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Modern C++ Design is an important book. Fundamentally, it demonstrates 'generic 
patterns' or 'pattern templates' as a powerful new way of creating extensible designs in 
C++--a new way to combine templates and patterns that you may never have dreamt was 
possible, but is. If your work involves C++ design and coding, you should read this book. 
Highly recommended.-Herb Sutter 

What's left to say about C++ that hasn't already been said? Plenty, it turns out.-From the 
Foreword by John Vlissides 

In Modern C++ Design, Andrei Alexandrescu opens new vistas for C++ programmers. 
Displaying extraordinary creativity and programming virtuosity, Alexandrescu offers a 
cutting-edge approach to design that unites design patterns, generic programming, and 
C++, enabling programmers to achieve expressive, flexible, and highly reusable code. 

This book introduces the concept of generic components-reusable design templates that 
produce boilerplate code for compiler consumption-all within C++. Generic components 
enable an easier and more seamless transition from design to application code, generate 
code that better expresses the original design intention, and support the reuse of design 
structures with minimal recoding. 

The author describes the specific C++ techniques and features that are used in building 
generic components and goes on to implement industrial strength generic components for 
real-world applications. Recurring issues that C++ developers face in their day-to-day 
activity are discussed in depth and implemented in a generic way. These include: 

• Policy-based design for flexibility  
• Partial template specialization  
• Typelists-powerful type manipulation structures  
• Patterns such as Visitor, Singleton, Command, and Factories  
• Multi-method engines 

For each generic component, the book presents the fundamental problems and design 
options, and finally implements a generic solution. 

In addition, an accompanying Web site, http://www.awl.com/cseng/titles/0-201-70431-5, 
makes the code implementations available for the generic components in the book and 
provides a free, downloadable C++ library, called Loki, created by the author. Loki 
provides out-of-the-box functionality for virtually any C++ project. 
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Foreword 
by Scott Meyers 

In 1991, I wrote the first edition of Effective C++. The book contained almost no discussions of templates, 
because templates were such a recent addition to the language, I knew almost nothing about them. What 
little template code I included, I had verified by e-mailing it to other people, because none of the compilers 
to which I had access offered support for templates. 

In 1995, I wrote More Effective C++. Again I wrote almost nothing about templates. What stopped me this 
time was neither a lack of knowledge of templates (my initial outline for the book included an entire 
chapter on the topic) nor shortcomings on the part of my compilers. Instead, it was a suspicion that the 
C++ community's understanding of templates was about to undergo such dramatic change, anything I had 
to say about them would soon be considered trite, superficial, or just plain wrong. 

There were two reasons for that suspicion. The first was a column by John Barton and Lee Nackman in the 
January 1995 C++ Report that described how templates could be used to perform typesafe dimensional 
analysis with zero runtime cost. This was a problem I'd spent some time on myself, and I knew that many 
had searched for a solution, but none had succeeded. Barton and Nackman's revolutionary approach made 
me realize that templates were good for a lot more than just creating containers of T. 

As an example of their design, consider this code for multiplying two physical quantities of arbitrary 
dimensional type: 

template<int m1, int l1, int t1, int m2, int l2, int t2> 
Physical<m1+m2, l1+l2, t1+t2> operator*(Physical<m1, l1, t1> lhs, 
                                        Physical<m2, l2, t2> rhs) 
{ 
   return Physical<m1+m2, l1+l2, t1+t2>::unit*lhs.value()*rhs.value(); 
} 

Even without the context of the column to clarify this code, it's clear that this function template takes six 
parameters, none of which represents a type! This use of templates was such a revelation to me, I was 
positively giddy. 

Shortly thereafter, I started reading about the STL. Alexander Stepanov's elegant li brary design, where 
containers know nothing about algorithms; algorithms know nothing about containers; iterators act like 
pointers (but may be objects instead); containers and algorithms accept function pointers and function 
objects with equal aplomb; and library clients may extend the library without having to inherit from any 
base classes or redefine any virtual functions, made me feel—as I had when I read Barton and Nackman's 
work—like I knew almost nothing about templates. 

So I wrote almost nothing about them in More Effective C++. How could I? My understanding of 
templates was still at the containers-of-T stage, while Barton, Nackman, Stepanov, and others were 
demonstrating that such uses barely scratched the surface of what templates could do. 

In 1998, Andrei Alexandrescu and I began an e-mail correspondence, and it was not long before I 
recognized that I was again about to modify my thinking about templates. Where Barton, Nackman, and 
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Stepanov had stunned me with what templates could do, however, Andrei's work initially made more of an 
impression on me for how it did what it did. 

One of the simplest things he helped popularize continues to be the example I use when introducing people 
to his work. It's the CTAssert template, analogous in use to the assert macro, but applied to conditions 
that can be evaluated during compilation. Here it is: 

template<bool> struct CTAssert; 
template<> struct CTAssert<true> {}; 

That's it. Notice how the general template, CTAssert, is never defined. Notice how there is a 
specialization for true, but not for false. In this design, what's missing is at least as important as 
what's present. It makes you look at template code in a new way, because large portions of the "source 
code" are deliberately omitted. That's a very different way of thinking from the one most of us are used to. 
(In this book, Andrei discusses the more sophisticated CompileTimeChecker template instead of 
CTAssert.) 

Eventually, Andrei turned his attention to the development of template-based implementations of popular 
language idioms and design patterns, especially the GoF[*] patterns. This led to a brief skirmish with the 
Patterns community, because one of their fundamental tenets is that patterns cannot be represented in code. 
Once it became clear that Andrei was automating the generation of pattern implementations rather than 
trying to encode patterns themselves, that objection was removed, and I was pleased to see Andrei and one 
of the GoF (John Vlissides) collaborate on two columns in the C++ Report focusing on Andrei's work. 

[*] "GoF" stands for "Gang of Four" and refers to Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, 
authors of the definitive book on patterns, Design Patterns: Elements of Reusable Object-Oriented Software 
(Addison-Wesley, 1995). 

In the course of developing the templates to generate idiom and pattern implementations, Andrei was 
forced to confront the variety of design decisions that all implementers face. Should the code be thread 
safe? Should auxiliary memory come from the heap, from the stack, or from a static pool? Should smart 
pointers be checked for nullness prior to dereferencing? What should happen during program shutdown if 
one Singleton's destructor tries to use another Singleton that's already been destroyed? Andrei's goal was to 
offer his clients all possible design choices while mandating none. 

His solution was to encapsulate such decisions in the form of policy classes, to allow clients to pass policy 
classes as template parameters, and to provide reasonable default values for such classes so that most 
clients could ignore them. The results can be astonishing. For example, the Smart Pointer template in this 
book takes only 4 policy parameters, but it can generate over 300 different smart pointer types, each with 
unique behavioral characteristics! Programmers who are content with the default smart pointer behavior, 
however, can ignore the policy parameters, specify only the type of object pointed to by the smart pointer, 
and reap the benefits of a finely crafted smart pointer class with virtually no effort. 

In the end, this book tells three different technical stories, each compelling in its own way. First, it offers 
new insights into the power and flexibility of C++ templates. (If the material on typelists doesn't knock 
your socks off, it's got to be because you're already barefoot.) Second, it identifies orthogonal dimensions 
along which idiom and pattern implementations may differ. This is critical information for template 
designers and pattern implementers, but you're unlikely to find this kind of analysis in most idiom or 
pattern descriptions. Finally, the source code to Loki (the template library described in this book) is 
available for free download, so you can study Andrei's implementation of the templates corresponding to 
the idioms and patterns he discusses. Aside from providing a nice stress test for your compilers' support for 
templates, this source code serves as an invaluable starting point for templates of your own design. Of 
course, it's also perfectly respectable (and completely legal) to use Andrei's code right out of the box. I 
know he'd want you to take advantage of his efforts. 
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From what I can tell, the template landscape is changing almost as quickly now as it was in 1995 when I 
decided to avoid writing about it. At the rate things continue to develop, I may never write about templates. 
Fortunately for all of us, some people are braver than I am. Andrei is one such pioneer. I think you'll get a 
lot out of his book. I did. 

Scott Meyers 
September 2000 

 

Foreword 
by John Vlissides 

What's left to say about C++ that hasn't already been said? Plenty, it turns out. This book documents a 
convergence of programming techniques—generic programming, template meta programming, object-
oriented programming, and design patterns—that are well understood in isolation but whose synergies are 
only beginning to be appreciated. These synergies have opened up whole new vistas for C++, not just for 
programming but for software design itself, with profound implications for software analysis and 
architecture as well. 

Andrei's generic components raise the level of abstraction high enough to make C++ begin to look and feel 
like a design specification language. Unlike dedicated design languages, however, you retain the full 
expressiveness and familiarity of C++. Andrei shows you how to program in terms of design concepts: 
singletons, visitors, proxies, abstract factories, and more. You can even vary implementation trade-offs 
through template parameters, with positively no runtime overhead. And you don't have to blow big bucks 
on new development tools or learn reams of methodological mumbo jumbo. All you need is a trusty, late-
model C++ compiler—and this book. 

Code generators have held comparable promise for years, but my own research and practical experience 
have convinced me that, in the end, code generation doesn't compare. You have the round-trip problem, the 
not-enough-code-worth-generating problem, the inflexible-generator problem, the inscrutable-generated-
code problem, and of course the I-can't-integrate-the-bloody-generated-code-with-my-own-code problem. 
Any one of these problems may be a showstopper; together, they make code generation an unlikely 
solution for most programming challenges. 

Wouldn't it be great if we could realize the theoretical benefits of code generation—quicker, easier 
development, reduced redundancy, fewer bugs—without the drawbacks? That's what Andrei's approach 
promises. Generic components implement good designs in easy-to-use, mixable-and-matchable templates. 
They do pretty much what code generators do: produce boilerplate code for compiler consumption. The 
difference is that they do it within C++, not apart from it. The result is seamless integration with 
application code. You can also use the full power of the language to extend, override, and otherwise tweak 
the designs to suit your needs. 

Some of the techniques herein are admittedly tricky to grasp, especially the template metaprogramming in 
Chapter 3. Once you've mastered that, however, you'll have a solid foundation for the edifice of generic 
componentry, which almost builds itself in the ensuing chapters. In fact, I would argue that the 
metaprogramming material of Chapter 3 alone is worth the book's price—and there are ten other chapters 
full of insights to profit from. "Ten" represents an order of magnitude. Even so, the return on your 
investment will be far greater. 

John Vlissides 
IBM T.J. Watson Research 
September 2000 
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Preface 
You might be holding this book in a bookstore, asking yourself whether you should buy it. Or maybe you 
are in your employer's library, wondering whether you should invest time in reading it. I know you don't 
have time, so I'll cut to the chase. If you have ever asked yourself how to write higher-level programs in 
C++, how to cope with the avalanche of irrelevant details that plague even the cleanest design, or how to 
build reusable components that you don't have to hack into each time you take them to your next 
application, then this book is for you. 

Imagine the following scenario. You come from a design meeting with a couple of printed diagrams, 
scribbled with your annotations. Okay, the event type passed between these objects is not char anymore; 
it's int. You change one line of code. The smart pointers to Widget are too slow; they should go 
unchecked. You change one line of code. The object factory needs to support the new Gadget class just 
added by another department. You change one line of code. 

You have changed the design. Compile. Link. Done. 

Well, there is something wrong with this scenario, isn't there? A much more likely scenario is this: You 
come from the meeting in a hurry because you have a pile of work to do. You fire a global search. You 
perform surgery on code. You add code. You introduce bugs. You remove the bugs . . . that's the way a 
programmer's job is, right? Although this book cannot possibly promise you the first scenario, it is 
nonetheless a resolute step in that direction. It tries to present C++ as a newly discovered language for 
software architects. 

Traditionally, code is the most detailed and intricate aspect of a software system. Historically, in spite of 
various levels of language support for design methodologies (such as object orientation), a significant gap 
has persisted between the blueprints of a program and its code because the code must take care of the 
ultimate details of the implementation and of many ancillary tasks. The intent of the design is, more often 
than not, dissolved in a sea of quirks. 

This book presents a collection of reusable design artifacts, called generic components, together with the 
techniques that make them possible. These generic components bring their users the well-known benefits 
of libraries, but in the broader space of system architecture. The coding techniques and the 
implementations provided focus on tasks and issues that traditionally fall in the area of design, activities 
usually done before coding. Because of their high level, generic components make it possible to map 
intricate architectures to code in unusually expressive, terse, and easy-to-maintain ways. 

Three elements are reunited here: design patterns, generic programming, and C++. These elements are 
combined to achieve a very high rate of reuse, both horizontally and vertically. On the horizontal 
dimension, a small amount of library code implements a combinatorial—and essentially open-ended—
number of structures and behaviors. On the vertical dimension, the generality of these components makes 
them applicable to a vast range of programs. 

This book owes much to design patterns, powerful solutions to ever-recurring problems in object-oriented 
development. Design patterns are distilled pieces of good design—recipes for sound, reusable solutions to 
problems that can be encountered in many contexts. Design patterns concentrate on providing a suggestive 
lexicon for designs to be conveyed. They describe the problem, a time-proven solution with its variants, 
and the consequences of choosing each variant of that solution. Design patterns go above and beyond 
anything a programming language, no matter how advanced, could possibly express. By following and 
combining certain design patterns, the components presented in this book tend to address a large category 
of concrete problems. 
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Generic programming is a paradigm that focuses on abstracting types to a narrow collection of functional 
requirements and on implementing algorithms in terms of these requirements. Because algorithms define a 
strict and narrow interface to the types they operate on, the same algorithm can be used against a wide 
collection of types. The implementations in this book use generic programming techniques to achieve a 
minimal commitment to specificity, extraordinary terseness, and efficiency that rivals carefully hand 
crafted code. 

C++ is the only implementation tool used in this book. You will not find in this book code that implements 
nifty windowing systems, complex networking libraries, or clever logging mechanisms. Instead, you will 
find the fundamental components that make it easy to implement all of the above, and much more. C++ 
has the breadth necessary to make this possible. Its underlying C memory model ensures raw performance, 
its support for polymorphism enables object-oriented techniques, and its templates unleash an incredible 
code generation machine. Templates pervade all the code in the book because they allow close cooperation 
between the user and the library. The user of the library literally controls the way code is generated, in 
ways constrained by the library. The role of a generic component library is to allow user-specified types 
and behaviors to be combined with generic components in a sound design. Because of the static nature of 
the techniques used, errors in mixing and matching the appropriate pieces are usually caught during 
compile time. 

This book's manifest intent is to create generic components—preimplemented pieces of design whose main 
characteristics are flexibility, versatility, and ease of use. Generic components do not form a framework. In 
fact, their approach is complementary—whereas a framework defines interdependent classes to foster a 
specific object model, generic components are lightweight design artifacts that are independent of each 
other, yet can be mixed and matched freely. They can be of great help in implementing frameworks. 

 

Audience 

The intended audience of this book falls into two main categories. The first category is that of experienced 
C++ programmers who want to master the most modern library writing techniques. The book presents new, 
powerful C++ idioms that have surprising capabilities, some of which weren't even thought possible. These 
idioms are of great help in writing high-level libraries. Intermediate C++ programmers who want to go a 
step further will certainly find the book useful, too, especially if they invest a bit of perseverance. 
Although pretty hard-core C++ code is sometimes presented, it is thoroughly explained. 

The second category consists of busy programmers who need to get the job done without undergoing a 
steep learning investment. They can skim the most intricate details of implementation and concentrate on 
using the provided library. Each chapter has an introductory explanation and ends with a Quick Facts 
section. Programmers will find these features a useful reference in understanding and using the 
components. The components can be understood in isolation, are very powerful yet safe, and are a joy to 
use. 

You need to have a solid working experience with C++ and, above all, the desire to learn more. A degree 
of familiarity with templates and the Standard Template Library (STL) is desirable. 

Having an acquaintance with design patterns (Gamma et al. 1995) is recommended but not mandatory. The 
patterns and idioms applied in the book are described in detail. However, this book is not a pattern book—
it does not attempt to treat patterns in full generality. Because patterns are presented from the pragmatic 
standpoint of a library writer, even readers interested mostly in patterns may find the perspective 
refreshing, if constrained. 
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The book describes an actual C++ library called Loki. Loki is the god of wit and mischief in Norse 
mythology, and the author's hope is that the library's originality and flexibility will remind readers of the 
playful Norse god. All the elements of the library live in the namespace Loki. The namespace is not 
mentioned in the coding examples because it would have unnecessarily increased indentation and the size 
of the examples. Loki is freely available; you can download it from http://www.awl.com/cseng/titles/0-
201-70431-5. 

Except for its threading part, Loki is written exclusively in standard C++. This, alas, means that many 
current compilers cannot cope with parts of it. I implemented and tested Loki using Metrowerks' 
CodeWarrior Pro 6.0 and Comeau C++ 4.2.38, both on Windows. It is likely that KAI C++ wouldn't have 
any problem with the code, either. As vendors release new, better compiler versions, you will be able to 
exploit everything Loki has to offer. 

Loki's code and the code samples presented throughout the book use a popular coding standard originated 
by Herb Sutter. I'm sure you will pick it up easily. In a nutshell, 

• Classes, functions, and enumerated types look LikeThis. 
• Variables and enumerated values look likeThis. 
• Member variables look likeThis_. 
• Template parameters are declared with class if they can be only a user-defined type, and with 

typename if they can also be a primitive type. 

 

Organization 

The book consists of two major parts: techniques and components. Part I (Chapters 1 to 4) describes the 
C++ techniques that are used in generic programming and in particular in building generic components. A 
host of C++-specific features and techniques are presented: policy-based design, partial template 
specialization, typelists, local classes, and more. You may want to read this part sequentially and return to 
specific sections for reference. 

Part II builds on the foundation established in Part I by implementing a number of generic components. 
These are not toy examples; they are industrial-strength components used in real-world applications. 
Recurring issues that C++ developers face in their day-to-day activity, such as smart pointers, object 
factories, and functor objects, are discussed in depth and implemented in a generic way. The text presents 
implementations that address basic needs and solve fundamental problems. Instead of explaining what a 
body of code does, the approach of the book is to discuss problems, take design decisions, and implement 
those decisions gradually. 

Chapter 1 presents policies—a C++ idiom that helps in creating flexible designs. 

Chapter 2 discusses general C++ techniques related to generic programming. 

Chapter 3 implements typelists, which are powerful type manipulation structures. 

Chapter 4 introduces an important ancillary tool: a small-object allocator. 

Chapter 5 introduces the concept of generalized functors, useful in designs that use the Command 
design pattern. 

Chapter 6 describes Singleton objects. 

Chapter 7 discusses and implements smart pointers. 

http://www.awl.com/cseng/titles/0-201-70431-5
http://www.awl.com/cseng/titles/0-201-70431-5
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Chapter 8 describes generic object factories. 

Chapter 9 treats the Abstract Factory design pattern and provides implementations of it. 

Chapter 10 implements several variations of the Visitor design pattern in a generic manner. 

Chapter 11 implements several multimethod engines, solutions that foster various trade-offs. 

The design themes cover many important situations that C++ programmers have to cope with on a regular 
basis. I personally consider object factories (Chapter 8) a cornerstone of virtually any quality polymorphic 
design. Also, smart pointers (Chapter 7) are an important component of many C++ applications, small and 
large. Generalized functors (Chapter 5) have an incredibly broad range of applications. Once you have 
generalized functors, many complicated design problems become very simple. The other, more specialized, 
generic components, such as Visitor (Chapter 10) or multimethods (Chapter 11), have important niche 
applications and stretch the boundaries of language support. 
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Chapter 1. Policy-Based Class Design 
This chapter describes policies and policy classes, important class design techniques that enable the 
creation of flexible, highly reusable libraries—as Loki aims to be. In brief, policy-based class design 
fosters assembling a class with complex behavior out of many little classes (called policies), each of which 
takes care of only one behavioral or structural aspect. As the name suggests, a policy establishes an 
interface pertaining to a specific issue. You can implement policies in various ways as long as you respect 
the policy interface. 

Because you can mix and match policies, you can achieve a combinatorial set of behaviors by using a 
small core of elementary components. 

Policies are used in many chapters of this book. The generic SingletonHolder class template (Chapter 
6) uses policies for managing lifetime and thread safety. SmartPtr (Chapter 7) is built almost entirely 
from policies. The double-dispatch engine in Chapter 11 uses policies for selecting various trade-offs. The 
generic Abstract Factory (Gamma et al. 1995) implementation in Chapter 9 uses a policy for choosing a 
creation method. 

This chapter explains the problem that policies are intended to solve, provides details of policy-based class 
design, and gives advice on decomposing a class into policies. 

 

1.1 The Multiplicity of Software Design 

Software engineering, maybe more than any other engineering discipline, exhibits a rich multiplicity: You 
can do the same thing in many correct ways, and there are infinite nuances between right and wrong. Each 
path opens up a new world. Once you choose a solution, a host of possible variants appears, on and on at 
all levels—from the system architecture level down to the smallest coding detail. The design of a software 
system is a choice of solutions out of a combinatorial solution space. 

Let's think of a simple, low-level design artifact: a smart pointer (Chapter 7). A smart pointer class can be 
single threaded or multithreaded, can use various ownership strategies, can make various trade-offs 
between safety and speed, and may or may not support automatic conversions to the underlying raw 
pointer type. All these features can be combined freely, and usually exactly one solution is best suited for a 
given area of your application. 

The multiplicity of the design space constantly confuses apprentice designers. Given a software design 
problem, what's a good solution to it? Events? Objects? Observers? Callbacks? Virtuals? Templates? Up to 
a certain scale and level of detail, many different solutions seem to work equally well. 

The most important difference between an expert software architect and a beginner is the knowledge of 
what works and what doesn't. For any given architectural problem, there are many competing ways of 
solving it. However, they scale differently and have distinct sets of advantages and disadvantages, which 
may or may not be suitable for the problem at hand. A solution that appears to be acceptable on the 
whiteboard might be unusable in practice. 

Designing software systems is hard because it constantly asks you to choose. And in program design, just 
as in life, choice is hard. 

Good, seasoned designers know what choices will lead to a good design. For a beginner, each design 
choice opens a door to the unknown. The experienced designer is like a good chess player: She can see 
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more moves ahead. This takes time to learn. Maybe this is the reason why programming genius may show 
at an early age, whereas software design genius tends to take more time to ripen. 

In addition to being a puzzle for beginners, the combinatorial nature of design decisions is a major source 
of trouble for library writers. To implement a useful library of designs, the library designer must classify 
and accommodate many typical situations, yet still leave the library open-ended so that the application 
programmer can tailor it to the specific needs of a particular situation. 

Indeed, how can one package flexible, sound design components in libraries? How can one let the user 
configure these components? How does one fight the "evil multiplicity" of design with a reasonably sized 
army of code? These are the questions that the remainder of this chapter, and ultimately this whole book, 
tries to answer. 

 

1.2 The Failure of the Do-It-All Interface 

Implementing everything under the umbrella of a do-it-all interface is not a good solution, for several 
reasons. 

Some important negative consequences are intellectual overhead, sheer size, and inefficiency. Mammoth 
classes are unsuccessful because they incur a big learning overhead, tend to be unnecessarily large, and 
lead to code that's much slower than the equivalent handcrafted version. 

But maybe the most important problem of an overly rich interface is loss of static type safety. One essential 
purpose of the architecture of a system is to enforce certain axioms "by design"—for example, you cannot 
create two Singleton objects (see Chapter 6) or create objects of disjoint families (see Chapter 9). Ideally, a 
design should enforce most constraints at compile time. 

In a large, all-encompassing interface, it is very hard to enforce such constraints. Typically, once you have 
chosen a certain set of design constraints, only certain subsets of the large interface remain semantically 
valid. A gap grows between syntactically valid and semantically valid uses of the library. The programmer 
can write an increasing number of constructs that are syntactically valid, but semantically illegal. 

For example, consider the thread-safety aspect of implementing a Singleton object. If the library fully 
encapsulates threading, then the user of a particular, nonportable threading system cannot use the Singleton 
library. If the library gives access to the unprotected primitive functions, there is the risk that the 
programmer will break the design by writing code that's syntactically—but not semantically—valid. 

What if the library implements different design choices as different, smaller classes? Each class would 
represent a specific canned design solution. In the smart pointer case, for example, you would expect a 
battery of implementations: SingleThreadedSmartPtr, MultiThreadedSmartPtr, 
RefCountedSmartPtr, RefLinkedSmartPtr, and so on. 

The problem that emerges with this second approach is the combinatorial explosion of the various design 
choices. The four classes just mentioned lead necessarily to combinations such as 
SingleThreadedRefCountedSmartPtr. Adding a third design option such as conversion support 
leads to exponentially more combinations, which will eventually overwhelm both the implementer and the 
user of the library. Clearly this is not the way to go. Never use brute force in fighting an exponential. 

Not only does such a library incur an immense intellectual overhead, but it also is extremely rigid. The 
slightest unpredicted customization—such as trying to initialize default-constructed smart pointers with a 
particular value—renders all the carefully crafted library classes useless. 
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Designs enforce constraints; consequently, design-targeted libraries must help user-crafted designs to 
enforce their own constraints, instead of enforcing predefined constraints. Canned design choices would be 
as uncomfortable in design-targeted libraries as magic constants would be in regular code. Of course, 
batteries of "most popular" or "recommended" canned solutions are welcome, as long as the client 
programmer can change them if needed. 

These issues have led to an unfortunate state of the art in the library space: Low-level general-purpose and 
specialized libraries abound, while libraries that directly assist the design of an application—the higher-
level structures—are practically nonexistent. This situation is paradoxical because any nontrivial 
application has a design, so a design-targeted library would apply to most applications. 

Frameworks try to fill the gap here, but they tend to lock an application into a specific design rather than 
help the user to choose and customize a design. If programmers need to implement an original design, they 
have to start from first principles—classes, functions, and so on. 

 

1.3 Multiple Inheritance to the Rescue? 

A TemporarySecretary class inherits both the Secretary and the Temporary classes.[1] 
TemporarySecretary has the features of both a secretary and a temporary employee, and possibly 
some more features of its own. This leads to the idea that multiple inheritance might help with handling the 
combinatorial explosion of design choices through a small number of cleverly chosen base classes. In such 
a setting, the user would build a multi-threaded, reference-counted smart pointer class by inheriting some 
BaseSmartPtr class and two classes: MultiThreaded and RefCounted. Any experienced class 
designer knows that such a naïve design does not work. 

[1] This example is drawn from an old argument that Bjarne Stroustrup made in favor of multiple inheritance, 
in the first edition of The C++ Programming Language. At that time, multiple inheritance had not yet been 
introduced in C++. 

Analyzing the reasons why multiple inheritance fails to allow the creation of flexible designs provides 
interesting ideas for reaching a sound solution. The problems with assembling separate features by using 
multiple inheritance are as follows: 

1. Mechanics. There is no boilerplate code to assemble the inherited components in a controlled 
manner. The only tool that combines BaseSmartPtr, MultiThreaded, and RefCounted is a 
language mechanism called multiple inheritance. The language applies simple superposition in 
combining the base classes and establishes a set of simple rules for accessing their members. This 
is unacceptable except for the simplest cases. Most of the time, you need to carefully orchestrate 
the workings of the inherited classes to obtain the desired behavior. 

2. Type information. The base classes do not have enough type information to carry out their tasks. 
For example, imagine you try to implement deep copy for your smart pointer class by deriving 
from a DeepCopy base class. What interface would DeepCopy have? It must create objects of a 
type it doesn't know yet. 

3. State manipulation. Various behavioral aspects implemented with base classes must manipulate 
the same state. This means that they must use virtual inheritance to inherit a base class that holds 
the state. This complicates the design and makes it more rigid because the premise was that user 
classes inherit library classes, not vice versa. 

Although combinatorial in nature, multiple inheritance by itself cannot address the multiplicity of design 
choices. 
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1.4 The Benefit of Templates 

Templates are a good candidate for coping with combinatorial behaviors because they generate code at 
compile time based on the types provided by the user. 

Class templates are customizable in ways not supported by regular classes. If you want to implement a 
special case, you can specialize any member functions of a class template for a specific instantiation of the 
class template. For example, if the template is SmartPtr<T>, you can specialize any member function for, 
say, SmartPtr<Widget>. This gives you good granularity in customizing behavior. 

Furthermore, for class templates with multiple parameters, you can use partial template specialization (as 
you will see in Chapter 2). Partial template specialization gives you the ability to specialize a class 
template for only some of its arguments. For example, given the definition 

template <class T, class U> class SmartPtr { ... }; 

you can specialize SmartPtr<T, U> for Widget and any other type using the following syntax: 

template <class U> class SmartPtr<Widget, U> { ... }; 

The innate compile-time and combinatorial nature of templates makes them very attractive for creating 
design pieces. As soon as you try to implement such designs, you stumble upon several problems that are 
not self-evident: 

1. You cannot specialize structure. Using templates alone, you cannot specialize the structure of a 
class (its data members). You can specialize only functions. 

2. Specialization of member functions does not scale. You can specialize any member function of a 
class template with one template parameter, but you cannot specialize individual member 
functions for templates with multiple template parameters. For example: 

template <class T> class Widget 
{ 
   void Fun() { .. generic implementation ... } 
}; 
// OK: specialization of a member function of Widget 
template <> Widget<char>::Fun() 
{ 
   ... specialized implementation ... 
} 
template <class T, class U> class Gadget 
{ 
   void Fun() { .. generic implementation ... } 
}; 
// Error! Cannot partially specialize a member class of Gadget 
template <class U> void Gadget<char, U>::Fun() 
{ 
   ... specialized implementation ... 
} 

3. The library writer cannot provide multiple default values. At best, a class template implementer 
can provide a single default implementation for each member function. You cannot provide 
several defaults for a template member function. 

Now compare the list of drawbacks of multiple inheritance with the list of drawbacks of templates. 
Interestingly, multiple inheritance and templates foster complementary trade-offs. Multiple inheritance has 
scarce mechanics; templates have rich mechanics. Multiple inheritance loses type information, which 
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abounds in templates. Specialization of templates does not scale, but multiple inheritance scales quite 
nicely. You can provide only one default for a template member function, but you can write an unbounded 
number of base classes. 

This analysis suggests that a combination of templates and multiple inheritance could engender a very 
flexible device, appropriate for creating libraries of design elements. 

 

1.5 Policies and Policy Classes 

Policies and policy classes help in implementing safe, efficient, and highly customizable design elements. 
A policy defines a class interface or a class template interface. The interface consists of one or all of the 
following: inner type definitions, member functions, and member variables. 

Policies have much in common with traits (Alexandrescu 2000a) but differ in that they put less emphasis 
on type and more emphasis on behavior. Also, policies are reminiscent of the Strategy design pattern 
(Gamma et al. 1995), with the twist that policies are compile-time bound. 

For example, let's define a policy for creating objects. The Creator policy prescribes a class template of 
type T. This class template must expose a member function called Create that takes no arguments and 
returns a pointer to T. Semantically, each call to Create should return a pointer to a new object of type T. 
The exact mode in which the object is created is left to the latitude of the policy implementation. 

Let's define some policy classes that implement the Creator policy. One possible way is to use the new 
operator. Another way is to use malloc and a call to the placement new operator (Meyers 1998b). Yet 
another way would be to create new objects by cloning a prototype object. Here are examples of all three 
methods: 

template <class T> 
struct OpNewCreator 
{ 
   static T* Create() 
   { 
      return new T; 
   } 
}; 
 
template <class T> 
struct MallocCreator 
{ 
   static T* Create() 
   { 
      void* buf = std::malloc(sizeof(T)); 
      if (!buf) return 0; 
      return new(buf) T; 
   } 
}; 
 
template <class T> 
struct PrototypeCreator 
{ 
   PrototypeCreator(T* pObj = 0) 
      :pPrototype_(pObj) 
   {} 
   T* Create() 
   { 
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      return pPrototype_ ? pPrototype_->Clone() : 0; 
   } 
   T* GetPrototype() { return pPrototype_; } 
   void SetPrototype(T* pObj) { pPrototype_ = pObj; } 
private: 
   T* pPrototype_; 
}; 

For a given policy, there can be an unlimited number of implementations. The implementations of a policy 
are called policy classes.[2] Policy classes are not intended for stand-alone use; instead, they are inherited 
by, or contained within, other classes. 

[2] This name is slightly inaccurate because, as you will see soon, policy implementations can be class 
templates. 

An important aspect is that, unlike classic interfaces (collections of pure virtual functions), policies' 
interfaces are loosely defined. Policies are syntax oriented, not signature oriented. In other words, Creator 
specifies which syntactic constructs should be valid for a conforming class, rather than which exact 
functions that class must implement. For example, the Creator policy does not specify that Create must 
be static or virtual—the only requirement is that the class template define a Create member function. 
Also, Creator says that Create should return a pointer to a new object (as opposed to must). Consequently, 
it is acceptable that in special cases, Create might return zero or throw an exception. 

You can implement several policy classes for a given policy. They all must respect the interface as defined 
by the policy. The user then chooses which policy class to use in larger structures, as you will see. 

The three policy classes defined earlier have different implementations and even slightly different 
interfaces (for example, PrototypeCreator has two extra functions: GetPrototype and 
SetPrototype). However, they all define a function called Create with the required return type, so 
they conform to the Creator policy. 

