passing, albeit via a more sophisticated portable interface,
to generate efficient scalable parallel programs. This is but one example demonstrat-
ing that the science of parallel computation is incomplete.

It is possible that our original goal was unrealistic and that the desired science can-
not be achieved. We doubt this, as we now understand much better the demands
of applications and the intricacies of high-performance architectures. We under-
stand better where parallel performance is essential and where the developer needs
programming paradigms optimized more for functionality than performance; this
corresponds to the emerging picture of hybrid systems as a Grid of loosely coupled
high performance parallel “kernels.” Furthermore, we now have better technologies
than those available a decade ago. These technologies come not only from deeper
understanding of the problem of parallel computing, but also from new ideas. These
include the broader acceptance of object-based languages, powerful scripting envi-
ronments, and the growing understanding of the role of meta-data in defining how
computation should be applied dynamically. Java, Python, and the Semantic Web
are illustrative of technologies reflecting these new ideas.

Our intent is that this book document the current science of parallel computation,
including the best methods, algorithms, and tools that were developed during the 11
years of CRPC activities, and thus serve as a useful resource for practicing application
developers. In addition, we hope it will motivate new approaches to the support of
parallel programming that could lead finally to the realization of our original dream.

C

H

A

P

T

E

R

2 Parallel Computer Architectures

William Gropp . Rick Stevens .

Charlie Catlett

Parallel computers provide great amounts of computing power, but they do so at the
cost of increased difficulty in programming and using them. Certainly, a uniproces-
sor that was fast enough would be simpler to use. To explain why parallel computers
are inevitable and to identify the challenges facing developers of parallel algorithms,
programming models, and systems, in this chapter we provide an overview of the
architecture of both uniprocessor and parallel computers. We show that while com-
puting power can be increased by adding processing units, memory latency (the
irreducible time to access data) is the source of many challenges in both uniproces-
sor and parallel processor design. In Chapter 3, some of these issues are revisited
from the perspective of the programming challenges they present.

Parallel architectures and programming models are not independent. While most
architectures can support all major programming models, they may not be able to
do so with enough efficiency to be effective. An important part of any parallel archi-
tecture is any feature that simplifies the process of building (including compiling),
testing, and tuning an application. Some parallel architectures put a great deal of ef-
fort into supporting a parallel programming model; others provide little or no extra
support. All architectures represent a compromise among cost, complexity, timeli-
ness, and performance. Chapter 12 discusses some of the issues of parallel languages
and compilers; for parallel computers that directly support parallel languages, the
ability to compile efficient code is just as important as it is for the single-processor
case.

In Section 2.1, we briefly describe the important features of single-processor (or
uniprocessor) architecture. From this background, the basics of parallel architecture
are presented in Section 2.2; in particular, we describe the opportunities for perfor-
mance improvement through parallelism at each level in a parallel computer, with
references to machines of each type. In Section 2.3, we examine potential future

15

16 Chapter 2 Parallel Computer Architectures

parallel computer architectures. We conclude the chapter with a brief summary of
the key issues motivating the development of parallel algorithms and programming
models.

This chapter discusses only parallel architectures used in high-performance com-
puting. Parallelism is widely used in commercial computing for applications such as
databases and Web servers. Special architectures and hardware have been developed
to support these applications, including special hardware support for synchroniza-
tion and fault tolerance.

2.1 Uniprocessor Architecture

In this section we briefly describe the major components of a conventional, single-
processor computer, emphasizing the design tradeoffs faced by the hardware archi-
tect. This description lays the groundwork for a discussion of parallel architectures,
since parallelism is entirely a response to the difficulty of obtaining ever greater per-
formance (or reliability) in a system that inherently performs only one task at a time.
Readers familiar with uniprocessor architecture may skip to the next section. Those
interested in a more detailed discussion of these issues should consult Patterson and
Hennessy [759].

The major components of a computer are the central processing unit (CPU) that
executes programs, the memory system that stores executing programs and the data
that the programs are operating on, and input/output systems that allow the com-
puter to communicate with the outside world (e.g., through keyboards, networks,
and displays) and with permanent storage devices such as disks. The design of a
computer reflects the available technology; constraints such as power consumption,
physical size, cost, and maintainability; the imagination of the architect; and the
software (programs) that will run on the computer (including compatibility issues).
All of these have changed tremendously over the past 50 years.

Perhaps the best-known change is captured by Moore’s Law [679], which says
that microprocessor CPU performance doubles roughly every 18 months. This is
equivalent to a thousandfold increase in performance over 15 years. Moore’s Law
has been remarkably accurate over the past 36 years (see Figure 2.1), even though
it represents an observation about (and a driver of) the rate of engineering progress
and is not a law of nature (such as the speed of light). In fact, it is interesting to look
at the clock speed of the fastest machines in addition to (and compared with) that of
microprocessors. In 1981, the Cray 1 was one of the fastest computers, with a 12.5
ns clock. In 2001, microprocessors with 0.8 ns clocks are becoming available. This is
a factor of 16 in 20 years, or equivalently a doubling every 5 years.

Remarkable advances have occurred in other areas of computer technology as
well. The cost per byte of storage, both in computer memory and in disk storage, has
fallen along a similar exponential curve, as has the physical size per byte of storage
(in fact, cost and size are closely related). Dramatic advancements in algorithms have
reduced the amount of work needed to solve many classes of important problems;
for example, the work needed to solve n simultaneous linear equations has fallen,

2.1 Uniprocessor Architecture 17

0.1

1

10

100

1000

01/75 01/80 01/85 01/90 01/95 01/00 01/05

Vector
RISC
Intel

Figure 2.1 Improvement in CPU performance measured by clock rate in nanoseconds.

in many cases, from n3 to n. For 1 million equations, this is an improvement of 12
orders of magnitude!

Unfortunately, these changes have not been uniform. For example, while the den-
sity of storage (memory and disk) and the bandwidths have increased dramatically,
the decrease in the time to access storage (latency) has not kept up. As a result, over
the years, the balance in performance between the different parts of a computer has
changed. In the case of storage, increases in clock rates relative to storage latency
have translated Moore’s Law into a description of inflation in terms of the relative
cost of memory access from the point of view of potentially wasted CPU cycles. This
has forced computer architectures to evolve over the years, for example, moving to
deeper and more complex memory hierarchies.

2.1.1 The CPU

The CPU is the heart of the computer; it is responsible for all calculations and for
controlling or supervising the other parts of the computer. A typical CPU contains
the following (see Figure 2.2):

. Arithmetic logic unit (ALU). Performs computations such as addition and com-
parison.

. Floating-point unit (FPU). Performs operations on floating-point numbers.

. Load/store unit. Performs loads and stores for data.

18 Chapter 2 Parallel Computer Architectures

. Registers. Fast memory locations used to store intermediate results. These are
often subdivided into floating-point registers (FPRs) and general purpose reg-
isters (GPRs).

. Program counter (PC). Contains the address of the instruction that is executing.

. Memory interface. Provides access to the memory system. In addition, the CPU
chip often contains the fastest part of the memory hierarchy (the top-level
cache); this part is described in Section 2.1.2.

Other components of a CPU are needed for a complete system, but the ones listed
are the most important for our purpose.

The CPU operates in steps controlled by a clock: In each step, or clock cycle, the
CPU performs an operation.1 The speed of the CPU clock has increased dramatically;
desktop computers now come with clocks that run at over 2 GHz (2× 109 Hz).

One of the first decisions that a computer architect must make is what basic
operations can be performed by the CPU. There are two major camps: the complex
instruction set computer (CISC) and the reduced instruction set computer (RISC).
A RISC CPU can do just as much as a CISC CPU; however, it may require more
instructions to perform the same operation. The tradeoff is that a RISC CPU, because
the instructions are fewer and simpler, may be able to execute each instruction faster
(i.e., the CPU can have a higher clock speed), allowing it to complete the operation
more quickly.

The specific set of instructions that a CPU can perform is called the instruction
set. The design of that instruction set relative to the CPU represents the instruction
set architecture (ISA). The instructions are usually produced by compilers from
programs written in higher-level languages such as Fortran or C. The success of
the personal computer has made the Intel x86 ISA the most common ISA, but
many others exist, particularly for enterprise and technical computing. Because
most programs are compiled, ISA features that either aid or impede compilation
can have a major impact on the effectiveness of a processor. In fact, the ability of
compilers to exploit the relative simplicity of RISC systems was a major reason for
their development.

We note that while the ISA may be directly executed by the CPU, another possi-
bility is to design the CPU to convert each instruction into a sequence of one or more
“micro” instructions. This allows a computer architect to take advantage of simple
operations to raise the “core” speed of a CPU, even for an ISA with complex instruc-
tions (i.e., a CISC architecture). Thus, even though a CPU may have a clock speed of
over 1 GHz, it may need multiple clock cycles to execute a single instruction in the
ISA. Hence, simple clock speed comparisons among different architectures are de-
ceptive. Even though one CPU may have a higher clock speed than another, it may

1 Note that we did not say an instruction or a statement. As we will see, modern CPUs may perform both less
than an instruction and more than one instruction in a clock cycle.

2.1 Uniprocessor Architecture 19

L1 instruction cacheL1 data cache

TLBL2 cache

Branch

Instruction DecodeLoad/store

Comparison
result PC

ALU

FPU

GPR

FPR

Control

Memory system

Functional
units

Data
Program and

control

Figure 2.2 Generic CPU diagram. This example has a separate L1 cache for data and for
program instructions and a unified (both data and instructions) L2 cache. Not all data paths
are shown.

also require more clock cycles than the “slower” CPU in order to execute a single
instruction.

Programs executed by the CPU are stored in memory. The program counter specifies
the address in memory of the executing instruction. This instruction is fetched from
memory and decoded in the CPU. As each instruction is executed, the PC changes
to the address of the next instruction. Control flow in a program (e.g., if, while, or
function call) is implemented by setting the PC to a new address.

One important part of the ISA concerns how memory is accessed. When mem-
ory speeds were relatively fast compared with CPU speeds (particularly for complex

20 Chapter 2 Parallel Computer Architectures

operations such as floating-point division), the ISA might have included instructions
that read several items from memory, performed the operation, and stored the re-
sult into memory. These were called memory-to-memory operations. However, as
CPU speeds increased dramatically relative to memory access speeds, ISAs changed
to emphasize a “load-store” architecture. In this approach, all operations are per-
formed by using data in special, very fast locations called registers that are part of
the CPU. Before a value from memory can be used, it must first be loaded into a
register, using an address that has been computed and placed into another register.
Operations take operands from registers and put the result back into a register; these
are sometimes called register-to-register operations. A separate store operation puts a
value back into the memory (generally indirectly by way of a cache hierarchy analo-
gous to the register scheme just described). Load operations and store operations are
often handled by a load/store functional unit, much as floating-point arithmetic is
handled by a floating-point unit (FPU).

Over the years, CPUs have provided special features to support various program-
ming models. For example, CISC-style ISAs often include string search instructions
and even polynomial evaluation. Some current ISAs support instructions that make
it easy to access consecutive elements in memory by updating the register holding
the load address; this corresponds closely to the a=*x++; statement in the C program-
ming language and to typical Fortran coding practice for loops.

One source of complexity in a CPU is the difference in the complexity of the in-
structions. Some instructions, such as bitwise logical or, are easy to implement in
hardware. Others, such as floating-point division, are extremely complicated. Mem-
ory references provide a different kind of complexity; as we will see, the CPU often
cannot predict when a memory reference will complete. Many different approaches
have been taken to address these issues. For example, in the case of floating-point
operations, pipelining has been used. Like the RISC approach, pipelining breaks a
complex operation into separate parts. Unlike the RISC approach, however, each
stage in the pipeline can be executed at the same time by the CPU, but on different
data. In other words, once a floating-point operation has been started in a clock cy-
cle, even though that operation has not completed, a new floating-point operation
can be started in the next clock cycle. It is not unusual for operations to take 2 to
20 cycles to complete. Figure 2.3 illustrates a pipeline for floating-point addition.
Pipelines have been getting deeper (i.e., have more stages) as clock speeds increase.
Note also that this hardware approach is very similar to the use of pipelining in
algorithms described in Section 3.3.2. As CPUs have become faster, pipelining has
been used more extensively. In modern CPUs, many other instructions (not just
floating-point operations) may be pipelined.

From this discussion, we can already see some of the barriers to achieving higher
performance. A clock rate of 1 GHz corresponds to a period of only 1 ns. In 1 ns,
light travels only about 1 foot in a vacuum, and less in an electrical circuit. Even in
the best case, a single processor running at 10 GHz (three more doublings in CPU
performance or, if Moore’s Law continues to hold, appearing in less than 5 years) and
its memory could be only about 1 inch across; any larger and a signal could not cross
the chip during a single clock cycle. At that size, heat dissipation, already a concern

2.1 Uniprocessor Architecture 21

RoundNormalize

(b)

(a)

Ti
m

e

A4+B4

A4+B4

A4+B4

A3+B3

A3+B3

A3+B3

A2+B2

A2+B2

A2+B2

A1+B1

A1+B1

A1+B1

A4+B4

A3+B3

A2+B2

A1+B1

Align Add

Figure 2.3 Example of a floating-point pipeline. (a) The separate stages in the pipeline.
(b) Four pairs of numbers are added in 7 clock cycles. Note that after a 3-cycle delay, one result
is returned every cycle. Without pipelining, 16 clock cycles would be required to add four pairs
of numbers.

for many CPUs, becomes a major problem. Approaches such as pipelining (already a
kind of parallelism) require that enough operations and operands be available to keep
the pipeline full. Other approaches begin to introduce a very fine scale of parallelism.
For example, multiple functional units such as multiple floating-point adders and
multipliers may be provided. In such cases, however, the program must be rewritten
and/or recompiled to make use of the additional resources. (These enhancements
are discussed in Section 2.2.3.)

Once on-chip clock latency is addressed, the designer must face an even more
challenging problem: latency to storage, beginning with memory.

2.1.2 Memory

While a computer is running, active data and programs are stored in memory.
Memory systems are quite complex, introducing a number of design issues. Among
these are the following:

22 Chapter 2 Parallel Computer Architectures

. Memory size. Users never have enough computer memory, so the concept of
virtual memory was introduced to fool programs into thinking that they have
large amounts of memory just for their own use.

. Memory latency and hierarchy. The time to access memory has not kept pace with
CPU clock speeds. Levels or hierarchies of memory try to achieve a compromise
between performance and cost.

. Memory bandwidth. The rate at which memory can be transferred to and from
the CPU (or other devices, such as disks) also has not kept up with CPU speeds.

. Memory protection. Many architectures include hardware support for memory
protection, aimed primarily at preventing application software from modify-
ing (intentionally or inadvertently) either system memory or memory in use
by other programs.

Of these, memory latency is the most difficult problem. Memory size, in many
ways, is simply a matter of money. Bandwidth can be increased by increasing the
number of paths to memory (another use of parallelism) and using techniques such
as interleaving. Latencies are related to physical constraints and are harder to reduce.
Further, high latencies reduce the effective bandwidth of a given load or store. To
see this, consider a memory interconnect that transfers blocks of 32 bytes with a
bandwidth of 1 GB/s. In other words, the time to transfer 32 bytes is 32 ns. If the
latency of the memory system is also 32 ns (an optimistic figure), the total time
to transfer the data is 64 ns, reducing the effective bandwidth from 1 GB/s to 500
MB/s. The most common approach to improving bandwidth in the presence of high
latency is to increase the amount of data moved each time, thus amortizing the
latency over more data. However, this helps only when all data moved are needed
by the running program. Chapter 3 discusses this issue in detail from the viewpoint
of software.

An executing program, or process, involves an address space and one or more
program counters. Operating systems manage the time sharing of a CPU to allow
many processes to appear to be running at the same time (for parallel computers,
the processes may in fact be running simultaneously). The operating system, working
with the memory system hardware, provides each process with the appearance of a
private address space. Most systems further allow the private memory space to appear
larger than the available amount of physical memory. This is called a virtual address
space. Of course, the actual physical memory hardware defines an address space, or
physical address space. Any memory reference made by a process, for example, with
a load or store instruction, must first be translated from the virtual address (the
address known to the process) to the physical address. This step is performed by the
translation lookaside buffer (TLB), which is part of the memory system hardware. In
most systems, the TLB can map only a subset of the virtual addresses (it is a kind of
address cache); if a virtual address can’t be handled by the TLB, the operating system
is asked to help out, and in such case, the cost of accessing memory greatly increases.

2.1 Uniprocessor Architecture 23

0

20

40

60

80

100

120

140

160

01/80 01/82 01/84 01/86 01/88 01/90 01/92 01/94 01/96 01/98 01/00

DRAM Row access

Figure 2.4 DRAM latency in nanoseconds versus time. Note that, unlike the CPU times in
Figure 2.1, the vertical axis is linear, and the improvement in performance is little more than
a factor of two in 10 years.

For this reason, some high-performance systems have chosen not to provide virtual
addressing.

Finding ways to decrease memory latency is a difficult problem. To understand
why, we must first look at how computer memory works. Semiconductor memory
comes in two main types: static random access memory (SRAM), in which each
bit of memory is stored in a latch made up of transistors, and dynamic random
access memory (DRAM), in which each bit of memory is stored as a charge on a
capacitor. SRAM is faster than DRAM but is much less dense (has fewer bits per chip)
and requires much greater power (resulting in heat). The difference is so great that
virtually all computers use DRAM for the majority of their memory. However, as
Figure 2.4 shows, the performance of DRAM memory has not followed the Moore’s
Law curve that CPU clock speeds have. Instead, the density and price/performance
of DRAMs have risen exponentially. The scale of this problem can be seen by
comparing the speeds of DRAMs and CPUs. For example, a 1-GHz CPU will execute
60 instructions before a typical (60 ns) DRAM can return a single byte. Hence, in a
program that issues a load for a data item that must come from DRAM, at least 60
cycles will pass before the data will be available. In practice, the delay can be longer
because there is more involved in providing the data item than just accessing the
DRAM.

24 Chapter 2 Parallel Computer Architectures

To work around this performance gap, computer architects have introduced a
hierarchy of smaller but faster memories. These are called cache memories because they
work by caching copies of data from the DRAM memory in faster SRAM memory,
closer to the CPU. Because SRAM memory is more expensive and less dense and
consumes much more power than does DRAM memory, cache memory sizes are
small relative to main memory. In fact, there is usually a hierarchy of cache memory,
starting from level 1 (L1), which is the smallest (and fastest) and is on-chip on all
modern CPUs. Many systems have two or three levels of cache. A typical size is 16
KB to 128 KB for L1 cache memory to as much as 4 MB to 8 MB for L2 or L3 cache
memory. Typical DRAM memory sizes, on the other hand, are 256 MB to 4 GB—a
factor of about a thousand larger.

Memory hierarchy brings up another problem. Because the cache memory is so
much smaller than the main memory, it often isn’t possible for all of the memory
used by a process to reside in the L1 or even L2 cache memory. Thus, as a process
runs, the memory system hardware must decide which memory locations to copy
into cache. If the cache is full and a new memory location is needed, some other
item must be removed from the cache (and written back2 to the main memory if
necessary). If the CPU makes a request for data, and the requested data are not in
cache, a cache miss occurs. The rate at which this happens is called the cache miss
rate, and one of the primary goals of a memory system architect is to make the
miss rate as small as possible. Of course, the rate depends on the behavior of the
program, and this in turn depends on the algorithms used by the program. Many
different strategies are used to try to achieve low miss rates in a cache while keeping
the cache fast and relatively inexpensive. To reduce the miss rate, programs exploit
temporal locality: reusing the same data within a short span of time, that is, reusing
the data before they are removed from the cache to make room for some other data.
This process, in turn, requires the algorithm developer and programmer to pay close
attention to how data are used in a program.

As just one example, consider the choice of the cache-line size. Data between cache
and main memory usually are transferred in groups of 64, 128, or 256 bytes. This
group is called a cache line. Moving an entire cache line at one time allows the main
memory to provide relatively efficient bursts of data (it will be at least 60 ns before we
can get the first byte; subsequent consecutive bytes can be delivered without much
delay). Thus, programs that access “nearby” memory after the first access will find
that the data they need are already in cache. For these programs, a larger line size will
improve performance. However, programs that access memory in a less structured
way may find that they spend most of their time reading data into cache that are
never used. For these programs, a large line size reduces performance compared with

2 Write-back caches wait until an item is displaced from the cache before writing the data back into memory.
Write-through caches store data to memory and into the cache at the same time. Other approaches can be used
as well.

2.1 Uniprocessor Architecture 25

a system that uses a shorter cache line. Chapter 3 discusses these issues in more detail,
along with strategies for reducing the impact of memory hierarchies on performance.

Many other issues also remain, with similarly difficult tradeoffs, such as associa-
tivity (how main memory addresses are mapped into the cache), replacement policy
(what data are ejected to make room for new data), and cache size. Exploiting the fact
that memory is loaded in larger units than the natural scalar objects (such as inte-
gers, characters, or floating-point numbers) is called exploiting spatial locality. Spatial
locality also requires temporal locality.

The effective use of cache memory is so important for high-performance applica-
tions that algorithms have been developed that are tailored to the requirements of
these memory hierarchies. On the other hand, the most widely used programming
models ignore cache memory requirements. Hence, problems remain with the practi-
cal programming of these systems for high performance. We also see in Section 2.2.1
that the use of copies of data in a cache causes problems for parallel systems.

In recent years, there has been rapid progress in memory system design, particu-
larly for personal computers and workstations. Many of these designs have focused
on delivering greater bandwidth and have names like RAMBUS, DDR (for double
data rate), and EDO. See Cuppu et al. [240] and other articles in the same issue for a
discussion of high-performance DRAM technologies.

2.1.3 I/O and Networking

Discussions of computers often slight the issues of I/O and networking. I/O, partic-
ularly to the disks that store files and swap space for supporting virtual memory, has
followed a path similar to that of main memory. That is, densities and sizes have
increased enormously (25 years ago, a 40-MB disk was large and expensive; today, a
40-GB disk is a commodity consumer item), but latencies have remained relatively
unchanged. Because disks are electromechanical devices, latencies are in the range
of milliseconds or a million times greater than CPU speeds. To address this issue,
some of the same techniques used for memory have been adopted, particularly the
use of caches (typically using DRAM memory) to improve performance.

Networking has changed less. Although Ethernet was introduced 22 years ago,
only relatively modest improvements in performance were seen for many years, and
most of the improvement has been in reduced monetary cost. Fortunately, in the past
few years, this situation has started to change. In particular, the 100-MB Ethernet
has nearly displaced the original 10-MB Ethernet, and several gigabit networking
technologies are gaining ground, as are industry efforts, such as Infiniband [503], to
accelerate the rate of improvement in network bandwidth. Optical technologies have
been in use for some time but are now poised to significantly increase the available
bandwidths. Networks, are, however, fundamentally constrained by the speed of
light. Latencies can never be less than 3 ns per meter. Another constraint is the way
in which the network is used by the software. The approaches that are currently used
by most software involve the operating system (OS) in most networking operations,
including most data transfers between the main memory and the network. Involving

26 Chapter 2 Parallel Computer Architectures

the OS significantly impacts performance; in many cases, data must be moved several
times. Recent developments in networking [962, 964] have emphasized transfers
that are executed without the involvement of the operating system, variously called
user-mode, OS bypass, or scheduled transfer. These combine hardware support with a
programming model that allows higher network performance.

2.1.4 Design Tradeoffs

The design of a single-processor computer is a constant struggle against competing
constraints. How should resources be allocated? Is it better to use transistors on
a CPU chip to provide a larger fast L1 cache, or should they be used to improve
the performance of some of the floating-point instructions? Should transistors be
used to add more functional units? Should there be more registers, even if the ISA
then has to change? Should the L1 cache be made larger at the expense of the L2
cache? Should the memory system be optimized for applications that make regular
or irregular memory accesses? There are no easy answers here. The complexity has
in fact led to increasingly complex CPU designs that use tens or even hundreds of
millions of transistors and that are enormously costly to design and manufacture.
Particularly difficult is the mismatch in performance between memory and CPU. This
mismatch also causes problems for programmers; see, for example, Karp [534] for a
discussion of what should be a simple operation (bit reversal) but whose performance
varies widely as a result of the use of caches and TLBs. These difficulties have
encouraged computer architects to consider a wide variety of alternative approaches
for improving computer system performance. Parallelism is one of the most powerful
and most widely used.

2.2 Parallel Architectures

This section presents an overview of parallel architectures, considered as responses to
limitations and problems in uniprocessor architectures and to technology opportu-
nities. We start by considering parallelism in the memory systems, since the choices
here have the most effect on programming models and algorithms. Parallelism in
the CPU is discussed next; after increases in clock rates, this is a source of much of
the improvement in sustained performance in microprocessors. For a much more
detailed discussion of parallel computer architectures, see Culler et al. [236].

2.2.1 Memory Parallelism

One of the easiest ways to improve performance of a computer system is simply to
replicate entire computers and add a way for the separate computers to communicate
data. This approach, shown schematically in Figure 2.5, provides an easy way to
increase memory bandwidth and aggregate processing power without changing the
CPU, allowing parallel computers to take advantage of the huge investment in
commodity microprocessor CPUs. The cost is in increased complexity of the software

2.2 Parallel Architectures 27

CPU

Mem N
IC

N
IC

Mem

CPUCPU

Mem N
IC

N
IC

Mem

CPU

Interconnect (bus)

CPUCPUCPU

MemoryMemoryMemoryMemory

Two-stage
interconnect

(b)

(a)

Figure 2.5 Schematic parallel computer organization. (a) Typical shared-memory system,
where the interconnect may be either a simple bus or a sophisticated switch. (b) Distributed-
memory system, which may be either a distributed shared-memory system or a simpler
shared-nothing system, depending on the capabilities of the network interface (NIC).

and in the impact that this has on the performance of applications. The major choice
here is between distributed memory and shared memory.

Distributed Memory

The simplest approach from the hardware perspective is the distributed-memory, or
shared-nothing, model. The approach here is to use separate computers connected by
a network. The typical programming model consists of separate processes on each
computer communicating by sending messages (message passing), usually by calling
library routines. This is the most classic form of parallel computing, dating back to
when the computers were people with calculators and the messages were written on
slips of paper [800].The modern distributed-memory parallel computer started with
the work of Seitz [845].

Distributed-memory systems are the most common parallel computers because
they are the easiest to assemble. Systems from Intel, particularly the Paragon and
the 512-processor Delta, were important in demonstrating that applications could

28 Chapter 2 Parallel Computer Architectures

make effective use of large numbers of processors. Perhaps the most successful
commercial distributed-memory system is the IBM SP family. SP systems combine
various versions of the successful RS6000 workstation and server nodes with different
interconnects to provide a wide variety of parallel systems, from 8 processors to the
8192-processor ASCI White system. Some distributed-memory systems have been
built with special-purpose hardware that provides remote memory operations such
as put and get. The most successful of these are the Cray T3D and T3E systems.

Many groups have exploited the low cost and relatively high performance of
commodity microprocessors to build clusters of personal computers or workstations.
Early versions of these were built from desktop workstations and were sometimes
referred to as NOWs, for networks of workstations. The continued improvement in
performance of personal computers, combined with the emergence of open source
(and free) versions of the UNIX operating system, gave rise to clusters of machines.
These systems are now widely known as Beowulfs or Beowulf clusters, from a project
begun by Thomas Sterling and Donald Becker at the National Aeronautics and Space
Administration [897, 898]. They are real parallel machines; as of 2000, 2 of the top
100 supercomputer systems were built from commodity parts.

We note that the term cluster can be applied both broadly (any system built with
a significant number of commodity components) or narrowly (only commodity
components and open-source software). In fact, there is no precise definition of a
cluster. Some of the issues that are used to argue that a system is a massively parallel
processor (MPP) instead of a cluster include proprietary interconnects (various in-
terconnects are described in Section 2.2.2), particularly ones designed for a specific
parallel computer, and special software that treats the entire system as a single ma-
chine, particularly for the system administrators. Clusters may be built from personal
computers or workstations (either single processors or symmetric multiprocessors
(SMPs)) and may run either open-source or proprietary operating systems.

While the message-passing programming model has been successful, it empha-
sizes that the parallel computer is a collection of separate computers.

Shared Memory

A more complex approach ties the computers more closely together by placing all
of the memory into a single (physical) address space and supporting virtual address
spaces across all of the memory. That is, data are available to all of the CPUs through
the load and store instructions of the ISA. Because access to the memory is through
load and store operations rather than the network operations used in distributed-
memory systems, access to remote memory has lower latency and higher bandwidth.
These advantages come with a cost, however. The two major issues are consistency
and coherency. The most serious problem (from the viewpoint of the programmer)
is consistency. To understand this problem, consider the following simple Fortran
program:

a = a + 1

b = 1

2.2 Parallel Architectures 29

In a generic ISA, the part that increments the variable a might be translated into

.

.

.

LOAD R12, %A10 ; Load a into register

ADD R12, #1 ; Add one to the value in R12

STORE R12, %A10 ; Store the result back into A
.
.
.

The important point here is that the single program statement a=a+1 turns into three
separate instructions. Now, recall our discussion of cache memory. In a uniprocessor,
the first time the LOAD operation occurs, the value is brought into the memory cache.
The STORE operation writes the value from register back into the cache. Now, assume
that another CPU, executing a program that is using the same address space, executes

10 if (b .eq. 0) goto 10

print *, a

What value of a does that CPU see? We would like it to see the value of a after the
increment. But that requires that the value has both been written back to the memory
from the cache of the first CPU and read into cache (even if the corresponding
cache line had previously been read into memory) on the second CPU. In other
words, we want the program to execute as if the cache were not present, that is, as
if every load and store operation worked directly on the memory and in the order
in which it was written. The copies of the memory in the cache are used only to
improve performance of memory operations; they do not change the behavior of
programs that are accessing the same memory locations. Cache memory systems that
accomplish this objective are called cache coherent . Most (but not all) shared-memory
systems are cache coherent. Ensuring that a memory system is cache coherent
requires additional hardware and adds to the complexity of the system. On the other
hand, it simplifies the job of the programmer, since the correctness of a program
doesn’t depend on details of the behavior of the cache. We will see, however, that
while cache coherence is necessary, it is not sufficient to provide the programmer
with a friendly programming environment.

The complexity of providing cache coherency has led to different designs. One
important class is called uniform memory access (UMA). In this design, each memory
and cache is connected to all of the others; each part observes any memory opera-
tion (such as a load from a memory location) and ensures that cache coherence is
maintained. The name UMA derives from the fact that the time to access a location
from memory (not from cache and on an unloaded or nearly idle machine) is inde-
pendent of the address (and hence particular memory unit). Early implementations
used a bus, which is a common signaling layer that connects each processor and
memory. Because buses are not scalable (all devices on the bus must share a limited
amount of communication), higher-performance UMA systems based on completely

30 Chapter 2 Parallel Computer Architectures

connected networks have been constructed. Such networks themselves are not scal-
able (the number of connections for p components grows as p2), leading to another
class of shared-memory designs.

The nonuniform memory access (NUMA) approach does not require that all memory
be equally “distant” (in terms of access time). Instead, the memory may be connected
by a scalable network. Such systems can be more sensitive to the details of data lay-
out but can also scale to much larger numbers of processors. To emphasize that
a NUMA system is cache coherent, the term CC-NUMA is often used. The term
distributed shared memory (DSM) is also often used to emphasize the NUMA char-
acteristics of this approach to building shared-memory hardware. The term virtual
shared memory, or virtual distributed shared memory, is used to describe a system that
provides the programmer with a shared-memory programming model built on top
of distributed-memory (not DSM) hardware.

Shared-memory systems are becoming common, even for desktop systems. Most
vendors include shared-memory systems among their offerings, including Compaq,
HP, IBM, SGI, and Sun and many personal computer vendors. Most of these systems
have between 2 and 16 processors; most of these are UMA systems. Typical CC-
NUMA systems include the SGI Origin 3000 (typically up to 128 processors, and
1024 in special configurations) and the HP SuperDome (up to 64 processors). The
SGI Origin uses an approach called directory-based cache coherency (directory caches,
for short) [604] to distribute the information needed to maintain cache coherency
across the network that connects the memory to the CPUs.

Shared-memory systems often have quite modest memory bandwidths. At the
low end, in fact, the same aggregate memory bandwidth may be provided to systems
with 1 to 4 or even 16 processors. As a result, some of these systems are often starved
for memory bandwidth. This can be a problem for applications that do not fit in
cache. Applications that are memory-access bound can even slow as processors are
added in such systems. Of course, not all systems are underpowered, and the memory
performance of even the low-end systems has been improving rapidly.

Memory Consistency and Programming Models

How does the programming model change when several threads or processes share
memory? What are the new issues and concerns? Consider a uniprocessor CPU ex-
ecuting a single-user program (a single-threaded, single-process program). Programs
execute simply, one statement after the other. Implicit in this is that all statements be-
fore the current statement have completed before the current statement is executed.
In particular, all stores to and loads from memory issued by previous statements
have completed before the current statement begins to execute. In a multiprocessor
executing a single program on multiple processors, the notion of “current” state-
ment and “completed before” is unclear—or rather, it can be defined to be clear, but
only at a high cost in performance.

Section 3.2 discusses the question of when a program can be run in parallel and
give correct results. The discussion focuses on the issues for software. Lamport [590]

2.2 Parallel Architectures 31

asked a similar question about the parallel computer hardware in an article titled,
“How to Make a Multiprocessor Computer That Correctly Executes Multiprocess
Programs.” From a programmer’s perspective, a parallel program should execute as
if it were some arbitrary interleaving (but preserving order) of the statements in the
program. This requirement is called sequential consistency and is essentially a “what
you see (or write) is what you get” requirement for executing parallel programs.
Unfortunately, while this matches the way most programmers look at their code, it
imposes severe constraints on the hardware, in large part because of the high latency
of memory accesses relative to the CPU speed.

Because providing sequential consistency limits performance, weaker models
have been proposed. One model proposed in the late 1980s, called processor con-
sistency [390], matched many of the then-current multiprocessor implementations
but (usually) required some explicit action by the programmer to ensure correct pro-
gram behavior. Programmers who use the thread programming model with thread
locks to synchronize accesses to shared data structures satisfy this requirement be-
cause the implementation of the lock and unlock calls in the thread library ensures
that the correct instructions are issued.

Some programmers prefer to avoid the use of locks, however, because of their
relatively high overhead, and instead use flag variables to control access to shared
data (as we used a as the flag variable in the preceding section). Weak consistency
[295] is appropriate for such programs; like processor consistency, the programmer
is required to take special steps to ensure correct operation.

Even weak consistency interferes with some performance optimizations, however.
For this reason, release consistency [375] was introduced. This form of consistency
separates synchronization between two processes or threads into an acquire and a
release step.

The important point for programmers and algorithm developers is that the pro-
gramming model that is most natural for programmers and which reflects the way we
read programs is sequential consistency, and this model is not implemented by par-
allel computer hardware. Consequently, the programmer cannot rely on programs
executing as some interleaved ordering of the statements. The specific consistency
model that is implemented by the hardware may require different degrees of addi-
tional specification by the programmer. Language design for parallel programming
may take the consistency model into account, providing ways for the compiler, not
the programmer, to enforce consistency. Unfortunately, most languages (including
C, C++, and Fortran) were designed for single threads of control and do not provide
any mechanism to enforce consistency.

Note that if memory latency was small, providing sequential consistency would
not greatly impact performance. Weaker forms of consistency would not be needed,
and Lamport’s title [590] would reflect real machines. In addition, these concepts
address only correctness of parallel programs. Chapter 3 discusses some of the
performance issues that arise in parallel computers, such as the problem of false
sharing. Section 2.2.5 describes some of the instruction set features that are used by
programming models to ensure correct operation of correct programs.

32 Chapter 2 Parallel Computer Architectures

Other Approaches

Two other approaches to parallelism in memory are important. In both of these,
the CPU is customized to work with the memory system. In single-instruction,
multiple-data (SIMD) parallelism, simplified CPUs are connected to memory. Unlike
the previous cases, in the SIMD approach, each CPU executes the same instruction
in each clock cycle. Such systems are well suited for the data-parallel programming
model, where data are divided up among memory systems and the same operation
is performed on each data element. For example, the Fortran code

do i=1, 10000

a(i) = a(i) + alpha * b(i)

enddo

can be converted into a small number of instructions, with each CPU taking a part
of the arrays a and b. While these systems have fallen out of favor as general purpose
computers, they are still important in fields such as signal processing. The most
famous general purpose SIMD system was the Connection Machine (CM-1 and CM-
2) [472].

The other major approach is vector computing. This is often not considered par-
allelism because the CPU has little explicit parallelism, but parallelism is used in the
memory system. In vector computing, operations are performed on vectors, often
groups of 64 floating-point numbers. A single instruction in a vector computer may
cause 64 results to be computed (often with a pipelined floating-point unit), using
vectors stored in vector registers. Data transfers from memory to vector registers
make use of multiple memory banks; the parallelism in the memory supports very
high bandwidths between the CPU and the memory. Vector computers often have
memory bandwidths that are an order of magnitude or more greater than nonvector
computers. We return to vector computing in Section 2.2.3 after discussing paral-
lelism in the CPU.

Parallel vector processors represent one of the most powerful classes of parallel
computer, combining impressive per processor performance with parallelism. As late
as 1996, the top machines on the Top500 list of supercomputers were parallel vector
processors [936], and since then only massively parallel systems with thousands of
processors are faster.

The fastest of these machines may not provide full cache coherency in hardware;
instead, they may require some support from the software to maintain a consistent
view of memory. Machines in this category include the NEC SX-5 and Cray SV1. This
is an example of the sort of tradeoff of performance versus cost and complexity that
continues to face architects of parallel systems.

A distinguishing feature of vector processors and parallel vector processors is the
high memory bandwidth, often 4 to 16 bytes per floating-point operation. This is
reflected in the high sustained performance achieved on these machines for many
scientific applications.

2.2 Parallel Architectures 33

Parallel Random Access Memory

A great deal of theoretical work on the complexity of parallel computation has used
the parallel random access memory (PRAM) model. This is a theoretical model of
a shared-memory computer; different varieties of PRAM vary in the details of how
memory accesses by different threads or processes to the same address are handled.
In order to make the theoretical model tractable, memory access times are usually
considered constant independent of the CPU performing the (nonconflicting) access;
in particular, there are no caches and no factors of 100 or more difference in access
times for different memory locations. While this model is valuable in understanding
the limits of parallel algorithms, the PRAM model represents an abstraction that
cannot be efficiently implemented in practice.

Limits to Memory System Performance

Latency can be hidden by issuing memory operations far enough ahead so that the
data are available when needed. While hiding a few cycles of latency is possible,
the large latencies to DRAM memory are difficult to hide. We can see this situation
by applying Little’s Law to memory requests. Little’s Law is a result from queuing
theory; applied to memory requests, it says that if the memory latency that needs
to be hidden is L and the rate of requests is r, then the number of simultaneously
active requests needed is rL. If this is cast in terms of clock cycles, and if the memory
latency is 100 cycles and a memory request is issued every cycle, then 100 requests
must be active at the same time. The consequences include the following:

1. The bandwidth of the memory system must support more requests (the number
uses the same formula but uses the latency of the interconnect, which may still
be around 10 cycles).

2. There must be enough independent work. Some algorithms, particularly those
that use recurrence relations, do not have much independent work. This
situation places a burden on the algorithm developer and the programmer.

3. The compiler must convert the program into enough independent requests,
and there must be enough resources (such as registers) to hold results as they
arrive (load) or until they depart (store).

Many current microprocessors allow a small number of outstanding memory opera-
tions; only the Cray MTA satisfies the requirements of Little’s Law for main-memory
accesses.

2.2.2 Interconnects

In the preceding section, we described the interaction of memories and CPUs. In this
section, we say a little more about the interconnection networks used to connect
components in a computer (parallel or otherwise).

Many types of networks have been used in the past 30 years for constructing
parallel systems, ranging from relatively simple buses, to 2-D and 3-D meshes, to Clos

34 Chapter 2 Parallel Computer Architectures

networks, and to complex hypercube network topologies [602]. Each type of network
can be described by its topology, its means of dealing with congestion (e.g., blocking
or nonblocking), its approach to message routing, and its bandwidth characteristics.

For a long time, understanding details of the topology was important for program-
mers and algorithm developers seeking to achieve high performance. This situation is
reflected both in the literature and in parallel programming models (e.g., the topol-
ogy routines in message-passing interfaces). Recently, networks have improved to
the point that for many users, network topology is no longer a major factor in per-
formance. However, some of this apparent “flatness” (uniformity) in the topology
comes from greatly increased bandwidth within the network. As network endpoints
become faster, network topology may again become an important consideration in
algorithms and programming models. Congestion in the network can still be a prob-
lem if the network performance doesn’t scale with the number of processing nodes.
The term bisection bandwidth describes the bandwidth of the network across any cut
that divides the network into two parts.

Note that there is no best approach. Simple mesh networks, such as those used in
the Intel TFLOPS (ASCI Red) system, provide effective scalability for many applica-
tions through low latency and high bandwidth, even though a mesh network does
not have scalable performance in the sense that the bisection bandwidth of a mesh
does not grow proportionally with the number of nodes. It is scalable in terms of
the hardware required: there is a constant cost per node for each node added.

When interconnects are viewed as networks between computers, the performance
goals have been quite modest. Fast networks of this type typically have latencies of
10 microseconds or more (including essential software overheads) and bandwidths
on the order of 100 MB/s. Interconnects used to implement shared memory, on the
other hand, are designed to operate at memory system speeds and with no extra
software overhead. Latencies for these systems are measured in nanoseconds, and
bandwidths of 1 to 10 gigabytes per second are becoming common.

Early shared-memory systems used a bus to connect memory and processors.
A bus provides a single, shared connection that all devices use and is relatively
inexpensive to build. The major drawback is that if k devices are using the bus at the
same time, under the best of conditions, each gets 1/k of the available performance
(e.g., bandwidth). Contention between devices on the bus can lower the available
bandwidth considerably.

To address this problem, some shared-memory systems have chosen to use net-
works that connect each processor with each memory system. For small numbers
of processors and memories, a direct connection between each processor and mem-
ory is possible (requiring p2 connections for p devices); this is called a full crossbar.
For larger numbers of processors, a less complete network may be used. A common
approach is to build an interconnect out of several stages, each stage containing
some number of full crossbars. This provides a complete interconnect at the cost of
additional latency.

An interesting development is the convergence of the technology used for net-
working and for shared memory. The scalable coherent interconnect (SCI) [498] was

2.2 Parallel Architectures 35

an early attempt to provide a memory-oriented view of interconnects and has been
used to build CC-NUMA systems from Hewlett-Packard. Building on work both in
research and in industry, the VIA [962] and Infiniband [503] industry-standard inter-
connects allow data to be moved directly from one processor’s memory to another
along an established circuit. These provide a communication model that is much
closer to that used in memory interconnects and should offer much lower latencies
and higher bandwidths than older, message-oriented interconnects.

Systems without hardware-provided cache coherency often provide a way to
indicate that all copies of data in a cache should be discarded; this is called cache
invalidation. Sometimes this is a separate instruction; sometimes it is a side effect of
a synchronization instruction such as test-and-set (e.g., Cray SV-1). Software can use
this strategy to ensure that programs operate correctly. The cost is that all copies of
data in the cache are discarded; hence, subsequent operations that reference memory
locations stall while the cache is refilled. To avoid this situation, some systems allow
individual cache lines to be invalidated rather than the entire cache. However, such
an approach requires great care by the software, since the failure to invalidate a line
containing data that has been updated by another processor can lead to incorrect
and nondeterministic behavior by the program.

For an engaging discussion of the challenges of implementing and programming
shared-memory systems, see Pfister [763].

2.2.3 CPU Parallelism

Parallelism at the level of the CPU is more difficult to implement than simple
replication of CPUs and memory, even when the memory presents a single shared
address space. However, modest parallelism in the CPU provides the easiest route
to improved performance for the majority of applications because little needs to be
done by the programmer to exploit this kind of parallelism.

Superscalar Processing

Look at Figure 2.2 again, and consider the following program fragment:

real a, b, c

integer i, j, k
.
.
.

a = b * c

i = j + k

Assume that the values a, b, c, i, j, and k are already in register. These two statements
use different functional units (FPU and ALU, respectively) and different register
sets (FPR and GPR). A superscalar processor can execute both of these statements
(each requiring a single register-to-register instruction) in the same clock cycle
(more precisely, such a processor will “begin execution” of the two statements, since

36 Chapter 2 Parallel Computer Architectures

both may be pipelined). The term superscalar comes from the fact that more than one
operation can be performed in a single clock cycle and that performance is achieved
on nonvector code. A superscalar processor allows as much parallelism as there are
functional units. Because separate instructions are executed in parallel, this is also
called instruction-level parallelism (ILP). For ILP to be effective, it must be easy for
the hardware to find instructions that do not depend on one another and that use
different functional units. Consider the following example, where the CPU has one
adder and one multiplier. If the CPU executes instructions in the order that they
appear, then the code sequence on the left will take three cycles and the one on the
right only two cycles.

a = b * c a = b * c

d = e * f i = j + k

i = j + k d = e * f

l = m + n l = m + n

Some CPUs will attempt to reorder instructions in the CPU’s hardware, an action
that is most beneficial to legacy applications that cannot be recompiled. It is often
better, however, if the compiler schedules the instructions for effective use of ILP; for
example, a good code-scheduling compiler would transform the code on the left to
the code on the right (but breaking sequential consistency because the load/store
order is not preserved!).

One major drawback of ILP, then, is that the hardware must rediscover what a
scheduling compiler already knows about the instructions that can be executed in
the same clock cycle.

Explicitly Parallel Instructions

Another approach is for the instruction set to encode the use of each part of the CPU.
That is, each instruction contains explicit subinstructions for each of the different
functional units in the CPU. Since each instruction must explicitly specify more
details about what happens in each clock cycle, the resulting instructions are longer
than in other ISAs. In fact, they are usually referred to as very long instruction word
(VLIW) ISAs. VLIW systems usually rely on the compiler to schedule each functional
unit. One of the earliest commercial VLIW machines was the Multiflow Trace. The
Intel IA64 ISA is a descendant of this approach; the term EPIC (explicitly parallel
instruction computing) is used for the Intel variety. EPIC does relax some of the
restrictions of VLIW but still relies on the compiler to express most of the parallelism.

SIMD and Vectors

One approach to parallelism is to apply the same operation to several different data
values, using multiple functional units. For example, a single instruction might
cause four values to be added to four others, using four separate adders. We have
seen this SIMD style of parallelism before, when applied to separate memory units.
The SIMD approach is used in some current processors for special operations. For

2.2 Parallel Architectures 37

example, the Pentium III includes a small set of SIMD-style instructions for single-
precision floating-point and related data move operations. These are designed for
use in graphics transformations that involve matrix-vector multiplication by 4× 4
matrices.

Vector computers use similar techniques in the CPU to achieve greater perfor-
mance. A vector computer can apply the same operation to a collection of data called
a vector; this is usually either successive words in memory or words separated by a
constant offset or stride. Early systems such as the CDC Star 100 and Cyber 205 were
vector memory-to-memory architectures where vectors could be nearly any length.
Since the Cray 1, most vector computers have used vector registers, typically lim-
iting vectors to 64 elements. The big advantage of vector computing comes from
the regular memory access that a vector represents. Through the use of pipelining
and other techniques such as chaining, a vector computer can completely hide the
memory latency by overlapping the access to the next vector with operations on a
current vector.

Vector computing is related to VLIW or explicitly parallel computing in the sense
that each instruction can specify a large amount of work and that advanced compilers
are needed to take advantage of the hardware. Vectors are less flexible than the
VLIW or EPIC approach but, because of the greater regularity, can sustain higher
performance on applications that can be expressed in terms of vectors.

Multithreading

Parallelism in the CPU involves executing multiple sets of instructions. Any one
of these sets, along with the related virtual address space and any state, is called
a thread. Threads are most familiar as a software model (see Chapter 10), but they
are also a hardware model. In the usual hardware model, a thread has no explicit
dependencies with instructions in any other thread, although there may be implicit
dependencies through operations on the same memory address. The critical issues
are (1) How many threads issue operations in each clock cycle? and (2) How many
clock cycles does it take to switch between different threads?

Simultaneous multithreading (SMT) [943] allows many threads to issue instructions
in each clock cycle. For example, if there are four threads and four functional units,
then as long as each functional unit is needed by some thread in each clock cycle, all
functional units can be kept busy every cycle, providing maximum use of the CPU
hardware. The compiler or programmer must divide the program into separately
executing threads. The SMT approach is starting to show up in CPU designs including
versions of the IBM Power processors.

Fine-grained multithreading uses a single thread at a time but allows the CPU to
change threads in a single clock cycle. Thus, a thread that must wait for a slow
operation (anything from a floating-point addition to a load from main memory)
can be “set aside,” allowing other threads to run. Since a load from main memory
may take 100 cycles or more, the benefit of this approach for hiding memory latency
is apparent. The drawback when used to hide memory latency can be seen by

38 Chapter 2 Parallel Computer Architectures

applying Little’s Law. Large numbers of threads must be provided for this approach
to succeed in completely hiding the latency of main (rather than cache) memory.
The Cray MTA is the only commercial architecture to offer enough threads for this
purpose.

All of these techniques can be combined. For example, fine-grained multithread-
ing can be combined with superscalar ILP or explicit parallelism. SMT can restrict
groups of threads to particular functional units in order to simplify the processor
design, particularly in processors with multiple FPUs and ALUs.

2.2.4 I/O and Networking for Parallel Processors

Just as in the uniprocessor case, I/O and networking for parallel processors have
not received the same degree of attention as have CPU and memory performance.
Fortunately, the lower performance levels of I/O and networking devices relative
to CPU and memory allow a simpler and less expensive architecture. On the other
hand, lower performance puts tremendous strain on the architect trying to maintain
balance in the system. A common I/O solution for parallel computers, particularly
clusters, is not a parallel file system but rather a conventional file system, accessed
by multiple processors.

Recall that data caches are often used to improve the performance of I/O systems
in uniprocessors. As we have seen, it is important to maintain consistency between
the different caches and between caches and memory if correct data are to be
provided to programs. Unfortunately, particularly for networked file systems such
as NFS, maintaining cache consistency seriously degrades performance. As a result,
such file systems allow the system administrator to trade performance against cache
coherence. For environments where most applications are not parallel and do not
have multiple processes accessing the same file at the nearly the same time, cache
coherence is usually sacrificed in the name of speed.

The redundant arrays of inexpensive disks (RAID) approach is an example of
the benefits of parallelism in I/O. RAID was first proposed in 1988 [757], with five
different levels representing different uses of multiple disks to provide fault tolerance
(disks, being mechanical, fail more often than entirely electronic components) and
performance, while maintaining a balance between read rates, write rates, and
efficient use of storage. The RAID approach has since been generalized to additional
levels. Both hardware (RAID managed by hardware, presenting the appearance of a
single but faster and/or more reliable disk) and software (separate disks managed by
software) versions exist.

Parallel I/O can also be achieved by using arrays of disks arranged in patterns
different from those described by the various RAID levels. Chapter 11 describes
parallel I/O from the programmer’s standpoint. A more detailed discussion of parallel
I/O can be found in May [657].

The simplest form of parallelism in networks is the use of multiple paths, each
carrying part of the traffic. Networks within a computer system often achieve paral-
lelism by simply using separate wires for each bit. Less tightly coupled systems, such
as Beowulf clusters, sometimes use a technique called channel bonding, which uses

2.2 Parallel Architectures 39

multiple network paths, each carrying part of the message. GridFTP [22] is an exam-
ple of software that exploits the ability of the Internet to route data over separate
paths to avoid congestion in the network.

A more complex form of parallelism is the use of different electrical or optical
frequencies to concurrently place several messages on the same wire or fiber. This
approach is rarely used within a computer system because of the added cost and
complexity, but it is used extensively in long-distance networks. New techniques for
optical fibers, such as dense wavelength-division multiplexing (DWDM), will allow
100 or more signals to share the same optical fiber, greatly increasing bandwidth.

2.2.5 Support for Programming Models

Special operations are needed to allow processes and threads that share the same
address space to coordinate their actions. For example, one thread may need to
keep others from reading a location in memory until it has finished modifying that
location. Such protection is often provided by locks: any thread that wants to access
the particular data must first acquire the lock, releasing the lock when it is done. A
lock, however, is not easy to implement with just load and store operations (although
it can be done). Instead, many systems provide compound instructions that can be
used to implement locks, such as test-and-set or fetch-and-increment. RISC systems
often provide a “split” compound instruction that can be used to build up operations
such as fetch-and-increment based on storing a result after reading from the same
address only if no other thread or process has accessed the same location since the
load.

Because rapid synchronization is necessary to support fine-grained parallelism,
some systems (particularly parallel vector processors) use special registers that all
CPUs can access. Other systems have provided extremely fast barriers: no process
can leave a barrier until all have entered the barrier. In a system with a fast barrier,
a parallel system can be viewed as sequentially consistent, where an “operation” is
defined as the group of instructions between two barriers. This provides an effective
programming model for some applications.

In distributed-memory machines, processes share no data and typically com-
municate through messages. In shared-memory machines, processes directly access
data. There is a middle ground: remote memory access (RMA). This is similar to
the network-connected, distributed-memory system except that additional hardware
provides put and get operations to store to or load from memory in another node.
The result is still a distributed-memory machine, but one with very fast data trans-
fers. Examples are the Compaq AlphaServer SC, Cray T3D and T3E, NEC Cenju 4,
and Hitachi SR8000.

2.2.6 Parallel Architecture Design Tradeoffs

Parallelism is a powerful approach to improving the performance of a computer sys-
tem. All systems employ some degree of parallelism, even if it is only parallel data

40 Chapter 2 Parallel Computer Architectures

paths between the memory and the CPU. Parallelism is particularly good at solving
problems related to bandwidth or throughput; it is less effective at dealing with la-
tency or start-up costs (although the ability to switch between tasks provides one way
to hide latency as long as enough independent tasks can be found). Parallelism does
not come free, however. The effects of memory latency are particularly painful, forc-
ing complex consistency models on the programmer and difficult design constraints
on the hardware designer.

In the continuing quest for ever greater performance, today’s parallel computers
often combine many of the approaches discussed here. One of the most popular is
distributed-memory clusters of nodes, where each node is a shared-memory proces-
sor, typically with 2 to 16 processors, though some clusters have SMP nodes with as
many as 128 processors. Another important class of machine is the parallel vector
processor, which uses vector-style CPU parallelism combined with shared memory.

We emphasize that hardware models and software (or programming) models are
essentially disjoint; shared-memory hardware provides excellent message-passing
support, and distributed-memory hardware can (at sometimes substantial cost) sup-
port a shared-memory programming model.

We close this section with a brief mention of taxonomies of parallel computers.
A taxonomy of parallel computers provides a way to identify the important features
of a system. Flynn [340] introduced the best-known taxonomy that defines four dif-
ferent types of computer based on whether there are multiple data streams and/or
multiple instruction streams. A conventional uniprocessor has a single instruction
stream and a single data stream and is denoted SISD. Most of the parallel computers
described in this section have both multiple data and multiple instruction streams
(because they have many memories and CPUs); these are called MIMD. The single
instruction but multiple data parallel computer, or SIMD, has already been men-
tioned. The fourth possibility is the multiple-instruction, single-data category, or
MISD, which is not used. A standard taxonomy for MIMD architectures has not yet
emerged, but it is likely to be based on whether the memory is shared or distributed
and, if it is shared, whether it is cache coherent and how access time varies. Many of
the terms used to describe these alternatives have been discussed above, including
UMA, CC-NUMA, and DSM.

The term single program, multiple data (SPMD) is inspired by Flynn’s taxonomy.
Because the single program has branches and other control-flow constructs, SPMD
is a subset of MIMD, not a subset of SIMD programs. Using a single program, however,
does provide an important simplification for software, and most parallel programs
in technical and scientific computing are SPMD.

2.3 Future Directions for Parallel Architectures

In some ways, the future of parallel architectures, at least for the next 5 years, is
clear. Most parallel machines will be hybrids, combining nodes containing a modest
number of commodity CPUs sharing memory in a distributed-memory system.
Many users will have only one shared-memory node; for them, shared-memory

2.4 Conclusion 41

programming models will be adequate. In the longer term, the picture is much
hazier. Many challenges will be difficult to overcome. Principal among these are
memory latency and the limits imposed by the speed of light. Heat dissipation is
also becoming a major problem for commodity CPUs. One major contributor to the
increase in clock speeds for CPUs has been a corresponding decrease in the size of
the features on the CPU chip. These feature sizes are approaching the size of a single
atom, beyond which no further decrease is possible.

While these challenges may seem daunting, they offer an important opportunity
to computer architects and software scientists—an opportunity to take a step that is
more than just evolutionary.

As we have discussed above, one of the major problems in designing any computer
is providing a high-bandwidth, low-latency path between the CPU and memory.
Some of this cost comes from the way DRAMs operate: data are stored in rows; when
an item is needed, the entire row is read and the particular bit is extracted, and the
other bits in the row are discarded. This simplifies the construction of the DRAM
(separate wires are not needed to get to each bit), but it throws away significant
bandwidth. Observing that DRAM densities are increasing at a rate even faster than
the rate at which commodity software demands memory, several researchers have
explored combining the CPU and memory on the same chip and using the entire
DRAM row rather than a single bit at a time. In fact, an early commercial version
of this approach, the Mitsubishi M32000D3 processor, used a conventional, cache-
oriented RISC processor combined with memory and organized so that a row of
the memory was a cache line, allowing for enormous (for the time) bandwidth in
memory-cache transfers. Several different architectures that exploit processors and
memory in the same chip are currently being explored [275, 756], including ap-
proaches that consider vector-like architectures and approaches that place multiple
processors on the same chip. Other architects are looking at parallel systems built
from such chips; the IBM Blue Gene [121] project expects to have a million-processor
system (with around 32 processors per node).

Superconducting elements promise clock speeds of 100 GHz or more. Of course,
such advances will only exacerbate the problem of the mismatch between CPU and
memory speeds. Designs for CPUs of this kind often rely on hardware multithreading
techniques to reduce the impact of high memory latencies.

Computing based on biological elements often seeks to exploit parallelism by
using molecules as processing elements. Quantum computing, particularly quantum
computing based on exploiting the superposition principle, is a fundamentally
different kind of parallelism.

2.4 Conclusion

Parallel architecture continues to be an active and exciting area of research. Most
systems now have some parallelism, and the trends point to increasing amounts of
parallelism at all levels, from 2 to 16 processors on the desktop to tens to hundreds of
thousands for the highest-performance systems. Systems continue to be developed;

42 Chapter 2 Parallel Computer Architectures

see van der Steen and Dongarra [951] for a review of current supercomputers,
including large-scale parallel systems.

Access to memory continues to be a major issue; hiding memory latency is one
area where parallelism doesn’t provide a (relatively) simple solution. The architec-
tural solutions to this problem have included deep memory hierarchies (allowing
the use of low-latency memory close to the processor), vector operations (providing
a simple and efficient “prefetch” approach), and fine-grained multithreading (en-
abling other work to continue while waiting for memory). In practice, none of these
approaches completely eliminates the problem of memory latency. The use of low-
latency memories, such as caches, suffers when the data do not fit in the cache.
Vector operations require a significant amount of regularity in the operations that
may not fit the best (often adaptive) algorithms, and multithreading relies on iden-
tifying enough independent threads. Because of this, parallel programming models
and algorithms have been developed that allow the computational scientist to make
good use of parallel systems. That is the subject of the rest of this book.

Acknowledgments

This work was supported by the Mathematical, Information, and Computational
Sciences Division subprogram of the Office of Advanced Scientific Computing Re-
search, U.S. Department of Energy, under Contract W-31-109-ENG-38.

C

H

A

P

T

E

R

3 Parallel Programming
Considerations

Ken Kennedy . Jack Dongarra .

Geoffrey Fox . William Gropp .

Dan Reed

The principal goal of this chapter is to introduce the common issues that a program-
mer faces when implementing a parallel application. The treatment assumes that the
reader is familiar with programming a uniprocessor using a conventional language,
such as Fortran. The principal challenge of parallel programming is to decompose
the program into subcomponents that can be run in parallel. However, to under-
stand some of the low-level issues of decomposition, the programmer must have
a simplified view of parallel machine architecture. Thus, we begin our treatment
with a review of this topic, with the goal of identifying the characteristics that are
most important for the parallel programmer to understand. This discussion, found
in Section 3.1, focuses on two main parallel machine organizations—shared mem-
ory and distributed memory—that characterize most current machines. The section
also treats hybrids of the two main memory designs.

The standard parallel architectures support a variety of decomposition strategies,
such as decomposition by task (task parallelism) and decomposition by data (data
parallelism). Our introductory treatment will concentrate on data parallelism be-
cause it represents the most common strategy for scientific programs on parallel
machines. In data parallelism, the application is decomposed by subdividing the
data space over which it operates and assigning different processors to the work as-
sociated with different data subspaces. Typically this strategy involves some data
sharing at the boundaries, and the programmer is responsible for ensuring that this
data sharing is handled correctly—that is, data computed by one processor and used
by another are correctly synchronized.

Once a specific decomposition strategy is chosen, it must be implemented. Here,
the programmer must choose the programming model to use. The two most common
models are the following:

43

44 Chapter 3 Parallel Programming Considerations

. The shared-memory model, in which it is assumed that all data structures are
allocated in a common space that is accessible from every processor.

. The message-passing model, in which each processor (or process) is assumed to
have its own private data space, and data must be explicitly moved between
spaces as needed.

In the message-passing model, data structures are distributed across the processor
memories; if a processor needs to use a data item that is not stored locally, the pro-
cessor that owns that data item must explicitly “send” it to the requesting processor.
The latter must execute an explicit “receive” operation, which is synchronized with
the send, before it can use the communicated data item. These issues are discussed
in Section 3.2.

To achieve high performance on parallel machines, the programmer must be con-
cerned with scalability and load balance. Generally, an application is thought to
be scalable if larger parallel configurations can solve proportionally larger prob-
lems in the same running time as smaller problems on smaller configurations. To
understand this issue, we introduce in Section 3.3.1 a formula that defines parallel
speedup and explore its implications. Load balance typically means that the proces-
sors have roughly the same amount of work, so that no one processor holds up the
entire solution. To balance the computational load on a machine with processors
of equal power, the programmer must divide the work and communications evenly.
This can be challenging in applications applied to problems that are unknown in
size until run time.

A particular bottleneck on most parallel machines is the performance of the mem-
ory hierarchy, both on a single node and across the entire machine. In Section 3.4,
we discuss various strategies for enhancing the reuse of data by a single processor.
These strategies typically involve some sort of loop “blocking” or “strip mining,” so
that whole subcomputations fit into cache.

Irregular or adaptive problems present special challenges for parallel machines
because it is difficult to maintain load balance when the size of subproblems is
unknown until run time or if the problem size may change after execution begins.
Special methods involving run-time reconfiguration of a computation are required
to deal with these problems. These methods are discussed in Section 3.3.3.

Several aspects of programming parallel machines are much more complicated
than their counterparts for sequential systems. Parallel debugging, for example,
must deal with the possibilities of race conditions or out-of-order execution (see
Section 3.5). Performance analysis and tuning must deal with the especially chal-
lenging problems of detecting load imbalances and communication bottlenecks (see
Section 3.6). In addition, it must present diagnostic information to the user in a
format that is related to the program structure and programming model. Finally,
input/output on parallel machines, particularly those with distributed memory,
presents problems of how to read files that are distributed across disks in a system
into memories that are distributed with the processors (see Section 3.7).

3.1 Architectural Considerations 45

Bus

System memory

P1 P2 P3 P4

Cache Cache Cache Cache

Figure 3.1 A uniform-access shared-memory architecture.

These topics do not represent all the issues of parallel programming. We hope,
however, that a discussion of them will convey some of the terminology and intu-
ition of parallel programming. In so doing, it will set the stage for the remainder of
this book.

3.1 Architectural Considerations

Chapter 2 provided a detailed review of parallel computer architectures. In this
chapter, we provide a simple introduction to these topics that covers most of the
important issues needed to understand parallel programming.

First, as discussed in Chapter 2, we observe that most of the modern parallel
machines fall into two basic categories:

1. Shared-memory machines, which have a single shared address space that can be
accessed by any processor.

2. Distributed-memory machines, in which the system memory is packaged with
individual nodes of one or more processors and communication is required to
provide data from the memory of one processor to a different processor.

3.1.1 Shared Memory

The organization of a shared-memory machine is depicted in Figure 2.5. Figure 3.1
shows a slightly more detailed diagram of a shared-memory system with four pro-
cessors, each with a private cache, interconnected to a global shared memory via
a single system bus. This organization is typically called a symmetric multiprocessor
(SMP).

In a symmetric multiprocessor, each processor can access all locations in global
memory using standard load operations. The hardware ensures that the caches

46 Chapter 3 Parallel Programming Considerations

Memory

P1

Memory

P2

Interconnection network

Memory

P3

Memory

P4

Figure 3.2 A distributed-memory architecture.

are “coherent” by watching the system bus and invalidating cached copies of any
block that is written into. This mechanism is generally invisible to the user, except
when different processors are simultaneously attempting to write into the same
cache line, which can cause the cache line to ping-pong between two different
caches, a situation known as thrashing. To avoid this problem, the programmer and
programming system must be careful with shared data structures and nonshared
data structures that can be located on the same cache block, a situation known as
false sharing. Synchronization of accesses to shared data structures is a major issue on
shared-memory systems—it is up to the programmer to ensure that operations by
different processors on a shared data structure leave that data structure in a consistent
state. Various memory consistency models are discussed in Section 2.2.1.

The main problem with the shared-memory system as described above is that it
is not scalable to large numbers of processors. Most bus-based systems are limited
to 32 or fewer processors because of contention on the bus. If the bus is replaced
by a crossbar switch, systems can scale to as many as 128 processors, although the
cost of the switch increases as the square of the number of processors, making this
organization impractical for truly large numbers of processors. Multistage switches
can be made to scale better at the cost of longer latencies to memory.

3.1.2 Distributed Memory

The scalability limitations of shared memory have led designers to use distributed-
memory organizations such as the one depicted in Figure 3.2. Here the global shared
memory has been replaced by a smaller local memory attached to each processor.
Communication among the processor-memory configurations is over an intercon-
nection network. These systems can be made scalable if a scalable interconnection
network is used. For example, a hypercube has cost proportional to n lg(n) where n
is the number of processors.

The advantage of a distributed-memory design is that access to local data can
be quite fast. On the other hand, access to remote memories requires much more

3.1 Architectural Considerations 47

effort. Most distributed-memory systems support a message-passing programming
model, in which the processor owning a datum must send it to any processor that
needs it. These “send–receive” communication steps typically incur long start-up
times, although the bandwidth after start-up can be high. Hence, on message-passing
systems, it typically pays to send fewer, longer messages.

The principal programming problem for distributed-memory systems is manage-
ment of communication between processors. Usually this means consolidation of
messages between the same pair of processors and overlapping communication and
computation so that long latencies are hidden. In addition, data placement is im-
portant so that as few data references as possible require communication.

3.1.3 Hybrid Systems

As seen in Chapter 2, there are various ways in which the two memory paradigms
are combined. Some distributed-memory machines allow a processor to directly
access a datum in a remote memory. On these distributed shared-memory (DSM)
systems, the latency associated with a load varies with the distance to the remote
memory. Cache coherency on DSM systems is a complex problem that is usually
handled by a sophisticated network interface unit. Given that DSM systems have
longer access times to remote memory, data placement is an important programming
consideration.

For very large parallel systems, a hybrid architecture called an SMP cluster is
common. An SMP cluster looks like a distributed-memory system in which each
of the individual components is a symmetric multiprocessor rather than a single
processor node. This design permits high parallel efficiency within a multiprocessor
node, while permitting systems to scale to hundreds or even thousands of proces-
sors. Programming for SMP clusters provides all the challenges of both shared- and
distributed-memory systems. In addition, it requires careful thought about how to
partition the parallelism within and between computational nodes.

3.1.4 Memory Hierarchy

As discussed in Chapter 2, the design of memory hierarchies is an integral part of the
design of parallel computer systems because the memory hierarchy is a determining
factor in the performance of the individual nodes in the processor array. A typical
memory hierarchy is depicted in Figure 3.3. Here the processor and a level-1 (L1)
cache memory are found on-chip, and a larger level-2 (L2) cache lies between the
chip and the memory.

When a processor executes a load instruction, the L1 cache is first interrogated
to determine if the desired datum is available. If it is, the datum can be delivered
to the processor in two to five processor cycles. If the datum is not found in the L1
cache, the processor stalls while the L2 cache is interrogated. If the desired datum
is found in L2, then the stall may last for only 10 to 20 cycles. If the datum is not
found in either cache, a full cache miss is taken with a delay of possibly 100 cycles or

48 Chapter 3 Parallel Programming Considerations

System memory

Level-1 cache

Processor

Level-2 cache

Bus

On chip

Figure 3.3 A standard uniprocessor memory hierarchy.

more. Whenever a miss occurs, the datum is saved in every cache in the hierarchy,
if it is not already there. Note that on modern machines, caches transfer data in a
minimum-size cache block, so that whenever a datum is loaded to that cache, the
entire block containing that datum comes with it.

The performance of the memory hierarchy is determined by two hardware param-
eters: latency, which is the time required to fetch a desired datum from memory, and
bandwidth, which is the number of bytes per unit time that can be delivered from the
memory at full speed. Long latencies increase the cost of cache misses, thus slowing
performance, while limited bandwidth can cause applications to become “memory
bound,” that is, continuously stalled waiting for data. These two factors are compli-
cated by the multilevel nature of memory hierarchies, because each level will have a
different bandwidth and latency to the next level. For example, the SGI Origin 2000
can deliver about 4 bytes per machine cycle from the L1 cache to the processor and
4 bytes per cycle from the L2 cache to the L1 cache, but it can deliver only about 0.8
bytes per cycle from memory to L1 cache [272].

Another important parameter that affects memory performance on a uniprocessor
is the length of the standard cache block (or cache line). Most cache systems will
only transfer blocks of data between levels of the memory hierarchy. If all the data
transferred in a block are used, then no bandwidth is wasted. In that case, the cost
of the cache miss can be amortized over all the data in the block. If only one or
two data items are used, then the average latency is much higher and the effective
bandwidth much lower.

There are two kinds of strategies for overcoming latency problems. Latency hiding
attempts to overlap the latency of a miss with computation. Prefetching of cache

3.2 Decomposing Programs for Parallelism 49

lines is a latency-hiding strategy. Latency tolerance, on the other hand, attempts
to restructure a computation to make it less subject to performance problems due
to long latencies. The single most important latency tolerance technique is cache
blocking, which brings accesses to the same locations closer together in time so that
accesses after the first are likely to find the desired data in cache.

Strategies that improve reuse in cache also improve effective bandwidth utiliza-
tion. Perhaps the most important way to ensure good bandwidth utilization is to
organize data and computations to use all the items in a cache line whenever it is
fetched from memory. Ensuring that computations access data arrays in strides of
one is an example of how this might be done.

The memory hierarchies on parallel machines are more complicated because of
the existence of multiple caches on shared-memory systems and the long latencies
to remote memories on distributed-memory configurations. There may also be in-
terference between data transfers between memories and from local memory to a
processor.

3.2 Decomposing Programs for Parallelism

Given that you have decided to implement a program for a parallel machine, there
are four main issues that you must deal with. First, you must have a way of identify-
ing components of the computation that can safely be run in parallel. Second, you
need to adopt a strategy for decomposing the program into parallel components.
Third, you must actually write the parallel program, which requires that you choose a
programming model and interface for the implementation. Finally, you must choose
an implementation style that is effective for the given application and that works well
with the chosen programming model. In this section, we discuss each of these issues
and illustrate them with an extended example at the end.

3.2.1 Identification of Parallelism

The first task in a parallel implementation is to identify the portions of the code
where there is parallelism to exploit. To do this we must address a fundamental
question: When can we run two different computations in parallel? We cannot answer
this question without thinking about what it means for two computations to run in
parallel. Most programmers think of the meaning of a program to be defined by the
sequential implementation. That is, for a parallel implementation to be correct, it
must produce the same answers as the sequential version every time it is run. So the
question becomes: When can we run two computations from a given sequential program
in parallel and expect that the answers will be the same as those produced by the sequential
program? By “running in parallel,” we mean asynchronously, with synchronization
at the end. Thus, the parallel version of the program will spawn a number of parallel
processes to handle different computations, with each of the computations running
until the end, when they synchronize.

50 Chapter 3 Parallel Programming Considerations

The naive answer to the question is that we can run computations in parallel if
they do not share data. However, we can refine this substantially. Certainly it does
not cause a problem if two computations both read the same data from a shared-
memory location. Therefore, for data sharing to cause a problem, one of the compu-
tations must write into a memory that the other accesses by either reading or writing.
If this is the case, then the order of those memory operations is important. If the
sequential program writes into a location in the first computation and then reads
from the same location in the second computation, parallelizing the computation
might cause the read to be executed first, leading to wrong answers. Such a situation
is called a data race.

In the 1960s, Bernstein [101] formalized a set of three conditions capturing this
notion. For the purposes of parallelization, these three conditions can be stated as
follows: Two computations C1 and C2 can be run in parallel without synchronization
if and only if none of the following holds:

1. C1 writes into a location that is later read by C2—a read-after-write (RAW) race.

2. C1 reads from a location that is later written into by C2—a write-after-read (WAR)
race.

3. C1 writes into a location that is later overwritten by C2—a write-after-write
(WAW) race.

We will see how these conditions can be applied in practice to common program-
ming structures.

3.2.2 Decomposition Strategy

Another important task in preparing a program for parallel execution is to choose
a strategy for decomposing the program into pieces that can be run in parallel.
Generally speaking, there are two ways to do this. First, you could identify the tasks
(major phases) in the program and the dependences among them and then schedule
those tasks that are not interdependent to run in parallel. In other words, different
processors carry out different functions. This approach is known as task parallelism.
For example, one processor might handle data input from secondary storage, while
a second generates a grid based on input previously received.

A second strategy, called data parallelism, subdivides the data domain of a problem
into multiple regions and assigns different processors to compute the results for each
region. Thus, in a 2-D simulation on a 1000 × 1000 grid, 100 processors could be
effectively used by assigning each to a 100× 100 subgrid. The processors would then
be arranged as a 10× 10 processor array. Data parallelism is more commonly used
in scientific problems because it can keep more processors busy—task parallelism is
typically limited to small degrees of parallelism. In addition, data parallelism exhibits
a natural form of scalability. If you have 10,000 processors to apply to the problem
above, you could solve a problem on a 10,000× 10,000 cell grid, with each processor
still assigned a 100× 100 subdomain. Since the computation per processor remains

3.2 Decomposing Programs for Parallelism 51

the same, the larger problem should take only modestly longer running time than
the smaller problem takes on the smaller machine configuration.

As we shall see, task and data parallelism can be combined. The most common way
to do this is to use pipelining, a software strategy analogous to the hardware method
described in Section 2.1.1, in which each processor is assigned to a different stage
of a multistep sequential computation. If many independent data sets are passed
through the pipeline, each stage can be performing its computation on a different
data set at the same time. For example, suppose that the pipeline has four stages.
The fourth stage would be working on the first data set, while the third stage would
be working on the second data set, and so on. If the steps are roughly equal in time,
the pipelining into four stages provides an extra speedup by a factor of four over the
time required to process a single data set, after the pipeline has been filled.

3.2.3 Programming Models

Another consideration in forming a parallel program is which programming model
to use. This decision will affect the choice of programming language system and
library for implementation of the application. The two main choices were originally
intended for use with the corresponding parallel architectures.

. In the shared-memory programming model, all data accessed by the application
occupy a global memory accessible from all parallel processors. This means
that each processor can fetch and store data to any location in memory
independently. Shared-memory parallel programming is characterized by the
need for synchronization to preserve the integrity of shared data structures.

. In the message-passing model, data are viewed as being associated with particu-
lar processors, so communication is required to access a remote data location.
Generally, to get a datum from a remote memory, the owning processor must
send the datum and the requesting processor must receive it. In this model, send
and receive primitives take the place of synchronization.

Although these two programming models are inspired by the corresponding par-
allel computer architectures, their use is not restricted. It is possible to implement the
shared-memory model on a distributed-memory computer, either through hardware
(distributed shared memory) or software systems that simulate DSMs (e.g., Tread-
Marks [31]). Symmetrically, message passing can be made to work with reasonable
efficiency on a shared-memory system. In each case there may be some loss of per-
formance. Nevertheless, for the remainder of this section we will assume that the
shared-memory model is associated with SMPs and the message-passing model is
used on distributed-memory systems.

3.2.4 Implementation Styles

We now turn to the issues related to the implementation of parallel programs. We
begin with data parallelism, the most common form of parallelism in scientific

52 Chapter 3 Parallel Programming Considerations

codes. There are typically two sources of data parallelism: iterative loops and re-
cursive traversal of tree-like data structures. Below we discuss each of these in turn.
Data parallel loops are typically implemented using two styles: on shared-memory
systems, they correspond to explicitly parallel loops in which the iterations are
unsynchronized, while on distributed-memory systems, the single-program, multiple-
data (SPMD) style is most often used.

Parallel Loop Programming

Loops represent the most important source of parallelism in scientific programs. The
typical way to parallelize loops is to assign different iterations, or different blocks of
iterations, to different processors. On shared-memory systems, this decomposition
is usually coded as some kind of PARALLEL DO loop. According to Bernstein, we can do
this without synchronization only if there are no data races between iterations of the
loop. Thus we must examine the loop carefully to see if there are places where data
sharing of this sort occurs. In the literature on compiler construction, these kinds of
races are identified as dependences [27]. These concepts can be illustrated by a simple
example. Consider the loop:

DO I = 1, N

A(I) = A(I) + C

ENDDO

Here each iteration of the loop accesses a different element of the array A so that
there is no data sharing. On the other hand, in the loop

DO I = 1, N

A(I) = A(I+1) + C

ENDDO

there would be a write-after-read race because the element of A being read on any
given iteration is the same as the element of A that is written on the next iteration. If
the iterations are run in parallel, the write might take place before the read, causing
incorrect results.

Thus, the main focus of loop parallelization is the discovery of loops that have no
races. In some cases, it is possible to achieve significant parallelism in the presence
of races. For example, consider:

SUM = 0.0

DO I = 1, N

R = F(B(I),C(I)) ! an expensive computation

SUM = SUM + R

ENDDO

There is a race in this loop involving the variable SUM, which is written and read on
every iteration. However if we assume that floating-point addition is commutative
and associative (which it isn’t on most machines), then the order in which results are

3.2 Decomposing Programs for Parallelism 53

added to SUM does not matter. Since we assume that the computation of function F is
expensive, some gain can still be achieved if we compute the values of F in parallel
and then update SUM in the order in which those computations finish. To make this
work, we must ensure that only one processor updates SUM at a time and each finishes
before the next is allowed to begin. On shared-memory systems, critical regions—code
segments that can be executed by only one processor at a time—are designed to do
exactly this. Here is one possible realization of the parallel version:

SUM = 0.0

PARALLEL DO I = 1, N

R = F(B(I),C(I)) ! an expensive computation

BEGIN CRITICAL REGION

SUM = SUM + R

END CRITICAL REGION

ENDDO

The critical region ensures that SUM is updated by one processor at a time on a first-
come, first-served basis. Because sum reductions of this sort are really important
in parallel computation, most systems offer a primitive function that computes
such reductions using a scheme that takes time proportional to the logarithm of
the number of processors.

SPMD Programming

A programmer who wishes to perform the sum reduction above on a distributed-
memory message-passing system will need to rewrite the program to use explicit
message passing. As a matter of convenience, the programmer will often employ the
SPMD style [246, 525]. In an SPMD program, all of the processors execute the same
code, but apply the code to different portions of the data. Scalar variables are typically
replicated on all of the processors and redundantly computed (to identical values)
on each processor. In addition, the programmer must insert explicit communication
primitives in order to pass the shared data between processors. For the sum-reduction
calculation above, the SPMD program might look something like this:

! This code is executed by all processors

! MYSUM, MYFIRST, MYLAST, R, and I are private local variables

! MYFIRST and MYLAST are computed separately on each processor

! to point to nonintersecting sections of B and C

! GLOBALSUM is a global collective communication primitive

MYSUM = 0.0

DO I = MYFIRST, MYLAST

R = F(B(I),C(I)) ! an expensive computation

MYSUM = MYSUM + R

ENDDO

SUM = GLOBALSUM(MYSUM)

54 Chapter 3 Parallel Programming Considerations

Here the communication is built into the function GLOBALSUM, which takes one
value of its input parameter from each processor and computes the sum of all
those inputs, storing the result into a variable that is replicated on each processor.
The implementation of GLOBALSUM typically uses a logarithmic algorithm. Explicit
communication primitives and SPMD programming will be further illustrated in
the pipeline parallelism example in Section 3.2.5.

Recursive Task Programming

To handle recursive parallelism in a tree-like data structure, the programmer would
typically create a new process or thread whenever it is necessary to traverse two
different paths down the tree in parallel. For example, a search for a particular value
in an unordered tree would examine the root first. If the value were not found, it
would fork a separate process to search the right subtree and then search the left
subtree itself.

3.2.5 A Simple Example

We conclude this section with a discussion of a simple problem that is intended
to resemble a finite-difference calculation. We show how this example might be
implemented using both a shared-memory, parallel-loop model and a distributed-
memory SPMD model.

Assume that we begin with a simple Fortran code that computes a new average
value for each data point in array A using a two-point stencil and stores the average
into array ANEW. The code might look like the following:

REAL A(100), ANEW(100)
.
.
.

DO I = 2, 99

ANEW(I) = (A(I-1) + A(I+1)) * 0.5

ENDDO

Suppose that we wish to implement a parallel version of this code on a shared-
memory machine with four processors. Using a parallel-loop dialect of Fortran, the
code might look like:

REAL A(100), ANEW(100)
.
.
.

PARALLEL DO I = 2, 99

ANEW(I) = (A(I-1) + A(I+1)) * 0.5

ENDDO

While this code will achieve the desired result, it may not have sufficient granu-
larity to compensate for the overhead of dispatching parallel threads. In most cases,
it is better to have each processor execute a block of iterations to achieve higher

3.2 Decomposing Programs for Parallelism 55

granularity. In our example, we can ensure that each processor gets a block of either
24 or 25 iterations by substituting a strip-mined version with only the outer loop
parallel:

REAL A(100), ANEW(100)
.
.
.

PARALLEL DO IB = 1, 100, 25

PRIVATE I, myFirst, myLast

myFirst = MAX(IB, 2)

myLast = MIN(IB + 24, 99)

DO I = myFirst, myLast

ANEW(I) = (A(I-1) + A(I+1)) * 0.5

ENDDO

ENDDO

Here we have introduced a new language feature. The PRIVATE statement specifies
that each iteration of the IB-loop has its own private value of each variable in
the list. This permits each instance of the inner loop to execute independently
without simultaneous updates of the variables that control the inner loop iteration.
The example above ensures that iterations 2 through 25 are executed as a block
on a single processor. Similarly, iterations 26 through 50, 51 through 75, and 76
through 99 are executed as blocks. This code has several advantages over the simpler
version. The most important is that it should have reasonably good performance on
a machine with distributed shared memory in which the arrays are stored 25 to a
processor.

Finally, we turn to the message-passing version of the code. This code is written in
SPMD style so that the scalar variables myP, myFirst, and myLast are all automatically
replicated on each processor—the equivalent of PRIVATE variables in shared memory.
In the SPMD style, each global array is replaced by a collection of local arrays in
each memory. Thus the 100-element global arrays A and ANEW become 25-element
arrays on each processor named Alocal and ANEWlocal, respectively. In addition, we
will allocate two extra storage locations on each processor—A(0) and A(26)—to hold
values communicated from neighboring processors. These cells are often referred to
as ghost cells, halo cells, or overlap areas.

Now we are ready to present the message-passing version:

! This code is executed by all processors

! myP is a private local variable containing the processor number

! myP runs from 0 to 3

! Alocal and ANEWlocal are local versions of arrays A and ANEW

IF (myP .NE. 0) send Alocal(1) to myP-1

IF (myP .NE. 3) send Alocal(25) to myP+1

IF (myP .NE. 0) receive Alocal(0) from myP-1

56 Chapter 3 Parallel Programming Considerations

IF (myP .NE. 3) receive Alocal(26) from myP+1

myFirst = 1

myLast = 25

IF (myP == 0) myFirst = 2

IF (myP == 3) myLast = 24

DO I = myFirst, myLast

ANEWlocal(I) = (Alocal(I-1) + Alocal(I+1)) * 0.5

ENDDO

Note that the computation loop is preceded by four communication steps in
which values are sent to and received from neighboring processors. These values are
stored into the overlap areas in each local array. Once this is done, the computation
can proceed on each of the processors using the local versions of A and ANEW.

As we shall see later in the book, performance can be improved by inserting a
purely local computation between the sends and receives in the above example.
This is an improvement because the communication is overlapped with the local
computation to achieve better overall parallelism. The following code fragment
inserts the computation on the interior of the region before the receive operations,
which are only needed for computing the boundary values.

! This code is executed by all processors

! myP is a private local variable containing the processor number

! myP runs from 0 to 3

! Alocal and ANEWlocal are local versions of arrays A and ANEW

IF (myP .NE. 0) send Alocal(1) to myP-1

IF (myP .NE. 3) send Alocal(25) to myP+1

DO I = 2, 24

ANEWlocal(I) = (Alocal(I-1) + Alocal(I+1)) * 0.5

ENDDO

IF (myP .NE. 0) THEN

receive Alocal(0) from myP-1

ANEWlocal(1) = (Alocal(0) + Alocal(2)) * 0.5

ENDIF

IF (myP .NE. 3) THEN

receive Alocal(26) from myP+1

ANEWlocal(25) = (Alocal(24) + Alocal(26)) * 0.5

ENDIF

3.3 Enhancing Parallel Performance

Parallel programming is difficult in part because high performance does not auto-
matically follow from parallel implementation. To achieve the highest possible
performance, the implementer must take a number of other considerations into
account. First, he or she must balance the loads on the components of the computing

3.3 Enhancing Parallel Performance 57

configuration so that no single component dominates the running time. Second,
solving very large problems requires that the computation scale to large numbers of
parallel processors; the implementation must be crafted to achieve this goal. Third,
some components of the problem, though serial, may be made faster by a partial
parallelization strategy known as pipelining. Finally, the implementer may need
special strategies to deal with computations that are irregular. Irregular computations
include sparse matrix calculations and calculations defined on irregular grids, such
as those that employ adaptive meshing. This section provides a brief introduction
to each of these issues.

3.3.1 Scalability and Load Balance

The idealized goal of parallel computation is to have the running time of an appli-
cation reduced by a factor that is inversely proportional to the number of processors
used. That is, if a second processor is used, the running time should be half of what
is required on one processor. If four processors are used, the running time should be
a fourth. Any application that achieves this goal is said to be scalable. Another way
of stating the goal is in terms of speedup, which is defined to be the ratio of the run-
ning time on a single processor to the running time on the parallel configuration.
That is,

Speedup(n)= T(1)/T(n)

An application is said to be scalable if the speedup on n processors is close to
n. Scalability of this sort has its limits—at some point the amount of available
parallelism in the application will be exhausted, and adding further processors may
even detract from performance.

This leads us to consider a second definition of scalability, called scaled speedup—
an application will be said to be scalable if, when the number of processors and the
problem size are increased by a factor of n, the running time remains the same [418].
This captures the notion that larger machine configurations make it possible to solve
correspondingly larger scientific problems.

There are three principal reasons why scalability is not achieved in some applica-
tions. First, the application may have a large region that must be run sequentially.
If we assume that TS is the time required by this region and TP is the time required
by the parallel region, the speedup for this code is given by:

Speedup(n)= TS + TP

TS + TP
n

≤ T(1)

TS

This means that the total speedup is limited by the ratio of the sequential running
time to the running time of the sequential region. Thus if 20 percent of the running
time is sequential, the speedup cannot exceed 5. This observation is known as
Amdahl’s Law [30].

A second impediment to scalability is the requirement for a high degree of
communication or coordination. In the global summation example above, if the

58 Chapter 3 Parallel Programming Considerations

computation of the function F is fast, then the cost of the computation is dominated
by the time required to take the sum, which is logarithmic at best. This can be
modeled to produce a revised speedup equation [338]:

Speedup(n)= T(1)

TS + TP
n + c lg(n)

= O

(
1

lg(n)

)

Even if c is tiny, the logarithmic factor in the denominator will grow with the number
of processors to a significant size. When the number of processors becomes large
enough, the speedup will stop increasing and begin to decline.

The third major impediment to scalability is poor load balance. If one of the
processors takes half of the parallel work, speedup will be limited to a factor of
two, no matter how many processors are involved. Thus, a major goal of parallel
programming is to ensure good load balance.

If all the iterations of a given loop execute for exactly the same amount of time,
load balance can be achieved by giving each processor exactly the same amount of
work to do. Thus, the iterations could be divided into blocks of equal number, so that
each processor gets roughly the same amount of work, as in the following example:

K = CEIL(N/P)

PARALLEL DO I = 1, N, K

DO ii = I, MIN(I+K-1,N)

A(ii) = B(ii+1) + C

ENDDO

ENDDO

However, this strategy fails if the work on each iteration takes a variable amount of
time. On shared-memory machines, this can be ameliorated by taking advantage of
the way parallel loops are scheduled. On such machines, each processor goes back to
the queue that hands out iterations when it has no work to do. Thus, by reducing the
amount of work on each iteration (while keeping it above threshold) and increasing
the total number of iterations, we can ensure that other processors take up the slack
for a processor that has a long iteration. If the same example were coded as

K = CEIL(N/(P*4))

PARALLEL DO I = 1, N, K

DO ii = I, MIN(I+K-1,N)

A(ii) = B(ii+1) + C

ENDDO

ENDDO

then on average, each processor should execute four iterations of the parallel loop.
However, if one processor gets stuck, the others will take on more iterations to
naturally balance the load.

In cases where neither of these strategies is appropriate, such as when the com-
puter is a distributed-memory, message-passing system or when load is not known
until run time, a dynamic load-balancing scheme may be required, in which the as-

3.3 Enhancing Parallel Performance 59

signment of work to processors is done at run time. Hopefully, such a load-balancing
step will be required infrequently so that the cost is amortized over a number of
computation steps.

3.3.2 Pipeline Parallelism

To this point, we have been dealing primarily with parallelism that is asynchronous
in the sense that no synchronization is needed during parallel execution. (The
exception was the summation example, which required a critical section.) Ideally,
we should always be able to find asynchronous parallelism, because this gives us the
best chance for scalability. However, even when this is not possible, some parallelism
may be achievable by staggering initiation of tasks and synchronizing them so
that subsections with no interdependencies are run at the same time. This strategy
is known as pipelining because it is the software analogue of pipelining in CPU
hardware, described in Section 2.1.1. To see how this works, consider the following
variant of successive overrelaxation:

DO J = 2, N-1

DO I = 2, N-1

A(I,J) = (A(I-1,J) + A(I+1,J) + A(I,J-1) + A(I,J+1)) * 0.25

ENDDO

ENDDO

Although neither of the loops can be run in parallel, there is some parallelism in
this example, as is illustrated in Figure 3.4. All of the values on the shaded diagonal
can be computed in parallel because there are no dependences between any of these
elements.

Suppose, however, that we wish to compute all the elements in any column on
the same processor, so that A(*,J) would be computed on the same processor for
all values of J. If we compute the elements in any column in sequence, all of the
dependences along that column are satisfied. However, we must still be concerned
about the rows. To get the correct result, we must delay the computation on each
row by enough to ensure that the corresponding array element on the previous row
is completed before the element on the current row is computed. This strategy can
be implemented via the use of events—synchronization mechanisms that make it
possible for one process to “wait” for something to happen (an event that is “posted”)
in another process. (See Chapter 12 for more on events.) The following pseudocode
demonstrates this approach:

EVENT READY(N,N) ! Initialized to false

PARALLEL DO I = 1, N

POST(READY(I,1))

ENDDO

PARALLEL DO J = 2, N-1

DO I = 2, N-1

60 Chapter 3 Parallel Programming Considerations

A(1,2) A(1,3) A(1,4) A(1,5)

A(2,1) A(2,2) A(2,3) A(2,4) A(2,5)

A(3,1) A(3,2) A(3,3) A(3,4) A(3,5)

A(4,1) A(4,2) A(4,3) A(4,4) A(4,5)

A(5,1) A(5,2) A(5,3) A(5,4) A(5,5)

A(1,1)

Region of parallelism

Figure 3.4 Wavefront parallelism.

WAIT(READY(I,J-1))

A(I,J) = (A(I-1,J) + A(I+1,J) + A(I,J-1) + A(I,J+1)) * 0.25

POST(READY(I,J))

ENDDO

ENDDO

Initially all the events are false—a wait on a false event will suspend the executing
thread until a post for the event is executed. All of the READY events for the first
column are then posted, so the computation can begin. The computation for the first
computed column, A(*,2), begins immediately. As each of the elements is computed,
its READY event is posted so that the next column can begin computation of the
corresponding element. The timing of the computation is illustrated in Figure 3.5.
Note that the event posting has aligned the region of parallelism so that all processors
are simultaneously working on independent calculations.

3.3.3 Regular versus Irregular Problems

Most of the examples we have used in this chapter are regular problems—defined
on a regular, fixed grid in some number of dimensions. Although a large fraction of
scientific applications focus on regular problems, a growing number of applications
address problems that are irregular in structure or use adaptive meshes to improve
efficiency. This means that the structure of the underlying grid is usually not known
until run time. Therefore, these applications present special difficulties for parallel

3.3 Enhancing Parallel Performance 61

A(2,1)

A(2,3)

A(2,4)

A(2,5)

A(3,1)

A(3,3)

A(3,4)

A(3,5)

A(4,1)

A(4,3)

A(4,4)

A(4,5)

A(5,1)

A(5,3)

A(5,4)

A(5,5)

A(2,2)

A(3,2)

A(4,2)

A(5,2)

Region of
parallelism

Ti
m

e

Figure 3.5 Wavefront parallelism with synchronization.

implementation because static, compile-time methods cannot be used to perform
load balancing and communication planning.

To illustrate these issues we present a code fragment from a simple force calcula-
tion that might be part of a molecular dynamics code.

DO I = 1, NPAIRS

F(L1(I)) = F(L1(I)) + FORCE(X(L1(I)), X(L2(I)))

F(L2(I)) = F(L2(I)) + FORCE(X(L2(I)), X(L1(I)))

ENDDO

DO I = 1, NPART

X(I) = MOVE(X(I), F(I))

ENNDO

The first loop is intended to traverse a list of particle pairs where the two particles
in the pair are located at index L1(I) and index L2(I), respectively. In molecular
dynamics codes, these pair lists are often constructed by taking every pair of particles

62 Chapter 3 Parallel Programming Considerations

that are within some cutoff distance of one another. For each pair, the force arising
from the particle interaction (due to electromagnetic interaction) is calculated by
function FORCE and added to an aggregate force for the particle. Finally, the aggregate
forces are used to calculate the new location for each particle, represented by X(I).

This code illustrates a fundamental characteristic of irregular problems, namely
the use of subscripted index variables in the index positions of the fundamental
data quantities of the problem. These index arrays are computed at run time, so the
actual data locations of the quantities involved in calculations in the first loop are
not known until the pair list is constructed at run time. Therefore, load balancing
cannot take place until the pair list is constructed. Furthermore, if communication
is required, the optimization of communication must be postponed until run time
as well.

To address this issue, a standard approach is to perform three steps as execution
begins.

1. Read in all the data.

2. Perform load balancing by distributing data to different processors and possibly
reorganizing data within a processor.

3. Step through the computation loop (without performing a computation) to
determine a communication schedule, if one is needed. Schedule, if required.

The last step is known as the inspector because its goal is to inspect the calculation
to plan communication.

In the force calculation above, the goal of load balancing would be to organize
the layout of particles and force pairs so that the maximum number of particle
interactions are between particles on the same processor. There are many ways to
approach this problem. As an example, we will describe a simple but fairly effective
strategy that uses Hilbert curves, often called space-filling curves, to lay out the data.
A Hilbert curve traces through 1-D, 2-D, or 3-D space in an order that ensures that
particles that are close together on the curve are usually close together in space.
The particles can then be ordered in memory by increasing position on the Hilbert
curve, with an equal number of particles allocated to each processor. Pairs can be
allocated to processors so that it is likely that one element of the pair will reside
on the processor where the pair resides. In many cases this can be accomplished
by some form of lexicographic sort applied to the pairs [664]. Finally, the pairs
requiring communication can be determined by an inspector that steps through
the pair list to see if one of the elements of the pair is on another processor. All
of the communication from the same processor can then be grouped and the data
delivered in a block from each processor at the beginning of every execution step.

Although this discussion is much oversimplified, it should give the flavor of the
strategies used to parallelize irregular problems. There is one further complication
worth mentioning, however. In the example above, the pair list may need to be
reconstructed from time to time, as the particles move around and some drift out
of the cutoff area while others drift in. When this happens, it may be necessary

3.4 Memory-Hierarchy Management 63

to reorganize the data, rebalance the load, and invoke the inspector once again.
However, this should be done as seldom as possible to ensure that the potentially
high cost of these steps is amortized over as many execution steps as possible.

3.4 Memory-Hierarchy Management

In this section we discuss programming strategies that can help make optimal use
of the memory hierarchy of a modern parallel computer system. We begin with the
strategies that improve the performance of a uniprocessor node within the memory
and then proceed to the issues that are complicated by parallelism.

3.4.1 Uniprocessor Memory-Hierarchy Management

As discussed in Section 2.1.2, a critical issue in getting good memory-hierarchy
performance on a uniprocessor is achieving high degrees of reuse of data in both
registers and cache memory. Many programmers are surprised to find that proper
organization of their programs can dramatically affect the performance that they
achieve.

Three principal strategies available to programmers for improving the perfor-
mance of memory hierarchy are described below.

Stride-One Access

Most cache memories are organized into blocks that contain multiple data items.
For example, the level-2 cache block on the SGI Origin can hold 16 double-precision
floating-point numbers. On every machine, these numbers are at contiguous ad-
dresses in memory. If a program is arranged to iterate over successive items in
memory, it can suffer at most one cache miss for every cache block. All successive
data items in the cache block will be hits. Thus, programs in which the loops access
contiguous data items are typically much more efficient than those that do not.

Blocking

Program performance can also be improved by ensuring that data remains in cache
between subsequent accesses to the same memory location. As an example, consider
the following code, which is a simple analogue of matrix multiplication:

DO I = 1, N

DO J = 1, N

A(I) = A(I) + B(J)

ENDDO

ENDDO

Although this loop achieves a high degree of reuse for array A, missing only N/L
times where L is the size of the cache block, it has a dismal performance on array
B, on which it incurs N2/L misses. The problem is that, even though access to B is

64 Chapter 3 Parallel Programming Considerations

stride-one, B(J) cannot remain in cache until its next use on the next iteration of the
outer loop. Therefore, all N/L misses will be incurred on each iteration of the outer
loop. If the loop on J is “blocked” or “strip mined” to a size where all the elements
of B that it touches can remain in cache, then the following loop results:

DO J = 1,N,S

DO I = 1, N

DO jj = J, MIN(J+S,N)

A(I) = A(I) + B(jj)

ENDDO

ENDDO

ENDDO

where S is the maximum number of elements of B that can remain in cache between
two iterations of the outer loop.

In this version, we have blocked the inner loop to the size of the cache and moved
the iterate-by-strip loop to the outermost loop position. In this new organization,
we suffer at most N/L misses for B, because each element of B is reused N times. On
the other hand, we increase the number of misses on A to N2/(LS) because we must
now miss for all the elements of A on each of the N/S iterations of the outer loop.
Overall, the number of misses has been reduced by a factor of S.

Data Reorganization

A third strategy for improving the behavior of a uniprocessor memory hierarchy is
to reorganize the data structures so that data items that are used together are stored
together in memory. For example, many older Fortran programs use multidimen-
sional arrays to store complex data structures. In these programs, one often sees an
array declaration such as:

DOUBLE PRECISION PART(10000,5)

Here the second dimension is being used to store the fields of a data structure about
one of the 10,000 particles in a simulation. If the fields describing a single particle are
updated together, this is the wrong data organization because Fortran uses column-
major order and the five fields are likely to appear on different cache lines. This
organization can reduce the effective bandwidth in the program by up to a factor of
five. A much better organization for Fortran is to swap the data dimensions:

DOUBLE PRECISION PART(5,10000)

However, this requires rewriting every access to the array PART in order to ensure cor-
rectness. Thus, this task is often best left to a tool, although the programmer should
be aware of this problem while writing the program initially. Data reorganization
is also very effective on irregular problems, even though the reorganization must
take place at run time. In irregular particle codes, the cost of misses due to bad data
organization far outweighs the cost of rearranging the data at run time. Judicious

3.4 Memory-Hierarchy Management 65

use of these strategies can improve performance by integer factors. However, they
are tedious to apply by hand, so they are better carried out by automatic means.
In particular, cache blocking and interchange to achieve stride-one access have been
built into most modern Fortran compilers, while tools for global data reorganization
exist as research prototypes [273].

3.4.2 Multiprocessor Memory Hierarchies

Multiprocessors add a number of complexities to the problem of managing accesses
to memory and improving reuse. In this section, we focus on three of the most
significant problems.

Synchronization

In many parallel programs it is useful to have several different processors updating
the same shared data structure. An example is a particle-in-cell code where the forces
on a single particle are computed by a number of different processors, each of which
must update the aggregate force acting on that particle. If two processors attempt two
different updates simultaneously, incorrect results may occur. Thus, it is essential to
use some sort of locking mechanism, such as a critical region, to ensure that when
one processor is performing such an update on a given particle, all other updates for
the same particle are locked out. Typically, processors that are locked out execute
some sort of busy–waiting loop until the lock is reset. Most machines are designed
to ensure that these loops do not cause ping-ponging of the cache block containing
the lock.

Elimination of False Sharing

False sharing is a problem that arises when two different processors are accessing
distinct data items that reside on the same cache block. On a shared-memory
machine, if both processors attempt to write into the same block, the block can
ping-pong back and forth between those processor caches. This phenomenon is
known as false sharing because it has the effect of repeated access to a shared datum
even though there is no real sharing. False sharing is typically avoided by ensuring
that data used by different processors reside on different cache blocks. This can
be achieved by the programmer or a compiler through the use of padding in data
structures. Padding is the process of inserting empty bytes in a data structure to
ensure that different elements are in different cache blocks.

Communication Minimization and Placement

Communication with a remote processor can have a number of negative effects on
the performance of a computation node in a parallel machine. First, the commu-
nication itself can cause computation to wait. The typical strategy for addressing
this problem is to move send and receive commands far enough apart so that the

66 Chapter 3 Parallel Programming Considerations

time spent on communication can be overlapped with computation. Alternatively,
a program reorganization may reduce the frequency of communication, which not
only reduces the number of start-up delays that must be incurred but also reduces
the interference with local memory-hierarchy management. A form of blocking can
be useful in this context—if large data structures are being cycled through all the
processors of a distributed-memory computer, it pays to block the data so that all
computations involving that data structure by one processor can be carried out at
the same time. This ensures each block has to be communicated to a given processor
only once.

Once again, many of the useful strategies can be automated in a compiler.

3.5 Parallel Debugging

Parallel debugging is the process of ensuring that a parallel program produces correct
answers. We will say that it produces correct answers if it satisfies two criteria:

1. Absence of nondeterminism. It always produces the same answers on the same
inputs.

2. Equivalence to the sequential version. It produces the same answers as the sequen-
tial program on which it is based.

These criteria are based on two underlying assumptions. First, we assume that a par-
allel program will typically be developed by producing and debugging the sequential
version and then converting it to use parallelism. In this model the sequential pro-
gram becomes a specification for the desired answers. Note that some differences
from the sequential answers are considered “tolerable.” For example, regrouping
of sequential summations into parallel global-sum operations may produce slightly
different answers due to the nonassociativity of floating-point arithmetic.

Second, we assume that nondeterminism is not a desirable property. Although
there is much discussion in the literature of using nondeterminism in program-
ming, our experience is that most scientific users want repeatability in their codes
(except of course for Monte Carlo codes and the like). Because the sequential pro-
gram is almost always equivalent to the parallel program run on one processor, we
concentrate on the goal of eliminating nondeterminism.

In shared-memory programming models, the principal sources of nondetermin-
ism are data races. A data race occurs when different iterations of a parallel loop share
data, with one iteration writing to the shared location. As an example, consider the
following loop.

PARALLEL DO I = 1, N

A(I) = A(I+5) + B(I)

ENDDO

Even though this loop can be vectorized, it has a data race because if iteration 6 gets
far enough ahead of iteration 1, it might store into A(6) before the value is loaded on

3.6 Performance Analysis and Tuning 67

iteration 1. This produces wrong answers because the sequential version reads the
value of A(6) as it is on loop entry.

Data races are often difficult to detect because they do not show up on every
execution. Thus, tools are typically required to detect them. One strategy that can
be used to uncover races is to run all the parallel loops in a program backward and
forward sequentially and compare the answers. Although this is not guaranteed to
find all the races, it can uncover the most common ones.

A number of sophisticated tools have been developed or proposed to detect data
races. These generally fall into two classes:

1. Static analysis tools, which use the analysis of dependence from compiler
parallelization to display potential data races in parallel loops. An example
from the CRPC is the ParaScope Editor [70].

2. Dynamic analysis tools, which use some sort of program replay with shadow
variables to determine if a race might occur at run time.

In message-passing programs, the most common parallel bugs arise from messages
that arrive out of order. When most message-passing programs execute receive
operations from a given processor, the programmer expects that the message would
be one that came from a particular send. However, if more than one message is being
sent between the same pair of processors, they might arrive out of order, leading to
nondeterministic results. For this reason, many message-passing libraries use “tags”
to ensure that send and receive pairs match. A tag can be thought of as specifying a
specific channel on which messages are to be watched for. Since there can be more
than one channel between the same pair of processors, this can be used to ensure
that message-out-of-order bugs do not occur.

Another problem in message-passing programs arises because it is possible to
execute a receive of a message that never arrives. This can happen, for example, if the
receive is always executed but the send is executed only under certain conditions.
A somewhat symmetric bug occurs when more messages are sent than are received,
due to mismatching conditions. This can cause messages to never be received, with
resulting wrong (or at least surprising) answers. Problems of this sort can usually be
detected by analyzing traces of communication operations.

3.6 Performance Analysis and Tuning

Because the primary goal of parallel computing is to obtain higher performance than
is possible via sequential computation, optimizing parallel application behavior is
an integral part of the program development process. This optimization requires
knowledge of the underlying architecture, the application code parallelization strat-
egy, and the mapping of the application code and its programming model to the
architecture.

68 Chapter 3 Parallel Programming Considerations

The basic performance tuning cycle consists of four steps:

. Automatic or manual instrumentation. This instrumentation typically inserts
measurement probes in application code and system software, perhaps with
additional software measurement of hardware performance counters.

. Execution of the instrumented application and performance data. Such executions
record hardware and software metrics for offline analysis. The recorded data
may include profiles, event traces, hardware counter values, and elapsed times.

. Analysis of the captured performance data. Using recorded data, analysis, either
manual or automatic, attempts to relate measurement data to hardware re-
sources and application source code, identifying possible optimization points.

. Modification of the application source code, recompilation with different optimization
criteria, or modification of run-time system parameters. The goal of these modifi-
cations is to better match application behavior to the hardware architecture
and the programming idioms for higher performance.

As a concrete example, consider an explicitly parallel message-passing code, writ-
ten in C or Fortran 77 and intended for execution on a distributed-memory parallel
architecture (e.g., a Linux PC cluster with a 100 MB/s Ethernet interconnect). A de-
tailed performance instrumentation might include (a) use of a profiler to estimate
procedure execution times, (b) recording of hardware instruction counters to identify
operation mixes and memory-access costs, and (c) use of an instrumented version
of the Message Passing Interface (MPI) standard to measure message-passing over-
head.

A profile, based on program-counter sampling to estimate execution times, typ-
ically identifies the procedures where the majority of time is spent. Examining the
program’s static call graph often suggests the invocation pattern responsible for the
overhead (e.g., showing that inlining the body of a small procedure at the end of a
call chain in a loop nest would reduce overhead).

If a procedure profile is insufficient, hardware counter measurements, when asso-
ciated with loop nests, can identify the types and numbers of machine instructions
associated with each loop nest. For example, seeing memory reference instruction
stall counts may suggest that a loop transformation or reblocking would increase
cache locality.

Finally, analysis and visualization of an MPI trace (e.g., via Jumpshot) may suggest
that the computation is dominated by the latency associated with transmission of
many small messages. Aggregating data and sending fewer, larger messages may lead
to substantially higher performance.

The problems for data-parallel or implicitly parallel programs are similar, yet
different. The range of possible performance remedies differs, based on the program-
ming model (e.g., modifying array distributions for better memory locality), but the
instrumentation, execution, and analysis, and code optimization steps remain the
same.

3.7 Parallel Input/Output 69

Perhaps most critically, the common theme is the need to intimately understand
the relations among programming model, compiler optimizations, run-time system
features and behavior, and architectural features. Because performance problems
can arise at any point in the multilevel transformations of user-specified appli-
cation code that precede execution, one cannot expect to obtain high performance
without investing time to understand more than just application semantics.

3.7 Parallel Input/Output

Most parallel programs do more than just compute (and communicate): they must
also access data on secondary storage systems, whether for input or output. And
precisely because parallel computations can execute at high speeds, it is often the
case that parallel programs need to access large amounts of data. High-performance
I/O hence becomes a critical concern. On a parallel computer, that inevitably means
parallel I/O; without parallelism we are reduced to reading and writing files from
a single processor, which is almost always guaranteed to provide only low perfor-
mance. That is, we require techniques that can allow many processors to perform
I/O at the same time, with the goal of exploiting parallelism in the parallel com-
puter’s communication network and I/O system.

The parallel programmer can take two different approaches to achieving concur-
rency in I/O operations. One approach is for each process to perform read and write
operations to a distinct file. While simple, this approach has significant disadvan-
tages: programs cannot easily be restarted on different numbers of processors, the
underlying file system has little information on which to base optimization deci-
sions, and files are not easily shared with other programs. In general, it is preferable
to perform true parallel I/O operations, which allow all processes to access a single
shared file.

The parallel I/O problem is multifaceted and often quite complex. This is due
to the need to deal with issues at multiple levels, including the I/O architecture
of the parallel computer (e.g., each compute processor can have a local disk, or
disks can be managed by distinct I/O processors), the file system that manages
access to this I/O architecture, the high-level libraries that may be provided to
map application-level I/O requests into file system operations, and the user-level
application programming interface(s) (API) used to access lower-level functions.
Fortunately, after much research, the community has succeeded in developing a
standard parallel I/O interface, namely the parallel I/O functions included in the
MPI-2 standard. (These are sometimes also referred to as MPI-IO.) These functions
are supported on most major parallel computer platforms in the form of a vendor-
supported library and the freely available ROMIO package developed at Argonne
National Laboratory.

MPI-IO functions enable a set of processes to open, read, write, and eventually
close a single shared file. Many of the read and write functions are collective, mean-
ing that all processes call them together; in these operations, each process contri-
butes part of the data that are to be read (or written). This use of collective operations

70 Chapter 3 Parallel Programming Considerations

allows the underlying I/O library and file system to perform important optimizations:
for example, they can reorganize data prior to writing them to disk.

The following example gives the flavor of the MPI-IO interface. This code fragment
first opens a file for read-only access and then calls the collective I/O function MPI_
File_read_all. Each calling process will obtain a piece of the file in its local_array.

MPI_File_open(MPI_COMM_WORLD, ’’/pfs/datafile’’, MPI_MODE_RDONLY, MPI_INFO_NULL, &fh);
.
.
.

MPI_File_read_all(fh, local_array, local_array_size, MPI_FLOAT, &status);

A detailed discussion of parallel I/O techniques and MPI-IO is provided in Chap-
ter 11.

3.8 Conclusion

This chapter has presented an introductory treatment of a number of the strategies
and issues that a new parallel programmer must deal with, including programming
models and strategies, application partitioning, scalability, pipelining, memory-
hierarchy management, irregular versus regular parallelism, parallel debugging, per-
formance tuning, and parallel I/O. These topics will be discussed in more detail in
the remainder of this book. In addition, they will be tied to specific application
programming interfaces, such as languages and run-time systems.

Further Reading

Later chapters in this book include in-depth coverage of many of the programming
topics introduced here. Chapter 9 is an overview of the programming support tech-
nologies covered in this book. Chapter 10 surveys message-passing programming in
MPI and introduces thread programming. Chapter 12 includes material on parallel
loop programming with events in OpenMP. In addition, the same chapter covers
SMTP programming in Co-Array Fortran, along with programming in High Perfor-
mance Fortran, a distributed array language. Finally, Chapter 16 provides examples
of different programming styles applied to the simple Poisson problem.

For further background on parallel programming topics, we recommend the
following books:

. Parallel Computing Works! [358] by Fox, Williams, and Messina is a substantive
repository of information about parallel computation, particularly in the early
days of distributed-memory machines.

. Designing and Building Parallel Programs [341] by Foster provides a good tutorial
introduction to parallel computing and to programming using message passing
in MPI.

Further Reading 71

. Parallel Programming in OpenMP [183] by Chandra et al. provides an introduc-
tion to shared-memory parallel programming in the most popular program-
ming interface for loop parallelism and its extensions.

. Using MPI: Portable Parallel Programming with the Message Passing Interface [406]
by Gropp et al. is an excellent introduction to the most widely used message-
passing programming interface. Its successor, Using MPI-2: Advanced Features
of the Message-Passing Interface [407] by Gropp et al., covers advanced features,
including the MPI-IO interface described in Section 3.7.

P

A

R

T II Applications

Chapter 4 GENERAL APPLICATION ISSUES

Geoffrey Fox, Indiana University

Chapter 5 PARALLEL COMPUTING IN COMPUTATIONAL FLUID DYNAMICS

Ron Henderson, California Institute of Technology . Dan Meiron,
California Institute of Technology . Manish Parashar,
Rutgers University . Ravi Samtaney,
California Institute of Technology

Chapter 6 PARALLEL COMPUTING IN ENVIRONMENT AND ENERGY

Mary F. Wheeler, University of Texas-Austin . Wonsuck Lee,
Bell Laboratories . Clint N. Dawson, University of Texas-Austin .

Dorian C. Arnold, University of Tennessee . Tahsin Kurc,
Ohio State University . Manish Parashar, Rutgers University .

Joel Saltz, University of Maryland . Alan Sussman
University of Maryland

Chapter 7 PARALLEL COMPUTATIONAL CHEMISTRY:
AN OVERVIEW OF NWChem

David E. Bernholdt, Syracuse University

Chapter 8 APPLICATION OVERVIEWS

Geoffrey Fox, Indiana University

74 Chapter 3 Parallel Programming Considerations

C

H

A

P

T

E

R

4 General Application Issues

Geoffrey Fox

This chapter is the first of five devoted to application strategies and their realization
in specific applications. As such it is intended to set the stage for the entire section
by laying out general principles for application development.

We begin this overview by presenting the questions that an application developer
should ask when considering a specific application for parallelization:

. I have an application: can, and should, it be parallelized?

. If so, how should this be done?

. What are appropriate target hardware architectures?

. What is known about clever algorithms?

. What software technologies are recommended?

By following this thought process on specific applications, we can identify general
characteristics that are useful for classifying the issues in parallelization. To illustrate,
I review the Poisson equation, which is the subject of Chapter 16. The goal of the
analysis here is to revisit the discussions of Chapter 3 from an application, rather
than a parallel programming perspective. By contrast, Chapter 16 presents sample
implementations in several different programming interfaces. Although the Poisson
equation is not a “real” application like the others treated in this section of the book,
it can serve as a simple example to frame the discussion of general application issues.

4.1 Application Characteristics in a Simple Example

Simple 2-D electrostatic problems can be reduced to solving Laplace’s or Poisson’s
equation. Poisson’s equation (see Chapter 16) is often solved numerically by finite
difference methods. These could involve adaptive meshes and hierarchical multigrid

75

76 Chapter 4 General Application Issues

Figure 4.1 A 16× 16 2-D mesh with an illustration of the basic nearest-neighbor update used
in Jacobi’s method of Chapter 16.

methods but, in the simplest formulation, they are set up as a regular grid of field
values where the basic iterative update links 2-D nearest neighbors, as in Figure 4.1.

If we label points by an index pair (i, j), then Jacobi’s method (see equation 16.3)
can be written

φNew(i, j)=
(
φLeft + φRight + φUp + φDown

)
/4 (4.1)

corresponding to the stencil in Figure 4.2, where the subscript Left corresponds to
index pair (i − 1, j), and so on.

We note that the problem can be viewed as an algorithm (4.1) applied to a set
of data points. Parallelism is naturally found by dividing the domain into parts and
assigning each part to a different processor, as seen in Figure 4.3. This technique is
often called “domain decomposition” or “data parallelism,” but these terms already
have a particular meaning in the algorithm and parallel programming fields, respec-
tively. We will use the term “block data decomposition” instead. This is essentially
the nomenclature used in High Performance Fortran (HPF).

This geometric view is appropriate for many problems from nature. In a weather
simulation, for example, the atmosphere over California evolves independently
from that over Indiana. So, for short time extrapolations, they can be simulated
on separate processors. Eventually, information flows between these sites and their
dynamics are mixed. Of course, it is the communication of data between the proces-
sors (either directly in a distributed memory or implicitly in a shared memory) that
implements this eventual mixing.

4.1 Application Characteristics in a Simple Example 77

j+1

i–1 i i+1

j–1

j

Down

New

RightLeft

Up

Figure 4.2 Stencil for Jacobi iteration of Figure 4.1.

Block data decompositions typically lead to a single-program, multiple-data
(SPMD) structure, with each processor executing the same code on different data
points and using different boundary conditions. In Figure 4.3, the processor associ-
ated with a center block (Case C) will be “in charge” of 16 points. Boundary data will
be obtained by communication with the processors controlling data adjacent to the
four edges of the region. Processors associated with edge blocks (Case E) must handle
a mix of conventional and communication boundaries. A set of halo, or ghost, grid
points (Figure 4.4) is often used to represent the communicated values. (See also
Section 16.3.)

This type of data decomposition leads to the so-called owners-compute rule. We
imagine that each data point is owned by the processor to which the decomposi-
tion assigns it. The owner of a given data point is responsible for performing the
computation that updates its corresponding data values. Thus, the parallel program
consists of a loop over iterations divided into two phases:

. Communicate. At the start of each iteration, communicate any outside data
values needed to update the data values at points owned by this processor.

. Compute. Update the data values. Each processor operates without the need to
synchronize with other machines.

This type of structure can be used with many complex physical simulations. The
decompositions can be irregular, as long as they are fixed. Dynamic decompositions
require an additional step. Data locations must be migrated between processors to

78 Chapter 4 General Application Issues

Case E: Some boundaries involve
communication and some
involve edge conditions.

Case C: All boundaries
involve communication.

Figure 4.3 A 16× 16 mesh divided among 16 processors with a 2-D grid chopped into
rectangular subdomains.

Figure 4.4 Communication structure for the Poisson equation example. The circled points
are the halo or ghost grid points. Their values must be communicated across the boundary.

4.2 Communication Structure in Jacobi’s Method for Poisson’s Equation 79

ensure load balance. But data migration is usually followed by similar communicate–
compute phases. The communication phase synchronizes the operation of the par-
allel processors and provides an efficient barrier point that scales naturally.

In the previous discussion, we used terminology natural for distributed-memory
hardware or message-passing programming models. When using a shared-memory
model such as OpenMP, communication is implicit, and the communication phase
is implemented as a barrier synchronization.

4.2 Communication Structure in Jacobi’s Method for
Poisson’s Equation

On a distributed-memory machine, the geometrically local structure of the linked
entities of Figure 4.1 leads to a classic communication structure: the communication
required is proportional to the surface area of each subdomain, while computation
is proportional to volume. (Note that in the 2-D example of Figure 4.3, the “surface”
of the subdomain consists of the edges of the square.) One can usually “block” the
communication to transmit all the needed points in a few messages. Chapters 3,
7, and 10 explain why blocking is important to reduce the effects of the latency of
the messaging system. We can use our current Poisson equation example to produce
some rules of thumb that allow us to estimate the performance of many parallel
programs.

As shown in Figure 4.5, we characterize each node of a parallel machine by
a parameter tfloat , which is the time required to perform a single floating-point
operation. Of course, tfloat is not very well defined. It depends on the effectiveness
of cache, the possible use of fused multiply–add, and other issues. This means that
the measure will have some application dependence, reflecting the goodness of the
match of the problem to the node architecture. We let n be the grain size—the
number of data locations owned by a typical processor. In the example of Figure 4.3,
n is 16; in a realistic example, n would be larger, but limited by the memory of each
processor. For a hypothetical 103× 103× 103 3-D grid solved on a 1000-processor
machine, n would be 106.

Communication performance—whether through a shared- or distributed-
memory architecture—can be parameterized as

Time to communicate Ncomm words= tlatency +Ncomm · tcomm

Memory n

CPU tfloat CPU tfloat

Node A Node B

Memory n

tcomm

Figure 4.5 Parameters determining performance of loosely synchronous problems.

80 Chapter 4 General Application Issues

This equation ignores some issues (e.g., bus or switch contention), but it is a reason-
able model in most cases. It is dangerous to quote explicit values for these parameters,
as hardware is always improving. Very roughly, the value of tlatency is around 1µs
on shared-memory machines and at least an order of magnitude higher, say 40µs,
between remote nodes on distributed-memory machines. This latency becomes 10–
100µs between nodes of a geographically distributed metacomputer; this drastic
increase in latency explains why one cannot easily use such systems for parallel
computing. The parameter tcomm is the time required to communicate a single word
and is in the range of 0.1 to 0.01µs per word. For large enough messages (Ncomm in
the range of 100 to 1000 or larger), the latency term can be ignored. So we will set
tlatency = 0 in the following discussion.

Now let’s generalize the problem above to Nproc processors arranged in an
√

Nproc ×√
Nproc grid with a total of N grid points and grain size n = N/Nproc. We will first

consider measures of load balance. Let tcalc denote the time required to execute the
basic update described in equation (4.1). Then

tcalc = 4 · tfloat

Since the boundary points are fixed, we only need to update the (
√

N − 2)× (
√

N − 2)

array of interior points. So the sequential execution time is given by

T(1)=
(√

N − 2
)2 · tcalc

The parallel execution time is governed by the “interior” processors, which need to
update n points. So

T(Nproc)= n · tcalc = 4 · n · tfloat

and the speedup is given by

S(Nproc)= T(1)

T(Nproc)
=Nproc

1− 2√

n ·Nproc

2

The speedup S(Nproc) is less than Nproc because the processors do not all update
the same number of points. However, as either n or Nproc becomes large, this load
imbalance effect becomes less noticeable.

So far, we have not considered the communication overhead. Figure 4.6 illustrates
the cases n= 16 and n= 64. The processor needs to obtain values for the circled points
in order to update its own data values. This means that our expression for parallel
execution time now becomes

T(Nproc)= 4 · n · tfloat + 4 · √n · tcomm

Since the communication term is proportional to
√

n, while the computation term
is proportional to n, the communication overhead decreases in importance as n

4.2 Communication Structure in Jacobi’s Method for Poisson’s Equation 81

Stencil 4 x 4 grid 8 x 8 grid

Updated

Communicated

Ignored

Figure 4.6 Communication structure for a five-point stencil and two different grain sizes.

increases. Adding communication overhead to the speedup formula, we get

S(Nproc)=Nproc

(
1− 2√

n·Nproc

)2

(
1+ tcomm√

n ·tfloat

)

(4.2)

Realistic values for tcomm/tfloat are in the range of 10 to 100; so the communication
overhead dominates in equation (4.2). Suppose that tcomm/tfloat = 50 and that we
want to reduce the communication overhead below 0.1. Then the grain size n
needs to be greater than 250,000 grid points. On some computers, it is possible to
overlap communication and computation. The analysis above can be extended in a
straightforward manner to handle such strategies.

To generalize the formalism above, we introduce an efficiency ε and an overhead
f . Then we can write

S(Nproc)= ε ·Nproc =
Nproc

1+ f
(4.3)

The communication part of the overhead, fcomm, appears in equation (4.2) as

fcomm = tcomm√
n · tfloat

(4.4)

In many instances, fcomm can be thought of as simply the ratio of parallel commu-
nication to parallel computation. Equation (4.4) can be generalized to handle almost

82 Chapter 4 General Application Issues

all the problems we will later term “loosely synchronous.” For those problems, the
overhead in a coupled communicate phase and compute phase takes the form

fcomm = constant · tcomm

n1/d · tfloat
(4.5)

Here, d is an appropriate (complexity or information) dimension. For equations
based on partial differential equations, d is just the geometric dimension. The same
holds for other geometrically local algorithms. For 3-D problems, d = 3 and n1/d is
the surface-to-volume ratio. For full matrix problems, one finds the value d = 2 for
the best decompositions, such as those used in ScaLAPACK (see Chapter 20).

Applying equation (4.3), we find that S(Nproc) increases linearly with Nproc if
fcomm is held fixed. Since tcomm and tfloat are naturally fixed, holding fcomm fixed
implies keeping the grain size n fixed. This is scaled speedup, since the problem
size N = n ·Nproc also increases linearly with Nproc.

The continuing success of parallel computing even on very large machines can
be considered a consequence of equations (4.3) and (4.5). Note that the formula
for fcomm (whose numerical value we could aim to keep around 10% or lower) only
depends on local node parameters and not on the number of processors. Here we
consider the grain size n as reflecting the amount of local memory. Thus, as we scale
up the number of processors, keeping the node hardware and application size n fixed,
we will get scaling performance—speedup proportional to Nproc.

This simple problem is perhaps the one where the parallel issues are most obvi-
ous. However, it is not the one where the parallel performance is easiest to obtain,
as the small computation load of the update (equation 4.1) makes the communica-
tion overhead relatively more important. There is a fortunate general rule: As one
increases the complexity of a problem, the computation required grows faster than
the communication overhead. I illustrate this below.

Jacobi iteration requires perhaps the least communication for problems of this
class. However, it has one of largest ratios of communication to computation and
correspondingly high parallel overhead. Note that one sees the same effect on a
hierarchical (cache) memory machine, where problems such as Jacobi iteration for
simple equations can perform poorly as the number of operations performed on
each word fetched into cache is proportional to the number of links per entity, and
this is small (four in the 2-D mesh considered above) for this problem class.

4.3 Communication Overhead for More General Update Stencils

It is instructive to consider in detail how the analysis above changes when a dif-
ferent update formula is used. First, consider using fourth-order differencing to
approximate ∇2 in Poisson’s equation. Then, as illustrated in Figure 4.7, we need to
communicate twice as many points into halo cells. Since the computation required
to update each point is also doubled, the ratio of communication to computation
is roughly the same as it was before. Hence, the overhead fcomm does not differ sig-
nificantly from its value in equation (4.4).

4.3 Communication Overhead for More General Update Stencils 83

Stencil 4 x 4 grid with adjacent processors

Updated

Communicated

Ignored

Figure 4.7 Communication structure for a nine-point stencil.

1/(2√n) 1/(3√n) 1/(4√n) tcomm/tfloat

Figure 4.8 Communication structure as a function of stencil size. The stencils shown have
(from left to right) range l = 1, 1, 2, and 3.

We can now systematically increase the size of the stencil and find how fcomm
changes. In the case below, the grid points are replaced by particles. Increasing the
stencil size corresponds to ratcheting up the range of force between the particles.

We find that the communication overhead decreases systematically as the range
of the force increases. (See Figure 4.8.) For a range of l (measured in units of grid
spacings), one finds in this 2-D case that

fcomm ∝ tcomm

l · √n · tfloat

84 Chapter 4 General Application Issues

This equation is valid when l is large compared to 1, but smaller than the length
scale corresponding to the region stored in each processor. In the interesting limit
of an infinite range (l→∞) force, redoing the analysis leads to the result

fcomm ∝ tcomm

n · tfloat
(4.6)

independent of the geometric dimension. This result has the same form as equa-
tion (4.5) for complexity dimension d = 1. This is the best-understood case in which
the geometric and complexity dimensions are different.

The overhead formula of equation (4.6) corresponds to the computationally in-
tense O(N2) algorithms for evolving N-body problems. The amount of computation
is so large that the ratio of communication to computation is extremely small.
This observation is at the heart of the success of special-purpose machines such as
GRAPE from the University of Tokyo (http://grape.astron.s.u-tokyo.ac.jp/grape/). The
1-teraflop GRAPE 4 won the Gordon Bell prize twice, and the GRAPE 5 took the cost-
effectiveness award in 1999 (at $7 per megaflop). The 100-teraflop GRAPE 6 competed
in 2000 and won another Gordon Bell award! The modest memory and communica-
tion needs of the N-body problem are some of the reasons enabling these powerful
machines to outperform any of the more general-purpose parallel computers on this
problem. Of course, the specialized GRAPE architecture limits the problems to which
it is applicable.

4.4 Applications as Basic Complex Systems

We saw above that the discussion of parallel issues is the same for two different cases:
particle dynamics and local discretization for partial differential equations. This is
generally true, as the parallel issues depend not on the detailed science or numeric
algorithm, but on overall characteristics of the application. So, it makes sense to
generalize the discussion in terms of both general principles applicable to many
parallel computing problems and special features of the particular 2-D structure
seen in Poisson’s equation. It is useful to think of an application as a “complex
system,” or a linked set of entities. This way of thinking can relate the parallelization
strategies of seemingly very different problems.

In particular, many other applications have computational structures similar to
the Laplace or Poisson equation discussed in previous sections. Consider first the 2-D
Ising model, where the mesh of Figure 4.9 is now a fixed grid of spins with a nearest-
neighbor connection for the interaction (forces) between them. The Ising model
has a geometric structure similar to equation (4.1), but the physics and numerical
procedure have many differences from Poisson’s equation. The grid points in the
Ising model are physically real spins; in the Poisson case, the grid points are artifacts
of the numerical procedure. The nearest-neighbor local connection in the Ising case
corresponds to a physical force law; it follows from the differencing approximation
to a partial derivative in Poisson’s case. Further, the usual numerical approach to
the Ising model uses a Monte Carlo method rather than a differential equation to

4.4 Applications as Basic Complex Systems 85

Figure 4.9 A basic complex system with a set of entities with nearest-neighbor linkage to at
most four others.

express the dynamics of the system. In Poisson’s equation, the iterative process is
a perturbed solution to an exact matrix problem. For the Ising model, the iterator
counts Monte Carlo sweeps as integration points are accumulated. This approach
decreases the statistical error, which is inversely proportional to the square root of
the number of sweeps. These differences, which are very important to the underlying
science, have little effect on decisions involving appropriate parallelization strategies
or the needed hardware and software systems.

Even closer to our Poisson equation would be an application that solved a simple
wave equation (or Maxwell’s equations) in a 2-D domain. Here we see an identical
computational structure, with the perturbed iteration in the sparse matrix solution
replaced by stepping through a discretized time variable. Yet another rather similar
structure can be found in cellular automata problems.

We can extend this very simple problem in several ways; some of these are ex-
plored in Chapter 16. For instance, finite element problems have a similar mesh, but
it can be quite irregular compared to the uniform geometry of most finite difference
problems. This makes load balancing an important issue. Particle dynamics prob-
lems with a short-range force can exhibit structure similar to that of Figure 4.8, but
with a dynamic irregular structure and a variable number of links per entity.

An obvious and important generalization of the Poisson structure is to higher
dimensions, with 3- and even 4-D structures. Equation (4.5) provided a general form
for the communication overhead. Applying this equation when d = 3, we see that
overhead decreases as n1/3. This is slower than in the 2-D case previously discussed.
So a grain size n≈ 106 is needed for a 3-D problem in order to match the performance
of a grain size n≈ 104 in two dimensions.

86 Chapter 4 General Application Issues

In Chapter 8, we describe two physics examples—numerical relativity and com-
putational quantum chromodynamics (QCD)—where the basic mesh is four dimen-
sional. The many partial differential equation applications in Chapters 5, 6, 7, and
8 have a richer structure at each grid or finite element mesh point than the single
value of Poisson’s equation. For instance, QCD has 3× 3 complex matrices repre-
senting gluons and vectors representing quarks. Computational fluid dynamics is
usually formulated in terms of five degrees of freedom at each point. Compared to
the simple formula of equation (4.1), the basic updates for these examples involve
much more computation. But, as we have explained, that actually tends to reduce
the parallel overhead. Communication tends to scale like the number of degrees of
freedom at each point. The computational update time complexity per point usually
increases faster than this.

We have seen that it is helpful to consider many problems as linked entities
arranged in 1-, 2-, 3-, or higher-dimensional geometries. This linkage was “short
range” (a few links per entity) in the examples we discussed, but this is not always
the case. Particles interacting through a long-range gravitational force require many
links per entity. This example, using the simple O(N2

particle) algorithm discussed at
the end of Section 4.3, has very different properties from the short-range case. In
particular, the performance of this problem is excellent on both distributed- and
hierarchical-memory machines. There are many (of order Nparticle) computations for
any point stored in cache. Even though the communication appears heavy in a
distributed-memory machine, the above analysis shows a low ratio of communi-
cation to computation.

This type of long-range problem is found in a variety of fields; they may be
far from particle dynamics, but they still have the same computational structure.
We provide one interesting example of an O(N2

particle) algorithm in Chapter 8—the
Green’s function approach to the simulation of earthquakes. Such partial differential
equation solvers become integral equations over the domain boundaries with full
linkage between the element mesh on the boundary. Some applications involving
determination of correlation functions also have this fully connected structure
between the points in the computation.

The N-body example can be used to illustrate another important point. A given
physical problem can look quite different in different numerical formulations. The
natural O(N2

particle) algorithm is often not the best approach to the simulation of
gravitating particles. For large problems, one usually adopts the so-called fast multi-
pole method with O(Nparticle) or O(Nparticle · log(Nparticle)) behavior. This again shows
that one needs to choose parallel algorithms carefully; the lowest communication,
or even the lowest communication-to-calculation ratio, may not be the best choice.
A simpler application illustrating the same issue is Poisson’s equation, which can
often be solved by either iterative local methods, such as Jacobi or conjugate gra-
dient, or by the Fast Fourier Transform. In both cases, the obvious approach has a
simpler complex-system structure, while the fast algorithm has a more complicated
tree structure. Computational scientists use their skill to convert a given application

4.5 Time-Stepped and Event-Driven Simulations 87

into a numerical system, and it is the structure of the latter that determines the key
parallel computing issues.

4.5 Time-Stepped and Event-Driven Simulations

We noted above the rich spatial or geometric structure of applications. Two rather
distinct simulation methods, time stepped and event driven, correspond to different
temporal structures. Most of the examples in this book correspond to the time-
stepped case; the entities in a complex system evolve together and are synchronized
globally by the concept of time or something equivalent, such as an iteration or
Monte Carlo sweep. This is reasonable since it is “how nature works.” In the early
days of parallel computing, there were concerns that the global synchronization im-
plied by the time-stepped approach would lead to uncontrollable overhead. This
is not true, for it can be seen (see the description at the end of Section 4.1 for
the simplest nearest-neighbor Laplace equation) that global time synchronization
is implied by the local synchronization of neighboring nodes, either by exchang-
ing messages or the equivalent shared-memory mechanism. This synchronization
mechanism is itself fully parallel (with no “hot spots” in proper implementations)
and so introduces no serious parallel-computing overhead. Such efficient synchro-
nization is present in all problems having a time or iteration count to provide
algorithmic synchronization. Correct implementation of an algorithm with natural
synchronization points implies that the parallel program needs no special additional
synchronization. Message-passing systems such as the MPI (Message Passing Inter-
face) standard have synchronization barriers built in naturally; other programming
models (such as active messages and OpenMP) require explicit user attention to this
issue.

The military makes substantial use of event-driven simulations in the field of
forces modeling, and we provide an example of this in Section 8.11. Here, one
tends not to simulate systems in terms of their fundamental constructs (atoms,
grid points, etc.), but rather in terms of macroscopic constructs such as vehicles,
mines, or battalions. The system components are naturally formulated in terms of
objects interacting with events. These are queued (often in a distributed fashion) and
executed either in real time (the natural case when there is “hardware in the loop”)
or according to a global virtual time. Here we do find potentially serious problems
with the overhead of global synchronization, and very ingenious techniques have
been developed. One important strategy—incorporated in the Time Warp Operating
System [513]—involves simulating the system in terms of interacting timestamped
events. Block data decomposition is typically used for parallelism, just as in the
synchronous and loosely synchronous cases. But now there is no straightforward
way to ensure that all events have been received and thus be able to decide to let the
simulation proceed on a given processor. The Time Warp approach optimistically
marches the simulation forward in time in each processor, using whatever events
are available. Correctness is guaranteed by recording the system state from time to

88 Chapter 4 General Application Issues

time. If necessary, the system state can be rolled back to an old (correct) state if an
event arrives bearing a time stamp earlier than the current processor simulation time.
The particular minefield simulation cable managment system (CMS) application
described in Section 8.11 was successfully parallelized because the different entities
in the simulation are largely independent; hence, there was essentially no difficulty
with synchronization.

One of the most powerful parallel event-driven approaches is the SPEEDES system
from Metron Corporation discussed in Section 8.11, and there are overall frameworks
such as high-level architecture (HLA) and run-time infrastructure (RTI) defined for
this field. HLA and RTI are object models similar to those described in Chapter 13.
However, no software system for event-driven simulation enjoys the universal accep-
tance and relatively clear methodology for getting good performance shown by MPI
in the time-stepped case. Some recent work at the Los Alamos National Laboratory
is potentially of great importance. These researchers have shown that some appli-
cations traditionally approached by event-driven simulation (e.g., large-scale traffic
models) can be tackled as loosely synchronous problems with excellent scaling of
parallel performance.

Circuit simulation is an interesting application area that can be tackled by either
simulation technique. Obviously, a circuit has a natural time that can be iterated
over, with every device component being updated at each step. This approach can
be inefficient; on most iterations, only a tiny fraction of the components are active.
The event-driven approach can be more effective, as one automatically updates
only those devices affected by queued events. This analysis is clear for sequential
machines, but the difficult parallelism of event-based systems makes the parallel
situation less clear.

4.6 Temporal Structure of Applications

It is useful to divide the temporal structure of numerical systems into four broad
areas:

1. Synchronous. Each point can be evolved in synchronous mode, as is natural
on a single-instruction multiple-data (SIMD) machine. The temporal synchro-
nization is on a point-by-point basis. Most of the simple examples discussed
above are of this type.

2. Loosely synchronous. The temporal synchronization is on a subdomain basis;
this is the natural form of SPMD implementations, including all HPF and most
MPI programs. Most of today’s major applications are of this type. Nearly any
serious irregularity (geometrical or otherwise) added to the model of a syn-
chronous problem changes it into a loosely synchronous problem. In particu-
lar, finite element problems and finite difference codes with adaptive meshes
are loosely synchronous. Domain decomposition (Chapter 6) has this struc-
ture, as does the fast multipole approach to particle dynamics discussed earlier.
However, the simple O(N2

particle) particle-dynamics algorithm is synchronous.

4.7 Summary of Parallelization of Basic Complex Systems 89

3. Asynchronous. Event-driven simulations fall into a class that includes problems
not formulated in terms of a stepped time or iterator that is associated with each
system entity. As discussed above, asynchronous problems can be very hard to
parallelize, whereas in principle loosely synchronous applications always run
efficiently if they are large enough.

4. Pleasingly parallel. The time or iteration evolution structure of a problem can
greatly impact the appropriate software and hardware architecture. However,
there is one important special case where this is not true—namely, cases where
the entities in the system are essentially disconnected. Then each entity can
be evolved more or less separately, and there is no significant synchronization
overhead whatever the differences between the entities. One typically uses a
“farm” architecture with worker nodes that somehow receive chunks of the
simulation (entities) to do as they finish their previous assignments. There are
nontrivial application-dependent implementation issues, but such problems
will always parallelize well if the problem is large enough. Good examples of
this problem class come from the Internet, where both large Web servers and
the back-end of database search engines such as Inktomi and Google are of
this type. This problem class was often termed “embarrassingly parallel” in
the past.

4.7 Summary of Parallelization of Basic Complex Systems

Let us take stock of where we are. Problems are set up as computational or numerical
systems. We have discussed one set of such systems, those that consist of a space of
linked entities. We called these systems “basic complex systems” and characterized
them by their possibly dynamic, spatial (geometric) and temporal structure. We
noted the difference between the structure of the original problem and that of the
computational system derived from it. We can summarize much past experience in
parallelizing applications by the conclusion:

Synchronous and loosely synchronous problems perform well on large
parallel machines if the problem is large enough. For a given machine,
there is a typical subdomain size (i.e., the grain size or the size of the
part of the problem stored on each node) above which one can expect to
get good performance. There will be a roughly constant ratio of parallel
speedup to Nproc if one scales the problem with fixed subdomain size and
total size proportional to Nproc.

Although this assertion is probably true in most important cases, it has proven to
be very difficult to design and implement productive programming environments
that allow the user to realize this goal. That is why we need to write this book even
though, in principle, success is guaranteed.

90 Chapter 4 General Application Issues

4.8 Meta-Problems

Several applications can be discussed solely in terms of computational systems that
fall into the basic complex-system type discussed above. This description is often
incomplete, although it does properly describe key computational modules that are
part of the complete application. More generally, one finds meta-problems built
up from multiple modules, each of which can be classified as a basic complex
system. Such meta-problems are particularly interesting today, as many of them are
natural applications for distributed systems such as computational grids. One tends
to run basic complex systems on classic shared- or distributed-memory machines, as
these have the required low latency and high bandwidth communication. Separate
modules in a meta-problem can often be run on geographically separated machines,
as they tend to have much less stringent communication requirements than do
simulations of basic complex systems. Important examples of meta-problems are:

. The three-way linkage of data store, simulation, and visualization subsystems
forms one of the most generic meta-problems. It is seen in many different dis-
ciplines. Section 8.10 describes an application of this type with a synchrotron
light source.

. As discussed in Chapter 22, there is a growing trend in modern engineer-
ing toward sophisticated systemwide optimization. For aircraft design, one
might simultaneously optimize over fluid flow, structural, acoustic, and elec-
tromagnetic properties. Each of these corresponds to a separate module in the
discussion above. The new DoD initiative in simulation-based acquisition (see
Section 8.11) would need such meta-problems, and this type of application is
illustrated in Figure 4.10.

. An early success of the CASA gigabit network was the simulation of a coupled
ocean–atmosphere meta-problem. There is a general understanding that such
approaches are essential for reliable long-range climate forecasts.

. The forces modeling community often builds such meta-problems; each com-
ponent is a separate focused simulation. In the example of Section 8.11, one
simulation engine is used to describe minefields and another describes squads
of vehicles. These simulations have interesting interactions. In this field, meta-
problems are called federations, and the basic simulations are termed federates.
As mentioned above, this community has recently adopted sophisticated soft-
ware standards (RTI and HLA) to support the federation of multiple event-
driven simulations.

Note that basic complex systems often have huge potential for parallelism. A
complex 3-D simulation may exhibit a billion independent degrees of freedom.
These are candidates for data-parallel systems. Meta-problems are different in that

4.9 Conclusion 91

Fluid flow

Acoustics

Structures

Control
module

Figure 4.10 The linked modules in a typical meta-problem. We show three large-scale parallel
modules that can be expected to execute individually on massively parallel systems. The
control module is logically separate and may not require high-performance computing.

they typically contain only a few independent modules. In addition, the linkage
of these modules is often timed asynchronously. These are naturally supported by
different software concepts than the data-parallel subcomponents. One may find
a meta-problem with each module using MPI, OpenMP, or HPF internally and
with the modules linked together through channels using, perhaps, GridFTP (high-
performance grid standard), Web services, and SOAP (W3C distributed object and
message model), IIOP (CORBA), or RMI (Java). We discuss these different software
models more completely in terms of object-based approaches and problem-solving
environments in Chapters 13 and 14.

4.9 Conclusion

At the start of this chapter, we presented the problem of understanding the principles
governing the types of applications that can be parallelized. We addressed this by
first identifying basic (or “atomic”) complex systems. We discussed their parallelism
in terms of their spatial and temporal structure, which we summarized in Section
4.7, and in terms of the application characteristics that govern the parallelism.

The majority of large-scale scientific and engineering codes can be parallelized. We
illustrated these conclusions with examples and a simple performance model given
in earlier sections of the chapter. In Section 4.8, we introduced meta-problems as

92 Chapter 4 General Application Issues

the general application class defined by loosely coupled aggregates of basic complex
systems. We noted that this type of application was naturally suitable for distributed
Grid architectures. This rather simplified discussion is complemented by the analysis
of Section 8.12, which looks at some 50 particular applications and summarizes
their computational structure. Chapters 5, 6, and 7 and Sections 8.1 through 8.11
describe 14 application areas in detail.

C

H

A

P

T

E

R

5 Parallel Computing in
Computational Fluid Dynamics

Ron Henderson . Dan Meiron .

Manish Parashar . Ravi Samtaney

In this chapter we provide a very brief introduction to computational fluid dynamics
(CFD), with the objective of providing a rationale for the use of high-performance
parallel computation in the solution of a variety of flow problems.

The basic equations of fluid mechanics are presented, after which a brief overview
is provided of some of the common physical regimes described by these equations
(compressible vs. incompressible flow) and the dimensionless parameters associated
with these physical regimes (Reynolds number and Mach number). The need to use
high-performance computation to solve these equations in many cases of interest is
then explored via some example applications.

We then focus on the particular computational difficulties associated with incom-
pressible viscous CFD. For complex geometries that are of practical interest, special
attention is paid to the application of high-order finite element methods (also called
spectral element methods) and their parallel implementation. The reason for present-
ing the material in this way is that the finite element framework provides a unified
approach to describing the equations of fluid dynamics in both simple and com-
plex geometries. It is also easy to express low-order approximations, such as those
that arise in the application of classical finite difference or finite volume methods,
as well as higher-order approximations in this framework. As seen below, it turns
out that in most applications, the use of the finite element method along with some
simplifying assumptions makes it clear that the relevant issue in solving most time-
dependent CFD problems is the need to solve efficiently several (possibly coupled)
elliptic equations. Thus, for incompressible flows, efficient parallel implementations
for CFD are intimately connected to efficient parallel solution procedures for elliptic
partial differential equations. Therefore, many of the methods described in this vol-
ume for parallel solution of such equations are directly applicable. Unfortunately,
to achieve the enormous economy of description of the finite element method, it

93

94 Chapter 5 Parallel Computing in Computational Fluid Dynamics

becomes necessary to use the mathematical formalism of finite elements, which can
at times be somewhat daunting.

A brief overview is then presented of approaches to the numerical simulation
of compressible CFD. It is argued that the need to capture fine-scale features such
as shock waves makes the use of adaptive mesh refinement essential, especially in
three dimensions. The difficulty of establishing load balancing and scalability for
such calculations is discussed. The chapter concludes with a brief discussion of some
future computational challenges for CFD and an assessment of the computational
resources required to overcome these challenges.

5.1 Introduction to Computational Fluid Dynamics

CFD is an enormous field with a vast literature, and it is basically impossible in this
short chapter to provide comprehensive implementations of parallel solution strate-
gies. At best, this chapter provides a glimpse of some of the essential issues associated
with high-performance computation of both incompressible and compressible flows
and attempts to provide some brief examples of the flow simulations achievable.

5.1.1 Basic Equations of Fluid Dynamics

The motion of a fluid is governed by the principles of classical mechanics and
thermodynamics, namely, conservation of mass, momentum, and energy. The most
general statement of these principles is carried out in integral form in a stationary
frame of reference leading to the following conservation equations [593]:

d
dt

∫
V

ρ dV +
∫

�

(ρ u · n) d� = 0 (5.1)

d
dt

∫
V

ρ u dV +
∫

�

[(n · u) ρ u− nσσ]d� =
∫

V
fe dV (5.2)

d
dt

∫
V

ρ E dV +
∫

�

n · [ρ E u− σσu+ q
]

d� =
∫

V

(
fe · u

)
dV (5.3)

Here, t is time, ρ is density, u is the velocity of a material fluid particle in this frame
of reference, E is the total specific energy, given by

E = e + 1
2

u · u

where e is the specific internal energy, σσ is the stress tensor, q is the heat flux, fe is
the external force per unit volume, and n is the unit outward normal to the surface
� enclosing the fluid volume V . We ignore other sinks and sources of energy, such
as those arising from chemical reactions or other phenomena.

The solutions of equations (5.1), (5.2), and (5.3) need not be continuous functions
of space, and it is for this reason that the equations are written in integral form.
However, if the flow density, velocity, and energy are sufficiently smooth, then these
equations can be transformed into an equivalent set of partial differential equations

5.1 Introduction to Computational Fluid Dynamics 95

through the use of the divergence theorem:

∂t(ρ)+ ∇ · (ρ u)= 0

∂t(ρu)+ ∇ · (ρ u u− σσ)= fe

∂t(ρE)+ ∇ · (ρ E u− σσ u+ q)= fe · u
The basic dependent variables are the density, velocity, and energy of the flow.
Constitutive relations for the stress tensor σσ and for the heat flux vector q must
be added to these equations in order to form a closed system. A Navier–Stokes fluid
is defined by the following constitutive relations:

σσ =−p I+ λ (∇ · u) I+ µ
[
(∇u)+ (∇u)T

]

Here p is the pressure, and λ, µ are coefficients of viscosity. The fluid is assumed to
obey the Fourier law of heat conduction,

q =−k ∇T

where T is the absolute temperature and k is the thermal conductivity. Finally, since
we assume that the fluid is in thermodynamic equilibrium locally, we require an
equation of state for the fluid that relates, for example, the entropy of the fluid to
the density and internal energy:

S = S(ρ, e)

where S is the entropy. From this and the thermodynamic identities,

p=−ρ2 T
(

∂S
∂ρ

)

e
T−1=

(
∂S
∂e

)

ρ

the Navier–Stokes equations become a closed system for the dynamic variables ρ, u,
and E.

An important special case of these equations is the flow of a perfect gas with
constant specific heats Cp and Cv. For such a gas, the equation of state is the well-
known ideal gas law:

p= (γ − 1) ρ e γ = Cp

Cv
e = Cv T

For further details the reader is referred to Thompson [930].

5.1.2 Physical Regimes and Dimensionless Variables

The Navier–Stokes equations have been shown to be valid over a wide class of flow
regimes. A useful approach to distinguishing the key regimes is to scale the physical
variables and to rewrite the equations in dimensionless form. To do this, we scale
all quantities relative to a reference length L, a reference velocity V∗, a reference
density ρ∗, and reference values of the coefficients of the viscosity µ and thermal

96 Chapter 5 Parallel Computing in Computational Fluid Dynamics

conductivity k. All other characteristic quantities can be derived from these basic
ones, although some understanding of the various balances of terms in the equations
is required to achieve meaningful results. We choose L/V∗ to scale time t , ρ∗V∗2 to
scale the stress σσ , and so forth. In this dimensionless form, the equations remain
essentially unchanged, but the constitutive laws reappear in a scaled form:

σσ =−p I+ 1
Re

{
λ (∇ · u) I+ µ

[
(∇u)+ (∇u)T

]}

where Re is the Reynolds number and is given by Re = V∗Lρ∗/µ∗.
The Reynolds number is a measure of the ratio of inertial to viscous forces acting

within the fluid. A low Reynolds number signifies flow dominated by viscous effects,
while a high Reynolds number indicates flows dominated by inertial effects. This
would seem to imply that one could ignore the viscous terms for flows at high
Reynolds numbers (e.g., for flow around an aircraft or car, which is typically in the
range of Re = 105 to 108). However, this is not quite correct since the viscous terms
become important near solid boundaries (such as the wing or body of the airplane)
and must be included if one wishes to compute the fluid drag on the car or plane.
In addition, in a turbulent flow the viscous terms are active at small length scales
and cannot be ignored if one wants to compute how much energy is required, for
example, to keep the flow moving at the characteristic velocity implied by a high
Reynolds number.

If we assume the fluid is a perfect gas, then it can be shown that the heat flux is
given by

q =− γ

RePr
k ∇e

where Pr = µ∗Cp/k∗ is the Prandtl number, which measures the relative importance
of viscous to thermal diffusion. For a perfect gas with constant specific heats, the
equation of state becomes

e = T
γ (γ − 1) M2

where M =V∗/
√

γ R T∗ is the Mach number, which measures the ratio of the charac-
teristic velocity to the speed of sound of the gas at temperature T∗. It can be shown
that, provided the velocity of the fluid remains substantially lower than the speed
of sound, the flow is essentially incompressible. This means that the density of a
fluid element is simply carried along by the flow as the flow evolves. In this case the
equations simplify, and the equation of state of the fluid becomes irrelevant.

For flows with velocities comparable or exceeding the local speed of sound, it is
possible to generate shock waves in the fluid. These are essentially thin layers of fluid
separating regions in which the flow is locally supersonic from those in which the
flow is subsonic. The viscous terms again become very important in these thin shock
regions.

5.1 Introduction to Computational Fluid Dynamics 97

5.1.3 The Role of High-Performance Computing

Numerical computation of fluid flows and, in particular, the use of high-performance
computation plays a critical role in fluid mechanics research for several reasons.
First, the equations of motion as described above are nonlinear. Exact solutions of
these equations exist only for highly simplified geometries and initial conditions.
Numerical computation is essential for solving general initial value problems in
realistic geometries, such as the flow over an automobile or an airplane wing. In
addition, the number of degrees of freedom required for accurate simulation of flows
in realistic geometries rises rapidly with Reynolds number and Mach number.

To get a feel for the computational requirements, consider the simulation of
turbulent flow without boundaries. It can be shown that the number of degrees
of freedom required to simulate all relevant length scales in the flow properly
(including the dissipation-producing length scales due to viscosity) varies as Re9/4.
For a moderate Reynolds number of 106, this implies a total of 3× 1013 degrees of
freedom per velocity component. Typically, this needs to be multiplied by a factor
of 10 to 15 to accommodate the storage required to carry out a computation. Thus,
roughly 300 terawords of memory are required simply to describe the flow. In order
to integrate the flow forward in time over a typical number of time steps (with a
time step on the order of 1/Re and thus on the order Re steps), one would need to
sweep through the mesh several times per time step. The exact number of sweeps
depends on the solver being used, but in any case, these simple considerations lead
to an estimate of the flop count on the order 1019 or more for a Reynolds number
of 106. From this simple estimate, it is clear that one requires a machine with
the capability of hundreds of teraflops or even petaflops in order to perform such
simulations in a reasonable time. Such architectures are only now on the horizon.

Turbulent flow is not the only application requiring high-resolution numerical
simulations. Even if the flow is kept smooth and laminar, the computation of fluid
flow about a solid body such as an airplane or car still requires substantial resources.
At the surface of a body, the flow satisfies the “no-slip” condition and is constrained
to move at the velocity of the body. The flow accommodates to this condition via
a thin boundary layer in which the viscous terms are sizable. The thickness of a
laminar boundary layer scales as Re−1/2. For example, the boundary layer on a 20-
foot automobile traveling at 55 miles per hour is about 1/10 of an inch. Again, a
wide range of scales is required in order to capture the flow correctly.

An even more severe ratio of length scales occurs for compressible flow with shock
waves. The thickness of strong shock waves is only on the order of a few molecular
mean free paths for a gas. The mean free path is typically several orders of magnitude
smaller than any characteristic length scale of the mean flow. In fact, it is currently
impractical to perform computations of compressible flows with shock waves in
which viscous effects are resolved across the shock wave except at Mach numbers
near 1.

The need to resolve the enormous range of scales in the examples above makes the
use of CFD essential. Even so, it is currently not possible to perform direct numerical

98 Chapter 5 Parallel Computing in Computational Fluid Dynamics

simulations of engineering flows in which all relevant scales are resolved. In all
such flows, some model of the small scales must be introduced. For turbulent flows,
we introduce a turbulence model to perform the dissipation of missing scales. For
strongly compressible flows, we employ modern artificial viscosities that allow us to
capture correctly the large-scale effects of the shock wave.

5.2 Incompressible Flows

We begin our discussion by considering Newtonian incompressible fluids with con-
stant density ρ and kinematic viscosity ν = µ/ρ, the motion of which is governed by
the incompressible Navier–Stokes equations:

∇ · u= 0 in

∂tu=N(u)− 1
ρ
∇p+ 1

Re
∇2u in
 (5.4)

where u= (u1, u2, u3) is the velocity field, p is the static pressure, Re ≡ UL/ν is the
Reynolds number, and
 is the computational domain. Without loss of generality,
we take the numerical value of ρ = 1, since this simply sets the scale for p. N(u)

represents the nonlinear advection term:

N(u)=− (u · ∇) u

=− 1
2

[(u · ∇) u+ ∇ · (u u)]

=− 1
2
∇ (u · u)− u×∇ × u

We refer to these as the convective form, skew-symmetric form, and rotational form,
respectively. These three forms for N(u) are mathematically equivalent but behave
differently when implemented for a discrete system. As shown by Zang [1015],
the skew-symmetric form is the most robust; this form is used in all calculations
described here.

The Navier–Stokes equations are coupled through the incompressibility con-
straint ∇ · u = 0 and the nonlinear term N(u). Dealing with this coupling in an
efficient and accurate manner is one of the challenges inherent in simulating incom-
pressible flow. However, the biggest challenge for time integration actually comes
from the linear term:

L(u)≡ 1
Re
∇2u

This term is responsible for the fastest time scales in the system and thus poses
the most severe constraint on the maximum allowable time step for numerical
integration of the fluid equations. Problems associated with the stiffness of the linear
operator are handled by treating this term implicitly, while the nonlinear term
is usually integrated with a more direct and easily implemented explicit method.
Completely implicit treatments of the nonlinear term have been developed and lead
to more robust simulations, especially at high flow speeds [882]. The application of

5.2 Incompressible Flows 99

an appropriate time-stepping scheme is a key part of any formulation and involves
essential issues of numerical stability. For an example of some of the subtleties, see
Petersson [762].

5.2.1 Semi-discrete Formulation

To solve the Navier–Stokes equations, equation (5.4) is integrated over a single time
step to obtain:

u(t +�t)= u(t)+
∫ t+�t

t

[
N(u)− 1

ρ
∇p+ L(u)

]
dt

Next we introduce a discrete set of times tn ≡ n �t , where the solution is to be
evaluated, and define un≡ u(x, tn) as the semi-discrete approximation to the velocity
(discrete in time, continuous in space). For reasons that will be explained in a
moment, the pressure integral is replaced with:

∇P̃ ≡ 1
�t

∫ tn+1

tn

1
ρ
∇p dt (5.5)

Next we introduce appropriate integration schemes for the linear and nonlinear
terms. The simplest implicit/explicit scheme would be first-order Euler time inte-
gration:

∫ tn+1

tn
L(u) dt ≈�t L(un+1) (5.6)

∫ tn+1

tn
N(u) dt ≈�t N(un) (5.7)

Combining (5.5)–(5.7) we get a semi-discrete approximation to the momentum
equation:

un+1= un +
[
N(un)− ∇P̃ + L(un+1)

]
�t (5.8)

This system of equations can be solved by further splitting (5.8) into three substeps
as follows:

u(1) − un &= �tN(un)

u(2) − u(1) &= −�t∇P̃
un+1 − u(2) &= �tL(un+1)

Here u(1) and u(2) are intermediate velocity fields that progressively incorporate
the nonlinear terms and the incompressibility constraint. The motivation for the
splitting is to decouple the pressure term from the advection and diffusion terms.
It should be noted that the splitting procedure constitutes only an approximate
solution to the problem of solving equation (5.8) coupled to the incompressibility
constraint. For many purposes, this solution is sufficiently accurate, but in certain
cases errors occur at flow boundaries; these can sometimes be significant. The errors
arise because the incompressibility constraint is not enforced at all points up to and

100 Chapter 5 Parallel Computing in Computational Fluid Dynamics

including the flow boundaries. Again the reader is referred to Petersson [762] for a
more complete discussion.

The classical splitting scheme proceeds by introducing two assumptions: that
u(2) satisfies the divergence-free condition (∇ · u(2) = 0), and that u(2) satisfies the
correct Dirichlet boundary conditions in the direction normal to the boundary
(n · u(2) = n · un+1). Incorporating these assumptions, we can derive a separately
solvable elliptic problem for the pressure in the form:

∇2P̃ = 1
�t

(
∇ · u(1)

)
(5.9)

The field P̃ is no longer associated with thermodynamic pressure and becomes a
dynamic variable that couples the divergence-free condition and the momentum
equation. Neumann boundary conditions for P̃ come from equation (5.8), which
can be simplified to the form:

∂P̃
∂n
= n ·

[
N(un)− 1

Re
∇ × ∇ × un

]
(5.10)

This boundary condition prevents the propagation and accumulation of time dif-
ferencing errors and ensures that P̃ satisfies the important pressure compatibility
condition [531]. Note that the linear term in equation (5.10) is derived from L(un)

rather than L(un+1). This type of first-order extrapolation is necessary to keep the
pressure equation decoupled from the other substeps. The order of the extrapolation
should be consistent with the overall time accuracy.

A single time step using the skew-symmetric form of the nonlinear terms requires
the computation of various spatial derivatives to assemble the nonlinear term, plus
the solution of one Poisson equation for the pressure, and up to three Helmholtz
equations for the diffusion in each direction. Most of the computational work is
associated with solving these linear systems; integration of the nonlinear terms
makes only a minor contribution. The techniques outlined below can be applied
directly to the solution of the various elliptic subproblems as well as computation
of the nonlinear terms.

5.2.2 Spectral Element Methods

As stated above, the key steps in solving the Navier–Stokes equations are the ap-
proximation of the various operators (both linear and nonlinear) and the solution
of the Poisson equation for the pressure. In this section we lay out a solution to both
of these problems that uses high-order finite element or spectral element methods.
The advantage of this approach is that we can address issues of accuracy as well as
complex geometry. As was shown above, the solution of elliptic problems (equa-
tion (5.9), for example) is a key aspect of solving incompressible flow problems. In
this domain, finite element methods also confer some advantage, as there is a well-
developed theory to assess the numerical error resulting from such approximations.
Finally, classical formulations of discrete solutions of the Navier–Stokes equations

5.2 Incompressible Flows 101

that are obtained via the use of lower-order finite difference methods or finite vol-
ume methods can be recovered using the finite element formulation through the
use of low-order basis functions and appropriate projection operators. For details,
the reader should consult the very thorough presentation of Gresho and Sani [396].
A good introduction to spectral element methods can be found in Karniadakis and
Sherwin [532].

A One-Dimensional Example

It turns out that all the key aspects of the spatial approximation schemes can
be described by considering the solution in one space dimension of the Poisson
equation.

Suppose that we want to find u such that

u′′ + f = 0 on

where
 is the unit interval 0 ≤ x ≤ 1 and f is a given smooth function. At the
endpoints, we will specify the boundary conditions

u(0)= g

u′(1)= h

This defines the strong form, the usual starting point for finite difference and other
schemes.

Consider the following alternative formulation of the same problem. We begin
with the equation for the residual,

R(u)=
∫

w
(
u′′ + f

)
dx (5.11)

from which we want to find the unique function u that drives the residual to zero.
The search will include all functions satisfying the boundary condition u(0)= g; each
candidate is called a trial solution, and we denote the set of all trial solutions by S. The
residual is orthogonalized with respect to a second set of functions w ∈ V called test
functions or variations. Each test function should satisfy w(0)= 0. To incorporate the
Neumann boundary condition, we integrate equation (5.11) once by parts, finding
that R(u)= 0 if

∫

w′ u′ dx =
∫

w f dx+w(1) h

If we identify the symmetric, bilinear forms a(w,u)= ∫

 w′u′ dx and (w, f)= ∫

 w f dx,
then we can state the weak form as follows: find u ∈ S such that, for every w ∈ V,

a(w, u)= (w, f)+w(1) h (5.12)

Galerkin approximation solves equation (5.12) using a finite collection of func-
tions: find uh ∈ Sh such that, for every wh ∈ Vh,

a(wh, uh)= (wh, f)+wh(1) h (5.13)

102 Chapter 5 Parallel Computing in Computational Fluid Dynamics

This method reduces an infinite-dimensional problem to an n-dimensional problem
by choosing a set of n basis functions (φ1,φ2, . . . ,φn) to represent each member of Sh

and Vh. It admits all linear combinations wh ∈ Vh as

wh = c1φ1+ c2φ2 + . . . + cnφn

where each φp(0)= 0. To generate the trial solutions, we need one additional function
satisfying φn+1(0)= 1, so that if uh ∈ Sh then

uh = g φn+1+
n∑

p=1

dp φp

Note that, with the exception of φn+1, Sh and Vh are composed of the same functions.
Substituting uh for u and wh for w, the weak form becomes

n∑
p=1

cp Gp = 0

where

Gp =
n∑

q=1

[
a(φp, φq) dq − (φp, f)− φp(1) h+ a(φp, φn+1) g

]

Since this must be true for any choice of the cp’s, we require Gp ≡ 0. If we put the

coefficients dp into a vector �d, we obtain the matrix problem

A �d = �F
where the matrix entries are given by Apq = a(φp,φq), and the components of the vec-

tor �F are Fp = (φp, f)+ φp(1)h− a(φp, φn+1)g. The solution is �d =A−1�F. Quite literally,
this is a best fit of the approximate solution uh to the true solution u based on the
measure of error given in equation (5.11).

Basis Functions

Galerkin approximation is “optimal” in the sense that it gives the best approximation
in the restricted space Sh. If the true solution u lies in the intersection of Sh and S,
then uh= u. But the success of the method lies in the selection of the basis functions.
If they are too complicated, it will be impossible to generate the matrix problem;
too simple, and they cannot adequately describe the true solution u. The key is
to combine computability and accuracy. Spectral elements accomplish this in the
following manner.

First, the domain is partitioned into K nonoverlapping subintervals, where each
subinterval, or element , is given by
k = [ak,bk]. On element k we want to introduce a
set of local functions that provide accuracy of order N for the solution over that piece
of the computational domain. For spectral element methods, the basis functions are
invariably polynomials.

5.2 Incompressible Flows 103

Often, the most convenient approach is to form a set of polynomials from the
Lagrangian interpolants through a particular set of nodes. Recall that the Lagrangian
interpolant takes the value one at some node xi and is zero at all other nodes. The
simplest set of nodes would be the equally spaced points xi = ak + (bk − ak) i/N. This
turns out to be a terrible choice for a high-order method because the basis is almost
linearly dependent, resulting in ill-conditioned algebraic systems. It is not the choice
of Lagrangian interpolants that causes the difficulty, but the choice of nodes over
which they are defined. To fix the problem, we just need to choose a “good” set
of nodes. The choice of points is crucial to the success and accuracy of the spectral
method. In contrast, this close connection between the sampling points and the
order of the method is not present in finite difference methods.

To standardize the basis, we introduce a parent domain with the coordinates
−1≤ ξ ≤ 1 and a coordinate transformation to the elemental nodes as

xi = ak + bk − ak

2

(
1+ ξi

)

Now we choose the nodes ξi to be the solutions of (1− ξ2) L′N(ξ)= 0, where LN(ξ)

is the Legendre polynomial of degree N. With this special choice, the Lagrangian
interpolants can be written down explicitly as

φi(ξ)=− (1− ξ2) L′N(ξ)

N(N + 1) LN(ξi) (ξ − ξi)
(5.14)

These polynomials are called the Gauss–Lobatto Legendre (GLL) interpolants. Fig-
ure 5.1 illustrates the mesh and basis functions for a typical element. We will refer
to any basis defined this way as a nodal basis.

There are several important reasons for choosing this set of polynomials. First, the
expansion of any smooth function using the GLL interpolants, u ≈ uh =∑

diφi(x),
converges exponentially fast, as can be demonstrated by singular Sturm–Liouville
theory [393]. Because these are Lagrangian interpolants, the coefficients di are simply
the nodal values of the approximate solution: di = uh(xi). Also, there is a set of
integration weights ρi associated with the nodes ξi so that the integrals appearing in
the weak form can be computed via the GLL quadrature

∫ 1

−1
f dξ =

N∑
i=0

ρi f (ξi)+ εN

where the error εN ∼O(f 2N(ζ)) for some point in−1≤ ζ ≤ 1. As long as the integrand
is a polynomial of degree less than 2N, this quadrature rule is exact [249]. Finally, and
perhaps most importantly, the interpolants, quadrature points, and weights can be
generated within a computer program by recursive algorithms that are numerically
stable through values of N ∼ 100, eliminating the need to store static tables of
quadrature data.

Legendre polynomials are one example of a broad polynomial class called the
generalized Jacobi polynomials, which we denote as Pα,β

n (ξ). Legendre polynomials

104 Chapter 5 Parallel Computing in Computational Fluid Dynamics

(a)

(b)

–1

–1 +1

0

1

0

1

ak bkx

k

Figure 5.1 One-dimensional, spectral-element basis functions for an expansion order of N = 4,
along with a sketch of the local and global coordinate systems: (a) modal basis constructed
from P1,1

n (ξ); (b) Gauss–Lobatto Legendre basis and the set of nodal points that define them as
Lagrangian interpolants.

correspond to the parameter values α = 0, β = 0. Sometimes, especially in higher
dimensions and on more complex domains, it is more convenient to work directly
with the polynomials rather than an intermediate Lagrangian basis. Jacobi polyno-
mials have the orthogonality property

∫ 1

−1
(1− ξ)α (1+ ξ)β Pα,β

i (ξ) Pα,β
j (ξ) dξ = δij

We can use Jacobi polynomials directly to represent a function through the expan-
sion uh =∑

di P α,β
i (x). The values di are the coefficients of the basis functions, but

they do not correspond to any set of nodal values. In practice, there is a signifi-
cant advantage if most of the basis functions are orthogonal, so in the 1-D case we
would use:

5.2 Incompressible Flows 105

φ0(ξ)= 1
2

(1+ ξ)

φ1(ξ)= 1
2

(1− ξ)

φi(ξ)= 1
4

(1+ ξ) (1− ξ) P1,1
i−2(ξ), i ≥ 2

(5.15)

Figure 5.1 shows the first five basis functions constructed this way. In the nodal basis,
every function is a polynomial of degree N. In the modal basis, there is a hierarchy
of modes starting with the linear modes, proceeding with the quadratic, the cubic,
and so on.

We will refer to spectral elements constructed from a nodal basis as Lagrange
spectral elements and to those based on a modal basis as h-p elements. The latter
were first introduced in the early 1970s by Szabo [907], who used the integrals of
Legendre polynomials as a modal basis, taking φi(ξ)= ∫ ξ

−1 P0,0
i−1(s) ds. However, using

the properties of Jacobi polynomials [3] we obtain

2n
∫ ξ

−1
P0,0

n−1(s) ds= (1− ξ) (1+ ξ) P1,1
n−2(ξ)

which is the same as the basis in equation (5.15), except for the normalization.
The choice of which approach to take is somewhat arbitrary, since a nodal basis

can always be transformed to an equivalent modal basis and vice versa. The Fast
Fourier Transform (FFT) is one familiar example of such a transformation onto the
basis φk(ξ) = exp(ikξ). Unfortunately, there are no “fast transform” methods for
Jacobi polynomials, and the transforms require matrix multiplication. However, for
the values of N used in practice (N ≤ 16), this is not a serious drawback.

Discrete Equations

Returning to the problem of solving equation (5.13), we begin by noting that the
integral can be broken into a sum of integrals of each element:

a(φp, φq)
 =
K∑

k=1

a(φp, φq)
k

Since each basis function is nonzero over a single element, the inner product a(φp,φq)

is nonzero only if φp and φq “belong” to the same element. This makes the global
system sparse and allows us to compute only local matrices. Because of the origin of
finite element methods in computational mechanics, these matrices are traditionally
called:

“mass”Mk
pq =

∫

k

φp φq dx

“stiffness”Ak
pq =

∫

k

φ′p φ′q dx

106 Chapter 5 Parallel Computing in Computational Fluid Dynamics

A =

a1

a 2

a3

u

u

u

u

1

n

5

9

.

.

.

.

.

.

.

.

.

Interior nodes

Boundary nodes
Interior nodes

Interior nodes

Coupling at boundary nodes

1 2 3

Figure 5.2 Schematic of the direct stiffness summation of local matrices Ak to form the global
matrix A.

To construct the right-hand side of the matrix system, f (x) is approximated by
collocation at the nodal points to produce f h(x); the mass matrix provides the
coefficients necessary to perform the integration. Now the elemental matrix system
may be written as

Ak �vk = �Fk (+ boundary terms)

Just as the integral over the entire domain can be written as a sum of the integral
over each element, the global matrices can be computed by summing contributions
from the elemental matrices:

A =
K∑′

k=1

Ak, M=
K∑′

k=1

Mk

The symbol
∑′ represents “direct stiffness summation.” The procedure is exemplified

in the diagram for the nodal basis in Figure 5.2 that maps contributions from the
boundary node shared by adjacent elements to the same row of the global matrix A.
The global matrix system is

Av = F (+ boundary terms)

A is banded as a result of using local basis functions, with all of its nonzero entries
located in the N diagonals above and below the main diagonal. It is also symmetric,
due to the symmetry of a(·, ·), and positive definite. Thus, A can be computed, stored,
and factored economically and efficiently.

5.2 Incompressible Flows 107

Spectral element discretizations encompass both spectral methods and finite
elements. With the proper choice of basis functions and projection methods, finite
difference methods can also be included. Standard approximation error estimates
for Galerkin methods applied to elliptic problems on quasi-uniform meshes predict
that

‖u− uh‖1≤ constant× hµ−1 N−(D−1) ‖u‖D

where µ=min(D, N + 1), N is the polynomial degree appearing in the basis func-
tions, and h is a parameter related to the element size [64]. The constant depends
on the degree of mesh quasi-uniformity. D basically represents the Dth derivative of
the solution and can be taken to be some fixed value. We assume that D can actually
be taken to be large since we assume the flow variables are smooth and possess all
derivatives. The main point of this result is that there are two ways to improve the
approximation: make h smaller (K→∞), or make N and µ larger (N →∞). The latter
results in exponential convergence for smooth solutions. If a solution varies rapidly
over a small region, any polynomial fit will oscillate rapidly, and the best approach
is to reduce the element size until the solution is resolved locally. A more effective
approach is to combine the two convergence procedures, increasing both K and N
simultaneously; this dual path of convergence is known as an h-p refinement proce-
dure [907]. The flexibility to adapt the mesh to the solution makes spectral element
methods quite robust.

Basis Functions in d Dimensions

A key to the efficiency of high-order methods in 2- and 3-D problems is the formation
of a basis from the tensor product of 1-D functions. Among other things, this allows
the computation of integrals and derivatives of the basis functions to be simplified
through a procedure called sum factorization [728]. It also contributes to the sparse
structure of matrix systems for multidimensional problems.

In this section, we describe the procedure for constructing an efficient, high-order
basis on 2- and 3-D domains. To keep the discussion simple, we only consider the
standard domains R

d, where d is the problem dimension. Figure 5.3 defines the
standard rectangle, R

2. “Standard” here means that the coordinates are normalized
to fall in the range −1 to 1. For d = 3, the standard domain is a hexahedral element.
Isoparametric mappings can always be used to transform more general elements to
these standard domains, as illustrated in Figure 5.3. On the standard element, we
wish to define a polynomial basis, denoted by φij(ξ1, ξ2), so that we can represent a
function uh(ξ1, ξ2) by the expansion

uh(ξ1, ξ2)=
N∑

i=0

N∑
j=0

uij φij(ξ1, ξ2)

where uij is the coefficient of the basis function φij and ξ = (ξ1, ξ2) is the local
coordinate within the element.

108 Chapter 5 Parallel Computing in Computational Fluid Dynamics

x1

x2

(x)

x()

j

2

1

Figure 5.3 Definition of the standard quadrilateral domain R
2. General curvilinear elements

can always be mapped back to the standard element as shown.

For quadrilateral (2-D) and hexahedral (3-D) elements, the procedure is straight-
forward. For example, on the domain
k = R

2, the basis would be

φij(ξ1, ξ2)= φi(ξ1) φj(ξ2)

where φi(ξ) is the one-dimensional GLL polynomial defined in equation (5.14). In
this case, uij represents the function value at the node ξij. The 3-D basis on R

3 is
exactly analogous to this one.

In the remainder of this chapter, we use the following simplified notation: every
index (ijk) in the tensor product basis will be mapped to a single number as p =
i+ jN + kN2, so that there is a one-to-one correspondence between φp(ξ) and φijk(ξ).
This hides the tensor product nature of the basis but makes the discrete equations
much easier to write down. When necessary, we can “unroll” the p index to take
advantage of the tensor product form. This expression for p is valid for quadrilateral
elements only.

5.2.3 Basic Operations

Solution of the Navier–Stokes equations using spectral element methods requires
the ability to perform several basic operations. In particular, we need a suitable
quadrature rule for performing the integration, and we need to be able to evaluate
functions or derivatives at specified points.

5.2 Incompressible Flows 109

Integration

The general form for the evaluation of an integral by Gaussian quadrature with
weights (1− ξ)α (1+ ξ)β can be written as

∫ 1

−1
(1− ξ)α (1+ ξ)β u(ξ) dξ =

N∑
i=0

ρ
α,β
i u(ξ

α,β
i)

where ξ
α,β
i and ρ

α,β
i are the quadrature points and weights associated with the Jacobi

polynomial Pα,β
N (ξ). The quadrature rule is exact if u(ξ) is a polynomial of degree

2N + 1 for the Gauss points, 2N for the Gauss–Radau points, and 2N − 1 for the
Gauss–Lobatto points.

To integrate a function defined over the standard domain R
2, we simply use the

tensor product form to reduce the integral to two 1-D quadratures. The integral of a
general function is written as

∫
R2

u(ξ) dξ1dξ2 =
N∑

i=0

N∑
j=0

ρiρj u(ξij)

The extension to integrals over R
3 is straightforward.

Projection

To apply the integration rules described above, we need to evaluate a function at a
given set of quadrature points. For the nodal basis this is trivial because the basis
coefficients are the function values at the quadrature points. For a modal basis we
need an efficient way to evaluate the full solution at the quadrature points. This
problem and the related problem of determining the modal expansion coefficients
from a set of nodal values are both called projections.

A projection is the procedure for determining the coefficients uijk so that uh ≈ u
for some given function u. First, recall the general form of the expansion:

u(ξ) ≈ uh(ξ)=
∑

p

up φp(ξ)

The expansion coefficients are determined by taking the inner product with the basis
functions on both sides of this equation:

(u, φp)
k = (uh, φp)
k ∀φp ∈ {φijk} (5.16)

Solving this system of equations to determine the approximation uh is straightfor-
ward if the basis {φijk} is orthogonal. Otherwise, we have to compute uh by inverting
a matrix.

110 Chapter 5 Parallel Computing in Computational Fluid Dynamics

To describe this for the modal basis, we introduce the following notation:

�up = Vector of P ∼N3 expansion coefficients, �up ← uijk

�̃uq = Vector of Q function values at the quadrature points

�̃uq ← u(ξq)

Wqq =Diagonal matrix of Q ×Q quadrature weights required

to integrate a function over
k

Bqp = Rectangular matrix containing the value of the basis

functions at the quadrature points. There are Q
quadrature × P basis functions.

Now we can write down the algebraic form of the inner products given in equation
(5.16). First, the inner product of u with the basis functions:

(u, φp)
k → BTW �̃u

Second, the inner product of uh with the basis functions:

(uh, φp)
k → BTWB �u

The approximation uh ≈ u is determined by matching these two inner products for
every basis function:

BTW �̃u= BTWB �u

This is the fully discrete form of equation (5.16). Note that the expression on the
right-hand side defines the mass matrix:

(φi, φj)
k → BTWB

or simply M= BTWB.
Now we can define the discrete projection operator as

�u= P(�̃u)≡
[
BTWB

]−1
BTW �̃u

This is also called the forward transform of a function from physical space (nodal
values) to transform space (modal coefficients). The discrete inverse transform is
simply the evaluation of the modal basis at a given set of points:

�̃u= P−1(�u)≡ B�u

Finally, we note that in the GLL nodal basis, M is a diagonal matrix. This follows
directly from the discrete orthogonality of the basis functions and the fact that
φp(ξq) = δpq, where ξq are the GLL quadrature points. A diagonal mass matrix is a
tremendous simplification since multiplication by M−1 is trivial.

5.2 Incompressible Flows 111

Differentiation

Since the basis is formed from continuous functions, derivatives can, in principle,
be evaluated by simply differentiating the basis functions:

∂uh

∂ξ1
=

∑
ijk

uijk
∂φi

∂ξ1
(ξ1) φj(ξ2) φk(ξ3)

In practice, we only need the derivatives at certain points, namely the quadrature
points. Therefore, the solution is first transformed onto an equivalent Lagrangian in-
terpolant basis defined over the quadrature points. We introduce the 1-D Lagrangian
derivative matrix

Dip ≡
dφp

dξ

∣∣∣∣∣
ξi

Rather than O(N3) terms, the Lagrangian interpolant basis reduces the summation
to an equivalent 1-D operation. The coefficient of the derivative, u′ijk, is then given
by

u′ijk =
N∑

p=0

Dip upjk

Since only O(N) operations are required per point, it takes O(N3) operations to
compute all derivatives in R

2 and O(N4) operations to compute all derivatives in R
3.

In the modal basis, calculation of derivatives is preceded by an inverse transform (to
nodal values) and followed by a forward transform (to modal coefficients), therefore
increasing the computational cost.

5.2.4 Global Matrix Operations

One of the basic principles for maintaining the sparse structure in the global matrix
systems is to enforce only the minimum continuity between elements. For all of the
problems we consider here, the global basis is required to be C0 continuous, that is,
only function values and not derivatives are required to be globally continuous. For
discretizations with both Lagrangian and h-p basis functions, this is accomplished by
choosing a unique set of global “degrees of freedom” that define the approximation
space.

Global continuity in the Lagrangian basis is straightforward. Since the basis
functions are defined as the Lagrangian interpolant through the elemental nodes,
we only have to use the same set of nodes along the edge of adjacent elements. As
long as the elements are conforming (each edge matches up exactly to one other
edge) and of equal order (same number of nodes along each edge), C0 continuity
is guaranteed. Figure 5.4 shows a possible global numbering scheme for a simple
quadrilateral mesh.

112 Chapter 5 Parallel Computing in Computational Fluid Dynamics

1

2

3

4

5

6

78

1

2

3

4

5

6

7

8

Boundary unknowns

Boundary knowns

1

2

Figure 5.4 Local and global numbering for a simple domain composed of two quadrilateral
elements of order N = 2. Points along the boundary do not constitute global “degrees of
freedom” and are not assigned indices in the global index set.

An important extension to the original spectral element method was the intro-
duction of nonconforming elements by Bernardi et al. [95]. Here we give only a sketch
of the way the method is used to patch together a nonconforming mesh. For a full
description of the method, including efficient solution techniques and numerous
examples, see the references Anagnostou [32], Bernardi et al. [95], Henderson [452,
453], and Mavriplis [655].

The main idea is to use a constrained approximation. For a geometrically and func-
tionally nonconforming set of elements, we cannot guarantee global C0 continuity
of the basis. Therefore, we make the basis as continuous as possible by minimizing
the difference in function values across each nonconforming interface. We do this
by enforcing the following weighted residual equation:

∫
�

(u− v) ψ ds= 0 ∀ψ ∈ PN−2(�) (5.17)

The residual is the difference between two functions u and v that we would like to
be continuous, and ψ is the weight used to perform the minimization. The algebraic
form of this equation is

�u= Z �v

5.2 Incompressible Flows 113

where �u and �v are the coefficients of whatever basis we choose to represent u and
v, and the entries of Z are determined by evaluating the residual equation using
numerical quadrature. We say the values of �v are free and the values of �u are
constrained to match them such that equation (5.17) is satisfied.

To use this as a computational tool, we choose v to be the solution along the
edge of some element and u to be the solution along the edge of an adjacent
nonconforming element. Equation (5.17) is used to construct u from v, thereby
eliminating u as an “unknown” in the mesh. Since v contributes to the global
degrees of freedom in the problem, this is one type of “combining” described
next in Section 5.2.5. There is an additional consistency error associated with the
nonconforming discretization because the approximation space is no longer a proper
subset of the solution space—it admits discontinuous solutions. As bad as this
sounds, the consistency error is of the same order as other components of the
approximation error, and if implemented properly the method always converges
to a continuous solution if one exists.

Nonconforming elements allow quadrilateral meshes to be refined locally, with-
out the conforming restriction propagating refinement across the mesh. It is not as
important for triangular and tetrahedral elements where algorithms such as Rivara
refinement [804] can be used to perform local refinement and maintain consistency
in the mesh. We provide several examples that make use of nonconforming quadri-
lateral elements in the following sections.

5.2.5 Data Structures

Here we describe the data structures and basic operations required to implement the
most common procedures in spectral element methods. We cover representation
of the global system, how to transfer global data to local (element) data, direct
stiffness summation, and finally the procedures for integration and differentiation
of solutions defined on geometrically complex 2- and 3-D elements.

Implementation

First we start with the representation of the solution within a computer program.
In this section, we give several examples as pseudocode fragments that follow basic
C and C++ syntax. This is not meant to be an in-depth presentation, but simply an
illustration of the most important ideas and the basic approach.

In spectral element methods, as in finite element methods, global data are stored
as a flat, unstructured array. The basic data structure used to relate the mesh to entries
in this array is a table that identifies the global node number of a local node within
each element. Since we are interested in both nodal and modal descriptions, we
replace “node” with the more general concept of a “degree of freedom” in the global
solution. The table of indices can be stored as a two-dimensional array of integers:

map[k][i]= global index of local datum i in element k

114 Chapter 5 Parallel Computing in Computational Fluid Dynamics

Local data can be stored in any convenient, regular format. In our first version,
we will assume the number of degrees of freedom in the mesh (ndof) and the number
of degrees of freedom associated with each element (edof) are constant. To perform
some global operation, for example to evaluate a function v = F(u), we insert a layer
of indirection between the unstructured global data and the structured local data.
The following is a template for any such computation:

for (i=0; i < ndof; i++) // Initialize v

v[i] = 0.;

for (k=0; k < nel; k++) { // Loop over elements

for (i=0; i < edof; i++) // Copy global data

uk[i] = u[map[k][i]]; // --- gather

compute (uk, vk); // Compute v=F(u) locally

for (i=0; i < edof; i++) // Accumulate the result

v[map[k][i]] += vk[i]; // --- scatter

}

Depending on the specific operation, the final result may need to be corrected
in some way: rescaled with the global mass matrix, averaged based on the data
multiplicity, or some similar global operation. The last loop corresponds to di-
rect stiffness summation, and in our matrix notation we would write this same
operation as:

�v =
K∑′

k=1

�vk =
K∑′

k=1

F(�uk)= F(�u) (5.18)

To make this data structure suitable for both hierarchical bases and nonconform-
ing elements (to be developed in Section 5.2.7), we introduce two generalizations.
First, we allow the number of degrees of freedom in each element to be different
by replacing the constant edof with the array edof[k]. Second, we allow each local
degree of freedom to depend on an arbitrary combination of the global degrees of
freedom. To implement this we need to introduce two new arrays:

idof[k][i]= number of global dependencies for local datum i in element k

combine[k][i]= array of coefficients for combining global data to get local data

And finally, we need to add a new dimension to our index table:

map[k][i][j]= global index of the jth dependency of local datum i

In effect, we are introducing a set of coefficient matrices Zk that define a general
transformation between global and local degrees of freedom. Using this approach,
the global initialization, loop over the elements, and function call for the local
computation shown above stay the same, but the procedure for constructing the
local data is rewritten as follows:

5.2 Incompressible Flows 115

for (i=0; i < edof[k]; i++) // Initialize

uk[i] = 0.;

for (i=0; i < edof[k]; i++) { // Combine

real *Z = combine[k][i];

for (j=0; j < idof[k][i]; j++)

uk[i] += Z[j] * u[map[k][i][j]];

}

Likewise, the accumulation of results uses a similar method for combining local
contributions to the global degrees of freedom:

for (i=0; i < edof[k]; i++) { // Combine

real *Z = combine[k][i];

for (j=0; j < idof[k][i]; j++)

v[map[k][i][j]] += Z[j] * vk[i];

}

We also introduce a new matrix notation for this more general approach. Since
the local data is Zk �u, and the local contribution to the global system is [Zk]T �vk, the
equivalent procedure for assembling the global system is written as:

�v =
K∑′

k=1

[Zk]T �vk =
K∑′

k=1

[Zk]TF(Zk �u)= F(�u) (5.19)

Compare this to equation (5.18) above, and note that the only change is how we
transform between the local and global systems. The actual computations at both the
local and global levels are the same.

In the remaining sections, we describe computations in terms of either the lo-
cal or global system, omitting the actual “assembly” required to go between them.
Equation (5.19) is always implied as the method for recovering local solutions and
assembling global ones. This simplifies what would otherwise become a confusing
barrage of notation. Along the way, we will give more specific information about
how the coefficients for the mapping matrix Zk are chosen. This is a very flexible
scheme for storing the global solution and reconstructing the local one. The ad-
ditional storage and computational overhead is simply the price we pay for new
capabilities: variable order of the local basis functions and arbitrary connectivity
in the mesh. However, these are the key ingredients for adaptive h-p refinement
techniques.

Improvements

Although the scheme outlined above is complete, it is not an efficient way to
implement h-p methods: too much of the addressing is done by indirection. One
of the computational advantages of high-order elements is the natural partitioning
of data into sets that can be operated on as a group. For example, local degrees

116 Chapter 5 Parallel Computing in Computational Fluid Dynamics

of freedom are normally partitioned into several groups: vertices, edges, faces, and
interior data. Data associated with any of these groups can be operated on as a single
entity. For example, all the points on the interior of an element can be identified
with the element number and moved around or computed on as a single unit.
High-order elements provide better data locality than low-order elements because
computations always involve large amounts of data that can be grouped together in
memory.

The type of full indirection outlined above is only necessary for the degrees of free-
dom associated with the surface of an element. These data make up the loosely cou-
pled components of the global system. This sparse global system forms the “skeleton”
of the discretization and shares many characteristics with low-order finite elements.
For example, the numbering system stored in the index table can be optimized to
reduce its algebraic bandwidth using the same techniques applied in finite element
methods (see Section 5.2.6). Unfortunately, more sophisticated data structures than
can be described here are required to incorporate these simplifications.

5.2.6 Solution Techniques

In this section, we describe efficient iterative and direct methods for inverting
the large algebraic systems that result from nonconforming spectral element dis-
cretizations. Iterative methods are more appropriate for steady-state calculations
or calculations involving variable properties, such as a changing time step or a
Helmholtz equation with a variable coefficient. For direct methods, the issue is one
of memory management—storing A as efficiently as possible without sacrificing the
performance needed for fast back-substitution. The development of fast direct and
well-preconditioned iterative solvers represents a major advance toward the appli-
cation of nonconforming spectral element methods to the simulation of turbulent
flows on unstructured meshes.

Conjugate Gradient Iteration

Conjugate gradient methods [81] have been particularly successful with spectral
elements because the tensor-product form and local structure allows the global
Helmholtz inner product to be evaluated using only elemental matrices. To solve
the system A�u = �F by the method of conjugate gradients, we use the algorithm
in Figure 5.5, where k is the iteration number, rk is the residual, and pk is the current
search direction. The matrix M is a preconditioner used to improve the convergence
rate of the method and is discussed in detail next.

Selection of a good preconditioner is critical for rapid convergence; the precondi-
tioner must be spectrally close to the full stiffness matrix yet easy to invert. Popular
preconditioners for spectral methods include incomplete Cholesky factorization and
low-order (finite element, finite difference) approximations [261, 728]. Unfortu-
nately, these preconditioners can be as complicated to construct for an unstructured
mesh as the full stiffness matrix A. Next, we present three preconditioners that are
simple to build and apply, even when the mesh is unstructured.

5.2 Incompressible Flows 117

k = 0; u0 = 0; r0 = �F;

while rk �= 0

Solve M qk = rk; k = k + 1

if k = 1 then

p1= q0

else

βk = rT
k−1 qk−1/rT

k−2q k−2

pk = qk−1+ βkpk−1

end

αk = rT
k−1 qk−1/pT

k Apk

rk = rk−1− αk Apk

uk = uk−1+ αkpk

end
�u= uk

Figure 5.5 Algorithm for conjugate gradient iteration.

In conjugate gradient methods, the number of iterations required to reach a given
error level scales as

√
κA. This is only an estimate, since the actual convergence

rate is determined by the distribution of eigenvalues—if all of A’s eigenvalues are
clustered together, convergence is much faster. To assess the effectiveness of a given
preconditioner, we begin by looking at the condition number of M−1A.

Each of the following methods is based on selecting a subset of entries from the
full stiffness matrix. The first two preconditioners are diagonal matrices given by

Mii = Aii “diagonal,” and (5.20)

Mii =
ndof∑
j=0

|Aij| “row-sum,”

where ndof = rank(A); the diagonal (5.20) is sometimes called a point Jacobi precon-
ditioner. Both are direct estimates of the spectrum of A and have the advantage of
minimal storage and work. The third preconditioner is a block-diagonal matrix:

Mij =

|Aij| if i ≤ nbof, j = i
0 if i ≤ nbof, j �= i
Aij otherwise

where nbof is the number of mortar nodes in the mesh. The structure of this matrix as-
sumes that A is arranged in the static condensation format described in Section 5.2.6.
Applying this preconditioner amounts to storing and inverting the isolated blocks
of A associated with the degrees of freedom on the interior of each element, while
applying a simple diagonal matrix to the mortar nodes.

118 Chapter 5 Parallel Computing in Computational Fluid Dynamics

We conclude this section by giving the memory requirements and computational
complexity for a preconditioned conjugate gradient (PCG) solver. Since the elemen-
tal Helmholtz operator can be evaluated using only the 1-D Lagrangian derivative
matrix, the required memory is simply storage for the nodal values and geometric
factors:

SI = s1KN2

As mentioned above, the dominant numerical operations are vector–vector and
matrix–vector products, although derivative calculations are folded into a more
efficient matrix–matrix multiplication. The operation count for the entire solver is

CI = Jε
[
c1KN3+ c2KN2 + c3KN

]

where Jε ∝√KN3 is the number of iterations required to reach a given error level ε.
Our numerical results show that with these preconditioners Jε is still proportional to
KN3, but the constant is reduced. The block matrix operations required to compute
the elemental inner products provide good data locality and can be coded efficiently
on both vector processors and RISC microprocessors.

Static Condensation

The static condensation algorithm is a method for reducing the complexity of the
stiffness matrices arising in finite element and spectral element methods. Static
condensation is particularly attractive for unstructured spectral element methods
because of the natural division of equations into those for boundaries (mortar
elements) and element interiors. To apply this method to the discrete 1-D Helmholtz
equation, we begin by partitioning the stiffness matrix into boundary and interior
points:

[
A11 A12

A21 A22

]k [�ub

�ui

]k

=
[�Fb
�Fi

]k

where A11 is the boundary matrix, A12 = [A21]T is the coupling matrix, and A22 is
the interior matrix. This system can be factored into one for the boundary (mortar)
nodes and one for the interior nodes, so that on
k:

[A11− A21A−1
22A12] �ub = �Fb − [A21A−1

22] �Fi

A22 �ui = �Fi − A21�ub

During a preprocessing phase, the global boundary matrix is assembled by summing
the elemental matrices,

A11=
K∑

k=1

′ [A11− A21A−1
22A12

]
(5.21)

5.2 Incompressible Flows 119

A11

A21

A22
k

uint

Sym
m

etric

Figure 5.6 Static condensation form of the spectral element stiffness matrix. The vector φ = �ub
represents the boundary (mortar) solution, while �ui represents the interior solution.

and prepared for the solution phase by computing its LU factorization. Equa-
tion (5.21) may also be recognized as the Schur complement of A22 in A. As part
of this phase, we also compute and store for each element the inverse of the interior
matrix [A−1

22] and its product with the coupling matrix [A21A−1
22]. The system is solved

by setting up the modified right-hand side of the global boundary equations, solving
the boundary equations using back-substitution, and then computing the solution
on the interior of each element using direct matrix multiplication. Because the cou-
pling between elements is only C0, the element interiors are independent of each
other, and on a multiprocessor system this final stage can be solved concurrently.

Figure 5.6 illustrates the structure of a typical spectral element stiffness matrix
factored using this approach. To reduce computational time and memory require-
ments for the boundary phase of the direct solver, we wish to find an optimal form
of the discrete system corresponding to a minimum bandwidth for the matrix A11.
This is complicated by the irregular connectivity generated by using nonconforming
elements. One approach to bandwidth optimization is to think of the problem in
terms of finding an optimal path through the mesh that visits “nearest neighbors.”
During each of the K stages of the optimization, an estimate is made of the new
bandwidth that results from adding one of the unnumbered elements to the current
path. The element corresponding to the largest increase is chosen for numbering,
resulting in what is essentially a greedy algorithm. This basic concept is illustrated in
Figure 5.7. The reduction in bandwidth translates to direct savings in memory and
quadratic savings in computational cost. Note that standard methods of bandwidth
reduction used for finite elements, such as the reverse Cuthill–McKee algorithm, can
also be used, although they only need be applied to the boundary system.

120 Chapter 5 Parallel Computing in Computational Fluid Dynamics

(a)

(b)

(c)

Figure 5.7 Bandwidth optimization for a spectral element mesh: (a) computational domain,
(b) connectivity graph, and (c) an optimal path for numbering the boundary nodes in the
mesh.

The search for an optimal numbering system can be accomplished during prepro-
cessing, so the extra work has no impact on the simulation cost and can result in
significant savings. For computers where memory is a limitation, this procedure can
determine whether an in-core solution is even possible. Other simple memory opti-
mizations include storage of only a single copy of the interior and coupling matrices
for each element with the same geometry, and evaluation of the force vector �F us-
ing tensor product summation instead of matrix operations. By carefully organizing
matrix usage, the overall memory requirement scales as

SD = 1
2

s1 K2N2 + s2 KN3+ s3 KN4

5.2 Incompressible Flows 121

As mentioned in the introduction to this section, the direct solver is advantageous
only when the cost of factoring this stiffness matrix can be spread over a large num-
ber of solutions. Therefore, we consider only the cost of a back-substitution using
the factored stiffness matrix, for which the operation count scales as

CD = c1 K3/2N2 + c2 KN4 + c3 KN

For a well-conditioned, diagonally dominant system, this method usually results in
at least a factor of two savings versus an iterative solver. For a system that is not
diagonally dominant, such as the Navier–Stokes pressure equation, it can be faster
by a full order of magnitude.

5.2.7 Adaptive Mesh Refinement

In this section, we look at the implementation of a high-order adaptive code based
on the nonconforming spectral element method. In practice, this method is used
with high-order polynomials (p≈ 4 to 16) and a mesh of elements that is generated
adaptively by h-refinement. We will not attempt to refine both the elements and
the basis functions simultaneously, as experience indicates that uniformly high p
and adaptive mesh refinement leads to an efficient solution for a wide variety of
problems.

The formulation based on mortar elements [95] allows completely arbitrary as-
sembly of nonconforming elements. However, our goal is to develop automatic
procedures for generating an appropriate mesh, and this calls for some compromises.
To simplify the encoding of the mesh, we will require the refinement to propagate
down a quadtree (2-D geometries) or oct-tree (3-D geometries). A basic description
of the mesh generation procedure is provided below. This is found to be a suitable
restriction for problems with smooth solutions and leads to a significant reduction
in the complexity of the data structure needed to represent the many levels in the
refined grid. For complex geometries, the mesh may incorporate multiple trees at
the coarse level.

To give a more specific introduction to the goals of developing an adaptive spectral
element method, Figure 5.8 shows a sample calculation for the impulsively started
flow past a bluff plate. In this simulation, the solution field is generated by integrating
the incompressible Navier–Stokes equations from an initial state of zero motion. The
characteristic scales in the problem are the free-stream speed u∞, the plate diameter
d, and the kinematic viscosity of the fluid ν. The Reynolds number, defined as
Re≡ u∞d/ν, is set to the value Re= 1000. Figure 5.8(b) shows the global domain used
to represent the flow around the plate. A symmetry condition is imposed along the
centerline so that only one-half of the flow field needs to be computed. Figure 5.8(a) is
an enlargement of the near wake region. It shows both the vorticity of the developing
flow at an early time and the adaptively generated mesh. The vorticity of the flow is
defined by ω =∇ × u and is a measure of the rotational components of the velocity
field. Each element is an 8× 8 point subdomain (p = 7) of the global solution. A
large number of separate “trees” are needed at the coarse level to correctly model the

122 Chapter 5 Parallel Computing in Computational Fluid Dynamics

(b)

(a)

Figure 5.8 Simulation of the impulsively started flow past a bluff plate at Re = 1000 using an
adaptive spectral element method: (a) close-up of the mesh and vorticity of the flow a short
time after the impulsive start; (b) global computational domain.

beveled geometry of the finite-thickness plate. The initial stage of mesh generation is
done by hand to provide the correct starting geometry. Once the problem is handed
to the flow solver, the additional adaptivity in the mesh is based on a maximum
allowable approximation error in the vorticity field.

Because the algorithms for time integration in problems like the one illustrated in
Figure 5.8 are generally semi-implicit, the computational issues that arise are some-
what different when compared to other methods that incorporate adaptive meshes.
We are interested primarily in studying incompressible flows governed by the Navier–
Stokes and Euler equations. Because of the elliptic nature of the governing equations
(due in part to the incompressibility constraint), local time stepping is not usu-
ally an option. Therefore, solving the elliptic boundary-value problems that arise
in these systems is a particular challenge. Even for 2-D flows, the resolution needed
to maintain sufficiently high accuracy can lead to very large systems of equations,
and computational efficiency is an important issue. In the past, this meant algo-

5.2 Incompressible Flows 123

rithms that could be vectorized, while today it means algorithms that can be paral-
lelized. There is a close relationship between spectral elements and finite elements. So
when it comes to parallel computing, many of the same problems (e.g., load balanc-
ing) arise, and similar solutions apply. Section 5.2.8 addresses the implementation
of this method for parallel computers with a programming model based on a weakly
coherent shared memory that is synchronized via message passing.

Just as important as overall computational performance are the algorithms used
for driving adaptive refinement. Ideally, such an algorithm would take as input an
error estimate and produce as output a new discrete model or mesh that reduces the
error. The basic problems are the lack of an error estimate for nonlinear systems and
the unlimited ways in which such an algorithm could improve the discrete model.
The latter problem is addressed by restricting “improvements” to propagating re-
finement down the tree. The former problem is addressed with a pseudo-heuristic
error estimate based on the local polynomial spectrum as described below. Depend-
ing on the nonlinearity in the partial differential equations being solved, parts of
the spectrum will give an accurate approximation to the true solution and parts will
be polluted. We estimate the order of magnitude of the local error by examining the
decay along the tail of the local polynomial spectrum. In a general sense, this heuris-
tic flags locations in the mesh where the polynomial basis fails to provide a good
description of the solution. For simple problems (linear, 1-D), this can be formally
related to the true difference between the exact solution and the approximate solu-
tion, that is, the approximation error. For more interesting problems, it is shown to
be a robust guide for driving adaptivity. The heuristic is easy to compute but is only
accurate as an error estimate in computations with sufficiently high p, meaning that
the local polynomial coefficients should decay like |an| ∼ exp(−σn) for p = n� 1.
This is generally not true near singular points (e.g., corners), and these locations are
automatically flagged for refinement. The method based on local spectra is compared
to simpler heuristics such as refining in regions with strong gradients, and the two
are shown to lead to quite different results. In general, the local spectrum works well
and is a good match to the overall computational strategy.

Framework

In this section, we restrict our attention to 2-D problems. Most of the difficulties arise
in two dimensions, and there are no fundamental barriers (other than computing
power) in extending the method to three dimensions. To begin, let D be some region
of space that has been partitioned into K subdomains, which we denote D(k). We
consider two related problems:

1. Given a discretization tolerance ε, generate a spatial discretization D = {D(k)}
that allows the tolerance to be met.

2. Given a spatial discretization D= {D(k)}, generate a finite-dimensional approx-
imation uh ≈ u. The function u may be given explicitly or implicitly, that is, as
the solution of a boundary-value problem.

124 Chapter 5 Parallel Computing in Computational Fluid Dynamics

Our approach to problem 1 is to create a hierarchy of grids by forming a quadtree
partition of D. This provides the computational domain for problem 2, where we
apply a nonconforming spectral element method to approximate uh.

Mesh Generation

The mesh generation problem is somewhat simpler, so we describe that first. A
quadtree is a partition of 2-D space into squares. Each square is a node of the
tree. It has up to four daughters, obtained by bisecting the square along each
dimension. Each node in a quadtree has geometrical properties (spatial coordinates,
size) and topological properties (parents, daughters, siblings). Geometrical properties
of daughter nodes are inherited from parents, and thus the geometrical properties
of the entire tree are determined by the root node.

To represent the topological aspects of the tree, we use an idea originally developed
for gravitational N-body problems [824]. Every possible square S(i) is assigned a
unique integer key. The root of the tree is S(1), with key 1. The daughters of any node
are obtained by a left shift of two bits of the parent’s key, followed by a binary or in
the range 00 to 11 (binary) to distinguish each sibling. A node’s parent is obtained
by a two-bit right shift of its own key. Since the set of keys installed in the tree at
any time is obviously much smaller than the set of all possible keys, a hash table is
used for storage and lookup.

From the complete set of nodes in the tree we choose a certain subset D(k)⊆ S(i) to
form the active elements of the computational domain. Figure 5.9 shows a four-level
quadtree with 13 nodes and K = 10 active elements. Active elements in the figure
are shown with a solid outline, while inactive elements are shown with a dashed
outline. Inactive elements are retained so that they are available for coarsening the
mesh, if necessary. The only requirement enforced on the topology of the mesh is
that active elements that share a boundary segment live at most one refinement level
apart, limiting adjacent elements to a two-to-one refinement ratio. This imposes a
certain smoothness on the change in resolution in the mesh that is appropriate for
the class of smooth functions we wish to represent.

Refinement Criteria

The adaptive mesh generation and high-order domain decomposition methods
described here are coupled through refinement criteria used to drive adaptivity. Here
we consider three types of refinement criteria.

The first is by far the simplest: refine everywhere that solution gradients are large.
We can enforce this idea by requiring

‖∇u(k)‖ ≤ ε ‖uh‖1

everywhere in the mesh, where ‖ · ‖ is the L2 norm, ‖ · ‖1 is the H1 norm, and ε is
the discretization tolerance. This is a common refinement criterion in cases where
there is simply no alternative measure of solution errors.

5.2 Incompressible Flows 125

D(k) = S(i)

root: 1

111

100

110

101

10111

1010111
1010100 1010101

1010110

10110

10100 10101

Figure 5.9 A four-level quadtree mesh, expanded to show the elements that make up each
level. Each leaf node S(i) has a unique integer key shown in binary. Daughter keys are generated
from a parent’s key by a two-bit left shift, followed by a binary or in the range 00 to 11. The
active elements D(k) that make up the current discretization are shown with a solid outline.

The second type takes direct advantage of the high-order polynomial basis. Con-
sider the expansion of a given smooth function u over the domain D = [−1, 1]2 in
terms of Legendre polynomials:

u(x, y)=
∞∑

n=0

∞∑
m=0

an,m Pn(x) Pm(y)

The expansion coefficients are given by

an,m = 1
cn cm

∫ 1

−1

∫ 1

−1
u Pn Pm |J | dx dy

where the normalization constant is ci = (2i+ 1)/2. We have included the Jacobian,
|J |, to include the effects of element size and other geometric transformations, such

126 Chapter 5 Parallel Computing in Computational Fluid Dynamics

as curvilinear boundaries. There is nothing magical about Legendre polynomials—
they are simply a convenient orthogonal basis for projecting the approximation
onto. Since our approximate solution uh ≈ u is formed essentially by truncating this
expansion at some finite order p, we can form an estimate of the approximation
error ‖u− uh‖ by examining the tail of the spectrum.

To do so, we first average over polynomials in x and y to produce an equivalent
1-D spectrum:

āp = |ap,p| +
p−1∑
i=0

(
|ai,p| + |ap,i|

)

Next we replace the discrete spectrum āp with an approximation to a decaying
exponential:

ã(n)= constant× exp(−αn)

The function ã(n) is a least squares best fit to the last four points in the spectrum āp.
Our refinement criterion becomes

(
ã(p)2 +

∫ ∞

p+1
ã(n)2 dn

)1/2

≤ ε‖uh‖ (5.22)

The only practical complication here is making sure that the decay rate α > 0 so that
the integral converges. Otherwise, the estimate is ignored and the element is flagged
for immediate refinement. This method is analyzed in Mavriplis [656], where it is
shown to be an effective refinement criterion for driving h-p refinement.

The third refinement criterion is similar. Since the main contribution to equation
(5.22) comes from the coefficients of order p, we can simply sum along the tail of
the spectrum. For an accurate representation of u, we require the spectrum to satisfy
the discretization tolerance:

|ap,p| +
p−1∑
i=0

(
|ai,p| + |ap,i|

)
≤ ε ‖uh‖ (5.23)

This method is somewhat simpler to apply and, as we will see, produces almost
identical results.

To use these polynomial spectrum criteria with our spectral element method
(based on GLL polynomials), we first perform a Legendre transform of the local solu-
tion u(k)→ an,m and then use equation (5.22) or (5.23) to decide if the element should
be refined. Although we keep p fixed, the error is reduced because we approximate
u over a smaller region D(k).

5.2.8 Implementation for Parallel Architectures

We end this section with a few additional notes on implementation. The algorithms
described above have been implemented using a combination of C for the computa-
tional modules and C++ for high-level data types, such as Element ≡D(k) and Field

5.2 Incompressible Flows 127

Figure 5.10 The logical structure of a spectral element mesh can be divided into three
geometric parts: (◦) vertices, (—) edges, and (shaded) interiors. Edges and vertices define
the connectivity in the mesh.

≡ uh, that make up the discretization. The logic and control structures needed for
most of the code are the same as in any algorithm for finite element methods. The
most complex problem is maintaining the connectivity of the mesh dynamically,
and the approach taken here is worth mentioning.

The geometry and topology of the mesh are closely connected. Figure 5.10 shows
the three geometric elements of the discretization: vertices, edges, and interiors.
Obviously, interior points are completely local to an element and play no role in the
global system. All connectivity in the mesh is through the edges and vertices. Because
of the method used to construct the grid, these geometric elements are interlocking.
The midpoint of each nonconforming edge aligns with the shared vertex of its two
adjacent elements. As discussed below, this feature is used to simplify the procedure
for setting up the mesh topology.

Figure 5.10 shows another side effect of the mesh generation. Internal curvilinear
boundaries are automatically propagated down the various levels of the refinement
tree because of the isoparametric representation of the geometry. In the same way
that a solution field is projected onto a new set of elements, the polynomial repre-
sentation of the geometry can also be projected to a finer grid. On the other hand,
external boundaries like the B-spline segment shown as the lower boundary in the
figure are explicitly reevaluated to keep the representation as accurate as possible.

How does one represent the topology of this kind of mesh? One solution is to use
pointers. This immediately runs into the problem of interpreting pointers to objects
on remote processors if the computation is running in parallel. Instead, we use the
concept of a voxel database (VDB) of geometric positions in the mesh [996]. A VDB
may be thought of as a register of position–subscript pairs. To each position stored

128 Chapter 5 Parallel Computing in Computational Fluid Dynamics

1

2

3 4

5

2

3

4
1

2 3

4 5

6 1 2 3 4 5

1 1 2 4 5 3

2 3 5 6 1

Local number

Global number

Processor 1

Processor 0

Shared positions

Figure 5.11 Connectivity and communications are established by building a voxel database
(VDB) of positions. A VDB maps each position to a unique index or subscript. It also tracks
points shared by multiple processors to provide a loosely synchronous shared memory. Points
that share memory are those at the same geometric position.

in the VDB we assign a unique integer subscript, so that data may be associated with
points in space by using the subscript as an index into an array.

The basic idea is illustrated in Figure 5.11. The number of times a position is
registered is its multiplicity. Data objects that share positions also share memory by
virtue of a common subscript. In essence, the VDB provides a natural map of the
mesh geometry onto the computer’s memory. This basic paradigm can be used to
implement many types of finite element or finite volume methods [996].

To establish the connectivity of a mesh like the one depicted in Figure 5.10,
we build two separate VDBs: one for the vertices and one for the midpoints of
the edges. Every vertex with multiplicity one that does not lie along an external
boundary is virtual and not part of the true mesh degrees of freedom. Every edge with
multiplicity one that does not lie along an external boundary is nonconforming. For
each nonconforming edge, we make a second query to the VDB using the endpoints.
If there is a match, then the edge is also virtual, and we store the subscript of
the adjacent edge. Otherwise, it is simply flagged as an internal nonconforming
boundary segment.

The shared memory represented by a VDB is extended across processor boundaries
by passing around a list of local positions and comparing against those registered re-
motely. A communications link is established for each common position. The shared
memory at each point is weakly coherent and must be synchronized by explicit mes-
sage passing. For example, elements on separate processors with a common boundary

5.2 Incompressible Flows 129

segment share data along an edge. Each processor may update its edge values inde-
pendently and then call a synchronization routine that combines local and remote
values to produce a globally consistent data set. For further details see Williams [996].

There is very little overhead for the adaptive versus nonadaptive data structure:
just one integer (the node key) per element. Likewise, an iterative solver for sparse
systems incurs no performance penalty just because the underlying mesh is adaptive.
When approached in the right way, the conversion to a solution adaptive code is
almost trivial. To a large degree, this is because of the unstructured nature of the
spectral element method we built upon.

5.2.9 An Example—The Cylinder Wake

Understanding the fluid flow around a straight circular cylinder is one of the most
fundamental problems in fluid mechanics. It is a model for flow around bridges,
buildings, and many other nonaerodynamic objects. Recent work, both experimen-
tal and computational, has revealed some exciting new information about the nature
of this flow, including intricate 3-D structures that emerge just prior to the onset of
turbulence in the wake.

The system considered is an infinitely long cylinder placed perpendicular to an
otherwise uniform open flow. The sole parameter for this system is then the Reynolds
number: Re ≡ U∞d/ν, where U∞ is the free-stream velocity and d is the cylinder
diameter. We describe some of the physically important behavior in this flow and
then come back to details of how it can be simulated. It helps to begin with a “road
map” for the sequence of bifurcations that take the flow from simple to more complex
states. There are two useful quantities to form such a guide to understanding:
the nondimensional shedding frequency and the mean drag coefficient CD. Both
shedding frequency and drag show distinct changes at the various bifurcation points
of the wake and can be used as a guide to interpreting changes in the wake structure
and dynamics as a function of Reynolds number.

In nondimensional form, the shedding frequency is referred to as the Strouhal
number. It is defined as St ≡ f d/u∞, where f is the peak oscillation frequency of the
wake. At low Reynolds number, the flow is steady (St = 0) and symmetric about the
centerline of the wake. At Re1� 47, the steady flow becomes unstable and bifurcates
to a 2-D, time-periodic flow. Note that each point along the 2-D curve represents a
perfectly time-periodic flow, and there is no evidence of further 2-D instabilities for
Reynolds numbers up to Re ≈ 1000. At Re2 � 190, the 2-D wake becomes absolutely
unstable to long-wavelength spanwise perturbations and bifurcates to a 3-D flow
(mode A). Experiments and computations indicate a further instability at Re′2 � 260,
marked by the appearance of fine-scale streamwise vortices.