Let's see now how we can design a class that exploits the Creator policy. Such a class will either contain or 
inherit one of the three classes defined previously, as shown in the following: 

// Library code 
template <class CreationPolicy> 
class WidgetManager : public CreationPolicy 
{ 
   ... 
}; 

The classes that use one or more policies are called hosts or host classes.[3] In the example above, 
WidgetManager is a host class with one policy. Hosts are responsible for assembling the structures and 
behaviors of their policies in a single complex unit. 

[3] Although host classes are technically host class templates, let's stick to a unique definition. Both host 
classes and host class templates serve the same concept. 

When instantiating the WidgetManager template, the client passes the desired policy: 

// Application code 
typedef WidgetManager< OpNewCreator<Widget> > MyWidgetMgr; 

Let's analyze the resulting context. Whenever an object of type MyWidgetMgr needs to create a Widget, 
it invokes Create() for its OpNewCreator<Widget> policy subobject. How ever, it is the user of 
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WidgetManager who chooses the creation policy. Effectively, through its design, WidgetManager 
allows its users to configure a specific aspect of WidgetManager's functionality. 

This is the gist of policy-based class design. 

1.5.1 Implementing Policy Classes with Template Template Parameters 

Often, as is the case above, the policy's template argument is redundant. It is awkward that the user must 
pass OpNewCreator's template argument explicitly. Typically, the host class already knows, or can easily 
deduce, the template argument of the policy class. In the example above, WidgetManager always 
manages objects of type Widget, so requiring the user to specify Widget again in the instantiation of 
OpNewCreator is redundant and potentially dangerous. 

In this case, library code can use template template parameters for specifying policies, as shown in the 
following: 

// Library code 
template <template <class Created> class CreationPolicy> 
class WidgetManager : public CreationPolicy<Widget> 
{ 
   ... 
}; 

In spite of appearances, the Created symbol does not contribute to the definition of WidgetManager. 
You cannot use Created inside WidgetManager—it is a formal argument for CreationPolicy (not 
WidgetManager) and simply can be omitted. 

Application code now need only provide the name of the template in instantiating WidgetManager: 

// Application code 
typedef WidgetManager<OpNewCreator> MyWidgetMgr; 

Using template template parameters with policy classes is not simply a matter of convenience; sometimes, 
it is essential that the host class have access to the template so that the host can instantiate it with a 
different type. For example, assume WidgetManager also needs to create objects of type Gadget using 
the same creation policy. Then the code would look like this: 

// Library code 
template <template <class> class CreationPolicy> 
class WidgetManager : public CreationPolicy<Widget> 
{ 
   ... 
   void DoSomething() 
   { 
      Gadget* pW = CreationPolicy<Gadget>().Create(); 
      ... 
   } 
}; 

Does using policies give you an edge? At first sight, not a lot. For one thing, all implementations of the 
Creator policy are trivially simple. The author of WidgetManager could certainly have written the 
creation code inline and avoided the trouble of making WidgetManager a template. 

But using policies gives great flexibility to WidgetManager. First, you can change policies from the 
outside as easily as changing a template argument when you instantiate WidgetManager. Second, you 
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can provide your own policies that are specific to your concrete application. You can use new, malloc, 
prototypes, or a peculiar memory allocation library that only your system uses. It is as if WidgetManager 
were a little code generation engine, and you configure the ways in which it generates code. 

To ease the lives of application developers, WidgetManager's author might define a battery of often-used 
policies and provide a default template argument for the policy that's most commonly used: 

template <template <class> class CreationPolicy = OpNewCreator> 
class WidgetManager ... 

Note that policies are quite different from mere virtual functions. Virtual functions promise a similar effect: 
The implementer of a class defines higher-level functions in terms of primitive virtual functions and lets 
the user override the behavior of those primitives. As shown above, however, policies come with enriched 
type knowledge and static binding, which are essential ingredients for building designs. Aren't designs full 
of rules that dictate before runtime how types interact with each other and what you can and what you 
cannot do? Policies allow you to generate designs by combining simple choices in a typesafe manner. In 
addition, because the binding between a host class and its policies is done at compile time, the code is tight 
and efficient, comparable to its handcrafted equivalent. 

Of course, policies' features also make them unsuitable for dynamic binding and binary interfaces, so in 
essence policies and classic interfaces do not compete. 

1.5.2 Implementing Policy Classes with Template Member Functions 

An alternative to using template template parameters is to use template member functions in conjunction 
with simple classes. That is, the policy implementation is a simple class (as opposed to a template class) 
but has one or more templated members. 

For example, we can redefine the Creator policy to prescribe a regular (nontemplate) class that exposes a 
template function Create<T>. A conforming policy class looks like the following: 

struct OpNewCreator 
{ 
   template <class T> 
   static T* Create() 
   { 
      return new T; 
   } 
}; 

This way of defining and implementing a policy has the advantage of being better supported by older 
compilers. On the other hand, policies defined this way are often harder to talk about, define, implement, 
and use. 

 

1.6 Enriched Policies 

The Creator policy prescribes only one member function, Create. However, PrototypeCreator 
defines two more functions: GetPrototype and SetPrototype. Let's analyze the resulting context. 

Because WidgetManager inherits its policy class and because GetPrototype and Set-Prototype 
are public members of PrototypeCreator, the two functions propagate through WidgetManager and 
are directly accessible to clients. 
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However, WidgetManager asks only for the Create member function; that's all WidgetManager 
needs and uses for ensuring its own functionality. Users, however, can exploit the enriched interface. 

A user who uses a prototype-based Creator policy class can write the following code: 

typedef WidgetManager<PrototypeCreator> 
   MyWidgetManager; 
... 
Widget* pPrototype = ...; 
MyWidgetManager mgr; 
mgr.SetPrototype(pPrototype); 
... use mgr ... 

If the user later decides to use a creation policy that does not support prototypes, the compiler pinpoints the 
spots where the prototype-specific interface was used. This is exactly what should be expected from a 
sound design. 

The resulting context is very favorable. Clients who need enriched policies can benefit from that rich 
functionality, without affecting the basic functionality of the host class. Don't forget that users—and not 
the library—decide which policy class to use. Unlike regular multiple interfaces, policies give the user the 
ability to add functionality to a host class, in a typesafe manner. 

 

1.7 Destructors of Policy Classes 

There is an additional important detail about creating policy classes. Most often, the host class uses public 
inheritance to derive from its policies. For this reason, the user can automatically convert a host class to a 
policy and later delete that pointer. Unless the policy class defines a virtual destructor, applying 
delete to a pointer to the policy class has undefined behavior,[4] as shown below. 

[4] In Chapter 4, Small-Object Allocation, you can find a discussion on exactly why this happens. 

typedef WidgetManager<PrototypeCreator> 
   MyWidgetManager; 
... 
MyWidgetManager wm; 
PrototypeCreator<Widget>* pCreator = &wm; // dubious, but legal 
delete pCreator;  // compiles fine, but has undefined behavior 

Defining a virtual destructor for a policy, however, works against its static nature and hurts performance. 
Many policies don't have any data members, but rather are purely behavioral by nature. The first virtual 
function added incurs some size overhead for the objects of that class, so the virtual destructor should be 
avoided. 

A solution is to have the host class use protected or private inheritance when deriving from the policy class. 
However, this would disable enriched policies as well (Section 1.6). 

The lightweight, effective solution that policies should use is to define a nonvirtual protected destructor: 

template <class T> 
struct OpNewCreator 
{ 
   static T* Create() 
   { 
    return new T; 
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   } 
protected: 
   ~OpNewCreator() {} 
}; 

Because the destructor is protected, only derived classes can destroy policy objects, so it's impossible for 
outsiders to apply delete to a pointer to a policy class. The destructor, however, is not virtual, so there is 
no size or speed overhead. 

 

1.8 Optional Functionality Through Incomplete Instantiation 

It gets even better. C++ contributes to the power of policies by providing an interesting feature. If a 
member function of a class template is never used, it is not even instantiated—the compiler does not look 
at it at all, except perhaps for syntax checking.[5] 

[5] According to the C++ standard, the degree of syntax checking for unused template functions is up to the 
implementation. The compiler does not do any semantic checking—for example, symbols are not looked up. 

This gives the host class a chance to specify and use optional features of a policy class. For example, let's 
define a SwitchPrototype member function for WidgetManager. 

// Library code 
template <template <class> class CreationPolicy> 
class WidgetManager : public CreationPolicy<Widget> 
{ 
   ... 
   void SwitchPrototype(Widget* pNewPrototype) 
   { 
      CreationPolicy<Widget>& myPolicy = *this; 
      delete myPolicy.GetPrototype(); 
      myPolicy.SetPrototype(pNewPrototype); 
   } 
}; 

The resulting context is very interesting: 

• If the user instantiates WidgetManager with a Creator policy class that supports prototypes, she 
can use SwitchPrototype. 

• If the user instantiates WidgetManager with a Creator policy class that does not support 
prototypes and tries to use SwitchPrototype, a compile-time error occurs. 

• If the user instantiates WidgetManager with a Creator policy class that does not support 
prototypes and does not try to use SwitchPrototype, the program is valid. 

This all means that WidgetManager can benefit from optional enriched interfaces but still work correctly 
with poorer interfaces—as long as you don't try to use certain member functions of WidgetManager. 

The author of WidgetManager can define the Creator policy in the following manner: 

Creator prescribes a class template of one type T that exposes a member function Create. Create should 
return a pointer to a new object of type T. Optionally, the implementation can define two additional 
member functions—T* GetPrototype() and SetPrototype(T*)—having the semantics of getting 
and setting a prototype object used for creation. In this case, WidgetManager exposes the 
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SwitchPrototype (T* pNewPrototype) member function, which deletes the current prototype and 
sets it to the incoming argument. 

In conjunction with policy classes, incomplete instantiation brings remarkable freedom to you as a library 
designer. You can implement lean host classes that are able to use additional features and degrade 
graciously, allowing for Spartan, minimal policies. 

 

1.9 Combining Policy Classes 

The greatest usefulness of policies is apparent when you combine them. Typically, a highly configurable 
class uses several policies for various aspects of its workings. Then the library user selects the desired 
high-level behavior by combining several policy classes. 

For example, consider designing a generic smart pointer class. (Chapter 7 builds a full implementation.) 
Say you identify two design choices that you should establish with policies: threading model and checking 
before dereferencing. Then you implement a SmartPtr class template that uses two policies, as shown: 

template 
< 
   class T, 
   template <class> class CheckingPolicy, 
   template <class> class ThreadingModel 
> 
class SmartPtr; 

SmartPtr has three template parameters: the pointee type and two policies. Inside SmartPtr, you 
orchestrate the two policies into a sound implementation. SmartPtr be comes a coherent shell that 
integrates several policies, rather than a rigid, canned implementation. By designing SmartPtr this way, 
you allow the user to configure SmartPtr with a simple typedef: 

typedef SmartPtr<Widget, NoChecking, SingleThreaded> 
   WidgetPtr; 

Inside the same application, you can define and use several smart pointer classes: 

typedef SmartPtr<Widget, EnforceNotNull, SingleThreaded> 
   SafeWidgetPtr; 

The two policies can be defined as follows: 

Checking: The CheckingPolicy<T> class template must expose a Check member function, callable 
with an lvalue of type T*. SmartPtr calls Check, passing it the pointee object before dereferencing it. 

ThreadingModel: The ThreadingModel<T> class template must expose an inner type called Lock, 
whose constructor accepts a T&. For the lifetime of a Lock object, operations on the T object are serialized. 

For example, here is the implementation of the NoChecking and EnforceNotNull policy classes: 

template <class T> struct NoChecking 
{ 
   static void Check(T*) {} 
}; 
template <class T> struct EnforceNotNull 
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{ 
   class NullPointerException : public std::exception { ... }; 
   static void Check(T* ptr) 
   { 
      if (!ptr) throw NullPointerException(); 
   } 
}; 

By plugging in various checking policy classes, you can implement various behaviors. You can even 
initialize the pointee object with a default value by accepting a reference to a pointer, as shown: 

template <class T> struct EnsureNotNull 
{ 
   static void Check(T*& ptr) 
   { 
      if (!ptr) ptr = GetDefaultValue(); 
   } 
}; 

SmartPtr uses the Checking policy this way: 

template 
< 
   class T, 
   template <class> class CheckingPolicy, 
   template <class> class ThreadingModel 
> 
class SmartPtr 
   : public CheckingPolicy<T> 
   , public ThreadingModel<SmartPtr> 
{ 
   ... 
   T* operator->() 
   { 
      typename ThreadingModel<SmartPtr>::Lock guard(*this); 
      CheckingPolicy<T>::Check(pointee_); 
      return pointee_; 
   } 
private: 
   T* pointee_; 
}; 

Notice the use of both the CheckingPolicy and ThreadingModel policy classes in the same function. 
Depending on the two template arguments, SmartPtr::operator-> behaves differently on two 
orthogonal dimensions. Such is the power of combining policies. 

If you manage to decompose a class in orthogonal policies, you can cover a large spectrum of behaviors 
with a small amount of code. 

 

1.10 Customizing Structure with Policy Classes 

One of the limitations of templates, mentioned in Section 1.4, is that you cannot use templates to 
customize the structure of a class—only its behavior. Policy-based designs, however, do support structural 
customization in a natural manner. 
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Suppose that you want to support nonpointer representations for SmartPtr. For example, on certain 
platforms some pointers might be represented by a handle—an integral value that you pass to a system 
function to obtain the actual pointer. To solve this you might "indirect" the pointer access through a policy, 
say, a Structure policy. The Structure policy abstracts the pointer storage. Consequently, Structure should 
expose types called PointerType (the type of the pointed-to object) and ReferenceType (the type to 
which the pointer refers) and functions such as GetPointer and SetPointer. 

The fact that the pointer type is not hardcoded to T* has important advantages. For example, you can use 
SmartPtr with nonstandard pointer types (such as near and far pointers on segmented architectures), 
or you can easily implement clever solutions such as before and after functions (Stroustrup 2000a). 
The possibilities are extremely interesting. 

The default storage of a smart pointer is a plain-vanilla pointer adorned with the Structure policy interface, 
as shown in the following code. 

template <class T> 
class DefaultSmartPtrStorage 
{ 
public: 
   typedef T* PointerType; 
   typedef T& ReferenceType; 
protected: 
   PointerType GetPointer() { return ptr_; } 
   void SetPointer(PointerType ptr) { pointee_ = ptr; } 
  private: 
     PointerType ptr_; 
}; 

The actual storage used is completely hidden behind Structure's interface. Now SmartPtr can use a 
Storage policy instead of aggregating a T*. 

template 
< 
   class T, 
   template <class> class CheckingPolicy, 
   template <class> class ThreadingModel, 
   template <class> class Storage = DefaultSmartPtrStorage 
> 
class SmartPtr; 

Of course, SmartPtr must either derive from Storage<T> or aggregate a Storage<T> object in order 
to embed the needed structure. 

 

1.11 Compatible and Incompatible Policies 

Suppose you create two instantiations of SmartPtr: FastWidgetPtr, a pointer with out checking, and 
SafeWidgetPtr, a pointer with checking before dereference. An interesting question is, Should you be 
able to assign FastWidgetPtr objects to SafeWidgetPtr objects? Should you be able to assign them 
the other way around? If you want to allow such conversions, how can you implement that? 

Starting from the reasoning that SafeWidgetPtr is more restrictive than FastWidgetPtr, it is natural 
to accept the conversion from FastWidgetPtr to SafeWidgetPtr. This is because C++ already 
supports implicit conversions that increase restrictions—namely, from non-const to const types. 
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On the other hand, freely converting SafeWidgetPtr objects to FastWidgetPtr objects is dangerous. 
This is because in an application, the majority of code would use SafeWidgetPtr and only a small, 
speed-critical core would use FastWidgetPtr. Allowing only explicit, controlled conversions to 
FastWidgetPtr would help keep FastWidgetPtr's usage to a minimum. 

The best, most scalable way to implement conversions between policies is to initialize and copy 
SmartPtr objects policy by policy, as shown below. (Let's simplify the code by getting back to only one 
policy—the Checking policy.) 

template 
< 
   class T, 
   template <class> class CheckingPolicy 
> 
class SmartPtr : public CheckingPolicy<T> 
{ 
   ... 
   template 
 < 
    class T1, 
    template <class> class CP1, 
 > 
 SmartPtr(const SmartPtr<T1, CP1>& other) 
    : pointee_(other.pointee_), CheckingPolicy<T>(other) 
 { ... } 
}; 

SmartPtr implements a templated copy constructor, which accepts any other instantiation of SmartPtr. 
The code in bold initializes the components of SmartPtr with the components of the other 
SmartPtr<T1, CP1> received as arguments. 

Here's how it works. (Follow the constructor code.) Assume you have a class ExtendedWidget, derived 
from Widget. If you initialize a SmartPtr<Widget, NoChecking> with a 
SmartPtr<ExtendedWidget, NoChecking>, the compiler attempts to initialize a Widget* with an 
ExtendedWiget* (which works), and a NoChecking with a SmartPtrExtended <Widget, 
NoChecking>. This might look suspicious, but don't forget that SmartPtr derives from its policy, so in 
essence the compiler will easily figure out that you initialize a NoChecking with a NoChecking. The 
whole initialization works. 

Now for the interesting part. Say you initialize a SmartPtr<Widget, EnforceNotNull> with a 
SmartPtr<ExtendedWidget, NoChecking>. The ExtendedWidget* to Widget* conversion 
works just as before. Then the compiler tries to match SmartPtr<ExtendedWidget, NoChecking> 
to EnforceNotNull's constructors. 

If EnforceNotNull implements a constructor that accepts a NoChecking object, then the compiler 
matches that constructor. If NoChecking implements a conversion operator to EnforceNotNull, that 
conversion is invoked. In any other case, the code fails to compile. 

As you can see, you have two-sided flexibility in implementing conversions between policies. You can 
implement a conversion constructor on the left-hand side, or you can implement a conversion operator on 
the right-hand side. 

The assignment operator looks like an equally tricky problem, but fortunately, Sutter (2000) describes a 
very nifty technique that allows you to implement the assignment operator in terms of the copy constructor. 
(It's so nifty, you have to read about it. You can see the technique at work in Loki's SmartPtr 
implementation.) 
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Although conversions from NoChecking to EnforceNotNull and even vice versa are quite sensible, 
some conversions don't make any sense at all. Imagine converting a reference-counted pointer to a pointer 
that supports another ownership strategy, such as destructive copy (à la std::auto_ptr). Such a 
conversion is semantically wrong. The definition of reference counting is that all pointers to the same 
object are known and tracked by a unique counter. As soon as you try to confine a pointer to another 
ownership policy, you break the invariant that makes reference counting work. 

In conclusion, conversions that change the ownership policy should not be allowed implicitly and should 
be treated with maximum care. At best, you can change the ownership policy of a reference-counted 
pointer by explicitly calling a function. That function succeeds if and only if the reference count of the 
source pointer is 1. 

 

1.12 Decomposing a Class into Policies 

The hardest part of creating policy-based class design is to correctly decompose the functionality of a class 
in policies. The rule of thumb is to identify and name the design decisions that take part in a class's 
behavior. Anything that can be done in more than one way should be identified and migrated from the 
class to a policy. Don't forget: Design constraints buried in a class's design are as bad as magic constants 
buried in code. 

For example, consider a WidgetManager class. If WidgetManager creates new Widget objects 
internally, creation should be deferred to a policy. If WidgetManager stores a collection of Widgets, it 
makes sense to make that collection a storage policy, unless there is a strong preference for a specific 
storage mechanism. 

At an extreme, a host class is totally depleted of any intrinsic policy. It delegates all design decisions and 
constraints to policies. Such a host class is a shell over a collection of policies and deals only with 
assembling the policies into a coherent behavior. 

The disadvantage of an overly generic host class is the abundance of template parameters. In practice, it is 
awkward to work with more than four to six template parameters. Still, they justify their presence if the 
host class offers complex, useful functionality. 

Type definitions—typedef statements—are an essential tool in using classes that rely on policies. Using 
typedef is not merely a matter of convenience; it ensures ordered use and easy maintenance. For 
example, consider the following type definition: 

typedef SmartPtr 
< 
   Widget, 
   RefCounted, 
   NoChecked 
> 
WidgetPtr; 

It would be very tedious to use the lengthy specialization of SmartPtr instead of WidgetPtr in code. 
But the tediousness of writing code is nothing compared with the major problems in understanding and 
maintaining that code. As the design evolves, WidgetPtr's definition might change—for example, to 
use a checking policy other than NoChecked in debug builds. It is essential that all the code use 
WidgetPtr instead of a hardcoded instantiation of SmartPtr. It's just like the difference between calling 
a function and writing the equivalent inline code: The inline code technically does the same thing but fails 
to build an abstraction behind it. 
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When you decompose a class in policies, it is very important to find an orthogonal decomposition. An 
orthogonal decomposition yields policies that are completely independent of each other. You can easily 
spot a nonorthogonal decomposition when various policies need to know about each other. 

For example, think of an Array policy in a smart pointer. The Array policy is very simple—it dictates 
whether or not the smart pointer points to an array. The policy can be defined to have a member function 
T& ElementAt(T* ptr, unsigned int index), plus a similar version for const T. The non-
array policy simply does not define an ElementAt member function, so trying to use it would yield a 
compile-time error. The ElementAt function is an optional enriched behavior as defined in Section 1.6. 

The implementations of two policy classes that implement the Array policy follow. 

template <class T> 
struct IsArray 
{ 
   T& ElementAt(T* ptr, unsigned int index) 
   { 
      return ptr[index]; 
   } 
   const T& ElementAt(T* ptr, unsigned int index) const 
   { 
      return ptr[index]; 
   } 
}; 
template <class T> struct IsNotArray {}; 

The problem is that purpose of the Array policy—specifying whether or not the smart pointer points to an 
array—interacts unfavorably with another policy: destruction. You must destroy pointers to objects using 
the delete operator, and destroy pointers to arrays of objects using the delete[] operator. 

Two policies that do not interact with each other are orthogonal. By this definition, the Array and the 
Destroy policies are not orthogonal. 

If you still need to confine the qualities of being an array and of destruction to separate policies, you need 
to establish a way for the two policies to communicate. You must have the Array policy expose a Boolean 
constant in addition to a function, and pass that Boolean to the Destroy policy. This complicates and 
somewhat constrains the design of both the Array and the Destroy policies. 

Nonorthogonal policies are an imperfection you should strive to avoid. They reduce compile-time type 
safety and complicate the design of both the host class and the policy classes. 

If you must use nonorthogonal policies, you can minimize dependencies by passing a policy class as an 
argument to another policy class's template function. This way you can benefit from the flexibility specific 
to template-based interfaces. The downside remains that one policy must expose some of its 
implementation details to other policies. This decreases encapsulation. 

 

1.13 Summary 

Design is choice. Most often, the struggle is not that there is no way to solve a design problem, but that 
there are too many ways that apparently solve the problem. You must know which collection of solutions 
solves the problem in a satisfactory manner. The need to choose propagates from the largest architectural 
levels down to the smallest unit of code. Furthermore, choices can be combined, which confers on design 
an evil multiplicity. 
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To fight the multiplicity of design with a reasonably small amount of code, a writer of a design-oriented 
library needs to develop and use special techniques. These techniques are purposely conceived to support 
flexible code generation by combining a small number of primitive devices. The library itself provides a 
number of such devices. Furthermore, the library exposes the specifications from which these devices are 
built, so the client can build her own. This essentially makes a policy-based design open-ended. These 
devices are called policies, and the implementations thereof are called policy classes. 

The mechanics of policies consist of a combination of templates with multiple inheritance. A class that 
uses policies—a host class—is a template with many template parameters (often, template template 
parameters), each parameter being a policy. The host class "indirects" parts of its functionality through its 
policies and acts as a receptacle that combines several policies in a coherent aggregate. 

Classes designed around policies support enriched behavior and graceful degradation of functionality. A 
policy can provide supplemental functionality that propagates through the host class due to public 
inheritance. Furthermore, the host class can implement enriched functionality that uses the optional 
functionality of a policy. If the optional functionality is not present, the host class still compiles 
successfully, provided the enriched functionality is not used. 

The power of policies comes from their ability to mix and match. A policy-based class can accommodate 
very many behaviors by combining the simpler behaviors that its policies implement. This effectively 
makes policies a good weapon for fighting against the evil multiplicity of design. 

Using policy classes, you can customize not only behavior but also structure. This important feature takes 
policy-based design beyond the simple type genericity that's specific to container classes. 

Policy-based classes support flexibility when it comes to conversions. If you use policy-by-policy copying, 
each policy can control which other policies it accepts, or converts to, by providing the appropriate 
conversion constructors, conversion operators, or both. 

In breaking a class into policies, you should follow two important guidelines. One is to localize, name, and 
isolate design decisions in your class—things that are subject to a trade-off or could be sensibly 
implemented in other ways. The other guideline is to look for orthogonal policies, that is, policies that 
don't need to interact with each other and that can be changed independently. 
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Chapter 2. Techniques 
This chapter presents a host of C++ techniques that are used throughout the book. Because they are of help 
in various contexts, the techniques presented tend to be general and reusable, so you might find 
applications for them in other contexts. Some of the techniques, such as partial template specialization, are 
language features. Others, such as compile-time assertions, come with some support code. 

In this chapter you will get acquainted with the following techniques and tools: 

• Compile-time assertions 
• Partial template specialization 
• Local classes 
• Mappings between types and values (the Int2Type and Type2Type class templates) 
• The Select class template, a tool that chooses a type at compile time based on a Boolean 

condition 
• Detecting convertibility and inheritance at compile time 
• TypeInfo, a handy wrapper around std::type_info 
• Traits, a collection of traits that apply to any C++ type 

Taken in isolation, each technique and its support code might look trivial; the norm is five to ten lines of 
easy-to-understand code. However, the techniques have an important property: They are "nonterminal"; 
that is, you can combine them to generate higher-level idioms. Together, they form a strong foundation of 
services that helps in building powerful architectural structures. 

The techniques come with examples, so don't expect the discussion to be dry. As you read through the rest 
of the book, you might want to return to this chapter for reference. 

 

2.1 Compile-Time Assertions 

As generic programming in C++ took off, the need for better static checking (and better, more 
customizable error messages) emerged. 

Suppose, for instance, you are developing a function for safe casting. You want to cast from one type to 
another, while making sure that information is preserved; larger types must not be cast to smaller types. 

template <class To, class From> 
To safe_reinterpret_cast(From from) 
{ 
   assert(sizeof(From) <= sizeof(To)); 
   return reinterpret_cast<To>(from); 
} 

You call this function using the same syntax as the native C++ casts: 

int i = ...; 
char* p = safe_reinterpret_cast<char*>(i); 

You specify the To template argument explicitly, and the compiler deduces the From template argument 
from i's type. By asserting on the size comparison, you ensure that the destination type can hold all the 
bits of the source type. This way, the code above yields either an allegedly correct cast[1] or an assertion at 
runtime. 
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[1] On most machines, that is—with reinterpret_cast, you can never be sure. 

Obviously, it would be more desirable to detect such an error during compilation. For one thing, the cast 
might be on a seldom-executed branch of your program. As you port the application to a new compiler or 
platform, you cannot remember every potential nonportable part and might leave the bug dormant until it 
crashes the program in front of your customer. 

There is hope; the expression being evaluated is a compile-time constant, which means that you can have 
the compiler, instead of runtime code, check it. The idea is to pass the compiler a language construct that is 
legal for a nonzero expression and illegal for an expression that evaluates to zero. This way, if you pass an 
expression that evaluates to zero, the compiler will signal a compile-time error. 

The simplest solution to compile-time assertions (Van Horn 1997), and one that works in C as well as in 
C++, relies on the fact that a zero-length array is illegal. 

#define STATIC_CHECK(expr) { char unnamed[(expr) ? 1 : 0]; } 

Now if you write 

template <class To, class From> 
To safe_reinterpret_cast(From from) 
{ 
   STATIC_CHECK(sizeof(From) <= sizeof(To)); 
   return reinterpret_cast<To>(from); 
} 
... 
void* somePointer = ...; 
char c = safe_reinterpret_cast<char>(somePointer); 

and if on your system pointers are larger than characters, the compiler complains that you are trying to 
create an array of length zero. 

The problem with this approach is that the error message you receive is not terribly informative. "Cannot 
create array of size zero" does not suggest "Type char is too narrow to hold a pointer." It is very hard to 
provide customized error messages portably. Error messages have no rules that they must obey; it's all up 
to the compiler. For instance, if the error refers to an undefined variable, the name of that variable does not 
necessarily appear in the error message. 

A better solution is to rely on a template with an informative name; with luck, the compiler will mention 
the name of that template in the error message. 

template<bool> struct CompileTimeError; 
template<> struct CompileTimeError<true> {}; 
 
#define STATIC_CHECK(expr) \ 
   (CompileTimeError<(expr) != 0>()) 

CompileTimeError is a template taking a nontype parameter (a Boolean constant). Compile-
TimeError is defined only for the true value of the Boolean constant. If you try to instantiate 
CompileTimeError<false>, the compiler utters a message such as "Undefined specialization 
CompileTimeError<false>." This message is a slightly better hint that the error is intentional and not 
a compiler or a program bug. 

Of course, there's a lot of room for improvement. What about customizing that error message? An idea is 
to pass an additional parameter to STATIC_CHECK and some how make that parameter appear in the error 
message. The disadvantage that remains is that the custom error message you pass must be a legal C++ 
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identifier (no spaces, cannot start with a digit, and so on). This line of thought leads to an improved 
CompileTimeError, as shown in the following code. Actually, the name CompileTimeError is no 
longer suggestive in the new context; as you'll see in a minute, CompileTimeChecker makes more 
sense. 

template<bool> struct CompileTimeChecker 
{ 
   CompileTimeChecker(...); 
}; 
template<> struct CompileTimeChecker<false> { }; 
#define STATIC_CHECK(expr, msg) \ 
   {\ 
       class ERROR_##msg {}; \ 
       (void)sizeof(CompileTimeChecker<(expr) != 0>((ERROR_##msg())));\ 
   } 

Assume that sizeof(char) < sizeof(void*). (The standard does not guarantee that this is 
necessarily true.) Let's see what happens when you write the following: 

template <class To, class From> 
To safe_reinterpret_cast(From from) 
{ 
   STATIC_CHECK(sizeof(From) <= sizeof(To), 
      Destination_Type_Too_Narrow); 
   return reinterpret_cast<To>(from); 
} 
... 
void* somePointer = ...; 
char c = safe_reinterpret_cast<char>(somePointer); 

After macro preprocessing, the code of safe_reinterpret_cast expands to the following: 

template <class To, class From> 
To safe_reinterpret_cast(From from) 
{ 
   { 
      class ERROR_Destination_Type_Too_Narrow {}; 
      (void)sizeof( 
         CompileTimeChecker<(sizeof(From) <= sizeof(To))>( 
            ERROR_Destination_Type_Too_Narrow())); 
   } 
   return reinterpret_cast<To>(from); 
} 

The code defines a local class called ERROR_Destination_Type_Too_Narrow that has an empty 
body. Then, it creates a temporary value of type CompileTimeChecker< (sizeof(From) <= 
sizeof(To))>, initialized with a temporary value of type ERROR_ 
Destination_Type_Too_Narrow. Finally, sizeof gauges the size of the resulting temporary 
variable. 

Now here's the trick. The CompileTimeChecker<true> specialization has a constructor that accepts 
anything; it's an ellipsis function. This means that if the compile-time expression checked evaluates to 
true, the resulting program is valid. If the comparison between sizes evaluates to false, a compile-time 
error occurs: The compiler cannot find a conversion from an 
ERROR_Destination_Type_Too_Narrow to a CompileTimeChecker<false>. And the nicest 
thing of all is that a decent compiler outputs an error message such as "Error: Cannot convert 
ERROR_Destination_Type_Too_Narrow to CompileTimeChecker <false>." 
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Bingo! 

 

2.2 Partial Template Specialization 

Partial template specialization allows you to specialize a class template for subsets of that template's 
possible instantiations set. 

Let's first recap total explicit template specialization. If you have a class template Widget, 

template <class Window, class Controller> 
class Widget 
{ 
   ... generic implementation ... 
}; 

then you can explicitly specialize the Widget class template as shown: 

template <> 
class Widget<ModalDialog, MyController> 
{ 
   ... specialized implementation ... 
}; 

ModalDialog and MyController are classes defined by your application. 

After seeing the definition of Widget's specialization, the compiler uses the specialized implementation 
wherever you define an object of type Widget<ModalDialog,My Controller> and uses the generic 
implementation if you use any other instantiation of Widget. 

Sometimes, however, you might want to specialize Widget for any Window and MyController. Here 
is where partial template specialization comes into play. 

// Partial specialization of Widget 
template <class Window> 
class Widget<Window, MyController> 
{ 
   ... partially specialized implementation ... 
}; 

Typically, in a partial specialization of a class template, you specify only some of the template arguments 
and leave the other ones generic. When you instantiate the class template in your program, the compiler 
tries to find the best match. The matching algorithm is very intricate and accurate, allowing you to partially 
specialize in innovative ways. For instance, assume you have a class template Button that accepts one 
template parameter. Then, even if you specialized Widget for any Window and a specific 
MyController, you can further partially specialize Widgets for all Button instantiations and My 
Controller: 

template <class ButtonArg> 
class Widget<Button<ButtonArg>, MyController> 
{ 
   ... further specialized implementation ... 
}; 
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As you can see, the capabilities of partial template specialization are pretty amazing. When you instantiate 
a template, the compiler does a pattern matching of existing partial and total specializations to find the best 
candidate; this gives you enormous flexibility. 

Unfortunately, partial template specialization does not apply to functions—be they member or 
nonmember—which somewhat reduces the flexibility and the granularity of what you can do. 

• Although you can totally specialize member functions of a class template, you cannot partially 
specialize member functions. 

• You cannot partially specialize namespace-level (nonmember) template functions. The closest 
thing to partial specialization for namespace-level template functions is overloading. For practical 
purposes, this means that you have fine-grained specialization abilities only for the function 
parameters—not for the return value or for internally used types. For example, 

template <class T, class U> T Fun(U obj); // primary template 
template <class U> void Fun<void, U>(U obj); // illegal partial 
//        specialization 
template <class T> T Fun (Window obj); // legal (overloading) 

This lack of granularity in partial specialization certainly makes life easier for compiler writers, but has 
bad effects for developers. Some of the tools presented later (such as Int2Type and Type2Type) 
specifically address this limitation of partial specialization. 

This book uses partial template specialization copiously. Virtually the entire typelist facility (Chapter 3) is 
built using this feature. 

 

2.3 Local Classes 

Local classes are an interesting and little-known feature of C++. You can define classes right inside 
functions, as follows: 

void Fun() 
{ 
   class Local 
   { 
      ... member variables ... 
      ... member function definitions ... 
   }; 
   ... code using Local ... 
} 

There are some limitations—local classes cannot define static member variables and cannot access 
nonstatic local variables. What makes local classes truly interesting is that you can use them in template 
functions. Local classes defined inside template functions can use the template parameters of the enclosing 
function. 

The template function MakeAdapter in the following code adapts one interface to another. 
MakeAdapter implements an interface on the fly with the help of a local class. The local class stores 
members of generic types. 

class Interface 
{ 
public: 
   virtual void Fun() = 0; 
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   ... 
}; 
template <class T, class P> 
Interface* MakeAdapter(const T& obj, const P& arg) 
{ 
   class Local : public Interface 
   { 
   public: 
      Local(const T& obj, const P& arg) 
         : obj_(obj), arg_(arg) {} 
      virtual void Fun() 
      { 
         obj_.Call(arg_); 
      } 
   private: 
      T obj_; 
      P arg_; 
   }; 
   return new Local(obj, arg); 
} 

It can be easily proven that any idiom that uses a local class can be implemented using a template class 
outside the function. In other words, local classes are not an idiom-enabling feature. On the other hand, 
local classes can simplify implementations and improve locality of symbols. 

Local classes do have a unique feature, though: They are final. Outside users cannot derive from a class 
hidden in a function. Without local classes, you'd have to add an unnamed namespace in a separate 
translation unit. 

Chapter 11 uses local classes to create trampoline functions. 

 

2.4 Mapping Integral Constants to Types 

A simple template, initially described in Alexandrescu (2000b), can be very helpful to many generic 
programming idioms. Here it is: 

template <int v> 
struct Int2Type 
{ 
   enum { value = v }; 
}; 

Int2Type generates a distinct type for each distinct constant integral value passed. This is because 
different template instantiations are distinct types; thus, Int2Type<0> is different from Int2Type<1>, 
and so on. In addition, the value that generates the type is "saved" in the enum member value. 

You can use Int2Type whenever you need to "typify" an integral constant quickly. This way you can 
select different functions, depending on the result of a compile-time calculation. Effectively, you achieve 
static dispatching on a constant integral value. 

Typically, you use Int2Type when both these conditions are satisfied: 

• You need to call one of several different functions, depending on a compile-time constant. 
• You need to do this dispatch at compile time. 
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For dispatching at runtime, you can use simple if-else statements or the switch statement. The runtime 
cost is negligible in most cases. However, you often cannot do this. The if-else statement requires both 
branches to compile successfully, even when the condition tested by if is known at compile time. 
Confused? Read on. 

Consider this situation: You design a generic container NiftyContainer, which is templated by the type 
contained: 

template <class T> class NiftyContainer 
{ 
   ... 
}; 

Say NiftyContainer contains pointers to objects of type T. To duplicate an object contained in 
NiftyContainer, you want to call either its copy constructor (for nonpolymorphic types) or a Clone() 
virtual function (for polymorphic types). You get this information from the user in the form of a Boolean 
template parameter. 

template <typename T, bool isPolymorphic> 
class NiftyContainer 
{ 
   ... 
   void DoSomething() 
   { 
      T* pSomeObj = ...; 
      if (isPolymorphic) 
      { 
         T* pNewObj = pSomeObj->Clone(); 
   ...       polymorphic algorithm ... 
      } 
      else 
      { 
         T* pNewObj = new T(*pSomeObj); 
         ... nonpolymorphic algorithm ... 
      } 
   } 
}; 

The problem is that the compiler won't let you get away with this code. For example, because the 
polymorphic algorithm uses pObj->Clone(), NiftyContainer::DoSomething does not compile 
for any type that doesn't define a member function Clone(). True, it is obvious at compile time which 
branch of the if statement executes. However, that doesn't matter to the compiler—it diligently tries to 
compile both branches, even if the optimizer will later eliminate the dead code. If you try to call 
DoSomething for NiftyContainer<int,false>, the compiler stops at the pObj->Clone() call 
and says, "Huh?" 

It is also possible for the nonpolymorphic branch of the code to fail to compile. If T is a polymorphic type 
and the nonpolymorphic code branch attempts new T(*pObj), the code might fail to compile. This 
might happen if T has disabled its copy constructor (by making it private), as a well-behaved polymorphic 
class should. 

It would be nice if the compiler didn't bother about compiling code that's dead anyway, but that's not the 
case. So what would be a satisfactory solution? 

As it turns out, there are a number of solutions, and Int2Type provides a particularly clean one. It can 
transform ad hoc the Boolean value isPolymorphic into two distinct types corresponding to 
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isPolymorphic's true and false values. Then you can use Int2Type<isPolymorphic> with 
simple overloading, and voilà! 

template <typename T, bool isPolymorphic> 
class NiftyContainer 
{ 
private: 
   void DoSomething(T* pObj, Int2Type<true>) 
   { 
      T* pNewObj = pObj->Clone(); 
      ... polymorphic algorithm ... 
   } 
   void DoSomething(T* pObj, Int2Type<false>) 
   { 
      T* pNewObj = new T(*pObj); 
      ... nonpolymorphic algorithm ... 
   } 
public: 
   void DoSomething(T* pObj) 
   { 
      DoSomething(pObj, Int2Type<isPolymorphic>()); 
   } 
}; 

Int2Type comes in very handy as a means to translate a value into a type. You then pass a temporary 
variable of that type to an overloaded function. The overloads implement the two needed algorithms. 

The trick works because the compiler does not compile template functions that are never used—it only 
checks their syntax. And, of course, you usually perform dispatch at compile time in template code. 

You will see Int2Type at work in several places in Loki, notably in Chapter 11, Multimethods. There, 
the template class is a double-dispatch engine, and the bool template parameter provides the option of 
supporting symmetric dispatch or not. 

 

2.5 Type-to-Type Mapping 

As Section 2.2 mentions, partial specialization for template functions does not exist. At times, however, 
you might need to simulate similar functionality. Consider the following function. 

template <class T, class U> 
T* Create(const U& arg) 
{ 
   return new T(arg); 
} 

Create makes a new object, passing an argument to its constructor. 

Now say there is a rule in your application: Objects of type Widget are untouchable legacy code and must 
take two arguments upon construction, the second being a fixed value such as -1. Your own classes, 
derived from Widget, don't have this problem. 

How can you specialize Create so that it treats Widget differently from all other types? An obvious 
solution is to make a separate CreateWidget function that copes with the particular case. Unfortunately, 
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now you don't have a uniform interface for creating Widgets and objects derived from Widget. This 
renders Create unusable in any generic code. 

You cannot partially specialize a function; that is, you can't write something like this: 

// Illegal code — don't try this at home 
template <class U> 
Widget* Create<Widget, U>(const U& arg) 
{ 
   return new Widget(arg, -1); 
} 

In the absence of partial specialization of functions, the only tool available is, again, overloading. A 
solution would be to pass a dummy object of type T and rely on overloading: 

template <class T, class U> 
T* Create(const U& arg, T /* dummy */) 
{ 
   return new T(arg); 
} 
template <class U> 
Widget* Create(const U& arg, Widget /* dummy */) 
{ 
   return new Widget(arg, -1); 
} 

Such a solution would incur the overhead of constructing an arbitrarily complex object that remains unused. 
We need a light vehicle for transporting the type information about T to Create. This is the role of 
Type2Type: It is a type's representative, a light identifier that you can pass to overloaded functions. 

The definition of Type2Type is as follows. 

template <typename T> 
struct Type2Type 
{ 
   typedef T OriginalType; 
}; 

Type2Type is devoid of any value, but distinct types lead to distinct Type2Type instantiations, which is 
what we need. 

Now you can write the following: 

// An implementation of Create relying on overloading 
//      and Type2Type 
template <class T, class U> 
T* Create(const U& arg, Type2Type<T>) 
{ 
   return new T(arg); 
} 
template <class U> 
Widget* Create(const U& arg, Type2Type<Widget>) 
{ 
   return new Widget(arg, -1); 
} 
// Use Create() 
String* pStr = Create("Hello", Type2Type<String>()); 
Widget* pW = Create(100, Type2Type<Widget>()); 
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The second parameter of Create serves only to select the appropriate overload. Now you can specialize 
Create for various instantiations of Type2Type, which you map to various types in your application. 

 

2.6 Type Selection 

Sometimes generic code needs to select one type or another, depending on a Boolean constant. 

In the NiftyContainer example discussed in Section 2.4, you might want to use an std::vector as 
your back-end storage. Obviously, you cannot store polymorphic types by value, so you must store 
pointers. On the other hand, you might want to store nonpolymorphic types by value, because this is more 
efficient. 

In your class template, 

template <typename T, bool isPolymorphic> 
class NiftyContainer 
{ 
   ... 
}; 

you need to store either a vector<T*> (if isPolymorphic is true) or a vector<T> (if 
isPolymorphic is false). In essence, you need a typedef ValueType that is either T* or T, 
depending on the value of isPolymorphic. 

You can use a traits class template (Alexandrescu 2000a), as follows. 

template <typename T, bool isPolymorphic> 
struct NiftyContainerValueTraits 
{ 
   typedef T* ValueType; 
}; 
template <typename T> 
struct NiftyContainerValueTraits<T, false> 
{ 
   typedef T ValueType; 
}; 
template <typename T, bool isPolymorphic> 
class NiftyContainer 
{ 
   ... 
   typedef NiftyContainerValueTraits<T, isPolymorphic> 
      Traits; 
   typedef typename Traits::ValueType ValueType; 
}; 

This way of doing things is unnecessarily clumsy. Moreover, it doesn't scale: For each type selection, you 
must define a new traits class template. 

The library class template Select provided by Loki makes type selection available right on the spot. Its 
definition uses partial template specialization. 

template <bool flag, typename T, typename U> 
struct Select 
{ 
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   typedef T Result; 
}; 
template <typename T, typename U> 
struct Select<false, T, U> 
{ 
   typedef U Result; 
}; 

Here's how it works. If flag evaluates to true, the compiler uses the first (generic) definition and 
therefore Result evaluates to T. If flag is false, then the specialization enters into action and therefore 
Result evaluates to U. 

Now you can define NiftyContainer::ValueType much more easily. 

template <typename T, bool isPolymorphic> 
class NiftyContainer 
{ 
   ... 
   typedef typename Select<isPolymorphic, T*, T>::Result 
      ValueType; 
   ... 
}; 
 
 

2.7 Detecting Convertibility and Inheritance at Compile Time 

When you're implementing template functions and classes, a question arises every so often: Given two 
arbitrary types T and U that you know nothing about, how can you detect whether or not U inherits from T? 
Discovering such relationships at compile time is key to implementing advanced optimizations in generic 
libraries. In a generic function, you can rely on an optimized algorithm if a class implements a certain 
interface. Discovering this at compile time means not having to use dynamic_cast, which is costly at 
runtime. 

Detecting inheritance relies on a more general mechanism, that of detecting convertibility. The more 
general problem is, How can you detect whether an arbitrary type T supports automatic conversion to an 
arbitrary type U? 

There is a solution to this problem, and it relies on sizeof. There is a surprising amount of power in 
sizeof: You can apply sizeof to any expression, no matter how complex, and sizeof returns its size 
without actually evaluating that expression at runtime. This means that sizeof is aware of overloading, 
template instantiation, conversion rules—everything that can take part in a C++ expression. In fact, 
sizeof conceals a complete facility for deducing the type of an expression; eventually, sizeof throws 
away the expression and returns only the size of its result.[2] 

[2] There is a proposal for adding a typeof operator to C++, that is, an operator returning the type of an 
expression. Having typeof would make much template code easier to write and understand. Gnu C++ 
already implements typeof as an extension. Obviously, typeof and sizeof share the same back end, 
because sizeof has to figure out the type anyway. 

The idea of conversion detection relies on using sizeof in conjunction with overloaded functions. We 
provide two overloads of a function: One accepts the type to convert to (U), and the other accepts just 
about anything else. We call the overloaded function with a temporary of type T, the type whose 
convertibility to U we want to determine. If the function that accepts a U gets called, we know that T is 
convertible to U; if the fallback function gets called, then T is not convertible to U. To detect which 



 30

function gets called, we arrange the two overloads to return types of different sizes, and then we 
discriminate with sizeof. The types themselves do not matter, as long as they have different sizes. 

Let's first create two types of different sizes. (Apparently, char and long double do have different 
sizes, but that's not guaranteed by the standard.) A foolproof scheme would be the following: 

typedef char Small; 
class Big { char dummy[2]; }; 

By definition, sizeof(Small) is 1. The size of Big is unknown, but it's certainly greater than 1, which 
is the only guarantee we need. 

Next, we need the two overloads. One accepts a U and returns, say, a Small: 

Small Test(U); 

How can we write a function that accepts "anything else"? A template is not a solution because the 
template would always qualify as the best match, thus hiding the conversion. We need a match that's 
"worse" than an automatic conversion—that is, a conversion that kicks in if and only if there's no 
automatic conversion. A quick look through the conversion rules applied for a function call yields the 
ellipsis match, which is the worst of all—the bottom of the list. That's exactly what the doctor prescribed. 

Big Test(...); 

(Passing a C++ object to a function with ellipses has undefined results, but this doesn't matter. Nothing 
actually calls the function. It's not even implemented. Recall that sizeof does not evaluate its argument.) 

Now we need to apply sizeof to the call of Test, passing it a T: 

const bool convExists = sizeof(Test(T())) == sizeof(Small); 

That's it! The call of Test gets a default-constructed object—T()—and then sizeof extracts the size of 
the result of that expression. It can be either sizeof(Small) or sizeof(Big), depending on whether 
or not the compiler found a conversion. 

There is one little problem. If T makes its default constructor private, the expression T() fails to compile 
and so does all of our scaffolding. Fortunately, there is a simple solu-tion—just use a strawman function 
returning a T. (Remember, we're in the sizeof wonderland where no expression is actually evaluated.) In 
this case, the compiler is happy and so are we. 

T MakeT(); // not implemented 
const bool convExists = sizeof(Test(MakeT())) == sizeof(Small); 

(By the way, isn't it nifty just how much you can do with functions, like MakeT and Test, that not only 
don't do anything but don't even really exist at all?) 

Now that we have it working, let's package everything in a class template that hides all the details of type 
deduction and exposes only the result. 

template <class T, class U> 
class Conversion 
{ 
   typedef char Small; 
   class Big { char dummy[2]; }; 
   static Small Test(U); 
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   static Big Test(...); 
   static T MakeT(); 
public: 
   enum { exists = 
      sizeof(Test(MakeT())) == sizeof(Small) }; 
}; 

Now you can test the Conversion class template by writing 

int main() 
{ 
   using namespace std; 
   cout 
      << Conversion<double, int>::exists << ' ' 
      << Conversion<char, char*>::exists << ' ' 
      << Conversion<size_t, vector<int> >::exists << ' '; 
} 

This little program prints "1 0 0." Note that although std::vector does implement a constructor taking 
a size_t, the conversion test returns 0 because that constructor is explicit. 

We can implement one more constant inside Conversion: sameType, which is true if T and U 
represent the same type: 

template <class T, class U> 
class Conversion 
{ 
   ... as above ... 
   enum { sameType = false }; 
}; 

We implement sameType through a partial specialization of Conversion: 

template <class T> 
class Conversion<T, T> 
{ 
public: 
   enum { exists = 1, sameType = 1 }; 
}; 

Finally, we're back home. With the help of Conversion, it is now very easy to determine inheritance: 

#define SUPERSUBCLASS(T, U) \ 
   (Conversion<const U*, const T*>::exists && \ 
   !Conversion<const T*, const void*>::sameType) 

SUPERSUBCLASS(T, U) evaluates to true if U inherits from T publicly, or if T and U are actually the 
same type. SUPERSUBCLASS does its job by evaluating the convertibility from a const U* to a const 
T*. There are only three cases in which const U* converts implicitly to const T*: 

1. T is the same type as U. 
2. T is an unambiguous public base of U. 
3. T is void. 
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The last case is eliminated by the second test. In practice it's useful to accept the first case (T is the same as 
U) as a degenerated case of "is-a" because for practical purposes you can often consider a class to be its 
own superclass. If you need a stricter test, you can write it this way: 

#define SUPERSUBCLASS_STRICT(T, U) \ 
   (SUPERSUBCLASS(T, U) && \ 
   !Conversion<const T, const U>::sameType) 

Why does the code add all those const modifiers? The reason is that we don't want the conversion test to 
fail due to const issues. If template code applies const twice (to a type that's already const), the 
second const is ignored. In a nutshell, by using const in SUPERSUBCLASS, we're always on the safe 
side. 

Why use SUPERSUBCLASS and not the cuter BASE_OF or INHERITS? For a very practical reason. 
Initially Loki used INHERITS. But with INHERITS(T, U) it was a constant struggle to say which way 
the test worked—did it tell whether T inherited U or vice versa? Arguably, SUPERSUBCLASS(T, U) 
makes it clearer which one is first and which one is second. 

 

2.8 A Wrapper Around type_info 

Standard C++ provides the std::type_info class, which gives you the ability to investigate object 
types at runtime. You typically use type_info in conjunction with the typeid operator. The typeid 
operator returns a reference to a type_info object: 

void Fun(Base* pObj) 
{ 
   // Compare the two type_info objects corresponding 
   // to the type of *pObj and Derived 
   if (typeid(*pObj) == typeid(Derived)) 
   { 
      ... aha, pObj actually points to a Derived object ... 
   } 
   ... 
} 

The typeid operator returns a reference to an object of type type_info. In addition to supporting the 
comparison operators operator== and operator!=, type_info provides two more functions: 

• The name member function returns a textual representation of a type, in the form of const 
char*. There is no standardized way of mapping class names to strings, so you shouldn't expect 
typeid(Widget) to return "Widget". A conforming (but not necessarily award-winning) 
implementation can have type_info::name return the empty string for all types. 

• The before member function introduces an ordering relationship for type_info objects. Using 
type_info::before, you can perform indexing on type_info objects. 

Unfortunately, type_info's useful capabilities are packaged in a way that makes them unnecessarily hard 
to exploit. The type_info class disables the copy constructor and assignment operator, which makes 
storing type_info objects impossible. However, you can store pointers to type_info objects. The 
objects returned by typeid have static storage, so you don't have to worry about lifetime issues. You do 
have to worry about pointer identity, though. 
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The standard does not guarantee that each invocation of, say, typeid(int) returns a reference to the 
same type_info object. Consequently, you cannot compare pointers to type_info objects. What you 
should do is to store pointers to type_info objects and compare them by applying 
type_info::operator== to the dereferenced pointers. 

If you want to sort type_info objects, again you must actually store pointers to type_info, and this 
time you must use the before member function. Consequently, if you want to use STL's ordered 
containers with type_info, you must write a little functor and deal with pointers. 

All this is clumsy enough to mandate a wrapper class around type_info that stores a pointer to a 
type_info object and provides 

• All the member functions of type_info 
• Value semantics (public copy constructor and assignment operator) 
• Seamless comparisons by defining operator< and operator== 

Loki defines the wrapper class TypeInfo which implements such a handy wrapper around type_info. 
The synopsis of TypeInfo follows. 

class TypeInfo 
{ 
public: 
   // Constructors/destructors 
   TypeInfo(); // needed for containers 
   TypeInfo(const std::type_info&); 
   TypeInfo(const TypeInfo&); 
   TypeInfo& operator=(const TypeInfo&); 
   // Compatibility functions 
   bool before(const TypeInfo&) const; 
   const char* name() const; 
private: 
   const std::type_info* pInfo_; 
}; 
// Comparison operators 
bool operator==(const TypeInfo&, const TypeInfo&); 
bool operator!=(const TypeInfo&, const TypeInfo&); 
bool operator<(const TypeInfo&, const TypeInfo&); 
bool operator<=(const TypeInfo&, const TypeInfo&); 
bool operator>(const TypeInfo&, const TypeInfo&); 
bool operator>=(const TypeInfo&, const TypeInfo&); 

Because of the conversion constructor that accepts a std::type_info as a parameter, you can directly 
compare objects of type TypeInfo and std::type_info, as shown: 

void Fun(Base* pObj) 
{ 
   TypeInfo info = typeid(Derived); 
   ... 
   if (typeid(*pObj) == info) 
   { 
      ... pBase actually points to a Derived object ... 
   } 
   ... 
} 

The ability to copy and compare TypeInfo objects is important in many situations. The cloning factory in 
Chapter 8 and one double-dispatch engine in Chapter 11 put TypeInfo to good use. 
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2.9 NullType and EmptyType 

Loki defines two very simple types: NullType and EmptyType. You can use them in type calculations 
to mark certain border cases. 

NullType is a class that serves as a null marker for types: 

class NullType {}; 

You usually don't create objects of type NullType—its only use is to indicate "I am not an interesting 
type." Section 2.10 uses NullType for cases in which a type must be there syntactically but doesn't have a 
semantic sense. (For example: "To what type does an int point?") Also, the typelist facility in Chapter 3 
uses NullType to mark the end of a typelist and to return "type not found" information. 

The second helper type is EmptyType. As you would expect, EmptyType's definition is 

struct EmptyType {}; 

EmptyType is a legal type to inherit from, and you can pass around values of type EmptyType. You can 
use this insipid type as a default ("don't care") type for a template. The typelist facility in Chapter 3 uses 
EmptyType in such a way. 

 

2.10 Type Traits 

Traits are a generic programming technique that allows compile-time decisions to be made based on types, 
much as you would make runtime decisions based on values (Alexandrescu 2000a). By adding the 
proverbial "extra level of indirection" that solves many software engineering problems, traits let you take 
type-related decisions outside the immediate context in which they are made. This makes the resulting 
code cleaner, more readable, and easier to maintain. 

Usually you will write your own trait templates and classes as your generic code needs them. Certain traits, 
however, are applicable to any type. They can help generic programmers to tailor template code better to 
the capabilities of a type. 

Suppose, for instance, that you implement a copying algorithm: 

template <typename InIt, typename OutIt> 
OutIt Copy(InIt first, InIt last, OutIt result) 
{ 
   for (; first != last; ++first, ++result) 
      *result = *first; 
} 

In theory, you shouldn't have to implement such an algorithm, because it duplicates the functionality of 
std::copy. But you might need to specialize your copying routine for specific types. 

Let's say you develop code for a multiprocessor machine that has a very fast BitBlast primitive function, 
and you would like to take advantage of that primitive whenever possible. 
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// Prototype of BitBlast in "SIMD_Primitives.h" 
void BitBlast(const void* src, void* dest, size_t bytes); 

BitBlast, of course, works only for copying primitive types and plain old data structures. You cannot 
use BitBlast with types having a nontrivial copy constructor. You would like, then, to implement Copy 
so as to take advantage of BitBlast whenever possible, and fall back on a more general, conservative 
algorithm for elaborate types. This way, Copy operations on ranges of primitive types will "automagically" 
run faster. 

What you need here are two tests: 

• Are InIt and OutIt regular pointers (as opposed to fancier iterator types)? 
• Is the type to which InIt and OutIt point copyable with bitwise copy? 

If you can find answers to these questions at compile time and if the answer to both questions is yes, you 
can use BitBlast. Otherwise, you must rely on the generic for loop. 

Type traits help in solving such problems. The type traits in this chapter owe a lot to the type traits 
implementation found in the Boost C++ library (Boost). 

2.10.1 Implementing Pointer Traits 

Loki defines a class template TypeTraits that collects a host of generic type traits. TypeTraits uses 
template specialization internally and exposes the results. 

The implementation of most type traits relies on total or partial template specialization (Section 2.2). For 
example, the following code determines whether a type T is a pointer: 

template <typename T> 
class TypeTraits 
{ 
private: 
   template <class U> struct PointerTraits 
   { 
      enum { result = false }; 
      typedef NullType PointeeType; 
   }; 
   template <class U> struct PointerTraits<U*> 
   { 
      enum { result = true }; 
      typedef U PointeeType; 
   }; 
public: 
   enum { isPointer = PointerTraits<T>::result }; 
   typedef PointerTraits<T>::PointeeType PointeeType; 
   ... 
}; 

The first definition introduces the PointerTraits class template, which says, "T is not a pointer, and a 
pointee type doesn't apply." Recall from Section 2.9 that NullType is a placeholder type for "doesn't 
apply" cases. 

The second definition (the line in bold) introduces a partial specialization of PointerTraits, a 
specialization that matches any pointer type. For pointers to anything, the specialization in bold qualifies as 
a better match than the generic template for any pointer type. Consequently, the specialization enters into 
action for a pointer, so result evaluates to true. In addition, PointeeType is defined appropriately. 
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You can now gain some insight into the std::vector::iterator implementation—is it a plain 
pointer or an elaborate type? 

int main() 
{ 
   const bool 
      iterIsPtr = TypeTraits<vector<int>::iterator>::isPointer; 
   cout << "vector<int>::iterator is " << 
      iterIsPtr ? "fast" : "smart" << '\n'; 
} 

Similarly, TypeTraits implements an isReference constant and a ReferencedType type definition. 
For a reference type T, ReferencedType is the type to which T refers; if T is a straight type, 
ReferencedType is T itself. 

Detection of pointers to members (consult Chapter 5 for a description of pointers to members) is a bit 
different. The specialization needed is as follows: 

template <typename T> 
class TypeTraits 
{ 
private: 
   template <class U> struct PToMTraits 
   { 
      enum { result = false }; 
   }; 
   template <class U, class V> 
   struct PToMTraits<U V::*> 
   { 
      enum { result = true }; 
   }; 
public: 
   enum { isMemberPointer = PToMTraits<T>::result }; 
   ... 
}; 

2.10.2 Detection of Fundamental Types 

TypeTraits<T> implements an isStdFundamental compile-time constant that says whether or not T 
is a standard fundamental type. Standard fundamental types consist of the type void and all numeric types 
(which in turn are floating-point and integral types). TypeTraits defines constants that reveal the 
categories to which a given type belongs. 

At the price of anticipating a bit, it should be said that the magic of typelists (Chapter 3) makes it easy to 
detect whether a type belongs to a known set of types. For now, all you should know is that the expression 

TL::IndexOf<T, TYPELIST_nn(comma-separated list of types)>::value 

(where nn is the number of types in the list of types) returns the zero-based position of T in the list, or –1 if 
T does not figure in the list. For example, the expression 

TL::IndexOf<T, TYPELIST_4(signed char, short int, 
   int, long int)>::value 

is greater than or equal to zero if and only if T is a signed integral type. 
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Following is the definition of the part of TypeTraits dedicated to primitive types. 

template <typename T> 
class TypeTraits 
{ 
   ... as above ... 
public: 
   typedef TYPELIST_4( 
         unsigned char, unsigned short int, 
         unsigned int, unsigned long int) 
      UnsignedInts; 
   typedef TYPELIST_4(signed char, short int, int, long int) 
      SignedInts; 
   typedef TYPELIST_3(bool, char, wchar_t) OtherInts; 
   typedef TYPELIST_3(float, double, long double) Floats; 
   enum { isStdUnsignedInt = 
      TL::IndexOf<T, UnsignedInts>::value >= 0 }; 
   enum { isStdSignedInt = TL::IndexOf<T, SignedInts>::value >= 0 }; 
   enum { isStdIntegral = isStdUnsignedInt || isStdSignedInt || 
      TL::IndexOf <T, OtherInts>::value >= 0 }; 
   enum { isStdFloat = TL::IndexOf<T, Floats>::value >= 0 }; 
   enum { isStdArith = isStdIntegral || isStdFloat }; 
   enum { isStdFundamental = isStdArith || isStdFloat || 
      Conversion<T, void>::sameType }; 
   ... 
}; 

Using typelists and TL::IndexOf gives you the ability to infer information quickly about types, without 
having to specialize a template many times. If you cannot resist the temptation to delve into the details of 
typelists and TL::IndexOf, take a peek at Chapter 3—but don't forget to return here. 

The actual implementation of detection of fundamental types is more sophisticated, allowing for vendor-
specific extension types (such as int64 or long long). 

2.10.3 Optimized Parameter Types 

In template code, you sometimes need to answer the following question: Given an arbitrary type T, what is 
the most efficient way of passing and accepting objects of type T as arguments to functions? In general, the 
most efficient way is to pass elaborate types by reference and scalar types by value. (Scalar types consist of 
the arithmetic types described earlier as well as enums, pointers, and pointers to members.) For elaborate 
types you avoid the overhead of an extra temporary (constructor-plus-destructor calls), and for scalar types 
you avoid the overhead of the indirection resulting from the reference. 

A detail that must be carefully handled is that C++ does not allow references to references. Thus, if T is 
already a reference, you should not add one more reference to it. 

A bit of analysis on the optimal parameter type for a function call engenders the following algorithm. Let's 
call the parameter type that we look for ParameterType. 

 
   If T is a reference to some type, ParameterType is the same as T (unchanged). Reason: References to 
references are not allowed. 
   Else: 
     If T is a scalar type (int, float, etc.), ParameterType is T. Reason: Primitive types are  
       best passed by value. 
     Else ParameterType is const T&. Reason: In general, nonprimitive types are best  
       passed by reference. 

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



 38

One important achievement of this algorithm is that it avoids the reference-to-reference error, which might 
appear if you combined bind2nd with mem_fun standard library functions. 

It is easy to implement TypeTraits::ParameterType using the techniques we already have in hand 
and the traits defined earlier—ReferencedType and isPrimitive. 

template <typename T> 
class TypeTraits 
{ 
   ... as above ... 
public: 
   typedef Select<isStdArith || isPointer || isMemberPointer, 
         T, ReferencedType&>::Result 
      ParameterType; 
}; 

Unfortunately, this scheme fails to pass enumerated types (enums) by value because there is no known 
way of determining whether or not a type is an enum. 

The Functor class template defined in Chapter 5 uses TypeTraits::ParameterType. 

2.10.4 Stripping Qualifiers 

Given a type T, you can easily get to its constant sibling by simply typing const T. However, doing the 
opposite (stripping the const off a type) is slightly harder. Similarly, you sometimes might want to get rid 
of the volatile qualifier of a type. 

Consider, for instance, building a smart pointer class SmartPtr (Chapter 7 discusses smart pointers in 
detail). Although you would like to allow users to create smart pointers to const objects—as in 
SmartPtr<const Widget>—you still need to modify the pointer to Widget you hold internally. In 
this case, inside SmartPtr you need to obtain Widget from const Widget. 

Implementing a "const stripper" is easy, again by using partial template specialization: 

template <typename T> 
class TypeTraits 
{ 
   ... as above ... 
private: 
   template <class U> struct UnConst 
   { 
      typedef U Result; 
   }; 
   template <class U> struct UnConst<const U> 
   { 
      typedef U Result; 
   }; 
public: 
   typedef UnConst<T>::Result NonConstType; 
}; 

2.10.5 Using TypeTraits 

TypeTraits can help you do a lot of interesting things. For one thing, you can now implement the Copy 
routine to use BitBlast (the problem mentioned in Section 2.10) by simply assembling techniques 
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presented in this chapter. You can use TypeTraits to figure out type information about the two iterators 
and the Int2Type template for dispatching the call either to BitBlast or to a classic copy routine. 

enum CopyAlgoSelector { Conservative, Fast }; 
 
// Conservative routine-works for any type 
template <typename InIt, typename OutIt> 
OutIt CopyImpl(InIt first, InIt last, OutIt result, 
   Int2Type<Conservative>) 
{ 
   for (; first != last; ++first, ++result) 
      *result = *first; 
   return result; 
} 
// Fast routine-works only for pointers to raw data 
template <typename InIt, typename OutIt> 
OutIt CopyImpl(InIt first, InIt last, OutIt result, 
   Int2Type<Fast>) 
{ 
   const size_t n = last-first; 
   BitBlast(first, result, n * sizeof(*first)); 
   return result + n; 
} 
template <typename InIt, typename OutIt> 
OutIt Copy(InIt first, InIt last, OutIt result) 
{ 
   typedef TypeTraits<InIt>::PointeeType SrcPointee; 
   typedef TypeTraits<OutIt>::PointeeType DestPointee; 
   enum { copyAlgo = 
      TypeTraits<InIt>::isPointer && 
      TypeTraits<OutIt>::isPointer && 
      TypeTraits<SrcPointee>::isStdFundamental && 
      TypeTraits<DestPointee>::isStdFundamental && 
      sizeof(SrcPointee) == sizeof(DestPointee) ? Fast : 
        Conservative }; 
   return CopyImpl(first, last, result, Int2Type<copyAlgo>); 
} 

Although Copy itself doesn't do much, the interesting part is right in there. The enum value copyAlgo 
selects one implementation or the other. The logic is as follows: Use BitBlast if the two iterators are 
pointers, if both pointed-to types are fundamental, and if the pointed-to types are of the same size. The last 
condition is an interesting twist. If you do this: 

int* p1 = ...; 
int* p2 = ...; 
unsigned int* p3 = ...; 
Copy(p1, p2, p3); 

then Copy calls the fast routine, as it should, although the source and destination types are different. 