Figure 5.12 shows the drag curve for flow past a circular cylinder for Reynolds
number up to 1000. In the computations, the spanwise-averaged fluid force F(t)
is computed by integrating the shear stress and pressure over the surface of the
cylinder. The x-component of F is the drag; the y-component is the lift. Because
CD is determined from an average over the surface of the cylinder, it is much less

130 Chapter 5 Parallel Computing in Computational Fluid Dynamics

Steady

Re1
Re2

Re'2

2D

CD

+

+
++

0

1

2

3

10 100 1000
Re

Figure 5.12 Drag coefficient as a function of Reynolds numbers for the flow past a circular
cylinder. Experiments: (◦,•), Wieselsberger [993]; 3-D simulations: +, Henderson [454]. The
solid line is a curve fit to 2-D simulation data for Re up to 1000 [453].

sensitive to changes in the character of the wake at low Reynolds number than
single-point measurements like the shedding frequency. The “textbook” version of
the drag curve is generally plotted on a log–log scale, where the only discernible
feature is the drag crisis at Re =≈ (105). The flat response of CD to changes in the
Reynolds number is compounded by the fact that experimental drag measurements
are extremely difficult to make at low Reynolds numbers, and subtle details of the
drag curve are lost in the experimental scatter. The decrease in magnitude of CD in
the steady regime can be fitted to a power-law curve and also makes a sharp but
continuous transition at Re1. Henderson [453] gives the form and coefficients for
the steady and unsteady drag curves.

This problem is extremely challenging because it combines several features that
are difficult to handle numerically: unsteady separation, thin boundary layers, out-
flow boundary conditions, and the need for a large computational domain to simu-
late an open flow. If the computational domain is too small, the simulation suffers
from blockage. This can have a significant impact on quantities such as the shedding
frequency, generally producing higher frequencies in the simulations than are ob-
served in experiments [533]. If resolution near the cylinder is sacrificed for the sake of
a larger computational domain, then the physically important flow dynamics may
not be computed accurately.

5.2 Incompressible Flows 131

M1

M2

M3

Li Lo

L

Figure 5.13 Computational domains used for simulating the flow past a circular cylinder.
Each domain is a subset of the largest. The parameters Lo and Li determine the cross-sectional
size, and L determines the spanwise dimension.

Figure 5.13 shows a sequence of computational domains used to simulate both
2-D and 3-D wakes using nonconforming quadrilateral elements [454]. Boundary
conditions are imposed as follows. Along the left, upper, and lower boundaries we
use free-stream conditions: (u1, u2, u3)= (1, 0, 0). At the surface of the cylinder, the
velocity is equal to zero (no-slip). Along the right boundary, we use a standard
outflow boundary condition for velocity and pressure:

p= 0, ∂x ui = 0

Along all other boundaries the pressure satisfies equation (5.10).
These domains use large elements away from the cylinder and outside the wake

where the flow is smooth. Local mesh refinement is used to resolve the boundary
layer, near wake, and wake regions downstream of the cylinder. In this case, the

132 Chapter 5 Parallel Computing in Computational Fluid Dynamics

refinement is done beforehand, and the mesh is static. Clearly, from Figure 5.12 the
simulations predict values of the drag that agree extremely well with experimental
studies up to the point of 3-D transition. Just as important as good agreement with
experiments, the simulation results are independent of the grid, as shown by a
detailed h- and p-refinement study [77].

Finally, Plate 1 in the color insert shows some of the rich nonlinear behavior that
can be observed as the flow over the cylinder undergoes transition to turbulence.
Shown in this figure is the vorticity for the cylinder flow at various Reynolds num-
bers. The figure clearly shows the transition from an orderly array of vortices to the
more disordered form characteristic of turbulent flows. These arrangements of the
vortices actually correspond to complex “modes” of the system that have also been
observed experimentally. The value of such high-resolution simulations in allowing
us to see details of flow structure not easily accessible from experiment is evident
from these figures.

5.3 Compressible Flows

As mentioned in Section 5.1.2, the Navier–Stokes equations for compressible flow
admit solutions that, while thought to be smooth, can possess thin internal layers in
which dissipative effects such as viscosity become important. These layers, however,
are typically on the order of several mean-free-path lengths in thickness and thus
cannot be resolved practically if one is interested in capturing features of the flow
on macroscopic scales. Because of this, numerical methods for compressible flow are
typically developed for the Euler equations, which can be derived from the Navier–
Stokes equations by ignoring the viscous terms. In this case, shock waves are treated
as true discontinuities, and the solutions to the Euler equations are not smooth.
In addition, because of their character, such discontinuous solutions can appear
spontaneously in the flow and typically do not disappear under the subsequent
evolution of the flow.

In this section, we provide a very brief overview of numerical approaches that can
be used to simulate compressible flow. The distinguishing aspects of such simulations
are the need to resolve flow on time scales at or faster than the local sound speed
of the fluid and the existence of nearly discontinuous flow features such as shock
waves, contact discontinuities, and vortex sheets. It is impossible to be comprehen-
sive in our coverage of numerical techniques, partly because the numerical simula-
tion of compressible flow remains an area of active research. The chief difficulty in
the simulation of compressible flow is the representation of the discontinuities. Be-
cause most numerical techniques (such as spectral element methods) are predicated
on some notion of smoothness of the underlying solution, it is necessary to apply
rather different strategies to correctly capture the flow features than those used in
our discussion of incompressible flow.

Broadly, the numerical methodology breaks into two major approaches. The
first is known as shock tracking, in which flow discontinuities are precisely tracked,

5.3 Compressible Flows 133

while a more conventional numerical approach is used for those portions of the
flow corresponding to smooth solutions. This approach has been shown to be
viable, notably through the work of J. Glimm [193] and his collaborators in their
development of front-tracking methods. However, such approaches are not widely
used due to the complex machinery required to track the discontinuities and the
more challenging difficulty that such discontinuities arise spontaneously in the flow
due to wave focusing phenomena. Developing intelligent schemes that track the
birth (and death) of such features remains a research challenge.

The second major approach is known as shock capturing. In this approach, vari-
ous intelligent numerical viscosities are designed so as to provide the appropriate
dissipation in regions of discontinuity, with the result that shocks and other discon-
tinuities are smoothed out and captured over a few grid cells. These techniques are
far more amenable to both vector and parallel computing (as well as more elaborate
approaches such as adaptive mesh refinement, discussed below) and have there-
fore been the preferred approach for numerical simulation since the 1960s. A good
overview is available in the monograph of Le Veque [606]. As a result, we will only
briefly discuss shock-capturing methods in this section, with an emphasis on parallel
simulation using both regular and adaptive grid methods.

5.3.1 Governing Equations of Motion

In this section we present the Euler equations of motion. These can be easily derived
from our presentation in Section 5.1.1, but we repeat them here to bring out the
special features of the relevant numerical schemes.

Define the solution vector u by

u=

ρ

u
v
w
E

where ρ(x, y, z, t) is the fluid density, u, v, w are the x-, y-, and z-components of
velocity, respectively, and E(x, y, z, t) is the total energy of the flow as defined in
equations (5.1) to (5.3). The governing equations of motion can be written in the
following conservation form:

∂tu+ F(u)x + G(u)y +H(u)z = 0

where

F =

ρu
ρu2 + p

ρuv
ρuw

(E + p)u

G =

ρv
ρuv

ρv2 + p
ρvw

(E + p)v

H =

ρw
ρuw
ρvv

ρw2 + p
(E + p)w

134 Chapter 5 Parallel Computing in Computational Fluid Dynamics

The pressure p is related to the total energy by the equation of state. In this case, we
are assuming that we are dealing with a perfect gas:

p= (γ − 1)

(
E − 1

2
ρ u · u

)

Note that in this case the pressure is a thermodynamic variable, in contrast with
the situation of incompressible flow where it acts essentially as a constraint variable.
Note also, in contrast to the incompressible case, that an evolution equation can be
written for the pressure (although, as we shall see below, the pressure is not typically
used directly to march the evolution of the fluid forward in time).

5.3.2 Numerical Methods for Hyperbolic Conservation Laws

In order to simplify the discussion, we will focus on flow in one space and one
time dimension. Incompressible flows in 1-D are trivial (corresponding to constant
velocity), but because of the compressibility of the medium, compressible flows in
one space dimension possess many of the features of flow in high dimensions. In
addition, with some slight modification, numerical methods developed in 1-D can
be applied to higher-dimensional flows. In 1-D the equations can be written as

∂tu
∗ + F(u∗)x = 0,

where

u∗ =

ρ

u
p

 F =

ρu
ρu2 + p
(E + p)u

Again, the equations are written in conservation form. It is easy to convert them
from this form back to the more physically relevant integral form described in Sec-
tion 5.1.1. As shall be shown, modern numerical methods respect this conservation
form and effectively substitute a discrete approximation for the conservation law,
which then automatically produces a discrete version of the original conservation
law and at the same time applies a flow-dependent viscosity to ensure that shock
waves are properly captured.

Note that away from discontinuities, such as shock waves, it is possible to apply
standard numerical schemes that are appropriate for smooth solutions. However, it
is impossible to know in advance where the discontinuities lie, and so modern nu-
merical schemes typically employ special “switching” logic to sense the smoothness
of the flow. Away from shocks, these schemes can provide solutions of higher-order
accuracy. However, as the switching logic senses the presence of a possible shock
wave, the scheme switches to a lower-order approach that provides an appropriate
viscosity to capture the shock wave over as few grid cells as possible.

We illustrate these considerations by describing a scheme that provides second-
order accuracy in space and time for smooth flows but reverts to a first-order accurate
scheme in space near shock waves. This is typical behavior for all such schemes. To

5.3 Compressible Flows 135

begin we express the 1-D equations in a nonconservative form:

∂tu
∗ + AJ ∂xu

∗ = 0 (5.24)

where AJ is the Jacobian matrix and is given by

AJ =

u ρ 0
0 u 1/ρ

0 γ p u

The system (5.24) now takes the form of a hyperbolic system of equations. Such
systems typically can be decoupled by reexpressing the equations in terms of special
characteristic variables determined by computing the eigenvalues and eigenvectors
of the matrix AJ . The eigenvalues of AJ are u− c, u, u+ c. The left eigenfunctions of
the matrix are given as the rows of the following matrix

L=

0 ρ/2 −1/(2c)
c 0 −1/c
0 ρ/2 −1/(2c)

where c =√
γ P/ρ is the local sound speed. The inverse of L is also required in what

follows and is given by

L−1=

−1/c 1/c 1/c
1/ρ 0 1/ρ

−c 0 c

The equations in (5.24) are then decoupled by defining the vector of characteristic
fields V = Lu∗ and recasting equation (5.24) as a system of equations for V.

The details of the method to be presented below derive from the MUSCL and PPM
schemes developed by van Leer [954, 955], Colella and Woodward [206], and Colella
[205]. Such schemes use the characteristic information to provide second-order (and
higher) accuracy while providing adequate dissipation to prevent short wavelength
spurious oscillations from arising near discontinuities. As indicated above, this is
accomplished by use of a low-order scheme that deals robustly with shocks. In
this case, we will use the classic Godunov method. In this approach, each pair of
adjoining cells is viewed as a miniature tube with constant left and right flow states
(which may be discontinuous). The discontinuity is supported by an imaginary
diaphragm at the cell boundary. To complete a time step, we imagine that the
diaphragm is removed and flow between the two states ensues. In this case, the
resulting flow states can be expressed for a short time analytically as the solution
to a set of nonlinear equations, which again are solved only for each adjoining pair
of cells. This provides the needed dissipation to deal with discontinuities, while the
preparation of the states using the characteristic information allows us to maintain
higher-order accuracy away from shock waves. All robust numerical methods require
some solution to this problem, be it approximate or exact, as in the case above.

We divide the 1-D computational domain into uniform cells of width �x and label
the cells i= 1, 2, . . . , N. The ith cell has its left interface at x= xi−1/2 = xi −�x/2 and

136 Chapter 5 Parallel Computing in Computational Fluid Dynamics

its right boundary at x= xi+1/2= xi+�x/2. We call the left interface the ith interface.
We assume that the solution u∗(xi, tn)= (u∗)n

i is known, and we wish to advance the
solution one step forward to t = t +�t = tn+1. We do this by calculating the vector
u∗ from u. We denote this as u∗ and we think of these values as representing constant
average states in each cell. Our next step is to improve this approximation by creat-
ing a piecewise linear distribution in each cell to improve the spatial accuracy in
regions we believe to be smooth. However, to mitigate short wavelength oscillations
that will result if we adopt this procedure near shocks, we use a limiting function
due to van Leer to produce a monotonicity-preserving value of the slope. Let Mi
represent the slope (actually a vector of slopes) in cell i. Then define

Mi =min

[
Li(u∗i+1− u∗i−1)

2�xi
,

Li(u∗i − u∗i−1)

�xi
,

Li(u∗i+1− u∗i)
�xi

]

with the proviso that if Li(u∗i+1− u∗i) Li(u∗i − u∗i−1) < 0, then we set Mi = 0. This lim-
iting formula selects a gradient that is sensitive to the local solution and makes sure
that we don’t add new extrema to the solution, which would encourage oscillations
in the neighborhoods of shocks. The prescription above is not unique, and many
variants of these limiter functions are in use. Using the calculated gradient, we can
then use the slopes in conjunction with the cell values. Define

Vn
i = V

n
i +Mi(x− xi), V = Liu

∗
i

We then solve the decoupled equations at the cell interfaces at time t = tn+1/2. This
gives us new intermediate interfacial values and allows us to apply time centering
to increase the order of the time accuracy:

Vn+1/2
k,i,RIGHT =

{ V
n
k,i − Mk,i(�xi + λk,i�t)/2 if λk,i < 0,

V
n
k,i otherwise;

Vn+1/2
k,i,LEFT =

{ V
n
k,i−1+Mk,i−1(�xi − λk,i−1�t)/2 if λk,i > 0,

V
n
k,i−1 otherwise;

where k ranges from 1 to 3 and signifies the kth element of the vector V . We then
recover the values of u∗ on either side of the ith interface by transforming back from
characteristic variables. We now have left and right states at the intermediate time
tn+1/2. From this we solve a Riemann problem at each cell interface. In principle, this
requires the solution of some nonlinear equations; in practice, there exist effective
approximations to the solutions of the nonlinear Riemann problem that can be
evaluated easily. Note that in order for this procedure to work, the time step over
which we form this solution to the Riemann problem must be taken small enough
so that the evolution of the solutions in other cells does not affect the solution of
the cell under consideration. This is the essence of what is called the CFL criterion,
which requires that the time step be limited by the local speed of the waves in each
cell. This constrains �t such that

�t ≤ �x
(u+ |c|)

5.3 Compressible Flows 137

Once the Riemann problem is solved, we can calculate the fluxes required from
each cell to move the solution forward to the next time step, so that the overall
effect is that the Riemann problem solution is used to generate the next time step.
This is the heart of Godunov’s method. The 2-D or 3-D version of this scheme is
accomplished by treating each space dimension in turn as a 1-D problem and using
the formulation above. However, when all this is put together, it looks formally like
the following difference scheme:

un+1
i = un

i −
�t
�xi

[
F

(
un+1/2

i+1/2

)
− F

(
un+1/2

i−1/2

)]

where F is a flux constructed to achieve the results of the Riemann problem approach
with the slope limiting discussed above. Written this way, the scheme is manifestly
in conservative form, which ensures that shock waves and other discontinuities are
treated correctly.

While the scheme outlined above is manifestly nonlinear, with complex logic to
ensure that shock waves can be handled, from a computational point of view it is
very simple. A review of the steps outlined above will reveal that the update of any
given cell requires only knowledge of the values at most two cells away in either
direction. Making such an algorithm parallel is, in fact, very simple. Regardless of
the solver used, one important aspect of the calculation described above is that it
proceeds by sweeping through the (uniform) mesh and is therefore very amenable
to parallelization. In order to calculate a time step �t that is appropriate for all cells,
one takes the minimum time step resulting from an application of the CFL criterion.

On a parallel architecture it is easy to see that, if the computational mesh is
partitioned into a lattice of processors, the communication pattern required is
one of nearest neighbor exchange of information at each time step. Since the
communication will scale according to some factor times the bounding surface of
a given submesh associated with a processor, it is easy to see that, provided the
problem size is kept suitably large, it is possible to achieve scalability, since the
total computational labor will scale with the mesh volume. The computation of
the correct time step is accomplished via a global reduction over the mesh.

5.3.3 An Application: The Richtmyer–Meshkov Instability

In this section we present an application of the ideas described above. The
Richtmyer–Meshkov (RM) instability arises at an interface separating two gases when
it is subject to an impulsive acceleration [802]. In the original paper, Richtmyer used
a shock wave to provide the impulsive acceleration to an interface (contact dis-
continuity) with long wavelength perturbations and performed a linear stability
analysis. Subsequently, analysis, numerical simulation, and experimental studies
of the interactions of shock waves with contact discontinuities have been gener-
ically associated with the RM instability. The principal interaction parameters are
the Mach number of the shock, Ms; the Atwood number across the contact, defined
as At = (ρ2 − ρ1)/(ρ2 + ρ1), where ρ2, ρ1 represent, respectively, the density ahead of

138 Chapter 5 Parallel Computing in Computational Fluid Dynamics

and behind the interface; and the geometry of the interface. Typically, the interface
is perturbed with single or multiple harmonic perturbations or with random white
noise perturbations. The physical domain is a 3-D rectangular shock tube. A shock
wave (called the incident shock) is initialized on the left of an interface and moves
from left to right. The incident shock refracts at the interface and bifurcates into a
reflected wave (which may be a shock or an expansion fan) and a transmitted shock.
We focus here on interactions of strong shock waves (Ms ≥ 10) with interfaces per-
turbed with a single harmonic in 3-D. The main object of study in RM flows is the
behavior of the so-called mixing width and its growth rate. Of particular interest is
the effect of reshock on the growth of the mixing width. Reshock refers to the fact
that the transmitted shock reflects off the right boundary of the shock tube, and
this reflected wave then interacts again with the interface. This typically leads to
compressible turbulence and mixing and is a generic phenomenon seen in a variety
of applications.

The 3-D shock tube was discretized by a uniform mesh of 1024× 128× 128 cells.
The shock Mach number was fixed at Ms = 10. The interface geometry was a single
mode perturbation given by A= 0.35(cos ky)(cos kz), where k = 2π/λ and λ = 3.2.
Two different Atwood numbers are considered here: At = 0.5 and At =−0.33. Note
that a positive (resp. negative) Atwood number corresponds to the fast–slow (resp.
slow–fast) case, which means that the transmitted shock speed is slower (resp. faster)
than the incident shock speed. Time is scaled such that it takes a unit time for an
acoustic wave in the unshocked incident gas to travel one wavelength λ.

Images of volume-rendered density fields at different times are shown in Plates 2
and 3 of the color insert, for At = 0.5 and At =−0.33, respectively. In both cases, the
incident shock initially compresses the interface, which reduces the mixing width
rapidly. After the passage of the incident shock, the mixing width increases due to the
instability for the positive Atwood ratio interface. For the positive Atwood number
interface, reshock causes a phase reversal of the interface. On the other hand, for the
negative Atwood number interface, the interface undergoes a phase reversal early in
the interaction, after which the mixing width grows. After reshock there is no phase
reversal, and the interface mixing width continues to grow.

The calculations described above are easily parallelized (the results shown here
were produced on a 512-node Cray T3E). Even larger runs of this type have been
performed recently on the ASCI teraflop platforms with over 3000 processors. The
examination of such compressible turbulent flows on massively parallel platforms
holds the promise that detailed examination of the complex processes inherent in
these flows will lead to improved understanding of turbulence in compressible fluids,
which is as yet a relatively unexplored area.

5.3.4 Adaptive Mesh Refinement

The techniques outlined above are most conveniently used on regular discrete
meshes, as opposed to the irregular finite element meshes outlined in the discussion
on spectral element methods. The structure and resolution of the grid used to
discretize a given compressible flow problem must be adjusted to properly resolve

5.3 Compressible Flows 139

the phenomena of interest. In many cases, however, the features requiring resolution
are quite localized (e.g., shock waves). One is then faced with the problem that high
resolution is required to correctly capture such features, whereas lower resolution
would suffice in other regions of the flow. If one uses a single uniform mesh for this
purpose, then the computational workload is greatly increased, since high resolution
is being applied uniformly over the whole mesh. An obvious solution to this problem
is to refine the mesh only in those regions requiring refinement. For problems in
which shock waves and other small-scale features are static (as occurs, for example,
in the computation of steady transonic flows over a wing), this approach is viable,
although it is still necessary to use a time step compatible with the smallest mesh
spacing. However, for problems in which such features are dynamic, the use of a
uniformly fine mesh results in a waste of resources.

An alternative is to use dynamic adaptive mesh refinement (AMR) methods, which
are more efficient in their use of computational resources but also preserve the
accuracy attainable with a fine mesh. The idea is to concentrate the computational
effort by using locally refined meshes with higher resolution only in those areas of
interest. Typically, one starts with a coarse mesh with some minimally acceptable
resolution that covers the entire domain. As small-scale features evolve, regions
requiring additional resolution are identified, and finer grids are overlaid on these
regions. This can actually be carried out recursively, in that the finer grids can be
examined and even finer grids introduced until adequate resolution is achieved. The
resulting structure is an adaptive hierarchy of meshes. One common implementation
of this idea was pioneered by Berger and Oliger [94] and Berger and Colella [93]. We
will use this algorithm as an example of AMR methods and discuss in this section
efficient parallel implementations of this approach.

An adaptive grid hierarchy is a set of dynamically overlaid grids generated by
recursively refining a base grid in response to some feature in the transient solution. It
can be represented as a family of grids {Gl

n}, where the subscript l (0≤ l≤ L) represents
the level of refinement (with 0 being the coarsest level and L the finest), and the
subscript n is an index for component grids at a given level. Viewed this way, the
hierarchy is actually a directed acyclic graph, and each node of the graph represents
a component grid. Levels of the graph correspond to the levels of refinement, and
nodes at a given level correspond to the component grids. As the solution evolves,
the graph also evolves dynamically, both in the number of levels and in the number
of grids at each level. The discretized equations are applied to each grid at each
level independently, although communication between grids is required to provide
appropriate boundary data compatible with the global solution. Thus, the algorithm
used to solve the equations of motion (e.g., a conservative Godunov scheme as
outlined above or any other finite difference method) can be completely reused
without any fundamental changes in approach or programming.

The Berger–Oliger algorithm requires that the grid spacing of component grids
at any level l of the hierarchy must be an integral multiple of the grid spacing of
component grids at the next level, (l+ 1). That is, hl = khl+1, where k is some integer.
An important aspect of the Berger–Oliger scheme is that the component grids must
be properly nested, so that each component grid at level l + 1 is contained within

140 Chapter 5 Parallel Computing in Computational Fluid Dynamics

G0
1

G1
1

G2
1

G3
k

G2
j

G1
n

G1
2

G1
1

G0
1

G2
2 G2

i G2
j

G3
k

G1
2 G1

n

Figure 5.14 Adaptive grid hierarchy of the Berger–Oliger algorithm.

a component grid at level l. In fact, for this algorithm, the directed acyclic graph
corresponding to the refinement hierarchy is a tree. These two views (i.e., grid based
and graph based) of the algorithm are illustrated in Figure 5.14.

The AMR integration algorithm defines the order in which different levels of the
grid hierarchy are integrated, the interactions between overlaying component grids
at different levels, and the criterion and method for grid refinement. There are three
key components of the algorithm:

1. Time integration. Time integration is performed on each component grid using
a specified finite difference operator. Each component grid can be integrated
independently (once boundary values are in place). The order of integration is
defined recursively. Before advancing component grids at a particular level of
refinement in time, all component grids at higher levels of refinement must be
integrated to the current time of grids at that level. That is, before performing
a time step at level l (i.e., Gl

i from some time t to t +�tl), all component grids
at levels > l must be integrated to t .

2. Error estimation and regridding. The error estimation and regridding component
of the integration algorithm performs the following three steps:

. Flag regions that need refinement based on error estimation.

. Cluster the flagged points.

. Generate the refined grid.

5.3 Compressible Flows 141

Algorithm Integrate(level)

Repeat (refine_ratio)∧(level)

if (Regrid_time) then

do Regridding

end

Step dt[level] on all grids at level

if (level+1 exists) then

Integrate(level+1)

Update(level, level+1)

end

end

Figure 5.15 Berger-Oliger AMR algorithm.

The result may be creation or deletion of grids and must be performed in a way
that maintains the proper nesting property of the meshes.

3. Inter-grid operations. Such operations are used to communicate solution val-
ues along the adaptive grid hierarchy. The following types of operations are
required:

. Initialization of refined grids. This may require transferring interior values of
overlying grids or possibly using interpolated values from a coarser grid.

. Coarse grid update. Where possible, fine grid values are injected onto the
coarse grid so that the values used are the most accurate.

. Coordination of common values. This is required whenever two grids overlap,
so that their values are consistent.

Figure 5.15 contains pseudocode representation of the Berger–Oliger AMR algo-
rithm that illustrates the recursive approach. Although such methods are clearly
advantageous in terms of computational resources, their implementation, especially
on parallel architectures, requires considerable effort. The main complexity actually
has nothing to do with the physics of the flow field. It arises simply because one must
maintain a hierarchical data structure and provide operations on this structure. For
parallel implementation, the problem is compounded since the data structure is now
distributed. This is similar to the difficulty encountered in implementing adaptive
spectral methods discussed in Section 5.2.7.

The complexity of this approach can be substantially alleviated through the
use of appropriate high-level programming abstractions that maintain the required
data structure and free the implementor to concentrate only on the nature of the
algorithm to be used on each component grid. These abstractions are conveniently
expressed as object-oriented frameworks. Several of these are currently in existence.

142 Chapter 5 Parallel Computing in Computational Fluid Dynamics

P0

G0
1

G1
1

G2
1 G2

2

G1
2 G1

3

G2
3

P1 P2 P3

Figure 5.16 Composite distribution of the grid hierarchy in one dimension.

A notable example is the GrACE framework of Parashar [743], based on earlier work
of Parashar and Browne [745]. The GrACE framework provides a distributed data
structure that encapsulates the various operations such as interpolation as well as
communication.

An additional critical issue is that of load balancing. As refinement takes place,
the workload of a given processor increases due to the rising volume of computation.
Clearly, some strategy must be employed to distribute the finer meshes to remote pro-
cessors in order to even out the load. However, unless this is done carefully, meshes
that are in physical proximity to one another (due to the refinement operation) will
find that they are separated by large distances in terms of the processor network.
This in turn leads to overhead due to communications. An example of a desirable
processor/data distribution for a 1-D case is shown in Figure 5.16. Such a distribution
maintains reasonable load balance while preserving physical locality. Note that this
must be done repeatedly as various flow features form.

A key idea in ensuring that computational load is balanced is the use of space-
filling curves to allocate grids to processors. Space-filling curves are a class of locality-
preserving mappings from d-dimensional space to 1-D space. The mapping can be
thought of as threading a string through the mesh hierarchy so that it fills the
space. Load is then balanced by examining the length of this string and splitting the
string into relatively equal pieces assigned to neighboring processors. This approach
achieves load balancing, while ensuring that points that are physically close remain
close in processor space. Early examples of its use can be found in the work of Salmon
and Warren [824], as mentioned in Section 5.2.7. An example of the use of such a
curve in 2-D is shown in Figure 5.17. The need to dynamically distribute parts of
grids to remote processors in coordination with the use of space-filling curves, so as
to achieve load balancing, requires the ability to distribute the data for a given grid
across several processors. Thus the GrACE framework implements the graph of grids
via a scalable, distributed dynamic array (SDDA), which uses extendable hashing
techniques to provide dynamically extensible and globally indexed storage.

5.3 Compressible Flows 143

Level 1 Level 2

Level 1 Level 2

Level 3

Figure 5.17 Self-similar, space-filling curves.

As an application of these ideas, we illustrate the use of AMR for the Richtmyer–
Meshkov problem discussed above. In Plate 4 of the color insert, we show the
solution, at various times, for the interaction of a shock wave with an inclined
interface. In this case, we want not only to refine in the region of the shock wave
but also to sharpen the contact discontinuity, which is where the mixing ultimately
originates. It turns out that most shock-capturing schemes perform well in the
presence of shocks but often smear out contact discontinuities to an unacceptable
degree. The use of the AMR algorithm allows one to focus on these features and, at
the same time, to reduce the deleterious effects of the dissipation inherent in modern
shock-capturing schemes. In Plate 5 of the color insert, the solutions are shown at
identical times, except that we have overlaid the corresponding AMR meshes. The
dynamic nature of the algorithm is apparent. As further levels of refinement are used,
the solution process becomes very efficient relative to a simulation using a single fine
mesh.

The ability to abstract the complex data manipulations and parallel communica-
tions makes it necessary for the applications scientist to provide only the appropriate
method for integration of the particular compressible flow. In the future, it is antic-
ipated that implementation of AMR frameworks on massively parallel architectures
will lead to important advances in our understanding of compressible flows.

144 Chapter 5 Parallel Computing in Computational Fluid Dynamics

5.4 Conclusion

In this necessarily brief overview of numerical methods for CFD, we have attempted
to discuss some of the central issues associated with simulation of both incompress-
ible and compressible flows. At best, this overview can only serve as an introduction
to some of the challenges encountered in solving the Navier–Stokes and Euler equa-
tions on high-performance parallel machines. We have ignored completely a large
number of crucial topics. Nevertheless, it is hoped that the reader can get some
appreciation for the role parallel computing plays in facilitating high-resolution sim-
ulations of fluid phenomena.

As the available architectures become larger and more powerful, and as the
required algorithmic and programming tools mature, it will soon be possible to
contemplate the simulation of flows in realistic geometries at resolutions that capture
most of the physically crucial scales. This will allow us, for the first time, to explore
the detailed physics of complex phenomena such as turbulence and to produce
models of these effects that can then be used in engineering simulations. It will then
be possible to consider the use of optimization methods to tailor flows for optimal
effect in a wide variety of critical applications.

C

H

A

P

T

E

R

6 Parallel Computing in
Environment and Energy

Mary F. Wheeler . Wonsuck Lee .

Clint N. Dawson . Dorian C. Arnold .

Tahsin Kurc . Manish Parashar .

Joel Saltz . Alan Sussman

During the past 20 years, the impact of environmental problems on the health
and well-being of humankind has become one of the top international issues. The
modeling of surface water is important in predicting tidal ranges and surges, such as
tsunamis and hurricanes caused by severe earthquake and storm events. In addition,
groundwater and surface-water contamination affects a most vital condition of life,
namely fresh water.

Cost-effective contaminant remediation is driving a new generation of environ-
mental applications. The central challenge is to minimize costs for cleanup of a site
whose properties are only poorly known and in which a variety of complex chem-
ical and physical phenomena take place. The heart of this effort must be robust
subsurface and surface-water simulators. In the case of groundwater, this must com-
prise coupled programs that together account for multicomponent, multiphase flow
and transport through heterogeneous geological structures (porous media) and in
surface-water flow models, either depth-averaged or deep ocean. For both applica-
tions, strategies optimal with respect to different objectives and subject to existing
constraints are sought. During containment and remediation, real-time data need to
be assimilated into the simulations and optimizations. For evaluation of longer-term
effects, it is critical to couple the surface-water fluxes to models of the subsurface that
account for flow, transport, and reaction of soluble contaminants.

Similarly, oil and gas production are of critical importance to the nation, since
about two-thirds of U.S. energy currently comes from oil and gas, and this situation
will not change much over the next few decades. Although oil can be imported, there
are profound advantages to domestic production: ensuring a stable supply and price
to the consumer and promoting a healthy national economy. Future production

145

146 Chapter 6 Parallel Computing in Environment and Energy

in the United States is dependent on enhanced oil recovery (EOR) and reservoir-
characterization technologies. Intense computer simulation is essential for effective
field management. Parallel reservoir simulators have the potential to solve larger,
more realistic and practical problems faster and more economically. In this chapter,
we describe some of the research on subsurface- and surface-flow models and related
scientific computing problems that were facilitated collaborations by the CRPC.

One outcome is the development of a parallel problem-solving environment
IPARS (Integrated Parallel Accurate Reservoir Simulator), suitable for modeling multi-
phase, multiphysics flow in porous media on massively parallel computers or clusters
of workstations. In addition, we discuss the coupling of IPARS with NetSolve and
demonstrate reservoir simulation in a grid-computing environment. We also incor-
porate additional functionality to IPARS by adding interactive steering and tracking
capability using the software library DISCOVER (Distributed Interactive Steering and
Collaborative Visualization Environment). We devote Sections 6.1 to 6.3 to this
subject.

Another outcome is the coupling of Active Data Repository (ADR) and the model-
ing code CE-QUAL-ICM and its parallel version PCE-QUAL-ICM, which we describe
in Section 6.4. CE-QUAL-ICM is a 3-D eutrophication model developed at the De-
partment of Defense Engineer Research and Development Center (DoD-ERDC). The
water quality model is semi-explicit in time and is based on an unstructured cell-
centered finite volume numerical method. This sequential Fortran code was paral-
lelized using a data/domain decomposition strategy and a single-program, multiple-
data (SPMD) paradigm. PCE-QUAL-ICM, the parallel water-quality model, enhances
CE-QUAL-ICM with message passing. Interprocessor communication is done using
Message Passing Interface (MPI) communication libraries, and the parallel code has
been ported to the CRAY-T3E, IBM-SP, and SGI O2000.

In addition, present research involves the coupling of IPARS with ADR for explo-
ration of history-matching scenarios with uncertainty in the geological data. ADR
enables integration of storage, retrieval, and processing of multidimensional mul-
tiple data sets on parallel machines and provides support for spatial queries and
complex data aggregations [990].

6.1 Subsurface-Flow Modeling

Flow-in-porous-media problems are modeled by degenerate parabolic and nearly
hyperbolic (i.e., advection-dominated), partial differential equations with equality
and inequality constraints and are subject to hysteresis. The simulation processes
occur on widely disparate time and space scales, such as the scales of reaction rates,
precipitation, dissolution, and other phase changes, medium heterogeneity and
fractures, and wells.

Degeneracies and hyperbolicity tend to produce flow and transport solutions with
relatively steep fronts. Typically diffusion/dispersion is small. In the limit of no
diffusion/dispersion, actual shocks develop, and the mathematical equations possess

6.1 Subsurface-Flow Modeling 147

multiple solutions. However, only the entropy solution is physically relevant. It
is difficult to approximate shocks without introducing spurious oscillations or an
artificially large amount of numerical dispersion. These can smear the steep front,
change its speed, and render any further computations, such as those for reactions
and phase changes, suspect.

Extremely large systems of nonlinear equations result. This is due in part to
the sheer size of the groundwater domain or petroleum reservoir, the number
of phases and chemical species present, and the need to resolve time and space
scales adequately. But it is also due to the highly coupled nonlinear nature of the
equations.

Physical and mathematical considerations lead us to emphasize conservative
schemes that preserve maximum and/or minimum principles, produce little or no
numerical dispersion, can support adaptive local grid refinement, and give asymp-
totically accurate solutions of the governing equations. Mixed finite element (finite
volume) methods coupled with Godunov characteristics or discontinuous Galerkin
methods [805, 806] have been formulated that satisfy these criteria.

6.1.1 IPARS Motivation

The modeling of subsurface problems requires (1) a high-performance computing
(HPC)–based interdisciplinary attack on the geochemical, biochemical, multiphase,
compositional, and mathematical complexities that dominate subsurface flow and
transport in heterogeneous porous media and (2) a problem-solving environment
(PSE) for predictive simulation that uses advanced, scalable parallel algorithms and
multiscale nonlinear and stochastic science to resolve these complexities and to
quantify and diminish uncertainties in prediction. Key requirements include the
support of high-resolution reservoir studies with millions of grid elements, ability
to handle multiple physical models (e.g., CO2, surfactant, and thermal), multiple
fault blocks, dynamic locally adaptive mesh refinements, and interactive tracking,
visualization, and computational steering.

The main objective of the PSE is to simplify the building of flexible and efficient
parallel reservoir simulators through the use of a high-level programming interface
for problem specification and model composition, object-oriented programming
abstractions that implement application objects, and distributed dynamic data man-
agement that efficiently supports adaptation and parallelism. Secondary objectives
include developing a general framework for integrating input/output, visualization,
and interactive experimentations. These objectives motivated the development of a
computing framework called IPARS, suitable for massively parallel computers or clus-
ters of PCs. This framework provides all the required memory management, message
passing, table lookup, solvers, and input/output. The developer only needs to code
the relevant physics. In addition, this software permits physically representative cou-
pling of different physics or different numerical algorithms in different parts of the
domain.

148 Chapter 6 Parallel Computing in Environment and Energy

6.1.2 IPARS Description

The development of the subsurface-flow simulator framework IPARS, suitable for
research and with possible commercial applications, has been an ongoing project
for the past four years at the Center for Subsurface Modeling (CSM). The IPARS
framework supports 3-D transient flow of multiple phases containing multiple com-
ponents through immobile phases (rock/soil). The bulk phase of the medium (i.e.,
the rock plus fluid) can be regarded as compressible in order to include the elastic
property of the bulk rock. Thermodynamic quantities include phase densities, com-
pressibility factors, and viscosities. These may be represented as arbitrary functions of
pressure and composition, or they may be approximated by simpler functions (e.g.,
constant compressibility). The initial system is isothermal, but an effort is being
made to incorporate nonisothermal calculations.

The most general mathematical representation of such a system without mutual
solubility between hydrocarbon and water phases is

∂
(
ρiSiφi

)

∂t
− ∇ ·

Np∑
j

K krj ξj

µj
xij

(
Pj − γ�D

)
= qi

for Nc hydrocarbon phases and Np consisting phases. ξj and xij denote the molar
density of phase j and the mole fraction of the i-component in liquid phase j,
respectively. The first term represents the change of mass of the ith phase with time.
The second term represents the change due to phase transport. The right-hand side
is a source/sink term.

Discretization employs mixed finite elements based on the lowest-order Raviart–
Thomas spaces or cell-centered finite differences and backward differences in time
[46, 818]. The simulator is designed to handle dynamic grid refinement, but this is
not currently implemented.

The number of physical models used in petroleum engineering applications and
environmental subsurface-flow problems is increasing. There are currently eight
physical models available:

. Implicit hydrology model. Simulate oil–water flow system with an implicit nu-
merical scheme.

. IMPES hydrology model. Simulate oil–water flow system with an explicit numer-
ical scheme.

. Two implicit black-oil models (different primary unknowns).Simulate oil–gas–water
petroleum reservoir flow with an implicit numerical scheme but two different
choices of primary unknowns.

. Implicit air–water model. Air-and-water-flow simulation model for subsaturated
and saturated groundwater-flow zones using an implicit method.

6.1 Subsurface-Flow Modeling 149

X

Y

Z #1

#2

#3

#4
#5

PWAT

1300

1290

1280

1270

1260

1250

1240

1230

1220

1210

1200

1190

1180

1170

Figure 6.1 Air–water flow simulation with four injection wells and one production well.
PWAT is water pressure.

. Implicit and explicit single-phase models. Fully saturated groundwater-flow sim-
ulation model. One uses an implicit method; the other one is designed with
an explicit scheme.

. Compositional model. Most general hydrocarbon reservoir simulation model.

Here we present examples of IPARS simulation. Figure 6.1 shows the results of an
air–water subsurface-flow model [596]. Water pressure distribution is plotted for a
five-well model. Wells #1 through #4 are water injection wells, and well #5 is produc-
ing air and/or water. With this air–water model, one can study flow in subsaturated
zones without mathematical simplification, as in Richards’ equation. Unlike many
groundwater-flow simulators, the air–water model is capable of handling wells in
addition to general boundary conditions. All of the framework-supported functional-
ities, including parallel computation, are available without additional programming.
Also, multiblock formation is readily embedded in the air–water model. We now de-
scribe it with a more complicated three-phase flow model known as the black-oil
model.

150 Chapter 6 Parallel Computing in Environment and Energy

X

Y

Z

PWAT

526.345
523.034
519.724
516.414
513.103
509.793
506.483
503.172
499.862
496.552
493.241
489.931
486.621
483.31
480

Injection well

2D mortar space

Production well

Block 1

Block 2

Figure 6.2 Multiblock simulation of a three-phase (two liquid phases and one gas phase)
black-oil model.

The simulation domain may consist of one or more fault blocks. Each fault
block can have an independent coordinate system and be exposed to different body
forces. The multiblock implementation in IPARS allows one to split the domain into
several fault blocks. Then each fault block can have different physical parameters and
field data. Furthermore, the grids of two fault blocks are not necessarily matching.
The formulation is based on the mortar formulation of the domain decomposition
algorithm [1009].

Figure 6.2 demonstrates the cell-averaged water pressure at 30-days’ operation
over the two blocks that constitute the whole simulation domain. Two blocks with
different field data are attached by a mortar space (depicted in the figure by a black
solid line).

Under the IPARS framework, two or more different physical models can be run
on different parts of the domain (fault blocks). This is the multiphysics capability
of IPARS [990]. Thus, one can use, for instance, a black-oil model on one fault block
while the other fault block is being simulated by a hydrology model.

From the beginning, IPARS was intended to solve problems involving a mil-
lion or more grid elements economically, thereby greatly improving grid resolution.

6.1 Subsurface-Flow Modeling 151

8

16

24

32

40

48

Number of processors
8 16 24 32 40 48

Sp
ee

du
p

Ideal

1,000,000 grid blocks

500,000 grid blocks

Figure 6.3 Speedups by parallelization for problems of 0.5 million and 1 million grid blocks.
Black-oil model simulation.

This task can be handled efficiently by multiple-processor machines. Here we cite
the work by Wheeler et al. [989]. This study considered the black-oil model. Fig-
ure 6.3 shows the scalability of the black-oil model simulation. Speedup of two
cases of 500,000 grid blocks and 1,000,000 grid blocks was compared and showed
close to ideal performance. Figure 6.4 indicates that the workload for each pro-
cessor is almost equal, since the maximum and minimum load are very close. In
other words, the dynamic load-balancing support by the IPARS framework is nearly
perfect.

The grid-element-keyout capability of IPARS allows flow simulation on a do-
main with complicated geometry. A keyed-out cell is a grid block that does not
contain fluids. The cell is removed from the flow simulation domain. Figure 6.5
shows an example of the air–water-model simulation [596] on an irregularly shaped
domain where one injection well is placed in the middle of the head of a Texas
longhorn.

152 Chapter 6 Parallel Computing in Environment and Energy

1680 24 32 40 48
0

Maximum time

Minimum time

10000

20000

30000

40000

50000

60000

To
ta

l t
im

e
(s

ec
on

ds
)

Number of processors

Figure 6.4 Histogram for load balancing of a parallel IPARS job.

6.2 IPARS and Grid Computing by NetSolve

In order to obtain accurate solutions in many field-scale applications, the engineer
may require access to multiple-processor machines at some distant location. Most
likely, this engineer will not be intimately familiar with the details of physically
complex simulators. Thus, a simple and user-friendly interface for accessing available
computational resources is desirable. The Grid Computing environment, NetSolve,
provides such an interface: an Internet-based global route to software. NetSolve
has been developed at the Innovative Computing Laboratory (ICL), University of
Tennessee at Knoxville. Under CRPC guidance, CSM and ICL have coupled IPARS
and NetSolve and demonstrated how a reservoir simulator may be accessed remotely
with an easy-to-use interface [48].

In the NetSolve environment, a user can access a scientific application as a
client, virtually anywhere in the world, without having to worry about obtaining,
installing, or maintaining computing resources. The IPARS-NetSolve integration was
designed so that users can initiate the simulation and examine output, including
visualization, through a Web browser’s window. These tasks can be carried out with
laptop computers or with smaller devices such as a handheld PC or a cellular phone
with an Internet connection and a Web browser installed. CSM is setting up a

6.2 IPARS and Grid Computing by NetSolve 153

X

Y

Z

473.195 475.257 477.319 479.381 481.443 483.505 485.567 487.628 489.69

Nonkeyout grids

Figure 6.5 Demonstration of keyout capability of IPARS. Air–water model simulation on Texas
longhorn shape domain.

collaborative system for several of its industrial partners based on the computing
environment described below.

6.2.1 Integrating IPARS into NetSolve

In this section we describe how IPARS was integrated into the NetSolve environment.
Key to the coupling of NetSolve and IPARS is a clear understanding of their respective
interfaces. IPARS is designed to receive a single file input containing all the param-
eters and field data describing the simulation. It produces several output files. One
output file describes the results and contains numerical values of the variables of
the simulation in an ASCII format. The other output files contain data that are used
to support visualization. Hence the answer to integration is somewhat straightfor-
ward: create interface routines for IPARS and NetSolve and embed IPARS in NetSolve
servers.

First, a functional wrapper was created to initiate an IPARS job with an input and
several output file names. This wrapper runs the simulation and also calls scripts
external to the simulator, which uses a commercial visualization software package

154 Chapter 6 Parallel Computing in Environment and Energy

TECPLOTTM to post-process the output into a series of graphical frames. These frames
represent snapshots of different parameters being observed in the field of study. The
UNIX utility, “convert,” is then used to change the format and to attach each set of
frames (corresponding to different parameters) into a single movie file for each set.
These movie files, along with the ASCII output file, are stored on a server and can be
accessed by users.

The NetSolve system provides a code generator that parses a NetSolve problem-
description file (PDF) in order to extend the server’s functional capabilities. This was
the tool used to create a server with IPARS capability; a portion of the PDF file used
for integration follows.

@PROBLEM ipars

@INCLUDE ‘‘ipars.h’’

@LIB /home/user/lib/libipars.a

@DESCRIPTION

Parallel Sub-surface Flow Simulator

@INPUT 2

@OBJECT STRING CHAR model

IPARS physical model to use

@OBJECT FILE CHAR infile

Input data file

Eventually, this PDF will describe the code that determines how to call the
abovementioned wrapper with the inputs given from a client program. After this
configuration and a compilation, the NetSolve server is ready to be attached to a
NetSolve agent/system and service requests. Note that although we only mention
one server cluster, it is also possible to have several IPARS-enabled server clusters or
parallel machines attached to the system; the NetSolve agent would dynamically
marshal requests to the best candidate, yielding better performance (Figure 6.6).

6.2.2 Client-Side Web-Browser Interface

At this point, one can now use any of the NetSolve client interfaces to access
IPARS. This has two major impacts: (1) with a single installation of IPARS, many
users can benefit from the simulator without having to go through the hassles of
installation and maintenance; and (2) IPARS can be used from any host machine
(even architectures to which IPARS has not been ported). A further result is that one
can get significant speedup by accessing server clusters that are orders of magnitude
faster than the available local computers. The fact that we are using the NetSolve
client means that the user has access to all the functionalities of any and every
NetSolve server in the system.

In order to make things even easier for the user, we take our interface a step further.
We make the IPARS simulator accessible to the ever-present Web browsers.

First, a flexible and user-friendly menu for data input was developed. The menu
allows the following selections: choice of one of eight physical models, including

6.3 Tracking and Interactive Simulation in IPARS 155

NetSolve
agent

Single processor

MPPs and SMPs

Clusters

Client Interfaces to IPARS simulator

Web
CFortran

MATLABMathematica

IPARS-enabled servers

Figure 6.6 Overview of the NetSolve/IPARS integration.

physical and geological parameters; grid selection and numerical algorithmic pa-
rameters; and visualization variables.

We used HyperText Markup Language (HTML) forms and the Common Gateway
Interface (CGI) to provide a complete interface to IPARS that basically sits on top
of the NetSolve middleware system. The total package has all the components that
every application should have: complete portability, an easy and intuitive interface,
and run-time load balancing to ensure maximum performance. All of this capability
is available without ever downloading or installing any components (other than
the Web browser, which can be assumed to be standard). Figure 6.7 is a schematic
description of the resulting Web-based computing environment of IPARS.

In the next section we show, using a library developed by computer scientists,
how we have pulled IPARS to a new level: interactive tracking and simulation.

6.3 Tracking and Interactive Simulation in IPARS

Most scientific computing software does not allow users to interact during the
simulation process. Thus, a scientist who finds something undesirable usually waits
for termination of the simulation or stops the execution. The restart capability
of a simulation program is often used to incorporate certain changes in physical
situations. Scientists analyze the output files and apply new conditions by changing
appropriate parameters in the input files that will be used for the restart. However,
the time required to perform this tedious cyclic work is not acceptable.

There are many engineering applications that will benefit by real-time interactive
simulation. Petroleum production engineers often want to change the number of

156 Chapter 6 Parallel Computing in Environment and Energy

My Web browser

NetSolve & IPARS

Solver Parameters
Newton Tolerance
Linear Solver Tolerance
Preconditioning Steps

1K-02
IE-4
6

Max Newton Iteration
Max linear Iterations

50
300

Interactively steer jobs

Web
server

Local machine

IPARS-enabled
servers

My Web browser

NetSolve & IPARS

Solver Parameters
Newton Tolerance
Linear Soher Tolerance
Precommitting Steps

1K-02
IE-4
6

Max Newton Alteration
Max linear Alterations

50
300

Figure 6.7 Schematic description of using IPARS in a remote setting.

active wells, their type, and conditions in field activity. Hence, an interactive com-
puter simulation capability can be a very profitable tool. Environmental hydrologists
who want to simulate the transport of groundwater over a period of dry and rainy
seasons may effectively study a real-world situation by changing conditions at soil
boundaries interactively.

We include tracking and steering capabilities with IPARS so that the user can
monitor the simulation domain in the middle of the computation. Tracking is not
an additional feature, but a necessary procedure to steer the simulation. It should
give useful and essential information concerning the physical problems to scientists.
During the simulation, tracked data can be reported in numerical form or repre-
sented visually so that users can decide when to steer and what parameters to change.

For safe steering, users are allowed to change only preselected variables at cer-
tain points of the simulation program. This avoids nonphysical situations and the
introduction of discontinuities, which may cause the simulation to break down.
Changing certain parameters in the middle of time steps may lead to an abrupt
change in a variable and may make the linear system ill-conditioned.

This means that the designer of the algorithm must select the steering points and
variables carefully, while allowing the user as much flexibility as possible. For IPARS,
wells and boundary conditions are the candidates for steering. The variables that
will be steered are chosen so that nonphysical parameters are not introduced.

6.3 Tracking and Interactive Simulation in IPARS 157

We have used DISCOVER (Distributed Interactive Steering and Collaborative
Visualization Environment) to provide tracking and steering in IPARS. Interaction
points are inserted in the IPARS program. At an interaction point, the DISCOVER
interface allows the user to pause and restart IPARS. In the following section, we
describe DISCOVER and the integration of IPARS with DISCOVER to provide an
interactive steering environment.

6.3.1 An Interactive Computational Collaboration: DISCOVER

DISCOVER is a Web-based collaborative interaction and steering environment that
addresses each of these issues. Figure 6.8 shows an architectural overview of the
system. The system supports a three-tier architecture composed of detachable thin
clients at the front-end, a network of Java interaction servers in the middle, and
a control network of sensors, actuators, and interaction agents superimposed on
the application data network at the back-end. The interaction Web server enables
clients to connect to and collaboratively interact with registered applications us-
ing a conventional browser. Furthermore, it provides access to computational and
visualization servers and to simulation archives.

The application control network enables sensors and actuators to be encapsulated
within and directly deployed with the computational objects, thus forming inter-
action objects. Interaction agents resident at each computational node register the

Remote
database

Local
database

Application 1

Application 2

Obj
2

Obj
1

Interaction
agent

UserA

UserB

UserC

UserD

Thin
clients

Acceptor/Ctrl (RMI/sockets/HTTP)

Policy rule base

Servlets

U
se

r a
ut

he
nt

ic
at

io
n

Vi
z/

co
m

pu
ta

tio
n

In
te

ra
ct

io
n/

st
ee

rin
g

Se
ss

io
n

ar
ch

iv
al

D
at

ab
as

e
su

pp
or

t

Si
m

ul
at

io
n/

in
te

ra
ct

io
n

br
ok

er

Appl 1

Appl 2

Figure 6.8 An architectural overview of the system.

158 Chapter 6 Parallel Computing in Environment and Energy

interaction objects and export their interaction interfaces to the application interac-
tion proxy, which manages the overall interaction through the control network of
interaction agents and objects. The interaction proxy uses JNI to create Java proxy
objects that mirror the computational objects and allow them to be accessed di-
rectly by the interaction Web server. DISCOVER is an ongoing research initiative at
the Advanced Software Systems Laboratory (TASSL) at Rutgers University.

6.3.2 Integrating IPARS with DISCOVER

IPARS has been integrated with the DISCOVER framework, enabling collaborative
remote interaction and steering of IPARS oil reservoir and hydrology applications.
Current capabilities include application control (start, stop, and pause), check-
point/rollback, query and control of parameters such as well diameter, pressure,
oil/water injection rate, and so on. Development of the IPARS-DISCOVER iteration
involved transforming IPARS data structures into interaction objects using a C++
wrapper, as described above. Each interaction object created in this way exported
View/Command interfaces for interaction. Figure 6.9 shows a screen dump of plots
tracking changes in well parameters of interest for an IPARS implicit hydrology model
simulation.

Figure 6.9 Interactive visualization and steering of IPARS oil reservoir simulations.

6.4 Surface-Water Simulation 159

6.4 Surface-Water Simulation

The ability to accurately and efficiently model near-coastal waters is of extreme im-
portance to a number of government agencies and private industries. These flows are
described by the 3-D Navier–Stokes equations with a free surface. However, present
limitations on computational algorithms and architecture make solving these equa-
tions numerically extremely difficult. Hence, several approximate mathematical
models have been developed, including the shallow water equations (SWE). The
SWE are obtained by vertically integrating the 3-D incompressible Navier–Stokes
equations along with the hydrostatic pressure approximation. They can successfully
model water bodies with horizontal characteristic lengths much larger than the fluid
depth.

Tidal fluctuations are frequently modeled using the SWE. Such models are useful,
for example, for tidal power-generation projects and for determining the periodic
forces acting on offshore structures. The SWE, coupled with a pollutant and/or
salinity transport algorithm, are useful for designing effective remediation strategies
for polluted bays and estuaries.

However, numerical solution of the SWE is not straightforward, due to the ex-
tremely complicated geometries and the strong coupling between the fluid depth
and velocities. This coupling can lead to problems with stability and spurious os-
cillation. Various numerical techniques have been and are being developed for this
purpose.

Numerical algorithms and mathematical analysis go hand in hand. An under-
standing of the convergence and stability properties of a numerical model for the
SWE is essential for developing robust numerical procedures. We have analyzed
the generalized wave continuity equation (GWCE), developed by W. G. Gray et al.,
for the SWE. Both continuous-time and discrete-time a priori error estimates have
been derived. We have also parallelized shallow water flow and transport simula-
tion: the ADCIRC software, which is used on the GWCE, and CE-QUAL-ICM, a water
quality model.

6.4.1 A Water Quality Model: CE-QUAL-ICM

CE-QUAL-ICM is a water quality model developed at the DoD-ERDC by Carl F.
Cerco, Thomas Cole, and others [177, 178]. This numerical code can model the
transport and reaction of multiple variables simultaneously. It also contains a sedi-
ment transport model and can be run in 1-, 2-, or 3-D configurations. CE-QUAL-ICM
allows for inflow, no flow, and outflow boundary conditions. CE-QUAL-ICM has
been used extensively in the eutrophication studies of Chesapeake Bay. The nu-
merical method is based on an unstructured finite volume method. It is explicit
in time in the horizontal direction and implicit in the vertical columns. The reader
is referred to Cerco and Cole [177, 178] for a detailed description of the numerical
model.

160 Chapter 6 Parallel Computing in Environment and Energy

The main component of CE-QUAL-ICM is the solution of a 3-D mass conservation
equation of the following form for each state variable:

δ
(
VjCj

)

δt
=

n∑
k=1

QkCk +
n∑

k=1

AkDk
δC
δxk

+
∑

Sj

The above equation represents conservation of mass in the jth control volume,
and n is the number of faces attached to control volume j. Qk, Ck, Dk, and Ak are,
respectively, the volumetric flow rate, concentration, diffusion coefficient, and cross-
sectional area at face k of control volume j. Vj is the volume of control volume j, and
Sj are the external sources and sinks present in control volume j. δC/δxk is the spatial
gradient of concentration in the direction normal to face k, and (δVjCj)/δt is the rate
of change of the total concentration in control volume j.

6.4.2 A Parallel Water-Quality Model: PCE-QUAL-ICM

In a water quality model, special interests are long-term studies, typically comprising
decades. For these long-term simulations, the serial code requires hundreds of vector
computer (CRAY-YMP) hours. We achieved an order of magnitude reduction in sim-
ulation times by porting the serial code to distributed-memory parallel computing
platforms.

PCE-QUAL-ICM, a parallel water-quality model, is a product of this effort and has
been developed at CSM in conjunction with ERDC. A data/domain decomposition
strategy is employed, along with a single-program, multiple-data (SPMD) paradigm.
Interprocessor communication is done through standard MPI message-passing li-
braries. The parallel code has been ported to the IBM-SP and CRAY-T3E, which are
distributed-memory parallel computers, and to the SGI O2000, which has some
shared and some distributed memory.

As stated above, CE-QUAL-ICM uses an explicit/implicit time-marching solution
strategy. Within each time step itself, the solution update is broken into two sep-
arate steps. In the first step, an intermediate concentration is computed that takes
into account horizontal diffusion and advection, along with all the external sources
and sinks. This step is completely explicit, and there is no need to solve any sys-
tem of linear equations. In the next step, the vertical diffusion and advection are
incorporated in an implicit manner. This requires solution of a tridiagonal system
of equations for each vertical water column.

Solution methodology plays an important role in parallelization. Not all nu-
merical techniques are readily parallelizable. Since CE-QUAL-ICM has an explicit
treatment of horizontal diffusion and advection, it easy to parallelize, and it can
potentially benefit greatly from parallelization. Implicit treatment of vertical trans-
port and explicit treatment of horizontal transport implies that we can benefit by
doing domain decomposition only in the horizontal plane. For each surface block,
the underlying vertical column is assigned to the same subdomain.

6.4 Surface-Water Simulation 161

For computing the horizontal advective flux, the concentration Ck at face k is
needed, and CE-QUAL-ICM has two ways to compute this. One is a simple first-
order-accurate upwind differencing that sets Ck equal to the upstream value, with
the upstream direction determined by the sign of Qk. The other is a higher-order-
accurate QUICKEST scheme that uses quadratic interpolation for computing Ck by
taking two upstream cells and one downstream cell. Thus, in a traditional domain
decomposition sense, we will need at least two layers of “overlap” or ghost blocks.
Note that upwinding or the QUICKEST scheme is used only in the horizontal direc-
tion; in the vertical direction, a simple linear interpolation between the adjoining
cells is used to compute Ck.

Either a fixed time step can be specified or an automatic time-step selection based
on stability criteria can be used. If the automatic time stepping option is chosen, then
the subdomains need to communicate with each other to select a global minimum
time step if the computations are to remain synchronous.

6.4.3 Parallel Algorithm

From the solution algorithm of CE-QUAL-ICM already outlined above, it is clear
that it is readily parallelizable. It is an explicit code and is implicit only in the
vertical direction. A small tridiagonal system of equations is solved locally within
each water column. Therefore, a data-parallel approach would be a natural way to
parallelize this code. The original global domain is split into smaller subdomains,
and each processor element (PE) works only on its local subdomain. Since the solu-
tion within a subdomain will depend on the solution in its neighboring subdomains,
the PEs exchange information through message-passing communication libraries.
The explicit nature of the solution algorithm in CE-QUAL-ICM implies that it is
enough to do message passing once every time step. Note that this type of parallel
computation does not change the global solution algorithm. Conceptually, all we
are doing is splitting the work among processors. Thus, the solution we would get
through parallel computation will be identical to that we would obtain if we were
to solve it sequentially, up to machine precision.

The domain is decomposed in the horizontal plane alone, and all the underlying
blocks in a vertical column are assigned to the same processor. This minimizes
interprocessor communication, since now the implicit step involving solving a
system of tridiagonal linear equations is done locally within each PE.

Domain decomposition or mesh partitioning on unstructured grids is a nontrivial
task and needs to take into consideration several issues, such as load balancing
and locality. C. Edwards [306, 823] developed an effective decomposition strategy
based on a Hilbert space-filling curve, and this has been used with great success in
parallelizing ADCIRC, an advanced coastal circulation model based on the shallow
water equations [196]. A space-filling curve based domain decomposition is used in
PCE-QUAL-ICM.

The basic idea behind this decomposition algorithm is to construct a map from
d-dimensional space to the interval [0,1] on the real line. In our case d = 2, since we

162 Chapter 6 Parallel Computing in Environment and Energy

Figure 6.10 Hilbert space-filling curve on a rectangular mesh.

decompose only the surface blocks. Given a list of points in the original domain, a
space-filling curve is built that passes through each point once. Since the curve is
one dimensional, the position of a point along the curve determines its order in the
interval [0,1]. The map is constructed so that points that are close in d-dimensional
space remain close when mapped. Thus, the curve preserves locality.

A space-filling curve on a simple rectangular mesh is shown in Figure 6.10. One
can also weight the points on the curve by a measure of the amount of “work”
associated with that point. This weighting is useful in our application, since each sur-
face block can have a different number of vertical blocks underneath it. In this way,
better load balancing can be achieved. Once the curve is constructed, the decompo-
sition of the domain is performed by dividing the interval [0,1] into N subintervals,
where N is the desired number of processors, and mapping each subinterval to a
processor. That is, the points in d-space associated with the subinterval are assigned
to the processor.

6.5 A Coupled Simulation of Flow and Transport with ADR

A coupled simulation system for bays and estuaries includes a hydrodynamics
simulator, which simulates the flow of water in the domain of interest, and a chem-
ical transport simulator, which simulates both the reactions among chemicals in
the bay and the transport of these chemicals. For a complete simulation system, the
chemical transport simulator needs to be coupled to the hydrodynamics simulator,
since the former uses the output of the latter to simulate the transport of chemicals
within the domain. Note that chemical reactions and transport of chemicals do not
affect the computed hydrodynamics values. Thus, the same flow values can be used
by a chemical transport simulator for different simulations.

6.5 A Coupled Simulation of Flow and Transport with ADR 163

However, coupling the two simulators to form a complete system is not a straight-
forward process. First, the chemical transport simulator can be used to simulate
changes over a long period of time (from days to hundreds of years). This requires
a large amount of hydrodynamics simulation output to be stored on and retrieved
from disks and/or tertiary storage. Second, the chemical transport simulator may use
coarser time steps than the hydrodynamics simulator. Moreover, the grids (in two or
three dimensions) used by the chemical transport simulator may be different from
the grids employed by the hydrodynamics simulator.

Thus, post-processing of the output data set from the hydrodynamics simulator is
required to generate the proper input to the chemical transport simulator. One post-
processing operation required is averaging velocity and elevation values over several
time steps of the hydrodynamics simulation to generate initial values for each time
step in the chemical transport simulation. The other operation is a projection of the
averaged velocity values at the grid points in the hydrodynamics simulation to flow
values on the edges of the chemical transport simulator grid.

Therefore, the two crucial components of the coupled simulation system are (1)
a projection code to perform the projection operation, and (2) a data management
infrastructure that will provide optimized storage, retrieval, and post-processing (time
averaging) of the outputs of the hydrodynamics simulator as and when needed by
the chemical transport simulator.

6.5.1 The Active Data Repository

In this section we briefly describe an infrastructure, called the Active Data Repository
(ADR) [186, 187, 327, 586], developed at the University of Maryland, for storing and
processing multidimensional data sets, such as those generated by hydrodynamics
simulators.

The ADR is an infrastructure that enables integration of storage, retrieval, and
processing of multidimensional data sets on a distributed-memory parallel machine,
with one or more disks attached to each processor. ADR targets scientific applications
that make use of multidimensional scientific data sets.

These applications have several important common characteristics. Applications
may use only a subset of all the data available in data sets. Access to data items is de-
scribed by a range query, namely a multidimensional bounding box in the underlying
multidimensional attribute space of the data set. Only the data items whose associ-
ated coordinates fall within the multidimensional box are retrieved. The processing
structures of these applications also share common characteristics. The processing
steps consist of retrieving input and output data items that intersect the range query,
projecting the coordinates of the retrieved input items to the corresponding output
items, and aggregating, in some way, all the retrieved input items mapped to the same
output data items. Correctness of the output usually does not depend on the order
input data items are aggregated. An intermediate data structure, referred to as an
accumulator, can be used to hold intermediate results during processing. For exam-
ple, an accumulator can be used to keep a running sum for an averaging operation.

164 Chapter 6 Parallel Computing in Environment and Energy

At the end of processing, the final output is produced from the intermediate results
stored in the accumulator.

Using ADR for building the data management/manipulation system of the cou-
pled simulation system has several advantages. First, ADR is targeted toward multidi-
mensional data sets and can simultaneously manage and process multiple data sets.
The hydrodynamics simulator simulates flow patterns on an unstructured grid, and
velocity and elevation values are computed at all vertices of the grid at each time
step. Thus, the output of the hydrodynamics simulator is a multidimensional data
set over space (the 2-D or 3-D grid) and simulation time. In addition, the capacity
to handle multiple data sets enables management of data sets generated by differ-
ent hydrodynamics simulators or from different runs of the same simulator. Second,
ADR leverages commonality in processing requirements to seamlessly integrate data
retrieval and processing. Integration of data retrieval and computations makes it pos-
sible to mask I/O latencies. Moreover, integrating the processing and data retrieval
allows significant reductions in data volumes before sending the data over the net-
work (local or wide area) to the projection code or the chemical transport simulator.
Third, ADR can be customized for a wide variety of applications without compro-
mising efficiency. This capability allows different chemical transport simulators to
use the data sets stored in the database system.

6.5.2 Implementation

We have built a prototype of the coupled simulation system using ADR [587]. In
our implementation of the coupled simulation system, we use a hydrodynamics
simulator [628] developed to model circulation patterns in coastal seas, bays, and
estuaries, and a chemical transport simulator, called UTTRANS, developed to model
and simulate reactions and transport of various chemicals in bays and estuaries.
The hydrodynamics simulator is ADCIRC—a circulation model [629], which was
parallelized by Chippada et al. [196]. The chemical transport simulator is a sequential
program and was developed at CSM. The projection operation is carried out by a code
called UT-PROJ [197], also developed at CSM.

We have customized ADR to store, retrieve, and process the output of the hydro-
dynamics simulator on an IBM SP at the University of Maryland. The output from
the hydrodynamics simulator is partitioned into chunks, each of which contains ve-
locity and elevation values over a set of time steps at a subset of the grid points. The
chunks are distributed across the disks on the SP, using default declustering meth-
ods implemented in ADR for loading data sets, so that each disk has about the same
number of chunks covering approximately the same set of time steps.

A spatial index, containing a bounding box for each chunk and the locations of
the chunks on the disks, is created for the entire data set. A function that performs
averaging of velocity and elevation values over several time steps of the hydrodynam-
ics simulation was registered as an aggregation function. A query from the chemical
transport simulator specifies the time period of interest, the hydrodynamics data set
of interest, and how to send the output back (using UNIX sockets or Meta-Chaos).

6.6 Conclusion 165

ADR performs retrieval and averaging of velocity and elevation values over the time
steps of the hydrodynamics simulator that fall into the time period of interest. The
results are then sent to the chemical transport code, which is a sequential program
and runs on one of the processors of the SP. The chemical transport code uses the
projection code UT-PROJ to perform projection of the averaged grid values for the
data set specified in the query. It then uses the results to compute the transport of
chemicals (e.g., an oil spill) in the bay or estuary.

Our experimental results show that a query, over a simulation time period of
225 seconds (15 time steps of the hydrodynamics simulator) on a grid modeling
Galveston Bay with 2113 points, is resolved by ADR in 0.8 seconds (including 0.4
seconds to send the results back to the chemical transport simulator over the LAN) on
eight SP nodes with two local disks per node. Using ADR, UT-PROJ, and UTTRANS,
a 2-hour oil spill simulation with the Galveston Bay data stored in ADR takes about
300 seconds.

6.6 Conclusion

We have described and demonstrated IPARS as a PSE for applications arising in envi-
ronmental and petroleum engineering. These problems are prototypical of multiscale
simulations such as reactive computational fluid mechanics. Particular applications
targeted include the remediation of polluted soils and aquifers and the environmen-
tally prudent production of oil and gas energy resources. We have discussed IPARS
enhancements through integration with NetSolve and DISCOVER.

Similarly, we have described parallel modeling of coupled hydrodynamic and en-
vironmental simulators for surface-water flow. The models discussed in this chapter
are presently being employed in treating real-life scenarios such as dredging in Chesa-
peake Bay, remediating several Florida bays and the Everglades, as well as studying
flood prevention in Louisiana. ADR software has proved to be useful for coupling
multidimensional data between the different flow and reactive transport simulators.
Instead of taking more than a year, parallel computation now allows many of these
investigations to be completed in less than a month.

The infrastructure of CRPC was instrumental in the development of the science
as well as the collaborations that we have described in this chapter. It is clear that
CRPC can claim that the sum of the parts in these efforts has been greater than the
whole.

Acknowledgments. The authors of this chapter wish to acknowledge Steven Bryant,
Jack Dongarra, Victor Parr, Malgorzata Peszyńska, Joel Saltz, and John Wheeler for
their contributions and fruitful discussions.

C

H

A

P

T

E

R

7 Parallel Computational Chemistry:
An Overview of NWChem

David E. Bernholdt

Computational chemistry has a long and venerable history. With the help of im-
provements in computational methodology, and in computers themselves, it has
been transformed into a virtually indispensable tool, used by a large cross section
of the discipline. The ability to model “real-world” chemical systems with the so-
phistication necessary to obtain chemically meaningful results has helped produce
a remarkable level of synergy between computational and experimental treatments
of chemical problems. This, in turn, has fueled further interest in expanding the role
of computational chemistry to even larger, more sophisticated, and more demanding
simulations.

Vector supercomputers played a prominent role in the rise of computational
chemistry, as chemists went beyond simple ports of existing codes, restructuring
them and making important advances in algorithms. Today, few vector-based com-
puters are still produced, but modern commodity CPUs make good use of the opti-
mizations and algorithms originally designed for vector machines. The cutting edge
of high-performance computing has shifted to parallel computers, based on those
same commodity CPUs, and computational chemistry is of course following. Numer-
ous packages can make effective use of modestly sized shared-memory parallel sys-
tems, but fewer are available for the high-end systems that use distributed-memory
architectures (including those in which each node is a shared-memory multiproces-
sor). The two interrelated issues primarily responsible for this situation are ease of
programming and scalability of algorithms.

Computational chemistry methods tend to be computationally complex and
resource intensive (memory and disk as well as CPU), so parallelizing chemistry
methods can be challenging, especially if scalability to large numbers of processors
is required. In a shared-memory environment, programming is relatively straight-
forward, and reasonable parallel algorithms can provide adequate performance and

167

168 Chapter 7 Parallel Computational Chemistry: An Overview of NWChem

scalability for many applications—sufficient for the modestly sized shared resources
typically available within a research group, department, or university. However, the
largest and most complex problems require the largest massively parallel proces-
sors (MPPs), which are presently distributed-memory systems. Chemistry algorithms
scalable to hundreds or thousands of processors are far more challenging and often
too complex to be implemented within the message-passing programming models
widely used in distributed-memory environments.

Computational chemistry is a rather broad field, and a comprehensive review of
the state of the art in parallel computing across the entire field would require a book
of its own. In this chapter, I focus on a portion of the field in which high-performance
computing has had a particularly significant impact on the day-to-day conduct of
the science of chemistry: molecular quantum chemistry. I use the NWChem software
package [98, 313, 411–414, 440, 557] as a representative of the current state of the
art in highly scalable, fully distributed, parallel computational chemistry software,
focusing on molecular structure methods. At its inception, the goal for the NWChem
project was to deliver molecular modeling software that provides 10 to 100 times the
effective capability of what was currently available on conventional supercomputers.
This necessitated the use of algorithms that exhibit parallel scalability, both in the
size of the computational resource and in the molecular system being modeled.
Scalable applications must not only effectively parallelize the requisite computations
but must also utilize the aggregate subsystems of the MPP. Algorithms must distribute
data across the total system memory, not limiting the functional problem size by
the effective memory of any single computational node. Furthermore, other MPP
subsystems that algorithms exploit (i.e., communication and secondary storage)
must be utilized in a scalable fashion.

The scalable modules in NWChem span a broad range of computational chem-
istry methods: Hartree-Fock (HF) or self-consistent field (SCF), density functional
theory, ab initio molecular dynamics, perturbation theory, coupled cluster, multicon-
figuration self-consistent field (MCSCF), configuration interaction (CI), molecular
mechanics, molecular dynamics, free energy simulations, Car-Parrinello, and so
on. These modules have been implemented in the environment by a collection of
supporting modules providing basic computational capabilities and fundamental
services required for chemical computations. After a general outline of the equa-
tions and their solution, I describe the overall architecture of the NWChem package
and several critical supporting modules. I then focus on two of the NWChem chem-
istry methods, emphasizing their implementation in the NWChem environment
and their performance. I conclude by placing the methods and tools used within
NWChem in the broader context of computational chemistry and computational
science in general.

7.1 Molecular Quantum Chemistry

The various methods of molecular quantum chemistry ultimately derive from the
time-independent Schrödinger equation,

7.1 Molecular Quantum Chemistry 169

(
Te + Tn + Ven + Vee + Vnn

)
� = E � (7.1)

The five terms in parenthesis at the left are components of the Hamiltonian oper-
ator, representing, respectively, the electronic and nuclear kinetic energies and the
potentials due to interactions of electrons and nuclei, electrons with other electrons
and nuclei with other nuclei; E is the energy of the system, and � is the wavefunction.
The Hamiltonian terms are

Te(r)=− 1
2

∑
i

∇2
i

Tn(R)=−
∑

A

1
2Ma

∇2
i

Ven(r, R)=−
∑
i,A

ZA

|ri − RA|

Vee(r)= 1
2

∑
i �=j

1
|ri − rj|

Vnn(R)= 1
2

∑
A�=B

ZAZB

|RA− RB|

In these expressions, i and j refer to electrons, A and B to nuclei; RA and ri refer to
the spatial coordinates of nucleus A and electron i, respectively; and ZA and MA are
the charge and mass of nucleus A. The unsubscripted symbols r and R refer to the
complete set of position vectors of the electrons and nuclei, respectively. Since the
nuclei are about 1836 times more massive than the electrons, and therefore move
much more slowly, it is common to invoke the Born–Oppenheimer approximation
to separate the nuclear and electronic portions of the problem. Since the nuclei
are essentially fixed in space relative to the electrons, the Tn term drops out and
the Vnn term becomes a simple constant. The result is referred to as the electrostatic
Hamiltonian, and, per equation (7.1), when this operator is applied to the electronic
wavefunction, it gives the (scalar) electronic energy of the molecular system. Other
areas of computational chemistry deal with other forms of the Schrödinger equa-
tion or with other equations entirely. Quantum dynamics methods generally start
from the time-dependent Schrödinger equations, and the nuclear portion of the
Hamiltonian and wavefunction are considered together with the electronic part.
Molecular dynamics, on the other hand, uses a simplified “ball-and-spring” model
of the molecule in which the interactions among the atoms are treated classically,
and the positions of the atoms are evolved in time according to the computed forces
and Newton’s Laws.

The Schrödinger equation cannot be solved exactly for more than two electrons;
however, it (or more commonly certain approximations) can be evaluated numer-
ically. Numerical solution of the Schrödinger equation begins with the choice of a
basis. The common choice in molecular quantum chemistry is to use 3-D Gaussian
functions. These functions are usually (but not necessarily) chosen to mimic the

170 Chapter 7 Parallel Computational Chemistry: An Overview of NWChem

atomic orbital (AO) description of atomic structure used in chemistry and physics.
That is, basis functions are centered on atoms and have shapes and shell structure
like the atomic s, p, d, etc. orbitals. A complete (infinite) basis would span all of space
and thus allow an exact description of the wavefunction. In practice, however, com-
putational resources place limits on the size of the basis that may be employed, and
it is necessary to compromise between the cost of the calculation and the accuracy
required. Evaluation of the Hamiltonian operator over the basis functions results
in matrix elements or integrals, the most numerous of which (O(N4) for N basis
functions) are the two-electron integrals arising from the Vee term,

(µν|λσ)=
∫

χµ(r1) χν(r1)
1

|r1− r2|
χλ(r2) χσ (r2) d3r1 d3r2 (7.2)

where r1 and r2 are the positions of the two electrons, and the {χµ(r)} are the basis
functions.

Thus far, we have said nothing about the mathematical form of the electronic
wavefunction. In molecular quantum chemistry, the usual approach is to make a
“one-electron approximation,” which says that we can represent the total wave-
function of the molecule as a simple product of functions representing individual
electrons within the molecule. These molecular orbitals are represented by linear com-
binations of the original atomic orbital basis functions. The molecular orbitals are
calculated by the Hartree–Fock self-consistent field method, and this model corre-
sponds to the qualitative ideas about molecular orbitals often used by chemists and
taught beginning at the general chemistry level. The SCF approach is at the heart
of molecular quantum chemistry. It is also the basis of semi-empirical methods, in
which instead of being computed outright, integrals are approximated by much
simpler phenomenological expressions that are parameterized based on experimen-
tal data.

The SCF procedure provides a very useful qualitative description of molecules,
but it is generally inadequate for quantitative applications requiring high accuracy.
The method considers each electron in the average field of all others, which ignores
the fact that the motion of each electron is instantaneously correlated with all
others (due to the Pauli exclusion principle). When higher accuracy is required,
it is necessary to go beyond the one-electron approximation and treat correlation
effects in the system. This is usually formulated in terms of the interaction between
different “configurations” of a set of one-electron functions. The SCF one-electron
orbitals are used as a starting point, but electrons are placed in them in different
ways. Each distinct way of placing electrons in the orbitals is a configuration, and the
interaction energies between configurations can be evaluated numerically, leading
to an expression for the energy and wavefunction corresponding to the particular
correlated method. There are numerous correlated methods with different levels of
sophistication and complexity. The interested reader may wish to refer to the classic
text by Szabo and Ostlund [906] for a more in-depth presentation of the material
sketched in this section and for further pointers to the classic quantum chemistry
literature.

7.2 The NWChem Architecture 171

NWChem is one of many codes in this area of computational chemistry. It
implements the SCF method and a number of correlated methods, as well as molec-
ular dynamics and a variety of related methods targeted to periodic systems (i.e.,
solids) as opposed to isolated molecules. Because it focused from the start on paral-
lelism and its relatively recent development, it serves as an excellent example of the
current state of the art in high-performance computational chemistry software.

7.2 The NWChem Architecture

In order to meet the original goals of the project, the initial NWChem development
team recognized that NWChem would be a fast-growing code, in which ease of
development (a short learning curve) and the ability to rapidly prototype algorithms
would be critical to its success. Consequently, we chose a highly structured approach
to the design of the package, using object-oriented (OO) design throughout [96].
In deference to the fact that relatively few chemists have experience with truly
object-oriented languages, we chose to implement the OO design of NWChem in
a combination of Fortran77 and C. Since these languages do not provide the kind
of enforcement mechanisms that are built into OO languages, such an approach
relies on the developers themselves to enforce the OO design, but overall we have
found it to be quite effective. Newcomers to the code who are unfamiliar with OO
design concepts can easily pick up the basics required to work successfully in the
NWChem environment, and they are quickly productive since they can work in
familiar languages.

Figure 7.1 provides a schematic representation of the overall architecture of
NWChem. The bottom two layers depict some of the fundamental tasks that
NWChem can do (compute an energy or a gradient, perform Newtonian dynam-
ics, etc.) and some of the chemistry methods with which these tasks can be carried
out (i.e., MP2, SCF, and DFT). These are the two layers most directly visible to the
NWChem user; the remaining modules constitute the environment or “umbrella”
that allows for (relatively) easy parallel implementation of the various chemistry
methods and tasks. On the left are modules that “know something about” chemistry,
in other words, those providing basic objects needed for chemical calculations. On
the right are modules that provide the computational infrastructure for NWChem:
the parallel programming environment, parallel I/O support, and so on. While most
of these modules were developed in conjunction with NWChem, they are not spe-
cific to chemistry applications. Most are freely available separately from NWChem
and have been adopted by other software developers both inside and outside of
chemistry.

At the heart of the NWChem programming environment is the Global Array par-
allel programming model, which provides the developer with the appearance of
a global shared-memory environment in a portable fashion. This important com-
ponent of the NWChem umbrella is described in greater detail below, along with
the PeIGS parallel eigensolver. Many other components of the NWChem program-
ming environment are relatively straightforward conveniences with the important

172 Chapter 7 Parallel Computational Chemistry: An Overview of NWChem

System and Standards

TCGMSG MPI

MA

GA

ARMCI Peigs

ParIO

python

CPHF

Geometry

Symmetry

Basis Set

INT API

ESPVibMOINTS

Property/NBO

MP2 RI-MP2 CASSCF MRCI CCSD Selected CI

Car ParinelloGAPSSDFTSCFMDQM/MM/MD

NWChem

Energy Gradient Dynamics Optimize Saddle

RunTime data base

Figure 7.1 The NWChem architecture representing general functionality within NWChem,
which is built upon layers of other modules, tools, chemistry APIs, and computational and
computer science standards. The link between NWChem and Ecce is a loosely coupled interface.
The umbrella symbol identifies some of the software described in this section.

function of facilitating general, portable, and rapid development of computational
chemistry software. For example, MA is a portable memory allocator, implementing
both stack and heap memory management models, which provides equal access to
objects from both Fortran and C code. It also provides support for debugging and
verification (especially detecting array overwriting and memory leaks). The run-time
database (RTDB) provides a simple mechanism to allow the storage of name/value
pairs (values can be of the basic Fortran data types, including 1-D arrays; other mod-
ules may provide convenience routines to read/write more complex data structures
to the RTDB in an opaque fashion) that NWChem uses to communicate information
between high-level modules and also as persistent storage between related jobs. The
ParIO module is an abstraction layer that provides the user with three types of files:

. Disk-resident arrays (DRAs) are a simple means of providing secondary storage
for global arrays, the distributed arrays provided by the global array toolkit. All
operations are collective and are therefore open to additional optimizations
on some parallel file systems.

. Exclusive access files (EAFs) are sets of process-private files that can be accessed
independently. They are typically used for out-of-core computations that do
not lend themselves to collective I/O operations and the use of DRAs.

7.2 The NWChem Architecture 173

. Shared files (SFs) are shared by all processes and can be read or written in
noncollective fashion at any arbitrary location in the file.

The ParIO library is layered on top of a “device library,” ELIO (for elementary
I/O), which provides a portable interface to the file system and allows NWChem
to take advantage of special high-performance I/O libraries that might be available
on various platforms.

The chemistry-specific portion of the NWChem umbrella is similarly designed to
facilitate the rapid development of chemistry software. Consistent with the object-
oriented design philosophy used throughout NWChem, these modules typically
expose well-defined application program interfaces (APIs) to provide the developer
with access to all the information and functions of the object, while hiding the
specific data structures. This helps protect the underlying data structures against
manipulation (accidental or intentional) that does not conform to their API—an all-
too-common occurrence in older, less well-structured chemistry software. Another
distinction from older chemistry software is that, where appropriate, multiple in-
stances of objects are supported. This allows the developer to, for example, refer
explicitly to three different basis sets to be used in different aspects of a calculation
by simple “handles” rather than error-prone manipulations of a single, monolithic,
basis-set data structure. Two excellent examples in NWChem include the most fun-
damental chemical objects in quantum mechanical electronic-structure calculations
are the definition of the molecular system (the “geometry” object in NWChem) and
the basis set. The geometry object is a well-defined, extensible API that provides all
the geometrical and atomic data for the molecular system under study (e.g., masses,
atomic number, nuclear charges, coordinates, applied external fields, etc.). The basis
set object is also a well-defined, extensible API that provides all the basis set function-
ality for all NWChem modules that utilize basis sets. The basis set object is interfaced
to a library that contains a wide variety of published basis sets. The NWChem ba-
sis set library is periodically synchronized with the EMSL basis set library, which is
available to the public via a Web interface [677]. Currently the NWChem library has
3762 Gaussian basis sets and 462 effective core potentials conveniently specified for
the user community.

Other modules encapsulate various chemistry-specific computations used by the
main chemistry methods rather than being invoked directly at the user level. Perhaps
one of the most widely used within NWChem is the integral-evaluation module
(int api). This module computes integrals of the (usually Gaussian) basis functions,
possibly belonging to different basis sets, with various operators, an operation central
to all quantum mechanical electronic structure methods. The module provides a
uniform interface to five separate integral-evaluation codes with different capabilities
and strengths. The choice of which method of integral evaluation to use is normally
made within the module, based on details of the requested computation, but it can
also be explicitly controlled by the software developer, or even by the NWChem
user if the need arises. Because these codes are hidden behind a uniform interface, all

174 Chapter 7 Parallel Computational Chemistry: An Overview of NWChem

modules that use the integral package can benefit immediately from the introduction
of new methods and optimizations.

The NWChem umbrella modules are not set in stone. Although we tried to
design from the start with the necessary flexibility and generality, inevitably there
have been occasions that require existing objects to be modified or extended. In
general, the most substantial changes have been extensions of functionality; rarely
are significant changes required in existing application code. Implementation of
new chemistry methods within NWChem will sometimes occasion the extension
of the functionality of the existing umbrella or the development of new supporting
modules. New modules are also sometimes created by abstracting the repeated use
of the same or similar functionality in different places.

7.3 NWChem Parallel Computing Support

NWChem provides the user with a variety of tools for efficiency of calculation and
ease of parallel model management. This section discusses the Global Array Toolkit,
which is used to implement the Global Array programming model, and PeIGS, which
is a parallel linear algebra library.

7.3.1 The Global Array Toolkit

The Global Array (GA) Toolkit [381, 710, 711] implements the primary parallel pro-
gramming model used within NWChem, though traditional message passing is also
available and is used as needed. GAs provide a portable shared-memory program-
ming environment, which is implemented using native one-sided communications
on distributed-memory systems and the common System V interface on true shared-
memory systems. The shared-memory programming environment is important for
two reasons. In the first place, it is much easier for the software developer to deal
with, thus shortening the learning curve and facilitating development. Second, and
more fundamentally, many sophisticated, highly scalable chemistry algorithms (and
those in other fields) are extremely complex when written in message-passing form;
others may be impossible to implement in the message-passing model because of
the coordination required among processors.

Another important feature of the Global Array model is the fact that it explicitly
exposes the memory hierarchy to the programmer. Specifically, global arrays distin-
guish between “local” and “remote” memory with difference latency and bandwidth
characteristics. This is different from most shared-memory programming environ-
ments, in which all memory is presumed to have the same access characteristics, but
we have found the distinction quite useful because it helps software developers cre-
ate algorithms that work well on both distributed- and shared-memory systems. It is
also easy to integrate this distinction into the nonuniform memory access (NUMA)
hierarchy with which the most programmers are already familiar: registers, cache,
local memory, remote memory, and so on. (Note that the disk-resident-array com-

7.3 NWChem Parallel Computing Support 175

ponent of the ParIO module described above can be thought of as extending the
hierarchy one more level, to disk storage.)

At the simplest level, the programming model using GA assumes that “remote”
memory access is the rate-limiting step and that local memory access is much faster.
Memory access using GA provides one-sided or asynchronous access to global data
elements. Using the GA programming model, algorithms can be designed with
knowledge of data locality that can be tuned for many different computational
resources to essentially cover the worst-case scenario. This may require multiple
algorithmic implementations to cover different ranges of bandwidth and latency. For
example, suppose that one has two algorithms for a specific kernel in an application.
The first algorithm has low latency requirements; the second algorithm can tolerate
latency, but with a factor of four in computation. The second algorithm would likely
be the mainstream choice to work on “all” machines. The first algorithm could be
turned “on” after testing the viability on each system as the application is ported.
This is obviously not limited to two algorithms.

Global arrays themselves are multidimensional arrays that are distributed among
processors in blockwise fashion. The distribution can be completely specified by the
programmer and may be regular or irregular, or a GA convenience routine can be
used to quickly create a regular blocked distribution. Data may be accessed locally
or remotely using block-oriented “put,” “get,” and “accumulate” functions. It is
also possible for the programmer to inquire as to boundaries of the local block
of a global array and to obtain direct access to the appropriate region of memory.
This makes it convenient to write data-parallel operations using GAs. By knowing
the locality of data, programmers can explicitly manage the nature of the memory
hierarchy for their parallel algorithm. The operations mentioned above can be
used in asynchronous or one-sided fashion by any processor. Other GA functions
are collective, including creation and destruction of GAs, synchronization, and
high-level linear algebra and convenience routines. The GA library also includes
interfaces to a variety of external linear algebra libraries, including the PeIGS parallel
eigensolver described below.

The Global Array Toolkit is implemented on top of the Aggregate Remote Mem-
ory Copy Interface (ARMCI) library [12, 708], developed jointly by researchers at
the Pacific Northwest National Laboratory and the Northeast Parallel Architectures
Center at Syracuse University. As the name suggests, this library provides general
remote-memory-access capabilities through the use of one-sided messaging or true
shared memory, according to the hardware on which it is used. From a performance
viewpoint, one of the most important features of ARMCI is the ability to describe
in a succinct way transfers that involve multiple noncontiguous blocks of memory
and to aggregate such data automatically into a contiguous chunk before sending it
over the wire and disaggregating it on the other side.

Although the primary focus of the design and development of the Global Array
Toolkit has been to support NWChem, the model is suitable for a much broader range
of applications (especially if it is combined with the normal message-passing model)
and is freely distributed, separate from NWChem. It is not, however, suitable for

176 Chapter 7 Parallel Computational Chemistry: An Overview of NWChem

all applications. General guidelines with respect to algorithmic design and usability
imply that GA would be appropriate for applications

. with dynamic and irregular communication patterns

. with a need for one-sided access to shared data structures

. when data locality is important

. when a message-passing implementation is too complicated

. with a need for high-level operations on distributed arrays for out-of-core
array–based algorithms

. where simulations are driven by dynamic load balancing

. when portable performance is important

GA is not necessarily appropriate for algorithms that

. have systolic or nearest-neighbor communications

. require synchronization and point-to-point message passing (e.g., Cholesky
factorization)

. can be effectively parallelized using interprocedural analysis and compiler
parallelization

. can use existing parallel constructs of a programming language, and robust
compilers are available

GAs are being used in at least five other computational chemistry packages besides
NWChem, and others have implemented similar models. It is also being used in a
variety of other problem domains, including electron microscopy, geological sim-
ulations, astrophysics, parallel graphics rendering, computational fluid dynamics
(CFD), financial modeling, and atmospheric chemistry. So far, it is the CFD appli-
cation that is pushing GA the furthest beyond the functionality required to satisfy
the chemistry community. Among the most significant requested additions are sup-
port for higher-dimensional arrays (now implemented), ghost cells around GA data
blocks on individual processors, and sparse data structures [707].

7.3.2 Parallel Linear Algebra: PeIGS

PeIGS is a collection of commonly used linear algebra subroutines for computing
the eigensystem of the real, standard, symmetric eigensystem problem Ax= λx and
the general, symmetric eigensystem problem Ax= λBx. A and B are dense and real
matrices, with B being positive definite. λ is an eigenvalue corresponding to the
eigenvector x. PeIGS can also handle associated computations such as the Cholesky
factorization of positive definite matrices in packed storage format and linear matrix
equations involving lower and upper triangular matrices in distributed packed row
or column storage.

The numerical algorithms implemented are “standard” (cf. [994] and [35]), with
the exception of the subspace inverse iteration and reorthogonalization scheme for

7.3 NWChem Parallel Computing Support 177

finding basis vectors for degenerate eigensubspaces [317, 318] and the Dhillon–
Fann–Parlett algorithm for computing eigenvectors of a real symmetric tridiagonal
matrix [262].

The current version of PeIGS has some unique features not found in any other
eigensystem library:

. The Dhillon-Fann-Parlett inverse iteration algorithm

. Guaranteed orthonormal eigenvectors in the presence of large clusters of de-
generate eigenvalues

. Packed storage for matrices

. Small scratch space requirements

The second feature is particularly important in quantum chemistry applications,
where degenerate eigenvalues are common and orthogonality is critical.

The performance of PeIGS in sequential mode is impressive. Table 7.1 compares
the current version of PeIGS with other standard solvers. The parallel performance of
the three major components and the total time to solution are shown in Figure 7.2.
The solution of the tridiagonal problem is scalable and fast; however, at this point,
the Householder reduction and its back transform (i.e., producing the tridiagonal
representation) is the identified bottleneck, accounting for over 90% of the serial
performance of the solver and up to 65% at 128 nodes.

Internally, PeIGS uses the traditional message-passing programming model and
a column-wrapped distribution of the matrices. PeIGS rearranges the columns into
panel blocking in parts of the code for better performance. In NWChem the interface
to PeIGS is hidden behind a GA-based API, where the necessary data reorganization
is conveniently hidden from the application programmer. The data transformation
from the GA-based global storage to that required for optimal PeIGS performance is
very fast compared to the O(N3/P) time required for the eigensolution operations.

Like the GA Toolkit, PeIGS is freely distributed, separately from NWChem, and
can be used in other packages.

Table 7.1 Time for the solution of the tridiagonal matrix of rank 966 on a single IBM
RS6000/590 processor.

Method Time (s)

PeIGS 3.0 6
PeIGS 2.0 126
EISPACK 32
LAPACK: bisection + inverse iteration 112
LAPACK: QR 46
LAPACK: divide and conquer 20

NOTE: The tridiagonal matrix was generated via Householder reduction of the fitting basis set,
overlap matrix from a resolution of the identity, second-order Møller-Plesset (RI-MP2) simulation of
a fluorinated biphenyl [262].

178 Chapter 7 Parallel Computational Chemistry: An Overview of NWChem

0

10

20

30

40

50

Total
Householder
Backtransformation
Eigenvalues
Eigenvectors

Ti
m

e
(s

ec
on

ds
)

Processors

Figure 7.2 The performance of PeIGS using a tridiagonal matrix (rank 966) that was generated
via Householder reduction of the fitting basis set, overlap matrix from an RI-MP2 simulation
of a fluorinated biphenyl.

7.4 NWChem Chemistry Modules

NWChem implements a broad range of computational chemistry methods, empha-
sizing quantum-mechanics–based methods. There is insufficient space to describe
all of them in detail, but I will provide a list of NWChem’s current capabilities here
and focus on a more detailed discussion of two methods: Hartree–Fock self-consistent
field (SCF), and the resolution of the identity approximation to second-order, many-
body perturbation theory (RI-MP2).

The following quantum mechanical methods are available to calculate energies
and analytic first derivatives with respect to atomic coordinates. Second derivatives
are computed by finite differences of the first derivatives.

. SCF or Hartree–Fock (RHF, UHF, high-spin ROHF). Code to compute analytic
second derivatives is being tested.

. Gaussian-orbital–based density functional theory (DFT), using many local and
nonlocal exchange-correlation potentials (RHF and UHF) with formal O(N3)

and O(N4) scaling.

7.4 NWChem Chemistry Modules 179

. MP2, including semi-direct using frozen core and RHF or UHF reference.

. Complete active-space SCF (CASSCF).

The following methods are available to compute energies only. First and second
derivatives are computed by finite differences of the energies.

. CCSD(T), with RHF reference.

. Selected CI with second-order perturbation correction.

. MP2 fully direct with RHF reference.

. Resolution of the identity integral approximation MP2 (RI-MP2), with RHF and
UHF reference (analytic first derivatives are being implemented).

For all methods, the following operations may be performed:

. Single point energy.

. Geometry optimization (minimization and transition state).

. Molecular dynamics on the fully ab initio potential energy surface.

. Numerical first and second derivatives automatically computed if analytic
derivatives are not available.

. Normal mode vibrational analysis in Cartesian coordinates.

. Generation of an electron density file for graphical display.

. Evaluation of static, one-electron properties.

. Electrostatic potential fit of atomic partial charges (CHELPG method with
optional RESP restraints or charge constraints).

In addition, interfaces are provided to:

. The COLUMBUS multireference CI package.

. The natural bond orbital (NBO) package.

. Python scripting language.

. The POLYRATE package for the computation of chemical reaction rates.

The following modules are available to compute the energy, minimize the geom-
etry, and perform ab initio molecular dynamics using pseudopotential plane-wave
DFT with local exchange-correlation potentials: fixed step–length steepest descent,
and Car-Parinello (extended Lagrangian dynamics), with

. LDA and LSDA exchange-correlation potentials.

. (G point) periodic orthorhombic simulation cells.

. Hamann and Troullier–Martins norm-conserving pseudopotentials.

. Modules to convert between small and large plane-wave expansions.

180 Chapter 7 Parallel Computational Chemistry: An Overview of NWChem

A module (Gaussian Approach to Polymers, Surfaces and Solids, GAPSS) is available
to compute energies by periodic Gaussian-based DFT with many local and nonlocal
exchange-correlation potentials.

The following classical, molecular-simulation functionality is available:

. Single configuration energy evaluation.

. Energy minimization.

. Molecular dynamics simulation.

. Free energy simulation (multistep thermodynamic perturbation (MSTP) or
multiconfiguration thermodynamic integration (MCTI) methods with options
of single and/or dual topologies, double-wide sampling, and separation-shifted
scaling).

NWChem also has the capability to combine classical and quantum descriptions
in order to perform:

. Mixed quantum-mechanics and molecular-mechanics (QM/MM) energy min-
imization and molecular dynamics simulation.

. Quantum-molecular dynamics simulation by using any of the quantum me-
chanical methods capable of returning gradients.

The classical force field includes:

. Effective pair potentials (functional form used in AMBER, GROMOS,
CHARMM, etc.).

. First-order polarization.

. Self-consistent polarization.

. Smooth particle mesh Ewald (SPME).

. Twin range energy and force evaluation.

. Periodic boundary conditions.

. SHAKE constraints.

. Consistent temperature and/or pressure ensembles.

7.4.1 Hartree–Fock Self-Consistent Field

The Hartree–Fock self-consistent field module is an essential functionality for
NWChem or any quantum chemistry package. The NWChem SCF module and
associated gradient module compute energies, wavefunctions, and gradients for
closed-shell restricted Hartree–Fock (RHF), restricted high-spin, open-shell Hartree–
Fock (ROHF), and spin-unrestricted Hartree–Fock (UHF). The algorithms are designed
to use the aggregate memory available on the parallel supercomputer or cluster.

The construction of the Fock matrix is the most time-consuming part of any
SCF calculation [439, 1004] and is iterated until the wavefunction reaches self-
consistency. The “Fock build” provides an interesting illustration of the form that

7.4 NWChem Chemistry Modules 181

parallelism often takes in computational chemistry. The most computationally de-
manding part of the Fock matrix is defined by

Fµν ←Dλσ {2(µν|λσ)− (µλ|νσ)}

where D is the density matrix, and the (µν|λσ) are the two-electron integrals. See
equation (7.2).

The cost of the Fock build scales with the number of integrals, which is for-
mally O(N4) for N basis functions. The NWChem SCF module was designed with
a goal of 10,000 basis functions, so that the Fock and density matrices would be
10, 000× 10, 000 and the number of two-electron integrals is formally 1016 (neglect-
ing permutational symmetries of the indices and other factors).

Evaluation of the integrals occurs in irregular blocks, according to details of the
basis set structure, so that a block may contain anything from a single integral to
10,000 integrals or more. The cost of each block is also highly variable and can only
be crudely estimated in advance; it averages 500 FLOPs per integral value. Their cost,
combined with permutational symmetries among indices, makes it most efficient to
drive the Fock build with a loop over the unique integrals, making the four different
contributions dictated by those symmetries at one time rather than duplicating
integral evaluation. In NWChem, integral evaluation is dynamically distributed
across the processors (controlled by an atomic read-and-increment counter) without
regard to the distribution of the global arrays containing the density and Fock
matrices. Each processor fetches into a local buffer the four patches of the density
matrix it needs to contract with the integral block it has been assigned; it puts the
results into another set of local buffers, which are accumulated into the proper
places in the Fock matrix global array when the integral block is completed. To
minimize communications, multiple integral blocks are aggregated into parallel tasks
(maintaining roughly 100 tasks per processor to ensure load balance), and intelligent
caching is used to avoid unnecessary communications for density and Fock matrix
patches. Because of the irregular distribution, dimensions, and timings of the parallel
tasks when programming the Fock build using message passing, this algorithm
would be extremely challenging to implement in a message-passing environment,
requiring synchronization between sender and receiver [363]. However, using the
one-sided communications of the GA model, it is straightforward; and the fact that
the NUMA nature of the parallel processor is exposed to the programmer leads to
the aggregation of integral blocks and the use of intelligent caching, both of which
provide significant performance gains.

The integrals do not change from one iteration of the SCF algorithm to the next
and may be stored or recomputed. Many SCF codes offer either “conventional” or
“direct” modes, in which the integrals are either stored on disk and reused or are
recomputed every iteration (the relative efficiency of these two approaches depends
on both hardware performance factors and the particular molecule and basis set).
NWChem provides a more flexible “semi-direct” algorithm, which includes memory
as well as disk storage, and can span the entire range from fully disk- (or memory-)

182 Chapter 7 Parallel Computational Chemistry: An Overview of NWChem

240180120600
00

100

200

300

300

600

900

To
ta

l d
is

k
sp

ac
e/

G
B

Sp
ee

du
p

of processors

Speedup (CPU)

Speedup (Wall)

GB

Figure 7.3 The scaling of the semi-direct SCF module for a modified crown-ether system on an
IBM SP, 160 MHz nodes, 512 MB memory per node, and 3 GB of disk per node. 15 MB/sec/node
sustained-read bandwidth was achieved.

based to full recomputation according to available disk and memory space, or directly
under user control. In addition to the fully distributed Fock build, a replicated
data algorithm (Fock and density matrices replicated, integral evaluation distributed
across the machine) is also implemented to take advantage of those situations
where available memory and the molecule under study allow this approach. The
convergence algorithm is the quadratic SCF [1004] with both preconditioning and
line-search mechanisms built in.

Figure 7.3 shows the speedup obtained for a modified crown-ether complex
running on an IBM SP system using the semi-direct algorithm and taking advantage
of the local secondary storage on the system. The 105-atom system, shown in
Figure 7.4, has 1342 basis functions, and the calculation was completed in 5.7 hours
on 240 nodes (160 MHz).

7.4.2 Resolution of the Identity Second-Order, Many-Body Perturbation Theory

This method (RI-MP2) is the result of applying the so-called resolution-of-the-
identity (RI) integral approximation [331, 558, 948] to the traditional second-order,
many-body perturbation theory method [437], often abbreviated MP2. MP2 is the
simplest method to include the effects of dynamic electron correlation, which are

7.4 NWChem Chemistry Modules 183

Figure 7.4 The modified crown-ether system, with 105 atoms, 1343 basis functions using the
Dunning augmented cc-pVDZ basis set, and 362 electrons.

important to the proper description of many chemical phenomena, and it is also
the most widely used correlated method. MP2 calculations can be systematically
improved by going to higher orders of perturbation theory or to coupled cluster
methods [437].

The MP2 energy can be simply expressed (in spin orbital form), as

E(2) = 1
2

∑
i,j,a,b

(ia|jb)
[
(ia|jb)− (ib|ja)

]

εi + εj − εa − εb
(7.3)

with the {εp} being the SCF orbital energies. The integrals are the same as in the
SCF method, but transformed from the original “atomic orbital” (AO) basis to the
“molecular orbital” (MO) basis that is one of the products of the SCF calculation.
Given the MO basis integrals, the energy expression above costs O(N4) to evaluate,
but the transformation of the integrals from the AO to MO basis has a cost of O(N5),
which dominates the calculation.

The RI approximation represents the two-electron integrals in the form [948]

(pq|rs)=
∑
�,�

(pq|�) V−1
��(�|rs) (7.4)

involving three-center two-electron integrals

(pq|�)=
∫

φp(r1) φq(r1)
1

|r1− r2|
α�(r2) d3r1 d3r2 (7.5)

and two-center two-electron integrals

V�� =
∫

α�(r1)
1

|r1− r2|
α�(r2) d3r1 d3r2

where uppercase Greek indices denote functions from a “fitting basis” introduced by
this approximation. Essentially, the fitting basis {α�(r)} is used to approximate the
product space of the AO basis ({φi(r) φj(r)}). To obtain the RI-MP2 energy [99, 331],

184 Chapter 7 Parallel Computational Chemistry: An Overview of NWChem

equation (7.4) is simply substituted into the MP2 energy expression, equation (7.3).

E(2) = 1
2

∑
i,j,a,b,�,�

(ia|�) V−1
�� (�|jb)

[
(ia|�) V−1

�� (�|jb)− (ib|�) V−1
�� (�|ja)

]

εi + εj − εa − εb
.

The RI approximation has several important strengths. Most obviously, it re-
places a fourth-rank tensor (two-electron integrals) with a combination of third-
and second-rank quantities, dramatically reducing the volume of data that must be
computed, stored, and manipulated. Second, as the AO basis set gets larger (for a
fixed molecule), the product space will be increasingly redundant, making it possi-
ble to (nearly) span the space with a fitting set that is smaller in relative terms. In
a sense, the RI approximation could be said to “take advantage of” the use of large
basis sets.

RI-MP2 calculations occur in two steps: the integral transformation, followed by
the energy evaluation [99, 97]. The general form of the integral transformation can
be written as

(ai|�′)= (ai|�) V
− 1

2
�� = Cµa Cνi (µν|�) V

− 1
2

��

where the indices µ and ν represent the AO basis and C is the SCF eigenvector

matrix, which defines the transformation from AOs to MOs. The V−
1
2 term comes

from rewriting equation (7.4) in a symmetric form that further simplifies integral
handling, as first suggested by Rendell and Lee [796]. This step requires O(N4)

operations, as opposed to the O(N5) for the exact MP2 transformation. The first
two transformation steps (Cµa and Cνi) are handled, in succession, locally to each
processor. The fitting basis index is distributed across processors, so that each node
generates AO integrals for all µ and ν and a subset of �. In order to make the matrix
multiplications more efficient, the integral blocks are aggregated in a local buffer
sized according to the available memory before the two transformations are applied.
The results are accumulated into a global array with ai as the combined row index and
� as the column index, distributed in the same fashion as the integral evaluation
loop (making the accumulate a local operation). The third transformation step is
carried out as a parallel matrix multiplication (ga_dgemm) of the GA just produced

with another GA holding V−
1
2 (computed using GA and PeIGS routines). If there is

insufficient total memory available to complete the entire transformation in a single
pass, multiple passes are made based on the i index.

The primary data structure of the energy evaluation phase is a fourth-rank tensor
representing quantities like the (approximate) four-center, two-electron integral
(ia|jab). It is organized as a supermatrix with row and column indices i and j,
each element of which is a complete matrix labeled by a and b. The calculation
is performed as a loop over i and j, blocked according to available memory. All of the
GAs of this type are distributed across the machine in regularly sized blocks. For given
i and j blocks, the first step of the energy evaluation is to produce the approximate
integrals (ia|jb) according to equation (7.4). It is implemented straightforwardly
by reading in blocks of transformed three-center integrals corresponding to the i

7.4 NWChem Chemistry Modules 185

and j ranges required and multiplying them in parallel with ga_dgemm in a step
costing O(N5). Given the approximate (ia|jb), the remaining operations (formation
of (ia|jb) − (ib|ja), application of denominators, and the evaluation of the actual
energy contributions) are carried out almost entirely in data parallel fashion—each
process working with the portion of the data that it “owns.” As in the exact MP2,
these remaining operations cost O(N4).

The RI-MP2 method illustrates a different use of the GA Toolkit than the SCF
algorithm described above. The RI-MP2 integral transformation uses many of the
same concepts as the Fock build, but in this case constitutes a small portion of the
computational effort. The dominant cost in the RI-MP2 calculation is a simple call
to the GA matrix multiplication routine. The remainder of the calculation involves
mostly data parallel operations implemented variously with standard GA calls, as
adaptations of standard GA routines specific to this application, or built from the
lower-level utility routines provided by the GA Toolkit.

Figure 7.5 shows the parallel speedup of a large RI-MP2 calculation on an IBM
RS/6000 SP parallel computer (120 MHz Power2 Super CPU, 512 MB RAM, 5 GB
local scratch disk per node) [97]. The calculations were part of a study of the relative
energetics of the four conformations of tetramethoxycalix[4]arene (Figure 7.6) [703],

0

32

64

96

128

160

192

224

256

Linear scaling

Total

Integral transformation

Energy evaluation

Pa
ra

lle
l s

p
ee

du
p

0 16 32 48 64

Number of CPUs

80 96 112 128

Figure 7.5 Parallel speedup of RI-MP2 calculations on tetramethoxycalix[4]arene on the IBM
RS/6000 SP computer [97]. All speedups are referenced to the 16-node timings.

186 Chapter 7 Parallel Computational Chemistry: An Overview of NWChem

CONE PACO

13ALT 12ALT

Figure 7.6 The four conformations of tetramethoxycalix[4]arene [703]. The molecule is
composed of four anisoles linked at the meta position by methylene bridges, and conformations
differ in the relative orientation of the anisoles.

in which this 68-atom molecule was treated with a modified aug-cc-pVTZ AO basis
(just cc-pVTZ on the hydrogens) and the corresponding aug-cc-pVTZ-fit2-1 (cc-pVTZ-
fit2-1 on H) fitting basis (2460 AO basis functions, 8260 fitting functions) [100, 302].
The total wall-clock time for the RI-MP2 calculation ranged from 55.6 hours on
16 nodes to 4.7 hours on 128 nodes. The overall scaling is quite good—the line
is fairly straight and at 128 nodes shows no sign of saturation. The jumps in the
curve are clearly associated with jumps in the integral transformation speedup. The
overall speedup is uniformly at or above the “ideal” linear speedup line, primarily
due to the fact that as the graph is presented, the 16-node calculation is implicitly
assumed to be 100% efficient. If the actual efficiency (<100%) at 16 nodes were
known, it would shift the entire curve downward. The apparently extraordinary
speedup of the transformation arises from the fact that for 16 nodes (the reference
point) the algorithm is forced to make five passes through the integrals to complete
the transformation. As more nodes are added, the algorithm uses the additional
memory as well as the CPU, so that the number of passes required drops to one by
66 nodes.

7.5 NWChem’s Place in the Computational Chemistry
Community

The primary goal of NWChem was to improve the performance and capability of
computational chemistry tools by focusing on the development of scalable paral-
lel algorithms and implementations. But of course this work did not take place in

7.5 NWChem’s Place in the Computational Chemistry Community 187

a vacuum—there are numerous other software packages, both sequential and par-
allel, that have some overlap with the functionality provided by NWChem. The
development of NWChem began in 1993, in an environment in which the chem-
istry community had for some years been experimenting with parallelism, but vector
computing was the norm and there was little or no use of parallelism in “production”
computational chemistry. The prior experimentation had been based primarily on
message-passing programming models. It showed that using parallel computers in
chemistry was possible, but not easy, and had produced few enduring (i.e., scalable)
algorithms.

NWChem was then, and remains today, one of the very few codes in the chem-
istry community designed from scratch for parallelism—in most other packages,
parallelism has been included as a retrofit to existing code. This is understandable
given the tremendous investment that has been put into many widely used pack-
ages over many years. (It has been estimated that more than 100 person-years of
effort have gone into NWChem [301], which is still a fairly young code in this com-
munity.) On the other hand, our experience with NWChem suggests that highly
scalable algorithms can be significantly different from the traditional sequential al-
gorithms, so that “retrofit parallel” codes are generally rather limited in scalability
compared to “designed parallel” codes unless the developers are willing to make
more extensive changes. There is a significant gap between the size of leading-edge
MPPs, which NWChem is specifically intended to exploit, and the class of parallel
machines that are routinely available to researchers at a research group, department,
or campus level; indeed, even state or national supercomputer centers often operate
their systems to accommodate the greatest number of users or greatest throughput
at the expense of being able to run the most demanding jobs with a reasonable
turnaround. This, together with the extra effort typically required to obtain the best
possible performance, may explain why many developers of parallel chemistry codes
accept lower levels of scalability, which are nevertheless sufficient for the machines
to which they have access.

Although parallel computing in this community is still far from universal, one can
now find multiple parallel implementations of virtually every important method in
computational chemistry and see them being used routinely in a “production” con-
text by researchers who would not claim to be experts in parallel computing. Many
factors have contributed to this transition. I believe that the principal contributions
of the NWChem project in this respect have been twofold:

. It has served as a demonstration of what is possible in terms of scalability, and
the types of algorithms required to achieve it.

. In the Global Array Toolkit, it has offered an efficient, easy-to-use programming
model that is well suited to the expression of scalable chemistry algorithms.

It is worth noting that parallelism is not the only way to increase performance of
chemical computations. In recent years, there has been significant research activity
on techniques that take advantage of the size of the molecular systems that can

188 Chapter 7 Parallel Computational Chemistry: An Overview of NWChem

now be treated computationally to reduce the cost of the calculation, typically by
replacing some of the longer-range interactions with simpler approximations. The
previously described RI-MP2 method is one example of the numerous approaches.
Others often include phrases such as “linear scaling,” “O(N),” “pseudospectral,”
“local correlation” and “multipole expansion” in their names or descriptions. These
approaches can in principle yield much greater performance improvements than
can be obtained from parallelism because in some cases they can actually reduce the
computational complexity of the problem in an asymptotic sense—in other words,
for suitably large molecules, where “large” depends both on the computational
method and characteristics of the molecule. However, no single “fast” method
will provide the desired performance improvement across the entire computational
chemistry problem space, and all such methods depend in some fashion on the
molecule being large enough that the approximations introduced do not destroy the
overall accuracy and reliability of the calculation. Therefore, “fast” methods should
be viewed as complementing parallelism rather than competing with it; they are
being implemented in sequential and parallel codes alike.

7.6 A Larger Perspective: Common Features of
Computational Chemistry Algorithms

The two NWChem methods described earlier were chosen as examples of different
patterns of use of the parallel programming environment in NWChem. In the
Hartree–Fock case, task-based parallelism and dynamic distribution of those tasks
are the key features. This is characteristic of algorithms that compute and (directly)
process the two-electron integrals such as equation (7.2) or (7.5). Density functional
theory and the transformation step in higher-level methods such as MP2 (including
RI-MP2), coupled cluster theory, and configuration interaction methods are other
examples of where this pattern is used.

In the RI-MP2 example, task-based parallelism is used in the transformation step,
but the bulk of the work is done in parallel linear algebra calls and in essentially
data-parallel (or “owner computes”) code using GAs. This pattern is seen in some
of the higher-level methods, where, after the required integrals are evaluated and
processed (usually task-based), one is left with a number of large data structures,
typically tensors of rank 4 or higher, which must be contracted in various ways
and otherwise manipulated. Some other methods, such as electronic structure codes
using a regular grid of plane-wave basis functions instead of Gaussians, also lead to
algorithms that are predominantly data parallel plus linear algebra (in this case a 3-D
FFT).

The importance of task-based parallelism comes from the irregular nature of most
quantum mechanical calculations employing Gaussian basis sets. The basis functions
are usually associated with the individual atoms rather than being laid out on a
regular grid. Both the number and type of basis functions will vary with the atom,
reflecting some basic concepts of atomic structure. This gives rise to the tremendous

7.6 A Larger Perspective: Common Features of Computational Chemistry Algorithms 189

range of sizes and times involved in the evaluation of integrals over these basis
functions, as described in Section 7.4.1, and the need for dynamic load balancing.

The irregular and dynamic nature of these computations is also what makes the
shared-memory aspect of the programming model so important to the development
of fully distributed data-parallel algorithms in chemistry. Message-passing models
and others that implicitly synchronize communicating processes can be used in these
types of algorithms, but they make the task much more complex and error prone
and they can represent a significant hurdle to producing scalable algorithms [363]. Of
course in data-parallel algorithms, the choice between message passing and shared
memory becomes a lot less important. In NWChem, the majority of methods have
both task- and data-parallel portions, and the shared-memory model provided by the
Global Array Toolkit is convenient to use throughout. However, some methods, such
as the plane-wave density functional theory module referred to above, are almost
entirely data parallel and use message passing throughout. As mentioned before, the
Global Array model is meant to complement message passing, not to exclude it, so
this is quite natural.

Linear algebra has historically played a significant and interesting role in the
development of chemistry software. In the chemistry domain, a great deal of com-
putational effort goes into producing the matrix that is fed into a linear algebra
code—quite often it is the production of the matrix (or subsequent processing of
the linear algebra result) that is the computational bottleneck, not the linear algebra
itself. In some cases, the nature of the chemical problem imposes requirements that
“standard” linear algebra packages don’t meet or allows optimizations they don’t
support. Historically, concerns about efficiency and data structures suitable to chem-
ical applications were not always satisfied by standard linear algebra packages. As a
result of all of these facts, it used to be quite common in the chemistry community
for software developers to produce their own linear algebra routines as well, either
by adapting them from existing libraries or creating them from scratch.

With the rise of vector computing, chemists began to recognize the performance
advantages of replacing their own linear algebra routines with standard libraries,
which computer vendors had an incentive to optimize for their platforms, such
as BLAS, EISPACK, LINPACK, and later LAPACK. The general wisdom within the
community came to be that algorithms should be couched in terms of standard linear
algebra library routines wherever possible, at least for “simple” things such as BLAS,
direct linear equation solvers, and eigensolvers. (Iterative solvers, in methods that
require them, are still often “hand crafted.”) The BLAS library has been particularly
influential in the evolution of algorithms in chemistry. The “discovery” by chemists
of the BLAS, particularly the level-3 matrix multiplication (xGEMM) routines, led to
efforts to recast algorithms in terms of matrix multiplication operations wherever
possible, and this has become the accepted wisdom in the field. Such codes benefit
not only from the performance of the (often, optimized) BLAS routines themselves,
but also from the fact that structuring the equations and code to make maximum
use of the matrix-multiply kernel tends to result in better cache utilization outside
of the BLAS routines as well.

190 Chapter 7 Parallel Computational Chemistry: An Overview of NWChem

Nevertheless, standard numerical libraries cannot satisfy all needs of the chem-
istry community, particularly with the move toward parallel computing, where
linear algebra tools are not yet as mature as sequential libraries were when the chem-
istry community finally adopted them. Parallel eigensolvers are a particular example.
The traditional implementation of a number of fundamental quantum chemistry
methods (e.g., SCF and DFT) involves repeated diagonalization of a matrix until the
iterative process reaches self-consistency. Overall, the cost of these methods scale
with the fourth power of the problem size, while the diagonalization portion scales
with the third power. However, at the time development of NWChem was begun, the
state of the art in eigensolvers did not provide very good parallel scalability, and this
portion of the calculation rapidly became the performance bottleneck on large paral-
lel machines. The eigensolvers available at the time suffered from other problems as
well. For example, they did not always provide strongly orthogonal eigenvectors and
didn’t easily handle situations with large clusters of degenerate eigenvalues, both of
which are important in chemical applications. This has led some to develop new
“diagonalization-free” methods, or to fall back on known but little-used alternative
algorithms that avoid the eigenproblem as much as possible.

In the case of NWChem, we were able to take a unique twofold approach. In
designing the first module implemented in NWChem, the Hartree–Fock method
described in Section 7.4.1, we adopted a “quadratically convergent” algorithm,
which requires only an initial and final diagonalization and elsewhere uses matrix
exponentiation, instead of the traditional approach, which involves diagonalization
for every iteration. At the same time, because the development team included not
only chemists, but also computer scientists and numerical analysts working in close
collaboration, we were able to launch a research effort to address the problems with
parallel eigensolvers, which led to the PeIGS package described in Section 7.3.2.
As a result, when later we began development of the density functional theory
module, sufficient progress had been made on the eigensolver problem that we
felt performance would be acceptable using the traditional repeated diagonalization
algorithm, and we did not need to undertake the development of a DFT equivalent
to the quadratically convergent SCF method.

The SCF and DFT methods are two examples where eigenproblems are prominent
in the algorithms, at least in the traditional formulations of the problem, where they
appear in the main iterative step of the algorithm. These methods generally use dense
matrices and direct solvers, and they require all eigenvalues and eigenvectors. This
kind of eigenproblem also crops up frequently in minor roles in a great many other
quantum chemistry methods, and it is typically solved using libraries such as PeIGS,
ScaLAPACK, LAPACK, and so on. A class of more sophisticated methods, known as
configuration interaction (CI) methods, also revolve around eigensolvers, in this case
iterative sparse solvers, where the interest is in a limited number of eigenpairs [869].
In these problems, the matrix-vector product required by the eigensolver is the
most complex and time-consuming aspect of the calculation, and specialized data
structures and storage formats supporting this aspect of the calculation usually mean
that “off the shelf” library solvers are not suitable solutions. Large linear or nonlinear

7.6 A Larger Perspective: Common Features of Computational Chemistry Algorithms 191

equations also play roles in a broad range of chemistry methods. Coupled cluster
methods, similar in purpose and sophistication to the CI methods mentioned above,
use a slightly different formulation of essentially the same problem and result in very
large systems of nonlinear equations instead of CI’s eigenproblem. As with CI, the
evaluation of the matrix elements and the matrix-vector product, rather than the
solver itself, is where the computational complexity lies, and the solvers tend to
be relatively unsophisticated. As with eigenproblems, smaller linear and nonlinear
equations also play minor roles in a great many chemical methods. Once again,
for the smaller problems it is more common to use solvers from standard libraries.
In codes like NWChem, there has also been some effort over time to standardize
and generalize and reuse non–library solvers incorporated within the code rather
than having multiple implementations. As might be expected, this process tends to
start with the smaller or less important problems and work up to the larger, more
prominent ones.

Sparsity, as manifested in most quantum chemistry methods, is based primarily
on the distance between atoms but also depends on the details of the molecular
system and the basis set. This means that a simple distance-only, “cut-off radius”
does not provide a good guide as to sparsity. While the formal number of two-
electron integrals (see equation (7.2)), for example, is O(N4) for N basis functions,
it has been shown that the actual number of nonzero values tends asymptotically to
O((N ln N)2) [304]. However, even the largest calculations currently possible rarely
reach this limit—in other words, they have more than (N ln N)2 nonzero integrals.
Because basis sets are usually atom-centered and have a blocked structure on each
atom, quantities such as the two-electron integrals also tend to have a blocked
structure, although the size of blocks may vary over several orders of magnitude.
This blocked structure is helpful to chemistry software developers, in that they
can in most cases work with dense matrices and standard libraries (like the BLAS)
rather than less-developed sparse matrix tools, which also tend not to make as
efficient use of the memory hierarchy. A common technique is to use a local buffer
to aggregate neighboring blocks into a matrix large enough to allow the CPU to
obtain good performance, but small enough that it is possible to completely avoid
processing large chunks of zeros. This approach is used, for example, in the integral
transformation phase of the RI-MP2 computation. In some cases, particularly on
parallel systems with programming environments such as Global Arrays, it is far
simpler and more efficient to design the algorithm to process a large data object
by making multiple passes with fully dense matrices sized according to the available
memory. The RI-MP2 energy evaluation is an example of such an algorithm. Sparsity
is more commonly used in disk storage of large data objects, although as mentioned
in the discussion of the NWChem SCF, it is often possible to recompute certain values
as fast or faster than retrieving them from disk storage. These so-called integral-direct
techniques appear in many programs besides NWChem and many methods besides
SCF. However, deciding a priori whether storage or recomputation will be more
efficient in a particular case remains as much art and intuition as science because of
the number of factors involved.

192 Chapter 7 Parallel Computational Chemistry: An Overview of NWChem

In addition to sparsity, many molecules have symmetry, which reduces the num-
ber of unique integrals because the symmetry properties of the atoms and the basis set
are reflected in relationships among integrals and related values. Taking advantage of
redundancies caused by symmetry can give a useful performance improvement, but
it has a tendency to reduce the natural size of nonzero blocks and introduces relation-
ships among values that might be far apart in either a geometrical or lexigraphical
(based on their indices) sense. It is the latter factor in particular that represents the
biggest hurdle to utilizing symmetry in parallel algorithms. Together with the fact
that the larger a molecule is the less likely it is to possess any symmetry, many have
found it easy to decide not to incorporate symmetry into their parallel implementa-
tions of computational chemistry methods. This was the decision made, for example,
during the design of the RI-MP2 code described above.

7.7 Conclusion

I have presented an overview of NWChem as an example of the state of the art in
a fully distributed, parallel computational chemistry software package. The GA pro-
gramming model is at the heart of almost all of the parallel algorithms in NWChem,
and parallel linear algebra libraries such as PeIGS have also proved extremely impor-
tant, both for ease of development and performance. I have sketched the parallel
algorithms behind two chemistry methods in NWChem, SCF and RI-MP2, which
illustrate the importance of the GA programming model as well as its flexibility.
Both methods have been demonstrated to be scalable to hundreds of processors and
work efficiently on distributed-memory parallel systems, as have the other meth-
ods implemented in NWChem. I have also tried to provide a sense of NWChem’s
relationship with the larger computational chemistry community and describe in a
more generic sense some of the notable features of computational problems in this
domain.

The development of NWChem continues in conjunction with a variety of
projects. Most of the work currently centers on extending and enhancing chem-
istry methods already in NWChem, and implementing new methods based on the
needs of the user community. While the requirements of the chemistry have always
been the primary driver for the development of NWChem’s computational infra-
structure, it is possible to suggest some of the ways that NWChem might change in
the near future, from a computational viewpoint.

. First is increasing the use of scripting languages at the top levels of the package.
The object-oriented scripting language Python [633, 782] is already incor-
porated into NWChem, so that Python scripts can be used to drive some
calculations. An interface to the GAs has been created, and interfaces to other
NWChem modules are under development. The use of scripting languages as
(part of) the high-level control structure of a package like NWChem makes it

7.7 Conclusion 193

easier for users to perform more complex calculations that would otherwise
require unmaintainable “one-off” modifications to the source of NWChem
itself.

. Second, with the recent release of version 3.0 of the GA Toolkit, general mul-
tidimensional arrays became available (previously, GA supported only 2-D
arrays). Because they are new, they have not yet been used extensively in
NWChem chemistry modules. However, they promise to be particularly use-
ful in high-level correlated methods (perturbation theory and coupled cluster
methods especially) where the primary data structures are tensors of rank
4 and 6. Expressing these data structures in their natural multidimensional
form offers opportunities for the introduction of block-structured sparsity
and automatic rearrangement of data to make tensor contractions more ef-
ficient.

. Third, with development tending to focus on more complex and sophisticated
chemistry methods (especially CI and coupled cluster approaches) and adop-
tion of the GA Toolkit by users from other fields, there is an increasing interest
in extending the GA model to support sparsity. This could be in two basic forms:
providing new objects and interfaces that support some of the common sparse
data structures used in other fields, or retaining most of the current dense ma-
trix interface, but internally using sparsity in storage and manipulation of the
objects. The latter approach would obviously be a particularly convenient way
to support many existing GA codes with better performance and efficiency;
however, the first approach would probably allow codes from other domains
to be ported to GAs more easily. Ultimately, both approaches will probably be
used to varying extents.

. Finally, the current trend in large MPPs is a distributed-memory system com-
posed of multiprocessor shared-memory nodes. While GAs can already take
advantage of this type of system, the parallel algorithms in NWChem are not
currently designed with explicit consideration of this new layer in the NUMA
hierarchy—they assume that all memory not “local” is essentially equally
“remote.” One can imagine several different ways in which algorithms in
NWChem might be adapted to incorporate this deeper memory hierarchy. It
will be interesting to see which are most effective in terms of both performance
and ease of development.

Acknowledgments. NWChem has been the work of more than 40 people since
1993 [440], under the leadership of the High Performance Computational Chemistry
Group at the Pacific Northwest National Laboratory. I gratefully acknowledge their
contributions to the experience described in this chapter. All opinions expressed in
this chapter are mine alone and do not necessarily represent those of other NWChem
developers.

194 Chapter 7 Parallel Computational Chemistry: An Overview of NWChem

The Pacific Northwest National Laboratory is a multiprogram laboratory oper-
ated by the Battelle Memorial Institute for the U.S. Department of Energy (DoE)
under Contract DE-AC06-76RLO-1830, and the development of NWChem has been
supported by the DoE’s Office of Scientific Computing and Office of Health and Envi-
ronmental Research. Work at Syracuse has also been supported by the Alex G. Nason
Prize Fellowship.

Finally, I am grateful to George Fann, Rick Kendall, and Jarek Nieplocha, for their
assistance with parts of this presentation.

C

H

A

P

T

E

R

8 Application Overviews

Geoffrey Fox

This chapter begins with a summary of the different application discussions, high-
lighting computational issues. Note that every discussion—whether one of the appli-
cations presented in the preceding chapters or one of the shorter notes to follow—is
only a snapshot of a given field. Each article chooses a few interesting aspects of ma-
jor research areas. We hope this cursory discussion will allow readers to find useful
hints on ways to parallelize their applications or ways to test new computational sci-
ence technologies. We encourage the reader to explore the citations for each section
to get more detail.

Chapters 5, 6, and 7 contain case studies of applications in the areas of com-
putational fluid dynamics, environment and energy, and computational chemistry,
respectively. Additional applications can be found in Fox et al. [358] and Koniges
[573]. Section 8.12 analyzes the computational structure of the 14 application areas
in this book (Chapters 5–7 and Sections 8.1–8.11) from a common point of view. It
follows with a similar analysis of the applications in [358] and [573]. This integrated
analysis may help readers identify those applications of particular interest to them.

8.1 Numerical (General) Relativity
Geoffrey Fox

This field numerically solves the deceptively innocent equation proposed by Einstein
in 1915:

Gµν = 8 π G Tµν

This equation expresses gravitation geometrically and relates the curvature of
space-time (Einstein tensor Gµν) to the mass distribution (stress–energy tensor Tµν);
the indices µ and ν run over four index values, corresponding to time and three

195

196 Chapter 8 Application Overviews

spatial directions. The value of the gravitational constant, G, is extremely small, and
this equation reduces to Newtonian dynamics, except in regions of extreme gravita-
tional fields. This general theory has been tested in a few well-known cases (such as
the bending of light in a stellar gravity field), but it has few direct verifiable conse-
quences. Numerical study [69, 219, 352, 566, 653] is motivated by both intellectual
curiosity (surely we must try to solve the fundamental macroscopic equations of sci-
ence) and phenomenological value to new tests of the theory. Recently, both Europe
and the United States have mounted major experiments to detect the gravity waves
predicted by Einstein’s equations. One expects binary black holes to be an impor-
tant source of such waves. Binary black holes are expected to be the last hurrah of
many double stars, as the insistently attractive force of gravity pulls their matter
into an oblivion from which no information can escape. Einstein’s equations can
be solved analytically for single black holes in equilibrium, but currently only nu-
merical methods can address two interacting black holes. This field represents the
case, common in fundamental science, in which the challenge is a single very hard
problem rather than complexity stemming from a coupling of many subproblems
into a large system.

The equations treat space and time symmetrically and have a rather different
structure from those coming from other fields simulating physical phenomena. One
does get coupled partial differential equations, as in most fields studying the phys-
ical world, but they have many special features. These features both distinguish
the field and put it outside most of the forefront research in the algorithm and
applied mathematics community. Note that as the existence of wave solutions sug-
gests, one can view Einstein’s equations as “just” a complicated nonlinear version
of Maxwell’s equations. Correspondingly, electromagnetic systems are a useful test
environment for some solution techniques. The following characteristics are partic-
ularly interesting:

1. There is total freedom in choosing the coordinate system, and the equations
can change their nature dramatically if one uses this so-called gauge freedom.
Some coordinate systems can lead to nondynamical singularities; “physical
intuition” and a deep understanding of this field are needed to distinguish
among “science,” “numerical problems,” and “coordinate system artifacts.”

2. There are many formulations of the Einstein equations. In one formulation,
the equations are set up as a constrained Hamiltonian system. This invokes
classic time evolutions, with 12 equations (for the six components of the
spatial metric, and its six momenta) with first-order time derivatives. These
equations are nonlinear, and their characterization into hyperbolic, parabolic,
or elliptic form depends on the coordinates chosen; some coordinate choices
depend functionally on the field variables. There is an additional set of four
equations (the constraints) describing the initial conditions. These represent a
feasible elliptic subset of the full problem and have been successfully addressed
numerically.

8.1 Numerical (General) Relativity 197

3. At large distances from the strong gravitational fields, one finds wavelike so-
lutions that can be solved by expansion around the linear limit with a natu-
ral light-cone-coordinate choice. These waves are the experimental measure-
ments, and this form represents the “boundary condition at infinity” needed
by a solution in the interior region, where the strong fields probably require
different coordinate choices.

4. Most distinctive is the interior boundary condition, which is optimally posed
in terms of the remarkable physics of a black hole from which no information
can escape. Translating this into numerically stable boundary conditions is
not trivial. Physics implies that no information specified inside the black
hole can propagate outside. The “event horizon” defines the true black hole
surface and represents this information barrier. Since its location is unknown,
one excises the singular region at the “apparent horizon,” which always lies
inside the black hole surface. Remarkably, physically interesting results have
been obtained in a regime where no condition at the inner boundary (simple
excision) is required.

The problem becomes a set of (12) field values defined on a 3-D spatial grid that has
two holes excised—one for each of the black holes, cut off at the apparent horizon. At
large distances, outgoing wave solutions are required. As the black holes move, this
geometric structure changes. One is required to solve the equations in this geometry
for given initial conditions and then to extract the gravitational wave structure as
the black holes rotate around each other and eventually spiral into cosmic union.
The unusual inner boundary conditions, nonlinear equations, and well-known diffi-
culties involving numerical propagation of waves without dissipation all contribute
to the numerical challenge.

8.1.1 Current Situation

As with computational electromagnetics, one can look at several solution
approaches—finite difference, finite element, and spectral methods. Currently the
finite difference method has gathered the most attention, although this is not the
most convenient at the inner boundary conditions. Remember that spectral meth-
ods (the method of moments) produced the first reliable results in the computational
electromagnetism domain. A large Grand Challenge Binary Black Hole (BBH) project
recently ended [220, 654]; although much important progress was made, it did not
produce a fully functional 3-D numerically stable code for the binary black hole
problem. This project did use several parallel computing technologies described in
other sections of the book. In fact, the distributed adaptive grid hierarchy (DAGH)
distributed-data-structure programming environment was developed as part of this
Black Hole Grand Challenge. We also looked at High Performance Fortran since
the equations are naturally expressed as tensors, making Fortran 90 an attractive
language. However, the compilers were not mature enough when choices had to

198 Chapter 8 Application Overviews

be made, and DAGH was successfully adopted by the collaboration [567]. Fortran
90 continued to be used, however; a Perl interface mapped this automatically into
DAGH. To a large extent, this was a programming-style question, as physicists pre-
fer the Fortran constructs. The Fortran-to-DAGH translation via Perl proved to be
too rigid to allow fast development on the Fortran side. Changes as simple as in-
troducing another field variable required Perl-script rewriting. Adaptive meshes are
needed in order to combine fine resolution near the holes with solutions that extrap-
olate with the wave solutions at long distances. This was recognized even when the
proposal was initially written, but adaptive meshes were not used in production dur-
ing the 5-year Grand Challenge project. It was difficult to take the existing applied
mathematics literature and correctly apply it to these complex equations running in
parallel. This illustrates the importance of producing more broadly usable software
infrastructure to support parallel programming.

We have stressed the freedom available to choose coordinate systems. The BBH
collaboration studied two very distinct choices—the more traditional ADM formula-
tion and a newer “hyperbolic” method developed by York from North Carolina. It is
not clear what mix of physics intuition and computer science infrastructure is most
needed. Maybe a brilliant new coordinate system and ingenious physics insight to
the inner boundary conditions are all that is needed. Alternatively, or more likely
in addition, this field needs a powerful problem-solving environment that supports
tensor notation, parallel adaptive meshes, reliable interpolation technology between
regular meshes, and irregular dynamic hole boundaries. In either circumstance, one
can estimate that at least teraflop-class performance will be necessary for the major
computations.

In Figures 8.1 to 8.4, I show results from the work of Richard Matzner at Texas [652,
653], with four pictures showing the grazing collision of two black holes. The relative
velocity is half the speed of light. For more recent results, see the Cactus Code website
[946].

t = 0.7

Figure 8.1 Black holes near start of the evolution. Two separate apparent horizons can be
barely seen as transparent bubbles. They become clearer in following figures.

8.2 Numerical Simulations in Lattice Quantum Chromodynamics 199

t = 6.9

Figure 8.2 Black holes showing clearly that the separate “apparent horizons” have merged.

t = 13.2

Figure 8.3 As the simulation progresses, the apparent horizon oscillates with “undisturbed
space-time,” in which waves propagate at “infinity.”

t = 13.2

Figure 8.4 Close-up of apparent horizon in Figure 8.3.

8.2 Numerical Simulations in Lattice Quantum Chromodynamics
Urs M. Heller

The 20th century brought striking progress in our understanding of the fundamental
structure of matter, beginning with quantum mechanics and culminating with
the “Standard Model” of particle interactions. The dramatic successes of quantum
electrodynamics (QED), verified to an accuracy of better than 1 part in 108 in

200 Chapter 8 Application Overviews

some processes, and of the unification of electromagnetic and weak interactions
explain a vast array of physical phenomena. However, traditional theoretical tools
have proven very limited in the study of quantum chromodynamics (QCD), the
component of the Standard Model that describes strongly interacting particles, the
hadrons. The rich and complex structure of this highly nonlinear theory arises from
the interactions between quarks, the constituents of protons, neutrons, and all the
other hadrons, and gluons, the carriers of the strong force. QCD is quite similar to
quantum electrodynamics, in which photons are the carriers of the force between
electric charges. But unlike photons, gluons interact with each other, leading to the
nonlinearities that make QCD so difficult to deal with.

At short distances, which correspond to high energies, the interactions in QCD
are relatively weak, allowing for a perturbative treatment, an expansion in the small
coupling constant. Most confirmations that QCD correctly and accurately describes
the strong interactions come from high-energy experiments probing this regime.
At longer distances, corresponding to lower energies, the interactions, due to the
self-interactions among the gluons, become really strong. Then the nonlinearities
become important, and the perturbative methods fail. But it is exactly this regime
that is necessary to explain many of the properties of the hadrons: mass, decay
amplitude and lifetime, stability, size, charge radius, and so on. As the distance
increases, in fact, the interaction becomes so strong that the quarks are permanently
confined within hadrons.

Lattice quantum chromodynamics, by way of large-scale numerical simulations,
provides the only known comprehensive method for computing, with controlled
systematic errors, properties of hadrons starting from the simple equations of QCD.
Many of these properties, such as the hadron spectrum, are well known experi-
mentally. Lattice QCD then aims to confirm—or disprove—QCD as the theory that
explains these properties correctly.

Precise knowledge of the effects of QCD is needed to complete the determination
of the basic parameters of the Standard Model, which is the central focus of current
and planned high energy physics experiments, and in the search for new physics
beyond the Standard Model. Prime among the basic parameters are those that
describe how the weak interactions mix different species of quarks, the elements
of the Cabbibo–Kobayashi–Maskawa (CKM) matrix. For heavy quark species, those
matrix elements remain poorly known. Their determination requires combining
experimental measurements with lattice QCD calculations.

While all experimentally known hadrons are made up of quarks and antiquarks,
QCD predicts the existence of “exotic matter” that contains gluons as an essential
ingredient. Finding particles such as the so-called glueballs or hybrid mesons would
make a dramatic confirmation of QCD as the theory of the strong interactions.
But searching for them in experiments is much like finding a needle in a haystack.
Lattice QCD computations of the mass and other properties of these particles would
help tremendously in experiments, such as those being performed and planned at
Jefferson National Lab, by indicating promising reactions in which to search for these
exotic particles.

8.2 Numerical Simulations in Lattice Quantum Chromodynamics 201

Under normal conditions, quarks and gluons are confined inside hadrons. At
sufficiently high temperature and/or pressure, a new state of matter should appear,
which is a phase best described as a plasma of unconfined quarks and gluons. This
quark–gluon plasma filled the entire universe until roughly 100 microseconds after
the Big Bang, and it may play a role today in the cores of neutron stars. Observation
of this plasma is the primary goal of heavy ion experiments at the Relativistic Heavy
Ion Collider (RHIC) at the Brookhaven National Lab. Lattice QCD simulations have
already provided the best estimate of the temperature at which the plasma appears,
roughly 2 trillion ◦C. Further large-scale simulations are needed to study the detailed
nature of the phase transition and to determine the equation of state for the plasma
phase.

8.2.1 Lattice QCD Simulation Setup

Lattice QCD simulations started in 1979 with the seminal work of Creutz [232], who
was the first to apply Monte Carlo simulation techniques to lattice QCD and to
produce the first numerical evidence of confinement in QCD.

The nonperturbative solution of QCD is in many ways similar to solving fluid
dynamics problems (especially when employing molecular dynamics techniques,
as described below). One has a simple set of equations that implicitly contain all
the information (up to the boundary conditions). Because they are very nonlinear,
these equations are extremely difficult to solve. Indeed, the numerical solution
of QCD appears to be one of the most challenging computational problems in
physics.

The starting point of calculations in QCD is the path-integral approach to quan-
tum field theories. To allow for a numerical attack, one first discretizes space-time
into a regular 4-D grid, called a lattice [997], with lattice spacing a. The quarks are then
described by fields ψ(x)—complex 3-vectors—attached to the sites of this lattice, and
the gluons by special complex unitary 3× 3 matrices Uµ(x), belonging to the color
group SU(3), attached to the links with endpoints x and x+ aµ̂. The relation to the
gluon fields Aµ(x) of the continuum field theory is given by Uµ(x)= exp{iagAµ(x)},
with g denoting the coupling constant at energy scale 1/a. The physical observables
are extracted from expectation values

〈
〉 = 1
Z

∫
[dψ] [dψ̄] [dU] exp{−S(U)− ψ̄ M(U) ψ}
(U , ψ , ψ̄) (8.1)

The function S(U) in the exponential is the gluon action, containing the gluons’
kinetic term and local interactions. It consists of the sum of products of the four
U -matrices on the links around elementary squares, called plaquettes, of the 4-D
lattice, labeled by their lower left-hand corner site x and the directions 1≤ µ < ν ≤ 4
specifying the plane in which the plaquette lies:

S(U)= 1
2g2

∑
x,µ<ν

Tr
[
Uµ(x) Uν(x+ µ) U†

µ
(x+ ν) U†

ν
(x)+ h.c.

]

202 Chapter 8 Application Overviews

This is the simplest form that is invariant under local gauge transformations,

Uµ(x) −→ U ′
µ
(x)= V†(x) Uµ(x) V(x+ µ)

and reduces in the limit a→ 0 to the continuum action,

S −→
∫

d4x
(

1
2

)
Tr

[
F2

µν
(x)

]
+ O(a2)

with

Fµν(x)= ∂µAν(x)− ∂νAµ(x)+ g
[
Aµ(x), Aν(x)

]

M(U) in equation (8.1) contains the kinetic term of the quark fields and their
interactions with the gluons. One of the most commonly used forms, known as
Wilson’s fermion action, is

ψ̄ M(U) ψ =
∑

x

ψ̄(x) { (4+m) ψ(x)

− 1
2

4∑
µ=1

[(
1− γµ

)
Uµ(x) ψ(x+ µ)

+ (
1+ γµ

)
U†

µ
(x− µ) ψ(x− µ)

] }

→
∫

d4 x ψ̄(x)
[
γµ

(
∂µ + gAµ(x)

)
ψ(x)

]+ O(a) (8.2)

Z in equation (8.1) is a normalization factor, often referred to as a partition
function because of its similarity to partition functions in statistical mechanics. The
integration is over the fields at each site and link of the lattice. The fermion fields
are somewhat peculiar. They are anticommuting and therefore not representable on
a digital computer. Fortunately, their integration is Gaussian and can be carried out
analytically. This leads to

〈
〉 = 1
Z

∫
[dU] det M(U) exp{−S(U)}
(U , M−1(U))

= 1
Z

∫
[dU] exp{−S(U)+ Tr log M(U)}
(U , M−1(U)) (8.3)

The price we have to pay for the peculiarity of the quark fields now consists in the very
time-consuming computation of det M(U), with M(U) a huge, but sparse, matrix, as
can be seen from equation (8.2).

We still need to do the integration over the U -field on each link of the lattice. This
is typically an integral over more than 106 dimensions—an impossible task using
any kind of standard integration method. Due to the exponential factor in equation
(8.3), the contribution from most field configurations to the integral is negligible,
and we can use stochastic methods. For pure gauge simulations, that is, without the
fermion determinant det M(U) in equation (8.3), standard Monte Carlo algorithms
are adequate and widely used. These include the Metropolis algorithm and the heat
bath algorithm and (slight) improvements, as used in statistical mechanics.

8.2 Numerical Simulations in Lattice Quantum Chromodynamics 203

In full QCD simulations, because of the nonlocality of det M(U), these standard
Monte Carlo methods are impractical: for every local change of the gauge fields,
the change in the fermion determinant would be needed. The best algorithms
for the computation of equation (8.3) known to date are based on the analogue
to microcanonical ensembles in statistical mechanics. One introduces momenta
conjugate to the U -fields, with Gaussian distribution exp(−p2/2) for each, and
rewrites equation (8.3) as

〈
〉 =
1
Z′

∫
[dU] [dp] exp

{
− 1

2

∑
x,µ

p2
µ
(x)− S(U)+ Tr log M(U)

}

(U , M−1(U)) (8.4)

The expression in the exponent is now viewed as (the negative of) a Hamiltonian,
with V(U) = S(U) − Tr log M(U) as the potential term and

∑
p2/2 as the kinetic

term. Introducing further a fictitious time, the U -fields and momenta are updated
by integrating the corresponding equations of motion, schematically:

d
dt

U = ∂

∂p
H = p

d
dt

p = − ∂

∂U
H = − ∂

∂U

{
S(U)− Tr log M(U)

}

= − ∂

∂U
S(U)+ Tr

[
M−1(U)

∂

∂U
M(U)

]

Therefore, only a single computation of M−1(U) is needed to update all the gauge
fields simultaneously. This enormous savings in computing effort for QCD simula-
tions makes these kinds of simulation algorithms the most effective in lattice QCD
simulations.

The average in equation (8.4) is then replaced by an average over
(U(t),
M−1(U(t))) in fictitious time, with U(t) the solution of the equations of motion
resulting from the Hamiltonian. This procedure is referred to as the molecular dy-
namics algorithm. To ensure ergodicity, the momenta p are, from time to time, after
what is referred to as a trajectory, replaced by new random Gaussian variables, that
is, refreshed. This combination is known as the hybrid molecular dynamics algorithm
(HMD) [292, 294]. The expectation values, equation (8.4), are then computed as
simple averages

= 1
N

N∑
i=1

(U(ti), M−1(U(ti)))

with ti, i= 1, . . . , N labeling a set of ending points of trajectories. This amounts to a
stochastic estimation of 〈
〉 and becomes exact only in the limit N →∞. For a finite
number of trajectories, the estimate has a statistical error that decreases for large N
as 1/

√
N.

To solve the equations of motion numerically, we have to discretize the fictitious
time. This introduces finite-step-size errors that have to be kept under control (e.g.,

204 Chapter 8 Application Overviews

kept smaller than the statistical errors). Better still would be to use a few different
step sizes and then extrapolate to zero step size. Since each simulation is very time
consuming, such an extrapolation is rarely possible. Usually a “leapfrog” integration
scheme is used to solve the discretized equations of motion. It has the advantage of
being simple and easily implemented, but it is also (up to round-off errors) explicitly
time-reversal invariant. This property is important in the variant of the algorithm
that compensates for the errors coming from the discretization of the equations of
motion in fictitious time by performing an accept/reject Metropolis step after each
trajectory. This variant is an exact algorithm called the hybrid Monte Carlo algorithm
(HMC) [293]. While it does not suffer from finite-step-size errors, it cannot be used
for all systems of interest. In those cases, one resorts to the inexact HMD algorithm
and tries to control the finite-step-size errors.

The equations of motion to be solved contain a term of the form

Tr
{

∂M(U)

∂U
M−1(U)

}

from the derivative of Tr log M in equation (8.3). Each step in the integration requires
inversion of the large, but sparse, matrix M(U). This is still not practical. However,
one can avoid this by noting that, for two flavors of fermions, and using that for the
fermion action equation (8.2) one has that det M† = det M,

exp{2 Tr log M} = det[M†M]=
∫

[dφ][dφ†] exp{−φ†[M†M]−1φ} (8.5)

with φ, φ† bosonic fields. During the molecular dynamics evolution of the HMD
or HMC algorithm, these fields are held constant. At the beginning of each tra-
jectory they are refreshed, like the momenta, by creating them with the distribu-
tion of equation (8.5). This can be achieved by creating Gaussian random fields
χ and setting φ =M†χ . The derivative in the molecular dynamics evolution now

becomes φ†
[
M†M

]−1
∂
[
M†M

]
/∂U

[
M†M

]−1
φ and involves only the computation

[M†M]−1φ, that is, only one row of the inverse. This is still the task that makes lat-
tice QCD simulations so expensive. The inversion is done with an iterative method,
usually the conjugate gradient (CG) algorithm.

8.2.2 Computational Requirements

Here is an example of the computational demands: one iteration of the CG algorithm
for a lattice size 243× 64 requires between about 6 · 108 and 3 · 109 floating-point op-
erations, depending on the exact way the fermion–gluon interaction was discretized
on the lattice (i.e., depending on the exact form of the matrix M). Most of the
operations come from multiplying the complex 3× 3 matrices on the links, rep-
resenting the gluons, with complex 3-vectors on the sites, representing the quarks
(see equation (8.2)). Convergence of the CG algorithm can take between 500 and, for
physically more interesting parameter values, more than 1000 iterations each time.
To keep the acceptance rate sufficiently high in the HMC algorithm (above 50%), or

8.2 Numerical Simulations in Lattice Quantum Chromodynamics 205

the step-size errors reasonably small in the HMD case, step sizes as small as dt = 0.005
to 0.01 are needed. And finally, to collect reasonable statistics for the observables,
computed as fictitious time averages, the equations of motion have to be integrated
for a length of 2000 to 5000 time units. Combining all these numbers, we see that a
“state-of-the-art” computation requires between 3 · 1016 and 3 · 1018 floating-point
operations, which translates to between about 1 and 100 gigaflop/s-years.

These are the resources needed for a simulation with just one set of parameters,
that is, one fixed lattice spacing a, one volume, and one quark mass value. Several
simulations are needed to make sure that finite-volume effects are negligible and
that an extrapolation to zero lattice spacing, to the continuum limit, can be made
with controlled errors. In a typical simulation, the lattice spacing is, say, 0.1 fm (1
fm = 1 · 10−15 m). A proton has a charge radius of about 1 fm, and a proton therefore
should fit nicely into our 243 box without finite-size effects, while at the same time
the lattice spacing should be fine enough to give a good resolution of the proton.
Nevertheless, it is known that the results of such a computation can differ from the
final continuum limit by as much as 10% to 30%. This difference is referred to as
lattice or discretization effects.

In addition, the quark masses in a lattice QCD simulation are typically much larger
than those in nature, and therefore simulations at a few different quark masses are
needed to allow an extrapolation to the almost massless up and down quarks of
nature.

8.2.3 Implementation Considerations

From the requirements of a single computation described above, it is clear that the
computing power of even high-end workstations is dismally inadequate for lattice
QCD calculations. In a lattice QCD code, the same operations usually have to be
performed on all the lattice sites of a regular fixed grid. And the data needed either
reside on that site or on one of the nearest-neighbor sites in one of the directions of
the 4-D grid. This is a classic case of a data-parallel situation and lends itself to rather
straightforward vectorization or parallelization. Indeed, lattice-gauge theory codes
are among the most efficient, both on vector and, more importantly, on massively
parallel supercomputers.

I am a member of a large project, partially sponsored by the Department of Energy,
known as the MIMD Lattice Calculation (MILC) Collaboration. This collaboration
is using any parallel computer that it can get time on. For this, MILC has developed
a family of portable MIMD codes that run on a wide variety of scalable parallel
computers, from single workstations for code development and testing, to the T3E,
SP systems, Origin 2000, and, more recently, PC clusters. The code is written in C and
is highly portable. The only parts of the C code that are machine dependent are the
communications routines. These are stored in a single file. A different version of this
file exists for each machine or communications library. Standard message-passing
libraries are especially interesting from the point of view of maintaining portable
code, and the MILC collaboration has implemented a version of the communications

206 Chapter 8 Application Overviews

routines for both PVM and MPI [676]. Older versions were running on Intel Paragons
and TMC CM-5s.

8.2.4 Recent Developments and Future Prospects

Like other computational fields, lattice QCD has profited from the fast development
of ever more powerful computers. The numerical algorithms used, hybrid Monte
Carlo and conjugate gradient–type routines for the very frequent inversions of the
large sparse quark matrices, are by now fairly standard. Tremendous progress already
has been made in the last few years and can be made in the future in reducing
lattice discretization errors. In the most commonly used lattice formulation of the
quarks, the so-called Wilson fermions, the finite-lattice-spacing errors are of the order
O(a). To reduce those errors by half, the lattice spacing needs to be decreased by a
factor of two. The number of lattice sites for a fixed physical 4-D lattice then grows
by a factor 24; the actual costs, in CPU time, of a simulation grow by a factor of
28 to 210, depending on the details of the simulation algorithm used. Therefore,
reducing the discretization errors from O(a) to O(a2) can produce enormous savings.
Unfortunately, due to the intrinsic quantum nature of the problem, this is not as
easy as just using a better finite difference approximation to a derivative. However,
a method to achieve this goal has recently been developed [630, 631, 632, 510].

Thus far, lattice QCD computations have determined the value of the strong cou-
pling constant at the energy scale given by the Z-boson mass, where all different
determinations are usually compared (recall that the coupling decreases with increas-
ing energy) to an accuracy of 3%, which is about the same as the best experimental
determinations. The error estimates include the statistical error from the stochastic
Monte Carlo computation and the systematic errors from the extrapolation to the
continuum, a→ 0, limit [753]. The masses of the light hadrons have been computed
to an accuracy of 5% to 10%, including those of the lightest exotic states, glueballs,
and hybrid mesons.1 Computations of the QCD effects on weak matrix elements, on
the other hand, so far typically have errors of 20% to 40%. In many cases this is 5 to
10 times the errors of the experimental measurements with which the computations
need to be combined to extract the fundamental parameters of the Standard Model.

This discrepancy has led to a considerable effort to increase the computing re-
sources available for lattice QCD computations. If this effort is successful, the errors
on the weak-matrix-element computations, for example, are expected to be reduced
by a factor of two over the next 2 years. Teraflop/s scale computations, foreseen for
the years 2002 to 2005, are expected to bring the errors down to be comparable with
the experimental errors.

1 For recent reviews on the status of lattice QCD, see “Progress in Lattice Theory,” the September 1998 plenary
talk by Stephen R. Sharpe at ICHEP98 in Vancouver, Canada (heplat/9811006, available at http://arXiv.org/abs
/hep-lat/9811006); and “Lattice Gauge Theory,” the July 1999 plenary talk by H. Wittig at the Europhysics
Conference on High Energy Physics in Tampere, Finland (hep-ph/9911400, available at http://arXiv.org/abs/
hep-ph/9911400).

8.3 Ocean Modeling 207

Acknowledgments. This work has been supported in part by DoE contracts DE-
FG05-85ER250000 and DE-FG05-96ER40979.

8.3 Ocean Modeling
John Dukowicz, Richard Smith, and Robert Malone

The Parallel Ocean Program (POP) was developed at Los Alamos National Laboratory
(LANL) under the sponsorship of the DoE’s CHAMMP program, which brought
massively parallel computers to the realm of climate modeling. POP is a descendant
of the Bryan–Cox–Semtner (BCS) class of models [154, 226, 846]. A number of
improvements to the standard BCS model have been developed and incorporated
in POP. Although originally motivated by the adaptation of POP for massively
parallel computers, in particular the Connection Machine (CM-5), many of these
changes improved not only its computational performance but the model’s physical
representation of the ocean as well. The most significant of these improvements are
summarized below. For details, see Dukowicz and Smith [299], Dukowitz et al. [300],
and Smith et al. [874, 876].

The Bryan–Cox–Semtner ocean model is a 3-D model in Eulerian coordinates
(latitude, longitude, and depth). The incompressible Navier–Stokes equations and
the equations for the transport of temperature and salinity, along with a turbulent
eddy viscosity and diffusivity, are solved subject to the hydrostatic and Boussinesq
approximations. As originally formulated, the model includes a rigid-lid approxi-
mation (zero vertical velocity at the ocean surface) to eliminate fast surface waves.
The presence of such waves would require use of a very short time step in numeri-
cal simulations and hence greatly increase the computational cost. The equations of
motion are split into two parts: a set of 2-D barotropic equations describing the ver-
tically averaged flow, and a set of 3-D baroclinic equations describing temperature,
salinity, and deviation of the horizontal velocity components from the vertically
averaged flow. (The vertical velocity component is determined from the constraint
of mass conservation.) The barotropic equations contain the fast surface waves and
separate them from the rest of the model.

The baroclinic equations are solved explicitly; that is, their solution involves a
simple forward time-stepping scheme, which is well suited to parallel computing.
On the other hand, the barotropic equations (2-D sparse-matrix equations linking
nearest-neighbor grid points) are solved implicitly; that is, they are solved at each
time step by iteration.

For historical reasons, the barotropic equations in the Bryan–Cox–Semtner model
are formulated in terms of a stream function. Such a formulation requires solving
an additional equation for each island, an equation that links all points around the
island. This was not a problem when limited computing power would permit only
very coarse resolution (≥ 5◦ in latitude and longitude), because only continent-size
landmasses could be resolved. As the model was pushed to higher resolution, not
only were there many additional equations to solve, but each equation required
“gather–scatter” memory accesses on each solver iteration. This was costly, even on

208 Chapter 8 Application Overviews

machines with fast memory access, such as Cray parallel-vector-processor computers.
To reduce the number of equations to solve, it was common practice to submerge
islands, connect them to nearby continents with artificial land bridges, or merge an
island chain into a single mass without gaps. The first modification created artificial
gaps, permitting increased flow; the second and third modifications closed channels
that should exist. For example, in the pioneering work of Semtner and Chervin [847,
848], of the 80 islands resolvable at the horizontal resolution employed (0.5◦ latitude
and longitude), all but the three largest “islands” (Antarctica, Australia, and New
Zealand) were eliminated by artificial changes in the bottom topography. Even then,
the barotropic part of the code consumed about one-third of the total computing
time when the model was executed on a Cray. On distributed-memory parallel
computers, these added equations became even more costly because, on every
iteration, each required gathering data from a (possibly large) set of processors to do
a summation around each island. When the model was executed on a Connection
Machine, about two-thirds of the total computing time was spent on the barotropic
part.

8.3.1 Surface-Pressure Formulation of the Barotropic Mode

The above considerations led us to focus our efforts on speeding up the barotropic
part of the code. We developed and implemented two new numerical formulations of
the barotropic equations, both of which involve a surface-pressure field rather than
a stream function. The surface-pressure formulations have several advantages over
the stream function formulation and are more efficient on both distributed-memory
parallel and shared-memory vector computers.

The first new formulation recasts the barotropic equations in terms of a surface-
pressure field but retains the rigid-lid approximation. The surface pressure represents
the pressure that would have to be applied to the surface of the ocean to keep it flat (as
if capped by a rigid lid). The barotropic equations must still be solved implicitly, but
the boundary conditions are simpler and much easier to implement. Furthermore,
islands require no additional equations; any number of islands can be included in the
grid at no extra computational cost. Perhaps most importantly, the surface-pressure,
rigid-lid formulation, unlike the stream function, rigid-lid formulation, exhibits no
convergence problems due to steep gradients in the bottom topography. The matrix
operator in the surface-pressure formulation is proportional to the depth field H ,
whereas the matrix operator in the stream function formulation is proportional to
1/H . Therefore, the latter matrix operator is much more sensitive than the former
to rapid variations in the depth of waters over the edges of continental shelves or
submerged mountain ranges. In such situations, the depth may change from several
thousand meters to a few tens of meters within a few grid points. Because such a
rapidly varying operator may prevent convergence to a solution, steep gradients
were removed from the stream function formulation by smoothing the depth field
(which also had the then-desirable effect of eliminating many islands). The surface-
pressure formulation, on the other hand, converges even in the presence of steep

8.3 Ocean Modeling 209

depth gradients. Artificial smoothing of the depth field can significantly affect the
accuracy of a numerical simulation of the interaction of a strong current with
bottom topography. For example, the detailed course and dynamics of the Antarctic
Circumpolar Current (the strongest ocean current in terms of total volume transport)
is greatly influenced by its interaction with bottom topography.

As we worked with the surface-pressure, rigid-lid model, we noticed a problem in
shallow isolated bays such as the Sea of Japan. In principle, we should have been able
to infer the elevation of the ocean surface (relative to the mean elevation) from the
predicted surface pressure. We found, however, that the surface heights so inferred
were quite different from those expected, due to inflow or outflow from the bays.
Removing the rigid lid solved that problem, but of course it also brought back the
unwanted and unneeded surface waves. We were able to overcome that new difficulty
by treating the terms responsible for the surface waves implicitly, which artificially
slows the waves, whereas the rigid-lid approximation artificially speeds up the waves
to infinite velocity. (Either departure from reality is acceptable. Climate modeling
does not require an accurate representation of the waves because they have little
effect on ocean circulation.)

8.3.2 Free-Surface Formulation

Those considerations led us next to abandon the rigid-lid approximation in fa-
vor of a free-surface formulation. The surface pressure is then proportional to the
mass of water above a reference level near the surface. The benefits of the surface-
pressure, free-surface model are greater physical realism and faster convergence of
the barotropic solver. In particular, the revised barotropic part of the code, including
80 islands, is many times faster than the original, which included only three islands
(when both are implemented on the 0.5 grid). In addition, the surface pressure is
now a prognostic variable that can be compared to global satellite observations of
sea-surface elevation to validate the model, and satellite data can now be assimilated
into the model to improve short-term prediction of near-surface ocean conditions.

None of our revisions, of course, changed the fact that the large matrix equation
in the barotropic solver must be solved implicitly. We chose to use conjugate gradi-
ent methods for that purpose because they are both effective and easily adapted to
parallel computing. Conjugate gradient methods are most effective when the ma-
trix is symmetric. Unfortunately, the presence of Coriolis terms (terms associated
with the rotation of the Earth) in the barotropic equations makes the matrix non-
symmetric. By using an approximate factorization method to split off the Coriolis
terms, we retained the accuracy of the time discretization of the Coriolis terms and
produced a symmetric matrix to which a standard conjugate gradient method may
be applied. We also developed a new preconditioning method for use on massively
parallel computers that is very effective at accelerating the convergence of the conju-
gate gradient solution. The method exploits the idea of a local approximate inverse
to find a symmetric preconditioning matrix. Calculating the preconditioner is rela-
tively expensive, but it only needs to be done once for a given computational grid.

210 Chapter 8 Application Overviews

8.3.3 Pressure Averaging

Elimination of the extra equations for islands and the associated gather–scatter
memory operations greatly reduced the cost of solving the barotropic equations.
Further savings can be obtained by implementing pressure averaging, a well-known
technique in atmospheric modeling for increasing the time step [145]. After the
temperature and salinity have been updated to time step n + 1 in the baroclinic
routines, the density ρn+1 and pressure pn+1 can be computed. By calculating the
pressure gradient with a linear combination of p at three time levels (n− 1, n, and
n+ 1), it is possible to increase the time step by as much as a factor of two. However,
at first this doubling was not obtained because something else was limiting the time
step. Analysis of factors constraining the time step revealed that it was being limited
by horizontal diffusion at high latitudes, as described next.

8.3.4 Latitudinal Scaling of Horizontal Diffusion

Horizontal mixing by unresolved turbulence is commonly parameterized by ei-
ther Laplacian, ∇2, or biharmonic, ∇4, diffusion terms. These operators scale as
�x−m, with m = 2 or 4. Here �x = a ∗�λ ∗ cos φ, where φ and λ are latitude and
longitude, respectively, and a is the radius of the Earth. Because cos φ → 0 at the
poles, these diffusion terms become very large at high latitude. Although hori-
zontal diffusion parameterizations are intended to mimic the effects of unresolved
turbulence, their essential purpose is to dissipate energy at scales near the grid
resolution. Consequently, they can be arbitrarily rescaled, as long as they give suf-
ficient dissipation to prevent the buildup of computational noise at small spatial
scales. The diffusion term, ∇mT , only needs to be big enough at all latitudes to
balance the advection term, U · ∇T , in the transport equation for tracer T . The ad-
vection term scales as �x−1, so scaling of the horizontal diffusion coefficient by
(cos φ)n was introduced, where n=m− 1 (n= 1 for Laplacian mixing; n= 3 for bi-
harmonic mixing). This scaling prevents horizontal diffusion from limiting the time
step severely at high latitudes, yet keeps diffusion large enough to maintain numer-
ical stability.

Once this scaling was introduced and the associated time-step constraint was
removed, the doubling of the time step with the pressure-averaging method was
attained. Taken together, the improved numerical stability of the surface-pressure
formulations, the (cos φ)3 tapering of the biharmonic diffusion coefficient, and
pressure averaging permitted the time step to be increased by about a factor of four
compared to the best calculations at that time [847, 848]. They used a time step of
15 minutes when running a standard BCS model at 0.5◦ resolution. With POP, it was
possible to run with a 30-minute time step at 0.28◦ resolution, an improvement of
a factor of four over the 7.5-minute time step expected by extrapolating Semtner’s
experience.

8.3 Ocean Modeling 211

8.3.5 Code Designed for Parallel Computers

The code is written in Fortran 90 and can be run on a variety of parallel and serial
computer architectures. It uses domain decomposition in latitude and longitude,
combined with MPI for interprocessor communications on distributed memory
machines. SHMEM is also available on machines that support it (SGI Origin 2000
and Cray T3E).

8.3.6 General Orthogonal Coordinates and the “Displaced-Pole” Grid

Because the code is written in Fortran 90, it was relatively easy to reformulate and
discretize the equations of motion to allow the use of any locally orthogonal hori-
zontal grid without a major rewrite of the code [876]. This generalization provides
alternatives to the standard latitude–longitude grid with its singularity at the North
Pole. In particular, a “displaced-pole” grid was developed, in which the singularity
arising from convergence of meridians at the North Pole is moved into an adja-
cent landmass such as North America, Greenland, or Russia. This leaves a smooth,
singularity-free grid in the Arctic Ocean, which is important for the modeling of sea
ice. That grid joins smoothly at the equator with a standard Mercator grid in the
Southern Hemisphere. If the singularity is moved to Greenland, distortion relative
to the standard grid is minimized, but the smallness of ocean cells just off the coast
of Greenland may restrict the time step excessively. Placing the singularity in either
Greenland or North America increases the resolution in the Gulf Stream and the
northern seas; the Gulf Stream transports warm salty water into the northern seas,
where deep water is formed by wintertime convection. Both transport and convec-
tion are important aspects of the global thermohaline circulation that need to be as
well resolved as possible.

The displaced-pole grid has proven to be one of the most popular features of
POP, especially in fully coupled atmosphere–ocean–sea ice models. The Los Alamos
sea ice model (CICE) also supports the displaced-pole grid, so no interpolation
is needed between POP and CICE. A package based on conservative remapping
techniques, the Spherical Coordinate Remapping and Interpolation Package (SCRIP),
has been developed [523] that transforms state variables and fluxes between any pair
of orthogonal grids on the sphere. SCRIP handles the transformations between the
atmospheric model grid and the displaced-pole grid used by POP and CICE.

Many of the improvements first introduced in POP have been adopted in other
models, even for use on parallel-vector machines.

8.3.7 High-Resolution Simulations Enabled by POP

Massively parallel computers are ideally suited to high-resolution modeling of the
oceans. “Mesoscale” eddies in the oceans are 50 to 100 km in size, roughly 10
times smaller than their atmospheric analogues: high and low pressure and frontal

212 Chapter 8 Application Overviews

systems. Thus, ocean models need to have finer grids than atmospheric models. Cost
rises rapidly as resolution is increased: doubling the horizontal resolution increases
the cost by an order of magnitude when the reduction in time step and a modest
increase in vertical resolution are taken into account. At the time POP was being
developed, the state of the art in high-resolution global modeling was the work of
Semtner and Chervin [847, 848] at 0.5◦. They were using a model with the standard
rigid-lid, stream function formulation, smoothed bottom topography with only
three “islands,” biharmonic diffusion and no pressure averaging; the model time
step was 15 minutes at 0.5◦ resolution. With POP running on the CM-5, it was
possible to double the resolution to 0.28◦, use unsmoothed bottom topography,
include all 112 resolvable islands, and run with a time step of 30 minutes [642].
Although many aspects of the 0.28◦ global simulations were improved compared
to the earlier simulations, quantitative comparisons of sea-surface height variability
predicted by POP with measurements from the TOPEX/Poseidon satellite altimeter
showed that the model variability was still low by a factor of two. This meant
that the mesoscale eddy spectrum was still not adequately resolved. Limitations
in computing power made it impractical to go to higher resolution at the global
scale; however, it was feasible to go to 0.1◦ in the Atlantic Ocean basin only. That
calculation had about the same number of horizontal grid points (992× 1280) as the
global 0.28◦ calculation (1280× 896), but 40 depth levels rather than 20. The time
step had to be reduced by the resolution ratio (2.8) to 10 minutes, so three times
as many time steps were needed to integrate the model for a decade of simulated
time. With twice as many depth levels, the 0.1◦ calculation was six times more
expensive than a similar length 0.28◦ run. Four months of almost dedicated time
on 512 processors of the Los Alamos National Laboratory/Advanced Computing
Laboratory CM-5 were needed to complete the calculation [875]. Many important
aspects of Atlantic circulation were accurately captured for the first time, including
good quantitative agreement between POP and TOPEX/Poseidon. The results are so
impressive that the international oceanographic community is eagerly awaiting a
global simulation at the same 0.1◦ scale. This was impossible until 1999, when the
ACL took delivery of a 2048 processor SGI Origin 2000 system with a peak rating
of 1 teraflop. Benchmark tests of POP indicate that roughly 6 months of nonstop
computing on 512 processors will be required to extend the 0.1◦ simulation to the
global scale. The grid will have 3600 points in longitude, 2400 in latitude, and 40
depth levels, for a total 3.5× 108 grid cells. With a 10-minute time step, nearly 1
million time steps will be needed.

8.4 Simulations of Earthquakes
Geoffrey C. Fox

The importance of simulating earthquakes is intuitively obvious. For instance, the
Kobe, Japan, earthquake of January 16, 1995, was only a magnitude 6.9 event and
yet produced an estimated $200 billion loss. Despite an active earthquake prediction
program in Japan, this event was a complete surprise. Similar and more drastic

8.4 Simulations of Earthquakes 213

scenarios are possible, and indeed eventually likely, in Los Angeles, San Francisco,
Seattle, and other urban centers around the Pacific plate boundary.

There are currently no approaches to earthquake forecasting that are uniformly
reliable. The field uses phenomenological approaches, which attempt to forecast in-
dividual events, or more reliable statistical analyses giving probabilistic predictions.
The development of these methods has been complicated by the fact that large events
responsible for the greatest damage repeat at irregular intervals of hundreds to thou-
sands of years, and so the limited historical record has frustrated phenomenological
studies. Up to now, direct numerical simulation has not been extensively pursued
due to the complexity of the problem and the (presumed) sensitivity of the occur-
rence of large events to detailed understanding of both Earth constituent makeup
and the relevant microscale physics that determines the underlying friction laws.
However, good progress has been made recently with a variety of numerical simu-
lations, and both Earth and satellite sensors are providing an increasing volume of
data that can be used to constrain and test the numerical simulations. This field is
different from most other applications in this book, as it thus far has made little
use of parallel computing and only now is starting its own “Grand Challenges.” It
is thus not known how important large-scale simulations will be in earthquake sci-
ence. Maybe they will never be able to predict the “big one” on the San Andreas
fault, but nevertheless it is essentially certain that they can provide a numerical lab-
oratory of “semi-realistic” earthquakes with which other more phenomenological
methods based on pattern recognition can be developed and tested. As one can use
data assimilation techniques to integrate real-time measurements into the simula-
tions, simulations provide a powerful way of integrating data into statistical and
other such forecasting methods.

Although this field has some individually very difficult simulations, it has only
just started to use high-performance computers. Thus, the most promising compu-
tations at this stage involve either scaling up existing simulations to large system
sizes with modern algorithms or integrating several component computations with
assimilated data to provide early, full-fault system simulations. The latter has im-
portant real-world applications in the area of responding to and planning for crises
as one can carry the computations through from initial sensing of stress buildup
through the structural simulation of building and civil infrastructure responses to
propagating waves.

Earthquake science embodies a richness present in many physical sciences as there
are effects that spread over 10 orders of magnitude in spatial and temporal scales
(Figure 8.5). Success requires linking numerical expertise with the physical insight
needed to coarse grain or average the science at a fine scale to be used phenomeno-
logically in simulations at a given resolution of relevance to the questions addressed.
Again, nonlinear fault systems exhibit a wealth of emergent, dynamic phenomena
over a large range of spatial and temporal scales, including space–time clustering of
events, self-organization, and scaling. An earthquake is itself a clustering of slipped
fault segments, as seen in studies of critical phenomena [23, 87, 157, 267, 337, 365,
511, 839]. As in the latter field, one finds (empirically) scaling laws that include

214 Chapter 8 Application Overviews

Plates

Convection

Laboratory experiments

10–6 10–3 10–0 103 106 109 1012 1015

106

103

100

10–3

10–6

10–9

m

km
Sp

at
ia

l s
ca

le
s

(m
)

Time scales (sec.)

mm

Faulting/
earthquakes

sec hr day yr ka Ma

Plate
boundary
zones

Nucleation
processes

Field
observations

Spaceborne
observations

Grains/aggregates/
microscale tectonic processes

Crystals/atoms/molecules

m

Figure 8.5 Spatial and temporal scales in earthquake science.

the well-known Gutenberg–Richter, magnitude–frequency relation, and the Omori
law for aftershocks (and foreshocks). Some of the spatial scales for physical fault
geometries include:

. The microscopic scale (∼ 10−6 m to 10−1 m) associated with static and dynamic
friction (the primary nonlinearities associated with the earthquake process).

. The fault-zone scale (∼ 10−1 m to 102 m) that features complex structures
containing multiple fractures and crushed rock.

. The fault-system scale (∼ 102 m to 104 m), in which faults are seen to be
neither straight nor simply connected, but in which bends, offsetting jogs,
and subparallel strands are common and known to have important mechanical
consequences during a fault slip.

. The regional fault-network scale (∼ 104 m to 105 m), where seismicity on an in-
dividual fault cannot be understood in isolation from the seismicity on the
entire regional network of surrounding faults. Here concepts such as “correla-
tion length” and “critical state” borrowed from statistical physics have led to
new approaches to understanding regional seismicity.

8.4 Simulations of Earthquakes 215

. The tectonic plate-boundary scale (∼ 105 m to 107 m), at which planetary scale
boundaries between plates can be approximated as thin shear zones and the
motion is uniform at long time scales.

8.4.1 Typical Computational Problems

Many different types of codes eventually could be linked together to support either
real-time response to a crisis or fundamental scientific studies [353, 357]. The process
of coordinating the field in this area is happening in Japan, where major compu-
tational resources are being deployed. There is also an international effort among
several Asia–Pacific nations, including the United States (the so-called Asian–Pacific
Economic Cooperation initiative [44]) and a U.S. activity, known as GEM for its
goal to produce a “general earthquake model” [373]. Three distinct computational
problems are presented below.

Data Assimilation

The initial simulations, aimed at helping a crisis response team, would be triggered by
the detection of an earthquake event by the many sensors now deployed, especially
in California. Since these sensors provide incomplete information, they must be
assimilated into model simulations to allow the following two model computations
to attempt forecasting of possible aftershock activity and the consequent damage
to civil infrastructure. The Jet Propulsion Laboratory has developed one such code
(disloc) to process data from the large NASA-NSF-USGS SINE Sensor array. It uses
finite elements and complex meshing techniques to represent the complexity of the
3-D Earth crust. It is shown in Figure 8.6 and described below as a “problem-solving
environment” designed to support the earthquake-response community after events
like those occurring in Turkey or Taiwan in 1999.

Earthquake Fault–System Simulations—Virtual California

With reasonable approximation, the long-term evolution of stresses and strains on
interacting fault segments can be modeled with a Green’s function approach [813,
814]. This method leads to a boundary-value formulation (the faults determine the
boundary) that numerically looks like the long-range force problem. The faults are
paneled with segments (with area of some 100 m2 in definitive computations) that
interact as though they were dipoles. The original calculations of this model used
the basic O(N2) algorithm, but a new set of codes will use the fast-multipole method
briefly described in Chapter 4 for astrophysical problems. There are interesting dif-
ferences between the earthquake and gravitational applications. In gravity, there
are wide ranges in density and dynamical effects from the natural clustering of the
gravitating particles. Earthquake “particles” are essentially fixed on complex fault
geometries, and their interactions fall off faster than those in the astrophysical prob-
lem. Several variants of this model have been explored, including approximations
that keep only interactions between nearby fault segments. These cellular-automata

216 Chapter 8 Application Overviews

Page

Wake up!

Wake up!

ALARM

disp disloc

Dial stations

Simplex

Page

Quake location, size

Sorted station potential

Station motions

Single fault model

refined fault model
Graphics:

hazard model
Graphics:

Station raw files

Modem

Collaboration
JPL

Boulder
(U. Colo.)

JPL

JPL

JPL

Caltech

USGS

PageGIPSY/auto_p

Virtual_California Web simplex

Wake up!

Figure 8.6 Simulations used in response to an earthquake.

or slider-block models look very much like statistical physics, with an earthquake
corresponding to clusters of particles slipping together when the correlation length
gets long near a critical point. The full Green’s function approach should parallelize
straightforwardly [931] in either O(N2) or multipole formulation. Cellular automata
models [146, 365, 815] will be harder, as we know from experience with the cor-
responding statistical physics case, where clustering models have been extensively
studied. An interesting aspect of these simulations is that they provide a “numerical
laboratory” for the study of space–time patterns in seismicity information. This type
of analysis was used successfully in the climate field to aid in the prediction of El
Niño phenomena. These pattern analyses may or may not need large computational
resources, although they can involve determination of eigensolutions of large matri-
ces, which is potentially time consuming. In Figure 8.6, we show Virtual California,
used to help predict aftershocks and manage the consequences of actual earthquakes.
This illustrates the concepts described in Chapter 25 of large simulations being used
in a real-time network to address problems of importance to society.

Earthquake Engineering

The most mature computations in the field are those used to calculate the response of
buildings to seismic waves. In fact, R. Clayton of the Caltech Geophysics department
performed one of the very first Caltech Cosmic Cube computations to simulate

8.4 Simulations of Earthquakes 217

the motion of earthquake waves in the Los Angeles Basin. This wave motion can,
in principle, be generated from the earthquake “events” calculated in the Virtual
California simulations described above. The wave motion can be used as a forcing
function for structural dynamics computations of buildings, roads, and other civil
infrastructure. These are large-scale, finite element problems with complex grids, and
a recent National Science Foundation “Grand Challenge” was very successful in this
area.

Response to an Earthquake in Southern California

In this typical scenario, which is the first part of Figure 8.6, the goal is to rapidly form
a consensus among researchers concerning the characterization of the deformation
field and the location, size, and direction of slip on a fault following an earthquake.
This consensus can be used to guide decisions on both civil and scientific responses
to the quake.

Following an earthquake in Southern California, the location and magnitude are
calculated based on seismic data within minutes by Caltech/U.S. Geological Survey
(USGS) and are broadcast to several users via email and pagers. The information
on location and magnitude could then be automatically used to define an area
wherein instruments might be expected to record a signal. Data from these stations
would be given priority in retrieval and analysis. In this example, we assume that
the data in question are global-positioning-system (GPS) data from the Southern
California Integrated Geodetic Network (SCIGN) array. Retrieval in this case occurs
via telephone modem. As soon as the list of possibly affected stations has been
generated, the database at the USGS is checked. If any of the stations on the list have
not had data downloaded since the quake, computers at the USGS begin dialing the
selected stations and retrieving the data.

Data from these stations are then processed for rapid analysis to determine the
measured displacements of the stations. If the measured displacements are large
enough, emergency and scientific personnel are notified via email and pager. These
displacements are then automatically fed into an inversion routine (simplex) that
solves for the best-fit, single-fault displacement. This single-fault displacement is in
turn fed back into a forward, elastic, half-space model that yields a preliminary map
of displacements over the whole area.

At this point, this map is shared among various scientists and emergency per-
sonnel, using systems such as Tango Interactive that allow the collaboration and
interaction of many people viewing and manipulating the same data set over the
Internet. The emergency personnel can use the preliminary map in combination
with geographical information system (GIS) data about utilities, lifelines, and so
on to help assign resources to various areas. The scientists use the preliminary map
to help design a strategy for collecting additional measurements. Before rerunning
the inversion, they can also collaborate on refining the single-fault model, possi-
bly breaking the single preliminary fault into several segments, introducing more
realistic material properties or including more data.

218 Chapter 8 Application Overviews

This environment permits the rapid determination and dissemination of pre-
liminary information about the earthquake and the collaborative refining of that
information following an event. The rapid dissemination of information can greatly
aid both the civil and scientific response to the quake. Resources can be more effi-
ciently allocated to the areas where they are needed, and scientific measurements
can be focused to provide information critical to refining our understanding of the
earthquake system. Once an acceptable model of the earthquake has been deter-
mined, various models can be used to estimate the updated earthquake hazard for
adjacent areas. Since there are currently several competing models for this, it will
undoubtedly involve multiple runs of multiple models and significant discussion
among scientific colleagues. Each of these models, as well as the various pieces of the
automated processes described above, has been developed by different people under
different assumptions, and each is developed, run, and maintained on computers
under the control of the developer. Technologies such as CORBA and Enterprise Java
Beans allow appropriate access and security mechanisms in this complex, evolving
distributed system.

The Izmit, Turkey, earthquake in 1999 provided an example of how a system
like this could have been useful. Following that earthquake, many geoscientists
participated in a series of conference telephone calls to try to piece together what
had happened and to determine an appropriate response. Initially, some participants
only knew what had been reported in the media. Others knew of specific pieces
of data concerning the earthquake or of actions being taken by various groups
and individuals. It is safe to say that no one had a complete picture. Much of the
conference call was devoted to informing everyone about all the pieces of data and
all the various initiatives that people were pursuing or might pursue. Similar calls and
emails occurred after the 1992 Landers and 1994 Northridge earthquakes. Having a
system such as the one described above, in which participants could share maps,
descriptions, programs, data sets, and graphs, and in which they could interactively
and collaboratively manipulate the data and programs both synchronously and
asynchronously, would immeasurably aid the rapid and accurate diagnosis of what
has happened and what should be done next.

8.4.2 Computational Resource Requirements

Current evidence suggests that forecasting earthquakes of magnitude∼ 6 and greater
will depend on understanding the space–time patterns displayed by smaller events,
that is, the magnitude 3’s, 4’s and 5’s. With at least 40,000 km2 of fault area in
Southern California, as many as 108 grid sites will be needed to accommodate events
down to magnitude 3. Extrapolations based on existing calculations indicate that
using time steps of ∼ 100 s implies that ∼ 108 time steps will be required to simulate
several earthquake cycles. This leads to the need for teraflop-class computers. At this
stage, we cannot guess how far this class of computer will take us; the systems needed
to support research, crisis managers, or insurance companies assessing possible
earthquake risk may require much higher performance.

8.5 Cosmological Structure Formation 219

8.5 Cosmological Structure Formation
Michael Norman and Greg Bryan

The universe is homogeneous and isotropic on scales exceeding 1 billion light years.
But on smaller scales it is clumpy, exhibiting a hierarchy of structures, including
individual galaxies, groups and clusters of galaxies, and superclusters of galaxies.
Understanding the origin and cosmic evolution of these structures is the goal of
cosmological structure formation (CSF). CSF is inherently nonlinear and multidimen-
sional, and it involves a broad range of physical processes operating on a range of
length and time scales. Numerical simulation is the only means we have of studying
it in any detail.

8.5.1 The Problem to be Solved

Simulations of CSF have grown in size and complexity as computer power has grown.
The largest N-body CSF simulations of the day have increased from N = 323 particles
on VAXs in the mid 1980s to 10243 particles on today’s MPPs—an astounding
factor of over 32,000. Today, CSF simulations are among the largest consumers
of supercomputer cycles at the National Science Foundation centers, rivaling CFD,
condensed matter physics, and lattice gauge theory.

Two parallel applications described here simulate CSF in three spatial dimensions
and time within an expanding background space–time consistent with our under-
standing of the Big Bang origin of the universe. The first code, called Kronos [153],
uses a uniform Cartesian grid comoving with the expanding universe as the basis for
discretizing the equations of matter and gravitational dynamics. The second code,
called Enzo [150, 152, 716], adds structured, adaptive mesh refinement (SAMR) to
the Kronos algorithm for improved spatial and temporal resolution in high-density
regions (galaxies, clusters, etc.). Sequential and parallel versions of both codes have
been developed and optimized for vector multiprocessors, SMPs, MPPs, and clusters
of PCs and SMPs. The message-passing parallel version Enzo, which can be run with
and without mesh refinements, is our computational workhorse and is the main
focus of this report.

8.5.2 Computational Issues

Matter in the universe is of two basic types: ordinary baryonic matter composed of
nucleons and electrons, out of which stars and galaxies are made, and nonbary-
onic dark matter of unknown composition, which is nevertheless known to be the
dominant mass constituent in the universe on scales of galaxies and larger. Kronos
and Enzo self-consistently simulate both components, which evolve according to
different physical laws and therefore require different numerical algorithms.

Baryonic matter is evolved using a finite volume discretization of the Euler equa-
tions of gas dynamics cast in the comoving frame, including energy source and sink
terms due to radiative heating and cooling processes, as well as changes in the ioniza-
tion state of the gas [153]. In some calculations involving nonequilibrium chemistry,

220 Chapter 8 Application Overviews

separate chemical/ionic species are evolved by solving their kinetic rate equations
[42]. Radiation fields are modeled as evolving, but spatially homogeneous, back-
grounds; true radiative transfer is not yet included, but is on the horizon [2].

Dark matter is assumed to behave as a collisionless phase fluid, obeying the
Vlasov–Poisson equation. Its evolution is solved using particle-mesh algorithms
for collisionless N-body dynamics [479]. Dark matter and baryonic matter interact
only through their self-consistent gravitational field. The gravitational potential is
computed by solving the Poisson equation on the uniform or adaptive grid hierarchy
using Fourier transform techniques. In generic terms, our CSF codes are 3-D hybrid
codes consisting of a multispecies hydrodynamic solver for the baryons coupled to
a particle-mesh solver for the dark matter via a Poisson solver.

Matter evolution is computed in a cubic domain of length L = a(t)X, where
X is the domain size in comoving coordinates and a(t) is the homogeneous and
isotropic scale factor of the universe, which is an analytic or numerical solution of
the Friedmann equation, a first-order ordinary differential equation. For sufficiently
large L compared to the structures of interest, any chunk of the universe is statistically
equivalent to any other, justifying the use of periodic boundary conditions. The
speed of Fast Fourier Transform (FFT) algorithms and the fact that they are ideally
suited to periodic problems make them the Poisson solver of choice, given the large
grids employed—5123 or larger.

CSF simulations require very large grids and particle numbers due to two compet-
ing demands: large boxes are needed for a fair statistical sample of the universe; and
high mass and spatial resolution are needed to adequately resolve the scale lengths
of the structures that form. For example, in order to adequately simulate the inter-
nal structure of galaxies and simultaneously describe their large-scale distribution in
space (large-scale structure), a dynamic range of 104 per spatial dimension and 109

in mass is needed at a minimum.
The largest uniform grid simulation ever done including gas and dark matter is

a Kronos simulation we carried out on 512 processors of the Connection Machine-
5 at the National Center for Supercomputing Applications in 1994 (see Plate 6 of
the color insert). The simulation used a grid of 5123 cells and 5× 107 particles—
far short of the requirements mentioned above. With the use of the adaptive mesh
refinement code Enzo on the current generation of terascale computing systems, the
desired resolutions are now achievable. In the next two sections, we discuss parallel
computing aspects of these two codes.

8.5.3 Parallel Unigrid Code: Kronos

The Kronos code was developed in 1992–1994 by Greg Bryan for the Connection
Machine-5 at the NCSA. The CM-5 had 512 processor nodes, each consisting of a SUN
Sparc microprocessor, four vector processors, and 32 MB of memory. The theoretical
peak speed of the system was quoted as 0.128 Gflop/s/PN × 512 PN = 65 Gflop/s,
and the total memory was 16 GB.

8.5 Cosmological Structure Formation 221

Kronos was implemented in the data-parallel Connection Machine Fortran (CMF)
programming model. Conceptually, Kronos is the union of two codes: a 3-D Eulerian
gas dynamics code (suitably modified for cosmology [153]) and a 3-D particle-mesh
code (of which the FFT-based Poisson solver is a component) for the collisionless
dark matter. The parallel challenges and solutions for each code are quite different,
and so we discuss them individually.

The equations of gas dynamics are purely local: changes in cell quantities due to
pressure forces and fluid advection involve only nearest neighbors. By assigning one
virtual processor per cell in a 3-D Cartesian lattice, nearest-neighbor information
was passed using the CM-5 NEWS data communication network via simple CSHIFT
calls. This was the basis of our first implementation. Performance tests measured at
≈ 8 Mflops/s/PN, or about 6% of peak. The reason for this poor performance was
that the communication network was invoked between every computational cell,
regardless of whether they resided on the same physical processor or not.

In order to circumvent this, our second implementation abandoned the one
virtual processor per cell model in favor of explicit domain decomposition. This
was accomplished within the CMF data-parallel programming model by declaring
6-D arrays for the fluid field variables—for example, d(:serial, :serial, :serial,
:news, :news, :news)—with the serial dimensions referring to the 3-D index of a
cell within a given block and the parallel dimensions referring to the indices of
the block in a 3-D block decomposition of the computational domain. This had the
advantage that serial operations on dwithin a block could proceed in parallel without
invoking the communication network. Internal boundary values were copied from
neighboring processors once per time step into 5-D arrays that corresponded to the
faces of the blocks. In this way, communication was isolated to one rather minor
phase of the calculation. Performance improved threefold to ≈ 24 Mflop/sec or 18%
of peak, which largely reflected the sustained speed of the purely local computations.
Scaling tests with constant work per processor yielded ideal scaling up to NP = 512
nodes, confirming that communication costs were minimal.

The particle-mesh (PM) code, on the other hand, is communication intensive. The
PM algorithm consists of three phases, the first and third of which involve nonlocal
communication between and among the 1-D particle list and 3-D field arrays. In the
first, mass assignment , phase, the particles’ mass is assigned to a density field array via
a gather operation. In the second, field solve phase, the Poisson equation is solved for
the gravitational potential using 3-D FFTs—a nonlocal operation. The mesh force is
computed from spatial differences of the potential—a local operation. In the third,
force interpolation, phase, the mesh force is interpolated to the particle positions
via a scatter operation. Obviously, finding efficient parallel implementations that
minimize communication costs is essential. An additional complication is that the
particle distribution becomes highly inhomogeneous due to gravitational clustering,
creating load imbalances in phases one and three, even if the particle list and field
arrays are uniformly distributed across processors.

We implemented the algorithm of Ferrell and Bertschinger [328], which elegantly
solves all of these problems. Since the algorithm and its performance on the CM-5

222 Chapter 8 Application Overviews

are described in detail in Ferrell and Bertschinger [328], we merely summarize the key
points. The gather–scatter portion of phases one and three are done in a completely
load-balanced way through the use of parallel prefix operations on the particle list
[473]. Parallel prefix operations, also referred to as scans, are a method of turning
certain kinds of global communications into regular, mostly local, communications.
Briefly, the procedure is to sort the particle list so that all particles within a given
processor are contiguous. An index list is introduced that contains the processor
ID for each particle. Because the list has been sorted, the processor ID is constant
in a segment, changing to another value in the next segment. We then use a
segmented scan add operation, which computes a running sum of the masses of the
particles within a given segment. This operation requires O(log NP) communication
operations. The last element in each segment contains the total mass in the segment.
We then have only one word of data to send to each virtual processor assigned to
a grid cell. In step two, three components of the gravitational acceleration on the
grid are computed from the gridded mass densities using Fourier transforms. For this
purpose, we used the highly optimized 3-D FFT routines in the CMSSL library. The
third, force interpolation, phase is essentially the inverse of the mass assignment
phase. We use a segmented scan copy to copy the gridded forces to a segmented force
list. This operation also takes O(log NP) communication operations. The forces are
then applied to the particles in parallel in a purely local fashion.

For a scaled work problem, the combined code exhibited linear speedup on
the CM-5 to 512 processors, with a parallel efficiency of T(1)/(NP ∗ T(NP))∼ 0.75.
Clearly, the communication overhead in the PM portion of the calculation is respon-
sible for the lack of ideal scaling. Still, the fact that parallel speedup was roughly
constant versus NP indicates that the combined algorithm was scalable.

8.5.4 Parallel AMR Code: Enzo

The demise of the CM-5, coupled with the need for higher resolution than afforded
by uniform grids, motivated the development of Enzo. Enzo uses structured adap-
tive mesh refinement (SAMR) [93, 152] to achieve high resolution in gravitational
condensations. The central idea behind SAMR is simple to describe but difficult to
implement efficiently on parallel computers. While solving the desired set of equa-
tions on a coarse uniform grid, monitor the quality of the solution; when necessary,
add an additional finer mesh over the region that requires enhanced resolution. This
finer (child) mesh obtains its boundary conditions from the coarser (parent) grid or
from other neighboring (sibling) grids with the same mesh spacing. The finer grid is
also used to improve the solution on its parent. As the evolution continues, it may
be necessary to move, resize, or even remove the finer mesh. Even finer meshes may
be required, producing a tree structure that can continue to any depth.

To advance our system of coupled equations in time on this grid hierarchy, we use
a recursive algorithm. For simplicity, we consider only the hydrodynamic portion
of the algorithm; the dark matter dynamics and Poisson equation have a similar
structure. The EvolveLevel routine is passed the level of the hierarchy that it is to

8.5 Cosmological Structure Formation 223

work on and the new time. Its job is to march the grids on that level from the old
time to the new time:

EvolveLevel(level, ParentTime)
begin

SetBoundaryValues(all grids);
while (Time < ParentTime)
begin

dt = ComputeTimeStep(all grids);
SolveHydroEquations(all grids, dt);
Time += dt ;
SetBoundaryValues(all grids);
EvolveLevel(level+1, Time);
RebuildHierarchy(level+1);

end
end

Inside the loop that advances the grids on this level, there is a recursive call, so that
all the levels above (with finer subgrids) are advanced as well. The resulting order of
time steps is like the multigrid W cycle.

As with any hyperbolic equation, we must set the boundary conditions on the
grids. This is done by first interpolating from a grid’s parent and then copying from
sibling grids, where available. Once the boundary values have been set, we evolve the
hydrodynamic field equations using procedure SolveHydroEquations. The final task
of the EvolveLevel routine is to modify the grid hierarchy to the changing solution.
This is accomplished via the RebuildHierarchy procedure, which takes a level as an
argument and modifies the grids on that level and all higher levels. This involves
three steps: First, a refinement test is applied to the parent grids of the current level to
determine which cells need to be refined. Second, rectangular regions are chosen that
cover all of the refined regions, while an attempt is made to minimize the number
of unnecessarily refined points. Third, the new grids are created and their values are
copied from the old grids (which are deleted) or interpolated from parent grids. This
process is repeated on the next refined level until the grid hierarchy has been entirely
rebuilt.

8.5.5 Parallelization of Enzo

Other than the physical equations solved, Enzo bears no relation to Kronos. Virtu-
ally none of the CMF code was reusable because not only did we change algorithms,
we changed programming models and languages as well. The code is mostly im-
plemented in C++, with compute-intensive kernels in Fortran 77. Efficiently paral-
lelizing SAMR is difficult, particularly for distributed-memory systems. Grids have a
relatively short life, so information must be updated frequently. Moreover, load bal-
ancing becomes crucial since small regions of the original grid eventually dominate
the computational requirements.

224 Chapter 8 Application Overviews

Enzo development proceeded in two major steps. The first step, carried out by
Greg Bryan in 1994–1996, was the implementation of a shared-memory parallel code
for the SGI Origin 2000 employing SGI’s PowerC compiler to concurrently execute
grids at a given refinement level. The powerful, mature C development environment
on the SGI was a major boon. However, since the workload is typically distributed
nonuniformly across levels (cf. Figure 8.8) and the algorithm dictates that levels
must be processed sequentially, we found that we could not efficiently use more than
about 16 processors. Therefore, a second SPMD message-passing code for distributed-
memory systems was implemented in 1997–2000, wherein the root grid is domain
decomposed into 3-D blocks. Each block and its complement of subgrids are assigned
to different processors, which work on them in parallel. Load balancing is achieved
by sending grids from overloaded processors to underloaded ones, and optionally
through the use of grid splitting [591].

We have used the MPI library to produce a code that is portable and efficient. In
particular, we have used the following optimization techniques:

. Distributed objects. We leveraged the object-oriented design by distributing the
objects over the processors, rather than attempting to distribute an individual
grid.

. Sterile objects. Although distributing the objects results in good load balancing,
it has the potential to greatly increase the amount of communication since
each processor has to probe other processors to find out about neighboring
grids. We solved this problem by creating a type of object that contained
information about the location and size of a grid, but did not contain the
actual solution arrays. These sterile objects are small; thus, each processor can
hold the entire hierarchy. Only those grids that are truly local to that processor
are nonsterile.

. Pipelined communications. One result of distribution is that all operations be-
tween two grids (e.g., obtaining boundary values) are potentially nonlocal. We
optimize this by dividing each communication stage into two steps. First, all
of the data are processed and sent. Since all processors have the location of all
grids locally (thanks to the sterile objects), we can order these sends such that
the data that are required first are sent first. Then, in the receive stage, the data
needed immediately have had a chance to propagate across the network while
the rest of the sends were initiated.

8.5.6 Performance

The performance of an adaptive mesh-refinement (AMR) application is difficult to
characterize because the workload and its distribution are dynamically changing
throughout the calculation. The simplest measure is time to solution of a run ver-
sus NP. This necessitates running a job to completion over and over again, varying
NP. This is computationally expensive for modest problem sizes and impractical for
medium-to-large problems of interest. Nevertheless, this has been done; results are

8.5 Cosmological Structure Formation 225

Figure 8.7 Enzo simulation of primordial star formation. Each image shows gas density in a
region 10 times smaller than the previous. From Bryan et al. [149].

reported in Lan et al. [592]. We find that not only is parallel efficiency problem-size
dependent , as expected, but also problem dependent as well. For example, a survey
calculation involving a large root grid and no subgrids distributed over many pro-
cessors will scale very differently from a calculation involving a large number of
small, deeply nested subgrids focusing on a single collapsing object.

To illustrate the operation and performance of Enzo on the latter sort of problem,
we show in Figure 8.7 an AMR simulation of primordial star formation that achieves
a local resolution in space and time of 1012. For comparison, 1012 is roughly the
ratio of the diameter of the Earth to the size of a human cell. Temporally, 1012 is
roughly the ratio of time since the extinction of the dinosaurs to when you woke up
this morning. Over 8000 subgrids are developed at 34 levels of refinement to achieve
this unprecedented dynamic range.

In Figure 8.8(a) and (b), we show how the grid hierarchy grows as time progresses.
Note the slow increase in the number of grids as the protostar condenses and the
final, very sudden jump in the depth of the grid tree at the end, when the core
of the cloud collapses to high density. This demonstrates how the data structures
themselves adapt to fit the physical solution. Note also the extremely large number
of memory allocations and frees, since the entire grid hierarchy is rebuilt thousands

226 Chapter 8 Application Overviews

0 50 100 150 200

Time (Myr)

0

10

20

30
M

ax
im

um
 le

ve
l

Time (Myr)

0 50 100 150 200

N
um

be
r

of
 g

rid
s

0

2000

4000

6000

8000

Level

G
rid

s
p

er
 le

ve
l

0 10 20 30 40
0

500

1000

1500

2000
t=77 Myr
t=185 Myr

(a) (b)

(c) (d)

W
or

k
p

er
 le

ve
l (

re
la

tiv
e)

0

0.5

1

0 10 20 30 40

Figure 8.8 (a) Depth of the hierarchy tree and (b) number of grids as a function of time (in
millions of years). (c) Number of grids per level and (d) estimate of the computational work
required per level (in each case normalized so that the maximum value is unity).

of times. This kind of method represents a new class of scientific computing that
places great strain on the operating system infrastructure. Total memory usage is
also substantial, often reaching up to 20 GB. With outputs in the 2 to 4 GB range,
we require at least 50 to 100 GB of disk storage and much more mass storage space.

In Figure 8.8(c) and (d), we have chosen two representative times and plotted
the distribution of levels per grid. At early times, most of the grids are at moderate
levels, representing the fact that relatively low resolution is sufficient to model the

8.6 Computational Electromagnetics 227

protostar. However, at late times, a large investment is required at the very highest
levels of resolution.

Finally, we estimate the raw performance of the code in the following way. We
have used the hardware floating-point counter on the SGI Origin 2000 to determine
the speed of a similar SAMR calculation. This provides a benchmark from which we
can determine the speed of this calculation, which was run on the Blue Horizon IBM
SP2 system at the San Diego Supercomputer Center (SDSC). Running on 64 processors
produced a speed approximately 125 times faster than a single Origin 2000 processor
(105 Mflop/s), yielding a total speed of approximately 13 Gflop/s. As an exercise, we
can also ask how long this calculation would have taken with a traditional static
grid code and compute an effective or virtual flop rate. To do this, we assume a grid
with 1012 cells on each side and assume that the entire calculation would have taken
(quite conservatively) 1010 time steps. This works out to approximately 1050 floating-
point operations. Since the entire calculation took in the order of 106 seconds, this
converts to a virtual flop rate of 1044 flop/s.

8.5.7 Future Work

In the near future we intend to carry out large-scale simulations of galaxy forma-
tion resolving the internal structure of thousands of galaxies simultaneously. These
will involve large global root grids (5123 or larger) and deep mesh refinements
around each forming galaxy. Computational requirements are in the sustained ter-
aflop range, owing to the large number of time steps required, with concomitantly
large RAM and disk requirements. Currently, we are porting Enzo to terascale cluster
architectures, including the Compaq system at the Pittsburgh Supercomputing Cen-
ter (PSC), as well as Linux clusters at NCSA. Principal needs remain mature C and
Fortran compilers, debugging tools, optimized mathematical subroutine libraries,
and efficient parallel I/O subsystems. We plan to explore mixed-mode parallel pro-
gramming (threads plus message passing) on the IBM SP2 with Power3 SMP nodes
at the SDSC. Our experience with the CM-5 has taught us, the hard way, that lan-
guage solutions to massive parallelism vanish as quickly as the hardware they rode
in on.

Acknowledgments. This work was carried out under the auspices of the Grand
Challenge Cosmology Consortium with partial support by NSF grants ASC-9318185
and AST-9803137, as well as support from the National Center for Supercomput-
ing Applications, University of Illinois at Urbana-Champaign, which is gratefully
acknowledged.

8.6 Computational Electromagnetics
J. S. Shang

Computational electromagnetics (CEM) has a tier-structured approach for radar
cross-section (RCS) prediction, antenna radiation, and coupling problems. The
predictive techniques fall naturally into three general groups, according to the

228 Chapter 8 Application Overviews

mathematics formulation of the physics and the frequency spectrum of interest.
In essence, numerical methods are derived for dominant physical phenomena
depending on whether they occur in the Rayleigh, resonance, or optical region.
The collective modeling and simulation tools span a range, including the asymp-
totic method, the frequency-domain method (or method of moments, MoM), the
time-domain method, and the more recent hybrid technique [471, 535, 647, 857].
Individually, they may be limited either by predictive accuracy or by practicality in
application. As a group, these methods have been extremely productive for antenna
and low-observable technology development.

In the optical region, the asymptotic methods for RCS prediction are based on
ray tracing and edge diffraction [647], which are developed from both simple geo-
metrical optics and geometrical theory of diffraction but not by solving the Maxwell
equations. The scattering phenomenon is described by a set of parallel rays issued
from radar and reflected from a geometric surface. The total scattering field is then
determined by summing the contributions from all rays at a far-field observation
point. Evaluations of these incident and reflected rays are essentially independent
from each other. Thus, numerical methods of this group are extremely easy to port
on massively parallel computers. In fact, scalable performance is a common feature
of all ray-tracing methods. However, these methods are accurate only if the physical
dimension of the scatterer is large in comparison with the incident wavelength and
if it does not have small features such as wires, cracks, and cavities. In order to in-
clude effects of detailed features such as these, it is necessary to apply more accurate
methods involving solution of the Maxwell equations. Unfortunately, frequency-
domain (MoM) and time-domain methods are both time consuming and memory
intensive.

Massively parallel computing capability has aided in the practical application
of frequency-domain and time-domain methods in two ways. First, concurrent
computing significantly reduces the wall-clock time required for data processing.
Recent research efforts in porting CEM programs to multicomputers have recorded
two orders of magnitude of speedup in the data processing rate [857].

More importantly, the distributed and the shared-distributed memory systems can
now accommodate a far larger number of unknowns than were unattainable just a
few years ago. This increased capacity expands the frequency range and complexity
of physics that can be practically simulated.

Meanwhile, numerical algorithm improvement also redefines the application do-
main for CEM. For the frequency-domain method, the fast multipole algorithm
has demonstrated a higher computational efficiency by reducing arithmetic oper-
ations [194]. In turn, the gain in computational efficiency enlarges the application
range of MoM methods from the resonance to the optical region. Compact-difference
schemes, on the other hand, also provide the means for the time-domain method
to approach a spectral-like performance [854, 855]. Although a continuing research
effort is still required to realize the full application potential, the progress in CEM
warrants a timely assessment.

In the development of interdisciplinary modeling and simulation technology,
electromagnetic phenomena are increasingly used as additional control mecha-

8.6 Computational Electromagnetics 229

nisms. In this regard, magneto-aerodynamics is truly an interdisciplinary endeavor.
The interactive physical phenomenon requires the interplay of aerodynamics, elec-
tromagnetics, chemical physics, and quantum physics to describe the ionized gas
flow in the presence of magnetic and electric fields. The science issues for this in-
terdisciplinary endeavor are extremely complex, and the required knowledge base is
the sparest; but the prospect for technical breakthrough is too great to be overlooked
[856]. The present effort attempts to assess the progress in CEM and to identify future
research needs. The major challenges for CEM simulation in the future are wide-band
antenna design, real-time range profiling, synthetic-aperture radar (SAR) imaging,
and ultra-wideband systems for radar remote sensing. In order to meet these chal-
lenges, additional physics must be incorporated into the predictive tools of CEM. The
more complex physical description can only be accommodated by increasing the ef-
ficiency of modeling and simulation technology through improvement of numerical
procedures and interdisciplinary analysis.

8.6.1 Asymptotic Methods

For high-frequency applications, the ray tracing or the shooting-and-bouncing-ray
(SBR) technique is used exclusively [615, 647]. The underlying principle of this tech-
nique is based on physical optics, physical theory of diffraction, or a combination of
both. For multibounce calculations, the effects of polarization, ray divergence factor,
and material reflection coefficients must be taken into consideration. The scattered
far field is derived from the induced surface current by physical optics integration.
Therefore, the predictive accuracy is controllable by the density of the tracing rays.
At present, the SBR technique for RCS and range profile calculation requires a min-
imum ray density of 10 rays per wavelength. Hence, the RCS of a typical fighter at
an incidence elevation and azimuth angle will need about a 30-million-ray window
when illuminated by radar at the X-band frequency (8 to 12 GHz). Fortunately, the
SBR algorithm is naturally suitable for concurrent computing. Exceptionally high
parallel-computing efficiency has been consistently demonstrated in the develop-
ment of automatic target recognition (ATR) technology [647].

For the asymptotic approach, the development of pre- and post-processors is
identified as the pacing item [647]. Predictive accuracy depends on the integrity of
the CAD geometry file of the scatterer. It is therefore critical to be able to inspect the
fidelity of the geometry data and the connectivity of the surface elements. For post-
processor development, the effort needs to go beyond acquisition of an excellent
graphical user interface; hybrid methods, coupling other numerical results, must be
developed.

8.6.2 Frequency-Domain Methods

The progress in the method of moments (MoM) for computing efficiency improve-
ment has been strongly impacted by incorporating advanced basis functions and the

230 Chapter 8 Application Overviews

fast multipole method (FMM) [194]. The Rao–Wilson–Glisson (RWG) basis function
used to discretize the surface integral kernel has substantially reduced the number
of unknowns for finite element approximations [790]. On the other hand, the FMM
technique relies on a hierarchical subdivision of space that encloses the source and
scattering point. For the matrix–vector multiply-dominated numerical procedure,
the operation count can be reduced from O(N2) to O(N) or O(N log N), depending
on the spatial-distribution point density and implementation.

Research on the integral equation approach emphasizes two areas. The first is
computing efficiency and memory enhancement of the basic algorithms by using
either FMM or the adaptive integral method (AIM) [120]. The second is exclusively
related to parallel computing and requires an extensive investment in the scalable
and parallel matrix–vector multiplier library. An efficient, sparse-matrix-inversion
procedure for MoM is the pacing item for large-scale electromagnetic scattering or
radiating simulations.

8.6.3 Time-Domain Methods

Advances in time-domain methods have been made in porting numerical procedures
to parallel computers [857], unstructured grid implementation [430], and compact-
difference method developments [366, 603, 855, 1011]. Since integration with other
scientific disciplines is often based on the time-domain approach, we discuss these
methods in more detail.

Multicomputers, either distributed-memory or shared-distributed-memory RISC
(reduced instruction set computer) systems, have provided a viable means for sim-
ulating dynamic and wide-band electromagnetic phenomena. It is well known that
balancing the processor’s workload and minimizing interprocessor communication
are essential for effective use of multicomputers. A frequently overlooked require-
ment for efficient parallel computing has been identified from the programming
paradigm for 3-D Maxwell equations. Cache memory, together with memory hierar-
chy utilization, emerges as an equally critical element for high concurrent computing
performance [857]. A data processing rate exceeding 41.3% of the SGI R10000 pro-
cessor specification (rated peak performance of 390 Mflops) has been achieved by en-
hancing the data locality feature. This performance accomplishment demonstrated
that mapping numerical procedures to RISC-based multicomputers, balancing the
processor’s work load, minimizing interprocessor communication, and managing
cache memory are procedures essential for effective use of distributed-memory mul-
ticomputers.

The key to making a computer program flexible enough for a wide range of ap-
plications lies in mapping all grid topologies onto a common framework [430, 854,
857]. Since an unstructured-grid approach represents the most general grid connec-
tivity, grids are best converted to and stored via an unstructured-grid data composi-
tion. This conversion process requires explicit connectivity of adjacent grid points.
The same requirement exists when mapping a numerical procedure to multicomput-
ers by the domain-decomposition approach. Explicit connectivity of adjacent grid

8.6 Computational Electromagnetics 231

points or data blocks becomes a common feature of these two unrelated techniques.
It seems logical to adopt the unstructured-grid approach for both discretizing and
parallel computing. This point is unequivocally illustrated in solving a perfect, elec-
trically conducting (PEC) sphere problem by an explicit finite-volume, time-domain
(FVTD) procedure at high incident–wave frequency [430, 856]. The scattering simula-
tion is obtained from a patched surface mesh to alleviate the mesh point clustering of
the spherical polar coordinate in the polar region. The unstructured-grid approach
realizes a factor of four in computing resource savings over that of conventional
methods. An accurate prediction is obtained on 16 nodes of an SGI Origin 2000
system using a total 33.92 nodal hours, or a wall-clock time of 2.12 hours. The com-
puting resource requirement is comparable to the most efficient MoM computation
using the FMM procedure (20 hours on a single node) [194, 854]. The gain in numer-
ical efficiency of unstructured-grid formulations, however, is offset by the limitation
of second-order numerical algorithms.

For telecommunication and navigation, high-frequency wave packets are required
to propagate over a long distance without significant phase error and amplitude
modulation. A spectral-like, high numerical resolution for simulating long-distance
wave propagation can be derived from high-order or compact-difference algorithms
[603]. The compact-difference–based finite-volume and finite-difference methods
have produced remarkably accurate results for transient electromagnetic wave prop-
agation in waveguides [366, 603, 855, 1011]. These numerical procedures can be
further optimized to minimize dissipative, dispersive, and anisotropic errors. More
recently, a low-pass filter was developed to effectively control an undesirable time-
instability feature of compact-difference schemes. The numerical filter eliminates
the Fourier components that are unsupportable by the grid-point density used. This
high-resolution numerical algorithm research, together with the concept of perfectly
matched layers (PMLs) [91], will remain research foci for CEM in the time domain.

8.6.4 Hybrid Methods

A relatively new approach in the practical CEM arena for full-scale dynamic simula-
tion is the hybrid method [535, 647]. This method is designed to simulate physics
involving interactions of discontinuities on electrically large structures. Three levels
of hybridization are possible by consistently combining earlier computational tools
for solving time-domain, frequency-domain, and asymptotic formulation for scatter-
ing and radiation. The hybrid formulations in CEM meld the best of high-frequency
asymptotics with rigorous low-frequency approaches that are based on first princi-
ples [535, 647]. In general, three types of hybridization have been derived from the
concept of domain decomposition. Type 1 is developed from the Schelkunoff equiv-
alence principle [535] to allow the combination of high-frequency asymptotes with
the solution of surface integral equations. Type 2 hybridization iteratively couples
physical optics with the solution of the surface integral equation. This approach can
treat electrically large and intermediate size scatterers, as well as a radiator strongly

232 Chapter 8 Application Overviews

dominated by interaction with surface discontinuities. Type 3 hybridization ana-
lyzes problems dominated by strong bidirectional surface-wave interactions, which
are induced by widely separated, local geometrical complexities or different materi-
als. Although hybrid methods are still in the initial stage of development, computing
time savings by a factor of 20 have been realized in some numerical simulations [535].
The development of a consistent and systematic hybrid technique is a major area of
emphasis for future CEM research.

8.6.5 State of the Art

Computational magneto-aerodynamics is recognized as a new frontier for interdis-
ciplinary technology development. A key element of this technical requirement
is integrating CEM in the time domain with computational fluid dynamics and
computational chemical kinetics. The impact of this interdisciplinary endeavor to
high-speed flight may be revolutionary.

This assessment indicates that the hybrid technique is one of the most exciting de-
velopments in expanding the application envelope for CEM. For frequency-domain
methods, an efficient and scalable matrix–vector multiplier appears to be the pacing
item. In order to achieve greater computational efficiency on RISC-based multicom-
puters, cache utilization emerges as an important requirement for high-performance
computing.

8.7 Parallel Algorithms in Data Mining
Mahesh V. Joshi, Eui-Hong (Sam) Han, George Karypis, and Vipin Kumar

Recent growth in the availability of various kinds of data has been explosive. It
has resulted in an unprecedented opportunity to develop automated data-driven
techniques of extracting useful knowledge. Data mining, an important step in this
process of knowledge discovery, consists of methods that discover interesting, non-
trivial, and useful patterns hidden in the data [191, 902]. The field of data mining
builds on ideas from diverse fields, such as machine learning, pattern recognition,
statistics, database systems, and data visualization. But techniques developed in
these traditional disciplines are often unsuitable due to some unique characteristics
of today’s data sets, such as their enormous sizes, high dimensionality, and hetero-
geneity.

To date, the primary driving force behind research in data mining has been the
development of algorithms for data sets arising in various business, information re-
trieval, and financial applications. Businesses can use data mining to gain significant
advantages in today’s competitive global marketplace. For example, the retail indus-
try is using data mining techniques to analyze buying patterns of customers, mail
order businesses are using them for targeted marketing, the telecommunication in-
dustry is using them for churn prediction and network alarm analysis, and the credit
card industry is using them for fraud detection. Also, the recent growth of electronic

8.7 Parallel Algorithms in Data Mining 233

commerce is generating a wealth of online Web data, which requires sophisticated
data mining techniques.

Due to the latest technological advances, very large data sets are becoming avail-
able in many scientific disciplines as well. The rate of production of such data sets
far outstrips the ability to analyze them manually. For example, a computational
simulation running on state-of-the-art, high-performance computers can generate
terabytes of data within a few hours, whereas a human analyst may take several
weeks or longer to analyze and discover useful information from these data sets.
Data mining techniques hold great promise for developing new sets of tools that
can be used to automatically analyze the massive data sets resulting from such simu-
lations and thus help engineers and scientists unravel the causal relationships in the
underlying mechanisms of dynamic physical processes. Some other recently emerg-
ing applications of data mining can be found in the analysis and understanding of
gene functions in the field of genomics and the categorization of stars and galaxies
in the field of astrophysics.

The huge size of the available data sets and their high dimensionality make
large-scale data mining applications computationally very demanding, and high-
performance parallel computing is becoming an essential component of the solu-
tion. Moreover, the quality of the data mining results often depends directly on
the amount of computing resources available. In fact, data mining applications are
poised to become the dominant consumers of supercomputing in the near future.
There is a necessity to develop effective parallel algorithms for various data mining
techniques. However, designing such algorithms is challenging. In the rest of this sec-
tion, we describe the parallel formulations of two important data mining algorithms:
discovery of association rules and induction of decision trees for classification.

8.7.1 Parallel Algorithms for Discovering Associations

An important problem in data mining [191] is the discovery of associations present
in the data. Such problems arise in the data collected from scientific experiments,
from monitoring of physical systems such as telecommunications networks, or from
transactions at a supermarket. The problem was formulated originally in the context
of transaction data at a supermarket. These market basket data consist of transactions
made by each customer. Each transaction contains items bought by the customer (see
Table 8.1). The goal is to see if the occurrence of certain items in a transaction can
be used to deduce occurrence of other items, or in other words, to find associative
relationships among items. If such interesting relationships can be found, then they
can be put to various profitable uses: shelf management, inventory management,
and so on. Thus, association rules were born [14]. Given a set of items, association rules
predict the occurrence of some other set of items with a certain degree of confidence.
The goal is to discover all such interesting rules. This problem is far from trivial because
of the exponential number of ways in which items can be grouped together and the
different ways in which one can define the “interestingness” of a rule. Hence, much
research effort has been put into formulating efficient solutions to the problem.

234 Chapter 8 Application Overviews

Table 8.1 Supermarket transactions.

TID Items

1 Bread, Coke, Milk
2 Beer, Bread
3 Beer, Coke, Diaper, Milk
4 Beer, Bread, Diaper, Milk
5 Coke, Diaper, Milk

Let T be the set of transactions, where each transaction is a subset of the item set
I . Let C be a subset of I . We define the support count of C with respect to T to be:

σ(C)= |{t | t ∈ T , C ⊆ t}|

Thus σ(C) is the number of transactions that contain C. An association rule is
an expression of the form X

s,α�⇒ Y , where X ⊆ I and Y ⊆ I . The support s of the
rule X

s,α�⇒ Y is defined as σ(X ∪ Y)/|T |, and the confidence α is defined as σ(X ∪
Y)/σ (X). For example, for transactions in Table 8.1, the support of rule {Diaper,
Milk} �⇒ {Beer} is σ(Diaper, Milk, Beer)/5= 2/5= 40%, whereas its confidence is
σ(Diaper, Milk, Beer)/σ (Diaper, Milk)= 2/3= 66%.

The task of discovering an association rule is to find all rules X
s,α�⇒ Y such that s

is greater than or equal to a given minimum support threshold and α is greater than
or equal to a given minimum confidence threshold. The association rule discovery
is usually done in two phases. The first phase finds all the frequent item sets, that is,
sets satisfying the support threshold. These are then post-processed in the second
phase to find the high-confidence rules. The former phase is computationally more
expensive, and much research has been done in developing efficient algorithms
for it. A comparative survey of all the existing techniques is given in Joshi et al.
[526]. A key feature of these algorithms lies in their method of controlling the
exponential complexity of the total number of item sets (2|I |). Briefly, they all use
the antimonotone property of an item set support, which states that an item set
is frequent only if all of its sub–item sets are frequent. The Apriori algorithm [16]
pioneered the use of this property to systematically search the exponential space of
item sets. At iteration k, it generates all the candidate k-item sets (of length k) such
that all their (k− 1)-subsets are frequent. The occurrences of these candidates in the
transaction database are counted to determine frequent k-item sets. Efficient data
structures are used to perform fast counting.

Overall, serial algorithms such as Apriori have been successful on a wide vari-
ety of transaction databases. However, many practical applications of association
rules involve huge transaction databases that contain a large number of distinct
items. In such situations, these algorithms running on single-processor machines
may take unacceptably long times. For example, in the Apriori algorithm, if the
number of candidate item sets becomes too large, then they might not all fit in

8.7 Parallel Algorithms in Data Mining 235

the main memory, and multiple database passes would be required within each
iteration, incurring expensive I/O cost. This implies that, even with the highly
effective pruning method of Apriori, the task of finding all association rules can
require a lot of computational and memory resources. This is true of most of
the other serial algorithms as well, and it motivates the development of parallel
formulations.

Various parallel formulations have been developed; a comprehensive survey can
be found in Joshi et al. [526], and Zaki 1013]. These formulations are designed to
effectively parallelize either or both of the computation phases: candidate gener-
ation and candidate counting. The candidate-counting phase can be parallelized
relatively easily by distributing the transaction database and gathering local counts
for the entire set of candidates stored on all the processors. The CD algorithm [15]
is an example of this simple approach. It scales linearly with respect to the number
of transactions; however, generation and storage of a huge number of candidates on
all the processors becomes a bottleneck, especially when high-dimensional problems
are solved for low support thresholds using a large number of processors. Other par-
allel formulations, such as IDD [433], have been developed to solve these problems.
Their key feature is that they distribute the candidate item sets to processors so as to
extract the concurrency in the candidate-generation phase as well as the counting
phase. Various ways are employed in IDD to reduce the communication overhead,
to exploit the total available memory, and to achieve reasonable load balance. The
IDD algorithm exhibits better scalability with respect to the number of candidates.
Moreover, reduction of redundant work and the ability to overlap counting com-
putation with communication of transactions improves its scalability with respect
to the number of transactions. However, it still faces problems when one desires to
use a large number of processors to solve the problem. As more processors are used,
the number of candidates assigned to each processor decreases. This has two impli-
cations for IDD. First, with fewer candidates per processor, it is much more difficult
to achieve load balance. Second, it results in less computation work per transac-
tion at each processor, reducing the overall efficiency. Further, lack of asynchronous
communication ability may worsen the situation.

Formulations that combine the approaches of replicating and distributing candi-
dates so as to reduce the problems of each one have been developed. An example is
the HD algorithm of [433]. Briefly, it works as follows. Consider a P-processor sys-
tem in which the processors are split into G equal-size groups, each containing P/G
processors. In the HD algorithm, we execute the CD algorithm as if there were only
P/G processors. That is, we partition the transactions of the database into P/G parts,
each of size N/(P/G), and assign the task of computing the counts of the candidate
set Ck for each subset of the transactions to each one of these groups of processors.
Within each group, these counts are computed using the IDD algorithm. The HD
algorithm inherits all the good features of the IDD algorithm. It also provides good
load balance and enough computation work by maintaining a minimum number of
candidates per processor. At the same time, the amount of data movement in this
algorithm is cut down to 1/G of that of IDD. A detailed parallel run-time analysis of

236 Chapter 8 Application Overviews

HD is given in Han et al. [434]. It shows that HD is scalable with respect to both the
number of transactions and the number of candidates. The analysis also provides
the necessary conditions under which HD can outperform CD.

Sequential Associations

The concept of association rules can be generalized and made more useful by observ-
ing another fact about transactions. All transactions have a time stamp associated
with them, that is, the time at which the transaction occurred. If this information
can be put to use, one can find relationships such as: if a customer bought [The C Pro-
gramming Language] book today, then he/she is likely to buy a [Using Perl] book in a few
days’ time. The usefulness of this kind of rule gave birth to the problem of discover-
ing sequential patterns or sequential associations. In general, a sequential pattern is a
sequence of item sets with various timing constraints imposed on the occurrences
of items appearing in the pattern. For example, (A) (C,B) (D) encodes a relationship
that event D occurs after an event-set (C,B), which in turn occurs after event A. Prediction
of events and identification of sequential rules that characterize different parts of the
data are some example applications of sequential patterns. Such patterns are not only
important because they represent more powerful and predictive relationships, but
they are also important from the algorithmic point of view. Bringing in sequential
relationships increases the combinatorial complexity of the problem enormously.
The maximum number of sequences having k events is O(mk2k−1), where m is the
total number of distinct events in the input data. In contrast, there are only (m

k)

size-k item sets possible when discovering nonsequential associations from m dis-
tinct items. Designing parallel algorithms for discovering sequential associations is
equally important and challenging. In many situations, the techniques used in par-
allel algorithms for discovering standard nonsequential associations can be extended
easily. However, different issues and challenges arise due to the sequential nature and
various ways in which interesting sequential associations can be defined. Details of
various serial and parallel formulations and algorithms for finding such associations
can be found in Joshi et al. [526, 528].

8.7.2 Parallel Algorithms for Induction of Decision-Tree Classifiers

Classification is an important data mining problem. The input to the problem is
a data set called the training set, which consists of a number of examples, each
having a number of attributes. The attributes are either continuous, when the attribute
values are ordered, or categorical, when the attribute values are unordered. One of the
categorical attributes is called the class label or the classifying attribute. The objective
is to use the training set to build a model of the class label, based on the other
attributes, such that the model can be used to classify new data not from the training
data set. Application domains include retail target marketing, fraud detection, and
design of telecommunication service plans. Several classification models such as
neural networks [617], genetic algorithms [386], and decision trees [785] have been

8.7 Parallel Algorithms in Data Mining 237

proposed. Decision trees are probably the most popular, since they obtain reasonable
accuracy [673] and are relatively inexpensive to compute.

Most of the existing induction-based algorithms such as C4.5 [785], CDP [13],
SLIQ [662], and SPRINT [851] use Hunt’s method [785] as the basic algorithm. Here
is its recursive description for constructing a decision tree from a set T of training
cases, with classes denoted {C1, C2, . . . , Ck}.

Case 1. T contains cases all belonging to a single class Cj. The decision tree for
T is a leaf identifying class Cj.

Case 2. T contains cases that belong to a mixture of classes. A test is chosen,
based on a single attribute, that has one or more mutually exclusive outcomes
{O1, O2, . . . , On}. Note that in many implementations, n is chosen to be 2; this
leads to a binary decision tree. T is partitioned into subsets T1,T2, . . . ,Tn, where
Ti contains all the cases in T that have outcome Oi of the chosen test. The
decision tree for T consists of a decision node identifying the test and one
branch for each possible outcome. The same tree-building machinery is applied
recursively to each subset of training cases.

Case 3. T contains no cases. The decision tree for T is a leaf, but the class to be
associated with the leaf must be determined from information other than T .
For example, C4.5 chooses this to be the most frequent class at the parent of
this node.

Figure 8.9 shows a training data set with four data attributes and two classes;
its classification decision tree was constructed using Hunt’s method. In Case 2 of
Hunt’s method, a test based on a single attribute is chosen for expanding the current
node. The choice of an attribute is normally based on the entropy gains [785]
of the attributes. The entropy of an attribute, calculated from class distribution
information, depicts the classification power of the attribute by itself. The best
attribute is selected as a test for node expansion.

Highly parallel algorithms for constructing classification decision trees are desir-
able for dealing with large data sets in a reasonable amount of time. Classification
decision-tree construction algorithms have natural concurrency; once a node is gen-
erated, all of its children in the classification tree can be generated concurrently.
Furthermore, the computation for generating successors of a classification-tree node
can also be decomposed by performing data decomposition on the training data.
Nevertheless, parallelization of the algorithms for constructing the classification tree
is challenging. First, the shape of the tree is highly irregular and is determined only
at run time. Furthermore, the amount of work associated with each node also varies
and is data dependent. Hence, any static allocation scheme is likely to suffer from
major load imbalance. Second, even though the successors of a node can be pro-
cessed concurrently, they all use the training data associated with the parent node.
If these data are dynamically partitioned and allocated to different processors that
perform computation for different nodes, then there is a high cost for data move-
ments. If the data are not partitioned appropriately, then performance can be bad
due to this loss of locality.

238 Chapter 8 Application Overviews

sunny 75 Play
Don’t Play
Don’t Play
Don’t Play

Don’t Play
Don’t Play

sunny 85
sunny 72
sunny 69 Play

overcast 72 Play
overcast 83 Play
overcast 64 Play
overcast 81 Play

rain 71
rain 65
rain 75 Play
rain 68 Play
rain 70 Play

70
90
85
95
70
90
78
65
75
80
70
80
80
96

true
true
false
false
false
true
false
true
false
true
true
false
false
false

sunny 80

Outlook Temp (F) Humidity (%) Windy? Class

Play Don’t Play Don’t Play Play

sunny
overcast

rain

<= 75 > 75 true false

Play

Outlook

WindyHumidity

(a)

(b)

Figure 8.9 A small training data set [785] and its final classification decision tree.

Several parallel formulations of classification decision-tree construction have been
proposed recently [189, 385, 527, 584, 760, 851, 893]. In this section, we present
two basic parallel formulations for classification decision-tree construction and a
hybrid scheme that combines good features of both of these approaches described
in Srivastava et al. [893]. Most of the other parallel algorithms are similar, and their
characteristics can be explained using these two basic algorithms. For these parallel
formulations, we focus our presentation on discrete attributes only. Handling of
continuous attributes is discussed separately. In all parallel formulations, we assume
that N training cases are randomly distributed to P processors and that each processor
initially has N/P cases.

8.7 Parallel Algorithms in Data Mining 239

Synchronous Tree-Construction Approach

In this approach, all processors construct a decision tree synchronously by sending
and receiving class distribution information of local data. Figure 8.10(a) shows the
overall picture. The root node has already been expanded, and the current node is the
leftmost child of the root (as shown in the top part of the figure). All four processors
cooperate to expand this node to have two child nodes. Next, the leftmost node of
these child nodes is selected as the current node (in the bottom of the figure), and
all four processors again cooperate to expand the node.

Partitioned Tree-Construction Approach

In this approach, whenever feasible, different processors work on different parts
of the classification tree. In particular, if several processors cooperate to expand a
node, then these processors are partitioned to expand the successors of this node.
Figure 8.10(b) shows an example. First (at the top of the figure), all four processors co-
operate to expand the root node just as they do in the synchronous tree-construction
approach. Next (in the middle of the figure), the set of four processors is partitioned
into three parts. The leftmost child is assigned to processors 0 and 1, while the other
nodes are assigned to processors 2 and 3, respectively. Now these sets of processors
proceed independently to expand their assigned nodes. In particular, processor 2
and processor 3 expand their part of the tree using the serial algorithm. The group
containing processors 0 and 1 splits the leftmost child node into three nodes. These
three new nodes are partitioned into two parts (shown in the bottom of the figure);
the leftmost node is assigned to processor 0, while the other two are assigned to pro-
cessor 1. From now on, processors 0 and 1 work independently on their respective
subtrees.

Hybrid Parallel Formulation

The hybrid parallel formulation has elements of both schemes. The synchronous
tree-construction approach incurs high communication overhead as the frontier gets
larger. The partitioned tree-construction approach incurs the cost of load balancing
after each step. The hybrid scheme continues with the first approach as long as
the communication cost incurred by the first formulation is not too high. Once
this cost becomes high, the processors and the current frontier of the classification
tree are partitioned into two parts. Figure 8.11 shows one example of this parallel
formulation. At the classification-tree frontier at depth 3, no partitioning has been
done, and all processors are working cooperatively on each node of the frontier. At
the next frontier at depth 4, partitioning is triggered, and the nodes and processors
are partitioned into two partitions.

A key element of the algorithm is the criterion that triggers the partitioning of the
current set of processors (and the corresponding frontier of the classification tree).
If partitioning is done too frequently, then the hybrid scheme will approximate

240 Chapter 8 Application Overviews

Proc 3

Proc 3

(a)

(b)

Proc 0 Proc 1 Proc 2

Class distribution information

Data item

Data item

Proc 1 Proc 2

Proc 1 Proc 2 Proc 3

Class distribution information

Proc 0 Proc 1 Proc 2

Proc 0 Proc 1 Proc 2

Proc 3

Proc 3

Proc 0

Proc 0

Figure 8.10 (a) Synchronous tree-construction approach and (b) partitioned tree-construction
approach.

8.7 Parallel Algorithms in Data Mining 241

Computation frontier at depth 3

Partition 1 Partition 2

Figure 8.11 Hybrid tree-construction approach.

the partitioned tree-construction approach, and thus will incur too much data-
movement cost. If the partitioning is done too late, then it will suffer from the
high cost of communicating statistics generated for each node of the frontier, like
the synchronized tree-construction approach. In the hybrid algorithm, splitting is
performed when the accumulated cost of communication becomes equal to the cost
of moving records and load balancing in the splitting phase.

The size and shape of the classification tree vary widely, depending on the
application domain and training data set. Some classification trees might be shallow,
and the others might be deep. Some classification trees could be skinny; others could
be bushy. Some classification trees might be uniform in depth, while other trees
might be skewed in one part of the tree. The hybrid approach adapts well to all types
of classification trees. If the decision tree is skinny, the hybrid approach will just stay
with the synchronous tree-construction approach. On the other hand, it will shift
to the partitioned tree-construction approach as soon as the tree becomes bushy. If
the tree has a big variance in depth, the hybrid approach will perform dynamic load
balancing with processor groups to reduce processor idling.

Handling Continuous Attributes

The approaches described above concentrated primarily on how the tree is con-
structed in parallel with respect to the issues of load balancing and reducing com-
munication overhead. The discussion was simplified by assuming that there were
no continuous-valued attributes. Continuous attributes can be handled in two ways.
One is to perform intelligent discretization, either once in the beginning or at each

242 Chapter 8 Application Overviews

node as the tree is being induced, and to treat them as categorical attributes. Another,
more popular approach is to use decisions of the form A < x and A≥ x directly on the
values, x, of continuous attribute A. The decision value of x needs to be determined
at each node. For efficient search of x, most algorithms require the attributes to be
sorted on values, such that one linear scan can be done over all the values to eval-
uate the best decision. Among various different algorithms, the approach taken by
the SPRINT algorithm [851], which sorts each continuous attribute only once in the
beginning, is efficient for large data sets. The sorted order is maintained through-
out the induction process, thus avoiding the possibly excessive costs of resorting
at each node. A separate list is kept for each of the attributes; a record identifier is
associated with each sorted value. The key step in handling continuous attributes is
the proper assignment of records to child nodes after a splitting decision is made.
Implementation of this offers a design challenge. SPRINT builds a mapping between
a record identifier and the node to which it goes based on the splitting decision. The
mapping is implemented as a hash table and is probed to split the attribute lists in
a consistent manner.

Parallel formulation of the SPRINT algorithm falls under the category of syn-
chronous tree-construction design. The multiple sorted lists of continuous attributes
are split in parallel by building the entire hash table on all the processors. However,
with this simpleminded way of achieving a consistent split, the algorithm incurs
a communication overhead of O(N) per processor. Since the serial run time of the
induction process is O(N), SPRINT becomes unscalable with respect to run time. It
is unscalable in memory requirements also, because the total memory requirement
per processor is O(N), as the size of the hash table is of the same order as the size of
the training data set for the upper levels of the decision tree, and it resides on every
processor. Another parallel algorithm, ScalParC [527], solves this scalability problem.
It employs a distributed hash table to achieve a consistent split. The communication
structure used to construct and access this hash table is motivated by the parallel,
sparse matrix–vector multiplication algorithms. It is shown in Joshi et al. [527] that,
with the proper implementation of parallel hashing, the overall communication
overhead does not exceed O(N), and the memory required does not exceed O(N/p)

per processor. Thus, ScalParC is scalable in run time as well as memory requirements.

8.7.3 State of the Art

This section presented an overview of parallel algorithms for two of the commonly
used data mining techniques. Key issues such as load balancing, attention to locality,
extracting maximal concurrency, avoiding hot spots in contention, and minimizing
parallelization overhead are just as central to these parallel formulations as they are to
the traditional, scientific parallel algorithms. In fact, in many cases, the underlying
kernels are identical to well-known algorithms, such as the sparse matrix–vector
product.

8.8 High-Performance Computing in Signal and Image Processing 243

To date, the parallel formulations of many decision-tree induction and association
rule–discovery algorithms are reasonably well understood. Relatively less work has
been done on parallel algorithms for other data mining techniques, such as cluster-
ing, rule-based classification algorithms, deviation detection, and regression. Some
possible areas of further research include parallelization of many emerging new and
improved, serial data-mining algorithms; further analysis and refinements of exist-
ing algorithms for scalability and efficiency; designs targeted for shared-memory
and distributed shared-memory machines equipped with symmetric multiproces-
sors; and efficient integration of parallel algorithms with parallel database systems.

Acknowledgments. This work was supported by National Science Foundation con-
tract CCR-9972519, Army Research Office contract DA/DAAG55-98-1-0441, DoE
grant LLNL/DOE B347714, and Army High Performance Computing Research Center
(AHPCRC) contract DAAH04-95-C-0008. Access to computing facilities was provided
by AHPCRC, Minnesota Supercomputer Institute. Related papers are available at
http://www.cs.umn.edu/~kumar.

8.8 High-Performance Computing in Signal and Image Processing
D. R. Prabhu, Ashok K. Krishnamurthy, and Stanley C. Ahalt

The signal and image processing (SIP) community is extremely diverse and includes
applications in geophysics, biomedical engineering, wireless communications, fac-
tory automation, speech processing, and automatic target recognition (ATR), to
name a few. A general introduction to signal processing can be found in Oppen-
heim et al. [726], with a more advanced treatment in Zelniker and Taylor [1017].
There are also numerous excellent books focused on image processing [389, 508,
776], and multidimensional signal processing [296, 614].

Research groups within the SIP community have been working for many years
on tasks that share a number of basic characteristics, and a framework has gradually
emerged by which shared algorithms, software, and data can be distributed and
tested. The overall aim of the community was to speed development, reduce cost,
and improve the quality of fielded systems. This effort gave rise to a set of common
tools being used by the majority of SIP algorithm designers and researchers. Most
notably, C, C++, MATLAB, and Khoros emerged as the primary tools used in the
SIP community. However, in contrast to other areas of research, much of the SIP
community did not embrace the use of high-performance computing (HPC). While
the reasons for this phenomenon have been debated, one significant factor was
that SIP developers became accustomed to working and testing codes on interactive
systems, while most HPC systems were managed as batch-oriented systems.

Thus, until recently most of the algorithm development work in the SIP com-
munity has been performed on single-processor workstations or on networks of
loosely coupled workstations. Similarly, most of the deployed SIP systems have been
implemented on either programmable, embedded DSP chips that are designed to
run SIP algorithms or on highly specialized, closely coupled embedded architectures

244 Chapter 8 Application Overviews

that could take advantage of regularization in SIP processing algorithms. Although
there are isolated examples of subsets of the SIP community extensively using HPC
resources, most notably the seismographic community [910], only recently have
high-performance computers become more widely utilized by SIP researchers. This
use of HPC resources in the SIP community has largely arisen from Department of
Defense (DoD) research and engineering activities. Within DoD the need for very
high-performance signal and image processing has increased dramatically in the
last 5 years, particularly for automatic object recognition and related image process-
ing tasks. In these types of applications, either computational requirements and/or
streaming data (I/O) requirements dictate the use of HPC architectures.

Consequently, recent HPC work in the SIP community has focused on two themes.
The first theme is the use of libraries, software components, and higher-level lan-
guages (HLLs) that allow complex SIP algorithms to be assembled, rigorously tested,
and executed on commodity HPC platforms. That is, SIP algorithms are increasingly
developed and tested on HPC systems, and in some cases production algorithms are
executed on HPC systems in order to process massive data sets in a timely fashion.
The second theme is emerging research directed at finding methods of mapping SIP
algorithms to highly parallel, embedded processors. These two themes underlie the
examples discussed below.

A large portion of the work in signal/image processing often involves simulation
and modeling of a variety of sensors and algorithms. In a typical simulation code,
there is an outer loop stepping through space or time, and the results from one
iteration of the outer loop do not influence the results of subsequent iterations.
Coarse-grain parallelization of such codes is fairly straightforward. The total number
of outer loop iterations is divided evenly across the number of available CPUs. Each
CPU computes a part of the outer loop. At the end of computation, one of the CPUs
gathers results from the rest of the CPUs and creates the final outputs. It is relatively
easy to distribute the first chunk of work to the first CPU, the second chunk to the
second CPU, and so on. It is also relatively easy to gather results at the end with
the above simple distribution. Unfortunately, this simplistic method may not be the
best way of distributing work to achieve good load balance. The preferred way to
distribute this type of SIP application is to deal out a tiny chunk of work to all CPUs
and then have each CPU request more work when it has finished computing its part.
This method, however, results in more communication.

8.8.1 Examples of HPC Use in Signal and Image Processing

Our experience with diverse SIP algorithms and SIP simulation and modeling codes
is described below. Before we begin these descriptions, we note that it is critical to
obtain good serial performance before any parallelization work is undertaken. For
example, the developer should use the highest level of optimization that results in
the best performance and yields correct outputs. Additionally, compiler flags that
make full use of the available cache and software pipelines of the processors on the
target platform should be used. Linking to a fast math library before linking to the

8.8 High-Performance Computing in Signal and Image Processing 245

regular math library can often yield a significant speedup, but one should be careful
to examine the resulting precision and verify for correctness. Serial performance can
sometimes be significantly improved by using certain well-written fast libraries for
math computation and signal/image processing. An example of such a fast library is
FFTW from the Massachusetts Institute of Technology [362].

The examples provided are representative of the increasing use of HPC in the SIP
community. It should be noted that, while the examples discussed below are neces-
sarily biased toward DoD applications, the seismographic community continues to
make extensive use of SIP algorithms on virtually all HPC architectures.

Automatic Target Recognition

ATR is one of the most important military applications of signal/image processing
algorithms. An ATR system typically has a variety of sensors, such as infrared,
millimeter wave, and so on, and either performs onboard computations on acquired
data or transmits data to a nearby ground station for analysis. A typical ATR system
has severe constraints on streaming-input data rates (of signals or images) as well as
latency requirements (time taken to process one signal or image).

For example, in the Predator system used for Tactical Endurance Synthetic Aper-
ture Radar (TESAR) imagery, images vary in size and complexity with data rates up to
1 Mpixel/s depending on the radar mode, platform velocity, and imaging geometry.
Thus, a fielded ATR system must be able to handle this data rate and identify targets
in a timely manner for presentation on a waterfall display. Operational requirements
set the time allowed for ATR computation; for example, it should be possible to com-
mand the Predator to reimage a scene of interest while still in range. This constraint
typically permits a 20-second latency period for such reconnaissance ATR systems.

As an example of the impact of HPC on the development of ATR systems, an
existing three-stage template-based algorithm for ATR of military ground targets in
synthetic aperture radar (SAR) images was redesigned and implemented. The system
was ultimately targeted to two multiprocessing configurations: (1) a 10-processor
laboratory/fieldable system, and (2) an HPC system [900]. The Scalable Programming
Environment (SPE) from the Naval Command, Control and Ocean Surveillance
Center [754] was employed to parallelize the ATR code in a highly scalable way.
Input images were distributed to several ATR processes running on multiple CPUs
in a round-robin fashion. The outputs of the ATR processes were then collected by
an ATR detection collector process, and made available to a waterfall-type display.
Scalability was demonstrated on the fieldable system for 10 target types and on the
HPC resources at the Army Research Laboratory’s Major Shared Resource Center (ARL
MSRC) for up to 100 different target types.

The above example demonstrates how software tools have evolved to support
SIP applications on modern HPCs. SPE is a Message Passing Interface (MPI)–based
tool for developing applications of parallel signal/image processing. SPE allows
the construction of data-flow-type applications with simple connections. Program
modules are mapped to processors, and the connections between user-denominated

246 Chapter 8 Application Overviews

ports (e.g., atr:image_input) are made at run time, based on configuration file
specifications. The programming environment is flexible and allows independently
developed programs to be assembled together in different configurations as a single
parallel application—without the need for recompilation. There is also an excellent
interface for job control, tracing, and profiling.

Munition Simulations

The first simulation/modeling code to be described was a serial code used for scene
generation in a munition hardware-in-the-loop simulation [775]. This code com-
putes the sensor measurements in a simulated descent of widely used submunition,
referred to as SADARM. For each time step, the following are computed: pose, IR,
magnetometer, active mmW, passive mmW, and encounter measurements. The orig-
inal nonoptimized serial code ran for approximately 9 hours on one CPU of an SGI
Origin 2000 (195 MHz R10K processors) to produce a simulation output set. Prior
to the parallelization, multiple copies of the serial code were run simultaneously on
multiple CPUs for simulation. Each copy would take 9 hours to complete. Perform-
ing any “what-if” computation by changing inputs based on the results of a previous
run required 9 hours to generate the new output set.

The optimized and parallelized code completed the same simulation run in ap-
proximately 22 minutes using 12 CPUs and in only 9 minutes using 32 CPUs on
the SGI Origin 2000. Running the code on 32 CPUs of an SGI Origin 2000 with 300
MHz R12K processors further reduced the computation time to about 6 minutes. A
plot of computation time versus number of CPUs is presented in Figure 8.12(a). The
resulting speedup curves are shown in Figure 8.12(b). Serial optimization of the code
was achieved through the use of appropriate compiler flags and through linking to
a hardware-optimized, fast math library. Parallelization of the code was achieved by
employing the MPI. This speedup has had a significant impact on SADARM verifica-
tion and validation efforts, and it has resulted in significant cost savings to DoD.

One limitation of such a straightforward, coarse-grained, parallelization approach
is that the parallel code will not scale beyond the number of outer loop iterations,
where each CPU gets exactly one iteration. To achieve scalability to a larger number
of processors, one would then have to examine the inner loops, if any, and then
carefully distribute work among all the available processors in order to achieve load
balance, while still achieving good performance.

Radar Propagation Codes

A second simulation/modeling code was coarse-grain parallelized. This code was a
radar propagation code that is being developed by the Army Research Laboratory
in collaboration with the University of Michigan. The code had the familiar outer
loop structure with independent iterations. A typical run involved only about 30
iterations of the outer loop; consequently, the parallel code would not scale to
beyond 30 processors. The serial code took about 8.75 hours on a SUN Ultra SPARC
machine. The parallel code took only about 7.5 minutes to run on 30 CPUs of a

8.8 High-Performance Computing in Signal and Image Processing 247

0 10 20

Computation time vs. # CPUs

Speedup vs. # CPUs

CPUs
30 40

1000

100

10

1

C
om

p
ut

at
io

n
tim

e,
 m

in
ut

es
Original code

Serial optimized
parallel code

(a)

0 10 20
CPUs

30 40

70

60

50

40

30

20

10

0

Sp
ee

du
p

(b)

Linear reference

Total speedup relative
to original code

Serial optimized
parallel code

Figure 8.12 Speedup of the SADARM scene-generation code. (a) Computation time versus
number of CPUs for the original and parallel versions of the SADARM scene-generation code.
(b) Speedup of serial optimized parallel code versus number of CPUs. The total speedup is
relative to the original nonoptimized serial code.

SUN E10K at the ARL MSRC. The speedup enables rapid what-if computations and
facilitates rapid computational steering while resulting in significant cost savings.

Radar Cross-Section Codes

The third simulation/modeling code that was parallelized was a radar cross-section
computation code developed at the ARL. The original code was a serial MATLAB code

248 Chapter 8 Application Overviews

in m-file form. MATLAB has been identified as one of the key higher-level program-
ming languages for algorithm development work in signal/image processing. Core
MATLAB, along with numerous toolboxes for specialized applications, provides a
very rich collection of functions and visualization tools for rapid code development
and prototyping. The signal processing and image processing toolboxes significantly
reduce algorithm development time for signal/image processing applications. Unfor-
tunately, MATLAB is inherently serial code and is thus somewhat difficult to use on
parallel machines. Some parts of MATLAB that are linked to certain vendor-provided
libraries do run in multithreaded mode, but they do not result in good overall par-
allelization of user-developed code.

The MATLAB compiler from Mathworks, Inc. was used to convert the serial m-file
into standalone C code. The serial code once again had the familiar outer loop that
was stepping through all 360◦ of a circle in steps of 1◦. The computations for any
given angle were independent of those for other angles in that loop. So coarse-grain
parallelization of the code was relatively straightforward. Calls to MPI functions were
hand inserted in the resulting C code. The MATLAB compiler converts each variable
in MATLAB to an mxArray structure in C, so one has to be careful while obtaining and
setting values of variables within the automatically generated C code. The modified
C code, with MPI calls, was then compiled and linked with the MPI library and run
on multiple processors. The original code (vectorized and well written in MATLAB)
took about 3 hours to run on a SUN Ultra SPARC machine. The parallel code took
only about 9 minutes to produce identical outputs on eight CPUs of a SUN E10K at
the ARL MSRC.

There are other ways of parallelizing serial MATLAB code. One approach is to
use a commercial package called RTExpress from Integrated Sensors Inc. (ISI) [811].
RTExpress converts MATLAB m-files to C code, compiles the resulting C code, links
with MPI libraries and ISI-developed parallel libraries for MATLAB functions, and
runs the resulting parallel code on multiple CPUs. There is a small amount of
input from the user through a target balancing tool (tbt), where the user assigns
different parts of the code to different groups. The groups are subsequently mapped
to different processors automatically by RTExpress. This environment is a fairly good
rapid prototyping tool and has support for over 90% of the functionality of core
MATLAB. Toolbox functions are not yet implemented. Some of the other competing
products that are currently in development are MultiMATLAB at Cornell University
[941] and Parallel Problems Server at MIT [496].

Sometimes, compiling m-files and producing either MEX files or standalone C
programs can speed up execution times, especially if the MATLAB code has been
poorly written, not vectorized, or has a lot of for loops inside it.

In addition to MATLAB, Khoros from Khoral Research Inc. [565] has also been
identified as a key higher-level programming language for the development of
signal/image processing algorithms. The commercially available version of Khoros is
serial in nature and does not run on multiple processors. However, Advanced Khoros
2.3, which has recently completed beta testing, has a Parallel Toolbox that provides
“parallel glyphs” to the user. Parallel glyphs are MPI-based modules that run on

8.9 Deterministic Monte Carlo Methods and Parallelism 249

multiple CPUs and blend in seamlessly with other glyphs that can either be serial or
parallel.

8.8.2 State of the Art

The signal/image processing community is largely divided into two major groups—
embedded systems developers and algorithm developers. Most signal/image process-
ing algorithms are eventually embedded into fielded systems with real-time perfor-
mance constraints in addition to constraints on size, weight, and power consump-
tion. Portability from the large HPCs to embedded systems has always been time
consuming. The Vector Signal Image Processing Library (VSIPL) [840] is an emerging
standard API/library for vector-signal, image processing primitives, with the goals
of portability across platforms, reuse, interoperability, and reduction of develop-
ment cost. The VSIPL 1.0 API standard is currently undergoing a few final finishing
touches. Several vendors, including Mercury Computers, MPI Software Technology,
Annapolis Microsystems, Sky Computers, and Atlantis Corporation, have already
announced VSIPL products. Advanced Khoros 2.3 has some VSIPL support.

Acknowledgment. The Programming Environment and Training (PET) program at
the Army Research Laboratory, Major Shared Resource Center supported the code
parallelization work described in this paper.

8.9 Deterministic Monte Carlo Methods and Parallelism
Michael Mascagni

Monte Carlo methods (MCMs) have been, and continue to be, very popular algo-
rithms for solving a wide variety of problems in science, engineering, and technol-
ogy. However, they are generally methods of last resort. As Mark Kác, a probability
and Monte Carlo pioneer, put it, “You use Monte Carlo methods until you under-
stand the problem.” Yet there are clearly large classes of problems that remain poorly
understood in the sense of Mark Kác. This is because MCMs remain the best ap-
proaches to certain classes of problems. While it is impossible to clearly identify the
problem classes where MCMs are most effective, one can generally say that most
problems that rely on MCMs for their solution either live in high dimensions or
have extremely complicated geometries.

Given that MCMs will continue to dominate numerical approaches in certain
application areas, it behooves MCM practitioners to optimize their computational
methods as much as possible. This is especially evident when one considers that
the U.S. Department of Energy (DoE) has claimed that MCMs have consistently
consumed up to a half of their high-performance computing cycles since the be-
ginning of DoE’s supercomputing activities. A generic problem with MCMs is their
slow convergence with respect to statistical error. Since MCMs are based on statis-
tical sampling, a quantity of interest is known only within a statistically defined
confidence interval. The width of such confidence intervals generically decreases as

250 Chapter 8 Application Overviews

O(N−1/2) with N random samples. Clearly, a modest improvement in this stochastic
convergence rate would have a significant impact on scientific computing.

A generic approach to the acceleration of Monte Carlo convergence is through
the use of so-called quasi-random numbers (QRNs). These are numbers that are
highly uniformly distributed and thus preferred in MCMs where an even sampling
of the computational space is more important than randomness. The classical MCM,
numerical integration, is an example of an application that in reality requires uni-
formity, not randomness. With pseudorandom numbers (PRNs), N samples reduce
the stochastic errors by O(N−1/2), while quasi–Monte Carlo methods can produce de-
terministic errors as small as O(N−1) in numerical integration. QRNs have also been
used to accelerate the Monte Carlo convergence of other applications, and so they
are sought after by computational scientists.

The purpose of this section is twofold. Primarily, it is to acquaint the reader with
QRNs and the advances being made with quasi–MCMs in a variety of application
areas. Secondarily we describe some of the problems inherent with applying QRNs
to parallel computations and provide the reader with empirical evidence that quasi–
MCMs are being applied to a broad spectrum of parallel Monte Carlo applications
with some success. We begin with a standard introduction to QRNs via the numerical
quadrature application. This introduces the discrepancy, a measure of the deviation
of a point set from uniformity, and provides us with an understanding of how
well QRNs can perform. This also gives us a clear demonstration of a Monte Carlo
algorithm that in reality needs uniformity rather than randomness for optimal
performance. Next, a problem associated with splitting QRN sequences for use on
different problems (processors) is discussed. This shows that in this particular case,
the ability to combine two or more results to obtain greater accuracy is equivalent to
the problem of creating a parallel QRN generator. This is a special set of circumstances
where the parallelization is required to advance capabilities for serial computation
as well. We then review methods of quasi-random number generation and point
out the deficiencies in currently available, free QRN software. Finally, we briefly
present the results of a Markov chain computation for solving a problem in linear
algebra via an MCM. Here we show (1) that one can parallelize the quasi–Monte
Carlo approach to the problem, (2) that the parallel efficiency of the regular Monte
Carlo approach is maintained by the quasi–Monte Carlo method, and (3) that the
accelerated convergence of QRNs is maintained in this parallel context.

8.9.1 Motivation for Using Quasi-Random Numbers

MCMs are based on mathematical processes that utilize random numbers. The com-
putational requirement for random numbers in Monte Carlo applications has been
satisfied with two types of computational random numbers: PRNs and QRNs. PRNs
mimic the behavior of “real” random numbers in theoretical and empirical tests,
whereas QRNs provide very uniformly distributed sets of numbers that may, in fact,
perform poorly on tests of randomness. However, QRNs are more effective than PRNs
in situations where the uniform distribution of points is important. Such applica-

8.9 Deterministic Monte Carlo Methods and Parallelism 251

tions include the canonical Monte Carlo application, the numerical evaluation of
integrals. It is the case that many nonquadrature Monte Carlo computations can be
mathematically viewed as numerical quadrature, and so many other types of Monte
Carlo applications have seen performance improvement when PRNs have been care-
fully replaced with QRNs. In fact, many application areas that do not at face value
seem to be anything like quadrature have been favorably impacted by the use of
QRNs. These include simulations with random walkers in application areas as diverse
as heat conduction [687], rarefied gas dynamics [165], particle transport [892], nu-
merical linear algebra [650], and financial-instrument evaluation [166]. In addition,
QRNs promise to improve the convergence of applications in quantum mechanics,
materials science, biochemistry, and environmental remediation.

The mathematical motivation for QRNs can be found in the classic Monte Carlo
application of numerical integration. For simplicity, we detail this for 1-D integra-
tion. Let us assume that we are interested in the numerical value of I = ∫ 1

0 f (x) dx,
and we seek to optimize approximations of the form

I ≈ 1
N

N∑
n=1

f (xn)

A solution to the optimization of the integration nodes, {xn}Nn=1, comes from the
famous Koksma–Hlawka inequality. Let us define the star-discrepancy of a 1-D point
set, {xn}Nn=1, by

D∗N =D∗N(x1, . . . , xN)= sup
0≤u≤1

∣∣∣∣∣
1
N

N∑
n=1

χ[0,u)(xn)− u

∣∣∣∣∣

where χ[0,u) is the characteristic function of the half-open interval [0, u). The
term

∑N
n=1 χ[0,u)(xn) counts the number of xn’s in the interval [0, u), and thus∣∣∣ 1

N
∑N

n=1 χ[0,u)(xn)− u
∣∣∣ measures the difference between the actual distribution of

points in the interval [0, u) and the uniform distribution on [0, u). By taking the
supremum, we are characterizing the distribution of the {xn}Nn=1 through its maxi-
mal deviation from uniformity. We thus have the remarkable theorem due to Koksma
and Hlawka [571]: If f (x) has bounded variation, V(f), on [0,1), and x1, . . . ,xN ∈ [0,1]
have star-discrepancy D∗N, then

∣∣∣∣∣
1
N

N∑
n=1

f (xn)−
∫ 1

0
f (x) dx

∣∣∣∣∣≤ V(f) D∗N

This simple bound on the integration error is a product of V(f), the total variation
of the integrand in the sense of Hardy and Krause, and D∗N, the star-discrepancy
of the integration points. A major area of research in Monte Carlo is variance
reduction, which indirectly deals with minimizing V(f). QRN generation deals with
minimization of the other term.

252 Chapter 8 Application Overviews

Mathematically, QRNs produce point sets and sequences that have low discrep-
ancy. Discrepancy is a quantitative measure of the uniformity of a point set. The star-
discrepancy, introduced above, is merely one of many discrepancies that are used to
measure uniformity of discrete measures [706]. For example, the star-discrepancy of
a point set of N “real” random numbers in one dimension is O(N−1/2(log log N)1/2),
while the discrepancy of N QRNs can be as low as (N−1). 2 In s > 3 dimensions, it
is rigorously known that the discrepancy of a point set with N elements can be
no smaller than a constant depending only on s times N−1(log N)(s−1)/2. This re-
markable result of Roth [810] has motivated mathematicians to seek point sets and
sequences with discrepancies as close to this lower bound as possible. Since Roth’s
results, there have been many constructions of low discrepancy point sets that have
achieved star-discrepancies as small as O(N−1(log N)s−1). Most notably, there are the
constructions of Hammersley, Halton [431], Soboĺ [139, 881], Faure [321, 351], and
Niederreiter [140, 706].

While QRNs do improve the convergence of some applications, it is by no means
trivial to enhance the convergence of all MCMs. Even in the case of numerical
integration, enhanced convergence is by no means assured in all situations with
the naive use of QRNs. This fact was demonstrated through studies of the efficacy
of QRNs in numerical integration [165, 166, 688, 691,] by carefully investigating
the impact of dimensionality and smoothness of the integrand on convergence.
In a nutshell, their results showed that at high dimensions (s≈> 40), quasi–Monte
Carlo integration ceases to be an improvement over regular Monte Carlo integration.
Perhaps more startling was that a considerable fraction of the enhanced convergence
is lost in quasi–Monte Carlo integration when the integrand is discontinuous. In fact,
even in two dimensions one can lose the approximately O(N−1) quasi–Monte Carlo
convergence for an integrand that is discontinuous on a curve such as a circle. In
the best cases, the convergence drops to O(N−2/3), which is only slightly better than
regular Monte Carlo integration.

8.9.2 Methods of Quasi-Random Number Generation

Perhaps the best way to illustrate the difference between QRNs and PRNs is with a
picture. In Figure 8.13, we plot 4096 tuples produced by successive elements from
a 64-bit PRN generator from the SPRNG library [651]. These tuples are distributed in
a manner consistent with real random tuples. In Figure 8.14, we see 4096 quasi-
random tuples formed by taking the second and third dimensions from the Soboĺ
sequence. It is clear that the two figures look very different and that Figure 8.14
is much more uniformly distributed. Both plots have the same number of points,
and the largest “hole” in Figure 8.13 is much larger than that in Figure 8.14. This
illustrates quite effectively the qualitative meaning of low discrepancy.

2 Of course, the N optimal quasi-random points in [0, 1) are the obvious: 1
(N+1)

, 2
(N+1)

, . . . , N
(N+1)

.

8.9 Deterministic Monte Carlo Methods and Parallelism 253

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x(j)

4096 points of SPRNG sequence

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x(
j +

 1
)

Figure 8.13 Tuples produced by successive elements from a SPRNG pseudorandom number
generator.

The first QRN sequence was proposed by Halton [431] and is based on the Van der
Corput sequence, with different prime bases for each dimension. The jth element of
the Van der Corput sequence with base b is defined as φb(j − 1), where φb(·) is the
radical inverse function and is computed by writing j− 1 as an integer in base b, and
then flipping the digits about the ordinal (decimal) point. Thus, if j − 1= an . . . a0
in base b, then φb(j − 1) = 0.a0 . . . an. As an illustration, in base b = 2, the first
elements of the Van der Corput sequence are 1

2 , 1
4 , 3

4 , 1
8 , 5

8 , 3
8 , 7

8 ; while with b= 3, the
sequence begins with 1

3, 2
3 , 1

9 , 4
9 , 7

9 , 2
9 , 5

9 , 8
9 . With b = 2, the Van der Corput sequence

methodically breaks the unit interval into halves in a manner that never leaves a
gap that is too big. With b = 3, the Van der Corput sequence continues with its
methodical ways, but instead recursively divides intervals into thirds.

Another way to think of the Van der Corput sequence (with b = 2) is to think of
taking the bits in j− 1 and associating with the ith bit the number vi. Every time the
ith bit is one, perform an exclusive-or in vi, called the ith direction number. For the
Van der Corput sequence, vi is just a bit sequence with all zeroes except a one in the
ith location counting from the left. Perhaps the most popular QRN sequence, the
Soboĺ sequence, can be thought of in these terms. Soboĺ [881] found a clever way to
define more complicated direction numbers than the “unit vectors” that define the

254 Chapter 8 Application Overviews

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Dimension 2

D
im

en
si

on
 3

4096 points of Sobol sequence

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
´

Figure 8.14 Tuples produced by the second and third dimension of the Soboĺ sequence.

Van der Corput sequence. Besides producing very good quality QRNs, the reliance
on direction numbers means that the Soboĺ sequence is both easy to implement and
very computationally efficient.

Since this initial work, Faure et al. [321], Niederreiter [705], and Soboĺ [881]
chose alternate methods based on another sort of finite field arithmetic that utilizes
primitive polynomials with coefficients in some prime Galois field. All of these
constructions of quasi-random sequences have discrepancies that are O(N−1(log N)s)

[705]. What distinguishes them is the asymptotic constant in the discrepancy and the
computational requirements for implementation. However, practice has shown that
the provable size of the asymptotic constant in the discrepancy is a poor predictor of
the actual computational discrepancy displayed by a concrete implementation of any
of these QRN generators. There are existing implementations of the Halton, Faure,
Niederreiter and Soboĺ sequences [139, 140, 351] that are computationally efficient.
Each of these sequences is initialized to produce quasi-random s-tuples, and each
one of these requires the initialization of s 1-D quasi-random streams. However, in
practice the Soboĺ sequence has shown itself superior in quality and efficiency to
these other methods. Thus, we will restrict our discussion to the Soboĺ generator.

8.9 Deterministic Monte Carlo Methods and Parallelism 255

8.9.3 A Fundamental Problem with Quasi-Random Numbers

QRNs are finely crafted mathematical objects that are hyperuniform. Recall the
definition of the star-discrepancy of a set of points above. It is defined as the
supremum of the difference between an empirical distribution of the set of points
and the ideal uniform distribution. Clearly, a single misplaced point can lead to a
serious degradation in this estimate. Thus, one should think of point sets (sets with
N fixed numbers in them) of QRNs as sets that have completely filled all the holes in
space at a given spatial scale. Similarly, sequences (sets with an extensible number
of points) of QRNs are constructed so that the areas with the largest holes in space
are exactly the next areas where points are to be placed.

The very highly structured nature of QRNs leads to an interesting problem.
Let us perform a calculation with N QRNs from a given quasi-random sequence
with given parameters and given initial values. Let’s say we obtain the estimate
q for some quantity of interest, Q. Theory tells us that in the best circumstances
|q − Q| = O(N−1(log N)k), for some k. However, the only practical way to continue
this calculation is to continue with the (N + 1)st QRN from the same sequence. If we
choose another QRN sequence, or even the same sequence starting with other than
the next unused point, we will get no guarantee of continued accelerated Monte Carlo
convergence. In fact, using incompatible QRNs can lead to circumstances where
convergence to the correct answer may no longer hold.

Clearly, this problem is equivalent to the problem of finding parallel streams of
QRNs that can collectively be used together in a complementary fashion. Work in this
area has shown that the gist of the above paragraph seems to be true, that is, at present
one can do no better than to break up a single QRN sequence into nonoverlapping
blocks for use in parallel. Schmid and Uhl [837] investigated the consequences of
blocking QRN sequences versus using a leapfrog technique.3 They determined that
blocking from the same sequence led to acceptable results, whereas the leapfrog
technique often caused problems with the subsequences. Clearly, more flexibility
than this will be required if QRNs are to be used in calculations that terminate with
a stochastic convergence condition.

8.9.4 State-of-the-Art Quasi-Random Number Generators

A serious problem with using QRNs in both serial and parallel Monte Carlo appli-
cations is the lack of good quality, widely available QRN generation software. At
present, good implementations of the Soboĺ, Faure, and Halton sequences exist, but
there is no software that provides the facilities necessary for simple parallel use of
such generators. In addition, generators with certain desirable properties are not
freely available. One of the most popular application areas for QRNs is currently in

3 Suppose we have k QRN subsequences of length N we wish to create. In blocking, the first subsequence consists
of the first N numbers, the second subsequence of the next N numbers, and so on. When using the leapfrog
technique, the ith subsequence is {xi, xi+N , xi+2N , . . . , xi+(N−1)N}.

256 Chapter 8 Application Overviews

Table 8.2 Implementation using MPI of the power Monte Carlo algorithm (PMC) and power
quasi–Monte Carlo algorithm (PQMC) for calculating the dominant eigenvalue of a matrix of
size 2000 using PRNs and Soboĺ QRNs.

Number of processors

1 2 3 4 5

Time (s) 168 84 56 42 33
PMC Efficiency 1 1 1 1.01

λmax 62.48 61.76 63.76 61.3151 61.39

Time (s) 177 87 70 57 44
PQMC Efficiency 1.01 0.84 0.77 0.80

λmax 64.01 64.01 64.01 64.01 64.01

Note: The number of Markov chains (realizations) used is 100,000, and the exact value is λmax= 64.00.

financial mathematics. However, some of the canonical problems are often set in
very high-dimensional spaces. For example, the pricing of a mortgage-backed se-
curity made up of 30-year home mortgages is a 360-dimensional problem [689].4

At present, there is no high-quality QRN software that produces sequences in such
high dimensions. In fact, to our knowledge the only publicly available Soboĺ QRN
generation software allows for sequences up to dimension 41.

8.9.5 A Parallel Quasi–Monte Carlo Application

Given this brief introduction to QRNs, we wish to illustrate their utility on a parallel
application. We present our results for an MCM for the computation of the extremal
eigenvalue of a sparse, square matrix [271]. The method we employ is a stochastic
version of the well-known power method. It is based on the repeated application of
the matrix, which is ideal for Markov-chain–based MCMs. A good description of both
the MCM and the application of QRNs to this problem can be found elsewhere [648,
649, 650]. The computations presented here were implemented in parallel using MPI
on an IBM SP-2 located at the Florida State University’s School of Computational
Science and Information Technology.

MCMs are “naturally parallel.”5 They allow us to compute with minimal commu-
nication. In our case, we need only pass the nonzero elements of the sparse matrix
A to every processor (Table 8.2). Then we compute a total of N Monte Carlo realiza-
tions on p processors. Each processor gets N/p realizations, and we collect the results
at the end. The only communication here is at the beginning and at the end of the

4 Thirty-year mortgages are paid monthly, giving 360 payment periods during the mortgage’s life. This accounts
for the 360-dimensionality of the mortgage-backed security problem.
5 This distinction of MCMs as “naturally parallel” was first used by Malvin Kalos.

8.9 Deterministic Monte Carlo Methods and Parallelism 257

0 50000 1e + 05 1.5e + 05 2e + 05

Relative error using Sobol QRNs

Relative error using PRNs

0

0.02

0.04

0.06

0.08

´

Figure 8.15 Relative errors in computing the dominant eigenvalue for a sparse matrix of size
2000×2000. Markov chains are realized using PRNs and Soboĺ QRNs.

program execution; this provides a very efficient parallel implementation. Note that
in our empirical analysis, we use the standard definition of parallel efficiency, E.

Figure 8.15 presents the relative errors of the power MC algorithm and power
quasi-Monte Carlo algorithm (using the Soboĺ sequence) for computing the domi-
nant eigenvalue for a sparse square matrix of size 2000. Note that with 20,000 points
from our Soboĺ sequence, we achieve an accuracy that would require 100,000 or more
PRNs. The fact that QRNs can achieve accuracy similar to PRNs for this kind of cal-
culation, while using only a fraction of the time, is the significant reason for using
QRNs.

In this computation, we knew beforehand how many QRNs would be used in the
entire calculation, and we neatly broke the sequences into same-sized subsequences.
Clearly, it is not expected that this information will be known beforehand. Providing
QRNs that can help extend calculations easily remains the major challenge to
widespread parallel use of QRNs.

We have shown that one can parallelize the quasi–Monte Carlo approach to the
calculation of the extremal eigenvalue of a matrix. We have also shown that the

258 Chapter 8 Application Overviews

parallel efficiency of the regular Monte Carlo approach is maintained by the quasi–
Monte Carlo method; however, there is some slight degradation. Finally, perhaps
the most important fact is that the accelerated convergence of QRNs is maintained
in this parallel context.

8.9.6 State of the Art

We have introduced the reader to the concept of quasi–MCMs and QRNs. These
are powerful techniques for accelerating the convergence of ubiquitous MCMs.
However, even though quasi–MCMs can often be made to converge much faster
than ordinary MCMs, the ability to improve the accuracy of quasi–MCMs as readily
as ordinary MCMs is not here yet. Nonetheless, for certain applications it is possible
to accelerate the convergence of Monte Carlo applications with QRNs and to take
advantage of their natural parallelism. At present, there are a variety of Monte
Carlo applications that benefit from QRN acceleration. Most notable, perhaps, is the
calculation of financial derivatives [303]. In the future, we expect to see considerable
benefits to other Monte Carlo applications, and hence to scientific computing.

8.10 Quasi–Real Time Microtomography Experiments
at Photon Sources
Gregor von Laszewski, Mei-Hui Su, Joseph Insley, Ian Foster, and Carl Kesselman

Computed microtomography (CMT) is a powerful tool for obtaining nondestruc-
tively a 3-D view of the internal structure of opaque objects [421]. In contrast to the
widespread use of this technique in the millimeter scale as part of diagnostic proce-
dures in hospitals, we are interested in the investigation of objects on the micrometer
scale.

One application of this method is quality control during the production of 3-D
semiconductor wafers. Being able to visualize the details of chip wafers in all three
dimensions allows engineers to improve the chip design before production. Other
examples can be found in the field of earth science, where common tasks include
investigation of the interior of very small meteorites and study of the enclosures
of very tiny materials in opaque diamonds formed 100,000 years ago, in order to
determine more about the origin and development of the Earth.

The energy and the infrastructure necessary to conduct such experiments can be
provided by using x-ray beams at synchrotrons. The use of x-rays for investigating
the internal structure of materials at the micron scale has grown rapidly over the
past decade as a result of the availability of synchrotron radiation sources. One such
facility is the Advanced Photon Source (APS) at Argonne National Laboratory.

A typical computed microtomography experiment at the APS proceeds as follows.
A sample is mounted in the experiment station, parameters are adjusted, and the
sample is illuminated by a collimated beam of x-rays. Data are collected for multiple
sample orientations by using a charge-coupled device. A time-consuming reconstruc-
tion process is then used to obtain a 3-D representation of the raw data with spatial

8.10 Quasi–Real Time Microtomography Experiments at Photon Sources 259

resolution of as little as 1 mm. The 3-D image contains quantitative information
about the x-ray attenuation coefficient at a particular x-ray energy.

The many orders of magnitude increase in brilliance now available at third-
generation sources such as the APS allows dramatic improvements in temporal
resolution and makes it feasible to record fully 3-D, high-resolution tomographic
data on time scales of less than a second per image.

Nevertheless, a major difficulty with the current practice is the turnaround time
between data acquisition and reconstruction, often due to lack of available com-
puting power. This is especially problematic for all synchrotron-based experiments
because only a limited amount of beam time is available for a user. The use of dis-
tributed supercomputing power can reduce this turnaround time to a few hours or
minutes, enabling users to view the results in quasi-real time and to alter experi-
ment conditions on the fly. This capability can greatly improve the usefulness of a
synchrotron radiation facility.

8.10.1 The Computational Processing Pipeline Framework

We have provided a general framework for CMT applications that is based on the
concept of a processing pipeline [966, 979]. The pipeline consists of a series of
components that communicate with each other via input and output channels.
Each of the components can be mapped, in principle, onto different computational
resources. Thus, the framework ideally can be mapped onto computational Grids
[345]. The CMT pipeline has additional properties described below.

Data Format

HDF is used to guarantee portability of the data across a variety of diverse computer
platforms. In addition, it provides the ability for self-describing data, which will
enable the organization of large subject-related data archives in the near future [568,
698].

Data Interchange

The Globus Nexus communication library is used to allow the support of multiple
protocols as part of the message-exchange mechanism. The protocol is selected
based on its availability and performance characteristics among the computational
processing units connected via the channels.

Preprocessing Algorithm

To improve the quality of the reconstruction, images should be preprocessed with
appropriate filters. The preprocessing algorithm usually varies from experiment to
experiment. A set of predefined standard preprocessing algorithms is available that
can be easily used without recompiling the code. The user can extend the available
preprocessors.

260 Chapter 8 Application Overviews

Reconstruction Algorithm

Currently, we use a high-performance parallel implementation of reconstruction
algorithms for microtomography data sets, based on a filtered backprojection tech-
nique.

Interleaved Reconstruction and Visualization

Resulting images are shipped in real time to a visualization unit to gradually update
a 3-D rendered image during the experiment. This gradual update is important to
allow decisions as to whether the experiment should continue. If the experiment
does not perform as expected, it is terminated.

Integrated Visualization and Collaboration Engine

One goal of this project is to enable researchers to participate in an experiment from
their home institutions rather than traveling to the APS (cf. Mercurio et al. [667]). A
beamline scientist will be able to handle the experiment locally, communicating with
the scientist designing the experiment. A remote video-conferencing tool allows such
collaboration. In addition, the 3-D image analysis tool contains a control component
that enables collaborative visualization on a variety of output devices, including
graphics workstations, ImmersaDesks (Figure 8.16), and CAVEs. This allows the
resulting 3-D image to be rendered rapidly. Moreover, it provides a shared control
among the users participating in a collaborative session, enabling computational
steering of the experiment. This general visualization framework [343] is currently
used by scientists from different disciplines with similar visualization requirements
(e.g., electron microscopy and astrophysics).

8.10.2 Scientific Challenges

The computational framework based on a processing pipeline presents several sci-
entific and computational challenges.

Filtering and Reconstruction

As noted, we currently use a reconstruction algorithm based on filtered backprojec-
tion. Before the reconstruction algorithm is performed, filter operations are applied
to improve the image quality. The raw projection data typically contain many ar-
tifacts resulting from beam nonuniformity and defects in the scintillator, lens, and
detector. They can be effectively corrected by removing black- and white-field images
with the following method:

f = ln
(

fw − fb
f0 − fb

)

where f is the filtered image, f0 is the raw projection, and fw and fb are the white-
and black-field images, respectively. This filtering process gives the line integral of

8.10 Quasi–Real Time Microtomography Experiments at Photon Sources 261

Figure 8.16 A screen shot of the ImmersaDesk taken during a collaborative session with two
users. The control panel allows the user to modify parameters such as the color tables used to
control the position, size, and orientation of the object. The inner markup of the object can
be analyzed further with the help of cross sections and transparent masking of uninteresting
features.

the absorption through the sample along the beam direction. The collection of
such filtered projections f (θ , x, y) is then the Radon transform of the sample’s 3-D
absorption map ρ(x, y, z). Some phase information is usually present in the images,
but it is minimized by reducing the distance between the sample and the scintillator
screen (less than 5 mm in our case). We can therefore ignore the phase information
in our calculations without introducing many observable artifacts.

An outlier filter is sometimes used to remove isolated high-intensity points result-
ing from pixel defects in the CCD chip or from cosmic rays. It calculates the local
median and standard deviation for each pixel in the image and replaces the pixel by
the median if the pixel value is more than a certain number of standard deviations
away from the median. A least-squares deconvolution (Wiener) filter has also been
implemented to restore the images degraded by the optical system, but since the
images are undersampled in most cases, it is applicable only when the 40× objective
is in use.

262 Chapter 8 Application Overviews

Before the projections are used in reconstruction calculations, they must be
aligned to one another so that the rotation axis is located at the center of the
images. We have learned that our rotation-stage bearing typically has a radial run-
out error on the order of 1 µm. Therefore, for images with 1 to 2 µm resolution,
each projection must be aligned individually. For the projections at 6 µm or lower
resolution, however, the stage error can be ignored. We only need to determine the
location of the rotation axis in one and then collectively shift them all by the same
amount. A cross-correlation function is used to identify the rotation axis. We reverse
the projection acquired at a 180◦ angle and compute the cross-correlation function
with the 0◦ image:

Cfg(x
′, y′)=

∫ +∞

−∞

∫ +∞

−∞
f �=(x− x′, y − y′) g(x, y) dx dy

where f represents the 0◦ image and g represents the reversed 180◦ image. Ideally,
f and g are the same image but shifted from each other, and the rotation center
is located halfway between the shift features. The peak of the correlation function
indicates the amount of shift between the two images and therefore how much each
image is to be shifted. In practice, the cross-correlation function is calculated using
the property

F(Cf g)= F �=(f) F(g)

where F indicates a Fourier transform. For the higher-resolution images, such cross-
correlation calculations must be performed on each projection to correct for both
the rotation-stage errors and the shift from the rotation center. In the special cases
in which the object is of high contrast and completely located inside the imaging
field, the image centroid can be computed and can serve as the alignment mark for
centering.

The reconstruction programs used in our experiments are based on a code pro-
vided by Ellisman and Young from the National Center for Microscopy and Imaging
Research at the San Diego Supercomputing Center [667]. Three commonly used
algorithms—filtered backprojection, ART, and SIRT—have been implemented, but
because of the high angular sampling rate used in our experiments, filtered backpro-
jection is almost always used because of its higher speed. The original code has been
optimized for our parallel computer and acquisition scheme. In our case, where a
single rotation axis is used, the reconstruction calculation for each section is inde-
pendent.

Hence, this algorithm parallelizes nicely in that each slice in a data set can
be processed independently. Hence, the principal challenge is to develop efficient
techniques for moving data among detector, secondary storage, supercomputers,
and workstations for visualizing results.

New Acquisition and Reconstruction Strategies

Access to a large amount of computational power allows the use of new acquisition
and reconstruction strategies. Traditionally, data are collected at microtomographic

8.10 Quasi–Real Time Microtomography Experiments at Photon Sources 263

beamlines at constant angle offsets: for example, 0, 1, 2,. . . degrees if 360 samples
are to be taken. In an interactive environment such as we describe here, it becomes
attractive instead to use an interleaved angle list. For example, we may first gather
images at 60◦ offsets (0, 60, 120, 180, 240, 300), then collect additional images
to provide a 30◦ sampling, and so on until a complete 1◦ data set is obtained. The
advantage of this strategy is that the reconstruction algorithm can be run repeatedly,
once for each more detailed set of data; hence, the scientist obtains a series of more
refined images and may be able to detect a flawed experimental setup early in the
data collection process.

Another interesting direction that is enabled by the availability of supercomputer
resources is the following. In principle, reconstruction quality can be improved
by performing multiple reconstructions with different algorithms and parameter
settings. We are hopeful that the enhanced compute power made accessible by
grid environments will initiate a new area in the development of reconstruction
algorithms for computed microtomography and other disciplines.

Computational Requirements

The data rates and compute power required to address a CMT problem are prodigious,
easily reaching 1 Gb/s and 1 Tflop/s. We illustrate this statement with a scenario.
A 3-D raw data set generated by a typical detector will comprise 1000 1024×1500
two-byte slices (3 GB); detectors with significantly higher resolutions will soon be
available. If we assume current reconstruction techniques and make fairly optimistic
scaling assumptions, reconstruction of this data set requires about 1013 floating-
point operations (10 Tflops). On a 100 Mflop/s workstation, this translates to 32
hours; on a 1 Tflop/s computer, it would take 10 seconds. With current detector
technologies, this data set might take 1500 seconds to acquire; however, new de-
tectors will improve readout times considerably. Besides the computational demand
resulting from the reconstruction of the 3-D object, the display of the rendered final
result is also a problem with the current state-of-the-art imaging hardware. The size
of the data sets generated in these experiments can be quite large, typically on the
order of 10243 floating-point values. Currently, even the accelerated graphics hard-
ware used by our application has trouble keeping up with volumes of this size, and
the data set needs to be subsampled down to 2563 floating-point values in order to
maintain its frame rates for interactive usage.

8.10.3 Benefits of Real-Time X-Ray Microtomography Experiments

The framework described in this section offers several benefits to the end user. First,
a fast reconstruction algorithm can be used to help decide whether the current
experiment has to be interrupted prematurely because of an error in the setup. This
will allow an increase in the number of experiments conducted per hour. In order
to handle complicated and diverse supercomputing environments, it is essential
to provide a simple interface giving the beamline experimentalist control over the
parameter set, as well as the ability to terminate the current calculation at any time.

264 Chapter 8 Application Overviews

Besides the requirements driven by the computational aspect of the application,
organizational aspects benefit from the framework described in this section. Because
of the hazardous and often unpleasant environment at the beamline, remote op-
eration is desirable. With remote operation, the facility can maintain a small but
well-trained team of beamline staff experimentalists. This approach offers several ad-
vantages. It reduces the operational and user-specific cost and minimizes travel cost
to the unique facility. Furthermore, it increases access time to the beamline, while
minimizing the effort required by trained experts to set up experiments. With the
availability of a collaborative and remote steering environment, new user commu-
nities in commercial and educational facilities are likely to use the supercomputing-
enhanced light sources in remote fashion. During an experiment, multiple users
using different visualization engines at geographically dispersed locations should be
able to collaborate easily with each other. The details of this infrastructure will be
hidden from the end users, the microtomography scientists. For these users, it is ir-
relevant where and how the result is achieved, as long as time and computational
accuracy requirements are met. Figure 8.17 shows such a grid-enabled collaborative
application.

Figure 8.17 A “grid-enabled” CMT application allows researchers to display the same state
of the visualized object on all display stations participating in a collaborative session. Remote
computation and steering become possible across multiple access points.

8.11 WebHLA-Based Meta-Computing Environment for Forces Modeling and Simulation 265

8.10.4 Future Work

In this section we described a grid-enabled real-time analysis, visualization, and steer-
ing environment for microtomography experiments. Specifically, we have provided
a portable parallel framework that allows different reconstruction algorithms to be
ported on the Grid. A standard data format based on HDF is defined to distribute the
data among scientists in a meaningful way.

The real-time visualization environment developed fulfills the basic needs of the
microtomography scientists. Moreover, with the availability of this environment, we
anticipate that scientists will make algorithm improvements, for example, including
a priori knowledge of a previous reconstruction in order to increase the quality of
the image. The current system has been successfully used in various experiments.

In the future, we will focus on the use of new modalities in real-time recon-
struction for interactive use and will explore the collaborative analysis of results.
In addition, we will emphasize improvements to the usage of dynamic scheduling
of computers, high-speed networking, and collaboration technologies.

Acknowledgments. This work was supported by the Mathematical, Information,
and Office of Advanced Scientific Computing Research subprogram of the Office
of Computational and Technology Research, U.S. Department of Energy (DoE),
under contract W-31-109-Eng-38. Globus research and development are supported
by the Defense Advanced Research Projects Agency, DoE, and the National Science
Foundation.

We based the grid-enabled version of the code from code provided by Mark
Ellisman and Steve Young from the National Center for Microscopy and Imaging
Research at San Diego Supercomputing Center. We would like to thank Derrick
C. Mancini, Steve Wang, Ian McNulty, Mark Rivers, and Francesco DeCarlo for
conducting the experiments at the APS beamline. This truly interdisciplinary project
would not have been possible without the countless hours of work performed by
the Globus team: Joe Bester, Steve Fitzgerald, Brian Toonen, Steve Tuecke, Karl
Czajkowski, and all the others who have helped us throughout the years.

8.11 WebHLA-Based Meta-Computing Environment
for Forces Modeling and Simulation
Wojtek Furmanski

This section focuses on the use of HPC for DoD modeling and simulation, ad-
dressed by the Forces Modeling and Simulation (FMS) Computational Technology
Area within the DoD HPC Modernization Program. Over the last few years, Syra-
cuse University acted as a technical lead for the academic part, PET (Programming
Environments and Training); Syracuse University provided assistance to FMS users
in both the infrastructure and application development sectors. Our approach ex-
plored synergies among, and integrated distributed-object standards emerging from,
industry (CORBA), Web (Java, XML) and the DoD (HLA). We developed a three-tier
WebHLA environment that offered standards-based, plug-and-play support for both

266 Chapter 8 Application Overviews

the back-end HPC simulation modules and the front-end Web/commodity inter-
faces. In this section, I provide an overview of the DoD modeling and simulation
domain from the perspective of HPC, summarize the high-level architecture (HLA)
standard, outline our WebHLA environment, and illustrate its use for building a
meta-computing–level battlefield simulation that involves large-scale minefields (on
the order of 1 million mines).

8.11.1 DoD Modeling and Simulation

Modeling and simulation (M&S) is a major, computationally intense, mission-critical
domain of DoD computing. It addresses a broad range of application areas, ranging
from weapons engineering to multiplayer training to campaign analysis; it includes
a spectrum of granularity and fidelity levels, ranging from close combat to entity
level to force-on-force simulations. Being naturally modular in terms of distributed
simulation entities, DoD M & S always acted as a driving force for new distributed
computing and network technologies. Based on lessons learned from SIMNET, first-
generation standards emerged. These include DIS (Distributed Interactive Simula-
tion) for real-time simulations and ALSP (Aggregate-Level Simulation Protocol) for
logical-time simulations. Several large-scale joint enterprises now address various as-
pects of the broad field of M&S. These include JSIMS (Joint Simulation System) for
training simulations, JMASS (Joint Modeling and Simulation System) for engineer-
ing simulations, and JWARS (Joint Warfare Systems) for campaign-level analytical
simulations. These large-scale efforts were accompanied by numerous smaller-scale
modeling and simulation activities in many DoD labs, so that the whole field was sig-
nificantly fragmented until recently. New mechanisms for simulation interoperabil-
ity were developed and enforced by the DMSO (Defense Modeling and Simulation
Office), in terms of the HLA-based federation framework discussed below.

8.11.2 Forces Modeling and Simulation

One relatively small, but special, sector on the large DoD modeling and simulation
landscape is forces modeling and simulation (FMS), focused on large-scale simula-
tions that require HPC support. Most other computational technology areas within
the DoD HPC Modernization Program, such as CFD, CSM, and CEA, are based on tra-
ditional data-parallel, time-stepped HPC simulation technologies, whereas FMS rep-
resents a special domain of object-oriented, event-driven, task-parallel HPC simula-
tions. Parallel and distributed event-driven simulations (PDES) are often classified as
either “real-time” (or “as-fast-as-possible”) or “logical-time” management schemes.
The former, typically used for real-time battlefield simulations (e.g., for training pur-
poses) were usually based on the DIS protocol. In such simulations, all active objects
(vehicles, troops, weapons, etc.) broadcast their entity state PDUs (protocol data
units) periodically, informing all other players of their positions and internal state.
Based on received PDUs, all entities update their states “as fast as possible,” and the
resulting simulation advances in “real time.” In the logical-time management mode,
simulation objects generate events and schedule them for execution at some future

8.11 WebHLA-Based Meta-Computing Environment for Forces Modeling and Simulation 267

time instances. For example, when a missile is fired, its space–time collision point is
precomputed, and the corresponding “target-hit” event is constructed and put into
the time-ordered queue for future execution. Simulation time advances in discrete
irregular steps, given by the time stamps of the subsequent events in the queue.

Both time-management regimes are being addressed by FMS projects. In the
logical-time domain, the dominant PDES technology is based on the SPEEDES (Syn-
chronous Parallel Environment for Emulation and Distributed Events Simulation)
system developed by Metron Corporation and, more recently, by RAM Laboratories.
SPEEDES uses an optimistic roll-backable, parallel-time–management scheme based
on a variant of the Time Warp algorithm developed by the National Aeronautics
and Space Administration/Jet Propulsion Laboratory in the late 1980s. In the real-
time domain, the DIS-based battlefield simulations map naturally onto networks
of workstations, and hence the use of MPPs was rather limited in this area. How-
ever, there are some specific DIS simulation problems that require HPC. One such
challenge, raised recently by Ft. Belvoir, Virginia, addressed support for entity-level
battlefield simulation in the large minefields (1 million or more mines) that are re-
quired by modern warfare models. We discuss this comprehensive mine simulator
(CMS) application and our support for parallel CMS in the following sections. First,
however, we summarize the current status in the area of simulation interoperability,
represented by the HLA federation framework.

8.11.3 High-Level Architecture

HLA is a language-independent, object-based, distributed software architecture for
simulation reusability and interoperability that is now being enforced DoD-wide
across all individual M&S programs, systems, and simulation paradigms, including
both real-time (DIS) and logical-time (event-driven) management models. HLA views
distributed simulation as a federation of coarse-grain, opaque, semiautonomous enti-
ties called federates that govern, locally and independently, their simulation objects
and that conform strictly to some global federation rules, specifying the information-
exchange policy across the federation. The associated run-time infrastructure (RTI)
offers the software bus services available to the HLA-compliant federates. These
include federation, object, declaration, ownership, time, and data distribution man-
agement. The overall organization of RTI is illustrated in Figure 8.18. Federates (large
circles) maintain their simulation objects (medium circles) given by attribute sets
(small circles), and they interact via RTI services (rounded rectangles) managed by
the RTI bus (central elongated rectangle). Both local (simulation) and global (fed-
eration) objects conform to a simple attribute-value–based entity format specified
by the object model template (OMT) and are suitably grouped and maintained by
the RTI as SOMs (simulation object models) or FOMs (federation object models).
Federates can join or leave the federation (using federation management); they cre-
ate their objects and register them with the RTI (using object management); they
can publish and/or subscribe some of their objects (or their selected attributes) for
sharing (using the declaration management); they can negotiate update rights for
shared objects (using ownership management); they can evolve their objects in time

268 Chapter 8 Application Overviews

Federate

Object

Federate

Federate Object

Time
management

Shared object attribute

Sending events
(interaction objects)

Joining federation

Joining
federation

Receiving events
(interaction objects)

Receiving events
(interaction objects)

Data
distribution

management

Synchronizing
local times with GVT

Ownership
management

Object
management

Declaration
management

Federation execution
Federation

management

RTI

Figure 8.18 Architecture of the run-time infrastructure (RTI) software bus of the high-
level architecture (HLA). Circles represent entities (such as federates, objects, and attributes);
rectangles represent services.

and synchronize their local simulation clocks with the federation time (using time
management); and they can build dynamic, multidimensional routing channels for
optimized multicast delivery of discrete communication events called interaction
objects (using data distribution management).

8.11.4 WebHLA

The main emphasis of the Defense Modeling and Simulation Office has been on
supporting reusability of and HLA-enabled interoperability among diverse existing
legacy codes, rather than on providing HLA-based software engineering support
for new simulations that would utilize the latest Web/commodity technologies of
Java, CORBA, and XML. We proposed to fill this gap in our WebHLA framework
that offered open implementation of HLA in terms of a suite of emergent object
standards for the Web-based distributed computing—we call it the Pragmatic Ob-
ject Web—that integrated Java, CORBA, COM, and XML (see Figure 8.19). WebHLA
is an interactive three-tier environment that includes: (1) DMSO HLA architec-
ture and our JWORB-based Object Web RTI implementation in the middleware;

8.11 WebHLA-Based Meta-Computing Environment for Forces Modeling and Simulation 269

JWORB
Java Web Object
Request Broker

HTTP+IIOP+ORPC+
RMI+XML+RTI+RTP+...

COM domain

Federate 2

Federate 3

High-level
architecture

XMLCORBA domain

Federate 1

Other Web Domains

Java domain

Figure 8.19 Pragmatic object Web architecture—fine-grain distributed objects of CORBA,
Java, and COM interoperate as coarse-grain HLA federates linked via XML messages.

(2) Web/commodity front-ends (such as Web browsers or Microsoft Windows); and
(3) customer- and application-specific back-end technologies (ranging from legacy
systems such as relational databases to HPC modeling and simulation modules).
Both the core components of WebHLA, such as JWORB and OWRTI, and a suite of
tools and plug-and-play federates developed so far, including RtiCap, JDIS, PDUDB
and SimVis, are outlined below.

JWORB (Java Web Object Request Broker) is a multiprotocol network server written
in Java (see Figure 8.20). Currently, JWORB supports HTTP and IIOP protocols; that
is, it can act as a Web server and as a CORBA broker or server. In the planning stage
is support for the DCE RPC protocol, which would provide COM server capabilities.
JWORB recognizes a particular protocol based on the anchor/magic number of the
current network packet and invokes a suitable handler. JWORB is a useful middleware
technology for integrating and efficiently aggregating competing distributed-object
technologies and the associated network protocols of CORBA, Java, COM, and XML.

OWRTI (Object Web RTI) is an implementation of DMSO RTI 1.3 written in Java
on top of the JWORB middleware, that is, packaged as a JWORB CORBA service (see
Figure 8.21). In OWRTI, each of the RTI management services shown in Figure 8.18 is
implemented as an independent CORBA object. Other CORBA objects in the system
include: RTIKernel, which acts as a core top-level manager; FederationExecution, which

270 Chapter 8 Application Overviews

WebFlow front-end

HTTP +
IIOP

HTTP +
IIOP

HTTP +
IIOP

IIOP IIOP

RMI

RMI

RMI

RMI

RMI

RMI

RMI

RMI

RMI

RMI

RMI

JWORB
Middleware

JWORB
Middleware

RMI
HP Java

IIOP
CORBA

DCE RPC
DCOM

HPCC
back-end

DBMS

SIOMPP NOW

COM

COM

COM

COM

COM

COM

COMRMI

RMI

RMI

RMI

ORB

ORB

ORB

ORB

DBMS

DBMS

DBMS

COMRMI

HPCC
back-end

Figure 8.20 Overall architecture of the multiprotocol JWORB server—front-end browsers
(orblets) connect via HTTP (IIOP), middleware is IIOP based, and legacy back-ends are linked
via dedicated protocols.

represents a federation instance; RTIAmbassador, which acts as a client-side proxy of
the RTI bus; and FederateAmbassador, which acts as the RTI-side proxy of a federate.

RtiCap is a library that provides RTI with a C++ programming interface, packaged
as a CORBA service offering access to Java-based OWRTI from C++ federates. The
RtiCap glue library uses public-domain OmniORB2 as a C++ object request broker.
The RTI ambassador glue/proxy object forwards all C++ client method calls to its
Java/CORBA peer, and the federate ambassador object forwards all received callbacks
to its C++ peer. Versions of RtiCap library are running on Windows NT, IRIX, and
SunOS platforms.

To link DIS-based legacy simulation systems such as ModSAF (Modular Semi-
Automated Forces) with HLA federations, a bridge node is required to transform
between different event models used in both frameworks: DIS PDUs and HLA inter-
actions. We constructed such a bridge, called JDIS, in Java, starting from a public-
domain DIS Java parser and completing it to support all PDUs required by the
ModSAF system. JDIS can also write/read PDUs from a file or a database; hence,
it can be used to log and play back sequences of simulation events. In order to fa-

8.11 WebHLA-Based Meta-Computing Environment for Forces Modeling and Simulation 271

WebFlow front-end
(federation authoring)

HTTP +
IIOP

HTTP +
IIOP

HTTP +
IIOP

RTI RTI

RTI RTI

JWORB
middleware

JWORB
middleware

IIOP

IIOP IIOP

IIOP

Back-end federates
(simulation objects)

C/C++
CORBA objects

C/C++
CORBA objects

Federate
ambassador

Federate
ambassador

RTI ambassador
RTI ambassador

Figure 8.21 Overall architecture of OWRTI, packaged as a JWORB facility. RtiCap library is
employed to link C++ simulation back-ends via RTI in terms of RTI ambassador and Federate
ambassador proxies.

cilitate the transmission of PDUs and their persistent storage, we adopted XML as a
uniform wire format, and we constructed suitable PDU-XML converters.

Playing the real scenario over and over again for testing and analysis is a time-
consuming and tedious effort. A database of the equivalent PDU stream is often
needed for selectively playing back segments of a recorded scenario. We constructed
and packaged as a WebHLA federate such a PDU database, PDUDB, using Microsoft’s
Access for storage, Java servlets for loading and retrieving the data, and JDBC for
servlet-database communication. The PDU logger servlet receives its input via an
HTTP POST message in the form of XML-encoded PDU sequences. Such an input
stream is decoded, converted to SQL, and stored in the database using JDBC. The
playback is done using another servlet that sends the PDUs generated from the
database as a result of a query. A common visual front-end for JDIS and PDUDB
federates is shown in Figure 8.22. It supports run-time display of the PDU flow,
and it offers several controls and utilities, including: (1) switches among DIS, HLA,
and various I/O (file, database) modes; (2) frequency calibration for a PDU stream
generated from a file or database; (3) PDU probe and sequence generators; and
(4) simple analysis tools, such as statistical filters or performance benchmarks that
can be performed on accumulated PDU sequences.

272 Chapter 8 Application Overviews

Figure 8.22 A sample screen of the JDIS and PDUDB control monitor window, illustrating the
dynamic display of the PDU flow and various protocol and I/O modes (DIS vs. HLA, run time
vs. playback.)

Using Microsoft Direct3D technology, we constructed a real-time battlefield vi-
sualizer, SimVis (see Figure 8.23) that can operate both in the DIS and HLA modes.
SimVis is an NT application written in Visual C++ that extracts the battlefield infor-
mation from the event stream. This information includes the state (e.g., velocity) of
vehicles in the terrain, the position and state of mines and minefields, and explo-
sions that occur (e.g., when vehicles move over and activate mines). The renderer
performs the real-time visualization of the extracted information using the ModSAF
terrain database; a suite of geometry objects and animation sets for typical battlefield
entities, such as armored vehicles (tanks); and visual events, such as explosions. We
developed these objects using the 3D Studio MAX authoring system and imported
them into the DirectX/Direct3D run-time environment.

8.11.5 Example WebHLA Application: Parallel/Meta-Computing CMS

Having outlined the WebHLA framework, its application is illustrated in a particular
FMS project conducted by NPAC that developed parallel and meta-computing CMS
based on the CMS simulator from Ft. Belvoir. This effort included converting the
CMS system from the DIS to the HLA framework, constructing a scalable, parallel
CMS federate for the Origin 2000, and linking it with the ModSAF vehicle simu-
lator and other utility federates toward a meta-computing CMS federation. In the
following, I review the original CMS system, present our approach and performance
results for parallel CMS, and describe our current and planned meta-computing CMS
configurations.

8.11 WebHLA-Based Meta-Computing Environment for Forces Modeling and Simulation 273

Figure 8.23 A sample screen of SimVis, used to visualize a battlefield (including tanks
propagating through terrain with a deployed minefield) associated with Parallel CMS + ModSAF
simulation.

Comprehensive Mine Simulator by Ft. Belvoir

The Night Vision Lab at Ft. Belvoir conducts research and development in the
area of countermine engineering, using the advanced CMS as an experimentation
environment for a synthetic battlefield. Developed by the OSD-sponsored Joint
Countermine Advanced Concepts Technology Demonstration (JCM ACTD), CMS is
a state-of-the-art high-fidelity minefield simulator with support for a broad range
of mine categories. These include conventional types, such as buried pressure-
fuzed mines, antitank mines, and other types, including off-route (side attack)
and wide-area (top attack) mines. CMS organizes mines in components given by
regular arrays of mines of particular types. Minefields are represented as heteroge-
neous collections of such homogeneous components. CMS interoperates via the
DIS protocol with ModSAF vehicle simulators. Mine interaction with a target is
controlled by its fuze. CMS supports several fuze types, including full width, track-
width fuzes, off-route fuzes, and others. CMS mines can also interact with coun-
termine systems, including both mechanical and explosive countermeasures and
detectors.

The relevance of HPC for the CMS system stems from the fact that modern warfare
can require 1 million or more mines to be present on the battlefield, such as in the
Korean Demilitarized Zone or the Gulf War. The simulation of such battlefield areas
requires HPC support. As part of the PET FMS project, Syracuse University analyzed
the CMS code and ported the system to the Origin 2000 shared-memory, parallel
MPP. Below, we summarize our approach and results.

274 Chapter 8 Application Overviews

Parallel CMS: Approach

In our first attempt to port CMS to the Origin 2000, we identified performance-
critical parts of the inner loop that were related to the repetitive tracking operation
over all mines with respect to the vehicle positions. We tried to parallelize it using
the Origin 2000 compiler pragmas (i.e., loop partition and/or data decomposition di-
rectives). Unfortunately, this approach delivered only very limited scalability for up
to four processors. We concluded that the pragmas-based techniques, while efficient
for regular Fortran programs, are not very practical for parallelizing complex and dy-
namic object-oriented, event-driven FMS simulation codes—especially the “legacy”
object-oriented codes such as CMS that were developed by multiple programming
teams over a long period of time and resulted in complex dynamic memory lay-
outs of numerous objects that are now extremely difficult to decipher and properly
distribute.

In the follow-on effort, we decided to explore an alternative approach based on
a more direct, lower-level parallelization technique. Based on our analysis of the
SPEEDES simulation kernel, which is known to deliver scalable object-oriented HPC
FMS codes on the Origin 2000 (such as the Parallel Navy Simulation System under
development by Metron), we constructed a similar parallel support for CMS. The
base concept of this “micro SPEEDES kernel” approach, borrowed from the SPEEDES
engine design but prototyped by us independently of the SPEEDES code, is to use
only fully portable UNIX constructs, such as fork and shmem, for interprocess and
interprocessor communication. This guarantees that the code is portable across all
UNIX platforms. Hence, it can be more easily developed, debugged, and tested in
the single-processor, multithreaded mode on sequential UNIX boxes.

In our microkernel, the parent process allocates a shared-memory segment using
shmget(); then it forks n children, remaps them via execpv(), and passes the shared-
memory-segment descriptor to each child via the command line argument. Each
child attaches to its dedicated slice of the shared memory using shmat(), thereby es-
tablishing the highest-possible performance (no MPI overhead), fully portable (from
O2 to O2K), multiprocessor communication framework. We also developed a simple
set of semaphores to synchronize node programs and to avoid race conditions in
critical sections of the code. On a single-processor UNIX platform, our kernel, when
invoked with n processes, generates in fact n concurrent threads, communicating via
UNIX shared memory. In an unscheduled Origin 2000 run, the number of threads
per processor and the number of processors used are undetermined (i.e., under con-
trol of the OS). However, when executed under control of a parallel scheduler such
as MISER, each child process forked by our parent is assigned to a different processor,
which allows us to regain control over the process placement and to realize a natural
scalable implementation of parallel CMS.

Parallel CMS: Architecture

On top of this microkernel infrastructure, we put suitable object-oriented wrappers
that hide the explicit shmem-based communication under suitable higher-level

8.11 WebHLA-Based Meta-Computing Environment for Forces Modeling and Simulation 275

abstractions, so that each node program behaves as a sequential CMS operating on a
suitable subset of the full minefield. The CMS module cooperates with the ModSAF
vehicle simulator running on another machine on the network. CMS continuously
reads vehicle motion PDUs from the network, updates vehicle positions, and tracks
all mines in the minefield in search of possible explosions. In our parallel version, the
parent node 0 reads from the physical network and broadcasts all PDUs via shared
memory to the children. Each child reads its PDUs from a virtual network that is a
TCP/IP wrapper over the shmem communication channel.

Minefield segments are assigned to individual node programs using the scat-
tered/cyclic decomposition, which guarantees reasonable dynamic load balancing
regardless of the current number and configuration of vehicles propagating through
the minefield. We found the CMS minefield parser and the whole minefield I/O
sector difficult to decipher and modify to support scattered decomposition. We by-
passed this problem by constructing our own Java-based minefield parser using the
new powerful, public-domain Java parser technology called ANTLR, offered by the
MageLang Institute. Our parser reads the large sequential minefield file and chops
it into n files, each representing a reduced node minefield generated via scattered
decomposition. All these files are fetched concurrently by the node programs when
the parallel CMS starts. The subsequent simulation decomposes naturally into node
CMS programs, operating on scattered sectors of the minefield and communicating
via the shmem microkernel channel described above.

Parallel CMS: Performance

We performed timing runs of the Parallel CMS using the Origin 2000 systems at
the Navy Research Laboratory in Washington, DC, and at the Engineer Research
and Development Center’s Major Shared Resource Center at Vicksburg, Mississippi.
The performance results are presented in Figures 8.24 and 8.25. They illustrate
that we have successfully constructed a fully scalable, parallel CMS for the Origin
2000 platform. Figures 8.24 and 8.25 present timing results of the parallel CMS
for a large minefield of 1 million mines, simulated on 16, 32, and 64 nodes. The
timing histogram in Figure 8.24 displays total simulation times in a 16-node run
spent by each of the nodes. It demonstrates that we obtained almost perfect load
balance. Higher bars on this figure represent full simulation runs with all ModSAF
PDUs activated, whereas lower bars represent dry CMS runs without vehicle updates.
Comparison of the two sets illustrates that communication with ModSAF vehicles
took about 20% to 25% of the total simulation time and that both computation and
communication parts are fully load balanced.

Figure 8.25 illustrates the speedup measured on 16, 32, and 64 nodes. Instead of
T(1)/T(n), we present unnormalized 1/T(n) in this plot, since we couldn’t measure
T(1)—when trying to run a 1-million mine simulation in one node we got a memory
overflow error. The speedup plot illustrates that the parallel CMS offers almost perfect
(linear) scaling over a broad range of processors.

276 Chapter 8 Application Overviews

Load Balance on 16-node Origin2000
300

250

200

150

100

50

0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

PDUs

No PDUs

Figure 8.24 Simulation time spent by various nodes in a parallel CMS run for 1 million mines
on a 16-node subset of an Origin 2000 at NRL (both for full run with vehicle PDUs and for a
dry CMS-only run without PDUs). Illustrates very good load balance.

Speedup

0.016

0.014

0.012

0.01

0.008

0.006

0.004

0.002

0
0 16 32 48 64

1/T(N)

Figure 8.25 Speedup of parallel CMS on an NRL Origin 2000 for 1 million mines and 30
vehicles, measured on 16, 32, and 64 nodes. Illustrates almost perfect scalability across a broad
processor range.

8.11 WebHLA-Based Meta-Computing Environment for Forces Modeling and Simulation 277

The timing results described above were obtained during parallel CMS runs within
a WebHLA-based HPDC environment spanning three geographically distributed lab-
oratories and utilizing most of the WebHLA tools and federates discussed above. The
overall configuration of an initial meta-computing CMS environment is shown in
Figure 8.26. ModSAF, JDIS, and SimVis modules were typically running on a work-
station cluster at NPAC in Syracuse University. The JWORB/OWRTI-based federation
manager (marked as RTI in Figure 8.26) was typically running on Origin 2000 at
ERDC in Vicksburg. The parallel CMS federate was typically running on an Origin
2000 at NRL in Washington, DC. Large MISER runs at NRL need to be scheduled in
a batch mode and are activated at unpredictable times, often in the middle of the
night. This created some logistical problems, since ModSAF is a GUI-based legacy ap-
plication that needs to be started by a human pressing the button. To bypass the need
for a human operator to monitor the MISER batch queue continuously and to start
ModSAF manually, we constructed a log of a typical simulation scenario with some
30 vehicles and played it repetitively from the database using our PDUDB federate.
The only program running continuously (at ERDC) was the JWORB/OWRTI-based
federation manager. After the parallel CMS was started by MISER at NRL, it joined a
distributed federation (managed at ERDC) and automatically activated the PDUDB
playback server at NPAC that started to stream vehicle PDUs to JDIS, which in turn
converted them to HLA interactions and sent them (via RTI located at ERDC) to
the parallel CMS federate at NRL. Each such event, received by node 0 of the par-
allel CMS, was multicast via shared memory to all nodes of the simulation run and
used there by the node CMS programs to update the internal states of the simula-
tion vehicles. An inner loop of each node CMS program was continuously tracking
all mines scattered into this node against all vehicles in search of possible explo-
sions.

Having constructed a fully scalable parallel CMS federate and having established
a robust meta-computing, CMS experimentation environment, we conducted a set
of experiments with wide-area-distributed, large-scale FMS simulations, using CMS
as the application focus and testbed. In the first series of such experiments, we were
able to successfully distribute large minefields containing millions of mines over
several Origin 2000 machines in various DoD labs using domain decomposition,
followed by the scattered decomposition of each minefield domain over the nodes
of a local parallel system. In the next stage, we began replacing our simple SPEEDES
microkernel, discussed above, by the full SPEEDES simulation engine, as illustrated in
Figure 8.27. The goal here was to offer optimized communication among individual
MPPs using the SPEEDES-based HPC RTI under development by Metron and to
offer a more general-purpose platform for converting legacy M&S codes such as
CMS to a well-organized programming model of SPEEDES. This ambitious and
challenging plan is yet to be completed. We are currently exploring continuation
of this effort within the new HPCMO PET 2 program and based on the latest DoD
and Web/commodity technologies, as summarized below.

278 Chapter 8 Application Overviews

ModSAF

JDIS

RTI

SimVis

DHTML
database
browser

SimVis

SimVis

CMSLogger/playback
SQL database

ModSAF ModSAF

Figure 8.26 A WebHLA environment that supports parallel CMS experiments and includes
ModSAF vehicles, SimVis front-ends, JDIS bridge between DIS and HLA domains, event logger
and playback database, parallel CMS, and RTI federation manager.

8.11.6 Next Steps

The meta-computing FMS environment described here was built in 1997–2000 and
was based on a suite of state-of-the-art DoD and commodity technologies then
available. These included HLA, SPEEDES, CORBA, Java, and XML. The most im-
portant recent developments that will impact the evolution of our approach in-
clude: (1) adoption of SPEEDES as a core simulation engine by the JSIMS Enterprise;
and (2) onset of a new Web/commodity technology cycle, led by the Microsoft
.NET framework. Having selected SPEEDES as the HPC back-end, JSIMS will need
a flexible commodity platform to deliver DoD-wide interactive and interoperable
combat training systems. We therefore view our work on a commodity-based, HLA-
compliant simulation integration framework as adequate for current DoD M&S needs
and worth continuing. .NET—a new overarching commodity platform for the next-
generation Internet—will likely play a critical role in distributed-systems engineering
across various computational domains and communities. We could view .NET as ei-
ther one more component within our previous pragmatic object Web framework—or
rather as a system-wide integrated solution for such a framework. Within the FMS
community, we try to pursue the latter approach, being encouraged by the recent
efforts by Microsoft to standardize .NET via the ECMA process and by the growing
interest of the open-software community to join the .NET initiative.

Porting our meta-computing FMS environment to the .NET framework is a ma-
jor challenge, as .NET brings an integrated suite of technologies that effectively

8.11 WebHLA-Based Meta-Computing Environment for Forces Modeling and Simulation 279

WebHLA
meta-

federation
controller

Performance
monitor

Mak
stealth

JDIS

ModSAF

ModSAF

ModSAF

SimVis

Logger and playback
SQL database

SimVis

Meta-cluster
manager

JWORB/object Web RTI-based meta-FMS software bus

Parallel
CMS

SPEEDES

Parallel
CMS

SPEEDES

Parallel
CMS

SPEEDES

SPEEDES-based HPC RTI

Figure 8.27 Planned meta-computing CMS with WebHLA-based distributed management
similar to that of Figure 8.26 and with SPEEDES-based HPDC support for large-scale
geographically distributed minefields.

replace individual components of our heterogeneous pragmatic object Web. For
example, .NET Remoting brings a new powerful distributed-object model that re-
places CORBA, and C# offers a new high-performance, object-oriented programming
language that replaces Java. XML remains as a core communication protocol and
meta-data fabric of .NET, but it is now highly structured and packaged in terms of
SOAP messaging and a suitable family of self-documentation formats. Implications
of .NET for HPC are yet to be explored. But the overall structure of this new powerful
multilanguage framework, with the underlying common language run time, mobile
high-performance, intermediate compiler formats, and JIT compilation technology,
appears to be very promising, not only for general-purpose commodity computing,
but also for the advanced needs of science and engineering computation. In the mod-
eling and simulation area, .NET/C# brings several new and useful constructs, such as

280 Chapter 8 Application Overviews

events and delegates, that enable an elegant high-level programming framework for
event-driven simulations. It seems conceivable that, a few years down the road, FMS
systems such as SPEEDES will be routinely and efficiently constructed using the C#
language over the cross-platform .NET framework, rather than using C++ over tra-
ditional vendor-specific compilers, as is still being done today. We intend to initiate
this process by porting our CORBA/Java-based WebHLA to an equivalent .NET/C#
system—to be called HLA.NET—and by gradually moving individual federates and
engines of our meta-computing FMS toward the suitable .NET technologies as they
emerge, stabilize, and standardize.

8.12 Computational Structure of Applications

Here we summarize the applications of this book and two other books discussed
below. We focus on the problem structure as it impacts the parallelization strategy.

8.12.1 Applications from This Book

Computational Fluid Dynamics (CFD) (Chapter 5). This chapter provides a thor-
ough formulation of CFD with a general discussion of the importance of
nonlinear terms and, most importantly, viscosity. Difficult features like shock-
waves and turbulence can be traced to the small coefficient of the highest-
order derivatives. Incompressible flow is approached using the spectral element
method, which combines the features of finite elements (copes with complex
geometries) and highly accurate approximations within each element. These
problems need fast solvers for elliptic equations, and there is a detailed discus-
sion of data and matrix structure and the use of iterative conjugate gradient
methods. This is compared with direct solvers using the static condensation
method for calculating the solution (stiffness) matrix. The important problem
of adaptive meshes is described using the successive refinement quad/oct-tree
(in two and three dimensions) method. Compressible flow methods are re-
viewed, and the key problem of coping with the rapid change in field variables
at shockwaves is identified. One uses a lower-order approximation near a shock
but preserves the most powerful high-order spectral methods in the areas where
the flow is smooth. Parallel computing (using space-filling curves for decom-
position) and adaptive meshes are covered.

Environment and Energy (Chapter 6). This chapter describes three distinct prob-
lem areas, each illustrating important general approaches. Subsurface flow in
porous media is needed in both oil reservoir simulations and environmen-
tal pollution studies. The nearly hyperbolic or parabolic flow equations are
characterized by multiple constituents and by very heterogeneous media with
possible abrupt discontinuities in the physical domain. This motivates the use
of domain decomposition methods where the full region is divided into blocks
that can use different solution methods if necessary. The blocks must be itera-
tively reconciled at their boundaries (mortar spaces). The IPARS code described

8.12 Computational Structure of Applications 281

has been successfully integrated into two powerful problem-solving environ-
ments: NetSolve, described in Chapter 14, and DISCOVER (aimed especially at
interactive steering) from Rutgers University.

The discussion of the shallow water problem uses a method involving
implicit (in the vertical direction) and explicit (in the horizontal plane) time-
marching methods. It is instructive to see that good parallel performance is
obtained only by decomposing in the horizontal directions and keeping the
hard-to-parallelize implicit algorithm sequentially implemented. The irregular
mesh is tackled using space-filling curves, as also described in Chapter 5.

Finally, important code coupling (meta-problem in Chapter 4 notation) is-
sues are discussed for oil spill simulations, where water and chemical transport
require modeling in a linked fashion. ADR (active data repository) technology
from Maryland is used to link the computations between water and chemical
simulations. Sophisticated filtering is needed to match the output and input
needs of the two subsystems.

Molecular Quantum Chemistry (Chapter 7). This chapter surveys in detail two
capabilities of the NWChem package from Pacific Northwest Laboratory. It sur-
veys other aspects of computational chemistry. This field makes extensive use
of particle dynamics algorithms and some use of partial differential equation
solvers. However, characteristic of computational chemistry is the importance
of matrix-based methods, and these are the focus of this chapter. The matrix is
Hamiltonian (energy) and is typically symmetric positive definite. In a quan-
tum approach, the eigensystems of this matrix are the equilibrium states of
the molecule being studied. This type of problem is characteristic of quantum
theoretical methods in physics and chemistry; particle dynamics is used in
classical nonquantum regimes.

NWChem uses a software approach, the Global Array (GA) Toolkit, a pro-
gramming model that lies in between HPF and message passing and has been
highly successful. GA exposes locality to the programmer but has a shared-
memory programming model for accessing data stored in remote processors.
Interestingly, in many cases, calculating the matrix elements dominates (over
solving for eigenfunctions), and this is a pleasing parallel task. It requires very
careful blocking and staging of the components used to calculate the integrals
forming the matrix elements. In some approaches, parallel matrix multiplica-
tion is important in generating the matrices. The matrices typically are taken
as full, and very powerful parallel eigensolvers were developed for this prob-
lem. This area of science clearly shows the benefit of linear algebra libraries
(see Chapter 20) and general performance enhancements like blocking.

Numerical (General) Relativity (Section 8.1). This field involves time evolution
of complex partial differential equations having similarities with the simpler
Maxwell equations used in electromagnetics (see Section 8.6). Key difficulties
are the boundary conditions, which are outgoing waves at infinity, and the

282 Chapter 8 Application Overviews

difficult and unique, multiple-black-hole internal surface conditions. Finite
difference and adaptive meshes are the usual approach.

Numerical Simulations in Lattice Quantum Chromodynamics (Section 8.2). Monte
Carlo methods are central to the numerical approaches to many fields (es-
pecially in physics and chemistry) and can consume substantial computing
resources. The error in such computation decreases as the square root of the
computer time used; most differential equation– and particle dynamics–based
methods display power convergence. One finds Monte Carlo methods being
used when problems are posed as integral equations. The often high-dimension
integrals are solved by Monte Carlo methods using a randomly distributed set
of integration points. Quantum chromodynamics (QCD) simulations are a clas-
sic example of large-scale Monte Carlo simulations that perform excellently on
most parallel machines. Their modest communication costs and regular struc-
ture lead to good node performance. This application is straightforward to
parallelize and very suitable for high-performance Fortran (HPF) as the basic
data structure is an array. However, the work described here uses a portable
message passing interface (MPI) code.

Advances in lattice quantum chromodynamics typically come from new
physics insights that lead to more efficient numerical formulations, rather
than from improvements in the Monte Carlo algorithms used. This field has
generated many special-purpose facilities, as the lack of significant I/O and
the CPU-intense nature of QCD allows optimized node designs. The work at
Columbia [202] and Tsukuba [227] universities is well known. Adaptive load
balancing and related issues involved with irregular finite element problems
also appear in other irregular-geometry Monte Carlo problems.

Ocean Modeling (Section 8.3). This section describes the issues encountered in
optimizing a whole-earth ocean simulation including realistic geography and
proper ocean atmosphere boundaries. Conjugate gradient solvers and MPI
message passing with Fortran 90 are used for the parallel implicit solver for
the vertically averaged flow.

Simulations of Earthquakes (Section 8.4). Earthquake simulation is a relatively
young field, and it is yet not known how successful forecasts of large earth-
quakes can be. The field has an increasing amount of real-time sensor data,
requiring data assimilation techniques and automatic differentiation tools (see
Chapter 24). Study of earthquake faults can use finite element techniques;
with some approximation, Green’s function approaches, which can use fast
multipole methods, may also be applied. Analysis of the observational and
simulation data use data-mining methods, as described in Section 8.7. The prin-
cipal component and hidden Markov classification algorithms currently used
in the earthquake field [481, 786, 816, 817, 877, 932, 944] illustrate the diver-
sity in data-mining methods when compared with the decision-tree methods
of Section 8.8.

8.12 Computational Structure of Applications 283

Cosmological Structure Formation (Section 8.5). Cosmological structure formation
(CSF) is an example of a coupled particle field problem. The universe is viewed
as a set of particles that generate a gravitational field obeying Poisson’s equa-
tion. This field determines the force needed to evolve each particle in time. The
same structure is also seen in plasma physics, where electrons create an elec-
tromagnetic field. Generating compatible particle and field decompositions is
difficult. CSF exhibits large ranges in distance and temporal scale, character-
istic of the attractive gravitational forces. Poisson’s equation is solved by Fast
Fourier Transforms, and deeply adaptive meshes are generated. The article de-
scribes both MPI and CMFortran (HPF-like) implementations. Further, it makes
use of object-oriented techniques (see Chapter 13) with kernels in F77. Some
approaches to this problem class use fast multipole methods.

Computational Electromagnetics (Section 8.6). This overview summarizes several
different approaches to electromagnetic simulations and notes the growing im-
portance of coupling electromagnetics with disciplines such as aerodynamics
and chemical physics. Parallel computing has been successfully applied to the
three major approaches to computational electromagnetics. Asymptotic meth-
ods use ray tracing, as is done in visualization. Frequency-domain methods use
moment (spectral) expansions that were the earliest uses of large parallel full-
matrix solvers 10 to 15 years ago. Finally, time-domain methods use finite
volume (element) methods with an unstructured mesh. As in general relativ-
ity, special attention is required in order to obtain accurate wave solutions at
infinity in the time-domain approach.

Parallel Algorithms in Data Mining (Section 8.7). Data mining is a broad field with
many different applications and algorithms (see also Sections 8.4 and 8.8).
This section describes important algorithms used in discovering associations
among items that are likely to be purchased by the same customer. These
associations can occur either in time or because the purchases tend to be in
the same shopping basket. Other data-mining problems discussed include the
classification problem tackled by decision trees. These tree-based approaches
are parallelized effectively (as they are based on huge transaction databases),
with load balance being a difficult issue.

High-Performance Computing in Signal and Image Processing (Section 8.8). This
section discusses some of the issues from this field, which currently makes
surprisingly little use of parallel computing—even though good parallel al-
gorithms often exist. The field has preferred the convenient programming
model and interactive feedback of systems like MATLAB and Khoros. These
are problem-solving environments, as described in Chapter 14.

Deterministic Monte Carlo Methods and Parallelism (Section 8.9). This section de-
scribes some very important developments in the generation of “random”
numbers. Quasi-random numbers are more uniformly distributed than the
standard truly random numbers and, for certain integrals, lead to more rapid

284 Chapter 8 Application Overviews

convergence. In particular, these methods have been applied to financial mod-
eling, where one needs to calculate one or more functions (stock prices, their
derivatives, or other financial instruments) at some future time by integrat-
ing over the possible future values of the underlying variables. These future
values are given by models based on the past behavior of the stock. This
can be captured in some cases by the volatility or standard deviation of the
stock. The simplest model is perhaps the Black–Scholes equation, which can
be derived from a Gaussian stock distribution, combined with an underly-
ing “no-arbitrage” assumption. This asserts that the stock market is always in
equilibrium instantaneously and there is no opportunity to make money by
exploiting mismatches between buy and sell prices. In the language of phys-
ics, the different players in the stock market form a heat bath, which keeps the
market in adiabatic equilibrium. There is a straightforward binomial method
for predicting the probability distributions of financial instruments. However,
Monte Carlo methods and quasi-random numbers are the more powerful ap-
proach.

Quasi–Real Time Microtomography Experiments at Photon Sources (Section 8.10).
Section 8.10 describes a successful application of computational grids to ac-
celerate the data analysis of an accelerator experiment. It is an example that
can be generalized to other cases. The accelerator (here a photon source at Ar-
gonne National Laboratory) data is passed in real time to a supercomputer,
where the analysis is performed. Multiple visualization and control stations
are also connected to the Grid.

WebHLA-based Meta-Computing Environment for Forces Modeling and Simulation (Sec-
tion 8.11). This section describes event-driven simulations, which are very
common in military applications (see Chapter 4). A distributed-object ap-
proach called high-level architecture or HLA (see Chapter 13) is being used for
modern problems of this class. Some run in “real time,” with synchronization
provided by the wall clock and humans and machines in the loop. Other cases
are run in “virtual time,” in a more traditional standalone fashion. This section
describes integration of these military standards with Object Web ideas such as
CORBA and .NET from Microsoft. One application simulated the interaction
of vehicles with a million mines on a distributed Grid of computers. This work
also parallelized the minefield simulator using threads (see Chapter 10).

8.12.2 Applications from Industrial Strength Parallel Computing [573]

Ocean Modeling and Visualization, Chapter 7 (Yi Chao, P. Peggy Li, Ping Wang,
Daniel S. Katz, Benny N. Cheng, Scott Whitman). This uses a variant of the
same ocean code described in Section 8.3 of this book. It describes both basic
parallel strategies and the integration of the simulation with a parallel, 3-D
volume renderer.

8.12 Computational Structure of Applications 285

Impact of Aircraft on Global Atmospheric Chemistry, Chapter 8 (Douglas A. Rotman,
John R. Tannahill, Steven L. Baughcum). This discusses issues related to those
in Chapter 6 of this book in the context of estimating the impact on atmo-
spheric chemistry of supersonic aircraft emissions. Task decomposition (code
coupling) for different physics packages is combined with domain decompo-
sition and parallel block data decomposition. Again, one keeps the vertical
direction in each processor and decomposes in the horizontal plane. Nontriv-
ial technical problems are found in the polar regions due to decomposition
singularities.

Petroleum Reservoir Management, Chapter 9 (Michael DeLong, Allyson Gajraj,
Wayne Joubert, Olaf Lubeck, James Sanderson, Robert E. Stephenson, Gau-
tam S. Shiralkar, Bart van Bloemen Waanders). This addresses an application
covered in Chapter 6 of this book, but focuses on a different code, Falcon,
developed as a collaboration between Amoco and Los Alamos. As in other
chapters of ISPC, detailed performance results are given. Particularly interest-
ing is the discussion of the sparse matrix solver (see Chapter 21 of this book). A
very efficient parallel preconditioner for a fully implicit solver was developed,
based on the incomplete LU factorization approach. This rearranged the order
of computation, but faithfully preserved the sequential algorithm.

An Architecture-Independent Navier-Stokes Code, Chapter 10 (Johnson C. T. Wang,
Stephen Taylor). This describes parallelization of commercial code ALSINS
(from Aerospace Corporation) that solves the Navier–Stokes equations (see
Chapter 5 of this book) using finite difference methods in the Reynolds-
averaging approximation for turbulence. Domain decomposition (Chapters 6
and 20 of this book) and MPI are used for the parallelism. The application
studied involved flow over Delta and Titan launch rockets.

Gaining Insights into the Flow in a Static Mixer, Chapter 11 (Olivier Byrde, Mark
L. Sawley). This chapter studies flow in commercial chemical mixers with
Reynolds-averaged, Navier–Stokes equations using finite volume methods as
in ISPC, Chapter 10. Domain decomposition (Chapters 6 and 20 of this book)
of a block-structured code and PVM are used for the parallelism. The mixing
study required parallel study of particle trajectories in the calculated flow field.

Modeling Groundwater Flow and Contaminant Transport, Chapter 12 (William J.
Bosl, Steven F. Ashby, Chuck Baldwin, Robert D. Falgout, Steven G. Smith,
Andrew F. B. Tompson). This presents a groundwater flow (Chapter 6 of this
book) code, ParFlow, that uses finite volume methods to generate the finite
difference equations. A highlight is the detailed discussion of parallel multigrid
(Section 8.5, Chapter 12, and Chapter 21 of this book), which is used not as a
complete solver, but as a preconditioner for a conjugate gradient algorithm.

Simulation of Plasma Reactors, Chapter 13 (Stephen Taylor, Marc Rieffel, Jerrell
Watts, Sadasivan Shankar). This simulates plasma reactors used in semicon-
ductor manufacturing plants. The direct-simulation Monte Carlo method is

286 Chapter 8 Application Overviews

used to model the system in terms of locally interacting particles. Adaptive 3-
D meshes (Chapter 19 of this book) are used with a novel diffusive algorithm
to control dynamic load balancing (Chapter 18 of this book).

Electron-Molecule Collisions for Plasma Modeling, Chapter 14 (Carl Winstead, Chuo-
Han Lee, Vincent McKoy). This complements Chapter 13 of ISPC by studying
the fundamental particle interactions in plasma reactors. It is instructive to
compare the discussion of the algorithm in this chapter with that of Chapter 7
of this book. They lead to similar conclusions, with Chapter 7 naturally describ-
ing the issues more generally. Two steps—calculation of matrix elements and
then a horde of matrix multiplications to transform basis sets—dominate the
computation. In this problem class, the matrix solver is not a computationally
significant step.

Three-Dimensional Plasma Particle-in-Cell Calculations of Ion Thruster Backflow Con-
tamination, Chapter 15 (Robie I. Samanta Roy, Daniel E. Hastings, Stephen
Taylor). This chapter studies contamination from space-craft thruster exhaust
using a 3-D particle-in-the-cell code. This involves a mix of solving Poisson’s
equation for the electrostatic field and evolving ions under the forces calculated
from this field. There are algorithmic similarities to the astrophysics problems
in this book (Section 8.5), but electromagnetic problems produce less extreme
density concentrations than the purely attractive (and hence clumping) grav-
itational force found in astrophysics.

Advanced Atomic-Level Materials Design, Chapter 16 (Lin H. Yang). This describes
a quantum molecular-dynamics package implementing the well-known Car-
Parrinello method. This is part of the NWChem package featured in Chapter 7
of this book, but not described in detail there. The computation is mostly
dominated by 3-D FFTs and basic BLAS (complex vector arithmetic) calls, but
has significant I/O.

Solving Symmetric Eigenvalue Problems, Chapter 17 (David C. O’Neal, Raghurama
Reddy). This describes parallel eigenvalue determination, which is covered
in Section 7.3.2 and Chapter 20 of this book.

Nuclear Magnetic Resonance Simulations, Chapter 18 (Alan J. Benesi, Kenneth M.
Merz, James J. Vincent, Ravi Subramanya). This is a pleasingly parallel com-
putation of NMR spectra obtained by averaging over crystal orientation.

Molecular Dynamics Simulations Using Particle-Mesh Ewald Methods, Chapter 19
(Michael F. Crowley, David W. Deerfield II, Tom A. Darden, Thomas E.
Cheatham III). This chapter discusses parallelization of a widely used molec-
ular dynamics code, AMBER, and its application to computational biology.
Much of the discussion is devoted to implementing a particle-mesh method
aimed at fast calculation of the long-range forces. Section 8.5 of this book dis-
cusses this problem for astrophysical cases. The ISPC discussion focuses on the
needed 3-D FFT.

8.12 Computational Structure of Applications 287

Radar Scattering and Antenna Modeling, Chapter 20 (Tom Cwik, Cinzia Zuffada,
Daniel S. Katz, Jay Parker). This article discusses a finite element formulation
of computational electromagnetics (see Section 8.6 of this book) that leads
to a sparse matrix problem with multiple right-hand sides. The minimum
residual iterative solver was used—this is similar to the conjugate gradient
approach described extensively in this book (Chapter 20, Chapter 21, and
many applications, especially Chapter 5). The complex geometries of realistic
antenna and scattering problems demanded sophisticated mesh generation
(Chapter 19 of this book).

Functional Magnetic Resonance Imaging Dataset Analysis, Chapter 21 (Nigel H. God-
dard, Greg Hood, Jonathan D. Cohen, Leigh E. Nystrom, William F. Eddy,
Christopher R. Genovese, Douglas C. Noll). This describes a common, im-
portant type of data analysis in which raw images (MRI scans in neuroscience)
need basic processing before they can be interpreted. This processing for MRI
involves a pipeline of 5 to 15 steps, of which the computationally intense
Fourier transforms, interpolation, and head motion corrections were paral-
lelized. Sections 8.8 and 8.10 of this book describe related applications.

Selective and Sensitive Comparison of Genetic Sequence Data, Chapter 22 (Alexander
J. Ropelewski, Hugh B. Nicholas, Jr., David W. Deerfield II). This describes the
very important genome database search problem implemented in a program
called Msearch. The basic sequential algorithm involves very sophisticated
pattern matching, but parallelism is straightforward because one can use pleas-
ingly parallel approaches involving decomposing the computation over parts
of the searched database.

8.12.3 Applications from Parallel Computing Works!

The applications in Parallel Computing Works! [358] are not as sophisticated as those
discussed above, as they come from a time when few scientists addressed 3-D
problems. Two-dimensional computations were typically the best you could do in
the partial differential equation arena. To make a stark contrast, the early 1983 QCD
(Section 8.2 of this book) computations in PCW were done on the Caltech hypercube,
whose 64 nodes could only make it to a total of 3 megaflops when combined! Today,
teraflop performance is available—almost a million times better. Nevertheless, in
many applications, the parallel approaches described in this book are still sound
and state of the art.

A Methodology for Computation (Chapter 3). This chapter describes more formally
the approach taken in Chapter 4 of this book.

Synchronous Applications I (Chapter 4). This chapter describes QCD (Section 8.2
of this book) and other similar statistical physics, Monte Carlo simulations on a
regular lattice. It also presents a cellular automata model for granular materials
(such as sand dunes). This model has a simple, regular lattice structure, as
mentioned in Section 4.4 of this book.

288 Chapter 8 Application Overviews

Synchronous Applications II (Chapter 6). This chapter describes other regular prob-
lems, including convectively dominated flows and the flux-corrected transport
differential equations. High statistics studies of 2-D statistical physics prob-
lems are used to study phase transitions (cf. Sections 8.2 and 8.9 of this book).
Parallel multiscale methods are also described for various image processing al-
gorithms, including surface reconstruction, character recognition, real-time
motion field estimation and collective stereosis (cf. Section 8.8 of this book).

Independent Parallelism (Chapter 7). This PCW chapter describes what is termed
“pleasingly parallel” applications in Chapter 4 of this book. It includes a phys-
ics computation of quantum-string theory surfaces, parallel random-number
generation, and ray tracing to study a statistical approach to the gravitational
lensing of quasars by galaxies. A high-temperature superconductor study uses
the quantum Monte Carlo method—here one uses Monte Carlo methods to
generate a set of random independent paths—a different problem structure
to that of Section 8.2, but a method of general importance in chemistry,
condensed matter, and nuclear physics. GENESIS [132] was one of the first
general-purpose, biological neural network simulators.

Full Matrix Algorithms and Their Applications (Chapter 8). This chapter first dis-
cusses some parallel matrix algorithms (Chapter 20 of this book) and applies
the Gauss–Jordan matrix solver to a chemical reaction computation. This di-
rectly solves Schrödinger’s equation for a small number of particles and is
different in structure from the problems in this book, Chapter 7. It reduces to
a multichannel, ordinary differential equation and leads to full matrix solvers.
A section on “electron-molecule collisions” describes a similar structure to the
much more sophisticated simulation engines of this book, Chapter 7. Further
work by this group can be found in Chapter 14 of ISPC.

Loosely Synchronous Problems (Chapter 9). The chapters above describe syn-
chronous or pleasingly parallel systems, in the language of Chapter 4 of
this book. This chapter describes several loosely synchronous cases. Geomor-
phology by micromechanical simulations is a different approach to granular
systems (from the cellular automata in Chapter 4 of PCW) using direct mod-
eling of particles “bouncing off each other.” Particle-in-cell simulation of
an electron-beam plasma instability uses particle-in-the-cell methods, which
have, of course, grown tremendously in sophistication, as seen in the astro-
physics simulation of this book, Section 8.5, and the ion thruster simulations
in Chapter 15 of ISPC (which uses the same approach as described in this PCW
chapter). Computational electromagnetics (see Section 8.6 of this book) used
finite element methods and is followed up in Chapter 20 of ISPC. Concur-
rent DASSL applied to dynamic distillation-column simulation uses a parallel
sparse solver (Chapter 21 of this book) to tackle coupled, ordinary, differential-
algebraic equations arising in chemical engineering.

This chapter also discusses the parallel adaptive multigrid for solving dif-
ferential equations—an area with similarities to mesh refinement, discussed in

8.12 Computational Structure of Applications 289

this book Chapter 5, Section 8.5, Chapter 12, and Chapter 19. See also Chapter
9 of ISPC. Munkres’s assignment algorithm was parallelized for a multitarget
Kalman-filter problem (cf. Section 8.7 of this book). This PCW chapter also
discusses parallel implementations of learning methods for neural networks.

DIME Programming Environment (Chapter 10). This chapter discusses one of the
earliest parallel unstructured-mesh generators and applies it to model finite
element problems. Chapter 19 of this book is an up-to-date survey of this field.

Load Balancing and Optimization (Chapter 11). This chapter describes approaches
to optimization based on physical analogies, including approaches to the
well-known traveling salesman problem. These physical optimization methods
complement those discussed in Section 8.7 and Chapter 22 of this book.

Irregular Loosely Synchronous Problems (Chapter 12). This chapter features some
of the harder parallel scientific codes in PCW. It includes two adaptive unstruc-
tured-mesh problems that used the DIME package described in PCW, Chapter
10. One was a simulation of the electrosensory system of the fish gnathonemus
petersii and the other transonic flow in CFD (Chapter 5 of this book). There is
a full discussion of fast multipole methods and their parallelism. These were
mentioned in Chapter 4 and Section 8.6 of this book. In PCW they are applied
to astrophysical problems similar to those in Section 8.5 of this book and to
the vortex approach to CFD. Fast multipole methods are applied to the same
problem class as particle-in-the-cell codes, as they again involve interacting
particles and fields. Chapter 19 of ISPC discusses another biochemistry problem
of this class.

Parallel sorting is an interesting area, and this PCW chapter describes several
good algorithms and compares them. The discussion of cluster algorithms for
statistical physics is interesting, as these are the best sequential algorithms,
but the method is very hard to parallelize. The same difficult structure occurs
in some approaches to region finding in image processing and also in some
models of the formation of earthquakes using cellular automata-like models.
The clusters are the aligned strains that form the earthquake.

Asynchronous Applications (Chapter 14). This chapter describes examples of the
temporally asynchronous algorithms described in Chapter 4 of this book,
where scaling parallelism is not easy. Melting in two dimensions illustrates a
subtle point that distinguishes Monte Carlo and PDE algorithms, as one cannot
simultaneously update in Monte Carlo those sites with overlapping neighbors.
This complicates the loosely synchronous structure and can make problem
architecture look like that of asynchronous event-driven simulations—here
the events are individual Monte Carlo updates. “Detailed balance” requires
that such events be sequentially (if arbitrarily) ordered, which is not easy in a
parallel environment. Nevertheless, using the equivalent of multiple threads
(Chapter 10 of this book), one finds an algorithm that gives good parallel
performance.

290 Chapter 8 Application Overviews

Computer chess is the major focus of this chapter. Parallelism is obtained
from sophisticated parallelism of the game tree. Statistical methods are used
to balance the processing of the different branches of the dynamically pruned
game tree. There is a shared database containing previous evaluation of posi-
tions, but otherwise the processing of the different possible moves is indepen-
dent. One does need a clever ordering of the work (evaluation of the different
final positions) in order to avoid a significant number of calculations being
wasted because they would “later” be pruned away by a parallel calculation
on a different processor. Branch-and-bound applications have parallelization
characteristics that are similar to computer chess. Note that this is not the
only, and in fact not the easiest, form of parallelism in computer chess. Rather,
fine-grain parallelism in evaluating each position is used in all recent computer-
chess championship systems. The work described in PCW is complementary
to this mainstream activity.

Complex System Simulation and Analysis (Chapter 18). This chapter describes a
few meta-problems, using the syntax of Section 4.8 of this book. ISIS was
an interactive seismic imaging system, and there is a long discussion of one
of the first large-scale, parallel military simulations mixing data and task
parallelism. This involved generation of scenarios, tracking multiple ballistic
missiles and a simulation of the hoped-for identification and destruction. A
very sophisticated parallel Kalman filter was generated in this project.

8.13 Conclusion

In this chapter we have presented an overview of various applications that show
the use of parallel computing in many disciplines. The examples include support
for basic science research, support for societal needs, and engineering applications.
The algorithms used by these applications include scalable methods traditionally
considered particularly appropriate for solving partial differential equations and n-
body problems, Monte Carlo methods, and new algorithms in areas such as data
mining. One stiking feature is that parallel computers have become just another
component of a scientific instrument, rather than an exotic piece of equipment. The
examples given here provide a good starting point for understanding the capabilities
of parallel computers and the approaches needed to use them. In the subsequent
chapters, we cover in detail the algorithmic and software techniques required to
design and build parallel applications.

P

A

R

T III Software Technologies

Chapter 9 SOFTWARE TECHNOLOGIES

Ian Foster, Argonne National Laboratory . Jack Dongarra,
University of Tennessee . Ken Kennedy, Rice University .

Charles Koelbel, Rice University

Chapter 10 MESSAGE PASSING AND THREADS

Ian Foster, Argonne National Laboratory . William Gropp,
Argonne National Laboratory . Carl Kesselman,
University of Southern California

Chapter 11 PARALLEL I/O

Rajeev Thakur, Argonne National Laboratory . William Gropp,
Argonne National Laboratory

Chapter 12 LANGUAGES AND COMPILERS

Ken Kennedy, Rice University . Charles Koelbel, Rice University

Chapter 13 PARALLEL OBJECT-ORIENTED LIBRARIES

John Reynders, Celera Genomics . Dennis Gannon,
Indiana University . K. Mani Chandy,
California Institute of Technology

Chapter 14 PROBLEM-SOLVING ENVIRONMENTS

Geoffrey Fox, Indiana University . Jack Dongarra,
University of Tennessee . Dorian Arnold, University of Wisconsin–
Madison . Henri Casanova, University of California–
San Diego . Ann Christine Catlin, Purdue University .

Tomasz Haupt, Mississippi State University . Elias Houstis,
Purdue University . John R. Rice, Purdue University

Chapter 15 TOOLS FOR PERFORMANCE TUNING AND DEBUGGING

Daniel A. Reed, University of Illinois at Urbana-Champaign .

Ruth A. Aydt, University of Illinois at Urbana-Champaign

Chapter 16 THE 2-D POISSON PROBLEM

William Gropp, Argonne National Laboratory

C

H

A

P

T

E

R

9 Software Technologies

Ian Foster . Jack Dongarra .

Ken Kennedy . Charles Koelbel

While parallel computing is defined by hardware technology, it is software that
renders a parallel computer usable. Parallel software technologies are the focus of
both this overview chapter and the seven more comprehensive chapters that follow
in Part III.

The concerns of the parallel programmer are those of any programmer: algorithm
design, convenience of expression, efficiency of execution, ease of debugging, com-
ponent reuse, and life-cycle issues. Hence, we should not be surprised to find that the
software technologies required to support parallel program development are familiar
in terms of their basic function. In particular, the parallel programmer, like any pro-
grammer, requires languages and/or application programming interfaces (APIs) that
allow for the succinct expression of complex algorithms, hiding unimportant details
while providing control over performance-critical issues; associated tools (e.g., per-
formance profilers) that allow diagnosis and correction of errors and performance
problems; and convenient formulations of efficient algorithms for solving key prob-
lems, ideally packaged so that they can easily be integrated into an application
program.

However, despite these commonalities, the particular characteristics of parallel
computers and of parallel computing introduce additional concerns that tend to
complicate both parallel programming and the development of parallel program-
ming tools. In particular, we must be concerned with the following three challenges:

1. Concurrency and communication. Parallel programs may involve the creation, co-
ordination, and management of potentially thousands of independent threads
of control. Interactions between concurrent threads of control may result in
nondeterminism. These issues introduce unique concerns that have profound
implications for every aspect of the program development process.

293

294 Chapter 9 Software Technologies

2. Need for high performance. In sequential programming, ease of expression may
be as important or even more important than program performance. In con-
trast, the motivation for using parallel computation is almost always a desire
for high performance. This requirement places stringent constraints on the
programming models and tools that can reasonably be used for parallel pro-
gramming.

3. Diversity of architecture. The considerable diversity seen in parallel computer
architectures makes the development of standard tools and portable programs
more difficult than is the case in sequential computing, where we find remark-
able uniformity in basic architecture.

The role of parallel software is thus to satisfy the requirements listed at the
beginning of this section, while simultaneously addressing in some fashion the
three challenges of concurrency and communication, performance demands, and
architectural diversity. This is a difficult task, and so in practice we find a variety
of approaches to parallel software, each making different tradeoffs between these
requirements.

In the rest of this chapter, we provide an overview of the major software and
algorithmic technologies that we can call upon when developing parallel programs.
In so doing, we revisit issues that were first developed at the beginning of the book
relating to programming models, methodologies, and technologies, and attempt
to integrate those different perspectives in a common framework. We structure the
presentation in terms of two key questions that we believe will be asked by any
parallel programmer:

. How do I select the parallel programming technology (library or language) to use
when writing a program? We introduce the programming models, APIs, and
languages that are commonly used for parallel program development and
provide guidance concerning when these different models, APIs, and languages
may be appropriate.

. How do I achieve correct and efficient execution? Here, we discuss issues relating
to nondeterminism and performance modeling.

In each case, we provide pointers to the chapters in which these issues are discussed
at greater length.

A third important question—How do I reuse existing parallel algorithms and code?—
is addressed in Chapter 17, where we describe several techniques used to achieve
code reuse in parallel algorithms.

9.1 Selecting a Parallel Program Technology

As explained in Chapter 2, a parallel computer is a collection of processing and mem-
ory elements, plus a communication network used to route requests and information
among these elements. The task of the parallel programmer is to coordinate the op-

9.1 Selecting a Parallel Program Technology 295

eration of these diverse elements so as to achieve efficient and correct execution on
the problem of interest.

The performance of a parallel program is determined by how effectively it maxi-
mizes concurrency (the number of operations that can be performed simultaneously),
while minimizing the amount of communication required to access “nonlocal” data,
transfer intermediate results, and synchronize the operation of different threads of
control. Communication costs are frequently sensitive to data distribution, the map-
ping of application data structures to memory elements; a good data distribution
can reduce the number of memory accesses that require expensive communication
operations. If work is not distributed evenly among processors, load imbalances may
occur, reducing concurrency and performance.

When evaluating the correctness of a parallel program, the programmer may
need to take into account the possibility of race conditions, which occur when the
executions of two or more distinct threads of control are sufficiently unconstrained
that the result of a computation can vary nondeterministically, depending simply on
the speed at which different threads proceed. The programmer, when faced with the
task of writing an efficient and correct parallel program, can call upon a variety of
parallel languages, compilers, and libraries, each of which implements a distinct
programming model with different tradeoffs among ease of use, generality, and
achievable performance.

In the rest of this section, we first review some of the principal programming
models implemented by commonly used languages and libraries. Then, we examine
each of these languages and libraries in turn and discuss their advantages and
disadvantages.

9.1.1 Parallel Programming Models

We first make some general comments concerning the programming models that
underlie the various languages and libraries that will be discussed subsequently.
Thirty years of research have led to the definition and exploration of a large number
of parallel programming models [867]. Few of these models have survived, but much
experience has been gained in what is useful in practical settings.

Data Parallelism versus Task Parallelism

Parallel programs may be categorized according to whether they emphasize con-
current execution of the same task on different data elements (data parallelism) or
the concurrent execution of different tasks on the same or different data (task paral-
lelism). For example, a simulation of galaxy formation might require that essentially
the same operation be performed on each of a large number of data items (stars); in
this case, a data-parallel algorithm is obtained naturally by performing this operation
on multiple items simultaneously. In contrast, in a simulation of a complex physi-
cal system comprising multiple processes (e.g., a multidisciplinary optimization of

296 Chapter 9 Software Technologies

an aircraft might couple airflow, structures, and engine simulations), the different
components can be executed concurrently, hence obtaining task parallelism.

Most programs for scalable parallel computers are data parallel in nature, for the
simple reason that the amount of concurrency that can be obtained from data paral-
lelism tends to be larger than can be achieved via task parallelism. Nevertheless, task
parallelism can have an important role to play as a software engineering technique:
it often makes sense to execute distinct components on disjoint sets of processors
(or even on different computers) for modularity reasons. It is increasingly common
for parallel programs to be structured as a task-parallel composition of data-parallel
components.

Explicit versus Implicit Parallelism

Parallel programming systems can be categorized according to whether they sup-
port an explicitly or implicitly parallel programming model. An explicitly parallel
system requires that the programmer specify directly the activities of the multiple
concurrent “threads of control” that form a parallel computation. In contrast, an
implicitly parallel system allows the programmer to provide a higher-level specifica-
tion of program behavior in which parallelism is not represented directly. It is then
the responsibility of the compiler or library to implement this parallelism efficiently
and correctly.

Implicitly parallel systems can simplify programming by eliminating the need for
the programmer to coordinate the execution of multiple processes. For example, in
the implicitly parallel, primarily data-parallel language High Performance Fortran
(HPF), the programmer writes what is essentially sequential Fortran 90 code, aug-
mented with some directives. Race conditions cannot occur, and the HPF program
need not be rewritten to take advantage of different parallel architectures.

Explicitly parallel systems provide the programmer with more control over pro-
gram behavior and hence can often be used to achieve higher performance. For
example, a Message Passing Interface (MPI) implementation of an adaptive mesh-
refinement algorithm may incorporate sophisticated techniques for computing
mesh distributions, for structuring communications among subdomains, and for
redistributing data when load imbalances occur. These strategies are beyond the
capabilities of today’s HPF compilers.

A parallel programming style that is becoming increasingly popular is to encapsu-
late the complexities of parallel algorithm design within libraries (e.g., an adaptive-
mesh-refinement library, as just discussed). An application program can then consist
of just a sequence of calls to such library functions. In this way, many of the advan-
tages of an implicitly parallel approach can be obtained within an explicitly parallel
framework.

Shared Memory versus Distributed Memory

Explicitly parallel programming systems can be categorized according to whether
they support a shared- or distributed-memory programming model. In a shared-

9.1 Selecting a Parallel Program Technology 297

memory model, the programmer’s task is to specify the activities of a set of processes
that communicate by reading and writing shared memory. In a distributed-memory
model, processes have only local memory and must use some other mechanism (e.g.,
message passing or remote procedure calls) to exchange information.

Shared-memory models have the significant advantage that the programmer
need not be concerned with data-distribution issues. On the other hand, high-
performance implementations may be difficult on computers that lack hardware
support for shared memory, and race conditions tend to arise more easily.

Distributed-memory models have the advantage that programmers have explicit
control over data distribution and communication; this control facilitates high-
performance programming on large distributed-memory parallel computers.

Other Programming Paradigms

Some important aspects of programming are orthogonal to the model of parallelism,
but can have a significant impact on the parallel programming process. Arguably,
the most important example of this is object-oriented programming. Although the
fundamentals of object-oriented design—including encapsulation of data and func-
tion, inheritance and polymorphism, and generic programming enabled by powerful
abstraction—come from the sequential world, they are also relevant to parallel com-
puting. In particular, appropriate abstractions can hide parallelism when it compli-
cates programming. Good examples include C++ libraries for array expressions [798,
959], which provide a familiar interface to the programmer that can be used effi-
ciently on both sequential and parallel computers. Abstractions can also provide
“glue” to tie parallel components together. The resulting component architectures
provide excellent run-time environments for building applications by composition.
Chapter 13 explores object-oriented parallel programming in more detail.

Other programming paradigms are specific to parallel programming, but not to
the particular model of parallelism. One of particular interest is the single-program,
multiple-data (SPMD) approach, in which all available processors execute the same
textual program. Because each processor has its own thread of control, different
processors may take different paths through this program and may operate on
different data. (In fact, it is usually the case that most processors take similar paths
through the program, perhaps varying slightly in the number of iterations of a
particular loop or the active branch of some conditionals.) Many programmers find
this an intuitive model that can be used for shared or distributed memory. For
example, they often write message-passing programs in this style, although it is not
mandated by the MPI standard. Some explicit parallel languages make heavy use of
the SPMD paradigm, as Section 12.4 describes.

9.1.2 Parallel Programming Technologies

We provide a brief summary of the major programming technologies discussed in
this book and provide pointers to the chapters where they are covered in more detail.
In the next subsection, we discuss the situations in which each is to be preferred.

298 Chapter 9 Software Technologies

Message Passing Interface

The Message Passing Interface (MPI) is a specification for a set of functions for man-
aging the movement of data among sets of communicating processes. Official MPI
bindings are defined for C, Fortran, and C++; bindings for various other languages
have been produced as well. MPI defines functions for point-to-point communica-
tion between two processes, collective operations among processes, parallel I/O, and
process management. In addition, MPI’s support for communicators facilitates the cre-
ation of modular programs and reusable libraries. Communication in MPI specifies
the types and layout of data being communicated, allowing MPI implementations to
both optimize for noncontiguous data in memory and support clusters of heteroge-
neous systems. As illustrated in Figure 9.1, taken from Chapter 16, MPI programs are
commonly implemented in terms of an SPMD model, in which all processes execute
essentially the same logic. Chapter 10 provides more details on MPI, while MPI’s
support for parallel I/O is discussed in Chapter 11.

Analysis. MPI is today the technology of choice for constructing scalable parallel
programs, and its ubiquity means that no other technology can beat it for portability.
In addition, a significant body of MPI-based libraries has emerged that provide
high-performance implementations of commonly used algorithms. Nevertheless,
given that programming in an explicit message-passing style can place an additional
burden on the developer, other technologies can be useful if our goal is a modestly
parallel version of an existing program (in which case OpenMP may be useful), we
are using Fortran 90 (HPF), or our application is a task-parallel composition designed
to execute in a distributed environment (CORBA, RMI).

Parallel Virtual Machine

Parallel Virtual Machine (PVM) represents another popular instantiation of the
message-passing model that was one of the principal forerunners of MPI and the
first de facto standard for implementation of portable message-passing programs.
The example in Figure 9.2 shows a PVM version of the Poisson problem that was
previously given in MPI. Although PVM has been superseded by MPI for tightly
coupled multiprocessors, it is still widely used on networks of workstations. PVM’s
principal design goal was portability, even to nonhomogeneous collections of nodes,
which was gained by sacrificing optimal performance. MPI, on the other hand, pro-
vides high-performance communication. MPI-1 provided only a nonflexible static
process model, while MPI-2 adds a scalable dynamic process model.

Central to the design of PVM is the notion of a “virtual machine”—a set of
heterogeneous hosts connected by a network that appears logically to the user as
a single large parallel computer. PVM API functions provide the ability to (1) join
or leave the virtual machine; (2) start new processes by using a number of different
selection criteria, including external schedulers and resource managers; (3) kill a
process; (4) send a signal to a process; (5) test to check that a process is responding;
and (6) notify an arbitrary process if another disconnects from the PVM system.

9.1 Selecting a Parallel Program Technology 299

use mpi

real u(0:n,js-1:je+1), unew(0:n,js-1:je+1)

real f(1:n-1, js:je), h

integer nbr_down, nbr_up, status(MPI_STATUS_SIZE), ierr

! Code to initialize f, u(0,*), u(n:*), u(*,0), and

! u(*,n) with g

h = 1.0 / n

do k=1, maxiter

! Send down

call MPI_Sendrecv(u(1,js), n-1, MPI_REAL, nbr_down, k, &

u(1,je+1), n-1, MPI_REAL, nbr_up, k, &

MPI_COMM_WORLD, status, ierr)

! Send up

call MPI_Sendrecv(u(1,je), n-1, MPI_REAL, nbr_up, k+1, &

u(1,js-1), n-1, MPI_REAL, nbr_down, k+1,&

MPI_COMM_WORLD, status, ierr)

do j=js, je

do i=1, n-1

unew(i,j) = 0.25 * (u(i+1,j) + u(i-1,j) + &

u(i,j+1) + u(i,j-1) - &

h * h * f(i,j))

enddo

enddo

! Code to check for convergence of unew to u.

! Make the new value the old value for the next iteration

u = unew

enddo

Figure 9.1 Message-passing version of the Poisson problem, as presented in Figure 16.3.

Analysis. If an application is going to be developed and executed on a single MPP,
then MPI has the advantage of expected higher communication performance. In
addition, MPI has a much richer set of communication functions, so it is favored
when an application is structured to exploit special communication modes, such
as nonblocking send, not available in PVM. PVM has the advantage when the
application is going to run over a networked collection of hosts, particularly if the
hosts are heterogeneous. PVM includes resource management and process control
functions that are important for creating portable applications that run on clusters of
workstations and MPPs. PVM is also to be favored when fault tolerance is required.
MPI implementations are improving in all of these areas, but PVM still provides
better functionality in some settings.

300 Chapter 9 Software Technologies

real u(0:n,js-1:je+1), unew(0:n,js-1:je+1)

real f(1:n-1, js:je), h

integer nbr_down, nbr_up, rc

! Code to initialize f, u(0,*), u(n:*), u(*,0), and

! u(*,n) with g

h = 1.0 / n

do k=1, maxiter

! Send down

! Cannot do a head to head as lack of buffering will cause

! deadlock, so odd row sends first

! while even receives and then we swap

if (odd) then

call pvmfpsend(nbr_down, k, u(1,js), n-1, PVM_FLOAT, rc)

call pvmfprecv(nbr_up, k, u(1,je+1), n-1, PVM_FLOAT, rc)

else

call pvmfprecv(nbr_up, k, u(1,je+1), n-1, PVM_FLOAT, rc)

call pvmfpsend(nbr_down, k, u(1,js), n-1, PVM_FLOAT, rc)

endif

! Send up

! Similar odd/even swapping to sending down

if (odd) then

call pvmfpsend(nbr_up, k, u(1,je), n-1, PVM_FLOAT, rc)

call pvmfprecv(nbr_down, k, u(1,js-1), n-1, PVM_FLOAT, rc)

else

call pvmfprecv(nbr_down, k, u(1,js-1), n-1, PVM_FLOAT, rc)

call pvmfpsend(nbr_up, k, u(1,je), n-1, PVM_FLOAT, rc)

endif

do j=js, je

do i=1, n-1

unew(i,j) = 0.25 * (u(i+1,j) + u(i-1,j) + &

u(i,j+1) + u(i,j-1) - &

h * h * f(i,j))

enddo

enddo

! code to check for convergence of unew to u.

! Make the new value the old value for the next iteration

u = unew

enddo

Figure 9.2 A PVM formulation of the Poisson problem.

9.1 Selecting a Parallel Program Technology 301

Parallelizing Compilers

Because parallel programming is so difficult, it is appealing to think that the best
solution would be to let the compiler do it all. Thus, automatic parallelization—
extraction of parallelism from sequential code by the compiler—has been the holy
grail of parallel computing software, particularly given the success of automatic
methods on vector machines. Unfortunately, automatic parallelization has never
achieved success comparable to that of automatic vectorization. As explained in
Chapter 12, the reasons for this failure stem from the greater complexity of compiler
analysis and hardware features of parallel machines.

As a result of these difficulties, automatic parallelization has been successful pri-
marily on shared-memory machines with small numbers of processors. The perfor-
mance gains that can be expected from this technology are application dependent,
but are generally small. Programmer-supplied information (typically communicated
via directives) can improve the overall parallelization in some situations. However, in
those cases OpenMP offers a much more portable way of specifying that information.

Analysis. Parallelizing compilers are certainly worth trying, especially when first
implementing a program on a shared-memory machine where only a small degree
of parallelism is required. If more parallelism or portability is needed, OpenMP or MPI
is a better solution. On scalable machines, HPF may provide an acceptably simple
alternative to automatic parallelization for regular, data-parallel problems coded in
Fortran 90.

P-Threads

As noted above, in the shared-memory programming model, multiple threads of
control operate in a single memory space. The POSIX standard threads package (p-
threads) represents a particularly low-level, but widely available, implementation
of this model. The p-threads library provides functions for creating and destroying
threads and for coordinating thread activities via constructs designed to ensure exclu-
sive access to selected memory locations (locks and condition variables). Chapter 10
provides a more detailed discussion of p-threads.

Analysis. We do not recommend the use of p-threads as a general-purpose parallel
program development technology. While they have their place in specialized situa-
tions and in the hands of expert programmers, the unstructured nature of p-threads
constructs makes the development of correct and maintainable programs difficult.
In addition, p-threads programs are not scalable to large numbers of processors.

OpenMP

An alternative approach to shared-memory programming is to use more structured
constructs such as parallel loops to represent opportunities for parallel execution.
This approach is taken in the increasingly popular OpenMP, a set of compiler

302 Chapter 9 Software Technologies

real u(0:n,0:n), unew(0:n,0:n)

real f(1:n-1, 1:n-1), h

! Code to initialize f, u(0,*), u(n:*), u(*,0), and

! u(*,n) with g

h = 1.0 / n

do k=1, maxiter

!$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(i)

do j=1, n-1

do i=1, n-1

unew(i,j) = 0.25 * (u(i+1,j) + u(i-1,j) + &

u(i,j+1) + u(i,j-1) - &

h * h * f(i,j))

enddo

enddo

!$OMP END PARALLEL DO

! Code to check for convergence of unew to u

! Make the new value the old value for the next iteration

!$OMP PARALLEL WORKSHARE

u = unew

!$OMP END PARALLEL WORKSHARE

enddo

Figure 9.3 An OpenMP formulation of the Poisson problem.

directives, library routines, and environment variables that can be used to specify
shared-memory parallelism in Fortran and C/C++ programs. As illustrated in Fig-
ure 9.3, OpenMP extensions focus on the exploitation of parallelism within loops.
In the example, the outer loop of a finite-difference calculation is declared to be
parallel. Arrays u, unew, and f are shared, while the inner loop induction variable is
private. OpenMP also provides the WORKSHARE directive to exploit the data parallelism
in array assignments (and other situations not shown here).

The parallelism in OpenMP may be coarse grained (as in the do loop of Figure 9.3)
or fine grained (as in the array assignment, or as it would be if nested parallelism were
used to make every iteration of both loops parallel). A desirable feature of OpenMP
is that it preserves sequential semantics: in a legal program, you may ignore the
structured comments and a sequential program is obtained. This simplifies program

9.1 Selecting a Parallel Program Technology 303

development, debugging, and maintenance. However, if the programmer makes an
error and mistakenly specifies a loop to be parallel when a race condition exists,
the program will produced undetermined results. Even though such a program is
“noncompliant,” it may be difficult to find the problem. Chapter 12 provides a more
detailed discussion of OpenMP.

Analysis. We recommend the use of OpenMP when the goal is to achieve modest
parallelism on a shared-memory computer. In this environment, the simplicity of
the OpenMP model and the fact that a parallel program can be obtained via the
incremental addition of directives to a sequential program are significant advantages.
On the other hand, the lack of support for user management of data distribution
means that scalable implementations of OpenMP are unlikely to appear in the
foreseeable future.

High Performance Fortran

High Performance Fortran (HPF), like OpenMP, extends a sequential base language
(in this case Fortran 90) with a combination of directives, library functions, and (in
the case of HPF) some new language constructs to provide a data-parallel, implicitly
parallel programming model. HPF differs from OpenMP in its focus on support for
user management of data distribution, so as to support portable, high-performance
execution on scalable computers of all kinds, particularly in distributed-memory
environments.

Figure 9.4 illustrates how structured comments are used to express the number of
processors that a program is to run on and to control the distribution of data. Note
that only three directives have been added to what is otherwise a pure Fortran 90
program: PROCESSORS, DISTRIBUTE, and ALIGN directives. These directives partition
each of the arrays by contiguous blocks of rows, hence allocating approximately n

4
rows to each of four processors. Although the array assignment statement is explicitly
parallel, the same distribution applied to a loop formulation of finite difference
would be expected to achieve the same results—if the loop can be run in parallel
on the assigned collection of processors, it should be. Chapter 12 provides more
details on HPF.

Analysis. When HPF works well, it is a wonderful tool: complex parallel algo-
rithms can be expressed succinctly as Fortran 90 code. Furthermore, it captures, in a
machine-independent way, the notion of data decomposition, which is essential to
successful parallelization of codes for distributed-memory systems. However, current
implementations of HPF are effective primarily for algorithms defined on regular
grids and for dense linear algebra. Although the extended HPF-2 standard defines
language extensions that would make HPF applicable to irregular computations, few
compilers implement these extensions. Hence, even though there are a number of
substantive applications, HPF remains a niche technology, for now at least.

304 Chapter 9 Software Technologies

real u(0:n,0:n), unew(0:n,0:n)

real f(1:n-1, 1:n-1), h

!HPF$ PROCESSORS pr(4) ! Run on 4 processors

!HPF$ DISTRIBUTE u(BLOCK,*) ! Distribute u by rows

!HPF$ ALIGN unew(i,j) WITH u(i,j) ! Distribute unew like u

!HPF$ ALIGN f(i,j) WITH u(i,j) ! Distribute f like u

! Code to initialize f, u(0,*), u(n:*), u(*,0), and

! u(*,n) with g

h = 1.0 / n

do k=1, maxiter

unew(1:n-1,1:n-1) = 0.25 * (u(2:n,1:n-1) + u(0:n-2,1:n-1) + &

u(1:n-1,2:n) + u(1:n-1,0:n-2) - &

h * h * f(1:n-1,1:n-1))

! code to check for convergence of unew to u.

! Make the new value the old value for the next iteration

u = unew

enddo

Figure 9.4 An HPF formulation of the Poisson problem.

Co-Array Fortran

Co-Array Fortran [719] takes the approach of designing a language to express the
single-program-multiple-data programming model. Many threads (which may corre-
spond to physical processors) execute the same program, exchanging data by assign-
ment statements. Unlike MPI and PVM, only one thread in the data exchange needs
to specify this communication. A program accomplishes this by declaring nonlocally
accessed arrays with an extra “co-dimension” and indexing that co-dimension with
the thread id. Figure 9.5 shows how this works in the Poisson example program.
Note the explicit synchronization (the call to synch_all) that ensures that both data
copies are completed. Chapter 12 discusses Co-Array Fortran in more detail.

Analysis. SPMD languages such as Co-Array Fortran have many potential advan-
tages. They are often reasonably clean (as in the above example), allow low-level
manipulations when necessary to tune program performance, and are not tied to
particular hardware models. However, they are relatively new and not widely sup-
ported. In particular, Co-Array Fortran is not a formal standard and is not supported

9.1 Selecting a Parallel Program Technology 305

real u(0:n,js-1:je+1)[*], unew(0:n,js-1:je+1)[*]

real f(1:n-1, js:je), h

integer nbr_down, nbr_up, nbrs(3), me

! Code to initialize f, u(0,*), u(n:*), u(*,0), and

! u(*,n) with g

h = 1.0 / n

do k=1, maxiter

! Send down

u(1:n-1,je+1)[nbr_down] = u(1:n-1,js)[me]

! Send up

u(1:n-1,js-1)[nbr_up] = u(1:n-1,je)[me]

call synch_all(wait=nbrs)

do j=js, je

do i=1, n-1

unew(i,j)[me] = 0.25 * (u(i+1,j)[me] + u(i-1,j)[me] + &

u(i,j+1)[me] + u(i,j-1)[me] - &

h * h * f(i,j))

enddo

enddo

! Code to check for convergence of unew to u

! Make the new value the old value for the next iteration

u[me] = unew[me]

enddo

Figure 9.5 A Co-Array Fortran formulation of the Poisson problem.

on many machines. (The Cray C90 and T3E are important machines where it is sup-
ported.) Some research implementations are beginning to appear. While we hesitate
to recommend such languages for production use today, the situation may improve
in the future. Co-Array Fortran may also be a good choice for experimental, proof-
of-concept work due to its expressiveness.

POOMA and HPC++

An alternative approach to the implementation of implicit data parallelism is to
define libraries that use object-oriented techniques (in particular, inheritance and
polymorphism) to abstract and encapsulate parallel operations. This is essentially the
approach taken in POOMA [798] and HPC++, two libraries that define standard-use
object-oriented technology to define classes that encapsulate parallelism. In POOMA,
for example, we can write code such as

A[I][J] = 0.25*(A[I+1][J] + A[I-1][J] + A[I][J+1] + A[I][J-1]);

306 Chapter 9 Software Technologies

to express the data-parallel operation for which we have presented various imple-
mentations in this chapter. In this formulation, A is a 2-D field, and I and J are index
objects representing the domain of the field object. As is discussed in more detail in
Chapter 13, issues relating to distribution across processors and communication are
handled by the array objects. A more complete version of this example is presented
as Figure 9.6, which is replicated from Chapter 13. That chapter also explains how
Java can be used as an effective programming language for object-oriented libraries.

Analysis. A significant advantage of object-oriented approaches is the great simplic-
ity and clarity that can be obtained. Another advantage is that the developer of these
libraries can incorporate substantial “smarts” in order to obtain good performance
on parallel platforms (see Chapter 13). A disadvantage in some situations is that
because we are dealing with often complex library software, the task of debugging
performance and correctness problems can be nontrivial.

Component Models

The final programming technology that we mention briefly is the various compo-
nent technologies that have been proposed and are used to facilitate the modu-
lar construction of complex software systems. CORBA, .COM, and Java Beans are
well-known examples. While various groups have experimented with the use of
these technologies within high-performance computing (e.g., [550]), lack of support
for parallelism has hindered their use for parallel computing proper. The Com-
mon Component Architecture effort [47], discussed in Chapter 13, is attempting to
overcome some of these problems. Other relevant efforts include problem-solving
environments (PSEs) and PSE toolkits such as Uintah [250], NetSolve [173], and
WebFlow [354], discussed more fully in Chapter 14. We can hope that these efforts
will produce the technology base required to support truly modular construction of
parallel software systems. In the meantime, the parallel programmer can and should
seek to apply well-established principles of modular design.

Hybrids

A variety of hybrid approaches are possible and in some cases are proving effective
and popular. For example, it is increasingly common to see applications developed
as a distributed-memory (MPI) framework with shared-memory parallelism (e.g.,
OpenMP) used within each “process.” The primary motivation is a desire to write
programs whose structure mirrors that of contemporary parallel computers consist-
ing of multiple shared-memory computers connected via a network. The technique
can have advantages: for example, a multidimensional problem can be decomposed
across processes in one dimension and within a process in a second.

Other hybrids that have been discussed in a research context include MPI and
p-threads, MPI and HPF [348, 349], and CORBA and HPF.

9.1 Selecting a Parallel Program Technology 307

01 #include "Pooma/Arrays.h"

02

03 #include <iostream>

04

05 // The size of each side of the domain

06 const int N = 20;

07

08 int

09 main(

10 int argc, // argument count

11 char* argv[] // argument list

12){

13 // Initialize POOMA

14 Pooma::initialize(argc, argv);

15

16 // The array we’ll be solving for

17 Array<2,double> V(N, N);

18 V = 0.0;

19

20 // The right-hand side of the equation (spike in the center)

21 Array<2,double> b(N, N);

22 b = 0.0;

23 b(N/2, N/2) = -1.0;

24

25 // Specify the interior of the domain

26 Interval<1> I(1, N-2), J(1, N-2);

27

28 // Iterate 200 times

29 for (int iteration=0; iteration<200; ++iteration)

30 {

31 V(I,J) = 0.25*(V(I+1,J) + V(I-1,J) + V(I,J+1) + V(I,J-1) - b(I,J));

32 }

33

34 // Print out the result

35 std::cout << V << std::endl;

36

37 // Clean up POOMA and report success.

38 Pooma::finalize();

39 return 0;

40 }

Figure 9.6 A POOMA code that performs a Jacobi iteration with a five-point stencil.

308 Chapter 9 Software Technologies

Table 9.1 Decision rules for selecting parallel programming technologies.

Use . . . If

Compilers Goal is to extract moderate [O(4–10)] parallelism from existing code
Target platform has a good parallelizing compiler
Portability is not a major concern

OpenMP Goal is to extract moderate [O(10)] parallelism from existing code
Good quality implementation exists for target platform
Portability to distributed-memory platforms is not a major concern

MPI Scalability is important
Application must run on some message-passing platforms
Portability is important
A substantive coding effort is acceptable to achieve other goals

PVM All MPI conditions plus fault tolerance are needed
HPF Application is regular and data parallel

A simple coding style in Fortran 90 is desirable
Explicit data distribution is essential to performance
A high degree of control over parallelism is not critical

Co-Array An implementation is available
Fortran Moderate coding effort (less than MPI) is desired

SPMD programming style is acceptable
Threads Scalability is not important

Program involves fine-grained operations on shared data
Program has significant load imbalances
OpenMP is not available or suitable

CORBA, Program has task-parallel formulation
RMI Interested in running in network-based system

Performance is not critical
High-level They address your specific problem
libraries The library is available on the target platform

9.1.3 Decision Rules

In the preceding discussion of parallel programming models and technologies, we
have made a number of points concerning the pros and cons of different approaches.
Table 9.1 brings these various issues together in the form of a set of rules for selecting
parallel programming models. We emphasize that this table includes only some of
the available parallel technologies.

9.2 Achieving Correct and Efficient Execution

The problem of achieving correct and efficient parallel programs is made difficult by
the issues noted in the introduction to this chapter: nondeterminism, concurrency,
and complex parallel computer architectures. These problems can be overcome by

9.2 Achieving Correct and Efficient Execution 309

a combination of good programming practice and appropriate tools. Tools such as
debuggers, profilers, and performance analyzers are discussed in Chapter 15; we talk
here about two issues of programming practice, namely, dealing with nondetermin-
ism and performance modeling.

9.2.1 Dealing with Nondeterminism

A nondeterministic computation is one in which the result computed depends on the
order in which two or more unsynchronized threads of control happen to execute.
Nondeterministic interactions can sometimes be desirable: for example, they can
allow us to select the “first” solution computed by a set of worker processes that are
executing subtasks of unknown size. However, the presence of nondeterminism also
greatly complicates the task of verifying program correctness; in principle, we need
to trace every possible program execution before we can ensure that the program
is correct. And in practice it can be difficult both to enumerate the set of possible
executions and to reproduce a particular behavior. Hence, nondeterminism is to be
avoided whenever possible. The following general techniques can be used to achieve
this goal:

. When possible, use a parallel programming technology that does not permit
race conditions to occur (e.g., HPF).

. If using a parallel programming technology that permits race conditions, adopt
defensive programming practices to avoid unwanted nondeterminism. For
example, in MPI, ensure that every “receive” call can match exactly one “send.”
Avoid the use of p-threads.

. When nondeterminism is required, encapsulate it within objects with well-
defined semantics. For example, in a manager–worker structure, the manager
may invoke a function “get next solution”; all nondeterminism is then encap-
sulated within this function.

9.2.2 Performance Modeling

In Chapter 15, tools are described for measuring and analyzing the performance
of a parallel program. In principle, a good performance tool should be able to
relate observed performance to the constructs of whatever parallel programming
technology was used to write the original program. It may also seek to suggest
changes to the program that can improve performance. Tools available today do
not typically achieve this ideal, but they can provide useful information.

An important adjunct to any performance tool is the use of analytic performance
models as a means of predicting likely performance and of explaining observed perfor-
mance. As discussed, for example, in Designing and Building Parallel Programs [341], a
good performance model relates parallel program performance (e.g., execution time)
to key properties of the program and its target execution environment: for example,
problem size, processor speed, and communication costs. Such a model can then be
used for qualitative analysis of scalability. If the model is sufficiently accurate (and

310 Chapter 9 Software Technologies

especially if it is calibrated with experimental data), it can also be used to explain
observed performance. Performance models are also discussed in Chapter 15.

9.3 Conclusion

We conclude this chapter with a discussion of four areas in which significant progress
is required—and, we believe, will occur—in parallel software concepts and tech-
nologies.

9.3.1 Clusters and DSM

While shared-memory multiprocessors are becoming increasingly common, another
parallel computing technology is also seeing widespread use, namely, clusters con-
structed from PC nodes connected with commodity networks. Such clusters can be
extremely cheap when compared with multiprocessors, but do not offer the same
integrated operating system services or a convenient shared-memory programming
model. Heterogeneity is another potential obstacle. However, numerous research
and development activities are working to overcome these problems.

At the operating system level, we see numerous activities focused on parallel file
systems, scheduling, error management, and so on. In addition, work such as Fast
Messages [734] and Virtual Interface Architecture (VIA) [962] is helping to reduce
communication costs to something more like MPPs.

Clusters today are almost invariably programmed with MPI. Yet experience with
multiprocessors shows that shared-memory parallelism can be more convenient for
applications that involve irregular data structures and data access patterns. Hence,
various groups are working to develop software-based, distributed-shared-memory
(DSM) systems that will allow a cluster to be treated as a shared-memory multiproces-
sor, with various combinations of run-time support, operating system modifications,
and compiler modifications being used to provide (sometimes) efficient support for
a shared-memory programming model.

9.3.2 Grids

Emerging “Computational Grid” infrastructures support the coordinated use of
network-connected computers, storage systems, and other resources, allowing them
to be used as an integrated computational resource [345].

Grid concepts and technologies have significant implications for the practice of
parallel computing. For example, while parallel computers have been used tradition-
ally as “batch” engines for long-running, noninteractive jobs, in Grid environments
a parallel computer may need to interact frequently with other systems, whether
to acquire instrument data, enable interactive control, or access remote storage sys-
tems [343]. These new modes of use are likely to require new run-time system and
resource management techniques [344].

9.3 Conclusion 311

Grid infrastructures can also be used to create what might be termed “generalized
clusters,” enabling the dynamic discovery and assembly of collections of resources
that can be used to solve a computational problem. Because so many computational
resources are underutilized, this mode of use has the potential to deliver order-of-
magnitude increases in available computation. However, the heterogeneous and
dynamic nature of such generalized clusters introduces significant challenges for
algorithms and software technologies.

9.3.3 Ultra-Scale Computers

The final architecture-based topic that we discuss relates to the software technologies
required for tomorrow’s extremely large-scale parallel computers—those capable of
1015 operations per second or more.

A variety of very different architectures have been proposed for such computers,
ranging from scaled-up versions of today’s commodity-based systems to systems
based on processor-in-memory components and/or superconducting logic [896].
These different systems have in common a need to be able to exploit large amounts
of parallelism—103 times more than today’s largest computers—and to deal with
deep memory hierarchies in which memory may be a factor of 103 further away (in
terms of processor clock cycles) than in today’s systems.

These scaling issues, which derive from trends in processor and memory technol-
ogy, pose major challenges for parallel software technologies at every level.

9.3.4 Programming Productivity

One major goal for research and development in parallel computing must necessar-
ily be to reduce the cost of writing and executing parallel programs, particularly for
shared-memory multiprocessor systems. This goal becomes more difficult to achieve
as the computing platforms become ever more complex. From the previous para-
graphs, we can see that platforms will become even more complex in the future.
With these architectural advances, we may see the day that programming for the
most advanced computational facilities will become the exclusive domain of pro-
fessional programmers. This would be a major setback for computational science.
To avoid that setback, we need revolutionary advances in programming support
technologies.

As discussed in Chapter 12, automatic methods for extracting parallelism from
conventional programming languages have been only a limited success. Further-
more, it seems unlikely that these techniques will extend well to the complex
architectures of the future. So, how can we support end-user programming while
maintaining a high level of performance? One approach that shows considerable
promise for productivity improvement is the use of high-level, domain-specific
problem-solving environments. Examples of such systems include MATLAB [426],
Mathematica [1002], Ellpack [490], and POOMA [53].

312 Chapter 9 Software Technologies

The difficulty with problem-solving environments as they are currently imple-
mented is that they produce code that is not efficient enough to be used on a
computation-intensive application. However, advanced techniques based on exten-
sive library precompilation may offer a way to bring the performance of problem-
solving languages up to the level of conventional languages [559]. Furthermore, by
exploiting the domain knowledge contained in the language and the underlying
library, it should be possible to extract the natural parallelism in the problem and
tailor it to a variety of different target platforms.

9.3.5 Further Reading

An article by Skillicorn and Talia [867] provides an excellent survey of parallel
programming paradigms and languages.

The book Designing and Building Parallel Programs [341] provides a good tutorial
introduction to parallel computing, MPI, and HPF.

The book The Grid: Blueprint for a New Computing Infrastructure [354] provides a
comprehensive review of the technologies that underlie emerging Grid infrastruc-
tures and applications. See also Foster et al. [347] and Foster [342].

C

H

A

P

T

E

R

10 Message Passing and Threads

Ian Foster . William Gropp .

Carl Kesselman

In this chapter we examine two fundamental, although low-level, approaches to
expressing parallelism in programs. Over the years, numerous different approaches
to designing and implementing parallel programs have been developed (e.g., see
the excellent survey article by Skillicorn and Talia [867]). However, over time, two
dominant alternatives have emerged: message passing and multithreading.

These two approaches can be distinguished in terms of how concurrently exe-
cuting segments of an application share data and synchronize their execution. In
message passing, data are shared by explicitly copying (“sending”) it from one paral-
lel component to another, while synchronization is implicit with the completion of
the copy. In contrast, the multithreading approach shares data implicitly through the
use of shared memory, with synchronization being performed explicitly via mecha-
nisms such as locks, semaphores, and condition variables.

As with any set of alternatives, there are advantages and disadvantages to each
approach. Multithreaded programs can be executed particularly efficiently on com-
puters that use physically shared memory as their communication architecture.
However, many parallel computers being built today do not support shared mem-
ory across the whole computer, in which case the message-passing approach is more
appropriate.

From the perspective of programming complexity, the implicit sharing provided
by the shared-memory model simplifies the process of converting existing sequential
code to run on a parallel computer. However, the need for explicit synchronization
can result in errors that produce nondeterministic race conditions that are hard to
detect and correct. On the other hand, converting a program to use message passing
requires more work up front, as one must extract the information that must be
shared from the application data structures and explicitly move it to the desired

313

314 Chapter 10 Message Passing and Threads

concurrently executing program component. However, because synchronization is
implicit in the arrival of the data, race conditions are generally avoided.

Both message passing and multithreading can be implemented via special-
purpose programming languages (and associated compilers) or through libraries that
are linked with an application written in an existing programming language, such as
Fortran or C. In this chapter, we focus on the most common library-based implemen-
tations, specifically the Message Passing Interface (MPI) [878] for message-passing
programs and the POSIX standard thread library (p-threads) [499] for multithreading
programs. We also discuss popular alternatives, notably the Parallel Virtual Machine
(PVM) [371].

10.1 Message-Passing Programming Model

Message passing is by far the most widely used approach to parallel computing, at
least on large parallel systems. (Multithreading dominates on small shared-memory
systems.) In the message-passing model, a computation comprises one or more
processes that communicate by calling library routines to send and receive messages.
Communication is cooperative: data are sent by calling a routine, and the data are
not received until the destination process calls a routine to receive the data. This is
in contrast to other models, such as one-sided or remote-memory operations, where
communication can be accomplished by a single process.

The message-passing model has two great strengths. The most obvious to users
is that programs written using message passing are highly portable. Virtually any
collection of computers can be used to execute a parallel program that is written
using message passing; the message-passing programming model does not require
any special hardware support for efficient execution, unlike, for example, shared-
memory programming models. The second strength is that message passing provides
the programmer with explicit control over the location of memory in a parallel
program, specifically, the memory used by each process. Since memory access and
placement often determine performance, this ability to manage memory location
can allow the programmer to achieve high performance. The major disadvantage of
message passing is that the programmer is required to pay attention to such details
as the placement of memory and the ordering of communication.

Numerous different message-passing models and libraries have been proposed. At
their core, most support the same basic mechanisms. For point-to-point communica-
tion, a send operation is used to initiate a data transfer between two concurrently
executing program components, and a matching receive operation is used to extract
that data from system data structures into application memory space. In addition,
collective operations such as broadcast and reductions are often provided; these im-
plement common global operations involving multiple processes.

Specific models and libraries also differ from one another in a variety of ways. For
example, the send calls may be blocking or nonblocking, as can the receives. The
means by which a send and receive are matched up may also vary from implementa-

10.1 Message-Passing Programming Model 315

tion to implementation. The exact details of how message buffers are created, filled
with data, and managed also vary from implementation to implementation.

Variations in the specifics of a message-passing interface can have a significant im-
pact on the performance of programs written to that interface. There are three major
factors that influence performance: bandwidth and latency of actual message passing
and the ability to overlap communication with computation. On most modern paral-
lel computers, latency is dominated by the message setup time rather than the actual
time of flight through the communication network. Thus the software overhead of
initializing message buffers and interfacing with the communication hardware can
be significant. The bandwidth achieved by a specific message-passing implemen-
tation is often dominated by the number of times the data being communicated
must be copied when transferring data between application components. Poorly de-
signed interfaces can result in extra copies, reducing the overall performance of an
application. The final performance concern is that of overlapping communication
and computation. Nonblocking sending semantics enable the sender to continue
execution even if the data have not been accepted by the receiver. Furthermore,
nonblocking receives enable a receiver to anticipate the next incoming data ele-
ments, while still performing valuable work. In both situations, the performance of
the resulting application is improved.

While message passing can be, and indeed has been, provided as primitives in a
programming language (e.g., Occam [504], Concurrent C [372]), it is more typically
implemented by library routines. In the following we focus on the two most widely
used message-passing libraries: Message Passing Interface (MPI) and Parallel Virtual
Machine (PVM).

10.1.1 The Message Passing Interface Standard

While the message-passing model is portable in the sense that it is easily imple-
mented on any parallel platform, a specific program is portable only if the system
that supports it is widely available. For example, programs written in C and For-
tran are portable because C and Fortran compilers are widely available. In the early
history of parallel computing, there were numerous different implementations of
the message-passing model, with many being specific to individual vendor systems
or written by research groups. This diversity of message-passing implementations
prevented applications from being portable to a wide range of parallel computers.

Recognizing that a single clearly and precisely specified message-passing interface
would benefit users (by making their programs portable to a larger set of machines)
and vendors (by enlarging the set of applications that can run on any machine), a
group of researchers, parallel computer vendors, and users came together to develop
a standard for message passing. Following in the footsteps of the High Performance
Fortran Forum, this group developed a standard called the Message Passing Inter-
face [668, 879], and the group was called the MPI Forum. The standard itself is
available on the web at http://www.mpi-forum.org.

316 Chapter 10 Message Passing and Threads

MPI defines a library of routines that implement the message-passing model.
Rather than simply codifying features of the message-passing libraries that were in
common use when MPI was defined, such as PVM, Express, and p4 [133, 158],
the MPI Forum incorporated best practices across a variety of different message-
passing libraries. The result is a rich and sophisticated library that includes a wide
variety of features, many of which are important in implementing large and complex
applications.

Although MPI is a complex and multifaceted system, just six of its functions are
needed to solve a wide range of problems. We focus our attention here on those
functions; for a more complete tutorial discussion of MPI, see Foster [341], Gropp et
al. [406, 407], and Pacheco [732].

When describing MPI functions, an all-uppercase form (e.g., MPI_INIT) is used
to denote the MPI specifications. MPI function names in C use a mixed-case form
(e.g., MPI_Init), while MPI function names in Fortran are commonly written in all
lowercase (e.g., mpi_init). The six MPI functions that we describe here are used
to initiate and terminate a computation, identify processes, and send and receive
messages:

MPI_INIT : Initiate an MPI computation.

MPI_FINALIZE : Terminate a computation.

MPI_COMM_SIZE : Determine number of processes.

MPI_COMM_RANK : Determine my process identifier.

MPI_SEND : Send a message.

MPI_RECV : Receive a message.

Function parameters are detailed in Figure 10.1. In this and subsequent code
blocks, the labels IN, OUT, and INOUT indicate whether the function uses but does
not modify the parameter (IN), does not use but may update the parameter (OUT), or
both uses and updates the parameter (INOUT).

MPI defines “language bindings” for C, Fortran, and C++ (bindings for other
languages can be defined as well). Different language bindings have slightly different
syntax, reflecting language peculiarities. Sources of syntactic difference include the
function names themselves, the mechanism used for return codes, the representation
of the handles used to access specialized MPI data structures such as communicators,
and the implementation of the status data type returned by MPI_RECV. (The use of
handles hides the internal representation of MPI data structures.)

For example, in the C language binding, function names are as in the MPI
definition but with only the MPI prefix and the first letter of the function name
capitalized. Status values are returned as integer return codes. The return code for
successful completion is MPI_SUCCESS; a set of error codes is also defined. Compile-
time constants are all in uppercase and are defined in the file “mpi.h,” which must
be included in any program that makes MPI calls. Handles are represented by special
defined types, defined in mpi.h. These will be introduced as needed in the following.
Function parameters with type IN are passed by value, while parameters with type
OUT and INOUT are passed by reference (that is, as pointers).

10.1 Message-Passing Programming Model 317

MPI_INIT(int *argc, char ***argv)

Initiate a computation.

argc, argv are required only in the C language binding,

where they are the main program’s arguments.

MPI_FINALIZE()

Shut down a computation.

MPI_COMM_SIZE(comm, size)

Determine the number of processes in a computation.

IN comm communicator (handle)

OUT size number of processes in the group of comm (integer)

MPI_COMM_RANK(comm, pid)

Determine the identifier of the current process.

IN comm communicator (handle)

OUT pid process id in the group of comm (integer)

MPI_SEND(buf, count, datatype, dest, tag, comm)

Send a message.

IN buf address of send buffer (choice)

IN count number of elements to send (integer ≥0)

IN datatype data type of send buffer elements (handle)

IN dest process id of destination process (integer)

IN tag message tag (integer)

IN comm communicator (handle)

MPI_RECV(buf, count, datatype, source, tag, comm, status)

Receive a message.

OUT buf address of receive buffer (choice)

IN count size of receive buffer, in elements (integer ≥0)

IN datatype data type of receive buffer elements (handle)

IN source process id of source process, or MPI_ANY_SOURCE (integer)

IN tag message tag, or MPI_ANY_TAG (integer)

IN comm communicator (handle)

OUT status status object (status)

Figure 10.1 Basic MPI. These six functions suffice to write a wide range of parallel programs.
The arguments are characterized as having mode IN or OUT and having type integer, choice,
handle, or status. These terms are explained in the text.

318 Chapter 10 Message Passing and Threads

All but the first two calls take a communicator handle as an argument. A commu-
nicator identifies the process group and context with respect to which the operation
is to be performed. As we shall see later, communicators provide a mechanism for
identifying process subsets when we are developing modular programs. They also
ensure that messages intended for different purposes are not confused. For now, it
suffices to provide the default value MPI_COMM_WORLD, which identifies all processes
involved in a computation. Other arguments have type integer, data type handle, or
status.

The functions MPI_INIT and MPI_FINALIZE are used to initiate and shut down
an MPI computation, respectively. MPI_INIT must be called before any other MPI
function and must be called exactly once per process. No further MPI functions can
be called after MPI_FINALIZE.

The functions MPI_COMM_SIZE and MPI_COMM_RANK determine the number of pro-
cesses in the current computation and the integer identifier assigned to the current
process, respectively. (The processes in a process group are identified with unique,
contiguous integers numbered from 0.) For example, consider the following pro-
gram, expressed in pseudocode rather than Fortran or C.

program main

begin

MPI_INIT() Initiate computation

MPI_COMM_SIZE(MPI_COMM_WORLD, count) Find # of processes

MPI_COMM_RANK(MPI_COMM_WORLD, myid) Find my id

print("I am", myid, "of", count) Print message

MPI_FINALIZE() Shut down

end

The MPI standard does not specify how a parallel computation is started. However,
a typical mechanism might be a command line argument indicating the number of
processes that are to be created: for example, “myprog -n 4,” where myprog is the name
of the executable. Additional arguments might be required, for example to specify
processor names in a networked environment.

Once a computation is initiated, each of the processes created will normally
execute the same program. Hence, execution of the program above gives something
like the following output.

I am 1 of 4

I am 3 of 4

I am 0 of 4

I am 2 of 4

The order in which the output from the four processes appears is not defined; we
assume here that the output from individual print statements is not interleaved.

Finally, we consider the functions MPI_SEND and MPI_RECV. These are used to send
and receive messages, respectively. A call to MPI_SEND has the following general form:

MPI_SEND(buf, count, datatype, dest, tag, comm)

10.1 Message-Passing Programming Model 319

It specifies that a message containing count elements of the specified datatype starting
at address buf is to be sent to the process with identifier dest. As will be explained in
greater detail subsequently, this message is associated with an envelope comprising
the specified tag, the source process’s identifier, and the specified communicator
(comm). An MPI data type is defined for each C data type: MPI_CHAR, MPI_INT, MPI_
LONG, MPI_UNSIGNED_CHAR, MPI_UNSIGNED, MPI_UNSIGNED_LONG, MPI_FLOAT, MPI_DOUBLE,
MPI_LONG_DOUBLE, and so forth. MPI provides similar data type names for Fortran
and C++. In addition, MPI allows the user to define new data types that represent
noncontiguous buffers (such as constant stride vectors or index scatter/gathers).

A call to MPI_RECV has the following general form.

MPI_RECV(buf, count, datatype, source, tag, comm, status)

It attempts to receive a message with an envelope corresponding to the specified
tag, source, and comm, blocking until such a message is available. When the message
arrives, elements of the specified datatype are placed into the buffer at address buf.
This buffer is guaranteed by the user to be large enough to contain at least count
elements. The status variable can be used subsequently to inquire about the size,
tag, and source of the message.

The six functions just described can be used to express a wide variety of parallel
computations. Figure 10.2 shows a simple Fortran program that sends data from
the process with rank zero to the process with rank one. Note that in the message-
passing model, each process is separate from all other processes. The variables in this
program represent different memory locations for each process and may, in fact, be
on computer hardware (executing on processors) located miles apart. In other words,
the variable buf in process 0 is a different memory location than the variable buf in
process 1.

Nonblocking Communication Operations

The MPI communication routines just described are blocking; when the routine
returns, the user can use the data buffer. In the case of MPI_Send, the user can
immediately change the value of data in the buffer (e.g., execute abuf = 2). In the
case of MPI_Recv, the user can immediately use the value in the buffer, as we do in
our example. This is a simple and easy-to-use model, but it has two major drawbacks.
Consider the program where the two processes exchange data:

...

if (rank .eq. 0) then

call mpi_send(abuf, n, MPI_INTEGER, 1, 0, MPI_COMM_WORLD, ierr)

call mpi_recv(buf, n, MPI_INTEGER, 1, 0, MPI_COMM_WORLD, status, ierr)

else if (rank .eq. 1) then

call mpi_send(abuf, n, MPI_INTEGER, 0, 0, MPI_COMM_WORLD, ierr)

call mpi_recv(buf, n, MPI_INTEGER, 0, 0, MPI_COMM_WORLD, status, ierr)

endif

320 Chapter 10 Message Passing and Threads

program main

use mpi

integer ierr, size, rank

integer abuf, buf, status(mpi_status_size)

call mpi_init(ierr)

call mpi_comm_size(mpi_comm_world, size, ierr)

call mpi_comm_rank(mpi_comm_world, rank, ierr)

if (size .lt. 2) then

print *, ’Error - must have at least 2 processes’

call mpi_abort(mpi_comm_world, ierr)

endif

if (rank .eq. 0) then

abuf = 10

call mpi_send(abuf, 1, MPI_INTEGER, 1, 0, mpi_comm_world, ierr)

elseif (rank .eq. 1) then

buf = -1

print *, ’Buf before recv = ’, buf

call mpi_recv(buf, 1, MPI_INTEGER, 0, 0, mpi_comm_world, status, ierr)

print *, ’Buf after recv = ’, buf

endif

call mpi_finalize(ierr)

end

Figure 10.2 Simple MPI: Using the six basic functions to write a program that communicates
data from process 0 to process 1.

For this program to execute correctly, at least one of the processes must complete the
MPI_Send call so that the matching MPI_Recv will be executed. For the MPI_Send calls
to complete, the data in abuf must be copied into a system buffer. This introduces
two problems. First, a data copy hurts performance; it is an operation that doesn’t
achieve anything other than allowing the operation to complete. Second, and more
serious, there must be enough buffer space to copy the data into. In the example
above, this is (usually) not a problem if n is 1, 10, or even 1000; but if n is very large
(e.g., 100,000,000), there may not be enough space in the buffer. In this case, the
program will never complete; it will deadlock.

It is always possible to reorder the send and receive operations to avoid this
deadlock, but particularly for complex communication patterns, this can be so
difficult as to be impractical. Hence, MPI also provides for nonblocking variants of
the send and receive routines: MPI_Isend and MPI_Irecv. These calls do not wait for
the communication to complete before they return. (The user can ensure that they
have completed by calling MPI_Wait or any of several variants.) These routines are

10.1 Message-Passing Programming Model 321

necessary for the correct operation of message-passing programs. For more discussion
on this point, see Gropp et al. [406, Chapter 4].

Communicators

In the MPI interface, the message tag is used to match a send operation with a receive
operation. The tag provides a simple means of separating messages at the receiver.
This can be used to identify the purpose of the message or make sure that one part
of a program doesn’t receive a message that was not intended for it. For example, a
different tag value can be used for data values and message-containing configuration
options for the program.

In early message-passing libraries, the message tag was the only mechanism pro-
vided to distinguish messages. This made it difficult to write reusable program li-
braries. Even preallocating ranges of tags to a library is not sufficient to ensure
that messages intended for one piece of code are not intercepted by another (if
MPI_ANY_TAG is used). MPI addressed this problem by introducing the concept of a
communication context. Each MPI communicator contains a separate communi-
cation context; this defines a separate virtual communication space. As discussed
above, each MPI send and receive operation takes a communicator as an argument,
and thus we can isolate an application library by providing it its own communicator
when it is invoked.

Communicators do more than scope a tag name space. They also define a name
space of processes, that is, the size and rank used for named endpoints of send and
receive operations. Starting with MPI_COMM_WORLD, which contains all the processes
in a parallel computation, new communicators are formed by either including or
excluding processes from an existing communicator. Within a communicator, pro-
cesses are assigned rank from zero to one minus the size of the communicator. Thus,
MPI_Comm_size returns the number of processes within the specified communicator,
while MPI_Comm_rank returns the identifier of the current process within the scope of
the specified communicator.

Collective Operations

Parallel algorithms often call for coordinated communication operations involving
multiple processes. For example, all processes may need to cooperate to transpose a
distributed matrix or to sum a set of numbers distributed one per process. Clearly,
these global operations can be implemented by a programmer using the send and
receive functions introduced previously. For convenience, and to permit optimized
implementations, MPI also provides a suite of specialized collective communication
functions that perform commonly used operations of this type. These functions
include the following:

. Barrier. Synchronize all processes.

. Broadcast. Send data from one process to all processes.

322 Chapter 10 Message Passing and Threads

. Gather. Gather data from all processes to one process.

. Scatter. Scatter data from one process to all processes.

. Reduction operations. Addition, multiplication, and so on of distributed data.

These operations are all executed in a collective fashion, meaning that each process
in a process group calls the communication routine.

10.1.2 Parallel Virtual Machine

At this point, it would be instructive to discuss the major message-passing library that
was in common use prior to the development of MPI. The PVM [371] was a widely
used library that ran on a large number of different parallel computing platforms,
including networks of workstations. While there was a public domain distribution
of this library, there were also vendor-supported versions on computers such as the
Cray T3E and the IBM SP2. Chapter 9 illustrates the use of PVM in a simple problem.

The message-passing primitives of PVM differ from MPI in a number of signif-
icant ways. For example, there is no notion of communicators. Also, buffers are
implicit to the send operation, rather than being explicitly provided by a function
argument. However, PVM is still important. In addition to providing communica-
tion operations, it also provides a set of operations for manipulating the computing
environment to dynamically construct a “parallel virtual machine,” from which the
library takes its name.

Unlike MPI, which assumes a fixed set of processes in MPI_COMM_WORLD, PVM
applications can dynamically change the set of processes over which communication
operations take place. Rather than sending to a process of a specific rank, PVM
applications use task identifiers (tid) to specify the endpoints of a communication
operation. While many applications can fit into the static process model of MPI, there
are a number of significant applications that cannot. Addressing the needs of these
more dynamic applications was one of the motivations that led to the development
of MPI-2, discussed in the next section.

10.1.3 Extensions to the Message Passing Interface

Even though the MPI specification contains a large number of routines, many users
found that it lacked needed features. To remedy this, the MPI Forum developed a set
of extensions to the MPI specification, called MPI-2 [405, 671]. These new features
fell into three major categories. In the original MPI specification (henceforth MPI-1),
the number of processes in an MPI application remains fixed between the call to MPI_
Init and MPI_Finalize. As experience with PVM showed, it is sometimes helpful to
be able to change the number of processes available during the execution of a parallel
computation. In MPI-2, the function MPI_Comm_spawn allows the user to create new
processes and connect them to an MPI application; other routines allow two MPI
programs to connect to each other.

10.2 Multithreaded Programming 323

Another requested feature, stimulated both by research into other parallel com-
puting models such as active messages [965] and bulk synchronous processes
(BSP) [470], and in particular by the success of the Cray shmem library, was one-
sided or remote-memory operations. MPI-2 provides routines that allow a process to
put or get directly into another process’s memory.

Perhaps the most requested feature, however, was for parallel I/O. The MPI
approach to I/O is covered later in this book in Chapter 11.

In addition, MPI-2 added bindings for C++ and Fortran 90; defined how MPI
programs that make use of C, Fortran 90, and C++ communicate; and added a
number of more minor (but necessary) extensions. These new features are covered
in more detail in Gropp et al. [405, 407].

10.1.4 State of the Art

MPI has been a tremendously successful parallel programming system. While low
level, it has provided a standard notation for parallel program design and has
permitted the development of high-performance implementations. MPI-1 imple-
mentations are available on almost every parallel computer, and large numbers of
applications and libraries have been developed that achieve high performance on
small and large parallel systems. MPI-2 implementations are also beginning to ap-
pear. The I/O part of MPI-2 is already widely available, and several supercomputer
vendors have complete MPI-2 implementations.

Equally important, MPI support for modular program construction has facilitated,
almost for the first time, the development of reusable parallel program components.
(The Connection Machine’s library was one important precursor.) Hence, we see
the development of important reusable code bases. An example is the PETSc library
for scientific computing [71], which allows application programmers to develop
complex parallel programs without writing any explicitly parallel code.

In summary, MPI is particularly suited for applications where portability, both in
space (across different systems that exist now) and in time (across generations of com-
puters), is important. MPI is also an excellent choice for task-parallel computations
and for applications where the data structures are dynamic, such as unstructured
mesh computations.

10.2 Multithreaded Programming

We now turn our attention to the multithreaded programming model. As we de-
scribed above, the message-passing model assumes that each concurrently executing
program component has a separate, independent address space and that data are
moved explicitly among these address spaces via send and receive operations. The
shared-memory programming model is the exact opposite, in that we start with
the assumption that concurrently executing program components all share a single,
common address space. There is no need to provide special operations for copying,
as program components can exchange information simply by reading and writing

324 Chapter 10 Message Passing and Threads

to memory using normal variable assignment operations. Because the concurrent
elements of the program do not have distinct address spaces, it is not correct to refer
to them as processes. Instead, we say that the program consists of many independent
“threads of control,” or threads for short. Hence the use of the name multithreaded
programming.

Because communication in shared-memory programs is implicit, it is generally
up to the hardware platform on which the program is executing to ensure that the
latest value of a variable updated in one thread is used when that same variable is
accessed in another thread. This is the so-called memory coherence problem, which
can be difficult to solve for a variety of reasons. Modern computer architectures tend
to copy data in local, high-speed memory in order to decrease access time. Some of
this memory (i.e., registers) is manipulated explicitly by the compiler, while other
memory takes the form of one or more levels of cache. These are transparent to
the compiler and application (except in terms of performance). If shared-memory
programs are to function properly, both the hardware and the compilers used to
generate and execute the multithreaded program need to make sure that the various
pieces of memory in the computer remain consistent. Hardware support typically
takes the form of a cache-coherency protocol. Many different consistency models and
associated coherency protocols have been proposed, often with slightly different
sharing semantics [7, 552]. Yet in spite of these sophisticated protocols, physical
constraints limit the number of processors that can share memory. As a rule, shared-
memory programs do not scale as well as message-passing programs.

Software-only shared-memory systems have been proposed as well. These so-
called distributed shared-memory (DSM) systems generally try to exploit the hardware
support for implementing virtual memory in order to determine when changes to
memory are made and to propagate those changes to other processors [88, 102,
552, 710]. These systems typically use a message-passing layer as the means for
communicating updated values throughout the system. Because memory updates
are done on a page basis with hundreds or thousands of memory locations, arbitrary
writing of variables can be very costly. For this reason, DSM systems typically try
to enhance the locality of modifications, restrict which memory locations can be
shared, or introduce specialized coherency semantics in order to reduce the number
of pages that must be sent from one processor to another.

While the operations for sharing data are straightforward, multithreaded pro-
grams introduce the new problem of controlling access to a shared-memory location
while values are being updated. In the message-passing model, the success of a re-
ceive operation indicates that all the data have been transferred from one process
to another and that the data are now available for use. Without the intervention of
some explicit synchronization operation, interleaved execution of multiple threads
can result in incorrect results. For example, in many situations, partially modified
data structures should not be used, and a reading thread should be delayed until the
writing thread has finished updating all of the data-structure fields. Likewise, having
two threads attempt to update the contents of a data structure at the same time can

10.2 Multithreaded Programming 325

be disastrous, with the result being an arbitrary combination of the fields written by
the competing threads.

Over the years, many different proposals have been made concerning synchro-
nization of multithreaded programs. Some of these limit the ways in which variables
can be written (e.g., functional and single-assignment languages [4, 350, 659]). Oth-
ers define special synchronization operations, including monitors, locks, critical
sections, condition variables, semaphores, and barriers (see André et al. [41] for an
overview of these operations). There are some fundamental concepts (e.g., some no-
tion of an atomic test-and-set operation) that underlie all of these primitives. But
in many cases, one set of synchronization operations can be implemented in terms
of other primitives and the choice of the set to use comes down to programming
convenience and performance.

Methods for development of multithreaded programs are similar to methods
for development of message-passing systems: one can produce special-purpose lan-
guages, extend existing languages, or provide purely library-based approaches. In
the following, we examine two different approaches. The first is POSIX threads and
is completely library based. The second, OpenMP, combines compiler support with
library calls to implement its multithreading model.

10.2.1 POSIX Threads

The multithreading programming model has important uses outside of parallel
programming. Multithreading proves to be a very effective programming model
when a program has to respond to asynchronous requests. Such requests occur, for
example, when interacting with slow I/O systems or when implementing network-
based systems such as client/server architectures (specifically the server). For this
reason, the set of real-time extensions defined for the POSIX operating system
interface includes a thread library. Because of its wide range of intended uses, the
POSIX standard thread library [499], or p-threads as it is often called, includes many
features that are not of interest to parallel program developers. In the following, we
provide a brief overview of those facilities that are germane to parallel programs.

A p-thread program starts its life with a single thread of control, just like any
sequential program. New threads of control must be created explicitly by calling the
pthread_create function and specifying the function to run in the newly created
thread. This call creates a thread record, which is initialized by allocating a call stack
and creating an initial stack frame, and sets up the call of the function to be executed
in the thread. There is no restriction on the number of threads that can be created by a
program. In particular, the number of threads can exceed the number of processors
available in the system. To support the creation of more threads than processors,
thread records are generally handed to a scheduler that arranges to execute the thread
when a processor becomes available. It is interesting to note that from the perspective
of concurrency, the p-thread model is fundamentally dynamic, while the MPI model
is basically static.

326 Chapter 10 Message Passing and Threads

A thread terminates when the function being executed by the thread completes
or when an explicit thread exit function is called. Threads can also be explicitly
terminated by specifying the thread identifier returned by a pthread_create call as
an argument to the pthread_kill function.

In the POSIX model, all the memory associated with a thread is shared, including
the thread’s call stack, dynamically allocated heap memory, and obviously global
variables. This can cause programming difficulties. Often, one needs a variable that
is global to the routines called within a thread but not shared between threads. A
set of p-thread functions is used to manipulate thread local storage to address these
requirements.

Synchronization Operations

The p-threads library provides two types of synchronization primitives, one associ-
ated with the control structure (i.e., threads) and the second to synchronize access to
data structures. The control-oriented synchronization enables one thread to block,
waiting for the completion of a second thread. Unfortunately, this facility does not
generalize to more than two threads, meaning that it cannot be used to implement
the popular join/fork concurrency model (discussed below).

The data-oriented synchronization routines are based on the use of a mutex, short
for mutual exclusion. A mutex is a dynamically allocated data structure that can be
passed as an argument to the routines pthread_mutex_lock and pthread_mutex_unlock.
Once a pthread_mutex_lock call is made on a specific mutex, subsequent pthread_
mutex_lock calls will block until a call is made to pthread_mutex_unlock with that
mutex.

Locking is generally used for fine-grain access control. To minimize the response
time to an unlock operation, locks are often implemented by spinning, repeatedly
testing the lock to see if it has been released. This has the downside of consuming
100% of the resources of the processor executing the lock operation. More coarse-
grain synchronization is provided by condition variables, which allow a thread to
wait until a Boolean predicate that depends on the contents of one or more shared-
memory locations becomes true.

A condition variable associates a mutex with the desired predicate. Before the
program makes its test, it obtains a lock on the associated mutex. Then it evaluates
the predicate. If the predicate evaluates to false, the thread can execute a pthread_
cond_wait operation, which atomically suspends the calling thread, puts the thread
record on a waiting list that is part of the condition variable, and releases the mutex.
The thread scheduler is now free to use the processor to execute another thread. If
the predicate evaluates to true, the thread simply releases its lock and continues on
its way.

If a thread changes the value of any shared variables associated with a condi-
tion variable predicate, it needs to cause any threads that may be waiting on this
condition variable to be rescheduled. The pthread_cond_signal causes one of the
threads waiting on the condition variable to become unblocked, returning from the

10.2 Multithreaded Programming 327

pthread_cond_wait that caused it to block in the first place. The mutex is automati-
cally reobtained as part of the return from the wait, so the thread is in the position
to reevaluate the predicate immediately.

Because condition variables enable atomic evaluation of arbitrary predicates, they
are quite flexible and can be used to implement a range of different synchronization
structures, including semaphores, barriers, critical sections, and so on.

10.2.2 OpenMP

As we discussed above, support for parallel programming was only one of the fac-
tors that was considered in the design of p-threads. Not surprisingly, compromises
were made that affect both programmability and performance. The OpenMP inter-
face [725] is an alternative multithreading interface specifically designed to support
high-performance parallel programs.

OpenMP differs from p-threads in several significant ways. Where p-threads is
implemented purely as a library, OpenMP is implemented as a combination of
library calls and a set of compiler directives or pragmas. These directives instruct
the compiler to create threads, perform synchronization operations, and manage
shared memory. OpenMP does require specialized compiler support in order to
understand and process these directives. However, an increasing number of vendors
are producing OpenMP versions of their Fortran, C, and C++ compilers.

In p-threads, there is almost no structure or a priori relationship between threads,
short of the ability of one thread to wait for the termination of another thread.
While such lack of structure is essential to the design of servers, which typically
consist of a number of independent threads, the need for structure in the design of
programs is well understood. Because OpenMP was designed specifically for parallel
applications, the use of threads is highly structured, following what is known as the
fork/join model. This is a block-structured approach to introducing concurrency. A
single thread of control splits into some number of independent threads (the fork),
and the end of the block is reached when all the threads have completed execution
of their specified tasks (the join). In OpenMP, a fork/join block is indicated by a
parallel region, indicated by PARALLEL and END PARALLEL directives. The number
of threads assigned to a region is defined by the user, either globally or on a region-by-
region basis, and each thread executes the code enclosed by the PARALLEL directives.
Because of the way OpenMP is defined, a PARALLEL region does not imply the
creation of a new thread. Thus, if an existing thread is available, it can be used to
execute a parallel region, allowing the OpenMP implementation to amortize thread
start-up costs. Parallel blocks can be nested, with the implementation figuring out
when the threads in each nested region have completed. Clearly, the use of parallel
regions can significantly decrease the potential for error.

The PARALLEL region enables a single task to be replicated across a set of threads.
However, in parallel programs it is very common to distribute different tasks across
a set of threads, such as parallel iteration over the index set of a loop. To support
this common need, a PARALLEL region can be augmented with an additional set

328 Chapter 10 Message Passing and Threads

of directives that enable each thread to execute a different task. This is called
worksharing. The most useful form of worksharing is a parallel do loop, which
is specified by inserting a DO directive in front of a do loop and enclosing the
entire thing in a PARALLEL declaration. During execution, the parallel region creates
some number of independent threads, and the worksharing declaration causes the
compiler to generate code that distributes the iterations (which can be greater in
number than the number of threads) to the threads for execution.

OpenMP synchronization primitives are also more application-oriented than the
p-thread synchronization primitives. OpenMP synchronization primitives include
the following:

. Critical sections, which ensure that only one thread at a time executes the
enclosed code (critical sections are similar to p-thread mutexes).

. Atomic updates, which behave like critical sections, but can be optimized on
some hardware platforms.

. Barriers, which synchronize all threads in a parallel region.

. Master selection, which ensures that the enclosed code only executes in one
thread, even if the code is part of a parallel region.

This selection of synchronization primitives makes it easier to write parallel pro-
grams. Certainly, each of these operations can be implemented in terms of p-thread
mutex and condition variables. However, by including these as basic OpenMP oper-
ations, it is possible for an OpenMP implementation to generate code that is more
efficient than the equivalent p-thread code.

The final place where OpenMP differs from p-threads is in its treatment of shared
memory. Recall that in p-threads, all memory is shared with the exception of
thread local storage. Unlike p-threads, OpenMP does not allow sharing of stack
variables. Again, this makes it possible to generate better optimized code. OpenMP
also provides thread local storage. However, because of the block-structured nature
of PARALLEL regions, OpenMP threads can access local variables that are defined by
the routine or block in which the PARALLEL region occurs (this is not an issue in p-
threads because p-threads has no concept of nesting). Sometimes it is advantageous
for each thread to have its own private copy of these variables, and OpenMP allows
variables to be annotated as being PRIVATE.

In summary, OpenMP does not define a new programming language, but rather
consists of a set of annotations that are interpreted by an OpenMP-enabled compiler,
or preprocessor. OpenMP annotations can be included in Fortran programs as direc-
tives, or in C and C++ programs as pragmas. By focusing specifically on the needs of
parallel programs, OpenMP can result in a more convenient and higher-performance
implementation of multithreaded parallel programs.

10.3 Conclusion 329

10.3 Conclusion

In the preceding sections, we discussed the message-passing and multithreaded
approaches to parallel programming in isolation. Given that many recent large-
scale parallel computers are built as clusters of multiprocessor (i.e., shared-memory)
nodes, there is a strong motivation to combine message passing and multithreading
in a single application. The hybrid approach has the potential to optimize program
performance by using multithreaded structures within a multiprocessor node and
message-passing primitives for communication between nodes.

In principle, there is no reason why message passing and parallel programming
cannot be combined in a single application program. In practice, we find that many
implementations of message passing are not thread-safe; that is, it is not safe for
two threads to make message-passing calls at the same time. This can be caused by a
number of different factors: the message-passing interface may have been designed so
as to preclude a thread-safe implementation (e.g., requiring that state be stored in the
implementation), or an otherwise thread-safe API may not have been implemented
in a thread-safe manner, or the low-level interfaces to the message-passing hardware
may not be thread-safe. These caveats aside, MPI was designed to be thread-safe and
thread-safe implementations of MPI exist. These implementations can be combined
with multithreading approaches such as p-threads or OpenMP to produce hybrid
programs.

There are a variety of approaches that can be used to merge the message-passing
and multithreading styles. The most common is to use a single thread (the main
thread) for all MPI communication and to use other threads for computational tasks;
this is the case when OpenMP is used to parallelize loops that do not contain any
MPI calls. Most MPI implementations (even those that are not thread-safe) may be
used in this way with threads. Another method is to perform sends from any thread,
but receives within a single receiver thread. This thread would be responsible for
integrating receive buffers into shared memory. It would then either notify waiting
threads or create new threads to process the new data. Alternatively, one could
perform receives from an arbitrary thread. This can be a good approach if there is
a collection of worker threads, and any one of them can process the data from an
incoming message. A modification is to perform send and receive operations between
specific thread pairs [326]. For this to work, one must assume that threads are long
lived, as performing a send to a thread that no longer exists would result in an error.
MPI communicators can be very helpful in implementing this type of hybrid model.
A final approach is that taken by special-purpose communication libraries, such as
Nexus [346], in which the arrival of data causes the automatic creation of a new
thread of control to process that data.

While tools and techniques that support both message passing and multithread-
ing are important, the significant challenge lies not in the tools but in the application
itself. For these hybrid techniques to be useful, one must be able to exploit the hetero-
geneous characteristics, in terms of bandwidth and latency, found in shared-memory
and message-passing systems [324, 580, 611, 905].

C

H

A

P

T

E

R

11 Parallel I/O

Rajeev Thakur . William Gropp

Many parallel applications need to access large amounts of data. In such applications,
the I/O performance can play a significant role in the overall time to completion.
Although I/O is always much slower than computation, it is still possible to achieve
good I/O performance in parallel applications by using a combination of a suf-
ficient amount of high-speed I/O hardware, appropriate file-system software, the
appropriate application programming interface (API) for I/O, a high-performance
implementation of the API, and by using that API the right way. We explain these
points in further detail in this chapter.

We begin by explaining what parallel I/O means, how it arises, and why it is a
problem. We give an overview of the infrastructure that currently exists for parallel
I/O on modern parallel systems, including I/O architecture, parallel file systems,
high-level libraries, and APIs for parallel I/O. We explain how the API plays a key
role in enabling (or preventing) high performance and how the lack of an appropriate
standard API for parallel I/O has hindered performance and portability.

Much of the research in parallel I/O over the last several years has contributed
to the definition of the new standard API for parallel I/O that is part of the MPI-2
standard [670]. We discuss the evolution and emergence of this API, often just called
MPI-IO, and introduce it with a simple example program. We also describe some
optimizations enabled by MPI-IO that are critical for high performance. Finally, we
provide guidelines on what users can do to achieve high I/O performance in their
applications.

Our focus is mainly on the type of parallel I/O commonly seen in high-end
scientific computing and not on the I/O that arises in databases, transaction process-
ing, and other commercial applications. I/O in parallel scientific computing often
involves large data objects, such as a single large array, that is distributed across hun-
dreds of processors. In contrast, while the amount of data stored and accessed in a

331

332 Chapter 11 Parallel I/O

commercial database may be larger than the data stored as a result of a scientific
simulation, each record in a commercial database is usually very small.

Any application, sequential or parallel, may need to access data stored in files for
many reasons, such as reading the initial input, writing the results, checkpointing for
later restart, data analysis, and visualization [367]. In this chapter we are concerned
mainly with parallel applications consisting of multiple processes (or threads1) that
need to access data stored in files. We define parallel I/O as concurrent requests from
multiple processes of a parallel program for data stored in files. Accordingly, at least
two scenarios are possible:

. Each process accesses a separate file; that is, no file is shared among processes.

. All processes access a single shared file.

While the former scenario can be considered as parallel I/O in some sense because
it represents I/O performed by a parallel program, it is actually just sequential
(uniprocess) I/O performed independently by a number of processes. The latter case,
where all processes access a shared file, is true parallel I/O and represents what the
term parallel I/O means as used in this chapter. In other words, the I/O is parallel
from the application’s perspective.

In recent years, although great advances have been made in the CPU and com-
munication performance of parallel machines, similar advances have not been made
in their I/O performance. The densities and capacities of disks have increased signif-
icantly, but improvement in performance of individual disks has not followed the
same pace. Although parallel machines with peak performance of 1 Tflop/s or more
are available, applications running on parallel machines usually achieve I/O band-
widths of at most a few hundred Mbytes/s. In fact, many applications achieve less
than 10 Mbytes/s [229].

As parallel computers get bigger and faster, scientists are increasingly using them
to solve problems that not only need a large amount of computing power but also
need to access large amounts of data. (See del Rosario and Choudary [253], Kotz [577],
Scalable I/D Initiative [830] for a list of many such applications.) Since I/O is slow,
the I/O speed, and not the CPU or communication speed, is often the bottleneck
in such applications. For parallel computers to be truly usable for solving real large-
scale problems, the I/O performance must be scalable and balanced with respect to
the CPU and communication performance of the system.

The rest of this chapter is organized as follows. In Section 11.1, we describe the
existing infrastructure for parallel I/O, including architecture, file systems, and high-
level libraries. We also discuss the issue of application programming interfaces (APIs)
for parallel I/O and explain how the lack of an appropriate standard API has hindered
performance and portability in the past. In Section 11.2, we introduce the new

1 The discussion in this chapter refers to multiple processes rather than threads because our focus is on the MPI-
IO model for parallel I/O. Nonetheless, the issues we discuss apply equally well to a parallel programming model
based on multiple threads within a process.

11.1 Parallel I/O Infrastructure 333

Sector

Track

Platters

Figure 11.1 Schematic of a typical disk.

MPI-IO standard API, which has the potential to solve the API problem and deliver
performance and portability. In Section 11.3, we describe some optimizations that
are critical to parallel I/O performance. In Section 11.4, we provide some guidelines
on how users can achieve high I/O performance in their applications. We summarize
the chapter in Section 11.5.

11.1 Parallel I/O Infrastructure

In this section we give a brief overview of the infrastructure for parallel I/O that
currently exists on parallel machines. We begin by reviewing basic nonparallel I/O.

11.1.1 Basic Disk Architecture

The most common secondary-storage device is a disk. A disk consists of one or more
platters coated with a magnetic medium. The disk spins at a relatively high rate;
5000 to 10000 RPMs (revolutions per minute) are common. A platter is divided into
a number of concentric tracks, which are themselves divided into smaller arcs called
sectors. A sector is the smallest addressable unit on the disk, and a typical sector size
is 512 bytes [435]. Data are read by one or more heads that can move across the
platters. A schematic of a disk is shown in Figure 11.1.

Data from a disk are typically accessed in multiples of sectors stored contiguously,
sometimes called a cluster. On commodity disks, a minimum of 32 sectors (16 Kbytes)
or more are accessed in a single operation. As a result, reading or writing a single byte
of data from or to a disk actually causes thousands of bytes to be moved. In other
words, there can be a huge difference between the amount of data logically accessed
by an application and the amount of data physically moved, as demonstrated in
Simitci and Reed [863]. In addition, a substantial latency is introduced by the need
to wait for the right sector to move under a read or write head—even at 10,000 RPM,
it takes 6 milliseconds for the disk to complete one revolution. To avoid accessing
the disk for each I/O request, an operating system typically maintains a cache in
main memory, called the file-system cache, that contains parts of the disk that have
been recently accessed. Data written to the cache are periodically flushed to the disk
by an operating-system daemon. Despite the cache, an application that performs

334 Chapter 11 Parallel I/O

Compute nodes

I/O nodes

Disks

Interconnection network

Figure 11.2 General parallel I/O architecture of distributed-memory systems.

a large number of small reads or writes usually performs poorly. Applications that
need high I/O performance must ensure that I/O operations access large amounts of
data.

Further details about disk architecture can be found in Chen et al. [192] and The
Hard Disk Drive Guide [435].

11.1.2 Parallel I/O Architecture

Let us now consider the I/O architectures of parallel machines. We first consider
distributed-memory machines, examples of which include the IBM SP, ASCI Red
(Intel Tflops), Cray T3E, clusters of workstations, and older machines such as the
Thinking Machines CM-5, Intel Paragon, and iPSC hypercubes. Figure 11.2 shows
the general I/O architecture of a distributed-memory machine. In addition to the
compute nodes, the machine has a set of I/O nodes. The I/O nodes are usually
connected to each other and to the compute nodes by the same interconnection
network that connects the compute nodes. Each I/O node is connected to one or
more storage devices, each of which could be either an individual disk or an array of
disks, such as a RAID (redundant array of inexpensive disks) [192, 757]. The I/O nodes
function as servers for the parallel file system. The parallel file system typically stripes
files across the I/O nodes and disks by dividing the file into a number of smaller units
called striping units and assigning the striping units to disks in a round-robin manner.
File striping provides higher bandwidth and enables multiple compute nodes to
access distinct portions of a file concurrently.

Usually, but not always, the I/O nodes are dedicated for I/O, and no compute jobs
are run on them. On many machines, each of the compute nodes also has a local

11.1 Parallel I/O Infrastructure 335

disk of its own, which is usually not directly accessible from other nodes. These disks
are not part of the common “parallel I/O system,” but are used to store scratch files
local to each process and other files used by the operating system.

This kind of architecture allows concurrent requests from multiple compute nodes
to be serviced simultaneously. Parallelism comes about in multiple ways: parallel data
paths from the compute nodes to the I/O nodes, multiple I/O nodes and file-system
servers, and multiple storage devices (disks). If each storage device is a disk array, it
provides even more parallelism.

Shared-memory machines typically do not have this kind of I/O architecture; they
do not have separate I/O nodes. Examples of such machines are the SGI Origin 2000,
Cray T90, HP Exemplar, and NEC SX-4. On these machines, the operating system
schedules the file-system server on the compute nodes. Nonetheless, these machines
can be configured with multiple disks, and the file system can stripe files across the
disks. The disks are connected to the machine via SCSI or Fibre Channel connections,
just as they are in distributed memory machines.

For further information on parallel I/O architecture, see the excellent surveys in
Feitelson [322] and Kotz [578].

A relatively new area of research is that of network-attached storage devices
(NASD) [376]. In NASD, storage devices are not directly connected to their host
systems via a specialized I/O bus, but instead communicate with their host systems
through a high-performance network such as Fibre Channel [333]. This approach
has the potential to improve performance and scalability by providing direct data
transfer between client and storage and eliminating the server, which can be a
bottleneck.

11.1.3 File Systems

A number of commercial and research file systems have been developed over the last
few years to meet the needs of parallel I/O. We briefly describe some of them below
and provide pointers to additional information.

One of the first commercial parallel file systems was the Intel Concurrent File
System (CFS) for the Intel iPSC hypercubes. It had a UNIX-like API with the addition
of various file-pointer modes [766]. CFS evolved into the Parallel File System (PFS)
on the Intel Paragon, but retained the same API. The CM-5, nCUBE, and Meiko
CS-2 also had their own parallel file systems [322]. A different API was introduced
by the Vesta file system, developed at the IBM Watson Research Center [224].
Vesta provided the initial parallel file system for the IBM SP. The unique feature
of Vesta was that it supported logical file views and noncontiguous file accesses—
a departure from the traditional UNIX API. Vesta evolved into an IBM product
called PIOFS, which remained the parallel file system on the SP until recently. The
current parallel file system on the IBM SP is called GPFS [394], which interestingly
is not backward compatible with PIOFS. It does not support PIOFS file views or
noncontiguous file accesses; instead, it supports the POSIX I/O interface [500].
However, for noncontiguous accesses, users can use the MPI-IO interface on top

336 Chapter 11 Parallel I/O

of GPFS by using either IBM’s implementation of MPI-IO or other implementations,
such as ROMIO [807]. Shared-memory multiprocessors also have high-performance
file systems that allow concurrent access to files. Examples of such file systems are
XFS on the SGI Origin 2000, HFS on the HP Exemplar, and SFS on the NEC SX-4.
Sun has developed a parallel file system, Sun PFS, for clusters of Sun SMPs [998].

A number of parallel file systems have also been developed by various research
groups. The Galley parallel file system developed at Dartmouth College supports a
3-D file structure consisting of files, subfiles, and forks [712]. PPFS is a parallel file
system developed at the University of Illinois for clusters of workstations [494]. The
developers use it as a testbed for research on various aspects of file-system design,
such as caching/prefetching policies and automatic/adaptive policy selection [634,
635]. PVFS is a parallel file system for Linux clusters developed at Clemson Univer-
sity [742]. PVFS stripes files across the local disks of machines in a Linux cluster and
provides the look-and-feel of a single UNIX file system. The regular UNIX commands,
such as rm, ls, and mv, can be used on PVFS files, and the files can be accessed from
a (parallel) program by using the regular UNIX I/O functions. PVFS is also packaged
in a way that makes it very easy to download, install, and use.

Distributed/networked file systems are a rich area of research. Examples of such
file systems are xFS [38], AFS/Coda [204], and GFS [382]. We do not discuss them
in this chapter; interested readers can find further information in the papers cited
above.

11.1.4 The API Problem

Most commercial parallel file systems have evolved out of uniprocessor file systems,
and they retain the same API, namely, the UNIX I/O API. The UNIX API, however,
is not an appropriate API for parallel I/O for two main reasons: it does not allow
noncontiguous file accesses, and it does not support collective I/O. We explain these
reasons below.

The UNIX read/write functions allow users to access only a single contiguous piece
of data at a time.2 While such an API may be sufficient for the needs of uniprocess
programs, it is not sufficient for the kinds of access patterns common in parallel
programs. Many studies of the I/O access patterns in parallel programs have shown
that each process of a parallel program may need to access several relatively small,
noncontiguous pieces of data from a file [86, 229, 713, 871, 870, 917]. In addition,
many or all processes may need to access the file at about the same time, and
although the accesses of each process may be small and noncontiguous, the accesses
of different processes may be interleaved in the file and together may span large

2 UNIX does have functions readv and writev, but they allow noncontiguity only in memory and not in the
file. POSIX has a function lio_listio that allows users to specify a list of requests at a time, but each request is
treated internally as a separate asynchronous I/O request, the requests can be a mixture of reads and writes, and
the interface is not collective.

11.1 Parallel I/O Infrastructure 337

7

12 13 14 15

5

0 1 2 3

0 1 2 3 0 1 2 3

4 6

754 6 754 6

8 9

8 9 8 9

10 11

10 11 10 11

12 13 14 15 12 13 14 15

Access pattern in the file

Large array
distributed
among
16 processes

Figure 11.3 Common access pattern in parallel applications: distributed-array access. The
numbers on the line indicate the process that needs a particular portion of the file.

contiguous chunks. Such access patterns occur because of the manner in which data
stored in a shared file is distributed among processes. With the UNIX I/O interface,
the programmer has no means of conveying this “big picture” of the access pattern
to the I/O system. Each process must seek to a particular location in the file, read or
write a small contiguous piece, then seek to the start of the next contiguous piece,
read or write that piece, and so on. The result is that each process makes hundreds
or thousands of requests for small amounts of data. Numerous small I/O requests
arriving in any order from multiple processes results in very poor performance, not
just because I/O latency is high but also because the file-system cache gets poorly
utilized.

The example in Figure 11.3 illustrates this point. The figure shows an access
pattern commonly found in parallel applications, namely, distributed-array access.
A 2-D array is distributed among 16 processes in a (block, block) fashion. The array is
stored in a file corresponding to the global array in row-major order, and each process
needs to read its local array from the file. The data distribution among processes and
the array storage order in the file are such that the file contains the first row of the
local array of process 0, followed by the first row of the local array of process 1, the
first row of the local array of process 2, the first row of the local array of process
3, then the second row of the local array of process 0, the second row of the local
array of process 1, and so on. In other words, the local array of each process is not

338 Chapter 11 Parallel I/O

located contiguously in the file. To read its local array with a UNIX-like API, each
process must seek to the appropriate location in the file, read one row, seek to the
next row, read that row, and so on. Each process must make as many read requests as
the number of rows in its local array. If the array is large, the file system may receive
thousands of read requests.

Instead, if the I/O API allows the user to convey the entire access information of
each process as well as the fact that all processes need to access the file simultaneously,
the implementation (of the API) can read the entire file contiguously and simply send
the right pieces of data to the right processes. This optimization, known as collective
I/O, can improve performance significantly [252, 579, 843, 919]. The I/O API thus
plays a critical role in enabling the user to express I/O operations conveniently and
also in conveying sufficient information about access patterns to the I/O system so
that the system can perform I/O efficiently.