The drawback of Copy is that it doesn't accelerate everything that could be accelerated. For example, you 
might have a plain C-like struct containing nothing but primitive data—a so-called plain old data, or 
POD, structure. The standard allows bitwise copying of POD structures, but Copy cannot detect 
"PODness," so it will call the slow routine. Here you have to rely, again, on classic traits in addition to 
TypeTraits. For instance: 

template <typename T> struct SupportsBitwiseCopy 
{ 
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   enum { result = TypeTraits<T>::isStdFundamental }; 
}; 
template <typename InIt, typename OutIt> 
OutIt Copy(InIt first, InIt last, OutIt result, 
   Int2Type<true>) 
{ 
   typedef TypeTraits<InIt>::PointeeType SrcPointee; 
   typedef TypeTraits<OutIt>::PointeeType DestPointee; 
   enum { useBitBlast = 
      TypeTraits<InIt>::isPointer && 
      TypeTraits<OutIt>::isPointer && 
      SupportsBitwiseCopy<SrcPointee>::result && 
      SupportsBitwiseCopy<DestPointee>::result && 
      sizeof(SrcPointee) == sizeof(DestPointee) }; 
   return CopyImpl(first, last, Int2Type<useBitBlast>); 
} 

Now, to unleash BitBlast for your POD types of interest, you need only specialize 
SupportsBitwiseCopy and put a true in there: 

template<> struct SupportsBitwiseCopy<MyType> 
{ 
   enum { result = true }; 
}; 

2.10.6 Wrapping Up 

Table 2.1 defines the complete set of traits implemented by Loki. 

 

2.11 Summary 

A number of techniques form the building blocks of the components presented in this book. Most of the 
techniques are related to template code. 

• Compile-time assertions (Section 2.1) help libraries to generate meaningful error messages in 
templated code. 

• Partial template specialization (Section 2.2) allows you to specialize a template, not for a specific, 
fixed set of parameters, but for a family of parameters that match a pattern. 

• Local classes (Section 2.3) let you do interesting things, especially inside template functions. 
• Mapping integral constants to types (Section 2.4) eases the compile-time dispatch based on 

numeric values (notably Boolean conditions). 
• Type-to-type mapping (Section 2.5) allows you to substitute function overloading for function 

template partial specialization, a feature missing in C++. 
• Type selection (Section 2.6) allows you to select types based on Boolean conditions. 
• Detecting convertibility and inheritance at compile time (Section 2.7) gives you the ability to 

figure out whether two arbitrary types are convertible to each other, are aliases of the same type, 
or inherit one from the other. 

• TypeInfo (Section 2.8) implements a wrapper around std::type_info, featuring value 
semantics and ordering comparisons. 

• The NullType and EmptyType classes (Section 2.9) function as placeholder types in template 
metaprogramming. 

• The TypeTraits template (Section 2.10) offers a host of general-purpose traits that you can use 
to tailor code to specific categories of types. 
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Table 2.1. TypeTraits<T> Members 
Name Kind Comments 
isPointer Boolean 

constant 
True if T is a pointer. 

PointeeType Type Evaluates to the type to which T points, if T is a pointer. 
Otherwise, evaluates to NullType. 

isReference Boolean 
constant 

True if T is a reference. 

ReferencedType Type If T is a reference, evaluates to the type to which T refers. 
Otherwise, evaluates to the type T itself. 

ParameterType Type The type that's most appropriate as a parameter of a 
nonmutable function. Can be either T or const T&. 

isConst Boolean 
constant 

True if T is a const-qualified type. 

NonConstType Type Removes the const qualifier, if any, from type T. 
isVolatile Boolean 

constant 
True if T is a volatile-qualified type. 

NonVolatileType Type Removes the volatile qualifier, if any, from type T. 
NonQualifiedType Type Removes both the const and volatile qualifiers, if any, from 

type T. 
isStdUnsignedInt Boolean 

constant 
True if T is one of the four unsigned integral types (unsigned 
char, unsigned short int, unsigned int, or unsigned 
long int). 

isStdSignedInt Boolean 
constant 

True if T is one of the four signed integral types (signed 
char, short int, int, or long int). 

isStdIntegral Boolean 
constant 

True if T is a standard integral type. 

isStdFloat Boolean 
constant 

True if T is a standard floating-point type (float, double, or 
long double). 

isStdArith Boolean 
constant 

True if T is a standard arithmetic type (integral or floating 
point). 

isStdFundamental Boolean 
constant 

True if T is a fundamental type (arithmetic or void). 
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Chapter 3. Typelists 
Typelists are a C++ tool for manipulating collections of types. They offer for types all the fundamental 
operations that lists of values support. 

Some design patterns specify and manipulate collections of types, either related by inheritance or not. 
Notable examples are Abstract Factory and Visitor (Gamma et al. 1995). If you use traditional coding 
techniques, you can manipulate collections of types by sheer repetition. This repetition leads to a subtle 
form of code bloating. Most people don't think it could get any better than that. However, typelists let you 
automate tasks that you usually confine to your editor's macro capability. Typelists bring power from 
another planet to C++, enabling it to support new, interesting idioms. 

This chapter is dedicated to presenting a complete typelist facility for C++, together with a couple of 
examples of their use. After reading this chapter, you will 

• Understanding the typelist concept 
• Understand how typelists can be created and processed 
• Be able to manipulate typelists effectively 
• Know the main uses of typelists and the programming idioms they enable and support 

Chapters 9, 10, and 11 use typelists as an enabling technology. 

 

3.1 The Need for Typelists 

Sometimes you must repeat the same code for a number of types, and templates cannot be of help. 
Consider, for instance, implementing an Abstract Factory (Gamma et al. 1995). Here you define one 
virtual function for each type in a collection of types known at design time: 

class WidgetFactory 
{ 
public: 
   virtual Window* CreateWindow() = 0; 
   virtual Button* CreateButton() = 0; 
   virtual ScrollBar* CreateScrollBar() = 0; 
}; 

If you want to generalize the concept of Abstract Factory and put it into a library, you have to make it 
possible for the user to create factories of arbitrary collections of types—not just Window, Button, and 
ScrollBar. Templates don't support this feature out of the box. 

Although at first Abstract Factory may not seem to provide much opportunity for abstraction and 
generalization, there are a few things that make the investigation worthwhile: 

1. If you cannot take a stab at generalizing the fundamental concept, you won't be given a chance to 
generalize the concrete instances of that concept. This is a crucial principle. If the essence escapes 
generalization, you continue to struggle with the concrete artifacts of that essence. In the Abstract 
Factory case, although the abstract base class is quite simple, you can get a nasty amount of code 
duplication when implementing various concrete factories. 

2. You cannot easily manipulate the member functions of WidgetFactory (see the previous code). 
A collection of virtual function signatures is essentially impossible to handle in a generic way. For 
instance, consider this: 
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template <class T> 
T* MakeRedWidget(WidgetFactory& factory) 
{ 
   T* pW = factory.CreateT(); // huh??? 
   pW->SetColor(RED); 
   return pW; 
} 

You need to call CreateWindow, CreateButton, or CreateScrollBar, depending on T 
being a Window, Button, or ScrollBar, respectively. C++ doesn't allow you to do this kind of 
text substitution. 

3. Last, but not least, good libraries have the nice side effect of putting aside endless debates about 
naming conventions (createWindow, create_window, or CreateWindow?) and little tweaks 
like that. They introduce a preferred, standardized way of doing things. Abstracting, well, Abstract 
Factory would have this nice side effect. 

Let's put together a wish list. For addressing item 1, it would be nice if we could create a 
WidgetFactory by passing a parameter list to an AbstractFactory template: 

typedef AbstractFactory<Window, Button, ScrollBar> WidgetFactory; 

For addressing item 2, we need a template-like invocation for various CreateXxx functions, such as 
Create<Window>(), Create<Button>(), and so on. Then we can invoke it from generic code: 

template <class T> 
T* MakeRedWidget(WidgetFactory& factory) 
{ 
   T* pW = factory.Create<T>(); // aha! 
   pW->SetColor(RED); 
   return pW; 
} 

However, we cannot fulfill these needs. First, the typedef for WidgetFactory above is not possible 
because templates cannot have a variable number of parameters. Second, the template syntax 
Create<Xxx>() is not legal because virtual functions cannot be templates. 

By this point, you should see what good abstraction and reuse opportunities we have, and how badly we 
are constrained in exploiting these opportunities due to language limitations. 

Typelists make it possible to create generic Abstract Factories and much more. 

 

3.2 Defining Typelists 

For a variety of reasons, C++ is a language that leads its users sometimes to say, "These are the smartest 
five lines of code I ever wrote." Maybe it is its semantic richness or the ever-exciting (and surprising?) way 
its features interact. In line with this tradition, typelists are fundamentally very simple: 

template <class T, class U> 
struct Typelist 
{ 
   typedef T Head; 
   typedef U Tail; 
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}; 
namespace TL 
{ 
   ...typelist algorithms ... 
} 

Everything related to typelists, except the definition of Typelist itself, lives in the TL namespace. In 
turn, TL is inside the Loki namespace, as is all of Loki's code. To simplify examples, this chapter omits 
mentioning the TL namespace. You'll have to remember it when using the Typelist.h header. (If you 
forget, the compiler will remind you.) 

Typelist holds two types. They are accessible through the Head and Tail inner names. That's it! We 
don't need typelists that hold three or more elements, because we already have them. For instance, here's a 
typelist of three elements holding the three char variants of C++: 

typedef Typelist<char, Typelist<signed char, unsigned char> > 
   CharList; 

(Notice the annoying, but required, space between the two > tokens at the end.) 

Typelists are devoid of any value: Their bodies are empty, they don't hold any state, and they don't define 
any functionality. At runtime, typelists don't carry any value at all. Their only raison d'âtre is to carry type 
information. It follows that any typelist processing must necessarily occur at compile time, not at runtime. 
Typelists are not meant to be instantiated, although there's no harm in doing this. Thus, whenever this book 
talks about "a typelist," it really is referring to a typelist type, not a typelist value. Typelist values are not 
interesting; only their types are of use. (Section 3.13.2 shows how to use typelists to create collections of 
values.) 

The property of templates used here is that a template parameter can be any type, including another 
instantiation of the same template. This is an old, well-known property of templates, often used to 
implement ad hoc matrices as vector< vector<double> >. Because Typelist accepts two 
parameters, we can always extend a given Typelist by replacing one of the parameters with another 
Typelist, ad infinitum. 

There is a little problem, though. We can express typelists of two types or more, but we're unable to 
express typelists containing zero or one type. What's needed is a null list type, and the NullType class 
described in Chapter 2 is exactly suited for such uses. 

We establish the convention that every typelist must end with a NullType. NullType serves as a useful 
termination marker, much like the \0 that helps traditional C string functions. Now we can define a 
typelist of only one element: 

// See Chapter 2 for the definition of NullType 
typedef Typelist<int, NullType> OneTypeOnly; 

The typelist containing the three char variants becomes 

typedef Typelist<char, Typelist<signed char, 
   Typelist<unsigned char, NullType> > > AllCharTypes; 

Therefore, we have obtained an open-ended Typelist template that can, by compounding a basic cell, 
hold any number of types. 
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Let's see now how we can manipulate typelists. (Again, this means Typelist types, not Typelist 
objects.) Prepare for an interesting journey. From here on we delve into the underground of C++, a world 
with strange, new rules—the world of compile-time programming. 

 

3.3 Linearizing Typelist Creation 

Right off the bat, typelists are just too LISP-ish to be easy to use. LISP-style constructs are great for LISP 
programmers, but they don't dovetail nicely with C++ (to say nothing about the spaces between >s that you 
have to take care of). For instance, here's a typelist of integral types: 

typedef Typelist<signed char, 
      Typelist<short int, 
         Typelist<int, Typelist<long int, NullType> > > > 
   SignedIntegrals; 

Typelists might be a cool concept, but they definitely need nicer packaging. 

In order to linearize typelist creation, the typelist library (see Loki's file Typelist.h) defines a plethora 
of macros that transform the recursion into simple enumeration, at the expense of tedious repetition. This is 
not a problem, however. The repetition is done only once, in the library code, and it scales typelists to a 
large library-defined number (50). The macros look like this: 

#define TYPELIST_1(T1) Typelist<T1, NullType> 
#define TYPELIST_2(T1, T2) Typelist<T1, TYPELIST_1(T2) > 
#define TYPELIST_3(T1, T2, T3) Typelist<T1, TYPELIST_2(T2, T3) > 
#define TYPELIST_4(T1, T2, T3, T4) \ 
  Typelist<T1, TYPELIST_3(T2, T3, T4) > 
... 
#define TYPELIST_50(...) ... 

Each macro uses the previous one, which makes it easy for the library user to extend the upper limit, 
should this necessity emerge. 

Now the earlier type definition of SignedIntegrals can be expressed in a much more pleasant way: 

typedef TYPELIST_4(signed char, short int, int, long int) 
   SignedIntegrals; 

Linearizing typelist creation is only the beginning. Typelist manipulation is still very clumsy. For instance, 
accessing the last element in SignedIntegrals requires using 
SignedIntegrals::Tail::Tail::Head. It's not yet clear how we can manipulate typelists 
generically. It's time, then, to define some fundamental operations for typelists by thinking of the primitive 
operations available to lists of values. 

 

3.4 Calculating Length 

Here's a simple operation. Given a typelist TList, obtain a compile-time constant that evaluates its length. 
The constant ought to be a compile-time one because typelists are static constructs, so we'd expect all 
calculations related to typelists to be performed at compile time. 
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The idea underlying most typelist manipulations is to exploit recursive templates, which are templates that 
use instantiations of themselves as part of their definition. While doing this, they pass a different template 
argument list. The recursion obtained this way is stopped with an explicit specialization for a border case. 

The code that computes a typelist's length is, again, quite concise: 

template <class TList> struct Length; 
template <> struct Length<NullType> 
{ 
   enum { value = 0 }; 
}; 
template <class T, class U> 
struct Length< Typelist<T, U> > 
{ 
   enum { value = 1 + Length<U>::value }; 
}; 

This is the C++ way of saying, "The length of a null typelist is 0. The length of any other typelist is 1 plus 
the length of the tail of that typelist." 

The implementation of Length uses partial template specialization (see Chapter 2) to distinguish between 
a null type and a typelist. The first specialization of Length is totally specialized and matches only 
NullType. The second, partial, specialization of Length matches any Typelist<T, U>, including 
compound typelists, that is, those in which U is in turn a Typelist<V, W>. 

The second specialization performs the computation by recursion. It defines value as 1 (which counts the 
head T) plus the length of the tail of the typelist. When the tail becomes NullType, the first definition is 
matched, the recursion is stopped, and so is the length calculation, which comes back nicely with the result. 
Suppose, for example, that you want to define a C-style array that collects pointers to std::type_info 
objects for all signed integrals. Using Length, you can write 

std::type_info* intsRtti[Length<SignedIntegrals>::value]; 

You allocate four elements for intsRtti through a compile-time calculation.[1] 

[1] You can also initialize the array without code repetition. Doing this is left as an exercise for the reader. 

 

3.5 Intermezzo 

You can find early examples of template metaprograms in Veldhuizen (1995). Czarnecki and Eisenecker 
(2000) discuss this problem in depth and provide a full collection of compile-time simulations for C++ 
statements. 

The conception and implementation of Length resembles a classic recursion example given in computer 
science classes: the algorithm that computes the length of a singly linked list structure. (There are two 
major differences, though: The algorithm for Length is performed at compile time, and it operates on 
types, not on values.) 

This naturally leads to the following question: Couldn't we develop a version of Length that's iterative, 
instead of recursive? After all, iteration is more natural to C++ than recursion. Getting an answer to this 
question will guide us in implementing the other Typelist facilities. 
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The answer is no, and for interesting reasons. 

Our tools for compile-time programming in C++ are templates, compile-time integer calculations, and type 
definitions (typedefs). Let's see in what ways each of these tools serves us. 

Templates—more specifically, template specialization—provide the equivalent of if statements at 
compile time. As seen earlier in the implementation of Length, template specialization enables 
differentiation between typelists and other types. 

Integer calculations allow you to make true value computations, to jump from types to values. However, 
there is a peculiarity: All compile-time values are immutable. After you've defined an integral constant, say 
an enumerated value, you cannot change it (that is, assign another value to it). 

Type definitions (typedefs) can be seen as introducing named type constants. Again, after definition, 
they are frozen—you cannot later redefine a typedef'd symbol to hold another type. 

These two peculiarities of compile-time calculation make it fundamentally incompatible with iteration. 
Iteration is about holding an iterator and changing it until some condition is met. Because we don't have 
mutable entities in the compile-time world, we cannot do any iteration at all. Therefore, although C++ is 
mostly an imperative language, any compile-time computation must rely on techniques that definitely are 
reminiscent of pure functional languages—languages that cannot mutate values. Be prepared to recurse 
heavily. 

 

3.6 Indexed Access 

Having access by index to the elements of a typelist would certainly be a desirable feature. It would 
linearize typelist access, making it easier to manipulate typelists comfortably. Of course, as with all the 
entities we manipulate in our static world, the index must be a compile-time value. 

The declaration of a template for an indexed operation would look like this: 

template <class TList, unsigned int index> struct TypeAt; 

Let's define the algorithm. Keep in mind that we cannot use mutable, modifiable values. 

 
   TypeAt 
   Inputs: Typelist TList, index i 
   Output: Inner type Result 
 
   If TList is non-null and i is zero, then Result is the head of TList. 
   Else 
     If TList is non-null and index i is nonzero, then Result is obtained by applying 
       TypeAt to the tail of TList and i-1. 
     Else there is an out-of-bound access that translates into a compile-time error. 

Here's the incarnation of the TypeAt algorithm: 

template <class Head, class Tail> 
struct TypeAt<Typelist<Head, Tail>, 0> 
{ 
   typedef Head Result; 
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}; 
template <class Head, class Tail, unsigned int i> 
struct TypeAt<Typelist<Head, Tail>, i> 
{ 
   typedef typename TypeAt<Tail, i - 1>::Result Result; 
}; 

If you try an out-of-bound access, the compiler will complain that there's no specialization defined for 
TypeAt<NullType, x>, where x is the amount by which you bypass the list size. This message could 
be a bit more informative, but it's not bad, either. 

Loki (file Typelist.h) also defines a variant of TypeAt, called TypeAtNonStrict. 
TypeAtNonStrict implements the same functionality as TypeAt, with the difference that an out-of-
bound access is more forgiving, yielding a user-chosen default type as the result instead of a compile-time 
error. The generalized callback implementation described in Chapter 5 uses TypeAt-NonStrict. 

Indexed access in typelists takes linear time according to the size of the typelist. For lists of values, this 
method is inefficient (for this reason, std::list does not define an operator[]). However, in the case 
of typelists, the time is consumed during compilation, and compile time is in a sense "free."[2] 

[2] Actually, this is not quite true for large projects. It is possible, at least in theory, that heavy typelist 
manipulation could slow down compilation time considerably. Anyway, a program that contains very large 
typelists is either runtime speed-hungry—in which case you are willing to accept slower compilations—or too 
coupled, in which case a design review would be in order. 

 

3.7 Searching Typelists 

How would you search a typelist for a given type? Let's try to implement an IndexOf algorithm that 
computes the index of a type in a typelist. If the type is not found, the result will be an invalid value, say - 
1. The algorithm is a classic linear search implemented recursively. 

 
   IndexOf 
   Inputs: Typelist TList, type T 
   Output: Inner compile-time constant value 
 
   If TList is NullType, then value is -1. 
   Else 
     If the head of TList is T, then value is 0. 
     Else 
       Compute the result of IndexOf applied to TList's tail and T into a temporary  
         value temp. 
       If temp is -1, then value is -1. 
       Else value is 1 plus temp. 

IndexOf is a relatively simple algorithm. Special care is given to propagate the "not found" value (-1) to 
the result. We need three specializations—one for each branch in the algorithm. The last branch (value's 
computation from temp) is a numeric calculation that we carry with the conditional operator ?:. Here's 
the implementation: 

template <class TList, class T> struct IndexOf; 
 
template <class T> 
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struct IndexOf<NullType, T> 
{ 
   enum { value = -1 }; 
}; 
 
template <class T, class Tail> 
struct IndexOf<Typelist<T, Tail>, T> 
{ 
   enum { value = 0 }; 
}; 
 
template <class Head, class Tail, class T> 
struct IndexOf<Typelist<Head, Tail>, T> 
{ 
private: 
   enum { temp = IndexOf<Tail, T>::value }; 
public: 
   enum { value = temp == -1 ? -1 : 1 + temp }; 
}; 
 
 

3.8 Appending to Typelists 

We need a means to append a type or a typelist to a typelist. Because modifying a typelist is not possible, 
as discussed previously, we will "return by value" by creating a brand new typelist that contains the result. 

 
   Append 
   Inputs: Typelist TList, type or typelist T 
   Output: Inner type definition Result 
 
   If TList is NullType and T is NullType, then Result is NullType. 
   Else 
     If TList is NullType and T is a single (nontypelist) type, then Result is a typelist hav- 
       ing T as its only element. 
     Else 
       If TList is NullType and T is a typelist, Result is T itself. 
       Else if TList is non-null, then Result is a typelist having TList::Head as its 
         head and the result of appending T to TList::Tail as its tail. 

This algorithm maps naturally to the following code: 

template <class TList, class T> struct Append; 
 
template <> struct Append<NullType, NullType> 
{ 
   typedef NullType Result; 
}; 
 
template <class T> struct Append<NullType, T> 
{ 
   typedef TYPELIST_1(T) Result; 
}; 
 
template <class Head, class Tail> 
struct Append<NullType, Typelist<Head, Tail> > 



 50

{ 
   typedef Typelist<Head, Tail> Result; 
}; 
 
template <class Head, class Tail, class T> 
struct Append<Typelist<Head, Tail>, T> 
{ 
   typedef Typelist<Head, 
         typename Append<Tail, T>::Result> 
      Result; 
}; 

Note, again, how the last partially specialized version of Append instantiates the Append template 
recursively, passing it the tail of the list and the type to append. 

Now we have a unified Append operation for single types and typelists. For instance, the statement 

typedef Append<SignedIntegrals, 
      TYPELIST_3(float, double, long double)>::Result 
   SignedTypes; 

defines a list containing all signed numeric types in C++. 

 

3.9 Erasing a Type from a Typelist 

Now for the opposite operation— erasing a type from a typelist—we have two options: Erase only the first 
occurrence, or erase all occurrences of a given type. 

Let's think of removing only the first occurrence. 

 
   Erase 
   Input: Typelist TList, type T 
   Output: Inner type definition Result 
 
   If TList is NullType, then Result is NullType. 
   Else 
     If T is the same as TList::Head, then Result is TList::Tail. 
     Else Result is a typelist having TList::Head as its head and the result of applying 
       Erase to TList::Tail and T as its tail. 

Here's how this algorithm maps to C++. 

template <class TList, class T> struct Erase; 
 
template <class T>                         // Specialization 1 
struct Erase<NullType, T> 
{ 
   typedef NullType Result; 
}; 
 
template <class T, class Tail>             // Specialization 2 
struct Erase<Typelist<T, Tail>, T> 
{ 



 51

   typedef Tail Result; 
}; 
 
template <class Head, class Tail, class T> // Specialization 3 
struct Erase<Typelist<Head, Tail>, T> 
{ 
   typedef Typelist<Head, 
         typename Erase<Tail, T>::Result> 
      Result; 
}; 

As in the case of TypeAt, there is no default version of the template. This means you can instantiate 
Erase only with certain types. For instance, Erase<double, int> yields a compile-time error because 
there's no match for it. Erase needs its first parameter to be a typelist. 

Using our SignedTypes definition, we can now say the following: 

// SomeSignedTypes contains the equivalent of 
// TYPELIST_6(signed char, short int, int, long int, 
// double, long double) 
typedef Erase<SignedTypes, float>::Result SomeSignedTypes; 

Let's tap into the recursive erase algorithm. The EraseAll template erases all occurrences of a type in a 
typelist. The implementation is similar to Erase's, with one difference. When detecting a type to erase, the 
algorithm doesn't stop. EraseAll continues looking for and removing matches down the tail of the list by 
recursively applying itself: 

template <class TList, class T> struct EraseAll; 
 
template <class T> 
struct EraseAll<NullType, T> 
{ 
   typedef NullType Result; 
}; 
 
template <class T, class Tail> 
struct EraseAll<Typelist<T, Tail>, T> 
{ 
   // Go all the way down the list removing the type 
   typedef typename EraseAll<Tail, T>::Result Result; 
}; 
 
template <class Head, class Tail, class T> 
struct EraseAll<Typelist<Head, Tail>, T> 
{ 
   // Go all the way down the list removing the type 
   typedef Typelist<Head, 
         typename EraseAll<Tail, T>::Result> 
      Result; 
}; 

 
 

3.10 Erasing Duplicates 

An important operation on typelists is to erase duplicate values. 
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The need is to transform a typelist so that each type appears only once. For example, from this: 

TYPELIST_6(Widget, Button, Widget, TextField, ScrollBar, Button) 

we need to obtain this: 

TYPELIST_4(Widget, Button, TextField, ScrollBar) 

This processing is a bit more complex, but, as you might guess, we can use Erase to help. 

 
   NoDuplicates 
   Input: Typelist TList 
   Output: Inner type definition Result 
    
   If TList is NullType, then Result is NullType. 
   Else 
     Apply NoDuplicates to TList::Tail, obtaining a temporary typelist L1. 
     Apply Erase to L1 and TList::Head. Obtain L2 as the result. 
     Result is a typelist whose head is TList::Head and whose tail is L2. 

Here's how this algorithm translates to code: 

template <class TList> struct NoDuplicates; 
 
template <> struct NoDuplicates<NullType> 
{ 
   typedef NullType Result; 
}; 
 
template <class Head, class Tail> 
struct NoDuplicates< Typelist<Head, Tail> > 
{ 
private: 
   typedef typename NoDuplicates<Tail>::Result L1; 
   typedef typename Erase<L1, Head>::Result L2; 
public: 
   typedef Typelist<Head, L2> Result; 
}; 

Why was Erase enough when EraseAll would have seemed appropriate? We want to remove all 
duplicates for a type, right? The answer is that Erase is applied after the recursion to NoDuplicates. 
This means we erase a type from a list that already has no duplicates, so at most one instance of the type to 
be erased will appear. This recursive programming is quite interesting. 

 

3.11 Replacing an Element in a Typelist 

Sometimes a replacement is needed instead of a removal. As you'll see in Section 3.12, replacing a type 
with another is an important building block for more advanced idioms. 

We need to replace type T with type U in a typelist TList. 



 53

 
   Replace 
   Inputs: Typelist TList, type T (to replace), and type U (to replace with) 
   Output: Inner type definition Result 
 
   If TList is NullType, then Result is NullType. 
   Else 
     If the head of the typelist TList is T, then Result is a typelist with U as its head and 
       TList::Tail as its tail. 
     Else Result is a typelist with TList::Head as its head and the result of applying 
       Replace to TList, T, and U as its tail. 

After you figure out the correct recursive algorithm, the code writes itself: 

template <class TList, class T, class U> struct Replace; 
 
template <class T, class U> 
struct Replace<NullType, T, U> 
{ 
   typedef NullType Result; 
}; 
 
template <class T, class Tail, class U> 
struct Replace<Typelist<T, Tail>, T, U> 
{ 
   typedef Typelist<U, Tail> Result; 
}; 
 
template <class Head, class Tail, class T, class U> 
struct Replace<Typelist<Head, Tail>, T, U> 
{ 
   typedef Typelist<Head, 
         typename Replace<Tail, T, U>::Result> 
      Result; 
}; 

We easily obtain the ReplaceAll algorithm by changing the second specialization for one that 
recursively applies the algorithm to Tail. 

 

3.12 Partially Ordering Typelists 

Suppose we want to order a typelist by inheritance relationship. We'd like, for instance, derived types to 
appear before base types. For example, say we have a class hierarchy like the one in Figure 3.1: 

Figure 3.1. A simple class hierarchy 
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If we have this typelist: 

TYPELIST_4(Widget, ScrollBar, Button, GraphicButton) 

the challenge is to transform it into 

TYPELIST_4(ScrollBar, GraphicButton, Button, Widget) 

That is, we need to bring the most derived types to the front and leave the order of sibling types unaltered. 

This seems like an exercise of intellectual value only, but there are important practical applications for it. 
Scanning a typelist ordered with the most derived types first ensures a bottom-up traversal of a class 
hierarchy. The double-dispatch engine in Chapter 11 applies this important property for figuring out 
information about types. 

When ordering a collection, we need an ordering function. We already have a compile-time means to 
detect inheritance relationships, described in detail in Chapter 2. Recall that we have a handy macro, 
SUPERSUBCLASS(T, U), which evaluates to true if U is derived from T. We just have to combine the 
inheritance detection mechanism with typelists. 

We cannot use a full-fledged sorting algorithm here because we don't have a total ordering relationship; we 
don't have the equivalent of operator< for classes. Two sibling classes cannot be ordered by 
SUPERSUBCLASS(T, U). We will therefore use a custom algorithm that will bring derived classes to the 
front and will let other classes remain in the same relative positions. 

 
   DerivedToFront 
   Input: Typelist TList 
   Output: Inner type definition Result 
 
   If TList is NullType, then Result is NullType. 
   Else 
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     Find the most derived type from TList::Head in TList::Tail. Store it in a 
       temporary variable TheMostDerived. 
     Replace TheMostDerived in TList::Tail with TList::Head, obtaining L as the result. 
     Build the result as a typelist having TheMostDerived as its head and L as its tail. 

When this algorithm is applied to a typelist, derived types will migrate to the top of the typelist, and base 
types will be pushed to the bottom. 

There is a piece missing here—the algorithm that finds the most derived type of a given type in a typelist. 
Because SUPERSUBCLASS yields a compile-time Boolean value, we'll find the little Select class 
template (also presented in Chapter 2) to be useful. Recall that Select is a template that selects one of 
two types based on a compile-time Boolean constant. 

The MostDerived algorithm accepts a typelist and a type Base and returns the most derived type from 
Base in the typelist (or possibly Base itself, if no derived type is found). It looks like this: 

 
   MostDerived 
   Input: Typelist TList, type T 
   Output: Inner type definition Result 
 
   If TList is NullType, the result is T. 
   Else 
     Apply MostDerived to TList::Tail and Base. Obtain Candidate. 
     If TList::Head is derived from Candidate, the result is TList::Head. 
     Else, the result is Candidate. 

The implementation of MostDerived is as follows: 

template <class TList, class T> struct MostDerived; 
 
template <class T> 
struct MostDerived<NullType, T> 
{ 
   typedef T Result; 
}; 
 
template <class Head, class Tail, class T> 
struct MostDerived<Typelist<Head, Tail>, T> 
{ 
private: 
   typedef typename MostDerived<Tail, T>::Result Candidate; 
public: 
   typedef typename Select< 
      SUPERSUBCLASS(Candidate, Head), 
         Head, Candidate>::Result Result; 
}; 

The DerivedToFront algorithm uses MostDerived as a primitive. Here is DerivedToFront's 
implementation: 

template <class T> struct DerivedToFront; 
 
template <> 
struct DerivedToFront<NullType> 
{ 
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   typedef NullType Result; 
}; 
 
template <class Head, class Tail> 
struct DerivedToFront< Typelist<Head, Tail> > 
{ 
private: 
   typedef typename MostDerived<Tail, Head>::Result 
      TheMostDerived; 
   typedef typename Replace<Tail, 
      TheMostDerived, Head>::Result L; 
public: 
   typedef Typelist<TheMostDerived, L> Result; 
}; 

This complex typelist manipulation is of considerable strength. The DerivedToFront transformation 
effectively automates type processing that otherwise can be performed only with much discipline and 
attention. Automatic maintenance of parallel class hierarchies, anyone? 

 

3.13 Class Generation with Typelists 

If, until now, you found typelists intriguing, interesting, or just ugly, you haven't seen anything yet. This 
section is dedicated to defining fundamental constructs for code generation with typelists. That is, we don't 
write code anymore; instead, we put the compiler to work generating code for us. These constructs use one 
of the most powerful constructs of C++, a feature unmatched by any other language—template template 
parameters. 