Another problem with commercial parallel–file-system APIs is the lack of porta-
bility. Although parallel file systems have UNIX-like APIs, many vendors support
variations of the UNIX (or POSIX [500]) API, and, consequently, programs written
with these APIs are not portable.

11.1.5 I/O Libraries

A number of I/O libraries have also been developed over the last several years, mostly
as part of research projects. These libraries either provide a better API than UNIX I/O
and perform I/O optimizations enabled by the API or provide some convenience
features useful to applications that file systems do not provide. We list some of these
libraries below.

The PASSION library, developed at Syracuse University, supports efficient access
to arrays and sections of arrays stored in files [916]. It uses data sieving, two-phase
collective I/O, and (recently) compression as the main optimizations. The Panda
library, developed at the University of Illinois, also supports high-performance array
access [843]. It uses server-directed collective I/O and chunked storage as the main
optimizations. SOLAR is a library for out-of-core linear algebra operations developed
at IBM Watson Research Center [933]. The ChemIO library, developed at Pacific
Northwest National Laboratory, provides I/O support for computational chemistry
applications [709].

HDF [698], netCDF [702], and DMF [842] are libraries designed to provide an
even higher level of I/O support to applications. For example, they can directly
read/write meshes and grids. These libraries are very popular among application
developers because they provide a level of abstraction that application developers
need. Until recently, these libraries did not perform parallel I/O and consequently did
not achieve high performance. Newer versions of these libraries, particularly HDF-
5, are being implemented to use parallel I/O (via MPI-IO). Because all the libraries
mentioned here support their own API, usually much different from the UNIX I/O
API, they do not solve the API portability problem.

11.2 Overview of MPI-IO 339

11.1.6 Language-Based Parallel I/O

Some efforts have been made to support parallel I/O directly in the parallel pro-
gramming language. For example, the Fortran D and Fortran 90D research projects
explored the use of language-based parallel I/O with a combination of compiler direc-
tives and run-time library calls [130, 131, 735]. CM Fortran from Thinking Machines
Corporation also supported reading and writing of parallel arrays. Although parallel
I/O was discussed during the deliberations of the High Performance Fortran (HPF)
Forum, it does not appear in the final HPF standard. In all, language-based parallel
I/O remains mainly a research effort.

11.2 Overview of MPI-IO

Although great strides were made in parallel I/O research in the early 1990s, there
remained a critical need for a single, standard, language-neutral API designed specif-
ically for parallel I/O performance and portability. Fortunately, such an API now
exists. It is the I/O interface defined as part of the MPI-2 standard, often referred to
as MPI-IO [407, 670].

In this section, we give a brief overview of MPI-IO, describe its main features,
and elaborate on one important feature—the ability to specify noncontiguous I/O
requests by using MPI’s derived data types.

MPI-IO originated in an effort begun in 1994 at IBM Watson Research Center to
investigate the impact of the (then) new MPI message-passing standard on parallel
I/O. A group at IBM wrote an important paper [779] that explores the analogy
between MPI message passing and I/O. Roughly speaking, one can consider reads
and writes to a file system as receives and sends of messages. This paper was the
starting point of MPI-IO in that it was the first attempt to exploit this analogy by
applying the (then relatively new) MPI concepts for message passing to the realm of
parallel I/O.

The idea of using message-passing concepts in an I/O library appeared successful,
and the effort was expanded into a collaboration with parallel I/O researchers from
the NASA Ames Research Center. The resulting specification appeared in [223]. At
this point a large email discussion group was formed, with participation from a wide
variety of institutions. This group, calling itself the MPI-IO Committee, pushed the
idea further in a series of proposals, culminating in Version 0.5 [692].

During this time, the MPI Forum had resumed meeting to address a number of
topics that had been deliberately left out of the original MPI standard, including
parallel I/O. The MPI Forum initially recognized that both the MPI-IO Committee
and the Scalable I/O Initiative [829] represented efforts to develop a standard parallel
I/O interface and therefore decided not to address I/O in its deliberations. In the
long run, however, the three threads of development—by the MPI-IO Committee,
the Scalable I/O Initiative, and the MPI Forum—merged because of a number of
considerations. The result was that, from the summer of 1996, the MPI-IO design
activities took place in the context of the MPI Forum meetings. The MPI Forum used

340 Chapter 11 Parallel I/O

P0 P1 P(n-1)P2

FILE

Figure 11.4 Each process needs to read a chunk of data from a common file.

the latest version of the existing MPI-IO specification [692] as a starting point for the
I/O chapter in MPI-2. The I/O chapter evolved over many meetings of the Forum and
was released in its final form along with the rest of MPI-2 in July 1997 [670]. MPI-IO
now refers to this I/O chapter in MPI-2.

11.2.1 Simple MPI-IO Example

To get a flavor of what MPI-IO looks like, let us consider a simple example: a parallel
program in which processes need to read data from a common file. Let us assume that
there are n processes, each needing to read (1/n)th of the file as shown in Figure 11.4.
Figure 11.5 shows one way of writing such a program with MPI-IO. It has the usual
functions one would expect for I/O: an open, a seek, a read, and a close. Let us look
at each of the functions closely.

MPI_File_open is the function for opening a file. The first argument to this function
is a communicator that indicates the group of processes that need to access the file
and that are calling this function. This communicator also represents the group of
processes that will participate in any collective I/O operations on the open file. In this
simple example, however, we don’t use collective I/O functions. We pass MPI_COMM_
WORLD as the communicator, meaning that all processes need to open and thereafter
access the file. The file name is passed as the second argument to MPI_File_open.
The third argument to MPI_File_open specifies the mode of access; we use MPI_MODE_
RDONLY because this program only reads from the file. The fourth argument, called the
info argument, allows the user to pass hints to the implementation. In this example,
we don’t pass any hints; instead, we pass a null info argument, MPI_INFO_NULL. MPI_
File_open returns a file handle in the last argument. This file handle is to be used for
future operations on the open file.

After opening the file, each process moves its local file pointer, called an individual
file pointer, to the location in the file from which the process needs to read data. We
use the function MPI_File_seek for this purpose. The first argument to MPI_File_seek
is the file handle returned by MPI_File_open. The second argument specifies the offset
in the file to seek to, and the third argument MPI_SEEK_SET specifies that the offset
must be calculated from the head of the file. We specify the offset to MPI_File_seek
as a product of the rank of the process and the amount of data to be read by each
process.

11.2 Overview of MPI-IO 341

/* Read from a common file using individual file pointers */

#include "mpi.h"

#define FILESIZE (1024 * 1024)

int main(int argc, char **argv)

{

int *buf, rank, nprocs, nints, bufsize;

MPI_File fh;

MPI_Status status;

MPI_Init(&argc,&argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI_Comm_size(MPI_COMM_WORLD, &nprocs);

bufsize = FILESIZE/nprocs;

buf = (int *) malloc(bufsize);

nints = bufsize/sizeof(int);

MPI_File_open(MPI_COMM_WORLD, "/pfs/datafile",

MPI_MODE_RDONLY, MPI_INFO_NULL, &fh);

MPI_File_seek(fh, rank*bufsize, MPI_SEEK_SET);

MPI_File_read(fh, buf, nints, MPI_INT, &status);

MPI_File_close(&fh);

free(buf);

MPI_Finalize();

return 0;

}

Figure 11.5 Simple MPI-IO program to perform the I/O needed in Figure 11.4.

We use the function MPI_File_read for reading data. On each process, this function
reads data from the current location of the process’s individual file pointer for the
open file. The first argument to MPI_File_read is the file handle. The second argument
is the address of the buffer in memory into which data must be read. The next
two arguments specify the amount of data to be read. Since the data are of type
integer, we specify them as a count of the number of integers to be read. The final
argument is a status argument, which is the same as the status argument in MPI
communication functions, such as MPI_Recv. One can determine the amount of data
actually read by using the functions MPI_Get_count or MPI_Get_elements on the status
object returned by MPI_File_read, but we don’t bother to do so in this example. MPI_

342 Chapter 11 Parallel I/O

File_read increments the individual file pointer on each process by the amount of
data read by that process. Finally, we close the file using the function MPI_File_close.

The five functions, MPI_File_open, MPI_File_seek, MPI_File_read, MPI_File_write,
and MPI_File_close, are actually sufficient to write any I/O program. The other MPI-
IO functions are for performance, portability, and convenience. Although these five
functions3 can be used as a quick start to using MPI-IO and for easily porting UNIX
I/O programs to MPI-IO, users must not stop here. For the real benefits of using MPI-
IO, users must use its special features, such as support for noncontiguous accesses
and collective I/O. This issue is discussed further in Section 11.4 and in Gropp et
al. [407].

11.2.2 Main Features of MPI-IO

MPI-IO is a rich interface with many features specifically intended for portable, high-
performance parallel I/O. It has bindings in three languages: C, Fortran, and C++.

MPI-IO supports three kinds of basic data-access functions: using an explicit off-
set, individual file pointer, and shared file pointer. The explicit-offset functions take
as argument the offset in the file from which the read/write should begin. The
individual-file-pointer functions read/write data from the current location of a file
pointer that is local to each process. The shared-file-pointer functions read/write data
from the location specified by a common file pointer shared by the group of processes
that together opened the file. In all these functions, users can specify a noncontigu-
ous data layout in memory and file. Both blocking and nonblocking versions of these
functions exist. MPI-IO also has collective versions of these functions, which must
be called by all processes that together opened the file. The collective functions en-
able an implementation to perform collective I/O. A restricted form of nonblocking
collective I/O, called split collective I/O, is supported.

A unique feature of MPI-IO is that it supports multiple data-storage representa-
tions: native, internal, external32, and also user-defined representations. native
means that data are stored in the file as they are in memory; no data conversion
is performed. internal is an implementation-defined data representation that may
provide some (implementation-defined) degree of file portability. external32 is a
specific, portable data representation defined in MPI-IO. A file written in external32
format on one machine is guaranteed to be readable on any machine with any MPI-
IO implementation. MPI-IO also includes a mechanism for users to define a new
data representation by providing data-conversion functions, which MPI-IO uses to
convert data from file format to memory format and vice versa.

MPI-IO provides a mechanism, called info, that enables users to pass hints to the
implementation in a portable and extensible manner. Examples of hints include

3 The reader familiar with threads will note that the seek operation is not thread-safe: it effectively sets a global
variable (the position in the file) that another thread could change before the subsequent read or write operation.
MPI-IO has thread-safe variants of MPI_File_read and MPI_File_write, called MPI_File_read_at and MPI_File_
write_at, that combine the seek and read/write operation.

11.2 Overview of MPI-IO 343

parameters for file striping, prefetching/caching information, and access-pattern
information. Hints do not affect the semantics of a program, but they may enable
the MPI-IO implementation or underlying file system to improve performance or
minimize the use of system resources [169, 758].

MPI-IO also has a set of rigorously defined consistency and atomicity semantics
that specify the results of concurrent file accesses.

For details of all these features, we refer readers to Gropp et al. [405, 407], and to
the MPI-2 document [670]. We elaborate further on only one feature—the ability
to access noncontiguous data with a single I/O function by using MPI’s derived
data types—because it is critical for high performance in parallel applications. We
emphasize this point because achieving high performance requires both a proper API
and proper use of that API by the programmer. Other I/O efforts have also addressed
the issue of accessing noncontiguous data; one example is the low-level API [225]
developed as part of the Scalable I/O Initiative [829]. MPI-IO, however, is the only
widely deployed API that supports noncontiguous access.

11.2.3 Noncontiguous Accesses in MPI-IO

In MPI, the amount of data a function sends or receives is specified in terms of
instances of a data type [669]. Data types in MPI are of two kinds: basic and derived.
Basic data types are those that correspond to the basic data types in the host
programming language—integers, floating-point numbers, and so forth. In addition,
MPI provides data type-constructor functions to create derived data types consisting
of multiple basic data types located either contiguously or noncontiguously. The data
type created by a data type constructor can be used as an input data type to another
data type constructor. Any noncontiguous data layout can therefore be represented
in terms of a derived data type.

MPI-IO uses MPI data types for two purposes: to describe the data layout in the
user’s buffer in memory and to define the data layout in the file. The data layout
in memory is specified by the data type argument in each read/write function in
MPI-IO. The data layout in the file is defined by the file view. When the file is first
opened, the default file view is the entire file; that is, the entire file is visible to
the process, and data will be read/written contiguously starting from the location
specified by the read/write function. A process can change its file view at any time by
using the function MPI_File_set_view, which takes as argument an MPI data type,
called the filetype. From then on, data will be read/written only to those parts of the
file specified by the filetype; any “holes” will be skipped. The file view and the data
layout in memory can be defined by using any MPI data type; therefore, any general,
noncontiguous access pattern can be compactly represented.

11.2.4 MPI-IO Implementations

Several implementations of MPI-IO are available, including portable and vendor-
specific implementations. ROMIO is a freely available, portable implementation that

344 Chapter 11 Parallel I/O

we have developed at the Argonne National Laboratory [807, 920]. It runs on most
parallel computers and networks of workstations and uses the native parallel/high-
performance file systems on each machine. It is designed to be used with multiple
MPI-1 implementations. Another portable MPI-IO implementation is PMPIO from
the NASA Ames Research Center [335]. A group at Lawrence Livermore National
Laboratory has implemented MPI-IO on the HPSS mass-storage system [524]. Most
vendors either already have an MPI-IO implementation or are actively developing
one. SGI and HP have included ROMIO in their MPI product. Sun [998] and Fujitsu
have their own (complete) MPI-IO implementations. IBM, Compaq (DEC), NEC, and
Hitachi are in various stages of MPI-IO development.

11.3 Parallel I/O Optimizations

In this section we describe some key optimizations in parallel I/O that are critical
for high performance. These optimizations include data sieving, collective I/O, and
hints and adaptive file-system policies. With the advent of MPI-IO, these optimiza-
tions are now supported in the API in a standard, portable way. This in turn enables
a library or file system to actually perform these optimizations.

11.3.1 Data Sieving

As mentioned above, in many parallel applications each process may need to access
small, noncontiguous pieces of data. Since I/O latency is very high, accessing each
contiguous piece separately is very expensive: it involves too many system calls for
small amounts of data. Instead, if the user conveys the entire noncontiguous ac-
cess pattern within a single read or write function, the implementation can perform
an optimization called data sieving and read or write data with much higher perfor-
mance. Data sieving was first used in PASSION in the context of accessing sections of
out-of-core arrays [914, 916]. We use a very general implementation of data sieving
(for any general access pattern) in our MPI-IO implementation, ROMIO. We explain
data sieving in the context of its implementation in ROMIO [919].

To reduce the effect of high I/O latency, it is critical to make as few requests to the
file system as possible. Data sieving is a technique that enables an implementation to
make a few large, contiguous requests to the file system even if the user’s request con-
sists of several small, noncontiguous accesses. Figure 11.6 illustrates the basic idea
of data sieving. Assume that the user has made a single read request for five non-
contiguous pieces of data. Instead of reading each noncontiguous piece separately,
ROMIO reads a single contiguous chunk of data starting from the first requested byte
up to the last requested byte into a temporary buffer in memory. It then extracts the
requested portions from the temporary buffer and places them in the user’s buffer.
The user’s buffer happens to be contiguous in this example, but it could well be
noncontiguous.

A potential problem with this simple algorithm is its memory requirement. The
temporary buffer into which data is first read must be as large as the extent of the

11.3 Parallel I/O Optimizations 345

Read a contiguous chunk
into memory

User’s request for
noncontiguous
data from a file

Copy requested portions
into user’s buffer

Figure 11.6 Data sieving.

user’s request, where extent is defined as the total number of bytes between the first
and last byte requested (including holes). The extent can potentially be very large—
much larger than the amount of memory available for the temporary buffer—because
the holes (unwanted data) between the requested data segments could be very large.
The basic algorithm, therefore, must be modified to make its memory requirement
independent of the extent of the user’s request.

ROMIO uses a user-controllable parameter that defines the maximum amount of
contiguous data that a process can read at a time during data sieving. This value also
represents the maximum size of the temporary buffer. The user can change this size
at run time via MPI-IO’s hints mechanism. If the extent of the user’s request is larger
than the value of this parameter, ROMIO performs data sieving in parts, reading only
as much data at a time as defined by the parameter.

The advantage of data sieving is that data are always accessed in large chunks,
although at the cost of reading more data than needed. For many common access
patterns, the holes between useful data are not unduly large, and the advantage of
accessing large chunks far outweighs the cost of reading extra data. In some access
patterns, however, the holes are so large that the cost of reading the extra data
outweighs the cost of accessing large chunks. An “intelligent” data-sieving algorithm
can handle such cases as well. The algorithm can analyze the user’s request and decide
whether to perform data sieving or access each contiguous data segment separately.
We plan to add this feature to ROMIO.

Data sieving can similarly be used for writing data. A read-modify-write must
be performed, however, to avoid destroying the data already present in the holes
between contiguous data segments. The portion of the file being accessed must
also be locked during the read-modify-write to prevent concurrent updates by other
processes. The size of the write buffer can also be changed by the user via hints.

One could argue that most file systems perform data sieving anyway because they
perform caching. That is, even if the user makes many small I/O requests, the file
system always reads multiples of disk blocks and may also perform a read-ahead.

346 Chapter 11 Parallel I/O

The user’s requests, therefore, may be satisfied out of the file-system cache. Our
experience, however, has been that the cost of making many system calls, each for
small amounts of data, is extremely high, despite the caching performed by the file
system. In most cases, it is more efficient to make a few system calls for large amounts
of data and extract the needed data.

11.3.2 Collective I/O

In many cases, the data to be read or written represent a single object, distributed
across many processors. An example is a single array, distributed across all processes
in a parallel application. As we have seen, when this array is written to a file, each
process must write many relatively small segments. Yet once the data are in the file,
the array is stored in a single, contiguous block in the file. How can we exploit the
fact that all the data to be written fills a large contiguous block in the file?

If the entire noncontiguous access information of all processes is known, an im-
plementation can optimize the access even further. Instead of reading large chunks
and discarding the unwanted data as in data sieving, the unwanted data can be com-
municated to other processes that need them. Such optimization is broadly referred
to as collective I/O, and it has been shown to improve performance significantly [252,
579, 843, 919, 998].

Collective I/O can be performed in different ways and has been studied by many
researchers in recent years. It can be done at the disk level (disk-directed I/O [579]), at
the server level (server-directed I/O [843]), or at the client level (two-phase I/O [252]
or collective buffering [714]). Each method has its advantages and disadvantages.
Since ROMIO is a portable, user-level library with no separate I/O servers, ROMIO
performs collective I/O at the client level using a generalized version of two-phase
I/O. We explain the basic concept of two-phase I/O below; details of ROMIO’s
implementation can be found in Thakur et al. [919].

Two-Phase I/O

Two-phase I/O was first proposed in del Rosario et al. [252] in the context of access-
ing distributed arrays from files. The basic idea in two-phase I/O is to avoid making
lots of small I/O requests by splitting the access into two phases: an I/O phase and a
communication phase. Let us consider the example of reading a (block, block) dis-
tributed array from a file using two-phase I/O, illustrated in Figure 11.7. In the first
phase of two-phase I/O, all processes access data assuming a distribution that results
in each process making a single, large, contiguous access. In this example, such a
distribution is a row-block or (block,*) distribution. In the second phase, processes
redistribute data among themselves to the desired distribution. The advantage of
this method is that by making all file accesses large and contiguous, the I/O time
is reduced significantly. The added cost of interprocess communication for redistri-
bution is (almost always) small compared with the savings in I/O time. The overall

11.3 Parallel I/O Optimizations 347

P0

P1

P2

P3

P0 P1

P2 P3

Read contiguous

Read contiguous

Read contiguous

Read contiguous

Redistribute

Redistribute

Redistribute

Redistribute

File

User’s buffer
(block, block) distribution

Temporary buffer
(block, *) distribution

Figure 11.7 Reading a distributed array by using two-phase I/O.

performance, therefore, is close to what can be obtained by making large I/O requests
in parallel.

The basic two-phase method was extended in Thakur and Choudary [915] to
access sections of out-of-core arrays. An even more general version of two-phase
I/O is implemented in ROMIO [919]. It supports any access pattern, and the user
can also control via hints the amount of temporary memory that ROMIO uses as
well as the number of processes that actually perform I/O in the I/O phase.

11.3.3 Hints and Adaptive File-System Policies

Parallel applications exhibit such a wide variation in access patterns that any single
file-system policy (regarding file-striping parameters, caching/prefetching, etc.) is
unlikely to perform well for all applications. Two solutions exist for this problem:
either the user can inform the file system (via hints) about the application’s access
pattern, the desired striping parameters, or the desired caching/prefetching policies,
or the file system can be designed to automatically detect and adapt its policies to
the access pattern of the application. Various research efforts have demonstrated the
benefits of such optimization [169, 634, 635, 758].

As mentioned above, hints can also be used to vary the sizes of temporary buffers
used internally by the implementation for various optimizations. Choosing the right
buffer size can improve performance considerably, as demonstrated in Section 11.4.2
and in Wisniewski et al. [998].

The hints mechanism in MPI-IO also allows users to specify machine-specific
options and optimizations in a portable way. That is, the same program can be
run everywhere, and the implementation will simply ignore the hints that are not
applicable to the machine on which the program is being run. An example of the
use of machine-specific hints are the hints ROMIO accepts for using “direct I/O” on

348 Chapter 11 Parallel I/O

SGI’s XFS file system. Direct I/O is an XFS option that can be specified via the O_
DIRECT flag to the open function. In direct I/O, the file system moves data directly
between the user’s buffer and the storage devices, bypassing the file-system cache
and thereby saving an extra copy. Another advantage is that, in direct I/O, the file
system allows writes from multiple processes and threads to a common file to proceed
concurrently rather than serializing them as it does with regular buffered I/O. Direct
I/O, however, performs well only if the machine has sufficient I/O hardware for high
disk bandwidth. If not, regular buffered I/O through the file-system cache performs
better. ROMIO, therefore, does not use direct I/O by default. It uses direct I/O only if
the user (who knows whether the machine has high disk bandwidth) recommends it
via a hint. On the Argonne Origin 2000 configured with 10 Fibre Channel controllers
and a total of 100 disks, we obtained bandwidths of around 720 MBytes/s for parallel
writes and 650 MBytes/s for parallel reads with the direct I/O hint specified. Without
this hint, the bandwidth was only 100 MBytes/s for parallel writes and 300 MBytes/s
for parallel reads.

Direct I/O can be used only if certain restrictions regarding the memory alignment
of the user’s buffer, minimum and maximum I/O sizes, alignment of file offset, and
so on are met. ROMIO determines whether these restrictions are met for a particular
request and only then uses direct I/O; otherwise it uses regular buffered I/O (even
if the user specifies the direct I/O hint). We plan to add an optimization to ROMIO
in which even though the user’s request does not meet the restrictions, ROMIO will
try to meet the restrictions by reorganizing the data internally, at least in the case of
collective I/O routines.

11.4 How Can Users Achieve High I/O Performance?

In this section, we provide general guidelines for achieving high I/O performance
and some specific guidelines for achieving high performance with MPI-IO.

11.4.1 General Guidelines

Following are some general guidelines for achieving high I/O performance. Although
many of them seem obvious, the reason for poor performance is often that one or
more of these simple guidelines are not being followed.

. Buy Sufficient I/O hardware for the machine. Machines tend to be purchased for
high computation and communication performance but are often undercon-
figured for the I/O requirements of the applications being run on them. It
is impossible to achieve good I/O performance with insufficient I/O hardware
(e.g., too few disks). It is difficult to say how much I/O hardware is sufficient—it
depends on the application’s requirements, system architecture, performance
of the I/O hardware, and so on. The vendor of the machine may be able to
provide guidance in this regard. Some useful guidelines on how to configure
an I/O subsystem are provided in Feitelson et al. [322].

11.4 How Can Users Achieve High I/O Performance? 349

. Use fast file systems, not NFS. On many installations of high-performance ma-
chines, the home directories of users are NFS (Network File System [899])
mounted so that they can be accessed directly from other machines. This is a
good convenience feature, but users must not use the same directory for read-
ing or writing large amounts of data from parallel applications, because NFS
is terribly slow. They must use the directory that corresponds to the native
high-performance file system on the machine.

. Do not perform I/O from one process only. Many parallel applications still per-
form I/O by having all processes send their data to one process that gathers
all the data and writes it to a file. Application developers have chosen this
approach because of historical limitations in the I/O capabilities of many par-
allel systems: either parallel I/O from multiple processes to a common file was
not supported, or if supported, the performance was poor. On modern parallel
systems, however, these limitations no longer exist. With sufficient and appro-
priately configured I/O hardware and modern high-performance file systems,
one can achieve higher performance by having multiple processes directly ac-
cess a common file. The MPI-IO interface is specifically designed to support
such accesses and to enable implementations to deliver high performance for
such accesses.

. Make large requests wherever possible. I/O performance is much higher for large
requests than for small requests. Application developers must therefore make
an attempt to write their programs in a way that they make large I/O requests
rather than lots of small requests, wherever possible.

. Use MPI-IO and use it the right way. MPI-IO offers great potential in terms of
portability and high performance. It gives implementations an opportunity
to optimize I/O. Therefore, we recommend that users use MPI-IO and use
it the right way. The right way is explained in more detail below, but in
short, whenever each process needs to access noncontiguous data and multiple
processes need to perform such I/O, users must use MPI-derived data types,
define a file view, and use a single collective I/O function. They must not access
each small contiguous piece separately as they would with UNIX I/O.

11.4.2 Achieving High Performance with MPI-IO

Let us examine the different ways of writing an application with MPI-IO and see
how this choice affects performance.4 Any application has a particular “I/O access
pattern” based on its I/O needs. The same I/O access pattern, however, can be
presented to the I/O system in different ways, depending on which I/O functions
the application uses and how. The different ways of expressing I/O access patterns in

4 This section is reprinted with permission from Using MPI-2: Advanced Features of the Message Passing Interface,
by William Gropp, Ewing Lusk, and Rajeev Thakur (MIT Press, Cambridge, MA, 1999).

350 Chapter 11 Parallel I/O

Level 1
(many collective, contiguous requests)

MPI_File_open(MPI_COMM_WORLD,
 "filename", ..., &fh)
for (i=0; i<n_local_rows; i++){
 MPI_File_seek(fh, ...)
 MPI_File_read_all(fh, row[i], ...)
}
MPI_File_close(&fh)

Level 3
(single collective, noncontiguous request)

MPI_Type_create_subarray(.., &subarray, ...)
MPI_Type_commit(&subarray)
MPI_File_open(MPI_COMM_WORLD,
 "filename", ..., &fh)
MPI_File_set_view(fh, ..., subarray, ...)
MPI_File_read_all(fh, local_array, ...)
MPI_File_close(&fh)

Level 0
(many independent, contiguous requests)

MPI_Type_create_subarray(..., &subarray, ...)
MPI_Type_commit(&subarray)
MPI_File_open(..., "filename", ..., &fh)
MPI_File_set_view(fh, ..., subarray, ...)
MPI_File_read(fh, local_array, ...)
MPI_File_close(&fh)

Level 2
(single independent, noncontiguous request)

MPI_File_open(..., "filename", ..., &fh)
for (i=0; i<n_local_rows; i++){
 MPI_File_seek(fh, ...)
 MPI_File_read(fh, row[i], ...)
}
MPI_File_close(&fh)

Figure 11.8 Pseudocode that shows four ways of accessing the data in Figure 11.3 with MPI-IO.

MPI-IO can be classified into four levels, level 0 through level 3 [918]. We explain this
classification with the help of the same example we considered in previous sections,
namely, accessing a distributed array from a file (Figure 11.3). The principle applies
to other access patterns as well.

Recall that in this example the local array of each process is not contiguous in
the file; each row of the local array is separated by rows of the local arrays of other
processes. Figure 11.8 shows four ways in which a user can express this access pattern
in MPI-IO. In level 0, each process does UNIX-style accesses—one independent read
request for each row in the local array. Level 1 is similar to level 0 except that it uses
collective I/O functions, which indicate to the implementation that all processes that
together opened the file will call this function, each with its own access information.
Independent I/O functions, on the other hand, convey no information about what
other processes will do. In level 2, each process creates a derived data type to describe
the noncontiguous access pattern, defines a file view, and calls independent I/O
functions. Level 3 is similar to level 2 except that it uses collective I/O functions.

11.4 How Can Users Achieve High I/O Performance? 351

File
space

Collective contiguous
requests (level 1)

0 Processes

Independent contiguous
request (level 0)

Independent, noncontiguous
request using a derived
datatype (level 2)

Collective, noncontiguous requests
using derived datatypes (level 3)

1 2 3

Figure 11.9 The four levels representing increasing amounts of data per request.

The four levels represent increasing amounts of data per request, as illustrated in
Figure 11.9.5 The more the amount of data per request, the greater the opportunity
for the implementation to deliver higher performance. How good the performance
is at each level depends, of course, on how well the implementation takes advantage
of the extra access information at each level. ROMIO, for example, performs data
sieving for level-2 requests and collective I/O for level-3 requests. However, it cannot
perform these optimizations if the user does not express the access pattern in terms
of level-2 or level-3 requests. Users must therefore strive to express their I/O requests
as level 3 rather than level 0. Figure 11.10 shows the detailed code for creating a
derived data type, defining a file view, and making a level-3 I/O request for the
distributed-array example of Figure 11.3.

If an application needs to access only large, contiguous pieces of data, level 0
is equivalent to level 2, and level 1 is equivalent to level 3. Users need not create
derived data types in such cases, as level-0 requests themselves will likely perform
well. Many real parallel applications, however, do not fall into this category [86, 229,
713, 870, 871, 917].

We note that the MPI standard does not require an implementation to perform any
of these optimizations. Nevertheless, even if an implementation does not perform

5 In this figure, levels 1 and 2 represent the same amount of data per request, but in general, when the number
of noncontiguous accesses per process is greater than the number of processes, level 2 represents more data than
level 1.

352 Chapter 11 Parallel I/O

gsizes[0] = num_global_rows;

gsizes[1] = num_global_cols;

distribs[0] = distribs[1] = MPI_DISTRIBUTE_BLOCK;

dargs[0] = dargs[1] = MPI_DISTRIBUTE_DFLT_DARG;

psizes[0] = psizes[1] = 4;

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI_Type_create_darray(16, rank, 2, gsizes, distribs, dargs,

psizes, MPI_ORDER_C, MPI_FLOAT,

&filetype);

MPI_Type_commit(&filetype);

local_array_size = num_local_rows * num_local_cols;

MPI_File_open(MPI_COMM_WORLD, "/pfs/datafile", MPI_MODE_RDONLY,

MPI_INFO_NULL, &fh);

MPI_File_set_view(fh, 0, MPI_FLOAT, filetype, "native",

MPI_INFO_NULL);

MPI_File_read_all(fh, local_array, local_array_size,

MPI_FLOAT, &status);

MPI_File_close(&fh);

Figure 11.10 Detailed code for the distributed-array example of Figure 11.3 using a level-3
request.

any optimization and instead translates level-3 requests into several level-0 requests
to the file system, the performance would be no worse than if the user directly made
level-0 requests. Therefore, there is no reason not to use level-3 requests (or level-2
requests where level-3 requests are not possible).

Performance Results

We present some performance results to demonstrate how the choice of level of
request affects performance. We wrote the distributed-array access example using
level-0, level-2, and level-3 requests and ran the three versions portably on five
different parallel machines—HP Exemplar, SGI Origin 2000, IBM SP, Intel Paragon,
and NEC SX-4—using ROMIO. (For this particular application, level-1 requests do not
contain sufficient information for any useful optimizations, and ROMIO therefore
internally translates level-1 requests into level-0 requests.) We used the native file
systems on each machine: HFS on the Exemplar, XFS on the Origin 2000, PIOFS on
the SP, PFS on the Paragon, and SFS on the SX-4.

We note that the machines had varying amounts of I/O hardware. Some of the
differences in performance results among the machines are due to these variations.
Our goal in this experiment was to compare the performance of the different levels
of requests on a given machine, rather than comparing the performance of different
machines.

11.4 How Can Users Achieve High I/O Performance? 353

0

100

200

300

400

500

600

Re
ad

 b
an

dw
id

th
 (

M
by

te
s/

s)

HP Exemplar
64 procs.

IBM SP
64 procs.

Intel Paragon
256 procs.

NEC SX4
8 procs.

SGI Origin2000
32 procs.

Level 0
Level 2
Level 3

Figure 11.11 Read performance of distributed array access (array size 512× 512× 512 integers
= 512 MB).

Figures 11.11 and 11.12 show the read and write bandwidths. The performance
with level-0 requests was, in general, very poor because level-0 requests result in too
many small read/write calls. For level-2 requests—for which ROMIO performs data
sieving—the read bandwidth improved over level-0 requests by a factor ranging from
2.6 on the HP Exemplar to 453 on the NEC SX-4. Similarly, the write bandwidth
improved by a factor ranging from 2.3 on the HP Exemplar to 121 on the NEC SX-
4. The performance improved considerably with level-3 requests because ROMIO
performs collective I/O in this case. The read bandwidth improved by a factor of as
much as 793 over level-0 requests (NEC SX-4) and as much as 14 over level-2 requests
(Intel Paragon). Similarly, with level-3 requests, the write performance improved by
a factor of as much as 721 over level-0 requests (NEC SX-4) and as much as 40 over
level-2 requests (HP Exemplar). It is clearly advantageous to use level-3 requests rather
than any other kind of request.

We obtained similar results with other applications as well; see Thakur et al. [919]
for details.

Upshot Graphs

We present some graphs that illustrate the reduction in time obtained by using
level-2 and level-3 requests instead of level-0 requests for writing a 3-D distributed
array of size 128× 128× 128 on 32 processors on the Intel Paragon at Caltech. We

354 Chapter 11 Parallel I/O

0

50

100

150

200

250

300

350

400

450

W
rit

e
ba

nd
w

id
th

 (
M

by
te

s/
s)

HP Exemplar
64 procs.

IBM SP
64 procs.

Intel Paragon
56 procs.

NEC SX4
8 procs.

GI Origin2000
32 procs.

Level 0

Level 2

Level 3

Figure 11.12 Write performance of distributed array access (array size 512× 512× 512 integers
= 512 MB).

instrumented the ROMIO source code to measure the time taken for each file-system
call made by ROMIO and also for the computation and communication required for
collective I/O. The instrumented code created trace files, which we visualized using
a performance visualization tool called Upshot [464].

Plate 7 of the color insert shows the Upshot plot for level-0 requests, where each
process makes a separate write function call to write each row of its local array. The
numerous small bands represent the numerous writes in the program, as a result
of which the total time taken is about 125 seconds. The large white portions are
actually lots of writes clustered together, which become visible when you zoom in
to the region using Upshot.

Plate 8 of the color insert shows the Upshot plot for level-2 requests, for which
ROMIO performs data sieving. In this case, it performed data sieving in blocks of
4 MBytes at a time. Note that the total time has decreased to about 16 seconds
compared with 125 seconds for level-0 requests. For writing with data sieving, each
process must perform a read-modify-write and also lock the region of the file being
written. Because of the need for file locking and a buffer size of 4 MBytes, many
processes remain idle waiting to acquire locks. Therefore, only a few write operations
take place concurrently. It should be possible to increase parallelism, however, by
decreasing the size of the buffer used for data sieving. Plate 9 of the color insert shows
the results for a buffer size of 512 KBytes. Since more I/O operations take place in
parallel, the total time decreased to 10.5 seconds. A further reduction in buffer size

11.5 Conclusion 355

to 64 KBytes (Plate 10 of the color insert) resulted in even greater parallelism, but
the I/O time increased because of the smaller granularity of each I/O operation. The
performance of data sieving can thus be tuned by varying the size of the buffer used
for data sieving, which can be done via the hints mechanism in MPI-IO.

Plate 11 of the color insert shows the Upshot plot for level-3 requests, for which
ROMIO performs collective I/O. The total time decreased to about 2.75 seconds,
which means that level-3 requests were about 45 times faster than level-0 requests
and about four times faster than the best performance with level-2 requests. The
reason for the improvement is that the numerous writes of each process were
coalesced into a single write at the expense of some extra computation (to figure out
how to merge the requests) and interprocess communication. With collective I/O,
the actual write time was only a small fraction of the total I/O time; for example, file
open took longer than the write.

11.5 Conclusion

I/O on parallel computers has always been slow compared with computation and
communication. As computers get larger and faster, I/O becomes even more of a
problem. In this chapter we have provided a general introduction to the field of
parallel I/O. Our emphasis has been on the practical aspects of using parallel I/O and
achieving high performance. By following the guidelines presented, we believe that
users can achieve high I/O performance in parallel applications.

Acknowledgments. This work was supported by the Mathematical, Information,
and Computational Sciences Division subprogram of the Office of Advanced Sci-
entific Computing Research, U.S. Department of Energy, under contract W-31-109-
Eng-38.

C

H

A

P

T

E

R

12 Languages and Compilers

Ken Kennedy . Charles Koelbel

Because parallel computing is significantly more complicated than serial computing,
it places significant burdens on the application developer. In addition to developing
a correct problem solution, the user must also control and coordinate the uses of
parallelism in the solution program. This is even more complicated because the
methodology and mechanisms for exerting control may differ from target platform
to target platform.

As a result, high-performance parallel computing presents significant challenges
and opportunities for programming language designers, compiler implementors,
and run-time system developers. If program development support software can make
it easier for programmers to design, implement, debug, and tune parallel programs
on a variety of target platforms, parallelism may become accessible to the larger
community of application developers.

To understand the nature of the challenge for programming support software, we
must consider the process for development of parallel applications. The implementor
must be able to find opportunities for parallelism in his or her application, express
the parallelism in a machine-independent way, and debug and tune the resulting
application for a particular parallel platform. In designing language and compiler
support for this process, we must keep three goals firmly in mind:

. Programming should be as easy as possible. The end user should experience only
slightly more complexity than for development of uniprocessor programs.

. The resulting programs should be portable across platforms with modest effort. It
should not be necessary to maintain multiple source versions of the same pro-
gram. Rather it should be possible to move the same source to each platform,
adjust some tuning parameters, and run with nearly the full performance avail-
able on the machine.

357

358 Chapter 12 Languages and Compilers

. The programmer should retain as much control over performance as possible. If
performance problems develop, it should be possible for the programmer to
address them within the high-level programming model—that is, without
having to resort to modification of low-level code generated from the high-
level representation.

These seemingly conflicting goals will be difficult to achieve because parallelism
presents significant challenges to the application developer. To achieve these goals,
the programming system will need to solve three fundamental problems:

1. It must find extensive parallelism in the application presented by the user. It
must then package and coordinate that parallelism during execution. Finding
parallelism may involve a transfer of information from the user, but it must
be possible to get this information without forcing a complete revision of the
application.

2. It must overcome performance penalties due to the complex memory hier-
archies on modern parallel computers. This could involve extensive program
transformations to increase locality. This is more challenging on parallel com-
puters because there is often a tradeoff between increasing parallelism and
finding locality.

3. It must support migration of parallel programs to different architectures with
only modest changes. This will entail development of a programming interface
that is not machine specific and strategies for optimizing and tuning applica-
tions for different architectures.

In designing strategies for support of parallel programming, we must keep in mind
the principle that each component of the system should do what it does best.

. The application developer should be able to concentrate on problem analysis
and decomposition at a fairly high level of abstraction.

. The system, including the programming language and compiler, should han-
dle the details of mapping the abstract decomposition onto the computing
configuration available at any given moment.

. The application developer and the system should work together to produce a
correct and efficient program through the use of execution monitoring, de-
bugging, and tuning tools.

This chapter explores four technologies that have been reasonably successful in
meeting the goals of parallel programming support for scientific computation: au-
tomatic parallelization; data-parallel languages (High Performance Fortran); shared-
memory, parallel programming interfaces (OpenMP); and single-program, multiple-
data (SPMD) languages (Co-Array Fortran). (Parallel object-oriented programming
is considered in Chapter 13.) The intent of our presentation is to give a somewhat
tutorial introduction to these technologies, while providing background on the in-
tellectual development that led to them and an assessment of their usefulness.

12.1 Automatic Parallelization 359

12.1 Automatic Parallelization

From the user’s perspective, the most appealing approach to program decomposition
is automatic parallelization. If a fully automatic system could efficiently parallelize
applications, the user would be free to concentrate on what is being computed rather
than how it is being computed. However, to be acceptable, a fully automatic scheme
must generate code that achieves performance competitive with programs hand-
coded by experts. Object-program performance has been a significant factor in the
acceptance of new programming languages since the original Fortran I compiler.
This observation is based on strong evidence, including this reflection by John
Backus [66]:

It was our belief that if FORTRAN, during its first months, were to trans-
late any reasonable “scientific” source program into an object program
only half as fast as its hand-coded counterpart, then acceptance of our
system would be in serious danger. . . . To this day I believe that our em-
phasis on object program efficiency rather than on language design was
basically correct. I believe that had we failed to produce efficient pro-
grams, the widespread use of languages like FORTRAN would have been
seriously delayed.

Automatic parallelization research began in the 1970s as automatic vectorization, a
technology to support portable programming on vector processors. The important
technological tool used in automatic vectorization is dependence analysis, which
seeks to determine whether pairs of references to the same data structure (usually a
subscripted variable) may access the same memory location [582, 583]. An example
loop suggests how this can be done:

REAL A(1000,1000)

DO J = 2, N

DO I = 2, N

A(I,J) = (A(I,J+1)+ 2*A(I,J) + A(I,J-1))*0.25

ENDDO

ENDDO

Any particular element in the interior of the array, say A(m1,m2) will be accessed
on three iterations of the loop nest: (I=m1, J=m2 − 1), (I=m1, J=m2), and (I=
m1, J=m2 + 1). Iteration (I=m1, J=m2) also assigns to that element. Therefore, the
J loop iterations must execute in the correct order, for a fixed value of I, to avoid
overwriting the element while the “old” value is still needed. However, the I loop
iterations never interfere with each other and therefore can execute in any order,
including overlapped execution. In other words, the I loop is vectorizable while the
J loop is not. Dependence analysis formalizes this test.

Returning to our example above, we see that there are two dependences from the
assignment to itself—a dependence from the store to a use of A(I,J-1) on the next
iteration and an antidependence (needed to ensure that loads do not move before

360 Chapter 12 Languages and Compilers

stores) from the use of A(I,J+1) to the store into A(I,J) on the next iteration. These
two dependences arise from the iteration of the loop on index J, so we say that they
are carried by that loop. In terms of dependence, the test for vectorization can be
stated as follows: A statement can be vectorized with respect to a given loop if that
statement is not part of a dependence cycle carried by that loop. Hence, we see in
the example above that the J-loop is not vectorizable, but the I-loop is. The code
can therefore be rewritten in Fortran 90 as follows:

REAL A(1000,1000)

DO J = 2, N

A(2:N,J) = (A(2:N,J+1)+ 2*A(2:N,J) + A(2:N,J-1))*0.25

ENDDO

Vectorizers based on dependence analysis matured into extremely useful tools by
the mid-1980s and came to be standard on all vector machines [26, 1001]. Yet in spite
of the sophistication of vectorizing compilers, it was still not possible to present a
naively coded Fortran program to any of them with the expectation of achieving
high performance. Some subscripts simply cannot be fully checked by compile-time
dependence analysis. In particular, references such as A(IND(I)) require run-time in-
formation not available to the compiler. Virtually every program had to be rewritten
so that the computationally intensive loops were vectorizable. One can therefore
characterize the contribution of vectorizing compilers as defining a subdialect of
Fortran—the “vectorizable loop” subdialect—for which high performance would be
achieved on virtually every vector machine.

Building on the success of vectorization, the research and development com-
munity turned its attention to automatic parallelization for multiple-instruction,
multiple-data (MIMD) architectures with shared memory [24, 25, 28, 75, 582, 1000,
1001]. For configurations with modest numbers of processors, the technology of au-
tomatic vectorization could be employed with good results. However, parallel com-
puters soon moved to distributed-memory architectures, as described in Chapter 2.
This made the automatic parallelization problem far more complex; the compiler
now had the additional task of determining how to partition data to the memories
of a processor in a way that maximized the number of local memory accesses and
minimized communication, which was relatively expensive on such machines [29,
168, 171, 1019]. Moreover, the compiler and run-time system had the task of arrang-
ing the communication operations themselves, which were far more complex than
the simple loads and stores needed on shared-memory machines.

Another important implication of the new architectures was that, even on shared-
memory parallel computers, the regions of parallel execution had to be large enough
to compensate for the overhead of initiating and synchronizing the parallel compu-
tation. This led to research on how the compiler could find larger program regions
to run in parallel. Dependence analysis, which worked so well for vectorization, now
had to be applied over larger regions of the program, even across procedure bound-
aries. This led to research on interprocedural analysis and optimization, by which a

12.2 Data-Parallel Programming in High Performance Fortran 361

program and all its subroutines are analyzed as a whole [76, 82, 156, 221, 222, 428,
429, 942].

Through the use of increasingly complex analysis and optimization technologies,
research compilers have been able to parallelize a number of interesting programs.
However, due to the complexity of the techniques, the long compiler running times,
and the small number of successful demonstrations, there exist few commercial com-
pilers that attempt to parallelize whole applications on scalable parallel machines.
Although this research has yielded many important new compilation techniques,
it is now widely believed that automatic parallelization, by itself, is not enough to
solve the parallel programming problem.

As a result of these observations, research has turned increasingly to language-
based strategies that can get more information from the user, while exploiting
techniques from automatic parallelization to lessen the burden of programming.

12.2 Data-Parallel Programming in High Performance Fortran

Early in the research efforts on parallel computing, Fox and others observed that the
key to achieving high performance on distributed-memory machines is to allocate
data to the various processor memories to maximize locality and minimize commu-
nication [358]. Once this is done, if each computation in a program is performed
on the processor where most of the data involved in that computation resides, the
program can be executed with high efficiency.

A second important observation is that if parallelism is to scale to hundreds
or thousands of processors, data parallelism must be effectively exploited. Data
parallelism is parallelism that derives from subdividing the (presumably large) data
domain in some manner and assigning the subdomains to different processors. This
strategy provides a natural fit with data layout, because the data layout falls naturally
out of the division into subdomains.

These observations are the foundation for data-parallel languages, which pro-
vide mechanisms for supporting data parallelism, particularly through data layout.
A number of such languages were developed in the late 1980s and early 1990s, in-
cluding Fortran D [356, 475], Vienna Fortran [188, 1018], CM Fortran [921], C* [432],
data-parallel C, and PC++ [641]. These research efforts were the precursors of infor-
mal standardization activities leading to High Performance Fortran (HPF) [468]. (A
similar informal standardization effort led to HPC++ [516], described in Chapter 13.)

The idea behind High Performance Fortran, an extended version of Fortran 90
generated by an informal standardization process in the early 1990s, is to automate
most of the details of managing data. It accomplishes this goal by providing a set of
directives that the user inserts to describe the data layout. The compiler and run-time
system translate these high-level directives into the complex low-level operations
that actually communicate the data and synchronize processors when needed. An
important quality of the layout directives is that they have no effect on the meaning
of the program—they merely provide advice to the compiler on how to assign
elements of the program arrays and other data structures to different processors for

362 Chapter 12 Languages and Compilers

high performance. This layout specification is relatively machine independent; once
it exists, the program can be tailored by the compiler to run on any of a variety of
distributed-memory machines.

HPF provides fairly fine-grained control over data layout of arrays through direc-
tives, encoded as structured comments that extend the variable type declarations.
We illustrate this by extending the example of the last section:

REAL A(1000,1000), B(1000,1000)

DO J = 2, N

DO I = 2, N

A(I,J) = (A(I,J+1)+ 2*A(I,J) + A(I,J-1))*0.25 &

+ (B(I+1,J)+ 2*B(I,J) + B(I-1,J))*0.25

ENDDO

ENDDO

The DISTRIBUTE directive specifies how to partition a data array onto the memories of
a real parallel machine. In this case, it is most natural to distribute the first dimension,
since iterations over it can be performed in parallel. For example, the programmer
can distribute data in contiguous chunks across the available processors by inserting
the directive

!HPF$ DISTRIBUTE A(BLOCK,*)

after the declaration of A. HPF also provides other standard distribution patterns, in-
cluding CYCLIC in which elements are assigned to processors in round-robin fashion,
or CYCLIC(K) by which blocks of K elements are assigned round-robin to processors.
Generally speaking, BLOCK is the preferred distribution for computations with nearest-
neighbor elementwise communication, while the CYCLIC variants allow finer load
balancing of some computations. Also, in many computations (including the ex-
ample above), different data arrays should use the same or related data layouts. The
ALIGN directive specifies an elementwise matching between arrays in these cases. For
example, to give array B the same distribution as A, the programmer would use the
directive

!HPF$ ALIGN B(I,J) WITH A(I,J).

Integer linear functions of the subscripts are also allowed in ALIGN and are useful for
matching arrays of different shapes.1

In addition to the distribution directives, HPF has special directives that can be
used to assist in the identification of parallelism. Because HPF is based on Fortran 90,
it also has array operations to express elementwise parallelism directly. These opera-
tions are particularly appropriate when applied to a distributed dimension, in which

1 In fact, other alignments would produce better performance for our example. However, we use the direct
alignment above to illustrate points about communication later.

12.2 Data-Parallel Programming in High Performance Fortran 363

case the compiler can (relatively) easily manage the synchronization and data move-
ment together. Using array notation in this example produces the following:

REAL A(1000,1000), B(1000,1000)

!HPF$ DISTRIBUTE A(BLOCK,*)

!HPF$ ALIGN B(I,J) WITH A(I,J)

DO J = 2, N

A(2:N,J) = (A(2:N,J+1)+ 2*A(2:N,J) + A(2:N,J-1))*0.25 &

+ (B(3:N+1,J)+ 2*B(2:N,J) + B(1:N-1,J))*0.25

ENDDO

Alternately, the programmer could retain the loop notation but explicitly identify the
inner loop as parallel. The INDEPENDENT directive specifies that the loop that follows
is safe to execute in parallel. In our example, this appears as

REAL A(1000,1000), B(1000,1000)

!HPF$ DISTRIBUTE A(BLOCK,*)

!HPF$ ALIGN B(I,J) WITH A(I,J)

DO J = 2, N

!HPF$ INDEPENDENT

DO I = 2, N

A(I,J) = (A(I,J+1)+ 2*A(I,J) + A(I,J-1))*0.25 &

+ (B(I+1,J)+ 2*B(I,J) + B(I-1,J))*0.25

ENDDO

ENDDO

Many compilers can detect this fact for themselves using the dependence analysis
discussed in Section 12.1. However, the directive ensures that all compilers to which
the program is presented can do so. The INDEPENDENT directive is even more impor-
tant for loops that are theoretically unanalyzable; often the programmer will have
application-specific knowledge that allows the loop to be executed in parallel.

Using either of the above notations (or relying on the compiler dependence analy-
sis) puts the burden of efficiently executing the loop on the HPF implementation.
A typical implementation would distribute the computations in loop iterations ac-
cording to the owner-computes rule, by which the processor owning the array element
on the left-hand side of the assignment statement would perform the computation
for each iteration. In the above example, if there are 25 processors, the first processor
would handle iterations 2 through 40, the second would handle 41 through 80, and
so on. These calculations would be done completely in parallel. Note, however, that
the references to B(I-1,J) and B(I+1,J) give rise to communication when I is equal
to 40k and 40k+1, respectively. The compiler would generate this communication
automatically and would package the communication to optimize performance. On
distributed-memory machines, this packaging would generally consist of sending all
required values of B before the start of the loop body, thus avoiding repeated message
start-ups.

364 Chapter 12 Languages and Compilers

The HPF compiler must often go to substantial lengths to preserve the meaning
of the underlying Fortran 90 program. For example, we might code a sum reduction
loop as follows:

REAL A(10000)

!HPF$ DISTRIBUTE A(BLOCK)

X = 0.0

DO I = 1, 10000

X = X + A(I)

ENDDO

Although this is much simpler than the equivalent message-passing program written
in MPI, it has a downside—the compiler must do a substantial amount of work
to generate a program that displays reasonable efficiency. In particular, it must
recognize that the main calculation is a sum reduction and replicate the values of
X on each processor. Then it must generate the final parallel sum at the end. HPF
provides directives that make it possible for the user to help the system recognize
such opportunities.

In the example above, the usual INDEPENDENT directive would not be applicable
because the repeated assignments to X create a data dependence. However, because
reduction is a common operation with special properties that allow parallelization,
HPF provides an additional clause for the directive to handle it:

REAL A(10000)

!HPF$ DISTRIBUTE A(BLOCK)

X = 0.0

!HPF$ INDEPENDENT, REDUCTION(X)

DO I = 1, 10000

X = X + A(I)

ENDDO

This version is easier for the compiler to process into an efficient program. We note
in passing that there is also a standard intrinsic function available for this reduction:

REAL A(10000)

!HPF$ DISTRIBUTE A(BLOCK)

X = SUM(A)

The compiler can implement this as a library function or by expanding the sum
in-line. In either case, the generated code will operate as described above.

As a final example, we present a simple HPF code fragment that is intended to
model parts of a multigrid method. All arrays are aligned to a “master,” which is the
finest grid level; that grid is distributed in both dimensions to get maximal locality.
We use INDEPENDENT directives to ensure portability across compilers that might not

12.2 Data-Parallel Programming in High Performance Fortran 365

recognize the parallelism in the computation loops; we could equally well have used
array syntax.

REAL A(1023,1023), B(1023,1023), APRIME(511,511)

!HPF$ ALIGN B(I,J) WITH A(I,J)

!HPF$ ALIGN APRIME(I,J) WITH A(2*I-1,2*J-1)

!HPF$ DISTRIBUTE A(BLOCK,BLOCK)

!HPF$ INDEPENDENT, NEW(I)

DO J = 2, 1022 ! Multigrid Smoothing (Red-Black)

!HPF$ INDEPENDENT

DO I = MOD(J,2)+2, 1022, 2

A(I,J) = 0.25*(A(I+1,J) + A(I-1,J) + &

A(I,J-1) + A(I,J+1)) + B(I,J)

ENDDO

ENDDO

!HPF$ INDEPENDENT, NEW(I)

DO J = 2, 510 ! Multigrid Restriction

!HPF$ INDEPENDENT

DO I = 2, 510

APRIME(I,J) = 0.05*(A(2*I-2,2*J-2) + &

4*A(2*I-2,2*J-1) + A(2*I-2,2*J) + &

4*A(2*I-1,2*J-2) + 4*A(2*I-1,2*J) + &

A(2*I,2*J-2) + 4*A(2*I,2*J-1) + &

A(2*I,2*J))

ENDDO

ENDDO

In the example, the qualifier NEW(I) is used in the INDEPENDENT directive for the
outer loop to ensure that the inner loop induction variable I is replicated on each
group of processors that execute different iterations of the outer loop. This is roughly
equivalent to the PRIVATE directive in other parallel dialects.

HPF compilation has been the subject of substantial research and development [9,
33, 45, 134, 135, 138, 417, 438, 475, 956, 1019]. Eleven companies currently offer
HPF products, and over 30 applications have been or are being written in it, including
some having over 100,000 lines.

A major drawback of HPF is its limited support for problems defined on irregular
meshes, which represent a fairly large fraction of important science and engineering
applications. To address this and other problems, the HPF Forum completed a second
round of HPF standardization to produce HPF 2.0 [468], which includes important
irregular distributions such as distribution indirectly via a run-time array and the
generalized block distribution, which allows blocks to be of different sizes.

366 Chapter 12 Languages and Compilers

12.3 Shared-Memory Parallel Programming in OpenMP

Although HPF provides excellent facilities for specifying data distribution, its mech-
anisms for specifying explicit parallelism are fairly limited. Principal among these
is the INDEPENDENT directive discussed in the previous section. Control of the paral-
lelism in HPF is implicit ; the system, not the programmer, assigns work to processors.
Moreover, the control is linked to the partitioning of data among processor memo-
ries. On machines where the entire system memory is shared among all processors,
such implicit methods seem obscure. Furthermore, types of parallelism other than
data parallelism are often profitable on such machines, but not well supported by
HPF.

Although a number of machine vendors produced mechanisms for explicit spec-
ification of parallelism in the late 1980s, there was no widely accepted parallel
language standard for shared-memory parallel machines. To address this deficiency,
the Parallel Computer Forum began an open standardization process that led to the
definition of PCF Fortran [740] and eventually to the ANSI abstract interface stan-
dard X3H5 [43]. PCF Fortran combined the facilities of two programming models:
loop parallelism and task parallelism. PCF Fortran included a feature called parallel
regions, which were constructs within which tasks could be defined and concurrently
executed. Standalone parallel loops were also included in the specification as a short-
hand for a parallel region that exactly brackets a work-distribution loop.

The PCF/X3H5 standard lay fallow until 1997, when an industry consortium
led by Silicon Graphics refined and simplified these ideas to produce OpenMP, an
informal standard parallel-programming interface with bindings to Fortran 77 and C.
The consortium later extended those bindings to include Fortran 95 and is studying
additions for C++. OpenMP drew strongly on the ideas from PCF Fortran, and it
adopted the directive conventions as in HPF to specify parallelism in the program.
As in HPF, OpenMP directives in a standard-conforming program can be ignored as
comments by a uniprocessor compiler with no difference in results. In this section,
we focus on OpenMP because it is the most recent and widely used of these systems;
however, many of the technical ideas were common to the PCF Fortran and ANSI
X3H5 dialects.

Perhaps the simplest way to specify parallelism in OpenMP is via an explicitly
parallel loop, bracketed by the PARALLEL DO and the END PARALLEL DO directives. The
PARALLEL DO directive can have a number of qualifying clauses that permit the spec-
ification of variables that are private to threads executing individual loop iterations
and variables that are used in a reduction. The following example of a PARALLEL DO
loop computes a simple relaxation step:

!$OMP PARALLEL DO

DO I = 2, N

APRIME(I) = (A(I+1) +2*A(I) + A(I-1))*0.25

ENDDO

12.3 Shared-Memory Parallel Programming in OpenMP 367

Note here that the loop induction variable I is private by default. The END PARALLEL DO
directive is optional. OpenMP provides mechanisms for specifying how the iterations
of a parallel loop are to be assigned to threads within a team. The following variant
will assign contiguous blocks of iterations to a single thread at compile time.

!$OMP PARALLEL DO SCHEDULE(STATIC)

DO I = 2, N

APRIME(I) = (A(I+1) +2*A(I) + A(I-1))*0.25

ENDDO

Under this specification, each thread would get a single contiguous block of iter-
ations. This is roughly equivalent to the effect that would be achieved in HPF by
declaring APRIME to have a BLOCK distribution. The effect of a BLOCK(K) distribution
can be achieved by explicitly specifying a chunk size:

!$OMP PARALLEL DO SCHEDULE(STATIC,10)

DO I = 2, N

APRIME(I) = (A(I+1) +2*A(I) + A(I-1))*0.25

ENDDO

This loop will hand out chunks of 10 iterations to threads in round-robin fashion
in the order of the thread number. If the keyword STATIC is replaced by DYNAMIC
in the above loop, chunks would be distributed to threads at run-time as those
threads became ready to execute. OpenMP also permits GUIDED scheduling, in which
chunk sizes decrease as the remaining number of iterations decreases, and RUNTIME
scheduling, in which the scheduling and chunk size can be selected at run-time by
setting environment variables. This permits the algorithm to make dynamic choices
based on conditions discovered in the data.

To illustrate the reduction mechanism, we present the global sum example from
HPF, rewritten to use the OpenMP directives:

REAL A(10000)

X = 0.0

!$OMP PARALLEL DO REDUCTION(+: X)

DO I = 1, 10000

X = X + A(I)

ENDDO

This example is strikingly similar to its HPF counterpart. The REDUCTION clause spec-
ifies that the final value of variable X is determined by summing the final values in
all of the threads executing iterations of the loop.

Task parallelism can be achieved in OpenMP through the PARALLEL SECTIONS
directive. The following example illustrates its usage on a two-processor version of
a routine to find the maximum of a set of numbers:

!$OMP PARALLEL SECTIONS PRIVATE(I), LASTPRIVATE(MAX1,MAX2)

!$OMP SECTION

368 Chapter 12 Languages and Compilers

IF (N>=1) THEN MAX1 = 1 ELSE MAX1 = 0

DO I = 2, N/2

IF(A(I)>A(MAX1)) THEN MAX1 = I

ENDDO

!$OMP SECTION

IF (N>=N/2+1) THEN MAX2 = N/2+1 ELSE MAX2 = 0

DO I = N/2+2,N

IF(A(I)>A(MAX2)) THEN MAX2 = I

ENDDO

!$OMP END PARALLEL SECTIONS

IF (MAX1>0) THEN

IF (A(MAX2)>A(MAX1)) THEN IMAX = MAX2 ELSE IMAX = MAX1

ELSE

IMAX = 0

ENDIF

The LASTPRIVATE clause on the SECTIONS directive indicates that MAX1 and MAX2 are
private to threads that execute the sections, but they retain their last value on exit
from the clause. Indeed, these variables are tested outside the region to determine
which is the index of the larger value.

OpenMP also provides lock variables to allow fine-grain synchronization between
threads. We illustrate this by an example of parallelizing a simple relaxation code
using wavefront parallelism. The scalar computation looks like this:

PARAMETER (N = 2048) ! Total number of elements

REAL A(N,N)

DO J = 2, N-1

DO I = 2, N-1

A(I,J) = 0.25*(A(I+1,J) + A(I-1,J) + A(I,J-1) + A(I,J+1))

ENDDO

ENDDO

A simple PARALLEL DO cannot be used in this case, because both the J and I loops
carry data dependences. However, the computation can be partially parallelized in
pipeline fashion as follows. Partition each column (by blocks) among the threads.
At the beginning of each processor’s section of the column, force the calculation
of A(I,J) to wait until the thread computing A(I-1,J) finishes that calculation, so
that it can get the correct input value. Lock variables do exactly this type of waiting;
only one thread may hold a lock at any given time, forcing others to delay until it
is finished. A 2-D array of OpenMP locks can therefore handle the synchronization
as follows:

PARAMETER (NP = 8) ! # of processors

PARAMETER (NEP = 256) ! # of elements per processor

PARAMETER (N = NP*NEP) ! Total # of elements

12.3 Shared-Memory Parallel Programming in OpenMP 369

REAL A(N,N)

INTEGER LCK(NP,N)

!$OMP PARALLEL PRIVATE(ME,JLO,JHI,I,J)

ME = OMP_GET_THREAD_NUM()+1 ! This thread’s id

ILO = MAX(2, (ME-1)*NEP+1) ! Thread’s starting point

IHI = MIN(N-1, ME*NEP) ! Thread’s ending point

! Initialize the locks

DO J = 2, N-1

CALL OMP_INIT_LOCK(LCK(ME,J)) ! Leaves lock unset

IF (ME>1) CALL OMP_SET_LOCK(LCK(ME,J))

ENDDO

! Make sure other threads have done their initialization

!$OMP BARRIER

! Execute this thread’s portion of the loop nest

DO J = 2, N-1

IF (ME>1) THEN

! Wait to acquire lock, then go forward

CALL OMP_SET_LOCK(LCK(ME-1,J)) ! Waits for lock unset

CALL OMP_UNSET_LOCK(LCK(ME-1,J))

ENDIF

DO I = ILO, IHI

A(I,J) = 0.25*(A(I+1,J) + A(I-1,J) + A(I,J-1) + A(I,J+1))

ENDDO

CALL OMP_UNSET_LOCK(LCK(ME,J))

ENDDO

!$OMP END PARALLEL

We should note that this code is likely to be impractical on most implementations
because of the overhead in time and space of managing so many locks. We can
reduce the number of locks by synchronizing groups of columns, rather than one at
a time. This sacrifices some parallelism (by delaying the start of the pipeline on some
processors) in exchange for reducing the overall overhead. The optimal number of
columns to group in this way will depend on the parameters of the machine, but
the outline of the blocked code would always be similar to the following:

PARAMETER (NP = 8) ! # of processors

PARAMETER (NB = 16) ! # of blocks

PARAMETER (NEB = 16) ! # of elements per block

PARAMETER (NEP = NB*NEB) ! # of elements per processor

PARAMETER (N = NP*NEP) ! Total # of elements

370 Chapter 12 Languages and Compilers

REAL A(N,N)

INTEGER LCK(NP,NB)

!$OMP PARALLEL PRIVATE(ME,JLO,JHI,I,J,JJ,JLO,JHI)

ME = OMP_GET_THREAD_NUM()+1 ! This thread’s id

ILO = MAX(2, (ME-1)*NEP+1)

IHI = MIN(N-1, ME*NEP)

! Initialize the locks

DO JJ = 1, NB

CALL OMP_INIT_LOCK(LCK(ME,JJ))

IF (ME>1) CALL OMP_SET_LOCK(LCK(ME,JJ))

ENDDO

!$OMP BARRIER

! Execute this thread’s portion of the loop nest

DO JJ = 1, NB

JLO = MAX(2, (JJ-1)*NEB+1)

JHI = MIN(N-1, JJ*NEB)

IF (ME>1) THEN

! Wait to acquire lock, then go forward

CALL OMP_SET_LOCK(LCK(ME-1,JJ))

CALL OMP_UNSET_LOCK(LCK(ME-1,JJ))

ENDIF

DO J = JLO, JHI

DO I = ILO, IHI

A(I,J) = 0.25*(A(I+1,J) + A(I-1,J) + A(I,J-1) + A(I,J+1))

ENDDO

ENDDO

CALL OMP_UNSET_LOCK(LCK(ME,JJ))

ENDDO

!$OMP END PARALLEL

OpenMP is an excellent programming interface for uniform-access, shared-
memory machines. However, it provides the user with no way to specify locality in
machines with nonuniform shared memory or distributed memory. On clusters of
multiprocessor workstations, it is often used in conjunction with MPI, with OpenMP
used for nodes and MPI used for message passing among nodes. A mixture of OpenMP
and HPF directives seems a promising way to provide programming support for mod-
ern machines with a mixture of shared-memory and distributed-memory parallelism.
An alternate approach is found in single-program, multiple-data languages discussed
in the next section.

12.4 Single-Program, Multiple-Data Programming in Co-Array Fortran 371

12.4 Single-Program, Multiple-Data Programming in
Co-Array Fortran

Single-program, multiple-data (SPMD) programming, introduced in Section 3.2, is
a common strategy for implementing parallel programs. The basic idea is that all
the processors or threads available to the program execute the entire program. This
execution is redundant2 unless and until the threads encounter a special work-
distribution construct or synchronization operation. The exact synchronization
operations differ from language to language. One advantage of the SPMD strategy
is that each thread builds up its own replicated copy of the program state in local
memory, enhancing the locality of references in the code. It is also conceptually clear
to most programmers and conveniently implemented by generating and loading the
same object code for all processors.

Starting in the 1980s, early SPMD systems such as The Force [525] and IBM’s
VM/EPEX [245, 246] implemented this idea on shared-memory computers. Access
to shared data structures such as arrays required synchronization, either through the
work-sharing constructs such as parallel loops or through explicit operations such
as locks, to avoid race conditions. Lessons from these languages found their way
into other shared-memory languages, as we saw in Section 12.3. At the time, the
full implications of cache-coherence protocols had not been grasped, and therefore
the languages generally assumed a coherent underlying memory. With the advent
of distributed-memory architectures in the 1990s, message-passing programs were
generally written in SPMD style, although not in a new SPMD language. That is,
programs using the MPI library [878] or PVM library [371] typically assumed that
all processes (or processors) ran the identical program. Chapter 10 discusses such
message-passing programs in more detail. Here, we simply note that for these SPMD
programs, all data was local to a process and all communication was explicit. At about
the same time, a new generation of languages such as Split-C [235] and AC [172]
was including support for asynchronous memory operations. These reflected the
relaxed consistency models described in Section 2.2.1, and again used an SPMD
programming paradigm. This meant that there were primitives for synchronization
and access to shared data, but with a different set of assumptions about how the
access was carried out. Co-Array Fortran [719] (originally known as F--) borrows from
all of these influences.

As with all SPMD languages, Co-Array Fortran assumes that multiple copies of
the program (called images) execute asynchronously. By default, data objects are
replicated in all images and may have different values in the different images.
However, an array declared with an additional co-dimension specified in square
brackets becomes a co-array that is accessible by all the images. The extent of the
co-dimension is the same as the number of images. For example, the following

2 For simplicity of presentation, we temporarily ignore the race conditions caused by “redundant” execution of
assignments to shared data.

372 Chapter 12 Languages and Compilers

declarations define co-arrays X, Y, and Z whose local sections in each image are a
10-element vector, a 4× 4 matrix, and a 1000

NUM IMAGES() × 1000 matrix:

REAL X(10)[*], Y(4,4)[*]

REAL Z(1000/NUM_IMAGES(),1000)[*]

Because NUM_IMAGES is an intrinsic function returning the number of images, the last
example is roughly equivalent to the HPF array with (BLOCK,*) distribution discussed
earlier. A co-array can have more than one co-dimension to reflect multidimensional
processor layouts.

Programs can use the co-dimension as they would any other dimension. This
allows simple expressions to communicate data between images. For example, here
is the extended grid smoothing example from Section 12.3 rewritten in Co-Array
Fortran:

PARAMETER(MY_N = 1000/NUM_IMAGES())

REAL A(0:MY_N+1)[*], APRIME(0:MY_N+1)[*]

ME = THIS_IMAGE()

IF (ME > 1) THEN

MY_LO = 1

A(0)[ME] = A(MY_N)[ME-1]

ELSE

MY_LO = 2

ENDIF

IF (N > ME*MY_N) THEN

MY_HI = MY_N

A(MY_N+1)[ME] = A(1)[ME+1]

ELSE

MY_HI = N - (ME-1)*MY_N

ENDIF

DO I = MY_LO, MY_HI

APRIME(I)[ME] = (A(I+1)[ME] + 2*A(I)[ME] + A(I-1)[ME])*0.25

ENDDO

The explicit computations of the local bounds for the I loop are similar in form
and function to those in message-passing programs. The [ME] designation in the co-
array references means that each image updates only its own data. In other words,
this example uses the owner-computes rule discussed in Section 12.2, although
doing so is not a requirement of the language. The references to A(MY_N)[ME-1]
and A(1)[ME+1] bring in the data from other images. Although this example was
somewhat trivial, much more complex communications operations can easily be
specified using regular section notation. Note that only one image needs to specify
the communication, rather than the two-sided protocols described in Chapter 10.
If Co-Array Fortran is implemented on hardware that does not support one-sided
communication, then the compiler or run-time system must insert appropriate

12.4 Single-Program, Multiple-Data Programming in Co-Array Fortran 373

communication calls in the executing code. The analysis to do this is similar to
that needed to generate communication in HPF.

It is important to note that synchronization is not automatic in Co-Array Fortran.
Repeated smoothing operations would need synchronization operations, perhaps as
follows:

! declarations, ME, MY_LO, MY_HI set as above

DO J = 1, NITER

CALL SYNCH_ALL()

IF (ME > 1) A(0)[ME] = A(MY_N)[ME-1]

IF (N > ME*MY_N) A(MY_N+1)[ME] = A(1)[ME+1]

DO I = MY_LO, MY_HI

APRIME(I)[ME] = (A(I+1)[ME] + 2*A(I)[ME] + A(I-1)[ME])*0.25

ENDDO

A(:)[ME] = APRIME(:)[ME]

ENDDO

The SYNCH_ALL call forces all images to wait for the previous iteration to finish on other
images, as the OpenMP PARALLEL DO construct does by default. Co-Array Fortran also
provides SYNCH_TEAM and SYNCH_MEMORY to synchronize subsets of the images with less
global overhead.

Co-Array Fortran uses the standard Fortran 90 reduction operations to perform
global reductions. For example, the sum of a co-array can be computed as follows:

PARAMETER(MY_N = 10000/NUM_IMAGES())

REAL A(MY_N)[*]

ME = THIS_IMAGE()

X = SUM(A(:)[:])

The co-dimension subscript [:] specifies that all images contribute to the global
operation. In this case, the compiler would emit a collective communications oper-
ation. Some other uses of intrinsic reductions would require communications, such
as gathering data into a single image.

Co-Array Fortran generally makes communication and synchronization require-
ments more explicit than HPF and OpenMP. This allows greater tuning, but some-
times requires detailed coding. Perhaps this is best appreciated by examining the
Co-Array Fortran version of the final examples from Sections 12.2 and 12.3.

Translating the HPF multigrid code fragment (in Section 12.2) into Co-Array
Fortran yields the following:

PARAMETER(N = 1023)

PARAMETER(NP = NUM_IMAGES())

PARAMETER(NP1 = 2**(LOG2_IMAGES()/2), NP2 = NP/NP1)

PARAMETER(NEP1 = (N+1)/NP1, NEP2=(N+1)/NEP2)

PARAMETER(MEP1 = (N+1)/(2*NP1), MEP2=(N+1)/(2*NP2))

REAL A(0:NEP1+1,0:NEP2+1)[NP1,*]

374 Chapter 12 Languages and Compilers

REAL B(NEP1,NEP2)[NP1,*]

REAL APRIME(MEP1,MEP2)[NP1,*]

INTEGER NBR1(3), NBR2(3)

ME=THIS_IMAGE(); ME1=MOD(ME,NP1)+1; ME2=ME/NP1+1

! Initial assignments to overlap areas

CALL SYNCH_ALL()

NNBR1 = 1; NBR1(1) = ME

IF (ME1>1) THEN

A(0,1:NEP2)[ME1,ME2] = A(NEP1,1:NEP2)[ME1-1,ME2]

NNBR1 = NNBR1+1; NBR1(NNBR1) = ME1-2 + NP1*(ME2-1)

ELSE

A(0,1:NEP2)[ME1,ME2] = -1.0 ! dummy value

ENDIF

IF (ME1<NP1) THEN

A(NEP1+1,1:NEP2)[ME1,ME2] = A(1,1:NEP2)[ME1+1,ME2]

NNBR1 = NNBR1+1; NBR1(NNBR1) = ME1 + NP1*(ME2-1)

ELSE

A(NEP1+1,1:NEP2)[ME1,ME2] = -2.0 ! dummy value

ENDIF

NNBR2 = 1; NBR2(1) = ME

IF (ME2>1) THEN

A(1:NEP1,0)[ME1,ME2] = A(1:NEP1,NEP2)[ME1,ME2-1]

NNBR2 = NNBR2+1; NBR2(NNBR2) = ME1-1 + NP1*(ME2-2)

ELSE

A(1:NEP1,0)[ME1,ME2] = -3.0 ! dummy value

ENDIF

IF (ME2<NP2) THEN

A(1:NEP1,NEP2+1)[ME1,ME2] = A(1:NEP1,1)[ME1,ME2+1]

NNBR2 = NNBR2+1; NBR2(NNBR2) = ME1-1 + NP1*(ME2)

ELSE

A(1:NEP1,NEP2+1)[ME1,ME2] = -4.0 ! dummy value

ENDIF

IF (ME2>1) THEN JLO=1 ELSE JLO=2 ENDIF

IF (ME2<NP2) THEN JHI=NEP2 ELSE JHI=NEP2-2 ENDIF

DO J = JLO, JHI ! Multigrid Smoothing (Red-Black)

DO I = MOD(J,2)+2, NEP1-1, 2

A(I,J)[ME1,ME2] = 0.25*(A(I+1,J)[ME1,ME2] + &

A(I-1,J)[ME1,ME2] + A(I,J-1)[ME1,ME2] + &

A(I,J+1))[ME1,ME2] + B(I,J)[ME1,ME2]

ENDDO

ENDDO

12.4 Single-Program, Multiple-Data Programming in Co-Array Fortran 375

! Update new values of A from adjoining images

CALL SYNCH_ALL(WAIT=NBR1(1:NNBR1))

IF (ME1>1) A(0,1:NEP2)[ME1,ME2] = A(NEP1,1:NEP2)[ME1-1,ME2]

IF (ME1<NP1) A(NEP1+1,1:NEP2)[ME1,ME2] = A(1,1:NEP2)[ME1+1,ME2]

CALL SYNCH_ALL(WAIT=NBR2(1:NNBR2))

IF (ME2>1) A(0:NEP1+1,0)[ME1,ME2] = A(0:NEP1+1,NEP2)[ME1,ME2-1]

IF (ME2<NP2) A(0:NEP1+1,NEP2+1)[ME1,ME2] = A(0:NEP1+1,1)[ME1,ME2+1]

IF (ME2>1) THEN JLO=1 ELSE JLO=2 ENDIF

IF (ME2<NP2) THEN JHI=MEP2 ELSE JHI=MEP2-2 ENDIF

IF (ME1>1) THEN ILO=1 ELSE ILO=2 ENDIF

IF (ME1<NP2) THEN IHI=MEP1 ELSE IHI=NEP2-2 ENDIF

DO J = JLO, JHI ! Multigrid Restriction

DO I = ILO, IHI

APRIME(I,J)[ME1,ME2] = 0.05*(A(2*I-2,2*J-2)[ME1,ME2] + &

4*A(2*I-2,2*J-1)[ME1,ME2] + A(2*I-2,2*J)[ME1,ME2] + &

4*A(2*I-1,2*J-2)[ME1,ME2] + 4*A(2*I-1,2*J)[ME1,ME2] + &

A(2*I,2*J-2)[ME1,ME2] + 4*A(2*I,2*J-1)[ME1,ME2] + &

A(2*I,2*J)[ME1,ME2])

ENDDO

ENDDO

Although clearly more complex than the HPF version, the conceptual changes can
be readily explained.

1. The PARAMETER and array declarations must now reflect only the local section
of the array (a 1024√

NP
× 1024√

NP
subsection of the original array). The expansion to

1024 elements in each dimension is needed to make the size divisible by the
number of processors. This and our assumption that the number of processors
is a power of two have greatly simplified the subscript calculations.

2. Because Co-Array Fortran makes data movement explicit, calls to SYNCH_ALL
and data copying statements (noted as assignments to the overlap areas in
the code) must appear in the code. The HPF compiler would generate these
automatically.

3. The manipulation of the NBR1 and NBR2 arrays allows each image to wait only
for the images that will supply it with data. This is a detail that is not required
by the Co-Array Fortran language, but it adds substantial efficiency.

The Co-array Fortran version of the OpenMP pipelining example (in Section 12.3)
is as follows:

PARAMETER (NP = NUM_IMAGES()) ! # of processors

PARAMETER (N = 2048) ! Total # of elements

376 Chapter 12 Languages and Compilers

PARAMETER (NEP = N/NP) ! # of elements per image

PARAMETER (NEB = 16) ! # of elements per block

PARAMETER (NB = NEP/NEB) ! # of blocks

REAL A(0:NEP+1,N)[*]

ME = THIS_IMAGE()

! Initialize (upper) overlap areas

A(NEP+1, 2:N-1)[ME] = A(1, 2:N-1)[ME+1]

! Execute this thread’s portion of the loop nest

IF (ME>1) THEN ILO = 1 ELSE ILO = 2 ENDIF

IF (ME<NP) THEN IHI = NEP ELSE IHI = NEP-1 ENDIF

DO JJ = 1, NB

JLO = MAX(2, (JJ-1)*NEB+1)

JHI = MIN(N-1, JJ*NEB)

IF (ME>1) THEN

! Wait for image ME-1, then go forward

CALL SYNCH_TEAM((/ ME, ME-1 /))

ENDIF

DO J = JLO, JHI

DO I = ILO, IHI

A(I,J)[ME] = 0.25*(A(I+1,J)[ME] + A(I-1,J)[ME] + &

A(I,J-1)[ME] + A(I,J+1)[ME])

ENDDO

ENDDO

IF (ME<NP) THEN

! Set (lower) overlap area for next block

A(0, JLO:JHI)[ME+1] = A(NEP, JLO:JHI)[ME]

! Release image ME+1 for next block

CALL SYNCH_TEAM((\ ME+1, ME \))

ENDIF

ENDDO

Comparing this to the OpenMP version of the code, the key differences are as follows:

1. Addressing of the A array uses local coordinates. That is, each image “sees” a
NEP + 2 × N local array (indexed from 0 in the first dimension) rather than
the N ×N global array.

2. Computations of the first subscript of A are modified to account for the local
addressing.

12.5 Supporting Technologies 377

3. Explicit data-copying operations—the assignments to A(NEP+1,2:N-1)[ME] and
A(0,JLO:JHI)[ME+1]—are needed to transfer the data for the pipeline. Note
that the second data-copying operation performed an assignment on a remote
image, which in this case is more convenient to program (and more efficient
on some architectures).

4. The intrinsic synchronization operation SYNCH_ALL is arguably higher level than
the OpenMP lock operations. However, the same threads/images must interact
with each other.

SPMD languages such as Co-Array Fortran have many advantages for explicit
parallel programming. They allow low-level manipulations when necessary, but
provide some high-level operations for common cases. Implementations can be
relatively simple if the hardware supports Co-Array Fortran operations such as one-
sided communication. More research is needed, however, to determine how portable
the performance of these languages is. In particular, there seems to be some scope
for compiler optimizations, but the asynchronous operations that SPMD entails may
make analysis difficult. As of this writing, the jury is still out on the best language(s)
to use for parallel programming.

12.5 Supporting Technologies

To support the goal of making it possible to provide the user with a high level of
abstraction without denying the opportunity to have fine-grained control over per-
formance, the programming system must provide mechanisms for understanding
the performance of applications and for overcoming any bottlenecks that are dis-
covered in the tuning process. In addition, certain functions that are used over and
over again in parallel programs need to be pretuned for execution on each parallel
platform. This requires certain component technologies be developed along with
the language compilers. Two of these—tools and tuned libraries—are of critical im-
portance to the success of new languages.

12.5.1 Programming Support Tools

All of the strategies envisioned for application development establish a complex
relationship between the source version of the program and the version that runs
on the actual machine. Science and engineering users need to have ways to un-
derstand performance of a given program and to tune it when it is unacceptable.
Chapter 15 discusses these requirements in more detail. Furthermore, the explana-
tion of program behavior must be presented in terms of the source rather than the
object version. Otherwise, the advantages provided by language abstraction will be
lost. This becomes particularly challenging when some of the compilation process
is done at run time.

378 Chapter 12 Languages and Compilers

The HPF experience has established that the compiler must generate two things
to support performance analysis and tuning [11]: (1) calls to the performance mon-
itoring system at critical points, where what is “critical” must be decided by some
combination of user and system; and (2) information on how to map performance
information back to the source of the program when it becomes available after exe-
cution.

In addition, the compiler and language must provide mechanisms that permit
the program performance to be improved once the bottlenecks have been identi-
fied. These performance-improving changes must typically be made in the program
source, so they will be preserved for the next run. Thus the tools must understand
the relationship between the structure of the program and typical performance prob-
lems, and they must be able to make transformations based on that understanding.

12.5.2 Libraries

There are many functions that are common in parallel programming yet difficult to
implement efficiently for different platforms without hand tuning. It has been com-
mon to encapsulate these functions in programming support libraries. HPF was one
of the first languages to specify an extensive library as a part of the language, and Java
has followed suit with a large collection of special-purpose library interfaces. The ad-
vantage of a library is that it can be hand tuned to achieve optimal performance on
each target platform. The disadvantage is that, without such tuning, performance
is likely to suffer. One of the most important impediments to widespread accep-
tance of HPF has been problems with the library implementations. This has been
compounded by the absence of a well-developed, portable math library such as the
CMSSL, which was developed for the Connection Machine. To be truly useful, all of
the standard libraries must be capable of accepting the data types provided in the
language—scientific programmers expect no less.

One area of importance in the future will be methodologies for development of
libraries that can be easily and efficiently integrated into applications via transfor-
mations in the compiler. This will be discussed further in the next section.

12.6 Future Trends

As of this publication, the research community and commercial vendors have been
actively working on programming support for parallel computer systems for over
15 years, yet the improvements in ease of programming have been only modest.
In our opinion, this has been because designers have been exclusively focused on
making it possible to write parallel programs that can be ported to a variety of
parallel computing platforms. With technologies such as MPI, PVM, p-threads, HPF,
OpenMP, and Java, these problems have been well addressed. However, as new
parallel computing platforms emerge, they will bring new challenges for compiler
developers.

12.7 Conclusion 379

Over the next decade we see two major challenges for research on programming
systems:

. Programming support for the computational Grid. There is great emerging interest
in using the global information infrastructure as a computing platform. By
drawing on the power of high-performance computing resources across the
world, it may be possible to solve problems that cannot currently be attacked
by any single computer system, parallel or otherwise. However, the so-called
Computational Power Grid, or Grid for short, presents nightmarish problems
for the application developer because of the dynamic nature of the underlying
computing and communications resources. The critical issues are how to build
applications that are tolerant of the changes in resource base and how to
construct execution environments that can deliver reliable progress on a given
application. One strategy being pursued by a number of CRPC researchers in
the Grid Application Development Software (GrADS) Project is to implement
an execution environment that constantly monitors progress of an application
and automatically reconfigures it whenever performance falls below certain
specifications. To implement this strategy, compilers and libraries will need to
be developed with the notion of reconfigurability built in from the outset.

. Problem-solving environments and high-level programming systems. Programming
for parallel execution environments is still clearly an expert’s game. If parallel
computing is ever to become more widely used, we need ways to make it
easier for end users to develop programs. One strategy that promises to become
more prominent over the next few years is the use of sophisticated problem-
solving environments (PSEs). In such environments, domain-specific macro
operations could be encapsulated as language primitives and programs written
in high-level, easy-to-use scripts. Visual Basic, MATLAB, and database query
languages are three examples of such systems. If script-based PSEs are to be
used for applications where efficiency and performance are critical factors,
the compilation systems will need to be able to automatically integrate the
macro operations with scripts and translate the resulting global program to
make effective use of scalable parallelism. PSEs are discussed in more detail in
Chapter 14.

If substantive progress is made on these two issues over the next decade, it should
be possible to come much closer to the dream of making the collection of networked
computers into a problem-solving system for ordinary users, much as the Internet
has become the common person’s information system. Such a goal is worthy of a
major national effort.

12.7 Conclusion

Parallel computation is a challenging activity because, at the lowest level, the appli-
cation developer must discover parallel work and coordinate the activities of multiple
processors carrying it out. The goal of high-level language and compiler strategies

380 Chapter 12 Languages and Compilers

is to make this job easier by doing as much as possible for the user. In this chapter,
we described three key technologies developed over the past 15 years for support of
high-level parallel programming:

1. Automatic parallelization, in which the compiler translates a sequential program
to a parallel one. Although this is the ideal strategy from the point of view
of the end user, it has not been successful in achieving acceptable degrees
of scalability. Nevertheless, the techniques of automatic parallelization are
fundamental to the support of most other high-level strategies.

2. Data-parallel languages, as exemplified by HPF. Data-parallel languages support
a style of parallelism derived from decomposing array data structures across
the processors of distributed-memory machines. HPF provides a set of data-
decomposition directives that serve as hints to the compiler on how to achieve
high locality and implicit parallelism on such systems.

3. Shared-memory parallel programming interfaces, as exemplified by OpenMP.
Shared-memory parallelism is primarily concerned with work decomposition,
since the ideal target systems for such interfaces have a uniform-access, shared
global memory. OpenMP is the most prominent example of such systems.
It uses a system of directives that specify where multiple threads should be
applied and how to assign work to those threads.

4. Single-program, multiple-data languages, as exemplified by Co-Array Fortran. This
style of language directly programs each asynchronous process of a parallel
computation. This has advantages for control, but typically requires low-level
programming for certain operations.

These four strategies represent the most promising results of the research conducted
by the community on support for parallel computing over the lifetime of CRPC.
Although they represent fairly modest advances, we believe they have set the stage
for much more dramatic improvements that will come in the near future.

Further Reading

For more information on the topics covered in this chapter, the following works are
recommended:

. Parallel Computing Works! [358], by Fox, Williams, and Messina, compiles an
enormous amount of information about parallel computation, particularly in
the early days of distributed-memory machines.

. High Performance Compilers for Parallel Computing [1001], by Wolfe, covers most
of the vectorization and parallelization subjects.

. Languages, Compilation Techniques and Run Time Systems for Scalable Parallel
Systems [739], edited by Santosh Pande and Dharma P. Agrawal, contains a
collection of articles on compiling for modern parallel machines.

Further Reading 381

. Optimizing Compilers for Modern Architectures [27], by Allen and Kennedy, pro-
vides in-depth coverage of automatic methods of vectorization, parallelization,
and management of memory hierarchies.

. The survey article “Interprocedural Analysis and Optimization” [221], by
Cooper, Hall, Kennedy, and Torczon, provides a fairly comprehensive overview
of whole-program compilation technologies.

. The article “Requirements for Data-Parallel Programming Environments” [8],
by Adve et al., gives an overview of considerations in designing programming
tools that are integrated with the language compiler system.

C

H

A

P

T

E

R

13 Parallel Object-Oriented Libraries

John Reynders . Dennis Gannon .

K. Mani Chandy

In Chapter 20, Dongarra, Eijkhout, and Sorensen describe the challenges and
progress that have been made on scalable, parallel numerical libraries. In this chap-
ter, we approach the design of libraries for parallel scientific computation from a
different, but complementary, perspective.

Object-oriented programming has taught us the power of abstraction through
encapsulation of data and function. By learning to organize software in ways that
exploit inheritance and polymorphism, we gain in our ability to maintain and reuse
important code. This is made possible because object-oriented design allows us to
separate the interface of an object from its implementation, and it also gives us a
more powerful tool for factoring a computation into multiple levels of functionality.
Generic programming takes us in a seemingly different direction. It encourages us
to think about algorithms in a manner that is independent of the data structure we
use to represent information. In scientific computing, this concept is reflected in
the numerical templates approach [81], where one is shown the “generic” design
of an algorithm such as conjugate gradient in a manner that is independent of
the implementation of the matrices and vectors. It is also reflected in the work of
Chandy on archetypes [185]. But it was the work of Stepanov that pioneered the
use of generic programming in C++, with the introduction of the standard template
library (STL) [695]. And it was the work of Veldhuizen that showed us how to use
the C++ template library to write “template expressions” [959] that could run as fast
as optimized Fortran.

This chapter is intended to illustrate how these ideas can be used in the design of
scientific and engineering applications. In particular, there are four distinct ways
of using object-oriented technology in the design of high-performance scientific
computations. The first section of the chapter describes the design of parallel libraries
as object-oriented application frameworks. In this section, we look at object-oriented

383

384 Chapter 13 Parallel Object-Oriented Libraries

data structure libraries and frameworks that encapsulate algorithm archetypes. In
addition, we consider the role of abstraction, encapsulation of parallelism, generic
programming, and design patterns in the construction of these libraries.

In the second section we take a look at the role of Java. We begin with a brief
examination of how Java with parallelism is encapsulated in data structure libraries.
In the third section of the chapter, we consider the explicit parallel programming in
multithreaded, shared-memory environments and the incorporation of this model
with distributed-computing concepts to build wide-area scientific applications. We
briefly describe a C++ library called HPC++ that is based on Compositional C++ [184]
and Java. In the last section of the chapter, we describe how these technologies can
be used to build a component-based framework, where new applications can be built
by composing existing parallel modules.

13.1 Object-Oriented Parallel Libraries

Significant agility in software development has been required these past 5 years to
follow the high-performance computing platforms through vector processing, mas-
sively parallel, and clustered shared-memory processor (SMP) architectures. Object-
oriented (OO) approaches have eased these transitions by encapsulating the com-
plexities of parallel simulation in science-based software components, and generic
programming has contributed new insight into the way scientific libraries can be
designed and optimized.

Although there are many impressive serial OO/generic libraries, such as Blitz++
[960] and the MTL [844], we will focus here on the particular challenges in devel-
oping parallel object-oriented libraries for scientific computing. Issues of language,
abstractions, parallelism, design, generic programming, and components will be
examined. To bring the discussion to life, we draw examples from the Parallel Object-
Oriented Methods and Applications (POOMA) Framework [798], a significant object-
oriented library that has been used in multiple large-scale parallel applications over
the past 5 years.

13.1.1 Abstraction

One of the great strengths in object-oriented programming for scientific simulation
development is the ability to develop a logical set of physics objects that act in a man-
ner intuitive to users. Historically, physics applications have been data-centric—large
blocks of data are accessed by a variety of subroutines and functions to execute a sim-
ulation. Object-oriented programming binds data and actions together into objects
that interact in a prescribed fashion to execute a simulation. The POOMA framework
(Figure 13.1) provides several physics-based objects that represent arrays, particles,
fields, meshes, and solvers. These objects not only contain data, they also provide a
logical set of operations that act on the data. For example, arrays have indexing and
mathematical operations to represent partial differential equations, whereas particle
objects have attribute operators, interaction functions, and interpolator objects to

13.1 Object-Oriented Parallel Libraries 385

Load
balancing

Domain
decomp

Virtual
nodes

MPI/PVM

Fields Matrices Particles Meshes

Application

Algorithm

Global

Parallel

Local

DP
Hydro

FFT

STL

ER
Plasmas

Krylov
solvers

Expression
templates

DP
MonteCarlo

Stencil
operators

netCDF

ER
Ocean

Interpolators

RefCount and
data pooling

Physics

Computer
science

Figure 13.1 The POOMA library.

manipulate the behavior of particle groups in a simulation. Developing a consistent
set of behaviors for an object and a consistent pattern of interaction with other ob-
jects in an object-oriented scientific library is one of the most important aspects of
object-oriented library design.

C++ provides non–object-oriented features that are very convenient for scientific
code development—the most notable being overloaded operators. This allows library
builders to do more than develop physics-based classes, such as arrays, meshes,
particles, and matrices. The builder can also deploy a set of accompanying operators,
so that a physicist utilizing the library is able to write code that is very similar to the
actual physics equations under consideration—except for all those semicolons.

As an example, the simple diffusion equation

∂

∂t
u (x, t)=−∇ · ν u (x, t)

can be cast into a finite-difference form

un+1
ijk − un−1

ijk

2dt
=−

νx

(
un

i+1,j,k − un
i−1,j,k

)

2dx

which, in turn, is represented in POOMA by the following line of code.

u = uPrev - 2 * dt * div<Cell>(v * u);

It is important to note that the representation in POOMA is very similar to the
original equation. An interesting feature of this representation is the parameteri-
zation of the divergence operator on Cell. This highlights a very useful feature of
C++ in scientific computing. The finite-difference centerings (e.g., cell centered or

386 Chapter 13 Parallel Object-Oriented Libraries

vertex centered) have been cast into the type system through template parameteri-
zation. Thus, operators can be combined and correctness, in terms of the difference
centering of any given equation, checked at compile time rather than run time.

13.1.2 Parallelism

There are many aspects to writing a parallel simulation that have made high-
performance code development a far more formidable task than was the case a
decade ago. Whereas high-performance computer architectures in the late 1980s
were mostly serial machines that required some vector programming and perhaps
some multitasking, today’s supercomputers are typically distributed-memory ma-
chines with deep hierarchies of memory and communication. Furthermore, the
nodes on these machines are typically populated by many processors with nonuni-
form memory access rates. This clustered shared-memory processing architecture
requires the parallel library developer to consider data distributions, load balancing,
data movement, messaging, task concurrency, and cache performance. Many library
writers have turned to object-oriented techniques for parallel library development
to hide the architectural complexities of parallelism from the end user.

The POOMA framework provides users with array and field abstractions to enable
data-parallel operations across many processors. For example, given a 2-D field, A,
and a pair of index objects, I and J, which represent the domain of the field object,
the data-parallel expression

A[I][J] = 0.25*(A[I+1][J] + A[I-1][J] + A[I][J+1] + A[I][J-1]);

executes an averaging operation across an arbitrary number of processors for any
given domain size represented by the index pair I and J, up to the memory limit
of the parallel computer. The issues of data movement based on the field domain
decomposition across the processors and the indexing operations on the processor
boundaries are handled internally by the array objects. For example, given a four-
processor machine and index objects, each with a range from 1 to 8, Figure 13.2
represents how the domain decomposition and data movement would occur. Since
the data-parallel expression above has a stencil with an extent of one, the over-
loaded “equals” operator will cause a border swap of ghost cells one cell deep. All of
these operations change automatically, depending on the number of processors and
the communication requirements of each data-parallel expression. Optimizations
in the POOMA framework enable deferred evaluation and data movement, so that
communications can be ganged together and optimized. All of these parallel opera-
tions and optimizations, however, occur underneath a powerful abstraction barrier
which presents the user with a simple array class.

Today’s supercomputers are typically composed of multiple memory subsystem
layers (multiple cache levels and nonuniform memory access rates in main mem-
ory). The rate at which CPU clock speeds are increasing is progressing much faster
than the rate at which clocks on memory subsystems are progressing, causing sig-
nificant penalties to simulations that are not able to operate on data in cache for as

13.1 Object-Oriented Parallel Libraries 387

Figure 13.2 Domain decomposition and adding of ghost cells.

long as possible. Data-parallel constructs, such as the Array abstraction in POOMA,
tend to exacerbate this problem by running through all data in an array during
the course of a single array statement. If an object in the array statement is reused
in the next expression, the cache needs to be reloaded from main memory at a
performance hit. The POOMA framework is working with the Shared-Memory Asyn-
chronous Run-Time System (SMARTs) [949] to enable microdata flow scheduling
of lightweight threads. Combined with a scalable expression-dependence analyzer
within the framework, data-parallel statements can be broken down into fine-grained
pieces and efficiently scheduled on processors, caches, and communications hard-
ware. Utilization of lightweight user-level threads for fast context switching and
memory-affinity calculations are crucial for scientific computing and have enabled
small POOMA kernels to run with out-of-order execution to obtain a factor-five
speedup over simple data-parallel expressions based solely on a message-passing sub-
strate.

13.1.3 Encapsulation

The above example emphasizes the use of object-oriented techniques to encapsulate
the complexity of a parallel system. Taking different approaches, the above libraries
are able to hide the details of parallel computing from the end user, enabling
scientists to spend more time focusing on their science of interest rather than
on the details of programming a complex parallel architecture. Furthermore, the
use of encapsulation enables the library developer to try different techniques with
minimal perturbation to the user interface. For example, the POOMA framework
moved from a message-passing implementation to a mixed-model messaging and
threaded system with minimal impact to the user interface. As the complexity of
computer architectures grows, the use of object-oriented techniques to encapsulate
the intricacies of parallel code development has become a promising approach
to increasing the speed at which scientists are able to develop scalable, efficient
simulations.

In object-oriented, parallel-library development, one seeks ideally to provide opti-
mal performance while encapsulating all aspects of parallel computing, including the

388 Chapter 13 Parallel Object-Oriented Libraries

number of processors being used, the system topology, the memory hierarchies, and
other details of the parallel system. However, application performance typically de-
pends critically on how an application is laid out on a system. Hence, object-oriented
libraries seek to provide layers of encapsulation—the highest layer providing full de-
faults so that a developer may completely ignore the underlying architecture and
concentrate on physics development. At this level of abstraction, an object-oriented
library such as POOMA enables a developer to build an application on a serial work-
station and move the simulation to a parallel machine with no changes to source
code. For example, it is possible to run POOMA codes in a serial mode on a work-
station to develop physics modules and then, with only a recompile, retarget the
code to a parallel supercomputer. Furthermore, POOMA is able to employ a variety
of parallel optimization techniques without perturbing user applications, since the
parallelism is an aspect of the object implementation, not the object interface.

As developers become more comfortable with a parallel machine and demand
greater performance, POOMA provides high-level tools to affect data layout, task
execution, and load balancing. This enables the user to concisely express aspects
of the application that can be optimally mapped to the underlying machine. Most
object-oriented libraries enable developer access to library implementation to ex-
plicitly invoke features and utilize inheritance to extend library functionality for a
particular required optimization. For example, the POOMA library allows arrays to
be instantiated with a variety of user-directed layouts to optimize for a given applica-
tion. This ability to penetrate down into different layers of a framework or library is
critical to enable the necessary extensions most users are going to require to obtain
a desired level of performance and specific functionality.

Finally, many scientific simulations have a high degree of complexity, not only
in terms of the target parallel architecture, but also in terms of the physics under ex-
ploration. Object-oriented libraries help in simultaneously encapsulating both the
architectural complexities of parallelism and the algorithmic and geometric com-
plexities of multiphysics applications. For example, the POOMA framework provides
a set of parallel particle, field, and spectral transform classes that have been used to
develop complex plasma physics simulations. Parallel object-oriented libraries, such
as POOMA, provide the user with high-level physics-based abstractions that enable
the development of complex physics applications with little detailed knowledge of
the target supercomputer.

13.1.4 Generic Programming

One of the distinguishing features of the POOMA framework is its heavy use of
generic programming techniques that allow software components to adapt to dif-
ferent uses through language-supported, compile-time methods. The C++ template
facility provides for generic compile-time polymorphism, wherein the best algorithm
or data structure for a particular set of requirements known at compile time can
be deployed. For example, POOMA fields are array-like structures that differentiate

13.1 Object-Oriented Parallel Libraries 389

themselves from other array classes by providing template parameters for the field
class and functions acting on fields that specialize in mesh geometry, dimension, and
centering of field values on the mesh. This approach selects and in-lines the optimal
data structures and operators for a given mesh, dimension, and centering at compile
time rather than at run time. The user can thus write geometry- and dimension-
independent code without a run-time penalty. Furthermore, the framework utilizes
an engine pattern wherein arrays are simply interface classes, and the data repre-
sentation is provided by a template parameter. In this manner, dense, sparse, and
parallel arrays all have the same interface and can all be used interchangeably. Thus,
an algorithm written with POOMA arrays can efficiently utilize different data rep-
resentations by only changing a template parameter and recompiling. This generic
programming use of compile-time rather than run-time optimization affords the user
significant performance advantages, while minimally impacting the user code.

Another important capability afforded by generic programming techniques is the
utilization of expression templates (ETs) with large data-parallel objects to obtain
significant performance advantages in comparison to overloaded operator imple-
mentations. ETs are classes formed at compile time that transform data-parallel
expressions into single objects that iterate over all elements of the expression and
execute the operations within a single loop. This compile-time transformation of
a large expression into a tight loop provides the back-end optimizer a good repre-
sentation for pipelining and generating efficient assembly. The POOMA framework
utilizes expression templates in object-overloaded operators and has been able to
obtain significant performance speedups—in some cases within 90% of equivalent
hand-coded C and Fortran kernels.

13.1.5 A POOMA Example

Before moving on to object-oriented parallel programming in Java, we provide a
full example written in POOMA. This and many more examples using the POOMA
framework (carefully crafted by Greg Wilson) are available at www.acl.lanl.gov.

Below we show a POOMA code that performs a Jacobi iteration with a five-point
stencil.

01 #include "Pooma/Arrays.h"

02

03 #include <iostream>

04

05 // The size of each side of the domain

06 const int N = 20;

07

08 int

09 main(

10 int argc, // argument count

390 Chapter 13 Parallel Object-Oriented Libraries

11 char* argv[] // argument list

12){

13 // Initialize POOMA

14 Pooma::initialize(argc, argv);

15

16 // The array we’ll be solving for

17 Array<2,double> V(N, N);

18 V = 0.0;

19

20 // The right-hand side of the equation (spike in the center)

21 Array<2,double> b(N, N);

22 b = 0.0;

23 b(N/2, N/2) = -1.0;

24

25 // Specify the interior of the domain

26 Interval<1> I(1, N-2), J(1, N-2);

27

28 // Iterate 200 times

29 for (int iteration=0; iteration<200; ++iteration)

30 {

31 V(I,J) = 0.25*(V(I+1,J) + V(I-1,J) + V(I,J+1) + V(I,J-1) - b(I,J));

32 }

33

34 // Print out the result

35 std::cout << V << std::endl;

36

37 // Clean up POOMA and report success

38 Pooma::finalize();

39 return 0;

40 }

In lines 1 through 12 we have the obligatory includes, constant initializations, and
main routine. Line 14 is a required static call that starts all the POOMA machinery.
Line 17 instantiates the array that will be used in the Jacobi iteration. Note that
the dimension and type of the array are template parameters and thus cause all
the machinery for a 2-D array of doubles to be formed at compile time. The first
and second parameter of the array constructor represent the size of the array in
each dimension. Line 18 initializes the array to zeros in every element. Lines 21
and 22 likewise instantiate another array and initialize each element to zero. Line
23 now adds a single spike into the center of the array b. Line 26 introduces a
new object called an Interval object—this is used to specify the interior of the
domain and limit the places where the calculation occurs in the body of the array.
The integer template argument to Interval specifies the interval’s rank, while the

13.2 Object-Oriented Parallel Programming in Java 391

constructor arguments specify the bounds of the interval’s value. At line 29, we
enter into the iteration and perform data-parallel operations across all elements of
the array. As discussed earlier, an expression template is formed during compilation
to perform the inner loop of this stencil operation efficiently. Likewise, all of the
necessary domain decomposition, data distribution, and data movement occur at
each iteration as dictated by the stencil operations. Note that the assignment on
line 31 automatically creates a temporary copy of the array V, so that values are not
read while they are being overwritten.

Finally, the entire code above will run a 20× 20 simulation on your laptop; or you
can perform a 20 million × 20 million simulation on a 1000-node supercomputer—
with no change to the above source other than the constant on line 6.

13.2 Object-Oriented Parallel Programming in Java

Engineers select programming languages based on many attributes of software sys-
tems, including performance, problem structure, portability across multiple plat-
forms, speed of development, reliability and maintainability, and availability of tools
and trained engineers. In the next paragraph, we explore questions such as: What
attributes are important in parallel scientific computing, and what attributes are
important for Internet computing applications such as e-commerce and e-service?
What aspects of Java make it the language of choice for certain problems?

Often, in parallel scientific computing, performance is valued more than other
attributes. Indeed, the primary reason for executing programs on parallel machines is
to get results quickly. Many problems that have received attention in computational
science have relatively regular data structures. A primary motivating idea in High
Performance Fortran (HPF) is the recognition of the importance of regular data
structures in scientific computing. Of course, scientific computing covers a vast
domain, and the kinds of data structures employed within this domain are rich
and varied. Many, but certainly not all, computational science problems compute a
function from input to output: these programs carry out a computation on the input
to produce an output. Such programs are not reactive, in the sense that they do not
have to continuously interact with multiple computers, instruments, and people.
Web browsers play a larger role as input/output devices in Internet applications than
in computational science because inputs and outputs are complex and voluminous
in science problems.

Java is a language of choice for Internet applications, and some of the features
that make it attractive in this domain also make it attractive for scientific computing.
Some design choices that make Java ideal for Internet applications are potentially
problematic for computational science, and we address them first.

. Write once, run everywhere. Java implementations are designed to be portable.
Portability is achieved by interpreting Java byte code on a virtual machine.

392 Chapter 13 Parallel Object-Oriented Libraries

Porting a Java program from one computing system to another is straight-
forward, provided the target system has an appropriate JVM (Java Virtual
Machine). Of course, users must take steps such as ensuring that class–path
directories are set appropriately, but on the whole porting Java programs is
often easier than porting programs written in other languages (such as C++).
Interpreted Java programs usually run somewhat slower than compiled pro-
grams. Execution times can be improved in two ways: (a) use a JIT (just-in-time)
compiler that executes byte code faster than direct interpretation, or (b) com-
pile Java to the target machine and do not use a JVM. JITs and Java compilers
continue to improve, and the performance loss by using a JIT is often out-
weighed by the flexibility of using a virtual machine. Why not compile Java
just as Fortran and C++ are compiled? The virtual machine provides flexibility
at run time, such as the ability to load classes from anywhere on the Inter-
net. Also, with a JVM, an object can use reflection to determine the signature
(public methods and variables) of another object at run time. Indeed, run-time
flexibility is one of the attributes that makes Java so attractive for Internet ap-
plications. These features, however, are not essential for many computational
science problems.

. Ease of memory management. Java collects garbage, whereas C++ does not.
Should managing memory be the user’s responsibility? Giving users control
over deallocation of memory can result in highly optimized programs. It can
also result in programs that “leak memory” and that have bad performance as a
consequence. Programmers do have to be concerned with memory usage, even
in Java. For instance, rapid and continuous creation and deletion of threads
in Java can cause garbage to be generated very fast, and this can lead to poor
performance. There are effective ways of managing memory in Java, such as
using thread pools, and there are effective tools for dealing with memory leaks
in C++. In many cases, effective memory management is easier in Java than in
C or C++. However, C and C++ allow memory management solutions tailored
to a given problem.

. Support for parallelism. Threads are an integral part of Java, so designing multi-
threaded programs is relatively easy in Java. Programmers do not have to deal
with different thread libraries and different operating systems. Java does not
support data-parallel operations directly. Of course, data-parallel operations
can be implemented on top of threads, in a style similar to the implementation
of the parallel STL in HPC++ and in the HP-Java effort. Java allows interpro-
cess communication by using RMI (remote method invocation) and message
passing via sockets. At this point, RMI seems relatively slow, probably because
it offers a great degree of run-time flexibility. The simplest way to develop
parallel Java programs is to use threads within a shared-memory multiproces-
sor system. However, local and remote method invocation can be combined
within a program. Likewise, message passing can be combined with threads

13.2 Object-Oriented Parallel Programming in Java 393

in a straightforward way and completely within Java. The Infospheres system,
for instance, allows processes to have mailboxes to which other processes send
messages (and, of course, threads can be used within each process), and mes-
sage types do not have to be determined at compile time. Java is a language
of choice when computations and data structures are dynamic and irregular.
Computational scientists with pure data-parallel computations may find that
HPF is more suitable for their computations.

. Interfaces. Java does not support multiple inheritance. Java offers interfaces as
a simple way of dealing with some of the features offered by multiple inheri-
tance. Java does not support templates, such as those in C++. Computational
scientists, most notably the POOMA group at Los Alamos National Laboratory,
have put multiple inheritance and templates to excellent use. Parameterized
types will be part of the next major release of Java, but it is not yet clear that
they will have the same optimization features that have made templates such
a success in C++.

. Numerics. The first version of Java included a floating-point model that stressed
“bit-for-bit” reproducibility and run-time checks on array bounds. Unfortu-
nately, these features proved to limit Java for high-performance applications
where speed is a primary concern. Recognizing this problem, a group sup-
ported by Sun, called Java Grande, was organized to address this and other
issues important to large-scale science and engineering. The Java Grande group
has proposed a new model for floating-point operations that is under consid-
eration by Sun and the Java standards group. In addition, Java Grande has
proposed ideas for numerical linear algebra APIs, better multidimensional ar-
rays, a binding for MPI, a repository of scientific benchmarks written in Java,
and requirements for primitives such as Complex. (Details about all of this can
be found on the Java Grande website, www.javagrande.org.)

Java has features such as beans that allow the use of graphical interfaces for com-
posing program components. Java database drivers; database systems with embedded
Java stored procedures; JVMs for palm devices and Windows CE handheld devices
and information appliances, and tools for using XML and XSL (extended markup
languages and extended style sheets); and EJBs (Enterprise Java Beans) that encap-
sulate business logic, make Java ideal for many Internet applications. These features
are also useful in some scientific problems, such as steering a complex computation
while it is in execution, controlling a distributed set of scientific instruments, and
executing complex man-in-the-loop simulations.

The central concept, relevant to parallel scientific computation, that Java has (in
common with other object-oriented languages) is encapsulation. For instance, data
structures that support data-parallel operations are encapsulated as classes. Threads
and messages are hidden, encapsulated by classes. This allows programmers to focus
their attention on their algorithms rather than on details of parallelism implemen-
tation. Of course, the efficiency of the program will depend on the efficiency of

394 Chapter 13 Parallel Object-Oriented Libraries

the implementation of the classes on the target machine. Performance parameters
such as block size and number of threads may have to be tailored to each machine,
resulting in additional steps in porting a program from one machine to another.

Examples

One approach to the shortcomings of the standard Java arrays for multidimensional
applications is to design special array classes. A research team at IBM has designed a
family of Java array classes that the IBM compiler can recognize and optimize. For
example, the following method illustrates a matrix–matrix multiply using a matrix–
vector multiply provided in a different method. The code illustrates the use of the
array section operators and the use of a Range object to describe a sequence of index
values.

public static doubleArray2D matmul(doubleArray2D A, doubleArray2D B)

throws NonconformingArrayException, InvalidArrayShapeException,

InvalidArrayAxisException, InvalidRangeException {

/*

* Compute the product of two matrices, A and B, represented

* as 2-D array. If A is mxn and B is nxp, then

* the resulting matrix C is mxp.

*/

int m = A.size(0);

int n = A.size(1);

if (n != B.size(0)) throw new NonconformingArrayException();

int p = B.size(1);

doubleArray2D C = new doubleArray2D(m,p);

/*

* Column j of C is the product of matrix A by column j of B:

* C(0:m-1,j) = A * B(0:n-1,j).

*/

for (int j=0; j<p; j++) {

doubleArray1D column = matvec(A,B.section(new Range(0,n-1),j));

C.section(new Range(0,m-1),j).assign(column);

}

return C;

}

To illustrate how one may apply multithreaded parallelism to this example,
consider the for loop in the statement above. First, place this loop into a thread
class of the following form.

13.2 Object-Oriented Parallel Programming in Java 395

public class ColumnBlock extends Thread{

doubleArray2D A, B, C;

int l, h;

public ColumnBlock(doubleArray2D LeftOp, doubleArray2D RightOp,

doubleArray2D Target, int low, int hi){

A = leftOp; B = rightOp, C = Target;

l = low; h = high;

}

public run(){

for (int j=l; j<h; j++) {

doubleArray1D column = matvec(A,B.section(new Range(0,n-1),j));

C.section(new Range(0,m-1),j).assign(column);

}

};

The loop in the matmul method may now be replaced by the following Java code that
blocks the loop into segments whose size is provided by the parameter blockSize.

ColumnBlock thread[];

int numThreads = 0;

for(j = 0; j < p; j = j+blockSize){

int h = min(j+blockSize, p);

thread[numThread] = new ColumnBlock(A,B,C,j,h);

thread[numThread++].start();

}

for(j = 0; j < numThread; j++)

thread[j].join();

When run on a JVM that supports the native threads on a multiprocessor, this version
of the matmul method will exploit the “outer loop” parallelism in matrix multiply.
The actual performance of this parallel version of the program will depend on many
factors. First, the execution time of the two loops above is bounded below by the
overhead cost Tov = numThread ∗ (Tt s + Tj) where Tt s is the time to create and start a
thread and Tj is the time for the synchronizing join operation. Hence the overhead
grows linearly in the number of threads launched. On the other hand, if the number
of columns p is very large and the number of threads is kept to a modest level, the
computational work in each thread will dominate the start-up overhead. In other
words, for large-enough problem sizes, this scheme will yield good performance on
a modest-sized shared-memory multiprocessor.

There are other scaling issues that must be considered when applying a multi-
threaded parallelization to Java programs. For example, access to the shared array ob-
jects in the example above does not have conflicts. However, some class objects may
only be accessed by synchronized methods, and parallel accesses by multiple threads

396 Chapter 13 Parallel Object-Oriented Libraries

will be serialized. Very little research has been done on how well the JVM scales
to large numbers of processors on SMP systems. Consequently, most approaches to
large-scale parallelism in Java are focused on SPMD programming using the new Java
binding for MPI.

In the next section, we show how this multithreaded execution model may also
be used in C++ and describe how distributed-object system ideas in both Java and
C++ may be used to support parallel computations.

13.3 Multithreaded Computation in C++

The computing landscape is often described as a pyramid with the largest super-
computers at the very top. These machines are located at government laboratories
and a few universities, and they each contain thousands of processors organized
in clusters of two to a few dozen processor “nodes.” The programming model for
these systems consists of HPF- and MPI-based libraries such as those described in
other chapters in this book. These machines are required for our largest and most
challenging computations.

At the next level of the pyramid are a very large number of shared-memory,
multiprocessor systems. While not typically called “supercomputers,” these large
“servers” exist in great number and are connected by high-speed networks over
a very wide geographical area. With from 8 to 64 processors each and very large,
shared memories, these systems provide the computational power for applications
that range from high-traffic e-commerce sites to corporate engineering analysis and
advanced visualization.

In this section, we consider object-oriented parallel programming for this second
level of the pyramid. In particular, we focus on the following problems:

. How does one program a shared-memory parallel computer for dynamic and
irregularly structured applications that are not well suited to an SPMD compu-
tational model?

. How can one harness the power of a set of shared-memory parallel systems
connected together by a high-performance, wide-area network?

The approach described here is derived from many sources. In 1993, Chandy and
Kesselman designed an extension to C++ called Compositional C++ (CC++) [184].
This language added some very simple primitives to the core C++ language that
would enable the design of parallel programming using threads and remote objects.
About the same time, languages such as pC++ [123], which was based on SPMD
programming for distributed-memory supercomputers, were released. In Japan, the
Real World Computing Project (RWCP) had a very large project using object-oriented
software design in construction of languages, operating systems, and hardware for

13.3 Multithreaded Computation in C++ 397

parallel computing. One of the results of the RWCP project was a set of language
extensions and a C++ template library called MPC++ [507]. MPC++ incorporated
several ideas from CC++, but showed how the C++ template mechanism could be
used to implement them, thus avoiding the need for several of the CC++ language
extensions. In the following we use HPC++ [142], which was released in 1997. HPC++
draws upon CC++, MPC++, and pC++ ideas and constructs in the form of a C++
template library.

Java was introduced to the computing world at large in 1995, and it had a
huge impact on the design of HPC++. The fact that Java had standard library sup-
port for threads meant that generations of new programmers were going to be
trained to think about concurrency in those terms. Because many scientific com-
putations were becoming more irregular and adaptive in their structure and orga-
nization, it was becoming apparent that multithreaded design would be a good
approach to exploiting shared-memory multiprocessors. The HPC++ designers de-
cided that adopting a “Java”-style thread library would be the most attractive to
future programmers.

Java was originally designed, and has continued to evolve, as a language that
supports distributed computing. The addition of the Java Remote Method Invocation
(RMI) has enabled new distributed-computing technologies such as Jini [307] and
Enterprise Java Beans [924].

13.3.1 The Execution Model

There are three conventional modes of executing an HPC++ program. The first is
as a single multithreaded program that runs within one shared memory context.
Parallelism comes from the dynamic creation of threads. Sets of threads can be
bound into groups, and there are collective operations, such as reductions and
prefix operators, that can be applied to synchronize the threads within a group. This
model of programming is very well suited to modest levels of parallelism (about 32
processors) and where memory locality is not a serious factor.

The second mode of program execution is an explicit single-program, multiple-
data (SPMD) model, where n copies of the same program are run on n different
contexts. This programming model is similar to that of programs based on MPI, in
which data are distributed among multiple memory contexts and the synchroniza-
tion of accesses to that data must be managed by the programmer. HPC++ differs
from typical MPI programs in that for HPC++ the computation on each context
can also be multithreaded, and the synchronization mechanisms for thread groups
extend to sets of thread groups running in multiple contexts.

The third, and perhaps most often used, model for HPC++ programming is where
multiple HPC++ programs communicate via RMIs. This is the basis of our component
architecture work and is described in the last section of this chapter.

398 Chapter 13 Parallel Object-Oriented Libraries

13.3.2 Thread and Synchronization

HPC++ uses a model of threads that is based on a Thread class that is, by design,
similar to the Java thread system. More specifically, there are two basic classes that
are used to instantiate a thread and get it to do something. Basic thread objects
encapsulate a thread and provide a private unique name space for that thread to
use. The public interface to the thread is the HPC++ counterpart to the Java thread.

There are two ways to create a thread and give it work to do. One is based on the
Java-style Runnable interface, and the other is the direct instantiation of a subclass
of HPCxx_Thread. For example, to create two simple threaded “hello world” objects
one can write:

class MyThread: public HPCxx_Thread{

char *x;

public:

MyThread(char *y): x(y), HPCxx_Thread(){}

void run(){

printf(x);

}

};

int main(int argv, char *argc){

HPCxx_Group *g;

hpcxx_init(&argv, &argc, g);

MyThread *t1 = new MyThread(‘‘hello.’’);

MyThread *t2 = new MyThread(‘‘hi there!’’);

t1->start(); t2->start();

t1->join(); t2->join();

return hpcxx_exit(g);

}

This program prints

hello.hi there!

The initialization function hpcxx_init() initializes the object g of type HPCxx_Group
that is used for synchronization purposes and is described in greater detail later. The
join() operator will cause the caller to suspend until the target thread terminates.
The termination function hpcxx_exit() is a final cleanup routine.

Thread and Data Synchronization

The join operator described above is an example of a primitive synchronization
operation in HPC++. There are two types of synchronization mechanisms used in this
HPC++ implementation: primitive synchronization objects and collective operator
objects. The primitive synchronization objects are used for thread synchronization,

13.3 Multithreaded Computation in C++ 399

while the collective operations can be used for collective operations on a set of
threads and/or contexts.

In addition to thread join, there are five basic synchronization classes in the
library. None of these is very remarkable, as they are intended to be easily recognized
and used by the programmer. With the exception of the first, most are based on p-
threads standards.

. Sync. CC++ introduced a special sync modifier for providing protected access
to class members. In HPC++, we approximate this with a templated type. A
HPCxx_Sync<T> object is a variable of base type T that can be written to once
and read as many times as you want, but only read after the write.

. Sync queue class. Another template called HPCxx_SyncQ<T> provides a dual
“queue” of values of type T.

. The Mutex class. Unlike languages such as Java and CC++, a library cannot sup-
port synchronized methods or atomic members through the template mech-
anism. However, in HPC++ a simple Mutex object with two functions lock()
and unlock() provides the basic capability required for primitive mutual ex-
clusion.

. Condition variables. Whereas the HPCxx_Mutex class allows threads to synchro-
nize by controlling their access to data via a locking mechanism, the HPCxx_Cond
class allows threads to synchronize on the value of the data. Cooperating
threads wait until data reach some particular state or until some particular
event occurs.

These synchronization types are “classic” concurrency control constructs. They
are appropriate for the management of small numbers of threads. However, for
large-scale parallelism one needs collective operations for barrier synchronization,
reductions, and broadcasts. Similar operations are found in MPI. However, HPC++
provides a mechanism for collective operations on SPMD computations where each
“node” of a program is running multiple threads.

The most basic collective operation is the HPCxx_Barrier that is a degenerate form
of a more general operation known as a reduction. For example, suppose you want to
calculate the sum of integer values computed by each of a number of threads. We
can follow the generic programming style and define a function class as follows:

class intAdd{

public:

int & operator()(int &x, int &y) { x += y; return x;}

};

To create an object that can be used to form the sum-reduction of one integer from
each thread, the declaration takes the form

HPCxx_Reduct<int, intAdd> reduction_object(group);

400 Chapter 13 Parallel Object-Oriented Libraries

Threads

x = accumulator.gather(. . . .)

Accumulator group object
Context

Figure 13.3 The collective gather operation synchronizes the operations of all threads that
are members of the group associated with that collective.

This object has an overloaded () operator that takes the form

T operator()(int thread_key, T argument)

where T is the type of the operands in the binary operator (in this case int) and
thread_key is a unique identifier assigned by the group to each member thread. Each
thread provides its key value and one argument. The collective reduction operator
applies the binary operator to build a binary reduction tree and then propagates the
result to all waiting participant threads.

Often, threads need to coordinate so that one thread may share a value with the
other threads or so that a number of threads can concatenate subvectors into one
vector. Both of these operations are instances of a function we call gather that is
a parallel-prefix concatenation operation and is a member of the HPCxx_Collective
class (Figure 13.3).

template <class T>

class HPCxx_Collective{

public:

HPCxx_Collective(HPCxx_Group *g);

int acquireKey();

T * gather(int threadKey, T* thread_data, int &size);

...

};

The gather operation allows each thread to contribute a vector of data of arbitrary
size and returns the vector of concatenated subvectors (whose size is given by the
value of the reference parameter sizewhen the call completes). (A broadcast is simply
a special case of the gather operation, where all but one thread contribute a vector
of length 0.)

13.4 Remote Function Calls, Global Pointers, and Java RMI 401

context 1 hcpxx_createContext(”rainier.indiana.edu”,
/u/btemko/hpcpp/bin/runme);

1

rainier.indiana.edu

new context
remoteCID

2
hpcxx_invoke(remoteCID,x,”foo”,3.14) int foo(float y){

. . .
}x

runme program

Figure 13.4 A thread in context 1 creates a new remote context on host rainier.indiana.edu.
The returned ContextID object is used in context 1 to execute the remote function foo in the
new context.

13.4 Remote Function Calls, Global Pointers, and Java RMI

Java was originally designed, and has continued to evolve, as a language that supports
distributed computing. The addition of RMI to Java has enabled new distributed-
computing technologies such as Jini [307] and Enterprise Java Beans [924]. Java RMI
is based on the concept of remote reference, which is not that far from the global
pointer in CC++. In HPC++, the global pointer takes the form of a template, and it
has been implemented to allow interoperability with Java RMI.

An HPC++ program running in one context can invoke another HPC++ program
and start it running in another context by a call of the form

HPCxx_ContextID *remoteCID =

hpcxx_createContext(‘‘remote-host.somewhere.com’’,

‘‘/home/me/programs/executable’’);

where the executable path is the location on the named host of a compiled HPC++
“server” program. The server is like any other HPC++ program, but it has a main
program that suspends prior to termination. At the point of suspension, the remote,
creating program receives a “ContextID” that is a proxy for the newly created and
suspended object. As illustrated in Figure 13.4, this ContextID is a handle to use to
execute remote function calls that may take the form

T returned_val;

hpcxx_invoke(*remoteCID, returned_val, function_identifier,

arg1, arg2, ...);

In this template, function_identifier is a special unique identifier for the remote
function (which is obtained by a special function-registration operation), and all
arguments are supplied by value.

402 Chapter 13 Parallel Object-Oriented Libraries

In the case of remote objects, remote method calls are based on the HPC++ global
pointer that is, in turn, based on the CC++ global pointer. A global pointer is a
generalization of the C pointer type to support pointers to objects that exist in other
address spaces. It is closely linked to the idea of a global reference, which is an object
that is a proxy for a remote object. The HPC++ library implements this with a HPCxx_
GlobalPtr template, as is done in the RWCP MPC++ Template Library.

In most ways, a global pointer can be treated exactly as a pointer to a local
object. The primary difference between a global pointer and a regular one is that
global pointers can be passed from one context to another. For example, they can be
returned as a result of a gather operation or returned as a result of a remote function
call.

For objects of the simple type, a global pointer can be dereferenced like any other
pointer. However, for objects of the class type, the situation is more complex. To
allow remote method invocation through a global pointer to a remote object, HPC++
has two approaches. The most direct method is to register all the members of each
class and invoke them with a version of the hpcxx_invoke template function. Most
programmers find this to be an awkward way of programming.

An alternative method is to describe the interface to the class in CORBA IDL.
For example, suppose that one has a set of classes whose public interfaces can be
described with the IDL as

// IDL declaration

module SimpleExample {

interface Shape{

attribute float length;

attribute float breadth;

readonly attribute long bitsRequired;

float getLength();

float getBreadth();

double getArea(in float length, in float breadth);

};

interface Rectangle : Shape{

long amIaSquare();

};

};

The IDL-to-HPC++ compiler will generate a C++ subclass of the global pointer
class that will allow remote invocation of methods of classes implementing these
interfaces. For example, if one knows that a remote server process named rectangles
registered on the host myhost.indiana.edu at port 7000 has provided an instance of
the rectangle class, then one can fetch a global pointer to the rectangle instance and
make remote method invocations as follows:

13.5 Component-Based Software Design 403

// HPC++ code

gpRectangle rectPtr;

lookupToRegistry(‘‘myhost.indiana.edu’’, ‘‘rectangles’’, 7000, RectPtr);

float len = rectPtr->getLength();

long result = rectPtr->amIaSquare();

Furthermore, the implementation of the remote object can be programmed in ei-
ther Java or HPC++, and this language interoperability goes both ways. The standard
Java RMI code below can be used to access the same remote object.

// Java code

String registryHost = ‘‘myhost.indiana.edu’’;

String serverName = ‘‘rectangles’’;

private int PORT = 7000;

Rectangle rectRef = Naming.lookup(‘‘rmi://’’+registryHost+‘‘:’’ +

PORT + ‘‘/’’ + serverName);

float len = rectRef.getLength();

long result = rectRef.amIaSquare();

This interoperability between Java RMI and the HPC++ global pointer allows an
object-level interaction between Java front-ends and HPC++ remote multithreaded
parallel computations. This property is heavily used in one implementation of the
DOE Common Component Architecture described in the next section.

13.5 Component-Based Software Design

Experience with many object-oriented libraries has shown that users are hesitant to
utilize large software systems that require them to “buy in” to an entire system in
order to assemble their simulation. Although the object-oriented design of scientific
libraries is appealing, without careful consideration of physical design factorization
[589], libraries can be built that require the user to link in everything and the kitchen
sink—regardless of how small the library component that is needed. Users desire only
the minimal set of necessary components from an object-oriented library. This has
been a large stumbling block to getting object-oriented libraries into the hands of
users.

POOMA has been undergoing a “componentization” of sorts; through generic
programming techniques and efficient object factorization, the framework may be
reduced to a set of interacting components that can be used in minimal sets as
needed. For example, the infrastructure for the data-parallel objects has recently
been extended with a generic array-mapping abstraction between arbitrary domains
and ranges that will enable efficient general communication patterns, including in-
direct addressing across arbitrarily varying layouts in expressions. These features will
provide the user a factored set of objects to develop unstructured grid simulations,
particle methods, and nonaligned, structured grid applications with the same set of

404 Chapter 13 Parallel Object-Oriented Libraries

framework abstractions. Furthermore, the use of the engine pattern is a modulariza-
tion of the POOMA framework to further separate the interface and implementation,
while preserving efficiency. This, and other physical design optimizations, will al-
low users to develop code with appropriate subsets of the framework rather than the
entire class library.

13.5.1 The DOE Common Component Architecture

The most significant advance in software reuse has come from the design of software
component architectures. A component architecture is a set of rules and behaviors
that define the way objects interact, the way they are composed, and the run-time
environment in which they operate. Component systems are divided into two basic
elements. Components are the reusable software parts from which applications are
built. They constitute the encapsulated bits of application logic that can be specified
and implemented independent of the rest of the system. The second basic element of
every component architecture is the framework. Frameworks consist of the compo-
nent “containers” and the software glue that allows us to bind components together
to make an application. Each component architecture provides a set of design rules
that a software engineer must follow to create a new component. These rules specify
how a framework can create an instance of a component and learn about the inter-
faces implemented by the component. The rules also specify standards that must be
followed to allow a new component access to the services provided by the frame-
work. A component architecture does not require new software technology; it is a
set of precise software engineering rules that assure component interoperability.

Component-based software design is now a standard practice in the commer-
cial software world. All Microsoft applications are based on something called the
Component Object Model (COM) [850], which allows them to interoperate on the
desktop and over the network. Within the Java programming world, the Java Beans
component programming model has become the standard for building graphical-
user-interface applications, and Enterprise Beans is the extension of this component
model to distributed application. In 1999, the Object Management Group (OMG) ap-
proved a new standard for CORBA components [720] that encompass the Enterprise
Bean specification [924] .

In 1997, a group of researchers from each of the DOE laboratories and several
universities came together as part of the DOE 2000 project to define a standard
component model for scientific computing. The result of this design effort is the
CCA [47] specification.

By design, CCA is consistent with the emerging CORBA component model.
However, there are large differences in the way the specification is presented. The
initial specification of the CCA model is completely in terms of the requirements of
the component builder, that is, those rules of behavior that a component must follow
so that it may be reused in any CCA-compliant framework. The second phase of the
specification process will define the run-time environment and common services
each CCA framework will support and the interoperability protocol that will allow

13.5 Component-Based Software Design 405

a component instance running in one framework to communicate with another
component running in a different framework.

A CCA component is defined by two types of interface ports:

. Provides Ports are references to objects internal to the component that imple-
ment a well-defined interface of functions. These references are the handles
to the methods and may be invoked on the component by external agents.
Each interface may contain several functions, and a component may provide
several different ports, or none at all.

. Uses Ports are references to objects, external to the component, whose methods
are called by the component. Each such referenced object is defined by an
interface that describes the methods the component may call on that external
object.

Typically, a Uses Port on one component is connected to a Provides Port on another
component. A Uses Port may be connected to one or more providers, and each
Provides Port may be used by zero or more users. The ability for two ports to be
connected is defined by the type compatibility of their interfaces.

A typical CCA framework is defined by the services it provides to components for
their internal use. Examples of services might include:

. Directory services that allow a component to discover other components by
port interface type or by resource requirements. The directory is also used to
discover running instances of other components that are available to provide
services.

. Creation services can be invoked by a component to instantiate a component
on a given compute server.

. Connection services can be used by one component to connect a Uses Port of a
second component to a third.

. Event services allow components to publish or subscribe to local or global event
streams.

The exact list of services that each CCA framework will support and the way a
component accesses these services are topics that are still under consideration.

Another important CCA component property is the concept of a parallel port.
This is a “collective port” that will allow a component implemented as a parallel
SPMD object to connect over parallel communication channels to another parallel
component of possibly different “parallel rank.” The future of CCA will include
interoperability with other scientific component frameworks such as WebFlow [354]
and other technologies to provide a link between the desktop and the supercomputer.
The primary goal should be to make it easier to build applications for science and
engineering (Figure 13.5).

406 Chapter 13 Parallel Object-Oriented Libraries

HPC grid layer E-commerce/I-2 net

Service
component
layer

Application
components

Resource
layer

User portal
components

Scalable computers
Networked instruments

Data archives
Web resources

Graphical composition tools
Script tools (Python/Matlab)

Web portal interfaces

Finite element
simulator

Equation
solver

Visualization
tools

Database analysis
tool

Performance
analysis service

Recommender
service

Info
discovery service

Event service

Connection and
 creation service

Figure 13.5 It is hoped that in the future, CCA component frameworks will support the
construction of application workbenches on the emerging high-performance Grid, as well as
interact with the component frameworks of e-commerce and the next-generation Internet.

13.6 Conclusion

This chapter has described four ways in which object-oriented technology can be
used in parallel scientific computation.

. Parameterized data structure libraries such as POOMA provide a powerful set of
generic distributed-data containers for arrays, fields, and particles. Libraries in
this class have a set of associated overloaded operators and other methods that
can be highly optimized at compile time. POOMA hides the details of parallel
computation in a flexible “evaluator” architecture. For the user, this means
that a program can be written in a highly abstract data-parallel form, tested
and debugged in serial mode, and then run in parallel with very little effort.

. Algorithmic frameworks such as SAMRAI [483] take a family of algorithmically
related computations and recast them as a set of building blocks with well-
defined interfaces. When the building blocks are reassembled, they define
a generic representative of the computational family. By extending the base
classes and adding application-specific data types and computational kernels,
new instances of this archetype can be easily created.

13.6 Conclusion 407

. Explicit thread and remote object libraries such as HPC++ and languages such as
Java provide a direct approach to writing parallel code for SMP systems and for
coordinating the computations of distributed-object systems.

. Component architectures provide a software-engineering methodology for build-
ing applications by composition. Components encapsulate data and function-
ality and are defined by their exposed interfaces and the services they require to
operate. Component frameworks provide the run-time environment in which
components can be instantiated and composed. A framework may operate over
a wide-area Grid or completely within a massively parallel computer. In many
cases component frameworks are programming-language neutral, and com-
ponents written in different programming languages can be easily composed.
For example, a component designed using POOMA can be composed with
a SAMRAI-based component, provided they both adhere to the component
framework rules.

Each of these four paradigms plays an important and distinct role in scientific
computation. However, the best metric of success for any object-oriented library or
framework is the application and user base it supports. The libraries discussed in
this chapter have been deployed to many application domains, including hydrody-
namics, plasma physics, combustion modeling, fire modeling, electronic structures,
molecular dynamics, radiation transport, turbulence modeling, and accelerator dy-
namics. All the libraries have been ported to several parallel architectures, and some
have demonstrated scaling over thousands of processors. The most difficult part of
gaining widespread use of these libraries has been the close interaction required
with the application domain. Using object-oriented libraries is a new endeavor for
many computational physicists. No matter how good the documentation, example
codes, and software quality, breaking through the cultural barrier of moving from a
procedural to an object-oriented/generic approach to simulation requires significant
interaction and collaboration. The key to most successful object-oriented libraries is
a set of dedicated, forward-looking users working closely with the library developers.

Several of the strategic simulation efforts underway at large national centers are
now based on C++ and Java and build on object-oriented libraries. The growing
maturity of both languages and the widespread availability of efficient compilers
over the past 5 years has substantially increased the rate of object-oriented library
development. Furthermore, the new scientists coming into the scientific computing
field tend to be better trained in object-oriented programming techniques than in
procedural techniques, further influencing the move toward object-oriented library
development for scientific computing.

C

H

A

P

T

E

R

14 Problem-Solving Environments

Geoffrey Fox . Jack Dongarra .

Dorian Arnold . Henri Casanova .

Ann Christine Catlin . Tomasz Haupt .

Elias Houstis . John R. Rice

Problem-solving environments (PSEs) have been studied over the last 30 years and
have always suffered from a certain impreciseness in their definition. However, we
can follow a pioneer in this field (John Rice from Purdue) and use his 1994 description
(http://www.cs.purdue.edu/research/cse/pses):

A PSE is a computer system that provides all the computational facil-
ities needed to solve a target class of problems. These features include
advanced solution methods, automatic and semiautomatic selection of
solution methods, and ways to easily incorporate novel solution meth-
ods. Moreover, PSEs use the language of the target class of problems,
so users can run them without specialized knowledge of the underly-
ing computer hardware or software. By exploiting modern technologies
such as interactive color graphics, powerful processors, and networks of
specialized services, PSEs can track extended problem-solving tasks and
allow users to review them easily. Overall, they create a framework that is
all things to all people: they solve simple or complex problems, support
rapid prototyping or detailed analysis, and can be used in introductory
education or at the frontiers of science.

This definition first appeared in Computer as Thinker/Doer: Problem-Solving Environ-
ments for Computational Science by E. Gallopoulos, E. Houstis and J. R. Rice (IEEE
Computational Science and Engineering, Summer 1994). According to these authors,
the birth of PSEs can be traced to the 1963 proposal of Culler and Fried for an “On-
line Computer Center for Scientific Problems.” In 1967, over 300 people attended
an Association for Computing Machinery (ACM) conference on a PSE as an “Interac-
tive System for Experimental Applied Mathematics.” The most well-known example
of a PSE is probably MATLAB, which has been a popular commercial system in the

409

410 Chapter 14 Problem-Solving Environments

linear algebra and signal processing fields. Khoros is another well-known PSE in the
latter field. Purdue also produced a high-level interface PDELab for solving 2-D and
3-D partial differential equations. The latest Web-based implementation of PDELab
is described in Section 14.4. In general, however, the PSE area languished for some 20
years. It was realized that such complex systems were outside the scope of available
hardware and software. This situation has changed recently. Not only has hardware
performance increased dramatically, but the Web has provided both rich informa-
tion resources and a powerful software framework, Object Web technology. In fact, a
PSE is naturally implemented as a Web portal to computational science, to use popular
parlance. Other names for PSEs are scientific workbenches or toolkits.

When discussing PSEs, it is useful to distinguish the PSE itself, which is typically
aimed at a particular scientific computing domain, from a PSE Toolkit, which is the
group of technologies within some software architectures that can build multiple
PSEs. In this chapter, we discuss two CRPC contributions to the PSE toolkit: NetSolve
from the University of Tennessee and WebFlow from Syracuse University. Although
both are Web based, we will see that they address different needs and have in
mind rather different computational models. In each case, we discuss some of the
application areas to which these two PSE toolkits have been applied to build domain-
specific PSEs. In Section 14.3, we contrast these CRPC systems with the higher-
level WebPDELab, which supports special tools aimed at solving partial differential
equations on parallel or sequential machines.

PSEs require several major subsystems to provide capabilities such as language/
programming support, access to existing libraries and applications, and intelligent
aids to both the science and the computer science. All of this must be tied together
with a “software bus or glue.” The rest of the chapters in Part III discuss many of
the components that are linked together in a PSE. PSEs support interfaces to tools;
ability to request particular load-balancing algorithms; mesh generation; linkage of
libraries and services, such as access to job status; and, most importantly, security.
Input and output data should be specified, and many applications may need to be
linked together to solve a single problem. We describe how the two toolkits enable
convenient, flexible integration of these services. In Chapter 9 and Section 14.4.1, we
discuss computational grids and the Globus toolkit. Comparing systems like Globus
with NetSolve and Legion, we see different views of the same dream of building a
geographically dispersed linked set of resources to support computational science
grand challenges. Globus starts with basic hardware and software capabilities and
builds out to the user; NetSolve and WebFlow start with the user and build inward.
These complementary roles will be seen in some later examples, where NetSolve
and WebFlow provide high-level interfaces to computational grids constructed with
Globus. Both the systems described adopt a similar three-tier approach, the client–
server–service shown in Figure 14.1.

NetSolve uses agent technology to allow clients to choose the most appropriate
service provider for a networked solver, such as a parallel matrix-algebra package.
Diverse clients are supported, including Web browsers as well as library calls from
user code or packages such as MATLAB. WebFlow supports a distributed object for

14.1 NetSolve: Network-Enabled Solvers 411

Client(s) Server(s) Multiple services
(programs, data...)

Figure 14.1 Idealized three-tier computing model.

program and data components; it uses Java or CORBA object brokers for the server
layer. The client level is a Web interface to the distributed objects and supports a vi-
sual or scripted specification of the composition of computational objects. WebFlow
separates control functions implemented in the server layer from computation and
high-performance data transfer in the back-end service layer. This strategy avoids
well-known performance limitations in CORBA by using this commodity object
technology only to control proxies for coarse-grain HPCC components. WebPDELab
establishes a PELLPACK PDE Solver environment on the server and uses the Virtual
Network Computing (VNC) [800] system to replicate the PELLPACK user interface
on the client.

In Sections 14.1 through 14.3 we describe NetSolve, WebFlow, and WebPDELab.
Section 14.4 contrasts these systems with other approaches to computational grids
and so-called seamless (Web browser) interfaces to back-end computing resources.

14.1 NetSolve: Network-Enabled Solvers

The current software usage model entails three basic phases: (1) obtaining the
software (locating and/or purchasing, investigating licensing, import and export
restrictions, etc.); (2) installing the software; and finally, (3) using the software.
In addition to these mundane tasks, maintenance of the software system is also
necessary to ensure that the latest versions are being used and to obtain patches and
bug fixes. The NetSolve project, underway at the University of Tennessee at Knoxville
and the Oak Ridge National Laboratory, had very humble beginnings. Its original
goal was to free domain scientists from having to perform these tedious tasks when
they needed to use numerical software, particularly on multiple platforms. NetSolve
began with a single interface, MATLAB, and allowed access to solver routines from
the LAPACK library. The first major release was in 1995.

Today, NetSolve has evolved into one of the leading research projects in the area
of Grid computing. Its various interfaces provide uniform access to an assortment of
software toolkits and libraries. These libraries come from diverse spheres of influence,

412 Chapter 14 Problem-Solving Environments

ranging from mathematical solvers to more eclectic domains such as microbiology
and image visualization. The NetSolve system receives continual enhancements and
feature upgrades. NetSolve software is freely available and can be downloaded, along
with additional documentation and related papers, at http://www.cs.utk.edu/netsolve.

14.1.1 The NetSolve Philosophy

As research scientists continue efforts to harness as much computational resources
and power as possible, NetSolve continues to position itself in the midst of it all. As
the system becomes more enhanced and, unfortunately, more complicated, there
are certain fundamentals that we try to maintain. First, the system should be easy
to deploy and use. The user wants the software and hardware resources that the
middleware makes available and should not have to be concerned about the way
these resources are accessed. On the other hand, the interface must be complex
enough to meet the full needs of its users. So, NetSolve attempts to do the impossible:
to be simple, yet complicated at the same time. We have managed to achieve what
we believe to be an adequate, if not perfect, balance between the two.

Another feature of NetSolve involves the integration and usage of other Grid-
computing infrastructure. Rather than reinventing the wheel, we try to leverage the
accomplishments of the Grid-computing community at large. But our design ensures
that we are dependent on none of these systems. Should their resources be available
in any of our users’ domains, we gladly take advantage of them; but the NetSolve
system can, and most often does, stand alone without infrastructure native to the
NetSolve system.

14.1.2 NetSolve Infrastructure

As depicted Figure 14.2, NetSolve reflects a client/agent/server design. The client is-
sues requests to agents; the agents allocate servers to service those requests; and the
servers receive inputs for the problem, do the computation, and return the output
parameters to the client. The NetSolve client-user gains access to limitless software re-
sources without the tedium of installation and maintenance. Furthermore, NetSolve
facilitates remote access to computer hardware, including high-performance super-
computers, with complete opacity. Users need no knowledge of computer network-
ing in order to use NetSolve—they don’t even have to know that remote resources
are involved. Features such as fault tolerance and load balancing further enhance
the NetSolve system. In the sections below, we offer a brief discussion of the three
aforementioned components.

The Client Interfaces

A major goal in designing NetSolve was to provide users with a choice of interfaces.
NetSolve can be invoked via C, Fortran, MATLAB, or Mathematica interfaces (the
Mathematica interface is available only on Win32 client platforms). In the past, we

14.1 NetSolve: Network-Enabled Solvers 413

Figure 14.2 NetSolve system.

supported a Java application programming interface (API) and Web-based graphical
user interface (GUI). We are upgrading these interfaces to operate with the current
version of NetSolve. Another goal was to implement interfaces that were simple to
use, but which allowed the user as much control as possible of remote procedure
execution.

Each interface provides two basic functions. The first allows synchronous or
blocking requests. These do not return until remote execution is complete (or failure
is detected). The second provides more nontraditional asynchronous or nonblocking
requests. These return immediately, giving the user a “handle” that can be used
to query the readiness of and/or obtain the solution set. In addition to these, we
provide functions in the API to do error reporting. We also provide the capability
to dynamically query a NetSolve system to receive information about either the
hardware or software resources. Such queries are used primarily to determine which
problems are available and the number, type, and description of the input and output
parameters that each problem requires. Interfaces using command-line interpreters
such as MATLAB and Mathematica implement these in the form of functions; for
the compiled interfaces C and Fortran, compiled executables are used.

414 Chapter 14 Problem-Solving Environments

The NetSolve Agent

Keeping track of the software resources available and the servers on which they are
located is perhaps the most fundamental task of the NetSolve agent. The agent keeps
a database that maps software resources to hardware components in the NetSolve
system. It thus has a complete picture of the capabilities of both the individual servers
and the NetSolve system as a whole. The agent can report this information to the
client via the interfaces (see above); this aids the user in setting up the problem on
top of the NetSolve middleware. The protocol that NetSolve uses to maintain this
database is fairly straightforward: upon initialization, a new server sends a “problem
description” for each problem that it can solve to the agent with which it was
configured to register. This description contains, among other things, the location
of the server and the particulars of the function(s) being contributed. Eventually the
server is integrated into the system and can be used to service users’ requests.

In order to service user requests expeditiously, the agent must use certain criteria to
choose the best-suited computational server for each incoming request. There are two
basic choices: (1) static scheduling—at compile time, the agent is programmed to use
an a priori scheme such as round-robin scheduling; and (2) dynamic scheduling—
the agent uses run-time information to decide which server component should be
used to service a request. NetSolve employs dynamic scheduling, making use of both
static and dynamic information. Static information includes speed and number of
processors and complexity of the solution algorithm. Dynamic information includes
server loads, network delays and transmission rates, and input data sizes. The agent
uses this information to rank the servers from best to worst. This list is passed to
the client, and the client makes its request to each server in turn, until either the
problem has been successfully solved or the list has been exhausted.

The protocol described above emphasizes high throughput rather than balancing
the load among the servers. Consider a scenario in which NetSolve receives several si-
multaneous requests. First, suppose that the available servers are a high-performance
supercomputer and some mediocre standalone workstations. Assuming that the su-
percomputer is determined to be the component that will finish the service quickest,
then most of the requests will be sent there. Now suppose that all server resources
are of approximately the same rating. Then the load will be balanced evenly among
the servers, since this will yield the highest throughput.

For fault tolerance, NetSolve ensures that a user request will be completed unless
every single resource capable of servicing the request has failed. When a client sends
a request to a NetSolve agent, it receives a sorted list of computational servers to try.
When one of these servers has been contacted successfully, the computation starts. If
the contacted server fails during the computation, then another server is contacted
and the computation restarts. This entire procedure is transacted independently of,
and possibly unbeknownst to, the client user. Although effective, this primitive fault-
tolerant mechanism needs to be enhanced. In the next section, where we discuss
current developments, we describe our research into employing more advanced fault
tolerance.

14.1 NetSolve: Network-Enabled Solvers 415

The Computational Server

One of the challenges in building the NetSolve system was to design a suitable model
for the computational servers. For the user to be able to invoke numerical software
directly through our servers, three major features seemed mandatory for the servers:

. Uniform access to the software.The NetSolve servers should present the interfaces
with an illusion of uniformity among the various integrated packages. The
critical point is to try to maintain high levels of consistency among and within
the different sets of subroutines/functions provided to the user. This allows
the user to focus on the particular problem being solved rather than on the
peculiarities of the software package being used. This also eliminates long
learning phases when using new features.

. Configurability. Since the server should not be confined to any particular soft-
ware, we had to provide a framework that permitted the addition of function-
ality to a computational server. This framework needed to be general, so that
any software toolkit could be integrated with any NetSolve server and made
accessible to the client interfaces. In addition, the framework needed to be as
intuitive as possible.

. Preinstallation. As stated above, we wished to free the user from the burden of
software installation. Therefore, in the NetSolve paradigm, the client user is not
responsible for installing any software directly; software is made available via
the NetSolve servers in a ready-to-use fashion. It is also possible for the NetSolve
system to dynamically install and compile routines without any intervention
at the user level.

The NetSolve server addresses and successfully resolves all these issues. The server
can be configured with a set of preinstalled software libraries to provide uniform
access to the subroutines provided. This is done through the use of what we call
a problem description file (PDF), which describes the particulars of a function to be
added. Examples of the information provided in a PDF are the name to be given to
the problem, the calling sequence to the NetSolve client interface, and the libraries
or archives containing the underlying functions being integrated. The PDF really
describes a wrapper that is used to receive or send input and output parameters from
and later back to the client interface. Somewhere in these networking transactions
is a call to the routine that will actually perform the service that was requested.

Although network interactions are involved, neither the client nor the writer of
the PDF needs be concerned with this. The NetSolve system carefully encapsulates
and hides these interactions from the user. These wrappers are parsed and compiled
into source codes that are compiled with the library archives into NetSolve-specific
executables. The appropriate executable is initiated by the server daemon whenever
it needs to service a client request.

416 Chapter 14 Problem-Solving Environments

14.1.3 Some Applications of NetSolve

In this section, we give a brief description of the integration of NetSolve into Grid
computing systems and describe some of the applications that have taken advantage
of NetSolve’s features. In Section 14.4, we discuss some of the other meta-computing
resources that NetSolve has used to leverage itself.

MCell

MCell is a general Monte Carlo simulator of cellular microphysiology. MCell uses
Monte Carlo diffusion and chemical reaction algorithms in three dimensions to
simulate the complex biochemical interactions of molecules inside and outside of
living cells. MCell is a collaborative effort between the Terry Sejnowski Lab at the
Salk Institute and the Miriam Salpeter Lab at Cornell University. NetSolve is very well
suited to MCell’s needs, and this project involves writing a NetSolve-based framework
to support large MCell runs. One of the central pieces of that framework is a scheduler
that takes advantage of MCell input data requirements to minimize turnaround time.
This scheduler is part of the larger AppLeS at the University of California-San Diego.
The use of NetSolve isolates the scheduler from the resource management details
and allows researchers to focus only on the design of the scheduler.

IPARS

IPARS is a framework, described in Chapter 6, for developing parallel models of
subsurface flow and transport through porous media. It currently can simulate single-
phase (water only), two-phase (water and oil), or three-phase (water, oil, and gas) flow
through a multiblock 3-D porous medium. IPARS can model water table decline due
to overproduction near urban areas or enhanced oil and gas recovery in industrial
applications. IPARS is being made into a fully functional NetSolve server. The goal
of the project is to allow this server to be accessible via a Web browser using the
Common Gateway Interface on top of NetSolve’s C interface. The server will also
render animated graphics via a destination Web page. Web accessibility means that
those wanting to see IPARS simulations will only have to provide some simple input
parameters defining the simulation.

SCIRun

SCIRun is a scientific programming environment that allows the interactive con-
struction, debugging, and steering of large-scale scientific computations. SCIRun
can be used interactively in (1) changing 2-D and 3-D geometry models (meshes);
(2) controlling and changing numerical simulation methods and parameters; and
(3) performing scalar and vector field visualization. Currently, NetSolve is being in-
tegrated into SCIRun as the broker for computational resources. This integration will
allow for increased parallelism and performance in the SCIRun paradigm.

14.1 NetSolve: Network-Enabled Solvers 417

LUCAS

LUCAS is a system that helps natural resource specialists evaluate the consequences
of alternative land management scenarios. It uses computer modeling to integrate
both biological and socioeconomic data. The geographic information system GRASS
is used to represent and manipulate spatial data on workstations. There is an ongoing
effort to integrate NetSolve to harness the computational cycles for LUCAS. This
will prove especially useful when LUCAS is used to spawn several “replicates,”
which normally would compute in serial on the local machine. Using NetSolve,
the computations would be done in parallel, possibly on machines specialized for
high-performance computing.

DIPS

DIPS is a software tool, developed at the Computer Graphics and Vision unit of the
Graz University of Technology in Austria, that allows remote computing for image
processing. DIPS extends the Image/J Java image-processing application to provide
remote access to the high-performance ImageVision library by Silicon Graphics. At its
core, DIPS uses NetSolve as its meta-computing resource to provide unprecedented
computing power by aggregating distributed resources on the Internet to a single
system.

14.1.4 Current Developments and Future Research

Here we offer insight into a few of the developments that we have made with
NetSolve over the past few months. The area of Grid Computing is still relatively
fresh, and Net Solve will continue to evolve, as will the Grid, in the years to come.

Dynamic Server-Software Enhancements

In the current NetSolve design and implementation, there is a tight coupling between
the server’s hardware and software components. The server is statically configured
(at compile time) to solve a particular problem set. Although we have provided tools
that allow this problem set to be expanded easily, this can only be done during
initial configuration. Increasing a running server’s capability entails a shutdown,
reconfigure, and restart loop. This will not be the case in the next major release
of NetSolve. We are providing the capability of storing NetSolve-specific software
binaries (see Section 14.1.2) in a software repository whose location is known to the
NetSolve agent. At request time, should a particular server not possess the appropriate
binaries, it will be directed to the repository for a download. This paradigm will not
replace, but will enhance, the current protocol in which the server is statically binded
with software.

418 Chapter 14 Problem-Solving Environments

Fault Tolerance

As explained in Section 14.1.2, the fault tolerance possessed by the NetSolve system
incorporates only a retry and restart mechanism. We are presently developing servers
enhanced with checkpointing capabilities. As they run, the servers will take frequent
checkpoints (via a core dump mechanism). Should one of these servers fail, they
will be restarted from the state represented by the core image of the most recent
checkpoint, rather than from the beginning. Homogeneous migration will also be
possible; a process may be restarted on a different machine of similar architecture
and operating system. As this feature becomes more advanced, we will investigate
heterogeneous migration and, possibly, checkpointing parallel programs.

Request Sequencing

We recently finished research that would allow us to minimize the network traffic
between client and servers in a single-client program making numerous requests to
NetSolve. We noticed that, in many cases, data dependencies exist between these
requests. We have implemented a feature that allows the client user to bracket
together multiple requests to NetSolve. The NetSolve system then analyzes data
dependencies and sends only the minimal data necessary to the servers. Inputs to
later requests that were outputs of a previous request(s) need not be obtained from
the client again. The server makes this data persistent and uses it across all requests as
necessary. In our current model, all requests must execute on a single server. Future
research will yield a model to use systems such as the Internet Backplane Protocol
(IBP) and other distributed storage facilities to stage data as requests are serviced on
multiple servers.

Win32 Servers

The Distributed Component Object Model (DCOM) is a protocol that enables soft-
ware components to communicate directly over a network in a reliable, secure, and
efficient manner. DCOM is based on the Open Software Foundation’s DCE-RPC and
is a standard similar to that of the Common Object Request Broker Architecture
(CORBA). We will be developing a version of the NetSolve server that acts as a gate-
way to problem-solving libraries and systems optimized for the NT platform. The
server will be built using the DCOM protocol to manage its networking interactions.

14.2 WebFlow-Object Web Computing

In Figure 14.3, we expand the basic network server picture in Figure 14.1 to show how
one of the middle-tier servers acts as a broker between any client and a collection of
interesting services. Note that we view the services as being provided by a collection
of (distributed) objects. We adopt what we call the pragmatic object Web philosophy,
where realistic systems are likely to involve aspects of the four leading distributed
object technologies: CORBA, COM, Java, and XML [106, 354, 355]. Appropriate

14.2 WebFlow-Object Web Computing 419

Rendering
engine

Rendering
engine

Browser
(HTML)

“WebFlow”
interface

“Grid”
interface

Universal interfaces
IDL or XML

XML request
for service

followed by
return of XML

result

Objects

CORBA
or Java

broker or
server

Figure 14.3 More detailed three-tier architecture.

middleware allows these different approaches to interoperate. In particular, WebFlow
now uses XML to specify all object interfaces, and these are termed the WebFlow
and Grid interfaces for the user and system view, respectively. This two-interface
model was adopted at meetings of the Computing Portals group in 1998–1999.
As an example, the WebFlow Interface defines an abstract task such as “run a
chemistry problem using an HPF simulation code with given data,” and the middle-
tier server matches this with the back-end objects. The latter are defined by the
Grid interface, which can use the Globus resource language RSL. This matching then
instantiates a real job to solve the chemistry problem on one or more of the back-
end resources. WebFlow originally used Java Servers but now uses CORBA object
servers. One simply takes the XML object specifications and uses these to generate
the appropriate RMI or CORBA interfaces necessary for the chosen middle tier. This
use of XML object specification linked to different object run times is very common
in modern commercial systems. Figure 14.4 takes the general architecture of the
previous diagram and highlights the capabilities of WebFlow in each of the three
tiers. This will be described in more detail in Section 14.2.1. (See also Akarsu et al.
[18, 19], Gateway Project [370], Haupt et al. [443, 445], and WebFlow Project [985].)

In the three-tier diagram, WebFlow contributes to the client and middle tiers,
as these are the PSE layers where one integrates the components composed of the
basic HPCC tools, algorithms, and applications. The WebFlow client tier can be
constructed in several ways, but one distinctive capability (which gives the system
its name) is the WebFlow composition tool. Here a WebFlow front-end editor applet
offers an intuitive click-and-drag metaphor for instantiating middleware or back-
end modules. The modules are represented as visual icons in the active editor area;

420 Chapter 14 Problem-Solving Environments

Problem solving environment

Back-end resources

CTA-specific
knowledge
databases

Visual
authoring

tools

User and
group
profiles

Resource
identification
and access

Visualizations
collaboration
user services

Abstract task specification

Middle-tier: Framework + CORBA

GRID services | JDBC | Local resources

WebFlow

Grid interfaces
XML
interfaces

Figure 14.4 WebFlow system architecture.

WebFlow interconnects them visually in the form of computational graphs, familiar
to AVS [6] and Khoros [565] users. WebFlow middleware was originally provided
by a mesh of Java Web servers, custom extended with servlet-based support for
the WebFlow session implementing module and connection managers. These then
implemented the middleware logic to support both this general distributed-data-
flow computing model and a more general linked-object model. Both models are
represented as abstract tasks in XML, allowing scripted as well as visual invocation of
programs. This computational paradigm is very popular in some fields (such as signal
processing with Khoros). It is seen in research systems such as Arcade from ICASE,
which is designed to support multidisciplinary applications such as those arising
in structures and fluid flow programs controlled by an optimization module. The
WebFlow toolkit also includes the general capability to link to back-end resources,
as illustrated by its support of Globus.

Note that WebFlow uses CORBA (or more generally, commodity distributed-
object technology) only to manipulate proxies for back-end entities. Thus, it is not
impacted by performance limitations of commodity technology. WebFlow’s front-
end supports visual proxies to specify the problem, while the middle-tier functional
proxies support needed control logic. WebFlow relies on classic HPCC back-end
capabilities for high-performance computing and communication.

14.2 WebFlow-Object Web Computing 421

This WebFlow toolkit has been applied to build several problem-solving envi-
ronments. In Section 14.2.2, we describe two focused examples. The first, LMS,
used a custom Java applet front-end instead of the composition tool to control
particular linked applications for environmental modeling. A second application of
WebFlow is quantum Monte Carlo simulations, developed in collaboration with the
National Center for Supercomputing Applications/Condensed Matter Physics Labo-
ratory. Here simulations are linked together and the results stored on many different
computers. The output file of one application in the chain is the input of the next
one, after a suitable format conversion. This was a natural place to use the WebFlow
composition tool.

Recently, we have used WebFlow technology in the so-called Gateway project for
the DoD high-performance computing program [765]. Gateway is designed to build
a seamless access to the suite of different machines in a computer center. In this
case, we needed to address security and fault tolerance more carefully and so reim-
plemented the WebFlow middle tier using the industry-standard, distributed-object
technologies, JavaBeans and CORBA, and industry-standard secure communication
protocols based on SSL.

14.2.1 WebFlow Architecture

The WebFlow system is implemented as an object Web three-tier system, as shown
in Figure 14.4. Tier 1 is a high-level front-end for visual programming, steering, run-
time data analysis, and visualization. It is built on top of the Web and OO commodity
standards. A distributed object-based, scalable, and reusable Web server and object
broker middleware form tier 2. Back-end services comprise tier 3. In particular, high-
performance services are implemented using the Globus meta-computing toolkit.

Front-End

Different classes of applications require different functionality from the front-end.
We have therefore designed the WebFlow system to support many different front-
ends, from very flexible authoring tools and PSEs that allow for dynamic creation
of meta-applications from preexisting modules to highly specialized and customized
front-ends to meet the needs of specific applications. Also, we support many different
computational paradigms, from general object-oriented to data-flow to a simple
“command-line” approach. This flexibility is achieved by allowing as a WebFlow
front-end any program implementing the WebFlow API described below.

WebFlow and Grid Interfaces (APIs)

The WebFlow API allows the user’s task to be specified in the form of an abstract task
descriptor (ATD), following the current computing portals’ recommendations. The
ATD is constructed recursively and may comprise an arbitrary number of subtasks.
The lowest level, or atomic, task corresponds to the atomic operation in the middle

422 Chapter 14 Problem-Solving Environments

tier. These include instantiation of an object and establishing interactions between
two objects through event binding. In many cases, such details should be hidden
from the end user and even from the front-end developer. Thus, the WebFlow API
provides interfaces to higher-level functionality, such as submitting a single job or
making a file transfer. When specifying a task, the user does not have to specify
the resources to be used to complete the task, but instead may specify requirements
that the target resource must satisfy in order to be capable of executing the job. The
identification and allocation of the resources are left to the discretion of the system.
Typically, the middle tier delegates these tasks to the meta-computing services (such
as Globus [383, 398]) or an external scheduler (such as PBS). Once the resources are
identified, the abstract task descriptor becomes a job specification.

Middle Tier

A mesh of CORBA-based WebFlow servers currently makes up the WebFlow middle
tier. A dedicated gatekeeper server, as shown in Figure 14.4, facilitates a secure access
to the system. A general WebFlow server maintains the sessions within which the
users create and control their applications. The middle-tier services provide the
means to control the life cycles of modules and to establish communication channels
among them. The modules can be created locally or on remote hosts. In the latter
case, the task of module instantiation and initialization is transparently delegated
to a peer WebFlow server on the selected host, and the communication channels
are adjusted accordingly. The services provided by the middle tier include methods
for submitting and controlling jobs; file manipulation; providing access to databases
and mass storage; and querying the status of the system, of the users’ applications,
and of their components.

Gatekeeper Server

The gatekeeper comprises three logical components: a (secure) Web server, the
AKENTI server [694], and a CORBA-based WebFlow server. The user accesses the
WebFlow system through a portal Web page from the gatekeeper Web server. The
portal implements the first component of WebFlow security: user authentication
and generation of the user credentials that eventually will be used to grant access to
resources. The AKENTI server controls the authorization process. For each authorized
user, the Web server creates a session (i.e., it instantiates the user context in the
WebFlow server, as described below) and gives permission to download the front-
end applet. The applet is used to create or restore, run, and control user applications.
The applet, using the IIOP protocol, communicates directly with the CORBA-based
WebFlow server.

To implement the WebFlow server, we use the ORBacus (formerly known as
OmniBroker) secure ORB [721], for which we have obtained a free research license.
The security services are implemented on top of the IAIK SSL library, which is already
used by the Jigsaw Web server.

14.2 WebFlow-Object Web Computing 423

GS GS GS GS
IIOP

IIOPhttps

Front end

SECIOP

WS

A

Back-end
services

Back-end
services

Back-end
services

Back-end
services

GS: Gateway server WS: Secure Web server A: AKENTI server

Figure 14.5 WebFlow middle tier with gateway servers (GS); secure Web server (WS), and
authentication (AKENTI) server A.

WebFlow Server

The WebFlow server initializes the ORB and several generic CORBA and specific
WebFlow services. The main function of the WebFlow server is to manage WebFlow
sessions. A session is established automatically after the authorized user is connected
to the gatekeeper by creating a user context. The user context is a container object
that stores the user applications. The application is another container object that
stores components of the user application. The application component is either
a single WebFlow module or another, finer-grain, application context. This way,
the WebFlow server can simultaneously manage many sessions; and within each
session, the user can define many applications, hierarchically composed of many
modules.

WebFlow Modules

The WebFlow modules are CORBA objects conforming to the Java Beans model,
whose implementation is described in detail in Akarsu [17]. The functionality of a
module is implemented either directly in the body of the module, or the module
serves as a proxy of specific back-end services, such as database or high-performance
computing and communication (HPCC) services. We expect to support the standards
for HPPC back-end services under development by the Grid Forum. For databases,
we support the industry standard JDBC (Java database connectivity).

Interactions between WebFlow Modules

The WebFlow modules follow the Java Beans model, and they interact with each
other by using Java Beans methods through event binding, property binding, and

424 Chapter 14 Problem-Solving Environments

vetoable property binding. With Java Beans, events are used to communicate infor-
mation about the changing state of a bean. Events form a core component of the
Java Beans architecture, in that they are largely responsible for enabling beans to be
plugged together as building blocks in an application builder. Event notification in
Java works using method invocation. The object that is a source of an event calls
a method on the destination object for one event when the event is triggered. The
destination of the message must implement the method (or methods) to be notified
when the event occurs. The event object encapsulates all the information about an
event.

Event targets are connected to event sources through a registration mecha-
nism. WebFlow applications are created dynamically from independently developed
WebFlow modules. Therefore, we provide support for a dynamical event binding
based on the standard CORBA dynamic interface invocation (DII) and dynamic
stub invocation (DSI) mechanisms. This is implemented by introducing an event
adapter associated with the application context. The adapter maintains a binding
table to associate the event sources with the actual event destinations. Note that
we choose not to use the important commodity Enterprise Java Bean middle-tier
containers, as currently they appear difficult to implement consistently with our
security requirements.

14.2.2 WebFlow Applications

WebFlow has been used successfully in several applications. These include the Land-
scape Management System, Quantum Simulations, and the Gateway system for
seamless access. Each of these is discussed briefly in this section.

Landscape Management System

The Landscape Management System (LMS) project [442] was sponsored by the U.S.
Army Corps of Engineers Waterways Experiment Station (ERDC) Major Shared Re-
source Center (MSRC) at Vicksburg, Mississippi, under the DoD HPC modernization
program, Programming Environment and Training (PET). The application can be
idealized as follows. A decision maker (the end user of the system) wants to eval-
uate changes in vegetation, caused by a short-term disturbance such as a fire or
human activities, in some geographical region over a long time period. One of
the critical parameters of the vegetation model is soil condition at the time of the
disturbance. This, in turn, is dominated by the rainfall that occurs at that time.
Consequently, as shown in Figure 14.6, implementation of this project requires the
following activities:

. Data retrieval from remote sources, including DEM (data elevation model) data,
land use maps, soil textures, and dominant flora species and their growing char-
acteristics. The data are available from many different sources. These include
public services such as U.S. Geological Survey Web servers and proprietary data-

14.2 WebFlow-Object Web Computing 425

WebFlow
server

WebFlow
server

WebFlow
server

WebFlow applet
(front-end)

Internet
data

access

GLOBUS

High-performance subsystem

HTTP
IIOP

Web browser

Data wizard
WMS interface

Toolbar

GIS & DEM

CASC2D
proxy

Soils and land use

File transfer

EDYS

Weather data

Vegetation data

CASC2D

Data retrieval

File transfer

WMS

Figure 14.6 LMS problem-solving environment.

bases. The data come in different formats and with different spatial resolutions.
Without WebFlow, the data must be manually prefetched.

. Data preprocessing to prune and convert the raw data to a format expected by
the simulation software. This preprocessing is performed interactively using
the WMS (Watershed Modeling System) package [999].

. Execution of two simulation programs: EDYS [195] for vegetation simulation
including the disturbances and CASC2D [722] for watershed simulations dur-
ing rainfall. The latter generates maps of soil conditions after the rainfall. The
initial conditions for CASC2D are set by EDYS just before the rainfall event, and
the output of CASC2D after the event is used to update parameters of EDYS.
The data transfer between the two codes has to be performed several times dur-
ing one simulation. EDYS is not CPU demanding, and it is implemented only
for Windows 95/98/NT systems. On the other hand, CASC2D is very compu-
tationally intensive and typically is run on powerful back-end supercomputer
systems.

. Visualization of the results of the simulation. Again, WMS is used for this
purpose.

426 Chapter 14 Problem-Solving Environments

One requirement of this project was to demonstrate the feasibility of implement-
ing a system that would allow launching and controlling the complete simulation
from a networked laptop. We successfully implemented it using WebFlow, with
WMS and EDYS encapsulated as WebFlow modules running locally on the laptop
and CASC2D executed by WebFlow on remote hosts. The existing codes were not
modified; instead, the WebFlow PSE used object wrappers to construct a power-
ful integrated application-specific environment. Further, the applications involved
showed a typical mix of HPCC and computationally less demanding PC codes.

For this project, we developed a custom front-end that allows interactive selection
of the region of interest. The user draws a rectangle on a map, selects the data type
to be retrieved, launches WMS to preprocess the data and make visualizations, and
finally launches the simulation with CASC2D running on a host of choice.

Quantum Simulations

A major goal of the quantum simulation (QS) activity was to demonstrate the feasi-
bility of layering WebFlow on top of the Globus meta-computing toolkit. This way,
WebFlow serves as a job broker for Globus. Globus (or more precisely, GRAM-keeper)
takes responsibility for the actual resource allocation, which includes authentication
and authorization of the WebFlow user to use computational resources under Globus
control.

This application [783] can be characterized as follows. A chain of high-
performance applications (including commercial packages such as GAUSSIAN or
GAMESS and custom-developed packages) is run repeatedly for different data sets.
Each application can be run on several different (multiprocessor) platforms, so in-
put and output files must be moved between machines. Output files are visually
inspected by the researcher; if necessary, applications are rerun with modified input
parameters. The output file of one application in the chain is the input of the next
one, after a suitable format conversion. The logical structure of the application is
shown in Figure 14.7. GAUSSIAN and GAMESS are run as Globus jobs on Origin
2000 or Convex Exemplar at NCSA, while all file editing and format conversions are
performed on the user’s desktop.

Unlike LMS, for QS we are using the WebFlow program composition editor as
the front-end. This WebFlow editor provides an intuitive environment to visually
compose (click-drag-and-drop) a chain of data-flow computations from preexist-
ing modules (as shown in Figure 14.8). In the edit mode, modules can be added
to or removed from the existing network and connections between the modules
can be updated. Once created, the network can be saved (on the server side) for
later restoration. The workload can be distributed among several WebFlow nodes
(WebFlow servers), with the interprocessor communications handled by the middle-
tier services. Moreover, thanks to the interface to the Globus system in the back-end,
execution of particular modules can be delegated to powerful HPCC systems. In the
run mode, the meta-application represented by the visually constructed graph is

14.2 WebFlow-Object Web Computing 427

Format
conversion

Format
conversion

Application 1
(Gaussian)

Visualization
engine

(Cerius 2)

System with
Cerius 2 license

Application 2
(Games)

Application 3
(Postprocessing)

HPCC System
(Origin2000,

Exemplar, NOW)
Desktop

workstationDBMS

D
at

ab
as

e

Fi
le

 t
ra

ns
fe

r

Text editor
vi/emacs/
notepad

Text editor
vi/emacs/
notepad

Text editor
vi/emacs/
notepad

Text editor
vi/emacs/
notepad

Figure 14.7 Functional architecture of Quantum Simulation application.

passed to the middle tier by sending a series of requests (module instantiation, in-
termodule communications) to the middle-tier services.

Control of module execution involves more than just sending relevant data
through the input ports of the module. Most of the modules developed so far
require some additional parameters that can be entered via “module controls,”
which are Java applets displayed in a card panel of the main WebFlow applet. The
communication channels between the back-end implementation of a module and
its front-end module controls are generated automatically during the instantiation
of the module.

Gateway Seamless Access

Exploiting our experience developing the WebFlow PSEs described above, we de-
signed a new system, Gateway, to provide seamless and secure access to computa-
tional resources at DoD modernization sites—in particular, first at the ASC Major
Shared Resource Center at Wright Patterson Air Force Base in Dayton, Ohio [765].
While preserving the original three-tier architecture, we reengineered the imple-
mentation of each tier in order to conform to the XML-based standards indicated

428 Chapter 14 Problem-Solving Environments

Figure 14.8 Fragment of quantum simulation WebFlow composition tool.

in Figures 14.3 and 14.5. We developed for this application the CORBA and the Java
Beans model to build a new middle tier, which facilitates seamless integration of
commodity software components. The security system supports the Kerberos and
SecurID system adopted by DoD for their modernization program. This new tech-
nology is being retrofitted to the applications described above and is used in newly
developed applications.

Gateway’s architecture includes provision for visualization. We are working with
NCSA (VisBench) [701] and ARL (DICE) [263] to design visualization subsystems sup-
porting the WebFlow distributed-object model. In the first two PSEs discussed above,
we integrated existing visualization systems such as WMS (for LMS) and Cerius (for
the QS case) with WebFlow. We also prototyped XML specifications of collaboration.
When combined with the WebFlow API, these can generate collaborative portals to
computing.

Initially, Gateway is designed with a custom chemistry front-end developed by
the Ohio Supercomputer Center (OSC). It handles job submission (to the scheduler
PBS via Globus), choice of multiple applications, and basic WebFlow file services.
The front-end is arranged in layers: entry, problem description, code, and results

14.3 WebPDELab 429

with well-defined (XML) interfaces. This approach appears to generalize to other
applications.

At present, Gateway development is focused on supporting the areas of earth-
quake science [353] and structural mechanics [765].

14.3 WebPDELab

WebPDELab is a Web server that provides access to PELLPACK [175], a sophisticated
problem-solving environment for partial differential equation (PDE) problems. Users
can connect to the WebPDELab site at http://webpellpack.cs.purdue.edu/ with any Java-
enabled browser for information, demonstrations, cases studies, and PDE problem-
solving service.

14.3.1 The WebPDELab Server

The scenario illustrated in Figure 14.9 shows how a user on the Internet accesses
WebPDELab services. A new PELLPACK session is initiated for each user who con-
nects to the WebPDELab server, and a unique identification and private file space for

Library
of PDE
solvers

WebPDELab
Problem-solving environment
for PDE applications

• Provides PDE problem-solving service to remote users
• Provides security for users and for server host machines
• Handles server management and maintenance tasks

User connects to
WebPDELab and
requests service

Solution
visualization

Problem definition

San Francisco
Purdue

Figure 14.9 View of the WebPDELab system operating over the Internet.

430 Chapter 14 Problem-Solving Environments

the session are created. The file space is available until the user disconnects from the
service, at which time the session is terminated and the user’s files are deleted. Users
may download files generated by PELLPACK to their own machines before terminat-
ing the session, and they may upload files to WebPDELab at the start of subsequent
server sessions. When the server invokes the PELLPACK system software, the en-
tire PDE problem-solving environment described in Houstis et al. [488] is presented
to the user. This environment is described only briefly in Section 14.3.1. For a de-
tailed description of the functionality and operation of the PELLPACK software, all
or part of the user guide (400 pages) [175] can be downloaded from the website.
PELLPACK is a comprehensive system for modeling physical objects based on PDEs.
It has been used by hundreds of students and faculty, both inside and outside of Pur-
due University, for solving problems in physics (liquid crystal droplets, proton flux
propagation), thermal field analysis, fluid dynamics, semiconductors, geophysical
research, electromagnetic field analysis, thermo-elasticity, structural analysis, and
other scientific and engineering applications. PELLPACK has a user-friendly inter-
face, and even first-time users can solve interesting problems by following the fully
documented, step-by-step descriptions of the problem-solving process presented in
Getting Started at the WebPDELab site.

The PELLPACK Problem-Solving Environment

WebPDELab is an Internet-based, client-server implementation of the PELLPACK
software. PELLPACK is a system that allows users to specify and solve PDE problems
on a target computational platform and to visualize the solution. PELLPACK provides
a graphical user interface for defining the PDE model and selecting solution methods
(Figure 14.10) and is supported by the Maxima symbolic system and well-known
numerical libraries. The graphical interface is implemented on top of a very high-
level PDE language. Users can specify their PDE problem and its solution visually
using the graphical interface or textually using the “natural” language. PELLPACK
has incorporated over 100 solvers of various types that cover all the common PDE
applications in two and three dimensions.

In the PELLPACK system, a problem is represented by the PDE objects involved:
PDE model or equations, domain, conditions on the domain boundary, solution
methods, and output requirements. The PELLPACK interface consists of many graph-
ical tools and supporting software to assist users in building a problem definition.
A textual specification of these objects comprises PELLPACK’s natural PDE lan-
guage, and the language representation of each object is generated by the object
editors/tools. The language definition of a user’s problem (the .e file) is automati-
cally passed to PELLPACK’s language processor, which translates the problem into
a Fortran driver program and then compiles and links it with numerical libraries
containing the user-specified solver methods. Sequential or parallel program exe-
cution is a one-step process; the program is executed on one or more machines in
the supporting i86pc host cluster. Problem solutions are passed to the PELLPACK
visualization system for solution display and analysis.

14.3 WebPDELab 431

Figure 14.10 Graphical tools available in the PELLPACK problem-solving environment.

The WebPDELab Interface

The WebPDELab server is accessed from the WebPDELab website. This website is an
instructional source for anyone interested in solving PDE applications. It provides
information about PDE problem solving in general and about the process of solving
PDE problems with PELLPACK in particular. A collection of fully documented case
studies is available at the site (Figure 14.11), presenting step-by-step solutions of
common PDE applications (flow, heat transfer, electromagnetism, conduction), with
every user action and PELLPACK result described with images and detailed text.

Users who request the PDELab problem-solving service must first register with
WebPDELab (Figure 14.12). After the user-registration information is validated and
the server connects to a host machine, WebPDELab presents a framed HTML page.

432 Chapter 14 Problem-Solving Environments

Figure 14.11 Sample case study from Getting Started at the website.

There is a control panel in the top frame (Figure 14.13), consisting of four but-
tons: Upload Files, Download Files, Start Server, and Exit Server. The bottom frame
contains the user identification number, host connection information, and instruc-
tions for using the buttons of the control panel in the top frame. At this point, the
WebPDELab server has already created the user’s directory space, so that users can
upload files to their directories using the Upload button. Generally, users upload
PELLPACK problem-definition files, such as .e files, mesh files, and solution files,
from previous WebPDELab sessions. Users can upload up to 20 files to their assigned
directory space, but files may no longer be uploaded once a user clicks on the Start
Server button.

The Download button returns a listing of the user’s directory contents. Files in this
directory can be viewed or downloaded from the listing. Since users’ directories are
password protected, no other directories can be viewed or entered. The Download
button is available throughout the user’s PELLPACK session. Users should look here
frequently during the session to check on PELLPACK-generated problem, solution,
and trace files. The Start Server button invokes the password-protected PELLPACK
software. After the password is entered and verified (Figure 14.14), the top-level
window of the PELLPACK system appears in the bottom frame of the browser
window, as shown in Figure 14.15. A collection of sample problems has been placed
in the user’s directory, so users can load an example into the PELLACK session or
begin their own problem definition. The PELLPACK session in Figure 14.16 is in
the bottom frame of the WebPDELab server. The buttons of the control panel are

14.3 WebPDELab 433

Figure 14.12 WebPDELab registration.

Figure 14.13 WebPDELab server with control panel in the top frame and panel instructions
and connection information in the bottom frame.

still available in the top frame, but only the Download and Exit Server buttons are
enabled. The Upload and Start Server buttons remain disabled while the PELLPACK
software is running in the bottom frame.

During the PELLPACK session, WebPDELab is passing the display of the remotely
executing PELLPACK environment to the user’s browser window. The graphical

434 Chapter 14 Problem-Solving Environments

Figure 14.14 Password entry for the PELLPACK system, showing the control panel in the top
frame.

Figure 14.15 The PELLPACK top-level window appears in the bottom frame of the WebPDELab
browser window. It is ready for user interaction.

14.3 WebPDELab 435

Figure 14.16 PELLPACK session running inside the WebPDELab browser window.

interface displayed on the user’s screen belongs to PELLPACK and is not described
in this paper. When a user clicks on Exit Server, the PELLPACK session is terminated
and the user’s directory is removed.

WebPDELab traces all user activities from the start of the server session until its
termination. Users’ files are secure from other users, but WebPDELab “looks at” the
contents of every file uploaded to WebPDELab or created by the user from within the
PELLPACK system. WebPDELab protective mechanisms implemented for the security
of the WebPDELab server and host cluster are discussed in Section 14.3.2.

WebPDELab Implementation

WebPDELab is the PELLPACK problem-solving environment implemented as a Web
server using virtual network computing (VNC) [800]. VNC is a remote display system
which allows users to view a computing “desktop” environment from anywhere on
the Internet using a wide variety of machine architectures. VNC consists of a server
that runs the applications and generates the display, a viewer that draws the display
on the client screen, and a TCP/IP connection between them. The server is started
on the machine where the desktop resides; after this any number of viewers can

436 Chapter 14 Problem-Solving Environments

WebPDELab manager

VNC server

PELLPACK

PELLPACK security wrapper

i8
6p

c
16

 C
PU

 s
up

p
or

tin
g

cl
us

te
r

Se
rv

er
 s

ec
ur

ity
 w

ra
p

p
er

Java-
enabled
browser

VNC
viewer

U
S
E
R

HTTP

CGI

Figure 14.17 Implementation of the WebPDELab server.

be started and connected to the server. This allows the client user to access the
applications, data, and entire desktop environment provided by the server. The
viewer is a small, shareable, platform-independent, and stateless system that runs
on the client machine.

In the WebPDELab implementation, a new VNC UNIX server is started for each
user who accesses the WebPELab Web server from a Java-enabled browser (see Figure
14.17). The VNC Java viewer is started from the user’s browser, allowing the user to
display and interact with the PELLPACK environment, which consists of X-windows
programs and libraries compiled and running on the i86pc SunOS 5.6 host machines.
Within this framework, any user worldwide who is connected to the Internet and
has access to a Java-capable browser can run WebPDELab.

The WebPDELab manager is the collection of CGI scripts (Common Gateway
Interface protocol for browser-to-server communication) that control all user activity
once the PDELab Server button at the WebPDELab web site is pressed. When a user
accesses the server, the manager collects information on all currently running VNC
servers from the host machines. The manager then asks the potential user to enter
registration information, including a valid email address. After the email address is
validated, a unique user ID is generated for the new user, and a log file is set up to track
registration information, user access/exit times, and user activities while running
the PELLPACK software. The host machine with the lightest traffic is selected by the
manager for running the VNC server and subsequently the PELLPACK software. A
protective client-server application is used to launch the VNC server, so that users
are never logged in to any machine in the host cluster. The VNC server start-up
invokes the PELLPACK system; the manager creates the user directory, sends the

14.3 WebPDELab 437

control panel to the user, and monitors the user’s interaction with the control panel
buttons (Upload Files, Download Files, Start Server, and Exit Server).

Upload Files is implemented using copyrighted public domain code at http://stein
.cshl.org/WWW/software/CGI (Lincoln D. Stein, 1998). The code has been modified to
operate with the WebPDELab/VNC user-directory privacy restrictions. The Download
Files button is implemented as a standard link to the user’s file space, but additional
password security protects a user’s assigned directory from all other users on the
Internet. Start Server connects the VNC client user to the VNC server that has been
instantiated for the caller on the selected host for a specific VNC server.

After control has passed to the VNC client, the manager waits for a VNC dis-
connect or an Exit Server button click. When signaled to start exit processing, the
manager saves the trace of user activities to the log database, kills the VNC server,
and removes the user’s directory. The manager also checks all executing VNC servers
periodically for sessions running longer than 10 hours, and these sessions are ter-
minated. When the manager has finished exit processing, control is returned to the
WebPDELab home page.

14.3.2 WebPDELab Security Issues

All Internet-based services must be concerned with security issues and must strive to
protect their network and host environments from unauthorized access. WebPDELab
implements measures to provide such a secure environment by enforcing common
rules of best practice that are used to secure UNIX machines, taking advantage of the
strength and flexibility of the UNIX operating system. WebPDELab maintains several
levels of security provided by the operating system, the WebPDELab and VNC servers,
and protective language processing software built on top of the PELLPACK system.
These security measures are described in this section.

When a user logs in to the WebPDELab server, a CGI script is executed that
generates a unique UID (user identification) for that user and requests one of the
cluster host machines to invoke a VNC X-server. The WebPDELab CGI scripts reside
on an isolated machine dedicated to serving CGI requests. This machine has no NFS-
mounted disks; an attacker attempting to take advantage of vulnerable CGI scripts
is locked into the cgi-bin directory and cannot gain access to any other machines or
disks. All parameters passed to WebPDELab CGI scripts are scanned to ensure that
they contain precisely the expected values (argument number, length, and contents);
otherwise, the request is terminated. The cluster machines listen on a fixed port for
start-up requests from the CGI machine. If an attempt to connect to this port does
not originate from the CGI host, the connection is immediately terminated. All
cluster machines run a daemon that listens for socket connections on a specified
port and spawns a child process to serve the request; the parent continues to listen
for other connections so that requests can be served simultaneously. A client program
is invoked by the CGI script to contact the cluster machine and request that a new
VNC X-server be launched. The client may only specify the VNC X-server start-up
parameters, since the launching of the VNC X-server binary is hard-coded in the

438 Chapter 14 Problem-Solving Environments

configuration file of the daemon serving requests originating from the CGI host.
The VNC server itself is protected by a challenge–response password scheme.

The cluster machines run the VNC X-server as owned by a dedicated account
whose root directory is the account’s home directory (using the UNIX maintenance
chroot command). All the required binaries are located the chroot-ed directory. If a
user discovers vulnerabilities in one of the cluster machines, the user is locked into
the home directory of the account and is unable to cause harm to other accounts or
disks. In order to protect the machine from unauthorized Fortran code inserted by
a user into the PELLPACK .e file, specialized filters have been built into the original
PELLPACK system. The original PELLPACK language processor already restricted the
location of Fortran code to specialized segments within the PELLPACK problem
definition file; these segments are now re-parsed by filters that identify inserted
Fortran statements for unauthorized code.

Every user is provided with a unique directory for uploading and downloading
files, thus facilitating the option of saving and retrieving material. This directory is
created by the CGI script after the registration information is entered and validated.
Users’ directories are password protected, securing each user from all other users.
Every user file, however, is opened and checked by WebPDELab for legal content as
it is uploaded or saved by the user from inside PELLPACK.

14.3.3 WebPDELab Features and Issues

In this section, we list the significant benefits resulting from the implementation of
the WebPDELab server described in Section 14.3.1:

. Generality. Any machine connected to the Internet can use the PELLPACK
environment without concerns about language or machine compatibility.

. Interaction. Users can specify the PDE with normal interaction speeds for the
client machine, since data entry is done locally. The amount of code exported
to support the user interface is substantial (several megabytes), but it is only a
fraction of the PELLPACK system. If the user has no graphics capability, then
the text-based interface tools must be used; these are less convenient but still
practical to use.

As the PDE problem is being specified, information is sent to the server.
The server might request additional information, but once the problem is
completely specified, it is solved on the server’s host machines. After the PDE
is solved, the user can either view output generated by the server or request
that the solution (normally a large data set) be sent for local use.

. Access to high-performance computers. Any user can access machines with suffi-
cient power to solve the PDE problem. Even if the solution is too large to be
sent to the user (or if there are no local visualization tools), the solution can
be explored over the Internet.

14.3 WebPDELab 439

. No code-portability problems. Users do not need to have the code in the local
machine language, since the software infrastructure operates only on the
server’s host machines.

There are several concerns and technical issues involved in the service provided
by WebPDELab.

. Performance of the user interface. There is a clear tradeoff in user interface
performance between exporting code to the user’s machine and executing
code on the server. Our existing prototype shows that communicating each
mouse click back to the server for processing provides unsatisfactory interactive
performance due to network delays. Our analysis indicates that almost all
of the interaction can be run locally by exporting a moderate amount of
code. The user interface does use tools that are both time consuming to
execute and too large to export. Examples are Maxima (used to transform
mathematical equations) and domain processors (used to create meshes or
grids in geometric domains). These tools usually require pauses in response
even without a network, and the added delay due to networks is unlikely to
be significant.

. Security for the server. While we control the material received from a user, the
server is clearly subject to attack. We place the server on a separate subnet and
access licensed software through a gateway. Since we know exactly what is to
be sent via an RPC, it is possible to protect this licensed software. Even if a
user succeeds in becoming “root,” access to other machines is not possible.
Of course, network file systems and similar tools are not used. Our process of
“registering” users when we give them accounts provides us with a chance to
screen users before providing them access to WebPDELab.

. Security for the user. This requires each user to be completely isolated from all
others. Each user on the server runs in a virtual file system using a login with no
access privileges. Thus, each user appears to have the entire machine, and the
protection mechanisms between machines protects users from one another.
This approach provides security at the cost of using much more memory than
would normally be necessary.

. Software ownership and fair use. We prevent the copying of software by placing,
if necessary, source code on another machine or another network and using
secure RPC.

. Payment for computing services. The WebPDELab server is provided free to users
as is time on associated servers used for security purposes. We do not foresee a
need to charge users for time on these machines. If large numbers of users con-
tend for service, then they will be queued and the cost of the servers is clearly
limited. However, there is a real problem when we access parallel machines
that act as compute servers. Initially, WebPDELab uses local machines (a 140-
processor Paragon, a 64-processor SP-2, a PC cluster with 32 PCs, and an SGI
Origin 2000 with 32 processors), and a user can easily pose a problem that uses

440 Chapter 14 Problem-Solving Environments

several hours on one of these machines. We intend to access off-site machines
in the future. When the usage of these compute servers becomes a problem,
we will require users to obtain accounts on them. This is a nuisance now, but
we believe that the Internet infrastructure will evolve soon to simplify such
administrative problems.

There are three technical issues considered in the deployment of WebPDELab as
a successful server. First, the user interface must be clearly separated from the rest of
the system. Our system is very modular in nature, and we have already essentially
completed this task. Second, the user interface must be efficient and exportable.
We have already made a prototype exportable user interface that is neither efficient
nor general. It assumes the user has an X-windows server and it requires excessive
network communication. We have studied Java implementation and believe we can
use it to obtain both efficiency and generality on the network.

Third, the user interface must deal with the visualization of very large data sets
over the network. Using WebPDELab, a person with a simple PC can generate a PDE
solution consisting of millions of data points in 3-D. In our own group, we have
155 Mbit/s asynchronous transport mode (ATM) networks and expensive graphics
workstations to visualize such solutions. We see two ways to provide visualization
service to the user, neither of which is always satisfactory. First, we have visualiza-
tion tools to slice, rotate, color, and otherwise manipulate data for viewing. We could
send these images back over the Internet, but the user might have a slow network
connection or a black-and-white display. In that case, the viewing process would be
painfully slow. Second, we can send the data set to the user. A 2-million-point solu-
tion is not rare, and its data set would be at least 25 to 50 MBytes. The transmission
time could be prohibitive if the user has slow network connections. In addition, the
user might not have space to store the solution or might not have any visualization
tools that can handle the data. We believe that visualization over the Internet will be
a serious problem for some users, and it is one for which we currently have no solu-
tion. We believe that this is a common problem and that the Internet infrastructure
will provide solutions in a few years.

14.4 Other Grid-Computing Environments

There are additional Grid-computing environments available. These include Meta-
computing systems, such as Globus, CONDOR, Ninf, and Legion, as well as projects
providing seamless access to remote resources.

14.4.1 Meta-Computing Systems

Meta-computing systems provide support in developing whole applications for dis-
tributed computing environments. Here we discuss four of the most prominent of
these.

Globus [383] is a software system that provides infrastructure for computations
that leverage distributed computational and informational resources. It is being

14.4 Other Grid-Computing Environments 441

developed at the Argonne National Laboratory and the University of Southern
California’s Information Sciences Institute. Currently, the NetSolve system uses a
component of Globus referred to as the Heart Beat Monitor (HBM). The HBM allows
NetSolve to easily detect failed server hosts and update the agent’s database. We
are also testing a new NetSolve proxy-client that allows Globus-enabled NetSolve
client users to access and use Globus computational resources through the NetSolve
interface. We have discussed extensively the integration of WebFlow with Globus.
Recent developments of the Globus Group—especially the COG Kit [215] for linking
Globus services automatically to middle-tier servers—have extended greatly the
capability of Globus to support PSEs.

The CONDOR system, of the University of Wisconsin, takes advantage of the fact
that many CPU cycles go wasted on idle workstations at times when the primary
user is not using the machine. The system assigns tasks submitted to the CONDOR
system to “registered” host machines as long as these machines are idle. Should the
owner return to the machine, the task is immediately halted and assigned to another
host. CONDOR pools can be used as NetSolve servers. In essence, the request for
service is forwarded to the CONDOR system, which then assigns the task to an idle
workstation for completion. CONDOR has not yet been used with WebFlow, but it
should be straightforward to use CONDOR at the back-end tier in the same way that
Globus is used in the examples of Section 14.2.2.

Ninf is a system very similar to NetSolve. Developed at the Electrotechnical Lab-
oratory in Tsukuba, Japan, it provides an interface that allows for remote execution
of functional components. In a collaborative effort, a NetSolve-Ninf bridge has been
built that allows each system to utilize servers provided to the other. Administrators
of NetSolve and Ninf systems can then join forces to create an even bigger compu-
tational Grid.

Legion is an object-based meta-systems software project at the University of
Virginia. Its goal is to tie together host systems with high-speed links and present the
illusion of a single computer with access to varied physical resources. The NetSolve
client-user can use the NetSolve interface while leveraging the meta-computing
resources of Legion. The NetSolve client side uses Legion data-flow graphs to keep
track of data dependencies. We hope to study the linkage of Legion and WebFlow, but
as both have object models, the integration is not as straightforward as for Globus
and WebFlow.

14.4.2 Seamless Access and Application Integration

Several other projects address the problem of seamless access to remote resources.
A comprehensive list of these is available from the Java Grande and Computing
Portals websites [397, 512]. The NCSA Alliance has started an effort (The Common
Portal Architecture) that will build on many of the ideas discussed above to provide
a common framework for building Web-based portals to the large computational
science application efforts at the NSF supercomputer centers.

442 Chapter 14 Problem-Solving Environments

The UNICORE project [945] introduces an excellent model for the abstract task
descriptor that was well received at Computing Portals meetings [397] and, conse-
quently, we are taking a similar approach. The UNICORE middle tier is given by
a network of Java Web servers (Jigsaw). The WebSubmit project from the National
Institute of Standards and Technology [986] implements Web access to remote high-
performance resources through CGI scripts. Both projects use the https protocol
for user authentication (as we do) and implement custom solutions for access con-
trol. The ARCADE project [661] is aimed at multidisciplinary applications (especially
those of interest to the National Aeronautics and Space Administration and aerospace
applications), and its designers intend to use CORBA to implement the middleware.
Indiana University has developed application integration tools built on the ideas of
the Department of Energy’s common component architecture (CCA) [176, 216].

14.5 Conclusion

Problem-solving environments represent an active and expanding area of research,
with the potential for a wide impact on high-performance computing. PSEs pro-
vide software tools and expert assistance to the user and serve as an easy-to-use
interface to high-performance computing resources, thereby allowing the rapid pro-
totyping of ideas, detailed analysis, and higher productivity. Utilizing and managing
distributed high-performance computing resources is important for a PSE to meet the
requirements of large-scale simulations. These types of PSE have the potential for pro-
foundly changing the way high-performance computing resources are used to solve
problems. In the future, PSEs may be the primary way in which high-performance
computing resources are accessed. As PSEs expand to encompass the use of the Web,
Internet, and the Grid as platforms for computing, we will see more demand for PSEs
to provide seamless access to a wide range of services and resources.

C

H

A

P

T

E

R

15 Tools for Performance Tuning and
Debugging

Daniel A. Reed . Ruth A. Aydt

Scalable parallel systems and PC clusters with hundreds or even thousands of pro-
cessors have displaced traditional vector supercomputers as the hardware platform
of choice for high-performance computing. This architectural change has created
a plethora of new and complex performance tuning and debugging problems for
application developers.

First, large-scale parallelism means that new software bugs may arise from the
complex interactions among large numbers of parallel software components. More-
over, these bugs may have high latency, with their effects not manifest in executing
software until long after the erroneous condition(s) occurred. Equally importantly,
they may be subtly dependent on timing conditions that can rarely be reproduced.
This means that locating and eliminating software bugs can be extraordinarily te-
dious and time consuming, with users forced to trace software component interac-
tions for long periods to identify the root causes of logical errors.

Even if the parallel code is logically correct, users of parallel systems often com-
plain that it is difficult to achieve a high fraction of the theoretical performance peak.
Moreover, the sensitivity of parallel system performance to slight changes in appli-
cation code, together with the large number of potential application performance
problems (e.g., load balance, data locality, or input/output) and continually evolving
system software, make application tuning complex and often counterintuitive.

Both debugging and performance analysis involve monitoring of software exe-
cution. Hence, both are prey to the same theoretical and pragmatic pitfalls as other
experimental sciences. In particular, they must not unduly perturb the measured
system, or else the experimental data will not reflect the system’s nominal behav-
ior. However, the data must be sufficiently detailed to capture the phenomenon of
interest, either the application error or performance bottleneck.

443

444 Chapter 15 Tools for Performance Tuning and Debugging

Aspects of the uncertainty principle also apply—the debugging or measurement
infrastructure usually is a part of the system, making it impossible to accurately
capture certain phenomena using only internal capabilities. For example, one cannot
unobtrusively measure an input/output system if the instrumentation system must
rely on that same input/output system to record the measurement data. Similarly,
debugger threads can change application thread schedules, masking synchronization
errors.

There are many reasons for all of these difficulties, but most are rooted in the
relation of application programming models to complex, multilevel hardware and
software. From the application creator’s perspective, the underlying parallel archi-
tecture is viewed through the lens of the parallel programming model chosen for
application development. Based on the programming model, compilers or run-time
systems may dramatically transform the code written by the software developer.
When debugging and tuning the application’s execution behavior, the programmer
has only the original code as his or her frame of reference.

To be successful, software tools must relate both run-time performance measures
and debugging queries to the original source code. Without such inverse transforma-
tions, the parallel application developer has little recourse but to learn the idiosyn-
crasies of the multilevel hardware/software transformations. In the serial domain,
this is analogous to requiring Fortran or C developers to read compiler-generated
assembly code for debugging and performance tuning.

Despite the complexity of relating performance metrics and debugging queries to
source code, the associated parallel software tools must be simple and intuitive to
use. Unless compelled by circumstances, most users are unwilling to invest great time
and effort to learn the syntax and semantics of new software tools; they often view
debugging and performance optimization as unavoidable evils. Hence, portability
and ease of use are critical to the acceptance of new software tools. Simply put, the
goal of parallel software tools is to provide insight into application behavior and
performance bottlenecks by efficiently capturing and intuitively presenting relevant
data.

In this chapter, we review basic techniques for both correctness debugging and
performance instrumentation and analysis. We illustrate these techniques using
representative tools that bridge the gap between application source code and parallel
execution behavior. Finally, we conclude with some thoughts on the state of the art
and open problems.

15.1 Correctness and Performance Monitoring Basics

Although apparently dissimilar, debugging and performance tuning rely on many
of the same monitoring techniques and share a similar goal—identifying the root
cause for a particular execution phenomenon. For debugging, the goal is achieving
the desired program behavior. For performance tuning, the goal is satisfying some
performance criterion.

15.1 Correctness and Performance Monitoring Basics 445

Users debug sequential programs for many reasons. These range from uncov-
ering program logic errors that produce incorrect results, through identifying and
removing the cause of infinite loops, to correcting program crashes due to memory
corruption.

Parallel execution shares these pitfalls but also includes task and data coordination
and interaction (e.g., via shared variables, synchronization, or message passing).
Moreover, behavior during an execution may not be repeatable; subtle variations
in resource availability may skew event timing across tasks. Good debugging tools
should aid users in identifying problems and, ideally, suggest possible solutions.

The sources of performance problems are just as diverse as those for correctness,
ranging from a mismatch of application needs and available resources through
load imbalances. Performance-monitoring tools should identify bottlenecks, suggest
possible remedies, and relate performance problems to application source code.

Historically, monitoring approaches have included counting and sampling, inter-
val timing, event tracing, and breakpoint insertion for code stepping. Conceptually,
each strikes a different balance between monitoring overhead, data volume, and de-
tail. Many of these approaches have multiple possible implementation techniques,
ranging from completely extrinsic (e.g., an external hardware monitor that counts
cache misses via connections to a set of probe points) to completely intrinsic (e.g.,
inserted code in an application program to compute a histogram of procedure acti-
vation lifetimes or test program correctness assertions).

Typically, performance tuning and debugging are iterative processes. One begins
with global, but coarse-grained probes to identify performance bottlenecks or task
interactions. One then enables more intrusive (expensive) probes to expose behavior
in the bottleneck regions. Of course, performance bottlenecks or correctness errors
may be caused by behavior in other code regions (e.g., a bottleneck procedure may
appear as a bottleneck due to improper or excessive invocation from a calling site).

Event counts can identify how many times different code regions are invoked.
Many times, seeing these counts or stepping through code via breakpoints is enough
to suggest a problem or confirm correct behavior. Similarly, comparing execution
time profiles across tasks can highlight load imbalances. Event tracing enables de-
tailed analysis of program behavior. Comparing event time lines across tasks can
highlight problematic interactions and performance problems.

To summarize, the appropriate monitoring apparatus is determined by the desired
data and the experimental environment. The best combination is dependent on both
the parallel system and the software context.

15.1.1 Profiling and Program-Counter Sampling

A common monitoring method is program-counter sampling. The widely used UNIX
prof and gprof [395] utilities display profiles of program execution time taken
from histogram data collected by periodically sampling the program counter during
execution.

446 Chapter 15 Tools for Performance Tuning and Debugging

When profiling is enabled, program initialization automatically creates a buffer to
hold the histogram data. The histogram bins correspond to equally sized subdivisions
of the program’s address space. During program execution, profile-timer interrupts
occur at regular intervals, every few milliseconds. At each interrupt, the system
samples the program counter and increments the appropriate histogram bin. When
the program exits, the histogram data are saved to a file.

The object file’s symbol table, which contains the starting and ending addresses
of each procedure, is used to identify the procedure associated with each histogram
bin. Because sampling occurs at known intervals, histogram bin height can be used
to estimate the amount of time spent in each procedure.

Profiling depends on an external sampling task, making its granularity necessar-
ily coarse. To obtain accurate profiles, the total program execution time must be
sufficiently high to accumulate a statistically meaningful set of samples.

As an example, Figure 15.1 shows a profile of one process from a Message Passing
Interface (MPI) code on a SUN workstation cluster. This example code computes a
parallel Jacobi iteration on a 2-D square mesh, with horizontal strip partitions.

Figure 15.2 shows the high-level structure of the code. Each task locally computes
a new submesh, computes the local convergence data, and then participates in
a global reduction to determine global convergence. Note that the profile fails to
capture the parallel behavior of the MPI code; the profile reports data for only one
task because each monitoring file contains data for a single MPI process. Moreover,
the profile does not report data on any overlap across processes.

15.1.2 Event Counting

Event counting redresses the limitations of sampling, albeit at some cost. Because
counting is not a statistical measure, the observed frequencies are accurate.1 Typi-
cally, event counting is used to compute the number of times procedures or other
source-code fragments are executed. At a more detailed level, compilers can in-
sert counters in basic blocks to generate statement-execution counts and dynamic
machine-instruction frequencies.

To support unobtrusive capture of hardware performance data, most microproces-
sor vendors now include on-chip hardware counters. These counters can be read and
reset under software control, but are incremented automatically when certain hard-
ware operations occur. The Intel Pentium, Compaq Alpha, HP PA-Risc, IBM POWER
series, and MIPS R12000 [505, 1012, 495, 269, 987] all include an array of instruction
and cache operation counters.

These microprocessor hardware counters draw on lessons from earlier coun-
ters such as the Cray Hardware Performance Monitor (HPM) [594]. The HPM in-
cluded multiple counter groups that recorded such things as memory references,

1 This is not true if the code has timing-dependent behavior. In this case, invasive instrumentation can change
code execution paths, and the actual counts may have been different had the instrumentation been less intrusive.

15.1 Correctness and Performance Monitoring Basics 447

%Time Seconds Cumsecs #Calls msec/call Name

79.5 7.81 7.81 1 7810. main

14.4 1.42 9.23 364242 0.0039 _read

1.5 0.15 9.38 3290 0.046 _write

0.9 0.09 9.47 3249 0.028 _poll

0.7 0.07 9.54 1127473 0.0001 _mcount

0.5 0.05 9.59 360476 0.0001 _cerror

0.4 0.04 9.63 1624 0.025 _so_recv

0.3 0.03 9.66 360498 0.0001 ___errno

0.2 0.02 9.68 _libc_threads_interface

0.2 0.02 9.70 1 20. _fileno_unlocked

0.2 0.02 9.72 net_recv

0.2 0.02 9.74 PMPI_Recv

0.1 0.01 9.75 p4_recv

0.1 0.01 9.76 __pthread_cleanup_push

0.1 0.01 9.77 MPID_Msg_rep

0.1 0.01 9.78 4 2. _libc_fork

0.1 0.01 9.79 MPID_CH_Check_incoming

0.1 0.01 9.80 MPIR_ToPointer

0.1 0.01 9.81 MPID_CH_Eagerb_recv_short

0.1 0.01 9.82 226 0.04 strcpy

0.1 0.01 9.83 PMPI_Bcast

0.0 0.00 9.83 500 0.00 __sqrt

Figure 15.1 Sun cluster profile for Jacobi MPI example (one process).

while (NOT Globally Converged) {

Exchange partition boundary points with neighboring tasks

using MPI_Send() and MPI_Recv()

for (i,j)

xnew[i][j] = (x[i+1][j] + x[i-1][j] + x[i][j+1] +

x[i][j-1]) * 0.25

endfor

for (i,j)

x[i][j] = xnew[i][j];

endfor

Compute local convergence data

Compute global convergence using MPI_Allreduce() then sqrt()

}

Figure 15.2 MPI pseudocode for parallel Jacobi iteration.

448 Chapter 15 Tools for Performance Tuning and Debugging

instructions issued, and floating-point operations. Each counter was updated auto-
matically by the processor hardware, with no software overhead for recording.

Even with such hardware counters, to obtain timing data one must periodically
time stamp and record the counts (i.e., one must sample the counter values). Hence,
software counting requires either passive monitoring (e.g., via an external hardware
monitor) or invasive instrumentation (e.g., via software instrumentation of program
control flow to count execution of code fragments).

As an example, Figure 15.3 shows software-sampled hardware counter values from
SGI Speedshop. In the figure, cycle counts are shown for each procedure in the upper
left panel, and for source code lines in the lower panel.

15.1.3 Interval Timing

Interval timing combines counts with elapsed-time measurements. Intuitively, in-
terval timing is the measured analogue of interval sampling. Rather than sampling
the program counter periodically to compute the amount of time spent in code
fragments, interval timing brackets code fragments with a pair of calls to a timing
routine.

The first invocation records the time of entry; the second uses the current time
and the previous time to determine the elapsed time. The timing data can be used
to compute the code fragment’s total execution time by summing the intervals,
histograms of code fragment execution time by binning the data, or execution
time moments (i.e., mean, variance, and higher moments) by summing the data
and recording counts. Alternatively, one can simply record the magnitude of each
interval and post-process the data.

However, for large-scale parallel systems, recording each interval on each task
can quickly produce large amounts of data. Hence, interval timing is most often
used either to time large code sections that dominate execution or to sum the time
intervals spent in frequently invoked, but small, code fragments.

15.1.4 Event Tracing

Unlike counting, which naturally abstracts the occurrence of specific events, or
interval timing, which abstracts the frequency of specific events, event tracing
generates a complete sequence of events, their time of occurrence, and ancillary
data about the time-evolutionary system state. As an example, the event-tracing
instrumentation in Figure 15.4 would generate two events on each invocation of
the procedure, in this case an MPI message send [405]. On a parallel system, the
recorded data for each event would include the event identifier, the time the event
occurred, the task identifier, and any data related to the event (e.g., current variable
values).

Event tracing has been widely used to debug and tune the performance of
message-passing parallel programs [448, 637, 639, 795]. Typically, a modified version
of the message-passing library intercepts each message-passing call, records relevant

15.1 Correctness and Performance Monitoring Basics 449

Figure 15.3 SGI Speedshop hardware counter performance display.

MPI_Send(void * Buffer, const int Count,

MPI_Datatype Datatype, int Destination,

int Tag, MPI_comm Handle)

{

TraceEvent(MPI_SEND_ENTRY_EVENT, EventRelatedData);

PMPI_Send(Buffer, Count, Datatype, Destination,

Tag, Handle);

TraceEvent(MPI_SEND_EXIT_EVENT, EventRelatedData);

}

Figure 15.4 Event-tracing instrumentation example.

450 Chapter 15 Tools for Performance Tuning and Debugging

parameters from the call, and invokes the actual message-passing routine. Indeed,
the MPI message-passing standard [405] defines a profiling interface for precisely
this purpose.

Given event traces, one can visualize causal event dependencies in a variety of
ways. Widely used academic and commercial tools such as ParaGraph [448], Pablo
[793], Jumpshot [1014], and Vampir [736] process raw event traces and produce
visualizations and animations of event types, durations, and dependences. In Sec-
tion 15.5, we describe some of these and other representative tuning and debugging
tools.

In summary, event tracing is a more general monitoring technique than either
counting or interval timing; from an event trace, one can compute counts or times—
the converse is not true. Moreover, parallel event traces can be used to debug
software component interactions by analyzing the partial event order for unexpected
patterns.

The disadvantage of tracing is the potential monitoring intrusion. Because each
event must be time stamped and recorded separately, the potential data volume is
large, and the input/output requirements are substantial. For example, a trace of
MPI events for the Jacobi iteration of Figure 15.2 on a modest-size, 384× 384 mesh
generates tens of thousands of events for 500 iterations. Although useful for tuning
applications with small, test data sets, detailed tracing must be used sparingly with
large-scale production runs.

15.1.5 Control Breakpoints

A common mechanism for program correctness debugging is the breakpoint debug-
ger. Typically, a monitoring process controls execution of the application process(es)
via system calls, such as ptrace() on UNIX systems. Using compiler symbol table in-
formation and system calls, the breakpoint debugger control process interrogates
stack frames of the executing code, allowing users to examine and change variables,
start and stop processes, and trace execution paths.

For parallel programs, breakpoint debuggers must coordinate the execution states,
starting and stopping the code at consistent points. As parallelism levels rise to hun-
dreds or thousands of parallel processes and threads, this distributed coordination
becomes increasingly complex.

In addition to handling the process coordination issues, the breakpoint debugger
must also provide a simple and intuitive user interface to the parallel processes.
Without such an interface, the user will be overwhelmed by data and complexity,
and the debugger will not be usable. For example, simple debugger commands such
as print X have many possible interpretations, ranging from display of the variable
value in the current process context to display of all copies of the variable.

If the variable X is a global array in a data-parallel language like High Performance
Fortran (HPF), then the debugger may have to gather subsets of the array from
multiple processes before printing. Addressing many of these challenges requires
deep integration of compilers, run-time libraries, and system software.

15.2 Measurement and Debugging Implementation Challenges 451

One of the few research or commercial breakpoint debuggers to support par-
allel program analysis at truly large scale is TotalView [315], which has been ex-
tended via the U.S. Accelerated Strategic Computing Initiative (ASCI) for systems
with thousands of parallel tasks. In Section 15.5, we examine TotalView in more
detail.

15.2 Measurement and Debugging Implementation Challenges

In general, counting, timing, tracing, and breakpoint management occupy different
points in the continuum of detail and measurement overhead. The choice of a par-
ticular approach is dictated by the desired data and the constraints of the underlying
instrumentation implementation—some measurements are not feasible in some en-
vironments. Two of the most basic implementation challenges concern clocks and
event orders.

15.2.1 Clocks and Timing

Both interval timing and event tracing require clock access. The clock being accessed
need not have the resolution of the processor clock (i.e., a 500-MHz microprocessor
need not have a user-accessible, 2-ns clock), but the clock resolution should be
sufficiently high that the measured times of successive events differ. Also, the cost
of clock access should be small relative to the frequency of events.

Unfortunately, many systems fail to satisfy these standard constraints on clock
features. As microprocessor clock speeds have increased, the resolution of many
PC and workstation clocks has not increased at the same rate. This disparity in
workstation speed and clock resolution makes it more difficult to obtain accurate
timing measurements.

On a 1-MIP processor, a clock with 1-ms resolution can accurately measure code
fragments as small as a few thousand instructions. An equivalent clock on a 100-
MIP machine can accurately measure only instruction sequences of a few hundred
thousand instructions.

High software overhead for clock access is as debilitating as low clock resolution—
one cannot measure frequently occurring events without grossly perturbing system
behavior. Under these circumstances, it is best to map hardware cycle counters
into the application address space. This makes it possible to read the counters and
compute cycle counts with only a handful of hardware instructions.

15.2.2 Event Orders and Time

Monitoring overhead can change the times when events of interest occur. More
subtly, on a parallel system it can also change the order in which events occur. This
can change observed performance and mask behavioral bugs.

In contrast to the total order that exists in the single task of a sequential pro-
gram, the events across tasks in a parallel program are partially ordered. Concretely,

452 Chapter 15 Tools for Performance Tuning and Debugging

Partial event order
(parallel)

Task 0

Task 1 (Case A)

Task 1 (Case C)

Task 1 (Case B)

D E F

G H I

G H I

G H I

Figure 15.5 Event orders.

consider the example in Figure 15.5. In the figure, the events on task 0 are totally
ordered, as are the events on task 1. Instrumentation or breakpoint overhead cannot
change the event order on either task unless the code contains time-dependent ac-
tions. Similarly, it cannot change program correctness unless the program contains
a logical error.

However, overhead can change the total event order across tasks. For example, in
MPI programs, performance instrumentation or debugging breakpoints can change
the order that receivers who wait for messages from multiple senders receive those
messages. In turn, this can change execution behavior in the receiving process.
Likewise, in thread-based programs, instrumentation can change thread execution
times, leading to different thread schedules and behavior.

Even if one assumes no time-dependent code exists, the global, total order of
events for the pair of tasks depends strongly on the absolute times of events in
multiple tasks. In Figure 15.5, a shift in the time that event H occurs can change
the total order of the events E and H across tasks to EH or HE. Moreover, the effects
of this change may be propagated to future events; by shifting their starting times,
their relation to events in other tasks may change as well.

Because it is impossible to eliminate instrumentation or breakpoint overhead,
instrumentation is subject to an uncertainty principle—the act of observing the system
may change the event order. Under restricted circumstances, it is possible to post-
process an event trace and recover the actual event order (i.e., the event order that
occurs without instrumentation) [638, 640]. In general, however, the observed event
order cannot be exactly recovered, and event-order perturbations must be minimized
by reducing instrumentation overhead or reducing the number of events that are
instrumented.

15.3 Deep Compiler Integration 453

A consistent global time base is implicit in the assumption of event order across
tasks. Lest this statement seem pedantic, many parallel systems have been built with
local clocks on each processor; PC clusters are the most recent example. Not only are
these clocks independent, but manufacturing variances in the clock crystals mean
that they tick at slightly different rates. The only clock synchronization present on
most PC clusters is based on the network time protocol, which yields resolution too
poor to maintain full causality for low-latency communication libraries.

The absence of a global time base can lead to causality violations. For example, if
one were to instrument a message-passing code to record both the time a message was
sent and the time it was received, the message would appear to have been received
before it was sent if the sender’s clock were faster than that of the receiver. To redress
this problem, most current parallel systems contain a globally synchronized clock.
Unfortunately, the resolution of the global clock is typically less than that of the
local clock and the access time is greater.

15.3 Deep Compiler Integration

Most performance-analysis and debugging tools target the collection and presen-
tation of application behavior when the parallelism and interprocessor communi-
cation are explicit (e.g., in message-passing or shared-memory threaded codes). To
support high-level languages that rely on compilers to infer such details from data-
decomposition directives, tools for debugging and performance analysis require an
increased level of sophistication and integration with other components in the pro-
gramming system.

The use of high-level languages and sophisticated parallelizing compilers means
that an application-software developer’s mental model of a program and the actual
code that executes on a particular parallel system can be quite different. For analysis
tools to provide relevant data and suggestions for debugging and performance
improvements at the level of an abstract, high-level program, they must integrate
data from dynamic program execution with data recorded by the high-level language
compiler that describes the mapping from the high-level source to the resulting low-
level explicitly parallel code.

15.3.1 A Motivating Example

The need for integrated compilation systems and performance-analysis environ-
ments is best illustrated by considering the steps that currently must be followed
to compile and analyze the performance of data-parallel HPF code on distributed-
memory parallel systems using decoupled compilation and performance-analysis
tools. Similar problems exist for other languages and systems with high-level ab-
stractions (e.g., Java, parallel C++, or MATLAB).

454 Chapter 15 Tools for Performance Tuning and Debugging

! Original HPF Code

REAL A(10000), APRIME(10000)

!HPF$ DISTRIBUTE A(BLOCK)

!HPF$ DISTRIBUTE APRIME(BLOCK)

DO I = 2, N

APRIME(I) = (A(I+1) + 2*A(I) + A(I-1)) * 0.25

ENDDO

! Generated SPMD Code (Assuming 100 Processors)

REAL A(100), APRIME(100)

REAL TMP

send A(1) to task K-1

send A(100) to task K+1

receive LOW from task K-1

receive HIGH from task K+1

APRIME(1) = (A(2) + 2*A(1) + LOW) * 0.25

APRIME(100) = (HIGH + 2*A(100) + A(99)) * 0.25

DO I = 2, 99

APRIME(I) = (A(I+1) + 2*A(I) + A(I-1)) * 0.25

ENDDO

Figure 15.6 HPF and generated SPMD code.

As an example, consider the HPF code fragment in Figure 15.6. In a distributed-
memory parallel system, an HPF compiler must translate the data-distribution di-
rectives and Fortran array operations into parallel, message-passing code. First, the
compiler distributes portions of arrays across the processor memories, then maps a
subset of the array operations to each processor, and finally, synthesizes message-
passing calls to realize the illusion of shared memory.

In the example of Figure 15.6, the compiler must generate temporary variables and
communication to share the boundary elements of the subarrays across processors.
As a consequence of this translation, there is a large semantic gap between the data-
parallel programming model and the compiler-generated SPMD message-passing
model, much as there is between code expressed in a sequential language like C
and the assembly language code generated by a C compiler.

15.3 Deep Compiler Integration 455

Because the goal of high-level, data-parallel languages like HPF is to insulate
the software developer from the idiosyncrasies of message passing, performance
tuning should not require the developer to understand the details of the compiler-
synthesized, message-passing code. Instead, compilers and performance tools should
work together to “invert” the compiler transformations and relate performance data
from the generated code to the original data-parallel source code.

The difficulty of this inverse mapping is exacerbated by the range of possible
compiler optimizations. A data-parallel compiler may inline procedures, distribute
or fuse loops, vectorize and pipeline communication, and apply a host of other
optimizations. The greater the sophistication of the compiler, the more complex the
inverse mapping from generated code to data-parallel source code, and the lower the
likelihood that a unique inverse mapping exists.

Even if the programmer successfully maps dynamic performance data back to
the data-parallel source code, he or she has succeeded only in identifying why the
code executed inefficiently. Understanding how to modify the data-parallel source
to increase performance remains problematic—the inverse mapping of performance
data to data-parallel source code is not predictive! The HPF programmer can affect
performance only by changing data distributions and other HPF code fragments and
needs estimates of the relative merits of code changes.

Unfortunately, there are no extant commercial compilers and tools that fully pro-
vide guidance on the possible effects of high-level code changes. Indeed, as explained
below, this is an area of active research, with new algorithms and techniques needed
to better support predictive performance tuning.

15.3.2 Performance Modeling and Prediction

Developers often invest substantial intellectual effort in designing and coding a
parallel program, only to discover upon execution that it yields a mere fraction of
peak system performance. At this postmortem stage, software-performance tuning
begins in an effort to locate and remove bottlenecks in the original design and
implementation.

Unfortunately, even on a single parallel architecture, observed application per-
formance may vary substantially as a function of input parameters. Furthermore,
if the application code is portable across multiple parallel architectures, it is highly
unlikely that it will achieve high performance on all architectures. This sensitivity
to input parameters and architecture makes the task of tuning code to perform well
in general, based on the observed behavior for a particular run, extremely difficult.

Ideally, an integrated modeling and measurement environment would allow de-
signers to “mix and match” software and hardware components, validating perfor-
mance design goals against a composition of calibrated models of proposed compo-
nents and measurements of extant components prior to detailed design and software
construction. Although easily stated, providing such guidance is difficult.

456 Chapter 15 Tools for Performance Tuning and Debugging

Important performance-prediction questions include determining how applica-
tion performance changes with variations in the parallel system configuration or
application problem size, and identifying which code fragments will become the
performance-limiting bottlenecks as hardware or application parameters change.
Not only do performance prediction and scalability share many challenges and
problems with deep compiler integration, namely the need for data on compiler
transformations and the relation of source and executable code, prediction and scal-
ability also require accurate models of diverse hardware and software components,
including I/O systems, networks, memory managers, and schedulers.

In principle, one could combine compiler-derived data on symbolic program
variables and performance measurements from selected executions of the compiler-
generated code to generate scalability predictions. These models consist of symbolic
expressions representing the execution complexity of individual program sections.
Combining predictions for program sections with control flow data yields aggregate
program predictions. Despite the attraction of symbolic performance prediction and
ongoing research [10, 666, 794], at present there are no symbolic prediction systems
suitable for use with large-scale parallel applications.

Hence, several vendors and groups are exploring alternate techniques based on
pattern matching, expert systems, and machine learning; all rely on detailed data
from compilation systems. Cray’s ATExpert (AutoTasking Expert) [231] was one of
the first tools to embody developer experience on the best approaches to parallelizing
codes for Cray vector systems. ATExpert predicts and reports dedicated autotasking
performance (i.e., that obtained by automatically distributing loop iterations across
processors) based on data collected from a single execution on a nondedicated
system. Its successor, the Cray MPP Apprentice [230], provides a superset of these
features.

More recently, SGI’s PCP (Performance Co-Pilot) [862] and Miller’s Paradyn Con-
sultant [530] built on these ideas by attempting to classify performance problems
based on execution signatures. Using these signatures, the tools suggest possible per-
formance problems and trigger solutions. For example, PCP includes an inference
engine that can trigger alarms based on anomalous behavior or initiate corrective
system actions.

15.4 Software Tool Interfaces and Usability

The effectiveness of tools for debugging and performance tuning is ultimately de-
termined by use; sophisticated software and hardware to support monitoring and
analysis provide no insight unless they are used. Surveys [737] have shown that sci-
entific application software developers will eschew powerful, but complex tools in
favor of inferior, but easily understood tools. Unless compelled by circumstances,
most users are unwilling to invest much time and effort to learn the syntax and se-
mantics of new performance or debugging tools. Unlike compilers, where users have
no choice, most users have “home grown,” ad hoc debugging and tuning techniques
of their own.

15.4 Software Tool Interfaces and Usability 457

Within the parallel computing community, the Parallel Tools Consortium [741]
has been a leader in identifying user needs and promoting the development of
tools that address those needs. Top priorities include ease of use, portability across
architectures, scalability, and control over the level of monitoring and the detail of
presentation.

15.4.1 Tool Scalability

Scalability is a key characteristic of commodity parallel systems; by adding processors
one can incrementally increase performance without replacing existing hardware or
changing the underlying software. Software tool scalability not only implies that
the environment must be capable of capturing and analyzing data from very large
numbers of processors, it must also be capable of presenting the data in ways that
are intuitive and instructive.

Many debugging and performance presentation techniques represent the states
of individual tasks (e.g., by a colored square or debugging window for each task)
and do not scale to thousands of concurrent entities [448, 736]. Likewise, displays of
interprocessor communication patterns are limited by workstation-screen real estate.
For example, the Jumpshot display of Figure 15.7, though invaluable for analyzing
communication patterns, cannot readily display detailed patterns for thousands of
tasks.

Fortunately, for most scalable parallel systems and their associated applications,
task behaviors often form a small number of equivalence classes; it frequently
suffices to see aggregate behavior with detail for equivalence class representatives
and outliers. Hence, both new analysis techniques that identify such equivalence
classes [704] and new display idioms are needed if software tools are to scale with
parallel system size. Many of the more recent tools described in Section 15.5 provide
just such capabilities.

15.4.2 User Expectations and Recommendations

Based on the experience of tool designers and developers, there are three classes
of potential software tool users: novice, intermediate, and expert. Each is often
loosely correlated with the class of parallel system they may use: small-scale SMP,
moderately parallel system, or terascale parallel system with hundreds or thousands
of processors.

Novice users know relatively little about parallel system software or hardware, nor
do they wish to learn more than the minimum necessary to debug and optimize the
performance of their application codes. They want tools that are simple and easy to
use and that will quickly identify performance bottlenecks or program errors. Equally
importantly, they are much more interested in acceptable performance rather than
in achieving optimal performance. For these users, profiling tools often strike the
right balance among tool complexity, ease of use, and problem identification.

458 Chapter 15 Tools for Performance Tuning and Debugging

Figure 15.7 Jumpshot event visualization.

In contrast, intermediate users often wish to conduct performance experiments,
asking such questions as, What caused this behavior? or How do these performance
metrics interrelate? Although they are unlikely to be willing to extend the software
tool by writing new software, these users do want a modicum of control over the
environment’s behavior. For example, they may wish to compute new performance
metrics from the measured data and to compare them to other metrics. This interme-
diate user class needs an environment toolkit whose components can be assembled
in a wide variety of ways. Tools such as the SGI Performance Co-Pilot [862] provide
such capabilities.

Finally, expert users are intimately acquainted with the parallel architecture and
system software. Indeed, they may wish to use the performance environment to
study the effects of system software modifications. These users need the broadest
latitude, subsuming the needs of both the novice and intermediate users. Not only
will they wish to reassemble the existing components of the environment toolkit,
they will want to add new toolkit components. Moreover, they expect the added
components to integrate seamlessly with extant elements.

Ideally, performance and debugging tools would accommodate all three user
classes. In keeping with the dictum that the common case should be easy, well-

15.5 Software Tool Examples 459

designed software tool interfaces allow users to proceed from the simple to the
complex. For debugging, this means testing first for global conditions across all tasks,
then allowing related-task or per-task queries. For performance analysis, this means
that high-level, aggregate performance data should be presented first, followed by
increasing detail as the user explores the causes for poor performance.

Following these guidelines, profiles are an excellent entree to performance analy-
sis. They are intuitive, easily displayed, and involve minimal instrumentation. Once
the user has identified the performance bottleneck, more detailed metrics, such as
processor utilizations or aggregate interprocessor communication patterns, can pro-
vide additional insight. Finally, in certain instances, detailed examination of task
interaction patterns may be appropriate for selected tasks; presenting detailed data
from all tasks is both computationally prohibitive and graphically cumbersome.

15.5 Software Tool Examples

Below, we describe four systems, two academic and two commercial, that provide
simple, yet powerful interfaces for specifying instrumentation, analyzing data, and
debugging applications. These systems were chosen as representatives of current
techniques and user interfaces. Other companies, including IBM, SGI, KAI Software,
and Pallas provide similar analysis tools, and a host of other academic projects are
exploring a diverse set of instrumentation and data-presentation techniques.

15.5.1 Jumpshot Event Visualization

Jumpshot [1014] shares many features with commercial event-visualization tools like
Vampir [736]. Other academic trace-visualization tools such as ParaGraph [448] also
provide similar functionality.

Instrumentation and Analysis

Jumpshot relies on event-trace data generated via the MPI profiling interface, as
described in Section 15.1.4. Using MPI traces, Jumpshot displays execution activity
in each parallel task as a time line. As an example, Figure 15.7 shows the message-
passing activity of the Jacobi iteration code shown previously.

Jumpshot supports two display modes, “mountain range” and event time line,
shown in the top and bottom panes of Figure 15.7, respectively. The “mountain
range” mode at the top of the figure uses colors to show the message-passing state of
each task. The event time line is similar, but it also shows communication patterns
by connecting message senders and receivers.

To accommodate large message-passing traces from long-running codes, Jump-
shot includes a scaling mode via which users can choose the time scale of the
displayed data, ranging from an entire execution to a small time window. Finally,
one can display histograms of message sizes and durations.

460 Chapter 15 Tools for Performance Tuning and Debugging

Assessment

Jumpshot focuses on tuning of applications written using one of the most common
models—message passing via MPI. As such, it provides detailed views of intertask
communication, time spent in different states, and message-passing overhead. Its
biggest limitation is the lack of support for compiler-assisted source code correlation,
although this was not one of its design goals.

15.5.2 SvPablo Source Code Correlation

As noted earlier, correlating data-parallel source code with dynamic performance
data from both software and hardware measurements, while still providing a
portable, intuitive, and easily used interface, is a challenging task [738]. The Sv-
Pablo (Source View Pablo) graphical environment draws on lessons from several
generations of performance-tool development.

SvPablo supports application source code instrumentation, performance data
capture and analysis, and browsing of dynamic performance metrics for applications
written in a variety of languages and executing on both sequential and parallel
systems [259, 260]. In addition, SvPablo exploits hardware support for performance
counters.

Following execution, performance data from each task is integrated, additional
statistics are computed, and the resulting metrics are correlated with application
source code, creating a performance file that is represented via the Pablo self-describing
data format (SDDF) [792]. This file is the specification used by SvPablo’s browser to
display application source code and correlated performance metrics.

SvPablo Performance Instrumentation

Interactive instrumentation provides detailed control, allowing users to specify pre-
cise points at which data should be captured, albeit at the possible expense of
excessive perturbation and inhibition of compiler optimizations. In contrast, au-
tomatic instrumentation relies on the compiler or run-time system to insert probes
in compiler-synthesized code.

Currently, SvPablo supports interactive instrumentation of C, Fortran 77, and
Fortran 90 and automatic instrumentation of data-parallel High Performance Fortran
(HPF). As noted earlier, instrumenting the data-parallel source code can potentially
inhibit any or all of these optimizations, dramatically reducing performance and,
equally importantly, resulting in performance measurements that are not typical of
normal execution. Hence, SvPablo relies on the HPF compiler to emit instrumented
code.

SvPablo Performance Analysis

One of the design goals for SvPablo was to create an intuitive, cross-architecture,
language-independent, performance analysis interface. Realizing such a design

15.5 Software Tool Examples 461

Figure 15.8 Baseline performance data (MSTFLOW HPF code).

would allow users and performance analysts to learn a single set of source code
navigation skills and then apply those skills to application codes written in a variety
of languages and executing on a diverse set of architectures.

Hence, the SvPablo implementation relies on a single interface for performance
instrumentation and visualization. If the program is interactively instrumented, the
user can refine the performance analysis by reinstrumenting the source code while
visualizing performance data from earlier executions. Regardless of the instrumenta-
tion mode, one can access and load performance data from multiple prior executions,
including different numbers of processors and hardware platforms.

As an example, Figure 15.8 shows the SvPablo interface, together with code
and performance data from an HPF program. In the figure, the leftmost scrollbox
shows the set of files comprising the HPF program, with all previously measured
executions of this code shown in the scrollbox to the right. Here, the user has
loaded a performance data context (i.e., a measured execution) for an eight-processor
SGI Origin 2000. After selecting a performance context, the list of procedures in
the application code, together with two color-coded metrics, is shown below the
performance contexts scrollbox in the area labeled Routines in Performance Data. The
two colored columns summarize, over all processes, the average number of calls and
average cumulative time for the routines.

462 Chapter 15 Tools for Performance Tuning and Debugging

Clicking on a routine name loads the associated source code in the bottom pane
of Figure 15.8, together with color-coded metrics beside each source line. By default,
the SvPablo interface displays one column for each metric. However, the user can
select only a subset of the metrics to appear in the color-coded columns. Clicking the
mouse on a colored box, either in the routine list or beside a source code line, creates
a dialog box displaying the maximum value associated with the selected metric. In
addition, pop-up dialogs showing other statistics and detailed information about a
particular routine or source code line, including individual process metrics, can be
obtained by clicking the mouse on the routine name or the source code line.

Assessment

Like other tools, SvPablo has both strengths and weaknesses. Although the user inter-
face is language neutral, one cannot “drill down” for additional levels of performance
data (e.g., examining compiler-synthesized message-passing code). Moreover, it does
not integrate debugging and performance analysis, nor does it include a performance
advisor or distributed-computation assessment.

15.5.3 Thinking Machines Prism

Although Thinking Machines Corporation (TMC) no longer builds or sells parallel
systems, many of the ideas of and approaches to large-scale performance analysis and
debugging were exemplified by the TMC Prism environment. Moreover, portions of
Sun’s HPC ClustersTools software for performance tuning and debugging are based
on Prism.2

Performance Instrumentation

As Figure 15.9 suggests, Prism was first developed as an integrated breakpoint debug-
ger and performance-analysis system for the CM-2 and CM-5 [922]. On Sun systems,
one captures application performance data by compiling the code with a profile flag.
This directs the compiler to generate code whose performance can be measured via
standard profiling tools such as gprof.

On the CM-5, performance data were captured via interval timers. In this case,
profiles were measured, rather than statistical (i.e., the execution time of each code
fragment was measured and a profile was computed from cumulative execution time,
rather than via program-counter sampling).3

The CM-5 supported both message passing and data-parallel programming. Prism
was initially developed to support the data-parallel model, which was common to
both the SIMD CM-2 and the MIMD CM-5, with a later version supporting TMC’s

2 Sun acquired rights to much of TMC’s software, including Prism, and several TMC staff joined Sun.
3 The CM-5 supported standard UNIX prof and gprof as well, and the Sun version of Prism relies on Solaris
support for performance data.

15.5 Software Tool Examples 463

Figure 15.9 Thinking Machines Prism interface.

message-passing library. Sun versions of Prism now support analysis of data-parallel
code written in HPF, as well as message-passing codes based on MPI, Fortran 77,
Fortran 90, C, and C++.

As one might expect, the choice of a programming model has profound implica-
tions for what data are captured, how the data are reduced, and how the data are
presented. The message-passing model is a direct reflection of the TMC CM-5’s under-
lying distributed-memory architecture and the clustered nature of Sun’s networked
servers. Logically, the data-parallel model is “higher level”—it is implemented using
message passing. In both cases, compiler-generated instrumentation captures the
performance of the executed code. For the data-parallel model, performance data
from all the nodes must be combined and related to the user’s code. For message
passing, the behavioral variance across nodes is potentially large, and it is desirable
to examine the performance of each node separately.

464 Chapter 15 Tools for Performance Tuning and Debugging

Figure 15.10 Thinking Machines Prism performance data.

Performance Analysis

Figure 15.10 shows the display created by Prism in response to a user selection from
the Performance menu of Figure 15.9. This display contains three panes, and each
pane shows a separate performance view. The panes in the upper left, upper right, and
bottom show resource use, procedure statistics, and source line statistics, respectively.
In all three cases, the statistics are displayed as simple bar graphs, with options to
sort metrics magnitudes based on time or utilization.

For each of the resource use metrics in the top left pane, one can display the
distribution of this time across procedures in the procedure pane to the right; this can
be either a flat display such as is produced by the UNIX prof utility or a hierarchical
display like that produced by gprof. In the hierarchical display mode, one can
navigate the hierarchy by clicking on a procedure to see more detail. In Figure 15.10,
the top right pane has been configured to show the time spent in message passing. In
this example, the code contains no procedures other than the main program; hence
the display in Figure 15.10 is degenerate.

15.5 Software Tool Examples 465

Finally, the source code pane at the bottom of Figure 15.10 shows the source code
for a procedure and the amount of time in each code fragment. Because one selects
the procedure to display by clicking on it in the procedure pane above, the metric
displayed is the same—message passing in this example.

Breakpoint Debugging

In addition to support for performance analysis, both the TMC and Sun versions of
Prism include a breakpoint debugger. Originally, the most notable feature of this
debugger was its support for process sets. By allowing users to specify groups of
logically related processes, Prism can be used to debug parallel applications with
large numbers of parallel tasks.

Assessment

TMC Prism’s simplicity was both its greatest advantage and its greatest limitation.
Integration of performance analysis with the breakpoint debugger ensures that the
performance analysis interface will be well understood by users before they begin
performance tuning. Likewise, the fixed set of performance data reductions and
presentations means that the user need not endure a complex configuration process
prior to examining the performance data. The simplicity of the Prism interface,
together with the undeniable utility of the presented data, made Prism very popular.

15.5.4 Etnus TotalView

TotalView [315] is one of the few commercially available, multiplatform debuggers.
A breakpoint debugger, TotalView uses system services to start, stop, and manipulate
collections of processes. Initially developed by BBN Technologies in the late 1980s
for the BBN Butterfly, TotalView has been ported to almost all parallel and vector
platforms, including the IBM SP, SGI Origin, Sun and Compaq clusters, Cray, Fujitsu,
NEC, and Hitachi vector machines. In addition, it supports the common languages
and programming models, including C, C++, Fortran 77, Fortran 90, HPF, MPI, PVM,
and OpenMP.

Debugging and Visualization

Like Prism, TotalView supports interactive data visualization. By taking slices of
arrays and displaying array subsets based on specified conditions (e.g., IEEE “not-a-
number” or numerical ranges), users can analyze changes in array values throughout
execution. Seeing scalars and arrays take on unexpected values is one of the most
powerful analysis techniques—it enables debugger users to test their mental model
of code execution against actual execution.

TotalView also supports the notion of process groups—groups of related processes
that execute the same code. The TotalView interface then allows users to operate

466 Chapter 15 Tools for Performance Tuning and Debugging

on process groups as if they were single processes, allowing scalable debugging of
hundreds or thousands of parallel tasks.

Moreover, TotalView supports debugging of hybrid applications (i.e., those writ-
ten using multiple languages and programming models) that execute on distributed
clusters of systems. For MPI applications and application components, one can ex-
amine the MPI message queues to identify possible causes for message deadlock.
Similarly, for HPF applications and components one can visualize arrays and their
processor distributions and even examine and debug the generated Fortran 77 code.

Assessment

The major strength of TotalView is its support for almost all common parallel hard-
ware platforms and programming models. By providing a standard look-and-feel,
users can migrate codes across platforms and still use the same debugger interface.

15.6 Challenges and Open Problems

Although there are several commercial and academic software tools for performance
tuning and debugging, tool developers continue struggling to support evolving
system features and programming models. New architectural features (e.g., out-
of-order instruction execution, deep memory hierarchies, and network-attached
storage) and programming models (e.g., hybrids based on combinations of OpenMP
and MPI) create new performance problems and change optimization criteria.

More perniciously, experience has shown that first-generation tools are rarely as
effective as those that build on lessons learned from user studies and feedback. Hence,
the rapid pace of hardware and software change means that tool developers have
little opportunity to capture and embody experience with common programming
idioms.

15.7 Conclusion

Parallel systems continue to change rapidly, and each poses a different set of
performance-analysis and debugging problems. However, a set of standard instru-
mentation techniques for parallel systems has begun to emerge. Although the im-
plementation of profiling, counting, interval timing, event tracing, and breakpoint
debugging differs across systems, all implementations require high-resolution, low-
overhead clocks and efficient data-extraction mechanisms. Open instrumentation
questions include techniques for automatically identifying the causes of perfor-
mance bottlenecks and locating tasks with anomalous behavior, and developing
additional mechanisms for relating low-level performance data to high-level, data-
parallel languages.

The state of data-presentation techniques is more nascent. Scalable parallel
systems mandate presentation of higher-level, less-detailed performance data—

15.8 Further Reading 467

otherwise, the user is overwhelmed by the volume of data. For example, many
current graphical performance-presentation techniques represent the states of in-
dividual tasks and do not scale to thousands of processors. An ideal performance
data presentation should proceed from high-level, aggregate metrics that involve all
processors and the entire computation to successively more detailed metrics for a
subset of the processors and portion of the execution.

15.8 Further Reading
. Margaret L. Simmons, Ann H. Hayes, Jeffrey J. Brown and Daniel A. Reed, De-

bugging and Performance Tuning for Parallel Computing Systems, IEEE Computer
Society Press, 1996. Summarizes a workshop on performance tools for parallel
computing. With chapters on academic, national laboratory, and vendor soft-
ware tool efforts, it is both a checkpoint of the state of the art and an analysis
of the challenges faced by software tool developers.

. Vikram S. Adve, John Mellor-Crummey, Mark Anderson, Ken Kennedy, Jhy-
Chun Wang, and Daniel A. Reed, “An Integrated Compilation and Performance
Analysis Environment for Data Parallel Programs,” Supercomputing ’95, Decem-
ber 1995. Describes the problems inherent in building a performance-analysis
environment that can relate dynamic performance data to data-parallel source
code.

. Daniel A. Reed and Randy L. Ribler, “Performance Analysis and Visualization,”
in Computational Grids: The Future of High-Performance Distributed Computing,
Ian Foster and Carl Kesselman (eds.), Morgan-Kaufmann, 1998. A review of
the history of performance data visualization, emphasizing the evolution from
postmortem optimization to real-time analysis and tuning.

. Daniel A. Reed, David A. Padua, Ian T. Foster, Dennis B. Gannon, and Barton
P. Miller, “Delphi: An Integrated, Language Directed Performance Prediction,
Measurement, and Analysis Environment,” The 7th Symposium on the Frontiers
of Massively Parallel Computation, February 1999. A look at compiler-aided
performance prediction for complex parallel and distributed applications.

Acknowledgments. Portions of the work described here were conducted by members
of the Pablo research group at the University of Illinois over a period of many years.
We express special thanks for insights and ideas from Luiz DeRose, Allen Malony,
Celso Mendes, and Jhy-chun Wang. Much of the work in deep compiler integration
described in Section 15.3 was done by Vikram Adve, Ken Kennedy, and John Mellor-
Crummey, members of the D System project. In addition, the members of the Delphi
project, Ian Foster, Dennis Gannon, Bart Miller, and David Padua, are the source of
many of the approaches to performance prediction described in Section 15.3.2.

468 Chapter 15 Tools for Performance Tuning and Debugging

This work was supported in part by the Defense Advanced Research Projects
Agency under contracts F30602-96-C-0161, DABT63-96-C-0027, and N66001-97-C-
8532. Support also came from the National Science Foundation (NSF) under grants
CDA 94-01124, ASC 97-20202, and the NSF Partnerships for Advanced Computa-
tional Infrastructure cooperative agreement, and the Department of Energy under
contracts B-341494, W-7405-ENG-48, and 1-B-333164.

C

H

A

P

T

E

R

16 The 2-D Poisson Problem

William Gropp

In this chapter I briefly describe how an approximate solution to the simple par-
tial differential equation introduced in Chapter 4 can be found when using parallel
computing. This allows us to illustrate the issues involved in parallelizing an ap-
plication and to contrast the two major approaches: message passing and shared
memory. The presentation complements and builds on the material in Chapter 4,
which discusses the same problem from the perspective of parallel algorithms and
performance modeling issues, and on Chapter 9, where we reviewed other parallel
programming systems.

16.1 The Mathematical Model

The Poisson problem is a simple elliptic partial differential equation. The Poisson
problem occurs in many physical problems, including fluid flow, electrostatics,
and equilibrium heat flow. In 2-D, the Poisson problem is given by the following
equations:

∂2u(x, y)

∂x2
+ ∂2u(x, y)

∂y2
= f (x, y) in the interior (16.1)

u(x, y)= g(x, y) on the boundary

To compute an approximate solution to this problem, we define a discrete mesh of
points (xi,yj) on which we will approximate u. To keep things simple, we assume that
the mesh is uniformly spaced in both the x and y directions and that the distance
between adjacent mesh points is h, that is, xi+1− xi= h and yj+1− yj = h. We can then

469

470 Chapter 16 The 2-D Poisson Problem

use a simple centered-difference approximation to the derivatives in equation (16.1)
[506] to get

u(xi+1, yj)− 2u(xi, yj)+ u(xi−1, yj)

h2

+ u(xi, yj+1)− 2u(xi, yj)+ u(xi, yj−1)

h2
= f (xi, yj)

(16.2)

at each point (xi, yj) of the mesh. To simplify the rest of the discussion, we replace
u(xi, yj) with ui,j.

16.2 A Simple Algorithm

Many numerical methods have been developed for approximating the solution of
the partial differential equation in equation (16.1) and for solving the approximation
in equation (16.2). In this section we will describe a very simple algorithm so that
we can concentrate on the issues related to the parallel version of the algorithm. In
practice, the algorithm we describe here is obsolete and should not be used (because it
converges very slowly and better methods exist). However, many of the more modern
algorithms use the same approach to achieve parallelism, such as those described in
Chapters 20 and 21.

The algorithm that we use is called the Jacobi method. This method is an iterative
approach for solving equation (16.2) that can be written as

uk+1
i,j = 1

4

(
uk

i+1,j + uk
i−1,j + uk

i,j+1+ uk
i,j−1− h2fi,j

)
(16.3)

This equation defines the value of u(xi, yj) at the k + 1st step in terms of u at the kth
step; it also ignores the boundary conditions.

We can translate this into a simple Fortran program by defining the array
u(0:n,0:n) to hold uk and unew(0:n,0:n) to hold uk+1. This is shown in Figure 16.1;
details of initialization and convergence testing have been left out.

16.3 Parallel Solution of Poisson’s Equation

In this section, I discuss two different approaches to changing the sequential program
above into a parallel program.

16.3.1 Message Passing and the Distributed-Memory Model

One of the two major classes of parallel programming models is the distributed-
memory model, as discussed in Chapter 3. In this model, a parallel program is

16.3 Parallel Solution of Poisson’s Equation 471

real u(0:n,0:n), unew(0:n,0:n), f(1:n, 1:n), h

! Code to initialize f, u(0,*), u(n:*), u(*,0), and

! u(*,n) with g

h = 1.0 / n

do k=1, maxiter

do j=1, n-1

do i=1, n-1

unew(i,j) = 0.25 * (u(i+1,j) + u(i-1,j) + &

u(i,j+1) + u(i,j-1) - &

h * h * f(i,j))

enddo

enddo

! Code to check for convergence of unew to u

! Make the new value the old value for the next iteration

u = unew

enddo

Figure 16.1 Sequential version of the Jacobi algorithm.

made up of many processes,1 each of which has its own address space and (usually)
variables. Because each process has its own address space, special steps must be
taken to communicate information between processes. One of the most widely used
approaches is message passing. In message passing, information is communicated
between processes using a cooperative approach; both the sender and the receiver
make subroutine calls to arrange for the transfer of data between them. Variables in
one process are not directly accessible by any other process.

In creating a parallel program for this programming model, the first question to
ask is, What data structures in my program must be distributed or partitioned among
these processes? In our example, in order to achieve any parallelism, each process
must do part of the computation of unew. This suggests that we should distribute u,
unew, and f. One such partition is shown in Figure 16.2(a). The part of the distributed
data structure that is held by a particular process is said to be owned by that process.

Note that the code to compute unew(i,j) requires u(i,j+1) and u(i,j-1). This
means that, in addition to the part of u and unew that each process has (as part of the

1 In this chapter we are careful to refer to processes rather than processors. A processor is a piece of hardware;
zero, one, or more processes may be running on a processor. In most parallel programs of the type described in
this book, at most one thread should be running on each processor; in the simplest programming models, there
is one thread per process, allowing the terms “process” and “processor” to be used interchangably. However, the
difference between process and processor is real and important, and process rather than processor will be used
in this chapter.

472 Chapter 16 The 2-D Poisson Problem

j=4 j=4

j=0

j=1

j=2

j=3

j=5

j=6

j=7

i=0 i=1 i=2 i=3 i=4 i=5 i=6 i=7

(a)

j=3

Ghost cells

Ghost cells

(b)

Figure 16.2 Simple decomposition of the mesh across processes. (a) Entire mesh, divided
among three processes. Open circles correspond to points on the boundary. (b) Part of this
array owned by the second process; the gray circles represent the ghost or halo cells.

decomposition), it also needs a small amount of data from its neighboring processes.
These data are usually copied into a slightly expanded array that holds both the part
of the distributed array managed (or owned) by a process with ghost or halo points
that hold the values of these neighbors. This is shown in Figure 16.2(b). A process
gets these values by communicating with its neighbors.

The code in Figure 16.3 shows the distributed-memory, message-passing version
of our original code in Figure 16.1.

The values of js and je are the values of j for the bottom and top of the part of
u owned by a process. The routine MPI_Sendrecv is part of the MPI message-passing
standard [668]; it both sends and receives data. In this case, the first call sends the
values u(1:n-1,js) to the process below or down, where it is received into u(1:n-
1,je+1).

Note that although each process has variables js, je, u, and so on, these are all
different variables (precisely, they are different memory locations).

There are many other ways to describe the communication needed for this algo-
rithm and algorithms like it. See Gropp et al. [406, Chapter 4] for more details.

16.3.2 The Single Name-Space, Distributed-Memory Model

High Performance Fortran (HPF) [569] provides an extension of Fortran (Fortran 90)
to distributed-memory parallel environments. Unlike the message-passing model, a
single variable may be declared as distributed across all processes. For example, rather
than declaring the part of the u variable owned by each process, in HPF the program

16.3 Parallel Solution of Poisson’s Equation 473

use mpi

real u(0:n,js-1:je+1), unew(0:n,js-1:je+1)

real f(1:n-1, js:je), h

integer nbr_down, nbr_up, status(MPI_STATUS_SIZE), ierr

! Code to initialize f, u(0,*), u(n:*), u(*,0), and

! u(*,n) with g

h = 1.0 / n

do k=1, maxiter

! Send down

call MPI_Sendrecv(u(1,js), n-1, MPI_REAL, nbr_down, k &

u(1,je+1), n-1, MPI_REAL, nbr_up, k, &

MPI_COMM_WORLD, status, ierr)

! Send up

call MPI_Sendrecv(u(1,je), n-1, MPI_REAL, nbr_up, k+1, &

u(1,js-1), n-1, MPI_REAL, nbr_down, k+1,&

MPI_COMM_WORLD, status, ierr)

do j=js, je

do i=1, n-1

unew(i,j) = 0.25 * (u(i+1,j) + u(i-1,j) + &

u(i,j+1) + u(i,j-1) - &

h * h * f(i,j))

enddo

enddo

! Code to check for convergence of unew to u.

! Make the new value the old value for the next iteration

u = unew

enddo

Figure 16.3 Message-passing version of Figure 16.1.

simply declares u in the same way as for the sequential program, and adds an HPF
directive that describes how the variable should be distributed across the processes. All
communication required to access neighbor values is handled for the programmer
by the HPF compiler. The HPF version of the Jacobi iteration is shown in Figure 16.4.

Variables that are not specifically distributed by the programmer with an HPF
directive behave just like variables in the message-passing program: each process
has a separate version of the variable. For example, the variable h is in a different
memory location on each process (even though we give it the same value).

Note also that the details of the distribution are controlled by HPF: the BLOCK
distribution is specifically defined by HPF and does not exactly match the decompo-
sition shown in Figure 16.2. For values of n that are much greater than the number

474 Chapter 16 The 2-D Poisson Problem

real u(0:n,0:n), unew(0:n,0:n), f(0:n, 0:n), h

!HPF$ DISTRIBUTE u(:,BLOCK)

!HPF$ ALIGN unew WITH u

!HPF$ ALIGN f WITH u

! Code to initialize f, u(0,*), u(n:*), u(*,0),

! and u(*,n) with g

h = 1.0 / n

do k=1, maxiter

unew(1:n-1,1:n-1) = 0.25 * &

(u(2:n,1:n-1) + u(0:n-2,1:n-1) + &

u(1:n-1,2:n) + u(1:n-1,0:n-2) - &

h * h * f(1:n-1,1:n-1))

! Code to check for convergence of unew to u.

! Make the new value the old value for the next iteration

u = unew

enddo

Figure 16.4 HPF version of the Jacobi algorithm.

of processes (the only case where parallelism makes any sense), however, the HPF
choice is as good as any.

An advantage of HPF is that by changing the single line

!HPF$ DISTRIBUTE u(:,BLOCK)

to

!HPF$ DISTRIBUTE u(BLOCK,BLOCK)

we can change the distribution of the arrays to that shown in Figure 16.5. This
distribution is more scalable than that in Figure 16.2 because the amount of data
communicated per process decreases as the number of processes increases. The rela-
tive advantages of different decompositions is discussed in more detail in Chapter 18.

We call this the single name-space, distributed-memory model because all com-
munication between processes is handled with variables (like u) that are declared
globally; that is, they are declared as if they were accessible to all processes. This
allows many programs to be written so that they are very similar to the sequential
version of the same program. In fact, the HPF version of the program in Figure 16.4
is nearly identical to Figure 16.1, particularly if the i and j loops in Figure 16.1 are
replaced with the Fortran 90 array expression used in Figure 16.4.

16.3 Parallel Solution of Poisson’s Equation 475

j=4

j=0

j=1

j=2

j=3

j=5

j=6

j=7

i=0 i=1 i=2 i=3 i=4 i=5 i=6 i=7

Figure 16.5 Decomposition of the mesh across a 2-D array of four processes, corresponding
to an HPF BLOCK,BLOCK distribution.

16.3.3 The Shared-Memory Model

The shared-memory model, in contrast to the distributed-memory model, has only
one process, but multiple threads. All threads can access all memory of the process.
This means that there is only a single version of each variable. This is very conve-
nient; in some cases, a parallel, shared-memory version of Figure 16.1 looks exactly
the same: the compiler may be able to create a parallel version directly from the
sequential code.

However, it can be helpful, both in terms of code clarity and the generation of
efficient parallel code, to include some code that describes the desired parallelism.
One method that was designed for this kind of code is OpenMP [725]. The OpenMP
version is shown in Figure 16.6. In this example, the code between the comments
!$omp parallel and !$omp end parallel is executed in parallel using multiple threads.
The comment !$omp do indicates that the next line describes a do loop that should
be work shared; that is, the iterations specified by this do statement will be executed
by a collection of threads.

See Chapter 10 for a more detailed discussion of OpenMP. A complete OpenMPI
code for the Jacobi example is available at the OpenMP website [724].

OpenMP handles many of the details of multithreaded programming for the user.
It is also possible to use threads directly; it may be necessary in cases where an
OpenMP-enabled compiler is not available. For UNIX systems, p-threads (i.e., POSIX
threads [500]) defines a library interface to threads. In this approach, the code to be
executed by a thread is placed into a separate routine; the name of that routine
is passed to a thread-creation routine (e.g., pthread_create), which then starts that
routine in a separate thread. The pthread_join routine is used to wait for the routine

476 Chapter 16 The 2-D Poisson Problem

real u(0:n,0:n), unew(0:n,0:n), f(1:n-1, 1:n-1), h

! Code to initialize f, u(0,*), u(n:*), u(*,0),

! and u(*,n) with g

h = 1.0 / n

do k=1, maxiter

!$omp parallel

!$omp do

do j=1, n-1

do i=1, n-1

unew(i,j) = 0.25 * (u(i+1,j) + u(i-1,j) + &

u(i,j+1) + u(i,j-1) - &

h * h * f(i,j))

enddo

enddo

!$omp enddo

! Code to check for convergence of unew to u

! Make the new value the old value for the next iteration

u = unew

!$omp end parallel

enddo

Figure 16.6 OpenMP (shared-memory) version of the Jacobi algorithm.

running in a thread to return. Using explicit threads allows you to work with any
compiler, but requires a great deal of care on the part of the programmer. In addition,
thread libraries are often not intended for scalable parallel computing and may not
provide scalable performance.

Another approach for shared-memory parallelism is to use a language that pro-
vides explicit parallelism constructs for both data and tasks. Two examples of such
languages are Co-Array Fortran and UPC. Chapter 9 shows an example of the Poisson
problem using Co-Array Fortran.

16.3.4 Comments

Thus far, I have described very briefly the steps required when parallelizing code to
approximate the solution of a partial differential equation. While the algorithm used
in this discussion is inefficient by modern standards, the approach to parallelism
is very similar to what is needed by state-of-the-art approaches for both implicit
and explicit solution methods. Other chapters in this book discuss more modern
techniques.

16.4 Adding Global Operations 477

Because of the simplicity of the algorithm and data structures, these examples
fail to address many of the issues that can arise in more complex situations. These
include unstructured grids, dynamic (run-time) allocation and management of data
structures, and more complex data dependencies between shared data structures
(either between processes or threads). Some of these issues are discussed in more
detail in Chapter 21 and other chapters.

The algorithm above did not specify the test for convergence. The result of such
a test is a single value that all processes/threads contribute to and that must be
available to all processes. Computing it scalably and correctly requires care. Each
of the programming models illustrated above provides special features to handle
this and similar problems. These are discussed in the next section.

Another discussion that focuses on some of the more subtle issues, particularly for
the shared-memory case, is given in Pfister [763]. Suggestions for choosing among
different approaches to expressing parallel programs are given in Chapter 9.

16.4 Adding Global Operations

The examples above showed how to compute with an array distributed across many
processes. Sometimes, all processes or threads will need access to a single value. In this
section, I discuss how each approach to parallel computing provides this operation
by describing the implementation of a convergence test.

A simple convergence test is to compute the two-norm of the difference between
two successive iterations. In the serial case, this can be accomplished with the code
shown in Figure 16.7.

16.4.1 Collective Operations in MPI

In the MPI case, computing the two-norm of the difference of unew and u requires two
steps. First, the sum of the squares of the differences of the local part of unew and u

real u(0:n,0:n), unew(0:n,0:n), twonorm

! ...

twonorm = 0.0

do j=1, n-1

do i=1, n-1

twonorm = twonorm + (unew(i,j) - u(i,j))**2

enddo

enddo

twonorm = sqrt(twonorm)

if (twonorm .le. tol) ! ... declare convergence

Figure 16.7 Sequential code to compute the two-norm of the difference between two iterations
of the Jacobi algorithm.

478 Chapter 16 The 2-D Poisson Problem

use mpi

real u(0:n,js-1:je+1), unew(0:n,js-1:je+1), twonorm

integer ierr

! ...

twonorm_local = 0.0

do j=js, je

do i=1, n-1

twonorm_local = twonorm_local + &

(unew(i,j) - u(i,j))**2

enddo

enddo

call MPI_Allreduce(twonorm_local, twonorm, 1, &

MPI_REAL, MPI_SUM, MPI_COMM_WORLD, ierr)

twonorm = sqrt(twonorm)

if (twonorm .le. tol) ! ... declare convergence

Figure 16.8 Message-passing version of Figure 16.7.

is computed. These are then combined with the contributions from all of the other
processes and summed together. Because the operation of combining values from
many processes is common and important and because efficient implementations
of this operation can require very system-specific code and algorithms, MPI provides
a special routine, MPI_Allreduce, to combine a value from each process and return
to all processes the result. This is shown in Figure 16.8.

This operation is called a reduction because it combines values from many sources
into a single value. MPI provides many routines for communication and computa-
tion on a collection of processes; these are called collective operations.

16.4.2 Reductions in HPF

Fortran 90 and hence HPF contain built-in functions for computing the sum of all
of the values in an array. In HPF, these functions work with distributed arrays, so the
code is very simple, as shown in Figure 16.9.

16.4.3 Reductions in OpenMP

The approach taken in OpenMP is somewhat different from that in HPF. Like MPI,
OpenMP recognizes that reductions are a common operation. In OpenMP, you can
indicate that the result of a variable is to be formed by a reduction with a particular
operator. This is shown in Figure 16.10.

16.4 Adding Global Operations 479

real u(0:n,0:n), unew(0:n,0:n), twonorm

!HPF$ DISTRIBUTE u(:,BLOCK)

!HPF$ ALIGN unew with u

!HPF$ ALIGN f with u

! ...

twonorm = sqrt (&

sum ((unew(1:n-1,1:n-1) - u(1:n-1,1:n-1))**2))

if (twonorm .le. tol) ! ... declare convergence

enddo

Figure 16.9 HPF version of the convergence test for the Jacobi algorithm.

real u(0:n,0:n), unew(0:n,0:n), twonorm

! ..

twonorm = 0.0

!$omp parallel

!$omp do private(ldiff) reduction(+:twonorm)

do j=1, n-1

do i=1, n-1

ldiff = (unew(i,j) - u(i,j))**2

twonorm = twonorm + ldiff

enddo

enddo

!$omp enddo

!$omp end parallel

twonorm = sqrt(twonorm)

enddo

Figure 16.10 OpenMP (shared-memory) version of the convergence test for the Jacobi
algorithm.

The effect of the reduction(+:twonorm) statement is to cause the OpenMP compiler
to create a separate, private version of twonorm in each thread. When the enclosing
scope ends, OpenMP combines the contributions in each thread using the specified
operation to form the final value.

This code also illustrates the directive private to create a variable that is private
to each thread (i.e., not shared). Without this directive, the value of ldiff added to
the thread-private value of twonorm could come from the “wrong” thread. This also
illustrates a difference in the OpenMP and HPF programming models. In OpenMP,
most variables are shared by default, while in HPF, most variables are not.

480 Chapter 16 The 2-D Poisson Problem

16.4.4 Conclusion

All of the above approaches to finding the two-norm exploit the associativity of real
arithmetic. Unfortunately, computers don’t use real numbers; they use an approxi-
mation called floating-point numbers. Operations with floating-point numbers are
nearly, but not exactly, associative. (See any introductory book on numerical analy-
sis.) Because of this lack of associativity, the value computed by these methods may
be different. In a well-designed algorithm, the difference will be small (in relative
terms). However, this difference can sometimes be unexpected and hence confus-
ing. It is also important to ensure that each process computes the same result for the
reduction, since each process uses this value to decide whether to stop. Carefully
designed routines for reduction operations will guarantee this result; programming
models such as MPI, HPF, and OpenMP also guarantee that all processes receive the
same result.

P

A

R

T IV Enabling Technologies
and Algorithms

Chapter 17 REUSABLE SOFTWARE AND ALGORITHMS

Jack Dongarra, University of Tennessee . Ian Foster,
Argonne National Laboratory . Ken Kennedy, Rice University

Chapter 18 GRAPH PARTITIONING FOR HIGH-PERFORMANCE
SCIENTIFIC SIMULATIONS

Kirk Schloegel, Honeywell International . George Karypis,
University of Minnesota . Vipin Kumar, University of Minnesota

Chapter 19 MESH GENERATION

Bharat K. Soni, Mississippi State University . Joe F. Thompson,
Mississippi State University

Chapter 20 TEMPLATES AND NUMERICAL LINEAR ALGEBRA

Jack Dongarra, University of Tennessee . Victor Eijkhout,
University of Tennessee . Dan Sorensen, Rice University

Chapter 21 SOFTWARE FOR THE SCALABLE SOLUTION OF PARTIAL
DIFFERENTIAL EQUATIONS

Satish Balay, Argonne National Laboratory .

William D. Gropp, Argonne National Laboratory .

Lois Curfman McInnes, Argonne National Laboratory .

Barry F. Smith, Argonne National Laboratory

Chapter 22 PARALLEL CONTINUOUS OPTIMIZATION

J. E. Dennis, Jr., Rice University . Zhijun Wu, Iowa State University

Chapter 23 PATH FOLLOWING IN SCIENTIFIC COMPUTING
AND ITS IMPLEMENTATION IN AUTO

H. B. Keller, California Institute of Technology .

E. J. Doedel Concordia University–Montreal

Chapter 24 AUTOMATIC DIFFERENTIATION

Alan Carle, Rice University

C

H

A

P

T

E

R

17 Reusable Software
and Algorithms

Jack Dongarra . Ian Foster .

Ken Kennedy

The ability to reuse existing algorithms and software is critical to an application pro-
grammer’s productivity: without it, no programmer can build on prior experience,
and every programming project must start from scratch. Effective reuse requires both
cataloging so that programmers can locate algorithms and techniques that meet their
needs and reuse technologies that allow these algorithms and techniques to be en-
capsulated in a reusable fashion—whether as design patterns, functions, libraries,
components, objects, or whatever.

This book is not intended to serve as a comprehensive catalog of parallel al-
gorithms. Nevertheless, the various application chapters of Part II and the more
detailed technology chapters of Part III do collectively present a broad spectrum of
algorithms. For more detailed discussions of parallel algorithm design, see Kumar et
al. [585], Leighton [602], and Foster [341].

The technologies and techniques used to achieve reuse are discussed in several
chapters. We provide here a brief review of three major approaches: the definition
of templates, the development of data-distribution-neutral libraries, and standard
libraries and components. We also introduce automatic differentiation, a technique
that allows us to avoid code development altogether in one particular area.

17.1 Templates: Design Patterns for Parallel Software

In sequential programming, the concept of a design pattern has emerged as an
approach to cataloging and communicating basic programming techniques [368].
For example, divide and conquer is a design pattern with relevance to a variety of
problems. A specification of this pattern might specify the problem-independent
structure and note where problem-specific logic must be supplied. This specification

483

484 Chapter 17 Reusable Software and Algorithms

does not provide any executable code but provides a basic structure that can guide
a programmer in developing an implementation.

The design pattern concept has considerable relevance to parallel programming,
as in practice we find that there are only a fairly small number of basic parallel algo-
rithm techniques. For example, the manager/worker structure is often appropriate
when a large number of independent tasks need to be executed. A single manager
process generates tasks and allocates those tasks to a number of worker processes;
each worker repeatedly requests tasks from the manager and executes the problem-
specific code required to perform those tasks (returning results to the manager) until
the manager signals that no tasks remain. Variants of this basic pattern may cre-
ate a hierarchy of managers, in order to avoid a bottleneck at the central manager,
and/or allow for constant input data to be cached within workers, hence avoiding
redundant communication.

Other common patterns include the butterfly, used, for example, to perform
parallel summations in time proportional to the log of the number of processors
(see Chapter 20), and domain decomposition, which is of course fundamental to the
data-parallel programming model discussed earlier in Chapters 3 and 9.

The design-pattern concept turns up at various points in this book but is discussed
in particular within Chapter 13, where the concept of templates is introduced. A
template can be thought of as a reusable algorithm that includes the algorithm itself,
along with information about how it is to be used, where specific computational
specialization can occur, and how the algorithm can be tuned. A template may
also include some sample implementations in different languages and pointers to
background information.

17.2 Communicators and Data Structure Neutrality

The development of truly reusable parallel libraries is difficult (outside the somewhat
constrained world of languages such as OpenMP and HPF) because of additional
complexities associated with concurrency and data distribution:

. An unfortunate consequence of concurrency is that two processes or functions
that execute correctly in isolation may not execute correctly when composed,
because of race conditions.

. Data-distribution issues can lead to both correctness and performance problems.
If a function expects data to be distributed in one fashion and receives it in
another, then either the function will execute incorrectly (in the worst case)
or an expensive redistribution operation may be required.

A consequence of these complexities is that until recently there were relatively
few examples of successful reusable parallel libraries. Those libraries that did exist
(e.g., ScaLAPACK) could only deal with a small number of data distributions and
required that these data distributions be specified via cumbersome argument lists.

17.3 Standard Libraries and Components 485

Two recent advances have led to a new generation of libraries that can be com-
posed and reused relatively easily, thanks to two techniques:

. MPI’s communicators mechanism allows the programmer to encapsulate com-
munications that are “internal” to a function, hence avoiding race conditions
that might occur if communications intended for one function are intercepted
by another. This mechanism makes it easier to construct components so that
interactions occur only via well-defined interfaces.

. Improved software engineering techniques allow data distribution issues to
be separated from other aspects of function logic. What are sometimes called
data-structure-neutral libraries allow an application to invoke an operation on a
parallel data structure without regard to how the data structure is distributed;
the distribution should impact performance but not correctness [73].

A contemporary example of a library that incorporates these two techniques is
the PETSc collection of numerical solvers, described in Chapter 21.

17.3 Standard Libraries and Components

The increasing availability of advanced-architecture computers is having a signif-
icant effect on all spheres of scientific computation, including algorithm research
and software development. One significant outcome of this work is the develop-
ment of substantial bodies of “standard” code that are seeing significant use. We
review briefly in the following the contents of the principal chapters in this book
that deal with this topic.

17.3.1 Load Balancing and Grid Generation

Algorithms that find good partitionings of unstructured and irregular graphs are crit-
ical for the efficient execution of scientific simulations on high-performance parallel
computers. In these simulations, computation is performed iteratively on each ele-
ment of a physical 2-D or 3-D mesh, and then information is exchanged between
adjacent mesh elements. Efficient execution of these simulations requires a map-
ping of the computational mesh to the processors such that each processor gets a
roughly equal number of elements and the amount of interprocessor communication
required to exchange the information between connected mesh elements is mini-
mized. Such a mapping is commonly found using the traditional graph-partitioning
problem. Many scientific simulations require the solutions of large sparse linear sys-
tems of equations. The solution of a sparse system of linear equations Ax = b via
iterative methods on a parallel computer gives rise to a graph partitioning problem.
A key step in each iteration of these methods is the multiplication of a sparse matrix
and a (dense) vector. A good partitioning of the graph corresponding to matrix A can
significantly reduce the amount of communication in parallel sparse matrix–vector
multiplication. These issues are addressed in Chapter 18.

486 Chapter 17 Reusable Software and Algorithms

17.3.2 Mesh Generation

Mesh generation is an essential element for the computational simulation of field
phenomena such as fluid mechanics, heat and mass transfer, structural mechanics,
plasmadynamics, electromagnetics, and other such physical processes that occur
over a region of space. Mesh generation is the means by which the domain of
interest is discretized into a collection of discrete points or volumes on which the
governing equations can be represented and then solved computationally. The mesh
thus provides the framework on which the solution is computed and subsequently
visualized. Chapter 19 deals with tools for mesh generation.

17.3.3 Software for Scalable Solution of PDEs

The numerical approximation of the solution of partial differential equations (PDEs),
which can be used to model physical, chemical, and biological phenomena, is
an important application of parallel computers. Many issues arise in designing a
parallel program to approximate the solution to a PDE. These include the choice of
numerical algorithms and the distribution of data. The layout of data and specifics of
data access in the numerical algorithms are also extremely important for achieving
good performance on each individual processing node; high-performance parallel
computing requires high-performance sequential kernels. Another issue is effective
management of the interrelationships among software for the various facets of the
overall simulation, including tools for time evolution, algebraic nonlinear and linear
solution, adaptive mesh manipulations, optimization, and data analysis, since total
computational efficiency can be only as good as its weakest link. These issues are
addressed in Chapter 21.

17.3.4 Parallel Continuous Optimization

Optimization has broad applications in engineering, science, and management.
Many of these applications either have large numbers of variables or require expen-
sive function evaluations. In some cases, there may be many local minimizers, and
the user naturally wants to know how solutions found by the algorithm compare to
other local solutions. These factors contribute to the need for more intensive com-
putation than traditional architectures can support. High-performance computing
provides powerful tools for solving these problems with a degree of practicality that
would otherwise be impossible. Chapter 22 covers parallel continuous optimization
in detail.

17.4 Automatic Differentiation

Automatic differentiation (AD)—also known as computational differentiation or al-
gorithmic differentiation—is a maturing technology for computing derivatives of

17.5 Templates and Numerical Linear Algebra 487

computer simulations. AD is an automatic technique for augmenting computer pro-
grams with code to compute derivatives accurately and efficiently. As an automatic
technique, AD has the potential to eliminate the need to explicitly develop code to
compute derivatives. Not only can AD reduce the time required to develop a differ-
entiated code, it also reduces the total amount of code that needs to be maintained
and allows developers to focus on the underlying computational simulation. The
ideas underlying automatic differentiation are not new—in high school calculus,
most students realize that differentiation is an essentially mechanical procedure.
There have been more than 60 automatic differentiation software packages devel-
oped since the 1950s. The great majority of these software packages were developed
for use by their developers for specialized applications. These issues are addressed in
Chapter 24.

17.5 Templates and Numerical Linear Algebra

Large-scale problems of engineering and scientific computing often require solutions
of linear algebra problems. Half a century ago, it might have been sufficient to
recommend inverting a matrix or forming a characteristic polynomial and then
computing its roots. These mathematicians’ methods were only practical for very
small problems. The time is ripe to organize descriptions of the many modern
practical methods including advice on how to wisely choose among them, and how
to interpret the results.

A computational scientist interested in solving a large sparse linear algebra prob-
lem might have to search among books, the research literature, and online or library
software. The search can be daunting. Software may be found in well-maintained
libraries available commercially or publicly, other libraries distributed with texts or
other books, individual subroutines tested and published by organizations such as
the Association for Computing Machinery (ACM), and even more software is avail-
able from individuals on individual Web pages, or publicly maintained pages such as
Netlib (http://www.netlib.org). Sometimes the software may be hard to find or come
without support. Although we admit that some challenging numerical linear algebra
problems still await satisfactory solutions, many excellent methods do exist from a
plethora of sources.

But the sheer number of algorithms and their implementations makes it hard
even for experts, let alone general users, to find the best solution for a given prob-
lem. This has led to the development of various online search facilities for numerical
software. One has been developed by NIST the (National Institute of Standards
and Technology), and is called GAMS (Guide to Available Mathematical Software,
http://gams.nist.gov); another is part of Netlib. These facilities permit searches based
on library names, subroutine names, keywords, and a taxonomy of topics in numer-
ical computing. But for the general user in search of advice as to which algorithm or
which subroutine to use for her particular problem, they offer relatively little advice.

488 Chapter 17 Reusable Software and Algorithms

Furthermore, many challenging problems cannot be solved with existing “black-
box” software packages in a reasonable time or space. This means that more special-
purpose methods must be used and tuned for the problem at hand. Tuning is a great
challenge, since there are a large number of tuning options available, and for many
problems it is a challenge to get any acceptable answer at all or to have confidence
in what is computed. The expertise regarding which options are likely to work in a
specific application area is distributed among many experts.

Thus, there is a need for tools to help users pick the best algorithm and imple-
mentation for their numerical problems, as well as expert advice on how to tune
them.

The approach we have taken in CRPC is that of algorithm templates, with a deci-
sion tree to help choose among them. Specifically, the decision tree uses information
about the structure of the problem, the kind of solution that is desired, and the kind
of computer available to identify one or more suitable algorithm templates. A tem-
plate will include some or all of the following: (1) a high-level description of an
algorithm; (2) a description of when it is effective, including conditions on the in-
put, and estimates of the time, space, or other resources required; (3) a description
of available refinements and user-tunable parameters, as well as advice on when to
use them; (4) pointers to complete or partial implementations, perhaps in several
languages or for several architectures (such as different parallel architectures); (5) a
way to assess the accuracy; (6) numerical examples, on a common set of examples,
illustrating both easy cases and difficult cases; (7) troubleshooting advice; and (8)
pointers to texts or journal articles for further information.

For the past 20 years or so, there has been a great deal of activity in the area of
algorithms and software for solving scientific problems. The linear algebra commu-
nity has long recognized the need for help in developing algorithms into software
libraries, and several years ago, as a community effort, put together a de facto stan-
dard identifying basic operations required in linear algebra algorithms and software.
The hope was that the routines making up this standard, known collectively as Basic
Linear Algebra Subprograms [283, 284, 595], would be efficiently implemented on
advanced-architecture computers by many manufacturers, making it possible to reap
the portability benefits of having them efficiently implemented on a wide range of
machines. This goal has been largely realized.

The key insight of the approach to designing linear algebra algorithms for
advanced-architecture computers is that the frequency with which data are moved
between different levels of the memory hierarchy must be minimized in order to
attain high performance. Thus, our main algorithmic approach for exploiting both
vectorization and parallelism in our implementations is the use of block-partitioned
algorithms, particularly in conjunction with highly tuned kernels for performing
matrix–vector and matrix–matrix operations. In general, the use of block-partitioned
algorithms requires data to be moved as blocks, rather than as vectors or scalars, so
that although the total amount of data moved is unchanged, the latency (or start-
up cost) associated with the movement is greatly reduced because fewer messages
are needed to move the data. A second key idea is that a user can tune the perfor-

17.6 Conclusion 489

mance of an algorithm by varying the parameters that specify the data layout. On
shared-memory machines, this is controlled by the block size, while on distributed-
memory machines it is controlled by the block size and the configuration of the
logical process mesh.

More details on templates for numerical linear algebra are provided in Chapter 20.

17.6 Conclusion

Within the last few years, many who work on the development of numerical al-
gorithms have come to realize the need to get directly involved in the software
development process. Issues such as robustness, ease of use, and portability are
standard fare in any discussion of numerical algorithm design and implementation.
The portability issue, in particular, can be very challenging. As new and exotic ar-
chitectures evolve, they will embrace the notions of concurrent processing, shared
memory, pipelining, and so on in order to increase performance. The portability issue
becomes formidable indeed as different architectural designs become reality. In fact,
it is very tempting to assume that an unavoidable byproduct of portability must be
an unacceptable degradation in the level of efficiency on a given variety of machine
architecture. We contend that this assumption is erroneous and that its widespread
adoption could seriously hamper the ability to effectively utilize machines of the
future.

Architectures of future machines promise to offer a profusion of computing en-
vironments. The existing forerunners have already given many software developers
cause to reexamine the underlying algorithms for efficiency’s sake. However, it seems
to be an unnecessary waste of effort to recast these algorithms with only one com-
puter in mind, regardless of how fast that one may be. The efficiency of an algorithm
should not be discussed in terms of its realization as a computer program. Even
within a single architecture class, the features of one system may improve the per-
formance of a given program, while features of another system may have just the
opposite effect.

Software developers should begin to identify classes of problems suitable for paral-
lel implementation and to develop efficient algorithms for each of these areas. With
such a wide variety of computer systems and architectures in use or proposed, the
challenge for people designing algorithms is to develop algorithms, and ultimately
software, that are both efficient and portable. To address this challenge, there appear
to be three approaches. They are not mutually exclusive, but each can contribute to
provide an effective solution. The first approach is to express the algorithms in terms
of modules at a high level of granularity. When moving software from one architec-
ture to another, the basic algorithms are the same, but the modules are changed
to suit the new architectures. A second approach is to create a model of computa-
tion representing the computing environment. This model should be characterized
by the salient features of a given architectural category. Software is written for the
model and then transformed to suit a particular realization of an architecture that
fits the model. The general categories of multiple instruction, multiple data (MIMD)

490 Chapter 17 Reusable Software and Algorithms

and single instruction, multiple data (SIMD) are of course too crude, but additional
details could be specified. For example, an MIMD model might be characterized by
the number of processors, communication vehicle, access to shared memory, and
synchronization primitives. Software written for such a model can be transformed
to software for a specific machine by a macro processor or a specially designed pre-
processor. As a third approach, the software can be written in high-level language
constructs, such as array-processing statements. Again, a preprocessor can be written
to generate the “object” code suitable for a particular architecture.

Of the three approaches, expressing the algorithms in terms of modules with
a high level of granularity seems preferable where it is applicable. In particular,
it would seem applicable to certain basic software library subroutines that are ex-
pected to shoulder the bulk of the work in a wide variety of numerical calculations.
Where successful, the effect of this will enhance both the maintenance and use of
the software. Software maintenance would be enhanced because more of the basic
mathematical structure would be retained within the formulation of the algorithm.
The fine computational detail required for efficiency would be isolated within the
high-level modules. Software users would benefit through the ability to move exist-
ing codes to new environments and experience a reasonable level of efficiency with
minimal effort. A key issue in the success of this approach is to identify a level of
granularity that will permit efficient implementations across a wide variety of archi-
tectural settings. Individual modules can then be dealt with separately, retargeting
them for efficiency on quite different architectures. This will have the effect of con-
cealing the peculiarities of a particular machine from a potential user of the software
and will allow him to concentrate his effort on his application rather than on the
computing environment.

Of course, the approach described above has limited application. One area where
it works well is in linear algebra, and hence it may be effective in any application
that is dominated by these calculations. In areas where this approach will not work,
there is a need to develop algorithms that focus on the architectural features at a
deeper level. However, the goal in these efforts must be to exploit the key features of
the architecture and not the particular realization. This is where the approach based
upon a model of computation can be useful. As multiprocessor designs proliferate,
research efforts should focus on “generic” algorithms that can be easily transported
across various implementations of these designs. If a code has been written in
terms of high-level synchronization and data-management primitives, which are
expected to be supported by every member of the model of computation, then these
primitives only need to be customized to a particular realization. A very high level of
transportability may be achieved through automating the transformation of these
primitives. The benefit to software maintenance, particularly for large codes, is in
the isolation of synchronization and data-management peculiarities.

C

H

A

P

T

E

R

18 Graph Partitioning for
High-Performance
Scientific Simulations

Kirk Schloegel . George Karypis .

Vipin Kumar

Algorithms that find good partitionings of unstructured and irregular graphs are
critical for the efficient execution of scientific simulations on high-performance
parallel computers. In these simulations, computation is performed iteratively on
each element (and/or node) of a physical 2-D or 3-D mesh. Information is then ex-
changed between adjacent mesh elements. For example, computation is performed
on each triangle of the 2-D irregular mesh shown in Figure 18.1. Then informa-
tion is exchanged for every face between adjacent triangles. Efficient execution of
such simulations on distributed-memory machines requires a mapping of the com-
putational mesh onto the processors that equalizes the number of mesh elements
assigned to each processor and minimizes the interprocessor communication re-
quired to perform the information exchange between adjacent elements. Such a
mapping is commonly found by solving a graph partitioning problem. For example,
a graph partitioning algorithm was used to decompose the mesh in Figure 18.1. Here,
the mesh elements have been shaded to indicate the processor to which they have
been mapped. Simulations performed on shared-memory multiprocessors also ben-
efit from partitioning, as this increases data locality and thus leads to better cache
performance.

In many scientific simulations, the structure of the computation evolves from
time step to time step. These simulations require decompositions of the mesh prior
to the start of the simulation (as described above) and periodic load balancing during
the course of the simulation. Other classes of simulations (i.e., multiphase simula-
tions) consist of a number of computational phases separated by synchronization
steps. These require that each of the phases be individually load balanced. Still other
scientific simulations model multiple physical phenomena (i.e., multiphysics sim-
ulations) or employ multiple meshes simultaneously (i.e., multimesh simulations).

491

492 Chapter 18 Graph Partitioning for High-Performance Scientific Simulations

Figure 18.1 A partitioned 2-D irregular mesh of an airfoil. The shading of a mesh element
indicates the processor to which it is mapped.

These impose additional requirements that the partitioning algorithm must take
into account. Traditional graph partitioning algorithms are not adequate to ensure
the efficient execution of these classes of simulations on high-performance parallel
computers. Instead, generalized graph partitioning algorithms have been developed
for such simulations.

This chapter presents an overview of graph partitioning algorithms used for sci-
entific simulations on high-performance parallel computers. Recent developments
in graph partitioning for adaptive and dynamic simulations, as well as partitioning
algorithms for sophisticated simulations such as multiphase, multiphysics, and mul-
timesh computations are also discussed. Specifically, Section 18.1 presents the graph
partitioning formulation used to model the problem of mapping computational
meshes onto processors. Section 18.2 describes numerous static graph partition-
ing algorithms. Section 18.3 discusses the adaptive graph-partitioning problem and
describes a number of repartitioning schemes. Section 18.4 discusses the issues in-
volved with the parallelization of static and adaptive graph partitioning schemes.
Section 18.5 describes a number of important types of applications for which the
traditional graph partitioning problem is inadequate. This section also describes gen-
eralizations of the graph partitioning problem that are able to effectively model these
applications as well as algorithms for computing partitionings based on these new
formulations. Finally, Section 18.6 presents concluding remarks, discusses areas of
future research, and charts the functionality of a number of publicly available graph
partitioning software packages.

18.1 Modeling Mesh-Based Computations as Graphs 493

18.1 Modeling Mesh-Based Computations as Graphs

In order to compute a mapping of a mesh onto a set of processors via graph parti-
tioning, it is first necessary to construct the graph that models the structure of the
computation. In general, computation of a scientific simulation can be performed on
the mesh nodes, the mesh elements, or both of these. If the computation is mainly
performed on the mesh nodes, then this graph is straightforward to construct. A
vertex exists for each mesh node, and an edge exists on the graph for each edge
between the nodes. We refer to this as the node graph. However, if the computation
is performed on the mesh elements, then the graph is such that each mesh element
is modeled by a vertex, and an edge exists between two vertices whenever the corre-
sponding elements share an edge (in 2-D) or a face (in 3-D). We refer to this as the dual
graph. Figure 18.2 illustrates a 2-D example. Figure 18.2(a) shows a finite-element
mesh, and Figure 18.2(b) shows the corresponding node graph. Figure 18.2(c) shows
the dual graph that models the adjacencies of the mesh elements. Partitioning the
vertices of these graphs into k disjoint subdomains provides a mapping of either the
mesh nodes or the mesh elements onto k processors. If the partitioning is computed
such that each subdomain has the same number of vertices, then each processor
will have an equal amount of work during parallel processing. The total volume of
communications incurred during this parallel processing can be estimated by count-
ing the number of edges that connect vertices in different subdomains. Therefore, a
partitioning should be computed that minimizes this metric (which is referred to as
the edge-cut).

The objective of the graph partitioning problem is to compute just such a parti-
tioning (i.e., one that balances the subdomains and minimizes the edge-cut). More
formally, the graph partitioning problem is as follows. Given a weighted, undirected
graph G = (V , E), for which each vertex and edge has an associated weight, the k-
way graph partitioning problem is to split the vertices of V into k disjoint subsets

(a) (b) (c)

Figure 18.2 (a) 2D irregular mesh and (b and c) corresponding graphs. The graph in (b)
models the connectivity between the mesh nodes. The graph in (c) models the adjacency of
the mesh elements.

494 Chapter 18 Graph Partitioning for High-Performance Scientific Simulations

(or subdomains) such that each subdomain has roughly an equal amount of ver-
tex weight (referred to as the balance constraint), while minimizing the sum of the
weights of the edges whose incident vertices belong to different subdomains (i.e.,
the edge-cut).

In some cases, it is beneficial to compute partitionings that assign each subdomain
a specified amount of vertex weight. This may be necessary for scientific simulations
performed on a cluster of heterogeneous workstations. The subdomain weights
should result in more work being assigned to the faster machines and less work
to the slower machines. Subdomain weights can be specified by using a vector of
size k in which each element of the vector indicates the fraction of the total vertex
weight that the corresponding subdomain should contain. In this case, the graph
partitioning problem is to compute a partitioning that splits the vertices into k
disjoint subdomains such that each subdomain has the specified fraction of total
vertex weight and such that the edge-cut is minimized.

It is important to note that the edge-cut metric is only an approximation of
the total communications volume incurred by parallel processing [455]. It is not
a precise model of this quantity. Consider the example in Figure 18.3. Here, three
subdomains, A, B, and C, are shown. The edge-cut of the (three-way) partitioning
is seven. During parallel computation, the processor corresponding to subdomain
A will need to send the data for vertices 1 and 3 to the processor corresponding
to subdomain B and the data for vertex 4 to the processor corresponding to sub-
domain C. Similarly, B needs to send the data for 5 and 7 to A and the data for
7 and 8 to C. Finally, C needs to send the data for 9 to B and the data for 10 to
A. This equals nine units of data to be sent, while the edge-cut is seven. Edge-cut
and total communication volume are not the same because the edge-cut counts
every edge cut, while data are required to be sent only one time if two or more
edges of a single vertex are cut by the same subdomain. (This is the case, for ex-
ample, for vertex 3 and subdomain B in Figure 18.3.) It should also be noted that
total communication volume alone cannot accurately predict interprocessor com-
munication overhead. A more precise measure is the maximum time required by
any of the processors to perform communication (assuming that computation and
communication occur in alternating phases). This depends on a number of fac-
tors, including the amount of data to be sent out of any one processor, as well
as the number of processors with which a processor must communicate. In par-
ticular, on message-passing architectures, minimizing the maximum number of
message start-ups that any one processor must perform can sometimes be more im-
portant than minimizing the communications volume [456]. Nevertheless, there
still tends to be a strong correlation between edge-cuts and interprocessor commu-
nication costs for graphs of uniform degree (i.e., graphs in which most vertices have
about the same number of edges). This is a typical characteristic of graphs derived
from scientific simulations. Therefore, the min-cut partitioning problem is a reason-
able model for minimizing the interprocessor communications of parallel scientific
simulations.

18.2 Static Graph-Partitioning Techniques 495

1

2

4

3

5

7 8

6

10

9

11

12

B

A

C

Figure 18.3 A partitioned graph with an edge-cut of seven. Here, nine communications are
incurred during parallel processing.

18.1.1 Computing a k-Way Partitioning via Recursive Bisection

Graphs are frequently partitioned into k subdomains by recursively computing
two-way partitionings (i.e., bisections) of the graph [92]. This method requires the
computation of k − 1 bisections. If k is not a power of two, then for each bisection,
the appropriate subdomain weights need to be specified in order to ensure that the
resulting k-way partitioning is balanced.

For a large class of graphs derived from scientific simulations, recursive bisection
algorithms are able to compute k-way partitionings that are within a constant factor
of the optimal solution [866]. Furthermore, if the balance constraint is sufficiently re-
laxed, then recursive bisection methods can be used to compute k-way partitionings
that are within log p of the optimal for all graphs [866]. Since the direct computation
of a good k-way partitioning is harder in general than the computation of a good bi-
section (although both problems are NP-complete), recursive bisection has become
a widely used technique.

18.2 Static Graph-Partitioning Techniques

The graph partitioning problem is known to be NP-complete. Therefore, in general
it is not possible to compute optimal partitionings for graphs of interesting size in a
reasonable amount of time. This fact, combined with the importance of the problem,
has led to the development of numerous heuristic approaches [50, 51, 80, 92, 155,

496 Chapter 18 Graph Partitioning for High-Performance Scientific Simulations

218, 265, 334, 374, 379, 384, 415, 423, 424, 441, 449, 460, 459, 538, 542, 560,
674, 678, 718, 755, 767, 774, 773, 787, 865, 970, 1003]. These can be classified as
either geometric techniques [92, 379, 449, 674, 718, 755, 767, 787], combinatorial
techniques [50, 51, 265, 334, 374, 384, 424, 560], spectral techniques [459, 460,
773, 774, 865], combinatorial optimization techniques [80, 423, 1003], or multilevel
methods [155, 218, 415, 441, 538, 542, 678, 970]. In this section, we discuss several
of these classes and describe the important schemes from them.

18.2.1 Geometric Techniques

Geometric techniques [92, 379, 449, 674, 718, 755, 767, 787] compute partitionings
based solely on the coordinate information of the mesh nodes. Since these tech-
niques do not consider the connectivity between the mesh elements, there is no
concept of edge-cut here. In order to minimize the interprocessor communications
incurred due to parallel processing, geometric schemes are usually designed to min-
imize a related metric, such as the number of mesh elements that are adjacent to
nonlocal elements (i.e., the size of the subdomain boundary). Usually, these tech-
niques partition the mesh elements directly, rather than the graphs that model the
structures of the computations. Because of this distinction, they are often referred
to as mesh-partitioning schemes.

Geometric techniques are applicable only if coordinate information exists for the
mesh nodes. This is usually true for meshes used in scientific simulations. Even if
the mesh is not embedded in a k-dimensional space, there are techniques that are
able to compute node coordinates automatically, based on the connectivity of the
mesh elements [427]. Typically, geometric partitioners are extremely fast. However,
they tend to compute partitionings of lower quality than schemes that take the
connectivity of the mesh elements into account. For this reason, multiple trials are
usually performed, with the best partitioning of these being selected.

Coordinate Nested Dissection

Coordinate nested dissection (CND) (also referred to as recursive coordinate bi-
section) is a recursive bisection scheme that attempts to minimize the boundary
between the subdomains (and therefore, the interprocessor communications) by
splitting the mesh in half normal to its longest dimension. Figure 18.4 illustrates how
this works. Figure 18.4(a) gives a mesh bisected normal to the x-axis. Figure 18.4(b)
gives the same mesh bisected normal to the y-axis. The subdomain boundary in Fig-
ure 18.4(a) is much smaller than that in Figure 18.4(b). This is because the mesh is
longer in the direction of the x-axis than in the direction of y-axis.

The CND algorithm works as follows. The centers of mass of the mesh elements
are computed, and these are projected onto the coordinate axis that corresponds to
the longest dimension of the mesh. This gives an ordering of the mesh elements.
(Note that this scheme can result in multiple mesh elements being projected onto
the same point along the selected dimension. Such “ties” in ordering can be broken

18.2 Static Graph-Partitioning Techniques 497

(a) (b)

Figure 18.4 Two mesh bisections normal to the coordinate axes. (a) Mesh is bisected normal
to the x-axis. (b) Mesh is bisected normal to the y-axis. The subdomain boundary in (a) is
smaller than that in (b).

arbitrarily.) The ordered list is then split in half to produce a bisection of the
mesh elements.1 Each subdomain can then be recursively subdivided by the same
technique [92]. Figure 18.5 illustrates an eight-way partitioning computed by this
method. Figure 18.5(a) shows the centers of mass of the mesh elements and the
computed recursive bisections. First, the solid line bisected the entire mesh. Then,
the dashed lines bisected the two subdomains. Finally, the dashed-and-dotted lines
bisected the resulting subdomains. Figure 18.5(b) shows the mesh elements shaded
according to their subdomains.

The CND scheme is extremely fast, requires little memory, and is easy to par-
allelize. In addition, partitionings obtained by this scheme can be described quite
compactly (just by the splitters used at each node of the recursive bisection tree).
However, partitionings computed via CND tend to be of low quality. Furthermore,
for complicated geometries CND tends to produce partitionings that contain dis-
connected subdomains. Figure 18.6 gives an example of this. Here, the upper- and
lower-left subdomains are both disconnected. Several variations of CND have been
developed that attempt to address its disadvantages [449]. However, even the most
sophisticated variants tend to produce worse quality partitionings than more sophis-
ticated schemes.

Recursive Inertial Bisection

The CND scheme can only compute bisections that are normal to one of the coor-
dinate axes. In many cases, this restriction can limit the quality of the partitioning.
Figure 18.7 gives an example. The mesh in Figure 18.7(a) is bisected normal to the
longest dimension of the mesh. However, the subdomain boundary is still quite
long. This is because the mesh is oriented at an angle to the coordinate axes. To
achieve a smaller subdomain boundary, the algorithm must orient the bisection in

1 Alternatively, the mesh nodes can be ordered and split in half instead of the mesh elements.

498 Chapter 18 Graph Partitioning for High-Performance Scientific Simulations

(a) (b)

Figure 18.5 An eight-way partitioning of a mesh computed by a CND scheme. First, the
solid bisection was computed. Then the dashed bisections were computed for each of the
subdomains. Finally, the dashed-and-dotted bisections were computed. (a) Centers of mass of
the mesh elements. (b) Mesh elements are shaded to indicate their subdomains.

Figure 18.6 A four-way partitioning computed by a CND scheme. First, the solid bisection
was computed. Then the dashed bisections were computed for each of the subdomains. The
upper- and lower-left subdomains are disconnected.

a way that takes the angle into account. One way to do this is to treat the mesh
elements as point masses and to compute the principal inertial axis of the mass dis-
tribution. If the mesh is convex, then this axis will align with the overall orientation
of the mesh. A bisection line that is orthogonal to this will often result in a small
subdomain boundary, as the mesh will tend to be thinnest in this direction [772].

The recursive inertial bisection (RIB) algorithm improves upon the CND scheme
by making use of this idea as follows. The inertial axis of the mesh is computed, and

18.2 Static Graph-Partitioning Techniques 499

(b)(a)

Figure 18.7 Bisections for a mesh are computed by the CND and RIB schemes. (a) Mesh
is bisected by the CND scheme. (b) Mesh is bisected by the RIB scheme, which results in a
significantly smaller subdomain boundary.

an ordering of the elements is produced by projecting their centers of mass onto
this axis. The ordered list is then split in half to produce a bisection. The scheme
can be applied recursively to produce a k-way partitioning [718]. As an example, the
bisection of the mesh in Figure 18.7(b) is computed using the RIB algorithm. The
solid arrow indicates the inertial axis of the mesh. The dashed line is the bisection.
Here, the subdomain boundary is much smaller than that produced by the CND
scheme in Figure 18.7(a).

Space-Filling Curve Techniques

The CND and RIB algorithms find orderings of the mesh elements and then split the
ordered list in half to produce a bisection. In these schemes, orderings are computed
by projecting the elements onto either the coordinate or inertial axes. A disadvantage
of these techniques is that orderings are computed based on a single dimension
at a time. A scheme that considers more than one dimension may produce better
partitionings.

One such method orders the mesh elements according to the positions of their
centers of mass along a space-filling curve [731, 755, 767, 980] (or a related self-
avoiding walk [451]). Space-filling curves are continuous curves that completely
fill higher-dimensional spaces such as squares or cubes. A number of such curves
have been defined that fill space in a locality-preserving way (e.g., Peano–Hilbert
curves [469]). These produce orderings of mesh elements that have the desirable
characteristic that elements that are near each other in space are likely to be ordered
near each other as well. After the ordering is computed, the ordered list of mesh
elements is split into k parts resulting in k subdomains. Figure 18.8 illustrates a space-
filling curve method for computing an eight-way partitioning of a quad-tree mesh.

Space-filling curve partitioners are fast and generally produce partitionings of
somewhat better quality than either the CND or RIB schemes. They tend to work
particularly well for classes of simulations in which the dependencies between the

500 Chapter 18 Graph Partitioning for High-Performance Scientific Simulations

Figure 18.8 A Peano–Hilbert space-filling curve is used to order the mesh elements. The
eight-way partitioning that is produced by this ordering is shown.

computational nodes are governed by their spatial proximity to one another as in
n-body computations using hierarchical methods [980].

Sphere-Cutting Approach

Miller et al. [674] proposed a new class of graphs, called overlap graphs, that contains
all well-shaped meshes, as well as all planar graphs. Meshes are considered well shaped
if the angles and/or aspect ratios of their elements are bounded within some values.
Most of the meshes used in scientific simulations are well shaped according to this
definition. Miller et al. proved that overlap graphs have O(n(d−1)/d) vertex separators.
In doing so, they extended results by Lipton and Tarjan [619] and others [675]. Note
that a vertex separator is a set of vertices that, if removed, splits the graph into two
roughly equal-sized subgraphs, such that no edge connects the two subgraphs. That
is, instead of partitioning the graph between the vertices (and so cutting edges), the
graph is partitioned along the vertices. For this formulation, the sum weight of the
separator vertices should be minimized.

Miller et al. used the concept of a neighborhood system to define an overlap graph.
A k-ply neighborhood system is a set of n spheres in a d-dimensional space such that
no point in space is encircled by more than k of the spheres. An (α, k)-overlap graph
contains a vertex for each sphere, with an edge existing between two vertices if the
corresponding spheres intersect when the smaller of them is expanded by a factor
of α. Figure 18.9 illustrates these concepts. Figure 18.9(a) shows a set of points in a
2-D space. Figure 18.9(b) shows a three-ply neighborhood system for these points.
Figure 18.9(c) shows the (1, 3)-overlap graph constructed from this neighborhood
system.

Gilbert et al. [379] describe an implementation of a geometric bisection scheme
based on these results. This scheme projects each vertex of a d-dimensional (α, k)-

18.2 Static Graph-Partitioning Techniques 501

(a) (b) (c)

Figure 18.9 (a) Nodes of a finite-element mesh. (b) Three-ply neighborhood systems for the
nodes. (c) The (1, 3)-overlap graph for the mesh.

overlap graph onto the unit (d+1)-dimensional sphere that encircles it. A random
great circle of the sphere has a high probability of splitting the vertices into three
sets A, B, and C, such that no edge joins A and B, A and B each have at most d+1

d+2 n

vertices, and C has only O(αk1/dn(d−1)/d) vertices [674]. Therefore, by selecting a few
great circles at random and picking the best separator from these, the algorithm can
compute a vertex separator of guaranteed quality (in asymptotic terms) with high
probability.

The sphere-cutting scheme is unique among those described in this chapter in that
it guarantees the quality of the computed bisection for well-shaped meshes. But it is
not guaranteed to compute perfectly balanced bisections. It is proven in Miller et al.
[674] that the larger subdomain will contain no more than d+1

d+2 n vertices. However,
experiments cited in Gilbert et al. [379] on a small number of test graphs indicate
that, in three dimensions, splits as bad as 2 : 1 are rare, and most are within 20%.
Gilbert et al. [379] suggest a modification of the scheme that will result in balanced
bisections by shifting the separating plane normal to its orientation.

18.2.2 Combinatorial Techniques

When computing a partitioning, geometric techniques attempt to group together
vertices that are spatially near each other, whether or not these vertices are highly
connected. Combinatorial partitioners, on the other hand, attempt to group together
highly connected vertices, whether or not these are near each other in space. That
is, combinatorial partitioning schemes compute a partitioning based only on the
adjacency information of the graph; they do not consider the coordinates of the
vertices. For this reason, the partitionings produced typically have lower edge-cuts
and are less likely to contain disconnected subdomains than partitionings produced

502 Chapter 18 Graph Partitioning for High-Performance Scientific Simulations

by geometric schemes. However, combinatorial techniques tend to be slower than
geometric partitioning techniques and are not as amenable to parallelization.

Levelized Nested Dissection

A partitioning will have a low edge-cut if adjacent vertices are usually in the same
subdomain. The levelized nested dissection (LND) algorithm attempts to put con-
nected vertices together. It starts with a subdomain containing a single vertex and
incrementally adds adjacent vertices [374].

More precisely, the LND algorithm works as follows. An initial vertex is selected
and assigned the number 0. Then all of the vertices that are adjacent to the selected
vertex are assigned the number 1. Next, all of the vertices that are not assigned
a number and are adjacent to any vertex that has been assigned a number are
assigned that number plus 1. This process continues until half of the vertices have
been assigned a number. At this point, the algorithm terminates. The vertices that
have been assigned numbers are in one subdomain, and the vertices that have not
been assigned numbers are in the other subdomain. Figure 18.10 illustrates the LND
algorithm. It shows the numbering starting with the extreme lower-right vertex.
Here, the solid line shows a bisection with an edge-cut of eight computed by the
LND algorithm.

3

4

5

5

6

7

6

7

7
6 4

3
2

1

2

3

4

55
56

0

1

4

5
5

4

66

5

Edge-cut: 3 Edge-cut: 8

Figure 18.10 A graph partitioned by the LND algorithm. The vertex in the extreme bottom
right was selected and labeled 0. Then, the vertices were labeled in a breadth-first manner
according to how far they are from the 0 vertex. After half of the vertices had been labeled,
a bisection (solid line) was constructed such that the labeled vertices are in one subdomain
and the unlabeled vertices are in another subdomain. This figure also shows a higher-quality
bisection (dashed line) for the same graph.

18.2 Static Graph-Partitioning Techniques 503

This scheme tends to perform better when the initial seed is a pseudo-peripheral
vertex (i.e., one of the pairs of vertices that are approximately the greatest distance
from each other in the graph) as in Figure 18.10. Such a vertex can be found by a
process that is similar to the LND algorithm. A random vertex is initially selected to
start the numbering of vertices. Here, all vertices are numbered. The vertex (or one
of the vertices) with the highest number is likely to be in a corner of the graph. This
vertex can be used either as an input to find another corner vertex (at the other end
of the graph) or as the seed vertex for the LND scheme.

The LND algorithm ensures that at least one of the computed subdomains is
connected (as long as the input graph is fully connected). It tends to produce
partitionings of comparable or better quality than geometric schemes. However,
even with a good seed vertex, the LND algorithm can sometimes produce poor
quality partitionings. For example, the graph in Figure 18.10 contains a natural
bisector shown by the dashed line. However, the LND algorithm was unable to
find this bisection. For this reason, multiple trials of the LND algorithm are often
performed, and the best partitioning from these is selected. Several variations and
improvements of levelized nested dissection schemes are studied in Chung and
Ranka [203], Goehring and Saad [384], and Sadayappan and Ercal [822].

Kernighan–Lin/Fiduccia–Mattheyses Algorithm (KL/FM)

Closely related to the graph partitioning problem is that of partition refinement.
Given a graph with a suboptimal partitioning, the problem is to improve the parti-
tion quality while maintaining the balance constraint. This differs from the graph
partitioning problem only in that it requires an initial partitioning of the graph. In-
deed, a refinement scheme can be used as a partitioning scheme simply by using a
random partitioning as its input.

Given a bisection of a graph that separates the vertices into sets A and B, a powerful
means of refining the bisection is to find two equal-sized subsets, X from A and Y
from B, such that swapping X to B and Y to A yields the greatest possible reduction
in the edge-cut. This type of swapping can be repeated until no further improvement
is possible [560]. However, the problem of finding optimal sets X and Y is intractable
itself (just like the graph partitioning problem). For this reason, Kernighan and Lin
[560] developed a greedy method of finding and swapping near-optimal sets X and
Y (referred to as Kernighan–Lin or KL refinement).

The KL algorithm consists of a small number of passes through the vertices. During
each pass, the algorithm repeatedly finds a pair of vertices, one from each of the
subdomains, and swaps their subdomains. The pairs are selected so as to give the
maximum improvement in the quality of the bisection (even if this improvement
is negative). Once a pair of vertices has been moved, neither is considered for
movement in the rest of the pass. When all of the vertices have been moved, the
pass ends. At this point, the state of the bisection at which the minimum edge-cut
was achieved is restored. (That is, all vertices that were moved after this point are
moved back to their original subdomains.) Another pass of the algorithm can then

504 Chapter 18 Graph Partitioning for High-Performance Scientific Simulations

(a) (b)

Figure 18.11 A bisection of a graph refined by the KL algorithm. The two shaded vertices
will be swapped by the KL algorithm in order to improve the quality of the bisection (a). The
resulting bisection is shown in (b).

be performed by using the resulting bisection as the input. The KL algorithm usually
takes a small number of such passes to converge. Each pass of the KL algorithm
takes O(|V |2). Figure 18.11 illustrates a single swap made by the KL algorithm.
In Figure 18.11(a), the two dark gray vertices are selected to switch subdomains.
Figure 18.11(b) shows the bisection after this swap is made.

Fiduccia and Mattheyses present a modification of the KL algorithm [334] (called
Fiduccia–Mattheyses or FM refinement) that improves its run time without signifi-
cantly decreasing its effectiveness (at least with respect to graphs arising in scientific
computing applications). This scheme differs from the KL algorithm in that it moves
only a single vertex at a time between subdomains instead of swapping pairs of ver-
tices. The FM algorithm makes use of two priority queues (one for each subdomain)
to determine the order in which vertices are examined and moved. As in KL, the
FM algorithm consists of a number of passes through the vertices. Prior to each
pass, the gain of every vertex is computed (i.e., the amount by which the edge-cut
will decrease if the vertex changes subdomains). Then it is placed into the priority
queue that corresponds to its current subdomain and ordered according to its gain.
During a pass, the vertices at the top of each of the two priority queues are exam-
ined. If the top vertex in only one of the priority queues is able to switch subdomains
while still maintaining the balance constraint, then that vertex is moved to the other
subdomain. If the top vertices of both of the priority queues can be moved while
maintaining the balance, then the vertex that has the highest gain among these is
moved. Ties are broken by selecting the vertex that will most improve the balance.
When a vertex is moved, it is removed from the priority queue and the gains of its
adjacent vertices are updated. (Therefore, these vertices may change their positions
in the priority queue.) The pass ends when neither priority queue has a vertex that

18.2 Static Graph-Partitioning Techniques 505

can be moved. At this point, the highest quality bisection that was found during the
pass is restored. With the use of appropriate data structures, the complexity of each
pass of the FM algorithm is O(|E|).

KL/FM-type algorithms are able to escape from some types of local minima
because they explore moves that temporarily increase the edge-cut. Figure 18.12
illustrates this process. Figure 18.12(a) shows a bisection of a graph with an edge-
cut of 6. Here, the weights of the vertices and edges are 1. There are 20 vertices in
the graph. Therefore, a perfectly balanced bisection will have subdomain weights
of 10. However, in this case we allow the subdomains to be up to 10% imbalanced.
Therefore, subdomains of weight 11 are acceptable.2 Figure 18.12(b) shows the gain
of each vertex. Since all of the gains are negative, moving any vertex will result in
the edge-cut increasing. Therefore, the bisection is in a local minimum. However,
the algorithm will still select one of the vertices with the highest gain and move it.
The white vertex is selected. Figure 18.12(c) shows the new bisection, as well as the
updated vertex gains. There are now two positive-gain vertices. However, neither of
these can be moved at this time. The black vertex has just moved, and so it is ineligible
to move again until the end of the pass. The other vertex with +1 gain is unable to
move, as this will violate the balance constraint. Instead, one of the highest negative-
gain vertices (shown in white) from the left subdomain is selected. Figure 18.12(d)
shows the result of this move. Now there are two positive-gain vertices that are able to
move and two that are ineligible to move. The white vertex is selected. Figure 18.13
shows the results of continued refinement. By Figure 18.13(d), the bisection has
reached another minimum with an edge-cut of 2. The refinement algorithm has
succeeded in climbing out of the original local minimum and reducing the edge-cut
from 6 to 2.

While KL/FM schemes are able to escape from certain types of local minima, this
ability is still limited. Therefore, the quality of the final bisection obtained by KL/FM
schemes is highly dependent on the quality of the input bisection. Several techniques
have been developed that try to improve these algorithms by allowing the movement
of larger sets of vertices together (i.e., more than just a single vertex or vertex pair)
[51, 265, 424]. These schemes improve the effectiveness of KL/FM refinement at the
cost of increased algorithm complexity. KL/FM-type refinement algorithms tend to
be more effective when the average degree of the graph is large [155]. Furthermore,
they perform much better when the balance constraints are relaxed. When perfect
balance is desired, these schemes are quite constrained as to the refinement moves
that can be made at any one time. As the imbalance tolerance increases, they are
allowed greater freedom in making vertex moves and can provide higher-quality
bisections.

2 It is common for KL/FM-type algorithms to tolerate a slight amount of imbalance in the partitioning in an
attempt to minimize the edge-cut.

506 Chapter 18 Graph Partitioning for High-Performance Scientific Simulations

Edge-cut: 7
(c)

Edge-cut: 8
(d)

Edge-cut: 6
(a)

Edge-cut: 6
(b)

–1
–1

–1

–1

–1

–2

–2
–2

–2

–2

–2

–2

–2

–2

–3

–3

–3–3

–4

–1

–1

–1

–1

–2

–2
–2

–2

–2

–2

–2

–2

–3

–3

–3–3

–4

+1

–3

0

+1

–2
–2

–2

–2

–2

–2

–2

–3

–3

–3–3

–4

+1

–3

0

+1
–3

+1

0

+1

Figure 18.12 Bisection of a graph refined by a KL/FM algorithm. The white vertices indicate
those selected to be moved. (a) The partitioning is in a local minimum. (b) The algorithm
explores moves that increase the edge-cut. In (c) and (d) the edge-cut is increased, but now
there are edge-cut reducing moves to be made.

18.2.3 Spectral Methods

Another method of solving the bisection problem is to formulate it as the optimiza-
tion of a discrete quadratic function. However, even with this new formulation, the
problem is still intractable. For this reason, a class of graph partitioning methods,
called spectral methods, relaxes this discrete optimization problem by transforming
it into a continuous one. The minimization of the relaxed problem is then solved by
computing the second eigenvector of the discrete Laplacian of the graph.

More precisely, spectral methods work as follows. Given a graph G, its discrete
Laplacian matrix LG is defined as

(LG)qr =

1, if q �= r, q and r are neighbors,
−deg(q), if q = r,
0, otherwise.

18.2 Static Graph-Partitioning Techniques 507

Edge-cut: 4
(c)

Edge-cut: 2
(d)

Edge-cut: 7
(a)

Edge-cut: 6
(b)

–2

–2

–2

–2

–2

–3

–3–3

–4

–3

–5

–3

–2
–4

–3

–3

–2
–3

–2

–3

–2

–2

–2

–2

–2

–2

–3

–3–3

-4

+1

–3

0

–1

–5

–5
–1

+2

+1

0

–2

–2

–2

–2

–2

–3

–3–3

–4

–3

–1

–5
–1

+2

–1

–1

–3

–2
–4

+2

–2

–2

–2

–2

–2

–3

–3–3

–4

–3

–1

–5
–1

+2

–3

–2
–4

–3

–3 –2

Figure 18.13 The KL/FM algorithm from Figure 18.12 is continued here. (a through d) Edge-cut
reducing moves. By (d), the refinement algorithm has reached a local minimum.

LG is equal to A− D, where A is the adjacency matrix of the graph and D is a
diagonal matrix in which D[i, i] is equal to the degree of vertex i. The discrete
Laplacian LG is a negative semidefinite matrix. Furthermore, its largest eigenvalue
is 0 and the corresponding eigenvector consists of all ones. Assuming that the
graph is connected, the magnitude of the second largest eigenvalue gives a mea-
sure of the connectivity of the graph. The eigenvector corresponding to this eigen-
value (referred to as the Fiedler vector), when associated with the vertices of the
graph, gives a measure of the distance (based on connectivity) between the vertices.
Once this measure of distance is computed for each vertex, these can be sorted by
this value, and the ordered list can be split into two parts to produce a bisection
[459, 773, 774]. A k-way partitioning can be computed by recursive bisection. Fig-
ure 18.14 illustrates the spectral bisection technique. It shows a graph along with
its adjacency matrix A, degree matrix D, Laplacian LG, and the resulting bisected
graph.

508 Chapter 18 Graph Partitioning for High-Performance Scientific Simulations

1

3 4

5

1 2

3 4

5 6

LG = A – D

6

5

4

3

2

1

1 2 3

6

5

4

3

2

1 1

2

3

4

5

6

1

1

1

1

1

1

1

1

1

1 1

1

1

1

2

2

3

3

2

2 2

–2

–3

–3

–2

–2

1

1

1

1 1

1

–1

1 1

1

11

11

4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

A D

Input graph Partitioned graph

2

6

Figure 18.14 A graph, along with its adjacency matrix A, degree matrix D, and Laplacian
LG. The Fiedler vector of LG associates a value with each vertex. The vertices are then sorted
according to this value. A bisection is obtained by splitting the sorted list in half.

While the recursive spectral bisection algorithm typically produces higher-quality
partitionings than geometric schemes, calculating the Fiedler vector is computa-
tionally intensive. This process dominates the run time of the scheme and results in
overall times that are several orders of magnitude higher than geometric techniques.
For this reason, great attention has been focused on speeding up the algorithm. First,
the improvement of methods, such as the Lanczos algorithm [748], for approxi-
mating eigenvectors has made the computation of eigenvectors practical. Multilevel
methods have also been employed to speed up the computation of eigenvectors
[79].3 Finally, spectral partitioning schemes that use multiple eigenvectors in order
to divide the computation into four and eight parts at each step of the recursive de-
composition have been investigated [459]. Since the computation of the additional
eigenvectors is relatively inexpensive, this scheme has a smaller net cost, while pro-
ducing partitionings of comparable or better quality, compared to bisecting the graph
at each recursive step.

3 Note that multilevel eigensolver methods are not the same as the multilevel graph partitioning techniques
discussed in Section 18.2.4.

18.2 Static Graph-Partitioning Techniques 509

18.2.4 Multilevel Schemes

Recently, a new class of partitioning algorithms has been developed [155, 218, 415,
441, 460, 538, 542, 678, 971] that is based on the multilevel paradigm. This paradigm
consists of three phases: graph coarsening, initial partitioning, and multilevel refine-
ment. In the graph-coarsening phase, a series of graphs is constructed by collapsing
together selected vertices of the input graph in order to form a related coarser graph.
This newly constructed graph then acts as the input graph for another round of graph
coarsening, and so on, until a sufficiently small graph is obtained. Computation of
the initial bisection is performed on the coarsest (hence smallest) of these graphs
and so is very fast. Finally, partition refinement is performed on each level graph,
from the coarsest to the finest (i.e., original graph) using a KL/FM-type algorithm.
Figure 18.15 illustrates the multilevel paradigm.

A common method for graph coarsening is collapsing together the pairs of vertices
that form a matching. A matching of the graph is a set of edges, no two of which
are incident on the same vertex. Vertex matchings can be computed by a number
of methods. Widely used schemes include random matching, heavy-edge matching
[538], maximum weighted matching [364], and approximated maximum weighted
matching [678]. As an example, Figure 18.16(a) shows a random matching along

G4

G3

G2

G1

G0 G0

G1

G2

G3

Coarsening
phase Uncoarsening and

refinement phase

Initial partitioning phase

Figure 18.15 The three phases of the multilevel graph partitioning paradigm. During the
coarsening phase, the size of the graph is successively decreased. During the initial partitioning
phase, a bisection is computed. During the uncoarsening and refinement phase, the bisection
is successively refined as it is projected to the larger graphs. G0 is the input graph, which is the
finest graph. Gi+1 is the next level coarser graph of Gi. G4 is the coarsest graph.

510 Chapter 18 Graph Partitioning for High-Performance Scientific Simulations

1

1
3

8 6

5

6

[2]

[2]

[2]

[2]

[2]

Edge weight: 30

[2]

[2]

[2][2]

[2]

5

4

1 5
1

3

5

Edge weight: 37

Edge weight: 21

Edge weight: 37

2
1

1
2

1

3

2
3

2

1

1

1

3

4

1

2

1
2

1

3

2
3

2

1

1

3

3

4

1

1

1 1

1

44

1

1
3

(a)

Random matching Heavy-edge matching

(b)

Figure 18.16 (a) Random matching of a graph along with the coarsened graph. (b) The same
graph is matched (and coarsened) with the heavy-edge heuristic in. The heavy-edge matching
minimizes the exposed edge weight.

with the coarsened graph that results from collapsing together vertices incident on
every matched edge. Figure 18.16(b) shows a heavy-edge matching that tends to
select edges with higher weights [538].

The multilevel paradigm works well for two reasons. First, a good coarsening
scheme can hide a large number of edges on the coarsest graph. Figure 18.16 il-
lustrates this point. The original graphs in Figures 18.16(a) and (b) have total edge
weights of 37. After coarsening is performed on each, their total edge weights are
reduced. Figures 18.16(a) and (b) show two possible coarsening heuristics, random
and heavy-edge. In both cases, the total weight of the visible edges in the coarsened
graph is less than that on the original graph. Note that by reducing the exposed edge
weight, the task of computing a good-quality partitioning becomes easier. For exam-

18.2 Static Graph-Partitioning Techniques 511

After
coarsening

1 1
1 1

1

1

1

2

2

110
1010

10

10

10
1010

10

10

10
1010

10

10

10
1010

10

10

Figure 18.17 An example of a partitioned graph (with edge weights) before and after
coarsening. The partitioning for the uncoarsened graph is in a local minimum, while the
partitioning for the coarsened graph is not.

ple, a worst-case partitioning (i.e., one that cuts every edge) of the coarsest graph will
be of higher quality than the worst-case partitioning of the original graph. Also, a
random bisection of the coarsest graph will tend to be better than a random bisection
of the original graph.

The second reason that the multilevel paradigm works well is that incremental
refinement schemes such as KL/FM become much more powerful in the multilevel
context. Here, the movement of a single vertex across the subdomain boundary
in one of the coarse graphs is equivalent to the movement of a large number of
highly connected vertices in the original graph, but is much faster. The ability of a
refinement algorithm to move groups of highly connected vertices all at once allows
the algorithm to escape from some types of local minima. Figure 18.17 illustrates
this phenomenon. It shows a partitioned graph (included are the edge weights for
the graph) both before and after coarsening. The partitioning for the uncoarsened
graph (on the left-hand side) is in a local minimum. However, the partitioning for
the coarsened graph (on the right side) is not. That is, edge-cut reducing moves
can be made here. As discussed in Section 18.2.2, modifications of KL/FM schemes
have been developed that attempt to move sets of vertices at once in order to
improve the effectiveness of refinement [51, 265, 424]. However, computing good
sets to move is computationally intensive. Multilevel schemes benefit from moving
multiple vertices at the same time without having to compute these sets.

Preliminary theoretical work that explains the effectiveness of the multilevel
paradigm has been done by Karypis and Kumar [537].

Multilevel Recursive Bisection

The multilevel paradigm was developed independently by Bui and Jones [155], in the
context of computing fill-reducing matrix reorderings; by Hendrickson and Leland
[460], in the context of finite-element mesh partitioning; and by Hauck and Borriello

512 Chapter 18 Graph Partitioning for High-Performance Scientific Simulations

[441] (called Optimized KLFM) and by Cong and Smith [218], for hypergraph parti-
tioning.4 Karypis and Kumar studied this paradigm extensively [538] by evaluating
a variety of coarsening, initial partitioning, and refinement schemes in the con-
text of graphs from many different application domains. Their evaluation showed
that the overall paradigm is quite robust and consistently outperformed the spectral
partitioning method in both speed and quality of partitioning. The evaluation also
showed that the heavy-edge matching heuristic is very effective in hiding edges in
the coarsest graph. Figure 18.16 gives an example of this. The random matching in
Figure 18.16(a) results in a total exposed edge weight of 30, while the heavy-edge
matching in Figure 18.16(b) results in a total exposed edge weight of only 21. When
heavy-edge matching is used, the initial partitioning that is computed on the coarsest
graph is often not too different from the final partitioning obtained after multilevel
refinement. This allows the use of greatly simplified (and therefore fast) variants of
KL/FM schemes during the uncoarsening phase. These simplified schemes signifi-
cantly speed up refinement without compromising the quality of the partitioning.
Furthermore, these simplified variants are much more amenable to parallelization
than the original KL/FM heuristic that is inherently serial [380]. Karypis and Ku-
mar [537] also showed that as long as a good matching scheme is used and KL/FM
refinement is performed on each level graph, the method of computing the initial
partitioning on the coarsest graph does not have much impact on the final solution
quality.

Multilevel recursive bisection partitioning algorithms are available in several
public domain libraries, such as Chaco [458], METIS [540], and Scotch [761], and are
used extensively for graph partitioning in a variety of domains. Additional variations
of the heavy-edge heuristic are presented in Karypis and Kumar [545] in the context
of hypergraph partitioning. These variations are implemented in the hMETIS [539]
library for partitioning hypergraphs.

Multilevel k-Way Partitioning

Karypis and Kumar [542] present a scheme for refining a k-way partitioning that is a
generalization of simplified variants of the KL/FM bisection refinement algorithm.
Using this k-way refinement scheme, Karypis and Kumar present a k-way multilevel
partitioning algorithm in [542] whose run time is linear in the number of edges (i.e.,
O(|E|)); whereas the run time of multilevel recursive bisection schemes is O(|E| log k).
Experiments on a large number of graphs arising in various domains (including finite
element methods, linear programming, VLSI, and transportation) show that this
scheme produces partitionings that are of comparable or better quality than those
produced by multilevel recursive bisection, while requiring substantially less time.
For example, partitionings of graphs containing millions of vertices can be computed

4 A hypergraph is a generalization of a graph in which edges can connect not just two, but an arbitrary number
of vertices.

18.2 Static Graph-Partitioning Techniques 513

in only a few minutes on a typical workstation. For many of these graphs, the process
of graph partitioning takes less time than the time to read the graph from disk into
memory. Compared with multilevel spectral bisection [460, 773, 774], multilevel k-
way partitioning is usually two orders of magnitude faster and produces partitionings
with generally smaller edge-cuts. The run times of multilevel k-way partitioning
algorithms are usually comparable to the run times of small numbers (two to four)
of runs of geometric recursive bisection algorithms [379, 449, 674, 718, 787] but
tend to produce higher-quality partitionings for a variety of graphs, including those
originating in scientific simulation applications.

Multilevel k-way graph partitioning algorithms are available in the Jostle [968]
and METIS [540] software packages.

18.2.5 Combined Schemes

All of the graph partitioning techniques discussed in this section have individual
advantages and disadvantages. Combining different types of schemes intelligently
can maximize the advantages without suffering all of the disadvantages. In this
section, we briefly describe a few commonly used combinations.

KL/FM-type algorithms are often used to improve the quality of partitionings that
are computed by other methods. For example, an initial partitioning can be com-
puted by a fast geometric method, and then the relatively low-quality partitioning
can be refined by a KL/FM algorithm. Multilevel schemes use this technique, as well,
by performing KL/FM refinement on each coarsened version of the graph after an
initial partitioning is computed (by either LND [538], spectral [460], or other meth-
ods [415]). As another example, spectral methods can be used to compute coordinate
information for vertices [427]. These coordinates can then be used by a geometric
scheme to partition the graph [865].

18.2.6 Qualitative Comparison of Graph Partitioning Schemes

The large number of graph partitioning schemes reviewed in this section differ widely
in the edge-cut quality produced, run time, degree of parallelism, and applicability
to certain kinds of graphs. Often, it is not clear as to which scheme is better under
different scenarios. In this section, we categorize properties of graph partitioning
algorithms commonly used in scientific simulation applications. This task is quite
difficult, as it is not possible to precisely model the properties of the graph partition-
ing algorithms. Furthermore, for most of the schemes, sufficient data on the edge-cut
quality and run time for a common pool of benchmark graphs are not available.
The relative comparison of different schemes draws upon the experimental results
in [379, 449, 459, 538]. We try to make reasonable assumptions whenever enough
data are not available. For the sake of simplicity, we have chosen to represent each
property in terms of a small discrete scale. In the absence of extensive data, it is not
possible to do much better than this in any case.

514 Chapter 18 Graph Partitioning for High-Performance Scientific Simulations

1

1

1

1

50
10
1

1

1

1

1
10
50

1

1

Multilevel spectral bisection

Multilevel partitioning

Kernighan-Lin

Nee
ds

 co
or

din
at

es

Num
be

r o
f t

ria
ls

no

no

no

no

no

no
no
no

yes

yes

yes

yes
yes
yes

yes
10 yes

yes50

Deg
re

e o
f p

ar
all

eli
sm

Qua
lity

Lo
ca

l v
iew

Glob
al

vie
w

Ru
n

tim
e

Mulitlevel spectral bisection-KL

Coordinate nested dissection

Levelized nested dissection

Geometric sphere-cutting

Geometric sphere-cutting-KL

Recursive inertial bisection

Recursive inertial bisection-KL

Recursive spectral bisection

Figure 18.18 Graph partitioning schemes rated with respect to quality, run time, degree of
parallelism, and related characteristics.

Figure 18.18 compares three variations of spectral partitioners [79, 460, 774,
773], a multilevel algorithm [542], an LND algorithm [374], a KL algorithm (with
random initial partitionings) [560], a CND algorithm [449], two variations of the RIB
algorithm [458, 718], and two variations of the geometric sphere-cutting algorithm
[379, 674].

For each graph partitioning algorithm, Figure 18.18 shows a number of char-
acteristics. The first column shows the number of trials that are performed for each
partitioning algorithm. For example, for the KL algorithm, different trials can be per-
formed each starting with a different random partitioning of the graph. Each trial is
a different run of the partitioning algorithm, and the best of these is selected. As we

18.2 Static Graph-Partitioning Techniques 515

can see from this table, some algorithms require only a single trial, either because
multiple trials will give the same partitioning or a single trial gives very good results
(as in the case of multilevel graph partitioning). However, for some schemes (e.g.,
KL and geometric partitioning), different trials yield significantly different edge-cuts.
Hence, these schemes usually require multiple trials in order to produce good-quality
partitionings. For multiple trials, we only show the case of 10 and 50 trials, as often
the quality saturates beyond 50 trials or the run time becomes too large.

The second column shows whether the partitioning algorithm requires coor-
dinates for the vertices of the graph. Some algorithms such as CND and RIB are
applicable only if coordinate information is available. Others (e.g., combinatorial
schemes) only require the sets of vertices and edges.

The third column of Figure 18.18 shows the relative quality of the partitionings
produced by the various schemes. Each additional circle corresponds to roughly 10%
improvement in the edge-cut. The edge-cut quality for CND serves as the base, and
it is shown with one circle. Schemes with two circles for quality should find parti-
tionings that are roughly 10% better than CND. This column shows that the quality
of the partitionings produced by the multilevel graph partitioning algorithm and
the multilevel spectral bisection with KL is very good. The quality of geometric par-
titioning with KL refinement is equally good when 50 or more trials are performed.
The quality of the other schemes is worse than the above three by various degrees.
Note that for both KL partitioning and geometric partitioning, the quality improves
as the number of trials increases.

The reason for the differences in the quality of the various schemes can be
understood if we consider the degree of quality as a sum of two quantities that we
refer to as local view and global view. A graph partitioning algorithm has a local view
of the graph if it is able to do localized refinement. According to this definition,
all the graph partitioning algorithms that perform KL/FM-type refinement possess
this local view, whereas the others do not. Global view refers to the extent that
the graph partitioning algorithm takes into account the structure of the graph. For
instance, spectral bisection algorithms take into account only global information
of the graph by minimizing the edge-cut in the continuous approximation of the
discrete problem. On the other hand, a single trial of the KL algorithm does not utilize
information about the overall structure of the graph, since it starts from a random
bisection. For schemes that require multiple random trials, the degree of the global
view increases as the number of trials increases. The global view of multilevel graph
partitioning is among the highest. This is because multilevel graph partitioning
captures global graph structure in two ways. First, it captures global structure through
the process of coarsening; second, it captures global structure during initial graph
partitioning by performing multiple trials.

The sixth column of Figure 18.18 shows the relative time required by different
graph partitioning schemes. CND, RIB, and geometric sphere-cutting (with a single
trial) require relatively small amounts of time. We show the run time of these schemes
by one square. Each additional square corresponds to roughly a factor of 10 increase
in the run time. As we can see, spectral graph partitioning schemes require several

516 Chapter 18 Graph Partitioning for High-Performance Scientific Simulations

orders of magnitude more time than the faster schemes. However, the quality of the
partitionings produced by the faster schemes is relatively poor. The quality of these
schemes can be improved by increasing the number of trials and/or by using the
KL/FM refinement, both of which increase the run time of the partitioner. On the
other hand, multilevel graph partitioning requires a moderate amount of time and
produces partitionings of very high quality.

The degree of parallelizability of different schemes differs significantly and is
depicted by a number of triangles in the seventh column of Figure 18.18. One triangle
means that the scheme is largely sequential, two triangles means that the scheme
can exploit a moderate amount of parallelism, and three triangles means that the
scheme can be parallelized quite effectively. Schemes that require multiple trials are
inherently parallel, as different trials can be done on different (groups of) processors.
In contrast, a single trial of KL is very difficult to parallelize and appears inherently
serial [380]. Multilevel schemes that utilize relaxed variations of KL/FM refinement
and the spectral bisection scheme are moderately parallel in nature.

18.3 Load Balancing of Adaptive Computations

For large-scale scientific simulations, the computational requirements of techniques
relying on globally refined meshes become very high, especially as the complexity
and size of the problems increase. By locally refining and de-refining the mesh either
to capture flow-field phenomena of interest [116] or to account for variations in
errors [755], adaptive methods make standard computational methods more cost
effective. One such example is numerical simulations for improving the design of
helicopter blades [116] (see Figure 18.19). In order to capture flow-field phenomena
of interest accurately, the finite element mesh must be extremely fine both around
the helicopter blade and in the vicinity of the sound vortex created by the blade.
It should be coarser in other regions of the mesh for maximum efficiency. As the
simulation progresses, neither the blade nor the sound vortex remains stationary.
Therefore, the new regions of the mesh that these enter need to be refined, while
those regions that are no longer of key interest should be de-refined. These dynamic
adjustments to the mesh result in some processors having significantly more (or less)
work than others and thus cause load imbalance. Similar issues exist for problems in
which the amount of computation associated with each mesh element changes over
time [274]. For example, in particles-in-cells methods that advect particles through
a mesh, large temporal and spatial variations in particle density can introduce
substantial load imbalance.

In both of these types of applications, it is necessary to dynamically load bal-
ance the computations as the simulation progresses. This dynamic load balancing
can be achieved by using a graph partitioning algorithm. In the case of adaptive
finite-element methods, the graph either corresponds to the mesh obtained after
adaptation or else corresponds to the original mesh with the vertex weights adjusted
to reflect error estimates [755]. In the case of particles-in-cells, the graph corresponds
to the original mesh with the vertex weights adjusted to reflect the particle density.

18.3 Load Balancing of Adaptive Computations 517

Figure 18.19 A helicopter blade rotating through a mesh. As the blade spins, the mesh is
adapted by refining it in the regions that the blade has entered and de-refining it in the regions
that are no longer of interest. (Figure courtesy of Rupak Biswas, NASA Ames Research Center.)

We refer to this problem as adaptive graph partitioning to differentiate it from the
static graph-partitioning problem that arises when the computations remain fixed.

Adaptive graph partitioning shares most of the requirements and characteristics
of static graph partitioning but also adds an additional objective. That is, the amount
of data that needs to be redistributed among the processors in order to balance the
load should be minimized. In order to accurately measure this cost, we need to con-
sider not only the weight of a vertex, but also its size [723]. Vertex weight is the
computational cost of the work represented by the vertex, while size reflects its re-
distribution cost. Thus, the repartitioner should attempt to balance the partitioning
with respect to vertex weight while minimizing vertex migration with respect to ver-
tex size. Depending on the representation and storage policy of the data, size and
weight may not necessarily be equal [723].

Oliker and Biswas [723] studied various metrics for measuring data redistribution
costs. They presented the metrics TOTALV and MAXV. TOTALV is defined as the sum of
the sizes of vertices that change subdomains as the result of repartitioning. TOTALV
reflects the overall volume of communications needed to balance the partitioning.
MAXV is defined as the maximum of the sums of the sizes of those vertices that
migrate into or out of any one subdomain as a result of repartitioning. MAXV reflects
the maximum time needed by any one processor to send or receive data. Results show
that measuring the MAXV can sometimes be a better indicator of data redistribution
overhead than measuring the TOTALV. However, many repartitioning schemes [723,
832, 833, 974] attempt to minimize TOTALV instead of MAXV for the following
reasons:

518 Chapter 18 Graph Partitioning for High-Performance Scientific Simulations

1. TOTALV can be minimized during refinement by the use of relatively simple
heuristics; minimizing MAXV tends to be more difficult.

2. The MAXV is lower bounded by the amount of vertex weight that needs to be
moved out of the most overweight subdomain (or into the most underweight
subdomain). For many problems, this lower bound can dominate the MAXV
and so no improvement is possible.

3. Minimizing TOTALV often tends to do a fairly good job of minimizing MAXV.

Repartitioning Approaches

A repartitioning of a graph can be computed by simply partitioning the new graph
from scratch. Since no consideration is given to the existing partitioning, it is
unlikely that vertices will be assigned to their original subdomains with this method.
Therefore, this approach will tend to require much more data redistribution than is
necessary in order to balance the load.

An alternate strategy is to attempt to perturb the input partitioning just enough
to balance it. This can be accomplished trivially by the following cut-and-paste repar-
titioning method: excess vertices in overweight subdomains are simply swapped into
one or more underweight subdomains (regardless of whether these subdomains are
adjacent) in order to balance the partitioning. While this method will optimally
minimize data redistribution, it can result in significantly higher edge-cuts com-
pared with more sophisticated approaches and will typically result in disconnected
subdomains. For these reasons, it is usually not considered a viable repartitioning
scheme for most applications. A better approach is to use a diffusion-based repar-
titioning scheme. These schemes attempt to minimize the data redistribution costs
while significantly decreasing the possibility that subdomains become disconnected.

Figure 18.20 illustrates these methods for a graph whose vertices and edges
have weights of 1. The shading of a vertex indicates the original subdomain to
which it belongs. In Figure 18.20(a), the original partitioning is imbalanced because
subdomain 3 has a weight of 6, while the average subdomain weight is only 4. The
edge-cut of the original partitioning is 12. In Figure 18.20(b), the original partitioning
is ignored and the graph is partitioned from scratch. This partitioning also has an
edge-cut of 12. However, 13 out of 20 vertices are required to change subdomains.
That is, TOTALV is 13; MAXV is 6. In Figure 18.20(c), cut-and-paste repartitioning was
used. Here, only two vertices are required to change subdomains and MAXV is also
2. The edge-cut of this partitioning is 16, and subdomain 1 is now disconnected.
Figure 18.20(d) gives a diffusive repartitioning that presents a compromise between
those in Figure 18.20(b) and (c). Here, TOTALV is 4, MAXV is 2, and the edge-cut is 14.

18.3.1 Scratch-Remap Repartitioners

The example in Figure 18.20(b) illustrates how partitioning from scratch resulted
in the lowest edge-cut of the three repartitioning methods. This is expected since
it is possible to use a state-of-the-art graph partitioner to compute the new par-

18.3 Load Balancing of Adaptive Computations 519

Edge-cut: 16
TotalV: 2
MaxV: 2

(c)

Edge-cut: 14
TotalV: 4
MaxV: 2

(d)

Edge-cut: 12
(a)

Edge-cut: 12
TotalV: 13
MaxV: 6

(b)

2

3

1

4

1

4

3

2

4

3

2

1

2

1

4
3

1

Figure 18.20 Various repartitioning schemes. (a) Example of an imbalanced partitioning.
This partitioning is balanced by partitioning the graph (b) from scratch, (c) cut-and-pasted
repartitioning, and (d) diffusive repartitioning.

titioning from scratch. However, this repartitioning resulted in the highest data
redistribution costs. To understand this, it is necessary to examine the partition-
ings in Figures 18.20(a) and (b). Note that in Figure 18.20(a), subdomain 1 is on
the left, subdomain 3 is on the right, and subdomain 4 is on the bottom. For the
partitioning in Figure 18.20(b), subdomain 1 is on the right, subdomain 3 is on the
bottom, and subdomain 4 is on the top left. A large amount of the data redistribution
required for the partitioning in Figure 18.20(b) is brought about because the subdo-
mains are labeled suboptimally. Simply changing the subdomain labels of the new
partitioning in accordance with the old partitioning (without otherwise modifying
the partitioning) can significantly reduce the data redistribution cost [884].

Oliker and Biswas [723] present a number of repartitioning schemes that compute
new partitionings from scratch and then intelligently map the subdomain labels
to those of the original partitionings in order to minimize the data redistribution

520 Chapter 18 Graph Partitioning for High-Performance Scientific Simulations

costs. We refer to this method as scratch-remap repartitioning. Partition remapping
is performed as follows:

1. Construct a similarity matrix, S, of size k × k. A similarity matrix is one in
which the rows represent the subdomains of the old partitioning, the columns
represent the subdomains of the new partitioning, and each element, Sqr,
represents the sum of the sizes of the vertices that are in subdomain q of the
old partitioning and in subdomain r of the new partitioning.

2. Select k elements such that every row and column contains exactly one se-
lected element and such that the sum of the selected elements is maximized.
This corresponds to the remapping in which the amount of overlap between
the original and the remapped partitionings is maximized, and hence, the to-
tal volume of data redistribution required in order to realize the remapped
partitioning is minimized.

3. For each element Sqr selected, rename domain r to domain q on the remapped
partitioning.

Figure 18.21 illustrates such a remapping process. Here, similarity matrix S has
been constructed based on the example in Figure 18.20. The first row of S indicates
that subdomain 1 on the old partitioning (Figure 18.20(a)) consists of 0 vertices
from subdomains 1 and 2 on the new partitioning (Figure 18.20(b)) and 1 vertex
from each of subdomains 3 and 4 on the new partitioning. Likewise, the second row
indicates that subdomain 2 on the old partitioning consists of 2 vertices from each
of subdomains 2 and 4 on the new partitioning and 0 vertices from the other two
subdomains. The third and fourth rows are constructed similarly. In this example,
we select underlined elements S14, S22, S31, and S43. This combination maximizes the
sum of the sizes of the selected elements. Running through the selected elements,
subdomain 1 on the newly computed partitioning is renamed 3, and subdomains 2,
3, and 4 are renamed 2, 4, and 1, respectively. Figure 18.21(c) shows the remapped
partitioning. Here, TOTALV is 6 and MAXV is 3.

Although the remapping phase reduces the data redistribution costs (without
affecting the edge-cut), scratch-remap schemes still tend to result in higher redistri-
bution costs than schemes that attempt to balance the input partitioning by minimal
perturbation (e.g., cut-and-paste and diffusion-based schemes). For example, if the
newly adapted graph is only slightly different from the original graph, then partition-
ing from scratch could produce a new partitioning that is still substantially different
from the original and requires many vertices to be moved even after the remapping
phase. On such a graph, the imbalance could easily be corrected by moving only a
small number of vertices. Figure 18.22 illustrates an example of this. The partition-
ing in Figure 18.22(a) is slightly imbalanced. The upper-right subdomain has five
vertices, while the average subdomain weight is 4. In Figure 18.22(b), the partition-
ing is balanced by moving a single vertex from the upper-right subdomain to the
lower-right subdomain. Therefore, both TOTALV and MAXV are 1. Figure 18.22(c)
shows a new partitioning that has been computed from scratch and then optimally

18.3 Load Balancing of Adaptive Computations 521

2

2

New partition

O
ld

 p
ar

tit
io

n

Remapping

1

1 2 3 4

11

2

4

13

1

1
TotalV: 6
MaxV: 3

Edge-cut: 12

(c)(b)(a)

21

3

4

4

3

2 2

3

4

4

2

3

Figure 18.21 A similarity matrix, the corresponding remapping, and the remapped partition-
ing from Figure 18.20(b).

(a) (b) (c)

Figure 18.22 An imbalanced partitioning and two repartitioning techniques. (a) Partitioning
is imbalanced. It is balanced by (b) an incremental method and by (c) a scratch-remap method.

remapped to the partitioning in Figure 18.22(a). Despite this optimal remapping,
the repartitioning has a TOTALV of 7 and a MAXV of 2. All three of the partitionings
have similar edge-cuts.

The reason that the scratch-remap scheme does so poorly here with respect to data
redistribution is because the information that is provided by the original partitioning
is not utilized until the final remapping process. At this point, it is too late to
avoid high data redistribution costs even if we compute an optimal remapping. The
problem in our example is that the partitioning in Figure 18.22(a) is shaped like
a plus symbol (+), while the partitioning in Figure 18.22(c) forms an “X”. Both of
these are of equal quality, so a static partitioning algorithm could easily compute
either of these. However, we would like the partitioning algorithm used in a scratch-
remap repartitioner to drive the computation of the partitioning toward that of the

522 Chapter 18 Graph Partitioning for High-Performance Scientific Simulations

original partitioning, whenever possible, without affecting the quality. A scratch-
remap algorithm can potentially do this if it is able to extract and use the information
implicit in the original partitioning during the computation of the new partitioning.
An algorithm called locally matched multilevel scratch-remap (LMSR) that tries to
accomplish this is presented in Schloegel et al. [833]. LMSR decreases the amount of
data redistribution required to balance the graph compared to naive scratch-remap
schemes, particularly for slightly imbalanced graphs [833].

18.3.2 Diffusion-Based Repartitioners

Diffusive load-balancing schemes attempt to minimize the difference between the
original partitioning and the final repartitioning by making incremental changes
in the partitioning to restore balance. Subdomains that are overweight in the orig-
inal partitioning export vertices to adjacent subdomains. These may further export
vertices to their neighbors in an effort to reach global balance. By limiting the move-
ment of vertices to neighboring subdomains, these schemes attempt to minimize the
edge-cut and maintain connected subdomains. As an example, the repartitioning in
Figure 18.20(d) is obtained by a diffusive process. In this case, subdomain 3 migrates
a vertex to each of subdomains 2 and 4. This causes the recipient subdomains to
become overweight. Each next migrates a vertex to subdomain 1.

Any diffusion-based repartitioning scheme needs to address two questions:

1. How much work should be transferred between processors?

2. Which tasks should be transferred?

The answer to the first question tells us how to balance the partitioning, while the
answer to the second tells us how to minimize the edge-cut as we do this. A lot of
work has focused on answering the first question in the context of balancing unre-
lated tasks that are unevenly distributed among processors [124, 242, 264, 484, 492,
493, 982, 1006]. These take the machine architecture, but not the interdependen-
cies of the tasks, into consideration when computing the amount of work to transfer
between processors. More recently, in the context of adaptive computational simula-
tions, work has focused not only on how much, but also which tasks to transfer [274,
730, 731, 755, 768, 832, 833, 883, 953, 961, 973, 974]. In the rest of this section, we
focus on these schemes.

Schemes for determining how much work to transfer between processors can
be grouped into two categories. Diffusion schemes that base the exchange of work
among the processors only on their respective workloads (and not on the loads of
distant processors) [832] are called local diffusion algorithms. Other schemes [274,
730, 731, 755, 768, 832, 833, 883, 953, 961, 973, 974], use global views of the
processor loads to balance the partitioning. We call these global diffusion schemes.
Most global diffusion schemes either perform diffusion in a recursive bisection
manner [274, 883, 961], utilize space-filling curves [731, 755, 768], or compute flow
solutions [730, 832, 833, 973, 974] that prescribe the amount of work to be moved
between pairs of processors.

18.3 Load Balancing of Adaptive Computations 523

Recursive bisection diffusion schemes [274, 883, 961] split the subdomains into
two groups and then attempt to balance these groups. Next, both of the (balanced)
groups are split in two and the algorithm recurses on these subgroups.

Adaptive space-filling curve partitioners [731, 755, 768] can compute repartition-
ings by maintaining the original ordering of the mesh elements. Here, the weights
associated with the ordered mesh elements are changed to reflect the structural
changes in the computation. All that is required to compute a repartitioning is to
recompute the k-way splitting of the ordered list with respect to the new weights.

Flow solutions are usually computed in order to optimize some objective. Ou and
Ranka [730] present a global diffusion scheme that optimally minimizes the one-
norm of the flow using linear programming. Such a scheme will minimize TOTALV
provided that the weights and sizes of the vertices are equal. Hu and Blake [493]
present a method that optimally minimizes the two-norm of the flow. They prove
that such a flow solution can be obtained by solving the linear equation (−L)λ= b,
where b is the vector containing the load of each subdomain minus the average
subdomain load, L is the Laplacian matrix (as defined in Section 18.2.3) of the graph
that models the subdomain connectivity (i.e., the subdomain connectivity graph), and
λ, the flow solution, is a vector with k elements. An amount of vertex weight equal
to λq − λr needs to be moved from subdomain q to subdomain r for every r that is
adjacent to q in order to balance the partitioning.

Figure 18.23 illustrates the difference between one- and two-norm minimization
of the flow solution. This figure shows the subdomain connectivity graph for a nine-
way partitioning along with the two different flow solutions. Here, the two dark
subdomains are overweight by 10, while the two white subdomains are underweight
by 10. The weight of the rest of the subdomains equals the average subdomain
weight. The flow solution in Figure 18.23(a) minimizes the one-norm of the data
movement. The flow solution in Figure 18.23(b) minimizes the two-norm of the
data movement. The one-norm minimization solution can minimize TOTALV, but
will not in general minimize MAXV, as most of the flow is sent through a few links.
The two-norm minimization solution more evenly distributes the flow through the
links (and thus tends to result in lower values for MAXV), but requires greater total
flow (and therefore, worse TOTALV), compared to the one-norm solution.

The flow solution indicates how much vertex weight needs to be transferred
between each pair of adjacent subdomains. The second problem is to determine
exactly which vertices to move so as to minimize the edge-cut of the resulting
partitioning. One possibility is to repeatedly transfer layers of vertices along the
subdomain boundary until the desired amount of vertex weight has been transferred
[730, 961]. A more precise scheme is to move one vertex at a time across the
subdomain boundary, each time selecting the vertex that will result in the smallest
edge-cut [973]. This scheme, like the KL/FM algorithm, utilizes only a local view of
the graph and can make (globally) poor selections. This problem can be corrected
if the transfer of vertices is performed in a multilevel context [832, 974]. Such
schemes, called multilevel diffusion algorithms, perform graph coarsening and then
begin diffusion on the coarsest graph. During the uncoarsening phase, vertices are

524 Chapter 18 Graph Partitioning for High-Performance Scientific Simulations

One-norm: 40
Two-norm: 400

(a)

10

10
10

10

One-norm: 51.4
Two-norm: 245.6

(b)

5.7

5.7
5.7
5.7

4.3

4.3
4.3

4.3

1.4 1.4

1.4
2.9

2.9

1.4

Figure 18.23 Two different flow solutions for the subdomain graph of an imbalanced
partitioning. (a) One-norm of the data migration is minimized. (b) Two-norm of the data
migration is minimized.

moved to achieve (or maintain) load balance, while also trying to improve the edge-
cut. By beginning diffusion on the coarsest graph, these algorithms are able to move
large chunks of highly connected vertices in a single step. Thus, the bulk of the
work required to balance the partitioning is done quickly. Furthermore, by moving
highly connected vertices together, high-quality edge-cuts can often be maintained.
Experimental results show that multilevel diffusion can compute partitionings of
higher quality than schemes that perform diffusion only on the original graph [832,
974] and is often faster.

For partitionings that are highly imbalanced in localized areas, diffusion-based
schemes require vertex flow to propagate over long distances. For this class of
problems, it is beneficial to determine not only how much and which vertices to move,
but also when vertices should move [264]. A diffusion algorithm, called wavefront
diffusion, that determines the best time to migrate vertices is presented in [833]. In
wavefront diffusion, the flow of vertices moves in a wavefront starting from the
most overweight subdomains. This method guarantees that all subdomains will
contain the largest possible selection of vertices when it is their turn to export
vertices. Thus, subdomains are able to select those vertices for migration that will
best minimize edge-cut and data redistribution costs. Wavefront diffusion obtains
significantly lower data redistribution costs while maintaining similar or better edge-
cut results compared to diffusion schemes that do not determine the best time to
migrate vertices, especially for partitionings that are highly imbalanced in localized
areas [833].

Tradeoff between Edge-Cut and Data Redistribution Costs

Often, the objective of minimizing the data redistribution cost is at odds with
the objective of minimizing the edge-cut. For applications in which the mesh is

18.4 Parallel Graph Partitioning 525

frequently adapted or the amount of state associated with each element is relatively
high, minimizing the data redistribution cost is preferred over minimizing the edge-
cut. For applications in which repartitioning occurs infrequently, the key objective
of a repartitioning scheme will be obtaining the minimal edge-cut.

While a number of coarsening and refinement heuristics have been developed
[832, 969] that can control the tradeoffs between these two objectives to some extent,
most adaptive partitioners naturally minimize one in preference to the other. For
example, wavefront diffusion tends to minimize data redistribution costs better than
the LMSR algorithm. However, the LMSR algorithm tends to minimize the edge-cut
of the repartitioning better than wavefront diffusion. As such, the two provide the
user with a limited control of the tradeoffs among these objectives. A new scheme,
called the unified repartitioning algorithm [836], has been developed that gives the
user a more fine-tuned control of the tradeoffs among the objectives. Experimental
results on a variety of problems show that the unified repartitioning algorithm is able
to reduce the sum of the interprocessor communication overhead incurred during
the iterative mesh-based computation and the data redistribution costs required to
balance the load as well as or better than other repartitioning schemes.

18.4 Parallel Graph Partitioning

The ability to perform partitioning in parallel is important for many reasons. The
amount of memory on serial computers is often not enough to allow the partitioning
of graphs corresponding to large problems that can now be solved on massively par-
allel computers and workstation clusters. A parallel graph partitioning algorithm can
take advantage of the significantly higher amount of memory available in parallel
computers to partition very large graphs. Also, as heterogeneous systems of parallel
machines are integrated into a single system of systems (e.g., the NASA Information
Power Grid [517]), the role of graph partitioning will change. Here, the exact num-
ber of processors and/or the architectural characteristics of the hardware assigned
to a computation will not be known until immediately before the computation is
permitted to execute. Parallel graph partitioning is crucial for efficiency in such an
environment. In the context of adaptive graph partitioning, the graph is already dis-
tributed among processors, but needs to be repartitioned due to the dynamic nature
of the underlying computation. In such cases, having to bring the graph to one pro-
cessor for repartitioning can create a serious bottleneck that could adversely impact
the scalability of the overall application.

Work in parallel graph partitioning [78, 380, 449, 543, 546, 788, 970] has been
focused on geometric [449, 788], spectral [78], and multilevel partitioning schemes
[543, 546, 970]. Geometric graph partitioning algorithms tend to be quite easy
to parallelize. Typically, these require a parallel sorting algorithm. Spectral and
multilevel partitioners are more difficult to parallelize. Their parallel asymptotic run
times are the same as that of performing a parallel matrix–vector multiplication
on a randomly partitioned matrix [546]. This is because the input graph is not well
distributed across the processors. If the graph is first partitioned and then distributed

526 Chapter 18 Graph Partitioning for High-Performance Scientific Simulations

across the processors accordingly, the parallel asymptotic run times of spectral
and multilevel partitioners drop to that of performing a parallel matrix–vector
multiplication on a well-partitioned matrix. Thus, performing these partitioning
schemes efficiently in parallel requires a good partitioning of the input graph [546,
970]. In the case of static graph partitioning, we cannot expect the input graph to
be partitioned already, since this is exactly what we are trying to do. However, for
the adaptive graph partitioning problem, we can expect the input partitioning to be
of high quality (i.e., have a low edge-cut, even though it will be imbalanced). For
this reason, parallel adaptive graph partitioners [833, 974] tend to run significantly
faster than static partitioners.

Since the run times of most parallel geometric partitioning schemes are not
affected by the initial distribution of the graph, they can be used to compute a
partitioning for multilevel (or spectral) partitioning algorithms. That is, a rough
partitioning of the input graph can be computed by a fast geometric approach.
This partitioning can be used to redistribute the graph prior to performing parallel
multilevel (or spectral) partitioning [547]. Use of this “boot-strapping” approach sig-
nificantly increases the parallel efficiency of the more accurate partitioning scheme
by providing it with data locality.

Parallel multilevel algorithms for graph partitioning are available in the ParMETIS
[547] and Jostle [968] libraries.

18.5 Multiconstraint, Multiobjective Graph Partitioning

In recent years, with advances in the state of the art of scientific simulation, sophis-
ticated classes of computations such as multiphase, multiphysics, and multimesh
simulations have become commonplace. For many of these, the traditional graph
partitioning formulation is not adequate to ensure their efficient execution on high-
performance parallel computers. Instead, new graph partitioning formulations and
algorithms are required to meet the needs of these. In this section, we describe
some important classes of scientific simulation that require more generalized for-
mulations of the graph partitioning problem in order to ensure their efficiency on
high-performance machines; we discuss these requirements; and we describe new,
generalized formulations of the graph partitioning problem as well as algorithms for
solving these problems.

Multiphysics Simulations

In multiphysics simulations, a variety of materials and/or processes are simulated
together. The result is a class of problems in which the computation as well as
the memory requirements are not uniform across the mesh. Existing partitioning
schemes can be used to divide the mesh among the processors such that either the
amount of computation or the amount of memory required is balanced across the
processors. However, they cannot be used to compute a partitioning that simulta-
neously balances both of these quantities. Our inability to do so can either lead

18.5 Multiconstraint, Multiobjective Graph Partitioning 527

(b) (c) (d)

Edge-cut: 4
Computation: 18 and 18
Memory: 20 and 44

Edge-cut: 4
Computation: 24 and 12
Memory: 32 and 32

Edge-cut: 6
Computation: 18 and 18
Memory: 32 and 32

Computation
Memory

(a)

Figure 18.24 (a) Example of a computation with nonuniform memory requirements. Each
vertex in the graph is split into two amounts. The size of the lightly shaded portion represents
the amount of computation associated with the vertex, while the size of the dark portion
represents the amount of memory associated with the vertex. (b) Bisection balances the
computation. (c) Bisection balances the memory. (d) Bisection balances both memory and
computation.

to significant computational imbalances, limiting efficiency, or significant memory
imbalances, limiting the size of problems that can be solved using parallel com-
puters. Figure 18.24 illustrates this problem. It shows three possible partitionings
of a graph in which the amount of computation and memory associated with a
vertex can be different throughout the graph. The partitioning in Figure 18.24(b)
balances the computation among the subdomains, but creates a serious imbalance
for memory requirements. The partitioning in Figure 18.24(c) balances the mem-
ory requirement, while leaving the computation imbalanced. The partitioning in
Figure 18.24(d), which balances both of these, is the desired solution. In general,
multiphysics simulations require the partitioning to satisfy not just one, but a mul-
tiple number of balance constraints. (In this case, the partitioning must balance two
constraints: computation and memory.)

Multiphase Simulations

Multiphase simulations consist of m distinct computational phases, each separated
by an explicit synchronization step. In general, the amount of computation per-
formed for each element of the mesh is different for different phases. The existence
of the synchronization steps between the phases requires that each phase be indi-
vidually load balanced. That is, it is not sufficient to simply sum up the relative
times required for each phase and to compute a decomposition based on this sum.

528 Chapter 18 Graph Partitioning for High-Performance Scientific Simulations

Figure 18.25 A mesh for a particle-in-cell computation. Here, both the mesh elements and
the particles should be balanced across the subdomains.

Doing so may lead to some processors having too much work during one phase of
the computation (these may still be working after other processors are idle) and not
enough work during other phases (these may be idle while other processors are still
working). Instead, it is critical that every processor have an equal amount of work
from all of the phases of the computation. A traditional partitioning scheme can be
used to balance the load across the processors for a single phase of the computa-
tion. However, the load may be seriously imbalanced for the other phases. Another
method is to use m distinct partitionings, each of which balances the load of a single
phase only. This method requires that costly data redistribution be performed after
each phase in order to realize the partitioning corresponding to the next phase. A
better method is to compute a single partitioning that simultaneously balances the
work performed in each of the phases. In this case, no redistribution of the data is
necessary, and all of the phases are well balanced.

Figure 18.25 gives an example. It shows the mesh for a simulation of particles
moving through space. This computation is composed of two phases. The first phase
is a mesh-based computation. The second phase is a particle-based computation. In
order to load balance such an application, each processor must have a roughly equal
amount of both the mesh computation and the particle computation. One such
bisection is shown. It splits both the mesh elements and the particles in half.

Figure 18.26 shows another example. This is the mesh associated with the numer-
ical simulation of the ports and the combustion chamber of an internal combustion
engine. In this particular problem, the overall computation is performed in six
phases. (Each corresponds to a different shade in the figure.) In order to solve such
a multiphase computation efficiently on a parallel machine, every processor should
contain an equal number of mesh elements of each different shade. Figure 18.27
shows two subdomains of an eight-way partitioning of the mesh in Figure 18.26.
This partitioning balances all six phases while also minimizing the interprocessor
communications. (Note that not all of the shades are visible in Figures 18.26 and
18.27.)

18.5 Multiconstraint, Multiobjective Graph Partitioning 529

Figure 18.26 An internal combustion engine simulation is an example application whose
computation is performed in multiple phases. Each shade represents elements active during a
different phase. (Figure courtesy of Analysis and Design Application Company Limited.)

(a) (b)

Figure 18.27 Two subdomains of an eight-way partitioning computed by the multiconstraint
graph partitioner implemented in METIS 4.0 are shown. Note that the subdomains have an
equal number of elements of each shade (although they are not all visible). (Figure courtesy of
Analysis and Design Application Company Limited.)

530 Chapter 18 Graph Partitioning for High-Performance Scientific Simulations

Multimesh Computations

An important class of emerging numerical methods is multimesh computations.
Multiple meshes arise in several settings that use grids to discretize partial differential
equations. For example, some operations are innately more efficient on structured
grids, such as radiation transport sweeps or FFTs. However, complex geometries are
better fitted with unstructured meshes. In some simulations, both kinds of grids may
be used throughout the computation. Similarly, various codes that solve for multiple
physical quantities may use separate grids to solve the appropriate equations for each
variable. For example, consider a simulation of the welding of a joint between two
parts, a process in which the parts are pressed together and thermally annealed [770].
One grid could be used for the solution of the stress–strain relations that mediate the
mechanical deformation of the parts. A second grid could be used to solve the heat
equation for thermal conduction in the system. Since the regions of high strain may
be distinct from those with high thermal gradients, each grid can be individually
tailored to accurately represent the relevant physics.

Now consider the implementation of such a multiphysics example on a
distributed-memory parallel machine. A typical time step consists of computing
a solution on the first mesh, interpolating the result to the second mesh, comput-
ing a solution on the second mesh, interpolating it back to the first mesh, and so
on. One way of performing this type of computation in parallel is to partition the
meshes separately so that every processor has a portion of each mesh. This approach
will balance the computations and minimize the communications during each of
the solution phases. However, because the different meshes are partitioned indepen-
dently, there is no assurance that an individual processor will own portions of the
meshes that spatially overlap. Therefore, the amount of communication performed
during the interpolation and transfer of the solution data can be quite high, even
if an efficient approach is used to manage this communication [770]. Ideally, we
would like to partition the different meshes such that each processor performs an
equal amount of work for every mesh. At the same time, we would like to minimize
the amount of interprocessor communications required during the computations of
the solutions, as well as that required during the interpolation and transfer of the
solutions.

Domain Decomposition-Based Preconditioners

The two keys to the efficient solution of systems of sparse linear equations via
iterative methods are (1) the ability to perform the matrix–vector multiplication
efficiently in parallel, and (2) minimizing the number of iterations required for
the method to converge. The matrix–vector multiplication is typically implemented
by first reordering the sparse matrix to minimize the number of nonzero elements
that are off of the block diagonal. Then a striped partitioning of the matrix and
the vector is used. Here, an interprocessor communication is required for every
nonzero element off of the block diagonal. A high-quality partitioning of the graph
corresponding to the sparse matrix provides a reordering such that the number of
interprocessor communications is minimized. Use of various preconditioners can

18.5 Multiconstraint, Multiobjective Graph Partitioning 531

minimize the number of iterations required for the solution to converge. There
are a number of preconditioning schemes that construct a preconditioner of each
block of the block diagonal separately. These are combined to form a preconditioner
for the entire matrix. Examples are block-diagonal preconditioners and local ILU
preconditioners. These preconditioners ignore the intrasubdomain interactions that
are represented by the nonzero elements off of the block diagonal.

Since the matrix reordering is commonly obtained by a graph partitioner, this en-
sures that the number of nonzeros that are ignored in the preconditioner is relatively
small. Therefore, the matrix–vector multiplications will be computed efficiently.
However, this ordering does not attempt to minimize the magnitude of these ig-
nored nonzeros. Therefore, it could be the case that while the number of nonzero
elements is small, the sum of the ignored nonzeros is quite large. The consequence
of this is that the preconditioner may not be as effective as it could be if the sum of
the ignored elements was minimized [563]. That is, the number of iterations for the
method to converge may not be minimized. The magnitude of the ignored elements
could be minimized directly by a partitioning that is computed using the magnitude
of the elements as the edge weights of the graph. However, such an approach will
not minimize the communication overhead incurred by the matrix–vector multipli-
cation. This is because an ordering computed in this way would not minimize the
number of ignored elements. Ideally, we would like to obtain an ordering that mini-
mizes both the number of intra-domain interactions (reducing the communication
overhead) and the numerical magnitude of these interactions (potentially leading
to a better preconditioner).

Figures 18.28 through 18.30 illustrate this problem. Figure 18.28 shows a parti-
tioning of a graph that minimizes the edge-cut and the corresponding matrix ordered
with respect to this partitioning. Here, there are only a small number of ignored
nonzero entries off of the diagonal. However, their magnitudes are high compared
to the other elements. Figure 18.29 shows a partitioning of a graph that minimizes
the magnitude of the ignored entries and the matrix ordered accordingly. Here, there
are quite a bit more ignored entries compared to the ordering shown in Figure 18.28.
However, the magnitudes of these entries are small. Figure 18.30 shows the partition-
ing that attempts to minimize both the number and the magnitude of the ignored
entries as well as the corresponding matrix.

18.5.1 A Generalized Formulation for Graph Partitioning

The common characteristic of these problems is that they require the computation of
partitionings that satisfy an arbitrary number of balance constraints and/or an arbi-
trary number of optimization objectives. Traditional graph partitioning techniques
have been designed to balance only a single constraint (i.e., the vertex weight) and
to minimize only a single objective (i.e., the edge-cut). An extension of the graph
partitioning formulation that can model these problems is to assign a weight vector
of size m to each vertex and a weight vector of size l to each edge. The problem be-
comes that of finding a partitioning that minimizes the edge-cuts with respect to all

532 Chapter 18 Graph Partitioning for High-Performance Scientific Simulations

2
1

1

1
1

2 5

2

1

3

5

10

3

12
12

2
2

1

3

2

1

5
1

1

1

55

5

1

2

3

10

3

12

2

1

1

2

2

Edge-cut: 12
Magnitude: 66

1
1

3

3
1

1 2

1
5

2
2

10

10
1

1
12

12
1

12

12

10

12

1
3

5

5

3
3

5
1
2

2
5 2

2
1

2
52

2
1
1

1
1
2

5 3

15

22

2
5
1
3
1

1

1

5
1

1
10

2

2

3
3

2

2
2 2

5
11

5
1

3 --
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

12
1

Figure 18.28 Partitioning of a graph that minimizes the number of edges cut by the
partitioning along with the associated sparse matrix ordered accordingly.

1

3

2
1

5
1
1

55

5

10

3

12

2

2

1

1

5

2

1

3

5

3

12

12

2
1

2

10
1

2

2

1

2

1

3

1

2

1

Edge-cut: 23
Magnitude: 36

2
2

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
-- 1

1
3

3
5

5

1

1

3

3

12

12

1

15
5

2

2
3

3

1

1

1

1
1

1

5
5

1

1

10

10

2

2

5
5

1

1

2

2

2

2

5
5

2

2

1
1

2

2

2

2

12
12

10

10

1

1

3
3

1

1

1

1

1

1

2

2
2

2

5
5

12
12 3

3

Figure 18.29 Partitioning of a graph that minimizes the sum magnitude of the edges cut by
the partitioning along with the associated sparse matrix ordered accordingly.

18.5 Multiconstraint, Multiobjective Graph Partitioning 533

1

5

55

5

10

3

2

2

1

5

2

5

3

12

2
2

1

1

3

2

1

1

2

3 1
2

2

1

1

12

2

3
10

1

1

1

1

12

Edge-cut: 15
Magnitude: 45

5
5

1

1

1

1

3

3

3
3

12

12
1

1

2

2

5
25

2

3

3

1
1

11
5

5
1

1
2

2
10

10

5
5

2

2
2

2
1

1

2

2
1

1
12

12

10

10
1

1
12

12
1

1
1

1

3

3

5
5

3

3
2

2
1

1 5
5

2

2
2

2 2
2

1

1

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

Figure 18.30 Partitioning that minimizes both the number and the magnitude of the edges
cut by the partitioning along with the associated sparse matrix ordered accordingly.

l weights, subject to the constraints that each of the m weights is balanced across the
subdomains. This multiconstraint, multiobjective graph partitioning problem is able
to model all of the problems described above effectively.

For example, the problem of balancing computation and memory can be mod-
eled by associating a vector of size 2 with each vertex (i.e., a two-constraint problem),
where the elements of the vector represent the computation and memory require-
ments associated with the vertex. Similarly, the problem of computing an ordering
for a system of sparse linear systems preconditioned by a block-diagonal method can
be modeled by assigning a vector of size 2 to each edge (i.e., a two-objective prob-
lem), where the elements of the vector represent the number of nonzero entries (all
ones in this case) and the magnitude of these entries.

Computing decompositions for multimesh computations is a multiconstraint,
multiobjective problem. Figure 18.31 illustrates an example for a simple case with
two meshes. Figure 18.31(a) shows a pair of overlapping graphs (one with light,
circular vertices and dotted edges and the other with dark, square vertices and solid
edges). Additionally, dashed lines are included that show the interactions required
in order to facilitate the interpolation and transfer process. Figure 18.31(b) shows
the graph that models this problem. Here, the two graphs (and additional edges)
from Figure 18.31(a) are combined. Every square vertex is given a weight of (1, 0)
and every circular vertex is given a weight of (0, 1). Solid edges are weighted (1, 0,
0). Dotted edges are weighted (0, 1, 0). Dashed edges are weighted (0, 0, 1). (Note
that not all of the vertices and edges are labeled here.) Figure 18.32 gives a four-way

534 Chapter 18 Graph Partitioning for High-Performance Scientific Simulations

(1,0,0)

(1,0,0)

(1,0,0)

(1,0,0)

(1,0,0)

(0,0,1)

(0,0,1)

(0,0,1)

(0,0,1)

(0,1,0)

(0,1,0)

(0,1,0)

(0,1,0)

(0,1,0)
(0,1,0)(0,1,0)

(1, 0)
(1, 0)

(1, 0)

(1, 0)

(1, 0)

(1, 0)

(1, 0)

(1, 0)
(1, 0)

(0, 1)

(0, 1)

(0, 1)

(1, 0)

(1, 0)

(0, 1)

(0, 1)

(0, 1)

(0, 1) (0,1,0)

(1,0,0)

(0,0,1)

(1, 0)

(1, 0)

(1,0,0)

(0,1,0)

(0,0,1)

(0, 1)

(a) (b)

Figure 18.31 (a) Example of two overlapping meshes (light circles and dark squares) along
with dashed interpolation edges and, (b) corresponding multiconstraint, multiobjective
formulation.

Solid edge-cut: 10 Dotted edge-cut: 12 Dashed edge-cut: 12

1

1

3

2

4

Figure 18.32 The partitioned meshes from Figure 18.31.

18.5 Multiconstraint, Multiobjective Graph Partitioning 535

partitioning of this graph. Here, both types of vertices are balanced and their edge-
cuts are minimized. At the same time, minimizing the number of dashed edges cut
has helped to ensure that regions from the two graphs that spatially overlap tend
to be in the same subdomain. This minimizes the communications incurred by the
interpolation and transfer process.

Multiconstraint Graph Partitioning

Theoretical work relating to multiconstraint graph partitioning includes the ham-
sandwich theorem and its generalization [901]. This theorem states that a single
plane can divide three bounded and connected regions in half in a 3-D space. If two
of the regions are interpreted as slices of bread and one as a slice of ham, then the
conclusion is that a single stroke of a knife can evenly divide the sandwich in two
so that all three slices are cut exactly in half. Also, Djidjev and Gilbert [276] proved
that if a vertex separator theorem holds for a class of graphs (for example, Lipton
and Tarjan’s planar separator theorem [619]), then the theorem also holds for graphs
in which the vertices have an arbitrary number of distinct weights.

Multiconstraint graph partitioning algorithms have recently been developed by
a number of researchers [541, 771, 835, 976, 981]. These vary in their generality
and complexity. A method is presented in Walshaw et al. [976] that utilizes a slight
modification of a traditional graph partitioner as a black box in order to compute
partitionings for multiphase computations. This method partitions disjoint subsets
of vertices sequentially. Vertices are grouped together depending on the first phase
of the multiphase computation in which they are active. After a set of vertices is
partitioned, their subdomains are locked. Subsequent partitioning of other sets of
vertices are influenced by the locked vertices. In this way, free vertices that are highly
connected to locked vertices are likely to be assigned to the same subdomains as their
neighbors. This scheme is sufficient for partitioning the multiphase mesh shown in
Figure 18.26.

A more complex and more general algorithm is presented in Karypis and Kumar
[541]. This is a multilevel scheme that extends the coarsening and refinement
phases to handle multiple balance constraints. A key component of this algorithm
is the initial partitioning algorithm. Here, a partitioning needs to be computed
that balances multiple constraints. The authors present a lemma that proves that
a set of two-weight objects can be partitioned into two disjoint subsets such that
the difference between either of the weights of the two sets is bounded by twice
the maximum weight of any object. They further show that this bound can be
generalized to m weights. However, maintaining the weight bound depends on
the presence of sufficiently many objects with certain weight characteristics (an
assumption that usually holds for medium- to large-size graphs). The lemma leads
to an algorithm for computing such a bisection. This scheme is sufficient for a wide
range of multiphase, multiphysics, and multimesh simulations (including all of the
examples described in this section).

536 Chapter 18 Graph Partitioning for High-Performance Scientific Simulations

A parallel formulation of the multiconstraint partitioner [541] is described in
Schloegel et al. [835]. Experimental results show that this formulation can efficiently
compute partitionings of similar quality to the serial algorithm and scales to very
large graphs. For example, the parallel multiconstraint graph partitioner is able to
compute a three-constraint 128-way partitioning of a 7 million–vertex graph in
about 7 seconds on 128 processors of a Cray T3E.

Multiobjective Graph Partitioning

For any single-objective optimization problem (such as the traditional graph par-
titioning problem), an optimal solution exists in the feasible solution space. In
multiobjective optimization, there is no single overall optimal solution, although
there is an optimal solution for each one of the objectives. Consider the set of so-
lution points for the two-objective optimization problem shown in Figure 18.33.
The optimally minimal values for the two objectives are shown by the dashed lines.
In this set, two unique points have the (same) optimal value for the first objective.
However, their values for the second objective differ. Clearly, we would prefer the
lightly shaded point over the black point, as this one is equal with respect to the
first objective and has a better (smaller) value for the second objective. In this set
of solution points, we can quickly determine that most of the points are not of in-
terest. The solutions that are of interest are those that are not dominated by any
other solution, regardless of whether they have optimal values for any of the ob-
jectives. These are called the Pareto optimal points. A solution is Pareto optimal if
there is no feasible solution for which one can improve the value of any objective
without worsening the value of at least one other objective [636]. In Figure 18.33,

Se
co

nd
 o

bj
ec

tiv
e

First objective

Figure 18.33 A number of solution points for a two-objective optimization problem. The
lightly shaded points are Pareto optimal.

18.5 Multiconstraint, Multiobjective Graph Partitioning 537

Pareto frontier

Pareto-optimal points

Optimally minimal values

Se
co

nd
 o

bj
ec

tiv
e

First objective

.
.

.

Figure 18.34 The Pareto frontier for a two-objective optimization problem. The optimally
minimal values of each objective are also shown.

the lightly shaded points (and only these points) are Pareto optimal. The set of all
Pareto-optimal points is called the Pareto frontier [636] (see Figure 18.34). In general,
multiobjective optimization problems have many Pareto-optimal solutions. One of
the implications of multiple Pareto-optimal solutions is that the definition of the
desired solution becomes ambiguous. Every multiobjective optimization scheme re-
quires that some method be used in order to disambiguate the definition of a desired
solution. In the context of multiobjective graph partitioning, the user should spec-
ify the area along the Pareto frontier in which they are interested, and by doing so,
control the tradeoffs among the objectives.

The key challenge in solving the multiobjective partitioning problem is to allow
the user to control the tradeoffs among the different objectives. This is particularly
difficult when the objectives are dissimilar in nature, as such objectives cannot
readily be combined. A new method of reformulating the multiobjective graph
partitioning problem so that it can be solved using a traditional (i.e., single-objective)
partitioner is presented in [834]. This method provides the user with a fine-tuned
control of the tradeoffs among the objectives, results in predictable partitionings,
and is able to handle dissimilar objectives. Specifically, the algorithm computes a
multiobjective partitioning based on a user-specified preference vector. This vector
describes how the tradeoffs among the objectives should be enforced. For example,
if there are two objectives and the user supplies a preference vector of (1, 1), then
the algorithm will allow one objective to move away from its optimal value by some
amount only if the other objective moves toward its optimal value by more than
that amount. For the case of three objectives with a preference vector of (6, 2, 1),
the algorithm will prefer a new solution only if 6x+ 2y + z > 0, where x is the gain

538 Chapter 18 Graph Partitioning for High-Performance Scientific Simulations

with respect to the first objective, y is the gain with respect to the second objective,
and z is the gain with respect to the third objective.

A number of multiconstraint and multiobjective graph partitioning algorithms,
as well as some of their parallel formulations, have been implemented in the METIS
[540] and ParMETIS [547] libraries. Serial and parallel multiphase partitioning algo-
rithms [976] are implemented in the Jostle [968] library.

18.6 Conclusion

The state of the art in graph partitioning for high-performance scientific simula-
tions has improved dramatically over the past decade. Improvements in the speed,
accuracy, generality, and scalability of graph partitioners have led to significant mile-
stones. For example, extremely large graphs (over 0.5 billion vertices) have been
partitioned on machines consisting of thousands of processors in only a couple
of minutes [551]. However, despite impressive achievements, there is still work to
be done in the field. In this section, we discuss some of the limitations of current
graph partitioning problem formulations (many of which were highlighted by Hen-
drickson and Kolda [456]), as well as areas of future work. We end this chapter by
charting the functionality of some of the publicly available graph partitioning soft-
ware packages.

18.6.1 Limitations of the Graph-Partitioning Problem Formulation

As discussed previously, the edge-cut metric is not a precise model of the interpro-
cessor communication costs incurred by parallel processing. Nor is it even a precise
model of the total communications volume [455]. While the min-cut formulation
has proved effective for the well-shaped meshes that are common to scientific sim-
ulations, alternative formulations are still needed for more general cases. As an
example of recent work in this area, Catalyurek and Aykanat [174] have developed
a hypergraph partitioning formulation that precisely models total communication
volume. Experimental results comparing the hypergraph partitioning model to the
traditional graph partitioning model show that for graphs of nonuniform degree,
using the hypergraph model can significantly decrease the interprocessor commu-
nication costs compared to using the graph model. However, for graphs of uniform
degree, the hypergraph model provides only a modest improvement and requires
more runtime compared to state-of-the-art graph partitioners [174]. While the hy-
pergraph partitioning formulation allows us to precisely minimize communications
volume, it does not allow us to minimize other important components of interpro-
cessor communication cost such as the message start-up time or the time required
for the processor with the most communication (i.e., minimize the maximum pro-
cessor communication time). Developing new formulations and algorithms that do
so is an open area of research in the field.

18.6 Conclusion 539

18.6.2 Other Application Modeling Limitations

In addition to being imprecise, the traditional partitioning formulation is inade-
quate for many important classes of scientific simulation. For example, the standard
graph partitioning formulation can effectively model only square, symmetric sparse
matrices. However, general rectangular and unsymmetric matrices are required for
solving linear systems, least-squares problems, and linear programs [457]. Bipartite
graph partitioning [457] and multiconstraint graph partitioning [541, 835] can be ef-
fective for these types of applications. Also, minimizing the edge-cut of a partitioning
does not ensure the numerical scalability of iterative methods. Numerical scalability
means that as the number of processors increases, the convergence rate of the it-
erative solver remains constant. Vanderstraeten et al. [957] have shown that the
numerical scalability of a class of iterative solvers can be maintained if partitionings
are computed such that their subdomains have low average aspect ratios. The tradi-
tional partitioning formulation does not optimize subdomain aspect ratios. Walshaw
et al. [972] developed graph partitioning schemes that attempt to minimize the av-
erage aspect ratio of the subdomains. Experimental results show that these schemes
are able to compute partitionings with significantly better subdomain aspect ratios
than traditional partitioners. However, they often result in worse edge-cuts. While
these results are promising, it is desirable for a partitioning to minimize both of these
objectives (edge-cut and aspect ratio) simultaneously. Recent work in multiobjective
graph partitioning [834] may also be relevant here to control the tradeoff between
these two objectives.

18.6.3 Architecture Modeling Limitations

When traditional graph partitioners are used for mapping computations onto par-
allel machines, there is an assumption that the target architecture is flat and homo-
geneous [266, 456]. While it is true that many current architectures display similar
computing powers, bandwidths, and latencies regardless of the processors involved,
heterogeneous and hierarchical architectures are becoming increasingly common-
place. For example, consider the problem of decomposing a mesh for parallel pro-
cessing on an architecture that consists of a cluster of heterogeneous workstations
connected by a high-speed, high-latency network to a distributed-memory multi-
processor in which each node consists of a four-processor, shared-memory machine.
Here, both the computational and communicational speeds depend on the specific
processors involved. Standard graph partitioners do not take such considerations
into account when computing a partitioning. Partitioning for heterogeneous and
hierarchical architectures is especially important in meta-computing environments
[517]. In such an environment, it may be impossible to predict the type (or types) of
machines or even the exact number of processors that a simulation will be executed
on until immediately prior to execution. In this case, both computational speeds
and communication costs can fluctuate widely, even between repeated executions

540 Chapter 18 Graph Partitioning for High-Performance Scientific Simulations

of the same simulation. Alternative (e.g., hierarchical and other [190, 912, 975]) par-
titioning methods are starting to be applied to such problems, but more work still
needs to be done.

18.6.4 Functionality of Available Graph Partitioning Packages

Many of the graph partitioning schemes described in this chapter have been imple-
mented in publicly available software packages. Figure 18.35 charts the functionality
of some of the more widely used packages. These include Chaco [458], Jostle [968],
METIS [540], ParMETIS [547], Party [777], Scotch [761], and S-Harp [883].

Acknowledgments.We would like to thank Rupak Biswas, Bruce Hendrickson, Abani
Patra, Robert Preis, and Chris Walshaw as well as the CRPC book reviewers for their
insightful comments on earlier drafts of this chapter. This work was supported by DoE
contract number LLNL B347881, NSF grants CCR-9972519, EIA-9986042, and ACI-
9982274, Army Research Office contract DA/DAAG55-98-1-0441, and Army High
Performance Computing Research Center cooperative agreement number DAAH04-
95-2-0003/contract number DAAH04-95-C-0008; content does not necessarily reflect
the position or the policy of the government, and no official endorsement should be
inferred. Additional support was provided by the IBM Partnership Award and by the
IBM SUR equipment grant. Access to computing facilities was provided by AHPCRC
and the Minnesota Supercomputer Institute.

18.6 Conclusion 541

Cha
co

Jo
stl

e
M

ET
IS

Pa
rM

ET
IS

PA
RT

Y

Sc
ot

ch

S-
Har

p

Geometric schemes

Coordinate nested dissection
Recursive inertial bisection

Spectral methods

Recursive spectral bisection
Multilevel spectral bisection

Combinatorial schemes

Levelized nest dissection
KL/FM

Multilevel schemes

Multilevel recursive bisection
Multilevel k-way partitioning

Parallel graph partitioners

Dynamic repartitioners

Parallel static partitioning
Parallel dynamic partitioning

Other formulations

Space-filling curve methods

Multiconstraint graph partitioning
Multiobjective graph partitioning

Diffusive repartitioning
Scratch-remap repartitioning

Multilevel fill-reducing ordering

Figure 18.35 Functionality of a number of publicly available software packages.

C

H

A

P

T

E

R

19 Mesh Generation

Bharat K. Soni . Joe F. Thompson

Mesh generation is an essential infrastructure element—an enabling technology—
for the computational simulation of field phenomena such as fluid mechanics, heat
and mass transfer, structural mechanics, plasmadynamics, electromagnetics, and
other such physical processes that occur over a region of space. Mesh generation
is the means by which the domain of interest is discretized into a collection of
discrete points or volumes on which the governing equations can be represented
and then solved computationally. The mesh thus provides the framework on which
the solution is computed and subsequently visualized.

Fundamentally, mesh generation operates by distributing points throughout the
volume of the physical region, as well as on the boundary surfaces. Connecting
the points forms the mesh and subdivides the physical region into a filling set of
discrete volume elements. The governing equations may be represented discretely
on the points, with derivatives being represented by finite differences, or in the more
fundamental integral form on the volume elements, with integrals being represented
by discrete sums. In either case, the resulting set of simultaneous algebraic equations
constitutes a matrix problem that is solved computationally by some direct, factored
or iterative method.

The time required for mesh generation is much more a question of person time
than computation time. Thus, there is also the need to make the mesh generation
process easier for the user.

The real needs in mesh generation emerge as the following:

. Capability for bigger meshes, that is, more points

. Compatibility of data structure with solution codes

. More ease of user operation, that is, more automation

. Capability for macros, editing, and script-based operation

543

544 Chapter 19 Mesh Generation

All facets of mesh generation have recently been addressed—from the standpoint
of application and best practices—in the Handbook of Grid Generation, edited by J.
Thompson and B. Soni of Mississippi State University and N. Weatherill of the Uni-
versity of Wales, Swansea [928]. The present chapter, therefore, defers to that work
for details and focuses on a brief overview of strategies and technology, examples of
application, and aspects of parallel operation.

19.1 Mesh-Generation Strategies and Techniques

Mesh-generation strategies can be classified as Cartesian, structured, unstructured,
hybrid (generalized), and meshless. The techniques employed in these strategies and
the state of the art and state of the practice are discussed in the following sections.

19.1.1 Cartesian Meshes

In this approach, a network of mesh lines with uniform spacing is defined in a
rectangle (2-D) or a rectangular box (3-D) in the domain in question. The size of the
box is determined as a function of the dimensions of solid geometric components
associated with the simulation. The discretization associated with solid geometrical
components is decoupled from the mesh. The boundary condition implementation
is established by “cutting” the interior geometrical entities with mesh lines.

This approach is the simplest and most straightforward way of discretizing the
given domain. The entire mesh-generation process and boundary-condition spec-
ification can be automated. The governing equations can be discretized using a
cell-based or node-based approach; however, the cell-to-cell or node-to-node con-
nectivity at solid boundaries/surfaces is not known a priori, which adds complexity
to the discretization of the governing equations. Also, a special data structure is
needed to describe conservation of volume.

The Cartesian approach has been used to solve a variety of problems [665].
Developments in computer science, involving search algorithms, quadtree–octree
data structures, polygon clipping schemes, and adaptive refinement [94] based on
isotropic subdivision, have shown potential in the application of this approach to
complex configurations automatically without user intervention. However, valida-
tion and practical application of this approach to Navier–Stokes simulations in-
volving viscous boundary layers and simulations associated with complex physics
involving disparate time and length scales require more research.

19.1.2 Structured Meshes

If the points are placed in a logically rectangular pattern, so that adjacent points are
readily recognizable, the mesh is said to be “structured.” This automatic neighbor
recognition greatly simplifies both the data structure and the discrete representation
of derivatives and integrals and generally results in an orderly, sparse matrix problem.
This structure comes at the price of geometric flexibility, however. Although great

19.1 Mesh-Generation Strategies and Techniques 545

strides have been made in the generation of structured meshes, the most complex ge-
ometrical configurations can be difficult to treat with this approach. Block-structured
generation has extended the range of application of structured meshes to quite com-
plicated configurations, but the goal of automation has not yet been achieved. In
fact, the large number of blocks that must necessarily result with most complicated
configurations makes these meshes unstructured in the global sense.

The structured mesh is represented by a network of curvilinear coordinate lines
such that a one-to-one mapping can be established between physical and computa-
tional space. The curvilinear mesh points conform to the solid surfaces/boundaries
and, hence, provide the most economical and accurate way for specifying bound-
ary conditions. For complicated geometrical configurations, the physical region is
divided into subregions; a structured mesh is generated within each of these. The
resulting submeshes may be patched together at common interfaces, overlapped or
overlaid (commonly referred to as a chimera mesh). The transfer of solution informa-
tion at the block interface is very critical for successful simulation.

Structured meshes can be generated algebraically or as the solution of partial
differential equations (PDEs). Algebraic mesh generation [391, 886] is simply an
interpolation of interior points from boundary points—the variants just use dif-
ferent kinds of interpolation. The most fundamental and versatile form—and the
one now commonly incorporated in mesh-generation codes—is TFI (transfinite in-
terpolation). Algebraic mesh generation based on TFI is the fastest procedure for
generating structured meshes and is also commonly used to generate an initial mesh
in generation systems based on PDEs. Meshes generated algebraically may, how-
ever, have problems with smoothness and may overlap strongly convex portions of
boundaries. Generation systems based on PDEs can produce smoother meshes with
fewer problems with boundary overlap. Such generation systems are, therefore, often
used to smooth algebraic meshes.

TFI can be mathematically described as a Boolean sum of interpolation projectors
in all three coordinate directions:

Pξ ⊕ Pη ⊕ Pζ = Pξ + Pη + Pζ − PξPη − PηPζ − PζPξ + PξPηPζ

Here, the interpolation projectors represent linear, Lagrange, Hermite, Bezier, B-
spline, NURBs, or any other interpolation selected by the developer.

Since mesh generation is essentially a boundary-value problem, meshes can be
generated from point distributions on boundaries by solving elliptic PDEs in the
field. The smoothness properties and extremum principles inherent in some PDE
systems can serve to produce smooth meshes without boundary overlap. The PDE
solution is generally done by iteration, and, therefore, elliptic mesh generation is
not as fast as algebraic mesh generation.

The elliptic PDEs employed for mesh generation are not unique, of course, but
must be designed. This design has converged over the years to the elliptic system that
forms the basis for most mesh-generation codes today. This formulation incorporates
control functions that are determined from the boundary point distribution. These

546 Chapter 19 Mesh Generation

functions control the mesh line spacing and orientation in the field so that the latter
is compatible with that on the boundary.

Evaluation of these control functions is the key factor to achieving mesh smooth-
ness and orthogonality. This technology is well developed, and a good quality mesh
can be generated for very complex arbitrary regions [926]. The elliptic system typi-
cally employed is of the form:

3∑
i=1

3∑
j=1

gijr
ξ irξ j +

3∑
k=1

φkr
ξk = 0

where

gil = 1
g

(
gjmgkm − gjngkn

)
,

i = 1, 2, 3; j = 1, 2, 3 (i, j, k), (l, m, n) cyclic

This elliptic system can be rewritten in the following form for evaluation of the
control functions:

3∑
i=1

3∑
j=1

gij(giq)ξ j +
3∑

k=1

φkgkq

−
3∑

i=1

3∑
j=1

gij

(
(gij)ξq − (gjq)ξ i + (giq)ξ j

2

)
= 0

with q = 1, 2, 3. Assuming orthogonality, the control functions can be derived as

φk = 1
2

d
dξk

(
ln

(
gkk

giigjj

))

with (i, j, k) cyclic and k = 1, 2, 3.
This definition of the control functions is straightforward and has been found

to be most effective with respect to improving orthogonality and smoothness in
structured meshes.

An alternative approach to mesh generation via PDEs is to use a hyperbolic
generation system [895] rather than an elliptic system. Elliptic equations admit
boundary conditions, that is, mesh point distributions, on all boundaries of a region.
Hyperbolic systems, however, can take boundary conditions only on a portion of the
boundary. Therefore, while elliptic mesh-generation systems produce a mesh in the
volume from point distributions of the entire boundary, hyperbolic systems generate
the mesh by marching outward from a portion of the boundary. Hyperbolic mesh-
generation systems, therefore, cannot be used to generate a mesh in the entirety of
a volume defined by a complete boundary.

Hyperbolic generation is very useful for external flow problems and for generating
component meshes in the case of overlaid meshes. The following equations are
linearized and then solved numerically to generate hyperbolic meshes:

19.1 Mesh-Generation Strategies and Techniques 547

rζ · rξ =√g11 g33 cos(φ)

rζ · rη =√g22 g33 cos(ψ)

rζ · (rξ × rη)= V

The usual practice is to enforce orthogonality by assuming φ and ψ in these
equations to be 90◦. Structured meshes are not generally made orthogonal, although
orthogonality at boundaries is often incorporated, as has been noted above. In fact,
3-D orthogonality is not generally possible without imposing certain conditions on
the meshes on the boundary surfaces. Even in 2-D, orthogonality imposes severe
restrictions on the mesh distribution. Transformed PDEs, however, take a much
more simple form on orthogonal meshes, providing some incentive for their use
when feasible: with relatively simple boundary configurations and physical problems
without strong localized gradients.

Various approaches are documented in the literature [887] that combine the best
features of algebraic–elliptic–hyperbolic techniques to accomplish quality static and
adaptive/dynamic mesh generation. Another approach that is utilized, especially in
2-D applications, is based on variational functionals [136].

A powerful and versatile alternative to block-structured meshes is the overset
mesh approach (originally called chimera, after the composite monster of Greek
mythology). With this approach, individual structured meshes are generated around
separate boundary components, such as bodies, and these separate meshes simply
overlap each other in some hierarchy. Data are transferred between overlapping
meshes by interpolation. The chimera meshes [660] offer the flexibility to address
moving-body problems that require dynamic meshing.

The structured, multiblock mesh represents a widely utilized strategy for practical
computational field simulation (CFS) applications. The major issue here is automa-
tion. The generation of multiblock meshes is extremely time consuming, especially
for very complex geometrical configurations. User ingenuity and user experience
govern the response time in mesh generation. In the past few years, various research
activities [244, 747] have been dedicated to developing algorithms to perform au-
tomatic blocking and mesh generation; however, user interactions and graphical
interfaces remain extremely important for generation of structured meshes.

19.1.3 Unstructured Meshes

“Unstructured” meshes are just that: no logical connection of adjacent points is self-
evident. Rather, a connectivity table must be constructed and preserved for use in the
numerical simulation. The representation of derivatives and integrals is also more
complicated, and the resulting matrix problem is more dense and less orderly. The
solution algorithm in this approach becomes more complex, but with a significant
gain in the ability to treat truly complex configurations automatically.

Unstructured meshes are composed of triangles or quadrilaterals (2-D) and tetra-
hedrals or hexahedrals (3-D). The mesh information is represented by a set of coor-
dinates (nodes) and the connectivity between the nodes. The explicit connectivity

548 Chapter 19 Mesh Generation

table specifies the connections and appropriate neighborhood information between
nodes and cells.

Triangular/tetrahedral unstructured mesh generation is accomplished by point
creation and/or point connection [983]. These methods are usually classified into
three categories: quadtree–octree based subdivision algorithms, Delaunay triangula-
tion, and advancing-front methods. The subdivision-based algorithms are applicable
to field simulations needing uniform cells. The Delaunay triangulation is based on
the creation of Dirichlet tessellations [967] in the convex region. The advancing-
front scheme [624] is based, however, on the generation of triangles/tetrahedra by
marching, as a front, from the initial geometry toward the interior. This process
enables the generation of elements of variable size with desired stretching.

The generation of quadrilateral (2-D) meshes is accomplished by appropriately uti-
lizing methods for structured meshes and unstructured triangular meshes. However,
the point insertion methods (e.g., Delaunay-type methods), which are widely uti-
lized, very successfully, in the generation of tetrahedral unstructured meshes, are not
applicable to hexahedral mesh generation. Hence, hexahedral unstructured meshes
are difficult and cumbersome to generate. The block-decomposition methods and su-
perposition methods are usually applied in the generation of hexahedral meshes. The
block-decomposition methods include structured grid-generation methodologies
with techniques to decompose the domain of interest into blocks where boundary-
conforming, coordinate mapping can be applied. The concept of medial-axis [778]
superposition methods involves similar strategies. However, instead of decompos-
ing the domain, the complex domain is superpositioned with a regular region on
which structured grid–based coordinate transformation can be performed. Geomet-
ric techniques are then applied to remove points outside the desired domain and
in generating near-boundary hexahedral elements. The whisker-weaving algorithm
[911] developed by the CUBIT team at the Sandia National Laboratory uses paving
and plastering advancing-front–like methods. However, this methodology is not ap-
plicable to general, very complex configurations.

Unstructured meshes offer greater geometric flexibility, and quality meshes can
be generated, especially for Euler simulations. Data structures play an important
role in handling unstructured meshes. The development of the AFLR (advancing-
front local reconnection) scheme [646] offers the best features of both Delaunay
and advancing-front schemes. However, unstructured meshes potentially suffer from
accuracy problems due to the skewness of high-aspect-ratio tetrahedra in viscous
regions. The concept of using hexahedra meshes in the viscous regions is being ex-
plored by various researchers. In general applications, the fact that one hexahedral
volume requires five tetrahedral elements makes hexahedra attractive in view of
mesh size efficiency. Also, in finite element analysis, quadrilatral/hexahedra meshes
are preferred in view of numerical accuracy. For example, in applications involving
elastic–plastic material, hexhedral mesh is significantly better. Additionally, as re-
ported by Shaw [859], there are concerns regarding the efficiency of the unstructured
mesh approach.

19.1 Mesh-Generation Strategies and Techniques 549

Unstructured meshes are now being utilized in computational field simulations
(CFS); however, the generation of quality meshes, especially for simulations requir-
ing high-aspect-ratio cells, is still a bottleneck. The major advantage of unstructured
meshes is the potential for automation and greater geometric flexibility.

19.1.4 Hybrid/Generalized Meshes

Structured meshes enabled the great advances in aerospace computational fluid
dynamics (CFD) in the 1970s and 1980s; unstructured meshes came to the fore in the
1990s, driven significantly by automotive applications. There are, of course, hybrid
combinations of structured and unstructured meshes that build on the strengths
of each. Further, generalized grid algorithms have been developed that remove all
restrictions on cell topology.

The hybrid/generalized meshes allow polygonal cells with differing numbers of
sides. The usual practice is to generate structured meshes near solid components
where high-aspect-ratio cells are required and to fill in the remaining void with an
unstructured mesh. Finite volume algorithms using generalized meshes to numeri-
cally simulate CFS problems [574] offer a greater potential for geometric flexibility
and high-quality meshes with automation, especially in the regions where high-
aspect-ratio cells are needed. The generation of such generalized meshes, however,
is a formidable task, and algorithms are still being developed. An example of a hy-
brid/generalized mesh is demonstrated in Figure 19.1.

Experience would seem to indicate that no one mesh-generation technique is
optimal for all problems. It is attractive, therefore, to explore utilizing a generalized
mesh approach in which modules for the generation of structured and unstructured
meshes can be combined within one data structure and software framework to

Figure 19.1 Example of a hybrid mesh.

550 Chapter 19 Mesh Generation

provide comprehensive mesh capability. Such a system has been developed for
applications in 2-D and is now widely used within a research environment [574].
Depending on the problem at hand, either a structured, unstructured, or hybrid
(combination of structured and unstructured) mesh can be used. As with mesh
types, it also seems clear that for maximum flexibility and efficiency, several forms
of mesh adaptivity will be required for general problems. It follows, therefore, that
for a generalized mesh and field system, all mesh types should be available for use,
and these should be coupled with modules for mesh adaptation using h-refinement,
de-refinement, and point movement.

19.1.5 Meshless Methods

The meshless method of mesh generation facilitates the numerical treatment of
governing equations without requiring explicit connectivity between points. A cloud
of points is placed in the field, and the discretized numerical scheme is developed
based on the points registered in the neighborhood of each point. The development
of this technology is in its infancy and has a long way to go before utilization in
practical industrial applications. However, techniques for simulating Euler flows
have been developed by various researchers [85, 621].

19.2 Mesh-Generation Process and Geometry Preparation

Regardless of which strategy is being considered, creation of a computational mesh
requires:

. Computational mapping. Establishing an appropriate mapping from physical
to computational space, allowing proper multiblock strategies (in the case of
structured and hybrid meshes) or establishing an ordering of nodes (in the case
of unstructured meshes and hybrid meshes).

. Geometry generation. Defining an accurate numerical description of all solid
components (surfaces), in conjunction with associated computational map-
ping criteria and a desired distribution of points.

. Computational modeling. Generating an “appropriate” mesh around these sur-
faces according to some criteria, usually with a specified multiblock strategy,
point distribution, smoothness, and orthogonality (in the case of structured
meshes) and desired background mesh representative of the required point
distribution (in the case of unstructured meshes).

The relationship of geometry to the mesh-generation process is analogous to
the relationship between boundary conditions and the solution of the governing
equations. An accurate construction of the geometry, with the proper distribution of
points, usually consumes 85% to 90% of the total time spent on the mesh-generation
process. The geometry specification associated with mesh generation involves:

19.2 Mesh-Generation Process and Geometry Preparation 551

. Determination of the desired distribution of mesh points, which depends on
the expected field characteristics.

. Evaluation of boundary segments and surface patches to be defined, in order
to resolve an accurate mathematical description of the geometry in question.

. Selection of the geometry tools to be utilized to define these boundary seg-
ments/surface patches.

. Following an appropriate logical path to blend the aforementioned tasks to
obtain the desired discretized mathematical description of the geometry with
properly distributed points.

The parametric-based, nonuniform rational B-spline (NURBS) is a widely utilized
representation for geometrical entities in CAD/CAM/CAE systems. The convex hull,
local support, shape-preserving forms, affine invariance, and variation-diminishing
properties of NURBS are extremely attractive in engineering design applications.
The IGES format [502] has become the de facto standard I/O (input/output) for
exchanging data between various CAD/CAM and CAE systems. Recently, the IGES
entities 126 (NURBS curve) and 128 (NURBS surface) have become increasingly
popular in mesh generation, CFS, and in general CAE analysis and simulation
systems.

Most of the geometrical configurations of interest to practical CFS problems are
designed in CAD/CAM systems and are available to analysts in an IGES format.
Geometry preparation, which is considered the most critical and labor-intensive part
of CFS, involves the discrete-sculptured definition of all boundaries/surfaces with a
desired point distribution and smoothness and orthogonality criteria associated with
the domain of interest.

The NURBS-based geometry preparation for addressing complex CFS problems
encountered in an industrial environment involves:

. Transformation of widely utilized explicitly/implicitly/discretely defined IGES
geometric entities into common data structures involving NURBS.

. Surface reparametrization for poorly defined surfaces and repairing of faulty
surfaces (the most common faults involve gaps, overlaps, and undesired dis-
continuity between neighboring surface patches) and pertinent geometric en-
tities.

. Geometrical operations allowing projections, intersections (surface–surface
intersections), composition, union, and other related transformations essential
for surface mesh generation with desired topological criteria.

. Mesh point distribution with desired stretching and quality criteria on domain
boundaries/surfaces.

The algorithms for transforming geometric entities into NURBS, composition of
curves and surfaces and their respective NURBS definitions, mesh point distribution,
and surface/volume reparametrization are well documented in the literature.

552 Chapter 19 Mesh Generation

19.3 Adaptive Mesh Generation

There are three basic strategies that may be employed in dynamically adaptive
meshes [136] coupled with the solution of the physical problem. The first approach
is to redistribute a fixed number of points. In this approach, points move from
regions of relatively small error to regions of large error. While the global order
of the approximation cannot be increased by such movement of points [136], it
is possible to improve the approximation locally. As long as the redistribution of
points does not seriously deplete the number of points in other regions, this is a
viable approach [311, 885, 925]. The second approach involves local refinement. In
this approach, points are added (or removed) locally in a fixed-point structure in
regions of relatively large error. There is, of course, no depletion of points in other
regions and, therefore, no formal increase of error occurs. However, the computer
time and storage increase with refinement, and the data structures can be difficult to
implement. This approach is well suited to unstructured meshes [887, 984]. In the last
approach, the solution algorithm is changed locally to a higher-order approximation
in regions of relatively large error. This, again, increases the formal global accuracy
but involves great complexity of implementation in flow solvers. This approach has
not had any significant application in CFD in multiple dimensions.

19.3.1 Structured Mesh Adaptation

With structured meshes, the adaptive strategy based on redistribution is by far the
most simple to implement, requiring only regeneration of the mesh and interpola-
tion of field properties at the new mesh points at each adaptive stage. No modifi-
cation of the field solver is required unless time accuracy is desired. Time accuracy
can be achieved, as far as the mesh is concerned, by simply transforming the time
derivatives by adding convective-like terms that do not alter the basic conservation
of PDEs.

Adaptive redistribution of points traces its roots to the principle of equidistribu-
tion of error [137], by which a point distribution is set so as to make the product of
the spacing and a weight function constant over the points:

w �x= constant

With the point distribution defined by a function ξi, where ξ varies by a unit
increment between points, the equidistribution principle can be expressed as

w xξ = constant

This 1-D equation can be applied in each direction in an alternating fashion [311].
A direct extension to multiple dimensions using algebraic [885], variational, and
elliptic [925] systems has been developed.

19.3 Adaptive Mesh Generation 553

Weight Function

The weight function is a very important part of the adaptive process. A generalized
weight function applicable to various field characteristics has been developed. The
weights are computed in all computational directions and then coupled adaptation
is applied. A linear combination,

1+

N∑
j=1

λjwj

 wtf

 disf ,

∑
λj = 1 (19.1)

where

N = number of flow variables (e.g., pressure, temperature, or density)

λj =weighting factor associated with flow parameter

wj − αjqj ⊕ βjkj = αjqj + βjkj − (αj + βj − 1)qjkj

qj = scaled gradient of the flow variable j such that 0≤ qj ≤ 1

kj = scaled curvature values of the flow variable j such that 0≤ kj ≤ 1

wtf =weight factor that enhances the total effect of heavily weighted areas

disf = distribution factor that can keep the original distribution

and

0≤ αj ≤ 1 0≤ βj ≤ 1

is formulated as a weight function utilizing the Boolean sum of contributions from
scaled gradients and curvatures. The value of the contribution is controlled by the
weight factors and is at a maximum when gradients and/or curvature values are at a
maximum. An appropriate scaling scheme [885] for the weight factors αj and βj has
been developed to ensure a proper distribution of mesh points.

Algebraic Technique

The redistributed algebraic mesh is generated by utilizing a surface/volume distribu-
tion mesh as the reparametrized space associated with NURBS surface/volume repre-
sentation. The application of the inverse NURBS formulation [885] allows reevalua-
tion of control points, which influences the fidelity of solid surface geometry during
the redistribution process.

Elliptic Technique

The elliptic generation system,

3∑
i=1

3∑
j=1

gij r
ξ iξ j +

3∑
k=1

gkk Pk r
ξk = 0 (19.2)

554 Chapter 19 Mesh Generation

where

r = position vector

gij = contravariant metric tensor

ξ i = curvilinear coordinate

Pk = control function

is widely utilized for mesh generation [929]. The control of the characteristics and
distribution of a mesh system can be achieved by varying the values of the control
functions Pk in equation (19.2) [929]. The application of the 1-D form of equa-
tion (19.2) with equation (19.1) results in the definition of the control functions
in three dimensions,

Pi =
W

ξ i

W
, i = 1, 2, 3

These control functions were generalized by Eiseman [311] as

Pi =
3∑

j=1

gij

gij

(Wi)ξ i

Wi
, i = 1, 2, 3

In order to conserve the geometrical characteristics of the existing mesh, the
definition of the control functions is extended as

Pi =
(
Pinitial geometry

)
i
+ ci (Pwt), i = 1, 2, 3

where

Pinitial geometry = control function based on initial mesh geometry

Pwt = control function based on gradient of flow parameter

ci = constant weight factors

These control functions are evaluated based on the current mesh at the adaptation
step and can be formulated as

P(n)

i = P(n−1)

i + ci
(
Pwt

)(n−1) , i = 1, 2, 3

where

P(1)

i =
(
Pinitial geometry

)(0) + ci
(
Pwt

)(0) , i = 1, 2, 3

A flow solution is first obtained with an initial mesh. Then the control function is
evaluated in accordance as indicated above, which is a combination of the geometry
of the current mesh and the weight functions associated with the current flow
solution.

19.3 Adaptive Mesh Generation 555

19.3.2 Generalized Mesh Adaptation

In the generalized mesh approach, algebraic and elliptic, partial-differential equation
methods [645] have been used for the generation of structured meshes, and Delaunay
triangulation has been used for unstructured meshes of triangles. It is possible, by
utilizing a combination of these techniques, to generate high-quality meshes for a
variety of aerospace configurations. A data structure based on a modified quadtree
format has been used to combine, in a unified form, the various mesh types.

Flow Algorithm

A finite-volume algorithm to solve the equations for viscous compressible flows on
generalized meshes has been developed. It is based on the Runge–Kutta scheme of
Jameson [509]. This approach has been well documented. Here, only the aspects of
our implementation that make it applicable to all mesh types will be highlighted.

The flow of a viscous compressible fluid is governed by the Navier–Stokes equa-
tions. They represent conservation of mass, momentum, and energy. For 2-D, un-
steady flow, the integral form is

∂

∂t

∫∫

w dx dy +
∫

∂

(
F dy −G dx

)= 0

where x and y are the Cartesian coordinates, and the integrals are taken over a control
volume
, with boundary ∂
. The conserved variable vector is w = [(ρ, ρu, ρv, ρe)],
where ρ, u, v, and e are the density, the components of velocity, and the energy,
respectively. Further details of the equations are not relevant to this discussion and
can be found elsewhere.

The flux integral above is approximated by defining a residual Rj. Several possible
interpretations can be given. The option selected is to treat the residual on an
element-by-element basis and, hence, the residual, as the net flux for each cell, is

Rj =
m∑

i=1

[
F(wj)�y −G(wj)�x

]

where the summation is carried out over the m edges that define the cell j, with
�x and �y consistent with an anticlockwise line integration around the cell. Note
that this definition for the residual is dependent on the number of edges that define
the cell and not specifically on whether the cell is a triangle or quadrilateral. This
statement motivated Jameson to construct an edge-based data structure in which the
flux across an edge in a mesh is sent, with the appropriate sign, to the two cells that
it separates. Such a data structure is ideal for an algorithm for generalized meshes.

To ensure stability, it is necessary to augment the governing flow equations
with terms that represent artificial dissipation. Two terms, D1

o, a diffusive Laplacian
smoothing to capture shock waves, and D2

o , a bi-harmonic diffusive smoothing
acting as a low-level background dissipation to reduce odd–even decoupling, are
introduced. A simple way to introduce these dissipation operators is to construct
a Laplacian operator by taking the difference between the values at a given cell

556 Chapter 19 Mesh Generation

and its nearest neighbors. This objective is accomplished by looping over all edges.
Recycling along edges, the values for the Laplacian, leads to a form for the bi-
harmonic contribution. For cell o, we have

D1
o =

m∑
i=1

ε1
ko

(
wi −wo

)
D2

o =
m∑

i=1

ε2
ko

(
Ei − Eo

)
; Eo =D1

o

The summations taken over the m edges of cell o and the coefficients ε1
ko and ε2

ko
incorporate pressure sensors. These two terms are then summed to produce the
dissipative term, which is added to the residual. Again, no assumption is made in
this formulation about the type of cell. In a similar way, the edge data structure can
be used to compute the areas of cells and the time appropriate for the explicit scheme
in a general manner. The area, for example, of a region bounded by ∂
 is

A=
∫

∂

x dy

which can be approximated as

A=
∑
edges

x �y

where x and y are interpreted as edge quantities.
Given the solution and residuals for a point at time level n, the solution at the new

time level n+ 1 is obtained from the multistage scheme. For example, a three-stage
scheme is

w1=wn −
(

0.6 �t R
A

)
wn

w2 =w1−
(

0.6 �t R
A

)
w1

wn+1=w2 −
(

�t R
A

)
w2

where �t is the time step and is taken as the minimum of the time steps admitted
by the Courant number for each cell, and A is the corresponding area of the control
volume. The time integration is again seen to be independent of the geometrical
shape of the cell.

From the outline given, it can be seen that a general algorithm can be constructed
that, given the edge-based data structure, will be applicable to any generalized mesh.
The incorporation of mesh adaptation also does not afford any major problems. H-
refinement on a structured mesh leads to the introduction of nodes that are not fully
connected and are termed hanging nodes. These types of nodes can also be introduced
on h-refined triangular meshes if a particular subdivision strategy is used.

19.3 Adaptive Mesh Generation 557

Type 1 Type 2 Type 3

Figure 19.2 Types of quadrilateral subdivision.

Figure 19.3 Subdivision of a triangle.

H-Refinement and De-refinement

The basic subdivisions for a structured quadrilateral mesh are shown in Figure 19.2
[928]. Repeated application of these subdivisions, or combinations of these subdivi-
sions, results in meshes that contain polygonal cells. However, these cells are treated
as a collection of edges, and the solution algorithm is not aware of the order of the
polygons.

Figure 19.3 shows the strategy that has been adapted for the subdivision of
triangles.

The order of the polygon does not interfere with the operation of the algorithm.
However, the discontinuity in spacing caused by embedding can result in unsmooth
solutions on these mesh interfaces. The rapid change of the size of the mesh influ-
ences the field solver in both the computation of fluxes and the artificial diffusion
terms. These computations need to be modified accordingly. With reference to Fig-
ure 19.4, a typical weighting [984] that can be used in the computation of the variable
at the edges from the cell-center data is

wedge = 1
a+ b

(
bwo + aw1

)

Node Movement

In addition to h-refinement, node movement has been found to be necessary for
an efficient implementation of mesh adaptation. Node movement can be applied in
the form

558 Chapter 19 Mesh Generation

0

1

a
b

Figure 19.4 Weighted average for the computation of edge values from cell-centered values.

rn+1
o = rn

o + ωi

m∑
i=1

Cio

(
rn
i − rn

o

)

m∑
i=1

Cio

where r = (x,y), rn+1
o is the position of node o at relaxation level n+ 1, Cio is the adap-

tive weight function between nodes i and o, and ω is the relaxation parameter [984].
A commonly used adaptive weight function takes the form

Cio = k1+ k2

∣∣∣∣
φi − φo

φi + φo

∣∣∣∣

where φ is the driving variable (e.g., pressure, density, Mach number), k1 and k2 act
to damp out noise, and k2 amplifies the gradients along the edges. In practice, this
is implemented in a form that guarantees positive-area cells after movement, even
in regions close to a wall. For viscous meshes, these can have very small volumes.

Adaptation Criterion

For the present solution-adaptive mesh-generation procedure, an error indicator is
required that detects and locates appropriate features in the flow field [984]. In order
to provide flexibility in isolating varying features, multiple error indicators are used.
Each can isolate a particular type of feature. The error indicators are set to the negative
and positive components of the gradient in the direction of the velocity vector, as
given by

e1=min (V · ∇u, 0)

e2 =max (V · ∇u, 0)

and the magnitude of the gradient in all directions normal to the velocity is given
by

e3=
∣∣∣∣∇u− V

(V · ∇u)

V · V
∣∣∣∣

19.3 Adaptive Mesh Generation 559

where V is the velocity vector and u is any suitable flow property. Typically, density
is used as the basis for the error indicator. The first two error indicators represent ex-
pansions and compressions in the flow direction, and the third represents gradients
normal to the flow direction. The indicators can be scaled by the relative element
size. Length scaling can improve detection of weak features on a coarse mesh with
the present procedure. Each error indicator is treated independently, allowing par-
ticular features in the flow field to be isolated. For each error indicator, an error is
determined from

elim = em + clim · es

where elim is the error limit, em is the mean of the error indicator, es is the standard
deviation of the error indicator, and clim is a constant. Typically, a value near 1 is
used for the constant. The error indicators are used to control the local reduction in
relative element size during mesh generation.

An example of the mesh adaptation using the weighted Laplacian approach is
shown in Figure 19.5. An unstructured mesh for a scramjet engine geometry is
considered for this purpose. The inlet Mach number is taken to be 3, and the resultant
pressure distribution together with initial mesh are shown in Figure 19.5(a). The

(a) (b)

(c) (d)

Figure 19.5 Mesh adaptation for unstructured mesh using weighted Laplacian approach.
(a) Initial mesh and pressure distribution. (b) Initial mesh and weight functions. (c) Adapted
mesh. (d) Pressure distribution on adapted mesh.

560 Chapter 19 Mesh Generation

weight function is calculated based on the conserved variables and is plotted in
Figure 19.5(b). The resultant adapted mesh and the solution on the adapted mesh
are shown in Figure 19.5(c) and Figure 19.5(d). It can be seen from the pictures that
the shocks and expansion fans are captured clearly as compared to the unadapted
mesh.

19.4 Parallel Mesh Generation

Interest in parallel mesh generation is directly related to the need for more points
and for the mesh data structure to be compatible with parallel operation of solution
codes. Structured mesh generation is not nearly as computer-intensive as are the
field solutions performed on the mesh. Therefore, there is no real need for parallel
operation of the structured mesh generator just to increase the speed of the mesh-
generation code. It is storage that creates the real need for multiprocessor operation
of the structured mesh-generation code. However, this is not true for unstructured
meshes. In simulation applications where unstructured remeshing is required due to
geometry movements/deformations, mesh generation may consume more than 50%
of the CPU time taken to solve the associated field equations. The call for parallel
mesh generation is, thus, actually reflective of the need to increase the storage avail-
able and to have the mesh compatible with parallel, partial-differential-equation
(PDE) solution codes. Additional incentive for speeding up the mesh generator ap-
pears only for unstructured meshes. With the advent of powerful parallel computers,
computational field simulation on several million points has become a common
practice. The usual practice is to generate the mesh in a sequential manner and split
the mesh later for the simulation of the field problems on parallel machines. The
drawback of this approach is that the overhead due to file I/O and data movement
between these stages is about 90% of the total execution time. In order to avoid this
problem and to speed up the mesh-generation process, the mesh-generation and
partitioning problems have been cast into a single paradigm. The two most widely
used unstructured mesh-generation approaches are the Delaunay triangulation and
the advancing-front method. In the case of Delaunay triangulation, a new point
is introduced into an existing triangulation based on the boundary discretization,
and the new point is connected to the existing point such that it satisfies the De-
launay properties [967]. In the case of the advancing-front method, new elements
are added one at a time. These two approaches can be parallelized efficiently. The
two existing heuristics for mesh partitioning are (1) global or direct and (2) local
or incremental [201]. In the first case, full information about the mesh is required
before partitioning the mesh. In the latter approach, the partitioning starts with
an initial partitioning that is iteratively refined. This incremental approach is more
suitable for parallel unstructured mesh generation. The parallel Delaunay triangu-
lation starts with the partitioning of an initial coarse mesh. The Bowyer–Watson
algorithm, which is used to reconnect the points after the addition of new points in
the process of Delaunay triangulation, is purely local in nature and enables the user
to add points simultaneously in different domains without disturbing the global De-

19.5 Mesh Software 561

launay property. When new points are inserted in different domains or submeshes,
the voids created by the addition of new points are triangulated separately. In some
cases, addition of points near the interface of one subdomain makes the tetrahe-
dron in the neighboring domain non-Delaunay. In these cases, the cavities extend
to two or more blocks and are retriangulated. The new elements are assigned to blocks
that have a smaller number of predicted elements in each block. The prediction of
the number of elements is done using (1) the current number of elements, (2) the
current number of bad elements, and (3) the current mesh quality of each block
that shares the interface cavity [201]. A parallel advancing-front mesh generation
in the shared-memory paradigm has been reported in Lohner and Cebral [623]. In
the advancing-front algorithm, one element at a time is introduced by eliminating
the face in the front that produces the smallest element. Different elements can be
added simultaneously using different processes if the elements added are sufficiently
far apart. An octree is used to split the domain into different boxes, and elements
are introduced into these boxes using different processors. During this process, the
boxes that contain the regions where the smallest new elements are being added are
considered. After the boxes are meshed, a new octree is generated, and the process
is repeated. The large number of active faces in the advancing front from different
boxes is reduced by shifting the boxes slightly and remeshing them [623]. Load bal-
ancing is obtained by grouping different boxes so that the total load in each process
is the same. This process is done using a marching-cube procedure [623]. Depending
on the list of active faces and the size of the box, the box is divided into a number of
small cubes called voxels. An average surface normal is estimated for each voxel that
cuts the active front. Depending on this normal, the rest of the voxels are marked
as inside or outside the domain. The workload in each box is estimated based on
the number of expected elements in each of the voxels that are inside the domain.
Using this information, different boxes are grouped together such that each process
will have approximately the same workload.

19.5 Mesh Software

In this section, we list some of the mesh software currently available.

. ADMesh version 0.95. A program for processing triangulated solid meshes.
Currently, ADMesh only reads the STL file format that is used for rapid pro-
totyping applications, although it can write STL, VRML, OFF, and DXF files.
(http://www.varlog.com/products/admesh/).

. Automatic mesh generation of CAD and discrete data models. A collection of
quadtree/octree-based, mesh-generation tools. (http://scorec.rpi.edu/programs
/modeling/meshing/Meshing.html).

. BAMG. A mesh generator for isotropic or anisotropic triangular meshes.
(http://www-rocq.inria.fr/gamma/cdrom/www/bamg/eng.htm).

. CAGI (Computer-aided grid interface) version 1.0. A mesh generation package
with a NURBS database. (http://WWW.ERC.MsState.Edu/ccs/docs/cagi/).

562 Chapter 19 Mesh Generation

. CAMINO (Cardinal’s advanced mesh innovation with octree). An octree process
and device simulation. (http://www-tcad.stanford.edu/tcad/bios/tchen.html).

. EAGLE mesh generation code. Eglin arbitrary geometry-implicit, Euler, multi-
block, mesh-generation code and steady-state-flow solver system. (http://www
.erc.msstate.edu/∼jiang/eagle.html).

. EAGLEView mesh generation code. Interactive surface and mesh generation
software that combines the surface and volume mesh-generation codes of
EAGLE under one GUI. (http://www.erc.msstate.edu/∼jiang/ev.html).

. EasyMesh version 1.4. Two-dimensional quality mesh generator, constrained
Delaunay triangulations. (http://www-dinma.univ.trieste.it/∼nirftc/research
/easymesh/).

. FELISA (Unstructured volume mesh generator and inviscid flow solution package)
version 1.1. A surface-and volume-triangulation and mesh-adaption software.
(http://abweb.larc.nasa.gov:8080/∼kbibb/felisa.html).

. femmesh. A UNIX/OpenWindows program designed to interactively generate
2-D FEM meshes composed of three-noded triangular elements. (http://www
.ucl.ac.uk/MedPhys/toast/femmesh/intro.htm).

. FIST (Fast, industrial-strength triangulation). A robust polygon-triangulation
code (ear clipping) that can handle many kinds of degenerate data. (http://www
.andrew.cmu.edu/user/sowen/software/FIST.html).

. GENIE++. Part of a family of software to GENerate computational meshes
for internal-external flow configurations. GENIE++ generates 3D, structured,
multiblock meshes. (http://www.erc.msstate.edu/ccs/docs/genie/).

. GiD: academic version. A universal, adaptive, and user-friendly graphical user
interface for geometrical modeling, data input, and visualization of results
for all types of numerical simulation programs. The academic version is com-
pletely functional but meshes are limited to 700 2-D elements and 3000 3-D
elements. (http://www.gid.cimne.upc.es/download/index.html).

. GJK-engine. The “heart” of SOLID, a general-purpose software library for colli-
sion detection of 3-D objects. GJK-engine is a fast and robust implementation of
the Gilbert–Johnson–Keerthi algorithm. SOLID uses the GJK algorithm for test-
ing intersections, determining common points, and computing pairs of closest
points of convex objects. The GJK-engine is released as a separate library, with-
out the application programming interface (API) and bounding-box structures
of SOLID. The library is written in standard C++ and relies on STL. Currently,
it compiles under GNU +̨+ version 2.8.1 and Visual C++ 5.0. The source code
and documentation are released under the terms of the GNU Library General
Public License. (http://www.win.tue.nl/∼gino/solid/).

. GEOMESH/LaGriT. Unstructured finite-element mesh generation for geolog-
ical applications. (ftp://ftp.cs.ualberta.ca:/pub/geompack/). A mathematical soft-
ware package written in standard Fortran 77 for the generation of 2-D and 3-D

19.5 Mesh Software 563

triangular/tetrahedral, finite-element meshes using GEOMetric algorithms.
(http://ees-www.lanl.gov/EES5/geomesh/).

. GMSH (Geometry mesh and post processing). A Delaunay-based mesh generator
that generates adapted meshes for lines, surfaces, and volumes. (http://www
.montefiore.ulg.ac.be/∼geuzaine/gmsh.html).

. GridTool. A tool for structured and unstructured mesh generation.
(http://geolab.larc.nasa.gov/GridTool/).

. GRUMMP. Generation and refinement of unstructured, mixed-element
meshes in parallel. (http://tetra.mech.ubc.ca/GRUMMP/).

. IBG. Octree-based, triangular- and tetrahedral-element mesh generation.
(ftp://ftp.wias-berlin.de/pub/ibg/doc/ibg.html).

. LaGriT. An unstructured mesh generation and optimization software package
used for semiconductor device modeling, computational fluid dynamics, and
porous flow modeling. (http://www.t12.lanl.gov/∼lagrit/).

. Mesh-Maker version 0.2. A program for generating unstructured meshes over
a prespecified topography. (http://www.lec.leeds.ac.uk/∼jason/Mesh-Maker/).

. Meshme3D. An automatic mesh generator in 3-D. Uses Delaunay–Voronoi
methods to generate a 3-D, tetrahedral-element mesh using the surface mesh
as an input. (http://www.arc.umn.edu/∼johnson/meshme.html).

. mesh2d. Triangular/tetrahedral mesh generators, suitable for parallel imple-
mentation. An efficient combination of Delaunay and advancing-front meth-
ods. (http://www.andrew.cmu.edu/user/sowen/software/mesh2d.html).

. MG (Mesh Generator) version 4.0. A system for the generation of 3-D finite-
element meshes with interactive graphics capabilities. (http://www.tecgraf.puc-
rio.br/∼lula/mg/index.html).

. NCSA MinMaxer Overview. A 2-D triangulation tool with an optional graphic
user interface. The program implements several optimal 2-D triangulation al-
gorithms and can be used to aid mesh generation and visualization. (http://www
.ncsa.uiuc.edu/SDG/Software/Brochure/Overview/MinMaxer.overview.html).

. NGP (National Grid Project) version 3.0. Comprehensive numerical mesh-
generation software system developed at the National Science Foundation
Engineering Research Center for computational field simulation (CFS) at Mis-
sissippi State University. (http://www.erc.msstate.edu/ccs/docs/ngp/) .

. PMAG (Parallel multiblock adaptive grid system). Mesh-generation system based
on the solution of elliptic, partial differential equations. Also capable of
generating smooth orthogonal meshes on complex multiblock domains.
(http://www.erc.msstate.edu/∼bsoni/pmag).

. Qhull. A general-dimension code for computing convex hulls, Delaunay tri-
angulations, Voronoi vertices, and half-space intersections. (http://www.geom
.umn.edu/software/qhull/).

564 Chapter 19 Mesh Generation

. QMG version 1.1 Finite-element mesh generation in 2-D and 3-D (trian-
gles/tetrahedra), integrated into MATLAB. (http://simon.cs.cornell.edu/Info
/People/vavasis/qmg1.1/qmg1_1_home.html).

. SD (Super Delaunay). A fully dynamic, constrained, Delaunay triangulation
engine for real-time triangulation. (http://www.dlc.fi/∼dkpa/).

. SolidMesh. Unstructured mesh-generation system that enables the user to cre-
ate both 2-D and 3-D unstructured meshes. Surface meshes can be created in
parametric space on the NURBS or by using a 3-D point insertion method iter-
ating between parametric space and physical space. (http://www.erc.msstate.edu
/simcenter/docs/solidmesh/).

. 3DMAGGS. (3-D multiblock advanced grid generation system). Elliptic
volume-mesh generator used to generate computational domains for CFD
analysis of aerodynamic vehicles. (http://abweb.larc.nasa.gov:8080/∼salter
/3DMAGGS.html).

. TIGER. Mesh-generation software that exclusively generates 3-D structured
meshes for all classes of turbo machines with external, internal, and external–
internal flow fields. (http://www.erc.msstate.edu/ccs/docs/tiger/).

. UNAMALLA version 2.0. Mesh generation over irregular polygonal regions
using discrete functionals. (http://www.mathmoo.unam.mx/unamalla/).

. VGM (Volume grid manipulator). Alters, adapts, smooths, and even generates
surface and volume meshes based on existing 2-D and 3-D data. VGM bridges
the gaps between CAD systems, mesh-generation packages, and a deliver-
able/usable high-fidelity surface or volume mesh to be used for CFD simu-
lations. (http://abweb.larc.nasa.gov:8080/∼salter/VGM-web.html).

19.6 Mesh Configurations

The application of chimera/overset, structured mesh generation to very complex
complete configurations is presented in Figure 19.6 and Figure 19.7. The mesh
demonstrated in Figure 19.6 represents surface mesh over an entire space launch
vehicle, and the configuration in Figure 19.7 displays particle traces demonstrating
complex dynamic flow behavior near the V22 Osprey blade-tip. This dynamic simu-
lation was performed using the chimera structured grid system. The demonstration
of hybrid and generalized mesh is provided in Figure 19.8 and Figure 19.9. Both of
these meshes are generated automatically from given boundary/surface distribution.

The mesh shown in Figure 19.10 was made using VMESHns and required 4
days to complete (geometry acquisition to completed mesh). The power of unstruc-
tured meshes is demonstrated with this case: there are 120,360 surface triangles on
the SR-71 body but only 1029 triangles on the outer boundaries. The symmetry
plane contained 50,179 triangles [935]. Figure 19.11 shows an unstructured mesh

19.6 Mesh Configurations 565

Figure 19.6 Chimera mesh system for space shuttle launch vehicle. (Figure courtesy of
R. Gomez, NASA/Johnson Space Center [388].)

Figure 19.7 Particle trace on V22 Osprey blade-tip. (Courtesy, R. Meakin/NASA ARC [658].)

566 Chapter 19 Mesh Generation

Figure 19.8 Hybrid mesh for a cross section of a wing configuration.

Figure 19.9 Generalized mesh for a space shuttle–like geometry.

generated using VMESHns that contains 6.62 million tetrahedral cells. The symme-
try plane and a fuselage station are shown in Figure 19.11(a). Figure 19.11(b) shows
the mesh clustering near the stores in carriage. Figure 19.11(c) is a close-up of the
Joint Direct Attack Munition (JDAM); note the geometric complexities modeled in-
cluding the strake and the notches in the strakes. Figure 19.11(c) also shows the
surface triangulation on the JDAM, fuel tank, pylons, and part of the wing [934].

19.7 Mesh Web Sites 567

Figure 19.10 SR-71 mesh: unstructured mesh containing 6.99 million tetrahedra, approxi-
mately 4.2 million cells in the boundary layer. (Figure courtesy of Tomoro and Wurtzler [935].)

19.7 Mesh Web Sites

More information about mesh generation may be obtained from the following
websites.

. International Society of Mesh Generation http://www.isgg.org

. Association of Computing Machinery http://www.acm.org/

. CFD Online http://www.cfd-online.com/

. Mesh and mesh generation on the Web http://www-users.informatik.rwth-aachen
.de/∼roberts/meshgeneration.html

568 Chapter 19 Mesh Generation

(a) (b)

(c)

Figure 19.11 18C with JDAM mesh (Figure courtesy of Tomoro et al. [934].)