So far, typelist manipulation has not yielded actual code; the processing has produced only typelists, types, 
or compile-time numeric constants (as was the case with Length). Let's tap into generating some real 
code, that is, stuff that leaves traces in the compiled code. 

Typelist objects have no use as they are; they are devoid of any runtime state or functionality. An 
important need in programming with typelists is to generate classes from typelists. Application 
programmers sometimes need to fill a class with code—be it virtual function signatures, data declarations, 
or function implementations—in ways directed by a typelist. We will try to automate such processes with 
typelists. 

Because C++ lacks compile-time iteration or recursive macros, the task of adding some code for each type 
in a typelist is difficult. You can use partial template specialization in ways resembling the algorithms 
described earlier, but implementing this solution in user code is clumsy and complicated. Loki should be of 
help with this task. 

3.13.1 Generating Scattered Hierarchies 

A powerful utility template provided by Loki makes it easy to build classes by applying each type in a 
typelist to a basic template, provided by the user. This way, the clumsy process of distributing types in the 
typelist to user code is encapsulated in the library; the user need only define a simple template of one 
parameter. 

The library class template is called GenScatterHierarchy. Although it has a simple definition, 
GenScatterHierarchy has amazing horsepower under its hood, as you'll see soon. For now, let's look 
at its definition.[3] 
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[3] This is one of those situations in which presenting the idea before its potential applications (as opposed to 
a problem-solution sequence) is more appropriate. 

template <class TList, template <class> class Unit> 
class GenScatterHierarchy; 
 
// GenScatterHierarchy specialization: Typelist to Unit 
template <class T1, class T2, template <class> class Unit> 
class GenScatterHierarchy<Typelist<T1, T2>, Unit> 
   : public GenScatterHierarchy<T1, Unit> 
   , public GenScatterHierarchy<T2, Unit> 
{ 
public: 
   typedef Typelist<T1, T2> TList; 
   typedef GenScatterHierarchy<T1, Unit> LeftBase; 
   typedef GenScatterHierarchy<T2, Unit> RightBase; 
}; 
 
// Pass an atomic type (non-typelist) to Unit 
template <class AtomicType, template <class> class Unit> 
class GenScatterHierarchy : public Unit<AtomicType> 
{ 
   typedef Unit<AtomicType> LeftBase; 
}; 
 
// Do nothing for NullType 
template <template <class> class Unit> 
class GenScatterHierarchy<NullType, Unit> 
{ 
}; 

Template template parameters work much as you would expect (see also Chapter 1). You pass a template 
class Unit to GenScatterHierarchy as its second argument. Internally, GenScatterHierarchy 
uses its template template parameter Unit just as it would have used any regular template class with one 
template parameter. The power comes from your ability—as the user of GenScatterHierarchy—to 
pass it a template written by you. 

What does GenScatterHierarchy do? If its first template argument is an atomic type (as opposed to a 
typelist), GenScatterHierarchy passes that type to Unit, and inherits from the resulting class 
Unit<T>. If GenScatterHierarchy's first template argument is a type list TList, 
GenScatterHierarchy recurses to GenScatterHierarchy<TList::Head, Unit> and 
GenScatterHierarchy<TList::Tail, Unit>, and inherits both. 
GenScatterHierarchy<NullType, Unit> is an empty class. 

Ultimately, an instantiation of GenScatterHierarchy ends up inheriting Unit instantiated with every 
type in the typelist. For instance, consider this code: 

template <class T> 
struct Holder 
{ 
   T value_; 
}; 
 
typedef GenScatterHierarchy< 
      TYPELIST_3(int, string, Widget), 
      Holder> 
   WidgetInfo; 
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The inheritance hierarchy generated by WidgetInfo looks like Figure 3.2. We call the class hierarchy in 
Figure 3.2 scattered, because the types in the typelist are scattered in distinct root classes. This is the gist 
of GenScatteredHierarchy: It generates a class hierarchy for you by repeatedly instantiating a class 
template that you provide as a model. Then it collects all such generated classes in a single leaf class—in 
our case, WidgetInfo. 

Figure 3.2. The inheritance structure of WidgetInfo 

 

As an effect of inheriting Holder<int>, Holder<string>, and Holder<Widget>, WidgetInfo 
has one member variable value_ for each type in the typelist. Figure 3.3 shows a likely binary layout of a 
WidgetInfo object. The layout assumes that empty classes such as 
GenScatterHierarchy<NullType, Holder> are optimized away and do not occupy any storage in 
the compound object. 

Figure 3.3. Memory layout for WidgeInfo 

 

You can do interesting things with WidgetInfo objects. You can, for instance, access the string stored 
in a WidgetInfo object by writing 
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WidgetInfo obj; 
string name = (static_cast<Holder<string>&>(obj)).value_; 

The explicit cast is necessary to disambiguate the member variable name value_. Otherwise, the compiler 
is confused as to which value_ member you are referring to. 

This cast is quite ugly, so let's try to make GenScatterHierarchy easier to use by providing some 
handy access functions. For instance, a nice member function would access a member by its type. This is 
quite easy. 

// Refer to HierarchyGenerators.h for FieldTraits' definition 
template <class T, class H> 
typename Private::FieldTraits<H>::Rebind<T>::Result& 
Field(H& obj) 
{ 
   return obj; 
} 

Field relies on implicit derived-to-base conversion. If you call Field<Widget>(obj) (obj being of 
type WidgetInfo), the compiler figures out that Holder<Widget> is a base class of WidgetInfo and 
simply returns a reference to that part of the compound object. 

Why is Field a namespace-level function and not a member function? Well, such highly generic 
programming must play very carefully with names. Imagine, for instance, that Unit itself defines a 
symbol with the name Field. Had GenScatterHierarchy itself defined a member function Field, it 
would have masked Unit's Field member. This would be a major source of annoyance to the user. 

There is one more major source of annoyance with Field: You cannot use it when you have duplicate 
types in your typelists. Consider this slightly modified definition of WidgetInfo: 

typedef GenScatterHierarchy< 
      TYPELIST_4(int, int, string, Widget), 
      Value> 
WidgetInfo; 

Now WidgetInfo has two value_ members of type int. If you try to call Field<int> for a 
WidgetInfo object, the compiler complains about an ambiguity. There is no easy way to solve the 
ambiguity, because the WidgetInfo ends up inheriting Holder<int> twice through different paths, as 
shown in Figure 3.4. 

Figure 3.4. WidgeInfo inherits Holder<int> twice 
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We need a means of selecting fields in an instantiation of GenScatterHierarchy by positional index, 
not by type name. If you could refer to each of the two fields of type int by its position in the typelist 
(that is, as Field<0>(obj) and Field<1>(obj)), you would get rid of the ambiguity. 

Let's implement an index-based field access function. We have to dispatch at compile time between the 
field index zero, which accesses the head of the typelist, and nonzero, which accesses the tail of the typelist. 
Dispatching is easy with the help of the little Int2Type template defined in Chapter 2. Recall that 
Int2Type simply transforms each distinct constant integral into a distinct type. Also, we use Type2Type 
to transport the result type appropriately, as shown below. 

template <class H, typename R> 
inline R& FieldHelper(H& obj, Type2Type<R>, Int2Type<0>) 
{ 
   typename H::LeftBase& subobj = obj; 
   return subobj; 
} 
 
template <class H, typename R, int i> 
inline R& FieldHelper(H& obj, Type2Type<R> tt, Int2Type<i>) 
{ 
   typename H::RightBase& subobj = obj; 
   return FieldHelper(subobj, tt, Int2Type<i- 1>()); 
} 
//Refer to HierarchyGenerators.h for FieldTraits' definition 
template <int i, class H> 
typename Private::FieldTraits<H>::At<i>::Result& 
Field(H& obj) 
{ 
   typedef typename Private::FieldTraits<H>::At<i>::Result 
      Result; 
   return FieldHelper(obj, Type2Type<Result>(), Int2type<i>()); 
} 
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It takes a while to figure out how to write such an implementation, but fortunately explaining it is quite 
easy. Two overloaded functions called FieldHelper do the actual job. The first one accepts a parameter 
of type Int2Type<0>, and the second is a template that accepts Int2Type<any integer>. 
Consequently, the first overload returns the value corresponding to the Unit<T1>&, and the other returns 
the type at the specified index in the typelist. Field uses a helper template FieldTraits to figure out 
what type it must return. Field passes that type to FieldHelper through Type2Type. 

The second overload of FieldHelper recurses to FieldHelper, passing it the right-hand base of 
GenScatterHierarchy and Int2Type<index - 1>. This is because field N in a typelist is field N - 
1 in the tail of that typelist, for a non-zero N. (And indeed, the N = 0 case is handled by the first overload 
of FieldHelper.) 

For a streamlined interface, we need two additional Field functions: the const versions of the two 
Field functions defined above. They are similar to their non-const counterparts, except that they accept 
and return references to const types. 

Field makes GenScatterHierarchy very easy to use. Now we can write 

WidgetInfo obj; 
... 
int x = Field<0>(obj).value_; // first int 
int y = Field<1>(obj).value_; // second int 

The GenScatterHierarchy template is very suitable for generating elaborate classes from typelists by 
compounding a simple template. You can use GenScatterHierarchy to generate virtual functions for 
each type in a typelist. Chapter 9, Abstract Factory, uses GenScatterHierarchy to generate abstract 
creation functions starting from a type list. Chapter 9 also shows how to implement hierarchies generated 
by GenScatterHierarchy. 

3.13.2 Generating Tuples 

Sometimes you might need to generate a small structure with unnamed fields, known in some languages 
(such as ML) as a tuple. A tuple facility in C++ was first introduced by Jakko Järvi (1999a) and then 
refined by Järvi and Powell (1999b). 

What are tuples? Consider the following example. 

template <class T> 
struct Holder 
{ 
   T value_; 
}; 
 
typedef GenScatterHierarchy< 
   TYPELIST_3(int, int, int), 
   Holder> 
Point3D; 

Working with Point3D is a bit clumsy, because you have to write.value_ after any field access 
function. What you need here is to generate a structure the same way GenScatterHierarchy does, but 
with the Field access functions returning references to the value_ members directly. That is, 
Field<n> should not return a Holder<int>&, but an int& instead. 

Loki defines a Tuple template class that is implemented similarly to GenScatterHierarchy but that 
provides direct field access. Tuple works as follows: 
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typedef Tuple<TYPELIST_3(int, int, int)> 
   Point3D; 
Point3D pt; 
Field<0>(pt) = 0; 
Field<1>(pt) = 100; 
Field<2>(pt) = 300; 

Tuples are useful for creating small anonymous structures that don't have member functions. For example, 
you can use tuples for returning multiple values from a function: 

Tuple<TYPELIST_3(int, int, int)> 
GetWindowPlacement(Window&); 

The fictitious function GetWindowPlacement allows users to get the coordinates of a window and its 
position in the window stack using a single function call. The library implementer does not have to provide 
a distinct structure for tuples of three integers. 

You can see other tuple-related functions offered by Loki by looking in the file Tuple.h. 

3.13.3 Generating Linear Hierarchies 

Consider the following simple template that defines an event handler interface. It only defines an 
OnEvent member function. 

template <class T> 
class EventHandler 
{ 
public: 
   virtual void OnEvent(const T&, int eventId) = 0; 
   virtual void ~EventHandler() {} 
}; 

To be politically correct, EventHandler also defines a virtual destructor, which is not germane to our 
discussion, but necessary nonetheless (see Chapter 4 on why). 

We can use GenScatterHierarchy to distribute EventHandler to each type in a typelist: 

typedef GenScatterHierarchy 
< 
   TYPELIST_3(Window, Button, ScrollBar), 
   EventHandler 
> 
WidgetEventHandler; 

The disadvantage of GenScatterHierarchy is that it uses multiple inheritance. If you care about 
optimizing size, GenScatterHierarchy might be inconvenient, because Widget-EventHandler 
contains three pointers to virtual tables,[4] one for each EventHandler instantiation. If 
sizeof(EventHandler) is 4 bytes, then sizeof(WidgetEventHandler) will likely be 12 bytes, 
and it grows as you add types to the typelist. The most space-efficient configuration is to have all virtual 
functions declared right inside WidgetEventHandler, but this dismisses any code generation 
opportunities. 

[4] An implementation does not need to use virtual tables, but most implementations do. For a description of 
virtual tables, refer to Lippman (1994). 
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A nice configuration that decomposes WidgetEventHandler into one class per virtual function is a 
linear inheritance hierarchy, as shown in Figure 3.5. By using single inheritance, WidgetEventHandler 
would have only one vtable pointer, thus maximizing space efficiency. 

Figure 3.5. A size-optimized structure for WidgetEventHandler 

 

How can we provide a mechanism that automatically generates a hierarchy like this? A recursive template 
similar to GenScatterHierarchy can be of help here. There is a difference, though. The user-provided 
class template must now accept two template parameters. One of them is the current type in the typelist, as 
in GenScatterHierarchy. The other one is the base from which the instantiation derives. The second 
template parameter is needed because, as shown in Figure 3.5, the user-defined code now participates in 
the middle of the class hierarchy, not only at its roots (as was the case with GenScatterHierarchy). 

Let's write a recursive template GenLinearHierarchy. It bears a similarity to 
GenScatterHierarchy, the difference being the way it handles the inheritance relationship and the 
user-provided template unit. 

template 
< 
   class TList, 
   template <class AtomicType, class Base> class Unit, 
   class Root = EmptyType // For EmptyType, consult Chapter 2 
> 
class GenLinearHierarchy; 
 
template 
< 
   class T1, 
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   class T2, 
   template <class, class> class Unit, 
   class Root 
> 
class GenLinearHierarchy<Typelist<T1, T2>, Unit, Root> 
   : public Unit< T1, GenLinearHierarchy<T2, Unit, Root> > 
{ 
}; 
 
template 
< 
   class T, 
   template <class, class> class Unit, 
   class Root 
> 
class GenLinearHierarchy<TYPELIST_1(T), Unit, Root> 
   : public Unit<T, Root> 
{ 
}; 

This code is slightly more complicated than GenScatterHierarchy's, but the structure of a hierarchy 
generated by GenLinearHierarchy is simpler. Let's verify the adage that an image is worth 1,024 
words by looking at Figure 3.6, which shows the hierarchy generated by the following code. 

template <class T, class Base> 
class EventHandler : public Base 
{ 
public: 
   virtual void OnEvent(T& obj, int eventId); 
}; 
typedef GenLinearHierarchy 
< 
   TYPELIST_3(Window, Button, ScrollBar), 
   EventHandler 
> 
MyEventHandler; 

Figure 3.6. The class hirarchy generated by GenLinearHierarchy 
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In conjunction with EventHandler, GenLinearHierarchy defines a linear, rope-shaped, single-
inheritance class hierarchy. Each other node in the hierarchy defines one pure virtual function, as 
prescribed by EventHandler. Consequently, MyEventHandler defines three virtual functions, as 
needed. GenLinearHierarchy adds a requirement to its template template parameter: Unit (in our 
example, EventHandler) must accept a second template argument, and inherit from it. In compensation, 
GenLinearHierarchy does the laborious task of generating the class hierarchy. 

GenScatterHierarchy and GenLinearHierarchy work great in tandem. In most cases, you would 
generate an interface with GenScatterHierarchy and implement it with GenLinearHierarchy. 
Chapters 9 and 10 demonstrate concrete uses of these two hierarchy generators. 

 

3.14 Summary 

Typelists are an important generic programming technique. They add new capabilities for library writers: 
expressing and manipulating arbitrarily large collections of types, generating data structures and code from 
such collections, and more. 

At compile time, typelists offer most of the primitive functions that lists of values typically implement: add, 
erase, search, access, replace, erase duplicates, and even partial ordering by inheritance relationship. The 
code that implements typelist manipulation is confined to a pure functional style because there are no 
compile-time mutable values—a type or compile-time constant, once defined, cannot be changed. For this 
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reason, most typelist processing relies on recursive templates and pattern matching through partial 
template specialization. 

Typelists are useful when you have to write the same code—either declarative or imperative—for a 
collection of types. They enable you to abstract and generalize entities that escape all other generic 
programming techniques. For this reason, typelists are the enabling means for genuinely new idioms and 
library implementations, as you will see in Chapters 9 and 10. 

Loki provides two powerful primitives for automatic generation of class hierarchies from typelists: 
GenScatterHierarchy and GenLinearHierarchy. They generate two basic class structures: 
scattered (Figure 3.2) and linear (Figure 3.6). The linear class hierarchy structure is the more size efficient 
one. A scattered class hierarchy has a useful property: All instantiations of the user-defined template 
(passed as an argument to GenScatter Hierarchy) are roots of the final class, as Figure 3.2 shows. 

 

3.15 Typelist Quick Facts 

• Header file: Typelist.h. 
• All typelist utilities reside in namespace Loki::TL. 
• Class template Typelist<Head, Tail> is defined. 
• Typelist creation: Macros TYPELIST_1 to TYPELIST_50 are defined. They accept the number 

of parameters stated in their name. 
• The upper limit of macros (50) can be extended by the user. For instance: 

#define TYPELIST_51(T1, repeat here up to T51) \ 
  Typelist<T1, TYPELIST_50(T2, repeat here up to T51) > 

• By convention, typelists are proper—they always have a simple type (nontypelist) as the first 
element (the head). The tail can only be a typelist or NullType. 

• The header defines a collection of primitives that operate on typelists. By convention, all the 
primitives return the result in a nested (inner) public type definition called Result. If the result of 
the primitive is a value, then its name is value. 

• The primitives are described in Table 3.1. 
• Synopsis of class template GenScatterHierarchy: 

template <class TList, template <class> class Unit> 
class GenScatterHierarchy; 

• GenScatterHierarchy generates a hierarchy that instantiates Unit with each type in the 
typelist TList. An instantiation of GenScatterHierarchy directly or indirectly inherits 
Unit<T> for each T in TList. 

• The structure of a hierarchy generated by GenScatterHierarchy is depicted in Figure 3.2. 
• Synopsis of class template GenLinearHierarchy: 

template <class TList, template <class, class> class Unit> 
class GenLinearHierarchy; 

• GenLinearHierarchy generates a linear hierarchy, depicted in Figure 3.6. 
• GenLinearHierarchy instantiates Unit by passing each type in the typelist TList as Unit's 

first template argument. Important: Unit must derive publicly from its second template 
parameter. 

• The overloaded Field functions provide by-type and by-index access to the nodes of the 
hierarchies. 
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• Field<Type>(obj) returns a reference to the Unit instantiation that corresponds to the 
specified type Type. 

• Field<index>(obj) returns a reference to the Unit instantiation that corresponds to the type 
found in the typelist at the position specified by the integral constant index. 

Table 3.1. Compile-Time Algorithms Operating on Typelists 
Primitive Name Description 
Length<TList> Computes the length of TList. 
TypeAt<TList, idx> Returns the type at a given position (zero-based) in TList. If the 

index is greater than or equal to the length of TList, a compile-
time error occurs. 

TypeAtNonStrict<TList, 
idx> 

Returns the type at a given position (zero-based) in a typelist. If 
the index is greater than or equal to the length of TList, Null 
Type is returned. 

IndexOf<TList, T> Returns the index of the first occurrence of type T in typelist 
TList. If the type is not found, the result is -1. 

Append<TList, T> Appends a type or a typelist to TList. 
Erase<TList, T> Erases the first occurrence, if any, of T in TList. 
EraseAll<TList, T> Erases all occurrences, if any, of T in TList. 
NoDuplicates<TList> Eliminates all the duplicates from TList. 
Replace<TList, T, U> Replaces the first occurrence, if any, of T in TList with U. 
ReplaceAll<TList, T, U> Replaces all occurrences, if any, of T in TList with U. 
MostDerived<TList, T> Returns the most derived type from T in TList. If no such type is 

found, T is returned. 
DerivedToFront<TList> Brings the most derived types to the front of TList. 
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Chapter 4. Small-Object Allocation 
This chapter discusses the design and that of implementation of a fast allocator for small objects. If you use 
this allocator, the extra cost of dynamically allocated objects compared with stack-allocated objects often 
becomes negligible. 

In various places, Loki uses very small objects—as small as a few bytes. Chapter 5 (Generalized Functors) 
and Chapter 7 (Smart Pointers) use small objects heavily. For various reasons, polymorphic behavior being 
the most important, these small objects cannot be stored on the stack and must live on the free store. 

C++ provides the operators new and delete as the primary means of using the free store. The problem is, 
these operators are general purpose and perform badly for allocating small objects. To give an idea of just 
how bad "badly" is when it comes to small objects, some standard free store allocators may perform up to 
an order of magnitude slower, and also eat up twice as much memory, as the allocator that is the subject of 
this chapter. 

"Early optimization is the root of all evils," Knuth said, but on the other hand, "belated pessimization is the 
leaf of no good," according to Len Lattanzi. A pessimization of one order of magnitude in the runtime of a 
core object like a functor, a smart pointer, or a string can easily make the difference between success and 
failure for a whole project. The benefit of cheap, fast, dynamic allocation for small objects can be 
enormous because it allows you to apply advanced techniques without worrying about significant loss in 
performance. This provides a lot of incentive for looking into optimizing free store allocation for small 
objects. 

Many books on C++, such as Sutter (2000) and Meyers (1998a), mention the usefulness of writing your 
own specialized memory allocator. Meyers, after describing an implementation, leaves some details "in the 
form of the dreaded exercise for the reader," and Sutter sends you to "your favorite advanced C++ or 
general-purpose programming textbook." The book you're now reading doesn't pretend to become your 
favorite; however, this chapter does go down to the metal and implement a standard C++ custom allocator 
in every detail. 

After reading this chapter, you will understand the subtle, interesting issues associated with tuning memory 
allocators. You will also know how to use Loki's heavy-duty small-object allocator, the workhorse of smart 
pointers and generalized functors. 

 

4.1 The Default Free Store Allocator 

For occult reasons, the default allocator is notoriously slow. A possible reason is that it is usually 
implemented as a thin wrapper around the C heap allocator (malloc/realloc/ free). The C heap 
allocator is not focused on optimizing small chunk allocations. C programs usually make ordered, 
conservative use of dynamic memory. They don't naturally foster idioms and techniques that lead to 
numerous allocations and deallocations of small chunks of memory. Instead, C programs usually allocate 
medium-to large-sized objects (hundreds to thousands of bytes). Consequently, this is the behavior for 
which malloc/free is optimized. 

In addition to being slow, the genericity of the default C++ allocator makes it very space inefficient for 
small objects. The default allocator manages a pool of memory, and such management often requires some 
extra memory. Usually, the bookkeeping memory amounts to a few extra bytes (4 to 32) for each block 
allocated with new. If you allocate 1024-byte blocks, the per-block space overhead is insignificant (0.4% 
to 3%). If you allocate 8-byte objects, the per-object overhead becomes 50% to 400%, a figure big enough 
to make you worry if you allocate many such small objects. 



 69

In C++, dynamic allocation is very important. Runtime polymorphism is most often associated with 
dynamic allocation. Strategies such as "the pimpl idiom" (Sutter 2000) prescribe replacing stack allocation 
with free store allocation. 

Therefore, the poor performance of the default allocator makes it a bump on the road toward efficient C++ 
programs. Seasoned C++ programmers instinctively avoid constructs that foster using free store allocation 
because they know its costs from experience. Not only is the default allocator a concrete problem, but it 
also might become a psychological barrier. 

 

4.2 The Workings of a Memory Allocator 

Studying memory usage trends of programs is a very interesting activity, as proven by Knuth's seminal 
work (Knuth 1998). Knuth established many fundamental memory allocation strategies, and even more 
were invented later. 

How does a memory allocator work? A memory allocator manages a pool of raw bytes and is able to 
allocate chunks of arbitrary size from that pool. The bookkeeping structure can be a simple control block 
having a structure like the following: 

struct MemControlBlock 
{ 
   std::size_t size_; 
   bool available_; 
}; 

The memory managed by a MemControlBlock object lies right after it and has size_ bytes. After the 
chunk of memory, there is another MemControlBlock, and so on. 

When the program starts, there is only one MemControlBlock at the beginning of the pool, managing 
the entire memory as a big chunk. This is the root control block, which will never move from its original 
location. Figure 4.1 shows the memory layout for a 1MB memory pool at startup. 

Figure 4.1. The memory map at program startup 

 

For each allocation request, a linear search of memory blocks finds a suitable block for the requested size. 
Its size must be equal to or larger than the size requested. It is amazing just how many strategies for fitting 
requests with available blocks exist, and how oddly they perform. You can go for first fit, best fit, worst fit, 
or even a random fit. Interestingly, worst fit is better than best fit—how's that for an oxymoron? 

Each deallocation incurs, again, a linear search for figuring out the memory block that precedes the block 
being deallocated, and an adjustment of its size. 

As you can see, this strategy is not terribly time efficient. However, the overhead in size is quite small—
only one size_t plus a bool per memory block. In most concrete cases, you can even give up a bit in 
size_ and store available_ there, thus squeezing MemControl Block to the ultimate: 
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// Platform- and compiler-dependent code 
struct MemControlBlock 
{ 
   std::size_t size_ : 31; 
   bool available_ : 1; 
}; 

If you store pointers to the previous and next MemControlBlock in each MemControlBlock, you can 
achieve constant-time deallocation. This is because a block that's freed can access the adjacent blocks 
directly and adjust them accordingly. The necessary memory control block structure is 

struct MemControlBlock 
{ 
   bool available_ ; 
   MemControlBlock* prev_; 
   MemControlBlock* next_; 
}; 

Figure 4.2 shows the layout of a memory pool fostering such a doubly linked list of blocks. As you can see, 
the size_ member variable is not needed anymore because you can compute the size as this->next_ 
- this. Still, you have the overhead of two pointers and a bool for each allocated memory block. 
(Again, you can do some system-dependent tricks to pack that bool together with one of the pointers.) 

Figure 4.2. An allocator with constant-time deallocations 

 

Still, allocations take linear time. There are many neat techniques for mitigating that, each fostering a 
different set of trade-offs. Interestingly, there's no perfect memory allocation strategy; each of them has a 
memory use trend that makes it perform worse than others. 

We don't need to optimize general allocators. Let's focus on specialized allocators—allocators that deal 
best with small objects. 

 

4.3 A Small-Object Allocator 

The small-object allocator described in this chapter sports a four-layered structure, shown in Figure 4.3. 
The upper layers use functionality provided by the lower layers. At the bottom is a Chunk type. Each 
object of type Chunk contains and manages a chunk of memory consisting of an integral number of fixed-
size blocks. Chunk contains logic that allows you to allocate and deallocate memory blocks. When there 
are no more blocks available in the chunk, the allocation function fails by returning zero. 

Figure 4.3. The layered structure of the small-object allocator 



 71

 

The next layer features the FixedAllocator class. A FixedAllocator object uses Chunk as a 
building block. FixedAllocator's primary purpose is to satisfy memory requests that go beyond a 
Chunk's capacity. FixedAllocator does this by aggregating an array of Chunks. Whenever a request 
for memory comes and all existing Chunks are occupied, FixedAllocator creates a new Chunk and 
appends it to the array. Then it satisfies the request by forwarding the request to that new Chunk. 

SmallObjAllocator provides general allocation and deallocation functions. A SmallObjAllocator 
holds several FixedAllocator objects, each specialized for allocating objects of one size. Depending 
on the number of bytes requested, SmallObjAllocator dispatches memory allocation requests to one 
of its FixedAllocators or to the default ::operator new if the size requested is too large. 

Finally, SmallObject wraps FixedAllocator to offer encapsulated allocation services for C++ 
classes. SmallObject overloads operator new and operator delete and passes them to a 
SmallObjAllocator object. This way, you make your objects benefit from specialized allocation by 
simply deriving them from SmallObject. 

You can also use SmallObjAllocator and FixedAllocator directly. (Chunk is too primitive and 
unsafe, so it is defined in the private section of FixedAllocator.) Most of the time, however, client 
code will simply derive from the SmallObject base class to take advantage of efficient allocation. That's 
quite an easy-to-use interface. 

 

4.4 Chunks 

Each object of type Chunk contains and manages a chunk of memory containing a fixed amount of blocks. 
At construction time, you configure the block size and the number of blocks. 

A Chunk contains logic that allows you to allocate and deallocate memory blocks from that chunk of 
memory. When there are no more blocks available in the chunk, the allocation function returns zero. 

The definition of Chunk is as follows: 

// Nothing is private — Chunk is a Plain Old Data (POD) structure 
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// structure defined inside FixedAllocator 
// and manipulated only by it 
struct Chunk 
{ 
   void Init(std::size_t blockSize, unsigned char blocks); 
   void* Allocate(std::size_t blockSize); 
   void Deallocate(void* p, std::size_t blockSize); 
   unsigned char* pData_; 
   unsigned char 
      firstAvailableBlock_, 
      blocksAvailable_; 
}; 

In addition to a pointer to the managed memory itself, a chunk stores the following integral values: 

• firstAvailableBlock_, which holds the index of the first block available in this chunk 
• blocksAvailable_, the number of blocks available in this chunk 

The interface of Chunk is very simple. Init initializes a Chunk object, and Release releases the 
allocated memory. The Allocate function allocates a block, and Deallocate deallocates a block. You 
have to pass a size to Allocate and Deallocate because Chunk does not hold it. This is because the 
block size is known at a superior level. Chunk would waste space and time if it redundantly kept a 
blockSize_ member. Don't forget we are at the very bottom here—everything matters. Again for 
efficiency reasons, Chunk does not define constructors, destructors, or assignment operator. Defining 
proper copy semantics at this level hurts efficiency at upper levels, where we store Chunk objects in a 
vector. 

The Chunk structure reveals important trade-offs. Because blocksAvailable_ and 
firstAvailableBlock_ are of type unsigned char, it follows that you cannot have a chunk that 
contains more than 255 blocks (on a machine with 8-bit characters). As you will soon see, this decision is 
not bad at all and saves us a lot of headaches. 

Now for the interesting part. A block can be either used or unused. We can store whatever we want in an 
unused block, so we take advantage of this. The first byte of an unused block holds the index of the next 
unused block. Because we hold the first available index in firstAvailableBlock_, we have a full-
fledged singly linked list of unused blocks without using any extra memory. 

At initialization, a chunk looks like Figure 4.4. The code that initializes a Chunk object looks like this: 

void Chunk::Init(std::size_t blockSize, unsigned char blocks) 
{ 
   pData_ = new unsigned char[blockSize * blocks]; 
   firstAvailableBlock_ = 0; 
   blocksAvailable_ = blocks; 
   unsigned char i = 0; 
   unsigned char* p = pData_; 
   for (; i != blocks; p += blockSize) 
   { 
      *p = ++i; 
   } 
} 

Figure 4.4. A chunk of 255 blocks of 4 bytes each 
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This singly linked list melted inside the data structure is an essential goodie. It offers a fast, efficient way 
of finding available blocks inside a chunk—without any extra cost in size. Allocating and deallocating a 
block inside a Chunk takes constant time, which is exclusively thanks to the embedded singly linked list. 

Now you see why the number of blocks is limited to a value that fits in an unsigned char. Suppose we 
used a larger type instead, such as unsigned short (which is 2 bytes on many machines). We would 
now have two problems—a little one and a big one. 

• We cannot allocate blocks smaller than sizeof(unsigned short), which is awkward 
because we're building a small-object allocator. This is the little problem. 

• We run into alignment issues. Imagine you build an allocator for 5-byte blocks. In this case, 
casting a pointer that points to such a 5-byte block to unsigned int engenders undefined 
behavior. This is the big problem. 

The solution is simple: We use unsigned char as the type of the "stealth index." A character type has 
size 1 by definition and does not have any alignment problem because even the pointer to the raw memory 
points to unsigned char. 

This setting imposes a limitation on the maximum number of blocks in a chunk. We cannot have more than 
UCHAR_MAX blocks in a chunk (255 on most systems). This is acceptable even if the size of the block is 
really small, such as 1 to 4 bytes. For larger blocks, the limitation doesn't make a difference because we 
don't want to allocate chunks that are too big anyway. 

The allocation function fetches the block indexed by firstAvailableBlock_ and adjusts 
firstAvailableBlock_ to refer to the next available block—typical list stuff. 

void* Chunk::Allocate(std::size_t blockSize) 
{ 
   if (!blocksAvailable_) return 0; 
   unsigned char* pResult = 
      pData_ + (firstAvailableBlock_ * blockSize); 
   // Update firstAvailableBlock_ to point to the next block 
   firstAvailableBlock_ = *pResult; 
   ——blocksAvailable_; 
   return pResult; 
} 

The cost of Chunk::Allocate is one comparison, one indexed access, two dereference operations, an 
assignment, and a decrement—quite a small cost. Most important, there are no searches. We're in pretty 
good shape so far. Figure 4.5 shows the layout of a Chunk object after the first allocation. 
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Figure 4.5. A Chunk object after the one allocation. The allocated memory is shown in 
gray 

 

The deallocation function does exactly the opposite: It passes the block back to the free blocks list and 
increments blocksAvailable_. Don't forget that because Chunk is agnostic regarding the block size, 
you must pass the size as a parameter to Deallocate. 

void Chunk::Deallocate(void* p, std::size_t blockSize) 
{ 
   assert(p >= pData_); 
   unsigned char* toRelease = static_cast<unsigned char*>(p); 
   // Alignment check 
   assert((toRelease - pData_) % blockSize == 0); 
   *toRelease = firstAvailableBlock_; 
   firstAvailableBlock_ = static_cast<unsigned char>( 
       (toRelease - pData_) / blockSize); 
   // Truncation check 
   assert(firstAvailableBlock_ == 
      (toRelease - pData_) / blockSize); 
   ++blocksAvailable_; 
} 

The deallocation function is lean, but it does a lot of assertions (which still don't catch all error conditions). 
Chunk respects the grand C and C++ tradition in memory allocation: Prepare for the worst if you pass the 
wrong pointer to Chunk::Deallocate. 

 

4.5 The Fixed-Size Allocator 

The next layer of our small-object allocator consists of FixedAllocator. FixedAllocator knows 
how to allocate and deallocate blocks of a fixed size but is not limited to a chunk's size. Its capacity is 
limited only by available memory. 

To achieve this, FixedAllocator aggregates a vector of Chunk objects. Whenever an allocation 
request occurs, FixedAllocator looks for a Chunk that can accommodate the request. If all Chunks 
are filled up, FixedAllocator appends a new Chunk. Here is the relevant part of the definition of 
FixedAllocator: 

class FixedAllocator 
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{ 
   ... 
private: 
   std::size_t blockSize_; 
   unsigned char numBlocks_; 
   typedef std::vector<Chunk> Chunks; 
   Chunks chunks_; 
   Chunk* allocChunk_; 
   Chunk* deallocChunk_; 
}; 

To achieve a speedy lookup, FixedAllocator does not iterate through chunks_ looking for a space for 
each allocation. Instead, it holds a pointer to the last chunk that was used for an allocation 
(allocChunk_). Whenever an allocation request comes, FixedAllocator::Allocate first checks 
allocChunk_ for available space. If allocChunk_ has a slot available, the allocation request is 
satisfied—presto—using allocChunk_. If not, a linear search occurs (and, possibly, a new Chunk is 
appended to the chunks_ vector). In any case, allocChunk_ is updated to point to that found or added 
chunk. This way we increase the likelihood of a fast allocation next time. Here's the code that implements 
this algorithm: 

void* FixedAllocator::Allocate() 
{ 
   if (allocChunk_ == 0 || 
      allocChunk_->blocksAvailable_ == 0) 
   { 
      // No available memory in this chunk 
      // Try to find one 
      Chunks::iterator i = chunks_.begin(); 
      for (;; ++i) 
      { 
         if (i == chunks_.end()) 
         { 
            // All filled up-add a new chunk 
            chunks_.reserve(chunks _.size()+1); 
            Chunk newChunk; 
            newChunk.Init(blockSize_, numBlocks_); 
            chunks_.push_back(newChunk); 
            allocChunk_ = &chunks_.back(); 
            deallocChunk_ = &chunks_.back(); 
            break; 
         } 
         if (i->blocksAvailable_ > 0) 
         { 
            // Found a chunk 
            allocChunk_ = &*i; 
            break; 
         } 
      } 
   } 
   assert(allocChunk_ != 0); 
   assert(allocChunk_->blocksAvailable_ > 0); 
   return allocChunk_->Allocate(blockSize_); 
} 

Using this strategy, FixedAllocator satisfies most of the allocations in constant time, with occasional 
slowdowns caused by finding and adding a new block. Some memory allocation trends make this scheme 
work inefficiently; however, they tend not to appear often in practice. Don't forget that every allocator has 
an Achilles' heel. 
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Memory deallocation is more problematic, because at deallocation time there's a piece of information 
missing—all we have is a pointer to deallocate, and we don't know to what Chunk that pointer belongs. 
We can walk through chunks_ and check whether the given pointer falls in between pData_ and 
pData_ + blockSize_ * numBlocks_. If that's the case, then we pass the pointer to that Chunk's 
Deallocate member function. The problem is, this takes time. Although allocations are fast, 
deallocations take linear time. We need an additional device that speeds up deallocations. 

We could use a supplemental cache memory for freed blocks. When user code frees a block using 
FixedAllocator::Deallocate(p), the FixedAllocator does not pass p back to the 
corresponding Chunk; instead, it adds p to an internal memory—a cache that holds available blocks. 
When a new allocation request comes, FixedAllocator first looks up the cache. If the cache is not 
empty, FixedAllocator fetches the last available pointer from cache and returns it right away. This is a 
very fast operation. Only when the cache is depleted does FixedAllocator need to go the standard 
route by forwarding the allocation request to a Chunk. This is a promising strategy, but it works badly 
with certain allocation and deallocation trends that are common to small-object use. 

There are four main trends in allocating small objects: 

• Bulk allocation. Many small objects are allocated at the same time. For example, this is the case 
when you initialize a collection of pointers to small objects. 

• Deallocation in same order. Many small objects are deallocated in the same order as they were 
allocated. This happens when most STL containers are destroyed.[1] 

[1] Standard C++ does not define the order of destruction of objects within a standard container. 
Therefore, each implementer has to make a choice. Usually, containers are destroyed through a 
simple forward iteration. However, some implementers go for the more "natural" order by destroying 
objects in reverse order. The rationale is that in C++ objects are destroyed in reverse order of their 
creation. 

• Deallocation in reverse order. Many small objects are deallocated in the reverse order of their 
allocation. This trend occurs naturally in C++ programs as you call functions that manipulate 
small objects. Function arguments and temporary stack variables follow this trend. 

• Butterfly allocation and deallocation. Objects are created and destroyed without following a 
certain order. This happens as your program is running and has occasional need for small objects. 

A caching strategy serves the butterfly trend very well because it can sustain quick allocations and 
deallocations if they arrive randomly. However, for bulk allocation and deallocation, caching is not of help. 
Worse, caching slows down deallocations because clearing the cache memory takes its own time.[2] 

[2] I could not come up with a reasonable caching scheme that works equally well for same-order 
deallocation and reverse-order deallocation. Caching hurts either one or the other. Because both trends are 
likely to occur in real programs, caching is not a good choice. 

A better strategy is to rely on the same concept as with allocation. The member variable 
FixedAllocator::deallocChunk_ points to the last Chunk object that was used for a deallocation. 
Whenever a deallocation occurs, deallocChunk_ is checked first. Then, if it's the wrong chunk, 
Deallocate performs a linear search, satisfies the request, and updates deallocChunk_. 

Two important tweaks increase the speed of Deallocate for the allocation trends enumerated earlier. 
First, the Deallocate function searches the appropriate Chunk starting from deallocChunk_'s 
vicinity. That is, chunks_ is searched starting from deallocChunk_ and going up and down with two 
iterators. This greatly improves the speed of bulk deallocations in any order (normal or reversed). During a 
bulk allocation, Allocate adds chunks in order. During deallocation, either deallocChunk_ hits right 
away or the correct chunk is fetched in the next step. 
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The second tweak is the avoidance of borderline conditions. Say both allocChunk_ and 
deallocChunk_ point to the last Chunk in the vector, and there is no space left in the current set of 
chunks. Now imagine the following code is run: 

for (...) 
{ 
   // Some smart pointers use the small-object 
   // allocator internally (see Chapter 7) 
   SmartPtr p; 
   ... use p .... 
} 

Each pass through the loop creates and destroys a SmartPtr object. At creation time, because there's no 
more memory, FixedAllocator::Allocate creates a new Chunk and appends it to the chunks_ 
vector. At destruction time, FixedAllocator::Deallocate detects an empty block and frees it. This 
costly cycle gets repeated for each iteration of the for loop. 

This inefficiency is unacceptable. Therefore, during deallocation, a chunk is freed only when there are two 
empty chunks. If there's only one empty chunk, it is efficiently swapped to the end of the chunks_ vector. 
Thus, we avoid costly vector<Chunk>::erase operations by always deleting the last element. 

Of course, some situations defeat this simple heuristic. If you allocate a vector of SmartPtrs of 
appropriate size in a loop, you are back to the same problem. However, such situations tend to appear more 
rarely. Besides, as mentioned in the introduction of this chapter, any allocator may perform worse than 
others under specific circumstances. 

The deallocation strategy chosen also fits the butterfly allocation trend acceptably. Even if not allocating 
data in an ordered manner, programs tend to foster a certain locality; that is, they access a small amount of 
data at a time. The allocChunk_ and deallocChunk_ pointers deal nicely with such memory use 
because they act as a cache for the latest allocations and deallocations. 

In conclusion, we now have a FixedAllocator class that can satisfy fixed-memory allocation requests 
in an acceptably fast and memory-efficient manner. FixedAllocator is optimized for typical trends in 
small-object allocation. 

 

4.6 The SmallObjAllocator Class 

The third layer in our allocator architecture consists of SmallObjAllocator, a class capable of 
allocating objects of any size. SmallObjAllocator does so by aggregating several FixedAllocator 
objects. When SmallObjAllocator receives an allocation request, it either forwards it to the best 
matching FixedAllocator object or passes it to the default ::operator new. 

The following is a synopsis of SmallObjAllocator. Explanations follow the code. 

class SmallObjAllocator 
{ 
public: 
   SmallObjAllocator( 
      std::size_t chunkSize, 
      std::size_t maxObjectSize); 
   void* Allocate(std::size_t numBytes); 
   void Deallocate(void* p, std::size_t size); 
   ... 
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private: 
   std::vector<FixedAllocator> pool_; 
   ... 
}; 

The constructor takes two parameters that configure SmallObjAllocator. The chunkSize parameter 
is the default chunk size (the length in bytes of each Chunk object), and maxObjectSize is the 
maximum size of objects that must be considered to be "small." SmallObjAllocator forwards requests 
for blocks larger than maxObjectSize directly to ::operator new. 

Oddly enough, Deallocate takes the size to deallocate as an argument. Deallocations are much faster 
this way. Otherwise, SmallObjAllocator::Deallocate would have to search through all 
FixedAllocators in pool_ to find the one to which the pointer belongs. This is too expensive, so 
SmallObjAllocator requires you to pass the size of the block to deallocate. As you'll see in the next 
section, this task is graciously handled by the compiler itself. 

What's the mapping between the block size of FixedAllocator and pool_? In other words, given a 
size, what's the FixedAllocator that handles allocations and deallocations for blocks of that size? 

A simple and efficient idea is to have pool_[i] handle objects of size i. You initialize pool_ to have a 
size of maxObjectSize, and then initialize each FixedAllocator accordingly. When an allocation 
request of size numBytes comes, SmallObjAllocator forwards it either to pool_[numBytes]—a 
constant-time operation—or to ::operator new. 

However, this solution is not as clever as it seems. "Efficient" is not always "effective." The problem is, 
you might need allocators only for certain sizes, depending on your application. For instance, maybe you 
create only objects of size 4 and 64—nothing else. In this case, you allocate 64 or more entries for pool_ 
although you use only 2. 

Alignment and padding issues further contribute to wasting space in pool_. For instance, many compilers 
pad all user-defined types up to a multiple of a number (2, 4, or more). If the compiler pads all structures to 
a multiple of 4, for instance, you can count on using only 25% of pool_—the rest is wasted. 

A better approach is to sacrifice a bit of lookup speed for the sake of memory conservation.[3] We store 
FixedAllocators only for sizes that are requested at least once. This way pool_ can accommodate 
various object sizes without growing too much. To improve lookup speed, pool_ is kept sorted by block 
size. 

[3] Actually, on modern systems, you can count on an increase in speed when you use less memory. This is 
due to the big difference in speed between the main memory (large and slow) and the cache memory (small 
and fast). 

To improve lookup speed, we can rely on the same strategy as in FixedAllocator. 
SmallObjAllocator keeps a pointer to the last FixedAllocator used for allocation and a pointer to 
the last FixedDeallocator used for deallocation. The following is the complete set of member 
variables in SmallObjAllocator. 

class SmallObjAllocator 
{ 
   ... 
private: 
   std::vector<FixedAllocator> pool_; 
   FixedAllocator* pLastAlloc_; 
   FixedAllocator* pLastDealloc_; 
}; 



 79

When an allocation request arrives, pLastAlloc_ is checked first. If it is not of the correct size, 
SmallObjAllocator::Allocate performs a binary search in pool_. Deal location requests are 
handled in a similar way. The only difference is that SmallObjAllocator::Allocate can end up 
inserting a new FixedAllocator object in pool_. 

As discussed with FixedAllocator, this simple caching scheme favors bulk allocations and 
deallocations, which take place in constant time. 

 

4.7 A Hat Trick 

The last layer of our architecture consists of SmallObject, the base class that conveniently wraps the 
functionality provided by SmallObjAllocator. 

SmallObject overloads operator new and operator delete. This way, whenever you create an 
object derived from SmallObject, the overloads enter into action and route the request to the fixed 
allocator object. 

The definition of SmallObject is quite simple, if a bit intriguing. 

class SmallObject 
{ 
public: 
   static void* operator new(std::size_t size); 
   static void operator delete(void* p, std::size_t size); 
   virtual ~SmallObject() {} 
}; 

SmallObject looks perfectly kosher, except for a little detail. Many C++ books, such as Sutter (2000), 
explain that if you want to overload the default operator delete in a class, operator delete must 
take a pointer to void as its only argument. 

C++ offers a kind of a loophole that is of great interest to us. (Recall that we designed 
SmallObjAllocator to take the size of the block to be freed as an argument.) In standard C++ you can 
overload the default operator delete in two ways—either as 

void operator delete(void* p); 

or as 

void operator delete(void* p, std::size_t size); 

This issue is thoroughly explained in Sutter (2000), page 144. 

If you use the first form, you choose to ignore the size of the memory block to deallocate. But we badly 
need that block size so that we can pass it to SmallObjAlloc. Therefore, SmallObject uses the 
second form of overloading operator delete. 

How does the compiler provide the object size automagically? It seems as if the compiler is adding all by 
itself a per-object memory overhead that we have tried to avoid all through this chapter. 

No, there is no overhead at all. Consider the following code: 
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class Base 
{ 
   int a_[100]; 
public: 
   virtual ~Base() {} 
}; 
class Derived : public Base 
{ 
   int b_[200]; 
public: 
   virtual ~Derived() {} 
}; 
... 
Base* p = new Derived; 
delete p; 

Base and Derived have different sizes. To avoid the overhead of storing the size of the actual object to 
which p points, the compiler does a hat trick: It generates code that figures out the size on the fly. Four 
possible techniques of achieving that are listed here. (Wearing a compiler writer hat from time to time is 
fun—you suddenly can do little miracles inaccessible to programmers.) 

1. Pass a Boolean flag to the destructor meaning "Call/don't call operator delete after 
destroying the object." Base's destructor is virtual, so, in our example, delete p will reach the 
right object, Derived. At that time, the size of the object is known statically—it's 
sizeof(Derived)—and the compiler simply passes this constant to operator delete. 

2. Have the destructor return the size of the object. You can arrange (you're the compiler writer, 
remember?) that each destructor, after destroying the object, returns sizeof(Class). Again, 
this scheme works because the destructor of the base class is virtual. After invoking the destructor, 
the runtime calls operator delete, passing it the "result" of the destructor. 

3. Implement a hidden virtual member function that gets the size of an object, say _Size(). In this 
case, the runtime calls that function, stores the result, destroys the object, and invokes operator 
delete. This implementation might look inefficient, but its advantage is that the compiler can 
use _Size() for other purposes as well. 

4. Store the size directly somewhere in the virtual function table (vtable) of each class. This solution 
is both flexible and efficient, but less easy to implement. 

(Compiler writer hat off.) As you see, the compiler makes quite an effort in passing the appropriate size to 
your operator delete. Why, then, ignore it and perform a costly search each time you deallocate an 
object? 

It all dovetails so nicely. SmallObjAllocator needs the size of the block to de allocate. The compiler 
provides it, and SmallObject forwards it to FixedAllocator. 

Most of the solutions listed assume you defined a virtual destructor for Base, which explains again why it 
is so important to make all of your polymorphic classes' destructors virtual. If you fail to do this, 
deleteing a pointer to a base class that actually points to an object of a derived class engenders undefined 
behavior. The allocator discussed herein will assert in debug mode and crash your program in NDEBUG 
mode. Anybody would agree that this behavior fits comfortably into the realm of "undefined." 

To protect you from having to remember all this (and from wasting nights debugging if you don't), 
SmallObject defines a virtual destructor. Any class that you derive from SmallObject will inherit its 
virtual destructor. This brings us to the implementation of SmallObject. 

We need a unique SmallObjAllocator object for the whole application. That SmallObjAllocator 
must be properly constructed and properly destroyed, which is a thorny issue on its own. Fortunately, Loki 
solves this problem thoroughly with its SingletonHolder template, described in Chapter 6. (Referring 
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you to subsequent chapters is a pity, but it would be even more pitiful to waste this reuse opportunity.) For 
now, just think of SingletonHolder as a device that offers you advanced management of a unique 
instance of a class. If that class is X, you instantiate Singleton<X>. Then, to access the unique instance 
of that class, you call Singleton<X>::Instance(). The Singleton design pattern is described in 
Gamma et al. (1995). 

Using SingletonHolder renders SmallObject's implementation extremely simple: 

typedef Singleton<SmallObjAllocator> MyAlloc; 
void* SmallObject::operator new(std::size_t size) 
{ 
   return MyAlloc::Instance().Allocate(size); 
} 
void SmallObject::operator delete(void* p, std::size_t size) 
{ 
   MyAlloc::Instance().Deallocate(p, size); 
} 
 
 

4.8 Simple, Complicated, Yet Simple in the End 

The implementation of SmallObject turned out to be quite simple. However, it cannot remain that 
simple because of multithreading issues. The unique SmallObjAllocator is shared by all instances of 
SmallObject. If these instances belong to different threads, we end up sharing the 
SmallObjAllocator between multiple threads. As discussed in the appendix, in this case we must take 
special measures. It seems as if we must go back to all layers' implementations, figure out the critical 
operations, and add locking appropriately. 

However, although it's true that multithreading complicates things a bit, it's not that complicated because 
Loki already defines high-level object synchronization mechanisms. Following the principle that the best 
step toward reuse is to use, let's include Loki's Threads.h and make the following changes to 
SmallObject (changes are shown in bold): 

template <template <class T> class ThreadingModel> 
class SmallObject : public ThreadingModel<SmallObject> 
{ 
 ... as before ... 
}; 

The definitions of operator new and operator delete also undergo a bit of surgery: 

template <template <class T> class ThreadingModel> 
void* SmallObject<ThreadingModel>::operator new(std::size_t size) 
{ 
   Lock lock; 
   return MyAlloc::Instance().Allocate(size); 
} 
template <template <class T> class ThreadingModel> 
void SmallObject<ThreadingModel>::operator delete(void* p, std::size_t size) 
{ 
   Lock lock; 
   MyAlloc::Instance().Deallocate(p, size); 
} 
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That's it! We don't have to modify any of the previous layers—their functionality will be properly guarded 
by locking at the highest level. 

Using the Singleton management and the multithreading features of Loki right inside Loki is witness to the 
power of reuse. Each of these two domains—global variables' lifetimes and multithreading—has its own 
complications. Trying to handle them all in SmallObject starting from first principles would have been 
overwhelmingly difficult—just try to get peace of mind for implementing FixedAllocator's intricate 
caching while facing the spectrum of multiple threads spuriously initializing the same object. . . 

 

4.9 Administrivia 

This section discusses how to use the SmallObj.h file in your applications. 

To use SmallObject, you must provide appropriate parameters to SmallObjAllocator's constructor: 
the chunk size and the maximum size of a small object. How is a small object defined? What is the size 
under which an object can be considered small? 

To find an answer to this question, let's go back to the purpose of building a small-object allocator. We 
wanted to mitigate the inefficiencies in size and time introduced by the default allocator. 

The size overhead imposed by the default allocator varies largely. After all, the default allocator can use 
similar strategies to the ones discussed in this chapter. For most generic allocators, however, you can 
expect a per-object overhead that varies between 4 and 32 bytes per object in typical desktop machines. 
For an allocator with 16 bytes of overhead per object, an object of 64 bytes wastes 25% of memory; thus, a 
64-byte object should be considered small. 

On the other hand, if SmallObjAllocator handles objects that are too large, you end up allocating 
much more memory than needed (don't forget that FixedAllocator tends to keep one chunk allocated 
even after you have freed all small objects). 

Loki gives you a choice and tries to provide appropriate defaults. The SmallObj.h file uses three 
preprocessor symbols, described in Table 4.1. You should compile all the source files in a given project 
with the same preprocessor symbols defined (or don't define them at all and rely on the defaults). If you 
don't do this, nothing lethal happens; you just end up creating more FixedAllocators tuned to different 
sizes. 

The defaults are targeted toward a desktop machine with a reasonable amount of physical memory. If you 
#define either MAX_SMALL_OBJECT_SIZE or DEFAULT_CHUNK_SIZE to be zero, then SmallObj.h 
uses conditional compilation to generate code that simply uses the default ::operator new 
and ::operator delete, without incurring any overhead at all. The interface of the objects defined 
remains the same, but their functions are inline stubs that forward to the default free store allocator. 

The class template SmallObject used to have one parameter. To support different chunk sizes and 
object sizes, SmallObject gets two more template parameters. They default to DEFAULT_CHUNK_SIZE 
and MAX_SMALL_OBJECT_SIZE, respectively. 

template 
< 
   template <class T> 
      class ThreadingModel = DEFAULT_THREADING, 
   std::size_t chunkSize = DEFAULT_CHUNK_SIZE, 
   std::size_t maxSmallObjectSize = MAX_SMALL_OBJECT_SIZE 
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> 
class SmallObject; 

If you just say SmallObject<>, you get a class that can work with your default threading model, 
garnished with the default choices concerning memory management. 

Table 4.1. Preprocessor Symbols Used by SmallObj.h 
Symbol Meaning Default Value
DEFAULT_CHUNK_SIZE The default size (in bytes) of a memory chunk. 4096 
MAX_SMALL_OBJECT_SIZE The maximum value that is handled by 

SmallObjAllocator. 
64 

DEFAULT_THREADING The default threading model used by the application. 
A multithreaded application should define this 
symbol to ClassLevelLockable. 

Inherited from 
Threads.h 

 
 

4.10 Summary 

Some C++ idioms make heavy use of small objects allocated on the free store. This is because in C++, 
runtime polymorphism goes hand in hand with dynamic allocation and pointer/reference semantics. 
However, the default free store allocator (accessible through the global ::operator new 
and ::operator delete) is often optimized for allocating large objects, not small ones. This renders 
the default free store allocator unsuitable for allocating small objects because it is often slow and brings 
nonnegligible per-object memory overhead. 

The solution is to rely on small-object allocators—specialized allocators that are tuned for dealing with 
small memory blocks (tens to hundreds of bytes). Small-object allocators use larger chunks of memory and 
organize them in ingenious ways to reduce space and time penalties. The C++ runtime support helps by 
providing the size of the block to be released. This information can be grabbed by simply using a less-
known overloaded form of operator delete. 

Is Loki's small-object allocator the fastest possible? Definitely not. Loki's allocator operates only within 
the confines of standard C++. As you saw throughout this chapter, issues such as alignment must be treated 
very conservatively, and being conservative spells being less than optimal. However, Loki is a reasonably 
fast, simple, and robust allocator that has the advantage of portability. 

 

4.11 Small-Object Allocator Quick Facts 

• The allocator implemented by Loki has a four-layered architecture. The first layer consists of a 
private type Chunk, which deals with organizing memory chunks in equally sized blocks. The 
second layer is FixedAllocator, which uses a variable-length vector of chunks to satisfy 
memory allocation to the extent of the available memory in the system. In the third layer, 
SmallObjAllocator uses multiple FixedAllocator objects to provide allocations of any 
object size. Small objects are allocated using a FixedAllocator, and requests for large objects 
are forwarded to ::operator new. Finally, the fourth layer consists of SmallObject, a class 
template that wraps a SmallObjAllocator object. 

• SmallObject class template synopsis: 

template 
< 



 84

   template <class T> 
      class ThreadingModel = DEFAULT_THREADING, 
   std::size_t chunkSize = DEFAULT_CHUNK_SIZE, 
   std::size_t maxSmallObjectSize = MAX_SMALL_OBJECT_SIZE 
> 
class SmallObject 
{ 
public: 
   static void* operator new(std::size_t size); 
   static void operator delete(void* p, std::size_t size); 
   virtual ~SmallObject() {} 
}; 

• You can benefit from a small-object allocator by deriving from an instantiation of SmallObject. 
You can instantiate the SmallObject class template with the default parameters 
(SmallObject<>) or tweak its threading model or its memory allocation parameters. 

• If you create objects with new in multiple threads, you must use a multithreaded model as the 
ThreadingModel parameter. Refer to the appendix for information concerning 
ThreadingModel. 

• The default value of DEFAULT_CHUNK_SIZE is 4096. 
• The default value of MAX_SMALL_OBJECT_SIZE is 64. 
• You can #define DEFAULT_CHUNK_SIZE or MAX_SMALL_OBJECT_SIZE, or both, to 

override the default values. After expansion, the macros must expand to constants of type 
(convertible to) std::size_t. 

• If you #define either DEFAULT_CHUNK_SIZE or MAX_SMALL_OBJECT_SIZE to zero, then 
the SmallAlloc.h file uses conditional compilation to generate code that forwards directly to 
the free store allocator. The interface remains the same. This is useful if you need to compare how 
your program behaves with and without specialized memory allocation. 
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Part II: Components 
Chapter 5.  Generalized Functors 

Chapter 6.  Implementing Singletons 

Chapter 7.  Smart Pointers 

Chapter 8.  Object Factories 

Chapter 9.  Abstract Factory 

Chapter 10.  Visitor 

Chapter 11.  Multimethods 

Appendix A Minimalist Multithreading Library 
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Chapter 5. Generalized Functors 
This chapter describes generalized functors, a powerful abstraction that allows decoupled interobject 
communication. Generalized functors are especially useful in designs that need requests to be stored in 
objects. The design pattern that describes encapsulated requests, and that generalized functors follow, is 
Command (Gamma et al. 1995). 

In brief, a generalized functor is any processing invocation that C++ allows, encapsulated as a typesafe 
first-class object. In a more detailed definition, a generalized functor 

• Encapsulates any processing invocation because it accepts pointers to simple functions, pointers 
to member functions, functors, and even other generalized functors—together with some or all of 
their respective arguments. 

• Is typesafe because it never matches the wrong argument types to the wrong functions. 
• Is an object with value semantics because it fully supports copying, assignment, and pass by value. 

A generalized functor can be copied freely and does not expose virtual member functions. 

Generalized functors allow you to store processing requests as values, pass them as parameters, and invoke 
them apart from the point of their creation. They are a much-modernized version of pointers to functions. 
The essential differences between pointers to functions and generalized functors are that the latter can store 
state and invoke member functions. 

After reading this chapter, you will 

• Understand the Command design pattern and how generalized functors relate to it 
• Know when the Command pattern and generalized functors are useful 
• Grasp the mechanics of various functional entities in C++ and how to encapsulate them under a 

uniform interface 
• Know how to store a processing request and some or all of its parameters in an object, pass it 

around, and invoke it freely 
• Know how to chain multiple such delayed calls and have them performed in sequence 
• Know how to use the powerful Functor class template that implements the described 

functionality 

 

5.1 The Command Design Pattern 

According to the Gang of Four (GoF) book (Gamma et al. 1995), the Command pattern's intent is to 
encapsulate a request in an object. A Command object is a piece of work that is stored away from its 
actual executor. The general structure of the Command pattern is presented in Figure 5.1. 

Figure 5.1. The Command design pattern 
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The pattern's main piece is the Command class itself. Its most important purpose is to reduce the 
dependency between two parts of a system—the invoker and the receiver. 

A typical sequence of actions is as follows: 

1. The application (client) creates a ConcreteCommand object, passing it enough information to 
carry on a task. The dotted line in Figure 5.1 illustrates the fact that the Client influences 
ConcreteCommand's state. 

2. The application passes the Command interface of the ConcreteCommand object to the invoker. 
The invoker stores this interface. 

3. Later, the invoker decides it's time to execute the action and fires Command's Execute virtual 
member function. The virtual call mechanism dispatches the call to the Concrete-Command 
object, which takes care of the details. ConcreteCommand reaches the Receiver object (the 
one that is to do the job) and uses that object to perform the actual processing, such as calling its 
Action member function. Alternatively, the ConcreteCommand object might carry the 
processing all by itself. In this case, the receiver in Figure 5.1 disappears. 

The invoker can invoke Execute at its leisure. Most important, at runtime you can plug various actions 
into the invoker by replacing the Command object that the invoker holds. 

Two things are worth noting here. First, the invoker is not aware of how the work is done. This is not a 
new concept—to use a sorting algorithm, you don't need to know its implementation. But what's particular 
to Command is that the invoker doesn't even know what kind of processing the Command object is 
supposed to do. (By contrast, you certainly would expect the sorting algorithm to have a certain effect.) 
The invoker only calls for Execute for the Command interface it holds when certain circumstances occur. 
On the other side, the receiver itself is not necessarily aware that its Action member function was called 
by an invoker or otherwise. 

The Command object thus ensures an important separation between the invoker and the receiver: They 
might be completely invisible to each other, yet communicate via Commands. Usually, an Application 
object decides the wiring between invokers and receivers. This means that you can use different invokers 
for a given set of receivers, and that you can plug different receivers into a given invoker—all without their 
knowing anything about each other. 

Second, let's look at the Command pattern from a timing perspective. In usual programming tasks, when 
you want to perform an action, you assemble an object, a member function of it, and the arguments to that 
member function into a call. For example: 
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window.Resize(0, 0, 200, 100); // Resize the window 

 

The moment of initiating such a call is conceptually indistinguishable from the moment of gathering the 
elements of that call (the object, the procedure, and the arguments). In the Command pattern, however, the 
invoker has the elements of the call, yet postpones the call itself indefinitely. The Command pattern 
enables delayed calls as in the following example: 

Command resizeCmd( 
   window, // Object 
   &Window::Resize, // Member function 
   0, 0, 200, 100); // Arguments 
// Later on... 
resizeCmd.Execute();  // Resize the window 

(We will dwell on the slightly less-known C++ construct &Window::Resize a bit later.) In the 
Command pattern, the moment of gathering the environment necessary to perform a processing is different 
from the moment of performing the processing. Between the two moments, the program stores and passes 
around the processing request as an object. Had this timing-related desire not existed, there would have 
been no Command pattern. From this standpoint, the very existence of the Command object is a 
consequence of the timing issue: Because you need to perform processing later, there has to be an object 
that holds the request until then. 

These points lead to two important aspects of the Command pattern: 

• Interface separation. The invoker is isolated from the receiver. 
• Time separation. Command stores a ready-to-go processing request that's to be started later. 

The notion of environment is also important. The environment of a point of execution is the set of entities 
(variables and functions) that are visible from that point of execution. When the processing is actually 
started, the necessary environment must be available or else the processing cannot take place. A 
ConcreteCommand object might store part of its necessary environment as its own state and access part 
of it during Execute. The more environment a ConcreteCommand stores, the more independence it has. 

From an implementation standpoint, two kinds of concrete Command classes can be identified. Some 
simply delegate the work to the receiver. All they do is call a member function for a Receiver object. We 
call them forwarding commands. Others do tasks that are more complex. They might call member 
functions of other objects, but they also embed logic that's beyond simple forwarding. Let's call them 
active commands. 
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Separating commands into active and forwarding is important for establishing the scope of a generic 
implementation. Active commands cannot be canned—the code they contain is by definition application-
specific—but we can develop helpers for forwarding commands. Because forwarding commands act much 
like pointers to functions and their C++ colleagues, functors, we call them generalized functors. 

The aim of the rest of this chapter is to obtain a Functor class template that encapsulates any object, any 
member function of that object, and any set of arguments pertaining to that member function. Once 
executed, the Functor animates all these little things to obtain a function call. 

A Functor object can be of tremendous help to a design that uses the Command pattern. In hand-coded 
implementations, the Command pattern doesn't scale well. You must write lots of small concrete Command 
classes (one for each action in the application: CmdAddUser, CmdDeleteUser, CmdModifyUser, and 
so on), each having a trivial Execute member function that just calls a specific member function of some 
object. A generic Functor class that can forward a call to any member function of any object would be of 
great help to such a design. 

Some particular active commands are also worth implementing in Functor, such as the sequencing of 
multiple actions. Functor should be able to assemble multiple actions and execute them in order. The 
GoF book mentions such a useful object, Macro Command. 

 

5.2 Command in the Real World 

A popular example associated with the Command pattern is tied to windowing environments. Good object-
oriented GUI frameworks have used one form or another of the Command pattern for years. 

Windowing-system writers need a generic way to transmit user actions (such as mouse clicks and 
keystrokes) to the application. When the user clicks a button, selects a menu option, or the like, the 
windowing system must notify the underlying application logic. From the windowing system's standpoint, 
the Options command under the Tools menu does not hold any special meaning. If it did, the application 
would have been locked into a very rigid framework. An effective way to decouple the windowing system 
from the application is to use Command objects for passing user actions. Commands serve as generic 
vehicles that transport actions from the windows to the application logic. 

In the windowing example, the invokers are user interface elements (such as buttons, checkboxes, menu 
items, and widgets), and the receiver is the object responsible for reacting to user interface commands (for 
example, a dialog or the application itself). 