. Meshing Research Corner http://www.andrew.cmu.edu/user/sowen/mesh.html

. NASA’s Steering Committee for Surface Modeling and Grid Generation
http://geolab.larc.nasa.gov/SMAGG/

. Paul Heckbert’s collection of mesh-generation links http://almond.srv.cs.cmu.edu
/afs/cs/user/ph/www/mesh.html

. NSF Engineering Research Center for Computational Field Simulation
http://www.erc.msstate.edu

. Numerical mesh generation—foundations and applications http://www.erc
.msstate.edu/publications/gridbook/

19.8 The Pacing Obstacle: Geometry/Mesh Generation 569

19.8 The Pacing Obstacle: Geometry/Mesh Generation

Computational simulation in engineering analysis and design requires that the ge-
ometrical configuration be represented accurately by software. This representation
must allow ease of modification in order to enable the simulation to function effi-
ciently and effectively in multidisciplinary design optimization cycles. Also required
is the efficient generation of a mesh covering surfaces and filling the volumetric
regions to form the infrastructure on which the computational solution is accom-
plished. The representation of the geometrical configuration and the generation
of the mesh are intimately coupled. This task continues to be the pacing item in
the application of computational simulation in engineering analysis and design in
industry—requiring too much person-time to produce the geometry/mesh for new
or modified configurations and thus significantly delaying and lengthening the de-
sign process. In general, 80% to 90% of the mesh-generation labor is spent on the
geometry preparation and surface mesh generation. In most CFS applications, these
surfaces are defined in the CAD/CAM system as a composite of explicit or implicit
analytical entities, semianalytical parametric entities, and/or a sculptured discrete
set of points. The standard common interface for geometry exchange is IGES (In-
ternational Graphics Exchange Standard), which is based on the curve and surface
definition of geometric entities. These entities are not suitable for the treatment of
trimmed curves, which widely appear in industrial CAD definitions. Research con-
centration has been placed in the past few years on using CAGD (computer-aided
geometric design) techniques and NURBS (nonuniform rational B-splines) for mod-
eling geometrical entities. NURBS allow a common data structure to represent all
geometrical entities with various other (shape preserving, local control, convex hull,
etc.) desirable properties. The CAD industry, however, is moving in the direction
of using solid-modeling–based geometrical entities. A new international standard,
STEP, is under development for solid modeling based on entities. The ultimate goal
should be to develop mesh technology based on solid models. A multitude of general-
purpose, mesh-generation codes to address complex structured–unstructured, mesh-
generation needs are available in the public domain or as proprietary commercial
codes. The mesh-generation strategies, especially in the structured–unstructured
area, are well developed and validated. Rapid turnaround, geometric flexibility, ac-
curacy, affordability, and robustness are the key requirements that must be addressed
for CFS to play its rightful role in industrial multidisciplinary design environments.
However, the present mesh-generation process needs to address various issues to ful-
fill these requirements. A chart representing these issues and their past, present, and
future states with ultimate goals is presented in Figure 19.12.

The major concern is response time. In general, only for the simplest of con-
figurations can a geometry be prepared and mesh be generated quickly or easily to
fulfill industrial needs. The ultimate industrial goal [928] is to perform complex mesh
generation in 1 hour and the entire field simulation in 1 day. Today, with a clean
geometry definition in a desired format, a structured multiblock mesh (for a Navier–
Stokes simulation) around complex aircraft can be developed within 2 to 3 weeks. An

570 Chapter 19 Mesh Generation

Figure 19.12 Mesh generation research vision.

unstructured mesh, however, can be developed in a day (for a Euler simulation) and a
Cartesian mesh could be developed in a matter of hours (for a Euler simulation). The
unstructured and Cartesian mesh strategies fulfill today’s industrial need for Euler
simulations. The demand for simulations in industry, however, is for complex tur-
bulent Navier–Stokes models with chemical reactions and multiphase, multispecies
physics that are provided by a simulation system allowing structured, multiblock
meshes. The unstructured, Cartesian technology, in the context of field simulation,
is still being developed for complex physics. The response time chart presents the
average time required to perform mesh generation, sensitivity analysis (mesh gen-
eration with minor geometric-distribution perturbation), and the expectations of
industry. In view of affordability and accuracy requirements, it is important to de-
velop quality meshes based on field characteristics (adaptive meshes) and/or based
on the movement of geometrical components in the field (moving meshes). There is
an increasing demand for dynamic (adaptive/moving) meshes. The dynamic mesh
algorithms, at present, are limited to simple configurations. Techniques are needed
to enhance the applicability of adaptive schemes pertaining to complex configura-
tions. The dynamic meshing capability, however, is inherent in the construction
of unstructured and Cartesian meshes. The industrial environment is also rapidly
moving into parallel/distributed computing with an object-oriented environment.
CFS must play its role in this computing environment by contributing to industrial
multidisciplinary design and analysis optimization (MDAO) applications. One goal
for the mesh-generation community, with respect to MDAO applications, should be
to develop algorithms for automatic and intelligent meshes (without visual interac-
tions) for complex configurations. In spite of repeatedly citing the geometry/mesh

19.9 Desiderata 571

problem by industry as continually being the major pacing item as the capability of
computational simulation has advanced, this fundamental obstacle remains: cross-
cutting applications in Departments of Defense and Energy, and industry in general.
The geometry/mesh concerns have been less of a factor in many of the scientific
Grand Challenges where the focus was more on complex physics than on complex
geometry. In engineering analysis and design, however, geometry can be complex
and is of overriding importance, and, thus, at the heart of the entire problem. The
computational realization of geometrical representation and mesh generation may
be said to be a major “engineering” Grand Challenge that has yet to be addressed
adequately by any initiative, as well as a major obstacle impacting directly on both
economic competitiveness and national security.

19.9 Desiderata

The major driving factors in comprehensive mesh-generation codes must first be
automation and then graphical user interaction. Since design is the paramount
application, the efficacy of a mesh code is measured primarily by the person-time it
takes to generate a series of geometrically related meshes for complex configurations.
The coupling with CAD systems on the front-end and with solution systems on
the back-end must be seamless and effective. The ideal is not to make it easy for a
person to generate a mesh but rather to remove the person from the process—that is,
not to make it interactive, but to make it automatic. Present mesh-generation codes
enable and rely on extensive graphical user interaction rather than automation; they
require considerable user experience and effort. The goal of an automated mesh-
generation system that will produce a suitable mesh with little user interaction and
effort has not yet been achieved in any current code, commercial or freeware. Mesh-
generation tools must be designed to be applied by design engineers rather than
mesh-generation specialists. There is also the problem that the more powerful of
these mesh codes now require considerable training and experience for effective
use. This latter factor sometimes causes users to continue to use tools that are less
powerful but familiar, rather than moving to newer and more effective tools.

Mesh-generation systems must be capable of handling large-scale variations, such
as those occurring in high-Reynolds-number flow. This precludes any approach not
encompassing large aspect-ratio cells with good numerical properties. There is a clear
need for interaction with commercial CAD vendors.

CAD codes were developed before the onset of mesh-generation technology and
widespread application. In order to become truly effective in multidisciplinary design
optimization, CAD tools must be redesigned to target computational analysis as well
as tooling and material formation. Additionally, there is the fact that comprehensive
mesh codes are very large software systems; however, the real market is not yet
large enough to encourage development to the extent that has been attained by
commercial CAD systems. The development of an entirely new mesh code is a
multiyear, multi-million-dollar effort. All of this argues for the creation of a toolbox
or library for geometry/mesh generation: a set of interfacing components that are

572 Chapter 19 Mesh Generation

reliable and readily usable and that can be assembled to effectively and efficiently
address the demands of different applications and different users of computational
simulation for engineering analysis and design in DoD, DoE, and industry. This
geometry/mesh toolkit/library should have the following characteristics:

. Object oriented for modularity

. Java-based for portability

. Scalable parallel operation

. Incorporation of existing useful components

. Extendable to incorporate emerging technology

. Automated operation, with user intervention

. User configurable for compatibility with applications

. Built-in, Web-based training facility and documentation

Further, it should incorporate the following features:

. Interface with CAD systems, solution systems, and visualization systems

. Internal CAD capability for geometry generation, repair, and modification

. Block-structured meshes, including overset and hybrid

. Unstructured meshes, both tetrahedral and hexahedral

. Surface and volume mesh systems

. Quality assessment, display, and control

. Dynamic adaptive coupling with solution systems

. Macros, editing, and script-based operation capability

The development of this geometry/mesh generation toolkit/library system should
proceed as follows:

1. Establishment of a collaborative framework.

2. Definition of all needed capability, with DoD/DoE/industry users.

3. Encapsulation of all capability into components (objects/operations).

4. Identification of existing components.

5. Identification of components to be developed.

6. Design of library infrastructure and data structure.

7. Design of documentation and training structure.

8. Implementation.

19.10 Conclusion

A brief overview of mesh generation—an essential infrastructure element for CFS—
is presented in this chapter. Static and dynamic mesh generation strategies and

19.10 Conclusion 573

methodologies and their applicability to general CFS problems are discussed. Mo-
tivation for addressing very complex engineering Grand Challenge applications is
developed in parallel mesh generation and mesh configurations discussions. Sections
on mesh software and websites provide references for very useful mesh-related infor-
mation. The characteristics and ingredients of the future information-technology–
based, mesh-generation system are described. This chapter provides a very brief and
concise description of the current state of the art and state of the practice in mesh
generation.

C

H

A

P

T

E

R

20 Templates and Numerical
Linear Algebra

Jack Dongarra . Victor Eijkhout .

Dan Sorensen

The increasing availability of advanced-architecture computers has a significant
effect on all spheres of scientific computation, including algorithm research and
software development in numerical linear algebra. Linear algebra—in particular,
the solution of linear systems of equations—lies at the heart of most calculations
in scientific computing. This chapter discusses some of the recent developments
in linear algebra designed to exploit these advanced-architecture computers. We
discuss two broad classes of algorithms: those for dense matrices and those for sparse
matrices. A matrix is called sparse if it has a substantial number of zero elements,
making specialized storage and algorithms necessary.

Much of the work in developing linear algebra software for advanced-architecture
computers is motivated by the need to solve large problems on the fastest computers
available. In this chapter, we focus on four basic issues: (1) motivation for the work;
(2) development of standards for use in linear algebra and the building blocks for
libraries; (3) aspects of algorithm design and parallel implementation; and (4) future
directions for research.

As representative examples of dense matrix routines, we consider the Cholesky
and LU factorizations; and these will be used to highlight the most important
factors that must be considered in designing linear algebra software for advanced-
architecture computers. We use these factorization routines for illustrative purposes
not only because they are relatively simple, but also because of their importance in
several scientific and engineering applications that make use of boundary element
methods. These applications include electromagnetic scattering and computational
fluid dynamics problems, as discussed in more detail in Section 20.1.2.

For the past 15 years or so, there has been a great deal of activity in the area of algo-
rithms and software for solving linear algebra problems. The goal of achieving high
performance on codes that are portable across platforms has largely been realized

575

576 Chapter 20 Templates and Numerical Linear Algebra

by the identification of linear algebra kernels, the Basic Linear Algebra Subprograms
(BLAS). We will discuss the EISPACK, LINPACK, LAPACK, and ScaLAPACK libraries,
which are expressed in successive levels of the BLAS.

The key insight of our approach to designing linear algebra algorithms for
advanced-architecture computers is that the frequency with which data are moved
between different levels of the memory hierarchy must be minimized in order to
attain high performance. Thus, our main algorithmic approach for exploiting both
vectorization and parallelism in our implementations is the use of block-partitioned
algorithms, particularly in conjunction with highly tuned kernels for performing
matrix–vector and matrix–matrix operations (Levels 2 and 3 of BLAS).

20.1 Dense Linear Algebra Algorithms

Common operations involving dense matrices are the solution of linear systems

Ax= b

the least-squares solution of over- or underdetermined systems

min
x
‖Ax− b‖

and the computation of eigenvalues and eigenvectors

Ax= λx

Although these problems are formulated as matrix–vector equations, their solution
involves a definite matrix–matrix component. For instance, in order to solve a linear
system, the coefficient matrix is first factored as

A= LU

(or A= UtU in the case of symmetry) where L and U are lower and upper triangular
matrices, respectively. It is a common feature of these matrix–matrix operations that
they take, on a matrix of size n× n, a number of operations proportional to n3, a factor
n more than the number of data elements involved.

Thus, we are led to identify three levels of linear algebra operations:

. Level 1. Vector–vector operations such as the update ȳ ← ȳ + αx̄ and the inner
product d = x̄t ȳ. These operations involve (for vectors of length n) O(n) data
and O(n) operations.

. Level 2. Matrix–vector operations such as the matrix–vector product y = Ax.
These involve O(n2) operations on O(n2) data.

. Level 3. Matrix–matrix operations such as the matrix–matrix product C = AB.
These involve O(n3) operations on O(n2) data.

These three levels of operations have been realized in a software standard known
as the Basic Linear Algebra Subprograms (BLAS) [283, 284, 595]. Although BLAS
routines are freely available on the Internet, many computer vendors supply a tuned,

20.1 Dense Linear Algebra Algorithms 577

often assembly-coded, BLAS library optimized for their particular architectures. See
also Section 20.3.1.

The relation between the number of operations and the amount of data is crucial
for the performance of the algorithm. We discuss this in detail in Section 20.2.1.

20.1.1 Loop Rearranging

The operations of BLAS Levels 2 and 3 can be implemented using doubly and triply
nested loops, respectively. With simple modifications, this means that for Level 2
each algorithm has two different implementations; for Level 3 there are six. For
instance, solution of a lower triangular system Lx= y is usually written

for i = 1 . . . n

t = 0

for j = 1 . . . i − 1

t ← t + �ijxj

x= �−1
ii (yi − t)

but can also be written as

for j = 1 . . . n

xj = �−1
jj yj

for i = j + 1 . . . n

yi ← yi − �ijxj.

(The latter implementation overwrites the right-hand-side vector y, but this can be
eliminated.)

While the two implementations are equivalent in terms of numbers of operations,
there may be substantial differences in performance due to architectural considera-
tions. We note, for instance, that the inner loop in the first implementation uses a
row of L, whereas the inner loop in the second traverses a column. Since matrices
are usually stored with either rows or columns in contiguous locations, with column
storage the historical default inherited from the Fortran programming language, the
performance of the two can be radically different. We discuss this point further in
Section 20.2.1.

20.1.2 Uses of LU Factorization in Science and Engineering

A major source of large dense linear systems is the collection of problems involving
the solution of boundary integral equations. These are integral equations defined
on the boundary of a region of interest. All examples of practical interest compute
some intermediate quantity on a 2-D boundary and then use this information to
compute the final desired quantity in 3-D space. The price one pays for replacing
three dimensions with two is that the original sparse problem in O(n3) variables is
replaced by a dense problem in O(n2).

578 Chapter 20 Templates and Numerical Linear Algebra

Dense systems of linear equations are found in numerous applications, such as
the following:

. Airplane wing design

. Radar cross-section studies

. Flow around ships and other offshore constructions

. Diffusion of solid bodies in a liquid

. Noise reduction

. Diffusion of light through small particles

The electromagnetics community is a major user of dense linear-system solvers.
Of particular interest to this community is the solution of the so-called radar cross-
section problem. In this problem, a signal of fixed frequency bounces off an object;
the goal is to determine the intensity of the reflected signal in all possible directions.
The underlying differential equation may vary, depending on the specific problem.
In the design of stealth aircraft, the principal equation is the Helmholtz equation.
To solve this equation, researchers use the method of moments [436, 977]. In the case
of fluid flow, the problem often involves solving the Laplace or Poisson equation.
Here, the boundary integral solution is known as the panel method [465, 466], so
named from the quadrilaterals that discretize and approximate a structure such as
an airplane. Generally, these methods are called boundary element methods.

Use of these methods produces a dense linear system of size O(N)× O(N), where
N is the number of boundary points (or panels) being used. It is not unusual to see
size 3N × 3N, representing three physical quantities of interest at every boundary
element.

A typical approach to solving such systems is to use LU factorization. Each entry
of the matrix is computed as an interaction of two boundary elements. Often, many
integrals must be computed. In many instances, the time required to compute the
matrix is considerably larger than the time for solution.

The builders of stealth technology who are interested in radar cross-sections are
using direct Gaussian elimination methods for solving dense linear systems. These
systems are always symmetric and complex, but they are not Hermitian.

For further information on various methods for solving large, dense, linear algebra
problems that arise in computational fluid dynamics, see the report by Edelman
[305].

20.1.3 Block Algorithms and Their Derivation

It is comparatively straightforward to recode many of the dense linear-algebra al-
gorithms so that they use Level-2 BLAS. Indeed, in the simplest cases the same
floating-point operations are done, possibly even in the same order: it is just a matter
of reorganizing the software. To illustrate this point, we consider the Cholesky fac-
torization algorithm, which factors a symmetric positive definite matrix as A=UTU .

20.1 Dense Linear Algebra Algorithms 579

We consider Cholesky factorization because the algorithm is simple, and no pivoting
is required on a positive definite matrix.

Suppose that after j − 1 steps the block A00 in the upper left corner of A has been
factored as A00=UT

00 U00. The next row and column of the factorization can then be
computed by writing A= UTU as

A00 bj A02

. ajj cT
j

. . A22

=

UT
00 0 0

vT
j ujj 0

UT
02 wj UT

22

U00 vj U02

0 ujj wT
j

0 0 U22

where bj, cj, vj, and wj are column vectors of length j − 1, and ajj and ujj are scalars.
Equating coefficients of the jth column, we obtain

bj = UT
00vj

ajj = vT
j vj + u2

jj

Since U00 has already been computed, we can compute vj and ujj from the equations

UT
00vj = bj

u2
jj = ajj − vT

j vj

The computation of vj is a triangular system solution, a Level-2 BLAS operation.
Thus, a code using this will have a single call replacing a loop of Level 1 calls or a
doubly nested loop of scalar operations.

This change by itself is sufficient to result in large gains in performance on a
number of machines—for example, from 72 to 251 Megaflops for a matrix of order
500 on one processor of a CRAY Y-MP. Since this is 81% of the peak speed of matrix–
matrix multiplication on this processor, we cannot hope to do very much better by
using Level-3 BLAS.

We can, however, restructure the algorithm at a deeper level to exploit the faster
speed of the Level-3 BLAS. This restructuring involves recasting the algorithm as a
block algorithm—that is, an algorithm that operates on blocks or submatrices of the
original matrix.

Deriving a Block Algorithm

To derive a block form of Cholesky factorization, we partition the matrices so that
the diagonal blocks of A and U are square, but of differing sizes. We assume that
the first block has already been factored as A00 = UT

00U00 and that we now want to
determine the second block column of U , consisting of the blocks U01 and U11:

A00 A01 A02

. A11 A12

. . A22

=

UT
00 0 0

UT
01 UT

11 0

UT
02 UT

12 UT
22

U00 U01 U02

0 U11 U12

0 0 U22

580 Chapter 20 Templates and Numerical Linear Algebra

Equating submatrices in the second block of columns, we obtain

A01= UT
00U01

A11= UT
01U01+ UT

11U11

Hence, since U00 has already been computed, we can compute U01 as the solution
to the equation

UT
00U01= A01

by a call to the Level-3 BLAS routine STRSM; and then we can compute U11 from

UT
11U11= A11− UT

01U01

This involves first updating the symmetric submatrix A11 by a call to the Level-
3 BLAS routine SSYRK and then computing its Cholesky factorization. Since Fortran
does not allow recursion, a separate routine must be called, using Level-2 BLAS rather
than Level 3. In this way, successive blocks of columns of U are computed.

20.2 The Influence of Computer Architecture on Performance

Differences in computer architecture can markedly affect the performance of soft-
ware for the solution of systems of linear equations. In this section, we introduce
the architectural features that influence the choice of algorithm and suggest some
simple implementation strategies for obtaining the best performance on the target
architecture.

20.2.1 Discussion of Architectural Features

In Section 20.1.1 we noted that for BLAS Levels 2 and 3 several equivalent implemen-
tations of the operations exist. These differ, for instance, in whether they access a
matrix operand by rows or columns in the inner loop. In Fortran, matrices are stored
by columns, so accessing a column corresponds to accessing consecutive memory
elements. On the other hand, as one proceeds across a row, the memory references
jump across memory, the length of the jump being proportional to the length of a
column.

We now provide a simplified discussion of the various architectural issues that
influence the choice of algorithm. The following is, of necessity, a simplified account
of the state of affairs for any particular architecture.

At first, we concentrate only on “nonblocked” algorithms. In blocked methods,
discussed in more detail below, every algorithm has two levels on which we can con-
sider loop arranging: the block level and the scalar level. Often, the best arrangement
on one level is not the best on the other. The next two subsections are focused on
the scalar level.

20.2 The Influence of Computer Architecture on Performance 581

Using Consecutive Elements

Matrix elements should be traversed in a way that accesses elements that are con-
secutive in storage. There are at least three architectural reasons for this.

Page swapping. By using consecutive memory elements, instead of elements at
some stride distance from each other, the amount of memory-page swapping
is minimized.

Memory banks. If the processor cycle is faster than the memory cycle, and mem-
ory consists of interleaved banks, consecutive elements will be in different
banks. By contrast, taking elements separated by a distance equal to the num-
ber of banks, all elements will come from the same bank. This will reduce the
effective performance of the algorithm to the memory speed instead of the
processor speed.

Cache lines. Processors with a memory cache typically do not bring in single
elements from memory to cache, but move them one “cache line” at a time.
A cache line consists of a small number of consecutive memory elements. Thus,
using consecutive memory-storage elements means that a next element will
already be in cache and does not have to be brought into cache. This cuts
down on memory traffic.

Whether consecutive elements correspond to rows or columns in a matrix de-
pends on the programming language used. In Fortran, columns are stored consecu-
tively, whereas C has row elements contiguous in memory.

The effects of column orientation are quite dramatic: on systems with virtual or
cache memories, the LINPACK library codes (Section 20.3.2), which are written in
Fortran and are column oriented, will significantly outperform Fortran codes that are
not column oriented. In the C language, however, algorithms should be formulated
with row orientation. We note that textbook examples of matrix algorithms are
usually given in a row-oriented manner.

Cache Reuse

In many contemporary architectures, memory bandwidth is not enough to keep
the processor working at its peak rate. Therefore, the architecture incorporates some
cache memory, a relatively small store of faster memory. The memory-bandwidth
problem is now shifted to bringing the elements into cache, and this problem can
be obviated almost entirely if the algorithm can reuse cache elements.

Consider, for instance, a matrix–vector product y = Ax. The doubly nested loop
has an inner statement

yi ← yi + aijxj

implying three reads and one write from memory for two operations. If we write the
algorithm as

y∗ = x1a1∗ + x2a2∗ + · · ·

582 Chapter 20 Templates and Numerical Linear Algebra

we see that, keeping y in cache1 and reusing the elements of x, we only need to load
the column of A, making the asymptotic demand on memory one element load once
x and y have been brought into cache.

Blocking for Cache Reuse

Above, we saw in the Cholesky example how algorithms can be written naturally in
terms of Level-2 operations. In order to use Level-3 operations, a more drastic rewrite
is needed.

Suppose we want to perform the matrix–matrix multiplication C = AB, where all
matrices are of size n× n. We divide all matrices into subblocks of size b× b, and let
for simplicity’s sake b divide n: n= bm. Then the triply nested scalar loop becomes,
in one possible rearrangement

for i = 1 . . . m

for k = 1 . . . m

for j = 1 . . . m

Cij ← Cij + AikBkj

where the inner statement is now a size b matrix–matrix multiplication.
If the cache is large enough for three of these smaller matrices, we can keep Cij

and Aik in cache,2 while successive blocks Bkj are being brought in. The ratio of
memory loads to operations is then (ignoring the loads of the elements of C and A,
which are amortized) b2/b3, that is, 1/b.

Thus, by blocking the algorithm and arranging the loops so that blocks are reused
in cache, we can achieve high performance in spite of a low memory bandwidth. We
often see as much as an order of magnitude increase in performance by using these
techniques.

20.2.2 Target Architectures

The EISPACK and LINPACK software libraries were designed for supercomputers used
in the 1970s and early 1980s, such as the CDC-7600, Cyber 205, and Cray-1. These
machines featured multiple functional units pipelined for good performance [480].
The CDC-7600 was basically a high-performance scalar computer, while the Cyber
205 and Cray-1 were early vector computers.

The development of LAPACK in the late 1980s was intended to make the EISPACK
and LINPACK libraries run efficiently on shared-memory, vector supercomputers.
The ScaLAPACK software library, first released in 1995, extends the use of LAPACK
to distributed-memory concurrent supercomputers.

1 Since many Level-1 caches are write-through, immediately writing the information to memory, we wouldn’t
actually keep y in cache, but rather would keep a number of elements of it in register and reuse these registers
by unrolling the ∗ loop.
2 Again, with a write-through Level-1 cache, one would try to keep Cij in registers.

20.3 Dense Linear Algebra Libraries 583

The underlying concept of both the LAPACK and ScaLAPACK libraries is the use
of block-partitioned algorithms to minimize data movement among different levels
in hierarchical memory. Thus, the ideas discussed in this chapter for developing a li-
brary for dense linear algebra computations are applicable to any computer with a hi-
erarchical memory that (1) imposes a sufficiently large start-up cost on the movement
of data between different levels in the hierarchy, and for which (2) the cost of a con-
text switch is too great to make fine-grain-size multithreading worthwhile. Our target
machines are, therefore, medium- and large-grain-size, advanced-architecture com-
puters. These include “traditional” shared-memory, vector supercomputers, such as
the Cray C-90 and T-90, and MIMD distributed-memory concurrent supercomputers,
such as the SGI Origin 2000, IBM SP, Cray T3E, and HP/Convex Exemplar concurrent
systems.

Future advances in compiler and hardware technologies are expected to make
multithreading a viable approach for masking communication costs. Since the blocks
in a block-partitioned algorithm can be regarded as separate threads, our approach
will still be applicable on machines that exploit medium- and coarse-grain-size
multithreading.

20.3 Dense Linear Algebra Libraries

In this section, we discuss four well-known linear algebra packages: LINPACK, EIS-
PACK, LAPACK, and ScaLAPACK. All of these employ the basic linear algebra subpro-
grams (BLAS) to enhance performance and portability across a variety of machines.

20.3.1 The BLAS as the Key to Portability

At least three factors affect the performance of compilable code.

1. Vectorization/cache reuse. Designing vectorizable algorithms in linear algebra is
usually straightforward. Indeed, for many computations there are several vari-
ants, all vectorizable, but with different characteristics in performance (see,
for example, Dongarra [280]). Linear algebra algorithms can approach the
peak performance of many machines—principally because peak performance
depends on some form of chaining of vector addition and multiplication op-
erations or cache reuse, and this is just what the algorithms require. However,
when the algorithms are realized in straightforward Fortran 77 or C code, the
performance may fall well short of the expected level, usually because For-
tran compilers fail to minimize the number of memory references—that is,
the number of vector load and store operations—or effectively reuse cache.

2. Data movement. What often limits the actual performance of a vector or scalar
floating-point unit is the rate of transfer of data between different levels of
memory in the machine. Examples include the transfer of vector operands in
and out of vector registers, the transfer of scalar operands in and out of a high-

584 Chapter 20 Templates and Numerical Linear Algebra

speed cache, the movement of data between main memory and a high-speed
cache or local memory, paging between actual memory and disk storage in a
virtual-memory system, and interprocessor communication on a distributed-
memory concurrent computer.

3. Parallelism. The nested loop structure of most linear algebra algorithms offers
considerable scope for loop-based parallelism. This is the principal type of
parallelism that LAPACK and ScaLAPACK presently aim to exploit. On shared-
memory concurrent computers, this type of parallelism can sometimes be
generated automatically by a compiler, but it often requires the insertion of
compiler directives. On distributed-memory concurrent computers, data must
be moved between processors. This is usually done by explicit calls to message-
passing routines, although parallel language extensions, such as Coherent
Parallel C [323] and Split-C [235] do the message passing implicitly.

These issues can be controlled, while obtaining the levels of performance that
machines can offer, through use of the BLAS, introduced in Section 20.1.

The Level-1 BLAS are used in LAPACK, but for convenience rather than for
performance: they perform an insignificant fraction of the computation, and they
cannot achieve high efficiency on most modern supercomputers. Also, the overhead
entailed in calling the BLAS reduces the efficiency of the code. This reduction
is negligible for large matrices, but it can be quite significant for small matrices.
Fortunately, the Level-1 BLAS can be removed from the smaller, more frequently
used LAPACK codes in a short editing session.

The Level-2 BLAS can achieve near-peak performance on many vector processors,
such as a single processor of a CRAY X-MP or Y-MP, or Convex C-2 machine. However,
on other vector processors such as a CRAY-2 or an IBM 3090 VF, the performance of
the Level-2 BLAS is limited by the rate of data movement between different levels of
memory.

The Level-3 BLAS have overcome this limitation. This third level of BLAS performs
O(n3) floating-point operations on O(n2) data, whereas the Level-2 BLAS perform
only O(n2) operations on O(n2) data. The Level-3 BLAS also allow us to exploit
parallelism in a way that is transparent to the software that calls them. While the
Level-2 BLAS offer some scope for exploiting parallelism, greater scope is provided
by the Level-3 BLAS, as Table 20.1 illustrates.

The BLAS can provide portable high performance through being a standard that
is available on many platforms. Ideally, the computer manufacturer has provided
an assembly-coded BLAS tuned for that particular architecture, but there is a stan-
dard implementation available that can simply be compiled and linked. Using this
standard, BLAS may improve the efficiency of programs when they are run on non-
optimizing compilers. This is because doubly subscripted array references in the inner
loop of the algorithm are replaced by singly subscripted array references in the ap-
propriate BLAS. The effect can be seen for matrices of rather small order, and for large
orders the savings are quite significant.

20.3 Dense Linear Algebra Libraries 585

Table 20.1 Speed in Mflop/s of Level-2 and Level-3 BLAS operations on a CRAY C90

Number of processors 1 2 4 8 16

Level 2: y ← αAx+ βy 899 1780 3491 6783 11207
Level 3: C← αAB+ βC 900 1800 3600 7199 14282
Level 2: x← Ux 852 1620 3063 5554 6953
Level 3: B← UB 900 1800 3574 7147 13281
Level 2: x← U−1x 802 1065 1452 1697 1558
Level 3: B← U−1B 896 1792 3578 7155 14009

NOTE: All matrices are of order 1000; U is upper triangular.

Today’s microprocessors have peak execution rates ranging from 300 Mflop/s to
1.2 Gflop/s. However, straightforward implementation in Fortran or C of computa-
tions based on simple loops rarely results in such high performance. To realize such
peak rates of execution for even the simplest of operations has required tedious,
hand-coded, programming efforts.

Since their inception, the use of de facto standards like the BLAS [283, 284] has
been a means of achieving portability and efficiency for a wide range of kernel
scientific computations. While these BLAS are used heavily in linear algebra com-
putations, such as solving dense systems of equations, they have also found their
way into the basic computing infrastructure of many applications. The BLAS are
high-quality, “building-block” routines for performing basic vector and matrix op-
erations. Level-1 BLAS do vector–vector operations, Level-2 BLAS do matrix–vector
operations, and Level-3 BLAS do matrix–matrix operations. Because the BLAS are
efficient, portable, and widely available, they are commonly used in the devel-
opment of high-quality linear algebra software, such as LAPACK [34] and ScaLA-
PACK [119].

In general, the existing BLAS have proven to be very effective in facilitating the
production of portable, efficient software for sequential, vector, and shared-memory,
high-performance computers. However, hand-optimized BLAS are expensive and
tedious to produce for any particular architecture. In general, they will only be
created when there is a large enough market, which is not true for all platforms.
The process of generating an optimized set of BLAS for a new architecture or a
slightly different machine version can be a time-consuming process. The program-
mer must understand the architecture, how the memory hierarchy can be used to
provide data in an optimal fashion, how the functional units and registers can be
manipulated to generate the correct operands at the correct time, and how best
to use the compiler optimization. Care must be taken to optimize the operations
to account for many parameters such as blocking factors, loop unrolling depths,
software pipelining strategies, loop ordering, register allocations, and instruction
scheduling.

586 Chapter 20 Templates and Numerical Linear Algebra

A goal is to develop a methodology for automatic generation of highly efficient,
basic linear algebra routines for today’s microprocessors. In particular, the present
effort is targeted for platforms possessing an on-chip cache and a reasonable C
compiler. One approach, called automatically tuned linear algebra software (ATLAS),
has been able to match or exceed the performance of the vendor-supplied version
of matrix multiply in almost every case.

Atlas Approach

This section describes a general methodology that may be used to support the Level-
3 BLAS. For the moment, consider the operation matrix multiply, which can be
described as C← α op(A)op(B)+ βC, where op(X)= X or XT . C is an M ×N matrix,
and A and B are matrices of size M × K and K ×N, respectively.

In the ATLAS approach, the machine-specific features of the operation to several
routines, all of which deal with performing an optimized, on-chip (i.e., in level-1
cache), matrix multiply of the form C←ATB+C, are isolated. This section of code is
automatically created by a code generator that uses timings to determine the correct
blocking and loop-unrolling factors to perform an optimized on-chip multiply. The
user may supply the code generator with as much detail as desired (i.e., the user
may explicitly indicate the level-1 cache size, the blocking factor(s) to try, etc.); if
such details are not provided, the generator will determine appropriate settings via
timings.

The rest of the code does not change across architectures (other than perhaps
including preprocessor information discovered by the code generator), and handles
blocking for higher-level caches (if any) and the necessary overhead required to build
the complete matrix–matrix multiply from the on-chip multiply.

At this point, we consider how the general method outlined in this section can
be extended to other BLAS. All Level-3 BLAS can naturally be expressed in terms of
the previously mentioned on-chip matrix multiply. This means that no more system-
specific code must be generated to support these routines, which in turn implies that
our installation time should not increase when these additional BLAS are supported.
Support of these routines should require only the development of the off-chip codes.
In the meantime, a gemm-based or “poor-man’s BLAS” [529] may be utilized in order
to generate a wider set of Level-3 BLAS.

The Level-1 and Level-2 BLAS require a different approach. In Level 3, the luxury
of O(N3) operations allows us to perform data copies, thereby concentrating most
optimization, and thus system-specific code, in a few routines. When the order of
operations to be done is the same as the data, this is not feasible. This means that
code must be directly generated for each transpose case, for instance (since we can
no longer coerce all transpose settings to one with a data copy). This turns out not
to be too burdensome, since Level-2 BLAS routines are relatively simple compared
to those of Level 3.

20.3 Dense Linear Algebra Libraries 587

20.3.2 Overview of Dense Linear Algebra Libraries

Over the past 25 years, we have been directly involved in the development of
several important packages of dense linear algebra software: EISPACK, LINPACK,
LAPACK, and the BLAS. In addition, we are currently involved in the development
of ScaLAPACK, a scalable version of LAPACK for distributed-memory concurrent
computers. In this section, we give a brief review of these packages—their history,
advantages, and limitations on high-performance computers.

EISPACK

EISPACK is a collection of Fortran subroutines that compute the eigenvalues and
eigenvectors of nine classes of matrices: complex general, complex Hermitian, real
general, real symmetric, real symmetric banded, real symmetric tridiagonal, special
real tridiagonal, generalized real, and generalized real symmetric matrices. In addi-
tion, two routines are included that use singular value decomposition to solve certain
least-squares problems.

EISPACK is primarily based on a collection of Algol procedures developed in the
1960s and collected by J. H. Wilkinson and C. Reinsch in a volume entitled Linear
Algebra in the Handbook for Automatic Computation [995] series. This volume was not
designed to cover every possible method of solution; rather, algorithms were chosen
on the basis of their generality, elegance, accuracy, speed, or economy of storage.

Since the release of EISPACK in 1972, over 10,000 copies of the collection have
been distributed worldwide.

LINPACK

LINPACK is a collection of Fortran subroutines that analyze and solve linear equa-
tions and linear least-squares problems. The package solves linear systems whose
matrices are general, banded, symmetric indefinite, symmetric positive definite, tri-
angular, and tridiagonal square. In addition, the package computes the QR and
singular value decompositions of rectangular matrices and applies them to least-
squares problems.

LINPACK is organized around four matrix factorizations: LU factorization, pivoted
Cholesky factorization, QR factorization, and singular value decomposition. The
term LU factorization is used here in a very general sense to mean the factorization
of a square matrix into a lower triangular part and an upper triangular part, perhaps
with pivoting. These factorizations will be treated at greater length later, when the
actual LINPACK subroutines are discussed. But first, a digression on organization and
factors influencing LINPACK’s efficiency is necessary.

LINPACK uses column-oriented algorithms to increase efficiency by preserving
locality of reference. By column orientation we mean that the LINPACK codes always
reference arrays down columns, not across rows. This works because Fortran stores
arrays in column-major order. This means that as one proceeds down a column of

588 Chapter 20 Templates and Numerical Linear Algebra

an array, the memory references proceed sequentially in memory. Thus, if a program
references an item in a particular block, the next reference is likely to be in the same
block. For further information, see Section 20.2.1.

LINPACK uses the Level-1 BLAS; see Section 20.3.1.

LAPACK

LAPACK [254] provides routines for solving systems of simultaneous linear equa-
tions, linear least-squares problems, eigenvalue problems, and singular value prob-
lems. The associated matrix factorizations (LU, Cholesky, QR, SVD, Schur, general-
ized Schur) are also provided, as are related computations, such as reordering of the
Schur factorizations and estimating condition numbers. Dense and banded matri-
ces are handled, but not general sparse matrices. In all areas, similar functionality is
provided for real and complex matrices, in both single and double precision.

The original goal of the LAPACK project was to make the widely used EISPACK and
LINPACK libraries run efficiently on shared-memory vector and parallel processors.
On these machines, LINPACK and EISPACK are inefficient because their memory
access patterns disregard the multilayered memory hierarchies of the machines,
thereby spending too much time moving data instead of doing useful floating-point
operations. LAPACK addresses this problem by reorganizing the algorithms to use
block matrix operations, such as matrix multiplication, in the innermost loops [37,
254]. These block operations can be optimized for each architecture to account for
the memory hierarchy [36], and so provide a transportable way to achieve high
efficiency on diverse modern machines. Here we use the term “transportable” instead
of “portable” because, for fastest possible performance, LAPACK requires that highly
optimized, block matrix operations be already implemented on each machine. In
other words, the correctness of the code is portable, but high performance is not—if
we limit ourselves to a single Fortran source code.

LAPACK can be regarded as a successor to LINPACK and EISPACK. It has virtually
all the capabilities of these two packages and many more besides. LAPACK improves
on LINPACK and EISPACK in four main respects: speed, accuracy, robustness, and
functionality. While LINPACK and EISPACK are based on the vector operation kernels
of the Level-1 BLAS, LAPACK was designed at the outset to exploit the Level-3
BLAS—a set of specifications for Fortran subprograms that do various types of matrix
multiplication and the solution of triangular systems with multiple right-hand sides.
Because of the coarse granularity of the Level-3 BLAS operations, their use tends
to promote high efficiency on many high-performance computers, particularly if
specially coded implementations are provided by the manufacturer.

LAPACK is designed to give high efficiency on vector processors, high-
performance “superscalar” workstations, and shared-memory multiprocessors. LA-
PACK in its present form is less likely to give good performance on other types of
parallel architectures (e.g., massively parallel SIMD machines, or MIMD distributed-
memory machines), but the ScaLAPACK project, described in Section 20.3.2, is

20.3 Dense Linear Algebra Libraries 589

intended to adapt LAPACK to these new architectures. LAPACK can also be used
satisfactorily on all types of scalar machines (PCs, workstations, mainframes).

LAPACK, like LINPACK, provides LU and Cholesky factorizations of band matri-
ces. The LINPACK algorithms can easily be restructured to use Level-2 BLAS, although
restructuring has little effect on performance for matrices of very narrow bandwidth.
It is also possible to use Level-3 BLAS, at the price of doing some extra work with zero
elements outside the band [286]. This process becomes worthwhile for large matrices
and semibandwidth greater than 100 or so.

ScaLAPACK

The ScaLAPACK software library extends the LAPACK library to run scalably on
MIMD, distributed-memory, concurrent computers [199, 200]. For such machines
the memory hierarchy includes the off-processor memory of other processors, in
addition to the hierarchy of registers, cache, and local memory on each processor.
Like LAPACK, the ScaLAPACK routines are based on block-partitioned algorithms
in order to minimize the frequency of data movement between different levels of
the memory hierarchy. The fundamental building blocks of the ScaLAPACK library
are distributed-memory versions of the Level-2 and Level-3 BLAS, and a set of Basic
Linear Algebra Communication Subprograms (BLACS) [281, 289] for communication
tasks that arise frequently in parallel linear-algebra computations. In the ScaLAPACK
routines, all interprocessor communication occurs within the distributed BLAS and
the BLACS, so the source code of the top software layer of ScaLAPACK looks very
similar to that of LAPACK.

We envisage a number of user interfaces to ScaLAPACK. Initially, the interface
will be similar to that of LAPACK, with some additional arguments passed to each
routine to specify the data layout. Once this is in place, we intend to modify the
interface so that the arguments to each ScaLAPACK routine are the same as in
LAPACK. This will require information about the data distribution of each matrix
and vector to be hidden from the user. This may be done by means of a ScaLAPACK
initialization routine. This interface will be fully compatible with LAPACK. Provided
“dummy” versions of the ScaLAPACK initialization routine and the BLACS are added
to LAPACK, there will be no distinction between LAPACK and ScaLAPACK at the
application level, although each will link to different versions of the BLAS and
BLACS. Following on from this, we will experiment with object-based interfaces for
LAPACK and ScaLAPACK, with the goal of developing interfaces compatible with
Fortran 90 [199], and C++ [288].

20.3.3 Available Software

Table 20.2 lists the characteristics of software packages implementing algorithms for
the solutions to dense linear algebra problems. Each of these packages is available
from Netlib (http://www.netlib.org).

590 Chapter 20 Templates and Numerical Linear Algebra

Table 20.2 Available dense linear algebra software.

Package Language binding Type Sequential Parallel

BLAS 1 Fortran and C Real and complex Sequential
ATLAS 2 Fortran and C Real and complex Sequential Threaded
LAPACK 3 Fortran and C Real and complex Sequential
ScaLAPACK 4 Fortran and C Real and complex MPI

NOTE: URLs for the packages discussed in the table:
1. http://www.netlib.org/blas/
2. http://www.netlib.org/atlas/
3. http://www.netlib.org/lapack/
4. http://www.netlib.org/scalapack/

20.4 Sparse Linear Algebra Methods

A system of linear equations is called sparse if its coefficient matrix contains a
substantial number of zero elements. Such systems arise naturally in mathematical
models of many physical problems of interest. Linear algebra algorithms can be
designed to take advantage of this special structure, allowing very large problems
to be solved efficiently.

20.4.1 Origin of Sparse Linear Systems

The most common source of sparse linear systems is the numerical solution of partial
differential equations (PDEs). Many physical problems, such as fluid flow or elasticity,
can be described by partial differential equations. These are implicit descriptions of
a physical model, describing some internal relation such as stress forces. In order
to arrive at an explicit description of the shape of the object or the temperature
distribution, we need to solve the PDE, and for this we need numerical methods.

Discretized Partial Differential Equations

Several methods for the numerical solution of PDEs exist, the most common ones
being the methods of finite elements, finite differences, and finite volumes. A com-
mon feature of these is that they identify discrete points in the physical object and
yield a set of equations relating these points.

Typically, only points that are physically close together are related to each other
in this way. This gives a matrix structure with very few nonzero elements per row,
and the nonzeros are often confined to a “band” in the matrix.

Sparse Matrix Structure

Matrices from discretized partial differential equations contain so many zero ele-
ments that it pays to find a storage structure that avoids storing these zeros. The
resulting memory savings, however, are offset by an increase in programming com-

20.5 Direct Solution Methods 591

plexity and by decreased efficiency of even simple operations, such as the matrix–
vector product.

More complicated operations, such as solving a linear system, with such a sparse
matrix present the next level of complication. Neither the inverse nor the LU
factorization of a sparse matrix is as sparse as the original and needs considerably
more storage. Specifically, the inverse of the type of sparse matrix we are considering
is a full matrix, and factoring such a sparse matrix fills in the band completely.
An example follows: Central differences in d dimensions, n points per line, matrix
size N = nd, bandwidth q = nd−1 in natural ordering, number of nonzero ∼ nd, and
number of matrix elements N2= n2d, number of elements in factorization N1+(d−1)/d.

20.4.2 Basic Elements in Sparse Linear Algebra Methods

Methods for sparse systems use, like those for dense systems, vector–vector, matrix–
vector, and matrix–matrix operations. However, there are some important differ-
ences.

For iterative methods, discussed in section 20.6, there are almost no matrix–
matrix operations. See Jones and Plassmann [519] for an exception. Since most
modern architectures prefer these Level-3 operations, the performance of iterative
methods will be limited from the outset.

An even more serious objection is that the sparsity of the matrix implies that
indirect addressing is used for retrieving elements. For example, in the popular row-
compressed matrix storage format, the matrix–vector multiplication looks like this:

for i = 1 . . . n

p← pointer to row i

for j = 1, ni

yi ← yi + a(p+ j)x(c(p+ j))

where ni is the number of nonzeros in row i, and p(·) is an array of column indices.
A number of such algorithms for several sparse data formats are given in Barrett et
al. [81].

Direct methods can have a Level-3 BLAS component if they are a type of dissection
method. However, in a given sparse problem, the more dense the matrices are, the
smaller they are on average. They are also not general full matrices, but only banded.
Thus, we don’t expect very high performance on such methods either.

20.5 Direct Solution Methods

One way of solving a linear system is to factor the coefficient matrix by a direct
method, that is, by some variant of Gaussian elimination. As remarked above, for a
sparse matrix, this fills in many elements in the band in which the nonzero elements
are contained. In order to minimize the storage needed for the factorization, research
has focused on finding suitable orderings of the matrix.

There are several issues to be distinguished here:

592 Chapter 20 Templates and Numerical Linear Algebra

. For a symmetric, positive-definite matrix, we know that the pivots can be
found on the diagonal, so we can limit ourselves to symmetric permutations
(i.e., PtAP) performed solely for reduction of the fill-in.

. In general, a factorization will have to perform pivoting for numerical stabil-
ity, in addition to the symmetric permutations for fill reduction. A two-part
approach is popular (used in such packages as SuperLU [612]) where the ma-
trix is first ordered, using for instance a multiple minimum-degree ordering,
but during the factorization additional row permutations may be performed
for partial pivoting in the pivot column.

. Given a permutation of the matrix, there are still several factorization algo-
rithms possible. The choice among them is dictated by performance consid-
erations. Many packages these days focus on finding applications for Level-3
BLAS kernels in the factorization phase.

20.5.1 Matrix Orderings

The most convenient way of talking about matrix orderings or permutations is to
consider the matrix “graph” [752]. (See Chapter 18 for additional information on
matrix ordering and graph partitioning.) We introduce a node for every physical
variable, and nodes i and j are connected in the graph if the (i, j) element of the matrix
is nonzero. A symmetric permutation of the matrix then corresponds to a numbering
of the nodes, while the connections stay the same. With these permutations, one
hopes to reduce the “bandwidth” of the matrix, and thereby the amount of fill
generated by the factorization.

Cuthill–McKee Ordering

A popular ordering strategy is the Cuthill–McKee ordering, which finds levels or
wavefronts in the matrix graph. This algorithm is easily described:

1. Take any node as starting point, and call that “level 0.”

2. Now successively take all nodes connected to the previous level, and group
them into the next level.

3. Iterate until all nodes are grouped into some level; the numbering inside each
level is of secondary importance.

This ordering strategy often gives a smaller bandwidth than the natural ordering,
and there are further advantages to having a level structure (e.g., for out-of-core
solution or for parallel processing). Often, one uses the “reverse Cuthill–McKee”
orderings [622].

Cuthill–McKee orderings reduce bandwidth, but do not in general reduce fill-in
by any substantial amount. However, there is value in the observation that any level
works as a separator between two domain halves. This fact was used in SDCpack [789].

20.5 Direct Solution Methods 593

Minimum Degree

An explicit reduction of bandwidth is effected by the minimum-degree ordering,
which at any point in the factorization chooses the variable with the smallest number
of connections. More sophisticated strategies use minimum deficiency: they choose the
pivot that will add the lowest number of fills. Since the pivot choice is usually not
unique, factors such as the size of the resulting fill-in are used as a tiebreaker.

Minimum-degree methods can be made parallel by having multiple eligible pivots
be processed in parallel. This method is called the multiple minimum-degree ordering.

Nested Dissection

Instead of trying to minimize fill-in by reducing the bandwidth, one could try a
direct approach. The nested-dissection ordering recursively splits the matrix graph in
two, thus separating it into disjoint subgraphs. Somewhat more precisely, given a
graph, this algorithm relies on the existence of a separator, that is, a set of nodes such
that the other nodes fall into two mutually unconnected subgraphs. The fill from
factoring these subgraphs before factoring the separator is likely to be lower than for
other orderings.

For PDEs in 2-D, this method can be shown to have a storage requirement that is
within a log-factor of that for the matrix itself; that is, it is very close to optimal [374].
This proof is easy for PDEs on rectangular grids, and with enough graph theory it
can be generalized [618, 620]. However, for problems in 3-D, the nested dissection
method is no longer optimal.

An advantage of dissection-type methods is that they lead to large numbers of
uncoupled matrix problems. Thus, to an extent, parallelization of such methods is
easy. However, the higher levels in the tree quickly have fewer nodes than the number
of available processors. In addition to this, they are also the larger subproblems in
the algorithm, thereby complicating the parallelization of the method.

Another practical issue is the choice of the separator set. In a model case this is
trivial, but in practice, and in particular in parallel, this is a serious problem, since
the balancing of the two resulting subgraphs depends on this choice.

Recently, methods based on the Fiedler vector, the eigenvector of the second-
smallest eigenvalue of a singular M-matrix based on the matrix graph, have become
popular for this [774]. Such methods are based on the fact that this eigenvector is
zero on a “line” through the domain. This line gives a separator for two halves of
the domain. This method is known as spectral bisection.

Finding the Fiedler vector can be done in parallel, by performing a Lanczos
iteration process. However, the accuracy of solution is critical in finding a separator
that properly balances the domain halves. Thus, for large systems and for finding
multiple separators, the cost of this stage can become quite high. For such reasons,
hybrid methods are becoming popular. A small number of separators is found, and
then a multiple minimum-degree ordering takes over on the subdomains.

594 Chapter 20 Templates and Numerical Linear Algebra

Multifrontal Factorization of a Sparse Matrix

The multifrontal method, proposed in Duff and Reid [298], forms a tree of multiple
fronts—that is, nodes allowing simultaneous, independent elimination. Proceeding
from one node to the nodes connected to it gives a front and a frontal matrix. Frontal
matrices quickly become dense, so high performance can be reached handling them.

20.5.2 Use of Level-3 BLAS Kernels

It is generally recognized that high performance results mostly from the use of
Level-3 BLAS kernels, specifically the matrix–matrix multiply. Through their reuse
of cached data, these kernels mask the gap between high processor speed and lower
bandwidth to memory. In order for them to be applicable, dense subblocks have to
be found in the factorization.

First, any clique of nodes (i.e., a fully connected group of nodes) can be permuted
so that the matrix shows a dense diagonal block.

Second, recent efforts have focused on more general supernodal techniques. These
identify blocks of columns that have an identical nonzero structure. In a left-looking
factorization, one could then let supernodes in the already factored columns update
supernodes in the destination columns, thus enabling the use of Level-2 BLAS
kernels, instead of (sparse) Level-1 BLAS.

Almost Level-3 BLAS performance can be reached by using supernodes to let
blocks of pivot columns be updated. This approach is taken in SuperLU [612]; the
authors call their kernels BLAS 2/, 1/2.

20.5.3 Available Software

There are several direct sparse solver packages freely available. However, because of
the effort involved in writing them, the best packages are probably commercial or
even proprietary.

Standalone software for graph partitioning and matrix reordering exists. As re-
marked above, this most often applies in the case of symmetric, positive definite
matrices.

METIS/ParMETIS. These packages (ParMETIS is an MPI-based version of the Metis
algorithms) use multilevel k-way partitioning [544]. By first coarsening the mesh
down to small size, they find an initial partitioning in k parts. This partitioning
is then gradually extended to the original mesh by projecting it upward. A fill-
reducing ordering is computed by first finding a p-way partitioning (where p is
the number of processors) as described above. A multiple minimum-degree
ordering is then used on each of the subdomains.

Chaco. This package [459, 460] uses a multilevel approach with spectral graph
partitioning on the lowest level.

Some of the free solver packages are listed below:

20.5 Direct Solution Methods 595

Pspases. This package [416] uses METIS/ParMETIS (see above) as a preprocessing
stage. Then it uses a multifrontal method with block-cyclic distribution of the
matrix and subtree-to-subcube mapping to achieve high performance. Because
of the separate ordering and factorization phases, this package is limited to
matrices that allow diagonal pivoting.

Spooles. This package [49, 52] provides minimum-degree, nested dissection, and
multisection orderings. It can run serially, multithreaded, and in parallel using
MPI. It supports pivoting for numerical stability and uses Level-3 BLAS kernels
for high performance.

SuperLU. This solver [612] is available in single-processor and multithreaded
versions, with a parallel version announced. By use of supernodes and panel
updates, which enable the use of Level-3 BLAS kernels, it achieves a high
performance. This package can handle fairly general matrices.

UMFpack. This is a general unsymmetric, multifrontal, systems-solver package.

Table 20.3 lists the characteristics of some of the available software for the direct
solution of sparse linear algebra problems.

Table 20.3 Direct sparse solver packages

Package Language Binding Arithmetic Sequential Parallel Type of matrix

MA28 Fortran 1 Real Sequential SPD and General
MFACT Fortran 2 Complex Sequential SPD
MP_Solve Fortran and C 3 Real and complex MPI General
Pspases Fortran 4 Real MPI SPD
Sparse Fortran and C 5 Real and complex Sequential SPD and general
Sparseqr Fortran 6 Real Sequential SPD and general
Spooles Fortran and C 7 Real and complex Sequential MPI SPD and general
SuperLU Fortran and C 8 Real and complex Sequential SPD and general
UMFpack Fortran and C 9 Real and complex Sequential SPD and general
Y12M Fortran 10 Real Sequential SPD and general

NOTE: URLs for the packages discussed in the table.
1. http://www.netlib.org/harwell/index.html
2. http://www.netlib.org/atlas/
3. http://www.cs.utk.edu/~padma/mfact.html
4. http://www.cs.umn.edu/~mjoshi/pspases/index.html
5. http://www.netlib.org/sparse/index.html
6. http://www.arc.unm.edu/~trobey/
7. http://www.netlib.org/linalg/spooles/
8. http://www.netlib.org/scalapack/prototype/index.html
9. http://www.netlib.org/linalg/umfpack2.2.tgz

10. http://www.netlib.org/y12m/index.html

596 Chapter 20 Templates and Numerical Linear Algebra

20.6 Iterative Solution Methods

Direct methods, as sketched above, have some pleasant properties. Foremost is the
fact that their time to solution is predictable, either a priori or after determining the
matrix ordering. This is due to the fact that the method does not rely on numerical
properties of the coefficient matrix but only on its structure. On the other hand,
the amount of fill can be substantial, and with it the execution time. For large-
scale applications, the storage requirements for a realistic size problem can simply
be prohibitive.

Iterative methods have far lower storage demands. Typically, the storage, and the
cost per iteration with it, is of the order of the matrix storage. However, the number
of iterations strongly depends on properties of the linear system and is at best known
up to an order estimate; for difficult problems, the methods may not even converge
due to accumulated round-off errors.

20.6.1 Stationary Iterative Methods

In each iteration, an iterative method locates an approximation to the solution of the
problem, measures the error between the approximation and the true solution, and
based on the error measurement improves on the approximation by constructing
a next iterate. This process repeats until the error measurement is deemed small
enough.

The simplest iterative methods are the stationary iterative methods. They are based
on finding a matrix M that is, in some sense, “close” to the coefficient matrix A.
Instead of solving Ax = b, which is deemed computationally infeasible, we solve
Mx1= b. The true measure of how well x1 approximates x is the error e1= x1− x.
Since we do not know the true solution x, this quantity is not computable. Instead,
we look at the residual, r1=Ae1=Ax1− b, which is a computable quantity. One easily
sees that the true solution satisfies x= A−1b= x1− A−1r1. So, replacing A−1 with M−1

in this relation, we define x2 = x1−M−1r1.
Stationary methods are easily analyzed: we find that ri → 0 if all eigenvalues

λ = λ(I − AM−1) satisfy |λ| < 1. For certain classes of A and M , this inequality is
automatically satisfied [422, 958].

20.6.2 Krylov Space Methods

The most popular class of iterative methods nowadays is that of Krylov space methods.
The basic idea is to construct the residuals such that the nth residual rn is obtained
from the first by multiplication by some polynomial in the coefficient matrix A,
that is,

rn = Pn−1(A)r1

The properties of the method then follow from the properties of the actual polyno-
mial [61, 108, 182].

20.6 Iterative Solution Methods 597

Most often, these iteration polynomials are chosen such that the residuals are
orthogonal under some inner product. From this, one usually obtains some mini-
mization property, though not necessarily a minimization of the error.

Since the iteration polynomials are of increasing degree, it is easy to see that the
main operation in each iteration is one matrix–vector multiplication. Additionally,
some vector operations, including inner products in the orthogonalization step, are
needed.

The Issue of Symmetry

Krylov method residuals can be shown to satisfy the equation

rn ∈ span{Arn−1, rn−1, . . . , r1}
This brings up the question as to whether all {rn−1, . . . , r1} need to be stored in order
to compute rn. The answer is that this depends on the symmetry of the coefficient
matrix. For a symmetric problem, the rn vectors satisfy a three-term recurrence. This
was the original conjugate gradient method [467].

For nonsymmetric problems, on the other hand, no short recurrences can ex-
ist [316], and therefore, all previous residuals need to be stored. Some of these
methods are OrthoDir and OrthoRes [1010].

If the requirement of orthogonality is relaxed, one can derive short-recurrence
methods for nonsymmetric problems [339]. In the biconjugate gradient method,
sequences {rn} and {sn} are derived, which are mutually orthogonal and satisfy three-
term recurrences.

A disadvantage of this latter method is that it needs application of the transpose
of the coefficient matrix. In environments where the matrix is only operatively
defined, this method may be excluded from consideration. Recently developed
methods, mostly based on the conjugate gradient squared [888] and biconjugate
gradients stabilized [952] methods, obviate this consideration. Furthermore, they
can theoretically have double the convergence speed of other CG-like methods.

True Minimization

The methods mentioned so far minimize the error (over the subspace generated)
in some matrix-related norm, but not in the Euclidean norm. We can effect a
true minimization by finding a minimizing convex combination of the residuals
generated so far. This leads to one of the most popular methods today: GMRES [821].
It will always generate the optimal iterate, but it requires storage of all previous
residuals. In practice, truncated or restarted versions of GMRES are popular.

Parallelism in the Iterative Method

Conjugate gradient–type methods are largely parallelizable. Vector updates are fully
parallel, and the matrix–vector product involves only local communication for most
sparse problems. Calculation of norms and inner products takes global operation,

598 Chapter 20 Templates and Numerical Linear Algebra

but the amount of data involved is small, and the cost is usually negligible compared
to the matrix–vector product and, especially, the preconditioner application.

20.6.3 Preconditioners

The matrix M that appeared in the section on stationary iterative methods can also
play a role in Krylov space methods. There, it is called a preconditioner, and it acts to
improve spectral properties of the coefficient matrix that determine the convergence
speed of the method. In a slight simplification, one might say that we replace the
system Ax= b by

(AM−1)(Mx)= b

(The inner product is typically changed as well.) It is generally recognized that a
good preconditioner is crucial to the performance of an iterative method.

The requirements on a preconditioner are that it should be easy to construct,
a system Mx = b should be simple to solve, and in some sense M should be an
approximation to A. These requirements need to be balanced: a more accurate
preconditioner is usually harder to construct and more costly to apply, so any
decrease in the number of iterations has to be set against a longer time per iteration,
plus an increased setup phase.

The holy grail of preconditioners is finding an optimal preconditioner—one for
which the number of operations required to apply it is of the order of the number of
variables, while the resulting number of iterations is bounded in the problem size.
There are very few optimal preconditioners.

Simple Preconditioners

Some preconditioners need no construction at all. For instance, the Jacobi precondi-
tioner is simply the matrix diagonal DA. In PDE applications, the largest elements are
on the diagonal, so one expects some degree of accuracy from this. By partitioning
the matrix in blocks instead of scalars, this generalizes to the block Jacobi method,
which usually gives faster convergence than the point method.

An even more accurate method results from using the whole lower triangular
part DA + LA of the coefficient matrix. This is called the Gauss–Seidel method or,
introducing a damping parameter as in DA + ωLA, the SOR method. Since this tri-
angular matrix is nonsymmetric, it is usually balanced with the upper triangular
part as (DA+ LA)D−1

A (DA+ UA), which is called the SSOR method.
While the Jacobi method is trivially parallel, the SOR and SSOR methods are not.

Since they have the same logical structure as incomplete factorizations, this point
will be tackled in the next section.

Incomplete Factorizations

A successful strategy for preconditioners results from mimicking direct methods,
but applying some approximation process to them. Thus, the so-called incomplete

20.6 Iterative Solution Methods 599

factorization methods ignore fill elements in the course of the Gaussian elimination
process. Two strategies are to ignore elements in fixed positions, or to drop elements
that are deemed small enough to be negligible. The aim is to preserve at least some of
the sparsity of the coefficient matrix in the factorization, while providing something
that is close enough to the full factorization.

Incomplete factorizations can be very effective, but there are a few practical
problems. For the class of M-matrices, these methods are well defined [663]. For other,
even fairly common, classes of matrices, there is a possibility that the algorithm
breaks down [515, 562, 644].

Also, factorizations are inherently recursive. Coupled with the sparseness of the
incomplete factorization, this gives very limited parallelism in the algorithm using
a natural ordering of the unknowns. It has been established that different orderings
affect the number of iterations [297] and that very little parallelism is possible
without sacrificing convergence speed [308]. However, once we reconcile ourselves
to the extra iterations incurred, it is possible to attain a large degree of parallelism
by using orderings based on multicoloring [519]. Such factorizations can even be
constructed in parallel.

Analytically Inspired Preconditioners

In recent years, a number of preconditioners more directly inspired by the con-
tinuous problem have gained in popularity. For a matrix from an elliptic PDE on
a rectangular grid, one can use a so-called fast solver as preconditioner [217, 312,
992].

A particularly popular class of preconditioners based on the continuous problem
is that of domain-decomposition methods. If the continuous problem is elliptic, then
decomposing the domain into simply connected pieces leads to elliptic problems on
these subdomains. These are tied together by internal boundary conditions of some
sort.

For instance, in the Schur complement-domain-decomposition method [118],
thin strips of variables function as an interface region. The original problem reduces
to fully independent problems on the subdomains, connected by a system on the
interface that is both smaller and better conditioned, but more dense, than the
original one. While the subdomains can trivially be executed in parallel, the interface
system poses considerable problems.

Choosing overlapping instead of separated subdomains leads to the class of
Schwarz methods [616]. The original Schwarz method on two domains proposed
solving one subdomain, deriving interface conditions from it for the other sub-
domain, and solving the system there. Repetition of this process can be shown to
converge. In a more parallel variant of this method, all subdomains solve their sys-
tems simultaneously, and the solutions on the overlap regions are added together.

Multilevel methods do not operate by decomposing the domain. Rather, they
work on a sequence of nested discretizations, solving the coarser ones as a start-
ing point for solving the finer levels. The idea behind multilevel methods is that

600 Chapter 20 Templates and Numerical Linear Algebra

relaxation, using a simple method such as SOR, on the coarse grid, reduces the
high frequency error, while restriction to the remaining grid points solves the lower-
frequency error terms by recursive application of this process. The result is a V-cycle.
By judicious choice of the smoother and the restriction/prolongation operators, work
proportional to the number of unknowns can be attained.

Classically, multilevel methods were based on the problem geometry [420]. How-
ever, from a point of view of library software, there is a large interest in purely
algebraic multilevel methods that require only the matrix as input. Under certain
conditions, such methods can be also shown to be close to optimal [62, 63, 812]. In
both cases, these methods can be parallelized by distributing each level over the pro-
cessors, but this may not be trivial, and there are several unsolved research questions
left.

20.6.4 Libraries and Standards in Sparse Methods

Unlike the case of dense methods, there are few standards for iterative methods. This
is chiefly due to the fact that sparse storage is more complicated, more varied, and
therefore less standardized. Whereas the (dense) BLAS has been accepted for a long
time, sparse BLAS is not more than a proposal under research.

Storage Formats

As is apparent from the matrix–vector example in Section 20.4.2, storage formats for
sparse matrices include both the matrix elements and pointer information describing
where the nonzero elements are placed in the matrix. The following storage formats
are in common use (for more details, see Barrett et al. [81]):

Aij format. In the Aij format, three arrays of the same length are allocated: one
containing the matrix elements; the other two containing the i and j coordi-
nates of these elements. No particular ordering of the elements is implied.

Row/column compressed. In addition to storing the matrix elements, the row-
compressed format allocates an integer array containing the column indices of
the nonzero elements. Since all elements in the same row are stored contigu-
ously, a second, smaller, array can be used to specify the starting points of the
rows in the two larger arrays.

Compressed diagonal. If the nonzero elements of the matrix are located, roughly
or exactly, along subdiagonals, one could use contiguous storage for these diag-
onals. There are several diagonal storage formats. In the simplest, describing a
contiguous block of subdiagonals, only the array of matrix elements is needed;
two integers are sufficient to indicate which diagonals have been stored.

Blocked versions of these formats exist. These are used for matrices that can be
partitioned into small, square subblocks.

20.6 Iterative Solution Methods 601

Software Libraries for Sparse Systems Solvers

Since sparse formats are more complicated than dense matrix storage, sparse libraries
have an added level of complexity. In the parallel case, additional indexing infor-
mation is needed to specify which matrix elements are on which processor.

There are two fundamentally different approaches for handling this complexity.
Some sparse libraries require the user to set up the matrix and supply it to the library;
all handling is performed by the library. Since the user must store data in a format
dictated by the library, this might involve considerable work.

On the other hand, the library might do even the matrix setup internally, hiding
all data from the user. This gives total freedom to the user, but it requires the library
to supply sufficient access functions so that the user can perform certain matrix
operations without having access to the object itself.

This issue and others are discussed in Eijkhout [309], which contains a fairly
comprehensive survey of freely available iterative packages. Here we mention just
two:

Aztec. In this package [497], the user distributes the matrix and passes the
distributed parts to the library, using the global numbering. A preprocessing
transform call then localizes the matrix, but no new allocation is performed.
Aztec offers a range of iterative methods and preconditioners.

PETSc. This library [73] completely hides all data from the user. Data are available
only through access routines. To construct objects such as matrices, the user
passes individual elements to the library; distribution of the matrix is left to the
library. PETSc, in addition to offering iterative methods and preconditioners,
has a large number of lower-level service routines; thus, it can be used as a
toolbox for parallel linear algebra. ParPre [181, 310] is an add-on library of
parallel preconditioners for PETSc that includes domain decomposition and
algebraic multilevel methods.

Templates for Iterative Methods

Researchers who want to use iterative methods and insist on high performance are
faced with a dilemma. They can read the technical papers and invest a great deal
of energy in coming up with their own implementations that are tuned to their
architectures and applications. Alternatively, they can use software libraries and
settle for not exactly the desired method, imperfect integration in their applications,
or less-than-optimal performance on their particular platforms. One solution to this
problem has proved fruitful in the past: the template approach.

A template for an iterative method—Barrett et al. [81] is a good example—contains
a number of ingredients. First, it contains enough basic theory to make a user aware
of the applicability and limitations of the method. Second, it contains a reference
implementation that is complete in a model sense: it abstracts away from data
structures tuned to a particular application and uses, for instance, dense matrices.
In Barrett et al., each algorithm is given as meta-code and as MATLAB and Fortran
source. Third, a template indicates the elements of the code that can be altered or

602 Chapter 20 Templates and Numerical Linear Algebra

tuned to a particular application. Issues such as data structures and stopping tests
fall under this item.

20.6.5 Available Software

Table 20.4 lists the characteristics of some of the availble software for the iterative
solution of sparse linear algebra problem.

Table 20.4 Sparse linear solvers

Package Language binding Arithmetic Sequential Parallel Type of matrix

BILUM Fortran 1 Real Sequential SPD and general
BlockSolve95 Fortran, C, C++ Real MPI SPD and general
BPKIT Fortran, C, C++ 3 Real Preconditioners
IML++ Fortran, C, C++ 4 Real Sequential SPD and general
ISIS++ C++ 5 Real MPI SPD and general
ITPACK Fortran 6 Real Sequential SPD and general
LASPack C 7 Real Sequential SPD and general
ParPre C 8 Real MPI Preconditioners
PCG Fortran, C, C++ 9 Real PVM SPD
PETSc Fortran, C 10 Real and complex Sequential MPI SPD and general
PIM Fortran 11 Real and complex Sequential MPI/PVM SPD and general
P-SparsLIB Fortran 12 Real MPI General
QMRPACK Fortran 13 Real and complex Sequential SPD and general
SPLIB Fortran 14 Real Sequential SPD and general
SPOOLES Fortran, C 15 Real and complex Sequential MPI SPD and general
Templates Fortran, C 16 Real Sequential SPD and general

NOTE: URLs for the packages discussed in the table.
1. http://www.cs.uky.edu/~jzhang/bilum.html
2. http://www.mcs.anl.gov/sumaa3d/BlockSolve/index.html
3. http://www-users.cs.umn.edu/~chow/bpkit.html/
4. http://math.nist.gov/iml++
5. http://z.ca.sandia.gov/isis/
6. http://www.netlib.org/itpack/
7. http://www.tu-dresden.de/mwism/skalicky/laspack/laspack.html
8. http://www.cs.utk.edu/~eijkhout/parpre.html
9. http://www.cfdlab.ae.utexas.edu/pcg/index.html

10. http://www-unix.mcs.anl.gov/petsc/petsc-page.html
11. ftp://unix.hensa.ac.uk/pub/misc/netlib/pim
12. http://www.cs.umn.edu/Research/arpa/p_sparslib/psp-abs.html
13. http://www.netlib.org/linalg/qmrpack.tgz
14. ftp://ftp.cs.indiana.edu/pub/bramley/splib.tar.gz
15. http://www.netlib.org/linalg/spooles/
16. http://www.netlib.org/templates/index.html

20.7 Sparse Eigenvalue Problems 603

20.7 Sparse Eigenvalue Problems

The past decade has produced several significant advances in the solution of large
eigenvalue problems. The most significant of these has been the development of
methods and software for computing a selected subset of the eigenvalues and eigen-
vectors of a large nonsymmetric matrix A. This section will present a method de-
veloped during the course of the CRPC project. This approach, called the implicitly
restarted Arnoldi method, has led to the software package ARPACK and the parallel
version P_ARPACK. These packages are widely considered to be the state of the art
for this problem.

20.7.1 Algorithms and Software for Large Eigenvalue Problems Ax = λ x

ARPACK and P_ARPACK are now used throughout the world on a variety of ap-
plications. Nonsymmetric problems arise in bifurcation and stability analysis in
computational fluid dynamics, waveguide design, semiconductor device modeling,
and many others. Currently, problems on the order of 1 million variables are being
solved using P_ARPACK at Sandia National Laboratory [598]. Symmetric problems
arise in structural analysis, semiconductor laser design, computational chemistry,
and many other areas. Symmetric problems of order 10M variables are now being
solved.

A third capability, the computation of a partial singular-value decomposition,
has an endless number of applications. The leading few singular values and vec-
tors are used to obtain a low-rank representation of the original data matrix. This
finds application in Web-based search engines, 3-D image reconstruction from 2-D
data, principal component analysis, reduced-basis techniques for dynamical systems,
graph partitioning, and so on.

Basic Methods

Typically, in these large-scale applications, one desires the computation of a selected
subset of eigenvalues and corresponding eigenvectors with specified properties. For
example, in bifurcation analysis one is only interested in a few eigenvalues near the
imaginary axis. The size of the problem usually makes it intractable to compute all
eigenvalues and vectors to select the desired ones. Instead, we seek methods that
require a minimal amount of storage proportional to n · k, where n is the matrix
order and k is the desired number of eigenvalues. We also require that the method
take advantage of sparsity or structure of the given matrix.

In this context, we shall discuss the solution of the standard linear eigenvalue
problem

Ax= λx

The most successful numerical algorithms for (small) dense eigenvalue problems
are based on the Schur decomposition. It states that every square matrix is unitarily
similar to an upper triangular matrix.

604 Chapter 20 Templates and Numerical Linear Algebra

Every square matrix A may be decomposed in the form

AV = VR

where V is unitary (V∗V = I) and R is upper triangular. The diagonal elements of R
are the eigenvalues of A.

Dense algorithms, such as those found in LAPACK, compute all of the eigenvalues
and corresponding eigenvectors by applying a sequence of dense unitary similarity
transformations that transform the original matrix A to upper triangular form R,
hence producing the Schur decomposition.

This is not suitable for the large-scale setting. Keeping our goals in mind, we
instead seek a method that will compute a partial Schur decomposition. The key
here is that there is a Schur decomposition with the eigenvalues of A appearing in
any specified order on the diagonal of R.

If Vk represents the leading k columns of V and Rk the leading principal k × k
submatrix of R, then

AVk = VkRk

and Range(Vk) is an invariant subspace of A with the k eigenvalues of Rk (i.e., the
leading k eigenvalues of R) being the eigenvalues of A with respect to this subspace.
If Rky = λy, then Ax= λx with x= Vky.

We refer to this as a partial Schur decomposition of A. Since there is a Schur
decomposition with the eigenvalues of A appearing on the diagonal in any given
ordering, there is always a partial Schur decomposition of A with the diagonal
elements of Rk consisting of any specified subset of k eigenvalues of A.

Implicit restarting provides a means to compute this leading portion of the Schur
decomposition (a partial Schur decomposition) without having to apply dense sim-
ilarity transformations to A, and hence without destroying the sparsity or structure
of A. Typically, the only requirement of A is a matrix–vector product.

Single-Vector Methods

Single-vector methods, such as the power method, are the simplest and most storage-
efficient ways to compute a single eigenvalue and its corresponding eigenvector. The
simple power method and its rapidly convergent variant, the inverse power method,
form the foundation for understanding the behavior of the more sophisticated
projection methods used today.

However, the power method may be slow to converge (or may fail to converge).
The inverse power method works with a spectral transformation of the original prob-
lem using (A− σ I)−1 in place of A to rapidly compute eigenvalues near the shift
point σ . While the inverse power method can overcome the slow convergence, nei-
ther method can compute more than one eigenvalue and corresponding eigenvector
without employing deflation techniques that can be quite difficult to control.

20.7 Sparse Eigenvalue Problems 605

Factor AV = VH

for j = 1, 2, 3, . . . until convergence

µ= select shift(H);

Factor QR=H − µI ;

H ←Q∗HQ; V ← VQ;

end

Figure 20.1 The Shifted QR method.

The QR Algorithm

At the other algorithmic extreme are methods for finding all of the eigenvalues and
vectors of a given matrix. Typically, these are unsuitable for large problems because
they involve a sequence of dense similarity transformations that quickly destroy any
sparsity or structure of the original matrix A.

Certainly, when it is possible to use it, the well-known implicitly shifted QR-
algorithm [359, 360] is the method of choice as a general algorithm for finding
all of the eigenvalues and vectors. It actually computes a Schur decomposition by
producing a sequence of unitary similarity transformations that iteratively reduce A
to upper triangular form.

The algorithm begins with an initial unitary similarity transformation of A to the
condensed form AV =VH , where H is upper Hessenberg (tridiagonal in case A= A∗)
and V is unitary. Then the iteration shown in Figure 20.1 is performed.

In this scheme, Q is unitary and R is upper triangular (i.e., the QR factorization of
H − µI). It is easy to see that H is unitarily similar to A throughout the course of this
iteration. The iteration is continued until the subdiagonal elements of H converge
to zero, that is, until a Schur decomposition has been (approximately) obtained.

Subspace Projection Methods

We are striving for something in between a single-vector method and the QR algo-
rithm that will be suitable for computing a selected subset of the spectrum of A. A
class of methods called Krylov subspace-projection methods provide the basis for meet-
ing this goal. In the case of the standard problem Ax= λx, Krylov subspace projection
results in the Lanczos/Arnoldi class of methods. These methods may be viewed as
systematic ways to extract additional eigen-information from the sequence of vectors
produced by a power iteration.

If one hopes to obtain additional information through various linear combina-
tions of the power sequence, it is natural to formally consider the Krylov subspace,

Kk(A, v1)= span{v1, Av1, A2v1, . . . , Ak−1v1}

606 Chapter 20 Templates and Numerical Linear Algebra

and to attempt to formulate the best possible approximations to eigenvectors from
this subspace. Approximate eigenpairs are constructed from this subspace by im-
posing a Galerkin condition. Given any k-dimensional subspace S of Cn, we define
a vector x ∈ S to be a Ritz vector, with corresponding Ritz value θ , if the Galerkin
condition

〈w, Ax− xθ〉 = 0, for all w ∈ S

is satisfied, with < ·, ·> denoting some inner product on Cn. In this setting, we are
interested in S =Kk(A, v1). From its definition, we see that every w ∈Kk is of the
form w = φ(A)v1 for some polynomial φ of degree less than k and also that Kj−1⊂Kj
for j = 2, 3, · · · , k. Thus, if we have constructed a sequence of orthogonal bases
Vj = [v1, v2, · · · , vj] with Kj = Range(Vj) and V∗j Vj = Ij, then it is fairly straightforward
to see that vj = pj−1(A)v1, where pj−1 is a polynomial of degree j − 1. To extend the
basis for Kk to one for Kk+1, we must construct a new vector that has a component in
the direction of Akv1 and then orthogonalize this with respect to the previous basis
vectors. The only basis vector available with a component in the direction of Ak−1v1
is vk, and thus a convenient way to obtain the direction of the new vector vk+1 will
be given by

fk = Avk − Vkhk,

vk+1= fk/‖fk‖
where the vector hk is constructed to achieve V∗k fk = 0. Of course, the orthogonality
of the columns of Vk gives the formula hk = V∗k Avk.

This construction provides a crucial fact concerning fk:

‖fk‖ =min
h
‖Avk − Vkh‖ =min ‖p(A)v1‖

where the second minimization is over all polynomials p of degree k with the same
leading coefficient as pk−1.

The only opportunity for failure here is when fk = 0. However, when this happens
it implies that

AVk = VkHk

where Hk = V∗k AVk = [h1, h2, · · · , hk] (with a slight abuse of notation). Hence, this
“good breakdown” happens precisely when Kk is an invariant subspace of A.

Of course, we must ask the question: When can fk = 0 happen? Well, if v1=∑k
i=1 qjγj where Aqj = qjλj, then p(A)v1= 0 with p(τ)=∏k

i=1(τ − λj). Since this poly-
nomial can be normalized to have the same leading coefficient as pk−1, the mini-
mization property implies that fk = 0.

The Arnoldi Factorization

The construction we have just derived provides a relation between the matrix A, the
basis matrix Vk, and the residual vector fk of the form

AVk = VkHk + fke∗k

20.7 Sparse Eigenvalue Problems 607

where Vk ∈ Cn×k has orthonormal columns, V∗k fk = 0, and Hk ∈ Ck×k is upper Hes-
senberg with nonnegative subdiagonal elements. We shall call this a k-step Arnoldi
factorization of A. It is easily seen from the construction that Hk = V∗k AVk is upper
Hessenberg. When A is Hermitian, this implies Hk is real, symmetric, and tridiago-
nal, and the relation is called a k-step Lanczos factorization of A. The columns of Vk
are referred to as the Arnoldi vectors or Lanczos vectors, respectively.

The discussion of the previous section implies that Ritz pairs satisfying the
Galerkin condition are immediately available from the eigenpairs of the small pro-
jected matrix Hk.

If Hks= θs, then the vector x= Vks satisfies

‖Ax− θx‖ = ‖(AVk − VkHk)s‖ = |βke∗ks|
Observe that if (x, θ) is a Ritz pair, then

θ = s∗Hks= (Vks∗)A(Vks)= x∗Ax

is a Rayleigh quotient (assuming ‖s‖ = 1) and the associated Rayleigh quotient
residual r(x)≡ Ax− xθ satisfies

‖r(x)‖ = |βke∗ks|
When A is Hermitian, this relation may be used to provide computable rigorous
bounds on the accuracy of the eigenvalues of Hk as approximations to eigenval-
ues [749] of A. When A is non-Hermitian, we can only say that the residual is small
if |βke∗ks| is small without further information. In any case, if fk = 0 these Ritz pairs
become exact eigenpairs of A.

The explicit steps needed to form a k-step Arnoldi factorization are given in
Figure 20.2.

v1= v/‖v‖;
w = Av1; α1= v∗1w;

f1←w − v1α1;

V1← (v1); H1← (α1);

for j = 1, 2, 3, . . . k − 1,

βj = ‖fj‖; vj+1← fj/βj;

Vj+1← (Vj, vj+1);

Ĥj ←
(Hj
βje
∗
j

)
;

w← Avj+1;

h← V∗j+1w;

fj+1←w − Vj+1h;

Hj+1← (Ĥj, h);

end

Figure 20.2 k-step Arnoldi factorization.

608 Chapter 20 Templates and Numerical Linear Algebra

The dense matrix–vector products V∗j+1w and Vj+1h may be expressed with the
Level-2 BLAS operation _GEMV. As discussed previously, this provides a significant
performance advantage on virtually every platform from workstation to supercom-
puter. Moreover, considerable effort has been made within the ScaLAPACK project
to optimize these kernels for a variety of parallel machines.

The mechanism used here to orthogonalize the new information Avk against
the existing basis Vk is the classical Gram Schmidt process (CGS). It is notoriously
unstable and will fail miserably in this setting without modification. One remedy is
to use the modified Gram Schmidt process (MGS). Unfortunately, this will also fail to
produce orthogonal vectors in the restarting situation we are about to discuss, and it
cannot be expressed with Level-2 BLAS in this setting. Fortunately, the CGS method
can be rescued through a technique proposed by Daniel, Gragg, Kaufman, and
Stewart (DGKS) [243]. This scheme provides an excellent way to construct a vector
fj+1 that is numerically orthogonal to Vj+1. It amounts to computing a correction

c = V∗
j+1fj+1 fj+1← fj+1− Vj+1c h← h+ c

just after the initial CGS step if necessary. A simple test is used to avoid this DGKS
correction if it is not needed. The correction needs to be computed only if ‖h‖ <

η(‖h‖2 + ‖f ‖2)1/2, where 0 < η < 1 is a specified parameter. The test assures that
the new vector Av makes an angle greater than cos−1(η) with the existing Krylov
subspace. This mechanism maintains orthogonality to full working precision at very
reasonable cost. The special situation imposed by the restarting scheme we are about
to discuss makes this modification essential for obtaining accurate eigenvalues and
numerically orthogonal Schur vectors (eigenvectors in the Hermitian case).

Failure to maintain orthogonality leads to several numerical difficulties. In the
Hermitian case, Paige [733] showed that the loss of orthogonality occurs precisely
when an eigenvalue of Hj is close to an eigenvalue of A. In fact, the Lanczos vectors
lose orthogonality in the direction of the associated approximate eigenvector. More-
over, failure to maintain orthogonality results in spurious copies of the approximate
eigenvalue produced by the Lanczos method. Implementations based on selective
and partial orthogonalization [404, 751, 864] monitor the loss of orthogonality and
perform additional orthogonalization steps only when necessary. The methods de-
veloped in [238, 239, 750] use the three-term recurrence with no reorthogonalization
steps. Once a level of accuracy has been achieved, the spurious copies of computed
eigenvalues are located and deleted. Then the Lanczos basis vectors are regenerated
from the three-term recurrence and Ritz vectors are recursively constructed in place.
This is a very competitive strategy when the matrix–vector product w← Av is rela-
tively inexpensive.

Restarting the Arnoldi Process

An unfortunate aspect of the Lanczos/Arnoldi process is that there is no way to
ascertain in advance how many steps will be needed to determine the eigenvalues
of interest within a specified accuracy. We have tried to indicate with our brief

20.7 Sparse Eigenvalue Problems 609

theoretical discussion that the eigen-information obtained through this process is
completely determined by the choice of the starting vector v1. Unless there is a very
fortuitous choice of v1, eigen-information of interest probably will not appear until k
gets very large. Clearly, it becomes intractable to maintain numerical orthogonality
of Vk. Extensive storage will be required, and repeatedly finding the eigensystem of
Hk also becomes intractable at a cost of O(k3) flops.

The obvious need to control this cost has motivated the development of restarting
schemes. Restarting means replacing the starting vector v1 with an “improved”
starting vector v+1 and then computing a new Arnoldi factorization with the new
vector. Our brief theoretical discussion about the structure of fk serves as a guide: our
goal is to iteratively force v1 to be a linear combination of eigenvectors of interest. A
more general and, in fact, a better numerical strategy is to force the starting vector
to be a linear combination of Schur vectors that span the desired invariant subspace.

Explicit restarting schemes have a history going back to the original Lanczos
method [237, 387, 536, 733]. More recently, a restarting scheme for eigenvalue
computation was proposed by Saad based on the polynomial acceleration scheme
originally introduced by Manteuffel [643] for the iterative solution of linear sys-
tems. Saad [819] proposed to restart the factorization with a vector that has been
preconditioned so that it is more nearly in a k-dimensional invariant subspace of
interest.

Implicit Restarting

There is another approach to restarting that offers a more efficient and numeri-
cally stable formulation. This approach, called implicit restarting, is a technique for
combining the implicitly shifted QR scheme with a k-step Arnoldi or Lanczos fac-
torization to obtain a truncated form of the implicitly shifted QR iteration. The
numerical difficulties and storage problems normally associated with Arnoldi and
Lanczos processes are avoided. The algorithm is capable of computing a few (k)
eigenvalues with user-specified features, such as largest real part or largest magni-
tude, using 2nk + O(k2) storage. The computed Schur basis vectors for the desired
k-dimensional eigenspace are numerically orthogonal to working precision.

Implicit restarting provides a means to extract interesting information from large
Krylov subspaces while avoiding the storage and numerical difficulties associated
with the standard approach. It does this by continually compressing the interesting
information into a fixed-size k-dimensional subspace. This is accomplished through
the implicitly shifted QR mechanism. An Arnoldi factorization of length m= k + p,

AVm = VmHm + fme∗m

is compressed to a factorization of length k that retains the eigen-information of
interest. This is accomplished using QR steps to apply p shifts implicitly. The first
stage of this shift process results in

AV+
m = V+

mH+
m + fme∗mQ (20.1)

610 Chapter 20 Templates and Numerical Linear Algebra

where V+m = VmQ, H+
m = Q∗HmQ and Q = Q1Q2 · · · Qp. Each Qj is the orthogonal

matrix associated with the shift µj used during the shifted QR algorithm. Because of
the Hessenberg structure of the matrices Qj, it turns out that the first k− 1 entries of
the vector e∗mQ are zero (i.e., e∗mQ = (σ e∗k, q̂∗). This implies that the leading k columns
in equation (20.1) remain in an Arnoldi relation. Equating the first k columns on
both sides of equation (20.1) provides an updated k-step Arnoldi factorization

AV+
k = V+

k H+
k + f +k e∗k

with an updated residual of the form f +k = V+mek+1β̂k + fmσ . Using this as a starting
point, it is possible to apply p additional steps of the Arnoldi process to return to the
original m-step form.

There are many ways to select the shifts {µj} that are applied by the QR steps.
Virtually any explicit polynomial restarting scheme could be applied through this
implicit mechanism. Considerable success has been obtained with the choice of exact
shifts. This selection is made by sorting the eigenvalues of Hm into two disjoint sets
of k “wanted” and p “unwanted” eigenvalues and using the p unwanted ones as
shifts. With this selection, the p shift applications result in H+

k having the k wanted
eigenvalues as its spectrum. As convergence takes place, the subdiagonals of Hk tend
to zero, and the most desired eigenvalue approximations appear as eigenvalues of
the leading k× k block of R in a Schur decomposition of A. The basis vectors Vk tend
to orthogonal Schur vectors.

There are important implementation details concerning the deflation (setting to
zero) of subdiagonal elements of Hm and the purging of unwanted but converged Ritz
values. These details are quite important for a robust implementation, but they are
beyond the scope of this discussion. Complete details of these numerical refinements
may be found in Lehoucq [597] and Lehoucq and Sorensen [600].

This implicit scheme costs p rather than the k + p matrix–vector products the
explicit scheme would require. Thus, the exact shift strategy can be viewed both
as a means to damp unwanted components from the starting vector and also as
directly forcing the starting vector to be a linear combination of wanted eigenvectors.
See Sorensen [889] for information on the convergence of IRAM and Baglama et al.
[68] and Stathopoulos [894] for other possible shift strategies for Hermitian A. The
reader is referred to Lehoucq and Scott [599] and Morgan [686] for studies comparing
implicit restarting with other schemes.

Eigenvalue Software: ARPACK and P_ARPACK

ARPACK is a collection of Fortran 77 subroutines designed to solve large-scale eigen-
value problems. ARPACK stands for ARnoldi PACKage. ARPACK software is capable of
solving large-scale, non-Hermitian (standard and generalized) eigenvalue problems
from a wide range of application areas. Parallel ARPACK (P_ARPACK) is provided as
an extension to the current ARPACK library and is targeted for distributed-memory
message-passing systems. The message-passing layers currently supported are BLACS
and MPI.

20.7 Sparse Eigenvalue Problems 611

This software is based on the implicitly restarted Arnoldi method (IRAM) pre-
sented in Section 20.7.1. When the matrix A is symmetric, it reduces to a variant
of the Lanczos process called the implicitly restarted Lanczos method (IRLM). For
many standard problems, a matrix factorization is not required; only the action of
the matrix on a vector is needed.

The important features of ARPACK and P_ARPACK follows:

. A reverse communication interface.

. Ability to return k eigenvalues that satisfy a user-specified criterion such as
largest real part, largest absolute value, largest algebraic value (symmetric case),
and so on.

. A fixed predetermined storage requirement of n · O(k)+ O(k2) words will typi-
cally suffice throughout the computation. No auxiliary storage is required.

. Sample driver routines are included that may be used as templates to imple-
ment various spectral transformations to enhance convergence and to solve
the generalized eigenvalue problem. Also, there is an SVD driver.

. Special consideration is given to the generalized problem Ax= Bxλ for singular
or ill-conditioned symmetric positive semidefinite M .

. A numerically orthogonal Schur basis of dimension k is always computed.
These are also eigenvectors in the Hermitian case, and orthogonality is to
working precision. Eigenvectors are available on request in the non-Hermitian
case.

. The numerical accuracy of the computed eigenvalues and vectors is user spec-
ified. Residual tolerances may be set to the level of working precision. At
working precision, the accuracy of the computed eigenvalues and vectors is
consistent with the accuracy expected of a dense method such as the implicitly
shifted QR iteration.

. Multiple eigenvalues offer no theoretical difficulty. This is possible through
deflation techniques similar to those used with the implicitly shifted QR al-
gorithm for dense problems. With the current deflation rules, a fairly tight
convergence tolerance and sufficiently large subspace will be required to cap-
ture all multiple instances. However, since a block method is not used, there
is no need to “guess” the correct block size that would be needed to capture
multiple eigenvalues.

Reverse Communication Interface

The reverse communication interface is one of the most important aspects of the
design of ARPACK, both for interfacing with user application codes and for parallel
decomposition. This interface avoids having to express a matrix–vector product
through a subroutine with a fixed calling sequence. This means that the user is free
to choose any convenient data structure for the matrix representation. Also, the user
has the choice of (and responsibility for) partitioning the matrix–vector product in

612 Chapter 20 Templates and Numerical Linear Algebra

the most favorable way for parallel efficiency. Moreover, if the matrix is not available
explicitly, the user is free to express the action of the matrix on a vector through a
subroutine call or a code segment. It is not necessary to conform to a fixed format
for a subroutine interface, and hence there is no need to communicate data through
the use of COMMON.

A typical usage of this interface is illustrated as follows:

10 continue

call snaupd (ido, bmat, n, which,...,workd,..., info)

if (ido .eq. newprod) then

call matvec (’A’, n, workd(ipntr(1)), workd(ipntr(2)))

else

return

endif

go to 10

This shows a code segment of the routine that the user must write to set up
the reverse communication call to the top level ARPACK routine snaupd to solve a
nonsymmetric eigenvalue problem. As usual, with reverse communication, control
is returned to the calling program when interaction with the matrix A is required.
The action requested of the calling program is simply to perform ido. (In this case,
multiply the vector held in the array workd beginning at location ipntr(1) and insert
the result into the array workd beginning at location ipntr(2)). Note that the call
to the subroutine matvec in this code segment is simply meant to indicate that this
matrix–vector operation is taking place. One only needs to supply the action of the
matrix on the specified vector and put the result in the designated location. This
reverse communication feature also provides a convenient way to use ARPACK with
another language such as C or C++.

Reverse communication is a mechanism that is well suited to software written in
Fortran 77. There are other mechanisms for encapsulating matrix–vector operations
available in other languages. See Chapters 13 and 21 for examples.

Parallelizing ARPACK

The parallelization paradigm found to be the most effective for ARPACK on dis-
tributed-memory machines was to provide the user with a single-program multiple
data (SPMD) template. The reverse communication interface is one of the most
important aspects in the design of ARPACK, and this feature lends itself to a sim-
plified SPMD parallelization strategy. This approach was used for previous parallel
implementations of ARPACK [890] and provides a fairly straightforward interface
for the user. Reverse communication allows the P_ARPACK codes to be parallelized
internally, without imposing a fixed parallel decomposition on the matrix or the
user-supplied matrix–vector product. Memory and communication management for
the matrix–vector product w← Av can be optimized independently of P_ARPACK.

20.7 Sparse Eigenvalue Problems 613

This feature enables the use of various matrix storage formats as well as calculation
of the matrix elements on the fly.

The calling sequence to ARPACK remains unchanged except for the addition of the
BLACS context (or MPI communicator). Inclusion of the context (or communicator)
is necessary for global communication as well as managing I/O. The addition of
the context is new to this implementation and reflects the improvements and
standardizations being made in message passing [290, 668].

Data Distribution of the Arnoldi Factorization

The numerically stable generation of the Arnoldi factorization

AVk = VkHk + fkeT
k

coupled with an implicit restarting mechanism [889], is the basis of the ARPACK
codes. The simple parallelization scheme used for P_ARPACK follows.

. Hk is replicated on every processor.

. Vk is distributed across a 1-D processor grid (blocked by rows).

. fk and workspace are distributed accordingly.

The SPMD code looks very much like the serial code. It differs in that the local block
of the set of Arnoldi vectors, Vloc, is passed in place of V , and nloc, the dimension of
the local block, is passed instead of n.

With this approach there are only two communication points within the con-
struction of the Arnoldi factorization inside P_ARPACK: computation of the two-
norm of the distributed vector fk and the orthogonalization of fk to Vk using classical
Gram Schmidt with DGKS correction [243]. Additional communication will typi-
cally occur in the user-supplied matrix–vector product operation as well. Ideally, this
product will only require nearest-neighbor communication among the processes.
Typically the blocking of V coincides with the parallel decomposition of the matrix
A. The user is free to select an appropriate blocking of V to achieve optimal balance
between the parallel performance of P_ARPACK and the user-supplied matrix–vector
product.

The SPMD parallel code looks very similar to that of the serial code. Assuming
a parallel version of the subroutine matvec, an example of the application of the
distributed interface is illustrated as follows:

10 continue

call psnaupd (comm, ido, bmat, nloc, which, ..., Vloc , ... lworkl, info)

if (ido .eq. newprod) then

call matvec (’A’, nloc, workd(ipntr(1)), workd(ipntr(2)))

else

return

endif

go to 10

614 Chapter 20 Templates and Numerical Linear Algebra

1. βk ← gnorm(‖f (∗)
k ‖); v(j)

k+1← f (j)
k · 1

βk

2. w(j)← (Aloc)v(j)
k+1

3.
(

h
α

)(j)

←
(V (j)T

k

v(j)T
k+1

)
w(j);

(
h
α

)
← gsum

[(
h
α

)(∗)]

4. f (j)
k+1←w(j) − (Vk, vk+1)

(j)
(

h
α

)

5. Hk+1←
(

Hk h

βk eT
k

)

6. V (j)
k+1← (Vk, vk+1)

(j)

Figure 20.3 The explicit steps of the CGS process responsible for the jth block.

In this segment, nloc is the number of rows in the block Vloc of V that has been
assigned to this node process.

The blocking of V is generally determined by the parallel decomposition of the
matrix A. For parallel efficiency, this blocking must respect the configuration of the
distributed memory and interconnection network. Logically, the V matrix will be
partitioned by blocks

VT = (V (1)T , V (2)T , . . . , V (nproc)T)

with one block per processor and with H replicated on each processor. The explicit
steps of the CGS process taking place on the jth processor are shown in Figure 20.3.

Note that the function gnorm at step 1 is meant to represent the global reduction
operation of computing the norm of the distributed vector fk from the norms of

the local segments f (j)
k , and the function gsum at step 3 is meant to represent the

global sum of the local vectors h(j) so that the quantity h=∑nproc
j=1 h(j) is available to

each process on completion. These are the only two communication points within
this algorithm. The remainder is perfectly parallel. Additional communication will
typically occur at step 2. Here the operation (Aloc)v is meant to indicate that the
user-supplied, matrix–vector product is able to compute the local segment of the
matrix–vector product Av that is consistent with the partition of V . Ideally, this
would only involve nearest-neighbor communication among the processes.

Since H is replicated on each processor, the implicit restart mechanism described
previously remains untouched. The only difference is that the local block V (j) appears
in place of the full matrix V . Operations associated with implicit restarting are
perfectly parallel with this strategy. They consist of the steps in Figure 20.4 that
occur independently on each processor.

20.7 Sparse Eigenvalue Problems 615

for i = 1, 2, . . . , p,

Factor [Qi, Ri]= qr(Hm − µiI);

Hm ←Q∗i HmQi;

Q ←QQi;

end

V (j)
m ← V (j)

m Q;

Figure 20.4 Implicit restart on jth block

All operations on the matrix H are replicated on each processor. Thus, there is
no communication overhead. However, the replication of H and the shift selection
and application to H on each processor represents a serial bottleneck that limits
the scalability of this scheme when k grows with n. Nevertheless, if k is fixed as
n increases, then this scheme scales linearly with n, as we shall demonstrate with
some computational results. In the actual implementation, separate storage is not
required for the Qi. Instead, each is represented as a product of 2× 2 Givens or 3× 3
Householder transformations that are applied directly to update Q. On completion

of this accumulation of Q, the operation V (j)
m ← V (j)

m Q is performed independently
on each processor j, using the Level-3 BLAS operation _GEMM.

The main benefit of this approach is that the changes to the serial version of
ARPACK are very minimal. Since the change of dimension from matrix order n to
its local distributed block size nloc is invoked through the calling sequence of the
subroutine psnaupd, there is no fundamental algorithmic change within the code.
Only eight routines were affected in a minimal way. These routines required either
a change in norm calculation to accommodate distributed vectors (step 1 of the
CGS process), modification of the distributed dense matrix–vector product (step
4), or inclusion of the context or communicator for I/O (debugging/tracing). More
specifically, the commands are changed from

rnorm = sdot (n, resid, 1, workd, 1)

rnorm = sqrt(abs(rnorm))

to

rnorm = sdot (n, resid, 1, workd, 1)

call sgsum2d(comm,’All’,’ ’,1, 1, rnorm, 1, -1, -1)

rnorm = sqrt(abs(rnorm))

where sgsum2d is the BLACS global sum operator. The MPI implementation uses the
MPI_ALLREDUCE global operator. Similarly, the computation of the matrix–vector
product operation h← VTw requires a change from

call sgemv (’T’, n, j, one, v, ldv, workd(ipj), 1, zero, h(1,j), 1)

to

616 Chapter 20 Templates and Numerical Linear Algebra

call sgemv (’T’, n, j, one, v, ldv, workd(ipj), 1, zero, h(1,j), 1)

call sgsum2d(comm, ’All’, ’ ’, j, 1, h(1,j), j, -1, -1)

Another strategy that was tested was to use Parallel BLAS (PBLAS) [198] software
developed for the ScaLAPACK project to achieve parallelization. The function of
the PBLAS is to simplify the parallelization of serial codes implemented on top
of the BLAS. The ARPACK package is very well suited for testing this method of
parallelization since most of the vector and matrix operations are accomplished via
BLAS and LAPACK routines.

Unfortunately, this approach required adding other parameters to the calling
sequence (the distributed matrix descriptors) as well as redefining the workspace
data structure. Although there is no significant degradation in performance, the
additional code modifications, along with the data decomposition requirements,
make this approach less favorable. As our parallelization is only across a 1-D grid, the
functionality provided by the PBLAS was more sophisticated than we required. The
current implementation of the PBLAS (ScaLAPACK version 1.1) assumes the matrix
operands to be distributed in a block-cyclic decomposition scheme.

Message Passing

One objective for the development and maintenance of a parallel version of the
ARPACK [601] package was to construct a parallelization strategy whose implemen-
tation required as few changes as possible to the current serial version. The basis
for this requirement was not only to maintain a level of numerical and algorithmic
consistency between the parallel and serial implementations, but also to investigate
the possibility of maintaining the parallel and serial libraries as a single entity.

On many shared-memory MIMD architectures, a level of parallelization can be
accomplished via compiler options alone without requiring any modifications to
the source code. This is rather ideal for the software developer. For example, on
the SGI Power Challenge architecture the MIPSpro F77 compiler uses a POWER
FORTRAN Accelerator (PFA) preprocessor to automatically uncover the parallelism in
the source code. PFA is an optimizing Fortran preprocessor that discovers parallelism
in Fortran code and converts those programs to parallel code. A brief discussion
of implementation details for ARPACK using PFA preprocessing may be found in
Debicki et al. [251]. The effectiveness of this preprocessing step is still dependent
on how suitable the source code is for parallelization. Since most of the vector and
matrix operations for ARPACK are accomplished via BLAS and LAPACK routines,
access to efficient parallel versions of these libraries alone will provide a reasonable
level of parallelization.

Unfortunately, for distributed-memory architectures the software developer is re-
quired to do more work. For distributed-memory implementations, message passing
between processes must be explicitly addressed within the source code, and numer-
ical computations must take into account the distribution of data. In addition, for
the parallel code to be portable, the communication interface used for message pass-

20.7 Sparse Eigenvalue Problems 617

Table 20.5 Internal scalability of P_ARPACK

Number of nodes Problem size Total time (s) Efficiency

1 100,000 * 1 40.53
4 100,000 * 4 40.97 0.98
8 100,000 * 8 42.48 0.95

12 100,000 * 12 42.53 0.95
16 100,000 * 16 42.13 0.96
32 100,000 * 32 46.59 0.87
64 100,000 * 64 54.47 0.74

128 100,000 * 128 57.69 0.70

ing must be supported on a wide range of parallel machines and platforms. For
P_ARPACK, this portability is achieved via the Basic Linear Algebra Communica-
tion Subprograms (BLACS) [290] developed for the ScaLAPACK project and Message
Passing Interface (MPI) [668].

Parallel Performance

To illustrate the potential scalability of Parallel ARPACK on distributed-memory
architectures, some example problems have been run on the Maui HPCC SP2. The
results shown in Table 20.5 attempt to illustrate the potential internal performance
of the P_ARPACK routines, independent of the user’s implementation of the matrix–
vector product.

In order to isolate the performance of the ARPACK routines from the performance
of the user’s matrix–vector product and also to eliminate the effects of a changing
problem characteristic as the problem size increases, the tests involved replicating the
same matrix repeatedly to obtain a block diagonal matrix. This completely contrived
situation allows the workload to increase linearly with the number of processors.
Since each diagonal block of the matrix is identical, the algorithm should behave as
if nproc identical problems are being solved simultaneously (provided an appropriate
starting vector is used). For this example, we use a starting vector of all “1’s.” The
only obstacles that prevent ideal speedup are the communication costs involved
in the global operations and the “serial bottleneck” associated with the replicated
operations on the projected matrix H . If neither of these were present, then one
would expect the execution time to remain constant as the problem size and the
number of processors increase.

The matrix used for testing is a diagonal matrix of dimension 100, 000 with
uniform random elements between 0 and 1, with four of the diagonal elements
separated from the rest of the spectrum by adding an additional 1.01 to these
elements. The problem size is then increased linearly with the number of processors
by adjoining an additional diagonal block for each additional processor. For these

618 Chapter 20 Templates and Numerical Linear Algebra

timings we used the nonsymmetric P_ARPACK code pdnaupd with the following
parameter selections: mode is set to 1, number of Ritz values requested is 4, portion
of the spectrum is “LM,” and the maximum number of columns of V is 20.

Availability and Portability

The codes are available by anonymous ftp from ftp.caam.rice.edu or by connecting
directly to the website at http://www.caam.rice.edu/software/ARPACK.

To get the software by anonymous ftp, connect by ftp to ftp.caam.rice.edu and
login as anonymous. Then change directories to software/ARPACK or connect directly
to the above website and follow the instructions in the README file in that directory.
The ARPACK software is also available from Netlib in the directory ScaLAPACK.

The implementation of P_ARPACK is portable across a wide range of distributed-
memory platforms. Portability of P_ARPACK is achieved by utilization of the BLACS
and MPI. With this strategy, it takes very little effort to port P_ARPACK to a wide
variety of parallel platforms. So far, P_ARPACK has been tested on an SGI Power
Challenge cluster using PVM-BLACS and MPI, on a Cray T3D using Cray’s imple-
mentation of the BLACS, on an IBM SP2 using MPL-BLACS and MPI, on an Intel
Paragon using NX-BLACS and MPI, and on a network of Sun stations using MPI and
MPI-BLACS.

20.7.2 Additional Available Software and Future Directions

Table 20.6 lists software that is freely available, along with website addresses and
software chartacteristics.

We also wish to mention new approaches to the large-scale eigenproblem that es-
sentially approximate the shift-invert spectral transformation to achieve accelerated
convergence. Two approaches of note are the Jacobi–Davidson approach of Sleijpen
and Van der Vorst [868] and the Truncated RQ approach of Sorensen and Yang [891].

Table 20.6 Sparse Eigenvalue solvers

Package Language binding Arithmetic Sequential Parallel Type of matrix

LASO 1 Fortran Real Sequential Symmetric
P_ARPACK 2 Fortran, C, C++ Real and complex Sequential MPI Symmetric and general
PLANSO 3 Fortran Real Sequential MPI Symmetric
TRLAN 4 Fortran Real Sequential Symmetric

NOTE: URLs for the packages discussed in the table.
1. http://www.netlib.org/laso/index.html
2. http://www.caam.rice.edu/software/ARPACK/
3. http://www.nersc.gov/research/SIMON/planso.html
4. http://www.nersc.gov/research/SIMON/trlan.html

20.8 Conclusion 619

Both of these offer a means to effectively combine low-accuracy, iterative linear-
system solvers with subspace projection methods.

20.8 Conclusion

The sparse linear systems that result from PDEs need very different techniques from
those used for dense matrices. While direct methods have the virtue of reliability,
they also take copious amounts of space and time. Iterative methods of one type
or another are considerably more frugal in their space demands. But on difficult
problems their convergence may be slow, and it is not even guaranteed.

20.8.1 Future Research Directions in Dense Algorithms

Traditionally, large general-purpose mathematical software libraries have required
users to write their own programs that call library routines to solve specific subprob-
lems arising during a computation. Adapted to a shared-memory parallel environ-
ment, this conventional interface still offers some potential for hiding underlying
complexity. For example, the LAPACK project incorporates parallelism in the Level-3
BLAS, where it is not directly visible to the user.

But when going from shared-memory systems to the more readily scalable
distributed-memory systems, the complexity of the distributed data structures re-
quired is more difficult to hide from the user. Not only must the problem decompo-
sition and data layout be specified, but different phases of the user’s problem may
require transformations between different distributed data structures.

These deficiencies in the conventional user interface have prompted extensive
discussion of alternative approaches for scalable parallel software libraries of the
future. Possibilities include:

1. Traditional function libraries (i.e., minimum possible change to the status quo
in going from serial to parallel environment). This will allow protection of the
programming investment that has been made.

2. Reactive servers on the network. A user would be able to send a computational
problem to a server that was specialized for dealing with that problem. This
fits well with the concepts of a networked, heterogeneous computing environ-
ment with various specialized hardware resources (or even the heterogeneous
partitioning of a single homogeneous parallel machine).

3. General interactive environments like MATLAB or Mathematica, perhaps with
“expert” drivers (i.e., knowledge-based systems). With the growing popularity
of the many integrated packages based on this idea, this approach would
provide an interactive graphical interface for specifying and solving scientific
problems. Both the algorithms and data structures are hidden from the user;
the package itself is responsible for storing and retrieving the problem data in
an efficient, distributed manner. In a heterogeneous networked environment,

620 Chapter 20 Templates and Numerical Linear Algebra

such interfaces could provide seamless access to computational engines that
would be invoked selectively for different parts of the user’s computation,
according to which machine is most appropriate for a particular subproblem.

4. Domain-specific, problem-solving environments, such as those for structural
analysis. Environments like MATLAB and Mathematica have proven to be
especially attractive for rapid prototyping of new algorithms and systems that
may subsequently be implemented in a more customized manner for higher
performance.

5. Reusable templates (i.e., users adapt “source code” to their particular appli-
cations). A template is a description of a general algorithm rather than the
executable object code or the source code more commonly found in a conven-
tional software library. Nevertheless, although templates are general descrip-
tions of key data structures, they offer whatever degree of customization the
user may desire.

Novel user interfaces that hide the complexity of scalable parallelism will require
new concepts and mechanisms for representing scientific computational problems
and for specifying how those problems relate to one another. Very high-level lan-
guages and systems, perhaps graphically based, would not only facilitate the use
of mathematical software from the user’s point of view, but they would also help
automate the determination of effective partitioning, mapping, granularity, data
structures, and so on. However, new concepts in problem specification and repre-
sentation may also require new mathematical research on the analytic, algebraic,
and topological properties of problems (e.g., existence and uniqueness).

We have already begun work on developing such templates for sparse matrix
computations. Future work will focus on extending the use of templates to dense
matrix computations.

We hope the insight we gained from our work will influence future developers
of hardware, compilers, and systems software so that they provide tools to facilitate
development of high-quality, portable numerical software.

C

H

A

P

T

E

R

21 Software for the Scalable Solution
of Partial Differential Equations

Satish Balay . William D. Gropp .

Lois Curfman McInnes . Barry F. Smith

Partial differential equations (PDEs) can be used to model physical, chemical, and
biological phenomena. Numerical approximation of the solution of PDEs is an im-
portant application of parallel computers, as we have seen in previous chapters and
as is discussed in Koniges [573]. Early efforts to build programs to solve PDE prob-
lems had to start from scratch, building code for each algorithm used in the solution
process. This custom approach has two major drawbacks: it limits the use of paral-
lel computers to a small number of groups that have the resources and expertise to
develop these codes, and it hampers the ability to take advantage of developments
in parallel algorithms. In conventional, serial programming, both of these draw-
backs were partially solved by developing libraries of routines that contained the
best numerical analysis and implementation techniques. The same route is being
followed for parallel libraries, although parallelism introduces additional complica-
tions. Handling these complications has caused many groups to rethink the structure
of numerical libraries, leading to better software even for uniprocessor applications.
In this chapter, we will cover some of the issues and solutions in the context of the
Portable, Extensible Toolkit for Scientific Computation (PETSc), a collection of tools
for the numerical solution of PDEs and related problems [72, 74].

Many issues arise in designing a parallel program to approximate the solution to
a PDE. A key issue is managing software complexity, or the interrelationships among
code for the various facets of the overall simulation. Three additional critical issues
are numerical algorithms, data distribution, and data access patterns. Ironically, these
are exactly the same issues of importance for sequential solution; only the scale is
different.

We begin by asking how we can organize our program to exploit parallelism,
manage the complexity of the parallel application, and use the available comput-
ing resources effectively. The approach that we take in this chapter is to start at the

621

622 Chapter 21 Software for the Scalable Solution of Partial Differential Equations

top, organizing the program around the mathematics of the approximation. As we
will see, this single organizing principle not only provides a method for effectively
distributing the computation across the processors, but also allows us to change al-
gorithms easily. We can then incorporate new methods as they become available.
Such capabilities enable numerical software developers to better serve the needs of
computational scientists. Users can leverage expertise encapsulated within existing
libraries without needing to commit to a particular solution strategy and to risk
making premature choices of data structures and algorithms. Engaging application
scientists in library use without requiring excessive commitment on their part is a
critical facet of overcoming the all-too-frequent perception that applications must
implement from scratch all facets of modeling to achieve good performance. In fact,
the “roll-your-own” approach is undesirable. It requires implementation decisions
to be made a priori, before experimentation with realistically sized problems can
determine a code’s most serious bottlenecks. Using abstractions in library design
provides the flexibility for application programmers to use library-provided func-
tionality from the beginning of an application’s development. New algorithms and
data structures (which may be written by library developers, the application scientists
themselves, or third parties) may be injected during the lifetime of the application
code.

The remainder of this chapter is organized as follows. Section 21.1 presents an
overview of background for the numerical solution of PDEs, while Section 21.2 ex-
plains in more detail the challenges in parallel computations for PDE-based models.
Section 21.3 overviews various possible solution strategies and lays out the territory
for the remaining discussion in this chapter. Section 21.4 discusses the approach used
within the PETSc software, with emphasis on the use of mathematical abstractions
as an organizing principle that can help to address issues in algorithmic flexibility,
efficient use of computational resources, and composability with external tools. Sec-
tion 21.5 provides an overview of recent work throughout the high-performance
computing community in parallel PDE software. We conclude in Section 21.6 with
some observations and recommendations.

21.1 PDE Background

PDEs that model scientific applications span the complete range of elliptic, parabolic,
and hyperbolic types and combinations thereof. As discussed in Heath [450], hyper-
bolic PDEs describe time-dependent physical processes, such as wave motion, that
are not evolving toward a steady state; parabolic PDEs describe time-dependent phys-
ical processes, such as heat diffusion, that are evolving toward a steady state; and
elliptic PDEs describe processes that have already reached a steady state, or equi-
librium, and hence are independent of time. Problems can also be of mixed type,
varying by region or being multicomponent in a single region (e.g., a parabolic sys-
tem with an elliptic constraint). Generally, elliptic equations are easy to discretize,
but challenging to solve because their Green’s functions are global: the solution at
each point depends upon the data at all other points. Conversely, hyperbolic equa-

21.2 Challenges in Parallel PDE Computations 623

tions are challenging to discretize because they support discontinuities, but easy to
solve when addressed in characteristic form [549].

Many applications are based on replacing an infinite-dimensional, continuous
PDE system with an approximate finite-dimensional discrete system that can be
solved numerically. A wide range of numerical algorithms can be employed for such
problems (see, e.g., Heath et al. [450] and Morton and Mayers [690]). We often
categorize approaches as being explicit or implicit, depending on whether the al-
gorithm computes the solution at a given mesh point using only past iterates or
using current information from other mesh points as well. Explicit algorithms up-
date the solution vector by using discretization information from neighboring mesh
points; no global linear or nonlinear solves are used. Explicit methods are rela-
tively straightforward to implement in parallel, since communication is generally
needed only for global reductions (e.g., vector norms) and ghost-point transfers
for local discretization. In contrast, implicit methods update all (or most) vari-
ables in a single global linear or nonlinear solve. Since they propagate informa-
tion throughout the global problem domain at each iteration, implicit methods
can often converge in fewer time steps than do explicit methods, particularly for
large-scale problems. Unfortunately, the challenges in parallel implementations
of implicit methods are considerable, due to the inherently global nature of the
operators.

Intermediate between these extremes are semi-implicit methods, in which subsets
of variables (e.g., pressure) are updated with global solves, and predictor-corrector
methods, which use (usually explicit) accurate approximations to the solution (this
is the predictor step), followed by a few applications of a corrector (also usually
explicit). Most of the remaining discussion in this chapter will focus on issues arising
in implicit and semi-implicit methods, since these can be especially effective for
large-scale problems and are arguably more difficult to implement in parallel than
explicit techniques.

21.2 Challenges in Parallel PDE Computations

A common approach for solving a PDE system is to replace the partial derivatives
within the system (e.g., spatial and time derivatives) with discrete approximations
based on finite differences, volumes, or elements and then to solve the resulting
algebraic system of (time-dependent, nonlinear) equations numerically. Already,
parallelism introduces an issue: how is the solution vector distributed among the pro-
cessors? This question may seem straightforward, but it leads immediately to deeper
issues regarding data access patterns as well as interrelationships among software for
various facets of parallel PDE solution, such as interfaces between partitioning tools
and algebraic solvers. We must somehow manage this complexity without sacrificing
good performance; these dueling tradeoffs are particularly challenging when using
the distributed memory resources and multilevel memory hierarchies of modern
architectures.

624 Chapter 21 Software for the Scalable Solution of Partial Differential Equations

21.2.1 Software Complexity

We recognize immediately that software for parallel numerical PDEs (e.g., tools for
time evolution and algebraic nonlinear and linear solution) cannot be developed in
isolation, but rather must be considered in relationship to tools that partition the
problem domain. Further consideration reveals that typical scientific simulations
need many additional capabilities. These include mesh generation, PDE discretiza-
tion, derivative computations, adaptive mesh refinement and coarsening, optimiza-
tion, sensitivity analysis, data management, visualization, and parallel performance
analysis. Moreover, each computational phase may have a different preferred data
representation. We must consider tradeoffs in computation time and storage space
when transitioning between phases.

In recent years the high-performance computing community has developed a
variety of software packages for these phases. However, the combined use of multi-
ple software packages in a given application is a continuing challenge because of
incompatibilities in data structures and interfaces. In fact, the situation appears
much simpler when considering individual facets of PDE simulations; the more
difficult challenges arise when considering multiple phases simultaneously. Under-
standing the relationships among these phases is critical for the design of efficient
software because, within the realm of complete PDE-based simulations, no sin-
gle software component performs in isolation. Moreover, no single research group
can expect to encompass the expertise for cutting-edge capabilities in all areas.
Composability and interoperability of different tools via well-defined abstract in-
terfaces are critically important. As further discussed in Section 21.4.3, this area is
now receiving considerable attention throughout the high-performance computing
community.

21.2.2 Data Distribution and Access

As we saw in Chapter 2, the performance of CPUs has increased far faster than
the performance of the computer’s memory. In contemporary systems it can take
100 clock cycles or more to access main (as opposed to cache) memory. As a result,
the performance of many applications is bounded by the performance of the main
memory system, not the CPU [408], even on single-processor systems. Achieving
high performance on these systems requires careful attention to the use of memory.
For example, it is common in applications to use separate variables for different
physical variables, such as p for pressure and v for velocity. However, implicit
solver codes that access these variables in a loop over a mesh can suffer significant
performance problems. Instead (at least on RISC-based systems), it is important for
implicit solvers to interlace the variables: define a single variable where the first
index (in Fortran) indicates the physical quantity (e.g., pressure or velocity) and
the following indices refer to the mesh. In this way, a loop over the mesh accesses
memory in a more efficient fashion. Similarly, it is important not to create algorithms

21.2 Challenges in Parallel PDE Computations 625

that replace a single multicomponent problem with a collection of single-component
(or scalar) problems. While both formulations may involve roughly the same number
of floating-point operations, the collection of solvers will often involve far more
memory motion and thereby lead to poor efficiencies.

These problems are exacerbated in parallel computers. In addition to the large
latency of access to main memory, there is an even larger latency, coupled with sig-
nificantly lower bandwidth, to the memory on remote nodes or processors. Thus,
even greater attention must be paid to both the location of data (data distribution)
and the mode by which it is accessed. A simple example of this is given in Chap-
ter 16, where different distributions of data to different processes lead to different
efficiencies. That example is one case of a more general principle: minimizing the
surface-to-volume ratio of the data distribution. This principle arises because, for
PDE calculations, the most common operations involve communicating neighbor
data to processes that contain adjacent elements of the mesh. Minimizing the data
that must be moved between processes is accomplished by minimizing the area of
the joints between adjacent processes, relative to the mesh of unknowns. In practi-
cal terms, for a regular 2-D mesh, this means that the mesh should be divided into
squares (a 2-D decomposition) rather than strips (a 1-D decomposition). Organizing
the numerical algorithm to limit accesses to remote data can also have a significant
beneficial effect on performance; for iterative solutions to linear equations, this is
often accomplished by choosing a preconditioner that uses only or mostly data local
to a process.

The large latency of access to remote memory also has implications for both
algorithm and software design. In order to reduce the impact of latency, the simplest
approach is to aggregate data transfers so that a single operation moves many data
items. This approach encourages a software design that follows a two-phase model:
in the first phase, as much data as possible is requested; in the second phase, the
computation waits until the data arrives. This technique allows the memory system
and interprocess communication system to move the data more efficiently than does
the more common model of requesting a single item and then waiting until it is
available. One concrete example of this situation arises in the assembly of a sparse
matrix (see Balay et al. [73] for a detailed discussion). The most obvious approach is
to add one element at a time to the matrix, updating the sparse matrix data structures
as each entry is added. However, even for a single process, it is often more efficient to
wait to update the sparse matrix data structures until many (possibly all) elements
have been added to the matrix. As we have indicated, in the multiprocess case it
is even more important to defer updating the matrix data structures until many
elements can be communicated with each operation. These considerations apply to
both message-passing and thread-based models of parallelism, since they reflect the
costs to access remote memory. Under the thread-based model, smaller aggregates
can be used because the latency is lower than in the message-passing model; however,
the latency is still large relative both to local memory operations and to floating-
point operations.

626 Chapter 21 Software for the Scalable Solution of Partial Differential Equations

21.2.3 Portability, Algorithms, and Data Redistribution

If the above were not enough, any significant application must be prepared to evolve
over time. Both raw computer speed and the performance of algorithms have grown
tremendously over the past 30 years (see Figure 1.1). Hence, an application must be
written to exploit both new computing systems and new algorithms.

Portability

To exploit new computers, an application must be portable. At the very least, the
application should be written in a standard computer language (such as Fortran or C,
without extensions) and be careful in its assumptions about the computing environ-
ment (e.g., a C program should not assume that an int is a particular length). Parallel
programs should use standards such as MPI, OpenMP, or HPF to maintain portabil-
ity. Even with such standards, the much more difficult goal of performance portability
(portability without sacrificing performance) can be challenging to achieve, partic-
ularly over a wide range of computer architectures [285]. However, the benefits of
portability are enormous. Computer performance continues to increase by leaps and
bounds; portable applications can quickly take advantage of the fastest computers,
independent of any particular vendor.

Algorithms

Algorithmic improvements have been at least as important as advances in computer
speed for many applications. Thus, it is important that an application be portable to
new algorithms as well as to new hardware. Unfortunately, there are no standards
(yet) to which applications can write that will guarantee that the newest algorithm
can quickly be inserted into an application. Much of the rest of this chapter discusses
an approach for this problem based on developing interfaces between the application
and the algorithms that it uses. These interfaces reflect the problem being solved,
rather than an interface to a specific algorithm. A discussion of particular algorithms
for PDEs is beyond the scope of this chapter; various issues are discussed, for example,
in Heath [450], Keyes et al. [564], Morton and Mayers [690], Quarteroni and Valli
[784], Saad [820], and Smith et al. [872].

Even with continual improvement in algorithms, it is not always possible to iden-
tify the best algorithm in advance. For example, preconditioned iterative methods
for linear systems are powerful and effective, but their efficiency can be sensitive
to details of the problem. Thus, even for an application that is not expected to be
used for many years, it is important to have the ability to experiment with different
methods and algorithms. This need also encourages an application design where the
code interfaces to techniques that solve problems, rather than to a particular choice
of algorithm.

21.3 Parallel Solution Strategies 627

Data Redistribution

The concerns discussed above apply to both sequential and parallel programs.
Among the complexities that parallelism adds is that of data redistribution. As
often noted, achieving high performance requires paying close attention to mem-
ory locality. In fact, many parallel algorithms have been developed that specify the
distribution of the data for maximum efficiency. Unfortunately, the optimal data
distribution for one step in an application may not be optimal for the succeeding
step. For example, one popular method for solving certain kinds of PDEs is the
alternating-direction implicit (ADI) method. In this method, the solution of a 3-D
PDE is approximated by successively solving 1-D problems in each of the three co-
ordinate directions. The fastest algorithms for each of these 1-D solves requires that
the data be decomposed so that all of the data along the direction being solved are
on the same processor. Switching from one coordinate direction to another requires
transposing the data (an all-to-all communication). An alternative approach involves
the development of more complex algorithms that minimize the time over all three
coordinate directions, not just a single direction. Many parallel methods for PDEs
suffer from varying degrees of scaling problems due to imperfect data distribution.
Algorithms and software must work together to control the cost and complexity of
data redistribution.

21.3 Parallel Solution Strategies

Chapters 9 and 17 review various approaches that deal with these challenges, includ-
ing parallel languages, parallelizing compilers and compiler directives, computer-
assisted parallelization tools, parallel libraries, and problem-solving environments.
We briefly discuss issues pertaining to parallel PDE work, mention some recent re-
search in parallel libraries for PDEs, and then explain where our work fits within this
spectrum.

The complexity of PDE-based simulations makes automated analysis extremely
difficult for distributed-memory parallel systems. While parallel languages and par-
allel compilers have worked well on shared-memory computers, particular hardware
platforms (e.g., CM-5) [923], or specific problems, these approaches have not yet
been able to demonstrate general applicability. For example, High Performance For-
tran (HPF) [569] is not yet up to the performance of message-passing codes, except
in limited settings with much structure to the memory addressing [446]. Hybrid
HPF/MPI codes are possible steps along the evolutionary process, with high-level
languages automating the expression and compiler detection of structured-address
concurrency at lower levels of the PDE modeling. Automated source-to-source par-
allel translators, such as the University of Greenwich CAPTools project [501] (which
adds MPI calls to a sequential Fortran 77 input), can facilitate the parallelization of
legacy applications. Such tools may attain 80% to 95% of the benefits of the best

628 Chapter 21 Software for the Scalable Solution of Partial Differential Equations

manual practice, but the result is limited to the concurrency extractable from the
original algorithm. In many cases, the legacy algorithm should be replaced. Similar
comments apply to OpenMP and hybrid OpenMP/MPI approaches.

Beyond the capabilities of parallel languages, parallel compilers, and computer-
assisted parallelization tools, we still need encapsulation of expertise for parallel PDEs
in forms that are usable by the scientific computing community at large. We also
must allow application programmers to leverage as much of their existing legacy
code as possible, thereby enabling a gradual transition from the more traditional
approach of “the application code does everything” to “the application code uses
building blocks within software tools.”

As illustrated by Figure 21.1, we can consider numerical libraries and problem-
solving environments (PSEs) as fitting within a spectrum of different levels of ab-
straction. At one end of the spectrum, software presents only an application-specific
interface to the user. The software handles all other facets of computation, from mesh
generation to discretization to complete solution with numerical methods and data
analysis. While this level of abstraction is appealing in the simplicity presented to
the application scientist, there is little compile-time flexibility. At the other end of
the spectrum are low-level computational kernels, which offer enormous flexibility,
although the complexity of interactions is difficult to manage at this level. In the
intermediate range, we tend to compromise based on the strengths of both ends. No
one abstraction choice is right or wrong; different tradeoffs can be made depending
on particular design objectives. PSEs, which are further discussed in Chapter 14, tend
to build application-oriented abstraction layers both above and below numerical li-
brary levels. Because there is no precise definition of PSEs in use in general practice,
the term PSE itself does not convey sufficient information regarding the category
of software of a PSE product. Examples can range from lower-level class libraries to
complete environments such as engineering tools like Nastran [693].

The approach used within PETSc focuses on abstractions for algorithms and dis-
crete mathematics. Such abstractions range throughout a hierarchy, where software
for sophisticated PDE algorithms can be designed upon lower-level building blocks
of parallel data structures. Various groups have used similar approaches in leveraging
abstractions at the PDE level for the development of parallel PDE software, including
DAGH [744], Diffpack [148, 268], KeLP [67, 336], Overture [144, 463], SAMRAI [482,
570], POOMA [53, 625], and UG [84, 947]. Some of this work is discussed in Chap-
ter 12 within the context of data structure libraries.

21.4 PETSc Approach to Parallel Software for PDEs

Now that we have abstractly discussed the various challenges in PDE solution and
possible strategies for tackling them, we present concrete details of one approach.
In particular, this section introduces a set of techniques used within the Portable,
Extensible Toolkit for Scientific Computation (PETSc) [72, 74] for the development
of algorithms and data structures for large-scale PDE-based problems. Paramount
goals are managing software complexity and addressing issues in portable, scalable

21.4 PETSc Approach to Parallel Software for PDEs 629

Application-specific interface

High-level mathematics interface

Algorithmic and discrete mathematics interface

Low-level computational kernels

• Programmer manipulates objects
associated with the application

• Programmer manipulates mathematical
objects, such as PDEs and boundary
conditions

• Programmer manipulates mathematical
objects (sparse matrices, nonlinear
equations), algorithmic objects (solvers),
and discrete geometry (meshes)

• e.g., BLAS-type operations

• beam, plate, shell, ...

• u=f

• u =g

• matrix A
• vectors x,b
• solve Ax =b

• do i=1,n
 x[i] = a*y[i] + x[i]
enddo

2

Figure 21.1 Levels of abstraction in mathematical software.

performance across a range of parallel environments, from networks of workstations
to traditional massively parallel processors to clusters of symmetric multiprocessors.
Our approach uses a distributed-memory (or “shared-nothing”) model, where we
hide within parallel objects the details of communication, and the user orchestrates
communication at a higher abstract level than message passing. We note that un-
derneath these layers, data are generally communicated via message passing.

We introduce in Section 21.4.1 some sample motivating applications that lead
to discussion in Section 21.4.2 of software design based on their mathematical
formulations. Section 21.4.3 discusses issues in interoperability among software
tools for the various phases of solving PDE-based systems. Finally, we explain in
Section 21.4.4 how the flexibility in both algorithms and data structures afforded by
this design enables us to better address issues in achieving high performance.

21.4.1 Sample Applications

Before describing the PETSc approach, we present two applications that we will use
as examples. We begin with a linear 2-D problem and then consider a nonlinear PDE.

630 Chapter 21 Software for the Scalable Solution of Partial Differential Equations

proc 0

proc 2

proc 1

proc 3
} proc 3: locally
owned portion

proc 0

proc 1

proc 2

proc 3

=
Au = b

matrix vectors

(a) (b)

Figure 21.2 Partitioning of a rectangular mesh and a corresponding linear system so that each
process “owns” a unique subset of the mesh and the corresponding unknowns of the problem,
u. The matrix A and vector b are partitioned accordingly.

A Linear Elliptic Example

To enable concrete discussion of these issues and begin to explain our approach,
we consider the linear elliptic PDE, ∇2u= b, in a 2-D domain
 with homogeneous
Dirichlet boundary conditions; details of this model are discussed in Chapter 16. In
subsequent sections, we discuss additional complexities that arise in nonlinear and
time-dependent problems. As discussed in Chapter 9, various parallel programming
models can be used, and for such a simple model all would be well suited. We focus
discussion on an SPMD approach, in which all processes execute essentially the same
logic, although on a subset of the global problem domain, because this approach has
proven quite effective for more complicated PDE computations and is the approach
discussed in Section 21.4.2.

The parallel numerical solution process begins by generating a discrete mesh
of points that replaces the continuous domain of the equation. We partition the
mesh and associated data at run time across the participating processes so that each
process “owns” a unique subset of the mesh and the corresponding unknowns of
the problem, as illustrated in Figure 21.2 for a regular rectangular mesh that is
distributed across four processes. Partitioning and mesh generation are important
phases for practical models beyond this simple example; these issues are discussed
in Chapters 18 and 19, respectively. The next phase, discretization of the PDE over
the mesh, typically follows the basic philosophy of “owner computes.” For efficient
distributed-memory computations, the process that stores mesh and associated data
for a particular region of the global problem domain calculates most, though not
necessarily all, of the entries of the corresponding local part of the discretized linear
operator (or matrix), A, and the right-hand-side vector, b, that define the linear
system Au= b.

21.4 PETSc Approach to Parallel Software for PDEs 631

As we further discuss in Section 21.4.2, a natural abstraction for representing this
mathematical problem in numerical software libraries follows this form: given the
inputs A and b, compute as output the approximate solution u. Note that at this
level of abstraction, we do not specify details about the internal representation of
the matrix A or the vectors u and b. Instead, use of an abstract interface and pos-
sibly multiple underlying implementations enables the application code to remain
simple—no details about storage formats need to be directly specified or even un-
derstood by beginning users, although advanced users can customize these choices.
This approach also affords flexibility; library writers can develop a variety of im-
plementations, each of which may be appropriate in different circumstances (e.g.,
matrix formats that exploit sparsity and/or special structure). Moreover, when cou-
pled with interoperability strategies discussed in Section 21.4.3, such abstractions
help to enable the seamless introduction of newly developed implementations into
existing code.

A Nonlinear PDE Example

To present the approach used in PETSc, we focus on the discrete framework for an
implicit PDE solution algorithm, with pseudo-time stepping to advance toward a
steady state. This algorithm has the form

ul

�t l
+ F(ul)= ul−1

�t l

where �t l →∞ as l→∞, u represents a fully coupled vector of unknowns, and the
steady-state solution satisfies F(u) = 0. We choose this problem because it is often
used in large-scale CFD models, including two aerodynamics applications that we
discuss in some detail, namely, a compressible flow over an airplane wing using
a structured mesh [409] and both compressible and incompressible flow using an
unstructured mesh [549]. While we will present computational results for these
representative large-scale applications, we illustrate software design and usage via
the simpler nonlinear elliptic PDE,

F(u)=−∇2u− λeu = 0 (21.1)

where u = 0 on the boundary of the problem domain and λ is a constant. This
formulation, which is known as the Bratu problem, is taken from the MINPACK-
2 test problem collection [59]. The PETSc software distribution includes parallel
implementations of this model that can be used to explore the software functionality.

We explain the software design used to support pseudo-transient continuation of
inexact Newton methods to advance these models toward a steady state. While this
discussion will focus on the SNES (scalable nonlinear equations solvers) component,
which provides a level of abstraction that is convenient for these particular applica-
tions, these design principles apply equally to the linear solvers and time-stepping
algorithmic components as well.

632 Chapter 21 Software for the Scalable Solution of Partial Differential Equations

21.4.2 Mathematical Formulation

Key considerations when designing user interfaces for algorithmic software compo-
nents include the following:

. What are the mathematical formulations of the target problem classes?

. What numerical algorithms will we use to solve these problems?

The combination of these two features helps to identify abstractions for components
such as solvers and time steppers as well as the mathematical operators and operands
that serve as their primary inputs and outputs. As explained below, sufficiently flex-
ible abstract interfaces can support a variety of implementations of data structures
and algorithms and therefore can provide good models for exploring algorithmic
interchangeability and software interoperability among multiple tools developed
by different groups. Such capabilities are critical for making high-performance nu-
merical software adaptable to the continual evolution of parallel and distributed
architectures and the research community’s discovery of new algorithms that exploit
their features.

Mathematical Abstractions: Vectors, Matrices, Index Sets, and Solvers

The mathematical formulations for a particular class of models present natural and
intuitive abstractions that can be used in software interfaces. PETSc is built around a
variety of mathematical and algorithmic objects; the application programmer works
directly with these objects rather than concentrating on the underlying (rather
complicated) data structures. Two of the basic abstract data objects in PETSc are
vectors and matrices, which were introduced for a linear problem in Section 21.4.1.
A PETSc vector (Vec) is an abstraction of an array of values that represent a discrete
field (e.g., coefficients for the solution of a PDE), and a matrix (Mat) represents a
discrete linear operator that maps between vector spaces. Each of these abstractions
has several representations in PETSc. For example, PETSc currently provides three
sequential, sparse matrix-data formats, four parallel, sparse matrix-data structures,
and a dense representation; each is appropriate for particular classes of problems.
In addition, the same matrix interface supports matrix-free approaches, in which
matrices need not be explicitly stored, but rather certain functionalities (e.g., the
application of the linear operator to a vector) can be provided in an encapsulated
form.

While vectors and matrices are rather straightforward mathematical abstractions
regardless of parallelism, we introduce the concept of an index set to deal with the
need for aggregation in efficient distributed-memory computations. An index set (IS)
is a generalization of a set of integer indices that can be used for selecting, gathering,
and scattering subsets of vector and matrix elements. The index set abstraction
provides users complete control to manipulate subsets of matrix and vector elements
in aggregation. While one can certainly manipulate individual matrix and vector

21.4 PETSc Approach to Parallel Software for PDEs 633

Computation and Communication Kernels
MPI, MPI-IO, BLAS, LAPACK

Profiling interface

Application codes

Object-oriented
matrices, vectors, indices

Grid
management

Linear solvers
Preconditioners + Krylov Methods

Nonlinear solvers,
unconstrained minimization

ODE integrators Visualization

Interface

Figure 21.3 Organization of the PETSc libraries. Application codes can interface to whatever
levels of abstraction are most appropriate for their needs.

elements, this approach is not a parallel expression and cannot exploit aggregation
and other optimizations.

Built on top of this foundation are various classes of solvers, including linear
(SLES), nonlinear (SNES), and time-stepping (TS) solvers. These solvers encapsulate
virtually all information regarding the solution procedure for a particular class of
problems, including the local state and various options. Application codes can inter-
face directly to any level of the numerical library hierarchy, as shown in Figure 21.3.
In addition, new software tools for other facets of scientific simulations can be built
using selected parts of this hierarchy. For example, the Toolkit for Advanced Opti-
mization (TAO) [89, 90] employs PETSc infrastructure for parallel linear algebra in
the construction of parallel optimization software.

Parallelism

As explained in Balay et al. [73], we believe that use of the message-passing model
within carefully designed and implemented parallel numerical libraries is an effective
approach to the problem of efficiently using large-scale distributed memory, as well
as clustered and NUMA (nonuniform memory access) shared-memory computers.
This approach enables us to face the explicit tradeoffs that must be made to balance
the code’s performance (computational efficiency) and ease of use (programmer effi-
ciency). Most important, this combination allows the gradual process of improving
performance by the addition of new computational kernels, while retaining the re-
mainder of the correctly working libraries and application code.

634 Chapter 21 Software for the Scalable Solution of Partial Differential Equations

The PETSc 2.0 package uses object-oriented programming to conceal the details
of the message passing, without concealing the parallelism. Because the details of
communication are hidden from the user, approaches such as pure OpenMP or an
MPI/OpenMP hybrid can be used in place of message passing. A strength of the
approach of message passing combined with numerical libraries is that applica-
tion codes written with this model will also run well on NUMA shared-memory
computers—often as well as codes custom written for a particular machine. This
translation occurs because even shared-memory machines have a memory hierarchy
that message-passing programs inherently respect. For the small number of code lo-
cations where taking explicit advantage of the shared memory can lead to improved
performance, alternative library routines that bypass the message-passing system
may easily be provided, thus retaining a performance-portable library.

In general, the data for any PETSc object (vector, matrix, mesh, linear solver,
etc.) are distributed among several processes. The distribution is handled by an
MPI communicator (called MPI_Comm in MPI syntax), which represents a group of
processes. When an object is created, for example, with the commands

C interface:

VecCreate(MPI_Comm c,int m,Vec* v);

MatCreate(MPI_Comm c,int m,int n,Mat *A);

SLESCreate(MPI_Comm c,SLES *ls);

Fortran interface:

call VecCreate(MPI_Comm c,integer m,Vec v,integer ir)

call MatCreate(MPI_Comm c,integer m,int n,Mat A,integer ir)

call SLESCreate(MPI_Comm c,SLES ls,integer ir)

the first argument specifies the communicator, thus indicating which processes share
the object. The creation routines are collective over all processes in the communica-
tor.

This approach does not attempt to completely conceal parallelism from the appli-
cation programmer. The user initiates combinations of sequential and parallel phases
of computations, but the library handles the detailed (data-structure-dependent)
message passing required during the coordination of the computations. This pro-
vides a good balance between ease of use and efficiency of implementation. Six of
our main guiding design principles are listed below and discussed in detail in Balay
et al. [73]; the first four focus on allowing the application programmer to achieve
high performance, while the last two focus on ease of use of the libraries.

. Overlapping communication and computation

. Determining within the library the details of various repeated communications
and optimizing the resulting message-passing code

. Allowing the user to dictate exactly when certain communication is to occur

. Allowing the user to aggregate data for subsequent communication

21.4 PETSc Approach to Parallel Software for PDEs 635

. Allowing the user to work efficiently with parallel objects without specific
regard for what portion of the data is stored on each processor

. Managing communication, whenever possible, within the context of higher-
level operations on a parallel object or objects instead of working directly with
lower-level message-passing routines

Note that the first four principles are chiefly related to reducing the number of mes-
sages, minimizing the amount of data that needs to be communicated, and hiding
the latency and limitations of the bandwidth by sending data as soon as possible,
before it is required by the receiving processor. The six guiding principles, embedded
in a carefully designed object-oriented library, enable the development of highly
efficient application codes without requiring a large effort from the application pro-
grammer.

Implicit Solution of Nonlinear PDEs: An Application Code Perspective

The examination of families of algorithms reveals what input and output parameters
are needed within abstract interfaces. For example, to solve discretized steady-state
nonlinear PDEs of the form F(u)= 0, where F :Rn→R

n (as given in equation (21.1)), a
variety of algorithms can be used, including explicit, semi-implicit, and fully implicit
techniques. We explore the interface of the SNES component of PETSc, which solves
systems of this form using implicit Newton-type methods (see, e.g., [257, 715]),
including line-search and trust-region variants. These methods can be expressed in
the form

uk+1= uk − [F′(uk)]
−1F(uk), k = 0, 1, . . .

where u0 is an initial approximation to the solution and F′(uk) is nonsingular. In
practice, the Newton iteration is implemented by the following two steps:

1. (Approximately) solve F′(uk)�uk =−F(uk)

2. Update uk+1= uk +�uk

A coarse diagram of the calling tree of a typical nonlinear PDE application appears
in Figure 21.4. The top-level user routine performs I/O related to initialization,
restart, and post-processing; it also calls PETSc subroutines to create data structures
for vectors and matrices and to initiate the nonlinear solver. As shown by this
diagram, a basic reason why the design of nonlinear equation solver libraries is
fundamentally different from classical numerical linear algebra subroutine libraries
such as LINPACK, EISPACK, and LAPACK is that the application code must perform
certain operations for the library. The simplest such example is evaluating the
nonlinear function F(u) at given state vectors u; another typical requirement is
approximating the associated Jacobian matrix, F′(u). In addition, the software must
somehow deal with application-specific data and data structures that are not known
and cannot be predicted by the library writers. Auxiliary information required for
the evaluation of F(u) and F′(u) that is not carried as part of u is communicated

636 Chapter 21 Software for the Scalable Solution of Partial Differential Equations

Application
initialization

Function
evaluation

Jacobian
evaluation

Post
processing

PC KSP PETSc

Application driver

Linear solvers (SLES)

Nonlinear solvers (SNES)

Solve
F(u) = 0

Figure 21.4 Coarsened calling tree of nonlinear PDE application, showing the user-supplied
main program and call-back routines for providing the initial nonlinear iterate, computing
the nonlinear residual vector at a library-requested state, and evaluating the Jacobian
(preconditioner) matrix.

through PETSc via a user-defined “context” that encapsulates application-specific
data. (Such information would typically include dimensioning data, mesh geometry
data, physical parameters, and quantities that could be derived from the state u but
are most conveniently stored instead of recalculated, such as constitutive quantities.)

Figure 21.5 illustrates the basic SNES user interface, which is both simple to use
and inherently flexible. In particular, this single interface is identical for the unipro-
cessor and parallel cases, serves both real and complex numbers, and supports a range
of different algorithms. The primary phases of solver usage are (1) instantiating the
solver via the routine SNESCreate(); (2) specifying a vector data structure and call-
back routine for evaluation of the nonlinear function F(u) via SNESSetFunction()
(and optionally the matrix data structure and associated routine for evaluation of
the Jacobian F′(u) via SNESSetJacobian()); (3) selecting various run-time options via
SNESSetFromOptions(); (4) solving the nonlinear system via SNESSolve(); and (5) de-
stroying the solver and freeing associated memory via the routine SNESDestroy().

Note that the SNES user interface employs abstractions for vectors (Vec), matrices
(Mat), and nonlinear solver algorithms (SNES). This interface reveals nothing about
the particular data structures that may be used at run time. In fact, the actual algo-
rithms, including line-search and trust-region variants of inexact Newton methods,
are implemented in a data-structure-neutral format using these same abstractions.
This data-structure-neutral approach [873] allows the natural storage formats for
vectors and matrices to be dictated by the user’s application. Since issues regarding
the selection of storage formats for parallel, sparse linear algebra are usually quite
complicated, this feature is critical to the software’s performance.

21.4 PETSc Approach to Parallel Software for PDEs 637

SNES snes; /* nonlinear solver */

Mat J; /* Jacobian matrix */

Vec x, f; /* solution and residual vectors */

int n, its; /* problem dimension, number of iterations */

AppCtx usercontext; /* user-defined application context */

.

.

.

/* Create matrix and vectors */

MatCreate(MPI_COMM_WORLD,n,n,&J);

VecCreate(MPI_COMM_WORLD,n,&x);

VecDuplicate(x,&f);

/* Create nonlinear solver */

SNESCreate(MPI_COMM_WORLD,SNES_NONLINEAR_EQUATIONS,&snes);

/* Set routines for evaluation of the nonlinear function and Jacobian */

SNESSetFunction(snes,f,EvaluateFunction,usercontext);

SNESSetJacobian(snes,J,EvaluateJacobian,usercontext);

/* Set run-time options */

SNESSetFromOptions(snes);

/* Solve the nonlinear system */

SNESSolve(snes,x,&its);

/* Destroy objects when finished */

SNESDestroy(snes); MatDestroy(J); VecDestroy(x); VecDestroy(f);

Figure 21.5 Sample SNES application code interface.

Figure 21.6 presents sample code that evaluates the nonlinear function within
equation (21.1) in parallel on a 2-D regular mesh with a finite difference discretiza-
tion. The problem is partitioned according to Figure 21.2, where each process owns
a unique subset of the mesh and the corresponding data objects. The approach for
parallel computation of the nonlinear function and Jacobian is “owner computes,”
with message merging and overlapping communication with computation where
possible via split transactions. Each processor “ghosts” its stencil dependencies on
its neighbors’ data. Grid functions are mapped from a global (user-defined) order-
ing into contiguous local orderings, which may be designed to maximize spatial
locality for cache line reuse. Scatter/gather operations are created between local
sequential vectors and global distributed vectors. This example uses distributed ar-
rays (DA) within PETSc to handle ghost-point communication; the more general

638 Chapter 21 Software for the Scalable Solution of Partial Differential Equations

/* FormFunction - Evaluates nonlinear function, F(X)

Input Parameters: Output Parameter:

snes - the SNES context F - vector containing

X - input vector newly evaluated

ptr - optional user-defined context nonlinear function

*/

int FormFunction(SNES snes,Vec X,Vec F,void *ptr)

{

AppCtx *a = (AppCtx *) ptr;

int ierr, i, j, row, mx, my, xs, ys, xm, ym, gxs, gys, gxm, gym;

double two = 2.0, one = 1.0, lambda, hx, hy, hxdhy, hydhx, sc;

Scalar u, uxx, uyy, *x, *f;

Vec localX = a->localX, localF = a->localF;

mx = a->mx; my = a->my; lambda = a->param;

hx = one/(double)(mx-1); hy = one/(double)(my-1);

sc = hx*hy*lambda; hxdhy = hx/hy; hydhx = hy/hx;

/* Scatter ghost points to local vector */

ierr = DAGlobalToLocalBegin(a->da,X,INSERT_VALUES,localX); CHKERRQ(ierr);

ierr = DAGlobalToLocalEnd(a->da,X,INSERT_VALUES,localX); CHKERRQ(ierr);

/* Get pointers to vector data */

ierr = VecGetArray(localX,&x); CHKERRQ(ierr);

ierr = VecGetArray(localF,&f); CHKERRQ(ierr);

/* Get local grid boundaries */

ierr = DAGetCorners(a->da,&xs,&ys,PETSC_NULL,&xm,&ym,PETSC_NULL);

CHKERRQ(ierr);

ierr = DAGetGhostCorners(a->da,&gxs,&gys,PETSC_NULL,&gxm,&gym,

PETSC_NULL); CHKERRQ(ierr);

/* Compute function over the locally owned part of the grid */

for (j=ys; j<ys+ym; j++) {

row = (j - gys)*gxm + xs - gxs - 1;

for (i=xs; i<xs+xm; i++) {

row++;

if (i == 0 || j == 0 || i == mx-1 || j == my-1)

{f[row] = x[row]; continue;}

Figure 21.6 Sample parallel nonlinear function evaluation code for equation (21.1), using a
finite difference discretization on a 2-D regular mesh and distributed arrays for ghost-point
communication.

21.4 PETSc Approach to Parallel Software for PDEs 639

u = x[row];

uxx = (two*u - x[row-1] - x[row+1])*hydhx;

uyy = (two*u - x[row-gxm] - x[row+gxm])*hxdhy;

f[row] = uxx + uyy - sc*exp(u);

}

}

/* Restore vectors */

ierr = VecRestoreArray(localX,&x); CHKERRQ(ierr);

ierr = VecRestoreArray(localF,&f); CHKERRQ(ierr);

/* Insert values into global vector */

ierr = DALocalToGlobal(a->da,localF,INSERT_VALUES,F); CHKERRQ(ierr);

return 0;

}

Figure 21.6 (continued)

VecScatter tool could be used for unstructured meshes. Alternatively, one could
employ tools that provide parallel discretization capabilities at higher levels of
abstraction, such as Overture [144]. In fact, we have recently developed “object
wrappers” that allow all Overture and PETSc objects to coexist and interoperate in
the same application.

Both a procedural interface (i.e., routine calls) and a command-line interface
(i.e., argc/argv program input parameters) may be used to specify particular choices
for algorithms, parameters, and data structures. The procedural interface provides
a great deal of control on a usage-by-usage basis within a single application. For
example, one can select a line-search or trust-region variant of Newton’s method
by calling SNESSetType(snes,ls) or SNESSetType(snes,tr), respectively. Alternatively,
these choices can be specified by the corresponding run-time option (e.g., -snes_
type [ls,tr]); the run-time option approach applies the same rules to all queries
via a database and thereby enables the user to have complete control at run time
with no extra coding. A typical usage scenario employs the procedural interface to
indicate defaults (that may be different from those specified by the library) within a
given application code and then uses the command-line interface to override these
defaults for experimentation with a variety of alternatives.

21.4.3 Composability and Interoperability

As discussed in Section 21.2.1, the high-fidelity multiphysics applications of interest
within high-performance scientific computing often require the combined use of
software tools that encapsulate the expertise of multidisciplinary research teams.
Current-generation software tools have demonstrated good success in direct pairwise

640 Chapter 21 Software for the Scalable Solution of Partial Differential Equations

interfaces, whereby one tool directly calls another by using well-defined interfaces
that are known at compile time. For example, we have developed two-way interfaces
between PETSc and PVODE, which provides higher-order, adaptive ODE schemes
and robust nonlinear solvers [474]. However, more flexible and dynamic capabilities
are needed than predefined interfaces that use a succession of subroutine calls.
This is especially important because we must support incremental shifts in parallel
algorithms and programming paradigms that inevitably occur during the lifetimes
of scientific application codes.

Consequently, various research groups within the high-performance computing
community are exploring the ideas of component programming, based on encapsu-
lating units of functionality and providing a meta-language specification of their
interfaces (see, e.g., Broy et al. [147] and Szyperski [908]). Component-based soft-
ware development can be considered an evolutionary step beyond object-oriented
design. Object-oriented techniques have been quite successful in managing the com-
plexity of modern software, but they have not resulted in significant amounts of
cross-project code reuse. Sharing object-oriented code is difficult because of language
incompatibilities, the lack of standardization for interobject communication, and
the need for compile-time coupling of interfaces. Component-based software de-
velopment addresses issues of language independence—seamlessly combining com-
ponents written in different programming languages—and component frameworks
define standards for communication among components.

The Common Component Architecture (CCA) Forum, whose current member-
ship is drawn from various Department of Energy national laboratories and collab-
orating academic institutions, is working to specify a component architecture for
high-performance scientific computing [47, 216]. We are currently incorporating
new features within the PETSc software to enable compliance with this evolving
specification.

21.4.4 Performance Issues

As discussed by Anderson et al. [40], achieving sustained high performance for PDE-
based simulations involves three aspects. The first is a scalable algorithm in the sense
of convergence rate; the second is good per-processor performance on contemporary
cache-based microprocessors; and the third is a scalable implementation, in the sense
of time per iteration as the number of processors increases. This section demonstrates
that the flexible software design presented in this chapter enables application codes
to address all three of these issues and to avoid premature optimization for particular
algorithmic and data structure choices by experimenting with a range of options for
realistic problems.

Algorithmic Experimentation

Now that we have covered the basic principles of design and seen what some of
the issues are for parallel PDE computations, we examine a specific application to

21.4 PETSc Approach to Parallel Software for PDEs 641

demonstrate how this approach enables investigation of open research issues. In
particular, we explore the standard 3-D aerodynamics test case of transonic flow
over an ONERA M6 wing using the frequently studied parameter combination of a
freestream Mach number of 0.84 with an angle of attack of 3.06o. The robustness of
solution strategies is particularly important for this model because of the so-called λ-
shock that develops on the upper wing surface. The basis for our implementation, as
discussed in Gropp et al. [409], is a legacy sequential Fortran 77 code by Whitfield and
Taylor [991] that uses a mapped structured C-H mesh. This application demonstrates
the use of the nonlinear solvers within SNES in the legacy context, where we retain
the original code’s discretization as embodied in flux balance routines for steady-
state residual construction and finite-difference Jacobian construction. The function
evaluations are undertaken to second order in the upwinding scheme, and the
Jacobian matrix (used mainly as a preconditioner) is evaluated to first order. We
parallelize the logically regular, mapped mesh using the distributed array tools of
PETSc.

We consider Newton–Krylov–Schwarz methods, which combine a Newton–
Krylov method with a Schwarz-based preconditioner. From a computational point
of view, one of the most important characteristics of a Krylov method for the linear
system Ax= b is that information about the matrix A needs to be accessed only in
the form of matrix–vector products in a relatively small number of carefully chosen
directions. Newton–Krylov methods are suited for nonlinear problems in which it
is unreasonable to compute or store a true, full Jacobian, where the action of A can
be approximated by discrete directional derivatives. However, if the Jacobian A is
ill conditioned, the Krylov method will require an unacceptably large number of
iterations. The system can be transformed into the equivalent form B−1Ax= B−1b
through the action of a preconditioner, B, whose inverse action approximates that
of A, but at smaller cost. It is in the choice of preconditioning where the battle for
low computational cost and scalable parallelism is usually won or lost. In Schwarz
preconditioning methods (see, e.g., Smith et al [872]), the operator is introduced
on a subdomain-by-subdomain basis through a conveniently computable approxi-
mation to a local Jacobian. Such Schwarz-type preconditioning provides good data
locality for parallel implementations over a range of parallel granularities, allowing
significant architectural adaptability.

Figure 21.7 shows a sample script that can be used to automate experimentation
with this hierarchy of tunable algorithms. The script demonstrates the use of both
line-search and trust-region variants of Newton’s method on various numbers of
processors. Several Krylov methods are considered, including GMRES, BiCGStab,
and transpose-free QMR, in conjunction with additive Schwarz preconditioners
with various degrees of overlap. This script facilitates the investigation of which
preconditioning and Krylov methods are most effective for particular problem sizes
and processor configurations. Additional run-time options could also be invoked
to investigate a range of other issues, including linear and nonlinear convergence
parameters, blocked matrix data structures, and derivative computations via sparse
finite differences and automatic differentiation.

642 Chapter 21 Software for the Scalable Solution of Partial Differential Equations

#! /bin/csh

#

Sample script: Experimenting with nonlinear solver options

Can be used with, e.g., petsc/src/snes/examples/tutorials/ex5.c

#

foreach np (8 16 32 64) # number of processors

foreach snestype (ls tr) # nonlinear solver

foreach ksptype (gmres bcgs tfqmr) # Krylov solver

foreach overlap (1 2 3 4) # level of overlap for ASM

echo ’****** Beginning new run ******’

mpirun -np $np ex2 -snes_type $snestype -ksp_type $ksptype \

-pc_type asm -pc_asm_overlap $overlap

end

end

end

end

Figure 21.7 Sample script for Newton–Krylov–Schwarz algorithmic experimentation.

Preconditioner quality dramatically affects the overall efficiency of the parallel
Newton–Krylov–Schwarz methodology, as demonstrated in Figure 21.8 for various
degrees of overlap for the restricted additive Schwarz method (RASM) [167], which
eliminates interprocess communication during the interpolation phase of the ad-
ditive Schwarz technique. The graphs within these figures compare convergence
rate (in terms of relative residual norm) with both nonlinear iteration number (Fig-
ure 21.8(a)) and time (Figure 21.8(b)) for a mesh of dimension 98× 18× 18 with
five degrees of freedom per node, on 16 processors of an IBM SP2. We note that
the nonlinear model employs a subtle form of continuation in boundary condi-
tions by activating full characteristic boundary conditions at the impermeable wing
surface only after the 10th nonlinear iteration. (This accounts for the spikes seen
in the residual norm histories.) All runs plotted in this figure use preconditioned
restarted GMRES with a Krylov subspace of maximum dimension 30 and a fixed,
relative convergence tolerance of 10−2; each processor hosts a single preconditioner
block, which is solved via point-block ILU(0). We see that for this model, two-cell
overlap provides a good balance in terms of power and cost. Less overlap trades off
cheaper cost per iteration for a preconditioner that does not allow the nonlinear
iterations to converge as rapidly, while more overlap is costly to apply and does not
contribute to faster nonlinear convergence. While this example is a relatively small
problem, similar behavior was observed for other problem sizes and processor con-
figurations, even when using different criteria to determine linear inner iteration
convergence.

21.4 PETSc Approach to Parallel Software for PDEs 643

0 100 200 300 400 500 600
Time (sec)

0 20 40 60 80 100 120 140 160
–14

–12

–10

–8

–6

–4

–2

0

2

Nonlinear iteration number

(b)(a)

Lo
g(

10
)

of
 r

es
id

ua
l n

or
m

–14

–12

–10

–8

–6

–4

–2

0

2

Lo
g(

10
)

of
 r

es
id

ua
l n

or
m

Overlap 0
Overlap 1
Overlap 2
Overlap 3

Overlap 0
Overlap 1
Overlap 2
Overlap 3

Figure 21.8 Comparison of four domain-decomposed preconditioners: subdomain block
Jacobi and restricted additive Schwarz with overlap of one, two, and three cells. All methods
solve point-block ILU(0) on 16 subdomains on an IBM SP2.

Data Structures and Orderings for Fast Local Performance

A key consideration in algorithms and data structures is the management of multi-
level memory hierarchies. To demonstrate some of these issues, we consider another
application, FUN3D, which is a tetrahedral, vertex-centered, unstructured mesh
code originally developed for uniprocessors by W. K. Anderson of the NASA Lan-
gley Research Center for compressible and incompressible Euler and Navier–Stokes
equations [39]. FUN3D uses a control volume discretization with variable-order Roe
schemes for approximating the convective fluxes and a Galerkin discretization for
the viscous terms. The application was parallelized using the VecScatter tools within
PETSc for ghost-point communication and the nonlinear solvers within SNES [548].

We can view PDE computations predominantly as a mix of loads and stores
with embedded floating-point operations (flops) [40]. Since flops are cheap relative
to memory references, we concentrate on minimizing the memory references and
emphasize strong sequential performance as one of the factors needed for efficient
aggregate performance. Data storage patterns for primary and auxiliary fields should
adapt to hierarchical memory through (1) interlacing, (2) structural blocking degrees
of freedom that are defined at the same point in point-block operations, and (3)
reordering of edges for reuse of vertex data. Interlacing allows efficient reuse of
cached operands, since components at the same point interact more intensely with
each other than do the same fields at other points. Similarly, blocking reduces the
number of loads significantly and enhances reuse of data items in registers. Also, edge
reordering for vertex reuse reflects the fact that nearby points interact more intensely
than distant points. Applying these techniques within FUN3D required whole-
program transformations of certain loops of the original vector-oriented application

644 Chapter 21 Software for the Scalable Solution of Partial Differential Equations

0

20

40

60

80

100

120

140

160

180

SP Origin Pentium

Base NOER
Interlacing

Base
Blocking NOER

Interlacing NOER
Blocking

Figure 21.9 Effect of cache optimizations of the average execution time for one nonlinear
iteration of the FUN3D application. Base denotes the case without any optimizations, and
NOER denotes no edge reordering. The performance improves by a factor of about 2.5 on the
Pentium and 7.5 on the IBM SP. The processor details are 120 MHz IBM SP (P2SC “thin,” 128
KB L1), 250 MHz Origin 2000 (R1000, 32 KB L1, and 4 MB L2), and 400 MHz Pentium II
(running Windows NT 4.0, 16 KB L1, and 512 KB L2).

but, as shown in Figure 21.9, raised the per-processor performance by a factor of
between 2.5 and 7, depending on the microprocessor and optimizing compiler. We
note that the use of the abstract interface for PETSc matrix assembly enabled the
change from a compressed, sparse, row-point storage format to the block variant
without changing a single line of the matrix assembly code.

Because of the cost and difficulty of architectural tuning for new environments,
some recent efforts have focused on automating this process for numerical kernels. In
particular, ATLAS (Automatically Tuned Linear Algebra Software) [988] and PHiPAC
(Portable High Performance ANSI C) [107] are packages for automatically producing
high-performance BLAS, in particular matrix–matrix multiplication routines, for
machines with complicated memory hierarchies and functional units.

Scalability

Having first assured attention to good per-processor performance for the FUN3D
application, we are now ready to discuss the scalability of this aerodynamic model.
In Figure 21.10 we demonstrate several metrics of the code’s parallel scalability,
which uses pseudo-time stepping and the Newton–Krylov–Schwarz implementations
in PETSc, for a fixed-size mesh with 2.8 million vertices running on up to 1024 Cray
T3E processors. We see that the implementation efficiency of parallelization (i.e.,
the efficiency on a per-iteration basis) is 82% in going from 128 to 1024 processors.

21.5 Software for PDEs 645

Nonlinear iterations

0
10
20
30
40
50

128 256 384 512 640 768 896 1024

Execution time (s)

0

1000

2000

128 256 384 512 640 768 896 1024

128 256 384 512 640 768 896 1024

Aggregate Gflop/s

0

40

80

128 256 384 512 640 768 896 1024

Mflops/s per processor

0
20
40
60
80

100

128 256 384 512 640 768 896 1024

Average vertices per processor

0

10000

20000

Implementation efficiency

0

1

128 256 384 512 640 768 896 1024

Figure 21.10 Parallel performance of the FUN3D application for a fixed-size mesh of 2.8
million vertices (over 11 million unknowns) run on up to 1024 Cray T3E 600 MHz processors.

The number of nonlinear iterations is also fairly flat over the same eightfold range of
processors (rising from 37 to 42), reflecting reasonable algorithmic scalability. This is
much less serious degradation than predicted by the linear elliptic theory (see Smith
et al. [872]); pseudo-time stepping, required by the nonlinearity, is responsible. The
overall efficiency is the product of the implementation efficiency and the algorithmic
efficiency. The computational rates per processor are also close to flat over this range,
even though the relevant working sets in each subdomain vary by nearly a factor of
eight. This emphasizes the requirement of good serial performance for good parallel
performance.

21.5 Software for PDEs

As discussed throughout the chapter, the development of scalable scientific applica-
tion codes involving the solution of large-scale PDEs requires attention to complex
issues, including algorithmic choices and the management of multilevel memory
hierarchies. Application developers may wish to leverage software packages that can
assist with various facets of solution. We now provide a brief overview of PDE-related
software.

. DAGH [744]. DAGH (Distributed Adaptive Grid Hierarchy) provides a program
development infrastructure for the implementation of solutions of PDEs using
adaptive mesh-refinement algorithms.

. Diffpack [148, 268]. Diffpack is an object-oriented framework for solving PDEs.

. DOUG [425]. DOUG (Domain Decomposition on Unstructured Grids) is a black
box parallel iterative solver for finite element systems arising from elliptic PDEs.

646 Chapter 21 Software for the Scalable Solution of Partial Differential Equations

. FFTW [332]. FFTW is a collection of Fast Fourier Transform routines, including
routines for parallel computers. FFTs are often used in solving certain classes
of linear PDEs, and can be used as preconditioners for more general PDEs.

. KeLP [67, 336]. KeLP (Kernel Lattice Parallelism) is a framework for implement-
ing portable scientific applications on distributed-memory parallel computers.
It is intended for applications with special needs, in particular, those that adapt
to data-dependent or hardware-dependent conditions at run time.

. MUDPACK [5]. MUDPACK includes a suite of portable Fortran programs that
automatically discretize and use multigrid techniques to generate second- and
fourth-order approximations to elliptic PDEs on rectangular regions.

. Overture [144, 463]. Overture is an object-oriented code framework for solving
PDEs; it provides a portable, flexible software development environment for
applications that involve the simulation of physical processes in complex
moving geometry.

. Parallel ELLPACK [487, 489]. Parallel ELLPACK is a problem-solving environ-
ment for PDE-based applications.

. PARASOL [746]. PARASOL is an integrated environment for parallel, sparse ma-
trix solvers. PARASOL is written in Fortran 90 and uses MPI for communication.

. PETSc [72, 73]. PETSc (Portable, Extensible Toolkit for Scientific Computing)
is a collection of tools for the parallel numerical solution of PDEs and related
problems.

. POOMA [53, 625] POOMA (Parallel Object-Oriented Methods and Applica-
tions) is an object-oriented framework for applications in computational sci-
ence requiring high-performance parallel computers.

. SAMRAI [482, 570]. SAMRAI is an object-oriented code framework that pro-
vides general and extensible software support for rapid prototyping and devel-
opment of parallel structured adaptive mesh-refinement applications.

. UG [84, 947]. UG (Unstructured Grids) is a flexible software tool for the numer-
ical solution of partial differential equations on unstructured meshes in two
and three space dimensions using multigrid methods.

. VECFEM [410]. VECFEM is a package for the solution of nonlinear boundary
value problems by the finite element method.

Additional pointers may be available through the following online resources:

. MGNet [291]. MGNet is a repository for information related to multigrid, mul-
tilevel, multiscale, aggregation, defect correction, and domain-decomposition
methods, including links to software packages.

. NHSE [699]. The National High-Performance Software Exchange is a distributed
collection of software, documents, data, and information of interest to the
high-performance and parallel-computing community.

21.6 Conclusion 647

21.6 Conclusion

As discussed in Chapter 2, future computing technology will likely be characterized
by highly parallel, hierarchical designs. This trend in design is a fairly straightforward
consequence of two other trends: a desire to work with increasingly large data sets
at increasing speeds and the imperative of cost effectiveness. Fortunately, data use
in most PDE-based applications has sufficient temporal and spatial locality to map
reasonably well to distributed- and hierarchical-memory systems. To achieve good
performance, this locality can be exploited by a combination of the application
programmer at the algorithmic level, the system software at the compiler and run-
time levels, and the hardware.

This chapter presented some ideas for addressing these issues in PDE software at
the level of numerical library writers and application programmers. In particular, we
discussed how organizing applications around the mathematics of models enables
the writing of applications that can be run without change with a wide variety
of different algorithms and data structures. This facilitates exploiting parallelism,
managing complexity within the application, and effectively using the available
computing resources. Using these techniques, applications have run scalably on
thousands of processors, achieving performance in the teraflop range. We conclude
with a few additional recommendations for application scientists.

. Design application codes around abstract concepts, not particular algorithms
or data structures. Expect the best algorithms to change over the lifetime of an
application.

. Take advantage of modern programming languages; for example, use features
of Fortran 90 rather than minimalistic Fortran 77.

. Use programming models that offer portable performance, such as MPI or
OpenMP. Use vendor-specific features or extensions only when the benefit
clearly outweighs the loss of portability.

. Communicate and compute on aggregates, not individual elements.

. Use libraries whenever possible; when libraries do not provide the needed
functionality, contact the authors with suggestions and recommendations.

. Give the largest possible problem to the numerical library. For example, if
the library offers suitable nonlinear solvers as well as linear solvers, use the
nonlinear solvers rather than building a simple nonlinear iteration yourself
and using the library’s linear solvers. This approach gives the library the best
opportunity to maximize performance (see Section 21.2.3).

Acknowledgments. We were supported by the Mathematical, Information, and
Computational Sciences Division subprogram of the Office of Advanced Scientific
Computing Research, U.S. Department of Energy, under contract W-31-109-Eng-38.

C

H

A

P

T

E

R

22 Parallel Continuous Optimization

J. E. Dennis, Jr. . Zhijun Wu

Optimization has broad applications in engineering, science, and management.
Many of these applications either have large numbers of variables or require expen-
sive function evaluations. In some cases, there may be many local minimizers, and
the user naturally wants to know how solutions found by the algorithm compare to
other local solutions. These factors contribute to the need for more intensive com-
putation than traditional architectures can support. High-performance computing
provides powerful tools for solving these problems with a degree of practicality that
would otherwise be impossible.

Example applications where parallel optimization can play an important role
include aircraft shape design [228] and macromolecular modeling [681].

In aircraft shape design, one attempts to match an ideal pressure distribution by
manipulating the shape variables. The number of shape variables is on the order
of hundreds at most, but they are constrained by at least two systems of partial
differential equations (PDEs). This is typical of many important applied optimization
problems. There may not be so many decision variables for the optimizer, but there
may be many ancillary variables that must be determined to compute the objective
function and constraints. In order to obtain a feasible solution, the systems must
match the input of each with the output of the others, in addition to satisfying side
constraints such as range. The systems require expensive PDE solves for millions of
grid points and different grids for different PDEs; and there is at least one PDE to be
solved for the air flow and one to be solved for the structural deflection.

This problem is computationally intensive because there is a great deal of linear
and nonlinear algebra going on at each function and constraint evaluation. We
describe some domain-decomposition–type methods for this problem. As in that
case, the sequential efficiency of the parallel optimization procedure can be an
improvement over more traditional methods.

649

650 Chapter 22 Parallel Continuous Optimization

In macromolecular modeling, one attempts to determine molecular structure by
minimizing a given potential energy function. One of the most important applica-
tions is the determination of protein structures in structural molecular biology. The
challenge in solving this problem is that the potential energy function has many
local minimizers, while the structure to be determined is believed to correspond to
a global or nearly global optimal solution to the minimization problem. Global op-
timization algorithms have been developed to solve the problem. Not surprisingly,
they rely heavily on using computing power that only parallel high-performance
architectures can provide.

Substantial research efforts on parallel optimization have been made in the past
20 years. In the past 10 years or so, some have borne fruit by focusing on special
applications and others by exploring more general parallel schemes.

Optimization has close relationships with numerical linear algebra and partial dif-
ferential equations. For example, a typical optimization procedure requires solving
a linear system at every iteration to predict a step to a better approximate solution;
function or constraint evaluation often requires solving a PDE. Thus, parallel opti-
mization algorithms and software development certainly benefit from advances in
parallel numerical linear algebra and PDEs.

General algorithms have also been developed such as parallel direct-search meth-
ods by Dennis and Torczon [258], Hough et al. [485, 572] and Torczon [937]. Audet
and Dennis [57] extend the methods to allow for so-called categorical variables,
which are unordered discrete variables that must always have discrete values for the
function values to be defined. Even more general are the evolutionary algorithms
[841], which allow any sort of variables at all. For more traditional derivative-based
optimization, there are parallel methods for optimization of linked subsystems by
Dennis and Lewis [256] and Dennis et al. [255], and variable and constraint distri-
bution schemes by Ferris and Mangasarian [329, 330], as well as many others based
more or less or parallelizing the linear algebra involved in computing an optimiza-
tion step.

Parallel global optimization has been one of the most active areas in parallel con-
tinuous optimization. Work in this area is motivated by important applications in
chemical and biological disciplines such as cluster simulation and protein model-
ing. Algorithms and software developed in recent years include parallel stochastic
global optimization algorithms for molecular conformation and protein folding by
Byrd and Schnabel [160, 162]; parallel global continuation software (DGSOL) for
protein structure determination with nuclear magnetic resonance (NMR) distance
data by Moré and Wu [681, 682, 683, 685]; and parallel, effective-energy-simulated
annealing for protein potential-energy minimization by Coleman et al. [211, 212].

Optimization problems take different forms arising from the motivating applica-
tions. They can be linear or nonlinear, constrained or unconstrained, and local or
global. They can be either large and sparse or small but very expensive to evaluate.
This means that quite different parallel algorithms may be required and quite differ-
ent architectures may be appropriate. For example, if the problem is large but sparse,
a shared-memory system may be a good choice, for otherwise the distribution of a

22.1 Local Optimization 651

sparse, irregular structure over multiprocessors may cause load imbalance and severe
communication overhead. On the other hand, most global optimization algorithms
are coarsely parallel. They can be implemented on distributed-memory architectures,
or even loosely connected networks of workstations, and still maintain scalability.

In the following sections, we discuss various parallel optimization methods in
greater detail. We describe optimization problems and algorithms and their asso-
ciated parallelism at different computational levels: function evaluation, algebraic
calculation, and optimization. In particular, we review parallel methods for local
and global optimization, and we compare strategies for large, sparse versus small but
expensive problems. Parallel techniques including parallel direct search, optimiza-
tion of linked subsystems, and variable and constraint distribution are introduced.
Future research directions are discussed at the end.

22.1 Local Optimization

Let us consider the problem of minimizing a nonlinear function, f (x), where f is
continuous and differentiable for all x ∈ R

n. Generally, we would be given some
incumbent approximate minimizer x0. The most popular methods for this problem
construct a quadratic model for the objective function (and a linear model of the
constraints if they are present). This model problem is intended to represent the
problem of interest in some neighborhood of x0. Generally this is true because the
model is built by using at least the first-order Taylor series term. Often finite difference
approximations to the derivatives are used, and this is an obvious opportunity
for parallelism. In fact, the kind of parallelism used is one of the most useful
for optimization, in that values of the true function are obtained in parallel (see
discussions in Byrd et al. [164]).

Since the model is thought to represent the problem locally, one hopes that by
finding a really good minimizer for the model, one will obtain a point that improves
the real objective function. Thus, Newton or quasi-Newton algorithms choose a
putative next iterate by solving the model problem. The difficulty with this procedure
is that the solution to the model problem may be outside the region about x0 where
the model represents the problem well.

If the iterate found in this way is a better solution, then one moves to it and
iterates the procedure. It will not surprise the reader that this procedure is likely to
find the bottom of the same function valley one starts in. That is, a nearby local
minimizer x∗, assuming there is one, in the sense that for any x in a neighborhood
of x∗, f (x) is greater than or equal to f (x∗).

If the pure iteration does not succeed in finding a better point, then it resorts
to a globalization strategy. In this sense, globalization means convergence to some
solution from any point, not solution to the global minimizer.

The two main classes of globalization algorithms for this problem are line searches
and trust regions. Trust regions adaptively estimate a region in which the local
model can be “trusted” to adequately represent the true function. The next iterate is
chosen by approximately minimizing the model over the trust region. Line-search

652 Chapter 22 Parallel Continuous Optimization

algorithms backtrack (usually) from the solution of the model problem along the
direction from the incumbent. Each approach has its place in the optimization
toolbox, and each has its own opportunities for parallelism.

Trust-region algorithms can use parallelism in the linear algebra needed to solve
the trust-region subproblem—minimize the model in the region where it is trusted
to represent the function (see Santos and Sorensen [825] and Rendl and Wolkowicz
[797]). Line-search algorithms can use parallel linear algebra to compute the solution
of the model problem, and they can also use parallel function evaluations to find
the best step along the direction they compute. Parallel multiple line searches [697]
and parallel inexact Newton step computation [696] can be applied here.

For large-scale optimization, it is often useful to take advantage of the property
of partial separability. That is, the objective function can be written in the following
form,

f (x)=
m∑

i=1

fi(x)

where fi is called an element function of f and depends only on a small subset of
the variables. This class of functions can be computed in parallel by distributing
the element functions to the processors. Each processor will then be responsible for
computing only the contributions of the element functions to the whole function,
gradient, and Hessian.

Let processor i compute element functions fi1, . . . , fimax
. Then the function, gra-

dient, and Hessian can be computed in the following procedure,

initialize f , ∇f , ∇2f

on processor i:

do for j ∈ {i1, . . . , imax}
f = f + fj
∇f = ∇f + ∇fj
∇2f = ∇2f + ∇2fj

end do

end

where updates to f , ∇f , and ∇2f require global reduction on distributed-memory
machines or access to shared variables on shared-memory machines. However, the
updates for the gradient and the Hessian can be done efficiently by updating only
the elements for which the corresponding elements of ∇fj and ∇2fj are nonzero [60,
680].

The computation of the step, or its direction, with methods using the Hessian
or Hessian approximations can be parallelized in several ways. In general, this is
a place where a “plug-and-play” approach can be used by calling existing parallel
linear algebra software such as LAPACK or ScaLAPACK [35, 119]. For example, a
parallel direct solver with Cholesky factorization can be used to compute the search
direction [B(xi)]−1∇f (xi) at any iterate xi if the Hessian or its approximation B(xi)

22.2 Global Optimization 653

is symmetric positive definite; a parallel matrix–vector multiplication routine can
be used for computing all matrix–vector products in the truncated Newton or trust-
region subproblem solves. Byrd et al. [164] showed that the quasi-Newton step can
be obtained by using inverse BFGS updates, which then require only matrix–vector
multiplications and can be parallelized straightforwardly with a parallel matrix–
vector multiplication routine.

If one wishes to exploit sparsity, the above parallelization becomes more com-
plicated. Several issues arise. First, an iterative solver can always be used for either
a line-search or trust-region algorithm in the truncated Newton’s method. This re-
quires a preconditioner, which not only depends on the problem but also is more
difficult to parallelize. Work on this issue was done by Balay et al. [73] and Jones
and Plassmann [518, 520, 521, 522], who developed a parallel incomplete Cholesky
factorization algorithm that seems efficient in practice.

Second, parallel direct-sparse solves are difficult on distributed-memory ma-
chines, because data and computation are tricky to distribute to balance the load
among processors. A symbolic factorization phase is a potential serial bottleneck in
addition to the sparse triangular system solves. Coleman and Sun [213] developed a
group of parallel direct-sparse solvers for optimization using a multifrontal approach.

Bokhari and Mavriplis [125], Feo et al. [325], and Zaslavsky et al. [1016] demon-
strated that the Tera multithreaded architecture is particularly good for parallel sparse
and irregular calculations. However, there is no general sparse-matrix software avail-
able yet on this architecture. Finally, sparsity patterns often change from application
to application. Classes of optimization problems having the same sparsity patterns,
like some large linear programming problems, need to be identified, and special
parallel sparse solvers targeted to these classes of problems can then be developed.
Work in this direction includes Bixby and Martin [117], Schneider and Wise [838],
and Coleman and Wright [207].

22.2 Global Optimization

Research on global optimization has increased dramatically in recent years. An im-
portant reason is that the increasing power of parallel high-performance architec-
tures makes it possible to attack many large, difficult global optimization problems
of practical interest. Ten years ago, work in this area was still limited to toy prob-
lems of about 10 variables, but now, with the help of parallel computing, advanced
algorithms have been developed and applied to problems with hundreds or even
thousands of variables in such applications as cluster simulation [159, 160, 161,
162, 211, 212, 858, 1007, 1008], protein folding [163, 214, 234, 575, 576, 613, 727,
764, 781, 852, 853], and molecular docking [270, 672].

A global optimization problem requires a local minimizer with the lowest func-
tion value among all local optimizers. Certain classes of problems, like convex pro-
gramming problems, have only one local minimum. But most functions arising in
applications are nonconvex, and they may have many local minima, constrained or
unconstrained.

654 Chapter 22 Parallel Continuous Optimization

1 2 3 4 5 6 7 8
100

50

0

50

100

150

200

250

300

350

Figure 22.1 A function with three local minimizers.

It is quite easy to see that general smooth-continuous, global optimization prob-
lems are intractable. Furthermore, even if one has the global minimizer in hand, it
is an intractable problem to verify that it is anything more than a local minimizer.

Nevertheless, the fact that a problem is impossible to solve in general does
not preclude useful research in the area. Often practical problems are posed as
global optimization problems because that is the nearest model problem in the
optimization toolkit to what the user really wants, and modern global optimization
methods can find valuable solutions that satisfy the user.

This point is far less subtle than it may seem at first. To see this, consider a
hypothetical problem in engineering design. The designer wishes to find the best
design for a widget in terms of a single design variable that is constrained to lie
in a bounded interval. Suppose that there are three local minimizers, as in Figure
22.1. The left-hand local minimizer and the wide shallow middle minimizer will
be found by a good global optimization algorithm. On the other hand, the wide
shallow middle minimizer is likely to be the only one found by a local algorithm.
However, the narrow right-hand local minimizer, which is also the global minimizer,
is unlikely to be found without an impractical amount of effort by any algorithm.

In practice, this may not be important at all; such a narrow minimum for the
function is likely to have little practical value because if the process for manufac-
turing the widget leads to any variability in the decision variable, then the actual
design criterion for the finished good will end up high on the narrow valley at a
much worse value than that in the more stable left-hand valley. Of course, decision
makers would want to make that decision for themselves in possession of the loca-
tion of the true global optimizer. Our point is that the more difficult a given global
optimizer is to find, the less important it is likely to be to find it.

22.2 Global Optimization 655

We describe some applications areas and related parallel, global optimization work
below.

22.2.1 Protein Folding

Protein folding is a fundamental unsolved problem in structural molecular biology.
The problem is to determine how the protein amino acids fold to a unique 3-D
structure. There are no direct physical means to detect this. X-ray crystallography
and NMR spectroscopy have been used to derive approximate structures, but this
requires months, or even years, of laboratory effort for each protein.

The goal is to determine the structure, with only the knowledge of the amino acid
sequence of the protein, by finding a structure corresponding to the global potential
energy minimum. While this is possible in theory, it is computationally intense since
it requires solving a global optimization problem with many thousands of degrees
of freedom.

The potential energy function usually is given in an empirical form. It includes
energy terms for such atomic interactions in proteins as electrostatic, van der Waal’s,
bonded, torsional, and so on. Typically, the total energy E has the following form:

E = Eelec + Evand + Ebond + Eangl + Etors

where

Eelec =
∑

ij/electro

qiqj

εrij

Evand =
∑

ij/vander

(
σij

rij

)12

− 2

(
σij

rij

)6

Ebond =
∑

ij/bonded

kij(rij − r0
ij)

2

Eangl =
∑

θ/bonded

kθ(θ − θ0)2

Etors =
∑

φ/torsional

kφ[1+ cos(nφ − φ0)]

and, where θ , φ, and rij are bond angle, torsional angle, and pairwise distance,
respectively, and depend on the atomic positions, and all other indicated quantities
are given parameters.

Note that the potential energy function is defined in terms of the atomic positions
xi, i= 1, . . . ,n, where n is the number of the atoms in the protein and usually is in the
range of 1000 to 100,000. Recent work to develop special methods for this problem
includes Scheraga et al. [575, 576, 764, 831], Straub et al. [904], Coleman et al. [211,
212], and Byrd and Schnabel [162, 163, 234, 858].

656 Chapter 22 Parallel Continuous Optimization

22.2.2 Cluster Simulation

Another class of global optimization problems comes from the emerging field of
cluster science [419, 799]. Clusters important for material design include argon
clusters [476, 477, 478], various metal clusters [369, 514], and clusters of carbon
molecules such as the famous carbon 60, the Buckyball [581]. A key research problem
is to find the most stable configuration for any given cluster. The clusters may
not exist in nature or may be hard to observe. However, given a potential energy
function, its global minimizer corresponds to the most stable configuration for
that model of potential energy. As an example, the potential energy function for
simulating argon clusters is

Eargon =
∑

ij

1
‖xi − xj‖12

− 2
‖xi − xj‖6

where xi and xj are positions of the atoms.
Note that this function is very similar to the van der Waal term in the protein

potential energy function. As a matter of fact, they are indeed models of the same
type of potentials due to the so-called van der Waal weak forces between pairs
of atoms. The potential energy function for the argon cluster is simpler than for
proteins, but it is by no means easy to minimize. Hoare and Pal [478] estimated that
this function has exponentially many local minimizers that grow as a function en2

of
the number of atoms n in the cluster. Recent work on this problem includes Northby
[717], Xue [1007], Byrd and Schnabel [160], Coleman et al. [211, 212], and many
others.

22.2.3 Distance Geometry

Strong motivation for solving distance geometry problems is their application in
NMR macromolecular modeling, where a protein structure can be determined by
solving a distance geometry problem using the NMR distance data.

These problems can be formulated as global nonlinear, least-squares optimization
problems [233], or, from a graph-theoretic point of view, they are a class of NP-
complete, graph-embedding problems [461, 681, 827, 828]. Recent attempts to solve
these problems on parallel high-performance architectures are by Hendrickson [462],
Moré and Wu [683], and Byrd et al. [1020].

A simple version of the distance geometry problem is to find a set of points to
realize a given set of distances between some of the points. A more general version
is to satisfy a given set of bounds on the distances. Mathematically, the problem is
to find a set of points xi ∈ R

3, i = 1, . . . , n such that the distance ‖xi − xj‖ between
points xi and xj is equal to a given distance dij or in between a given pair of bounds
lij and uij of the distance. It can be formulated as a global optimization problem as
follows. If dij are given,

min
∑

(i,j)∈S

(‖xi − xj‖2 − d2
ij)

2

22.2 Global Optimization 657

where S is a given set of (i, j) pairs. If lij and uij are given,

min
∑

(i,j)∈S

min2

‖xi − xj‖2 − l2ij

l2ij
, 0

+max2

‖xi − xj‖2 − u2

ij

u2
ij

, 0

Note that S may have (i, j) ranging from only a few to all possible pairs. For less than n
pairs, the problem can be trivial. For all possible pairs, the problem still can be solved
in polynomial time [122, 233]. However, in practice, S is sparse, and the problem is
hard to solve.

22.2.4 Stochastic Global Optimization

A stochastic global optimization method was proposed by Rinnooy Kan and Timmer
[803]. Byrd and Schnabel [162] developed a parallel version. The method has these
basic steps. A set of points is chosen in the problem domain, and the objective
function is evaluated at the points. A subset of the points with low function values
are selected as starting points for local minimization, which then is performed.

If one of the local minimizers is accepted as the global minimizer, the algorithm
stops. Otherwise, the process is repeated. Each time the starting points are selected
from all previous, as well as current, sampled points. Therefore, as the algorithm
proceeds, more and more points are sampled, and there are increasing chances to
find the global minimizer.

Rinnooy Kan and Timmer [803] showed that with probability one, the algorithm
converges to a global minimizer in a finite number of iterations. Byrd and Schnabel
[162] developed a parallel version of the algorithm by sampling starting points and
performing local minimizations, all in parallel. The problem domain is divided into
smaller regions, each of which is assigned to a processor. Some regions are further
refined if lower function values or local minima are found, and the subregions are
reassigned to other processors when necessary to achieve load balance.

Although it requires dynamic load balancing, the stochastic global optimization
algorithm is easy to parallelize and performs well on both shared- and distributed-
memory architectures. Byrd and Schnabel [162] reported development of the al-
gorithm on KSR-1 and IBM SP2 and performance results on protein and related
molecular conformation problems. The algorithm has also been used by research
groups in other institutions, including some at the CRPC.

22.2.5 Effective-Energy Simulated Annealing

The effective-energy simulated–annealing algorithm was developed by Coleman et
al. [211]. The algorithm was parallelized and implemented on Intel iPSC/860 and
IBM SP2. We describe the parallel implementation of this algorithm to show a general
parallelization strategy for all simulated-annealing–type algorithms.

A physical annealing process starts at a high temperature and then cools down
by stages gradually to the zero temperature, where the system reaches the ground

658 Chapter 22 Parallel Continuous Optimization

state. The process has to proceed slowly so that at each cooling stage the system has
enough time to reach equilibrium, for otherwise it will be trapped in a local state.

A simulated-annealing algorithm tries to mimic this process by considering the
objective function of the global minimization problem as the energy function of a
simulated system. A parameter corresponds to the temperature and is decreased by
stages. At each stage, function values are randomly sampled. Each time a point of
lower potential energy is found, it is accepted as the current point. Otherwise, a point
is accepted or rejected randomly using the Metropolis criterion, which depends on
the temperature: if the temperature is higher, the probability of accepting the point
is also higher. This property allows the algorithm to sample and accept more points
at high temperature, while gradually settling down at lower temperatures to smaller
regions where the lowest point of potential energy may be located. It has been proved
that the sequence of the points sampled by the simulated-annealing algorithm form
a Boltzmann distribution and converges to a global minimizer with probability one
as the temperature goes to zero [1].

The effective-energy simulated-annealing algorithm is similar to the simulated
annealing algorithm except that a class of objective functions, called effective energy
functions, are used, one at each temperature. The higher the temperature, the
smoother the corresponding objective function. Coleman et al. [211] demonstrated
experimentally that this algorithm converges faster, with fewer function evaluations
than the standard simulated annealing algorithm.

As in all simulated-annealing–type algorithms, the effective-energy simulated-
annealing algorithm can be parallelized by sampling and evaluating all the points
in parallel at every cooling stage. A general strategy is that at each cooling stage, each
processor generates its own sequence of points (i.e., random walks), compares the
results with other processors, and chooses the lowest point among all processors as
the starting point in the next stage. Coleman et al. [211] demonstrated scalable per-
formance of the algorithm using this strategy on the Intel iPSC/860 with application
to molecular-cluster conformation problems.

22.2.6 Global Continuation

Global continuation algorithms, as named in Moré and Wu [682], are a class of
homotopy-type algorithms applied to global optimization problems. A special inte-
gral transform is used to generate the homotopy. A set of curves tracing the solutions
to the homotopy at each parameter value is then traced to locate a global solution at
the end. The special transform makes the function smoother, with fewer local min-
imizers. Also, the local minimizers are concentrated in regions with low function
values, where a global minimizer is likely to be located. Therefore, by tracing the
local minimizers on the smoothed functions back to the original function, there is
a good chance that at least one curve will lead to a global minimizer of the original
function [682, 1005].

Global continuation algorithms have been studied by several research groups,
including Kostrowicki et al. [575], Shalloway [852, 853], Coleman et al. [211], Straub

22.3 Direct Search Methods 659

[903, 904], Moré and Wu [681, 682, 683, 685]), and Shao et al. [858], each having
slightly different transforms. In particular, Moré and Wu [682, 684] developed a class
of parallel, global continuation algorithms for solving distance geometry problems
with application to NMR macromolecular modeling.

The algorithms are pleasingly parallel: multiple solution curves are traced in paral-
lel. The best solution found by the processors is selected at the end. The computation
on each processor is intensive since it involves a sequence of local minimizations.
However, the load on all processors is almost the same, and little communication is
required, except at the beginning and end of the computation. The algorithms have
been implemented on several parallel architectures as a parallel software package
called DGSOL, available through the Network Enabled Optimization System (NEOS)
at Argonne National Laboratory. This parallel implementation has been used to solve
large distance geometry problems of practical interest.

22.3 Direct Search Methods

Direct search (pattern search) methods are longtime favorites of users, but they have
only recently become interesting to optimization researchers. One of the reasons is
that direct search methods are more interesting to try to parallelize than Newton
methods. The work in a Newton method usually is dominated by the cost of the
function evaluations and the linear algebra required to solve the underlying local
model problem. Direct search methods require essentially no linear algebra, but they
are profligate users of function evaluations. This is because there is no underlying
local model to suggest where a better next iterate is likely to be found as in a Newton
method. Instead, direct search methods sample the function to find the next iterate.
Of course, Newton methods use function evaluations to confirm or reject a suggested
next iterate, but direct search methods use function values to explore for a next
iterate. This exploration phase makes it possible to invent new intrinsically parallel,
direct search methods rather than simply to parallelize an existing method as in
Newton’s method. Again, the same thing can be said of evolutionary algorithms
[841], although we will not explore them further since they seem to be practical only
for very inexpensive functions, or for problems with completely general variables,
and in our opinion, their convergence theory is less satisfying.

This approach led to the parallel direct-search (PDS) method [258, 937], and
to the novel convergence theory for more general pattern search methods [55,
607, 608, 609, 610, 938, 939]. Audet [54] gives interesting examples to illustrate
the limitations of any convergence theory for these methods. Lewis and Torczon
[609] and Audet and Dennis [56] extended these methods and the convergence
analysis to problems with nonlinear constraints. Audet and Dennis [56] extend the
algorithms and analysis to nonlinear problems with discrete as well as continuous
variables. Hough and Meza [486] proposed using the PDS method for the trust-
region subproblem and developed a parallel trust-region algorithm for nonlinear
optimization.

660 Chapter 22 Parallel Continuous Optimization

Hough et al. [485] developed a variant of PDS called APPS. The APPS software,
available at http://csmr.ca.sandia.gov/projects/apps.html, is not only asynchronous, but
also fault tolerant. The motivation is to adapt parallel pattern search to environments
where the simulation times associated with individual function evaluations may vary
appreciably. The idea is that each process is in charge of one or more of the search
directions. The process carries out a pattern search from the best point it knows
along the directions for which it is responsible. Whenever a search produces a better
point, the process updates its own best point. It then sends a nonblocking message
to all the other processes with the better point, its function value, and the step size
that produced the better point. Meanwhile, the other processes continuously check
their inboxes for messages with new candidates for best point. Each time a process
finishes computing any function value, it checks its copy of the best point to see if
it was changed as a consequence of a message sent by another process. If so, then
the search is moved to the new best point and adopts a consistent step size.

Clearly this algorithm is asynchronous. It also is fault tolerant. If a process goes
down, the orphaned search directions are reassigned to other processors. Kolda and
Torczon [572] have provided a global convergence analysis for APPS. APPS may
perform more function evaluations a than standard pattern search, perhaps in part
because it searches only on a ray from each point, but the overall solution time still
may be reduced, and we understand that users report good experience with the code.

The sequential version of PDS, called MDS or multidirectional direct search, was
a “sequentialization” of PDS, rather than the usual way around. In order to discuss
some practical parallel aspects of the algorithm, with its more general variants,
we will give the algorithm for continuous variables and no constraints. Thus, we
consider

min
x∈Rn

f (x) (22.1)

The formulation of generalized pattern search (GPS) in Figure 22.2 is from Booker et
al. [129]. It differs from Torczon’s original formulation in [939], but it is equivalent.
For simplicity, we say that if there are constraints, and if either x is infeasible or if
f (x) cannot be evaluated successfully, then we set f (x) =∞. Note that both steps
have ample opportunities for parallel evaluations of the objective function and
constraints. Indeed, one would certainly tailor the search step to the number of
function evaluations it would be convenient to compute in parallel. There is also a
nice place here for hierarchical parallelism if the evaluation of a single f (x) is already
a parallel program.

Step 2 provides the safeguard that guarantees convergence, as in the following
result from Audet and Dennis [57], which extends Torczon [939]. The extension of
GPS to GMIPS (x has some discrete components) differs from GPS in the definition of
the poll set Xk, and the convergence result is a bit different, though equally satisfying:

If f is continuously differentiable, then there are infinitely many unsuccessful
iterates produced by any GPS method, and some limit point of the unsuccessful
iterates is a stationary point for problem 22.1.

22.3 Direct Search Methods 661

Let M0 denote a mesh on R
n and suppose that x0 ∈M0 has been given. (Typically, x0 ≈ x∗,

where x∗ is a preliminary baseline solution, but any choice of x0 ∈M0 is allowed.) Let X0 ⊂M0

contain x0 and any 2n points adjacent to x0 for which the differences between those points

and x0 form a maximal positive basis (composed of multiples of the coordinate vectors) for R
n.

As the algorithm generates xk ∈Mk, let Xk ⊂Mk be defined in the same way. For k= 0, 1, . . ., do

the following:

1. Search. Employ some finite strategy to try to choose xk+1∈Mk such that f (xk+1) < f (xk).

If such an xk+1 is found, declare the Search successful, set Mk+1=Mk, and increment k;

2. else Poll. If xk minimizes f (x) for x ∈Xk, then declare the Poll unsuccessful, set xk+1= xk,

and refine Mk to obtain Mk+1 by halving the mesh size (write this as Mk+1=Mk/2); else

declare the Poll successful, set xk+1 to a point in Xk at which f (xk+1) < f (xk), and set

Mk+1=Mk.

Increment k.

Figure 22.2 Algorithm for generalized pattern search (GPS).

This result says that one need only monitor the unsuccessful iterates of GPS to find a
stationary point, and this is without regard to how naive the search strategy is in step
1. In practice, of course, the search strategy matters a lot to the number of function
values required to find a good optimizer.

We now turn to using global model functions as surrogates for f (x) to try to Search
with greater parsimony and thereby reduce the total number of objective function
evaluations, or parallel objective function evaluations. Intuitively, surrogate meth-
ods use global models to predict where to find a successful next iterate in just the way
that Newton methods use local models. Of course, the local models must be first-
order accurate for Newton methods to work—but then they work very well indeed. It
is unrealistic to expect much accuracy of a global model, and that is one reason why
we avoid calling them approximations. The Poll step has the same opportunities for
parallelism as before, but parallel function evaluations of the inexpensive surrogate
can allow a sort of rough, global surrogate optimization in the search strategy. One
can return a number of candidates for xk+1, evaluate them in parallel, and accept the
best.

22.3.1 The Surrogate Management Framework

The description of the surrogate management framework (SMF) that we present in
Figure 22.3 is a set of strategies for using approximations in both the Search and
Poll steps of a GPS algorithm. For greater clarity, we have also identified a separate
Evaluate/Calibrate step. In what follows, we assume that a family of approximating
functions has been specified, that an initial approximation has been constructed,

662 Chapter 22 Parallel Continuous Optimization

Given s0, an initial approximation of f , and x0 ∈M0, let X0 ⊂M0 contain x0 and any 2n points

adjacent to x0 for which the differences between those points and x0 form a maximal positive

basis (composed of multiples of the coordinate vectors) for R
n. As the algorithm generates

xk ∈Mk, let Xk ⊂Mk be defined in the same way. For k = 0, 1, . . ., do the following:

1. Search. Use any method to choose a trial set Tk ⊂Mk. If Tk �= ∅ is chosen, then it is

required to contain at least one point at which f (x) is not known. If Tk = ∅, then go to

Poll.

2. Evaluate/Calibrate. Evaluate f on elements in Tk until either it is found that xk min-

imizes f on Tk or until xk+1 ∈ Tk is identified for which f (xk+1) < f (xk). If such an xk+1

is found, then declare the Search successful. Recalibrate sk with the new values of f

computed at points in Tk.

3. If Search was successful, then set sk+1= sk, Mk+1=Mk, and increment k; else return to

Search with the recalibrated sk, but without incrementing k.

4. Poll. If xk minimizes f (x) for x ∈ Xk, then declare the Poll unsuccessful, set xk+1= xk,

and set Mk+1=Mk/2; else declare the Poll successful, set xk+1 to a point in Xk at which

f (xk+1) < f (xk), and set Mk+1=Mk. Recalibrate sk with the new values of f computed at

points in Xk. Set sk+1= sk. Increment k.

Figure 22.3 Algorithm for the surrogate management framework (SMF).

and that an algorithm to recalibrate the approximation is available. (See Booker et
al. [127, 129] and Serafini [849] for more details.)

22.3.2 Asynchronous Parallel Search

In general, the PDS algorithm assumes a homogeneous and tightly coupled parallel
system, and it synchronizes in every iteration to compare the function values among
all processors. The problem is that, in practice, the available machines are most
likely loosely coupled and heterogeneous. Synchronization may force many of the
processors to remain idle while others are busy. The problem can be more serious
when the cost of function evaluation varies with the point at which the function is
evaluated. Then the load will not be balanced among processors.

The asynchronous version of the PDS by Hough et al. [485] can be used to over-
come the difficulty that the PDS algorithm has for synchronization and load bal-
ancing. In the asynchronous algorithm (APDS) shown in Figure 22.4, each processor
takes an independent direction to search for a decreasing point. It broadcasts the
point when it finds one or returns to the next iteration when informed that a de-
creasing point has been found elsewhere. Communication among the processors is
managed by some daemon processes, and the cost is justified by the much better
balance of computation across all processors.

22.4 Optimization of Linked Subsystems 663

On each processor, define x+, xbest , xtrial to be current, best, and trial iterates, respectively, and

let f+, fbest , ftrial and �+, �best , �trial be corresponding function values and step sizes. Let tol be

a small tolerance for the step size.

1. Consider each incoming triplet {x+, f+,�+} received from another processor. If f+ < fbest ,

then {xbest , fbest , �+}← {x+, f+, �+}, �trial ←�best .

2. Compute xtrial← xbest +�triald and evaluate ftrial = f (xtrial), where d is the local direction.

3. Set {x+, f+, �+}← {xtrial, ftrial, �trial}.
4. If f+ < fbest , then {xbest , fbest , �best} ← {x+, f+, �+}, �trial ← �best , and broadcast

{xbest , fbest , �best}. Else �trial ← 1
2 �trial.

5. If �trial > tol, go to step 1. Else broadcast a local convergence message.

6. Wait until either (a) enough of processes have converged for this point or (b) a better

point is received. In case (a), exit. In case (b), go to step 1.

Figure 22.4 Algorithm for asynchonous parallel direct search (APDS).

22.4 Optimization of Linked Subsystems

The formulation we discuss in this section applies to a class of optimization prob-
lems arising in multidisciplinary design optimization (MDO). In MDO, the design
variables and the system variables are correlated through coupled nonlinear subsys-
tems, each of which may involve expensive calculations such as PDE solves. The idea
here is that parallelism can be exploited at the coupling level where the subsystems
can be solved independently, if an appropriate MDO formulation is employed. The
technique we employ is related closely to domain decomposition for PDE or multiple
shooting for ODE.

A general MDO problem can be formulated as the following nonlinear optimiza-
tion problem:

min f (x, u(x))

s.t. g(x, u(x))≥ 0 (22.2)

where x is a set of design variables and u(x), the vector of system or ancillary variables,
is defined implicitly by the blocked system of equations,

A1(x, u1(x), . . . , uN(x))= 0

... (22.3)

AN(x, u1(x), . . . , uN(x))= 0

This system represents the linking of all the subsystems, and the act of solving
it numerically for u(x), given x, is known as multidisciplinary analysis (MDA). This

664 Chapter 22 Parallel Continuous Optimization

terminology is in line with the standard engineering terminology that a disciplinary
analysis is a single-disciplinary simulation run.

The most conventional approach to problem (22.2) is sometimes called the control
theory or closed equations or black-box approach, which formulates the problem as

min f̂ (x)

s.t. ĝ(x)≥ 0 (22.4)

where f̂ (x)≡ f (x, u(x)) and ĝ(x)≡ g(x, u(x)).
At each iteration of an optimization procedure applied to problem (22.4), any

call to the function routines causes the design variable x to be passed to the MDA
solver, and the linked system problem (22.3) is solved for u(x). This reduces the
optimization problem to its essential decision variables x, which can be large when
x is a distributed parameter, but it is often an order of magnitude lower dimensional
than the dimension of u.

To get a better idea of the expense of solving problem (22.3), think of MDA as
solving a perhaps huge nonlinear system of equations, which will have to be done
iteratively, whose residuals at a given iterate u(x)k can only be evaluated in blocks,
and where evaluating the ith block may require doing a single-discipline analysis
for the discipline represented by Ai perhaps several times in every iteration. Even
more scary is thinking about the problem of computing derivative approximations
in order to use a Newton-type method for MDA. Even getting derivatives to use in
an optimization algorithm applied to problem (22.4) is expensive. For example, if
one is to use finite differences, then ∇ f̂ (x) for any x will cost dim(x) MDA solves.
One can try to find and use adjoint formulations, but that is generally not practical
if the dimension of the range of g is at all large.

The MDA system problem (22.3) is naturally decomposed into disciplinary equa-
tions, which can be distributed to multiprocessors and solved in parallel. For exam-
ple, A1 is solved for u1 on processor 1, A2 for u2 on processor 2, and so on. However,
given x, u1 depends on x as well as other ui, and so on for u2, . . . , uN. Thus, this
procedure is just a block nonlinear Jacobi iteration, which is problematic at best,
although it easily allows parallel, single-disciplinary analyses. Of course, in many
cases, load balancing is a problem because of the different cost of executing different
single-disciplinary analyses.

Probably the most often used procedure is the almost equally problematic, and
less parallel, Gauss–Seidel or successive replacements procedure; that is, first assume
some values for x and ui, solve A1 for u1; then with the new value for u1 along
with given values for x and other ui, solve A2 for u2, and so on until a new set of
values for all ui is found. The procedure then repeats until the whole system reaches
equilibrium, or in other words, converges to u that satisfies all the equations. This
method can only be executed sequentially, and as with the Jacobi procedure, there
is no reason to believe it will converge for a given problem. Still, the method does

22.4 Optimization of Linked Subsystems 665

not require a system Jacobian for problem (22.3), and sometimes intuition helps to
order the single-discipline solves to obtain convergence.

At the other end of the spectrum of formulations is the simultaneous analysis and
design or nonlinear programming or open equations formulation. This formulation can
best be seen by rewriting problem (22.2) as

min f (x, u)

s.t. g(x, u)≥ 0

A(x, u)= 0

where x, u are both treated as independent variables, and the inclusion of the MDA
equations as a constraint ensures that u= u(x) at all feasible points. There are many
reasons why this is the ideal formulation for most problems, but it is likely to be
extremely large and to need special linear algebra techniques to handle the linear
algebra for a sequential quadratic-programming implementation. A major difficulty
is that one must be able to open up the single-discipline analysis codes and extract
the residual computations for the equations solved by that code.

Recent work on MDO—for example, Cramer et al. [228], Dennis and Lewis [256],
and Alexandrov and Lewis [21]—demonstrated that the MDA equations, as well
as the MDO problem, can be solved in parallel if appropriate formulations and
algorithms are used. We describe some of the ideas in the following.

For simplicity, consider a two-discipline MDO problem,

min f (x0; R1(u1); R2(u2))

s.t. g0(x0; S1(u1); S2(u2))≥ 0

g1(x0; x1; u1)≥ 0

g2(x0; x2; u2)≥ 0

where u1 and u2 depend on x0, x1, and x2 through the MDA system,

A1(x0; x1; u1; T1(u2))= 0

A2(x0; x2; u2; T2(u1))= 0

Here the design variable x is partitioned into x= (x0; x1; x2) with x1 and x2 specific
to discipline 1 and 2, respectively, and x0 shared by both. The function g0 is called
the design constraint, g1 and g2 are the disciplinary design constraints, and A1 and
A2 are the disciplinary analysis constraints.

As we have discussed before, a major difficulty is that the disciplinary analysis
constraints are coupled through variables u1 and u2. A very important property that
generally holds is that the coupling through T1, T2 may involve small subvectors of
u1 and u2. This is analogous to the domain decomposition approach to PDE solutions
where at most a band around the boundary values at the subdomain interfaces are
exchanged between subdomain solves. Thus, without making the problem too much
larger than problem (22.4), we can introduce new variables u12 and u21 to replace
T1(u2) and T2(u1) and add new constraints to make u12 equal to T1(u2) and u21 to

666 Chapter 22 Parallel Continuous Optimization

T2(u1). Again, a feasible point will satisfy problem (22.3). This gives one of the IDF
formulations for the MDO problem by Cramer et al. [228]:

min f (x0; R1(u1); R2(u2))

s.t. g0(x0; S1(u1); S2(u2))≥ 0

g1(x0; x1; u1)≥ 0

g2(x0; x2; u2)≥ 0

u12 − T1(u2)= 0 (22.5)

u21− T2(u1)= 0 (22.6)

where u1 and u2 depend on x0, x1, and x2 through the MDA system,

A1(x0; x1; u1; u12)= 0

A2(x0; x2; u2; u21)= 0

Note that in this formulation, u12 and u21 are considered as independent variables;
therefore, given x0, x1, x2, u12 and u21, A1 and A2 can be solved in parallel for u1 and
u2. The coupling between the two equations is handled by the consistency constraint
equations (22.5) and (22.6) at the MDO level. Thus, a complete MDA is not required
at each iteration of a standard SQP optimizer. A major point is that the individual
discipline solver codes are used as they are.

The model we show above is for a two-discipline MDO problem, but the technique
for decoupling or decomposing the MDO/MDA system into parallel, independent
subsystems can be extended to problems with more than two disciplines, especially
when they are loosely coupled, that is, each equation/constraint is connected with
only a few other equations/constraints, and thus only a small number of auxiliary
variables will be required.

MDO or linked subsystem problems are one of the “grand challenges” of scientific
computation. There is little hope of solving realistic problems without significant
advances in automatic differentiation.

Finally, we remark that Braun [141] and Sobieski and Kroo [880] suggested a way
of posing linked subsystem problems called collaborative optimization (CO). Only in
special circumstances is this problem equivalent to problem (22.2), but there are
other ways to pose optimization with linked subsystems than the straightforward
problem (22.2), and CO has the comforting feature of mimicking the way “parallel”
teams of disciplinary specialists would attach such problems.

22.5 Variable and Constraint Distribution

Ferris and Mangasarian [329, 330] developed two classes of parallel algorithms
for constrained optimization problems. Algorithms of the first class distribute the
variables on multiple processors. Each processor updates its own variables in parallel
while allowing the other variables to change in a restricted fashion. Once a new step
is obtained, all processors communicate and combine the steps to obtain the new
iterate in the whole space. The second class of algorithms distributes the constraints

22.5 Variable and Constraint Distribution 667

over the processors instead. Each processor then solves a subproblem with a subset
of constraints and a modified objective function. The processors then exchange
Lagrange multipliers and repeat.

Ferris and Mangasarian [329, 330] presented algorithms of these classes designed
for various types of optimization problems, gave a convergence theory, and provided
preliminary performance results. We refer the reader to these works for more details.

22.5.1 Variable Distribution

Consider the problem

minx∈X f (x) (22.7)

where X is a nonempty closed convex set in R
n and f a continuous and differentiable

function. The variable distribution algorithm first distributes p blocks x1, . . . , xp of

variable x, where xl ∈R
nl,

∑p
l=1 nl = n, over p processors. At iteration i with an iterate

xi ∈ R
n, processor l updates block xi

l by solving a subproblem,

minxl,λl
f (xl, xi

l̄
+Di

l̄
λl̄) (22.8)

s.t. (xl, xi
l̄
+Di

l̄
λl̄) ∈ X

where l̄ denotes the complement of l in 1, . . . , p, λl̄ ∈ R
p−1. The matrix Di

l̄
is an nl̄-

by-(p− 1) matrix. It is formed by taking arbitrary direction di ∈ R
n, breaking it into

blocks of di
l ∈ R

nl, l = 1, . . . , p, consistent with the distribution of the variables, and
placing these vectors along the block diagonal of Di

l̄
,

Di
l̄
= diag(di

1, . . . , di
l−1, di

l+1, . . . , di
p)

Let (yi
l,λ

i
l̄
) be the optimal solution of problem (22.8), and xil = (yi

l,λ
i
l̄
). Then after all

processors obtain their xil, l = 1, . . . , p, the next iterate xi+1 for the original problem
(22.7) can be obtained by solving the subproblem,

minµ0,. . .,µp f (µ0xi +
p∑

k=1

µkxik) (22.9)

s.t. µ0xi +
p∑

k=1

µkxik ∈ X,
p∑

k=0

µk = 1

with xi+1 set to µ0xi +∑p
k=1 µkxik.

Note that the subproblem (22.8) is to solve the problem in the subspace spanned
by its allocated variables. Since each involves only its own local variables, all can be
solved in parallel. The subproblem (22.9) is again to solve the problem on a subspace,
but now it is the subspace spanned by the steps from the current iterate to each of
the subspace optima found at the previous level. Since these steps were computed on
different processors, a synchronization step among processors is required for solving

668 Chapter 22 Parallel Continuous Optimization

problem (22.9). Clearly, this process can be applied to generate multiple levels until
a good fit is found for the given problem on the given machine.

The variable distribution method can be used for unconstrained optimization
problems and problems with block separable constraints. Ferris and Mangasarian
[330] showed that the algorithms for these problems converge with certain opti-
mality conditions. They also tested the algorithms with a subset of optimization
problems in CUTE [126] and obtained reasonable speedups on CM-5 with up to 32
processors.

22.5.2 Constraint Distribution

The constraint distribution method applies to quadratic programs with strictly con-
vex objective functions. It can also be extended to general convex programs, but
with relatively weaker convergence results.

In general, consider the following convex program,

min f (x)

s.t. g1(x)≤ 0, . . . , gp(x)≤ 0

where f is a strictly convex function, and gl are convex functions from R
n to

R
ml, l = 1, . . . , p. The method distributes the block constraints to p processors.

On processor l, a subproblem with only constraint block gl(x) ≤ 0 and a modified
objective function is solved. Then the solutions and the Lagrange multipliers are
shared among processors, and the whole process is repeated. Note that the modified
objective function on one processor is composed of the original function plus some
augmented Lagrangian terms formed by the constraints assigned to other processors.

For illustrative purposes, consider a quadratic program with three blocks of in-
equality constraints,

min cTx+ 1
2

xTQx

s.t. Alx≤ al, l = 1, 2, 3

where c ∈ R
n, Q ∈ R

ml×n, al ∈ R
ml, and Q is symmetric and positive definite. A con-

straint distribution algorithm for this problem would first distribute the constraints
to three processors, with constraint l to processor l. Then at iteration i, a subproblem
can be solved on each processor in parallel, that is, on processor l:

minxl
cTxl + 1

2
xT

l Qxl

+ 1
2γ

3∑
j=1,j �=l

‖(γ (Ajxl − aj)+ pi
jl‖2

+ xT

l ri
l

s.t. Alxl≤ al (22.10)

where γ is a positive number and pi
jl and ri

l , j, l = 1, 2, 3 are parameters to be de-

termined. The pi
jl play the roles of the multipliers and converge to the optimal

22.6 Conclusion 669

multipliers eventually, while ri
l replaces estimates of the multipliers by their most

recent values obtained from each of the other subproblems. Note that the objec-
tive functions for the subproblems in problem (22.10) are quadratic, augmented
Lagrangian functions perturbed by the linear terms xT

l ri
l . Thus, in each subproblem,

some constraints are treated explicitly as constraints while the remaining ones are
terms in the augmented Lagrangian objective function.

Given the values for all the parameters, each subproblem in problem (22.10) can
be solved in parallel. However, the parameters are updated using their most recent
values from other processors. Therefore, communication is required at certain points.
Ferris and Mangasarian [329] showed the convergence results for the constraint
distribution algorithm for strictly convex quadratic programs and extended them to
general convex programs. Five small quadratic programming problems were tested
with the algorithm on the Sequent Symmetry S-81, and encouraging results were
obtained.

22.6 Conclusion

Despite much effort and some solid developments, the use of parallelism in general
optimization has not been as fruitful as its use in other areas of numerical com-
putation, such as numerical linear algebra. There are special successful applications,
and some software packages available, but not much performance analysis or bench-
marking work. One of the possible reasons is that practical optimization problems
often have many ancillary variables, but only a few decision variables. The great op-
portunities for finding parallelism might then lie in parallelizing the computation of
the ancillary variables by using domain decomposition to solve a PDE, for example.
If tools for hierarchical parallelism become more generally available, this situation
may change.

Another reason for our slow progress may be the tradition favoring inherently
sequential Newton-like methods where one carefully builds local models and extracts
all the information one can before evaluating a trial step. After all, in local modeling
methods, there is generally a clearly preferred trial step, and if that is not successful,
then the fallback strategies use information obtained from the failure. Methods
such as parallel line searches or sector searches have not been great successes,
probably because they kludge one paradigm onto another rather than finding a
single, consistent algorithmic paradigm.

Global optimization methods attracted more and more attention as usable parallel
and high-performance computing resources became available. Indeed, there are
many cases where scientific problems of an interesting size have been solved by
these methods. Still, the general global-optimization problem is intractable, even
for infinitely smooth functions. Empirically, the computing time needed to get a
reasonable solution using a general global-optimization algorithm seems to grow
exponentially with the problem size, while the speedup can at best be counted on to
be linear with the number of processors. Thus, the future of global optimization
is in the development of efficient and reliable algorithms for specific classes of

670 Chapter 22 Parallel Continuous Optimization

problems. Without such algorithms, problem sizes will remain limited despite gains
from parallel computation.