Command objects constitute the lingua franca that the user interface and the application use. As discussed 
in the previous section, Command offers double-ended flexibility. First, you can plug in new kinds of user 
interface elements without changing the application logic. Such a program is known as skinnable because 
you can add new "skins" without changing the design of the product itself. Skins do not encompass any 
architecture—they only provide slots for Commands and knowledge to fire them appropriately. Second, 
you can easily reuse the same user interface elements across different applications. 

 

5.3 C++ Callable Entities 

To put together a generic implementation for forwarding commands, let's try to get Command-specific 
notions closer to terms familiar to C++ programming. 
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A forwarding command is a callback on steroids, a generalized callback. A callback is a pointer to a 
function that can be passed around and called at any time, as illustrated in the following example. 

void Foo(); 
void Bar(); 
 
int main() 
{ 
   // Define a pointer to a function that takes no 
   // parameters and returns void. 
   // Initialize that pointer with the address of Foo 
   void (*pF)() = &Foo; 
   Foo();                // Call Foo directly 
   Bar();                // Call Bar directly 
   (*pF)();              // Call Foo via pF 
   void (*pF2)() = pF;   // Create a copy of pF 
   pF = &Bar;            // Change pF to point to Bar 
   (*pF)();              // Now call Bar via pF 
   (*pF2)();             // Call Foo via pF2 
} 

There is an essential difference between calling Foo and calling (*pF).[1] The difference is that in the 
latter case you can copy and change pointers to functions. You can take a pointer to a function, store it 
somewhere, and call it when the right time comes—hence, the similarity with forwarding Commands, 
which are essentially a piece of work that is stored away from its actual executor and processed later. 

[1] The compiler offers a syntactic shortcut: (*pF)() is equivalent to pF(). However, (*pF)() is more 
suggestive of what actually happens—pF is dereferenced, and the function-call operator () is applied to the 
dereferenced pointer. 

In fact, callbacks are the C way of using the Command pattern in many windowing systems. X Windows, 
for instance, stores such a callback in each menu item and in each widget. The widget calls the callback 
when the user does something (like clicking on the widget). The widget does not know what the callback 
actually does. 

In addition to simple callbacks, C++ defines many more entities that support the function-call operator. 
Let's enumerate all the things that support operator() in C++. 

• C-like functions 
• C-like pointers to functions 
• References to functions (which essentially act like const pointers to functions) 
• Functors, that is, objects that define an operator() 
• The result of applying operator.* or operator->* having a pointer to a member function in 

the right-hand side of the expression 

You can add a pair of parentheses to the right of any of the enumerated items, put an appropriate list of 
arguments inside, and get some processing done. No other objects in C++ allow this except the ones just 
listed. 

The objects that support operator() are known as callable entities. The goal of this chapter is to 
implement a set of forwarding commands that store and can forward a call to any callable entity.[2] The 
Functor class template will encapsulate the forwarding commands and provide a uniform interface. 

[2] Note the avoidance of the notion of type here. We could have simply said, "Types that support 
operator() are callable entities." But, incredible as it seems, in C++ there are things to which you can 
apply operator() although they don't have a type, as you will soon see. 
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The implementation must handle the three essential cases: simple function calls, functor calls (including 
Functor calls; that is, you should be able to forward calls from one Functor to another), and member 
function calls. You might think to define an abstract base class and create a subclass for each case. All this 
sounds like straightforward C++. As you launch your favorite editor and start to type, however, an 
abundant crop of problems appears. 

 

5.4 The Functor Class Template Skeleton 

For Functor's implementation, we're certainly looking at the handle-body idiom (Coplien 1992). As 
Chapter 7 discusses in detail, in C++ a bald pointer to a polymorphic type does not strictly have first-class 
semantics because of the ownership issue. To lift the burden of lifetime management from Functor's 
clients, it's best to provide Functor with value semantics (well-defined copying and assignment). 
Functor does have a polymorphic implementation, but that's hidden inside it. We name the 
implementation base class FunctorImpl. 

Let's now make an important observation. Command::Execute in the Command pattern should become 
a user-defined operator() in C++. There is a sound argument in favor of using operator() here: For 
C++ programmers, the function-call operator has the exact meaning of "execute," or "do your stuff." But 
there's a much more interesting argument for this: syntactic uniformity. A forwarding Functor not only 
delegates to a callable entity, but also is a callable entity itself. This renders a Functor able to hold other 
Functors. So from now on Functor constitutes part of the callable entities set; this will allow us to treat 
things in a more uniform manner in the future. 

The problems start to crop up as soon as we try to define the Functor wrapper. The first shot might look 
like the following: 

class Functor 
{ 
public: 
   void operator()(); 
   // other member functions 
private: 
   // implementation goes here 
}; 

The first issue is the return type of operator(). Should it be void? In certain cases, you would like to 
return something else, such as a bool or a std::string. There's no reason to disallow parameterized 
return values. 

Templates are intended to solve this kind of problem, so, without further ado: 

template <typename ResultType> 
class Functor 
{ 
public: 
   ResultType operator()(); 
   // other member functions 
private: 
   // implementation 
}; 
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This looks acceptable, although now we don't have one Functor; we have a family of Functors. This is 
quite sensible because Functors that return strings are functionally different from Functors that return 
integers. 

Now for the second issue: Shouldn't Functor's operator() accept arguments too? You might want to 
pass to the Functor some information that was not available at Functor's construction time. For 
example, if mouse clicks on a window are passed via a Functor, the caller should pass position 
information (available exactly and only at call time) to the Functor object when calling its operator(). 

Moreover, in the generic world, parameters can be of any number, and each of them can have any type. 
There is no ground for limiting either the types that can be passed or their number. 

The conclusion that stems from these facts is that each Functor is defined by its return type and its 
arguments' types. The language support needed here sounds a bit scary: variable template parameters 
combined with variable function-call parameters. 

Unfortunately, such language support is very scarce. Variable template parameters simply don't exist. 
There are variable-argument functions in C++ (as there are in C), but although they do a decent job for C if 
you're really careful, they don't get along as well with C++. Variable arguments are supported via the 
dreaded ellipsis (à la printf or scanf). Calling printf or scanf without matching the format 
specification with the number and types of the arguments is a common and dangerous mistake illustrating 
the shortcomings of ellipsis functions. The variable-parameter mechanism is unsafe, is low level, and does 
not fit the C++ object model. To make a long story short, once you use ellipses, you're left in a world with 
no type safety, no object semantics (using full-fledged objects with ellipses engenders undefined behavior), 
and no support for reference types. Even the number of arguments is not accessible to the called function. 
Indeed, where there are ellipses, there's not much C++ left. 

The alternative is to limit the number of arguments a Functor can take to an arbitrary (yet reasonably 
large) number. Choosing something in an arbitrary way is one of the most unpleasant tasks a programmer 
has to do. However, the choice can be made based on experimental grounds. Libraries (especially older 
ones) commonly use up to 12 parameters for their functions. Let's limit the number of arguments to 15. We 
cast this embarrassing arbitrary decision in stone and don't think about it again. 

Even after making this decision, life is not a lot easier. C++ does not allow templates with the same name 
and different numbers of parameters. That is, the following code is invalid: 

// Functor with no arguments 
template <typename ResultType> 
class Functor 
{ 
   ... 
}; 
 
// Functor with one argument 
template <typename ResultType, typename Parm1> 
class Functor 
{ 
   ... 
}; 

Naming the template classes Functor1, Functor2, and so on, would be a hassle. 

Chapter 3 defines typelists, a general facility for dealing with collections of types. Functor's parameter 
types do form a collection of types, so typelists fit here nicely. The definition of Functor with typelists 
looks like this: 
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// Functor with any number and types of arguments 
template <typename ResultType, class TList> 
class Functor 
{ 
 ... 
}; 

A possible instantiation is as follows: 

// Define a Functor that accepts an int and a double and 
// returns a double 
Functor<double, TYPELIST_2(int, double)> myFunctor; 

An appealing advantage of this approach is that we can reuse all the goodies defined by the typelist facility 
instead of developing similar ones for Functor. 

As you will soon see, typelists, although helpful, still require the Functor implementation to do 
painstaking repetition to encompass any number of arguments. From now on, let's focus on a maximum of 
2 arguments. The included Functor.h file scales up to 15 arguments, as established. 

The polymorphic class FunctorImpl, wrapped by Functor, has the same template parameters as 
Functor:[3] 

[3] Using typename or class for specifying a template parameter makes no difference. This book, by 
convention, uses typename for template parameters that can be primitive types (such as int), and 
class for template parameters that must be user-defined types. 

template <typename R, class TList> 
class FunctorImpl; 

FunctorImpl defines a polymorphic interface that abstracts a function call. For each number of 
parameters, we define a FunctorImpl explicit specialization (see Chapter 2). Each specialization defines 
a pure virtual operator() for the appropriate number and types of parameters, as shown in the following: 

template <typename R> 
class FunctorImpl<R, NullType> 
{ 
public: 
   virtual R operator()() = 0; 
   virtual FunctorImpl* Clone() const = 0; 
   virtual ~FunctorImpl() {} 
}; 
 
template <typename R, typename P1> 
class FunctorImpl<R, TYPELIST_1(P1)> 
{ 
public: 
   virtual R operator()(P1) = 0; 
   virtual FunctorImpl* Clone() const = 0; 
   virtual ~FunctorImpl() {} 
}; 
 
template <typename R, typename P1, typename P2> 
class FunctorImpl<R, TYPELIST_2(P1, P2)> 
{ 
public: 
   virtual R operator()(P1, P2) = 0; 
   virtual FunctorImpl* Clone() const = 0; 
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   virtual ~FunctorImpl() {} 
}; 

The FunctorImpl classes are partial specializations of the primary FunctorImpl template. Chapter 2 
describes the partial template specialization feature in detail. In our situation, partial template 
specialization allows us to define different versions of FunctorImpl, depending on the number of 
elements in the typelist. 

In addition to operator(), FunctorImpl defines two scaffolding member functions—Clone and a 
virtual destructor. The purpose of Clone is the creation of a polymorphic copy of the FunctorImpl 
object. (Refer to Chapter 8 for details on polymorphic cloning.) The virtual destructor allows us to destroy 
objects derived from FunctorImpl by invoking delete on a pointer to a FunctorImpl. Chapter 4 
provides an extensive discussion of why this do-nothing destructor is vital. 

Functor follows a classic handle-body implementation, as shown here. 

template <typename R, class TList> 
class Functor 
{ 
public: 
   Functor(); 
   Functor(const Functor&); 
   Functor& operator=(const Functor&); 
   explicit Functor(std::auto_ptr<Impl> spImpl); 
 ... 
private: 
   // Handy type definition for the body type 
   typedef FunctorImpl<R, TList> Impl; 
   std::auto_ptr<Impl> spImpl_; 
}; 

Functor holds a smart pointer to FunctorImpl<R, TList>, which is its corresponding body type, as 
a private member. The smart pointer chosen is the standard std::auto_ptr. 

The previous code also illustrates the presence of some Functor artifacts that prove its value semantics. 
These artifacts are the default constructor, the copy constructor, and the assignment operator. An explicit 
destructor is not needed, because auto_ptr cleans up resources automatically. 

Functor also defines an "extension constructor" that accepts an auto_ptr to Functor Impl. The 
extension constructor allows you to define classes derived from FunctorImpl and to initialize Functor 
directly with pointers to those classes. 

Why does the extension constructor take as its argument an auto_ptr and not a simple pointer? 
Constructing from auto_ptr is a clear statement to the outside world that Functor takes ownership of 
the FunctorImpl object. Users of Functor will actually have to type auto_ptr whenever they invoke 
this constructor; we assume that if they type auto_ptr, they know what auto_ptr is about.[4] 

[4] Of course, this is not necessarily true. However, it's better than just silently choosing one option (here, 
copying versus taking ownership). Good C++ libraries sport this interesting feature: Whenever something 
ambiguous may appear, they allow the user to disambiguate it by writing some explicit code. At the other end 
of the spectrum are libraries that misuse silent C++ features (especially conversions and pointer ownership). 
They allow the user to type less, but at the cost of making dubious assumptions and decisions on the user's 
behalf. 
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5.5 Implementing the Forwarding Functor::operator() 

Functor needs an operator() that forwards to FunctorImpl::operator(). We can use the same 
approach as with FunctorImpl itself: Provide a bunch of Functor partial specializations, one for each 
parameter count. However, this approach is not appropriate here. Functor defines a considerable amount 
of code, and it would be wasteful to duplicate it all only for the sake of operator(). 

But first, let's define the parameter types. Typelists are of great help here: 

template <typename R, class TList> 
class Functor 
{ 
   typedef TList ParmList; 
   typedef typename TypeAtNonStrict<TList, 0, EmptyType>::Result 
      Parm1; 
   typedef typename TypeAtNonStrict<TList, 1, EmptyType>::Result 
      Parm2; 
   ... as above ... 
}; 

TypeAtNonStrict is a template that accesses the type at a given position in a typelist. If no type is 
found, the result (i.e., the inner class TypeAtNonStrict<...>::Result) evaluates to the third 
template argument of TypeAtNonStrict. We chose EmptyType as that third argument. EmptyType is, 
as its name hints, a class that holds nothing between its brackets. (Refer to Chapter 3 for details on 
TypeAtNonStrict and to Chapter 2 for a description of EmptyType.) In conclusion, ParmN will be 
either the Nth type in the typelist, or EmptyType if the typelist has fewer than N elements. 

To implement operator(), let's rely on an interesting trick. We define all versions of operator()—
for any number of parameters—inside Functor's definition, as follows. 

template <typename R, class TList> 
class Functor 
{ 
   ... as above ... 
public: 
   R operator()() 
   { 
      return (*spImpl_)(); 
   } 
   R operator()(Parm1 p1) 
   { 
      return (*spImpl_)(p1); 
   } 
   R operator()(Parm1 p1, Parm2 p2) 
   { 
      return (*spImpl_)(p1, p2); 
   } 
}; 

Where's the trick? For a given Functor instantiation, only one operator() is correct. All others 
constitute compile-time errors. You would expect Functor not to compile at all. This is because each 
FunctorImpl specialization defines only one operator(), not a bunch of them as Functor does. The 
trick relies on the fact that C++ does not instantiate member functions for templates until they are actually 
used. Until you call the wrong operator(), the compiler doesn't complain. If you try to call an overload 
of operator() that doesn't make sense, the compiler tries to generate the body of operator() and 
discovers the mismatch. Here's an example. 
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// Define a Functor that accepts an int and a double and 
// returns a double. 
Functor<double, TYPELIST_2(int, double)> myFunctor; 
// Invoke it. 
// operator()(double, int) is generated. 
double result = myFunctor(4, 5.6); 
// Wrong invocation. 
double result = myFunctor(); // error! 
// operator()() is invalid because 
// FunctorImpl<double, TYPELIST_2(int, double)> 
// does not define one. 

Because of this neat trick, we don't have to specialize Functor partially for zero, one, two, and so forth 
parameters—specializations that would have led to much code duplication. We just define all versions and 
let the compiler generate only the ones that are used. 

Now that the necessary scaffolding is in place, we're ready to start defining concrete classes derived from 
FunctorImpl. 

 

5.6 Handling Functors 

Let's start with handling functors. Functors are loosely defined as instances of classes that define 
operator(), just as Functor itself does (that is, Functor is a functor). Consequently, Functor's 
constructor that accepts a functor object will be a template parameterized with the type of that functor. 

template <typename R, class TList> 
class Functor 
{ 
   ... as above ... 
public: 
   template <class Fun> 
   Functor(const Fun& fun); 
}; 

To implement this constructor we need a simple class template FunctorHandler derived from 
FunctorImpl<R, TList>. That class stores an object of type Fun and forwards operator() to it. 
We resort to the same trick as in the previous section for implementing operator() properly. 

To avoid defining too many template parameters for FunctorHandler, we make the Functor 
instantiation itself a template parameter. This single parameter collects all the others because it provides 
inner typedefs. 

template <class ParentFunctor,  typename Fun> 
class FunctorHandler 
   : public FunctorImpl 
      < 
         typename ParentFunctor::ResultType, 
         typename ParentFunctor::ParmList 
      > 
{ 
public: 
   typedef typename ParentFunctor::ResultType ResultType; 
 
   FunctorHandler(const Fun& fun) : fun_(fun) {} 
   FunctorHandler* Clone() const 
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   { return new FunctorHandler(*this); } 
 
   ResultType operator()() 
   { 
      return fun_(); 
   } 
   ResultType operator()(typename ParentFunctor::Parm1 p1) 
   { 
      return fun_(p1); 
   } 
   ResultType operator()(typename ParentFunctor::Parm1 p1, 
      typename ParentFunctor::Parm2 p2) 
   { 
      return fun_(p1, p2); 
   } 
private: 
   Fun fun_; 
}; 

FunctorHandler looks much like Functor itself: It forwards requests to a stored member variable. 
The main difference is that the functor is stored by value, not by pointer. This is because, in general, 
functors are meant to be this way—nonpolymorphic types with regular copy semantics. 

Notice the use of the inner types ParentFunctor::ResultType, ParentFunctor::Parm1, and 
ParentFunctor::Parm2 where needed. FunctorHandler implements a simple constructor, the 
cloning function, and multiple operator() versions. The compiler picks up the appropriate one. If you 
use an illegal overload of operator(), a compile-time error occurs, as it should. 

There is nothing special about FunctorHandler's implementation. This doesn't mean it didn't require a 
lot of thought. You will see in the next section just how much genericity this little class template brings us. 

Given FunctorHandler's declaration, it's easy to write the templated constructor of Functor declared 
earlier in this section. 

template <typename R, class TList> 
template <typename Fun> 
Functor<R, TList>::Functor(const Fun& fun) 
   : spImpl_(new FunctorHandler<Functor, Fun>(fun)); 
{ 
} 

There's no copyediting error here. The two template parameter sets are necessary: The template <class 
R, class TList> stands for the class template Functor, and template <typename Fun> stands 
for the parameter that the constructor itself takes. In standardese, this type of code is known as an "out-of-
class member template definition." 

The body of the constructor initializes the spImpl_ member to point to a new object of type 
FunctorHandler, instantiated and initialized with the proper arguments. 

There's something worth mentioning here, something that's germane to understanding the Functor 
implementation we're building. Note that upon entering this constructor of Functor, we have full type 
knowledge via the template parameter Fun. Upon exiting the constructor, the type information is lost as far 
as Functor is concerned, because all that Functor knows is spImpl_, which points to the base class 
FunctorImpl. This apparent loss of type information is interesting: The constructor knows the type and 
acts like a factory that transforms it in polymorphic behavior. The type information is preserved in the 
dynamic type of the pointer to FunctorImpl. 
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Although we haven't written much code (just a bunch of one-line functions), we're ready for a test drive. 
Here it is: 

// Assume Functor.h includes the Functor implementation 
#include "Functor.h" 
#include <iostream> 
// The using directive is acceptable for a small C++ program 
using namespace std; 
 
// Define a test functor 
struct TestFunctor 
{ 
   void operator()(int i, double d) 
   { 
      cout << "TestFunctor::operator()(" << i 
         << ", " << d << ") called.\n"; 
   } 
}; 
 
int main() 
{ 
   TestFunctor f; 
   Functor<void, TYPELIST_2(int, double)> cmd(f); 
   cmd(4, 4.5); 
} 

This little program will reliably print 

TestFunctor::operator()(4, 4.5) called. 

This means we've achieved our goal. We can now proceed to the next step. 

 

5.7 Build One, Get One Free 

Reading the previous section, you may have asked yourself, Why didn't we start with implementing 
support for pointers to regular functions, which seems to be the simplest case? Why did we jump directly 
to functors, templates, and so on? The answer is simple: By now, support for regular functions is already 
implemented. Let's modify the test program a bit: 

#include "Functor.h" 
#include <iostream> 
using namespace std; 
 
// Define a test function 
void TestFunction(int i, double d) 
{ 
   cout << "TestFunction(" << i 
      << ", " << d << ") called." << endl; 
} 
 
int main() 
{ 
   Functor<void, TYPELIST_2(int, double)> cmd( 
      TestFunction); 
   // will print: "TestFunction(4, 4.5) called." 
   cmd(4, 4.5); 
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} 

The explanation for this nice surprise comes from the workings of template parameter deduction. When the 
compiler sees a Functor constructed from TestFunction, it has no choice but to try the templated 
constructor. The compiler will then instantiate the template constructor with the template argument void 
(&)(int, double), which is the type of TestFunction. The constructor instantiates 
FunctorHandler<Functor<...>, void (&)(int, double)>. Consequently, the type of fun_ in 
FunctorHandler is void (&)(int, double) as well. When you invoke 
FunctorHandler<...>::operator(), it forwards to fun_(), which is legal syntax for invoking a 
function through a pointer to function. Thus, FunctorHandler supports pointers to functions out of the 
box because of two things: the syntactic similarity between pointers to functions and functors and the type 
inference mechanism that C++ uses. 

There is a problem, though. (It couldn't be perfect, could it?) If you overload Test-Function—or any 
function that you pass to Functor<...>—you have to help a bit with some disambiguation. The reason 
is that if TestFunction is overloaded, the type of the symbol TestFunction is no longer defined. To 
illustrate this, let's add an overloaded version of TestFunction just before main: 

// Declare an overloaded test function 
// (no definition necessary) 
void TestFunction(int); 

Suddenly the compiler complains it cannot figure out which overload of TestFunction it should use. 
Because there are two functions called TestFunction, this name alone no longer suffices for 
identification. 

In essence, in the presence of overloading, there are two ways to identify a specific function: by using 
initialization (or an assignment) and by using a cast. Let's illustrate both methods: 

// as above, TestFunction is overloaded 
int main() 
{ 
   // Typedef used for convenience 
   typedef void (*TpFun)(int, double); 
   // Method 1: use an initialization 
   TpFun pF = TestFunction; 
   Functor<void, TYPELIST_2(int, double)> 
   cmd1(4, 4.5); 
   // Method 2: use a cast 
   Functor<void, int, double> cmd2( 
      static_cast<TpFun>(TestFunction)); // Ok 
   cmd2(4, 4.5); 
} 

Both the initialization and the static cast let the compiler know that you're actually interested in the 
TestFunction that takes an int and a double and returns void. 

 

5.8 Argument and Return Type Conversions 

In an ideal world, we would like conversions to work for Functor just as they work for regular function 
calls. That is, we'd like to see this running: 

#include <string> 
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#include <iostream> 
#include "Functor.h" 
using namespace std; 
 
// Ignore arguments-not of interest 
// in this example 
const char* TestFunction(double, double) 
{ 
   static const char buffer[] = "Hello, world!"; 
   // It's safe to return a pointer to a static buffer 
   return buffer; 
} 
 
int main() 
{ 
   Functor<string, TYPELIST_2(int, int)> cmd(TestFunction); 
   // Should print "world!" 
   cout << cmd(10, 10).substr(7); 
} 

Although the actual TestFunction has a slightly different signature (it takes two doubles and returns a 
const char *), it still should be bindable to a Functor<string, TYPELIST_2(int, int)>. We 
expect this to happen because int can be implicitly converted to double, and const char * is 
implicitly convertible to string. If Functor does not accept the same conversions that C++ accepts, 
Functor would be unnecessarily rigid. 

To satisfy this new requirement, we don't have to write any new code. The previous example compiles and 
runs as expected with our current codebase. Why? The answer is found, again, in the way we defined 
FunctorHandler. 

Let's see what happens with the code in the example after all the dust of template instantiation has settled. 
The function 

string Functor<...>::operator()(int i, int j) 

forwards to the virtual function 

string FunctorHandler<...>::operator()(int i, int j) 

whose implementation ultimately calls 

return fun_(i, j); 

where fun_ has type const char* (*)(double, double) and evaluates to TestFunction. 

When the compiler encounters the call to fun_, it compiles it normally, just as if you had written it by 
hand. "Normally" here means that conversion rules apply as usual. The compiler then generates code to 
convert i and j to double, and the result to std::string. 

The generality and flexibility of FunctorHandler illustrate the power of code generation. The syntactic 
replacement of template arguments for their respective parameters is typical of generic programming. 
Template processing predates compiling, allowing you to operate at source-code level. In object-oriented 
programming, in contrast, the power comes from late (after compilation) binding of names to values. Thus, 
object-oriented programming fosters reuse in the form of binary components, whereas generic 
programming fosters reuse at the source-code level. Because source code is inherently more information 
rich and higher level than binary code, generic programming allows richer constructs. This richness, 
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however, comes at the expense of lowered runtime dynamism. You cannot do with STL what you can do 
with CORBA, and vice versa. The two techniques complement each other. 

We are now able to handle functors of all kinds and regular functions using the same small codebase. As a 
bonus, we have implicit conversion for arguments and for the return value. 

 

5.9 Handling Pointers to Member Functions 

Although not very common in day-to-day programming activities, pointers to member functions can 
sometimes be of help. They act much like pointers to functions, but when you want to invoke them, you 
must pass an object (in addition to the arguments). The following example depicts the syntax and the 
semantics of pointers to member functions. 

#include <iostream> 
using namespace std; 
 
class Parrot 
{ 
public: 
   void Eat() 
   { 
      cout << "Tsk, knick, tsk...\n"; 
   } 
   void Speak() 
   { 
      cout << "Oh Captain, my Captain!\n"; 
   } 
}; 
 
int main() 
{ 
   // Define a type: pointer to a member function of 
   // Parrot, taking no arguments and 
   // returning void. 
   typedef void (Parrot::* TpMemFun)(); 
 
   // Create an object of that type 
   // and initialize it with the address of 
   // Parrot::Eat. 
   TpMemFun pActivity = &Parrot::eat; 
   // Create a Parrot... 
   Parrot geronimo; 
   // ...and a pointer to it 
   Parrot* pGeronimo = &geronimo; 
 
   // Invoke the member function stored in Activity 
   // via an object. Notice the use of operator.* 
   (geronimo.*pActivity)(); 
 
   // Same, via pointer. Now we use operator->* 
   (pGeronimo->*pActivity)(); 
   // Change the activity 
   pActivity = &Parrot::Speak; 
 
   // Wake up, Geronimo! 
   (geronimo.*pActivity)(); 
} 
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A closer look at pointers to member functions and their two related operators—.* and ->*—reveals 
strange features. There is no C++ type for the result of geronimo.*p-Activity and pGeronimo-
>*pActivity. Both are binary operations all right, and they return something to which you can apply the 
function-call operator immediately, but that "something" does not have a type.[5] You cannot store the 
result of operator.* or operator->* in any way, although there is an entity that holds the fusion 
between your object and the pointer to a member function. This fusion seems to be very unstable. It 
appears from chaos just as you invoke operator.* or operator->*, exists just long enough to apply 
operator(), and then goes back to chaos. There's nothing else you can do with it. 

[5] The standard says, "If the result of .* or ->* is a function, then that result can be used only as the 
operand for the function call operator()." 

In C++, where every object has a type, the result of operator->* or operator.* is a unique exception. 
It's even trickier than the ambiguity of pointers to functions introduced by overloading (discussed in the 
previous section). There we had too many types to choose from, but we could disambiguate the choice; 
here, we don't have any type to start with. For this reason, pointers to member functions and the two 
related operators are a curiously half-baked concept in C++. And by the way, you cannot have references 
to member functions (although you can have references to regular functions). 

Some C++ compiler vendors define a new type and allow you to store the result of operator.* by using 
a syntax like this: 

// __closure is a language extension 
// defined by some vendors 
void (__closure:: * geronimosWork)() = 
   geronimo.*pActivity; 
// Invoke whatever Geronimo is doomed to do 
geronimosWork(); 

There's nothing about Parrot in the type of geronimosWork. This means that later, you can bind 
geronimosWork to something that's not geronimo, and even to something that's not a Parrot. All you 
have to commit to is the return type and the arguments of the pointer to a member function. In fact, this 
language extension is a kind of Functor class, but restricted to objects and member functions only (it 
does not allow regular functions or functors). 

Let's implement support for bound pointers to member functions in Functor. The experience with 
functors and functions suggests that it's good to keep things generic and not to jump too early into 
specificity. In the implementation of MemFunHandler, the object type (Parrot in the previous example) 
is a template parameter. Furthermore, let's make the pointer to a member function a template parameter as 
well. By doing this, we get automatic conversions for free, as happened with the implementation of 
FunctorHandler. 

Here's the implementation of MemFunHandler. It incarnates the ideas just discussed, plus the ones 
already exploited in FunctorHandler. 

template <class ParentFunctor, typename PointerToObj, 
   typename PointerToMemFn> 
class MemFunHandler 
   : public FunctorImpl 
      < 
         typename ParentFunctor::ResultType, 
         typename ParentFunctor::ParmList 
      > 
{ 
public: 
   typedef typename ParentFunctor::ResultType ResultType; 
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   MemFunHandler(const PointerToObj& pObj, PointerToMemFn pMemFn) 
   : pObj_(pObj), pMemFn_(pMemFn) {} 
 
   MemFunHandler* Clone() const 
   { return new MemFunHandler(*this); } 
   ResultType operator()() 
   { 
      return ((*pObj_).*pMemFn_)(); 
   } 
 
   ResultType operator()(typename ParentFunctor::Parm1 p1) 
   { 
      return ((*pObj_).*pMemFn_)(p1); 
   } 
 
   ResultType operator()(typename ParentFunctor::Parm1 p1, 
    typename ParentFunctor::Parm2 p2) 
   { 
      return ((*pObj_).*pMemFn_)(p1, p2); 
   } 
 
private: 
   PointerToObj pObj_; 
   PointerToMemFn pMemFn_; 
}; 

Why is MemFunHandler parameterized with the type of the pointer (PointerToObj) and not with the 
type of the object itself? A more straightforward implementation would have looked like this: 

template <class ParentFunctor, typename Obj, 
   typename PointerToMemFn> 
class MemFunHandler 
   : public FunctorImpl 
      < 
         typename ParentFunctor::ResultType, 
         typename ParentFunctor::ParmList 
      > 
{ 
private: 
   Obj* pObj_; 
   PointerToMemFn pMemFn_; 
public: 
   MemFunHandler(Obj* pObj, PointerToMemFn pMemFn) 
   : pObj_(pObj), pMemFn_(pMemFn) {} 
   ... 
}; 

This code would have been easier to understand. However, the first implementation is more generic. The 
second implementation hardwires the pointer-to-object type in its implementation. It stores a bare, bald, 
unadorned pointer to Obj. Can this be a problem? 

Yes it is, if you want to use smart pointers with MemFunHandler. Aha! The first implementation supports 
smart pointers; the second does not. The first implementation can store any type that acts as a pointer to an 
object; the second is hardwired to store and use only simple pointers. Moreover, the second version does 
not work for pointers to const. Such is the negative effect of hardwiring types. 

Let's put in place a test run for the newly implemented feature. Parrot gets reused. 

#include "Functor.h" 
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#include <iostream> 
using namespace std; 
 
class Parrot 
{ 
public: 
   void Eat() 
   { 
      cout << "Tsk, knick, tsk...\n"; 
   } 
   void Speak() 
   { 
      cout << "Oh Captain, my Captain!\n"; 
   } 
}; 
 
int main() 
{ 
   Parrot geronimo; 
   // Define two Functors 
   Functor<> 
      cmd1(&geronimo, &Parrot::Eat), 
      cmd2(&geronimo, &Parrot::Speak); 
   // Invoke each of them 
   cmd1(); 
   cmd2(); 
} 

Because MemFunHandler took the precaution of being as generic as possible, automatic conversions 
come for free—just as they did for FunctorHandler. 

 

5.10 Binding 

We could stop here. By now, we have everything in place—Functor supports all the C++ callable 
entities defined in the beginning of the discussion, and in a nice manner. However, as Pygmalion might 
have remarked, sometimes the actual outcome of work is impossible to predict when you start doing it. 

As soon as Functor is ready, new ideas come to mind. For instance, we'd like to be able to convert from 
a type of Functor to another. One such conversion is binding: Given a Functor that takes two integers, 
you want to bind one integer to some fixed value and let only the other one vary. Binding yields a 
Functor that takes only one integer, because the other one is fixed and therefore known, as illustrated in 
the following example. 

void f() 
{ 
   // Define a Functor of two arguments 
   Functor<void, TYPELIST_2(int, int)> cmd1(something); 
   // Bind the first argument to 10 
   Functor<void, int> cmd2(BindFirst(cmd1, 10)); 
   // Same as cmd1(10, 20) 
   cmd2(20); 
   // Further bind the first (and only) argument 
   // of cmd2 to 30 
   Functor<void> cmd3(BindFirst(cmd2, 30)); 
   // Same as cmd1(10, 30) 
   cmd3(); 
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} 

Binding is a powerful feature. You can store not only callable entities but also part (or all) of their 
arguments. This greatly increases the expressive power of Functor because it allows packaging of 
functions and arguments without requiring glue code. 

For instance, think of implementing redo support in a text editor. When the user types an "a," you execute 
the member function Document::InsertChar('a'). Then you append a canned Functor that 
contains the pointer to Document, the member function InsertChar, and the actual character. When the 
user selects Redo, all you have to do is fire that Functor and you're finished. Section 5.14 provides 
further discussion of undo and redo. 