Parallel direct-search methods are another successful development in the quest
for parallel optimization algorithms. The theory is developing rapidly, and they are
easy to use either as sequential or parallel algorithms. There are many successful
applications, but the methods are slower than Newton methods, and as with all
derivative-free methods, it is difficult to know when to terminate. Thus, the algo-
rithm is more suitable for small problems with uncertain accuracy in the function.
Constraints are problematic for these algorithms as well. If one has no derivatives,
then Lagrange multipliers, a mainstay of constrained optimization, are not avail-
able. However, algorithms for constraints and large-scale applications are interesting
research directions.

We call the problem class MDO in Section 22.4, but in fact, it is much more general
than design. As simulation is used to aid decision makers in more and more areas,
such as crisis management, instances of these problems will arise. Picture a library
of standard simulation codes, such as fluid flow, thermal conductivity, structures,
and so on. One might want to make decisions concerning systems governed by
coupling various choices from among these systems. It may not be practical to have
special simulations in the library for all these combinations. Here, we provide a
completely equivalent formulation for the original problem for which this would not
be necessary because the separate “closed” subsystems could be linked numerically
for each required x without recoding to obtain a solver that works for any x. However,
since the method is relatively new, and the computational demands for MDO are so
high, computational experiments are limited. Indeed, this field is in its infancy.

The variable- and constraint-distribution algorithms are interesting. Different
from many other algorithms, which are obtained by parallelizing their serial counter-
parts, these algorithms are developed with parallel computation in mind. Therefore,
standard optimization components, like computation of a search direction, are de-
signed as parallel procedures. Convergence results have also been established for the
algorithms. They have not been extensively tested or applied in practice. Further
research on these algorithms and their applications can be promising and fruitful.
For example, parallel variable distribution and parallel direct searches seem an inter-
esting pairing for extending the latter to larger problems. Partial separability seems
also to be clearly related to parallel variable distribution.

C

H

A

P

T

E

R

23 Path Following in Scientific
Computing and Its
Implementation in AUTO

H. B. Keller . E. J. Doedel

Essentially all of the equations used to describe and explore phenomena in science
and technology are approximations. They represent the current state of knowl-
edge about the phenomena they purport to explain. As experiments and experience
extend our understanding, the “best” theory, and hence the set of equations, is al-
tered to encompass the latest results. This is how science and technology advance.
Unfortunately, this dynamic inherent in the pursuit of knowledge is frequently sub-
merged, and the current theories are presented as, or believed to be, the “laws of
nature.” Whatever their formulations, we usually cannot determine explicit formu-
las expressing the consequences of these basic theories, and thus we must resort to
approximations of their solutions. So, in practice one deals with approximate so-
lutions to the current (approximate) theories. Implicit in this brief account is the
hidden suggestion that there is indeed a final correct theory of everything. Why this
should be so is not clear, nor is it necessary for the continual attempts to improve
whatever the current theories are. Furthermore, we continue to improve the methods
that yield the approximate solutions—that is what research in scientific computing
is all about.

In order to obtain approximate solutions, the equations of interest are
discretized—that is, they are replaced by a finite set of relations among a finite
set of unknowns. This discretization process can be carried out in many ways: finite
differences, finite elements, spectral and pseudospectral methods, collocation, and
combinations of the above. Each of these “methods” includes a host of different
approximation procedures, and it is not possible to list or categorize all of them.
Further, there is no general theory that ensures the convergence or accuracy of the
approximations. In many special cases, there is such a theory. But the researcher
must do the best she can and proceed as if the convergence theory were applicable
to the approximate problem and seek its solutions. This is what path following is all

671

672 Chapter 23 Path Following in Scientific Computing and Its Implementation in AUTO

about. The discretization of most problems in science and technology leads to large
systems of nonlinear equations containing one or more free parameters. Solutions
are invariably required for some ranges of the parameters. Thus, if u ∈R

N represents
the values of the unknowns that satisfy the discretized problem, say

G(u, λ)= 0 (23.1)

and λ ∈ R is a parameter, then u = u(λ) traces out some path in R
N as λ varies over

some interval I . Path following is the study, development, and application of efficient
numerical procedures to determine such paths. In many current applications N ≥
106, and so parallel processors may be imperative.

Of course, as the path � : {u = u(λ) ∈ R
N, λ ∈ I} is traversed, difficulties may arise

due to the occurrence of some singular behavior. There are many various kinds of
singularities that can occur, even more if the parameter λ ∈ R

p with p > 1. Methods
for exploring the singular phenomena and circumventing it, if possible, have been
devised. Indeed, it is frequently the case that the location and nature of the singular
points on a solution path are of most interest to the scientist or engineer who
proposed the problem.

The parameters λ that occur in computational problems (equation 23.1) are of
three types:

1. A physical or geometric quantity explicitly entering into the formulation of
the problem (the Reynolds number in a flow, the length of a structure, the
resistance of a circuit element, the magnitude of an applied force).

2. An intrinsic quantity not germane to the problem formulation but perhaps use-
ful in the solution procedure (arclength along a solution path, the magnitude
or norm of some variable of the problem, time in a steady-state problem).

3. An “artificial” quantity introduced to aid in the determination of a solution;
we call these homotopy parameters.

To clarify type 3 parameters, we illustrate a simple but pervasive homotopy proce-
dure. Suppose we are given a problem that is somehow known to be hard to solve,
say:

H(u)= 0

But we also know, or can construct, a related problem that is easy to solve, say:

E(u)= 0

“Related” means that their variables u are both of the same type; that is, flow
quantities in the same geometric domain, concentrations of the same species, and
so on. Then we consider the homotopy problem:

G(u, λ)≡ λH(u)+ (1− λ) E(u)= 0 (23.2)

23.1 Local Continuation 673

For λ = 0, we can solve the problem “easily,” and we need only to continue that
solution along the path u(λ) over 0≤ λ≤ 1. If this can be done, we get the solution
to the hard problem: u(1). A crucial aspect of this simple procedure is to be able to
ensure that such a path exists. The naive view of this homotopy is that the monotone
increase of λ from 0 to 1 will do the job. However, this is frequently not the case,
and path-following techniques have been developed, as we shall see, to circumvent
these difficulties.

There are many other ways in which homotopy parameters can be introduced.
For example, simply multiply some or all nonlinear terms in the problem by λ and
then consider continuation from λ= 0 to λ= 1.

23.1 Local Continuation

By “local continuation” we mean the ability to compute a nearby solution at a nearby
parameter value when we know the solution, say u, at some parameter value, say λ.
The basic idea here is the simple notion of continuity. That is, when

G(u, λ)= 0 has solution u= u(λ)

and

G(u, λ+ δ)= 0 has solution u= u(λ+ δ)

then for |δ| small we expect that1

‖u(λ+ δ)− u(λ)‖ = O(δ)

is also small. Thus, we expect u(λ) to be a good approximation to u(λ+ δ), and we
can use it as the initial iterate in some iterative procedure to compute u(λ+ δ).

Indeed, under the appropriate hypothesis, the ideas above can be justified to yield
the Implicit Function Theorem. The specific iterative procedure used to prove these
results is the chord method or special Newton method:

(a) u0(λ+ δ)= u(λ)

(b) Gu(u(λ), λ) �uν(λ+ δ)=−G(uν(λ+ δ), λ+ δ)

(c) uν+1(λ+ δ)= uν(λ+ δ)+�uν(λ+ δ) (23.3)

The hypotheses require that the Jacobian matrix Gu(u(λ),λ) be nonsingular and that
|δ| be sufficiently small. The scheme (equations 23.3) can be used quite effectively
to compute u(λ+ δ) as accurately as required. When this procedure is completed, we
increase λ+ δ, say to λ+ 2δ, and continue the recursion. In this way, m points on
the path � are approximated by {u(λ+ kδ)}mk=1.

The above procedure becomes less “local” as we carry out more steps in the con-
tinuation. That is, we depart from a small neighborhood of the original solution

1 Here we have assumed the solution to be Lipschitz continuous.

674 Chapter 23 Path Following in Scientific Computing and Its Implementation in AUTO

[u(λ), λ] at which Gu was known (or assumed) to be nonsingular, and the iterations
may no longer converge. We discuss some of the questions regarding global continua-
tion in the next section. But several points regarding methods for local continuation
are suggested by the above observations.

The step size, δ, for incrementing the parameter, λ, can be varied. As convergence
proceeds well, δ can be increased and, conversely, as it slows, δ should be reduced.
Empirical formulas for doing this have been devised.

Better initial estimates of the solution u(λ + δ) can be derived, say, by using
differentiability in place of continuity. So, rather than equation (23.3(a)), we can
try

u0(λ+ δ)= u(λ)+ δ u̇(λ) (23.4)

the first two terms in a Taylor expansion. This is the tangent, or Euler, approximation.
Using this we get an O(δ2) error, rather than the previous O(δ) error, to start the
scheme. Obviously, even higher-order expansions could be employed; but then
higher-order derivatives would have to be evaluated.

To obtain the tangent vector, u̇(λ), to the solution path �, we need only differen-
tiate (23.1) with respect to λ to get:

Gu (u(λ), λ) u̇(λ)=−Gλ (u(λ), λ) (23.5)

Then if Gu(u(λ),λ) is nonsingular, we can solve for u̇(λ). Indeed, this suggests that we
might approximate the solution path, u(λ), λ ∈ I by solving the differential equation
(23.5) subject to some initial condition, say

u(λ0)= u0

provided (u0, λ0) is some root of (23.1) and λ0 ∈ I . This is a very old idea, due to
Davidenko [248], and does not seem to be in current use. Since equation (23.5) is not
in explicit form, numerical integration would be quite costly for N large. But a host
of schemes are suggested by this idea, since there are so many ordinary differential
equation (ODE) solution methods.

But perhaps the best local procedure is to use the Euler–Newton method in place
of the special Newton or chord method of equation (23.3); that is,

(a) u0(λ+ δ)= u(λ)+ δu̇(λ)

(b) Gu(uν(λ+ δ), λ+ δ) �uν(λ+ δ)=−G(uν(λ+ δ), λ+ δ)

(c) uν+1(λ+ δ)= uν(λ+ δ)+�uν(λ+ δ) (23.6)

Here we have replaced equation (23.3(a)) by the Euler initial estimate, equation
(23.4). The correction �uν(λ + δ) is computed from equation (23.6(b)) using the
updated Jacobian matrix, Gu(uν(λ+ δ),λ+ δ), rather than the fixed previously deter-
mined one, Gu(u(λ),λ). The main advantage of Newton’s method is that it converges
quadratically, that is,

‖ uν+1(λ+ δ)− u(λ+ δ) ‖ ≤ K ‖ uν(λ+ δ)− u(λ+ δ) ‖2

23.2 Global Continuation and Degree Theory 675

for some constant K, under appropriate conditions not much more restrictive than
those of the Implicit Function Theorem. The quadratic convergence can even be
observed in the computations, since ‖�uν(λ+ δ)‖ also decays quadratically.

Of course, Newton’s method is also quite costly for large N, since a linear system
of that order must be solved at each iteration. Thus, a host of “approximate Newton
methods” have been devised. These use approximation to Gu(uν(λ+ δ),λ+ δ) that can
be inverted in a less costly manner (say by iteration). These methods are particularly
popular in the optimization literature and, although they are not quadratically
convergent, many of them are superlinearly convergent.

We point out that Chapter 20 is concerned with efficient methods for solving
the possibly large-order linear systems that are encountered in equations (23.3),
(23.5), and (23.6). Furthermore, these systems are usually sparse or have some
regular structure that can be exploited to aid in these methods. Note also that in
all of the above cases, the large matrices in question are Jacobians of the nonlinear
system G(u,λ), which must be evaluated in the solution procedure. Thus, it could be
advantageous to employ the automatic differentiation techniques of Chapter 24 to
evaluate these Jacobians.

New methods for local continuation are being devised all the time. We have
merely scratched the surface in the above account. In fact, “adaptive methods” that
change the iterative procedure being employed must also be mentioned. Depending
on what the convergence behavior is, or on the cost of solving the linear systems
replacing equation (23.6(b)), we can devise schemes that seek to be optimal in some
measure of effectiveness.

23.2 Global Continuation and Degree Theory

The existence of global solution paths of equation (23.1) can be insured when G(u,λ)

is sufficiently smooth, and the maximal rank condition

Rank G′(u, λ)≡ Rank
(

∂G(u, λ)

∂(u, λ)

)
(23.7)

≡ Rank
(
Gu(u, λ), Gλ(u, λ)

)=N

holds. In fact, it can then be shown by repeated use of the Implicit Function Theorem
that

G−1(0)≡ {(u, λ) ∈ R
N × R such that G(u, λ)= 0}

is a set of smooth arcs or simple closed curves. Each such arc or closed curve can be
represented as {u(s),λ(s)}, where s is arclength along the path. Using this in equation
(23.1), we get the following identity for all s in some interval I :

G(s)≡G(u(s), λ(s))= 0

676 Chapter 23 Path Following in Scientific Computing and Its Implementation in AUTO

The tangent to the path is given by {u̇(s), λ̇(s)}, and by differentiating the above
identity we see that

Gu(s) u̇(s)+Gλ(s) λ̇(s)= 0 (23.8)

Also, since s is to be arclength, we must have

‖u̇(s)‖2 + λ̇2(s)= 1 (23.9)

This system (equations 23.8 and 23.9) can be written in (N + 1) × (N + 1) matrix
form as

(Gu(s) Gλ(s)

u̇T(s) λ̇(s)

) (u̇(s)

λ̇(s)

)
≡A(s)

(u̇(s)

λ̇(s)

)
=

(0

1

)
(23.10)

It is not difficult to prove that, as a consequence of expressions (23.7) along the
path, the matrix A(s) is nonsingular. Then by applying Cramer’s Rule to expression
(23.10), we can solve for λ̇(s) to get:

λ̇(s)= det Gu(s)
det A(s)

(23.11)

Since det A(s) �= 0 along the solution path, equation (23.11) implies that λ̇(s) and
det Gu(s) both change sign at the same points along the path. We refer to this result
as the Sign Change Lemma.

We can use the above result to prove the Homotopy Invariance of Degree, which in
turn yields a superb tool for solving a huge variety of nonlinear systems of equations.
First we define the degree of a mapping, G(u, λ) : R

N+1→ R
N, for a domain
⊂ R

N

as follows:

D{G(·, λ),
} ≡
∑

{
u ∈

G(u, λ)= 0

} Sign det Gu(u, λ)

Note that if the degree is nonzero, it implies that G(u, λ) = 0 has a solution in

for the given value of λ. The homotopy invariance says that the value of the degree
does not change as λ varies over some interval, say λ0 < λ < λF. In addition to some
smoothness and the maximal rank condition (expressions 23.7) at all roots, we
require that G(u,λ) �= 0 on ∂
× [λ0,λF], a cylindrical surface in R

N+1 (see Figure 23.1).
To prove the invariance, we note that there are at most four classes of solution paths
in
× [λ0, λF]:

I. Paths starting at λ= λ0 and ending at λ= λ0

II. Paths starting at λ= λF and ending at λ= λF

III. Paths starting at λ= λ0 and ending at λ= λF

IV. Closed paths that never touch the bases λ= λ0 or λ= λF

None of the paths can touch the cylindrical boundary. On paths of type I and II,
λ̇(s) can change sign only an odd number of times. Thus, by the sign change lemma,

23.3 Folds and Bifurcations 677

uN

u1

IV

I

II

II

III+

+
+

+

+

– –

–

0 F

0 1[,]

Figure 23.1 Homotopy invariance of degree. Signs (±) of λ̇(s) are shown at the bases, and λ(s)
varies as indicated by arrows. Paths of type I, II, and IV cannot contribute to the degree, but
III can. Degree in this example is 1.

det Gu(u, λ) changes sign an odd number of times on each such path. Hence, these
paths can make no contribution to the degree, as there are as many contributions
(+1) as there are contributions (−1) on them. However, paths of type III must have an
even number of sign changes of λ̇(s) and hence of det Gu(u,λ). Hence, they propagate
without change the contribution that a root at λ= λ0 makes to the degree along the
entire path ending at λ = λF. The closed paths also have an even number of sign
changes, but they never contribute a nonzero sum since they do not contact any
boundaries.

If we employ the homotopy method indicated in equation (23.2) to solve a hard
problem and can ensure all the hypotheses required above and, in addition, we make
sure that the easy problem, E(u)= 0, has only one solution, then the above homotopy
invariance theorem ensures us that the hard problem has at least one solution.
Further, we can compute that solution by following the solution path starting from
the easy solution. Methods to follow the path are discussed in Section 23.4.

23.3 Folds and Bifurcations

Any smooth solution path {u(s),λ(s)} on which the maximal rank condition (expres-
sions 23.7) holds is called a regular path. Thus, all of those paths used in the analysis
of Section 23.2 are regular. However, those points at which λ̇(s0)= 0 are “singular”
in that Gu(u(s0), λ(s0)) is singular. These points are known as folds, and they are the

678 Chapter 23 Path Following in Scientific Computing and Its Implementation in AUTO

generic type of singularity that occurs on a solution path. The other types of singu-
larities that can occur are bifurcations, at which the matrix A(s) in expression (23.10)
is singular. At such points, λ̇(s) may or may not vanish, and the solution path con-
taining bifurcations cannot be regular. At fold points, the solution path usually folds
back, as shown in the paths of types I and II in Figure 23.1; that is, λ̈(s0) �= 0. It is
easy to locate and traverse fold points, as we shall see in Section 23.4. Note also that
on a regular path at which λ̇(s0)= 0, we must have that Gλ(s0) �∈ R{Gu(s0)}. If this
were not so, G′(u(s0), λ(s0)) could not have maximal rank N, since Gu(s0) is singular
(see expressions (23.7)). It is also of interest to note that at such a fold point, the
component u̇(s0) of the tangent to the solution path is also a right null vector of
Gu(s0), as follows from equation (23.8), and dim N{Gu(s0)} = 1.

A bifurcation point [u(s0),λ(s0)]on a smooth path {u(s),λ(s)}has, by definition, the
property that every ball about the point contains solutions of equation (23.1) that are
not on the path. The usual way that this occurs is that some other smooth solution
path intersects the given path, and their point of intersection is a bifurcation point on
both paths. When a path is parameterized by the natural parameter λ, the homotopy
invariance theory can be used to justify a very important test for the occurrence of
bifurcation. Namely, if over some interval, [λ1, λ2], a smooth solution path, u(λ), is
such that det Gu(u(λ), λ) changes sign within the interval, then a bifurcation from
u(λ) occurs at the sign change. This basic test is proven by contradiction. If a sign
change occurs and the only solutions are those on the smooth path, then a small
cylinder can be placed about the path, centered at the position of sign change, and
the path will only cut the cylinder at its two bases. But the degree of the mapping
will differ on the two bases, since the determinant changed sign in the interior.
This contradicts the homotopy invariance, and so a bifurcation must occur; that is,
some solution path must touch the cylindrical surface about the original path (see
Figure 23.2).

The test indicated above can also be used to accurately locate the bifurcation point
on the solution path using the method of bisection. That is, if a sign change occurs in
[λ1, λ2], then evaluate the determinant at the midpoint λ3= 1

2 (λ1+ λ2). Now repeat
this procedure in whichever interval [λ1, λ3] or [λ3, λ2] contains the sign change.

It is important to note that this test requires a sign change in the interior of some
λ-interval. Thus, it could fail to find a pitchfork type of bifurcation if the path being
followed is the one that folds at the bifurcation point. Fortunately, there are other
techniques that can be used to locate such bifurcations, but we do not go into such
details here. An important feature that distinguishes bifurcation points from folds
is that in the former Gλ(s0) ∈ R{Gu(s0)}. Since this range has dimension less than N,
we see that folds are generic and bifurcations are not.

There are quite different bifurcations that occur in dynamical problems. These
are the Hopf bifurcations that occur on steady-state solution branches, say {u(λ), λ},
when, as the natural parameter λ varies, a complex pair of eigenvalues of the Jacobian
Gu(u(λ), λ) crosses the imaginary axis. The bifurcating branch consists of periodic
solutions. To compute them, the equations must contain appropriate time-derivative
terms. Such terms must be adjoined, or it is quite possible that they have been

23.4 Practical Path Following 679

uN

uN
0

u1

u1

0

u0

Figure 23.2 The point (u0,λ0), at which det G0
u changes sign as λ varies on �(λ), is a bifurcation

point . If not, the degrees at λ0 ± δ could not agree.

included in the formulation (23.1) and the “steady” solution paths {u(λ), λ} are
actually paths of periodic solutions. When a Hopf bifurcation occurs, either from a
true steady path or a path of periodic solutions, the new path starts with a frequency
given by the value of the purely imaginary eigenvalue (where the complex pair
crosses the imaginary axis). To detect Hopf bifurcations, we must thus approximate
the eigenvalues of a possibly large matrix or be able to determine a change in the
number of eigenvalues in one of the half-planes as λ values. Again, the material in
Chapter 20 can be of great help in these calculations.

23.4 Practical Path Following

The basic approach in computing solution paths is to use some local continuation
procedure while recursively increasing or decreasing λ and monitoring to see if some
singular behavior is lurking nearby. When trouble is sensed, the local procedure
is altered to circumvent the singularity; afterward, the original procedure can be
resumed. We will briefly describe several such methods.

As mentioned in Section 23.1, the Euler–Newton continuation procedure of
equations (23.6) is extremely effective. But if a fold point lies on the path, this
method will degrade as the Jacobian Gu becomes increasingly ill conditioned as
it approaches singularity. Since folds are the generic type of singular point, it is
most important to be able to traverse paths through them. The difficulty is clearly
shown in Figure 23.3, where a fold occurs at λ= λC and three Euler–Newton steps are
attempted; the last one must fail, as there is no nearby solution at λ= λ4. Of course,

680 Chapter 23 Path Following in Scientific Computing and Its Implementation in AUTO

N

0 1 2 3 4 c

?

u0(4)

u0(2)
u0(3)

u0(1)

Figure 23.3 Failure of continuation in λ at a fold point at λC on the path �. The first three
steps succeed, but at λ4 > λC it fails.

tests will have shown trouble approaching, and subsequently the λ-step lengths δj
would have been reduced. But it is clear from the figure that small steps cannot
remedy the difficulty.

The basic trouble is that the solution path in the neighborhood of the fold cannot
be represented smoothly as a function of the natural parameter λ. Thus the remedy
must be to use some other parameter to specify the solution path in (u, λ)-space. As
we have indicated in Section 23.2, arclength along the path is naturally suggested.
However, we will take a more general view and show how several alternatives can be
formulated in a common framework. The idea is to introduce an augmented system
in place of equation (23.1), namely:

(a) G(u, λ)= 0, G : R
N+1→ R

N

(b) N(u, λ, s)= 0,N : R
N+2 → R (23.12)

Here we allow λ to be an unknown, just like the components of u, and a new
scalar parameter s (not necessarily arclength) is introduced in the arbitrary scalar
normalization expression (23.12(b)) that is adjoined to the original system. We will
show several choices for N(· · ·) and their geometric interpretations.

But first we indicate why an augmented system may work at a solution (u0,λ0, s0)

where G0
u ≡Gu(u0, λ0) is singular. The Jacobian of the system (23.12) with respect to

the unknowns (u, λ) is, at (u0, λ0, s0),

A0 ≡
(

G0
u G0

λ

N0
u N0

λ

)
(23.13)

23.4 Practical Path Following 681

This Jacobian is a bordered matrix about G0
u, having an additional row and column.

It is not difficult to show that if G0
u is singular with

(a) N{G0
u} = span{φ} N{G0T

u } = span{ψ}
and

(b) ψTG0
λ
�= 0 N0

uφ �= 0

(23.14)

then A0 is nonsingular. So, if the normalization condition is chosen appropriately,
Newton’s method can be applicable to the augmented system (23.12) near (u0,λ0, s0),
while it fails on the original system (23.1) near (u0, λ0).

A general class of normalizations can be written as:

N(u, λ, s)≡ vT
0 (u− u0)+ ν0(λ− λ0)− (s− s0)= 0 (23.15)

Here (u0, λ0, s0) is assumed to be a solution of system (23.12), not necessarily at
a fold point, and v0 ∈ R

N and ν0 ∈ R determine the geometric significance of the
constraint. If v0 and ν0 are given constants, then expression (23.15) is linear in (u,λ)

and represents a hyperplane in R
N+1 that is orthogonal to the vector (v0, ν0) and a

distance (s− s0) from the point (u0, λ0, s0).
The first example will be to take

v0 = u̇0 ν0 = λ̇0 (23.16)

where (u̇0, λ̇0) is the tangent to the path at (u0, λ0). Then s is an approximation to
arc length along the solution path; we call this choice pseudo-arclength continuation.
Note that if we use equations (23.16) in expression (23.15), divide by (s− s0), and
let s→ s0, we obtain equation (23.9) at s= s0. The geometric significance is shown
in Figure 23.4.

The Jacobian expression (23.13) becomes, with expressions (23.15) and (23.16),

A0 ≡
(

G0
u G0

λ

vT
0 ν0

)
=

(
G0

u G0
λ

u̇0T λ̇0

)

At a simple fold point, we get from system (23.14) that the above A0 is nonsingular.
Clearly, as shown in Figure 23.4, this pseudo-arclength continuation method easily
follows around the fold with no difficulties, consistent with the fact that A(s) remains
nonsingular in some neighborhood of the fold.

Another useful choice is to use:

v0 = u0 − u−1 ν0 = λ0 − λ−1

where (u−1, λ−1) is the solution obtained before (u0, λ0). This procedure replaces the
tangent to the path at (u0, λ0) by a secant through it. With this “secant predictor,”
we need not compute the tangent vector, but smaller steps in s may be required.

Still another frequently suggested idea would employ:

v0 = ej, the jth unit vector in R
N ; ν0 = 0

682 Chapter 23 Path Following in Scientific Computing and Its Implementation in AUTO

uN

u1

(u(s0), (s0))

[s – s0]

(u0(s), 0(s))

(u0, 0)
• •

(u(s), (s))

N(u, ,s) = 0

(s)

Figure 23.4 Pseudo–arc length continuation past a fold on a path �(s). The fold lies on �(s)
between the solutions (u(s0), λ(s0)) and (u(s), λ(s)).

The resulting procedure simply replaces continuation in λ by continuation in uj, the
jth component of u ∈ R

N. Which component should be employed is by no means
clear, and for N � 1, there are many choices.

Of course, the original natural parameter continuation can be recovered by simply
using

v0 = 0 ν0 = 1

Finally, expression (23.15) can be nonlinear in u and λ if we use

v0 = u− u0 ν0 = λ− λ0

In this case, the constraint becomes

‖u− u0‖2 + |λ− λ0|2 = (s− s0)

and we call this norm continuation. Of course, we can replace (s− s0) here by |s− s0|2.
One problem with this procedure is that it is not clear that it will converge to a
new solution; it might simply return a point on the previously traversed part of the
solution path. But by taking an initial guess in the proper direction, this difficulty
can be avoided. In all of the other procedures, it is clear that an orientation is (or
can be) given to the solution path, so that the procedure will not reverse and return
previously computed path segments.

A very important practical consideration regarding the augmented systems of this
section is the fact that bordered matrices of the form (23.13) have been thoroughly

23.5 Branch Switching at Bifurcations 683

studied. Very efficient methods for solving linear systems with such coefficient ma-
trices have been devised. Even when G0

u is poorly conditioned (i.e., nearly singular),
these methods perform well [553, 554].

23.5 Branch Switching at Bifurcations

Near bifurcation points there are two (or more) distinct solution branches of expres-
sion (23.1),

�I(s) : {u= uI(s), λ= λI(s)}
�II(t) : {u= uII(t), λ= λII(t)}

For some value of the continuation parameters, say s0 and t0, they intersect at a
bifurcation point:

uI(s0)= uII(t0) λI(s0)= λII(t0)

To locate a bifurcation point on �I(s) or �II(t) as continuation proceeds, we use
the bisection procedure described in Section 23.3. However, at a bifurcation point,
AI(s0) or AII(t0) is singular. When continuing in the natural parameter, Gu(u

0
I ,λ0

I) or
Gu(u

0
II , λ

0
II) is singular. Thus, Newton’s method and most other iterative procedures

would seem to fail at such a point. It is true that the “sphere of convergence” about
a point on the solution path has a radius that decreases as the point approaches
the bifurcation point. Thus, there is a convergence cone about the path with vertex at
the bifurcation point. But at a point close to the vertex, the tangent vector to the
path departs from one cone segment, passes over the vertex, and enters the other
cone segment, as shown in Figure 23.5. Thus, when using the Euler predictor, the
computational procedure can easily oscillate back and forth across the bifurcation
to facilitate the bisection method. The step size must not be too small, or the initial
iterate could lie outside the convergence cone.

Having accurately located a bifurcation point on one of the paths, say �I(s), we
need to compute the path �II(t) that emanates from that point. We indicate three
methods for doing this. The first is tangent continuation. It uses the fact that there are
two distinct tangents at the bifurcation point, one for each of the paths that meet
there:

(u̇0
I , λ̇0

I) and (u̇0
II , λ̇

0
II) (23.17)

From the details of bifurcation theory, it turns out that these tangents are determined
in terms of two distinct roots of the so-called algebraic bifurcation equation, which is
generally quadratic. The coefficients of this quadratic can be approximated by means
of some messy additional calculations involving left and right null vectors of G0

u (i.e.,
the φ and ψ of expression (23.14(a))) and the form ψTG0

uuφφ. Of course, one of the
tangents should be known, since �I passing through the bifurcation point has been
computed. Then the other tangent is determined and used in expressions (23.16)
and (23.15) to compute �II(t) from the bifurcation point (see Figure 23.6).

684 Chapter 23 Path Following in Scientific Computing and Its Implementation in AUTO

uN

u1

1

 0

(u0, 0)

Figure 23.5 Convergence cone about a path with a bifurcation at (u0, λ0). The tangent at
λ1 < λ0 may depart from the cone before λ0 and reenter the cone beyond λ0, thus enabling
continuation past the bifurcation.

Old norm

New norm

(uII, II)
0 0• •

(uI, I)
0 0• •

(u0, 0)

II

I

(s)I

(t)II

Figure 23.6 Tangent switching at the bifurcation point (u0, λ0).

A second method, called parallel search, uses a hyperplane that is parallel to the
tangent to �I(s0) and perpendicular to the plane of the two tangents in (23.17). This
hyperplane is used in equation (23.15) by setting

v0 = u̇0
⊥ ν0 = λ̇0

⊥

23.5 Branch Switching at Bifurcations 685

⊥ ⊥
• •

I I

• •

II II
• •

Figure 23.7 Parallel search. The plane π is parallel to TI and orthogonal to the plane of TI
and TII , so it will intersect the path �II near the bifurcation point (u0, λ0).

where the normal vector n⊥ ≡ (u̇0
⊥, λ̇0

⊥) is

n⊥ = a
(
u̇0

I , λ̇0
I

)
+ b

(
u̇0

II , λ̇
0
II

)

with

a= z√
1− z2

b = −1√
1− z2

z = [u̇0
I · u̇0

II]+ λ̇0
I λ̇0

II

The geometry of this method is sketched in Figure 23.7.
The final method, called perturbed bifurcation, is based on the fact that, if equation

(23.1) has a pair of bifurcating solution paths, then for almost any random unit vector
τ ∈ R

N, the problem

G(u, λ)= ε τ (23.18)

will have regular solution paths for all ε �= 0. This is based on the theory of regular
and critical values of smooth functions. In particular, Sard’s Lemma says that almost
all values of sufficiently smooth functions are regular. It then follows that the paths
on which these regular values are taken are regular paths. Thus, the solutions of
equation (23.18) for ε �= 0 are sets of smooth nonintersecting arcs or simple closed
curves. Of course, away from the bifurcation points of equation (23.1), these paths

686 Chapter 23 Path Following in Scientific Computing and Its Implementation in AUTO

=

= 0

= 0

1

= 1

= – 1

= – 1

Figure 23.8 Perturbed bifurcation paths for ε �= 0 can occur in either of two forms, as shown.

must be close to the solution paths of equation (23.18) for ε sufficiently small, by
the Implicit Function Theorem.

To use the above, we continue through a bifurcation point, say on �I(s). We then
back off from that point and start solving equation (23.18) using continuation in
ε with λ fixed. After departing a bit from �I(s), we fix ε and allow continuation in
λ. This path stays close to �I(s) or to �II(t) for ε small, and thus it turns near the
bifurcation point departing from �I and trailing near �II . When λ on this path is
sufficiently different from λ0

I , we keep it fixed and do continuation in ε back to
zero. The resulting solution point of equation (23.1) will be on �II . This behavior is
depicted in Figure 23.8.

23.6 Computational Examples: AUTO

Several of the general techniques described in the preceding sections of this chapter
have been incorporated into the software AUTO [277]–[279]. This program, which
has a wide range of capabilities, has been used extensively in scientific and engi-
neering computations. Some of its capabilities have been incorporated into related
software, such as DsTool [65], XPPAUT [314], CONTENT [588], and POLYRED [791].

The main strength of AUTO lies in its algorithms for the numerical bifurcation
analysis of boundary value problems in ordinary differential equations. Specifically,
the boundary value problems are of the form

u′(t)= f (u(t), λ) t ∈ [0, 1], u(·), f (·, ·) ∈ R
N , λ ∈ R

nλ (23.19)

with boundary conditions

bi (u(0), u(1), λ)= 0 i = 1, 2, . . . , nb

23.6 Computational Examples: AUTO 687

and integral constraints

∫ 1

0
qi (u(t), λ) dt = 0 i = 1, 2, · · · , nq

It is assumed that nλ = nb + nq − n+ 1, which generically leads to solution branches,
rather than isolated solutions.

An important example of a system of the above form arises from the numerical
continuation of periodic solutions. A boundary value formulation of the problem of
computing stable and unstable periodic solutions is given by the time-scaled ODE,

u′(t)= T f (u(t), λ)

where T denotes the actual period, subject to the periodicity condition,

u(0)= u(1)

and a phase condition,

∫ 1

0
u(t)∗ û

′
(t) dt = 0

This integral constraint, where û is a nearby reference solution, is a necessary condition
for the “phase-shift distance” D(σ)≡ ∫ 1

0 ‖u(t + σ)− û(t)‖2dt to be minimized over σ .
AUTO also contains algorithms for the detection of folds, period-doubling bifur-

cations, and torus bifurcations along branches of periodic solutions. Moreover, these
bifurcations can subsequently be continued in two problem parameters.

Another example of an ODE boundary-value problem arising from dynamical
systems is the numerical computation and continuation of connecting orbits, that is,
orbits that connect fixed points of a vector field. An important case is the homoclinic
orbit , which connects a fixed point to itself. These orbits are important in, for exam-
ple, the study of transition to chaos and in the study of traveling wave phenomena.
Although such orbits have infinite period, their computation can be reduced to a
problem on a finite interval by means of appropriate asymptotic boundary condi-
tions [105, 361, 605]. The continuation of connecting orbits has been incorporated
into AUTO. The software also contains algorithms for the detection and continuation
of homoclinic bifurcations. In fact, the software fully incorporates the algorithms
that were originally implemented as an application under the name HOMCONT
[179, 180].

There are several software packages for the numerical bifurcation analysis of
ODEs. Those based on global solution techniques (as opposed to “shooting”) and
orthogonal collocation with piecewise polynomial functions (as opposed to standard
finite differences) generally perform very well on difficult problems. Here “difficult”
refers to boundary or interior layers, strong relaxation phenomena, sharp fronts,
near-homoclinic periodic orbits, “bursting” oscillations, and so on.

688 Chapter 23 Path Following in Scientific Computing and Its Implementation in AUTO

23.6.1 Bursting Oscillations

Our first example illustrates one of the many capabilities of AUTO, namely, the
detection of period-doubling bifurcations and associated branch switching. The
differential equation we consider is Plant’s model [769] of bursting nerve cells. A
system is said to exhibit bursting when it changes back and forth between a quiescent
state and a rapidly oscillating state.

Plant’s five-variable ODE model is of the form

V̇ =
[
gI s3

I (V) yI + gT xT

]
[VI − V]

+
[
gK x4

K + gP c
(
Kp + c

)−1
]

[VK − V]+ gL [VL − V]

ẋT = [sT(V)− xT] / (ζ τxT)

ẋK = [sK(V)− xK] / (ζ τxK)

ẏI =
[
zI(V)− yI

]
/ (ζ τyI)

ċ = ρ
[
Kc xT

(
VCa − V

)− c
]

Detailed expressions for the various functions in this model and for parameter values
can be found in Plant’s paper. We let gI be the bifurcation parameter. Figure 23.9
shows a portion of a branch of periodic solutions. The quantity Norm, which is used
as a convenient solution measure, is here defined as

‖(V , xT , xK, yI , c)‖ ≡
{

1
T

∫ 1

0
V(t)2 + xT(t)2 + xK(t)2 + yI(t)

2 + c(t)2dt

} 1
2

where T denotes the period of the oscillation. For different ranges of gI , the qualita-
tive behavior of the periodic orbits is characterized by the number of spikes. Between
these intervals are very narrow regions where one spike is added as gI increases. Fig-
ure 23.9 shows a blowup of the bifurcation diagram in a neighborhood of such a
transition region. To the left of this region, there is one spike; to the right, there
are two spikes per period. There is no branching process involved in the transition
from one spike to two spikes. There are, however, cascades of period-doubling bi-
furcations. A typical periodic orbit on the first period-doubled branch is shown in
Figure 23.10. Note that the orbit alternates between one spike and two spikes.

Plant’s model is used here to illustrate how complicated, rapidly varying periodic
solutions can be very effectively computed using our continuation methods, bound-
ary value approach, high-order accurate discretization, and adaptive meshes. Many
related models can be found in the literature—for example, models of the electro-
physiology of pacemaker cells in the heart. The dimension of recent models of the
electrical activity of a single cell is much larger than the five equations in Plant’s
model. Moreover, one often wants to study the collective behavior of assemblages
of such cells. This task poses formidable computational challenges.

23.6 Computational Examples: AUTO 689

gI

Norm

1.580 1.583 1.585 1.588 1.590
53.90

53.95

54.00

54.05

54.10

54.15

54.20

54.25

54.30

S

Figure 23.9 A transition region in the bifurcation diagram of Plant’s model.

Time

V

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

0

10

–10

–20

–30

–40

–50

–60

–70

20

S

Figure 23.10 V(t) versus scaled time t for the period-doubled solution marked with an “S” in
the bifurcation diagram.

690 Chapter 23 Path Following in Scientific Computing and Its Implementation in AUTO

23.6.2 Some Navier–Stokes Flows

New techniques employing concurrent computing have been devised to solve a
variety of incompressible flow problems. We sketch two such applications: Taylor–
Couette flow between concentric rotating cylinders and Kolmogorov flow in a peri-
odic box with periodic shearing forces. In both cases, a variety of bifurcations occur
as the Reynolds numbers are varied. In the latter flow, the onset of turbulent worms
is detected.

The incompressible Navier–Stokes equations in dimensionless coordinates are

(a) ∂u/∂t + (u · ∇)u=−∇p+ R−1�u+ F

(b) ∇ · u= 0
(23.20)

where u is the velocity, p is the pressure, R is the Reynolds number, and F is an
external body force applied to the fluid. Solutions are sought over some domain

 ⊂ R

3, on the boundary of which, ∂
, appropriate conditions are imposed. We
may seek steady states, with ∂u/∂t ≡ 0; periodic solutions, with u(t , x)= u(t + T , x)

for some unknown period T ; or transient solutions over some time interval 0≤ t ≤ tF.
Frequently, steady states are computed as transients by letting tF →∞. It would seem
that only stable steady states can be computed in this way, but by employing our
Recursive Projection Method (RPM) [861], we do obtain unstable states as well.

Using an appropriate spatial grid or simplicial partition of
, we devise a spatial
discretization of system (23.20) by means of finite differences, finite elements,
spectral or pseudospectral expansions or any combination of these methods. The
resulting semi-discretized system can be represented as

(a) du/dt =H(u)−Gp≡ f (u, p),

(b) b =Du
(23.21)

Here u(t) and p(t) are vectors yielding approximations to the velocity and pressure,
respectively, at time t and at locations x ∈
 determined by the details of the
discretization. For example, using finite differences with N mesh points in
, we
have u(t) ∈ R

M , p(t) ∈ R
N with M .= 3N, the gradient is approximated by G ∈ R

M×N

and the divergence by D ∈R
N×M . The inhomogeneous term b in equation (23.21(b))

represents possible boundary values of velocity when u(t) represents only internal
values in
. The term H(u) in expression (23.21(a)) is the discretization of [−(u ·
∇)u+ R−1�u].

The system (23.21) is a set of semi-explicit differential algebraic equations. A brief
treatment of such systems is given in Keller and von Sosen [556], and a more
thorough theory is developed in Keller [555]. We sketch here the result of applying
these techniques to our problems.

If the semi-discretized velocity vector has components u, v, and w in the coordi-
nate directions, then

u=

u
v
w

23.6 Computational Examples: AUTO 691

where we assume u, v, w ∈R
N and M = 3N. The discretized continuity equation can

be decomposed using, for example, in cylindrical coordinates:

D≡ [Dr, Dθ , Dz] Dr ∈ R
N×N , [Dθ , Dz]∈ R

N×2N (23.22)

Our theory shows that we can impose a constraint introducing 2N parameters α,
which we do as follows:

C(u, α)≡ α − [0, I2N]

u
v
w

= 0

Thus, our new parameters are simply the θ - and z-velocity components that is,

α =
[

v
w

]

The radial velocity is obtained by solving the continuity equation (23.21(b)) using
coordinates (23.22) to get:

u=−D−1
r [Dθv +Dzw − b]

This is used along with α to solve for the pressure, which satisfies, from expression
(23.21(a)) on applying D, the discretized Poisson equation:

DGp−DH(u)= 0

Then it follows from the theory that α(t) is the solution of

dα

dt
≡

[
dv/dt
dw/dt

]
=

[
fθ(u, p)

fz(u, p)

]
≡G(α) (23.23)

Here we have used the fact that u and p are determined as above in terms of α.
If we seek steady-state solutions, setting dα/dt = 0 in expression (23.23) will do.
The dependence on dimensionless parameters has been neglected here but will be
introduced as required. The above derivation covers Taylor–Couette flows but has to
be modified slightly for Kolmogorov flows. We turn to that case next.

23.6.3 Kolmogorov Flows

For the Kolmogorov flows the body force has the form

F ≡ χ sin(ky) ex

where ex is the unit vector in the x-direction and χ is the amplitude of the force. The
periodic box has sides of lengths Lx, Ly, and Lz. To ensure periodicity, it is necessary
that

k = 2πm
Ly

692 Chapter 23 Path Following in Scientific Computing and Its Implementation in AUTO

for some positive integer m. The coordinates are scaled by Lx, Ly, and Lz to get a
dimensionless unit cube, and the Reynolds number based on the maximum speed,
χ/νk2, of the trivial shear flow solution is

R≡ χ

ν2 k3

Other dimensionless parameters enter as the aspect ratios, A≡ Ly/Lx and B≡ Ly/Lz,
and the wave number γ ≡ kLy. In particular, we consider bifurcations from the
specific shear flow solution given by

u0 = sin(γ y) v0 = 0 w0 = 0 p0 = 0

Seeking bifurcating solutions of the form u = u0 + u1 we get, assuming that u1=
eirx · eisz · V(y) and setting α ≡ Ar, β ≡ Bs, that the linearized equations for u1 give

iα sin(γ y)

(
d2V
dy2

+ [γ 2 − α2 − β2]V

)
= 1

γ R

(
d2

dy2
− [α2 + β2]

)2

V (23.24)

The boundary conditions require periodicity:

V(0)= V(1) (23.25)

In addition, there are two degrees of freedom in the problem (23.24), since the phase
and amplitude of V(y) are arbitrary. We thus impose two constraints, introducing
two parameters (η, µ) as

∫ 1

0

{
‖V(y)‖2 + ‖V ′(y)‖2 + ‖V ′′(y)‖2 + ‖V ′′′(y)‖2

}
dy = η (23.26)

and adding the term

−µ sin(2πy) (23.27)

to the right-hand side of equation (23.24). The resulting two-point boundary value
problem with constraints is solved using AUTO. These results obtained in Love [626]
are reproduced in Figures 23.11 through 23.13.

To examine the solutions bifurcating from the basic Kolmogorov flow as R is
varied, spectral collocation methods are used since the domain is a periodic cube. For
steady states, the discrete solutions are computed using continuation with Newton’s
method. Of course, the linear systems to be solved are so large that iterative methods
are used to obtain the Newton corrections. To make this practical, distributed-
memory computers are used via procedures described in van de Velde [950].

To compute periodic solutions, which arise from Hopf bifurcations, and for
traveling wave solutions, the problems can be reformulated to yield steady-state
problems. Then the same procedures as indicated above are applicable. Results from
such calculations are presented by Love [626] and Love and Keller [627].

23.6 Computational Examples: AUTO 693

0 0.5 1 1.5 2 2.5 3 3.5 4
A

0

1

2

3

4

5 r=1r=2r=3r=4r=5

Figure 23.11 Bifurcation curves for B= 1, s= 0.

0 0.5 1 1.5 2 2.5 3 3.5 4
A

0

1

2

3

4

5 r=2 r=1r=3r=4r=5

Figure 23.12 Bifurcation curves for B= 1, s= 1.

694 Chapter 23 Path Following in Scientific Computing and Its Implementation in AUTO

0 0.5 1 1.5 2 2.5 3 3.5 4
A

0

1

2

3

4

5 r=2 r=1r=3r=4r=5

Figure 23.13 Bifurcation curves for B= 1, s= 2.

23.7 Parallel AUTO

The orthogonal collocation method with piecewise polynomials can be briefly de-
scribed as follows. Introduce a mesh {0= t0 < t1 < · · ·< tN = 1}, �tj ≡ tj − tj−1, (1≤ j≤
N). For each mesh interval [tj−1, tj], introduce the Lagrange basis polynomials wj,i(t),
defined by

wj,i(t)=
m∏

k=0, k �=i

t − tj− k
m

tj− i
m
− tj− k

m

for j = 1, · · · , N, i = 0, 1, · · · , m, where

tj− i
m
≡ tj − i

m
�tj

The collocation method now consists of finding, for each j = 1, 2, · · · , N,

pj(t)=
m∑

i=0

uj− i
m

wj,i(t)

such that

p
′
j(zj,i)= f (pj(zj,i), λ) i = 1, 2, · · · , m (23.28)

where in each subinterval [tj−1, tj] the points {zj,i}mi=1 are the zeros of the mth-degree
Legendre polynomials relative to that subinterval. With the above choice of basis,
uj and uj− i

m
approximate the solution u(t) of the continuous problem at tj and

23.7 Parallel AUTO 695

tj− i
m

, respectively. The discrete boundary conditions are bi(p1(0), pN(1), λ) = 0, i =
1, 2, · · · , nb, that is,

bi(u0, uN , λ)= 0 i = 1, 2, · · · , nb (23.29)

The integrals can be discretized by a quadrature formula. A natural choice is the
composite quadrature formula obtained by approximate integration over each of
the subintervals [tj−1, tj]. This gives

N∑
j=1

m∑
i=0

wj,i qk(uj− i
m

, λ)= 0 k = 1, 2, · · · , nq (23.30)

where the quantities wj,i are the Lagrange quadrature coefficients. Apart from a
scaling factor, these are independent of j. For pseudo-arclength continuation we
need to add the equation

∫ 1

0

(
u(t)− u0(t)

)∗ u̇0(t) dt + (λ− λ0)
∗λ̇0 −�s= 0

where (u0, λ0) is the previously computed point on the solution branch and (u̇0, λ̇0)

is the normalized direction of the branch at that point. Upon discretization, the
pseudo-arclength equation becomes

N∑
j=1

m∑
i=0

wj,i

(
uj− i

m
− (u0)j− i

m

)∗
(u̇0)j− i

m
+ (λ− λ0)

∗λ̇0 −�s= 0 (23.31)

The complete set of discrete equations for taking one step along a branch of solutions
therefore consists of solving the system of mnN + nb + nq + 1 nonlinear equations
(23.28) through (23.31) for the unknowns {uj− i

m
} ∈ R

mnN+n, λ ∈ R
nλ. This is done by

a Newton or Newton–Chord iteration. After linearization via Newton’s method, the
matrix J in Figure 23.14 is obtained.

This matrix is structured and sparse with borders at the bottom and on the right.
The corresponding linearized system has the form

J x= f (23.32)

This system must be solved for each Newton iteration for each step along a solution
branch. For example, in the numerical analysis of the bursting behavior of Plant’s
model in Section 23.6.1, the system (23.32) must be solved thousands of times. Thus,
efficient solution techniques are desirable.

23.7.1 Parallel Implementation

Here we describe a parallel direct solver developed by Wang [978] for the sparse
linear system (23.32). The matrix is shown in Figure 23.14, with right-hand side f =
(F1, F2, · · · , FN, FC)T . (In the illustrations we use N = 8.) To simplify the presentation,
we do not describe pivoting, even though the actual implementation uses restricted

696 Chapter 23 Path Following in Scientific Computing and Its Implementation in AUTO

B8

B7

B6

B5

B4

B3

B2

B1

C8C7C6C5C4C3C2C1 D

A8

A7

A6

A5

A4

A3

A2

A1

Figure 23.14 Structure of the Jacobian matrix J.

row and column pivoting. For full details, see Wang and Doedel [978]. The two
main components of the solution procedure are condensation of parameters and nested
dissection, which are described in some detail below.

Assume that the total number of processors is P. (In the illustrations we use P = 8.)
We define one data unit as {Ai, Bi, Ci, Fi, D, FC}, where i= 1, 2, · · · , N. We partition the
Jacobian matrix J and the right-hand side f into P data groups, one data group per
processor. If the number of data units is divisible by P, then each data group will
contain k data units. Otherwise, some data groups will contain k + 1 data units.

A Gauss elimination scheme, applied concurrently in each of the processors,
results in the modified Jacobian shown in Figure 23.15. Note how the scheme, known
as condensation of parameters, has eliminated part of the center portion of each Ai.
Communication needs correspond to the eliminations in the bottom rows of J , that
is, for the Ci’s, for D, and for the right-hand-side component FC. The Ci’s require
communication because the right part of Ci in node pi overlaps with the left part of
Ci+1 in node pi+1. D and FC require communication because they are shared by all
nodes.

Note how the shaded portion of the matrix in Figure 23.15 corresponds to a
reduced, decoupled set of equations in a correspondingly reduced set of unknowns.
The decoupled matrix, shown separately in Figure 23.16, is smaller by a factor of
approximately m (the number of collocation points) compared to the matrix in
Figure 23.15.

The system corresponding to the matrix in Figure 23.16 is solved using nested
dissection, as illustrated in Figures 23.16 through 23.19 for the case of eight mesh

23.7 Parallel AUTO 697

Figure 23.15 The Jacobian J after condensation of parameters.

A1 A2

A1 A2

A1 A2

A1 A2

A1 A2

A1 A2

A1 A2

A1 A2

C1 C2/C1 C2/C1C2/C1 C2/C1 C2/C1 C2/C1 C2/C1 C2

P0 P0/P1 P1/P2 P2/P3 P3/P4 P4/P5 P5/P6 P7P6/P7

P0

P1

P2

P3

P4

P5

P6

P7

B

B

B

B

B

B

B

B

D

Figure 23.16 Initial state of nested dissection.

698 Chapter 23 Path Following in Scientific Computing and Its Implementation in AUTO

C1 C2/C1 C2/C1 C2/C1 C2

P0 P1/P2 P3/P4 P5/P6 P7

P0

P1

P2

P3

P4

P5

P6

P7

A1

A2

A1

A1

A1

A2

A2

A2

B

B

B

B

B

B

B

B

D

Figure 23.17 Initial state of Level 2.

intervals and eight processors. This procedure results in a further reduced subsys-
tem, namely the system corresponding to the shaded area in Figure 23.19, which is
decoupled from the full system and can be solved independently. We obtain the so-
lution corresponding to the matrix in Figure 23.16 by a concurrent back-substitution
process that first requires the solution of the final subsystem to be sent to all nodes.
In order to obtain the final solution of the full system (23.32), we also need to back-
substitute in the condensation of parameters process. This can be done concurrently
without communication.

The timing results in Table 23.1 were obtained on the Intel Delta, consisting of
512 Intel iPSC/860 nodes connected by a mesh network. The example used for the
numerical experiments is the AUTO demo tim.f , which defines a first-order system
of n ordinary differential equations with n boundary conditions, where n can be
chosen. This test problem has one integral constraint, namely the integral arising
from the pseudo-arclength equation. The test run is set up so that it requires 10
decompositions and 10 back-substitutions by the linear equation solver. In the test
runs we have selected the dimension of the system of differential equations to be
n= 24, using N = 64 mesh intervals, with m= 4 Gauss collocation points per interval.

23.8 Conclusion 699

A1

A1

A2

A2

C1 C2/C1 C2

P0

P1

P2

P3

P4

P5

P6

P7

P0 P7P3/P4

B

B

B

B

B

B

B

B

D

Figure 23.18 Initial state of Level 3.

23.8 Conclusion

Path following is an important capability in computational science. The techniques
in this chapter enable discovery of families of solutions to differential equations
and make possible solutions to difficult sets of equations by following a path from
a simpler problem (homotopy). It is often the singular points along these solution
paths where the most interesting information resides and where standard solution
methods have the most difficulty. The AUTO software is designed to handle just
such eventualities. This tool solves nonlinear boundary-value problems with integral
constraints, in particular following a path of such solutions. Additionally, AUTO pro-
vides analysis of singular points, such as solution folds or bifurcations encountered
along the way. Some parallel algorithms have been implemented for the solution
of linear equations arising from path following, but this continues to be an area for
further investigation.

700 Chapter 23 Path Following in Scientific Computing and Its Implementation in AUTO

A1

A2

C1 C2

P0 P7

P0

P1

P2

P3

P4

P5

P6

P7

B

B

B

B

B

B

B

B

D

Figure 23.19 Final state after the nested dissection.

Table 23.1 Intel Delta timing results for n= 24, N = 64, m= 4

Number of nodes Execution time Speedup Efficiency

1 0.601E+03 1 100%
2 0.314E+03 1.91 95.70%
4 0.166E+03 3.62 90.51%
8 0.923E+02 6.51 81.39%

16 0.536E+02 11.21 70.08%
32 0.310E+02 19.39 60.58%
64 0.246E+02 24.43 38.17%

C

H

A

P

T

E

R

24 Automatic Differentiation

Alan Carle

Derivatives play a key role in the development and subsequent use of high-
performance computer simulations. Principal uses of derivatives include the fol-
lowing:

. Solution of inverse problems to calibrate the initial state of a computer model
to match experimentally observed data.

. Sensitivity analysis to verify robustness of the simulation with respect to small
changes to the input parameters and to verify that computer models behave
as suggested by experimental data.

. Uncertainty analysis to identify the primary sources of uncertainty in the results
of the simulation.

. Design optimization activities to identify optimal settings of design parameters
to minimize a cost function [20, 170].

With regard to the computation of derivatives, developers of high-performance
computer simulations fall into the following camps:

. Developers who know they need derivatives and are convinced that they can
use finite-difference approximations to compute them. Finite-difference ap-
proximations evaluate a function f at x and x+ h for some h, and then compute
(f (x+ h) − f (x))/h) to approximate f ′(x). If the function to be differentiated
has n inputs, then at least n + 1 function evaluations will be needed to ap-
proximate all of the derivatives. Since all of these n + 1 evaluations can be
performed simultaneously, the entire process is “pleasingly parallel,” given suf-
ficient resources. Unfortunately, unless h is selected with extreme caution and

701

702 Chapter 24 Automatic Differentiation

sufficiently high-precision numerics are used to compute f , finite-difference
approximations can be quite poor.

. Developers who know they need derivatives and explicitly introduce code
into their programs to analytically compute derivatives. Four-dimensional
data assimilation merges real-world observations into complex computational
simulations of climate. Both the ocean and weather modeling communities
invest considerable effort in the development of adjoint codes that compute
the derivatives needed for data assimilation [700, 909, 913]. Adjoint-code
development is slow, tedious work, but the efficiency of the resulting derivative
code can be exceptional.

. Developers who need derivatives, but do not know that they do. Developers
who are focused on achieving high performance may not realize that their
simulations will ultimately need to be calibrated with experimental data by
solving an inverse problem, need to be validated through a series of sensitivity
and uncertainty studies, or need to be used in an optimization-based design
process.

. Developers who know that they have no need for derivatives. Developers of
discrete or otherwise nondifferentiable functions and developers of differen-
tiable, but noisy, functions have little need for derivatives. For noisy functions,
“trends” in the data tend to be more useful than actual derivatives. In fact, if
the noise in the data has a sufficiently low amplitude, then finite-difference
approximations may be an appropriate way to quantify the trends in the
data.

This chapter focuses on a maturing technology for computing derivatives of
computer simulations that goes by the several names: automatic differentiation, com-
putational differentiation or algorithmic differentiation [103, 400]. Automatic differenti-
ation, (AD) is an automatic technique for augmenting computer programs with code
to compute derivatives accurately and efficiently. As an automatic technique, AD has
the potential to eliminate the need to explicitly develop code to compute derivatives.
Not only can AD reduce the time required to develop a differentiated code, it also
reduces the total amount of code that needs to be maintained and allows developers
to focus on the underlying computational simulation.

The ideas underlying automatic differentiation are not new—in high school calcu-
lus, most students realize that differentiation is an essentially mechanical procedure.
A. Griewank has constructed a history of AD software that chronicles more than 60
AD software packages developed since the 1950s. The great majority of these soft-
ware packages were created for use by their developers for specialized applications.
In the last 10 years, however, an important change has come to the field of AD:
several groups across the world have put a great deal of effort into developing general-
purpose AD software—software capable of differentiating arbitrary programs written
in a commonly used programming language with little or no effort by the users of
the AD software.

24.1 Overview of Automatic Differentiation 703

This chapter covers the following topics:

. Overview. This section outlines the basic mathematics underlying AD.

. Implementation techniques. This section describes the two basic techniques for
implementing AD—source-to-source code transformation and operator over-
loading.

. Software. In order to give a feel for AD, this section describes the design and
use of two AD packages: ADOL-C, which supports AD of C and C++ programs,
and Adifor 3.0, which supports AD of Fortran 77 programs.

. Message-passing programs. This section outlines the issues underlying the AD of
programs that contain message-passing operations.

. Advanced use. This section describes several techniques that can be used to
improve the efficiency of derivative codes.

24.1 Overview of Automatic Differentiation

Before describing the techniques underlying AD, it is useful to introduce some
terminology. The goal of applying an AD tool to a function is to compute the
derivatives of a specified set of dependent variables (a subset of the outputs of the
function) with respect to a specified set of independent variables (a subset of the inputs
of the function). An active variable is either: (1) an independent or dependent variable
or (2) an intermediate variable that depends on the independent variables and is used
to compute values for the dependent variables. AD augments the function code with
additional code to compute derivatives for all of the active variables.

For a vector function F from Rn to Rm that takes times t(F) and memory m(F)

to evaluate, the first-order forward mode of AD can deliver the full m × n Jacobian
in O(n ∗ t(F)) time and O(n ∗m(F)) space. For problems with n$m, the forward
mode can provide accurate derivatives at a cost that is comparable to that of finite
differences.

The first-order reverse mode of AD can deliver the full Jacobian in O(m ∗ t(F))

time. This mode of AD computes derivatives also referred to as adjoint values dur-
ing a reverse pass over the function. Unfortunately, reversing the flow of the pro-
gram requires O(t(F)) space to implement, unless checkpointing strategies (see Sec-
tion 24.5.5) are used to reduce this potentially immense space requirement. Assum-
ing that the space issue can be successfully addressed, for problems with n�m (such
as the evaluation of a gradient of an objective function for use in optimization), the
reverse mode is ideal, far outperforming finite differences.

In addition to computing first-order derivatives, the techniques underlying AD
naturally compute various matrix products involving Jacobians. For example, for
a matrix R with p columns, the forward mode computes the matrix product J ∗ R,
where J is the Jacobian, to give p directional derivatives in O(p ∗ t(F)) time. Similarly,
for a matrix L with q rows, the reverse mode computes the matrix product L ∗ J in
O(q ∗ t(F)) time, but again using a potentially huge amount of space.

704 Chapter 24 Automatic Differentiation

The forward and reverse modes can be easily extended to compute higher-order
derivatives, although at a cost higher than that required to compute the first-order
derivatives.

24.1.1 How Automatic Differentiation Works

The functionality of the forward and reverse modes is achieved by associating
a derivative object consisting of one or more new floating-point variables, with
each of the floating-point variables in the original program. For the forward mode,
program control flow remains unchanged. Derivative code for each assignment
statement is inserted immediately before or after that assignment statement. The
inserted derivative code computes values for each component of the derivative object
associated with the left-hand side of the original assignment statement. For the
reverse mode, more substantial changes are made to the control-flow structure of the
program to ensure that the program can be executed in reverse and to ensure that
the partial derivatives for each assignment statement are available. Then, derivative
code is inserted to compute values for the derivative objects associated with variables
appearing on the right-hand side of the original assignment statement. Reiterating,
control flow in the forward mode is precisely the control flow of the original function,
and control flow in the reverse mode is precisely the reverse of the control flow of
the original function.

We now describe how each assignment statement in the original function code is
differentiated. To simplify this presentation, we assume that assignment statements
have the simple form

z = f (x, y)

where f is a basic operation (+, ∗, /, −, . . .) or an intrinsic operation (sin, tan,
sqrt , . . .), and z is distinct from x and y. If necessary, an automatic-differentiation
tool can introduce new temporary variables and assignment statements to ensure
that every assignment statement has this form.

Consider a simple pseudocode fragment:

x = f1(independent_variables)

y = f2(independent_variables)
.
.
.

100 z = x * y
.
.
.

dependent_variable = f3(z)

Applying the forward mode of AD to this simple example is straightforward. We
assume that we have associated a derivative object gx with x, gy with y, and gz with

24.1 Overview of Automatic Differentiation 705

z, and, at the time the statement labeled with 100 is reached, gx and gy are vectors
containing the derivatives of x and y with respect to all of the independent variables,
respectively.

A simple vector operation that computes gz can be introduced after the assignment
to z as follows:

100 z = x * y

g_z(:) = g_x(:) * y + x * g_y(:)

Applying the reverse mode of AD to this example is a less straightforward but
still entirely mechanical process. We first look at the process mathematically and
then generate the source code to reflect the appropriate derivative calculations.
Linearizing the nonlinear operation

z = x ∗ y

gives

dza = dxb ∗ y + x ∗ dyb

which can be written as matrix operation as

dxa

dya

dza

=

1 0 0
0 1 0
y x 0

dxb

dyb

dzb

where d?a represents the derivative of variable ? after the assignment to z has been
completed, and d?b represents the derivative of variable ? prior to the assignment to
z. Transposing this matrix assignment and relabeling variables gives the new matrix
operation

axb

ayb

azb

=

1 0 y
0 1 x
0 0 0

axa

aya

aza

where a?a now represents the “adjoint” of variable ? after the assignment to z has
been completed, and a?b represents the “adjoint” of variable ? prior to the assignment
to z. (The adjoint of a variable at a particular location in the program is defined
to be the derivative of the dependent variable with respect to the variable at the
specified program location.) Note that the transposed matrix operation describes
how to compute the adjoints of variables prior to the assignment to z, given adjoint
values of variables after the assignment to z and partial derivatives of the assignment
statement itself.

706 Chapter 24 Automatic Differentiation

We can now generate two new pseudocode fragments that implement this new
operation.1 The first fragment is executed during a forward pass through the pro-
gram. The forward pass records the values of partial derivatives for the assignment
statement by pushing them onto a stack and then executes the assignment.

call push(z)

call push(y) ! dz/dx

call push(x) ! dz/dy

z = x * y

The second fragment pops the partial derivative values off of the stack and then uses
them to update the adjoint values for this assignment statement during a reverse
pass over the function.

call pop(pzy) ! dz/dy

call pop(pzx) ! dz/dx

a_x = a_x + pzx * a_z

a_y = a_y + pzy * a_z

a_z = 0

call pop(z)

Hybrid combinations of the forward and reverse modes sometimes make sense
[115]. For example, the Adifor 3.0 system described below, when differentiating a
program in the forward mode, actually applies the reverse mode to each assignment
statement to compute the required partial derivatives. An example of code generated
by this hybrid technique is shown in Section 24.2.2.

24.1.2 When Automatic Differentiation Works

AD is a purely local technique for enhancing a program with code to compute
derivatives. Typical proofs of the correctness of AD start by demonstrating that
AD correctly computes the derivatives of straight-line sequences of assignment
statements that have the property that all operators and built-in functions are
continuously differentiable on open domains and that those operators and built-
in functions are evaluated at points in their domains. Straight-line sequences of
assignments that meet these criteria can easily be shown to be differentiable. These
proofs are then extended to deal with programs that contain active conditional
branches by requiring that the code guarded by those conditional branches and
its derivative be smooth. The following example meets this branch criterion, since
both statements L1 and L2, when evaluated at x= 0, yield y = 0 and y′ = 0:

if (x < 0) then

L1: y = x^2

1 We can drop the “a” and “b” subscripts from the names of the adjoint variables, as long as we generate the
new derivative code in the appropriate sequence.

24.2 Automatic-Differentiation Implementation Techniques 707

else

L2: y = 3 * x^2

endif

In contrast, the next example fails to meet the branch criterion and will lead AD
astray:

if (x = 1) then

y = 1

else if (x = 2) then

y = 4

else

y = x^2

endif

The derivatives of each of the constant assignments to y are 0, even though the
derivative of y = x2 at x= 1 is 2 and the derivative of y = x2 at x= 2 is 8. Empirically
we have rarely seen any problems introduced by the way AD handles branches.

Before we discuss AD implementation techniques, we need to raise two additional
issues. First, since derivatives may be scaled differently than function values, over-
flow and underflow may arise during the evaluation of derivatives of functions that
do not themselves generate overflows and underflows. On machines with IEEE arith-
metic, the standard handling of overflows and underflows will make it clear when
these sorts of exceptions have occurred.

Second, computer simulations almost always approximate solutions to some
mathematical problem. Mathematically, there is no guarantee that differentiating
an approximation to a function gives the same result as approximating (or, more
simply, computing) the derivative of the function. A small example demonstrates
this point. Approximate y = x2 using the following code:

c = floor(x^2/h)

y = c * h

Clearly, ignoring mundane issues such as overflow, as h→ 0, y becomes an ever better
approximation to x2. However, in reality, c is a step function whose derivative is 0
everywhere except where it is undefined (i.e., when x2/h is an integer value) and h
is independent of x, so its derivative is 0. Therefore, for all values of x where x2/h is
not an integer value, the derivative of y is 0 and not 2x, as might be expected.

24.2 Automatic-Differentiation Implementation Techniques

This section describes two AD implementation techniques that are used by various
AD packages to perform the AD code-augmentation process: (1) operator overloading
and (2) source-to-source transformation.

708 Chapter 24 Automatic Differentiation

24.2.1 AD via Operator Overloading

Operator overloading extends elementary operations (such as multiply and divide)
and elementary functions (such as sine and cosine) to compute their derivatives in
addition to their usual values. This technique can be applied in any language that
implements operator overloading. To use an AD tool based on operator overloading,
users must modify the types of the active variables in their programs and then
compile the new code along with implementations of the overloaded operations.
AD tools that use the operator overloading approach include ADOL-C [401], ADOL-
F [860], ADO1 [780], and OPTIMA [83]. A simple example of an implementation of
the forward mode is given in Gorlen et al. [392].

Despite the elegance of the operator overloading approach, its major disadvantage
is one of granularity—only individual unary and binary operations can be over-
loaded. When an operator overloading–based AD tool sees

z = x(1) * x(2) * x(3) * x(4)

in the forward mode, it carries out operations that correspond to the following:

t1 = x(1) * x(2)

g_t1(:) = g_x(:,1) * x(2) + x(1) * g_x(:,2)

t2 = t1 * x(3)

g_t2(:) = g_t1(:) * x(3) + t1 * g_x(:,3)

t3 = t2 * x(4)

g_t3(:) = g_t2(:) * x(4) + t2 * g_x(:,4)

z = t3

g_z(:) = g_t3(:)

For a relatively small number of independent variables, the cost of this code is
dominated by the cost of the four vector assignment statements. By taking program
context into account, as shown in the next section, the cost of this derivative
calculation can be significantly reduced.

24.2.2 AD via Source-to-Source Transformation

Source-to-source transformation is a compiler-based technique for transforming a
computer code into a new code that explicitly includes statements that compute
derivatives. This technique can be applied to programs written in any programming
language. To use an AD tool based on source-to-source transformation, users present
their source code and a description of the derivatives that they need to the AD tool.
The AD tool then parses each of the source code modules in the program, identi-
fies the active variables, and then transforms the source code into a new code that
contains new source code that implements the required derivative computation.
ADIC [113], Adifor [109, 111], ODYSSEE [808, 809], and TAMC [377, 378] all imple-
ment source-to-source techniques to enhance programs to compute derivatives.

24.3 Automatic-Differentiation Software 709

The advantage of this approach is that the entire program context is available
at compile time. The disadvantage is that the AD tool must contain a competent
parser (maps source code into an internal representation), semantic analyzer (collects
information from the internal representation), and unparser (maps the transformed
internal representation back to source code). A serious development effort is required
to create the underlying infrastructure to implement such a tool.

Taking program context into account allows the derivative computation for the
example in the previous section to be performed using only a single-vector operation
by transforming the assignment statement as follows (cryptic names in the following
code fragment provided for your enjoyment courtesy of Adifor 3.0):

r_tmp_val_0 = x(1) * x(2)

r_tmp_val_1 = r_tmp_val_0 * x(3)

r_tmp_val_0_a = x(4) * x(3)

r_tmp_s_2_a = x(4) * r_tmp_val_0

r_tmp_s_0_a = r_tmp_val_0_a * x(2)

r_tmp_s_1_a = r_tmp_val_0_a * x(1)

g_y(:) = r_tmp_val_1 * g_x(:,4) + r_tmp_s_2_a * g_x(:,3)

+ r_tmp_s_1_a * g_x(:,2) + r_tmp_s_0_a * g_x(:,1)

y = r_tmp_val_1 * x(4)

This code demonstrates the use of the reverse mode within an assignment statement
to compute derivatives that are propagated from statement to statement using the
forward mode.

24.3 Automatic-Differentiation Software

We now present descriptions of two AD packages that are available to developers
of high-performance simulations. The first, ADOL-C, uses operator overloading to
implement AD. The second, Adifor 3.0, uses source-to-source code transformation.
Other AD packages are available as well.

24.3.1 ADOL-C

ADOL-C is a C++ package for evaluating first- and higher-order derivatives of func-
tion codes written in C or C++.2 ADOL-C uses the operator overloading facility in
C++ to redefine the basic arithmetic operators and intrinsic calls in the function
code to record the sequence of calculations involving active variables that occurs
during the evaluation of a function. The sequence of calculations is recorded on a
sequential, and possibly out-of-core, data structure that is usually referred to as a
tape.

2 C code is handled by compiling it with the C++ compiler.

710 Chapter 24 Automatic Differentiation

The ADOL-C user must take the following steps to modify a program to create a
tape:

1. Redeclare active variables in the program using special types adouble, adoublev,
and adoublem for active scalars, vectors of active scalars, and matrices of active
scalars, respectively.

2. Insert calls to the functions trace_on and trace_off to indicate when tape
creation should start and stop.

3. Insert special assignment statements to indicate which of the active variables
in the program are to be treated as independent variables and dependent
variables.

After making these modifications to a function code, the user inserts a call to one of a
number of different high-level drivers to obtain the desired derivatives. A partial list
of high-level drivers includes gradient (to compute a gradient), jacobian (to compute
a Jacobian), hessian (to compute a Hessian), or jac_vec (to compute the product
of a Jacobian and a vector). Other drivers are provided for use in solving ordinary
differential equations, computing higher derivative tensors, computing derivatives
of implicit and inverse functions, and for detecting sparsity in Jacobian matrices.

24.3.2 Adifor 3.0

The Adifor 3.0 system is a major revision and extension of Adifor 2.0. Adifor 2.0, an
AD tool for Fortran 77, was awarded the Wilkinson Prize for Numerical Computing in
1995 and was then released to the public for downloading from CRPC websites. Ad-
ifor 2.0 provided first-order, forward-mode AD for “dusty-deck” Fortran codes. Since
1995, Adifor 2.0 has been significantly revised and extended to create the Adifor 3.0
system. Adifor 3.0 provides five basic derivative modes: gradient (computes first-
order derivatives using the forward mode), adjoint (computes first-order derivatives
using the reverse mode), hessian_symmetric (computes matrix products of the form
VHV), hessian_unsymmetric (computes matrix products of the form WTHV), and
taylor (computes sets of elements of Hessians by propagating two-term univariate
Taylor series). Like ADOL-C’s high-level drivers, Adifor 3.0 provides a large number
of “high-level interfaces” that are constructed from the five basic AD modes. Both
Adifor 2.0 and Adifor 3.0 use source-to-source transformation to implement AD.

Adifor 3.0 users must take the following steps to augment a code to compute
derivatives:

. Create a specification file that specifies values for various options including AD_
TOP (the name of the procedure to be differentiated), AD_MODE (the name of one
of the five basic derivative modes), AD_IVARS (the names of the independent
variables), AD_DVARS (the names of the dependent variables), and the names of
the Fortran source files to be differentiated.

. Run Adifor 3.0 to generate new derivative-enhanced source modules for each
of the modules in the original program.

24.4 Automatic Differentiation of Message-Passing Parallel Codes 711

. Insert calls to the generated derivative code to compute the required deriva-
tives.

. Compile and link the generated derivative code into the program to create a
derivative-enhanced executable.

24.4 Automatic Differentiation of Message-Passing Parallel Codes

In the last several years, efforts have been made to provide AD tools for message-
passing parallel languages. For example, ODYSSEE [319, 320] provides support for
Fortran 77 extended with (a subset of) MPI in the forward and reverse modes, and
Adifor 3.0 provides support for Fortran 77 extended with (a subset of) MPI in both
the forward and reverse modes. Hovland [491] describes some of the issues that must
be addressed by an AD tool for parallel programs. The three key issues that must be
addressed by any AD tool for message-passing parallel codes are described below.

24.4.1 Activity Analysis

Users of AD tools like ODYSSEE and Adifor 3.0 specify the sets of independent and
dependent variables and let the AD tool carry out an activity analysis procedure to
identify the other variables in the code that are active. In the presence of message-
passing operations, it becomes necessary to establish pathways from the independent
variables to the dependent variables that pass through send and receive operations.
Only in very simple cases is it possible to determine a precise mapping between these
send and receive operations. Adifor 3.0 forces all floating-point variables that occur
in send and receive operations to be active. This ensures that the code generated
by Adifor 3.0 will be correct, although not optimal. Efficiency could be improved
by allowing users to annotate their programs with directives to indicate the precise
mapping between the send and receive operations.

24.4.2 Differentiation of Communication Operations

Consider the following code fragments:

if (myid = 1) then

call send(2, x) // send array to process 2

else

call recv(1, y) // recv array from process 1

endif
.
.
.

The above fragment, in a strong sense, is equivalent to the following fragment:

if (myid = 1) then

ether = x

else

712 Chapter 24 Automatic Differentiation

y = ether

endif
.
.
.

That is, we can interpret the send of x to be an assignment of x to a unique, globally
available variable that we have chosen to call ether. The recv operation then becomes
an assignment from ether to y. From this, it is possible to generate correct forward
and reverse mode derivative code. Differentiating the example using the forward
mode gives

if (myid = 1) then

ether = x

g_ether(:) = g_x(:)

else

y = ether

g_y(:) = g_ether(:)

endif

The above results are then transformed into the familiar looking code,

if (myid = 1) then

call g_send(x, g_x, 2)

else

call g_recv(y, g_y, 1)

endif
.
.
.

Here, procedure g_send becomes responsible for sending x and g_x to process 2, and
procedure g_recv becomes responsible for receiving the values sent by process 1 into
y and g_y.

Differentiating the example using the reverse mode is even more interesting:

// forward pass of the reverse mode
.
.
.

b = (myid = 1)

if (b) then

call push(ether)

ether = x

else

call push(y)

y = ether

endif

call push(b)

24.4 Automatic Differentiation of Message-Passing Parallel Codes 713

.

.

.

// reverse pass of the reverse mode

call pop(b)

if (b) then

a_x = a_z + a_ether

a_ether = 0.0

call pop(ether)

else

a_ether = a_ether + a_y

a_y = 0.0

call pop(y)

endif

These results are then mapped back to calls to procedures a_send and a_recv that
implement the appropriate forward and reverse pass for send and recv to give:

// forward pass of the reverse mode
.
.
.

b = (myid = 1)

if (b) then

call a_send(‘‘fwd’’, x, a_x) // a_x unused on fwd pass

else

call push(y)

call a_recv(‘‘fwd’’, y, a_y) // a_y unused on fwd pass

endif

call push(b)
.
.
.

// reverse pass of the reverse mode

call pop(b)

if (b) then

call a_send(‘‘rev’’, x, a_x)

else

call a_recv(‘‘rev’’, y, a_y) // a_y unused on fwd pass

call pop(y)

endif

Most importantly, note that the a_recv operation is responsible for receiving adjoint
values and then adding them into adjoint variables in the process that invoked the
receive operation.

714 Chapter 24 Automatic Differentiation

24.4.3 Differentiation of Reduction Operations

Message-passing libraries often provide a suite of reduction operations to compute
the sum (product, min, max, or . . .) of all of the entries in a distributed array.
Reduction operations combine communication and computation and must be dif-
ferentiated accordingly. It is easy to differentiate reduction operations if all of the
communication and computation is exposed to the AD tool. Ideally, however, differ-
entiating a reduction operation would lead to a new reduction operation that could
be implemented using the same high-level mechanism for reductions. For sum re-
ductions, this is the case; for product reductions, it is not.

24.5 Advanced Use of Automatic Differentiation

This section describes ways in which the basic techniques of automatic differentia-
tion may be modified under certain circumstances in order to compute derivatives
more efficiently. Special techniques are available to handle sparse Jacobians. Addi-
tionally, parallel processing may be applied to speed up the computation in some
cases.

24.5.1 Computing Sparse Jacobian Matrices with Known Sparsity

Computing the Jacobian matrix f ′(x) of a mapping f : R
m → R

n when f ′(x) is large
and sparse can be a daunting task. In this section, we discuss a technique that
can significantly reduce this cost when the sparsity pattern of f ′(x) is known. The
technique was first used to reduce the cost of approximating sparse Jacobians using
finite differences. To use this compression technique, it is necessary to compute
Jacobian–vector products of the form f ′(x)v, for any v ∈ R

n. Using finite differences,
we can approximate f ′(x)v by using

f (x+ hvv)− f (x)

hv

with some suitable parameter hv. AD naturally supports the computation of f ′(x)v.
We now partition the columns of f ′(x) into groups such that columns in a group do

not have nonzeros in the same row position. For example, if a function f : R
4→ R

4

has a Jacobian matrix f ′(x) with the structure (symbols denote nonzeros, and zeros
are not shown)

f ′(x)=

♦
♦ ♥

♣ ♥
♣ ♠
♣ ♠

then columns 1 and 2 can be placed in one group, while columns 3 and 4 can be
placed in another group. The key idea is to identify structurally orthogonal columns
of f ′(x), that is, columns whose inner product is zero, independent of x.

24.5 Advanced Use of Automatic Differentiation 715

Given a partitioning of the columns of f ′(x) into p groups of structurally orthogo-
nal columns, we can determine f ′(x) with p evaluations of f ′(x)v. For each group we
compute f ′(x)v, where vi = 1 if the ith column is in the group, and vi = 0 otherwise.
In the above example, we would compute f ′(x)vi for v1= e1+ e2 and v2= e3+ e4, and
obtain

f ′(x) v1=

♦
♦
♣
♣
♣

f ′(x) v2 =

♥
♥
♠
♠

at the cost of only two evaluations of f ′(x)v (versus four for the naive approach).
Because of the structural orthogonality property, we can still uniquely extract all
entries of the Jacobian matrix.

Instead of performing p evaluations of f ′(x)vi, it is usually more efficient to
assemble the vectors vi into a matrix V and compute f ′(x)V with one evaluation
of the AD-augmented derivative code. In the example, we would set

V =

1 0
1 0
0 1
0 1

Curtis et al. [241] were the first to note that a partitioning of the columns into
p structurally orthogonal groups allows the approximation of the Jacobian matrix
with p function evaluations. Curtis et al. were interested in approximating the
Jacobian matrix, and thus they approximated f ′(x)v by differences of function values.
However, as made clear above, the same ideas apply if we compute f ′(x)v implicitly
using AD.

In the algorithm proposed by Curtis et al. (CPR algorithm) the groups are formed
one at a time by scanning the columns in the natural order, including a column in
the current group if it has not been included in a previous group and if it does not
have a nonzero in the same row position as another column already in the group.
Coleman and Moré [210] showed that the partitioning problem could be analyzed
as a graph-coloring problem, and that by looking at the problem from the graph-
coloring point of view, it is possible to improve the CPR algorithm by scanning the
columns in a carefully selected order.

Coleman et al. [208, 209] describe software for the partitioning problem. Given a
representation of the sparsity structure of f ′(x), these algorithms produce a partition-
ing of the columns of f ′(x) into p structurally orthogonal groups. For many sparsity
patterns, p is small and independent of n. For example, if the sparsity structure has
bandwidth β, then p≤ β. We also note that discretization of an infinite dimensional
problem also leads to sparsity patterns where p is independent of the mesh size.

Averick et al. [58] describe the computation of large sparse Jacobians using graph
coloring–based compression with Adifor 2.0.

716 Chapter 24 Automatic Differentiation

24.5.2 Computing Sparse Jacobian Matrices with Unknown Sparsity

Computationally, the most expensive kernel of first-order, forward-mode derivative
code is the linear combination of vectors operation, which can be defined as follows:

w =
k∑

i=1

αi vi (24.1)

where w and the vi are derivative vectors of length p, the αi are the scalar multipliers,
and k is the arity.

For problems where the derivative vectors in the above operation are known
to be mostly sparse, it is worth considering using data structures and algorithms
that can take advantage of this “local sparsity” to reduce the run time and memory
requirements for the overall derivative computation. Such techniques may have a
considerable impact on the cost of computing derivatives, even for codes whose
derivatives are not sparse. For example, consider the computation of gradients of
partially separable functions. Partially separable functions [403] can be represented
in the form

f (x)=
np∑
i=1

fi(x)

where each of the component functions fi has limited support . Limited support means
that each component function depends on only a small subset of the independent
variables. This implies that the gradients∇fi are sparse even though the final gradient
∇f is dense. It can be shown [403] that any function with a sparse Hessian is partially
separable.

This local sparsity can be exploited in a completely transparent fashion, that
is, without the a priori knowledge of the sparsity pattern of the Jacobian required
for graph coloring. Given the appropriate options, Adifor 3.0 generates derivative
code that invokes the SparsLinC (Sparse Linear Combination) library [110, 111]
to perform all of the vector linear combinations using a suite of data structures
and algorithms that take advantage of sparsity. By ignoring zeros introduced by
cancellation, SparsLinC delivers the sparsity structure of the Jacobian as a byproduct
of the derivative computation.

24.5.3 Strip-Mining of Derivative Computations

For a sequential code with a large number of independent variables, parallel process-
ing can be used to reduce the overall time required to compute the needed deriva-
tives. As mentioned in the previous section, the kernel computation for first-order
derivative computations is a vector linear combination. The kernel computation for
higher-order derivative computations is a higher-order analogue to the vector linear
combination. Therefore, to compute derivatives of a program with respect to n in-
dependent variables on p processors, assuming for simplicity that p evenly divides
n, it is sufficient to compute the p Jacobian-matrix products J ∗ Ri, where Ri is the

24.5 Advanced Use of Automatic Differentiation 717

r f g h u
s t

Figure 24.1 Sequential evaluation of function codes.

matrix consisting of the n/p basis vectors e1+(i−1)∗(n/p) . . . ei∗(n/p). This strip-mined
derivative computation is “almost pleasingly parallel”—it is quite easy to distribute
the derivative computation across p processors, but the speedup is not perfect, since
each processor will be required to compute the function in addition to its strip of
derivatives [112].

24.5.4 Exploiting Coarse-Grained Chain Rule Associativity

Consider the pipeline of codes shown in Figure 24.1. In the figure, code f reads its
input r, performs its computation, and then passes its output s on to code g, which
performs its computation and then passes its output t to code h to compute the final
outputs u of the system. The derivatives of h’s output u with respect to f ’s inputs r
can be computed in one of two ways:

1. Use the forward mode of AD and propagate derivatives sequentially through f ,
g and h. That is, first compute ds/dr, then compute dt/ds ∗ ds/dr by using the
forward mode of AD to compute J ∗ R with J = dt/ds and R= ds/dr, and finally
compute du/dr = du/dt ∗ (dt/ds ∗ ds/dr) by using the forward mode of AD to
compute J ∗ R with J = du/dt and R= (dt/ds ∗ ds/dr).

2. Apply the forward mode of AD to f , g, and h and then perform two matrix
multiplies. That is, compute ds/dr, dt/ds, and du/dt and then explicitly form
the product du/dt ∗ (dt/ds ∗ ds/dr) to get du/dr. Using this strategy, it is possible
to compute the derivatives for each of the codes f , g, and h in parallel to
compute the desired derivatives. This strategy is shown in Figure 24.2. If
sufficient parallel resources are available, then this strategy can be very effective
at reducing the total time required to compute the derivatives for the system.

Bischof and Wu [114] describe the application of this coarse-grained strategy to
parallelize the derivative computation for a time-stepping sequential code.

24.5.5 Checkpointing for the Reverse Mode

The reverse mode of AD has been referred to as a “slam dunk” for computing
gradients of functions with large numbers of independent variables because of its
ability to compute the derivatives in time proportional to the time required to
evaluate the function. The memory requirements of the reverse mode, though,
substantially reduce its applicability. To increase the usability of the reverse mode,
Griewank [399], based on results published by Volin and Ostrovski [963], devised and
analyzed a scheme that uses additional time to reduce the memory requirements. We

718 Chapter 24 Automatic Differentiation

r f

ds/dr

g h u
s

s t

t

dt/ds

dt/ds * ds/dr

du/dt * (dt/ds * ds/dr)

du/dt

Figure 24.2 Parallel evaluation of derivatives for sequence of codes.

can demonstrate Griewank’s approach using the example from the previous section.
Figure 24.3 is intended to show the following sequence of events:

1. Evaluate f without taping.

2. Evaluate g without taping.

3. Evaluate h with taping.

4. Compute du/dt using reverse mode on h.

5. Evaluate g with taping.

6. Compute du/ds using reverse mode on g.

7. Evaluate f with taping.

8. Compute du/dr using reverse mode on f.

By evaluating g and h twice, we have eliminated the need to simultaneously store the
trace for f, g, and h. If f, g, and h all have roughly the same cost, then this strategy has
reduced the memory requirements to one-third of what they were previously at the
cost of less than one function evaluation. By applying this same technique on a finer
grain, Griewank is able to achieve a logarithmic reduction in the space requirements
with a concomitant logarithmic growth in the time required to perform the reverse-
mode computation. Greiwank and Walther [402] have developed an implementation
of checkpointing for the reverse mode of AD that can be used in conjunction with
the various AD tools described above.

24.6 Conclusion 719

r f g h:taping u
s t

h:rev

g:taping

g:rev

f:taping

f:rev

du/dt

du/du

du/ds

du/dr

Figure 24.3 Checkpoint-based reverse mode.

24.6 Conclusion

AD provides a way to compute derivatives of computer codes ranging in size from
the very small to the very large, running on machines ranging from individual
workstations to full-scale computational grids. We believe that the efficiency and
accuracy of the derivative-enhanced codes that can be created by using AD tools
in conjunction with the advanced techniques described in this chapter, and others
that have not been mentioned, make it well worth your time to become acquainted
with AD.

P

A

R

T V Conclusion

Chapter 25 WRAP-UP AND SIGNPOSTS TO THE FUTURE

Andy White, Los Alamos National Laboratory .

Ken Kennedy, Rice University

722 Chapter 24 Automatic Differentiation

C

H

A

P

T

E

R

25 Wrap-Up and Signposts to
the Future

Andy White . Ken Kennedy

“That’s the signpost up ahead. Your next stop . . . ”
—Rod Serling, The Twilight Zone

This book provides a broad, often detailed look at the state of parallel computing in
hardware, software, and applications. Our view has naturally focused on the work of
the institutions and individuals that were brought together in the National Science
Foundation’s Center for Research on Parallel Computation. In this final chapter, we
briefly review the central issues in each section and look for general principles among
the previous discussions. Finally, we try to anticipate some of the signposts that you
may catch a glimpse of over the next few years.

25.1 Computational Resources

Parallelism is a primary method for accelerating the total power that can be applied
to any problem. That is, in addition to continuing to develop the performance of a
technology, multiple copies are deployed that provide some of the advantages of an
improvement in raw performance, but not all. Of course, for the commercial side of
the house, increased volume (aka commodity market) has its own reward. The sym-
metric multiprocessor (SMP) provided a straightforward environment for accessing
moderate levels of parallelism. However, requirements for more memory (accuracy)
and more speed (response time) drove systems beyond the point at which SMPs could
maintain their flat memory architecture. Another simple model of computation is
data parallelism, an intuitive programming standard for many physical problems de-
fined on R

3× t . Systems and languages (e.g., CM-5, CMFortran) that implemented
this model were easily mastered by both computer and computational scientists. Un-
fortunately, substantial reductions in the size of the high-end market and difficulty
in dealing with unstructured problems slowed interest in this promising technology.

Employing parallelism to solve large-scale problems is not without its price. While
Flatland, represented in hardware by SMPs and in software by data parallelism, is an

723

724 Chapter 25 Wrap-Up and Signposts to the Future

appealing concept, the complexity of building parallel computers with thousands of
processors to solve real-world problems requires a hierarchical approach—associating
memory closely with CPUs. Consequently, the central problem faced by parallel
codes is managing a complex memory hierarchy, ranging from local registers to far-
distant processor memories. It is the communication of data and the coordination
of processes within this hierarchy that represent the principal hurdles to effective,
correct, and widespread acceptance of parallel computing. Thus, today’s parallel
computing environment has architectural complexity layered upon a multiplicity of
processors. Scalability, the ability for hardware and software to maintain reasonable
efficiency as the number of processors is increased, is the key metric.

The future will be more complex yet. Distinct computer systems will be networked
together into the most powerful systems on the planet. The pieces of this composite
whole will be distinct in hardware (e.g., CPUs), software (e.g., OS), and operational
policy (e.g., security). This future is most apparent when we consider geographically
distributed computing on the Computational Grid. However, heterogeneity also
has advantages for concentrated computing within a single computer center. The
fact is that there are fundamental difficulties inherent in the acquisition of large
monolithic systems when procurement lasts longer than the doubling time of the
technology itself. Progress toward even more complexity in hardware platforms will
paradoxically also drive broad uniformity in software environments and will drive
the community toward recognition that the software framework, not the hardware,
must define the computing environment. This increased complexity has at least one
interesting side effect—superlinear speedup is possible on heterogeneous systems,
provided that the architectural diversity is sufficiently rich.

25.2 Applications

Computational physics applications have been the primary drivers in the develop-
ment of parallel computing over the last 20 years. This set of problems has a number
of features in common, despite the substantial specific differences in problem do-
main.

1. Applications were often defined by a set of partial differential equations (PDEs)
on some subset of R

3× t .

2. Multiphysics often took the form of distinct physical domains with different
processes dominant in each.

3. The life cycle of many applications was essentially contained within the com-
puter room, building, or campus.

These characteristics focused attention on discretizations of PDEs, the correspond-
ing notion of resolution = accuracy, and solution of the linear and nonlinear equa-
tions generated by these discretizations. Data parallelism and domain decomposition
provided an effective programming model and a ready source of parallelism. Multi-
physics, for the most part, was also amenable to domain decomposition and could be

25.3 Software 725

accomplished by understanding and trading information about the fluxes among the
physical domains. Finally, attention was focused on the parallel computer, its speed
and accuracy; relatively little attention was paid to I/O beyond the confines of the
computer room.

Over the last few years, parallel applications have changed. Many socially, politi-
cally, or economically relevant applications (e.g., marketing, crisis management, and
war fighting) are significantly different than the PDE-defined problems that preceded
them. Some of the most apparent differences include:

1. Problems are often naturally defined on graphs (e.g., transportation, commu-
nication) rather than on discretizations of R

3.

2. Interaction among components is often global; thus, composition cannot be
accomplished by understanding fluxes at boundaries.

3. Definition of a formal trust structure—for example, verification and validation
in ASCI—for the hardware, software, simulation, and human interface is criti-
cal for problems whose consequences transcend the usual science application.

Data, rather than computation, will be the transformational element in many
applications of the future. In fact, the existence of vast, new data sets has already
transformed many applications, including marketing, bioscience, and earthquake
research. I/O will be critical in accessing observational and experimental data for
validation, in providing real-time surveillance for crisis and military applications,
and in allowing an effective, trusted interface with the ultimate user of these sim-
ulations. Further afield still, the issues of data security, ownership, and privacy will
raise significant technological, administrative, legal, and ethical questions.

25.3 Software

The holy grail for software is portable performance. That is, software should be reusable
across different platforms and provide significant performance, say, relative to peak
speed, for the end user. Often, these two goals seem to be in opposition each
to the other. The classic programming environment is pictured in Figure 25.1.
Standard languages (e.g., Fortran, C), language extensions (e.g., OpenMP, HPF), and
libraries (e.g., MPI, Linpack) allow the programmer to access or expose parallelism
in a variety of standard ways. By employing standards-based, optimized libraries,
the programmer can sometimes achieve both portability and high performance.
Tools (e.g., svPablo, Prism) allow the programmer to determine the correctness
and performance of their code and, if falling short in some ways, suggest various
remedies.

The problem-solving environment (PSE) (Figure 25.2) is yet another level removed
from the computational resources. Some PSEs that were discussed here were MAT-
LAB (linear algebra), NWChem (computational chemistry), and PETSc (solution of
PDEs). The PSE’s interface is focused on the application domain and, insofar as pos-
sible, employs the objects and language of the target application. Thus, on top of

726 Chapter 25 Wrap-Up and Signposts to the Future

To
ol

s

Libraries

Language
compiler
run time

Computational resources

Figure 25.1 The classic programming environment.

Data, objects, functions

Interface Methods

Figure 25.2 The problem-solving environment.

the middleware layers are two additional, user-accessible layers: the high-level ap-
plication programming interface and a collection of high-level methods specific to
the application domain. A well-constructed PSE also allows the user to transparently
achieve platform-portable performance. It is often difficult, however, to reuse pieces
of a PSE, because it is specifically constructed using data, objects, and functions
particular to the target application. PSE toolkits, such as WebFlow, provide a more
general framework for constructing specific PSEs.

Object-oriented design methodology calls for applications to be constructed by
composing reusable, standards-compliant components. Component architectures,
such as Java Beans and CORBA, are commonplace in the commercial marketplace,
but not yet in technical computing, although the Common Component Architec-
ture is making progress in that direction. Components are defined by their interfaces,
functionality, and communication protocols. This generalized notion allows com-
ponents to be reusable within a broader setting than OO libraries, such as POOMA.

Software has always followed hardware. However, there is considerable pressure
to reverse this relationship. First, large-scale application codes must be trivially
or, at worst, easily portable across a variety of platforms. Second, the computing
environment in the future will be significantly heterogeneous. These two issues
require moving toward a software-centric worldview. Abstraction, away from the
details of the hardware and system software, is necessary for ease of use, particularly
for those not trained in the arcane ways of computer and computational science.
Reusable libraries and components are necessary to leverage the time and talents of
systems programmers and to provide performance across a wide variety of platforms.

25.5 Signposts 727

It is difficult to understand how competing armies of proprietary software will
accomplish this.

25.4 Templates, Algorithms, and Technologies

Templates are an effective method of providing information about a particular tech-
nology, technique, or set of algorithms. In general, a template will discuss the basic
theoretical foundation for the subject, will explore the major algorithmic or imple-
mentation issues, will provide high-level pseudocode for the principal techniques,
and will list or provide links to libraries or packages that incorporate these ideas. The
templates in Part IV discuss a number of important software technologies.

1. Graph partitioning algorithms are used to segment an irregular or unstructured
graph in such as way as to equipartition a particular variable or operation
defined on this graph (e.g., interprocessor communication).

2. Mesh generation is an important capability in accurately representing complex
geometries (e.g., an automobile engine) and complex physical processes (e.g.,
shocks in a fluid).

3. Numerical linear algebra, whether with full or sparse matrices, whether standing
alone or as part of a nonlinear iteration, is often the critical component of an
efficient application code.

4. Parallel optimization is an emerging area that will become increasingly impor-
tant as applications move more toward multiphysics and multidisciplinary
design problems.

5. Path following provides a useful technique for obtaining difficult-to-find solu-
tions to ordinary and PDEs.

6. Automatic differentiation is a unique capability for providing accurate deriva-
tives of application codes themselves in order to examine their sensitivity and
stability.

25.5 Signposts

We have discussed many of the innovations in parallel computation over the last
decade or so. However, interspersed within these discussions have been glimpses,
perhaps fleeting, of possible futures. There are a number of such signposts that we
might see over the next few years, and even though we might decide to disregard
Yogi Berra’s advice to take the fork in the road, a half-dozen of them are well worth
emphasizing here.

. Heterogeneous hardware environments.Hardware environments will be composed
of multiple platforms that differ in performance, size, and vendor trademark.
This is most easily envisioned in the context of distributed, Grid computing,
but is also under discussion in the concentrated (single-site) computing arena.
The primary difficulty will be increased complexity for both application and
system software.

728 Chapter 25 Wrap-Up and Signposts to the Future

. Software architecture. Throughout the evolution of scientific computing, the
computing environment has been defined by the hardware. There are indica-
tions that software—components and frameworks, high-level languages and
compilers, PSRs, scripting languages, operating systems—will define the com-
puting environment of the future. The primary difficulties will be validation
in the face of increasing complexity and making certain that inertia does not
retard the development of new capabilities, algorithms, techniques, and inter-
faces.

. Open source. Proprietary, vendor-specific software predominates in high-end
computing. However, the triad of programmer productivity, hardware het-
erogeneity, and system reliability will place significant pressure on this com-
munity to consider an open-source infrastructure. However, this will not be
without its difficulties and detractors due to such issues as development sched-
ules, a viable economic model, and security.

. New applications. Computational physics has driven the development of paral-
lel software, algorithms, and methods over the last 2 decades. However, new
applications, many directly applicable to societal issues, will increasingly share
the market space with traditional applications. Such meta-applications will
require real-time data access, will simulate processes described only by their
phenomenology, and will often be defined on graphs or have no natural struc-
ture at all. These applications will place a new focus on real-time I/O, trusted
human interfaces, and ethical, legal, and jurisdictional issues.

. Verification and validation. The consequences of misuse or mistrust of socially
relevant applications (e.g., safety and performance of nuclear weapons, global
climate, critical infrastructure assurance) requires the development and de-
ployment of formal, trusted systems—verification, validation, and quantifi-
cation of uncertainty. This trust must extend to all aspects of the process:
surveillance, experiment, theory, model, application code, software, hardware,
and human interface. Among the difficulties are imposing formality on a com-
plex, science-based process and accelerating acceptance of simulation-based,
decision-making tools.

. Data. Access to data—observation, experiment, and real-time surveillance—is
transforming entire disciplines (e.g., bioscience, geophysics, Stockpile Stew-
ardship) and their projections onto computational science. These data will be
of varying format, type, and quality, and the totality will be overwhelming
to currently available I/O systems. In addition, socially relevant applications
are making validation of application codes critically important. The difficulties
will be I/O from real-time sources, data quality, and assimilation, verification,
security and ownership of data, privacy, and person-machine interface.

The editors of this volume believe that these signposts, taken together, will have
an impact on the future of high-performance computing similar in weight to the im-
pact that parallel computing has had in the last fifteen years. Perhaps some of the edi-
tors will be the subjects of coordinated research efforts similar in breadth to the efforts
carried out by the Center for Research on Parallel Computation from 1989 to 2000.

REFERENCES

[1] E. Aarts and J. Korst. Simulated Annealing and Boltzmann Machines. John Wiley & Sons,
Chichester, 1989.

[2] T. Abel, M. L. Norman, and P. Madau. Photon-conserving radiative transfer around point
sources in multidimensional numerical cosmology. The Astrophysical Journal, 523(1):66–71,
Sep 1999.

[3] M. Abramowitz and I. A. Stegun, eds. Handbook of Mathematical Functions. Dover, New York,
1970.

[4] W. B. Ackerman. Data flow languages. Computer, 15(2):15–25, Feb 1982.

[5] J. C. Adams. MUDPACK: Multigrid Software for Elliptic Partial Differential Equations (A
New Portable Parallel Version), Sep 1999. Available at http://www.scd.ucar.edu/css/software
/mudpack.

[6] Advanced Visual Systems. Available at http://www.avs.com/ .

[7] S. V. Adve and K. Gharachorloo. Shared Memory Consistency Models: A Tutorial. Technical
Report 9512. Department of Electrical and Computer Engineering, Rice University, Sep
1995. (Also available as Western Research Laboratory Research Report 95/7. Available at
http://www.research.digital.com/wrl/publications/abstracts/95.7.html)

[8] V. Adve, A. Carle, E. Granston, S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, J. Mellor-
Crummey, S. Warren, and C. W. Tseng. Requirements for data-parallel programming
environments. IEEE Parallel and Distributed Technology, 2(3):48–58, Fall 1994.

[9] V. Adve and J. Mellor-Crummey. Advanced code generation for High Performance Fortran.
In S. Pande and D. P. Agrawal, eds., Compiler Optimizations for Scalable Parallel Systems:
Languages, Compilation Techniques and Run Time Systems for Scalable Parallel Systems, 553–
596, Springer-Verlag, Heidelberg and New York, 2001.

729

730 References

[10] V. Adve and R. Sakellariou. Application representations for multiparadigm performance
modeling of large-scale parallel scientific codes. The International Journal of High Performance
Computing Applications, 14(4):304–316, Winter 2000.

[11] V. Adve, J. Mellor-Crummey, M. Anderson, K. Kennedy, J.-C. Wang, and D. Reed. An
integrated compilation and performance analysis environment for data parallel programs.
In Proceedings of Supercomputing ’95, ACM Press, New York, 1995.

[12] Aggregate Remote Memory Copy Interface. Web page. Available at http://www.emsl.pnl.gov
:2080/docs/parsoft/armci/ .

[13] R. Agrawal, T. Imielinski, and A. Swami. Database mining: A performance perspective. IEEE
Transactions on Knowledge and Data Engineering, 5(6):914–925, Dec 1993.

[14] R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of items
in large databases. In Proceedings of the 1993 ACM–SIGMOD International Conference on
Management of Data, 207–216, ACM Press, New York, 1993.

[15] R. Agrawal and J. C. Shafer. Parallel mining of association rules. IEEE Transactions on
Knowledge and Data Engineering, 8(6):962–969, Dec 1996.

[16] R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In J. B. Bocca,
M. Jarke, and C. Zaniolo, eds., Proceedings of the 20th International Conference on Very Large
Data Bases, 487–499, Morgan Kaufmann, San Francisco, 1994.

[17] E. Akarsu. Integrated Three-Tier Architecture for High Performance Commodity Metacom-
puting. PhD diss., Syracuse University, Dec 1999.

[18] E. Akarsu, G. C. Fox, W. Furmanski, and T. Haupt. WebFlow—high-level programming
environment and visual authoring toolkit for high performance distributed computing. In
Proceedings of Supercomputing ’98, Nov 1998, IEEE Computer Society Press, Los Alamitos, CA.
(Also available at http://old-npac.ucs.indiana.edu/users/haupt/WebFlow/papers/SC98/INDEX
.HTM .)

[19] E. Akarsu, G. Fox, T. Haupt, A. Kalinichenko, K.-S. Kim, P. Sheethaalnath, and C.-H. Youn.
Using gateway system to provide a desktop access to high performance computational
resources. In Proceedings of the Eighth IEEE International Symposium on High Performance
Distributed Computing Conference, 294–298, IEEE Computer Society Press, Los Alamitos, CA
1999. (Also available at http://www.computer.org/proceedings/hpdc/0287/0287toc.html.)

[20] N. M. Alexandrov and M. Y. Hussaini, eds. Multidisciplinary Design Optimization: State of the
Art . SIAM, Philadelphia, PA, Feb 1997.

[21] N. M. Alexandrov and R. M. Lewis. Comparative Properties of Collaborative Optimization
to MDO. Technical Report ICASE TR99-24, Institute for Computer Applications in Science
and Engineering, NASA Langley Research Center, Hampton, VA, Jul 1999.

[22] W. Allcock, J. Bester, J. Bresnahan, A. Chervenak, L. Liming, and S. Tuecke. GridFTP: Protocol
Extensions to FTP for the Grid, Mar 2001. Available at http://www-fp.mcs.anl.gov/dsl/GridFTP-
Protocol-RFC-Draft.pdf .

[23] C. Allègre, J. L. Le Mouel, and A. Provost. Scaling rules in rock fracture and possible
implications for earthquake prediction. Nature, 297(5861):47–49, May 1982.

[24] F. Allen, M. Burke, P. Charles, R. Cytron, and J. Ferrante. An overview of the PTRAN analysis
system for multiprocessing. Journal of Parallel and Distributed Computing , 5(5):617–640, Oct
1988.

References 731

[25] J. R. Allen, D. Callahan, and K. Kennedy. Automatic decomposition of scientific programs
for parallel execution. In Proceedings of the 14th Annual ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages, 63–76, ACM Press, New York, 1987.

[26] R. Allen and K. Kennedy. Automatic translation of Fortran programs to vector form. ACM
Transactions on Programming Languages and Systems, 9(4):491–542, Oct 1987.

[27] R. Allen and K. Kennedy. Optimizing Compilers for Modern Architectures. Morgan Kaufmann,
San Francisco, 2002.

[28] S. P. Amarasinghe, J. M. Anderson, M. S. Lam, and C.-W. Tseng. An overview of the SUIF
compiler for scalable parallel machines. In Proceedings of the Seventh SIAM Conference on
Parallel Processing for Scientific Computing, 662–667, SIAM, Philadelphia, PA, 1995.

[29] S. P. Amarasinghe and M. S. Lam. Communication optimization and code generation
for distributed memory machines. In Proceedings of the ACM SIGPLAN ’93 Conference on
Programming Language Design and Implementation, 126–138, ACM Press, New York, 1993.

[30] G. M. Amdahl. Validity of the single processor approach to achieving large scale computing
capabilities. In AFIPS Conference Proceedings, vol. 30, 483–485, AFIPS Press, Reston, VA, 1967.

[31] C. Amza, A. L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony, W. Yu, and W. Zwaenepoel.
TreadMarks: Shared memory computing on networks of workstations. Computer, 29(2):18–
28, Feb 1996.

[32] G. Anagnostou. Nonconforming Sliding Spectral Element Methods for the Unsteady
Incompressible Navier–Stokes Equations. PhD diss., Massachusetts Institute of Technology,
1991.

[33] C. Ancourt, F. Coelho, F. Irigoin, and R. Keryell. A linear algebra framework for static HPF
code distribution. In Proceedings of the Fourth Workshop on Compilers for Parallel Computers,
Delft, The Netherlands, Dec 1993.

[34] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’ Guide
(Software, Environments and Tools), 3rd ed. SIAM, Philadelphia, PA, 2000.

[35] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,
S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK Users’ Guide,
2nd ed. SIAM, Philadelphia, PA, 1995.

[36] E. Anderson and J. Dongarra. Results from the initial release of LAPACK. LAPACK Working
Note #16 (ut-cs-89-89), Department of Computer Science, University of Tennessee,
Knoxville, 1989. (Also available at http://www.netlib.org/lapack/lawns/lawn16.ps.)

[37] E. Anderson and J. Dongarra. Evaluating block algorithm variants in LAPACK. LAPACK
Working Note #19 (ut-cs-90-103), Department of Computer Science, University of Tennessee,
Knoxville, Nov 1990. (Also available http://www.netlib.org/lapack/lawns/lawn19.ps.)

[38] T. E. Anderson, M. D. Dahlin, J. M. Neefe, D. A. Patterson, D. S. Roselli, and R. Y. Wang.
Serverless network file systems. In Proceedings of the Fifteenth ACM Symposium on Operating
Systems Principles, 109–126, ACM Press, New York, 1995.

[39] W. K. Anderson and D. L. Bonhaus. An implicit upwind algorithm for computing turbulent
flows on unstructured grids. Computers and Fluids, 23(1):1–21, Jan 1994.

[40] W. K. Anderson, W. D. Gropp, D. K. Kaushik, D. E. Keyes, and B. F. Smith. Achieving
high sustained performance in an unstructured mesh CFD application. In Proceedings of
Supercomputing ’99, ACM Press, New York, 1999.

732 References

[41] F. André, D. Herman, and J.-P. Verjus. Synchronization of Parallel Programs. Translated by J.
Howlett. MIT Press, Cambridge, MA, 1985.

[42] P. Anninos, Y. Zhang, T. Abel, and M. Norman. Cosmological hydrodynamics with multi-
species chemistry and nonequilibrium ionization and cooling. New Astronomy, 2(3):209–224,
Aug 1997.

[43] ANSI Working Committee. Parallel Processing Model for High Level Programming Languages,
ANSI X3H5 Document Number X3H5/94 SD2, Apr 1994.

[44] APEC Cooperation for Earthquake Simulation (ACES). Available at http://www.quakes.uq.edu
.au/ACES/ .

[45] Applied Parallel Research. Forge High Performance Fortran xhpf User’s Guide, Version 2.1,
Applied Parallel Research, Sacramento, CA, 1995.

[46] T. Arbogast, C. N. Dawson, and M. F. Wheeler. A parallel algorithm for two phase
multicomponent contaminant transport. Applications of Mathematics, 40(3):163–174, 1995.

[47] R. Armstrong, D. Gannon, A. Geist, K. Keahey, S. Kohn, L. McInnes, S. Parker, and B. Smolin-
ski. Toward a common component architecture for high-performance scientific computing.
In Proceedings of the 8th IEEE International Symposium on High Performance Distributed Com-
puting, 115–124, IEEE Computer Society Press, Los Alamitos, CA, 1999. (Also available as
Preprint P759-0699, Argonne National Laboratory, Argonne, IL, Mathematics and Computer
Science Division.) Available at http://www.computer.org/proceedings/hpdc/0287/0287toc.html/ .

[48] D. C. Arnold, J. Dongarra, W. Lee, and M. F. Wheeler. Providing infrastructure and interface
to high-performance applications in a distributed setting. In Proceedings of High Performance
Computing Symposium 2000, 248–253, SCS, 2000.

[49] C. Ashcraft and R. Grimes. SPOOLES: An object-oriented sparse matrix library. In Proceedings
of the 9th SIAM Conference on Parallel Processing for Scientific Computing, SIAM, Philadelphia,
PA, 1999. (CDROM).

[50] C. Ashcraft and J. Liu. A Partition Improvement Algorithm for Generalized Nested Dissection.
Technical Report BCSTECH-94-020, York University, North York, Ontario, Canada, 1994.

[51] C. Ashcraft and J. Liu. Using Domain Decomposition to Find Graph Bisectors. Technical
Report CS-95-08. Department of Computer Science, York University, North York, Ontario,
Canada, Nov 1995.

[52] C. Ashcraft and J. W.-H. Liu. Robust ordering of sparse matrices using multisection. SIAM
Journal on Matrix Analysis and Applications, 19(3):816–832, Jul 1998.

[53] S. Atlas, S. Banerjee, J. C. Cummings, P. J. Hinker, M. Srikant, J. V. W. Reynders, and
M. Tholburn. POOMA: A high-performance distributed simulation environment for
scientific applications. In Proceedings of Supercomputing ’95. ACM Press, New York, 1995.

[54] C. Audet. Convergence Results for Pattern Search Algorithms Are Tight. Technical Report
CRPC TR-98779. Center for Research on Parallel Computation, Rice University, Houston,
TX, Nov 1998.

[55] C. Audet and J. E. Dennis, Jr. Analysis of Generalized Pattern Searches. Technical Report TR00-
07. Department of Computational and Applied Mathematics, Rice University, Houston, TX,
2000.

[56] C. Audet and J. E. Dennis, Jr. A Pattern Search Filter Method for Nonlinear Programming
without Derivatives. Technical Report TR00-09. Department of Computational and Applied
Mathematics, Rice University, Houston, TX, 2000.

References 733

[57] C. Audet and J. E. Dennis, Jr. Pattern search algorithms for mixed variable programming.
SIAM Journal on Optimization, 11(3):573–594, 2000.

[58] B. M. Averick, J. J. Moré, C. H. Bischof, A. Carle, and A. Griewank. Computing large sparse
Jacobian matrices using automatic differentiation. SIAM Journal on Scientific Computing,
15(2):285–294, Mar 1994.

[59] B. M. Averick, R. G. Carter, and J. Moré. The MINPACK-2 Test Problem Collection. Technical
Report ANL/MCS-TM-150. Argonne National Laboratory, Argonne, IL, 1991.

[60] B. M. Averick and J. Moré. Evaluation of large-scale optimization problems on vector and
parallel architectures. SIAM Journal on Optimization, 4(4):708–721, 1994.

[61] O. Axelsson and V. A. Barker. Finite Element Solution of Boundary Value Problems. Theory and
Computation. Academic Press, Orlando, FL, 1984.

[62] O. Axelsson and V. Eijkhout. The nested recursive two-level factorization method for nine-
point difference matrices. SIAM Journal on Scientific and Statistical Computing , 12(6):1373–
1400, Nov 1991.

[63] O. Axelsson and P. S. Vassilevski. Algebraic multilevel preconditioning methods, I.
Numerische Mathematik, 56(2–3):157–177, 1989.

[64] I. Babuška and M. Suri. The p and h-p versions of the finite element method, basic principles
and properties. SIAM Review, 36(4):578–632, Dec 1994.

[65] A. Back, J. Guckenheimer, M. R. Myers, F. J. Wicklin, and P. A. Worfolk. DsTool: Computer
assisted exploration of dynamical systems. Notices of the American Mathematical Society,
39(4):303–309, 1992.

[66] J. Backus. The history of FORTRAN I, II and III. ACM SIGPLAN Notices, 13(8):165–180, Aug
1978.

[67] S. Baden. The KeLP Programming System. Available at http://www-cse.ucsd.edu/groups/hpcl/
scg/kelp/ .

[68] J. Baglama, D. Calvetti, and L. Reichel. Iterative methods for the computation of a few
eigenvalues of a large symmetric matrix. BIT Numerical Mathematics, 36(3):400–421, Sep
1996.

[69] J. Baker, S. Brandt, M. Campanelli, C. O. Lousto, E. Seidel, and R. Takahashi. Nonlinear
and perturbative evolution of distorted black holes: Odd-parity modes. Physical Review D,
62(12):127701/1–4, Dec 2000.

[70] V. Balasundaram, K. Kennedy, U. Kremer, K. McKinley, and J. Subhlok. The ParaScope editor:
An interactive parallel programming tool. In Proceedings of Supercomputing ’89, 540–550, ACM
Press, New York, 1989.

[71] S. Balay, K. Buschelman, W. Gropp, D. Kaushik, M. Knepley, L. C. McInnes, B. Smith,
H. Zhang. PETSc Users Manual (ANL-95/11 REvision 2.1.3). Argonne National Laboratory, Ar-
gonne, IL, May, 2002. (Also available at http://www.mcs.anl.gov/petsc
/docs.)

[72] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith. PETSc Web page. Available at
http://www.mcs.anl.gov/petsc.

[73] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith. Efficient management of parallelism in
object-oriented numerical software libraries. In E. Arge, A. M. Bruaset, and H. P. Langtangen,
eds., Modern Software Tools in Scientific Computing, 163–202. Birkhauser, Boston, 1997.

734 References

[74] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith. PETSc 2.0 Users Manual. (Revision
2.0.28.) Technical Report ANL-95/11. Argonne National Laboratory, Argonne, IL, Mar 2000.

[75] U. Banerjee, R. Eigenmann, A. Nicolau, and D. Padua. Automatic program parallelization.
Proceedings of the IEEE, 81(2):211–243, Feb 1993.

[76] J. Banning. An efficient way to find the side effects of procedure calls and the aliases of
variables. In Proceedings of the 6th ACM SIGPLAN SIGACT Symposium on the Principles of
Programming Languages, 29–41, ACM Press, New York, 1979.

[77] D. Barkley and R. D. Henderson. Three-dimensional Floquet stability analysis of the wake
of a circular cylinder. Journal of Fluid Mechanics, 322:215–241, Sep 1996.

[78] S. T. Barnard. PMRSB: Parallel Multilevel Recursive Spectral Bisection. In Proceedings of
Supercomputing ’95, ACM Press, New York, 1995.

[79] S. Barnard and H. Simon. A fast multilevel implementation of recursive spectral bisection
for partitioning unstructured problems. In Proceedings of the Sixth SIAM Conference on Parallel
Processing for Scientific Computation, 711–718, SIAM, Philadelphia, PA, 1993.

[80] E. R. Barnes, A. Vannelli, and J. Q. Walker. A new heuristic for partitioning the nodes of a
graph. SIAM Journal on Discrete Mathematics, 1(3):299–305, 1988.

[81] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. M. Donato, J. Dongarra, V. Eijkhout,
R. Pozo, C. Romine, and H. van der Vorst. Templates for the Solution of Linear Systems:
Building Blocks for Iterative Methods. SIAM, Philadelphia, PA, 1994. (Also available at
http://www.netlib.org/templates/templates.ps).

[82] J. M. Barth. A practical interprocedural data flow analysis algorithm. Communications of the
ACM , 21(9):724–736, Sep 1978.

[83] M. Bartholomew-Biggs. OPFAD—A User’s Guide to the OPtima Forward Automatic
Differentiation Tool. Technical report. Numerical Optimization Centre, University of
Hertfordshire, Hatfield, Hertfordshire, UK, 1995.

[84] P. Bastian, K. Birken, K. Johannsen, S. Lang, N. Neuss, H. Rentz-Reichert, and C. Wieners.
UG—A flexible software toolbox for solving partial differential equations. Computing and
Visualization in Science, 1(1):27–40, 1997.

[85] J. T. Batina. A gridless Euler/Navier–Stokes solution algorithm for complex-aircraft
applications. In Proceedings of the 31st AIAA Aerospace Sciences Meeting, Reno, NV, Jan
1993. (AIAA Paper 93-21107.)

[86] S. J. Baylor and C. E. Wu. Parallel I/O workload characteristics using Vesta. In R. Jain,
J. Werth, and J. Browne, eds., Input/Output in Parallel and Distributed Computer Systems,
167–185, Kluwer, Dordrecht, 1996.

[87] Y. Ben-Zion. Stress, slip and earthquakes in models of complex single-fault systems
incorporating brittle and creep deformations. Journal of Geophysical Research, 101(B3):5677–
5706, Mar 1996.

[88] J. K. Bennett, J. B. Carter, and W. Zwaenepoel. Munin: Distributed shared memory based on
type-specific memory coherence. In Proceedings of the Second ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, 168–176, Seattle, WA, Mar 1990, ACM Press,
New York, 1990.

[89] S. Benson, L. C. McInnes, and J. Moré. TAO: Toolkit for Advanced Optimization. Available
at http://www.mcs.anl.gov/tao.

References 735

[90] S. Benson, L. C. McInnes, and J. Moré. GPCG: A Case Study in the Performance and Scalability
of Optimization Algorithms. Technical Report ANL/MCS-P768-0799. Mathematics and
Computer Science Division, Argonne National Laboratory, 1999.

[91] J.-P. Berenger. A perfectly matched layer for the absorption of electromagnetic waves. Journal
of Computational Physics, 114(2):185–200, Oct 1994.

[92] M. J.Berger and S. H. Bokhari. A partitioning strategy for nonuniform problems on
multiprocessors. IEEE Transactions on Computers, C-36(5):570–580, May 1987.

[93] M. J. Berger and P. Colella. Local adaptive mesh refinement for shock hydrodynamics.
Journal of Computational Physics, 82(1):67–84, May 1989.

[94] M. J. Berger and J. Oliger. Adaptive mesh refinement for hyperbolic partial differential
equations. Journal of Computational Physics, 53(3):484–512, 1984.

[95] C. Bernardi, Y. Maday, and A. T. Patera. A new nonconforming approach to domain
decomposition: The mortar element method. In H. Brezis and J. L. Lions, eds., Nonlinear
Partial Differential Equations and Their Applications. Collège de France Seminar, Vol. XI (Paris,
1989–1991), 13–51, Longman Scientific, New York, 1994.

[96] D. E. Bernholdt. Object oriented methods without object oriented languages. In M. E.
Henderson, C. R. Anderson, and S. L. Lyons, eds., Proceedings of the SIAM Workshop on
Object Oriented Methods for Inter-Operable Scientific and Engineering Computing , 40–49, SIAM,
Philadelphia, PA, 1999.

[97] D. E. Bernholdt. Scalability of correlated electronic structure calculations on parallel
computers: A case study of the RI-MP2 method. Parallel Computing, 26(7–8):945–963,
July 2000.

[98] D. E. Bernholdt, E. Aprà, H. A. Früchtl, M. F. Guest, R. J. Harrison, R. A. Kendall, R. A. Kutteh,
X. Long, J. B. Nicholas, J. A. Nichols, H. L. Taylor, A. T. Wong, G. I. Fann, R. J. Littlefield, and
J. Nieplocha. Parallel computational chemistry made easier: The development of NWChem.
International Journal of Quantum Chemistry, Quantum Chemistry symposium, 29:475–483,
1995.

[99] D. E. Bernholdt and R. J. Harrison. Large-scale correlated electronic structure calculations:
The RI-MP2 method on parallel computers. Chemical Physics Letters, 250(5–6):477–484, Mar
1996.

[100] D. E. Bernholdt and R. J. Harrison. Fitting basis sets for the RI-MP2 approximate second-order
many-body perturbation theory method. The Journal of Chemical Physics, 109(5):1593–1600,
Aug 1998.

[101] A. J. Bernstein. Analysis of programs for parallel processing. IEEE Transactions on Electronic
Computers, 15(5):757–763, Oct 1966.

[102] B. N. Bershad, M. J. Zekauskas, and W. A. Sawdon. The Midway distributed shared memory
system. In Proceedings of the 38th IEEE International Computer Conference, 528–537. IEEE
Computer Society Press, Los Alamitos, CA, 1993.

[103] M. Berz, C. Bischof, G. Corliss, and A. Griewank, eds. Computational differentiation:
Techniques, applications, and tools. In Proceedings of the 2nd International Workshop. SIAM,
Philadelphia, PA, 1996.

[104] S. E. Best, V. O. Ivchenko, K. J. Richards, R. D. Smith, and R. C. Malone. Eddies in numerical
models of the Antarctic Circumpolar Current and their influence on the mean flow. Journal
of Physical Oceanography, 29(3):328–350, Mar 1999.

736 References

[105] W.-J. Beyn. The numerical computation of connecting orbits in dynamical systems. IMA
Journal of Numerical Analysis, 10(3):379–405, Jul 1990.

[106] D. Bhatia, V. Burzewski, M. Camuseva, G. Fox, W. Furmanski, and G. Premchandran.
WebFlow—A visual programming paradigm for Web/Java based coarse grain distributed
computing. Concurrency: Practice and Experience, 9(6):555–577, Jun 1997.

[107] J. A. Bilmes, K. Asanovic, R. Vudoc, S. Iyer, J. Demmel, C. Chin, and D. Lam. The PHiPAC
(Portable High Performance ANSI C) page for BLAS3-Compatible Fast Matrix Multiply.
Available at http://www.icsi.berkeley.edu/∼bilmes/phipac/ .

[108] G. Birkhoff and R. E. Lynch. Numerical Solution of Elliptic Problems. SIAM, Philadelphia, PA,
1984.

[109] C. Bischof, A. Carle, G. Corliss, A. Griewank, and P. Hovland. ADIFOR: Generating derivative
codes from Fortran programs. Scientific Programming, 1(1)11–29, 1992.

[110] C. H. Bischof, P. M. Khademi, A. Bouaricha, and A. Carle. Efficient computation of gradients
and Jacobians by dynamic exploitation of sparsity in automatic differentiation. Optimization
Methods and Software, 7(1):1–39, Jul 1996.

[111] C. Bischof, P. Khademi, A. Mauer, and A. Carle. Adifor 2.0: Automatic differentiation of
Fortran 77 programs. IEEE Computational Science and Engineering, 3(3):18–32, Fall 1996.

[112] C. Bischof, L. Green, K. Haigler, and T. Knauff. Parallel calculation of sensitivity
derivatives for aircraft design using automatic differentiation. In Proceedings of the 5th
AIAA/USAF/NASA/ISSM Symposium on Multidisciplinary Analysis and Optimization, Panama
City Beach, FL, Sep 1994, American Institute of Aeronautics and Astronautics. (Also available
as AIAA Paper 94-4261.)

[113] C. H. Bischof, L. Roh, and A. J. Mauer-Oats. ADIC: An extensible automatic differentiation
tool for ANSI-C. Software: Practice and Experience, 27(12):1427–1456, Dec 1997.

[114] C. Bischof and P.-T. Wu. Time-Parallel Computation of Pseudo-Adjoints for a Leapfrog
Scheme. Technical Report ANL/MCS-P639-0197. Mathematics and Computer Science
Division, Argonne National Laboratory, Argonne, IL, 1997.

[115] C. H. Bischof and M. R. Haghighat. On hierarchical differentiation. In M. Berz, C. Bischof,
G. Corliss, and A. Griewank, eds., Computational Differentiation: Techniques, Applications, and
Tools, 83–94, SIAM Philadelphia, PA, 1996. (Also available as CRPC TR-96647 and Technical
Report ANL/MCS-P571-0396.)

[116] R. Biswas and R. C. Strawn. A new procedure for dynamic adaptation of three-dimensional
unstructured grids. Applied Numerical Mathematics, 13(6):437–452, Feb 1994.

[117] R. E. Bixby and A. Martin. Parallelizing the dual simplex method. Technical Report CRPC-
TR95706. Center for Research on Parallel Computation, Rice University, Houston, TX, Dec
1995. (Revised Jul 1997.)

[118] P. E. Bjørstad and O. B. Widlund. Iterative methods for the solution of elliptic problems on
regions partitioned into substructures. SIAM Journal on Numerical Analysis, 23(6):1097–1120,
Dec 1986.

[119] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra,
S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. Whaley. ScaLAPACK Users’
Guide, 2nd ed. SIAM, Philadelphia, PA, 1998.

References 737

[120] E. Bleszynski, M. Bleszynski, and T. Jarosszewicz. AIM: Adaptive integral method for solving
large-scale electromagnetic scattering and radiation problems. Radio Science, 31(5):1225–
1251, Sep/Oct 1996.

[121] Blue Gene. Available at http://www.research.ibm.com/bluegene/ .

[122] L. M. Blumenthal. Theory and Applications of Distance Geometry. Oxford University Press,
Oxford, 1953.

[123] F. Bodin, P. Beckman, D. Gannon, S. Narayana, and S. X. Yang. Distributed pC++: Basic ideas
for an object parallel language. Scientific Programming, 2(3):7–22, Fall 1993.

[124] J. E. Boillat. Load balancing and Poisson equations in a graph. Concurrency: Practice and
Experience, 2(4):289–313, Dec 1990.

[125] S. H. Bokhari and D. J. Mavriplis. The TERA Multithreaded Architecture and Unstructured
Meshes. Icase interim report no. 33, Institute for Computer Applications in Science and
Engineering, NASA Langley Research Center, Hampton, VA, Dec 1998.

[126] I. Bongartz, A. R. Conn, N. Gould, and P. Toint. Constrained and Unconstrained
Optimization Testing Environment. Technical Report 93/10. Départment de Mathématique,
Facultés Universitaires Notre-Dame de la Paix, Namur, Belgium, 1993.

[127] A. J. Booker, J. E. Dennis, Jr., P. D. Frank, D. W. Moore, and D. B. Serafini. Managing surrogate
objectives to optimize a helicopter rotor design—Further experiments. In Proceedings of the
Seventh AIAA/USAF/NASA/ISSM—Symposium on Multidisciplinary Analysis and Optimization,
St. Louis, MO, 1998.

[128] A. J. Booker, J. E. Dennis, Jr., P. D. Frank, D. B. Serafini, and V. Torczon. Optimization using
surrogate objectives on a helicopter test example. In J. T. Borggaard, J. Burns, E. Cliff, and
S. Sherk, eds., Computational Methods for Optimal Design and Control, Birkhauser, Boston,
1998.

[129] A. J. Booker, J. E. Dennis, Jr., P. D. Frank, D. B. Serafini, V. Torczon, and M. W. Trosset.
A rigorous framework for optimization of expensive functions by surrogates. Structural
Optimization, 17(1):1–13, Feb 1999.

[130] R. Bordawekar. Techniques for Compiling I/O Intensive Parallel Programs. PhD diss.,
Syracuse University, 1996. (Also available as Caltech Technical Report CACR-118.)

[131] R. Bordawekar, A. Choudhary, K. Kennedy, C. Koelbel, and M. Paleczny. A model and
compilation strategy for out-of-core data parallel programs. In Proceedings of the Fifth ACM
SIGPLAN Symposium on Principles and Practices of Parallel Programming , 1–10, ACM Press,
New York, 1995.

[132] J. M. Bower and D. Beeman. The Book of GENESIS: Exploring Realistic Neural Models with the
GEneral NEural SImulation System. TELOS, Santa Clara, CA, 1994.

[133] J. Boyle, R. Butler, T. Disz, B. Glickfeld, E. Lusk, R. Overbeek, J. Patterson, and R. Stevens.
Portable Programs for Parallel Processors. Holt, Rinehart, & Winston, New York, 1987.

[134] Z. Bozkus, A. Choudhary, G. Fox, T. Haupt, and S. Ranka. A compilation approach for
Fortran 90D/HPF compilers on distributed money MIMD computers. In Proceedings of the
Sixth International Workshop on Languages and Compilers for Parallel Computing , 200–215,
Springer-Verlag, Berlin, 1994.

[135] Z. Bozkus, L. Meadows, S. Nakamoto, V. Schuster, and M. Young. PGHPF—An optimizing
High Performance Fortran compiler for distributed memory machines. Scientific Program-
ming, 6(1):29–40, Spring 1997.

738 References

[136] J. U. Brackbill. An adaptive grid with directional control. Journal of Computational Physics,
108(1):38–50, Sep 1993.

[137] J. U. Brackbill and J. S. Saltzman. Adaptive zoning for singular problems in two dimensions.
Journal of Computational Physics, 46:342, 1982.

[138] T. Brandes. Compiling data parallel programs to message passing programs for massively
parallel MIMD systems. In Proceedings of the Working Conference on Massively Parallel
Programming Models, 100–107, IEEE Computer Society Press, Los Alcunitos, CA 1993. (Also
available at ftp://ftp.gmd.de/gmd/adaptor/docs/compiling.ps.Z.)

[139] P. Bratley and B. L. Fox. Algorithm 659: Implementing Sobol’s quasirandom sequence
generator. ACM Transactions on Mathematical Software, 14(1):88–100, Mar 1988.

[140] P. Bratley, B. L. Fox, and H. Niederreiter. Implementation and tests of low-discrepancy
sequences. ACM Transactions on Modeling and Computer Simulation, 2(3):195–213, Jul 1992.

[141] R. D. Braun. An Architecture for Large-Scale Distributed Design. PhD diss., Stanford
University, 1996.

[142] F. Breg, S. Diwan, J. Villacis, J. Balasubramanian, E. Akman, and D. Gannon. Java RMI
performance and object model interoperability: Experiments with Java/HPC++ distributed
components. Concurrency: Practice and Experience, 10(11-13):941–955, Sep-Nov, 1998.

[143] E. Brooks. The attack of the killer micros. Presentation during the Teraflop Computing Panel
Discussion at Supercomputing ’89, Reno, NV, Nov 1989.

[144] D. L. Brown, W. D. Henshaw, and D. J. Quinlan. Overture: Object-oriented tools for
solving CFD and combustion problems in complex moving geometry. Available at
http://www.llnl.gov/CASC/Overture.

[145] J. A. Brown, Jr. and K. A. Campana. An economical time-differencing system for numerical
weather prediction. Monthly Weather Review, 106(18):1125–1136, Aug 1978.

[146] S. R. Brown, C. J. Scholz, and J. B. Rundle. A simplified spring-block model of earthquakes.
Geophysical Research Letters, 18(2):215–218, Feb 1991.

[147] M. Broy, A. Deimel, J. Henn, K. Koskimies, F. Plášil, G. Pomberger, W. Pree, M. Stal, and
C. Szyperski. What characterizes a (software) component? Software—Concepts and Tools,
19(1):49–56, 1998.

[148] A. M. Bruaset and H. P. Langtangen. A comprehensive set of tools for solving partial
differential equations: Diffpack. In Numerical Methods and Software Tools in Industrial
Mathematics, 61–90, Birkhauser, Boston, 1997.

[149] G. Bryan, T. Abel, and M. Norman. Achieving extreme resolution in numerical cosmology
using adaptive mesh refinement: Resolving primordial star formation. In Proceedings of
Supercomputing 2001, Nov 2001.

[150] G. L. Bryan. Fluids in the universe: Adaptive mesh refinement in cosmology. Computing in
Science and Engineering, 1(2):46–53, Mar–Apr 1999.

[151] G. L. Bryan and M. L. Norman. Statistical properties of x-ray clusters: Analytic and numerical
comparisons. The Astrophysical Journal, 495(1):80–99, Mar 1998.

[152] G. L. Bryan and M. L. Norman. A hybrid AMR application for cosmology and astrophysics. In
S. B. Baden, N. P. Chrisochoides, D. Gannon, and M. L. Norman, eds., Structured Adaptive Mesh
Refinement (SAMR) Grid Methods, 165–170, Institute for Mathematics and its Applications
(IMA), Springer-Verlag, New York, 2000.

References 739

[153] G. L. Bryan, M. L. Norman, J. M. Stone, R. Cen, and J. P. Ostriker. A piecewise parabolic
method for cosmological hydrodynamics. Computer Physics Communication, 89(1–3):149–
168, Aug 1995.

[154] K. Bryan. A numerical method for the study of the circulation of the world ocean. Journal
of Computational Physics, 4(3):347–376, Oct 1969. (Reprinted in Journal of Computational
Physics, 135(2): 154–169, 1997.)

[155] T. Bui and C. Jones. A heuristic for reducing fill in sparse matrix factorization. In Proceedings
of the Sixth SIAM Conference on Parallel Processing for Scientific Computing , 445–452, SIAM,
Philadelphia, PA, 1993.

[156] M. Burke and R. Cytron. Interprocedural dependence analysis and parallelization. In
Proceedings of the SIGPLAN ’86 Symposium on Compiler Construction, 162–175, ACM Press,
New York , 1986.

[157] R. Burridge and L. Knopoff. Model and theoretical seismicity. Bulletin of the Seismological
Society of America, 57:341–371, 1967.

[158] R. M. Butler and E. L. Lusk. Monitors, message, and clusters: The p4 parallel programming
system. Parallel Computing, 20(4):547–564, Apr 1994.

[159] R. H. Byrd, T. Derby, E. Eskow, K. P. B. Oldenkamp, and R. B. Schnabel. A new stochas-
tic/perturbation method for large-scale global optimization and its application to water
cluster problems. In W. Hager, D. Hearn, and P. Pardalos, eds., Large-Scale Optimization: State
of the Art , 69–81, Kluwer Dordrecht, 1994.

[160] R. H. Byrd, E. Eskow, and R. B. Schnabel. A New Large-Scale Global Optimization Method and
Its Application to Lennard-Jones Problems. Technical Report CU-CS-630-92. Department of
Computer Science, University of Colorado, Boulder, CO, 1992. (Revised 1995.)

[161] R. H. Byrd, E. Eskow, and R. B. Schnabel. A Large-Scale Stochastic-Perturbation Global Op-
timization Method for Molecular Cluster Problems. Technical report. Department of Com-
puter Science, University of Colorado, Boulder, 1999. (Available at http://www.cs.colorado.edu
/∼bobby/papers/cluster.ps.)

[162] R. H. Byrd, E. Eskow, R. B. Schnabel, and S. L. Smith. Parallel global optimization: Numerical
methods, dynamic scheduling methods, and application to molecular configuration. In
B. Ford and A. Fincham, eds., Parallel Computation, 187–207, Oxford University Press,
Oxford, 1993.

[163] R. H. Byrd, E. Eskow, A. van der Hoek, R. B. Schnabel, C.-S. Shao, and Z. Zou. Global
optimization methods for protein folding problems. In P. Pardalos, D. Shalloway, and
G. Xue, eds., Global Minimization of Nonconvex Energy Functions: Molecular Conformation and
Protein Folding, 29–39, American Mathematical Society, Providence, RI, 1996.

[164] R. H. Byrd, R. B. Schnabel, and M. H. Shultz. Parallel Quasi-Newton Methods for Uncon-
strained Optimization. Technical report. Department of Computer Science, University of
Colorado, Boulder, 1990.

[165] R. E. Caflisch. Monte Carlo and quasi-Monte Carlo methods. Acta Numerica, 7:1–49, 1998.

[166] R. E. Caflisch, W. Morokoff, and A. Owen. Valuation of mortgage backed securities using
Brownian bridges to reduce effective dimension. Journal of Computational Finance, 1(1):27–
46, Fall 1997.

[167] X.-C. Cai and M. Sarkis. A restricted additive Schwarz preconditioner for general sparse
linear systems. SIAM Journal on Scientific Computing, 21(2):792–797, 1999.

740 References

[168] D. Callahan and K. Kennedy. Compiling programs for distributed-memory multiprocessors.
Journal of Supercomputing, 2(2):151–169, Oct 1988.

[169] P. Cao, E. W. Felten, A. R. Karlin, and K. Li. Implementation and performance of integrated
application-controlled file caching, prefetching, and disk scheduling. ACM Transactions on
Computer Systems, 14(4):311–343, Nov 1996.

[170] A. Carle, M. Fagan, and L. L. Green. Preliminary results from the application of automated
adjoint code generation to CFL3D. In Proceedings of the 7th AIAA/USAF/NASA/ISSMO
Symposium on Multidisciplinary Analysis and Optimization, St. Louis, MO, Sep 1998. (Also
available as AIAA Paper 98-4807.)

[171] A. Carle, K. Kennedy, U. Kremer, and J. Mellor-Crummey. Automatic data layout for
distributed-memory machines in the D programming environment. In Proceedings of
AP’93 International Workshop on Automatic Distributed Memory Parallelization, Automatic Data
Distribution and Automatic Parallel Performance Prediction, 108–123, Saarbrücken, Germany,
Mar 1993.

[172] W. W. Carlson and J. M. Draper. Distributed data access in AC. In Fifth ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, 39–47, ACM Press, New York,
1995.

[173] H. Casanova and J. Dongarra. NetSolve: A network-enabled server for solving computational
science problems. The International Journal of Supercomputer Applications and High Performance
Computing, 11(3):212–223, 1997.

[174] Ü. V. Catalyürek and C. Aykanat. Hypergraph-partitioning-based decomposition for parallel
sparse-matrix vector multiplication. IEEE Transactions on Parallel and Distributed Systems,
10(7):673–693, Jul 1999.

[175] A. C. Catlin, S. Weerawarana, E. N. Houstis, and M. Gaitatzes. The PELLPACK User Guide.
Department of Computer Sciences, Purdue University, Lafayette, IN, 2000.

[176] CCAT: Indiana University research group in common component architecture. Available at
http://www.extreme.indiana.edu/ccat/index.html.

[177] C. F. Cerco and T. Cole. Three-Dimensional Eutrophication Model of Chesapeake Bay.
Technical Report CETR EL-94-4. U.S. Army Corps of Engineers Waterway Experiment
Station, Vicksburg, MS, 1994.

[178] C. F. Cerco and T. Cole. User’s Guide to the CE-QUAL-ICM Three-Dimensional Eutroph-
ication Model, Release Version 1.0. Technical Report CETR EL-95-15. U.S. Army Corps of
Engineers Waterway Experiment Station, Vicksburg, MS, Mar 1995.

[179] A. R. Champneys and Y. A. Kuznetsov. Numerical detection and continuation of
codimension-two homoclinic bifurcations. International Journal of Bifurcation and Chaos
in Applied Sciences and Engineering, 4(4):795–822, Aug 1994.

[180] A. R. Champneys, Y. A. Kuznetsov, and B. Sandstede. HomCont: An AUTO86 Driver for
Homoclinic Bifurcation Analysis, version 2.0. Technical report. CWI, Amsterdam, 1995.

[181] T. Chan and V. Eijkhout. Design of a Library of Parallel Preconditioners. Technical Report
UCLA CAM TR97–58. Department of Mathematics, University of California at Los Angeles,
1997.

[182] T. Chan and H. van der Vorst. Linear system solvers: Sparse iterative methods. In D. Keyes
et al., ed., Proceedings of the ICASW/LaRC Workshop on Parallel Numerical Algorithms, 91–118,
Kluwer Academic Publishers, Dordrecht, The Netherlands, May 1997.

References 741

[183] R. Chandra, D. Kohr, R. Menon, L. Dagum, D. Maydan, and J. McDonald. Parallel
Programming in OpenMP. Morgan Kaufmann, San Francisco, 2000.

[184] K. M. Chandy and C. Kesselman. CC++: A declarative concurrent object-oriented pro-
gramming notation. In G. Agha, P. Wegner, and A. Yonezawa, eds., Research Directions in
Concurrent Object Oriented Programming, 281–313, MIT Press, Cambridge, MA, 1993.

[185] M. Chandy, B. Massingill, D. Meiron, and R. Samtaney. Parallel programming archetypes
and scientific computing. CRPC Newsletter, Fall 1995.

[186] C. Chang, A. Acharya, A. Sussman, and J. Saltz. T2: A customizable parallel database for
multi-dimensional data. ACM SIGMOD Record, 27(1):58–66, Mar 1998.

[187] C. Chang, R. Ferreira, A. Sussman, and J. Saltz. Infrastructure for building parallel database
systems for multi-dimensional data. In Proceedings of the 13th International Parallel Processing
Symposium and 10th Symposium on Parallel and Distributed Processing IPPS/SPDP 1999, 582–
587, IEEE Computer Society Press, Los Alamitos, CA, 1999.

[188] B. Chapman, P. Mehrotra, and H. Zima. Programming in Vienna Fortran. Scientific
Programming, 1(1):31–50, Fall 1992.

[189] J. Chattratichat, J. Darlington, M. Ghanem, Y. Guo, H. Huning, M. Kohler, J. Sutiwaraphun,
H. W. To, and D. Yang. Large scale data mining: Challenges and responses. In Proceedings
of the Third International Conference on Knowledge Discovery and Data Mining , 143–146, AAAI
Press, Menlo Park, CA, 1997.

[190] J. Chen and V. Taylor. ParaPART: Parallel mesh partitioning tool for distributed systems.
In Proceedings of the 6th International Symposium on Solving Irregularly Structured Problems in
Parallel, Springer-Verlag, Heidelberg, 1999.

[191] M. S. Chen, J. Han, and P. S. Yu. Data mining: An overview from a database perspective.
IEEE Transactions on Knowledge and Data Engineering, 8(6):866–883, Dec 1996.

[192] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A. Patterson. RAID: High-performance,
reliable secondary storage. ACM Computing Surveys, 26(2):145–185, Jun 1994.

[193] I.-L. Chern, J. Glimm, O. McBryan, B. Plohr, and S. Yaniv. Front tracking for gas dynamics.
Journal of Computational Physics, 62(1):83–110, Jan 1986.

[194] W. C. Chew, J. M. Jin, C. C. Lu, E. Michielssen, and J. M. Song. Fast solution methods in
electromagnetics. IEEE Transactions on Antennas and Propagation, 45(3):533–543, Mar 1997.

[195] M. Childress. EDYS Code. U.S. Army Corps of Engineers, Engineer Research and Develop-
ment Center, Vicksburg, MS. Available at http://www.wes.hpc.mil.

[196] S. Chippada, C. N. Dawson, M. L. Martinez, and M. F. Wheeler. Parallel computing for finite
element models of surface water flow. In Computational Methods in Water Resources XI , Vol.
2 of Computational Methods in Surface Flow and Transport Problems, 63–70, Computational
Mechanics Publications, Southhampton, UK, 1996.

[197] S. Chippada, C. N. Dawson, M. L. Martı́nez, and M. F. Wheeler. A Projection Method for
Constructing a Mass Conservative Velocity Field. Technical Report TICAM TR97-09. Texas
Institute for Computational and Applied Mathematics, University of Texas, Austin, Jun
1997.

[198] J. Choi, J. Dongarra, S. Ostrouchov, A. Petitet, D. Walker, and R. C. Whaley. A Proposal for a
Set of Parallel Basic Linear Algebra Subprograms. LAPACK Working Note #100 (ut-cs-95-292).
Department of Computer Science, University of Tennessee, Knoxville, May 1995.

742 References

[199] J. Choi, J. J. Dongarra, R. Pozo, and D. W. Walker. ScaLAPACK: A scalable linear algebra
library for distributed memory concurrent computers. In Proceedings of the Fourth Symposium
on the Frontiers of Massively Parallel Computation, 120–127, IEEE Computer Society Press, Los
Alamitos, CA, 1992.

[200] J. Choi, J. Dongarra, and D. Walker. The design of scalable software libraries for distributed
memory concurrent computers. In J. Dongarra and B. Tourancheau, eds., Environments and
Tools for Parallel Scientific Computing, Elsevier Science Publishers, New York, 1993.

[201] N. Chrisochoides and D. Nave. Simultaneous mesh generation and partitioning for Delaunay
meshes. In Proceedings of the 8th International Meshing Round Table, 55–66, South Lake Tahoe,
California, Oct 1999.

[202] N. Christ. Computational Quantum Field Theory at Columbia. Available at http://www.phys
.columbia.edu/∼cqft .

[203] Y. C. Chung and S. Ranka. Mapping finite element graphs on hypercubes. Journal of
Supercomputing, 6(3):257–282, Dec 1992.

[204] Coda File System. Available at http://www.coda.cs.cmu.edu.

[205] P. Colella. A direct Eulerian MUSCL scheme for gas dynamics. SIAM Journal on Scientific and
Statistical Computing, 6(1):104–117, Jan 1985.

[206] P. Colella and P. R. Woodward. The piecewise parabolic method (PPM) for gas-dynamical
simulations. Journal of Computational Physics, 54(1):174–201, Apr 1984.

[207] T. F. Coleman, J. Czyzyk, C. Sun, M. Wagner, and S. J. Wright. pPCx: Parallel software for
linear programming. In Proceedings of the Eighth SIAM Conference on Parallel Processing for
Scientific Computing, SIAM, Philadelphia, PA, 1997.

[208] T. F. Coleman, B. S. Garbow, and J. J. Moré. Software for estimating sparse Jacobian matrices.
ACM Transactions on Mathematical Software, 10(3):329–345, Sep 1984.

[209] T. F. Coleman, B. S. Garbow, and J. J. Moré. Software for estimating sparse Hessian matrices.
ACM Transactions on Mathematical Software, 11(4):363–377, Dec 1985.

[210] T. F. Coleman and J. J. Moré. Estimation of sparse Jacobian matrices and graph coloring
problems. SIAM Journal on Numerical Analysis, 20(1):187–209, Feb 1983.

[211] T. Coleman, D. Shalloway, and Z. Wu. Isotropic effective energy simulated annealing
searches for low energy molecular cluster states. Computational Optimization and Applications,
2(2):145–170, Oct. 1993.

[212] T. Coleman, D. Shalloway, and Z. Wu. A parallel build-up algorithm for global energy
minimizations of molecular clusters using effective energy simulated annealing. Journal of
Global Optimization, 4(2):171–185, 1994.

[213] T. F. Coleman and C. Sun. Parallel orthogonal factorizations of large sparse matrices on
distributed-memory multiprocessors. In Proceedings of the Sixth SIAM Conference on Parallel
Processing for Scientific Computing, SIAM, Philadelphia, PA, 1993.

[214] T. F. Coleman and Z. Wu. Parallel continuation-based global optimization for molecular
conformation and protein folding. Journal of Global Optimization, 8(1):49–65, 1996.

[215] Commodity Grid Kits Based on Globus (CoG Kit). Available at http://www.globus.org/cog/ .

[216] Common Component Architecture Forum. CCA Forum Web page. Available at http://www
.acl.lanl.gov/cca-forum.

References 743

[217] P. Concus and G. H. Golub. Use of fast direct methods for the efficient numerical solution of
nonseparable elliptic equations. SIAM Journal on Numerical Analysis, 10(6):1103–1120, Dec
1973.

[218] J. Cong and M. Smith. A parallel bottom-up clustering algorithm with applications to
circuit partitioning in VLSI design. In Proceedings of the 30th ACM/IEEE Design Automation
Conference, 755–760, ACM Press, New York, 1993.

[219] G. B. Cook and S. A. Teukolsky. Numerical relativity: Challenges for computational science.
Acta Numerica, 8:1–45, 1999.

[220] G. Cook et al. (Binary Black Hole Grand Challenge Alliance). Boosted three-dimensional
black-hole evolutions with singularity excision. Physical Review Letters, 80(12):2512–2516,
Mar 1998.

[221] K. D. Cooper, M. W. Hall, K. Kennedy, and L. Torczon. Interprocedural analysis and
optimization. Communications in Pure and Applied Mathematics, 48:947–1003, 1995.

[222] K. D. Cooper and K. Kennedy. Interprocedural side-effect analysis in linear time. In
Proceedings of the SIGPLAN ’88 Conference on Programming Language Design and Implementation,
57–66, ACM Press, New York, 1988.

[223] P. Corbett, D. Feitelson, Y. Hsu, J.-P. Prost, M. Snir, S. Fineberg, B. Nitzberg, B. Traversat, and
P. Wong. MPI-IO: A parallel FILE I/O interface for MPI. Technical Report RC 19841(#87784).
IBM T. J. Watson Research Center, Yorktown Heights, NY, Nov 1994.

[224] P. F. Corbett and D. G. Feitelson. The Vesta parallel file system. ACM Transactions on Computer
Systems, 14(3):225–264, Aug 1996.

[225] P. Corbett, J.-P. Prost, C. Demetriou, G. Gibson, E. Reidel, J. Zelenka, Y. Chen, E. Felten,
K. Li, J. Hartman, L. Peterson, B. Bershad, A. Wolman, and R. Aydt. Proposal for a
Common Parallel File System Programming Interface, Version 1.0, Sep 1996. Available
at http://www.cs.arizona.edu/sio/api1.0.ps.

[226] M. D. Cox. A baroclinic numerical model of the world ocean: Preliminary results. In
Numerical Models of Ocean Circulation, 107–118, National Academy of Sciences, Washington,
DC, 1975.

[227] CP-PACS: Computational Physics by Parallel Array Computer System. Center for Computa-
tional Physics, University of Tsukuba, Tennodai, Tsukubashi, Japan. Web page. Available at
http://www.rccp.tsukuba.ac.jp/ccp/cp-pacs.html.

[228] E. J. Cramer, J. E. Dennis, Jr., P. D. Frank, R. M. Lewis, and G. R. Shubin. Problem formulation
for multidisciplinary optimization. SIAM Journal on Optimization, 4(4):754–776, 1994.

[229] P. E. Crandall, R. A. Aydt, A. A. Chien, and D. A. Reed. Input/output characteristics of
scalable parallel applications. In Proceedings of Supercomputing ’95, ACM Press, New York,
1995.

[230] Cray Research. Introducing the MPP Apprentice Tool. Publication IN-25112.0, Cray Research,
Seattle, WA, 1997.

[231] Cray Research. Optimizing Code on Cray PVP Systems. Publication S6-2192-3.0, Cray Research,
Seattle, WA, 1997.

[232] M. Creutz. Confinement and the critical dimensionality of space-time. Physical Review
Letters, 43(8):553–556, Aug 1979. (Erratum, Physical Review Letters 43(12):890, 1979.)

744 References

[233] G. M. Crippen and T. F. Havel. Distance Geometry and Molecular Conformation. John Wiley &
Sons, New York, 1988.

[234] S. Crivelli, R. H. Byrd, E. Eskow, R. B. Schnabel, R. Yu, T. Phillips, and T. Head-Gordon. A
Global Optimization Strategy for Predicting Protein Tertiary Structure: α–Helical Proteins.
Technical report. Department of Computer Science, University of Colorado, Boulder, 1998.

[235] D. E. Culler, A. Dusseau, S. C. Goldstein, A. Krishnamurthy, S. Lumetta, T. von Eicken,
and K. Yelick. Introduction to Split-C: Version 0.9. Technical report. Computer Science
Division—EECS, University of California, Berkeley, Feb 1993.

[236] D. E. Culler, J. P. Singh, and A. Gupta. Parallel Computer Architecture: A Hardware/Software
Approach. Morgan Kaufmann, San Francisco, 1999.

[237] J. Cullum and W. E. Donath. A block Lanczos algorithm for computing the q algebraically
largest eigenvalues and a corresponding eigenspace for large, sparse symmetric matrices. In
Proceedings of the 1974 IEEE Conference on Decision and Control, 505–509, IEEE, New York,
1974.

[238] J. Cullum and R. A. Willoughby. Computing eigenvalues of very large symmetric matrices—
An implementation of a Lanczos algorithm with no reorthogonalization. Journal of
Computational Physics, 44(2):329–358, Dec 1981.

[239] J. K. Cullum and R. A. Willoughby. Lanczos Algorithms for Large Symmetric Eigenvalue
Computations, Volume 1, Theory. Birkhauser, Boston, 1985.

[240] V. Cuppu, B. Jacob, B. Davis, and T. Mudge. High-performance DRAMs in workstation
environments. IEEE Transactions on Computers, 50(11):1133–1153, Nov 2001.

[241] A. Curtis, M. Powell, and J. Reid. On the estimation of sparse Jacobian matrices. Journal of
the Institute of Mathematics and Its Applications, 13:117–119, 1974.

[242] G. Cybenko. Dynamic load balancing for distributed memory multiprocessors. Journal of
Parallel and Distributed Computing, 7(2):279–301, Oct 1989.

[243] J. W. Daniel, W. B. Gragg, L. Kaufman, and G. W. Stewart. Reorthogonalization and stable
algorithms for updating the Gram–Schmidt QR factorization. Mathematics of Computation,
30(136):772–795, Oct 1976.

[244] J. F. Dannenhoffer. A new method for creating grid abstractions for complex configurations.
In Proceedings of the 31st AIAA Aerospace Sciences Meeting, Reno, NV, Jan 1993. (Also available
as AIAA Paper 93-0428.)

[245] F. Darema, D. A. George, V. A. Norton, and G. F. Pfister. A single-program-multiple-data
computational model for EPEX/FORTRAN. Parallel Computing, 7(1):11–24, Apr 1988.

[246] F. Darema-Rogers, D. A. George, V. A. Norton, and G. F. Pfister. VM/EPEX—A VM
environment for parallel execution. Technical Report RC 11225(#49161). IBM T. J. Watson
Research Center, Yorktown Heights, NY, Jan 1985.

[247] F. Daube, P. Highnam, J. Ullo, and B. Schlum. Geophysical applications of parallel
computing. In Proceedings of the SPE Petroleum Computer Conference, 115–124, Society of
Petroleum Engineers, Inc., New Orleans, LA, 1993.

[248] D. F. Davidenko. On a new method of numerical solution of systems of nonlinear equations.
Doklady Natsional Akademii Nauk, SSSR(N.S)), 88:601–602, 1953. (Russian)

[249] P. J. Davis and P. Rabinowitz. Methods of Numerical Integration, 2nd ed., Academic Press,
Orlando, FL, 1984.

References 745

[250] D. de St. Germain, J. McCorquodale, S. G. Parker, and C. R. Johnson. Uintah: A massively
parallel problem solving environment. In Proceedings of the 9th IEEE International Symposium
on High Performance Distributed Computation, 33–41, IEEE Computer Society Press, Los
Alamitos, CA, 2000.

[251] M. P. Debicki, P. Jedrzejewski, J. Mielewski, P. Przybyszewski, and M. Mrozowski. Application
of the Arnoldi method to the solution of electromagnetic eigenproblems on the multipro-
cessor Power Challenge architecture. Preprint 19/95. Department of Electronics, Technical
University of Gdansk, Gdansk, Poland, 1995.

[252] J. M. del Rosario, R. Bordawekar, and A. Choudhary. Improved parallel I/O via a two-phase
run-time access strategy. In Proceedings of the Workshop on I/O in Parallel Computer Systems at
IPPS ’93, 56–70, Apr 1993. (Also available in Computer Architecture News, 21(5):31–38, Dec
1993.)

[253] J. M. del Rosario and A. N. Choudhary. High performance I/O for massively parallel
computers: Problems and prospects. Computer, 27(3):59–68, Mar 1994.

[254] J. Demmel. LAPACK: A portable linear algebra library for supercomputers. In Proceedings of
the 1989 IEEE Control Systems Society Workshop on Computer-Aided Control System Design, Dec
1989.

[255] J. E. Dennis, Jr. and R. M. Lewis. Problem formulations and other optimization issues in
multidisciplinary optimization. In Proceedings of the AIAA/NASA/USAF/ISSMO Symposium on
Fluid Dynamics, 1994. (AIAA Paper 94-2196.)

[256] J. E. Dennis, Jr., G. Li, and K. A. Williamson. Optimization Algorithms for Parameter Iden-
tification. Technical Report CRPC=TR92277. Center for Research on Parallel Computation,
Rice University, Houston, TX, 1992.

[257] J. E. Dennis, Jr. and R. B. Schnabel. Numerical Methods for Unconstrained Optimization and
Nonlinear Equations. Prentice-Hall, Englewood Cliffs, NJ, 1983.

[258] J. E. Dennis, Jr. and V. Torczon. Direct search methods on parallel machines. SIAM Journal
on Optimization, 1(4):448–474, Nov 1991.

[259] L. De Rose, M. Pantano, R. A. Aydt, E. Shaffer, B. Schaeffer, S. Whitmore, and D. A. Reed.
An approach to immersive performance visualization of parallel and wide-area distributed
applications. In Proceedings of the Eighth IEEE International Symposium on High-Performance
Distributed Computing, 247–254, Aug 1999.

[260] L. De Rose and D. A. Reed. SvPablo: A multi-language architecture-independent performance
analysis system. In Proceedings of the 1999 International Conference on Parallel Processing, 311–
318, IEEE Computer Society Press, Los Alamitos, CA, 1999.

[261] M. Deville and E. Mund. Chebyshev pseudospectral solution of second order elliptic
equations with finite element preconditioning. Journal of Computational Physics, 60(3):517–
533, Sep 1985.

[262] I. Dhillon, G. Fann, and B. Parlett. Application of a new algorithm for the symmetric
eigenproblem to computational quantum chemistry. In Proceedings of the Eighth SIAM
Conference on Parallel Processing for Scientific Computing . SIAM, 1997.

[263] DICE: Distributed Interactive Computing Environment. Army Research Laboratory,
Aberdeen, MD. Web page. Available at http://www.arl.hpc.mil/SciVis/dice/index.html.

[264] R. Diekmann, A. Frommer, and B. Monien. Efficient schemes for nearest neighbor load
balancing. Parallel Computing, 25(7):789–812, Aug 1999.

746 References

[265] R. Diekmann, B. Monien, and R. Preis. Using helpful sets to improve graph bisections. In
D. F. Hsu, A. L. Rosenberg, and D. Sotteau, eds., Interconnection Networks and Mapping and
Scheduling Parallel Computations, 57–73, American Mathematical Society, Providence, RI,
1995.

[266] R. Diekmann, B. Monien, and R. Preis. Load balancing strategies for distributed memory
machines. Parallel and Distributed Processing for Computational Mechanics: Systems and Tools,
1998.

[267] J. Dieterich. A constitutive law for rate of earthquake production and its application to
earthquake clustering. Journal of Geophysical Research, 99(B2):2601–2618, Feb 1994.

[268] Diffpack Web page. Available at http://www.nobjects.com/Diffpack/ .

[269] Digital Equipment Corporation. pfm—The 21064 Performance Counter Pseudo-Device, DEC,
1995.

[270] K. A. Dill, A. T. Phillips, and J. B. Rosen. CGU: An algorithm for molecular structure
prediction. In L. T. Biegler, T. Coleman, A. R. Conn, and F. N. Santosa, eds., Large-Scale
Optimization with Applications, Part III: Molecular Structure and Optimization, 1–21, Springer-
Verlag, Heidelberg and New York, 1997.

[271] I. Dimov and A. Karaivanova. Parallel computations of eigenvalues based on a Monte Carlo
approach. Monte Carlo Methods and Applications, 4(1):33–52, 1998.

[272] C. Ding and K. Kennedy. Memory bandwidth bottleneck and its amelioration by a compiler.
In Proceedings of the 14th International Parallel and Distributed Processing Symposium, 181–189,
IEEE Computer Society Press, Los Alamitos, CA, 2000.

[273] C. Ding and K. Kennedy. Improving effective bandwidth through compiler enhancement
of global cache reuse. In Proceedings of the 15th International Parallel and Distributed Processing
Symposium, IEEE Computer Society Press, Los Alamitos, CA, 2001.

[274] P. Diniz, S. Plimpton, B. Hendrickson, and R. Leland. Parallel algorithms for dynamically
partitioning unstructured grids. Proceedings of the 7th SIAM Conference on Parallel Processing
for Scientific Computation, 615–620, SIAM, Philadelphia, PA, 1995.

[275] DIVA (Data IntensiVe Architecture) Web page. Available at http://www.isi.edu/asd/diva/ .

[276] H. Djidjev and J. Gilbert. Separators in graphs with negative and multiple vertex weights.
Algorithmica, 23(1):57–71, Jan 1999.

[277] E. J. Doedel, A. R. Champneys, T. F. Fairgrieve, Y. A. Kuznetsov, B. Sandstede, and X.-J. Wang.
AUTO97: Continuation and Bifurcation Software for Ordinary Differential Equations.
Technical report. Department of Computer Science, Concordia University, Montreal,
Canada, 1997. (Also available at ftp.cs.concordia.ca/pub/doedel/auto.)

[278] E. Doedel, H. B. Keller, and J.-P. Kernévez. Numerical analysis and control of bifurcation
problems: I—Bifurcation in finite dimensions. International Journal of Bifurcation and Chaos
in Applied Sciences and Engineering, 1(3):493–520, 1991.

[279] E. Doedel, H. B. Keller, and J. P. Kernévez. Numerical analysis and control of bifurcation
problems: II—Bifurcation in infinite dimensions. International Journal of Bifurcation and
Chaos in Applied Sciences and Engineering, 1(4):745–772, 1991.

[280] J. Dongarra. Increasing the performance of mathematical software through high-level
modularity. In Proceedings of the Sixth International Symposium on Computing Methods in
Applied Sciences and Engineering, 239–248, North-Holland, Amersterdam, 1984.

References 747

[281] J. Dongarra. Workshop on the BLACS (Basic Linear Algebra Communication Subprograms).
LAPACK Working Note #34 (ut-cs-91-134). Department of Computer Science, University
of Tennessee, Knoxville, May 1991. (Also available at http://www.netlib.org/lapack/lawns
/lawn34.ps.)

[282] J. Dongarra. Performance of Various Computers Using Standard Linear Equations Software.
Technical Report CS TR-89-85. Department of Computer Science, University of Tennessee,
Knoxville, Sep 2002. (Also available at http://www.netlib.org/benchmark/performance.ps).

[283] J. J. Dongarra, J. Du Croz, S. Hammarling, and I. Duff. A set of level 3 basic linear algebra
subprograms. ACM Transactions on Mathematical Software, 16(1):1–17, Mar 1990.

[284] J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson. An extended set of FORTRAN
basic linear algebra subroutines. ACM Transactions on Mathematical Software, 14(1):1–17,
Mar 1988.

[285] J. J. Dongarra, F. G. Gustavson, and A. Karp. Implementing linear algebra algorithms for
dense matrices on a vector pipeline machine. SIAM Review, 26(1):91–112, Jan 1984.

[286] J. J. Dongarra, P. Mayes, and G. Radicati di Brozolo. The IBM RISC System/6000 and linear
algebra operations. Supercomputer, 8(4):15–30, 1991.

[287] J. Dongarra, H. W. Meuer, and E. Strohmaier. TOP500 Supercomputer Sites. Available at
http://www.top500.org.

[288] J. Dongarra, R. Pozo, and D. Walker. An object oriented design for high performance linear
algebra on distributed memory architectures. In Proceedings of the Object Oriented Numerics
Conference, 1993.

[289] J. Dongarra and R. A. van de Geijn. Two-Dimensional Basic Linear Algebra Communication
Subprograms. LAPACK Working Note #37. Department of Computer Science, University of
Tennessee, Knoxville, Oct 1991.

[290] J. J. Dongarra and R. C. Whaley. A User’s Guide to the BLACS, Version 1.0. LAPACK
Working Note #94 (ut-cs-95-281), Department of Computer Science, University of Tennessee,
Knoxville, Mar 1995.

[291] C. C. Douglas. MGNet Web page. Available at http://www.mgnet.org.

[292] S. Duane. Stochastic quantization versus the microcanonical ensemble: Getting the best of
both worlds. Nuclear Physics B, 257(5):652–662, Oct 1985.

[293] S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth. Hybrid Monte Carlo. Physics Letters
B, 195(2):216–222, Sep 1987.

[294] S. Duane and J. B. Kogut. The theory of hybrid stochastic algorithms. Nuclear Physics B,
B275(3):398–420, Nov 1986.

[295] M. Dubois, C. Scheurich, and F. Briggs. Memory access buffering in multiprocessors. In
Proceedings of the 13th Annual International Symposium on Computer Architecture, Computer
Architecture News, 434–442, IEEE Computer Society Press, Los Alamitos, CA, 1986.

[296] D. E. Dudgeon and R. M. Mersereau. Multidimensional Digital Signal Processing . Prentice-Hall,
Englewood Cliffs, NJ, 1984.

[297] I. S. Duff and G. A. Meurant. The effect of ordering on preconditioned conjugate gradients.
BIT Numerical Mathematics, 29(4):635–657, 1989.

[298] I. S. Duff and J. K. Reid. The multifrontal solution of indefinite sparse symmetric linear
equations. ACM Transactions on Mathematical Software, 9(3):302–325, Sep 1983.

748 References

[299] J. K. Dukowicz and R. D. Smith. Implicit free-surface method for the Bryan–Cox–Semtner
ocean model. Journal of Geophysical Research, 99(C4):7991–8014, Apr 1994.

[300] J. K. Dukowicz, R. D. Smith, and R. C. Malone. A reformulation and implementation of the
Bryan–Cox–Semtner ocean model on the connection machine. Journal of Atmospheric and
Oceanic Technology, 10(2):195–208, Apr 1993.

[301] T. H. Dunning, Jr. Private communication.

[302] T. H. Dunning, Jr. Gaussian basis sets for use in correlated molecular calculations. I. The
atoms boron through neon and hydrogen. The Journal of Chemical Physics, 90(2):1007–1023,
Jan 1989.

[303] B. Dupore, ed. Monte Carlo: Methodologies and Applications for Pricing and Risk Management .
Risk Publications, London, 1998.

[304] V. Dyczmons. No N4-dependence in the calculation of large molecules. Theoretica Chimica
Acta 28(3):307–310, 1973.

[305] A. Edelman. Large dense numerical linear algebra in 1993: The parallel computing influence.
International Journal Supercomputer Applications, 7(2):113–128, Summer 1993.

[306] H. C. Edwards. A Parallel Infrastructure for Scalable Adaptive Finite Element Methods and Its
Application to Least Squares C∞ Collocation. PhD diss., University of Texas, Austin, 1997.

[307] W. K. Edwards. Core Jini. Prentice-Hall, Englewood Cliffs, NJ, 1999.

[308] V. Eijkhout. Analysis of parallel incomplete point factorizations. Linear Algebra and Its
Applications, 154/156:723–740, 1991.

[309] V. Eijkhout. Overview of Iterative Linear System Solver Packages. LAPACK Working Note
#171 (ut-cs-98-411). Department of Computer Science, University of Tennessee, Knoxville,
Jul 1998.

[310] V. Eijkhout and T. Chan. ParPre: A Parallel Preconditioners Package: Reference Manual for
Version 2.0.17. Technical Report CAM 97-24. Department of Mathematics, University of
California at Los Angeles, 1997.

[311] P. R. Eiseman. Alternating direction adaptive grid generation. In Proceedings of the 21st AIAA
Aerospace Sciences Meeting, Reno, NV, Jan 1983. (AIAA Paper 83-1937.)

[312] H. C. Elman and M. H. Schultz. Preconditioning by fast direct methods for nonself-adjoint
nonseparable elliptic equations. SIAM Journal on Numerical Analysis, 23(1):44–57, Feb 1986.

[313] Environmental Molecular Sciences Laboratory. NWChem Web page. Pacific Northwest
National Laboratory, Richland, WA. Available at http://www.emsl.pnl.gov:2080/docs/nwchem/ .

[314] B. Ermentrout. XPPAUT1.61—The differential equations tool. Technical report. Department
of Mathematics, University of Pittsburgh, Pittsburgh, PA, 1995.

[315] Etnus, LLC. TotalView Multiprocess Debugger, Software. Etnos, Framingham, MA, May 1999.

[316] V. Faber and T. A. Manteuffel. Orthogonal error methods. SIAM Journal on Numerical Analysis,
24(1):170–187, Feb 1987.

[317] G. Fann and R. Littlefield. Parallel inverse iteration with reorthogonalization. In Proceedings
of the 6th SIAM Conference on Parallel Processing for Scientific Computing , 409–413, SIAM
Philadelphia, PA, 1993.

[318] G. I. Fann, R. J. Littlefield, and D. M. Elwood. Performance of a fully parallel dense real
symmetric eigensolver in quantum chemistry applications. In Proceedings of High Performance

References 749

Computing ’95: Simulation Multiconference, 329–336, Society for Computer Simulation, San
Diego, CA, 1995.

[319] C. Faure and P. Dutto. Extension of Odyssée to the MPI Library—Direct mode. Rapport
de recherche 3715, Institut National de Recherche en Informatique et en Automatique,
Voluceau, Rocquencourt, France, 1999.

[320] C. Faure and P. Dutto. Extension of Odyssée to the MPI library—Reverse mode. Rapport
de recherche 3774, Institut National de Recherche en Informatique et en Automatique,
Voluceau, Rocquencourt, France, 1999.

[321] H. Faure. Discrépance de suites associées à un système de numération (en dimension s). Acta
Arithmetica, 41(4):337–351, 1982. (French)

[322] D. G. Feitelson, P. F. Corbett, S. J. Baylor, and Y. Hsu. Parallel I/O subsystems in massively
parallel supercomputers. IEEE Parallel and Distributed Technology, 3(3):33–47, Fall 1995.

[323] E. W. Felten and S. Otto. Coherent parallel C. In G. Fox, ed., Proceedings of the Third Conference
on Hypercube Concurrent Computers and Applications, 440–450, ACM Press, New York, 1988.

[324] E. Felton and D. McNamee. Improving the performance of message-passing applications by
multithreading. In Proceedings of the 1992 Scalable High Performance Computing Conference,
84–89, IEEE Computer Society Press, Los Alamitos, CA, 1992.

[325] J. Feo, S. Kahan, and Z. Wu. Crash analysis on the Tera MTA. IEEE Computational Science &
Engineering, 5(4):53–59, Oct–Dec 1998.

[326] A. Ferrari and V. S. Sunderam. TPVM: Distributed Concurrent Computing with Lightweight
Processes. Technical Report CSTR-940802. University of Virginia, Knoxville, 1994.

[327] R. Ferreira, T. Kurc, M. Beynon, C. Chang, A. Sussman, and J. Saltz. Object-relational queries
into multidimensional databases with the active data repository. Parallel Processing Letters,
9(2):173–195, Jun 1999.

[328] R. Ferrell and E. Bertschinger. Particle-mesh methods on the Connection Machine.
International Journal of Modern Physics C, 5(6):933–956, Dec 1994.

[329] M. C. Ferris and O. L. Mangasarian. Parallel constraint distribution. SIAM Journal on
Optimization, 1(4):487–500, 1991.

[330] M. C. Ferris and O. L. Mangasarian. Parallel variable distribution. SIAM Journal on
Optimization, 4(4):815–832, 1994.

[331] M. Feyereisen, G. Fitzgerald, and A. Komornicki. Use of approximate integrals in ab initio
theory: An application in MP2 energy calculations. Chemical Physics Letters, 208(5–6):359–
363, Jun 1993.

[332] FFTW software Web page. Available at http://www.fftw.org/ .

[333] Fibre Channel Industry Association (FCIA) Web page. Available at http://www.fibrechannel
.com.

[334] C. M. Fiduccia and R. M. Mattheyses. A linear-time heuristic for improving network
partitions. In Proceedings of the 19th IEEE Design Automation Conference, 174–181, IEEE,
1982.

[335] S. A. Fineberg, P. Wong, B. Nitzberg, and C. Kuszmaul. PMPIO—A portable implementation of
MPI-IO. In Proceedings of the Sixth Symposium on the Frontiers of Massively Parallel Computation,
188–195, IEEE Computer Society Press, Los Alamitos, CA, 1996.

750 References

[336] S. J. Fink, S. B. Baden, and S. R. Kohn. Flexible communication mechanisms for dynamic
structured applications. In Proceedings of the Third International Workshop on Parallel
Algorithms for Irregularly Structured Problems, 203–215, Springer-Verlag, Berlin, 1996.

[337] D. S. Fisher, K. Dahmen, S. Ramanathan, and Y. Ben-Zion. Statistics of earthquakes in simple
models of heterogeneous faults. Physical Review Letters, 78(25):4885–4888, Jun 1997.

[338] H. Flatt and K. Kennedy. Performance of parallel processors. Parallel Computing, 12(1):1–20,
Oct 1989.

[339] R. Fletcher. Conjugate gradient methods for indefinite systems. In G. A. Watson, ed.,
Numerical Analysis Dundee 1975, 73–89, Springer-Verlag, New York, 1976.

[340] M. Flynn. Very high speed computing systems. Proceedings of the IEEE, 1901–1909, Dec 1966.

[341] I. Foster. Designing and Building Parallel Programs: Concepts and Tools for Parallel Software
Engineering. Addison-Wesley, Reading, MA, 1995. (Also available at http://www.mcs.anl.gov
/dbpp/ .)

[342] I. Foster. The Grid: A new infrastructure for 21st century science. Physics Today, 55(2):42–47,
Feb 2002.

[343] I. Foster, J. Insley, G. von Laszewski, C. Kesselman, and M. Thiebaux. Distance visualization:
Data exploration on the Grid. Computer, 32(12):36–43, Dec 1999.

[344] I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit. International
Journal of Supercomputer Applications, 11(2):115–128, Summer 1997.

[345] I. Foster and C. Kesselman, eds. The Grid: Blueprint for a New Computing Infrastructure. Morgan
Kaufmann, San Francisco, 1999.

[346] I. Foster, C. Kesselman, and S. Tuecke. The Nexus approach to integrating multithreading
and communication. Journal of Parallel and Distributed Computing, 37(1):70–82, Aug 1996.

[347] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the Grid: Enabling scalable
virtual organizations. The International Journal of High Performance Computing Applications,
15(3):200–222, 2001. (Also available at www.globus.org/research/papers/anatomy.pdf .)

[348] I. Foster, D. R. Kohr Jr., R. Krishnaiyer, and A. Choudhary. Double standards: Bringing task
parallelism to HPF via the Message Passing Interface. In Proceedings of Supercomputing ’96,
ACM Press, New York, 1996.

[349] I. Foster, D. R. Kohr Jr., R. Krishnaiyer, and A. Choudhary. A library-based approach to
task parallelism in a data-parallel language. Journal of Parallel and Distributed Computing,
45(2):148–158, Sep 1997.

[350] I. Foster and S. Taylor. Strand: New Concepts in Parallel Programming. Prentice-Hall, Englewood
Cliffs, NJ, 1990.

[351] B. L. Fox. Algorithm 647: Implementation and relative efficiency of quasirandom sequence
generators. ACM Transactions on Mathematical Software, 12(4):362–376, Dec 1986.

[352] G. Fox. Lectures on Numerical Relativity for Computational Science Class: Detailed
Discussion of Numerical Formulation and Solution of Collision of Two Black Holes, 1996.
Available at http://old-npac.ucs.indiana.edu/users/gcf/cps713nr96/index.html.

[353] G. Fox, S.-H. Ko, M. Pierce, O. Balsey, J. Kim, S. Oh, X. Rao, M. Varank, H. Bulut, G. Gunduz,
X. Qiu, S. Pallickara, A. Uyar, and C. Youn. Grid services for earthquake science. Concurrency
and Computation: Practice and Experience, 14(6–7):371–393, May-June, 2002.

References 751

[354] G. Fox and W. Furmanski. High-performance commodity computing. In C. Kesselman and
I. Foster, eds., The Grid: Blueprint for a New Computing Infrastructure, Morgan Kaufmann, San
Francisco, 1998.

[355] G. C. Fox, W. Furmanski, H. T. Ozdemir, and S. Pallickara. High performance commodity
computing on the pragmatic object Web. In Technology Assessment Report for RCI, Ltd.,
RCI, Toronto, Canada, Oct 1998. Available at http://www.new-npac.org/users/fox/documents
/rcihpccoct98/rcinpacpaperoct98.html.

[356] G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, C.-W. Tseng, and M. Wu. The
Fortran D Language Specification. Technical Report TR90-141. Department of Computer
Science, Rice University, Houston, TX, Dec 1990.

[357] G. Fox, K. Hurst, A. Donnellan, and J. Parker. Introducing a new paradigm for computational
earth science—A Web-object-based approach to earthquake simulations. In J. Rundle,
D. Turcotte, and W. Klein, eds., GeoComplexity and the Physics of Earthquakes, 219–245,
American Geophysical Union, Washington, DC, 2000.

[358] G. C. Fox, R. D. Williams, and P. C. Messina. Parallel Computing Works! Morgan Kaufmann,
San Francisco, 1994.

[359] J. G. F. Francis. The QR transformation: A unitary analogue to the LR transformation—Part
1. The Computer Journal, 4(3):265–271, Oct. 1961.

[360] J. G. F. Francis. The QR transformation—Part 2. The Computer Journal, 4(4):332–345, Jan
1962.

[361] M. J. Friedman and E. J. Doedel. Numerical computation and continuation of invariant
manifolds connecting fixed points. SIAM Journal on Numerical Analysis, 28(3):789–808, Jun
1991.

[362] M. Frigo and S. G. Johnson. The fastest Fourier transform in the west. Technical Report
MIT-LCS-TR-728. Laboratory for Computer Science, Massachusetts Institute of Technology,
Cambridge, MA, Sep 1997.

[363] T. R. Furlani and H. F. King. Implementation of a parallel direct SCF algorithm on distributed
memory computers. Journal of Computational Chemistry, 16(1):91–104, Jan 1995.

[364] H. Gabow. Data structures for weighted matching and nearest common ancestors with
linking. In Proceedings of the First Annual ACM-SIAM Symposium on Discrete Algorithms,
434–443, SIAM, Philadelphia, PA, 1990.

[365] A. Gabrielov, W. Newman, and L. Knopoff. Lattice models of failure: Sensitivity to the local
dynamics. Physical Review E, 50(1):188–197, Jul 1994.

[366] D. Gaitonde and J. S. Shang. Optimized compact-difference-based finite-volume schemes
for linear wave phenomena. Journal of Computational Physics, 138(2):617–643, Dec 1997.

[367] N. Galbreath, W. Gropp, and D. Levine. Applications-driven parallel I/O. In Proceedings of
Supercomputing ’93, 462–471, ACM Press, New York, 1993.

[368] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading, MA, 1995.

[369] I. L. Garzón and J. Jellinek. Melting of gold microclusters. Zeitschrift für Physik D, 20(1–
4):235–238, 1991.

[370] Gateway Project Web page. Available at http://www.osc.edu.

752 References

[371] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, B. Manchek, and V. Sunderam. PVM: Parallel
Virtual Machine—A Users’ Guide and Tutorial for Network Parallel Computing . MIT Press,
Cambridge, MA, 1994.

[372] G. A. Geist and C. H. Romine. LU factorization algorithms on distributed-memory
multiprocessor architectures. SIAM Journal on Scientific and Statistical Computing, 9(4):639–
649, 1988.

[373] General Earthquake Models (GEM) Web page. Available at http://milhouse.jpl.nasa.gov/gem/ .

[374] A. George and J. W.-H. Liu. Computer Solution of Large Sparse Positive Definite Systems. Prentice-
Hall, Englewood Cliffs, NJ, 1981.

[375] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. Hennessy. Memory
consistency and event ordering in scalable shared-memory multiprocessors. In Proceedings
of the 17th Annual Symposium on Computer Architecture (17th ISCA’90), 15–26, Seattle, Jun
1990. IEEE Computer Society Press, Los Alamitos, CA, 1990.

[376] G. A. Gibson, D. P. Nagle, K. Amiri, F. W. Chang, E. Feinberg, H. Gobioff, C. Lee, B. Ozceri,
E. Riedel, and D. Rochberg. A Case for Network-Attached Secure Disks. Technical Report
CMU-CS-96-142. Carnegie-Mellon University, Pittsburgh, PA, Jun 1996.

[377] R. Giering. Tangent Linear and Adjoint Model Compiler, Users Manual 1.2, 1997. (TAMC 5.2
available at http://puddle.mit.edu/∼ralf/tamc.)

[378] R. Giering and T. Kaminski. Recipes for adjoint code construction. ACM Transactions on
Mathematical Software, 24(4):437–474, Dec 1998.

[379] J. R. Gilbert, G. L. Miller, and S. H. Teng. Geometric mesh partitioning: Implementation and
experiments. In Proceedings of the 9th International Parallel Processing Symposium, 418–427,
IEEE Computer Society Press, Los Alamitos, CA, 1995.

[380] J. R. Gilbert and E. Zmijewski. A parallel graph partitioning algorithm for a message-passing
multiprocessor. International Journal of Parallel Programming, 16(6):427–449, Dec 1987.

[381] Global Array Toolkit. Web page. Available at http://www.emsl.pnl.gov:2080/docs/global/ga
.html.

[382] The Global File System. Web page. Available at http://www.sistina.com/gfs.

[383] Globus Metacomputing Toolkit. Web page. Available at http://www.globus.org.

[384] T. Goehring and Y. Saad. Heuristic Algorithms for Automatic Graph Partitioning. Technical
Report UMSI-94-29. University of Minnesota Supercomputing Institute, Minneapolis, MN,
1994.

[385] S. Goil, S. Aluru, and S. Ranka. Concatenated parallelism: A technique for efficient parallel
divide and conquer. In Proceedings of the 8th Symposium of Parallel and Distributed Processing ,
IEEE Computer Society Press, Los Alamitos, CA, 1996.

[386] D. E. Goldberg. Genetic Algorithms in Search, Optimizations and Machine Learning . Addison-
Wesley, Reading, MA, 1989.

[387] G. H. Golub and R. Underwood. The block Lanczos method for computing eigenvalues. In
J. R. Rice, ed., Mathematical Software III , 361–377, Academic Press, New York, 1977.

[388] R. J. Gomez and E. C. Ma. Validation of a large scale Chimera grid system for space shuttle
launch vehicle. In Proceedings of the 12th AIAA Applied Aerodynamics Conference, Colorado
Springs, CO, Jun 1994. (Also available as AIAA Paper 94-1859.)

References 753

[389] R. C. Gonzalez and R. E. Woods. Digital Image Processing. Addison-Wesley, Reading, MA,
1992.

[390] J. R. Goodman. Cache Consistency and Sequential Consistency. Technical Report 61. IEEE
Scalable Coherence Interface Working Group, Mar 1989. (Also available as Technical Report
TR #1006, Computer Sciences Department, University of Wisconsin, Madison.)

[391] W. J. Gordon and L. C. Thiel. Transfinite mappings and their application to grid generation.
In J. F. Thompson, ed., Numerical Grid Generation, North-Holland, Amsterdam, 1982.

[392] K. Gorlen, S. Orlow, and P. Plexico. Data Abstraction and Object-Oriented Programming in C++.
John Wiley & Sons, New York, 1990.

[393] D. Gottlieb and S. A. Orszag. Numerical Analysis of Spectral Methods: Theory and Applications.
SIAM, Philadelphia, PA, 1977.

[394] An introduction to GPFS 1.2. IBM. Available at http://www.almaden.ibm.com/cs/gpfs.html.

[395] S. L. Graham, P. B. Kessler, and M. K. McKusick. gprof: A call graph execution profiler. In
Proceedings of the SIGPLAN ’82 Symposium on Compiler Construction, 120–126, ACM Press,
New York, 1982.

[396] P. M. Gresho and R. L. Sani. Incompressible Flow and the Finite Element Method: Advection-
Diffusion and Isothermal Laminas Flow. John Wiley & Sons, New York, 1998.

[397] Grid Computing Environments Research Group. Computing Portals Web page. Available at
http://www.computingportals.org.

[398] Grid Forum. Web page. Available at http://www.gridforum.org/ .

[399] A. Griewank. Achieving logarithmic growth of temporal and spatial complexity in reverse
automatic differentiation. Optimization Methods and Software, 1(1):35–54, May 1992.

[400] A. Griewank and G. F. Corliss, eds. Automatic Differentiation of Algorithms: Theory, Implemen-
tation, and Application. SIAM, Philadelphia, PA, 1991.

[401] A. Griewank, D. Juedes, and J. Utke. Algorithm 755: ADOL-C, a package for the automatic
differentiation of algorithms written in C/C++. ACM Transactions on Mathematical Software,
22(2):131–167, Jun 1996.

[402] A. Griewank and A. Walther. Treeverse: An Implementation of Checkpointing for the Reverse
or Adjoint Mode of Computational Differentiation. Preprint IOKOMO-04-1997, Technische
Universitat, Dresden, 1997.

[403] A. Griewank and P. L. Toint. On the unconstrained optimization of partially separable
functions. In M. J. D. Powell, ed., Nonlinear Optimization, 1981, 301–312, Academic Press,
London, 1981.

[404] R. G. Grimes, J. G. Lewis, and H. D. Simon. A shifted block Lanczos algorithm for
solving sparse symmetric generalized eigenproblems. SIAM Journal on Matrix Analysis and
Applications, 15(1):228–272, 1994.

[405] W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk, B. Nitsberg, W. Saphir, and M. Snir.
MPI—The Complete Reference: Volume 2, The MPI Extensions. MIT Press, Cambridge, MA,
1998.

[406] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Parallel Programming with the
Message-Passing Interface, 2nd ed. MIT Press, Cambridge, MA, 1999.

[407] W. Gropp, E. Lusk, and R. Thakur. Using MPI-2: Advanced Features of the Message-Passing
Interface. MIT Press, Cambridge, MA, 1999.

754 References

[408] W. D. Gropp, D. K. Kaushik, D. Keyes, and B. F. Smith. Toward realistic performance bounds
for implicit CFD codes. In A. Ecer et al., eds., Proceedings of Parallel CFD ’99, Elsevier Science,
New York and Amsterdam, 1999.

[409] W. Gropp, D. Keyes, L. C. McInnes, and M. D. Tidriri. Globalized Newton–Krylov–
Schwarz algorithms and software for parallel implicit CFD. The International Journal of
High Performance Computing Applications, 14(2):102–136, Summer 2000. (Also available as
ICASE-TR98-24, August 1998.)

[410] L. Grosz. VECFEM—VECtorized Finite Element Method, Version 3. Web page. Available at
http://www.rz.uni-karlsruhe.de/Uni/RZ/Forschung/Numerik/vecfem/index_old.html.

[411] M. F. Guest, E. Aprà, D. E. Bernholdt, H. A. Früchtl, R. J. Harrison, R. A. Kendall, R. A.
Kutteh, X. Long, J. B. Nicholas, J. A. Nichols, H. L. Taylor, A. T. Wong, G. I. Fann, R. J.
Littlefield, and J. Nieplocha. High performance computational chemistry: NWChem and
fully distributed parallel algorithms. In J. J. Dongarra, J. S. Kowalik, L. Grandinetti, and G. R.
Joubert, eds., High Performance Computing: Technology, Methods, and Applications, 395–427,
Elsevier, Amsterdam, 1995.

[412] M. F. Guest, E. Aprà, D. E. Bernholdt, H. A. Früchtl, R. J. Harrison, R. A. Kendall, R. A.
Kutteh, X. Long, J. B. Nicholas, J. A. Nichols, H. L. Taylor, A. T. Wong, G. I. Fann, R. J.
Littlefield, and J. Nieplocha. Advances in parallel distributed data software; computational
chemistry and NWChem. In J. Wasniewski, J. Dongarra, and K. Madsen, eds., Applied
Parallel Computing. Computations in Physics, Chemistry and Engineering Science, 278–294,
Springer-Verlag, Heidelberg, 1996.

[413] M. F. Guest, E. Aprà, D. E. Bernholdt, H. A. Fruchtl, R. J. Harrison, R. A. Kendall, R. A. Kutteh,
X. Long, J. B. Nicholas, J. A. Nichols, H. L. Taylor, A. T. Wong, G. I. Fann, R. J. Littlefield,
and J. Nieplocha. High-performance computing in chemistry: NWChem. Future Generation
Computer Systems, 12(4):273–289, Dec 1996.

[414] M. F. Guest, E. Aprà, D. E. Bernholdt, H. A. Früchtl, R. J. Harrison, R. A. Kendall, R. A. Kutteh,
J. B. Nicholas, J. A. Nichols, M. S. Stave, A. T. Wong, R. J. Littlefield, and J. Nieplocha.
High performance computational chemistry: Towards fully distributed parallel algorithms.
In A. M. Tentner, ed., Proceedings of the 1995 Simulation Multiconference—High Performance
Computing 1995: Grand Challenges in Computer Simulation, 511–521, Society for Computer
Simulation, San Diego, CA, 1995.

[415] A. Gupta. Fast and effective algorithms for graph partitioning and sparse matrix ordering.
IBM Journal of Research and Development , 41(1/2):171–183, Jan–Mar 1997.

[416] A. Gupta, G. Karypis, and V. Kumar. Highly scalable parallel algorithms for sparse matrix
factorization. IEEE Transactions on Parallel and Distributed Systems, 8(5):502–520, May 1997.

[417] M. Gupta, S. Midkiff, E. Schonberg, V. Seshadri, D. Shields, K. Wang, W. M. Ching, and
T. Ngo. An HPF compiler for the IBM SP2. In Proceedings of Supercomputing ’95, ACM Press,
New York, Dec 1995.

[418] J. L. Gustafson. Reevaluating Amdahl’s Law. Communications of the ACM , 31(5):532–533,
May 1988.

[419] H. Haberland, ed. Clusters of Atoms and Molecules. Springer-Verlag, Heidelberg, 1994.

[420] W. Hackbusch. Multi-Grid Methods and Applications. Springer-Verlag, Heidelberg and New
York, 1985.

References 755

[421] W. S. Haddad, I. McNulty, J. E. Trebes, E. H. Anderson, R. A. Levesque, and L. Yang. Ultra
high resolution X-ray tomography. Science, 266:1213–1215, Nov 1994.

[422] L. A. Hageman and D. M. Young. Applied Iterative Methods. Academic Press, New York, 1981.

[423] W. W. Hager and Y. Krylyuk. Graph partitioning and continuous quadratic programming.
SIAM Journal on Discrete Mathematics, 12(4):500–523, 2000.

[424] W. W. Hager, S. C. Park, and T. A. Davis. Block exchange in graph partitioning. In P. M.
Pardalos, ed., Approximation and Complexity in Numerical Optimization: Continuous and Discrete
Problems, 298–307, Kluwer, Dordrecht, The Netherlands, 2000.

[425] M. J. Hagger and L. Stals. DOUG: Domain Decomposition on Unstructured Grids. Web page.
Available at http://www.maths.bath.ac.uk/∼parsoft/doug/ .

[426] B. D. Hahn. Essential MATLAB for Scientists and Engineers. Arnold, London, and Wiley, New
York, 1997.

[427] K. M. Hall. An r-dimensional quadratic placement algorithm. Management Science, 17(3):219–
229, Nov 1970.

[428] M. W. Hall, J. Mellor-Crummey, A. Carle, and R. Rodriguez. FIAT: A framework for
interprocedural analysis and transformation. In Proceedings of the Sixth International Workshop
on Languages and Compilers for Parallel Computing, 522–545, Springer-Verlag, Berlin, 1993.

[429] M. W. Hall, B. R. Murphy, S. P. Amarasinghe, S. Liao, and M. S. Lam. Interprocedural analysis
or parallelization. In Proceedings of the Eighth Workshop on Language and Compilers for Parallel
Computing, 61-80, Springer-Verlag, Berlin, 1995.

[430] W. F. Hall, V. Shankar, and S. Palaniswamy. Algorithmic aspects of wave propagation through
stretched unstructured cells for problems in computational electromagnetics. In Proceedings
of the 13th AIAA Computational Fluid Dynamics Conference, Snowmass Village, CO, Jun–Jul
1997. (Also available as AIAA Paper 97-2089.)

[431] J. H. Halton. On the efficiency of certain quasi-random sequences of points in evaluating
multi-dimensional integrals. Numerische Mathematik, 2:84–90, 1960.

[432] L. Hamel, P. Hatcher, and M. Quinn. An optimizing C* compiler for a hypercube
multicomputer. In J. Saltz and P. Mehrotra, eds., Languages, Compilers, and Run-Time
Environments for Distributed Memory Machines, North-Holland, Amsterdam, 1992.

[433] E.-H. Han, G. Karypis, and V. Kumar. Scalable parallel data mining for association rules.
In Proceedings of the 1997 ACM–SIGMOD International Conference on Management of Data,
277–288, ACM Press, New York, 1997. (Also available as Technical Report, Department of
Computer Science, University of Minnesota, Minneapolis, 1997.)

[434] E.-H. Han, G. Karypis, and V. Kumar. Scalable parallel data mining for association rules.
IEEE Transactions on Knowledge and Data Engineering, 12(3):337–352, May/Jun 2000. (Also
available at http://dlib.computer.org/tk/books/tk2000/pdf/k0337.pdf .)

[435] The Hard Disk Drive Guide. Web page. Available at http://www.storagereview.com.

[436] R. Harrington. Origin and development of the method of moments for field computation.
IEEE Antennas and Propagation Magazine, 32(3):31–35 Jun 1990.

[437] F. E. Harris, H. J. Monkhorst, and D. L. Freeman. Algebraic and Diagrammatic Methods in
Many-Fermion Theory. Oxford University Press, New York, 1992.

756 References

[438] J. Harris, J. M. Bircsak, M. R. Bolduc, J. A. Diewald, I. Gale, N. W. Johnson, S. Lee, C. A.
Nelson, and C. D. Offner. Compiling High Performance Fortran for distributed-memory
systems. Digital Technical Journal, 7(3):5–23, Dec 1995.

[439] R. J. Harrison, M. F. Guest, R. A. Kendall, D. E. Bernholdt, A. T. Wong, M. Stave, J. L. Anchell,
A. C. Hess, R. R. Littlefield, G. I. Fann, J. Nieplocha, G. S. Thomas, D. Elwood, J. L. Tilson, R. L.
Shepard, A. F. Wagner, I. T. Foster, E. Lusk, and R. Stevens. High performance computational
chemistry. II. A scalable SCF program. Journal of Computational Chemistry, 17:124–132, Jan
1996.

[440] R. J. Harrison, J. A. Nichols, T. P. Straatsma, M. Dupuis, E. J. Bylaska, G. I. Fann, T. L. Windus,
E. Apra, J. Anchell, D. Bernholdt, P. Borowski, T. Clark, D. Clerc, H. Dachsel, B. de Jong,
M. Deegan, K. Dyall, D. Elwood, H. Früchtl, E. Glendenning, M. Gutowski, A. Hess, J. Jaffe,
B. Johnson, J. Ju, R. Kendall, R. Kobayashi, R. Kutteh, Z. Lin, R. Littlefield, X. Long, B. Meng,
J. Nieplocha, S. Niu, M. Rosing, G. Sandrone, M. Stave, H. Taylor, G. Thomas, J. van Lenthe,
K. Wolinski, A. Wong, and Z. Zhang. NWChem, A Computational Chemistry Package for Parallel
Computers, Version 4.0. Pacific Northwest National Laboratory, Richland, WA, 2000.

[441] S. Hauck and G. Borriello. An evaluation of bipartitioning technique s. In Proceedings of the
Sixteenth Conference on Advanced Research in VLSI , IEEE Computer Society Press, Los Alamitos,
CA, 1995.

[442] T. Haupt, E. Akarsu, and G. Fox. Landscape Management System: A WebFlow Application.
Technical report. Engineering Research and Development Center, U.S. Army Corps of
Engineers, University of Mississippi, Vicksburg, Aug 1999. (Available at http://www.new-
npac.org/users/fox/documents/LMSERDCC425/C425LMSrep2.html.)

[443] T. Haupt, E. Akarsu, G. Fox, and W. Furmanski. Web based metacomputing, 1999. Future
Generation Computing Systems, 15(5–6):735–743, Oct 1999.

[444] T. Haupt, E. Akarsu, G. Fox, A. Kalinichenko, K.-S. Kim, P. Sheethalnath, and C.-H. Youn.
The Gateway system: Uniform Web based access to remote resources. In Proceedings of
High-Performance Computing and Networking ’99, Amsterdam, Apr 1999.

[445] T. Haupt, E. Akarsu, G. Fox, A. Kalinichenko, K.-S. Kim, P. Sheethalnath, and C.-H. Youn.
The Gateway system: Uniform Web based access to remote resources. In Proceedings of the
ACM 1999 Conference on Java Grande, 1–7, ACM Press, New York, 1999.

[446] M. E. Hayder, D. E. Keyes, and P. Mehrotra. A comparison of the PETSc library and HPF
implementations of an archetypal PDE computation. Advances in Engineering Software,
29(3–6):415–424, Apr–Jul 1998.

[447] E. F. Hayes et al. Report of the Task Force of the Future of the NSF Supercomputer Centers
Program. Report nsf 9646, National Science Foundation, Washington, DC, Sep 1995.
Available at http://www.nsf.gov/pubs/1996/nsf9646.htm.

[448] M. Heath and J. A. Etheridge. Visualizing the performance of parallel programs. IEEE Software,
8(5):29–39, Sep 1991.

[449] M. T. Heath and P. Raghavan. A Cartesian parallel nested dissection algorithm. SIAM Journal
on Matrix Analysis and Applications, 16(1):235–253, Jan 1995.

[450] M. T. Heath. Scientific Computing: An Introductory Survey. McGraw-Hill, New York, 1997.

[451] G. Heber, R. Biswas, and G. R. Gao. Self-avoiding walks over adaptive unstructured grids.
Concurrency: Practice and Experience, 12(2-3):85–109, Feb–Mar 2000.

References 757

[452] R. D. Henderson. Unstructured Spectral Element Methods: Parallel Algorithms and
Simulations. PhD diss., Princeton University, 1994.

[453] R. D. Henderson. Details of the drag curve near the onset of vortex shedding. Physics of
Fluids, 7(9):2102–2104, Sep 1995.

[454] R. D. Henderson. Nonlinear dynamics and pattern formation in turbulent wake transition.
Journal of Fluid Mechanics, 352:65–112, Dec 1997.

[455] B. Hendrickson. Graph partitioning and parallel solvers: Has the emperor no clothes? In
A. Ferreira, J. Rolim, H. Simon, and S.-H. Teng, eds., Proceedings of the Fifth International
Symposium on Solving Irregularly Structured Problems in Parallel, 218–225, Springer-Verlag,
Heidelberg and New York, 1998.

[456] B. Hendrickson and T. G. Kolda. Graph partitioning models for parallel computing. Parallel
Computing, 26(12):1519–1534, Nov 2000.

[457] B. Hendrickson and T. G. Kolda. Partitioning rectangular and structurally nonsymmetric
sparse matrices for parallel processing. SIAM Journal on Scientific Computing, 21(6):2048–2072,
2000.

[458] B. Hendrickson and R. Leland. The Chaco User’s Guide, Version 2.0. Technical Report SAND
94-2692. Sandia National Laboratories, Albuquerque, NM, 1994.

[459] B. Hendrickson and R. Leland. An improved spectral graph partitioning algorithm for
mapping parallel computations. SIAM Journal on Scientific Computing, 16(2):452–469, Mar
1995.

[460] B. Hendrickson and R. Leland. A multilevel algorithm for partitioning graphs. In Proceedings
of Supercomputing ’95, ACM Press, New York, 1995.

[461] B. A. Hendrickson. The Molecule Problem: Determining Conformation from Pairwise
Distances. PhD diss., Cornell University, 1991.

[462] B. Hendrickson. The molecule problem: Exploiting structure in global optimization. SIAM
Journal on Optimization, 5(4):835–857, 1995.

[463] W. D. Henshaw, D. L. Brown, and D. J. Quinlan. Overture: An object-oriented framework
for solving partial differential equations on overlapping grids. In Proceedings of the SIAM
Workshop on Object Oriented Methods for Inter-Operable Scientific and Engineering Computing ,
215–224, SIAM, Philadelphia, PA, 1999.

[464] V. Herrarte and E. Lusk. Studying Parallel Program Behavior with Upshot. Technical Report
ANL-91/15. Argonne National Laboratory, Argonne, IL, 1991.

[465] J. L. Hess. Panel methods in computational fluid dynamics. Annual Reviews of Fluid Mechanics,
22:255–274, 1990.

[466] J. L. Hess and M. O. Smith. Calculation of potential flows about arbitrary bodies. In
D. Küchemann, ed., Progress in Aeronautical Sciences, Volume 8, Pergamon Press, Oxford
and New York, 1967.

[467] M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems.
Journal of Research of the National Bureau of Standards, 49:409–436, 1952.

[468] High Performance Fortran Forum. High Performance Fortran language specification. Scientific
Programming, 2(1–2):1–170, Spring–Summer 1993. (Also available as CRPC-TR92225.)

[469] D. Hilbert. Über die stetige Abbildung einer Linie auf ein Flachenstuck. Math Annalen, 38,
1891.

758 References

[470] J. M. D. Hill, B. McColl, D. C. Stefanescu, M. W. Goudreau, K. Lang, S. B. Rao, T. Suel,
T. Tsantilas, and R. H. Bisseling. BSPlib: The BSP programming library. Parallel Computing,
24(14):1947–1980, Dec 1998.

[471] K. C. Hill, M. I. Sancer, and S. Bindiganavale. Assessment of development of fast CEM
solvers. In Proceedings of the 29th Plasmadynamics and Lasers Conference, Albuquerque, NM,
Jun 1998. (AIAA Paper 98-2474.)

[472] W. D. Hillis. The Connection Machine. MIT Press, Cambridge, MA, 1985.

[473] W. D. Hillis and G. L. Steele, Jr. Data parallel algorithms. Communications of the ACM ,
29(12):1170–1183, Dec 1986.

[474] A. Hindmarsh et al. PVODE. Lawrence Livermore National Laboratory, Berkeley, CA. (See
SUNDIALS web page, available at http://www.llnl.gov/CASC/Sundials/)

[475] S. Hiranandani, K. Kennedy, and C.-W. Tseng. Compiling Fortran D for MIMD distributed-
memory machines. Communications of the ACM , 35(8):66–80, Aug 1992.

[476] M. R. Hoare. Structure and dynamics of simple microclusters. Advances in Chemical Physics,
40:49–135, 1979.

[477] M. R. Hoare and J. McInnes. Statistical mechanics and morphology of very small atomic
clusters. Faraday Discussions of Chemical Society, 61:12–24, 1976.

[478] M. R. Hoare and P. Pal. Statistics and stability of small assemblies of atoms. Journal of Crystal
Growth, 17:77–96, 1972.

[479] R. W. Hockney and J. W. Eastwood. Computer Simulation Using Particles. A. Hilger,
Philadelphia, PA, 1988.

[480] R. W. Hockney and C. R. Jesshope. Parallel Computers. Adam Hilger Ltd., Bristol, UK, 1981.

[481] P. Holmes, J. L. Lumley, and G. Berkooz. Turbulence, Coherent Structures, Dynamical Systems,
and Symmetry. Cambridge University Press, Cambridge, 1996.

[482] R. Hornung and S. Kohn. The use of object-oriented design patterns in the SAMRAI structured
AMR framework. In Proceedings of the SIAM Workshop on Object-Oriented Methods for Inter-
operable Scientific and Engineering Computing, 235–244, SIAM, Philadelphia, PA, 1999.

[483] R. D. Hornung and S. R. Kohn. The use of object-oriented design patterns in the SAMRAI
structured AMR framework. In Proceedings of the SIAM Workshop on Object-Oriented Methods
for Interoperable Scientific and Engineering Computing, Yorktown Heights, NY, Oct 1998. (Also
available as Lawrence Livermore National Laboratory Technical Report UCRL-JC-131825.)

[484] G. Horton. A multi-level diffusion method for dynamic load balancing. Parallel Computing,
19(2):209–218, Feb 1993.

[485] P. D. Hough, T. G. Kolda, and V. J. Torczon. Asynchronous parallel pattern search for
nonlinear optimization. SIAM Journal on Scientific Computing, 23(1):134–156, Jun 2001.

[486] P. D. Hough and J. C. Meza. A Class of Trust-Region Methods for Parallel Optimization.
Technical Report TR SAND 98-8245. Sandia National Laboratory, Albuquerque, NM, 1998.

[487] E. Houstis, J. Rice, and A. Hadjidimos. Parallel ELLPACK Research Project. Web page.
Available at http://www.cs.purdue.edu/research/cse/pellpack/ .

[488] E. N. Houstis, J. R. Rice, S. Weerawarana, A. C. Catlin, P. Papachiou, K. Y. Wang, and
M. Gaitatzes. PELLPACK: A problem solving environment for PDE-based applications on
multicomputer platforms. ACM Transactions on Mathematical Software, 24(1):30–73, Mar
1998.

References 759

[489] E. N. Houstis, S. B. Kim, S. Markus, P. Wu, N. E. Houstis, A. C. Catlin, S. Weerawarana,
and T. S. Papatheodorou. Parallel ELLPACK elliptic PDE solvers. In Proceedings of INTEL
Supercomputer Users’ Group Conference, Albuquerque, NM, 1995.

[490] E. N. Houstis and J. R. Rice. The engineering of modern interfaces for PDE solvers. In
E. N. Houstis, J. R. Rice, and R. Vichnevetsky, eds., Proceedings of the Symbolic Computation:
Applications to Scientific Computing, 89–94, North-Holland, Amsterdam, 1992.

[491] P. Hovland. Automatic Differentiation of Parallel Programs. PhD diss., University of Illinois
at Urbana-Champaign, 1997.

[492] Y. F. Hu and R. J. Blake. An improved diffusion algorithm for dynamic load balancing.
Parallel Computing, 25(4):417–444, Apr 1999.

[493] Y. F. Hu, R. J. Blake, and D. R. Emerson. An optimal migration algorithm for dynamic load
balancing. Concurrency: Practice and Experience, 10(6):467–483, May 1998.

[494] J. Huber, A. A. Chien, C. L. Elford, D. S. Blumenthal, and D. A. Reed. PPFS: A high
performance portable parallel file system. In Proceedings of the 9th International Conference on
Supercomputing, 385–394, 1995, ACM Press, New York, 1995.

[495] D. Hunt. Advanced performance features of the 64-bit PA-8000. In Proceedings of the 40th IEEE
International Computer Conference: Technologies for the Information Superhighway, 123–128,
IEEE Computer Society Press, Los Alamitos, CA, Mar 1995.

[496] P. Husbands and C. Isbell. The parallel problems server. In Proceedings of the 1998 MIT Student
Workshop on High-Performance Computing in Science and Engineering , 1998. (Also available as
MIT-LCS-TR-737.)

[497] S. A. Hutchinson, J. N. Shadid, and R. S. Tuminaro. Aztec User’s Guide, Version 1.1. Technical
Report SAND 95-1559. Sandia National Laboratories, Albuquerque, NM, 1995.

[498] IEEE Standard for Scalable Coherent Interface (SCI), 1596-1992, 1992.

[499] IEEE. IEEE P1003.1c/D10: Draft Standard for Information Technology—Portable Operating
Systems Interface (POSIX), Sep 1994.

[500] IEEE. IEEE/ANSI Standard 1003.1: Portable Operating System Interface (POSIX)—Part 1:
System Application Program Interface (API) [C Language], 1996.

[501] C. S. Ierotheou, S. P. Johnson, M. Cross, and P. F. Leggett. Computer aided parallelization tools
(CAPTools)—Conceptual overview and performance on the parallelization of structured
mesh codes. Parallel Computing, 22(2):163–195, Apr 1996.

[502] IGES/PDES Organization. Initial Graphics Exchange Specification (IGES), Version 5.3. National
Computer Graphics Association, Fairfax, VA, 1995.

[503] InfiniBand Trade Association. Web page. Available at http://www.infinibandta.org/home.

[504] INMOS Ltd. occam Programming Manual. Prentice-Hall, Englewood Cliffs, NJ, 1984.

[505] Intel Corporation. IA-32 Intel Architecture Software Developer’s Manual, Volume 3: System
Programming Guide (Preliminary), 2000.

[506] E. Isaacson and H. B. Keller. Analysis of Numerical Methods. John Wiley & Sons, New York,
1966.

[507] Y. Ishikawa, A. Hori, H. Tezuka, M. Matsuda, H. Konaka, M. Maeda, T. Tomokiyo, and
J. Nolte. MPC++. In G. V. Wilson and P. Lu, eds., Parallel Programming Using C++, 429–464,
MIT Press, Cambridge, MA, 1996.

760 References

[508] A. K. Jain. Fundamentals of Digital Image Processing. Prentice-Hall, Englewood Cliffs, NJ,
1989.

[509] A. Jameson, T. J. Baker, and N. P. Weatherill. Calculation of inviscid transonic flow over a
complete aircraft. In Proceedings of the 24th AIAA Aerospace Sciences Meeting, Reno, NV, Jan
1986. (AIAA Paper 86-0103.)

[510] K. Jansen and R. Sommer. O(a) improvement of lattice QCD with two flavors of Wilson
quarks. Nuclear Physics B, B530(1–2):185–203, Oct 1998.

[511] S. C. Jaume and L. R. Sykes. Changes in state of stress on the southern San Andreas Fault
resulting from the California earthquake sequence of April to June 1992. Science, 258:1325–
1328, Nov 1992.

[512] Java Grande Forum. Available at http://www.javagrande.org.

[513] D. Jefferson, B. Beckman, F. Wieland, L. Blume, M. DiLoreto, P. Hontalas, P. Laroche, K.
Sturdevant, J. Tupman, V. Warren, J. Wedel, H. Younger, S. Bellenot. Distributed simulation
and the Time Warp operating system. In Proceedings of the 11th ACM Symposium on Operating
Systems Principles, ACM Press, New York, 1987.

[514] J. Jellinek. Theoretical dynamical studies of metal clusters and cluster-ligand systems. In
N. Russo, ed., Metal-Ligand Interactions: Structure and Reactivity. Kluwer, Dordrecht, 1995.

[515] A. Jennings and G. M. Malik. Partial elimination. Journal of the Institute of Mathematics and
Its Applications, 20(3):307–316, 1977.

[516] E. Johnson, D. Gannon, and P. Beckman. HPC++: Experiments with the parallel standard
template library. In Proceedings of the 11th International Conference on Supercomputing, 124–
131, ACM Press, New York, 1997.

[517] W. Johnston, D. Gannon, and B. Nitzberg. Grids as production computing environments:
The engineering aspects of NASA’s information power grid. In Proceedings of the Eighth IEEE
International Symposium on High Performance Distributed Computing, 197–204, IEEE Computer
Society Press, Los Alamitos, CA, 1999. Available at http://www.computer.org/proceedings/hpdc
/0287/0287toc.html.

[518] M. T. Jones and P. E. Plassmann. An efficient parallel iterative solver for large sparse linear
systems. In A. George, J. Gilbert, and J. W.-H. Liu, eds., Graph Theory and Sparse Matrix
Computation, 229–245, Springer, New York, 1993.

[519] M. T. Jones and P. E. Plassmann. Parallel solution of unstructured, sparse systems of linear
equations. In R. F. Sincovec, D. E. Keyes, M. R. Leuze, L. R. Petzold, and D. A. Reed, eds.,
Proceedings of the Sixth SIAM Conference on Parallel Processing for Scientific Computing , 471–475,
SIAM, Philadelphia, PA, 1993.

[520] M. T. Jones and P. E. Plassmann. Scalable iterative solution of sparse linear systems. Parallel
Computing, 20(5):753–773, May 1994.

[521] M. T. Jones and P. E. Plassmann. Algorithm 740: Fortran subroutines to compute improved
incomplete Cholesky factorizations. ACM Transactions on Mathematical Software, 21(1):18–
19, 1995.

[522] M. T. Jones and P. E. Plassmann. An improved incomplete Cholesky factorization. ACM
Transactions on Mathematical Software, 21(1):5–17, Mar 1995.

[523] P. W. Jones. First- and second-order conservative remapping schemes for grids in spherical
coordinates. Monthly Weather Review, 127(9):2204–2210, Sep 1999.

References 761

[524] T. Jones, R. Mark, J. Martin, J. May, E. Pierce, and L. Stanberry. An MPI-IO interface to HPSS.
In Proceedings of the Fifth NASA Goddard Conference on Mass Storage Systems, I:37–50, College
Park, MD, Sep 1996. (Also available at http://esdis-it.gsfc.nasa.gov/MSST/conf1996.html.)

[525] H. F. Jordan. The Force. In L. H. Jamieson, D. B. Gannon, and R. J. Douglass, eds., The
Characteristics of Parallel Algorithms, MIT Press, Cambridge, MA, 1987.

[526] M. V. Joshi, E.-H. Han, G. Karypis, and V. Kumar. Efficient parallel algorithms for mining
associations. In M. J. Zaki and C.-T. Ho, eds., Lecture Notes in Computer Science: Lecture Notes
in Artificial Intelligence (LNCS/LNAI), Vol. 1759, Springer-Verlag, Heidelberg, 2000.

[527] M. V. Joshi, G. Karypis, and V. Kumar. ScalParC: A new scalable and efficient parallel
classification algorithm for mining large datasets. In Proceedings of the International Parallel
Processing Symposium, 573–579, IEEE Computer Society Press, Los Alamitos, CA, 1998.

[528] M. V. Joshi, G. Karypis, and V. Kumar. Universal Formulation of Sequential Patterns.
Technical Report TR-99-021. Department of Computer Science, University of Minnesota,
Minneapolis, 1999.

[529] B. Kågström, P. Ling, and C. Van Loan. Portable high performance GEMM-based Level 3
BLAS. In Proceedings of the Sixth SIAM Conference on Parallel Processing for Scientific Computing,
339–346, SIAM, Philadelphia, 1993.

[530] K. L. Karavanic and B. P. Miller. Improving online performance diagnosis by use of historical
performance data. In Proceedings of Supercomputing ’99, ACM Press, New York, Nov 1999.

[531] G. E. Karniadakis, M. Israeli, and S. A. Orszag. High-order splitting methods for the
incompressible Navier–Stokes equations. Journal of Computational Physics, 97(2):414–443,
Dec 1991.

[532] G. E. Karniadakis and S. J. Sherwin. Spectral/hp Element Methods for CFD. Oxford University
Press, New York, 1999.

[533] G. E. Karniadakis and G. S. Triantafyllou. Three-dimensional dynamics and transition to
turbulence in the wake of bluff objects. Journal of Fluid Mechanics, 238:1–30, May 1992.

[534] A. H. Karp. Bit reversal on uniprocessors. SIAM Review, 38(1):1–26, Mar 1996.

[535] J. Karty, D. Car, K. Jacobs, R. Pearlman, J. Roedder, and T. Blalock. The HyPACED code: A new
generation of hybrid analysis for electromagnetics. In Proceedings of the 29th Plasmadynamics
and Lasers Conference, Albuquerque, NM, Jun 1998. (Also available as AIAA Paper 98-2473.)

[536] W. Karush. An iterative method for finding characteristics vectors of a symmetric matrix.
Pacific Journal of Mathematics, 1:233–248, 1951.

[537] G. Karypis and V. Kumar. Analysis of multilevel graph partitioning. In Proceedings of
Supercomputing ’95, ACM Press, New York, Dec 1995.

[538] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM Journal on Scientific Computing, 20(1):359–392, 1998. (Also available
at http://www.cs.umn.edu/∼karypis; a short version appears in Proceedings of the International
Conference on Parallel Processing, 1995.)

[539] G. Karypis and V. Kumar. HMETIS 1.5: A Hypergraph Partitioning Package. Technical report.
Department of Computer Science, University of Minnesota, Minneapolis, 1998. (Also
available at http://www.users.cs.umn.edu/∼karypis/metis.)

762 References

[540] G. Karypis and V. Kumar. METIS 4.0: Unstructured Graph Partitioning and Sparse Matrix Or-
dering System. Technical report. Department of Computer Science, University of Minnesota,
Minneapolis, 1998. (Also available at http://www.users.cs.umn.edu/∼karypis/metis.)

[541] G. Karypis and V. Kumar. Multilevel algorithms for multi-constraint graph partitioning. In
Proceedings of Supercomputing ’98, IEEE Computer Society Press, Los Alamitos, CA, 1998.

[542] G. Karypis and V. Kumar. Multilevel k-way partitioning scheme for irregular graphs.
Journal of Parallel and Distributed Computing, 48(1):96–129, Jan 1998. (Also available at
http://www.cs.umn.edu/∼karypis.)

[543] G. Karypis and V. Kumar. A parallel algorithm for multilevel graph partitioning and sparse
matrix ordering. Journal of Parallel and Distributed Computing , 48(1):71–95, Jan 1998. (Also
available at http://www.cs.umn.edu/∼karypis.)

[544] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM Journal on Scientific Computing, 20(1):359–392, 1999. (Also available
as Technical Report TR 95-035, Department of Computer Science, University of Minnesota,
1995, and at http://www.cs.umn.edu/∼karypis; a short version appears in Proceedings of the
International Conference on Parallel Processing, 1995.)

[545] G. Karypis and V. Kumar. Multilevel k-way hypergraph partitioning. In Proceedings of the
36th ACM/IEEE Design Automation Conference, 343–348, ACM Press, New York, 1999.

[546] G. Karypis and V. Kumar. Parallel multilevel k-way partitioning scheme for irregular graphs.
SIAM Review, 41(2):278–300, 1999.

[547] G. Karypis, K. Schloegel, and V. Kumar. ParMETIS 1.0: Parallel Graph Partitioning and Sparse
Matrix Ordering Library. Technical Report TR-97-060, Department of Computer Science,
University of Minnesota, 1997. (Also available at http://www.users.cs.umn.edu/∼karypis/metis.)

[548] D. K. Kaushik, D. Keyes, and B. F. Smith. On the interaction of architecture and algorithm
in the domain-based parallelization of an unstructured grid incompressible flow code. In
J. Mandel et al., ed., Proceedings of the 10th International Conference on Domain Decomposition
Methods, 311–319, Wiley, New York, 1997.

[549] D. K. Kaushik, D. Keyes, and B. F. Smith. Newton–Krylov–Schwarz methods for aerodynamic
problems: Compressible and incompressible flows on unstructured grids. In C.-H. Lai et al.,
ed., Proceedings of the 11th International Conference on Domain Decomposition Methods, Domain
Decomposition Press, Bergen, 1999.

[550] K. Keahey and D. Gannon. PARDIS: A parallel approach to CORBA. In Proceedings of the Sixth
IEEE Symposium on High Performance Distributed Computing , 31–39, IEEE Computer Society
Press, Los Alamitos, CA, 1997.

[551] J. Keasler. Partitioning challenges in ALE3D, 1999. Lecture presented at Workshop on Graph
Partitioning and Applications: Current and Future Directions, Army High Performance
Computer Research Center, University of Minnesota, Minneapolis, 1999.

[552] P. Keleher, A. Cox, and W. Zwaenepoel. Lazy release consistency for software distributed
shared memory. In Proceedings of the 19th International Symposium on Computer Architecture,
13–21, ACM Press, New York, 1992.

[553] H. B. Keller. Practical procedures in path following near limit points. In R. Glowinsky
and J. L. Lions, eds., Computing Methods in Applied Sciences and Engineering, V , 177–183,
North-Holland, Amsterdam, 1982.

References 763

[554] H. B. Keller. The bordering algorithm and path following near singular points of higher
nullity. SIAM Journal on Scientific and Statistical Computing, 4(4):573–582, Dec 1983.

[555] H. B. Keller. A rank theory for differential algebraic equations. In Proceedings of the
International Symposium on Differential Equations and Their Applications, Oct 1999.

[556] H. B. Keller and H. von Sosen. New methods in CFD: DAE and RPM. In Proceedings of the
First Asian CFD Conference, 1995.

[557] R. A. Kendall, E. Aprà, D. E. Bernholdt, E. J. Bylaska, M. Dupuis, G. I. Fann, R. J. Harrison,
J. Ju, J. A. Nichols, J. Nieplocha, T. P. Straatsma, T. L. Windus, and A. T. Wong. High
performance computational chemistry: An overview of NWChem, a distributed parallel
application. Computer Physics Communications, 128(1–2):260–283, 2000. (Available at
http://www.elsevier.nl/gej-ng/10/15/40/58/25/43/article.pdf .)

[558] R. A. Kendall and H. A. Früchtl. The impact of the resolution of the identity approximate
integral method on modern ab initio algorithm development. Theoretical Chemistry Accounts,
97(1–4):158–163, Oct 1997.

[559] K. Kennedy. Telescoping languages: A compiler strategy for implementation of high-level
domain-specific programming systems. In Proceedings of the 14th International Parallel and
Distributed Processing Symposium 2000, 297–304, IEEE Computer Society Press, Los Alamitos,
CA, 2000.

[560] B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs. The Bell
System Technical Journal, 49(2):291–307, Feb 1970.

[561] R. A. Kerr. Forecasters learning to read a hurricane’s mind. Science, 284(5414):563–565, Apr
1999.

[562] D. S. Kershaw. The incomplete Cholesky–conjugate gradient method for the iterative
solution of systems of linear equations. Journal of Computational Physics, 26(1):43–65, Jan
1978.

[563] D. Keyes. Personal communication. 1998.

[564] D. E. Keyes, A. Sameh, and V. Venkatakrishnan, eds. Parallel Numerical Algorithms. Kluwer,
Dordrecht, 1997. (Papers from the workshop held in Hampton, VA, May 23–25, 1994.)

[565] Khoros Web page. Available at http://www.khoral.com/khoros/ .

[566] S. Klasky. Lectures on Numerical Relativity for Computational Science Class: Binary Black
Hole Collision, 1996. Available at http://old-npac.ucs.indiana.edu/users/gcf/slitex/bbhklasky
/index.html.

[567] S. Klasky, T. Haupt, and G. Fox. MPI HPF and DAGH for Parallelization of Black Hole Codes,
1997. Available at http://old-npac.ucs-indiana.edu/users/gcf/bbhdaghhpfmar97/index.html. (Also
appears as “Is Message Passing Obsolete?” in Proceedings of the 1997 SIAM Workshop,
Minneapolis, MN, March 1997.)

[568] P. Klosowski, M. Koennecke, J. Z. Tischler, and R. Osborn. NeXus: A common format for the
exchange of neutron and synchrotron data. Physica B, 241–243:151–153, Dec. 1997.

[569] C. Koelbel, D. B. Loveman, R. S. Schreiber, G. L. Steele Jr., and M. E. Zosel. The High
Performance Fortran Handbook. MIT Press, Cambridge, MA, 1993.

[570] S. Kohn, X. Garaiza, R. Hornung, and S. Smith. SAMRAI: Structured Adaptive Mesh
Refinement Applications Infrastructure. Lawrence Livermore National Laboratory, Berkeley,
CA. Available at http://www.llnl.gov/CASC/SAMRAI .

764 References

[571] J. F. Koksma. Een algemeene stelling uit de theorie der gelijkmatige verdeeling modulo 1.
Mathematica B (Zutphen), 11:7–11, 1942/43.

[572] T. G. Kolda and V. J. Torczon. On the convergence of asynchronous parallel pattern search.
2002.

[573] A. E. Koniges, ed. Industrial Strength Parallel Computing. Morgan Kaufmann, San Francisco,
2000.

[574] R. P. Koomullil, B. K. Soni, and H. Chih-Ti. Navier–Stokes simulation on hybrid grids. In
Proceedings of the 34th AIAA Aerospace Sciences Meeting , Reno, NV, Jan 1996. (Also available
as AIAA Paper 96-767.)

[575] J. Kostrowicki, L. Piela, B. J. Cherayil, and H. A. Scheraga. Performance of the diffusion
equation method in searches for optimum structures of clusters of Lennard–Jones atoms.
Journal of Physical Chemistry, 95(10):4113–4119, May 1991.

[576] J. Kostrowicki and H. A. Scheraga. Application of the diffusion equation method for global
optimization to oligopeptides. Journal of Physical Chemistry, 96(18):7442–7449, Sep 1992.

[577] D. Kotz. Applications of Parallel I/O, Release 1. Technical Report PCS-TR96-297. Department
of Computer Science, Dartmouth College, Hanover, NH, Oct 1996. (Also available at
http://www.cs.dartmouth.edu/reports/abstracts/TR96-297.)

[578] D. Kotz. Introduction to multiprocessor I/O architecture. In R. Jain, J. Werth, and J. C.
Browne, eds., Input/Output in Parallel and Distributed Computer Systems, 97–123, Kluwer
Dordrecht, 1996.

[579] D. Kotz. Disk-directed I/O for MIMD multiprocessors. ACM Transactions on Computer Systems,
15(1):41–74, Feb 1997.

[580] D. Kranz, K. Johnson, A. Agarwal, J. Kubiatowicz, and B.-H. Lim. Integrating message-
passing and shared-memory: Early experience. In Proceedings of the Fourth ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, 54–63, ACM Press, New York,
1993.

[581] H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley. C60: Buckminsterfullerene.
Nature, 318(6042):162–163, Nov 1985.

[582] D. Kuck, R. Kuhn, B. Leasure, and M. J. Wolfe. Analysis and transformation of programs for
parallel computation. In Proceedings of COMPSAC 80, the 4th International Computer Software
and Applications Conference, 709–715, IEEE, New York, 1980.

[583] D. Kuck, R. Kuhn, D. Padua, B. Leasure, and M. J. Wolfe. Dependence graphs and compiler
optimizations. In Proceedings of the 8th ACM SIGPLAN-SIGACT Symposium on the Principles of
Programming Languages, 207–218, AMC Press, New York, 1981.

[584] R. Kufrin. Decision trees on parallel processors. In J. Geller, H. Kitano, and C. B. Suttner,
eds., Parallel Processing for Artificial Intelligence 3, Elsevier Science, Amsterdam and New York,
1997.

[585] V. Kumar, A. Grama, A. Gupta, and G. Karypis. Introduction to Parallel Computing: Design and
Analysis of Algorithms. Addison-Wesley, Reading, MA, 1994.

[586] T. Kurc, C. Chang, R. Ferreira, A. Sussman, and J. Saltz. Querying very large multi-
dimensional datasets in ADR. In Proceedings of Supercomputing ’99, ACM Press, New York,
1999.

References 765

[587] T. Kurc, A. Sussman, and J. Saltz. Coupling multiple simulations via a high performance
customizable database system. In Proceedings of the Ninth SIAM Conference on Parallel Processing
for Scientific Computing, SIAM, Philadelphia, PA, 1999.

[588] Y. A. Kuznetsov and V. V. Levitin. CONTENT, A Multiplatform Continuation Environment.
Technical report. CWI Amsterdam, 1996.

[589] J. Lakos. Large-Scale C++ Software Design. Addison-Wesley, Reading, MA, 1996.

[590] L. Lamport. How to make a multiprocessor computer that correctly executes multiprocess
programs. IEEE Transactions on Computers, C-28(9):690–691, Sep 1979.

[591] Z. Lan, V. Taylor, and G. Bryan. Dynamic load balancing for adaptive mesh refinement. In
Proceedings of the 30th International Conference on Parallel Processing , Sep 2001.

[592] Z. Lan, V. Taylor, and G. Bryan. Dynamic load balancing of SAMR applications on distributed
systems. In Proceedings of Supercomputing 2001, Nov 2001. Available at www.supercomp.org.

[593] L. D. Landau and E. M. Lifshitz. Fluid Mechanics. Pergamon Press, London, and Addison-
Wesley, Reading, MA, 1959.

[594] J. Larson. Cray X-MP hardware performance monitor. Cray Channels, 1985.

[595] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. Basic linear algebra subprograms
for Fortran usage. ACM Transactions on Mathematical Software, 5(3):308–323, Sep 1979.

[596] W. Lee, M. H. Noh, and M. F. Wheeler. Air-water flow simulation in unsaturated porous
media. In Proceedings of the XIII International Conference on Computational Methods in Water
Resources, 93–100, A. A. Balkema, Rotterdam, 2000.

[597] R. B. Lehoucq. Analysis and Implementation of an Implicitly Restarted Iteration. PhD diss.,
Rice University, Houston, TX, 1995. (Also available as CAAM TR95-13.)

[598] R. B. Lehoucq and A. G. Salinger. Large-Scale Eigenvalue Calculations for Stability Analysis
of Steady Flows on Massively Parallel Computers. Technical report. Department of Applied
Mathematics, Computer Science Division, Sandia National Laboratory, Albuquerque, NM,
Jun 1999.

[599] R. B. Lehoucq and J. A. Scott. An Evaluation of Software for Computing Eigenvalues of
Sparse Nonsymmetric Matrices. Preprint MCS-P547-1195. Argonne National Laboratory,
Argonne, IL, 1996.

[600] R. B. Lehoucq and D. C. Sorensen. Deflation techniques for an implicitly restarted Arnoldi
iteration. SIAM Journal on Matrix Analysis and Applications, 17(4):789–821, Oct 1996.

[601] R. B. Lehoucq, D. C. Sorensen, and C. Yang. ARPACK Users’ Guide: Solution of Large Scale
Eigenvalue Problems with Implicitly Restarted Arnoldi Methods. SIAM, Philadelphia, PA, 1998.

[602] F. T. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes.
Morgan Kaufmann, San Mateo, CA, 1992.

[603] S. K. Lele. Compact finite difference schemes with spectral-like resolution. Journal of
Computational Physics, 103(1):16–42, Nov 1992.

[604] D. Lenoski, J. Laudon, K. Gharachorloo, W.-D. Weber, A. Gupta, J. Hennessy, M. Horowitz,
and M. S. Lam. The Stanford Dash multiprocessor. Computer, 25(3):63–79, Mar 1992.

[605] M. Lentini and H. B. Keller. Boundary value problems over semi-infinite intervals and their
numerical solution. SIAM Journal on Numerical Analysis, 17(4):557–604, Aug 1980.

[606] R. J. Le Veque. Numerical Methods for Conservation Laws, 2nd ed. Birkhäuser, Basel, 1992.

766 References

[607] R. M. Lewis and V. Torczon. Pattern Search Algorithms for Bound Constrained Minimization.
Technical Report ICASE TR 96-20. Institute for Computer Applications in Science and
Engineering, NASA Langley Research Center, Hampton, VA, 1996.

[608] R. M. Lewis and V. Torczon. Rank Ordering and Positive Bases in Pattern Search Algorithms.
Technical Report ICASE TR 96-71. Institute for Computer Applications in Science and
Engineering, NASA Langley Research Center, Hampton, VA, Dec 1996.

[609] R. M. Lewis and V. J. Torczon. A Globally Convergent Augmented Lagrangian Pattern Search
Algorithm for Optimization with General Constraints and Simple Bounds. Technical Report
ICASE TR 98-31. Institute for Computer Applications in Science and Engineering, NASA
Langley Research Center, Hampton, VA, Jul 1998.

[610] R. M. Lewis and V. J. Torczon. Pattern Search Methods for Linearly Constrained Minimiza-
tion. Technical Report ICASE TR 98-3. Institute for Computer Applications in Science and
Engineering, NASA Langley Research Center, Hampton, VA, Jan 1998.

[611] K. Li. Shared virtual memory on loosely coupled multiprocessors. In Proceedings IEEE CS
1986, International Conference on Computer Languages, 98–106, Oct 1986.

[612] X. S. Li. Sparse Gaussian Elimination on High Performance Computers. PhD diss., University
of California at Berkeley, 1996.

[613] Z. Li and H. A. Scheraga. Monte Carlo approach to the multiple-minima problem in protein
folding. In Proceedings of the National Academy of Sciences, 84(19):6611–6615, 1987.

[614] J. S. Lim. Two-Dimensional Signal and Image Processing. Prentice-Hall, Englewood Cliffs, NJ
1990.

[615] H. Ling, R. C. Chou, and S. W. Lee. Shooting and bouncing rays: Calculating the RCS of an
arbitrarily shaped cavity. IEEE Transactions on Antennas and Propagation, 37(2):194–205, Feb
1988.

[616] P.-L. Lions. On the Schwarz alternating method. I. In R. Glowinski, G. H. Golub, G. Meurant,
and J. Periaux, eds., Proceedings of the First International Symposium on Domain Decomposition
Methods for Partial Differential Equations, 1–42, SIAM, Philadelphia, PA, 1988.

[617] R. Lippmann. An introduction to computing with neural nets. IEEE ASSP Magazine, 4(22),
Apr 1987.

[618] R. J. Lipton, D. J. Rose, and R. E. Tarjan. Generalized nested dissection. SIAM Journal on
Numerical Analysis, 16(2):346–358, Apr 1979.

[619] R. J. Lipton and R. E. Tarjan. A separator theorem for planar graphs. SIAM Journal on Applied
Mathematics, 36(2):177–189, Apr 1979.

[620] R. J. Lipton and R. E. Tarjan. A separator theorem for planar graphs. SIAM Journal on Applied
Mathematics, 36:177–189, 1979.

[621] J.-L. Liu and S.-J. Su. A potential gridless solution method for the compressible Euler/Navier–
Stokes equations. In Proceedings of the 34th AIAA Aerospace Sciences Meeting , Reno, NV, Jan
1996. (AIAA Paper 96-0526.)

[622] J. W.-H Liu and A. H. Sherman. Comparative analysis of the Cuthill–McKee and the reverse
Cuthill–McKee ordering algorithms for sparse matrices. SIAM Journal on Numerical Analysis,
13(2):198–213, Apr 1973.

[623] R. Lohner and J. R. Cebral. Parallel advancing front grids generation. In Proceedings of the
8th International Meshing Round Table, 67–74, South Lake Tahoe, CA, Oct 1999.

References 767

[624] R. Lohner and P. Parikh. Generation of three-dimensional unstructured grid by the
advancing-front method. International Journal for Numerical Methods in Fluids, 8(10):1135–
1149, Oct 1988.

[625] Los Alamos National Laboratory. POOMA: Parallel Object-Oriented Methods and Applica-
tions. Available at http://www.acl.lanl.gov/pooma.

[626] P. Love. Bifurcations in Kolmogorov and Taylor-Vortex Flows. PhD diss., California Institute
of Technology, 1998. (Also available as Caltech CRPC TR-98-2.)

[627] P. Love and H. B. Keller. Bifurcations from Kolmogorov flow. 2002.

[628] R. A. Luettich, J. J. Westerink, and N. W. Scheffner. ADCIRC: An Advanced Three-
Dimensional Circulation Model for Shelves, Coasts, and Estuaries. Technical report,
Department of the Army, U.S. Army Corps of Engineers, Washington, DC, 1991.

[629] R. A. Luettich, J. J. Westerink, and N. W. Scheffner. ADCIRC: An Advanced Three-
Dimensional Circulation Model for Shelves, Coasts, and Estuaries. Report 1: Theory and
methodology of ADCIRC-2DDI and ADCIRC-3DL. Technical report, DRP-92-6, U.S. Army
Corps of Engineers, Waterways Experiment Station Vicksburg, MS.

[630] M. Lüscher, S. Sint, R. Sommer, and P. Weisz. Chiral symmetry and O(a) improvement in
lattice QCD. Nuclear Physics B, B478(1–2):365–397, Oct 1996.

[631] M. Lüscher, S. Sint, R. Sommer, P. Weisz, and U. Wolff. Non-perturbative O(a) improvement
of lattice QCD. Nuclear Physics B, B491(1–2):323–343, Apr 1997.

[632] M. Lüscher, S. Sint, R. Sommer, and H. Wittig. Non-perturbative determination of the
axial current normalization constant in O(a) improved lattice QCD. Nuclear Physics B,
B491(1–2):344–361, Apr 1997.

[633] M. Lutz. Programming Python. O’Reilly & Associates, Sebastopol, CA, 1996.

[634] T. M. Madhyashtha and D. A. Reed. Exploiting global input/output access pattern
classification. In Proceedings of Supercomputing ’97, ACM Press, New York, 1997.

[635] T. M. Madhyastha and D. A. Reed. Intelligent, adaptive file system policy selection. In
Proceedings of the Sixth Symposium on the Frontiers of Massively Parallel Computation, 172–179,
IEEE Computer Society Press, Los Alamitos, CA, 1996.

[636] M. Makowski. Methodology and a Modular Tool for Multiple Criteria Analysis of LP Models.
Technical Report IIASA WP-94-102. International Institute for Applied Systems Analysis,
Laxenburg, Austria, Dec 1994.

[637] A. D. Malony, J. L. Larson, and D. A. Reed. Tracing application program execution on the
Cray X-MP and Cray 2. In Proceedings of Supercomputing ’90, 60–73, IEEE Computer Society
Press, Los Alamitos, CA, 1990.

[638] A. D. Malony and D. A. Reed. Models for performance perturbation analysis. In Proceedings
of the ACM/ONR Workshop on Parallel and Distributed Debugging , 15–25, ACM Press, New
York, and Office of Naval Research, Arlington VA, 1991.

[639] A. D. Malony, D. A. Reed, and D. C. Rudolph. Integrating performance data collection,
analysis, and visualization. In M. Simmons and R. Koskela, eds., Parallel Computer Systems:
Performance Instrumentation and Visualization, 73–97, Addison-Wesley Reading, MA, 1990.

[640] A. D. Malony, D. A. Reed, and H. A. G. Wijshoff. Performance measurement intrusion and
perturbation analysis. IEEE Transactions on Parallel and Distributed Systems, 3(4):433–450, Jul
1992.

768 References

[641] A. Malony, B. Mohr, P. Beckman, D. Gannon, S. Yang, F. Bodin, and S. Kesavan. Implementing
a parallel C++ runtime system for scalable parallel systems. In Proceedings of Supercomputing
’93, 588–597, ACM Press, New York 1993.

[642] M. E. Maltrud, R. D. Smith, A. J. Smith, A. J. Semtner, and R. C. Malone. Global eddy-
resolving ocean simulations driven by 1985–1995 atmospheric winds. Journal of Geophysical
Research, 103 (C13):30825–30853, Dec 1998.

[643] T. A. Manteuffel. Adaptive procedure for estimating parameters for the nonsymmetric
Tchebychev iteration. Numerische Mathematik, 31(2):183–208, 1978.

[644] T. A. Manteuffel. An incomplete factorization technique for positive definite linear systems.
Mathematics of Computation, 34(150):473–497, Apr 1980.

[645] M. J. Marchant and N. P. Weatherill. The construction of nearly orthogonal multiblock
grids for compressible flow simulation. Communications in Numerical Methods in Engineering ,
9(7):567–578, Jul 1993.

[646] D. L. Marcum. Generation of unstructured grids for viscous flow applications. In Proceedings
of the 33rd AIAA Aerospace Sciences Meeting and Exhibit , Reno, NV, Jan 1995. (Also available
as AIAA Paper 95-0212.)

[647] B. Marsolf, S. Kosanovich, D. Andersh, and J. Hughes. Large scale multidisciplinary
electromagnetics computations. In Proceedings of the 29th Plasmadynamics and Lasers
Conference, Albuquerque, NM, Jun 1998. (Also available as AIAA Paper 98-2475.)

[648] M. Mascagni and A. Karaivanova. Matrix computations using quasirandom sequences. In
Proceedings of the Second International Conference on Numerical Analysis and Applications, 2000.

[649] M. Mascagni and A. Karaivanova. A quasi-Monte Carlo method for computing external
eigenvalues. In Proceedings of the 2000 International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA’00), 2000.

[650] M. Mascagni and A. Karaivanova. What are quasirandom numbers and are they good for
anything besides integration? In Proceedings of the Advances in Reactor Physics and Mathematics
and Computation into the Next Millennium (PHYSOR2000), 2000.

[651] M. Mascagni and A. Srinivasan. Algorithm 806: SPRNG: A scalable library for pseudorandom
number generation. ACM Transactions on Mathematical Software, 26(3):436–461, Sep 2000.

[652] R. A. Matzner, M. F. Huq, and D. Shoemaker. Initial data and coordinates for multiple black
hole systems. Physical Review D, 59:24015/1-6, Jan 1999.

[653] R. A. Matzner. Computational black holes. In V. Gorini, ed., Proceedings of the First SIGRAV
Graduate School in Contemporary Relativity and Gravitational Physics, Institute of Physics Press,
Villa Olmo, Como, Italy, Apr 1998.

[654] R. Matzner et al. Binary Black Hole Grand Challenge Alliance Web page, 2000. Available at
http://old-npac.ucs.indiana.edu/projects/bh/ .

[655] C. Mavriplis. Nonconforming Discretizations and A Posteriori Error Estimates for Adaptive
Spectral Element Techniques. PhD diss., Massachusetts Institute of Technology, 1989.

[656] C. Mavriplis. Adaptive mesh strategies for the spectral element method. Computer Methods
in Applied Mechanics and Engineering, 116(1–4):77–86, 1994.

[657] J. M. May. Parallel I/O for High Performance Computing. Morgan Kaufmann, San Francisco,
CA, 2001.

References 769

[658] W. J. McCroskey, J. D. Beader, R. L. Meakin, V. Raghavan, and G. R. Srinivasan. Aerodynamics
and acoustics of rotorcraft. In Proceedings of the NAS Technical Summary, Numerical
Aerodynamic Simulation Program, Mar 1992–Feb 1993.

[659] J. McGraw, S. Skedzielewski, S. Allan, R. Oldenhoeft, J. Glauert, C. Kirkham, W. Noyce,
and R. Thomas. SISAL: Streams and Iteration in a Single Assignment Language: Language
Reference Manual. Technical Report M-146. Lawrence Livermore National Laboratory,
Berkeley, CA, Mar 1985.

[660] R. Meakin. A DoD CHSSI core project: Scalable implementations of dynamic Chimera
methods for unsteady aerodynamics. In Proceedings of the 4th Symposium on Overset Composite
Grid and Solution Technology, Aberdeen, MD, Sep 1998.

[661] P. Mehrotra, M. Zubair, and K. Maly. Arcade computational portal. Available at http://www.cs
.odu.edu/∼ppvm.

[662] M. Mehta, R. Agrawal, and J. Rissanen. SLIQ: A fast scalable classifier for data mining. In
Proceedings of the Fifth International Conference on Extending Database Technology, 18–32,
Springer-Verlag, Berlin, 1996.

[663] J. A. Meijerink and H. A. van der Vorst. An iterative solution method for linear systems
of which the coefficient matrix is a symmetric m-matrix. Mathematics of Computation,
31(137):148–162, Jan 1977.

[664] J. Mellor-Crummey, D. Whalley, and K. Kennedy. Improving memory hierarchy performance
for irregular applications. In Proceedings of the 13th International Conference on Supercomputing ,
425–433, ACM Press, New York, 1999.

[665] J. E. Melton, M. J. Berger, M. J. Aftosmis, and M. J. Wong. 3D applications of a Cartesian
grid Euler method. In Proceedings of the 33rd AIAA Aerospace Sciences Meeting, Reno, NV, Jan
1995. (Also available as AIAA Paper 95-0853.)

[666] C. L. Mendes and D. A. Reed. Integrated compilation and scalability analysis for parallel
systems. In Proceedings of the International Conference on Parallel Architectures and Compilation
Techniques (PACT ’98), 385–392, IEEE Computer Society Press, Los Alamitos, CA, 1998.

[667] P. J. Mercurio, T. T. Elvins, S. J. Young, P. S. Cohen, K. R. Fall, and M. H. Ellisman. The
distributed laboratory: An interactive visualization environment for electron microscopy
and 3-D imaging. Communications of the ACM , 35(6):54–63, Jun 1992.

[668] Message Passing Interface Forum. MPI: A message-passing interface standard. International
Journal of Supercomputer Applications and High Performance Computing, 8(3/4):165–414, 1994.
(Special issue on MPI, also available at ftp://www.netlib.org/mpi/mpi-report.ps.)

[669] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard, Version 1.1,
Jun 1995. Available at http://www.mpi-forum.org/docs/docs.html.

[670] Message Passing Interface Forum. MPI-2: Extensions to the Message-Passing Interface, Jul
1997. Available at http://www.mpi-forum.org/docs/docs.html.

[671] Message Passing Interface Forum. MPI-2: A Message Passing Interface standard. International
Journal of High Performance Computing Applications, 12(1–2):1–299, 1998.

[672] J. C. Meza, T. D. Plantenga, and R. S. Judson. Novel applications of optimization to
molecular design. In L. T. Biegler, T. Coleman, A. R. Conn, and F. N. Santosa, eds., Large-Scale
Optimization with Applications, Part III: Molecular Structure and Optimization, 73–97, Springer,
New York, 1997.

770 References

[673] D. Michie, D. J. Spiegelhalter, and C. C. Taylor, eds. Machine Learning, Neural and Statistical
Classification. Ellis Horwood, New York, 1994.

[674] G. L. Miller, S.-H Teng, W. Thurston, and S. A. Vavasis. Automatic mesh partitioning. In
A. George, J. R. Gilbert, and J. W.-H. Liu, eds., Graph Theory and Sparse Matrix Computation,
57–84, Springer-Verlag, Heidelberg and New York, 1993.

[675] G. L. Miller and S. A. Vavasis. Density graphs and separators. In Proceedings of the Second
Annual ACM–SIAM Symposium on Discrete Algorithms, 331–336, ACM Press, New York, 1991.

[676] MIMD Lattice Computation (MILC) Collaboration. MILC QCD Code. Available at
http://cliodhna.cop.uop.edu/∼hetrick/milc/ .

[677] Molecular Science Computing Facility. Extensible Computational Chemistry Environment
Basis Set Database. Environmental Molecular Science Laboratory, Pacific Northwest
Laboratory, Richland, WA. Available at http://www.emsl.pnl.gov:2080/forms/basisform.html.

[678] B. Monien, R. Preis, and R. Diekmann. Quality Matching and Local Improvement for
Multilevel Graph-Partitioning. Technical report. University of Paderborn, Paderborn,
Germany, 1999.

[679] G. E. Moore. Cramming more components onto integrated circuits. Electronics Magazine,
38(8):114–117, Apr 1965.

[680] J. Moré, B. Walenz, and Z. Wu. Configuration of Large, Confined Ionic Systems by Potential
Energy Minimization. Preprint MCS-P627-1296. Mathematics and Computer Science
Division, Argonne National Laboratory, Argonne, IL, 1996.

[681] J. J. Moré and Z. Wu. ε-optimal solutions to distance geometry problems via global
continuation. In P. M. Pardalos, D. Shalloway, and G. Xue, eds., Global Minimization of
Nonconvex Energy Functions: Molecular Conformation and Protein Folding, 151–168, American
Mathematical Society, Providence, RI, 1995.

[682] J. Moré and Z. Wu. Global Continuation for Distance Geometry Problems. Preprint MCS-
P505-0395. Argonne National Laboratory, Argonne, IL, 1995.

[683] J. Moré and Z. Wu. Issues in Large-scale Global Molecular Optimization. Preprint MCS-P539-
1095. Argonne National Laboratory, Argonne, IL, 1995.

[684] J. Moré and Z. Wu. Distance Geometry Optimization for Protein Structures. Preprint MCS-
P628-1296. Argonne National Laboratory, Argonne, IL, 1996.

[685] J. Moré and Z. Wu. Smoothing techniques for macromolecular global optimization. In G. Di
Pillo and F. Giannessi, eds., Nonlinear Optimization and Applications, 297–312, Plenum Press,
New York, 1996.

[686] R. B. Morgan. On restarting the Arnoldi method for large nonsymmetric eigenvalue
problems. Mathematics of Computation, 65(215):1213–1230, Jul 1996.

[687] W. J. Morokoff and R. E. Caflisch. A quasi-Monte Carlo approach to particle simulation of
the heat equation. SIAM Journal on Numerical Analysis, 30(6):1558–1573, Dec 1993.

[688] W. J. Morokoff and R. E. Caflisch. Quasi-Monte Carlo integration. Journal of Computational
Physics, 122(2):218–230, Dec 1995.

[689] W. J. Morokoff and R. E. Caflisch. Quasi-Monte Carlo simulation of random walks in finance.
In Monte Carlo and Quasi-Monte Carlo Methods 1996, 340–352, Springer, New York, 1996.

[690] K. W. Morton and D. F. Mayers. Numerical Solution of Partial Differential Equations. Press
Syndicate of the University of Cambridge, Cambridge, 1994.

References 771

[691] B. Moskowitz and R. E. Caflisch. Smoothness and dimension reduction in quasi-Monte
Carlo methods. Mathematical and Computer Modelling, 23(8/9):37–54, Apr/May 1996.

[692] The MPI-IO Committee. MPI-IO: A Parallel File I/O Interface for MPI, Version 0.5.

[693] MSC Software Corporation. NASTRAN Web page. Available at http://www.mscsoftware.com
/products/products_detail.cfm?S=74&PI=7&M=0.

[694] S. S. Mudumbai, W. Johnston, M. R. Thompson, A. Essiari, G. Hoo, and K. Jackson. Akenti—A
distributed access control system. Available at http://www-itg.lbl.gov/Akenti.

[695] D. Musser and A. Saini. STL Tutorial and Reference Guide: C++ Programming with the Standard
Template Library. Addison-Wesley, Reading, MA, 1996.

[696] S. G. Nash and A. Sofer. Block truncated-Newton methods for parallel optimization.
Mathematical Programming, 45(3, Sep.13):529–546, 1989.

[697] S. G. Nash and A. Sofer. A general-purpose parallel algorithm for unconstrained optimization.
SIAM Journal on Optimization, 1(4):530–547, 1991.

[698] National Center for Supercomputing Applications. The NCSA HDF Web page: Information,
Support, and Software from the Hierarchical Data Format (HDF) Group of NCSA, 1999.
Available at http://hdf.ncsa.uiuc.edu/ .

[699] National HPCC Software Exchange. NHSE Web page. Available at http://www.nhse.org.

[700] I. M. Navon and X. Zou. Application of the adjoint model in meteorology. In A. Griewank
and G. F. Corliss, eds., Automatic Differentiation of Algorithms: Theory, Implementation, and
Application, 202–207, SIAM, Philadelphia, PA, 1991.

[701] NCSA Visualization and Virtual Environments group. VisBench and NCSA Visualization
Activities. Web page. Available at http://www.ncsa.uiuc.edu/SCD/Vis/ .

[702] NetCDF Web page. Available at http://www.unidata.ucar.edu/packages/netcdf .

[703] J. B. Nicholas, D. E. Bernholdt, and B. P. Hay. On the conformational energetics of
tetramethoxycalix[4]arene: RI-MP2 benchmark calculations. Journal of the American Chemical
Society, 2002. In press.

[704] O. Y. Nickolayev, P. C. Roth, and D. A. Reed. Real-time statistical clustering for event trace
reduction. International Journal of Supercomputer Applications and High Performance Computing,
11(2):144–159, Summer 1997.

[705] H. Niederreiter. Low-discrepancy and low-dispersion sequences. Journal of Number Theory,
30(1):51–70, Sep 1988.

[706] H. Niederreiter. Random Number Generation and Quasi-Monte Carlo Methods. SIAM, Philadel-
phia, PA, 1992.

[707] J. Nieplocha. Private communication.

[708] J. Nieplocha and B. Carpenter. ARMCI: A portable remote memory copy library for
distributed array libraries and compiler run-time systems. In J. Rolim, ed., Parallel and
Distributed Processing, 533–546, Springer-Verlag, Heidelberg, 1999.

[709] J. Nieplocha, I. Foster, and R. Kendall. ChemIO: High-performance parallel I/O for
computational chemistry applications. The International Journal of High Performance
Computing Applications, 12(3):345–363, Fall 1998. (Also available in a special issue on
I/O in Parallel Applications, 12(3–4)).

772 References

[710] J. Nieplocha, R. J. Harrison, and R. J. Littlefield. Global arrays: A portable “shared-memory”
programming model for distributed memory computers. In Proceedings of Supercomputing
’94, 340–349, IEEE Computer Society Press, Los Alamitos, CA, 1994.

[711] J. Nieplocha, R. J. Harrison, and R. J. Littlefield. Global arrays: A nonuniform memory
access programming model for high-performance computers. Journal of Supercomputing,
10(2):169–189, 1996.

[712] N. Nieuwejaar and D. Kotz. The Galley parallel file system. Parallel Computing, 23(4–5):447–
476, May 1997.

[713] N. Nieuwejaar, D. Kotz, A. Purakayastha, C. S. Ellis, and M. L. Best. File-access characteristics
of parallel scientific workloads. IEEE Transactions on Parallel and Distributed Systems,
7(10):1075–1089, Oct 1996.

[714] B. Nitzberg and V. Lo. Collective buffering: Improving parallel I/O performance. In
Proceedings of the Sixth IEEE International Symposium on High Performance Distributed
Computing, 148–157, IEEE Computer Society Press, Los Alamitos, CA, 1997.

[715] J. Nocedal and S. J. Wright. Numerical Optimization. Springer-Verlag, New York, 1999.

[716] M. L. Norman and G. L. Bryan. Cosmological adaptive mesh refinement. In S. Miyama and
K. Tomisaka, eds., Numerical Astrophysics, 19–28, Kluwer, Dordrecht, 1999.

[717] J. A. Northby. Structure and binding of Lennard–Jones clusters: 13≤ N ≤ 147. Journal of
Chemical Physics, 87(10):6166–6177, Nov 1987.

[718] B. Nour-Omid, A. Raefsky, and G. Lyzenga. Solving finite element equations on concurrent
computers. In A. K. Noor, ed., Proceedings of the Parallel Computations and Their Impact on
Mechanics, 291–307, American Society of Mechanical Engineers, New York, 1986.

[719] R. W. Numrich and J. K. Reid. Co-Array Fortran for parallel programming. ACM SIGPLAN
Fortran Forum, 17(2):1–31, Aug 1998.

[720] Object Management Group. Corba Component Model, 2000. Available at http://www.omg.org
/cgi-bin/doc?orbos/97-06-12.

[721] Object Oriented Concepts, Inc. ORBacus SSL. Available at http://www.iona.com/products
/orbacus_home.htm.

[722] F. Ogden. CASC2D Code. Engineer Research and Development Center, U.S. Army Corps of
Engineers, University of Mississippi, Vicksburg. Available at http://www.wes.hpc.mil.

[723] L. Oliker and R. Biswas. PLUM: Parallel load balancing for adaptive unstructured meshes.
Journal of Parallel and Distributed Computing, 52(2):150–177, Aug 1998.

[724] OpenMP. Sample Program: jacobi.f. http://www.openmp.org/index.cgi?samples+samples/jacobi
.html.

[725] OpenMP Web page, Oct 1997. Available at http://www.openmp.org.

[726] A. V. Oppenheim, R. W. Schafer, and J. R. Buck. Discrete-Time Signal Processing. Prentice-Hall,
Englewood Cliffs, NJ, 1989.

[727] M. Orešič and D. Shalloway. Hierarchical characterization of energy landscapes using
Gaussian packet states. Journal of Chemical Physics, 101(11):9844–9857, Dec 1994.

[728] S. A. Orszag and L. C. Kells. Transition to turbulence in plane Poiseuille flow and plane
Couette flow. Journal of Fluid Mechanics, 96(1):159–205, Jan 1980.

[729] J. P. Ostriker and M. L. Norman. Cosmology of the early universe viewed through the new
infrastructure. Communications of the ACM , 40(11):84–94, Nov 1997.

References 773

[730] C.-W. Ou and S. Ranka. Parallel incremental graph partitioning using linear programming.
Proceedings of Supercomputing ’94, 458–467, IEEE Computer Society Press, Los Alamitos, CA,
1994.

[731] C.-W. Ou, S. Ranka, and G. Fox. Fast and parallel mapping algorithms for irregular problems.
Journal of Supercomputing, 10(2):119–140, Jun 1996.

[732] P. S. Pacheco. Parallel Programming with MPI . Morgan Kaufmann, San Francisco, 1997.

[733] C. C. Paige. The Computation of Eigenvalues and Eigenvectors of Very Large Sparse Matrices.
PhD diss., University of London, 1971.

[734] S. Pakin, M. Lauria, and A. Chien. High performance messaging on workstations: Illinois
fast messages (FM) for Myrinet. In Proceedings of Supercomputing ’95, ACM Press, New York,
1995.

[735] M. Paleczny, K. Kennedy, and C. Koelbel. Compiler support for out-of-core arrays on data
parallel machines. In Proceedings of the Fifth Symposium on the Frontiers of Massively Parallel
Computation, 110–118, Feb 1995.

[736] Pallas GmbH. Vampir 2.0: Visualization and analysis of MPI programs, Oct 1999.

[737] C. M. Pancake. Establishing standards for HPC system software and tools. NHSE Review, Nov
1997. Online journal available at http://softlib.rice.edu/NHSEreview/97-1.html.

[738] C. M. Pancake, M. L. Simmons, and J. C. Yan. Performance evaluation tools for parallel and
distributed systems. IEEE Computer, 28(11):16–19, Nov 1995.

[739] S. Pande and D. P. Agrawal, eds. Languages, Compilation Techniques and Run Time Systems for
Scalable Parallel Systems. Springer-Verlag, Heidelberg and New York, 1997.

[740] Parallel Computing Forum. PCF: Parallel Fortran extensions. ACM SIGPLAN Fortran Forum,
10(3), Sep 1991.

[741] Parallel Tools Consortium. Ptools Web page. Available at http://www.ptools.org.

[742] The Parallel Virtual File System. Web page. Available at http://www.parl.clemson.edu/pvfs.

[743] M. Parashar. Integrated data management for computational steering. In Proceedings of the
IEEE Conference on Information Technology, 61–64, IEEE Computer Society Press, Los Alamitos,
CA, 1998.

[744] M. Parashar and J. C. Browne. DAGH: Data Management for Parallel Adaptive Mesh-
Refinement Techniques. Available at http://www.caip.rutgers.edu/∼parashar/DAGH/ .

[745] M. Parashar, J. C. Browne, C. Edwards, and K. Klimkowski. A computational infrastructure
for parallel adaptive methods. In Proceedings of the Symposium on Parallel Adaptive Methods,
4th U.S. National Congress on Computational Mechanics, San Francisco, Aug 1997.

[746] PARASOL Web page. Available at http://www.parallab.uib.no/parasol/ .

[747] S. Park and K. Lee. A new approach to automated multiblock decomposition for grid
generation: A hypercube ++ approach. In J. F. Thompson, B. K. Soni, and N. P. Weatherill,
eds., Handbook of Grid Generation, CRC Press, Boca Raton, FL, 1999.

[748] B. N. Parlett, H. Simon, and L. M. Stringer. On estimating the largest eigenvalue with the
Lanczos algorithm. Mathematics of Computation, 38(137):153–165, Jan 1982.

[749] B. N. Parlett. The Symmetric Eigenvalue Problem. Prentice-Hall, Englewood Cliffs, NJ, 1980.

[750] B. N. Parlett and J. K. Reid. Tracking the progress of the Lanczos algorithm for large symmetric
eigenproblems. IMA Journal of Numerical Analysis, 1(2):135–155, Apr 1981.

774 References

[751] B. N. Parlett and D. S. Scott. The Lanczos algorithm with selective orthogonalization.
Mathematics of Computation, 33(145):217–238, Jan 1979.

[752] S. Parter. The use of linear graphs in Gauss elimination. SIAM Review, 3(2):119–130, Apr
1961.

[753] Particle Data Group (C. Caso et al). Review of particle physics. The European Physical Journal
C, 3(1–4):1–794, 1998.

[754] P. Partow and D. Cottel. Scalable Programming Environment. Technical Report NCCOSC-
TR1672, Rev 1. Naval Command Control and Ocean Surveillance Center, San Diego, CA,
Sep 1995.

[755] A. Patra and D. Kim. Efficient mesh partitioning for adaptive hp finite element methods. In
Proceedings of the International Conference on Domain Decomposition Methods, Greenwich, UK,
1998.

[756] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton, C. Kozyrakis, R. Thomas, and
K. Yelick. A case for Intelligent RAM. IEEE Micro, 17(2):34–44, Mar/Apr 1997.

[757] D. A. Patterson, G. Gibson, and R. H. Katz. A case for redundant arrays of inexpensive disks
(RAID). In Proceedings of the 1988 ACM SIGMOD International Conference on Management of
Data, 109–116, ACM Press, New York, 1988.

[758] R. H. Patterson, G. A. Gibson, E. Ginting, D. Stodolsky, and J. Zelenka. Informed prefetching
and caching. In Proceedings of the 15th Symposium on Operating System Principles, 79–95, ACM
Press, New York, Dec 1995.

[759] D. A. Patterson, and J. L. Hennessy. Computer Architecture: A Quantitative Approach. Morgan
Kaufmann, San Mateo, CA, 1990.

[760] R. A. Pearson. A coarse-grained parallel induction heuristic. In H. Kitano, V. Kumar, and
C. B. Suttner, eds., Parallel Processing for Artificial Intelligence 2, 207–226, Elsevier Science,
Amsterdam and New York, 1994.

[761] F. Pellegrini and J. Roman. SCOTCH: A software package for static mapping by dual recursive
bipartitioning of process and architecture graphs. In Proceedings of the 4th International
Conference on High Performance Computing and Networking Europe, 493–498, Springer-Verlag,
Berlin, 1996.

[762] N. A. Petersson. Stability of pressure boundary conditions for Stokes and Navier-Stokes
equations. Journal of Computational Physics, 172(1):40–70, Sep 2001.

[763] G. F. Pfister. In Search of Clusters, 2nd ed. Prentice-Hall, Englewood Cliffs, NJ, 1998.

[764] L. Piela, J. Kostrowicki, and H. A. Scheraga. The multiple-minima problem in the
conformational analysis of molecules: Deformation of the protein energy hypersurface
by the diffusion equation method. Journal of Physical Chemistry, 93:3339–3346, 1989.

[765] M. E. Pierce, C. Youn, and G. Fox. The gateway computational web portal. Concurrency and
Computation: Practice and Experience in Grid Computing Environments. Special Issue, 2002. In
press. Available at http://aspen.ucs.indiana.edu/gce/C543pierce/c543gateway.pdf .

[766] P. Pierce. A concurrent file system for a highly parallel mass storage subsystem. In Proceedings
of the Fourth Conference on Hypercubes, Concurrent Computers and Applications, 155–160,
Golden Gate Enterprises, Los Altos, CA, 1989.

References 775

[767] J. Pilkington and S. Baden. Partitioning with Space Filling Curves. Technical Report CS94-
349. Department of Computer Science and Engineering, University of CA, San Diego,
California, 1994.

[768] J. Pilkington and S. Baden. Dynamic Partitioning of Non-Uniform Structured Workloads with
Space Filling Curves. Technical report. Department of Computer Science and Engineering,
University of California, San Diego, 1995.

[769] R. E. Plant. Bifurcation and resonance in a model for bursting nerve cells. Journal of
Mathematical Biology, 11(1):15–32, Jan 1981.

[770] S. Plimpton, B. Hendrickson, and J. Stewart. A parallel rendezvous algorithm for inter-
polation between multiple grids. In Proceedings of Supercomputing ’99, IEEE Computer
Society Press, Los Alamitos, CA, 1999. http://www.supercomp.org/sc98.TechPapers/sc98_Full
Abstracts/Plimpton644/ .

[771] A. A. Poe and Q. F. Stout. Load balancing 2-phased geometrically based problems. In
Proceedings of the Ninth SIAM Conference Parallel Processing for Scientific Computing , SIAM,
Philadelphia, 1999.

[772] A. Pothen. Graph partitioning algorithms with applications to scientific computing. In
D. Keyes, A. Sameh, and V. Venkatakrishnan, eds., Parallel Numerical Algorithms, 323–368,
Kluwer Dordrecht, 1996.

[773] A. Pothen, H. Simon, L. Wang, and S. Barnard. Towards a fast implementation of spectral
nested dissection. In Proceedings of Supercomputing ’92, 42–51, IEEE Computer Society Press,
Los Alamitos, CA, 1992.

[774] A. Pothen, H. D. Simon, and K.-P. Liou. Partitioning sparse matrices with eigenvectors of
graphs. SIAM Journal on Matrix Analysis and Applications, 11(3):430–452, Jul 1990.

[775] D. R. Prabhu. Speed-up of SADARM scene-generation code for hardware-in-the-loop
simulation. In Proceedings of the Multi-Spectral Scene Generation and Projection Workshop,
Apr 1999.

[776] W. K. Pratt. Digital Image Processing, 2nd ed. Wiley, New York, 1991.

[777] R. Preis and R. Diekmann. PARTY—A software library for graph partitioning. In B. Topping,
ed., Advances in Computational Mechanics with Parallel and Distributed Processing , 63–71,
Civil-Comp Press, Stirling, UK, 1997.

[778] M. A. Price, C. G. Armstrong, and M. A. Sabin. Hexahedral mesh generation by medial
axis subdivision: I. Solids with convex edges. International Journal for Numerical Methods in
Engineering, 38:3335–3359, 1995.

[779] J.-P. Prost, M. Snir, P. Corbett, and D. Feitelson. MPI-IO, a Message-Passing Interface for
Concurrent I/O. Technical Report RC 19712 (#87394). IBM T. J. Watson Research Center,
Yorktown Heights, NY, Aug 1994.

[780] J. Pryce and J. Reid. AD01—A Fortran 90 Code for Automatic Differentiation. Rutherford
Appleton Laboratory, Oxon, UK, 1996.

[781] E. O. Purisima and H. A. Scheraga. An approach to the multiple-minima problem in protein
folding by relaxing dimensionality. Journal of Molecular Biology, 196:697–709, 1987.

[782] Python Language Web Site. Available at http://www.python.org.

[783] Quantum simulations of condensed matter systems. Web page. Available at http://www.ncsa
.uiuc.edu/Apps/CMP/cmp-homepage.html.

776 References

[784] A. Quarteroni and A. Valli. Domain Decomposition Methods for Partial Differential Equations.
Oxford University Press, New York, 1999.

[785] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo, CA, 1993.

[786] L. R. Rabiner. A tutorial on hidden Markov models and selected applications in speech
recognition. Proceedings of the IEEE, 77(2):257–286, Feb 1989.

[787] P. Raghavan. Line and Plane Separators. Technical Report UIUCDCS-R-93-1794. Department
of Computer Science, University of Illinois, Urbana, IL, Feb 1993.

[788] P. Raghavan. Parallel Ordering Using Edge Contraction. Technical Report CS-95-293.
Department of Computer Science, University of Tennessee, Knoxville, 1995.

[789] P. Raghavan. DSCPack: A Domain-Separator Cholesky Package. Technical report. University
of Tennessee, Knoxville, 1999.

[790] S. M. Rao, D. R. Wilton, and A. W. Glisson. Electromagnetic scattering by surfaces of arbitrary
shapes. IEEE Transactions on Antennas and Propagation, AP-30(3):409–418, May 1982.

[791] W. H. Ray. POLYRED—POLYmerization REactor Design. Department of Chemical Engineer-
ing, University of Wisconsin, Madison. (Also available at http://whr008.che.wisc.edu/polyred/ .)

[792] D. A. Reed, R. A. Aydt, R. J. Noe, P. C. Roth, K. A. Shields, B. W. Schwartz, and L. F. Tavera.
Scalable performance analysis: The Pablo performance analysis environment. In A. Skjellum,
ed., Proceedings of the Scalable Parallel Libraries Conference, 104–113, IEEE Computer Society
Press, Los Alamitos, CA, 1993.

[793] D. A. Reed, R. D. Olson, R. A. Aydt, T. M. Madhyastha, T. Birkett, D. W. Jensen, B. A. Nazief,
and B. K. Totty. Scalable performance environments for parallel systems. In Proceedings of
the Sixth Distributed Memory Computing Conference, 562–569, IEEE Computer Society Press,
Los Alamitos, CA, 1991.

[794] D. A. Reed, D. A. Padua, I. T. Foster, D. B. Gannon, and B. P. Miller. Delphi: An integrated,
language-directed performance prediction, measurement, and analysis environment. In
Proceedings of the 7th Symposium on the Frontiers of Massively Parallel Computation, 156–159,
IEEE Computer Society Press, Los Alamitos, CA, 1999.

[795] D. A. Reed and D. C. Rudolph. Experiences with hypercube operating system instrumenta-
tion. International Journal of High-Speed Computing, 1(4):517–542, Dec 1989.

[796] A. P. Rendell and T. J. Lee. Coupled-cluster theory employing approximate integrals: An
approach to avoid the input/output and storage bottlenecks. The Journal of Chemical Physics,
101(1):400–408, Jul 1994.

[797] F. Rendl and H. Wolkowicz. A Semidefinite Framework to Trust-Region Subproblem with
Applications to Large-scale Minimization. Technical Report CORR TR94-32. Department of
Combinatorics and Optimization, University of Waterloo, Waterloo, Canada, 1994.

[798] J. V. W. Reynders and J. Cummings. The POOMA framework. Computers in Physics, 12(5):453–
459, Sep/Oct 1997.

[799] P. J. Reynolds, ed. On Clusters and Clustering: From Atoms to Fractals. North-Holland,
Amsterdam, 1993.

[800] T. Richardson, Q. Stafford-Fraser, K. R. Wood, and A. Hopper. Virtual network computing.
IEEE Internet Computing, 2(1):33–38, Jan–Feb 1998.

[801] L. F. Richardson. Weather Prediction by Numerical Process. Cambridge University Press,
Cambridge, 1922.

References 777

[802] R. D. Richtmyer. Taylor instability in shock acceleration of compressible fluids. Communica-
tions in Pure and Applied Mathematics, 13:297–319, 1960.

[803] A. H. G. Rinnooy Kan and G. T. Timmer. Global optimization. In G. L. Nemhauser, A. H. G.
Rinnooy Kan, and M. J. Todd, eds., Optimization, 631–662, North-Holland, Amsterdam,
1989.

[804] M.-C. Rivara. Selective refinement/derefinement algorithms for sequences of nested
triangulations. International Journal for Numerical Methods in Engineering , 28(12):2889–2906,
1989.

[805] B. Rivière, M. F. Wheeler, and V. Giraut. Part I: Improved Energy Estimates for Interior
Penalty, Constrained and Discontinuous Galerkin Methods for Elliptic Problems. Technical
Report TICAM TR99-09. Texas Institute for Computational and Applied Mathematics,
University of Texas, Austin, Apr 1999.

[806] B. Rivière, M. F. Wheeler, and C. Baumann. Part II: Discontinuous Galerkin Method Applied
to a Single Phase Flow in Porous Media. Technical Report TICAM TR99-10. Texas Institute
for Computational and Applied Mathematics, University of Texas, Austin, Apr 1999.

[807] ROMIO: A high-performance, portable MPI-IO implementation. Available at http://www.mcs
.anl.gov/romio.

[808] N. Rostaing, S. Dalmas, and A. Galligo. Automatic differentiation in Odyssée. Tellus,
45a(5):558–568, Oct 1993.

[809] N. Rostaing-Schmidt and E. Hassold. Basic functional representation of programs for
automatic differentiation in the Odyssée system. In F.-X. Le Dimet, ed., Proceedings of
the Workshop on High-Performance Computing in the Geosciences, Kluwer, Dordrecht, 1994.

[810] K. F. Roth. On irregularities of distribution. Mathematika, 1:73–79, 1954.

[811] RTExpress. Web page. Available at http://www.rtexpress.com.

[812] J. W. Ruge and K. Stüben. Algebraic multigrid. In S. F. McCormick, ed., Multigrid Methods,
73–130, SIAM, Philadelphia, PA, 1987.

[813] J. B. Rundle. A physical model for earthquakes, 2: Application to Southern California. Journal
of Geophysical Research, 93:6255–6274, 1988.

[814] J. B. Rundle and D. D. Jackson. Numerical simulation of earthquake sequences. Bulletin of
the Seismological Society of America, 67(5):1363–1377, Oct 1977.

[815] J. B. Rundle and W. Klein. New ideas about the physics of earthquakes. Reviews of Geophysics
(Supplement), 33(1):283–286, Jul 1995. (Also available as American Geophysical Union
Quadrennial Report to the International Union of Geodesy and Geophysics.)

[816] J. B. Rundle, W. Klein, K. F. Tiampo, and S. Gross. Dynamics of seismicity patterns in systems
of earthquake faults. In J. B. Rundle, D. L. Turcotte, and W. Klein, eds., Geocomplexity and
the Physics of Earthquakes, 127–146, American Geophysical Union, Washington, DC, 2000.
(Geophysical Monograph 120.)

[817] J. B. Rundle, W. Klein, K. Tiampo, and S. Gross. Linear pattern dynamics in nonlinear
threshold systems. Physical Review E, 61(3):2418–2431, Mar 2000.

[818] T. F. Russell and M. F. Wheeler. Finite element and finite difference methods for continuous
flows in porous media. In R. E. Ewing, ed., The Mathematics of Reservoir Simulation, 35–105,
SIAM, Philadelphia, PA, 1983.

778 References

[819] Y. Saad. Chebyshev acceleration techniques for solving nonsymmetric eigenvalue problems.
Mathematics of Computation, 42(166):567–588, Apr 1984.

[820] Y. Saad. Iterative Methods for Sparse Linear Systems. PWS Publishing, Boston, 1996.

[821] Y. Saad and M. H. Schultz. GMRes: A generalized minimal residual algorithm for solving
nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Computing , 7(3):856–
869, Jul 1986.

[822] P. Sadayappan and F. Ercal. Mapping of finite element graphs onto processor meshes. IEEE
Transactions on Computers, C-36:1408–1424, Dec 1987.

[823] H. Sagan. Space-Filling Curves. Springer-Verlag, Heidelberg, 1994.

[824] J. K. Salmon, M. S. Warren, and G. S. Winckelmans. Fast parallel tree codes for gravitational
and fluid dynamical N-body problems. International Journal of Supercomputer Applications,
8(2):129–142, Summer 1994.

[825] S. A. Santos and D. C. Sorensen. A New Matrix-Free Algorithm for the Large-scale Trust-
Region Subproblem. Technical Report CAAM TR95-20. Department of Computational and
Applied Mathematics, Rice University, Houston, TX, 1995.

[826] A. Sathye, M. Xue, G. Bassett, and K. Droegemeier. Parallel weather modeling with the
advanced regional prediction system. Parallel Computing, 23(14):2243–2256, Dec 1997.

[827] J. B. Saxe. Embeddability of Weighted Graphs in k-space Is Strongly NP-Hard. Technical
report. Department of Computer Science, Carnegie-Mellon University, Pittsburgh, PA,
1979.

[828] J. B. Saxe. Embeddability of weighted graphs in k-space is strongly NP-hard. In Proceedings
of the 17th Allerton Conference in Communications, Control and Computing , 480–489, 1979.

[829] Scalable I/O Initiative Web page. Available at http://www.cacr.caltech.edu/SIO.

[830] Scalable I/O Initiative, Applications Working Group. Preliminary Survey of I/O Intensive
Applications, 1994. Available at http://www.cacr.caltech.edu/SIO/SIOpubslist.html.

[831] H. A. Scheraga. Predicting three-dimensional structures of oligopeptides. In K. B. Lipkowitz
and D. B. Boyd, eds., Reviews in Computational Chemistry, Volume 3, 73–142. Wiley–VCH,
1992.

[832] K. Schloegel, G. Karypis, and V. Kumar. Multilevel diffusion schemes for repartitioning of
adaptive meshes. Journal of Parallel and Distributed Computing, 47(2):109–124, Dec 1997.

[833] K. Schloegel, G. Karypis, and V. Kumar. Wavefront Diffusion and LMSR: Algorithms for
Dynamic Repartitioning of Adaptive meshes. Technical Report TR 98-034. Department of
Computer Science and Engineering, University of Minnesota, Minneapolis, 1998.

[834] K. Schloegel, G. Karypis, and V. Kumar. A new algorithm for multi-objective graph
partitioning. In Proceedings of Euro-Par ’99, 322–331, Springer-Verlag, Berlin, 1999.

[835] K. Schloegel, G. Karypis, and V. Kumar. Parallel Multilevel Algorithms for Multi-Constraint
Graph Partitioning. Technical Report TR 99-031. Department of Computer Science and
Engineering, University of Minnesota, Minneapolis, 1999.

[836] K. Schloegel, G. Karypis, and V. Kumar. A unified algorithm for load-balancing adaptive
scientific simulations. In Proceedings of Supercomputing ’00, IEEE Computer Society Press, Los
Alamitos, CA, 2000.

References 779

[837] W. C. Schmid and A. Uhl. Parallel quasi-Monte Carlo integration using (t , s)−sequences.
In P. Zinterhof, M. Vajtersic, and A. Uhl, eds., Parallel Computation: 4th International ACPC
Conference, 96–106, Springer, Berlin and New York, 1999.

[838] J. Schneider and T. H. Wise. Airline crew scheduling: Supercomputers and algorithms. In
G. Astfalk, ed., Applications on Advanced Architecture Computers, SIAM, Philadelphia, PA,
1996.

[839] C. H. Scholz. The Mechanics of Earthquakes and Faulting. Cambridge University Press,
Cambridge, 1990.

[840] D. Schwartz. Implementation implications, performance opportunities, and random
musings on Tisdale’s. In An Application Programmer’s Interface to the VSIP Library for ANSI C,
HRL Laboratories, Malibu, CA, Jun 1997. Also available at http://www.vsipl.org.

[841] H.-P. Schwefel. Evolution and Optimum Seeking. Wiley, New York, 1995.

[842] Scientific Data Management Web page. Available at http://www.ca.sandia.gov/asci-sdm.

[843] K. Seamons, Y. Chen, P. Jones, J. Jozwiak, and M. Winslett. Server-directed collective I/O in
Panda. In Proceedings of Supercomputing ’95, ACM Press, New York, 1995.

[844] J. G. Seik and A. Lumsdaine. The Matrix Template Library: A generic programming approach
to high-performance numerical linear algebra. In D. Caromel, R. R. Oldehoeft, and
M. D. Tholburn, eds., Computing in Object-Oriented Parallel Environments, Lecture Notes
in Computer Science 1505, Springer-Verlag, Heidelberg and New York, 1998.

[845] C. L. Seitz. The cosmic cube. Communications of the ACM , 28(1):22–33, Jan 1985.

[846] A. J. Semtner. An Oceanic General Circulation Model with Bottom Topography. Technical
Report 9. Department of Meteorology, University of California, Los Angeles, 1974.

[847] A. J. Semtner, Jr. and R. M. Chervin. A simulation of the global ocean circulation with
resolved eddies. Journal of Geophysical Research, 93(C12):15502–15522, Dec 1988.

[848] A. J. Semtner and R. M. Chervin. Ocean general circulation from a global eddy-resolving
model. Journal of Geophysical Research—Oceans, 97(C4):5493–5550, Apr 1992.

[849] D. B. Serafini. A Framework for Managing Models in Nonlinear Optimization of Computa-
tionally Expensive Functions. PhD diss., Rice University, Houston, TX, Nov 1998. (Revised
Jan 1999, also available as CRPC-TR98781-S.)

[850] R. Sessions. COM and DCOM: Microsoft’s Vision for Distributed Objects. John Wiley & Sons,
New York, 1997.

[851] J. Shafer, R. Agrawal, and M. Mehta. SPRINT: A scalable parallel classifier for data mining.
In T. M. Vijayaraman, A. P. Buchmann, C. Mohan, and N. L. Sarda, eds., Proceedings of
22nd International Conference on Very Large Data Bases, 544–555, Morgan Kaufmann, San
Francisco, 1996.

[852] D. Shalloway. Application of the renormalization group to deterministic global minimization
of molecular conformation energy functions. Journal of Global Optimization, 2(3):281–311,
1992.

[853] D. Shalloway. Packet annealing: A deterministic method for global minimization, applica-
tion to molecular conformation. In C. Floudas and P. M. Pardalos, eds., Recent Advances in
Global Optimization, 433–477, Princeton University Press, Princeton, NJ, 1992.

780 References

[854] J. S. Shang. Challenges for computational electromagnetics in the time domain. In
Proceedings of the 1997 IEEE International Symposium on Antennas and Propagation, Vol. 1,
94–97, IEEE, New York, 1997.

[855] J. S. Shang. High-order compact-difference schemes for time-dependent Maxwell equations.
Journal of Computational Physics, 153(2):312–333, Aug 1999.

[856] J. S. Shang, J. A. Camberos, and M. D. White. Advances in time-domain computational
electromagnetics. In Proceedings of the 30th Plasmadynamics and Laser Conference, Norfolk,
VA, Jun–Jul 1999. (Also available as AIAA Paper 99-3731.)

[857] J. S. Shang, M. Wagner, Y. Pan, and D. C. Blake. Strategies for adopting FVTD on
multicomputers. IEEE Computing in Science and Engineering, 2(1):10–21, Jan–Feb 2000.

[858] C. Shao, R. H. Byrd, E. Eskow, and R. B. Schnabel. Global optimization for molecular clusters
using a new smoothing approach. In L. T. Biegler, T. Coleman, A. R. Conn, and F. N. Santosa,
eds., Large-Scale Optimization and Applications, Part III: Molecular Structure and Optimization,
163–199, Springer-Verlag, Heidelberg and New York, 1997.

[859] J. A. Shaw. Hybrid grids. In J. F. Thompson, B. K. Soni, and N. P. Weatherill, eds., Handbook
of Grid Generation, CRC Press, Boca Raton, FL, 1999.

[860] D. Shiriaev and A. Griewank. ADOL-F: Automatic differentiation of Fortran codes. In M. Berz,
C. Bischof, G. Corliss, and A. Griewank, eds., Proceedings of the Computational Differentiation:
Techniques, Applications, and Tools, 375–384, SIAM, Philadelphia, PA, 1996.

[861] G. M. Shroff and H. B. Keller. Stabilization of unstable procedures: The recursive projection
method. SIAM Journal on Numerical Analysis, 30(4):1099–1120, Aug 1993.

[862] Silicon Graphics. Performance Co-Pilot User’s and Administrator’s Guide. Silicon Graphics,
Mountain View, CA, 1999.

[863] H. Simitci and D. A. Reed. A comparison of logical and physical parallel I/O patterns. The
International Journal of High Performance Computing Applications, 12(3):364–380, Fall 1998.
(Also available in a special issue on I/O in Parallel Applications, 12(3–4).)

[864] H. D. Simon. Analysis of the symmetric Lanczos algorithm with reorthogonalization
methods. Linear Algebra and Its Applications, 61:101–131, 1984.

[865] H. D. Simon, A. Sohn, and R. Biswas. HARP: A fast spectral partitioner. In Proceedings of the
Ninth Annual ACM Symposium on Parallel Algorithms and Architectures, 43–52, ACM Press,
New York, 1997.

[866] H. D. Simon and S.-H. Teng. How good is recursive bisection? SIAM Journal on Scientific
Computing, 18(5):1436–1445, Sep 1997.

[867] D. Skillicorn and D. Talia. Models and languages for parallel computation. ACM Computing
Surveys, 30(2):123–169, Jun 1998.

[868] G. L. G. Sleijpen and H. A. van der Vorst. A Jacobi–Davidson iteration method for linear
eigenvalue problems. SIAM Journal on Matrix Analysis and Applications, 17(2):401–425, Apr
1996.

[869] G. L. G. Sleijpen and H. A. van der Vorst. A Jacobi–Davidson iteration method for linear
eigenvalue problems. SIAM Review, 42(2):267–293, 2000.

[870] E. Smirni, R. A. Aydt, A. A. Chien, and D. A. Reed. I/O requirements of scientific applications:
An evolutionary view. In Proceedings of the Fifth IEEE International Symposium on High

References 781

Performance Distributed Computing, 49–59, IEEE Computer Society Press, Los Alamitos, CA,
1996.

[871] E. Smirni and D. A. Reed. Lessons from characterizing the input/output behavior of parallel
scientific applications. Performance Evaluation, 33(1):27–44, Jun 1998.

[872] B. F. Smith, P. E. Bjørstad, and W. D. Gropp. Domain Decomposition: Parallel Multilevel Methods
for Elliptic Partial Differential Equations. Cambridge University Press, New York, 1996.

[873] B. F. Smith and W. D. Gropp. The design of data-structure-neutral libraries for the iterative
solution of sparse linear systems. Scientific Programming, 5(4):329–336, Winter 1996.

[874] R. D. Smith, J. K. Dukowicz, and R. C. Malone. Parallel ocean general circulation modeling.
Physica D, 60(1–4):38–61, Nov 1992.

[875] R. D. Smith, M.E. Maltrud, F. O. Bryan, and N. W. Hecht. Numerical simulation of the North
Atlantic Ocean at 1

10
◦
. Journal of Physical Oceanography, 30(7):1532–1561, Jul 2000.

[876] R. D. Smith, S. Kortas, and B. Meltz. Curvilinear Coordinates for Global Ocean Models.
Technical Report LA-UR-95-1146. Los Alamos National Laboratory, Los Alamos, NM, 1995.

[877] P. Smyth. Model selection for probabilistic clustering using cross-validated likelihood.
Statistics and Computing, 10(1):63–72, Jan 2000.

[878] M. Snir, S. W. Otto, S. Huss-Lederman, D. W. Walker, and J. Dongarra. MPI: The Complete
Reference. MIT Press, Cambridge, MA, 1996.

[879] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI—The Complete Reference:
Volume 1, The MPI Core, 2nd ed. MIT Press, Cambridge, MA, 1998.

[880] I. Sobieski and I. Kroo. Aircraft design using collaborative optimization. In Proceedings of
the 34th AIAA Aerospace Sciences Meeting , Reno, NV, 1996. (Also available as AIAA Paper
96-0715.)

[881] I. M. Soboĺ. Distribution of points in a cube and approximate evaluation of integrals. Z̆hurnal
Vyčislitelńŏı Matematiki i Matematic̆eskŏı Fiziki, 7(4):784–802, Jul 1967. (Russian.)

[882] W. Y. Soh and J. Goodrich. Unsteady solution of the incompressible Navier–Stokes equations.
Journal of Computational Physics, 79(1):113–134, Nov 1988.

[883] A. Sohn. S-HARP: A Parallel Dynamic Spectral Partitioner. Technical Report CIS-97-20.
Department of Computer and Information Science, New Jersey Institute of Technology,
Newark, Sep 1997.

[884] A. Sohn and H. Simon. JOVE: A Dynamic Load Balancing Framework for Adaptive
Computations on an SP-2 Distributed-Memory Multiprocessor. Technical Report 94–60.
Department of Computer and Information Science, New Jersey Institute of Technology,
Newark, 1994.

[885] B. Soni and J. Yang. General purpose adaptive grid system. In Proceedings of the 30th Aerospace
Sciences Meeting, Reno, NV, Jan 1992. (Also available as AIAA Paper 92-0664.)

[886] B. K. Soni. Grid generation for internal flow configurations. Computer & Mathematics with
Applications, 24(5/6):191–201, Sep 1992.

[887] B. K. Soni, J. F. Thompson, J. Hauser, and P. R. Eiseman, eds. Numerical Grid Generation in
Computational Field Simulations. ERC Press, Mississippi State University, Starkville, 1996.

[888] P. Sonneveld. CGS, a fast Lanczos-type solver for nonsymmetric linear systems. SIAM Journal
on Scientific and Statistical Computing, 10(1):36–52, Jan 1989.

782 References

[889] D. C. Sorensen. Implicit application of polynomial filters in a k-step Arnoldi method. SIAM
Journal on Matrix Analysis and Applications, 13(1):357–385, 1992.

[890] D. C. Sorensen. Implicitly restarted Arnoldi/Lanczos methods for large scale eigenvalue
calculations. In D. Keyes, A. Sameh, and V. Venkatakrishnan, eds., Parallel Numerical
Algorithms, 119–166, Kluwer, Dordrecht, 1997.

[891] D. C. Sorensen and C. Yang. A truncated RQ-iteration for large scale eigenvalue calculations.
SIAM Journal on Matrix Analysis and Applications, 19(4):1045–1073, 1998.

[892] J. Spanier. Quasi-Monte Carlo methods for particle transport problems. In H. Niederreiter
and P. J.-S. Shiue, eds., Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing,
121–148, Springer-Verlag, New York, 1995.

[893] A. Srivastava, E.-H. Han, V. Kumar, and V. Singh. Parallel formulations of decision-tree
classification algorithms. Data Mining and Knowledge Discovery, 3(3):237–261, Sep 1999.
(Also available at http://www.cs.umn.edu/∼kumar.)

[894] A. Stathopoulos, Y. Saad, and K. Wu. Dynamic thick restarting of the Davidson, and the
implicitly restarted Arnoldi methods. SIAM Journal on Scientific Computing, 19(1):227–245,
Jan 1998.

[895] J. L. Steger and D. S. Chaussee. Generation of body-fitted coordinates using hyperbolic
partial differential equations. SIAM Journal on Scientific and Statistical Computing , 1(4):431–
437, 1980.

[896] T. Sterling, P. Messina, and P. Smith. Enabling Technologies for Petaflops Computing. MIT Press,
Cambridge, MA, 1995.

[897] T. Sterling, D. Savarese, D. J. Becker, J. E. Dorband, U. A. Ranawake, and C. V. Packer.
BEOWULF: A parallel workstation for scientific computation. In Proceedings of the 24th
International Conference on Parallel Processing, Vol. 1: Architecture, 11–14, CRC Press, Boca
Raton, FL, 1995.

[898] T. L. Sterling, J. Salmon, D. J. Becker, and D. F. Savarese. How to Build a Beowulf: A Guide to
the Implementation and Application of PC Clusters. MIT Press, Cambridge, MA, 1999.

[899] H. Stern. Managing NFS and NIS. O’Reilly, Sebastopol, CA, 1991.

[900] G. H. Stolovy and D. R. Prabhu. Multiple-target ATR for synthetic aperture radar imagery.
In Proceedings of ITEA Conference, Jul 1998.

[901] A. H. Stone and J. Tukey. Generalized “sandwich” theorems. In The Collected Works of John
W. Tukey. Wadsworth, Belmont, CA, 1990.

[902] M. Stonebraker, R. Agrawal, U. Dayal, E. J. Neuhold, and A. Reuter. DBMS research at a
crossroads: The Vienna update. In R. Agrawal, S. Baker, and D. A. Bell, eds., Proceedings of
the 19th International Conference on Very Large Data Bases, 688–692, Morgan Kaufmann, San
Francisco, 1993.

[903] J. E. Straub. Optimization Techniques with Applications to Proteins. Preprint. Department
of Chemistry, Boston University, 1994.

[904] J. E. Straub, J. Ma, and P. Amara. Simulated annealing using coarse-grained classical dynam-
ics: Fokker-Planck and Smoluchowski dynamics in the Gaussian density approximation.
Journal of Chemical Physics, 103(4):1574–1581, Jul 1995.

References 783

[905] J. Subhlok, J. Stichnoth, D. O’Hallaron, and T. Gross. Exploiting task and data parallelism
on a multicomputer. In Proceedings of the Fourth ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, 13–22, ACM Press, New York, 1993.

[906] A. Szabo and N. S. Ostlund. Modern Quantum Chemistry: Introduction to Advanced Electronic
Structure Theory, rev. 1st ed., McGraw-Hill, New York, 1989.

[907] B. Szabó and I. Babuska. Finite Element Analysis. John Wiley & Sons, New York, 1991.

[908] C. Szyperski. Component Software: Beyond Object-Oriented Programming. ACM Press, New York,
1998.

[909] O. Talagrand. The use of adjoint equations in numerical modeling of the atmospheric
circulation. In A. Griewank and G. F. Corliss, eds., Automatic Differentiation of Algorithms:
Theory, Implementation, and Application, 169–180, SIAM, Philadelphia, PA, 1991.

[910] M. C. Tanis and B. A. Smith. Finite-difference migration of 3-D seismic data with a parallel
algorithm. In Proceedings of the 67th Annual Meeting of the SEG (Expanded Abstracts), 1422–
1425, Society of Exploration Geophysics, Tulsa, OK, 1997.

[911] T. J. Tautges and S. Mitchell. Progress report on the whisker weaving all-hexahedral meshing
algorithm. In B. K. Soni, J. F. Thompson, J. Hauser, and P. R. Eiseman, eds., Proceedings of the
5th International Conference on Numerical Grid Generation in Computational Field Simulations,
659–670, ERC, Mississippi State University, Starkville, 1996.

[912] J. Teresco, M. Beall, J. Flaherty, and M. Shephard. Hierarchical Partition Model for Adaptive
Finite Element Computation. Technical report. Department of Computer Science, Rensselaer
Polytechnic Institute, Troy, NY, 1998.

[913] W. C. Thacker. Automatic differentiation from an oceanographer’s perspective. In
A. Griewank and G. F. Corliss, eds., Automatic Differentiation of Algorithms: Theory, Im-
plementation, and Application, 191–201, SIAM, Philadelphia, PA, 1991.

[914] R. Thakur, R. Bordawekar, A. Choudhary, R. Ponnusamy, and T. Singh. PASSION runtime
library for parallel I/O. In Proceedings of the 1994 Scalable Parallel Libraries Conference, 119–
128, IEEE Computer Society Press, Los Alamitos, CA, 1994.

[915] R. Thakur and A. Choudhary. An extended two-phase method for accessing sections of
out-of-core arrays. Scientific Programming, 5(4):301–317, Winter 1996.

[916] R. Thakur, A. Choudhary, R. Bordawekar, S. More, and S. Kuditipudi. Passion: Optimized
I/O for parallel applications. Computer, 29(6):70–78, Jun 1996.

[917] R. Thakur, W. Gropp, and E. Lusk. An experimental evaluation of the parallel I/O systems
of the IBM SP and Intel Paragon using a production application. In Proceedings of the 3rd
International Conference of the Austrian Center for Parallel Computation ACPC with Special
Emphasis on Parallel Databases and Parallel I/O, 24–35. Springer-Verlag, Heidelberg and New
York, Sep 1996.

[918] R. Thakur, W. Gropp, and E. Lusk. A case for using MPI’s derived data types to improve
I/O performance. In Proceedings of Supercomputing ’98, IEEE Computer Society Press, Los
Alamitos, CA, 1998.

[919] R. Thakur, W. Gropp, and E. Lusk. Data sieving and collective I/O in ROMIO. In Proceedings of
the 7th Symposium on the Frontiers of Massively Parallel Computation, 182–189, IEEE Computer
Society Press, Los Alamitos, CA, 1999.

784 References

[920] R. Thakur, W. Gropp, and E. Lusk. On implementing MPI-IO portably and with high
performance. In Proceedings of the 6th Workshop on I/O in Parallel and Distributed Systems,
23–32, ACM Press, New York, 1999.

[921] Thinking Machines Corporation. CM Fortran Reference Manual, Version 1.0. Thinking
Machines Corporation, Cambridge, MA, Feb 1991.

[922] Thinking Machines Corporation. CM5 Technical Summary. Thinking Machines Corporation,
Cambridge, MA, Oct 1991.

[923] Thinking Machines Corporation. Users Manual for CM-Fortran. Thinking Machines Corpo-
ration, Cambridge, MA, 1993.

[924] A. Thomas and P. S. Group. Enterprise JavaBeans technology: Server component model for
the Java platform, Dec 1998. Available at http://java.sun.com/products/ejb/white_paper.html.

[925] J. F. Thompson. A survey of dynamically-adaptive grids in the numerical solution of partial
differential equations. Applied Numerical Mathematics, 1(1):3–27, Jan 1985.

[926] J. F. Thompson. A general three-dimensional elliptic grid generation system on a composite
block structure. Computer Methods in Applied Mechanics and Engineering , 64(1–3):377–411,
Oct 1987.

[927] J. F. Thompson. A reflection on grid generation in the 90’s: Trends, needs, and influences. In
B. K. Soni, J. F. Thompson, J. Hauser, and P. R. Eiseman, eds., Proceedings of the 5th International
Conference on Numerical Grid Generation in Computational Field Simulations, 1029, ERC Press,
Mississippi State University, Engineering Research Center, Starkville, 1996.

[928] J. F. Thompson, B. K. Soni, and N. P. Weatherill, eds. Handbook of Grid Generation. CRC Press,
Boca Raton, FL, 1999.

[929] J. F. Thompson, Z. U. A. Warsi, and C. W. Mastin. Numerical Grid Generation: Foundations and
Applications. North-Holland, New York, 1985.

[930] P. A. Thompson. Compressible-Fluid Dynamics. McGraw-Hill, New York, 1988.

[931] K. F. Tiampo, J. B. Rundle, S. Gross, and S. McGinnis. Parallelization of a large-scale
computational earthquake simulation program. Concurrency and Computation: Practice and
Experience, 2002. In press.

[932] K. F. Tiampo, J. B. Rundle, S. McGinnis, S. Gross, and W. Klein. Observation of systematic
variations in non-local seismicity patterns from Southern California. In J. B. Rundle,
D. L. Turcotte, and W. Klein, eds., Geocomplexity and the Physics of Earthquakes, 211–218,
Geophysical Monograph 120, American Geophysical Union, Washington, DC, 2000.

[933] S. Toledo and F. G. Gustavson. The design and implementation of SOLAR, a portable library
for scalable out-of-core linear algebra computations. In Proceedings of the Fourth Workshop on
Input/Output in Parallel and Distributed Systems, 28–40, ACM Press, New York, 1996.

[934] R. F. Tomaro, W. Z. Strang, and F. C. Witzeman. A solution on the F-18C for store separation
simulation using Cobalt60. In Proceedings of the 37th Aerospace Sciences Meeting and Exhibit ,
Reno, NV, Jan 1999. (AIAA Paper 99-0122.)

[935] R. F. Tomaro and K. E. Wurtzler. High-speed configuration aerodynamics: SR-71 to SMV. In
Proceedings of the 17th AIAA Applied Aerodynamics Conference, Norfolk, VA, Jun 1999. (AIAA
Paper 99-3204.)

[936] Top 500 supercomputers, Nov 1996. Available at http://www.top500.org/lists/1996/11/ .

References 785

[937] V. Torczon. Multi-Directional Search: A Direct Search Algorithm for Parallel Machines. PhD
diss., Rice University, 1990. (Also available as CAAM TR90-7.)

[938] V. Torczon. On the convergence of the multidirectional search algorithm. SIAM Journal on
Optimization, 1(1):123–145, Feb 1991.

[939] V. Torczon. On the convergence of pattern search algorithms. SIAM Journal on Optimization,
7(1):1–25, Feb 1997.

[940] TRansportation ANalysis Simulation System (TRANSIMS) Web page. Available at http:
//transims.tsasa.lanl.gov.

[941] A. E. Trefethen, V. S. Menon, C.-C. Chang, G. J. Czajkowski, C. Meyers, and L. N. Trefethen.
MultiMATLAB: MATLAB on Multiple Processors, 1996. Available at http://users.comlab.ox.ac
.uk/nick.trefethen/multimatlab.html.

[942] R. Triolet, F. Irigoin, and P. Feautrier. Direct parallelization of CALL statements. In Proceedings
of the SIGPLAN ’86 Symposium on Compiler Construction, Palo Alto, CA, Jun 1986.

[943] D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultaneous multithreading: Maximizing on-
chip parallelism. In Proceedings of the 22nd Annual International Symposium on Computer
Architecture, 392–403, ACM Press, New York, 1995.

[944] N. Ueda and R. Nakano. Deterministic annealing variant of the EM algorithm. Neural
Networks, 11(2):271–282, Mar 1998.

[945] UNICORE: Uniform Access to Computing Resources. http://www.fz-juelich.de/unicore.

[946] University of Potsdam. Web page for the Cactus Problem Solving Environment for Numerical
Relativity (and Other Areas), 2000. Available at http://www.cactuscode.org/ .

[947] Unstructured Grids Web page. Available at http://cox.iwr.uni-heidelberg.de/∼ug/ .

[948] O. Vahtras, J. Almlöf, and M. W. Feyereisen. Integral approximations for LCAO-SCF
calculations. Chemical Physics Letters, 213(5–6):514–518, Oct 1993.

[949] S. Vajracharya, P. Beckman, S. Karmesin, K. Keahey, R. Oldehoeft, and C. Rasmussen. A
programming model for cluster of SMPs. In Proceedings of the 1999 International Conference
on Parallel and Distributed Processing Techniques and Applications (PDPTA’99), Monte Carlo
Resort, Las Vegas, NV, Jun–Jul 1999.

[950] E. F. van de Velde. Concurrent Scientific Computing. Springer-Verlag, Heidelberg and New
York, 1994.

[951] A. J. Van der Steen and J. J. Dongarra. Overview of recent supercomputers, 2000. Available
at http://www.phys.uu.nl/~steen/web00/overview00.html.

[952] H. A. van der Vorst. Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the
solution of nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Computing ,
13(2):631–644, Mar 1992.

[953] R. van Driessche and D. Roose. Dynamic Load Balancing of Iteratively Refined Grids by an
Enhanced Spectral Bisection Algorithm. Technical report. Department of Computer Science,
K. U. Leuven, Leuven, Belgium, 1995.

[954] B. van Leer. Towards the ultimate conservative difference scheme IV: A new approach to
numerical convection. Journal of Computational Physics, 23(3):276–299, Mar 1977.

786 References

[955] B. van Leer. Towards the ultimate conservative difference scheme V: A second order sequel
to Godunov’s methods. Journal of Computational Physics, 32(1):101–136, Jul 1979. (Reprinted
in Journal of Computational Physics, 135(2):227–248, Aug 1997)

[956] K. van Reeuwijk, W. Denissen, H. J. Sips, and E. M. R. M. Paalvast. An implementation
framework for HPF distributed arrays on message-passing parallel computer systems. IEEE
Transactions on Parallel and Distributed Systems, 7(9):897–914, Sep 1996.

[957] D. Vanderstraeten, R. Keunings, and C. Farhat. Beyond conventional mesh partitioning
algorithms and the minimum edge cut criterion: Impact on realistic applications. In
Proceedings of the Seventh SIAM Conference on Parallel Processing for Scientific Computing,
611–614, SIAM, Philadelphia, PA, 1995.

[958] R. S. Varga. Matrix Iterative Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1962.

[959] T. Veldhuizen. Expression templates. C++ Report , 7(5):26–31, Jun 1995.

[960] T. Veldhuizen. Blitz++: Object oriented scientific computing, 2000. Available at http:
//oonumerics.org/blitz/ .

[961] A. Vidwans, Y. Kallinderis, and V. Venkatakrishnan. Parallel dynamic load-balancing
algorithm for three-dimensional adaptive unstructured grids. AIAA Journal, 32:497–505,
1994.

[962] Virtual Interface (VI) Developer Forum Web page. Available at http://www.vidf.org.

[963] Y. Volin and G. Ostrovskĭı. Automatic computation of derivatives with the use of the
multilevel differentiation technique. I. Algorithmic Basis Computers & Mathematics with
Applications, 11(11):1099–1114, Nov 1985.

[964] T. von Eicken, A. Basu, V. Buch, and W. Vogels. U-Net: A user-level network interface for
parallel and distributed computing. In Proceedings of the 15th ACM Symposium on Operating
Systems Principles (SOSP), 40–53, ACM Press, New York, 1995.

[965] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser. Active messages: A mechanism
for integrated communication and computation. In Proceedings of the 19th International
Symposium on Computer Architecture, 256–266, ACM Press, New York, 1992. (Also available
as Technical Report UCB/CSD 92/675, Computer Science Division, University of California
at Berkeley.)

[966] G. von Laszewski, M.-H. Su, J. A. Insley, I. Foster, J. Bresnahan, C. Kesselman, M. Thiebaux,
M. L. Rivers, S. Wang, B. Tieman, and I. McNulty. Real-time analysis, visualization, and
steering of microtomography experiments at photon sources. In Proceedings of the Ninth
SIAM Conference on Parallel Processing for Scientific Computing, Apr 1999. (Also available at
http://www.mcs.anl.gov/xray.)

[967] G. Voronoi. Nouvelles applications des parametres continus à la theorie des formes
quadratiques, recherches sur les parallelloedres primitifs. Journal für die reine und angewandte
Mathematik, 134, 1908.

[968] C. Walshaw. Parallel JOSTLE User Guide, Version 1.2.9. University of Greenwich, London,
1998.

[969] C. Walshaw and M. Cross. Load-balancing for parallel adaptive unstructured meshes. In
M. Cross et al., eds., Proceedings of the Sixth International Conference on Numerical Grid
Generation in Computational Field Simulations, 781–790, International Society of Grid
Generation, Mississippi State University, Starkville, 1998.

References 787

[970] C. Walshaw and M. Cross. Parallel Optimisation Algorithms for Multilevel Mesh Partitioning.
Technical Report 99/IM/44. University of Greenwich, London, 1999.

[971] C. Walshaw and M. Cross. Mesh partitioning: A multilevel balancing and refinement
algorithm. SIAM Journal on Scientific Computing, 22(1):63–80, 2000.

[972] C. Walshaw, M. Cross, R. Diekmann, and F. Schlimbach. Multilevel Mesh Partitioning
for Optimising Domain Shape. Technical Report 98/IM/38. School of Computing and
Mathematical Sciences, University of Greenwich, London, 1998.

[973] C. Walshaw, M. Cross, and M. Everett. Dynamic Mesh Partitioning: A Unified Optimisation
and Load-Balancing Algorithm. Technical Report 95/IM/06. Centre for Numerical Modelling
and Process Analysis, University of Greenwich, London, 1995.

[974] C. Walshaw, M. Cross, and M. G. Everett. Parallel dynamic graph partitioning for adaptive
unstructured meshes. Journal of Parallel and Distributed Computing, 47(2):102–108, Dec 1997.

[975] C. Walshaw, M. Cross, M. G. Everett, S. Johnson, and K. McManus. Partitioning and mapping
of unstructured meshes to parallel machine topologies. In A. Ferreira and J. Rolim, eds.,
Proceedings of the Second International Symposium on Parallel Algorithms for Irregularly Structured
Problems, 121–126, Springer-Verlag, Heidelberg and New York, 1995.

[976] C. Walshaw, M. Cross, and K. McManus. Multiphase Mesh Partitioning. Technical Report
99/IM/51. University of Greenwich, London, 1999.

[977] J. H. Wang. Generalized Moment Methods in Electromagnetics: Formulation and Computer Solution
of Integral Equations. John Wiley & Sons, New York, 1991.

[978] X. J. Wang and E. J. Doedel. AUTO94P: An Experimental Parallel Version of AUTO. Technical
Report CRPC-95-2. Department of Applied Mathematics, California Institute of Technology,
Pasadena, 1995.

[979] Y. Wang, F. de Carlo, I. Foster, J. Insley, C. Kesselman, P. Lane, G. von Laszewski, D. C.
Mancini, I. McNulty, M.-H. Su, and B. Tieman. A quasi-realtime X-ray microtomography
system at the advanced photon source. In Proceedings of the SPIE’s 44th Annual Meeting &
Exhibition: The International Symposium on Optical Science, Engineering, and Instrumentation,
Vol. 3772, 301–309, Denver, CO, Jul 1999.

[980] M. S. Warren and J. R. Salmon. A parallel hashed oct-tree N-body algorithm. In Proceedings
of Supercomputing ’93, 12–21, ACM Press, New York, 1993.

[981] J. Watts, M. Rieffel, and S. Taylor. A load balancing technique for multi-phase computations.
In Proceedings of the High Performance Computing ’97: Grand Challenges in Computer Simulation,
15–20, 1997.

[982] J. Watts and S. Taylor. A practical approach to dynamic load balancing. IEEE Transactions on
Parallel and Distributed Systems, 9(3):235–248, Mar 1998.

[983] N. P. Weatherill. Unstructured grids: Procedures and applications. In J. F. Thompson, B. K.
Soni, and N. P. Weatherill, eds., Handbook of Grid Generation, CRC Press, Boca Raton, FL,
1999.

[984] N. P. Weatherill, O. Hassan, and D. L. Marcum. Adaptive inviscid flow solutions for aerospace
geometries on efficiently generated unstructured tetrahedral meshes. In Proceedings of the
31st AIAA Aerospace Sciences Meeting and Exhibit , Reno, NV, Jan 1993. (AIAA Paper 93-0341.)

[985] WebFlow Project Web page. Available at http://old-npac.ucs.indiana.edu/users/haupt
/WebFlow/demo.html.

788 References

[986] WebSubmit: A Web-Based Interface to High-Performance Computing Resources. Available
at http://www.math.nist.gov/mcsd/savg/websubmit/websubmit.html.

[987] E. H. Welbon, C. C. Chan-Nui, D. J. Shippy, and D. A. Hicks. The POWER2 performance
monitor. IBM Journal of Research and Development , 38(5):545–554, Sep 1994.

[988] R. C. Whaley and J. Dongarra. Automatically Tuned Linear Algebra Software (ATLAS).
Available at http://www.netlib.org/atlas/ and http://math-atlas.sourceforge.net/ .

[989] M. F. Wheeler, M. Peszyńska, X. Gai, and O. El-Domeiri. Modeling Subsurface Flow on PC
Clusters. In Proceedings of the High Performance Comuting Symposium 2000, 318–323, SCS, San
Diego, CA, 2000.

[990] M. F. Wheeler, J. Wheeler, and M. Peszyńska. A distributed computing portal for coupling
multi-physics and multiple domains in porous media. In Proceedings of the XIII International
Conference on Computational Methods in Water Resources, 167–174, A. A. Balkema, Rotterdam,
2000.

[991] D. L. Whitfield and L. K. Taylor. Discretized Newton-relaxation solution of high resolution
flux-difference split schemes. In Proceedings of the AIAA Tenth Annual Computational Fluid
Dynamics Conference, 134–145, 1991. (AIAA Paper 91-1539.)

[992] O. Widlund. On the use of fast methods for separable finite difference equations for the
solution of general elliptic problems. In D. J. Rose and R. A. Willoughby, eds., Sparse Matrices
and Their Applications, 121–134, Plenum Press, New York, 1972.

[993] C. Wieselsberger. Neuere Feststellungen über die Gesetze des Flüssigkeits-und Luftwider-
stands. Physikalische Zeitschrift , 22:321–328, 1921. (For translation, see NACA Technical
Note #84.)

[994] J. H. Wilkinson. The Algebraic Eigenvalue Problem. Oxford University Press, Oxford, 1965.

[995] J. H. Wilkinson and C. Reinsch. Handbook for Automatic Computation: Volume II—Linear
Algebra. Springer-Verlag, New York, 1971.

[996] R. D. Williams. Voxel databases: A paradigm for parallelism with spatial structure.
Concurrency: Practice and Experience, 4(8):619–636, Dec 1992.

[997] K. G. Wilson. Confinement of quarks. Physical Review D, 10(8):2445–2459, Oct 1974.

[998] L. Wisniewski, B. Smisloff, and N. Nieuwejaar. Sun MPI I/O: Efficient I/O for parallel
applications. In Proceedings of Supercomputing ’99, ACM Press, New York, Nov 1999.

[999] WMS code. Engineering Research and Development Center, U.S. Army Corps of Engineers,
University of Mississippi, Vicksburg. Available at http://www.wes.hpc.mil.

[1000] M. E. Wolf and M. Lam. A loop transformation theory and an algorithm to maximize
parallelism. IEEE Transactions on Parallel and Distributed Systems, 2(4):452–471, Oct 1991.

[1001] M. J. Wolfe. Optimizing Supercompilers for Supercomputers. MIT Press, Cambridge, MA, 1989.

[1002] S. Wolfram. The Mathematica Book. 4th ed. Cambridge University Press, New York, 1999.

[1003] H. Wolkowicz and Q. Zhao. Semidefinite Programming Relaxations for the Graph
Partitioning Problem. Technical Report CORR Report 96-17. Department of Combinatorics,
University of Waterloo, Waterloo, Ontario, Canada 1996.

[1004] A. T. Wong and R. J. Harrison. Approaches to large-scale parallel self-consistent field
calculations. Journal of Computational Chemistry, 16(10):1291–1300, Oct 1995.

References 789

[1005] Z. Wu. The effective energy transformation scheme as a special continuation approach
to global optimization with application to molecular conformation. SIAM Journal on
Optimization, 6(3):748–768, Aug 1996.

[1006] C.-Z. Xu and F. C. M. Lau. The generalized dimension exchange method for load balancing
in k-ary n-cubes and variants. Journal of Parallel and Distributed Computing, 24(1):72–85, Jan
1995.

[1007] G. L. Xue. Improvement on the Northby algorithm for molecular conformation: Better
solutions. Journal of Global Optimization, 4(4):425–440, 1994.

[1008] G. L. Xue, R. S. Maier, and J. B. Rosen. Minimizing the Lennard–Jones Potential Function
on a Massively Parallel Computer. AHPCRC preprint 91-115. Army-High Performance
Computing Research Center, University of Minnesota, Minneapolis, 1991.

[1009] I. Yotov. Mixed Finite Element Methods for Flow in Porous Media. PhD diss., Rice University,
1996.

[1010] D. M. Young and K. C. Jea. Generalized conjugate-gradient acceleration of nonsymmetrizable
iterative methods. Linear Algebra and Its Applications, 34:159–194, Dec 1980.

[1011] J. L. Young, D. Gaitonde, and J. S. Shang. Towards the construction of a fourth-order
difference scheme for transient EM wave simulation: Staggered grid approach. IEEE
Transactions on Antennas and Propagation, 45(11):1573–1580, Nov 1997.

[1012] M. Zagha, B. Larson, S. Turner, and M. Itzkowitz. Performance analysis using the MIPS R1000
performance counters. In Proceedings of Supercomputing ’96, ACM Press, New York, 1996.

[1013] M. J. Zaki. Parallel and distributed association mining: A survey. IEEE Concurrency, 7(4):14–25,
Oct–Dec 1999.

[1014] O. Zaki, E. Lusk, W. Gropp, and D. Swider. Toward scalable performance visualization with
Jumpshot. International Journal of High Performance Computing Applications, 13(3):277–288,
Fall 1999.

[1015] T. A. Zang. On the rotation and skew-symmetric forms for incompressible flow simulations.
Applied Numerical Mathematics, 7(1):27–40, Jan 1991.

[1016] L. Y. Zaslavsky, S. H. Kahan, B. H. Elton, K. J. Macshoff, and L. G. Stern. A scalable approach
for solving irregular sparse linear systems on the Tera MTA multithreaded parallel shared-
memory computer. In Proceedings of the Ninth SIAM Conference on Parallel Processing for
Scientific Computing, p. 9, SIAM, Philadelphia, PA, 1999.

[1017] G. Zelniker and F. J. Taylor. Advanced Digital Signal Processing: Theory and Applications. Marcel
Dekker, New York, 1994.

[1018] H. Zima, H.-J. Bast, and M. Gerndt. SUPERB: A tool for semi-automatic MIMD/SIMD
parallelization. Parallel Computing, 6(1):1–18, Jan 1988.

[1019] H. Zima and B. Chapman. Compiling for distributed-memory systems. Proceedings of the
IEEE, 81(2):264–287, Feb 1993.

[1020] Z. Zou, R. H. Byrd, and R. B. Schnabel. A Stochastic/Perturbation Global Optimization
Algorithm for Distance Geometry Problems. Technical Report CU-CS-825-96. Department
of Computer Science, University of Colorado, Boulder, 1996.

INDEX

2-D irregular mesh, 491, 492
2-D Poisson problem, 469–480

global operations and, 477–480
mathematical model, 469–470
parallel solution, 470–477
simple algorithm, 470

3DMAGGS, 564

ab initio molecular dynamics, 168
abstract task descriptor (ATD), 421
AC, 371
Accelerated Strategic Computing Initiative

(ASCI), 451
Active Data Repository. See ADR
active variables, 703
adaptive graph partitioning, 516–525

additional objective, 517
defined, 517
diffusion-based repartitioners, 522–525
MAXV, 517–518
repartitioning approaches, 518
scratch-remap repartitioners, 518–522
TOTALV, 517–518
See also graph partitioning

adaptive grid hierarchy, 139–140
defined, 139
illustrated, 140

See also Berger-Oliger algorithm
adaptive integral method (AIM), 230
adaptive mesh, 121–126

four-level quadtree, 125
framework, 123–124
generation, 124
logical structure, 127
See also mesh(es)

adaptive mesh generation, 552–560
generalized, 555–560
structured, 552–554
See also mesh generation

adaptive mesh refinement (AMR)
compressible flows, 138–143
criteria, 124–126
dynamic, 139
error estimation and regridding, 140–141
framework implementation, 143
incompressible flows, 121–126
integration algorithm, 140
inter-grid operations, 141
for Richtmyer-Meshkov problem, 143
structured (SAMR), 219, 222
time integration, 140

adaptive redistribution, 552
ADCIRC, 164
ADIC, 708

791

792 Index

Adifor, 708, 710–711, 711
computation steps, 710–711
defined, 710
“high-level interfaces,” 710
support, 711

adjoint of variables, 705, 706
ADMesh, 561
ADO1, 708
ADOL-C, 708, 709–710

defined, 709
modification steps, 710
See also automatic differentiation (AD)

ADOL-F, 708
ADR

applications, 163
with CE-QUAL-ICM, 146
customization, 164
for data management/manipulation

system, 164
defined, 163
implementation, 164–165
infrastructure, 163
with IPARS, 146
with PCE-QUAL-ICM, 146
retrieval and averaging, 165

Advanced Photon Source (APS), 258–
259

Advanced Regional Prediction System, 10
Aggregate Remote Memory Copy Interface

(ARMCI) library, 175
air-water flow simulation, 149

illustrated, 149
keyout capability demonstration, 153

air-water model, 148
AKENTI server, 422–423
algebraic bifurcation equation, 683
algebraic mesh generation

defined, 545
redistribution, 553
See also mesh generation

algorithmic differentiation. See automatic
differentiation (AD)

alternating-direction implicit (ADI)
method, 627

Amdahl’s Law, 57
analytic performance models, 309
ANTLR, 275

application programming interfaces
(APIs), 293, 332

I/O, 338
portability and, 338
problem, 336–338

applications, 724–725
access pattern in, 337
aircraft impact on global atmospheric

chemistry, 285
architecture-independent Navier-Stokes

code, 285
asynchronous, 289–290
atomic-level materials design, 286
as basic complex systems, 84–87
CFD, 93–144, 280
characteristics, 75–79
CMS, 88
complex system simulation/analysis,

290
computational electromagnetics,

227–232, 283
computational structure of, 280–284
cosmological structure formation,

219–227, 283
data mining parallel algorithms,

232–243, 283
development complexity, 11
DIME programming environment, 289
earthquakes simulation, 212–218, 282
environment and energy, 145–165,

280–281
full matrix algorithms, 288
genetic sequence data comparison, 287
Grand Challenge, 571, 573
groundwater flow and contaminant

transport modeling, 285
independent parallelism, 288
Internet, 391
ion thruster backflow contamination,

286
irregular loosely synchronous problems,

289
issues, 75–92
lattice quantum chromodynamics,

199–207, 282
load balancing and optimization, 289
loosely synchronous problems, 288–289

Index 793

magnetic resonance imaging dataset
analysis, 287

MCMs, 249–258, 283–284
MDAO, 570
modeling limitations, 539
molecular dynamics simulations, 286
molecular quantum chemistry, 168–171,

281
NetSolve, 416–417
new, 728
nuclear magnetic resonance simulations,

286
numerical relativity, 195–199, 281–282
ocean modeling, 207–212, 282, 284
petroleum reservoir management, 285
plasma modeling, 286
plasma reactors simulation, 285–286
quasi real-time microtomography,

258–264, 284
radar scattering and antenna modeling,

287
scalable, 57
SIP HPC, 243–249, 283
static mixer flow, 285
symmetric eigenvalue problems, 286
synchronous, 287–288
temporal structure of, 88–89
three-dimensional plasma particle-in-

cell calculations, 286
WebFlow, 421, 424–429
WebHLA-based environment, 268–272,

284
APPS, 660
ARCADE, 442
architectural features, 580–582

blocking for cache reuse, 582
cache reuse, 581–582
consecutive elements, 582

architectures, 15–42
component, 407
disk, 333–334
diversity, 294
high-level (HLA), 267–268
influence on performance, 580–583
instruction set (ISAs), 18
modeling limitations, 539–540
parallel, 26–42

parallel I/O, 334–335
shared-memory processor (SMP),

384
target, 582–583
uniprocessor, 15, 16–26
WebFlow, 420, 421–429

arithmetic logic unit (ALU), 17
Arnoldi factorization, 606–607

data distribution, 613–616
k-step, 607

Arnoldi method, 603
Arnoldi vectors, 607
ARPACK, 603, 610–618

availability, 618
calling sequence to, 613
defined, 610
features, 611
library, 610
message passing, 616–617
parallelizing, 612–613
performance, 617–618
portability, 618
reverse communication interface,

611–612
routine performance, 617
use of, 603
See also P_ARPACK

ART, 262
Association for Computing Machinery

(ACM), 487
association rules

birth of, 233
concept generalization, 236
defined, 234

asynchronous applications, 289–290
asynchronous mode, 89
asynchronous parallel direct search

(APDS), 662–663
asynchronous parallelism, 59
ATExpert, 456
ATLAS (automatically tuned linear algebra

software), 586, 644
atomic orbital (AO) description, 170
attributes, 236

categorical, 236
continuous, 236, 241–242

Atwood number, 138

794 Index

AUTO, 686–694
continuation of connecting orbits, 687
defined, 686
parallel, 694–699
singular point analysis, 699
strength, 686
tim.f demo, 698

automatic differentiation (AD), 486–487,
701–719, 727

advanced use of, 714–719
benefits, 487
defined, 486–487
first-order, 703
forward mode, 704, 717
functioning of, 704–706
general-purpose software, 702
history, 702
implementation techniques, 707–709
as local technique, 706
for message-passing parallel codes,

711–714
with operator overloading, 708
overview, 703–707
reverse mode, 704, 705, 717–719
software, 709–711
with source-to-source transformation,

708–709
underlying ideas, 702
when it works, 706–707

automatic mesh generation, 561
automatic parallelization, 358, 359–361,

380
current belief, 361
for MIMD architectures, 360
problem complexity, 360
research, 359
techniques, exploiting, 361

automatic target recognition (ATR),
245–246

HPC impact, 245
Predator system, 245
programming environment, 246
sensors, 245
See also signal and image processing

(SIP); SIP HPC
automatic vectorization, 359
Aztec, 601

balance constraint, 494
BAMG, 561
bandwidth

bisection, 34
memory, 22, 33
message passing and, 315
parallelism and, 40
shared memory, 30

baroclinic equations, 207
baryonic matter, 219
basic complex systems

applications as, 84–87
defined, 89
illustrated, 85
meta-problems, 90
parallelism potential, 90
parallelization summary, 89

Basic Linear Algebra Communication
Subprograms. See BLACS

Basic Linear Algebra Subprograms. See
BLAS

basis functions, 102–105
coefficients of, 107
in d dimensions, 107–108
inner products for, 110
as invariably polynomials, 102
one-dimensional spectral-element, 104
orthogonal, 104
selection of, 102

Beowulfs, 28
Berger-Oliger algorithm, 139–140

adaptive grid hierarchy, 139, 140
AMR pseudocode, 141
error estimation and regridding, 140–141
inter-grid operations, 141
properly nested component grids, 139
time integration, 140

BiCGStab, 641
bifurcation points, 678, 679, 683

illustrated, 679
locating, 683
on smooth paths, 678
tangent switching at, 684
tangents at, 683

bifurcation theory, 683
bifurcations

branch switching at, 683–686

Index 795

defined, 678
in dynamical problems, 678
Hopf, 679, 692
period-doubling, 688, 689
perturbed, 685

Binary Black Hole (BBH) project, 197,
198

binary black holes, 196
bisection bandwidth, 34
black holes

binary, 196
grazing collisions, 198
showing “apparent horizons” merging,

199
at start of evolution, 198

black-oil models, 148
black-oil simulation, 150–151

multiblock simulation, 150
speedups, 151

BLACS, 617
BLAS, 189, 576, 583–586

assembly-coded, 584
“building-block” routines, 585
defined, 576
hand-optimized, 585
high-performance, 644
Level-1, 584, 594
Level-2, 580, 584, 585, 586, 594
Level-3, 579, 580, 584, 585, 586, 594
library, 576–577
operation speed, 585
optimized set of, 585
Parallel (PBLAS), 616
portable high-performance, 584
xGEMM routines, 189

Blitz++, 384
block algorithms, 578–580

defined, 579
deriving, 579–580
See also dense linear algebra algorithms

block data decomposition
defined, 76
SPMD structure and, 77

block-diagonal matrix, 117
blocking, 66

cache, 49
for cache reuse, 582

uniprocessor memory-hierarchy
management, 63–64

bordered matrix, 681
Born-Oppenheimer approximation, 169
boundary conditions

interior, 197
Neumann, 100
outflow, 131

Bowyer-Watson algorithm, 560
branch switching, 683–686
breakpoint debuggers, 450–451

defined, 450
parallel program analysis support, 451
Prism, 465

Bryan-Cox-Semtner ocean model
barotropic equations, 207
defined, 207
model, 9

bulk synchronous processes (BSP), 323
bursting

defined, 688
oscillations, 688–689

butterfly pattern, 484

C++, 385, 407
Compositional, 396
extension, 396
HPC++, 397–401
memory management, 392
multithreaded computation in, 396–401
template support, 393

Cabbibo-Kobayashi-Maskawa (CKM)
matrix, 200

cache reuse, 581–582, 583
blocking for, 582
need for, 581–582

cache-coherency protocol, 324
cache(s)

blocking, 49
blocks, 48, 63
coherent systems, 29
invalidation, 35
lines, 24, 581
memories, 24, 230
misses, 48, 63
performance and, 25

CAGI, 561

796 Index

CAMINO, 562
CAPTools project, 627
Car-Parinello, 179
Cartesian meshes, 544
CASC2D, 425
categorical attributes, 236
CAVEs, 260
CCA

components, 405
defined, 404
Forum, 640
framework, 404, 405
future, 405, 406
model, 404
parallel port, 405
Provides Ports, 405
services, 405
Uses Ports, 405

CD algorithm, 235
CDC Star 100, 37
Center for Research on Parallel

Computation (CRPC), 3
cross-platform standards, 12
HPCC initiative and, 14
principle goal, 12

Center for Subsurface Modeling (CSM),
148

central processing units. See CPUs
CE-QUAL-ICM, 146, 159–160

3-D mass conservation equation, 160
defined, 159
explicit/implicit time-marching

solution, 160
solution algorithm, 161
use, 159
See also PCE-QUAL-ICM

CFL criterion, 136, 137
CG algorithm, 204
Chaco, 540, 541, 594
ChemIO library, 338
chemistry

algorithms, 168
computational, 168
molecular quantum, 168–171
parallel computational, 167–194
See also NWChem

Cholesky factorization, 578–579

circuit simulation, 88
classical Gram Schmidt process (CGS), 608
classification decision tree, 238

construction, 238
hybrid formulation, 239–241
partitioned approach, 239
shallow/deep, 241
size and shape, 241
synchronous approach, 239

clock speed, 18
comparisons, 18
increase, 41

clocks
cycles, 18
global, 453
latency, 21
resolution, 451
synchronization, 453
timing and, 451

clusters, 310
DSM and, 310
simulation, 656

Co-Array Fortran, 304–305
advantages, 377
analysis, 304–305
co-dimension, 371, 373
communication requirements, 373
defined, 304
extended grid smoothing example, 372
formulation, 305
HPF multigrid code translation into,

373–375
images, 371–372
low-level manipulations, 377
one-sided communication, 372, 377
reduction operations, 373
SPMD in, 371–377
synchronization and, 373
synchronization requirements, 373
version of OpenMP pipelining example,

375–377
See also software technologies

collaborative optimization (CO), 666
collective communication functions,

321–322
collective I/O, 346–347

methods, 346

Index 797

ROMIO, 346
two-phase, 346–347
See also I/O

collective operations, 69–70, 314, 321–322,
477–478

combinatorial techniques, 501–506
defined, 501–502
Kernighan-Lin/Fiduccia-Mattheyses

(KL/FM) algorithm, 503–506
levelized nested dissection (LND),

502–503
See also graph partitioning

combined partitioning schemes, 513
Common Component Architecture (CCA)

Forum, 640
Common Object Request Broker

Architecture. See CORBA
communication overhead, 81

for general update stencils, 82–84
systematic decrease, 83

communication structure, 78–82
distributed-memory system, 79
for five-point stencil, 81
as function of stencil size, 83
for nine-point stencil, 83

communication-to-calculation ratio, 86
communicators, 316–318, 321

data structure neutrality and, 484–485
defined, 316
handle, 316
processes, 321
See also Message-Passing Interface (MPI)

complex instruction set computer (CISC),
18

component architectures, 407
Component Object Model (COM), 404
component programming, 640
component-based software design,

403–406
Compositional C++, 396
compositional model, 149
comprehensive mine simulator (CMS),

267, 272–278
by Ft. Belvoir, 273
defined, 273
experimentation environment, 277
fuze types support, 273

HPC for, 273
meta-computing, with WebHLA-based

distributed management, 279
mines, 273
module, 275
parallel, approach, 274
parallel, architecture, 274–275
parallel, performance, 275–278

compressible flows, 132–143
accuracy, 134
adaptive mesh refinement, 138–143
in high dimensions, 134
hyperbolic conservation laws, 134–137
motion equations, 133–134
Navier-Stokes equations, 132
numerical simulation, 94
in one space dimension, 134
RM instability, 137–138
shock capturing, 133
shock tracking, 132–133
smoothness, 134
switching logic, 134
See also computational fluid dynamics

(CFD)
computational chemistry, 168

algorithms, 188–192
NWChem and, 186–188

computational differentiation. See
automatic differentiation (AD)

computational electromagnetics (CEM),
227–232

application domain for, 228
asymptotic methods, 229
frequency-domain methods, 229–230
hybrid methods, 231–232
integrating in time domain with CFD,

232
porting, programs, 228
practical arena, 231
for RCS prediction, 227–228
simulation challenges, 229
state of the art, 232
summary, 283
tier-structured approach, 227
time-domain methods, 230–231

computational field simulations (CFS),
549

798 Index

computational fluid dynamics (CFD),
93–144

basic equations, 94–95
compressible, 94
compressible flows, 132–143
conclusion, 144
high-performance computing, 97–98
incompressible flows, 98–132
incompressible viscous, 93
introduction, 94–98
summary, 280
time-dependent problems, 93

Computational Grid, 724
computational mapping, 550
computational overhead, 115
Computational Power Grid, 379
computational resources, 723–724
computations

adaptive, 516–525
communication to, ratio, 84
earthquake simulation, 218
global system, 115
irregular, 57
lattice QCD, 200, 206
local system, 115
mesh-based, modeling, 493–495
multimesh, 529–530
multithreaded, 396–401
nondeterministic, 309
parallel PDE, 623–627
for points stored in cache, 86
strip-mined derivative, 716–717
time step, 137

computed microtomography (CMT),
258–264

computational requirements, 263
data format, 259
data interchange, 259
defined, 258
filtering and reconstruction, 260–

262
future work, 265
grid-enabled application, 264
integrated visualization and

collaboration engine, 260
interleaved reconstruction and

visualization, 260

new acquisition and reconstruction
strategies, 262–263

pipeline, 259–260
processing algorithm, 259
real-time X-ray experiments, 263–264
reconstruction algorithm, 260
scientific challenges, 260–263
summary, 284

computer-aided geometric design (CAGD),
569

concurrency, 484
Concurrent File System (CFS), 335
condensation of parameters, 696

back-substituting in, 698
Jacobian matrix after, 697

condition variables, 326–327
CONDOR, 441
conjugate gradient iterations, 116–118

algorithm for, 117
number of, 117

conjugate gradient methods, 116
Connection Machine, 32
Connection Machine Fortran (CMF), 221
consistency

error, 113
memory, 30–31
processor, 31
release, 31
sequential, 31
weak, 31

constrained Hamiltonian system, 196
constraint distribution, 668–669

algorithm, 668
constraint treatment, 669
defined, 668

contaminant remediation, 145
CONTENT, 686
continuation

Euler-Newton, 679
failure, 680
global, 658–659, 675–677
local, 673–675
norm, 682
pseudo-arc length, 681, 682
tangent, 683

continuous attributes, 236, 241–242
control breakpoints, 450–451

Index 799

control theory, 664
convective form, 98
convergence cone, 683, 684
coordinate nested dissection (CND),

496–497
algorithm, 496–497
defined, 496
edge-cut quality, 515
eight-way partitioning by, 498
four-way partitioning by, 498
illustrated, 497
partitioning quality, 497
speed, 497
See also graph partitioning

CORBA, 418, 426
components, 404
dynamic interface invocation (DII), 424
dynamic stub invocation (DSI), 424
object brokers, 411
WebFlow use of, 420

Coriolis terms, 209
correctness

basics, 444–451
control breakpoints, 450–451
errors, 445
event counting, 446–447
event tracing, 448–450
guaranteed, 87
interval timing, 447–448
profiling and program-counter sampling,

445–446
cosmological structure formation (CSF),

219–227
computational issues, 219–220
defined, 219
Enzo, 222–224
future work, 227
goal, 219
Kronos, 220–222
performance, 224–227
problem, 219
simulations, 220
summary, 283

coupled cluster methods, 191
coupled simulation, 162–165

with ADR, 163–164
components, 163

implementation, 164–165
CPR algorithm, 715
CPUs, 17–21

arithmetic logic unit (ALU), 17
associating memory with, 724
clock cycles, 18
clock speed, 18
complexity in, 20
components, 17–18
“core” speed, 18
defined, 16, 17
designs, 26, 41
floating-point unit (FPU), 17
generic diagram, 19
instruction set, 18
load/store unit, 17
memory interface, 18
Moore’s Law and, 16
parallelism, 35
performance, 16, 17
program counter (PC), 18, 19
registers, 18, 20
wasted cycles, 17

Cramer’s Rule, 676
critical regions, 53
cut-and-paste repartitioning

defined, 518
illustrated, 519
See also repartitioning

Cuthill-McKee algorithm, 119, 592
Cyber 205, 37
cylinder wake example, 129–132

computational domains, 131
defined, 129
drag coefficient, 129–130
flow vorticity, 132
local mesh refinement, 131–132
problem, 130
shedding frequency, 129, 130

DAGH distributed-data-structure
programming environment, 197–198,
645

dark matter
collisionless phase fluid, 220
defined, 219
dynamics, 222

800 Index

data access patterns, 621, 624–625
data distribution, 484, 621, 624–625
data mining

association rules, 233
field, 232
interesting rules, 233
results quality, 233

data mining parallel algorithms, 232–243
association discovery, 233–236
CD algorithm, 235
for constructing classification decision

trees, 237
decision-tree classifiers induction,

236–242
HD algorithm, 235
IDD algorithm, 235
for induction of decision-tree classifiers,

236–242
SPRINT algorithm, 242
state of the art, 242–243
summary, 283

data parallelism
defined, 50
exploiting, 361
task parallelism vs., 295–296
See also parallelism

data races, 50
detection, 67
detection tools, 67
occurrence, 66

data redistribution, 627
data sieving, 344–346

defined, 344
illustrated, 345
ROMIO, 344–345, 351
for writing data, 345
See also parallel I/O

data structures, 113–116
communicators and, 484–485
HPF and, 391
implementation, 113–115
improvements, 115–116
incompressible flows, 113–116
libraries, 384
NURBS, 569
PETSc, 632
See also incompressible flows

data-parallel languages, 358, 380
data-parallel programming, 361–365
data-structure-neutral approach, 636
data-structure-neutral libraries, 485
debugging, 443–467

challenges, 466
compiler integration and, 453–456
conclusion, 466–467
correctness and, 444–451
event orders and, 452–453
implementation challenges, 451–453
infrastructure, 444
as iterative process, 445
parallel, 44, 66–67
queries, 444
sequential programs, 445
software tools, 456–466
timing and, 451–453
TotalView, 465–466
See also performance tuning

decision-tree classifiers, 236–242
degree theory, 675–677
Delaunay triangulation, 560
dense linear algebra algorithms, 576–580

block, 578–580
future research directions, 619–620
loop rearranging, 577
LU factorization, 577–578
software, 589–590

dense linear algebra libraries, 583–590
EISPACK, 587
LAPACK, 588–589
LINPACK, 587–588
overview, 587–589
ScaLAPACK, 589

dense wavelength-division multiplexing
(DWDM), 39

density functional theory, 168
dependence analysis, 359
dependent variables, 703
de-refinement, 557
derivatives

computations, strip-mining, 716–717
computing, 710–711
overflow/underflow and, 707
parallel evaluation of, 718
scaling, 707

Index 801

uses of, 701
See also automatic differentiation (AD)

design patterns
butterfly, 484
concept, 484
defined, 483
divide and conquer, 483
domain decomposition, 484
parallel programming and, 484

diagonal matrix, 110
differentiation, 111

automatic (AD), 486–487, 701–719
of communication operations, 711–713
of reduction operations, 714

Diffpack, 645
diffusive load balancing, 522
diffusive-based repartitioners, 522–525

edge-cut/data redistribution costs
tradeoff, 524–525

global, 522
illustrated, 529
local, 522
multilevel, 523
questions addressed by, 522
recursive bisection, 523
wavefront diffusion, 524

DIPS, 417
direct I/O, 347–348

defined, 348
uses, 348
See also parallel I/O

direct search methods, 659–663
APPS, 660
asynchronous parallel direct search

(APDS), 662–663
defined, 659
GPS, 660–661
MDS, 660
for optimization researchers, 659
PDS, 650, 659
surrogate management framework

(SMF), 661–662
direct solution methods, 591–595

issues, 591–592
Level-3 BLAS kernels, 594
matrix orderings, 592–594
software, 594

See also sparse linear algebra
DISCOVER, 146, 157–158

architectural overview, 157
defined, 157
IPARS integration, 158
as ongoing research initiative, 158
for tracking/steering in IPARS, 157

discrete equations, 105–107
discrete projection operator, 110
discretization effects, 205
discretized PDEs, 590
disk-resident arrays (DRAs), 172
disks

architecture, 333–334
clusters, 333
defined, 333
platters, 333
schematic, 333

displaced-pole grid, 211
distance geometry, 656–657
Distributed Component Object Model

(DCOM), 418
Distributed Interactive Steering

and Collaborative Visualization
Environment. See DISCOVER

distributed memory, 4, 5, 27–28
defined, 27
shared memory vs., 296–297
See also memory; shared memory

distributed objects, 224
distributed shared memory (DSM), 30, 47

clusters and, 310
defined, 324

distributed-memory systems, 27–28,
46–47, 297

advantage, 297
architecture illustration, 46
communication structure, 79
defined, 45
design advantages, 46
message passing and, 470–472
ocean modeling and, 208
parallel I/O architecture, 334
programming, 47
single name-space, 472–475

divide and conquer, 483
DoD modeling and simulation, 266

802 Index

domain decomposition, 484
defined, 76
preconditioners, 530–531

DOUG (Domain Decomposition on
Unstructured Grids), 645

dual graphs, 493
dynamic adaptive mesh refinement (AMR),

139
dynamic analysis tools, 67
dynamic load balancing, 58–59, 516
dynamic random access memory (DRAM),

23, 24, 41

EAGLE mesh generation code, 562
EAGLEView mesh generation code, 562
earthquake simulations, 212–218

computational problems, 215–218
computational resource requirements,

218
data assimilation, 215
fault-system, 215–216
importance, 212
Southern California, 217–218
summary, 282

earthquake(s)
aftershocks, 214
engineering, 216–217
fault-system scale, 214
forecasting, 213
Izmit Turkey, 218
Landers, 218
microscopic scale, 214
Northridge, 218
particles, 215
regional fault-network scale, 214
science, 213–214
spatial scales, 214–215
tectonic plate-boundary scale, 215
temporal scale, 214

EasyMesh, 562
EDYS, 425
effective-energy simulated annealing,

657–658
defined, 657
parallelization, 658
simulated annealing vs., 658

EISPACK, 576, 582
basis, 587
defined, 587
See also dense linear algebra libraries

elemental matrix system, 106
elliptic mesh generation, 553–554
elliptic PDEs, 622

nonlinear, 631
time independence, 622
See also partial differential equations

(PDEs)
encapsulation, 393
engineering, parallel computing in, 8–9
enhanced oil recovery (EOR), 146
Enterprise Java Beans, 401
envelopes, 318–319
environment/energy parallel computing,

145–165
conclusion, 165
contaminant remediation, 145
coupled flow/transport simulation,

162–165
subsurface-flow modeling, 145, 146–152
summary, 280–281
surface-water simulation, 159–162

Enzo, 219, 222–224
development, 224
distributed objects, 224
Kronos and, 223
load balancing, 223
memory usage, 226
parallelization of, 223–224
pipelined communications, 224
SAMR, 219
simulation of primordial star formation,

225
sterile objects, 224
See also cosmological structure formation

(CSF)
error estimation and regridding, 140–141
Etnus. See TotalView
Euler equation, 122, 132

of motion, 133–134
numerical methods for compressible

flows, 132
Euler integration, 99
Euler-Newton method, 674

Index 803

event counting, 446–447
defined, 446
example, 449
on-chip hardware counters, 446, 447
See also correctness; performance

monitoring
event orders

illustrated, 452
time and, 452–453

event tracing, 448–450
defined, 448
disadvantage, 450
example, 450
instrumentation, 448
instrumentation example, 450
summary, 449–450
use of, 449
See also correctness; performance

monitoring
event-driven stimulations, 87–88
events, 59
exclusive access files (EAFs), 172
expansion coefficients, 109, 125
explicit parallelism, 296
expression templates (ETs), 389

factorizations
Arnoldi, 606–607, 613–616
Cholesky, 578–579
incomplete, 598–599
Lanczos, 607
LU, 577–578
multifrontal, 594
sum, 107

false sharing, 31, 65
fast multipole method (FMM), 230
fault-system scale, 214
fault-zone scale, 214
FELISA, 562
femmesh, 562
FFTW, 245, 646
Fibre Channel, 335
file systems, 335–336

CFS, 335
distributed/networked, 336
fast, using, 349

Gallery, 336
GPFS, 335
HFS, 336
PFS, 335, 336
PPFS, 336
PVFS, 336
SFS, 336
XFS, 336
See also parallel I/O

filtered back-projection, 262
fine-grained multithreading, 37–38
finite-volume, time-domain (FVTD)

procedure, 231
FIST, 562
floating-point pipeline, 21
floating-point unit (FPU), 17
flow algorithm, 555–557
flow-in porous-media problems, 146
fluid dynamics

basic equations, 94–95
See also computational fluid dynamics

Fock matrix, 180–181
folds

defined, 677–678
generic, 678
pseudo-arc length continuation past,

682
force interpolation, 221
The Force, 371
forces modeling and simulation (FMS),

266–267
characteristics, 266
meta-computing environment,

278
time-management regimes, 267

forward mode, 704, 717
differentiating with, 712
hybrid combination, 706
See also automatic differentiation (AD)

forward transform, 110
free-surface formulation, 209
full crossbar, 34
full matrix algorithms, 288
FUN3D, 643–644

average execution time, 644
control volume discretization, 643
parallel performance, 645

804 Index

Galerkin approximation, 101
Gallery parallel file system, 336
GAMS (Guide to Available Mathematical

Software), 487
gatekeeper components, 422
Gateway project, 421, 427–429

architecture, 428
custom chemistry front-end, 428
defined, 427
development, 429
tier implementation, 427–428
visualization subsystems, 428
See also WebFlow

Gauss elimination scheme, 696
Gauss-Lobatto Legendre (GLL)

interpolants, 103
Gauss-Lobatto points, 109
generalized Jacobi polynomials, 103
generalized mesh adaptation, 555–560

adaptation criterion, 558–560
flow algorithm, 555–557
h-refinement and de-refinement, 557
node movement, 557–558
See also adaptive mesh generation

generalized pattern search (GPS), 660–661
algorithm, 661
extension, 660
unsuccessful iterates of, 661
See also direct search methods

generalized wave continuity equation
(GWCE), 159

GENIE++, 562
GEOMESH/LaGriT, 562
geometric techniques, 496–501

coordinate nested dissection (CND),
496–497

recursive inertial bisection, 497–499
space-filling curve, 499–500
sphere-cutting, 500–501
See also graph partitioning

geometry
distance, 656–657
generation, 550
generation toolkit, 572
NURBS-based preparation, 551

ghost cells, 55

GiD, 562
GJK-engine, 562
Global Array (GA) Toolkit, 171, 174–176,

187
adoption of, 193
convenience routine, 175
defined, 174
features, 174
implementation, 175
matrix multiplication routine, 185
memory accessing using, 175
shared-memory Toolkit, 189
uses, 176
version 3.0, 193

global arrays, 175
global continuation, 658–659

defined, 658
degree theory and, 675–677
for distance geometry problems, 659
processor load, 659
See also continuation

global diffusion schemes, 522
global matrix system, 106
global optimization, 653–659, 669–670

cluster simulation, 656
distance geometry, 656–657
effective-energy simulated annealing,

657–658
global continuation, 658–659
problem, 653
protein folding, 655
research, 653
stochastic, 657
See also optimization(s); parallel

optimization
global pointers

CC++, 402
dereferencing, 402
HPC++, 401, 402
treatment of, 402

Global Positioning System, 10
global system

assembling, 115
computations, 115
local contribution to, 115
“skeleton” of discretization, 116

Index 805

Globus
computational grids constructed from,

410
defined, 440–441
Heart Beat Monitor (HBM), 441
Nexus communication library, 259
system comparison, 410
See also problem-solving environments

(PSEs)
GMRES, 641
GMSH (Geometry Mesh and Post

Processing), 563
Godunov method, 135, 137
GPFS, 335
GrACE framework, 142

defined, 142
SDDA, 142

Grand Challenge applications, 198, 571,
573

GRAPE architecture, 84
graph partitioning, 491–541, 727

adaptive, 516–525
algorithms, 492
CND, 496–497
combinatorial techniques, 501–506
combined schemes, 513
degree of parallelizability, 516
generalized formulation, 531–538
geometric techniques, 496–501
global views, 515
Kernighan-Lin/Fiduccia-Mattheyses

(KL/FM) algorithm, 503–506
levelized nested dissection (LND)

algorithm, 502–503
local view, 515
minimizing number of edges cut, 532
minimizing sum magnitude of edges

cut, 532
multiconstraint, 534–536
multiconstraint, multiobjective,

526–538
multilevel schemes, 509–513
multiobjective, 536–538
objective, 493
package functionality, 541
packages, 540, 541
parallel graph partitioning, 525–526

problem, 493, 495
problem formulation limitations, 538
rated, 514
recursive inertial bisection, 497–499
relative time requirement, 515–516
scheme comparison, 513–516
spectral methods, 506–508
static, techniques, 495–516

graph-coloring problem, 715
graphs

dual, 493
interprocessor communication costs of,

494
modeling mesh-based computations as,

493–495
node, 493
overlap, 500
subdomain connectivity, 523

Greedy algorithm, 119
Grid Application Development Software

(GrADS), 379
grid splitting, 224
grid-enabled CMT application, 264, 265
GridFTP, 39, 91
grids, 310–311

allocating, to processors, 142
coarse, update, 141
concepts and technologies, 310
displaced-pole, 211
generation, 485
hierarchy, composite distribution, 142
infrastructures, 311
refined, initialization of, 141

GridTool, 563
GRUMMP, 563

hardware, 4–8
counters, 446, 447
heterogeneous environments, 727–728
I/O, 348

Hardware Performance Monitor (HPM),
446

Hartree-Fock (HF) SCF method, 168, 170,
178, 180–182

Fock matrix, 180–181
open-shell Hartree-Fock (ROHF), 180

HD algorithm, 235

806 Index

HDF library, 338
Heart Beat Monitor (HBM), 441
Helmholtz equations, 100, 118
heterogeneous hardware environments,

727–728
HFS, 336
high I/O performance, 348–355

general guidelines, 348–349
with MPI-IO, 349–355
read, 353
results, 352–353
upshot graphs, 353–355
write, 354
See also parallel I/O

High Performance Fortran (HPF), 12,
303–304, 627

ALIGN directive, 362
analysis, 303
block data decomposition, 76
compilation, 365
compiler, 364
data-parallel programming in, 361–365
defined, 303, 361
DISTRIBUTE directive, 362
drawbacks, 365
fine-grained control, 362
formulation, 304
Forum, 365
INDEPENDENT directive, 364–365
Jacobi algorithm, 474
Jacobi algorithm convergence test, 479
layout specification, 362
products, 365
reductions in, 478
regular data structures and, 391
standard distribution patterns, 362
variables, 479
See also software technologies

high-level architecture (HLA), 267–268
defined, 267
distributed simulation view, 267
DMSO, 268–269
RTI software bus of, 268
run-time infrastructure (RTI), 267, 268

High-Performance Computing and
Communications (HPCC) initiative,
14

high-performance computing (HPC)
in CFD, 97–98
for CMS system, 273
market, 7
programs, 5
in signal and image processing, 243–249

high-resolution simulations, 211–212
Hilbert curves, 62, 162
HLA.NET, 280
HOMCONT, 687
Homotopy Invariance of Degree, 676, 677
homotopy problem, 672
Hopf bifurcations, 679, 692
horizontal diffusion, latitudinal scaling of,

210
HPC++, 305–306, 384, 407

collective operations, 398, 399, 400
defined, 397
execution model, 397
gather operation, 400
global pointer, 401, 402
invoking HPC++ programs, 401
Java impact on, 397
primitive synchronization objects,

398–399
“server” program, 401
synchronization, 398–401
synchronization classes, 399
threads, 398–401
typical MPI programs vs., 397
See also C++

h-refinement, 557
Hunt’s method, 237
hybrid molecular dynamics (HMD), 203
hybrid Monte Carlo algorithm (HMC),

204, 206
hybrid parallel formulation, 239–241

defined, 239
illustrated, 241
See also classification decision tree

hybrid/generalized meshes, 549–550
defined, 549
example, 549
See also mesh generation

hyperbolic conservation laws, 134–137
1-D equations, 134, 135
CFL criterion, 136, 137

Index 807

nonconservative form, 135
time accuracy, 136

hyperbolic generation system, 546–547
hypergraph partitioning model, 538

I/O
access pattern, 349
API, 338
application-level requests, 69
collective, 346–347
direct, 347–348
hardware, 348
latency, 337
libraries, 338
MPI, 69–70
nodes, 334, 335
parallel, 69–70, 331–355
for parallel processors, 38–39
performance, 331
speed as bottleneck, 332
two-phase, 346–347
for uniprocessors, 25–26
Unix interface, 337

IBG, 563
IDD algorithm, 235
IDL-to-HPC++ compiler, 402
IIOP, 91
ImmersaDesks, 260, 261
IMPES hydrology model, 148
implicit air-water model, 148
implicit black-oil models, 148
Implicit Function Theorem, 675
implicit hydrology model, 148
implicit parallelism, 296
implicit restarting, 609–610

costs, 610
defined, 609
information extraction, 609
on j-th block, 615

incomplete factorizations, 598–599
incompressibility constraint, 98, 99
incompressible flows, 93, 98–132

adaptive mesh refinement, 121–126
basic operations, 108–111
cylinder wake example, 129–132
data structures, 113–116
global matrix operations, 111–113

impulsively started, 122
parallel architecture implementation,

126–129
semi-discrete formulation, 99–100
solution techniques, 116–121
spectral element methods, 100–108
vorticity of, 121

incompressible Navier-Stokes equations,
98, 121

independent variables, 703
index set, 632
induction-based algorithms, 237
Infospheres system, 393
inspector, 62
instruction set architectures (ISAs), 18

execution by CPU, 18
VLIW, 36

instruction sets, 18
instruction-level parallelism (ILP), 36
instructions

complexity of, 20
compound, split, 39
explicitly parallel, 36
scheduling, 36

Integrated Parallel Accurate Reservoir
Simulator. See IPARS

interconnects, 33–35
as networks, 34
scalable coherent (SCI), 34–35

inter-grid operations, 141
internal combustion engine simulation

example, 529
interoperability, 11
interprocedural analysis and optimization,

360–361
interval timing, 447–448

defined, 447
first invocation, 448
for large-scale parallel systems, 448
See also correctness; performance

monitoring
inverse problems, 701
inverse transform, 110
IPARS, 416

with ADR, 146
air-water flow simulation, 149
black-oil simulation, 150

808 Index

IPARS (continued)
defined, 146, 416
description, 148–152
DISCOVER integration, 158
framework, 148
goal, 416
grid computing by NetSolve and,

152–155
grid-element-keyout capability, 151
interactive visualization and steering of,

158
interface, 155
keyout capability demonstration, 153
load balancing histogram, 152
motivation, 147
NetSolve integration, 153–154
physical models, 148–149
remote setting schematic, 156
tracking and interactive simulation,

155–158
tracking/steering with DISCOVER, 157
Web browser access, 154

irregular computations, 57
irregular problems

defined, 60
loosely synchronous, 289
subscripted index variables and, 62

Ising model, 84
iterative solution methods, 596–602

Krylov space, 596–598
libraries and standards, 600–602
preconditioners, 598–600
software, 602
stationary, 596
templates, 601–602
See also sparse linear algebra

Jacobi method, 76
convergence test, 479
defined, 470
HPF version of, 474
OpenMP, 476
for Poisson’s equation, 79–82
sequential version, 471

Jacobi polynomials, 104
Jacobian matrices, 674

after condensation of parameters, 697

products, 716
sparse, computing with know sparsity,

714–715
sparse, computing with unknown

sparsity, 716
structure, 696

Java, 407
array classes, 394
array section operators, 394
beans, 393
encapsulation, 393
impact on HPC++, 397
interfaces, 393
for Internet applications, 391
interprocess communication, 392
matmul method, 395
memory management, 392
multiple inheritance and, 393
numerics, 393
object-oriented parallel programming

in, 391–396
parallelism support, 392–393
scaling issues, 395–396
templates and, 393
threads, 392
VNC viewer, 436
write once, run everywhere, 391–392

Java Beans, 424
Java Grande, 393
Java RMI, 401–403

concept basis, 401
HPC++ global pointer interoperability,

403
JDIS, 270–271, 272

defined, 270
read/write PDUs, 270
sample screen, 272
visual front-end, 271
See also WebHLA

Jini, 401
Joint Direct Attack Munition (JDAM), 566
Jostle, 540, 541
JSIMS, 278
Jumpshot, 457, 458, 459–460

assessment, 460
event visualization, 458, 459–460
instrumentation and analysis, 459

Index 809

scaling mode, 459
See also software tools

JVM (Java Virtual Machine), 392, 393, 395
JWORB (Java Web Object Request Broker),

269
architecture, 270
defined, 269
See also WebHLA

KeLP (Kernel Lattice Parallelism), 646
Kernighan-Lin/Fiduccia-Mattheyses

(KL/FM) algorithm, 503–506
bisection quality, 505
bisection refined by, 504, 506
defined, 503
edge-cut reducing moves, 507
local minima and, 505
modification, 504
passes through vertices, 503
See also graph partitioning

Khoros, 248–249, 410, 420
Kolmogorov flows, 691–694

body force, 691
solutions bifurcating from, 692

Kronos, 220–222
code development, 220
Enzo and, 223
implementation, 221

Krylov space methods, 596–598
defined, 596
minimization, 597
parallelism in, 597–598
residuals, 597
symmetry and, 597
See also iterative solution methods

Krylov subspace, 605
k-step Arnoldi factorization, 607
k-step Lanczos factorization, 607
k-way partitioning, 495

Lagrange basis polynomials, 694
Lagrange multipliers, 668
LaGriT, 563
Landscape Management System (LMS),

424–426
CASC2D, 425
defined, 424

EDYS, 425
implementation activities, 424–425
PSE, 425
See also WebFlow

language/compiler
conclusion, 379–380
design goals, 357–358
future trends, 378–379
problem solving, 358
supporting technologies, 377–378

language-based parallel I/O, 339
LAPACK, 190, 576, 582–583

capabilities, 588
concept, 583
defined, 588
development, 582
factorization, 589
goal, 588
parallelism in Level-3 BLAS, 619
uses, 588–589
See also dense linear algebra libraries

latency
floating-point operations, 625
hiding, 48
I/O, 337
local memory operations, 625
memory, 22, 23, 42
remote memory, 625
tolerance, 49

lattice QCD
calculations, 200
calculations starting point, 201
computations, 200, 206
defined, 200
error estimates, 206
lattice, 201
plaquettes, 201
See also quantum chromodynamics

(QCD)
lattice QCD simulations, 199–207

beginning of, 201
computational requirements, 204–205
discretization effects, 205
future prospects, 206
implementation considerations,

205–206
quark masses, 205

810 Index

lattice QCD simulations (continued)
recent developments, 206
setup, 201–204
summary, 282
zero lattice spacing, 205

Legendre polynomials, 103–104, 125, 126
Legion, 441
Level-1 BLAS, 584, 594
Level-2 BLAS, 580, 584, 585, 586
Level-3 BLAS, 580, 586

defined, 584
exploiting speed of, 579
floating-point operations, 584
kernels, 594
matrix-matrix operations, 585
See also BLAS

levelized nested dissection (LND), 502–503
defined, 502
graph partitioned by, 502
performance, 503
poor quality partitions, 503

libraries, 378
ARMCI, 175
Aztec, 601
Blitz++, 384
data structure, 384
data-structure-neutral, 485
EISPACK, 576, 582, 587
HPC++, 305–306, 384
LAPACK, 576, 582–583, 588–589
LINPACK, 576, 581, 582, 587–588
message-passing, 321
MTL, 384
netCDF, 338
object-oriented, 383–407
Panda, 338
parallel I/O, 338
PASSION, 338
PETSc, 601, 612
POOMA, 305–306, 307, 384–391
portable, 12
programming support, 378
reusable parallel, 484
ScaLAPACK, 576, 582–583, 589
SOLAR, 338
standard, 485–486
STL, 383

linear algebra, 189
numerical, 487–489, 575–620
operations, 576
sparse, 590–591

linear algebra algorithms, 487–489
designing, 488
performance, 583
See also dense linear algebra algorithms

linear combination of vectors operation,
716

linear elliptic example, 630–631
linear term, 98
LINPACK, 576, 582

column-oriented algorithms, 587
defined, 587
organization, 587

load balancing, 44, 57–59, 485
of adaptive computations, 516–525
defined, 44
diffusive, 522
dynamic, 58–59, 516
Enzo, 223
in force calculation, 62
parallel mesh generation, 561
poor, 58

load operations, 20
load/store unit, 17
local continuation, 673–675

defined, 673
methods, 674
new methods, 675
See also continuation

local diffusion schemes, 522
local mesh refinement, 131
local optimization, 651–653
locally matched multilevel scratch-remap

(LMSR), 522, 525
locking, 326
locks, 31
loop rearranging, 577
loosely synchronous mode, 88, 89

irregular, problems, 289
problems, 288–289

LU factorization, 577–578
LUCUS, 417

Mach number, 96

Index 811

macromolecular modeling, 650
massively parallel processor (MPP) systems,

5, 10, 28, 168
Mathematica, 619, 620
mathematical abstractions, 632–633

data objects, 632
levels, 629

MATLAB, 247–248, 379, 619, 620
code, parallelizing, 247–248
compiler, 248
defined, 248

matrices, 632
matrix elements, 581
matrix orderings, 592–594

Cuthill-McKee, 592
minimum degree, 593
multifrontal factorization, 594
nested dissection, 593
See also direct solution methods

matrix reordering, 531
MAXV, 517–518
Maxwell’s equations, 196
MCell, 416
MDS, 660
memory

bandwidth, 22, 33
banks, 32, 581
cache, 24, 230
coherence problem, 324
consistency, 30–31
distributed, 4, 5, 27–28
DRAM, 23–24, 41
latency, 22, 23
low-latency, 42
optimizations, 120
parallelism, 26–33
PRAM, 33
protection, 22
shared, 4, 28–30
size, 22
speeds, 19
SRAM, 23, 24
system performance, 33
uniprocessor, 16, 21–25

memory access, 19, 22
ISA and, 19
remote (RMA), 39

memory hierarchies, 22, 24, 47–49
design, 47–49
local management, 66
management, 63–66
multilevel nature of, 48
multiprocessor, 65–66
performance, 44, 48
uniprocessor, 48
uniprocessor management, 63–65
utilization, 230

memory interface, 18
memory-to-memory operations, 20
mesh2d, 563
mesh adaptation, 552–560

generalized, 555–560
node movement and, 557–558
structured, 552–554

mesh configurations, 564–567
Chimera, 565
generalized mesh, 566
hybrid mesh, 566
JDAM, 568
particle trace, 565
SR-71 mesh, 567

mesh generation, 124, 486, 543–573, 727
adaptive, 552–560
algebraic, 545
automatic, 561
as boundary-value problem, 545
Cartesian, 544
computational mapping, 550
computational modeling, 550
defined, 543
elliptic PDEs for, 545
facets, 544
geometry generation, 550
hybrid/generalized, 549–550
with hyperbolic generation system,

546–547
initial stage of, 122
meshless methods, 550
needs, 543
operation, 543
parallel, 560–561
problem, 124
process, 550–551
requirements, 550

812 Index

mesh generation (continued)
research vision, 570
side effect, 127
software, 561–564
strategies and techniques, 544–550
structured, 544–547
systems, 571
time requirement, 543
toolkit, 572
unstructured, 547–549
See also adaptive mesh

mesh software, 561–564
3DMAGGS, 564
ADMesh, 561
automatic mesh generation of

CAD/discrete data models, 561
BAMG, 561
CAGI, 561
CAMINO, 562
EAGLE, 562
EAGLEView, 562
EasyMesh, 562
FELISA, 562
femmesh, 562
FIST, 562
GENIE++, 562
GEOMESH/LaGriT, 562
GiD, 562
GJK-engine, 562
GMSH (Geometry Mesh and Post

Processing), 563
GridTool, 563
GRUMMP, 563
IBG, 563
LaGriT, 563
mesh2d, 563
Mesh-Maker, 563
Meshme3D, 563
MG (Mesh Generator), 563
NCSA MinMaxer Overview, 563
NGP (National Grid Project), 563
PMAG (Parallel Multiblock Adaptive

Grid System), 563
Qhull, 564
QMG, 564
SD (Super Delaunay), 564
SolidMesh, 564

TIGER, 564
UNAMALLA, 564
VGM (Volume Grid Manipulator), 564

mesh websites, 567–568
mesh(es)

2-D irregular, 491, 492, 493
adaptive, 121–126
AMR, 143
Cartesian, 544
coarse, 139
hybrid/generalized, 549–550
multiple, 529–530
overlapping, 534
structured, 544–547
unstructured, 547–549
well-shaped, 500

meshless methods, 550
Mesh-Maker, 563
Meshme3D, 563
message passing

ARPACK, 616–617
defined, 471
distributed-memory model and,

470–472
Message Passing Interface (MPI), 12, 298,

315–322
analysis, 298
collective operations, 321–322, 477–478
communication routines, 319
communicators, 316–318, 321
datatypes, 319, 343
defined, 298, 316
envelopes, 318–319
extensions, 322–323
Forum, 315, 339
handles, 316
language bindings, 316
modular program support, 323
MPI-2, 322–323
MPI_COMM_RANK function, 316, 317, 318
MPI_COMM_SIZE function, 316, 317, 318
MPI_FILE_OPEN function, 340
MPI_FILE_READ function, 341–342
MPI_FILE_SEEK function, 340
MPI_FILE_SET_VIEW function, 343
MPI_FINALIZE function, 316, 317, 318
MPI_INIT function, 316, 317, 318

Index 813

MPI_RECV function, 316, 317, 318
MPI_SEND function, 316, 317, 318
nonblocking communication

operations, 319–321
program implementation, 298, 299
simple, 320
six functions, 316, 317, 318, 320
standard, 315, 318
state of the art, 323
success, 323
summary, 323
See also software technologies

message-passing libraries, 321
message-passing model, 314–323

bandwidth and, 315
collective operations, 314
defined, 44, 51
example, 55–56
implementation, 314
merging with multithreading styles,

329
parallel bugs, 67
with parallel programming, 329
for point-to-point communication, 314
software overhead, 315
strengths, 314
use of, 314

meta-problems, 90–91
as basic complex systems, 90
examples, 90
linked modules in, 91

method of moments (MoM), 229, 578
Metis, 540, 541, 594
Metropolis algorithms, 202
MG (Mesh Generator), 563
MGNet, 646
microscopic scale, 214
MIMD Lattice Calculation (MILC)

Collaboration, 205
minimum-degree ordering, 593
modeling and simulation (M & S)

DoD, 266
forces, 266–267

modified Gram Schmidt process (MGS),
608

ModSAF vehicle simulator, 272, 273, 276
molecular dynamics codes, 61–62

molecular orbitals, 170
molecular quantum chemistry, 168–171,

281
Monte Carlo algorithms, 202

hybrid (HMC), 204, 206
power (PMC), 256
power quasi- (PQMC), 256

Monte Carlo methods (MCMs), 84, 85, 87,
203, 249–258

basis, 250
defined, 249
effectiveness, 249
enhancing convergence of, 252
Markov-chain-based, 256
as “naturally parallel,” 256
parallel efficiency, 258
PRNs, 250
QRNs, 250–256
quasi, 250, 256–258
state of the art, 258
statistical sampling basis, 249
summary, 283–284
variance reduction, 251

Moore’s Law, 3, 4
defined, 16
parallel computing and, 7
peak computer performance and, 5
Top500 list growth rates comparison, 6

motion equations, 133–134
conservation form, 133
deriving, 133
pressure, 134

MPC++, 396
MPI-2, 322–323
MPI Forum, 315, 339
MPI_COMM_RANK function, 316, 317, 318
MPI_COMM_SIZE function, 316, 317, 318
MPI_FILE_OPEN function, 340
MPI_FILE_READ function, 341–342
MPI_FILE_SEEK function, 340
MPI_FILE_SET_VIEW function, 343
MPI_FINALIZE function, 316, 317, 318
MPI_INIT function, 316, 317, 318
MPI-IO, 69–70, 333

access patterns, 349–350
background, 339
Committee, 339

814 Index

MPI-IO (continued)
consistency and atomicity semantics,

343
data-access function support, 342
features, 342–343
high I/O performance with, 349–355
hints mechanism, 347
implementations, 343–344
info, 342
MPI data types, 343
multiple data-storage representation

support, 342
noncontiguous accesses in, 343
overview of, 339–344
PMPIO, 344
ROMIO, 343–344
simple example, 340–342
using, 349

MPI_RECV function, 316, 317, 318
calls to, 319
defined, 317

MPI_SEND function, 316, 317, 318
MTL, 384
MUDPACK, 646
multiconfiguration self-consistent field

(MCSCF), 168
multiconstraint, multiobjective graph

partitioning, 526–538
balancing computation/memory and,

533
defined, 526
generalized formulation, 531–538
multiconstraint, 534–536
multiobjective, 536–538
multiphase simulations, 527–529
multiphysics simulations, 526–527
See also graph partitioning

multiconstraint graph partitioning,
534–536

algorithms, 534
ham-sandwich theorem, 534
multilevel scheme, 535
parallel formulation, 535–536
See also graph partitioning

multidisciplinary analysis (MDA), 664
defined, 664
equations, 665

system problem, 664
multidisciplinary design and analysis

optimization (MDAO), 570
multidisciplinary design optimization

(MDO), 663
defined, 663
problem, 663, 665, 666
recent work, 665

multilevel diffusion algorithms, 523
multilevel k-way partitioning, 512–513

algorithm availability, 513
defined, 512–513

multilevel recursive bisection, 511–512
algorithm availability, 512
defined, 511–512

multilevel schemes, 509–513
defined, 509
heavy-edge matching, 510
with KL/FM refinement, 516
k-way partitioning, 512–513
paradigm, 510
partitioned graph, 511
recursive bisection, 511–512
three phases, 509
vertex matchings, 509

MultiMATLAB, 248
multimesh computations, 529–530

computing decompositions for, 533
multiple mesh occurrences and, 529

multiobjective graph partitioning,
536–538

challenge, 537
Pareto frontier, 536–537
Pareto optimal points, 536
problem reformulation, 537
See also graph partitioning

multiphase simulations, 527–529
computations, 527
defined, 527
internal combustion engine example,

529
particle-in cell computation mesh, 528
See also multiconstraint, multiobjective

graph partitioning
multiphysics simulations, 526–527
multiple-instruction multiple-data

(MIMD), 40, 360

Index 815

multiprocessor memory-hierarchy
management, 65–66

communication minimization and
placement, 65–66

elimination of false sharing, 65
synchronization, 65
See also memory hierarchies

multithreaded programming, 323–328
advantages/disadvantages, 313
implementation, 314
with message passing, 329
OpenMP, 327–328
POSIX threads, 325–327

multithreading, 37–38
fine-grained, 37–38
simultaneous (SMT), 37

munitions simulations, 246
MUSCL scheme, 135

Navier-Stokes equations, 95
compressible, 132
in dimensionless coordinates, 690
discrete solutions, 100
incompressible, 98, 121
pressure, 121
solution using spectral element methods,

108
steps in solving, 100

Navier-Stokes flows, 690–691
NCSA MinMaxer Overview, 563
neighborhood system, 500
nested dissection, 593, 696

final state after, 700
initial state, 697

.NET, 278–280
C#, 279–280
defined, 278
HLA.NET, 280
integrated suite, 278
Remoting, 279

netCDF library, 338
NetSolve, 146, 410, 411–418

agent, 154, 417
agent technology, 410
client interfaces, 154, 412–415
code generator, 154
computational server, 415

current developments, 417–418
defined, 152, 410
development, 152
dynamic server-software enhancements,

417
enhancements/upgrades, 412
environment, 152
fault tolerance, 418
future, 417–418
goal, 412
grid computing by, 152–155
GUI, 413
history, 411
infrastructure, 412–415
interface functions, 413
interfaces, 411
invocation, 412
IPARS integration, 153–154
Java API, 413
PDFs, 154, 415
philosophy, 412
problem-description file (PDF), 154
request sequencing, 418
software availability, 412
system illustration, 413
Win32 servers, 418
See also problem-solving environments

(PSEs)
NetSolve applications, 416–417

DIPS, 417
IPARS, 416
LUCUS, 417
MCell, 416
SCIRun, 416

Network Enabled Optimization System
(NEOS), 659

network-attached storage devices (NASD),
335

networking
for parallel processors, 38–39
for uniprocessors, 25–26

Neumann boundary conditions, 100
Newton-Chord iteration, 695
Newton-Krylov-Schwarz methods,

641–643
defined, 641
preconditioner quality, 642

816 Index

Newton-Krylov-Schwarz methods (contin-
ued)

pseudo-time stepping with, 644
sample script, 642

Newton’s method
advantage, 674
cost, 675
truncated, 653

NGP (National Grid Project), 563
NHSE (National High-Performance

Software Exchange), 646
Ninf, 441
node graphs, 493
node movement, 557–558
nonbaryonic matter. See dark matter
nondeterminism, 309
nonlinear PDEs

coarsened calling tree, 636
discretized steady-state, 635
example, 631
implicit solution, 635–639
See also partial differential equations

(PDEs)
nonlinear programming, 665
nonlinear terms, 98

computation of, 100
skew-symmetric form, 100

nonuniform memory access (NUMA), 30,
174, 633

cache coherent (CC-NUMA), 30
data layout sensitivity, 30
nature of parallel processors, 181

nonuniform rational B-spline (NURBS),
551

common data structure, 569
geometry preparation, 551
for modeling geometric entities, 569

norm continuation, 682
nuclear magnetic resonance (NMR), 650
numerical algorithms, 621
numerical linear algebra, 487–489,

575–620, 727
numerical relativity, 195–199

characteristics, 196–197
current situation, 197–199
defined, 195
Grand Challenge project, 198

gravitational constant, 196
interior boundary condition, 197
summary, 281–282

NWChem
architecture, 168, 171–174
architecture illustration, 172
changes, 192–193
chemistry modules, 178–186
in computational chemistry community,

186–188
computational infrastructure, 171
conclusion, 192–193
contributions, 187
defined, 168
development, 192
ELIP, 173
fundamental tasks, 171
Global Array (GA) Toolkit, 171, 174–176,

187
goal, 186
HF SCF module, 180–182
integral-evaluation module, 173
mixed quantum-mechanics and

molecular-mechanics (QM/MM), 180
molecular-simulation functionality, 180
parallel computing support, 174–178
ParIO module, 172–173
PelGS, 176–178
programming environment, 171
quantum-molecular dynamics

simulation, 180
RI-MP2, 178, 182–186
run-time database (RTDB), 172
scalable modules, 168
SCF method implementation, 171
semi-direct algorithm, 181
summary, 281
umbrella modules, 173–174
See also Chemistry

object-oriented parallel libraries, 384–391
abstraction, 384–386
conclusion, 406–407
encapsulation, 387–388
example, 389–391
generic programming, 388–389
parallelism, 386–387

Index 817

POOMA, 384–391
success factors, 407

object-oriented programming, 297, 383
with C++, 396–401
with Java, 391–396
parallel, 391–396

ocean modeling, 9, 207–212
code for parallel computers, 211
free-surface formulation, 209
general orthogonal coordinates, 211
high-resolution simulations, 211–212
latitudinal scaling of horizontal

diffusion, 210
pressure averaging, 210
summary, 282
surface-pressure formulation, 208–209

ODYSSEE, 708, 711
open source, 728
OpenMP, 79, 87, 301–303, 327–328

analysis, 303
annotations, 328
defined, -2
fork/join block, 327
formulation, 302
Jacobi algorithm, 476
Jacobi algorithm convergence test, 479
LASTPRIVATE clause, 368
locks, 368
multithreaded programming and, 475
PARALLEL DO directive, 366, 368, 373
PARALLEL region, 327
PARALLEL SECTIONS directive, 367
parallelism in, 302
p-threads vs., 327
REDUCTION clause, 367
reduction mechanism, 367, 478–479
SECTIONS directive, 368
shared-memory parallel programming

in, 366–370
specifying parallelism in, 366
summary, 328
synchronization, 328
threads, 327–328
for uniform-access, shared-memory

machines, 370
variable sharing, 479
See also software technologies

operations
basic, 108–111
collective, 69–70, 314, 321–322, 477–478
communication, 711–713
dense matrices, 576
floating-point, 20
with floating-point numbers, 480
global matrix, 111–113
linear algebra, 576
linear combination of vectors, 716
load, 20
memory-to-memory, 20
nonblocking communication, 319–321
parallel prefix, 222
reduction, 373, 714
scatter/gather, 637
segmented scan add, 222
segmented scan copy, 222
store, 20
synchronization, 326–327

operator overloading, 708
OPTIMA, 708
optimization(s)

collaborative (CO), 666
constrained problems, 666–669
design, 701
global, 650, 653–659, 669–670
interprocedural, 360–361
of linked subsystems, 663–666
local, 651–653
memory, 120
multidisciplinary design (MDO), 663
parallel continuous, 486, 649–670
parallel I/O, 344–348
problems, 650

orbits
connecting, 687
homoclinic, 687

ordinary differential equation (ODE)
five-variable model, 688
methods, 674
numerical bifurcation analysis, 687
time-scaled, 687

orthogonal collocation method, 694
overlap graphs, 500
Overture, 646
“owners-compute” rule, 77

818 Index

OWRTI (Object Web RTI), 269–270
architecture, 271
defined, 269–270
See also WebHLA

padding, 65
page swapping, 581
Panda library, 338
parabolic PDEs, 622
parallel algorithms

in data mining, 232–243
for discovering associations, 233–236
for induction of decision-tree classifiers,

236–242
parallel and distributed event-driven

simulations (PDES), 266, 267
parallel architectures, 26–42

dependence, 15
design tradeoffs, 39–40
future directions, 40–41
I/O and networking, 38–39
incompressible flow implementation,

126–129
interconnects, 33–35
memory parallelism, 26–33
programming model support, 15, 39

Parallel BLAS (PBLAS), 616
parallel CMS, 274–278

approach, 274
architecture, 274–275
node simulation time, 276
performance, 275–278
scalable implementation, 274
speedup, 275, 277
timing results, 275
WebHLA environment supporting, 278
See also comprehensive mine simulator

(CMS)
Parallel Computer Forum, 366
parallel computing

architectures, 15–42
in chemistry, 167–194
in computational fluid dynamics (CFD),

93–144
continuing success of, 82
engineering, 8–9
in environment and energy, 145–165

hardware, 4–8
Moore’s Law and, 7
organization schematic, 27
poor performance, 12
programming burden and, 3
scalable, 4
science, 8–9, 13–14
as vision, 3

parallel debugging, 44, 66–67
criteria, 66
defined, 66

parallel direct-search (PDS) method, 650,
659

asynchronous (APDS), 662–663
defined, 659

parallel efficiency, 256
Parallel ELLPACK, 646
Parallel File System (PFS), 335, 336
parallel global continuation software

(DGSOL), 650
parallel graph partitioning, 525–526

initial graph distribution and, 526
schemes, 525
See also graph partitioning

parallel I/O, 69–70, 331–355
access pattern, 349
API problem, 336–338
architecture, 334–335
collective, 346–347
conclusion, 355
data sieving, 344–346
defined, 69, 331
direct, 347–348
disk architecture, 333–334
file systems, 335–336
high, performance, 348–355
hints and adaptive file-system policies,

347–348
infrastructure, 333–339
language-based, 339
libraries, 338
MPI I/O, 336
optimizations, 344–348
problem, 69
PVFS, 336
research, 331
in scientific computing, 331

Index 819

two-phase, 346–347
parallel loop programming, 52–53
parallel mesh generation, 560–561
Parallel Object-Oriented Methods and

Applications. See POOMA
Parallel Ocean Program (POP), 207
parallel optimization, 649–670, 727

conclusion, 669–670
direct search methods, 659–663, 670
global, 650, 653–659, 669–670
linked subsystems, 663–666
local, 651–653
sequential efficiency, 649
variable and constraint distribution,

666–669, 670
parallel port, 405
parallel prefix operations, 222
Parallel Problems Server, 248
parallel programming, 11, 43–71

challenge, 43
Co-Array Fortran, 304–305
complexity, 44
component models, 306
data parallelism vs. task parallelism,

295–296
decision rules, 308
design pattern concept and, 484
distributed-memory systems, 47
example, 54–56
explicit vs. implicit parallelism, 296
further reading, 70–71
High Performance Fortran (HPF),

303–304
hybrid, 47, 306
implementation styles, 51–54
input/output, 69–70
memory hierarchy, 47–49
memory-hierarchy management and,

63–66
Message Passing Interface (MPI), 298
models, 51, 295–297
OpenMP, 301–303
paradigms, 297
parallel debugging and, 66–67
parallel loop, 52–53
Parallel Virtual Machine (PVM), 298–300
parallelizing compilers, 301

performance analysis and tuning, 67–69
performance and, 56–63
POOMA and HPC++, 305–306, 307
productivity, 311–312
p-threads, 301
recursive task, 54
shared memory vs. distributed memory,

296–297
shared-memory systems, 45–46
SPMD, 53–54
support tools, 377–378
technologies, 297–307

parallel programs. See software
parallel random access memory (PRAM),

33
parallel search

defined, 684–685
illustrated, 685

Parallel Tools Consortium, 457
Parallel Virtual File System. See PVFS
Parallel Virtual Machine (PVM), 298–300

analysis, 299
applications, 322
defined, 298
formulation, 300
message-passing primitives, 322
resource management and process

control functions, 299
task identifiers (tid), 322
“virtual machine,” 298
See also software technologies

parallelism, 35
asynchronous, 59
bandwidth and, 40
bandwidth problems and, 40
data, 50, 295–296, 361
decomposing programs for, 49–56
explicit, 296, 476
identification, 49–50
implicit, 296
independent, 288
instruction-level (ILP), 36
in iterative method, 597–598
memory, 26–33
in OpenMP, 302
pipeline, 59–60
shared-memory, 475–476

820 Index

parallelism (continued)
task, 50, 188, 295–296
throughput and, 40
wavefront, 60, 61

parallelizing compilers, 301
PARASOL, 646
Pareto frontier, 536–537

defined, 536
illustrated, 537

Pareto optimal points, 536
ParIO module

disk-resident arrays (DRAs), 172
exclusive access files (EAFs), 172
shared files (SFs), 173

ParMetis, 540, 541, 594
P_ARPACK, 603

codes, 612, 618
defined, 610
features, 611
implementation of, 618
internal scalability, 617
parallel performance, 613
testing, 618
use of, 603
See also ARPACK

partial differential equations (PDEs), 86
background, 622–623
conclusion, 647
discretized, 590
elliptic, 545, 622
explicit methods, 623
grids for, 649
implicit methods, 623
nonlinear, 635–639
parabolic, 622
parallel computation challenges,

623–627
parallel solution strategies, 627–628
performance issues, 640–645
PETSC approach, 628–645
scalable solution software, 621–647
simulations, 624, 627
software, 645–646
software complexity and, 624
software for scalable solution of, 486
solution, 545
uses, 621

particle-mesh (PM) algorithm, 221
partitioned tree construction, 239
partitioning

algorithms, 492
computation, 494
eight-way, subdomains, 528, 530
for high-performance scientific

simulations, 491–541
k-way, 495
min-cut problem, 494
rectangular mesh, 630
vertices, 493
See also graph partitioning

Party, 540, 541
PASSION library, 338
path following, 671–700, 727

computational problems parameters,
672

conclusion, 699
practical, 679–683

paths
convergence cone, 683, 684
orientation, 682
perturbed bifurcation, 686
regular, 677

pC++, 396
PCE-QUAL-ICM, 146

computation, 161
defined, 160
space-filling curve based domain

decomposition, 161
See also CE-QUAL-ICM

PCF Fortran, 366
PCF/X3H5 standard, 366
PCP (Performance Co-Pilot), 456, 458
PDE software, 645–646

DAGH, 645
Diffpack, 645
DOUG, 645
FFTW, 646
KeLP, 646
MUDPACK, 646
Overture, 646
Parallel ELLPACK, 646
PARASOL, 646
PETSc, 646
POOMA, 646

Index 821

SAMRAI, 646
UG, 646
VECFEM, 646
See also partial differential equations

(PDEs)
PDUDB, 271–272

defined, 271
sample screen, 272
visual front-end, 271
See also WebHLA

Peano-Hilbert space-filling curve, 500
PelGS, 176–178, 190

defined, 176
distribution, 177
features, 177
performance, with tridiagonal matrix,

178
in sequential mode, 177
See also NWChem

PELLPACK, 429–440
defined, 429, 430
graphical tools, 431
interface, 430
invoking, 436
language processor, 430
password entry for, 434
PDE language, 430
problem-definition files, 432
software, 436
top level window, 434

PELLPACK sessions
illustrated, 435
initiation, 429
termination, 435
WebPDELab during, 433

performance
bottlenecks, 445
caches and, 25
computer architecture influence on,

580–583
cosmological structure formation (CSF),

224–227
CPU, 16, 17
enhancing, 56–63
high, need for, 294
I/O, 331
improvement, 378

issues affecting, 12–13
memory hierarchy, 44, 48
memory system, 33
modeling, 309–310, 455–456
parallel CMS, 275–278
parallel program, 295
PDE simulation, 640–645
poor, 12
portability, 626, 725
prediction, 455–456
problem sources, 445
problems, 69
programming and, 56–63
tuning cycle, 68

performance monitoring
approaches, 445
basics, 444–451
compiler integration and, 453–456
event counting, 446–447
event orders and, 452–453
event tracing, 448–450
implementation challenges, 451–453
interval timing, 447–448
overhead, 452
profiling and program-counter sampling,

445–446
timing and, 451

performance tuning, 443–467
challenges, 466
conclusion, 466–467
as iterative process, 445
software tools, 456–466
See also debugging

period-doubling bifurcations, 688, 689
perturbed bifurcation

defined, 685
paths, 686
See also bifurcations

PETSc, 601, 612, 628–645
data formats, 632
data structures, 632
defined, 621, 646
dense representation, 632
guiding design principles, 634–635
index set, 632
libraries organization, 633
matrices, 632

822 Index

PETSc (continued)
new features, 640
object data, 634
sample application, 631
solver classes, 633
subroutines, 635
two-way interfaces, 640
vectors, 632

PHiPAC, 644
physical address space, 22
pipeline parallelism, 59–60
pipelined communications, 224
pipelining

defined, 20, 51, 59
floating-point, 21

Pittsburgh Supercomputing Center (PSC),
227

Plant’s model, 688–689
bifurcation diagram, 689
defined, 688
form, 688

plaquettes, 201
pleasingly parallel mode, 89
PMAG (Parallel Multiblock Adaptive Grid

System), 563
PMPIO, 344
point Jacobi preconditioner, 117
Poisson problem, 469–480

Co-Array Fortran formulation, 305
HPF formulation, 304
mathematical model, 469–470
message passing interface (MPI), 299
OpenMP formulation, 302
PVM formulation, 300

Poisson’s equation, 75
communication structure, 78, 79–82
in field solve phase, 221
Ising model and, 84
Jacobi’s method for, 79–82
one space dimension of, 101

POLYRED, 686
POOMA, 305–306, 307, 384–391, 406

analysis, 306
Array abstraction in, 387
arrays, 389
code, 389–390
code example, 305–306

componentization, 403
data layout tools, 388
defined, 305, 384, 646
example, 389–391
fields, 388–389
framework, 384, 386, 387
high-level physics-based abstractions,

388
Jacobi iteration code, 307
kernels, 387
library illustration, 385
representation in, 385
SMARTs with, 387
summary, 406
See also software technologies

POP, 211
benchmark tests, 212
high-resolution simulations enabled by,

211–212
on CM-5, 212

portability
algorithms and, 12
performance, 626, 725
price, 11

Portable, Extensible Toolkit for Scientific
Computation. See PETSc

portable libraries, 12
porting, 9
POSIX threads. See p-threads
POWER FORTRAN Accelerator (PFA), 616
power Monte Carlo (PMC), 256
power quasi-Monte Carlo (PQMC), 256
PPFS, 336
PPM scheme, 135
Prandtl number, 96
preconditioners, 598–600

analytically inspired, 599–600
defined, 598
domain-composed, comparison, 643
“fast solver” as, 599
incomplete factorizations, 598–599
requirements, 598
simple, 598
See also iterative solution methods

Predator system, 245
pressure averaging, 210
PRIVATE statement, 55

Index 823

problem-description files (PDFs), 154, 415
defined, 415
PELLPACK, 432
See also NetSolve

problem-solving environments (PSEs),
147, 312, 379, 409–442

ARCADE, 442
computational resources and, 725
conclusion, 442
CONDOR, 441
defined, 409
Globus, 440–441
illustrated, 726
interface, 725
interface support, 410
Khoros, 248–249, 410
Legion, 441
LMS project, 425
Ninf, 441
PELLPACK, 429–440
subsystems, 410
toolkit, 410
UNICORE, 441–442
WebSubmit, 442
well-constructed, 726

processors
allocating grids to, 142
consistency, 31
parallel vector, 32
remote, 65
SMP, 45–46
superscalar, 35–36
vector, 32

profiling, 445–446
program initialization and, 446
tools, 457

program counter (PC), 18
defined, 19
sampling, 445–446

programming
classic environment, 726
component, 640
high-level, systems, 379
nonlinear, 665
object-oriented, 297, 383
productivity, 311–312
support for Computational Grid, 379

support tools, 377–378
Programming Environment and Training

(PET), 424
programming models, 51

message-passing, 44, 51
shared-memory, 44, 51

projections, 109–110
protein folding, 655
pseudo-arc length continuation, 681, 682

defined, 681
illustrated, 682
upon discretization, 695
See also continuation

pseudorandom numbers (PRNs), 250
defined, 250
Markov chains realization using, 257
QRNs vs., 252–253
replaced with QRNs, 251
uniform distribution of points and, 250

pseudo-time stepping, 631, 644, 645
p-threads, 301, 325–327

condition variables and, 326–327
defined, 325
local storage, 326
OpenMP vs., 327
programs, 325
synchronization operations, 326–327
termination, 326
See also threads

PVFS, 336

Qhull, 564
QMG, 564
QR algorithm, 605
quadratically convergent algorithm, 190
quantum chromodynamics (QCD), 86

defined, 200
“exotic matter” existence, 200
interactions, 200
lattice, 200
lattice, simulations, 199–207
nonperturbative solution, 201
QED vs., 200

quantum electrodynamics (QED), 199,
200

quantum simulations, 426–427
characterization, 426

824 Index

quantum simulations (continued)
functional architecture, 427
goal, 426
module execution, 427
WebFlow composition tool, 428
See also WebFlow

quasi-Monte Carlo, 250, 256–258
parallelizing, 257
power, 256, 257

quasi-random numbers (QRNs), 250
accelerated convergence of, 250
defined, 250
fundamental problem, 255
generation methods, 252–254
generation software, 255
mathematical motivation, 251
parallel generator, 250
parallel streams of, 255
PRNs vs., 252–253
replacing PRNs with, 251
sequences, splitting, 250
state-of-the-art generators, 255–256
structured nature, 255
uniform distribution of points and, 250
use motivation, 250–252
See also Monte Carlo methods (MCMs)

races, 66–67
dependencies, 52
RAW, 50
WAR, 50
WAW, 50

radar cross section (RCS) codes, 247–249
radar cross section (RCS) prediction, 227

asymptotic methods for, 228
scattering phenomenon, 228
See also computational electromagnetics

(CEM)
radar propagation code, 246–247
Rao-Wilson-Glisson (RWG) basis function,

230
read-after-write (RAW) race, 50
Real World Computing Project (RWCP),

396
real-time visualization environment, 265
reconstruction

algorithm, 260

challenge, 260–262
interleaved, 260
multiple, performing, 263
programs, 262
projection alignment and, 262
strategies, 262–263
See also computed microtomography

(CMT)
recursive bisection, 495

diffusion schemes, 523
multilevel, 511–512

recursive inertial bisection (RIB), 497–499
bisection computed by, 499
defined, 498
See also graph partitioning

recursive task programming, 54
reduced instruction set computer (RISC),

18
reduction operations

Co-Array Fortran, 373
differentiation of, 714

redundant arrays of inexpensive disks
(RAID), 38

regional fault-network scale, 214
registers, 18, 20
regular paths, 677
regular problems, 60
release consistency, 31
remote memory access (RMA), 39
remote processors, 65
repartitioning

approaches, 518
cut-and-paste, 518
diffusion-based, 522–525
incremental method, 521
scheme illustrations, 519
scratch-remap, 518–522

reservoir simulation, 146, 158
reshock, 138
restarting

Arnoldi process, 608–609
defined, 609
explicit, 609
implicit, 609–610

reusable software, 483–490
automatic differentiation (AD), 486–487
conclusion, 489–490

Index 825

design patterns, 483–484
libraries, 484–486
templates, 484, 487–489

reverse mode, 704
checkpoint-based illustration, 719
checkpointing for, 717–719
differentiating with, 712
hybrid combination, 706
memory requirements, 717
as “slam dunk,” 717
See also automatic differentiation (AD)

Reynolds number, 96, 121, 129, 130, 692
Richtmyer-Meshkov (RM) instability,

137–138
3-D shock tube, 138
AMR for, 143
defined, 137
mixing width, 138
reshock and, 138
shock waves and, 137

Riemann problem, 136, 137
achieving results of, 137
solving at cell interfaces, 136

rigid-lid model, 209
RI-MP2, 182–186

calculations, 184
cost, 185
defined, 182–183
energy equation, 183–184
energy evaluation, 191
GA model and, 185
integral transformation, 185
MP2 energy, 183
parallel speedup, 185
RI approximation, 183
task-based parallelism, 188
wall-clock time, 186

Ritz value, 606, 618
Rivara refinement, 113
RMI, 91
ROMIO, 343–344

collective I/O, 346
collective I/O Upshot plot, 355
data sieving, 344–345, 351
data sieving Upshot plot, 354
defined, 345
source code, 354

user-controllable parameter, 345
See also MPI-IO

rotational form, 98
RtiCap, 270
run-time infrastructure (RTI), 267, 268

SADARM, 246, 247
SAMRAI, 406, 646
San Diego Supercomputer Center (SDSC),

227
scalability, 44, 57–59

defined, 44
impediments, 57–58
of P_ARPACK, 617
shared-memory systems and, 46
software tools, 457

scalable algorithms, 189
scalable coherent interconnect (SCI),

34–35
scalable distributed dynamic array (SDDA),

142
Scalable I/O Initiative, 339
Scalable Programming Environment (SPE),

245
ScaLAPACK, 12, 190, 576

concept, 583
defined, 582, 589
routines, 589
user interfaces, 589
See also dense linear algebra libraries

scaled speedup, 57, 82
scans, 222
Schrödinger equations, 168–169
Schur complement, 119
Schur complement-domain-

decomposition method, 599
Schwartz methods, 599, 641
scientific computing

ocean modeling, 9
parallel computing in, 8–9
regular data structures in, 391
weather, 10

scientific workbenches. See problem-
solving environments (PSEs)

SCIRun, 416
Scotch, 540, 541

826 Index

scratch-remap repartitioners, 518–522
defined, 520
edge-cuts, 521
illustrated, 521
LMSR, 522, 525
performing, 520
poor performance, 521
remapped partitioning, 520, 521
remapping, 520, 521
similarity matrix, 520, 521
See also repartitioning

SD (Super Delaunay), 564
segmented scan add, 222
segmented scan copy, 222
self-consistent field (SCF), 168, 170, 190,

191
algorithm, 181
codes, 181
one-electron orbitals, 170
procedure, 170
quadratic, 182
semidirect module, 182

semi-explicit differential algebraic
equations, 690

sensitivity analysis, 701
sequential consistency, 31
SFS, 336
shared files (SFs), 173
shared memory, 4, 28–30

bandwidth, 30
consistency problem, 28–29
defined, 28
distributed (DSM), 30, 47
distributed memory vs., 296–297
issues, 28
parallel programming, 366–370
parallel programming interfaces, 358,

380
system bus, 34
use of, 30
virtual, 30
See also distributed memory; memory

Shared-Memory Asynchronous Run-Time
System (SMARTs), 45–46, 387

shared-memory model, 297, 475–476
advantage, 297
defined, 44, 51, 475

example, 54–55
implicit sharing, 313
OpenMP, 79

shared-memory processor (SMP)
architectures, 384

shared-memory systems, 45–46
critical regions, 53
defined, 45
nondeterminism, 66
programming, 45–46
scalability and, 46
synchronization, 46
uniform-access, 45

S-Harp, 540, 541
shedding frequency, 129, 130
shock capturing, 133

defined, 133
schemes, 143

shock tracking, 132–133
defined, 132–133
viability, 133

shooting-and-bouncing-ray (SBR)
technique, 229

Sign Change Lemma, 676
signal and image processing (SIP)

algorithm development work, 243
community, 243
processing algorithms, 244
simulation and modeling, 244
See also SIP HPC

signposts, 727–728
simulated annealing algorithm, 658
simulations

ADR, 162–165
air-water flow, 149
black-oil, 150–151
circuit, 88
cluster, 656
complex system, 290
compressible CFD, 94
CSF, 220, 549
cylinder wake, 131
earthquake, 212–218
flow and transport, 162–165
high-resolution, 132, 211–212
lattice QCD, 199–207
molecular dynamics simulations, 286

Index 827

multiphase, 527–529
multiphysics, 526–527
munitions, 246
nuclear magnetic resonance, 286
parallel and distributed event-driven

(PDES), 266, 267
PDE, 624, 627
plasma reactor, 285–286
quantum, 426–427, 428
reservoir, 146, 158
surface-water, 159–162
time-stepped, 87–88
uniform grid, largest, 220

simultaneous analysis and design, 665
simultaneous multithreading (SMT), 37
SimVis, 272, 273

defined, 272
sample screen, 273
See also WebHLA

single name-space, distributed memory
model, 472–475

single program, multiple data (SPMD), 40,
358, 380

AC, 371
advantages, 371
block data decompositions and, 77
in Co-Array Fortran, 371–377
defined, 297, 371
The Force, 371
programming, 53–54
Split-C, 371
VM/EPEX, 371

single-instruction multiple-data (SIMD)
systems, 5, 6, 32, 490

Connection Machine, 32
vectors and, 36–37

single-phase models, 149
single-vector methods, 604
SIP HPC, 243–249

automatic target recognition (ATR),
245–246

DoD research/engineering, 244
examples, 244–249
munitions simulations, 246
radar propagation codes, 246–247
RCS codes, 247–249
state of the art, 249

summary, 283
themes, 244
See also signal and image processing (SIP)

SIRT, 262
skew-symmetric form, 98
SNES (Scalable Nonlinear Equations

Solvers), 631
sample application code interface, 637
user interface, 636

SOAP, 91
Sobol sequence, 254
software, 11–13, 725–727

architecture, 728
automatic-differentiation, 709–711
“black box,” 488
commercial, at high end, 13
community acceptance and, 13
complexity, 621, 624
component-based design, 403–406
correct and efficient execution, 294,

308–310
correctness, evaluating, 295
dense linear algebra, 589–590
eigenvalue, 610–611
goal, 11
nondeterminism and, 309
PDE, 645–646
performance, 295
performance modeling, 309–310
portable performance and, 725
reusable, 483–490
role of, 294
for scalable solution of PDEs, 486

software technologies, 293–312
Co-Array Fortran, 304–305
component models, 306
conclusion, 310–312
decision rules, 308
High Performance Fortran (HPF),

303–304
HPC++, 305–306
hybrid, 306
Message Passing Interface (MPI), 298
OpenMP, 301–303
Parallel Virtual Machine (PVM), 298–300
parallelizing compilers, 301
POOMA, 305–306, 307

828 Index

software technologies (continued)
p-threads, 301
selecting, 294–308

software tools, 456–466
effectiveness, 456
examples, 459–466
Jumpshot, 457, 458, 459–460
Performance Co-Pilot, 456, 458
profiling, 457
scalability, 457
SvPablo, 460–462
Thinking Machines Prism, 462–465
TotalView, 465–466
user expectations/recommendations,

457–459
See also debugging; performance tuning

SOLAR library, 338
SolidMesh, 564
source-to-source transformation, 708–

709
advantages/disadvantages, 709
defined, 708
techniques, 708

Southern California Integrated Geodetic
Network (SCIGN), 217

space-filling curves, 62
for allocating grids to processors, 142
defined, 142
graph partitioning with, 499–500
Hilbert, 162
illustrated, 143
on rectangular mesh, 162
Peano-Hilbert, 500
self-similar, 143

sparse eigenvalue problems, 603–619
algorithms and software, 603–618
Arnoldi factorization, 606–608
Arnoldi process restart, 608–609
ARPACK, 610–618
basic methods, 603–604
implicit restarting, 609–610
parallel performance, 617–618
QR algorithm, 605
single-vector methods, 604
software, 610–611
subspace projection methods, 605–606

sparse eigenvalue solvers, 618

sparse Jacobian matrices
computing with graph coloring-based

compression, 715
with known sparsity, 714–715
with unknown sparsity, 716

sparse linear algebra, 590–591
basic elements, 591
direct methods, 591–595
iterative methods, 596–602
origin, 590–591
software libraries, 601
storage formats, 600

sparse linear solvers
list, 602
software libraries for, 601

sparse matrix structure, 590–591
SparsLinC, 716
spatial index, 164
spatial locality, 25
spectral element methods, 100–108

basis functions, 102–105
basis functions in d dimensions,

107–108
data structures, 113–116
discrete equations, 105–107
global data storage, 113
local data storage, 114
one-dimensional example, 101–102
unstructured, 118
See also incompressible flows

spectral methods, 506–508
defined, 506
functioning of, 506–507
recursive bisection algorithm, 508
See also graph partitioning

SPEEDES system, 88, 267
adoption of, 278
defined, 267
engine design, 274
simulation engine, 277
simulation kernel, 274

speedup, 80
black-oil model simulation, 151
communication overhead and, 81
defined, 57
equation, 58
for modified crown-ether complex, 182

Index 829

parallel CMS, 275, 277
RI-MP2 calculations, 185
SADARM scene-generation code, 247
scaled, 57, 82
total, 57

sphere-cutting scheme, 50–51
Spherical Coordinate Remapping and

Interpolation Package (SCRIP), 211
Split-C, 371
SPRINT algorithm, 242
standard template library (STL), 383
static analysis tools, 67
static condensation, 118–121

defined, 118
of spectral element stiffness matrix, 119
for unstructured spectral element

methods, 118
static graph partitioning, 495–516

combinatorial techniques, 501–506
combined schemes, 513
geometric techniques, 496–501
multilevel schemes, 509–513
scheme comparison, 513–516
spectral methods, 506–508
See also graph partitioning

static random access memory (SRAM), 23,
24

stationary iterative methods, 596
sterile objects, 224
stochastic global optimization, 657
Stockpile Stewardship Program, 11
storage formats, 600
store operations, 20
stream function formulation, 208
striping units, 334
strip-mined derivative computation,

716–717
strong form, 101
Strouhal number, 129
structured, adaptive mesh refinement

(SAMR), 219, 222
Enzo and, 219
idea behind, 222

structured mesh adaptation, 552–554
algebraic technique, 553
defined, 552
elliptic technique, 553–554

weight function, 553
See also adaptive mesh generation

structured meshes, 544–547
algebraic, 545–546
generation, 545
geometric flexibility tradeoff, 544–

545
hyperbolic generation, 546–547
offset, 547
representation, 545
See also mesh generation

subdivisions, 557
subdomain connectivity graph, 523
subdomains, 494

of eight-way partitioning, 528, 530
overweight, 522
weights, 494

subspace projection methods, 605–606
subsurface-flow modeling, 146–152

compositional model, 149
conservative schemes, 147
HPC-based attack, 147
IMPES hydrology model, 148
implicit air-water model, 148
implicit black-oil models, 148
implicit hydrology model, 148
implicit/explicit single-phase models,

149
IPARS and, 147–152
models, 148–149
problem, 146–147
problem-solving environment (PSE),

147
shocks approximation, 147
simulation processes, 146

sum factorization, 107
superscalar processors, 35–36
surface-pressure formulation, 208–209

rigid-lid model, 209
stream function formulation, 208
See also ocean modeling

surface-water simulation, 159–162
CE-QUAL-ICM, 159–160
GWCE, 159
parallel algorithm, 161–162
PCE-QUAL-ICM, 160–161
tidal fluctuations, 159

830 Index

SvPablo, 460–462
assessment, 462
defined, 460
design goals, 460
implementation, 461
interactive instrumentation support,

460
performance analysis, 460–462
performance instrumentation, 460
support, 460
See also software tools

symmetric multiprocessors (SMPs), 28,
723

clusters, 47
defined, 45
models, 5
processors, 45–46

synchronization, 65
clock, 453
in Co-Array Fortran, 373
coarse-grained, 326
data-oriented, 326
HPC++, 398–401
OpenMP, 328
operations, 326–327
primitives selection, 328
temporal, 88

synchronous mode, 88, 89
Synchronous Parallel Environment for

Emulation and Distributed Events
Simulation. See SPEEDES

synchronous tree construction, 239, 240
synthetic-aperture radar (SAR) imaging,

229

TAMC, 708
tangent continuation, 683
task identifiers (tid), 322
task parallelism

data parallelism vs., 295–296
defined, 50
importance, 188
in RI-MP2, 188
See also parallelism

tectonic plate-boundary scale, 215
templates, 484, 487–489

C++ support, 393

defined, 727
expression (ETs), 389
for iterative methods, 601–602
Java and, 393
as reusable algorithm, 484

temporal structures, 88–89
asynchronous, 89
loosely synchronous, 88, 89
pleasingly parallel, 89
synchronous, 88, 89

tensor product
of 1-D functions, 107
nature, hiding, 108

test functions, 101
TFI (transfinite interpolation), 545
Thinking Machines Prism, 462–465

assessment, 465
breakpoint debugging, 465
defined, 462
development, 462
interface, 463
performance analysis, 464–465
performance data, 464
performance instrumentation, 462–463
simplicity, 465
See also software tools

threads, 392
defined, 37, 324
explicit, 476
HPC++, 398–401
local storage, 326
OpenMP, 327–328
POSIX (or p-threads), 325–327
termination, 326

throughput, parallelism and, 40
TIGER, 564
time integration, 140
Time Warp operating system, 87
time-domain methods, 230–231
time-stepped simulations, 87–88
time-stepping scheme, 99
timing, 451
Toolkit for Advanced Optimization (TAO),

633
Top500 list, 6

extrapolation of results, 8
performance growth, 7

Index 831

processor design, 6
TOTALV, 517–518
TotalView, 465–466

assessment, 466
debugging, 465–466
defined, 465
visualization, 465–466
See also software tools

traffic modeling, 10
TRANSIMS, 10
translation lookaside buffer (TLB), 22
transpose-free QMR, 641
trial solutions, 101
trust region algorithms, 652
turbulence model, 98
turbulent flow, 97
two-phase I/O, 346–347

advantage, 346
defined, 346
extension, 347
first phase, 346
illustrated example, 347
See also parallel I/O

UG (Unstructured Grids), 646
ultra-scale computers, 311
UNAMALLA, 564
uncertainty analysis, 701
uncertainty principle, 444, 452
UNICORE, 441–442
uniform memory access (UMA), 29–30
uniprocessor architecture, 16–26

components, 16
CPU, 16, 17–21
design tradeoffs, 26
I/O and networking, 25–26
memory hierarchy, 48
memory system, 16, 21–25
See also parallel architectures

uniprocessor memory-hierarchy
management, 63–65

blocking, 63–64
data reorganization, 64–65
stride-one access, 63
See also memory hierarchies

unstructured meshes, 547–549
advantages, 549

defined, 547
elements, 547
geometric flexibility, 548
mesh adaptation for, 559
quadrilateral (2-D), 548
triangular/tetrahedral, 548
uses, 549
See also mesh generation

UT-PROJ, 164, 165
UTTRANS, 164, 165

Van der Corput sequence, 253
variables

active, 703
adjoint of, 705, 706
dependent, 703
distribution, 667–668
independent, 703
temporary, 704

VECFEM, 646
vector computing, 4, 36–37, 189
Vector Signal Image Processing Library

(VSIPL), 249
vectors, 632
verification, 728
vertex weight, 517
very long instruction word (VLIW), 36
VGM (Volume Grid Manipulator), 564
virtual address space, 22
Virtual California, 216
Virtual Network Computing (VNC), 411,

435
client, 437
disconnect, 437
Java viewer, 436
server, 436, 437
X-server, 438

virtual shared memory, 30
VM/EPEX, 371
voxel databases (VDBs), 127, 128

defined, 128, 129
map, 128
shared memory representation, 128

wavefront diffusion, 524
weak consistency, 31
Web services, 91

832 Index

WebFlow, 410, 418–429
abstract task descriptor (ATD), 421
AKENTI server, 422–423
applications, 421, 424–429
architecture, 421–429
client tier, 419
composition tool, 419
CORBA and, 420
defined, 410
front-end, 421
front-end editor applet, 419
gatekeeper server, 422–423
in Gateway project, 421, 427–429
grid interfaces and, 421–422
HPCC back-end capabilities, 420
Interface, 419
LMS project, 424–426
middle tier, 422
modules, 423
modules, interactions between, 423–424
quantum simulation, 426–427, 428
server, 422, 423
system architecture, 420
in three-tier architecture, 419
toolkit, 421
Web server, 422–423
XML and, 419
See also problem-solving environments

(PSEs)
WebHLA, 268–272

environment supporting parallel CMS
experiments, 278

example application, 272–278
JDIS, 270–271, 272
JWORB (Java Web Object Request

Broker), 269, 270
OWRTI (Object Web RTI), 269–270, 270
PDUDB, 271–272
RtiCap, 270
SimVis, 272, 273
summary, 284

WebPDELab, 429–440
access to high-performance computers,

438

browser window, 435
CGI scripts, 437
control panel, 433
defined, 410, 429, 430
deployment issues, 440
Download button, 432, 433
Exit Server button, 433
features, 438–439
generality, 438
implementation, 435–437
interaction, 438
interface, 431–435
issues, 439–440
manager, 436
payment for computing services,

439–440
PELLPACK session in, 435
portability, 439
registration, 431, 433
security, 435, 437–438, 439
server, 429–435
server access, 431
software ownership and, 439
Start Server button, 432
system operation over Internet, 429
user activity tracing, 435
user interface performance, 439
website, 429, 431
See also problem-solving environments

(PSEs)
WebSubmit, 442
weight function, 553
weighted average, 558
weighted Laplacian approach, 559
Wilson’s fermion action, 202
write-after-read (WAR) race, 50
write-after-write (WAW) race, 50

XFS, 336
XML, 279

object specifications, 419
WebFlow use, 419

XPPAUT, 686

ABOUT THE AUTHORS

Stanley C. Ahalt (sca@ee.eng.ohio-state.edu) is professor of electrical engineering
at Ohio State University. His research interests include digital signal and image
processing, pattern recognition, and high-performance computing.

Dorian C. Arnold (darnold@cs.wisc.edu) is a Ph.D. student in the Computer Sciences
Department at the University of Wisconsin-Madison. His research interests include
distributed systems, computer networks and protocols, and parallel performance
tools.

Ruth Aydt (aydt@ncsa.uiuc.edu) is a Senior Research Programmer at the National
Center for Supercomputing Applications. Her research interests include the use of
cluster and Grid computing platforms for data mining, and the performance study
of applications on those platforms.

Satish Balay (balay@mcs.anl.gov) is a Senior Scientific Programmer in the Mathe-
matics and Computer Science Division of Argonne National Laboratory. He is one
of the chief developers of the PETSc software.

David E. Bernholdt (bernholdtde@ornl.gov) is a member of the R&D staff at Oak
Ridge National Laboratory. His research interests include high-performance compu-
tational chemistry and computer science issues in large-scale computational science.

Greg Bryan (gbryan@astro.ox.ac.uk) is a Lecturer in the Physics Department of the
University of Oxford, and Fellow of New College, Oxford. His research interests
include computational astrophysics and cosmology.

Alan Carle (carle@rice.edu) is a Faculty Fellow in the Department of Computational
and Applied Mathematics at Rice University. His research interests include automatic
differentiation, compiler construction, scientific programming environments, and
high-performance computing.

833

834 About the Authors

Henri Casanova (casanova@cs.ucsd.edu) is an Assistant Research Scientist at the San
Diego Supercomputer Center and an Adjunct Assistant Professor in the Computer
Science and Engineering Department at the University of California, San Diego.
His research interests include parallel computing, Grid computing, and Internet
computing.

Charlie Catlett (catlett@mcs.anl.gov) is a Senior Fellow at the Computation Institute
at Argonne National Laboratory and the University of Chicago. His research interests
include advanced networks and Grid software architecture.

Ann Christine Catlin (acc@cs.purdue.edu) is a Research Associate in the Computer
Science Department at Purdue University. Her research interests include problem-
solving environments for PDE-based applications, network computing, and agent-
based PDE-solving environments.

K. Mani Chandy (mani@cs.caltech.edu) is the Simon Ramo Professor of Computer
Science at the California Institute of Technology. His research interests include
distributed computing, verification of concurrent programs, parallel programming
languages, and performance models of computing and communication systems.

Clint Dawson (clint@ticam.utexas.edu) is Professor of Aerospace Engineering and
Engineering Mechanics at The University of Texas at Austin. His research interests
include finite element methods and parallel algorithms, with applications to flow
through porous media and shallow water systems.

John Dennis (dennis@caam.rice.edu) is Noah Harding Professor Emeritus and Re-
search Professor at Rice University. His current research interests involve nonsmooth
optimization algorithms for practical engineering design problems.

Eusebius Doedel (doedel@cs.concordia.ca) is Professor of Computer Science at Con-
cordia University in Montreal. His research interests include numerical algorithms
and software for the study of bifurcation phenomena in dynamical systems.

Jack Dongarra (dongarra@cs.utk.edu) holds an appointment as University Distin-
guished Professor in the Computer Science Department at the University of Ten-
nessee. He is the director of the 40-member research group called the Innovative
Computing Laboratory and the director of the Center for Information Technology
Research, one of the nine University’s Centers of Excellence. He also is an Adjunct
R&D Participant at Oak Ridge National Laboratory and an Adjunct Professor at Rice
University. He specializes in numerical algorithms in linear algebra, use of advanced-
computer architectures, programming methodology, and tools for parallel comput-
ers. Other current research involves the development, testing, and documentation of
high-quality mathematical software. He was involved in the design and implemen-
tation of the open source software packages EISPACK, LINPACK, the BLAS, LAPACK,
ScaLAPACK, Netlib, PVM, MPI, NetSolve, ATLAS, PAPI, and Harness; and he is cur-
rently involved in the design of algorithms and techniques for high-performance
computer architectures. He is a Fellow of the AAAS, ACM, and IEEE, and a member
of the National Academy of Engineering.

About the Authors 835

John Dukowicz (duk@lanl.gov) is an Associate Laboratory Fellow in the Theoretical
Division at Los Alamos National Laboratory. Among his various areas of interest,
he has been most active in computational fluid dynamics, gasdynamics, combus-
tion, and most recently, ocean and sea ice modeling, with particular emphasis on
numerical methods.

Victor Eijkhout (eijkhout@cs.utk.edu) is a Research Assistant Professor in the De-
partment of Computer Science of the University of Tennessee. His research interests
include numerical linear algebra, parallel processing, and performance optimization.

Ian Foster (foster@mcs.anl.gov) is Senior Scientist and Associate Director in the
Mathematics and Computer Science Division at Argonne National Laboratory, Pro-
fessor of Computer Science at the University of Chicago, and Senior Fellow in the
Argonne/University of Chicago Computation Institute. He has published four books
and over 200 papers and technical reports on a variety of topics in parallel and dis-
tributed processing, software engineering, and computational science. He currently
coleads the Globus project with Dr. Carl Kesselman of USC/ISI, which was awarded
the 1997 Global Information Infrastructure “Next Generation” award and a 2002
R&D 100 award, and which provides protocols and services used by many distributed
computing projects worldwide. He also coleads the GriPhyN and Earth System Grid
projects, which are extending and applying Grid concepts in challenging applica-
tion domains, and the GRIDS Center, which is developing a national middleware
infrastructure. He cofounded the influential Global Grid Forum and coedited the
book The Grid: Blueprint for a New Computing Infrastructure.

Geoffrey C. Fox (gfc@indiana.edu) is Professor of Computer Science, Informatics,
and Physics at Indiana University. He is also director of the Community Grids
Laboratory of the Pervasive Technology Laboratories at Indiana University and
cochairs the Grid Computing Environment (GCE) working group of the Grid Forum.
He previously held positions at Caltech, Syracuse University, and Florida State
University.

Dr. Fox has worked in a variety of applied computer science fields, with his work
on computational physics evolving into contributions to parallel computing, ini-
tially involving the hypercube architecture. He has worked on computing issues in
several application areas, and he is currently focusing on Earthquake Science. Over
the last four years, a major activity has been the use of Object Web technologies
to build collaboration systems and their application in an integrated approach to
synchronous and asynchronous distance education. Current activities include the
architecture of collaborative Web services and formulation of audio-video conferenc-
ing as a Web service. He has led activities to develop prototype high-performance
Java and Fortran compilers and their runtime support. His research group has pio-
neered use of CORBA and Java for both collaboration and distributed computing.
In particular, the Gateway computational portal was one of the earliest systems to
integrate object and grid technologies. He helped set up the Java Grande forum to

836 About the Authors

encourage use of Java in large-scale computing. Dr. Fox is a proponent of the de-
velopment of computational science and related areas such as “Informatics” and
“Intermetics” as academic disciplines and scientific methods.

Wojtek Furmanski (furm@ecs.syr.edu) is Research Professor in the Department of
Electrical Engineering and Computer Science at Syracuse University. His research
interests include software technologies, development of large software systems, and
information technologies related to the Internet and the World Wide Web.

Dennis Gannon (gannon@cs.indiana.edu) is Chair of the Department of Computer
Science at Indiana University and Science Director for the Pervasive Technology
Labs at Indiana University. His current research involves the design of software
component architectures for distributed scientific applications and the study of the
architecture of Grid systems.

William Gropp (gropp@mcs.anl.gov) is a Senior Computer Scientist and Associate
Director of the Mathematics and Computer Science Division at Argonne National
Laboratory. He is also a Senior Scientist in the Department of Computer Science at
the University of Chicago and a Senior Fellow in the Argonne/University of Chicago
Computation Institute.

Dr. Gropp’s research interests are in parallel computing, software for scientific
computing, and numerical methods for partial differential equations. He has played
a major role in the development of the MPI message-passing standard. He is coauthor
of MPICH, the most widely used implementation of MPI, and was involved in the
MPI Forum as a chapter author for both MPI-1 and MPI-2. He has written many
books and papers on MPI, including Using MPI and Using MPI-2. He has developed
adaptive mesh refinement and domain decomposition methods with a focus on
scalable parallel algorithms; these algorithms and their application to significant
scientific problems are discussed in a book he coauthored, entitled Parallel Multilevel
Methods for Elliptic Partial Differential Equations. He is also one of the designers of the
PETSc parallel numerical library and has developed efficient and scalable parallel
algorithms for the solution of linear and nonlinear equations. In addition, he is
involved in several advanced computing projects, including performance modeling,
data structure modification for ultra-high-performance computers, and development
of component-based software to promote interoperability among numerical toolkits.

As testimony to his leadership in advanced computing, Dr. Gropp (with his col-
leagues) received the 1999 Gordon Bell prize for the application of an unstructured
mesh technique to computational fluid dynamics problems. The following year he
(with a colleague) received honorable mention in the Beale-Orchard-Hays Compe-
tition for Excellence in Computational Mathematical Programming for work on
optimization environments; this was the first time such an award was granted by
the Mathematical Programming Society in this competition.

Eui-Hong (Sam) Han (han@cs.umn.edu) is Scientist at iXmatch Inc. and is also
Research Associate at the Army High Performance Computing Research Center at

About the Authors 837

the University of Minnesota. His research interests include data mining, information
retrieval, and parallel processing.

Tomasz Haupt (haupt@erc.msstate.edu) is Research Professor at the Engineering
Research Center, Mississippi State University. His research interests include high-
performance computing, Internet applications, and object-oriented, distributed sys-
tems. His current research focuses on Web-based metacomputing, seamless access
to remote high-performance resources, software integration, support for distributed
computing, and computational Web portals.

Urs M. Heller (heller@csit.fsu.edu) is a Scientist/Scholar at the School of Compu-
tational Science & Information Technology at Florida State University. His research
interests include large-scale numerical simulations of quantum field theories, in par-
ticular quantum chromodynamics, the theory of the strong interactions in particle
physics, also known as high-energy physics.

Ronald D. Henderson (rdh@its.caltech.edu) is a Senior Research Associate at the
California Institute of Technology. His research interests include spectral and spectral
element methods for simulating turbulence and transition.

Elias N. Houstis (enh@cs.purdue.edu) is Professor of Computer Science at Purdue
University. His research interests include mathematical software, problem-solving
environments, high-performance computing, and recommender systems.

Joseph Insley (insley@mcs.anl.gov) is a Scientific Programmer in the Mathematics
and Computer Science Division at Argonne National Laboratory. His research inter-
ests include Grid computing and visualization of distributed systems.

Mahesh Joshi (mjoshi@cs.umn.edu) is a Research Associate at IBM T. J. Watson
Research Center, New York. He is also pursuing his doctoral studies in Computer
Science at the University of Minnesota, Minneapolis. His current research interests
are in data mining, bioinformatics, and high-performance parallel computing.

Aneta Karaivanova (aneta@csit.fsu.edu) is Associate Professor of CLPP at the Bul-
garian Academy of Sciences. Her research interests include Monte Carlo and quasi-
Monte Carlo methods and parallel algorithms.

George Karypis (karypis@cs.umn.edu) is Assistant Professor in the Department of
Computer Science at the University of Minnesota, Minneapolis. His current research
interests are in the areas of parallel algorithm design, data mining, bioinformatics,
scientific computing, and sparse matrix.

H. B. Keller (hbk@caltech.edu) is Professor of Applied Mathematics, Emeritus at the
California Institute of Technology (CALTECH). His research interests include numeri-
cal analysis, bifurcation theory, scientific computing, path following, computational
fluid dynamics, and dynamical systems.

Ken Kennedy (ken@rice.edu) is the John and Ann Doerr University Professor of
Computer Science and Director of the Center for High Performance Software Re-
search (HiPerSoft) at Rice University. He is a fellow of the Institute of Electrical and

838 About the Authors

Electronics Engineers, the Association for Computing Machinery, and the American
Association for the Advancement of Science and he has been a member of the Na-
tional Academy of Engineering since 1990. From 1997 to 1999, he served as cochair of
the President’s Information Technology Advisory Committee (PITAC). For his leader-
ship in producing the PITAC report on funding of information technology research,
he received the Computing Research Association Distinguished Service Award (1999)
and the RCI Seymour Cray HPCC Industry Recognition Award (1999).

Professor Kennedy has published over one hundred fifty technical articles and
supervised thirty-four Ph.D. dissertations on programming support software for
high-performance computer systems. In 1989, he established the Center for Re-
search on Parallel Computation (CRPC), a NSF Science and Technology Center, and
he directed it throughout its eleven-year lifetime. His current research focuses on
programming tools for parallel computer systems and high-performance micropro-
cessors, seeking to develop new strategies for supporting architecture-independent
parallel programming, especially in science and engineering. He directs the GrADS
Project, a collaborative eight-institution research effort started in 1999 with NSF sup-
port, which is focused on application development support for computational Grids.
He is also the project director of the academic partner contract for the Los Alamos
Computer Science Institute, which is located at Los Alamos National Laboratory.
In recognition of his contributions to software for high performance computation,
he received the 1995 W. Wallace McDowell Award, the highest research award of
the IEEE Computer Society. In 1999, he was named the third recipient of the ACM
SIGPLAN Programming Languages Achievement Award.

Carl Kesselman (carl@isi.edu) is the Director of the Center for Grid Technologies at
the Information Sciences Institute and a Research Associate Professor of Computer
Science at the University of Southern California. His current research interests are in
all aspects of Grid computing, including Grid architecture, resource management,
security, and application development environments.

Charles Koelbel (chk@cs.rice.edu) is a Research Scientist at Rice University. His re-
search interests include compilers for parallel and distributed systems, programming
paradigms, and programming tools.

Ashok Krishnamurthy (akk@ee.eng.ohio-state.edu) is Associate Professor in the De-
partment of Electrical Engineering at Ohio State University. His research interests
include digital signal processing, speech perception and recognition, and computa-
tional models of the auditory system.

Vipin Kumar (kumar@cs.umn.edu) is Director of the Army High Performance Com-
puting Research Center and Professor of Computer Science and Engineering at the
University of Minnesota. His current research interests include high performance
computing, parallel algorithms for scientific computing problems, and data mining.

Tahsin Kurc (kurc-1@medctr.osu.edu) is Assistant Professor of Biomedical Informat-
ics at Ohio State University. His research interests include methods and software
frameworks for data-intensive computing in distributed environments.

About the Authors 839

Wonsuck Lee (wonsuck@research.bell-labs.com) is a Member of Technical Staff at
the Computing Science Research Center, Bell Laboratories. His research interests
include computational fluid dynamics, computational photonics, and PDE/ODE
constrained optimization.

Robert Malone (rcm@lanl.gov) is Deputy Leader of the Methods for Advanced
Scientific Simulations Group in the Computer and Computational Sciences Division
and Leader of the Climate, Ocean, and Sea Ice Modeling Project at Los Alamos
National Laboratory.

Michael Mascagni (mascagni@cs.fsu.edu) is Professor of Computer Science at Florida
State University. His research interests include Monte Carlo methods, random num-
ber generation, and parallel and distributed computing.

Lois Curfman McInnes (mcinnes@mcs.anl.gov) is a researcher in the Mathematics
and Computer Science Division of Argonne National Laboratory and is one of the
developers of PETSc and the optimization software, TAO. Her research interests
include parallel algorithms and software for large-scale PDEs and interoperability
issues for high-performance scientific software.

Dan Meiron (dim@its.caltech.edu) is currently Professor of Applied and Computa-
tional Mathematics and Computer Science at the California Institute of Technology.
His research interests include computational fluid dynamics, computational mate-
rials science, and high-performance computing.

Michael Norman (mlnorman@ucsd.edu) is Professor of Physics at the University of
California, San Diego. His research interests include computational astrophysics and
cosmology, parallel computing, and scientific visualization.

Manish Parashar (parashar@caip.rutgers.edu) is Associate Professor of Electrical and
Computer Engineering at Rutgers, The State University of New Jersey. His research
interests include parallel, distributed and Grid computing, computer-supported col-
laboration, and software engineering.

D. R. Prabhu (dev.prabhu@oracle.com) is Senior Development Manager of Col-
laboration Products at Oracle Corporation. His research interests include parallel
computation, artificial neural networks, signal/image processing, web technologies,
and online collaboration.

Daniel Reed (reed@ncsa.uiuc.edu) is the Edward William and Jane Marr Professor
at the University of Illinois and Director of the National Center for Supercomput-
ing Applications (NCSA). His research interests include experimental performance
analysis, performance analysis tools and techniques, and parallel I/O optimization
and tuning.

John Reynders (John.Reynders@celera.com) is Vice-President for Informatics at Cel-
era Genomics, where he is responsible for algorithm development, software en-
gineering, computer science, and computational sciences. His research interests
including parallel algorithms, object-oriented frameworks, bioinformatics, and high-
performance computing.

840 About the Authors

John R. Rice (rice@cs.purdue.edu) is Distinguished Professor of Computer Science
at Purdue University. His research interests include mathematical software, problem
solving environments, computational mathematics, and computer security.

Joel Saltz (saltz-1@medctr.osu.edu) is Professor of Biomedical Informatics and Com-
puter and Information Science at the Ohio State University, Columbus, Ohio and
Senior Fellow, Ohio Supercomputer Center, Columbus, Ohio. His research interests
include development of database tools to aggregate information from distributed
data sources and to efficiently explore, analyze, and visualize large multi-resolution
datasets such as those generated by numerical simulations.

Ravi Samtaney (ravi@galcit.caltech.edu) is a computational scientist in the Compu-
tational Plasma Physics Group at the Princeton Plasma Physics Laboratory, Princeton
University. His research interests include computational physics, numerical analysis,
and high-performance computing.

Kirk Schloegel (kirk.schloegel@honeywell.com) is a Research Scientist at Honeywell
International. His research interests include parallel computing, load balancing, and
automatic code generation from graphical design models.

Joseph Shang (jshang@cs.wright.edu) is a Research Professor of Mechanical and
Materials engineering at the Wright State University. His research interests include
computational fluid dynamics, electromagnetics, and magneto-aerodynamics.

Barry Smith (bsmith@mcs.anl.gov) is a Computer Scientist at Argonne National Lab-
oratory. His research focuses on the scalable solution of partial differential equations.

Richard D. Smith (rdsmith@lanl.gov) is a Staff Scientist in the Fluid Dynamics Group
in the Theoretical Division at Los Alamos National Laboratory. His research inter-
ests include numerical ocean modeling, global climate modeling, and turbulence
parameterizations in geophysical flows.

Bharat Soni (bsoni@ERC.MsState.Edu) is Professor of Aerospace Engineering and Di-
rector, Center for Computational Systems, Engineering Research Center, Mississippi
State University.

Danny C. Sorensen (sorensen@rice.edu) is Noah G. Harding Professor of Compu-
tational and Applied Mathematics at Rice University. His research interests include
large-scale eigenvalue problems, reduced order models for dynamical systems, and
parallel algorithms for scientific computing.

Rick Stevens (stevens@mcs.anl.gov) is Director of the Mathematics and Computer
Science (MCS) Division at Argonne National Laboratory and Professor of Computer
Science at the University of Chicago. His research focuses on collaborative environ-
ments, high-performance architectures, and large-scale scientific applications.

Mei-Hui Su (mei@isi.edu) is a Systems Programmer at the Information Sciences In-
stitute, University of Southern California. Her research interests include distributed
Grid computing.

About the Authors 841

Alan Sussman (als@cs.umd.edu) is an Assistant Professor of Computer Science at the
University of Maryland. His research interests include high-performance database
systems, compilers and runtime systems for distributed memory parallel machines,
and parallel supercomputer applications.

Rajeev Thakur (thakur@mcs.anl.gov) is a Computer Scientist in the Mathemat-
ics and Computer Science Division at Argonne National Laboratory. His research
interests are in high-performance computing in general and high-performance net-
working and I/O in particular.

Joe Thompson (joe@ERC.MsState.Edu) is Distinguished Professor of Aerospace En-
gineering and Director, Center for DoD Programming Environment & Training,
Engineering Research Center, Mississippi State University.

Linda Torczon (linda@rice.edu) is a Research Scientist in the Department of Com-
puter Science and Executive Director of the Center for High Performance Software
Research (HiPerSoft) at Rice University. Additionally, she serves as Executive Direc-
tor of the GrADS project, an eight-institution research effort funded by the National
Science Foundation (NSF) to explore scientific and technical problems underlying
support for Grid application development. She also serves as an executive director
of the Los Alamos Computer Science Institute. From 1990 to 2000, she served as
Executive Director of the Center for Research on Parallel Computation (CRPC), an
NSF Science and Technology Center. In this capacity, she coordinated extensive re-
search efforts, education and outreach programs, and technology transfer activities.
In collaboration with CRPC researchers, she initiated and was actively involved in
numerous activities intended to increase the number of women and underrepre-
sented minorities entering mathematics and science-related fields.

Linda Torczon is also a member of the scalar compiler research group at Rice
University. Her research interests include code generation, interprocedural data-flow
analysis and optimization, programming environments, and adaptive compilation.
Techniques resulting from her research are widely used in industrial and research
compilers. Her current work includes applying techniques from artificial intelligence
to the problem of producing high-quality compilers for a variety of processors, appli-
cations, performance environments, and end-user criteria. In addition, with Keith
Cooper, she is coauthoring another Morgan Kaufmann book, Engineering a Compiler.
It is intended as a textbook for senior-level courses on compiler construction and as
a resource for compiler implementors.

Gregor von Laszewski (gregor@mcs.anl.gov) is an Assistant Scientist at the Mathe-
matics and Computer Science Division at Argonne National Laboratory. His research
interests include Grid computing, Commodity Grid Kits, and the application of Grid
technologies for scientific computing.

Mary Fanett Wheeler (mfw@ticam.utexas.edu) is the Ernest and Virginia Cockrell
Professor of Engineering at The University of Texas at Austin. Her research interests
include numerical solution of partial differential equations, modeling flow in porous
media, and parallel computation.

842 About the Authors

Andrew B. (Andy) White, Jr. (abw@lanl.gov) is the Special Projects Director for the
Weapons Physics Directorate at Los Alamos National Laboratory. This new Labora-
tory enterprise focuses on research issues in computer and computational sciences
associated with employing the largest, most complex computational resources to
address important national issues such as stockpile stewardship, energy and envi-
ronment, systems biology, nanotechnology and crisis management. From 1989 to
1998, he was founder and Director of the Advanced Computing Laboratory at Los
Alamos, as well as the Program Manager for DOE’s HPCC (High Performance Com-
puting and Communications) program. He has been an Associate Director of the
NSF Science and Technology Center for Research on Parallel Computation (CRPC), a
member of the ad hoc Task Force on the Future of the NSF Supercomputing Centers
(Hayes Committee), Principal Investigator for the DOE High Performance Comput-
ing Research Center at Los Alamos, and at various times assistant, deputy, and acting
Division Leader of the Laboratory’s computing division. His research interests are
in the areas of applied mathematics, high-performance computing, computational
simulation and modeling, and predictive computational capabilities.

Zhijun Wu (zhijun@iastate.edu) is Associate Professor of Mathematics at Iowa State
University. His research interests include numerical linear algebra and optimization,
parallel high-performance computing, and computational biology.