Binding is powerful from another, more profound, standpoint. Think of a Functor as a computation, and 
of its arguments as the environment necessary to perform that computation. So far, Functor delays the 
computation by storing pointers to functions and pointers to methods. However, Functor stores only the 
computation and nothing about the environment of that computation. Binding allows Functor to store 
part of the environment together with the computation and to reduce progressively the environment 
necessary at invocation time. 

Before jumping into the implementation, let's recap the requirement. For an instantiation Functor<R, 
TList>, we want to bind the first argument (TList::Head) to a fixed value. Therefore, the return type 
is Functor<R, TList::Tail>. 

This being said, implementing the BinderFirst class template is a breeze. We have to pay special 
attention only to the fact that there are two instantiations of Functor involved: the incoming Functor 
and the outgoing Functor. The incoming Functor type is passed as the ParentFunctor parameter. 
The outgoing Functor type is computed. 

template <class Incoming> 
class BinderFirst 
   : public FunctorImpl<typename Incoming::ResultType, 
      typename Incoming::Arguments::Tail> 
{ 
   typedef Functor<typename Incoming::ResultType, 
      Incoming::Arguments::Tail> Outgoing; 
   typedef typename Incoming::Parm1 Bound; 
   typedef typename Incoming::ResultType ResultType; 
 
public: 
   BinderFirst(const Incoming& fun, Bound bound) 
   : fun_(fun), bound_(bound) 
   { 
   } 
 BinderFirst* Clone() const 
 { return new BinderFirst(*this); } 
   ResultType operator()() 
   { 
      return fun_(bound_); 
   } 
   ResultType operator()(typename Outgoing::Parm1 p1) 
   { 
      return fun_(bound_, p1); 
   } 
   ResultType operator()(typename Outgoing::Parm1 p1, 
      typename Outgoing::Parm2 p2) 
   { 
      return fun_(bound_, p1, p2); 
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   } 
private: 
   Incoming fun_; 
   Bound bound_; 
}; 

The class template BinderFirst works in conjunction with the template function BindFirst. The 
merit of BindFirst is that it automatically deduces its template parameters from the types of the actual 
arguments that you pass it. 

// See Functor.h for the definition of BinderFirstTraits 
template <class Fctor> 
typename Private::BinderFirstTraits<Fctor>::BoundFunctorType 
BindFirst( 
   const Fctor& fun, 
   typename Fctor::Parm1 bound) 
{ 
   typedef typename 
      private::BinderFirstTraits<Fctor>::BoundFunctorType 
         Outgoing; 
   return Outgoing(std::auto_ptr<typename Outgoing::Impl>( 
      new BinderFirst<Fctr>(fun, bound))); 
} 

Binding dovetails nicely with automatic conversion, conferring incredible flexibility on Functor. The 
following example combines binding with automatic conversions. 

const char* Fun(int i, int j) 
{ 
   cout << Fun(" << i << ", " << j << ") called\n"; 
   return "0"; 
} 
 
int main() 
{ 
   Functor<const char*, TYPELIST_2(char, int)> f1(Fun); 
   Functor<std::string, TYPELIST_1(double)> f2( 
      BindFirst(f1, 10)); 
   // Prints: Fun(10, 15) called 
   f2(15); 
} 
 
 

5.11 Chaining Requests 

The GoF book (Gamma et al. 1995) gives an example of a MacroCommand class, a command that holds a 
linear collection (such as a list or a vector) of Commands. When a MacroCommand is executed, it executes 
in sequence each of the commands that it holds. 

This feature can be very useful. For instance, let's refer to the undo/redo example again. One "do" 
operation might be accompanied by multiple "undo" operations. For example, inserting a character may 
automatically scroll the text window (some editors do this to ensure better text visibility). On undoing that 
operation, you'd like the window to "unscroll" back to where it was. (Most editors don't unscroll correctly. 
What a nuisance.) To unscroll, you need to store multiple Commands in a single Functor object and 
execute them as a single unit. The Document::InsertChar member function pushes a 
MacroCommand onto the undo stack. The MacroCommand would be composed of 
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Document::Delete-Char and Window::Scroll. The latter member function would be bound to an 
argument that holds the old position. (Again, binding comes in very handy.) 

Loki defines a class FunctorChain and the helper function Chain. Chain's declaration looks like this: 

template <class Fun1, class Fun2> 
Fun2 Chain( 
   const Fun1& fun1, 
   const Fun2& fun2); 

FunctorChain's class implementation is trivial—it stores the two functors, and 
FunctorChain::operator() calls them in sequence. You can chain multiple functors by issuing 
repeated calls to Chain. 

Let's have Chain conclude the support for macro commands. One thing about "nice to have" features is 
that the list can go on forever. However, there's plenty of room to grow. Neither BindFirst nor Chain 
incurred any change to Functor, which is proof that you can build similar facilities on your own. 

 

5.12 Real-World Issues I: The Cost of Forwarding Functions 

The Functor class template is conceptually finished. Now we concentrate on optimizing it so that it 
works as efficiently as possible.[6] 

[6] Usually, premature optimization is not recommended. One reason is that programmers are not good at 
estimating which parts of the program should be optimized and (most important) which should not. However, 
library writers are in a different situation. They don't know whether or not their library will be used in a critical 
part of some application, so they should take their best shot at optimizing. 

Let's focus on one of Functor's operator() overloads, which forwards the call to the smart pointer. 

// inside Functor<R, TList> 
R operator()(Parm1 p1, Parm2 p2) 
{ 
   return (*spImpl_)(p1, p2); 
} 

Each time you call operator(), an unnecessary copy is performed for each argument. If Parm1 and 
Parm2 are expensive to copy, you might have a performance problem. 

Oddly enough, even if Functor's operator() is inline, the compiler is not allowed to optimize the 
extra copies away. Item 46 in Sutter (2000) describes this late language change, made just before 
standardization. What's called eliding of copy construction was banned for forwarding functions. The only 
situation in which a compiler can elide a copy constructor is for the returned value, which cannot be 
optimized by hand. 

Are references an easy fix for our problem? Let's try this: 

// inside Functor<R, TList> 
R operator()(Parm1& p1, Parm2& p2) 
{ 
   return (*spImpl_)(p1, p2); 
} 
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All looks fine, and it might actually work, until you try something like this: 

void testFunction(std::string&, int); 
Functor<void, TYPELIST_2(std::string&, int)> cmd(testFunction); 
... 
string s; 
cmd(s, 5); //error! 

The compiler will choke on the last line, uttering something like "References to references are not 
allowed." (Actually, the message may be slightly more cryptic.) The fact is, such an instantiation would 
render Parm1 as a reference to std::string, and consequently p1 would be a reference to a reference 
to std::string. References to references are illegal.[7] 

[7] This problem appears with the standard binders, too. Bjarne Stroustrup has submitted a defect report to 
the Standards Committee. His proposal for a fix is to allow references to references and simply to treat them 
as references. At the time of this writing, the report was available at 
http://anubis.dkuug.dk/jtc1/sc22/wg21/docs/cwg_active.html#106. 

Fortunately, Chapter 2 provides a tool that addresses exactly this kind of problem. Chapter 2 features a 
class template TypeTraits<T> that defines a bunch of types related to the type T. Examples of such 
related types are the non-const type (if T is a const type), the pointed-to type (if T is a pointer), and many 
others. The type that can be safely and efficiently passed as a parameter to a function is ParameterType. 
The following table illustrates the link between the type you pass to TypeTraits and the inner type 
definition ParameterType. Consider U to be a plain type, such as a class or a primitive type. 

T TypeTraits<T>::ParameterType 
U U if U is primitive; otherwise, const U & 
const U U if U is primitive; otherwise, const U & 
U & U & 
const U & const U & 

If you substitute the types in the right column for the arguments in the forwarding function, it will work 
correctly for any case—and without any copy overhead: 

// Inside Functor<R, TList> 
R operator()( 
   typename TypeTraits<Parm1>::ParameterType p1, 
   typename TypeTraits<Parm2>::ParameterType p2) 
{ 
   return (*spImpl_)(p1, p2); 
} 

What's even nicer is that references work great in conjunction with inline functions. The optimizer 
generates optimal code easier because all it has to do is short-circuit the references. 

 

5.13 Real-World Issues II: Heap Allocation 

Let's concentrate now on the cost of constructing and copying Functors. We have implemented correct 
copy semantics, but at a cost: heap allocation. Every Functor holds a (smart) pointer to an object 
allocated with new. When a Functor is copied, a deep copy is performed by using 
FunctorImpl::Clone. 

http://anubis.dkuug.dk/jtc1/sc22/wg21/docs/cwg_active.html#106
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This is especially bothersome when you think of the size of the objects we're using. Most of the time, 
Functor will be used with pointers to functions and with pairs of pointers to objects and pointers to 
member functions. On typical 32-bit systems, these objects occupy 4 and 20 bytes, respectively (4 for the 
pointer to an object and 16 for the pointer to a member function[8]). When binding is used, the size of the 
concrete functor object increases roughly with the size of the bound argument (it may actually increase 
slightly more because of padding). 

[8] You might expect a pointer to a member function to occupy 4 bytes, just as pointers to functions do. 
However, pointers to methods are actually little tagged unions. They deal with multiple virtual inheritance and 
virtual/nonvirtual functions. 

Chapter 4 introduces an efficient small-object allocator. FunctorImpl and its derivatives are perfect 
candidates for taking advantage of that custom allocator. Recall from Chapter 4 that one way to use the 
small-object allocator is to derive your class from the Small-Object class template. 

Using SmallObject is very simple. We need, however, to add a template parameter to Functor and 
FunctorImpl that reflects the threading model used by the memory allocator. This is not troublesome, 
because most of the time you'll use the default argument. In the following code, changes are shown in bold: 

template 
< 
   class R, 
   class TL, 
   template <class T> 
      class ThreadingModel = DEFAULT_THREADING, 
> 
class FunctorImpl : public SmallObject<ThreadingModel> 
{ 
public: 
   ... as above ... 
}; 

That's all it takes for FunctorImpl to take full advantage of the custom allocator. 

Similarly, Functor itself adds a third template parameter: 

template 
< 
   class R, 
   class TL, 
   template <class T> 
      class ThreadingModel = DEFAULT_THREADING, 
> 
class Functor 
{ 
   ... 
private: 
   // Pass ThreadingModel to FunctorImpl 
   std::auto_ptr<FunctorImpl<R, TL, ThreadingModel> pImpl_; 
}; 

Now if you want to use Functor with the default threading model, you don't have to specify its third 
template argument. Only if your application needs Functors that support two or more different threading 
models will you need to specify ThreadingModel explicitly. 
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5.14 Implementing Undo and Redo with Functor 

The GoF book (Gamma et al. 1995) recommends that undo be implemented as an additional Unexecute 
member function of the Command class. The problem is, you cannot ex press Unexecute in a generic 
way because the relation between doing something and undoing something is unpredictable. The 
Unexecute solution is appealing when you have a concrete Command class for each operation in your 
application, but the Functor-based approach favors using a single class that can be bound to different 
objects and member function calls. 

Al Stevens's article in Dr. Dobb's Journal (Stevens 1998) is of great help in studying generic 
implementations of undo and redo. He has built a generic undo/redo library that you certainly should check 
out before rolling your own, with Functor or not. 

It's all about data structures. The basic idea in undo and redo is that you have to keep an undo stack and a 
redo stack. As the user "does" something, such as typing a character, you push a different Functor on the 
undo stack. This means the Document::InsertChar member function is responsible for pushing the 
action that appropriately undoes the insertion (such as Document::DeleteChar). This puts the burden 
on the member function that does the stuff and frees the Functor from knowing how to undo itself. 

Optionally, you may want to push on the redo stack a Functor consisting of the Document and a pointer 
to the Document::InsertChar member function, all bound to the actual character type. Some editors 
allow "retyping": After you type something and select Redo, that block of typing is repeated. The binding 
we built for Functor greatly helps with storing a call to Document::InsertChar for a given character, 
all encapsulated in a single Functor. Also, not only should the last character typed be repeated—that 
wouldn't be much of a feature—but the whole sequence of typing after the last nontyping action should be 
repeated. Chaining Functors enters into action here: As long as the user types, you append to the same 
Functor. This way you can treat later multiple keystrokes as a single action. 

Document::InsertChar essentially pushes a Functor onto the undo stack. When the user selects 
Undo, that Functor will be executed and pushed onto the redo stack. 

As you see, binding arguments and composition allows us to treat Functors in a very uniform way: No 
matter what kind of call there is, it's ultimately packed in a Functor. This considerably eases the task of 
implementing undo and redo. 

 

5.15 Summary 

Using good libraries in C++ is (or at least ought to be) a lot easier than writing them. On the other hand, 
writing libraries is a lot of fun. Looking back at all the implementation details, there are a few lessons to 
keep in mind when writing generic code: 

• When it comes to types, templatize and postpone. Be generic. FunctorHandler and 
MemFunHandler gain a lot from postponing type knowledge by using templates. Pointers to 
functions came for free. In comparison with what it offers, the codebase is remarkably small. All 
this comes from using templates and letting the compiler infer types as much as possible. 

• Encourage first-class semantics. It would have been an incredible headache to operate only with 
FunctorImpl pointers. Imagine yourself implementing binding and chaining. 

Clever techniques should be applied for the benefit of simplicity. After all this discussion on templates, 
inheritance, binding, and memory, we distill a simple, easy-to-use, well-articulated library. 
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In a nutshell, Functor is a delayed call to a function, a functor, or a member function. It stores the callee 
and exposes operator() for invoking it. Let's highlight some quick facts about it. 

 

5.16 Functor Quick Facts 

• Functor is a template that allows the expression of calls with up to 15 arguments. The first 
parameter is the return type, and the second is a typelist containing the parameter types. The third 
template parameter establishes the threading model of the allocator used with Functor. Refer to 
Chapter 3 for details on typelists, the appendix for details on threading models, and Chapter 4 for 
details on small-object allocation. 

• You initialize a Functor with a function, a functor, another Functor, or a pointer to an object 
and a pointer to a method, as exemplified in the following code: 

void Function(int); 
 
struct SomeFunctor 
{ 
   void operator()(int); 
}; 
 
struct SomeClass 
{ 
   void MemberFunction(int); 
}; 
 
void example() 
{ 
   // Initialize with a function 
   Functor<void, TYPELIST_1(int)> cmd1(Function); 
   // Initialize with a functor 
   SomeFunctor fn; 
   Functor<void, TYPELIST_1(int)> cmd2(fn); 
   // Initialize with a pointer to object 
   // and a pointer to member function 
   SomeClass myObject; 
   Functor<void, TYPELIST_1(int)> cmd3(&myObject, 
      &SomeClass::MemberFunction); 
   // Initialize a Functor with another 
   // (copying) 
   Functor<void, TYPELIST_1(int)> cmd4(cmd3); 
} 

• You also can initialize Functor with a std::auto_ptr< FunctorImpl<R,TList> >. 
This enables user-defined extensions. 

• Functor supports automatic conversions for arguments and return values. For instance, in the 
previous example, Function, SomeFunctor::operator(), and SomeClass:: 
MemberFunction might take a double, instead of an int, as an argument. 

• Manual disambiguation is needed in the presence of overloading. 
• Functor fully supports first-class semantics: copying, assigning to, and passing by value. 

Functor is not polymorphic and is not intended to be derived from. If you want to extend 
Functor, derive from FunctorImpl. 

• Functor supports argument binding. A call to BindFirst binds the first argument to a fixed 
value. The result is a Functor parameterized with the rest of the arguments. Example: 

void f() 
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{ 
   // Define a Functor of three arguments 
   Functor<void, TYPELIST_3(int, int, double)> cmd1( 
      someEntity); 
   // Bind the first argument to 10 
   Functor<void, TYPELIST_2(int, double)> cmd2( 
      BindFirst(cmd1, 10)); 
   // Same as cmd1(10, 20, 5.6) 
   cmd2(20, 5.6); 
} 

• Multiple Functors can be chained in a single Functor object by using the Chain function. 

void f() 
{ 
   Functor<> cmd1(something); 
   Functor<> cmd2(somethingElse); 
   // Chain cmd1 and cmd2 
   // as the container 
   Functor<> cmd3(Chain(cmd1, cmd2)); 
   // Equivalent to cmd1(); cmd2(); 
   cmd3(); 
} 

• The cost of using Functor is one indirection (call via pointer) for simple Functor objects. For 
each binding, there is an extra virtual call cost. For chaining, there is an extra virtual call cost. 
Parameters are not copied, except when conversion is necessary. 

• FunctorImpl uses the small-object allocator defined in Chapter 4. 
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Chapter 6. Implementing Singletons 
The Singleton design pattern (Gamma et al. 1995) is unique in that it's a strange combination: its 
description is simple, yet its implementation issues are complicated. This is proven by the abundance of 
Singleton discussions and implementations in books and magazine articles (e.g., Vlissides 1996, 1998). 
Singleton's description in the GoF book is as simple as it gets: "Ensure a class only has one instance, and 
provide a global point of access to it." 

A singleton is an improved global variable. The improvement that Singleton brings is that you cannot 
create a secondary object of the singleton's type. Therefore, you should use Singleton when you model 
types that conceptually have a unique instance in the application, such as Keyboard, Display, 
PrintManager, and SystemClock. Being able to instantiate these types more than once is unnatural at 
best, and often dangerous. 

Providing a global point of access has a subtle implication—from a client's standpoint, the Singleton object 
owns itself. There is no special client step for creating the singleton. Consequently, the Singleton object is 
responsible for creating and destroying itself. Managing a singleton's lifetime causes the most 
implementation headaches. 

This chapter discusses the most important issues associated with designing and implementing various 
Singleton variants in C++: 

• The features that set apart a singleton from a simple global object 
• The basic C++ idioms supporting singletons 
• Better enforcement of a singleton's uniqueness 
• Destroying the singleton and detecting postdestruction access 
• Implementing solutions for advanced lifetime management of the Singleton object 
• Multithreading issues 

We will develop techniques that address each issue. In the end, we will use these techniques for 
implementing a generic SingletonHolder class template. 

There is no "best" implementation of the Singleton design pattern. Various Singleton implementations, 
including nonportable ones, are most appropriate depending on the problem at hand. This chapter's 
approach is to develop a family of implementations on a generic skeleton, following a policy-based design 
(see Chapter 1). SingletonHolder also provides hooks for extensions and customizations. 

By the end of this chapter, we will have developed a SingletonHolder class template that can generate 
many different types of singletons. SingletonHolder gives you fine-grained control over how the 
Singleton object is allocated, when it is destroyed, whether it is thread safe, and what happens if a client 
attempts to use it after it's been destroyed. The SingletonHolder class template provides Singleton-
specific services and functionality over any user-defined type. 

 

6.1 Static Data + Static Functions != Singleton 

At first glance, it seems that the need for Singleton can be easily obviated by using static member functions 
and static member variables: 

class Font { ... }; 
class PrinterPort { ... }; 
class PrintJob { ... }; 
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class MyOnlyPrinter 
{ 
public: 
   static void AddPrintJob(PrintJob& newJob) 
   { 
      if (printQueue_.empty() && printingPort_.available()) 
      { 
          printingPort_.send(newJob.Data()); 
      } 
      else 
      { 
          printQueue_.push(newJob); 
      } 
   } 
private: 
   // All data is static 
   static std::queue<PrintJob> printQueue_; 
   static PrinterPort printingPort_; 
   static Font defaultFont_; 
}; 
 
PrintJob somePrintJob("MyDocument.txt"); 
MyOnlyPrinter::AddPrintJob(somePrintJob); 

However, this solution[1] has a number of disadvantages in some situations. The main problem is that static 
functions cannot be virtual, which makes it difficult to change behavior without opening 
MyOnlyPrinter's code. 

[1] This code actually illustrates another pattern, the Monostate pattern (Ball and Crawford 1998). 

A subtler problem of this approach is that it makes initialization and cleanup difficult. There is no central 
point of initialization and cleanup for MyOnlyPrinter's data. Initialization and cleanup can be nontrivial 
tasks—for instance, defaultFont_ can depend on the speed of printingPort_. 

Singleton implementations therefore concentrate on creating and managing a unique object while not 
allowing the creation of another one. 

 

6.2 The Basic C++ Idioms Supporting Singletons 

Most often, singletons are implemented in C++ by using some variation of the following idiom: 

// Header file Singleton.h 
class Singleton 
{ 
public: 
   static Singleton* Instance() // Unique point of access 
   { 
      if (!pInstance_) 
         pInstance_ = new Singleton; 
      return pInstance_; 
   } 
   ... operations ... 
private: 
   Singleton(); // Prevent clients from creating a new Singleton 
   Singleton(const Singleton&); // Prevent clients from creating 
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                       // a copy of the Singleton 
   static Singleton* pInstance_; // The one and only instance 
}; 
 
// Implementation file Singleton.cpp 
Singleton* Singleton::pInstance_ = 0; 

Because all the constructors are private, user code cannot create Singletons. However, Singleton's 
own member functions—and Instance in particular—are allowed to create objects. Therefore, the 
uniqueness of the Singleton object is enforced at compile time. This is the essence of implementing the 
Singleton design pattern in C++. 

If it's never used (no call to Instance occurs), the Singleton object is not created. The cost of this 
optimization is the (usually negligible) test incurred at the beginning of Instance. The advantage of the 
build-on-first-request solution becomes significant if Singleton is expensive to create and seldom used. 

An ill-fated temptation is to simplify things by replacing the pointer pInstance_ in the previous example 
with a full Singleton object. 

// Header file Singleton.h 
class Singleton 
{ 
public: 
   static Singleton* Instance() // Unique point of access 
   { 
      return &instance_; 
   } 
   int DoSomething(); 
private: 
   static Singleton instance_; 
 
}; 
// Implementation file Singleton.cpp 
Singleton Singleton::instance_; 

This is not a good solution. Although instance_ is a static member of Singleton (just as 
pInstance_ was in the previous example), there is an important difference between the two versions. 
instance_ is initialized dynamically (by calling Singleton's constructor at runtime), whereas 
pInstance_ benefits from static initialization (it is a type without a constructor initialized with a 
compile-time constant). 

The compiler performs static initialization before the very first assembly statement of the program gets 
executed. (Usually, static initializers are right in the file containing the executable program, so loading is 
initializing.) On the other hand, C++ does not define the order of initialization for dynamically initialized 
objects found in different translation units, which is a major source of trouble. (A translation unit is, 
roughly speaking, a com-pilable C++ source file.) Consider this code: 

// SomeFile.cpp 
#include "Singleton.h" 
int global = Singleton::Instance()->DoSomething(); 

Depending on the order of initialization that the compiler chooses for instance_ and global, the call to 
Singleton::Instance may return an object that has not been constructed yet. This means that you 
cannot count on instance_ being initialized if other external objects are using it. 
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6.3 Enforcing the Singleton's Uniqueness 

A few language-related techniques are of help in enforcing the singleton's uniqueness. We've already used 
a couple of them: The default constructor and the copy constructor are private. The latter measure disables 
code such as this: 

Singleton sneaky(*Singleton::Instance()); // error! 
//  Cannot make 'sneaky' a copy of the (Singleton) object 
//  returned by Instance 

If you don't define the copy constructor, the compiler does its best to be of help and defines a public one 
for you (Meyers 1998a). Declaring an explicit copy constructor disables automatic generation, and placing 
that constructor in the private section yields a compile-time error on sneaky's definition. 

Another slight improvement is to have Instance return a reference instead of a pointer. The problem 
with having Instance return a pointer is that callers might be tempted to delete it. To minimize the 
chances of that happening, it's safer to return a reference: 

// inside class Singleton 
static Singleton& Instance(); 

Another member function silently generated by the compiler is the assignment operator. Uniqueness is not 
directly related to assignment, but one obvious consequence of uniqueness is that you cannot assign one 
object to another because there aren't two objects to start with. For a Singleton object, any assignment is 
a self-assignment, which doesn't make much sense anyway; thus, it is worthwhile to disable the assignment 
operator (by making it private and never implementing it). 

The last coat of the armor is to make the destructor private. This measure prevents clients that hold a 
pointer to the Singleton object from deleting it accidentally. 

After the enumerated measures are added, Singleton's interface looks like the following. 

class Singleton 
{ 
   Singleton& Instance(); 
   ... operations ... 
private: 
   Singleton(); 
   Singleton(const Singleton&); 
   Singleton& operator=(const Singleton&); 
   ~Singleton(); 
}; 
 
 

6.4 Destroying the Singleton 

As discussed, Singleton is created on demand, when Instance is first called. The first call to 
Instance defines the construction moment but leaves the destruction problem open: When should the 
singleton destroy its instance? The GoF book doesn't discuss this issue, but, as John Vlissides's book 
Pattern Hatching (1998) witnesses, the problem is thorny. 

Actually, if Singleton is not deleted, that's not a memory leak. Memory leaks appear when you allocate 
accumulating data and lose all references to it. This is not the case here: Nothing is accumulating, and we 
hold knowledge about the allocated memory until the end of the application. Furthermore, all modern 



 117

operating systems take care of completely deallocating a process's memory upon termination. (For an 
interesting discussion on what is and is not a memory leak, refer to Item 10 in Effective C++ [Meyers 
1998a].) 

However, there is a leak, and a more insidious one: a resource leak. Singleton's constructor may acquire 
an unbound set of resources: network connections, handles to OS-wide mutexes and other interprocess 
communication means, references to out-of-process CORBA or COM objects, and so on. 

The only correct way to avoid resource leaks is to delete the Singleton object during the application's 
shutdown. The issue is that we have to choose the moment carefully so that no one tries to access the 
singleton after its destruction. 

The simplest solution for destroying the singleton is to rely on language mechanisms. For example, the 
following code shows a different approach to implementing a singleton. Instead of using dynamic 
allocation and a static pointer, the Instance function relies on a local static variable. 

Singleton& Singleton::Instance() 
{ 
   static Singleton obj; 
   return obj; 
} 

This simple and elegant implementation was first published by Scott Meyers (Meyers 1996a, Item 26); 
therefore, we'll refer to it as the Meyers singleton. 

The Meyers singleton relies on some compiler magic. A function-static object is initialized when the 
control flow is first passing its definition. Don't confuse static variables that are initialized at runtime with 
primitive static variables initialized with compile-time constants. For example: 

int Fun() 
{ 
   static int x = 100; 
   return ++x; 
} 

In this case, x is initialized before any code in the program is executed, most likely at load time. For all 
that Fun can tell when first called, x has been 100 since time immemorial. In contrast, when the initializer 
is not a compile-time constant, or the static variable is an object with a constructor, the variable is 
initialized at runtime during the first pass through its definition. 

In addition, the compiler generates code so that after initialization, the runtime support registers the 
variable for destruction. A pseudo-C++ representation of the generated code may look like the following 
code. (The variables starting with two underscores should be thought of as hidden, that is, variables 
generated and managed only by the compiler.) 

Singleton& Singleton::Instance() 
{ 
   // Functions generated by the compiler 
   extern void __ConstructSingleton(void* memory); 
   extern void __DestroySingleton(); 
   // Variables generated by the compiler 
   static bool __initialized = false; 
   // Buffer that holds the singleton 
   // (We assume it is properly aligned) 
   static char __buffer[sizeof(Singleton)]; 
   if (!__initialized) 
   { 
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      // First call, construct object 
      // Will invoke Singleton::Singleton 
      // In the __buffer memory 
      __ConstructSingleton(__buffer); 
      // register destruction 
      atexit(__DestroySingleton); 
      __initialized = true; 
   } 
   return *reinterpret_cast<Singleton *>(__buffer); 
} 

The core is the call to the atexit function. The atexit function, provided by the standard C library, 
allows you to register functions to be automatically called during a program's exit, in a last in, first out 
(LIFO) order. (By definition, destruction of objects in C++ is done in a LIFO manner: Objects created first 
are destroyed last. Of course, objects you manage yourself with new and delete don't obey this rule.) 
The signature of atexit is 

// Takes a pointer to function 
// Returns 0 if successful, or 
// a nonzero value if an error occurs 
int atexit(void (*pFun)()); 

The compiler generates the function __DestroySingleton—whose execution destroys the 
Singleton object seated in __buffer's memory—and passes the address of that function to atexit. 

How does atexit work? Each call to atexit pushes its parameter on a private stack maintained by the 
C runtime library. During the application's exit sequence, the runtime support calls the functions registered 
with atexit. 

We'll see in a short while that atexit has important—and sometimes unfortunate—links with 
implementing the Singleton design pattern in C++. Like it or not, it's going to be with us until the end of 
this chapter. No matter what solution for destroying singletons we try, it has to play nice with atexit or 
else we break programmers' expectations. 

The Meyers singleton provides the simplest means of destroying the singleton during an application's exit 
sequence. It works fine in most cases. We will study its problems and provide some improvements and 
alternate implementations for special cases. 

 

6.5 The Dead Reference Problem 

To make the discussion concrete, let's refer to an example that will be used throughout the rest of this 
chapter to validate various implementations. The example has the same traits as the Singleton pattern itself: 
It's easy to express and understand, but hard to implement. 

Say we have an application that uses three singletons: Keyboard, Display, and Log. The first two 
model their physical counterparts. Log is intended for error reporting. Its incarnation can be a text file, a 
secondary console, or even a scrolling marquee on the LCD display of an embedded system. 

We assume that Log's construction implies a certain amount of overhead, so it is best to instantiate it only 
if an error occurs. This way, in an error-free session, the program doesn't create Log at all. 

The program reports to Log any error in instantiating Keyboard or Display. Log also collects errors in 
destroying Keyboard or Display. 
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Assuming we implement these three singletons as Meyers singletons, the program is incorrect. For 
example, assume that after Keyboard is constructed successfully, Display fails to initialize. Display's 
constructor creates Log, the error is logged, and it's likely the application is about to exit. At exit time, the 
language rule enters into action: The runtime support destroys local static objects in the reverse order of 
their creation. Therefore, Log is destroyed before Keyboard. If for some reason Keyboard fails to shut 
down and tries to report an error to Log, Log::Instance unwittingly returns a reference to the "shell" of 
a destroyed Log object. The program steps into the shady realm of undefined behavior. This is the dead-
reference problem. 

The order of construction and destruction of Keyboard, Log, and Display is not known beforehand. 
The need is to have Keyboard and Display follow the C++ rule (last created is first destroyed) but also 
to exempt Log from this rule. No matter when it was created, Log must be always destroyed after both 
Keyboard and Display so that it can collect errors from the destruction of either of these. 

If an application uses multiple interacting singletons, we cannot provide an automated way to control their 
lifetime. A reasonable singleton should at least perform dead-reference detection. We can achieve this by 
tracking destruction with a static Boolean member variable destroyed_. Initially, destroyed_ is 
false. Singleton's destructor sets destroyed_ to true. 

Before jumping to the implementation, it's time for an overhaul. In addition to creating and returning a 
reference to the Singleton object, Singleton::Instance now has an additional responsibility—
detecting the dead reference. Let's apply the design guideline that says, One function, one responsibility. 
We therefore define three distinct member functions: Create, which effectively creates the Singleton 
object; OnDeadReference, which performs error handling; and the well-known Instance, which gives 
access to the unique Singleton object. Of these, only Instance is public. 

Let's implement a Singleton that performs dead-reference detection. First, we add a static bool member 
variable called destroyed_ to the Singleton class. Its role is to detect the dead reference. Then we 
change the destructor of Singleton to set pInstance_ to zero and destroyed_ to true. Here's the new 
class and the OnDeadReference function: 

// Singleton.h 
class Singleton 
{ 
public: 
   Singleton& Instance() 
   { 
      if (!pInstance_) 
      { 
         // Check for dead reference 
         if (destroyed_) 
         { 
            OnDeadReference(); 
         } 
         else 
         { 
            // First call—initialize 
            Create(); 
         } 
      } 
      return pInstance_; 
   } 
private: 
   // Create a new Singleton and store a 
   // pointer to it in pInstance_ 
   static void Create(); 
   { 
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      // Task: initialize pInstance_ 
      static Singleton theInstance; 
      pInstance_ = &theInstance; 
   } 
   // Gets called if dead reference detected 
   static void OnDeadReference() 
   { 
      throw std::runtime_error("Dead Reference Detected"); 
   } 
   virtual ~Singleton() 
   { 
      pInstance_ = 0; 
      destroyed_ = true; 
   } 
   // Data 
   Singleton pInstance_; 
   bool destroyed_; 
   ... disabled 'tors/operator= ... 
}; 
 
// Singleton.cpp 
Singleton* Singleton::pInstance_ = 0; 
bool Singleton::destroyed_ = false; 

It works! As soon as the application exits, Singleton's destructor gets called. The destructor sets 
pInstance_ to zero and destroyed_ to true. If some longer-living object tries to access the singleton 
afterward, the control flow reaches OnDeadReference, which throws an exception of type 
runtime_error. This solution is inexpensive, simple, and effective. 

 

6.6 Addressing the Dead Reference Problem (I): 
The Phoenix Singleton 

If we apply the solution in the previous section to the KDL (Keyboard, Display, Log) problem, the 
result is unsatisfactory. If Display's destructor needs to report an error after Log has been destroyed, 
Log::Instance throws an exception. We got rid of undefined behavior; now we have to deal with 
unsatisfactory behavior. 

We need Log to be available at any time, no matter when it was initially constructed. At an extreme, we'd 
even prefer to create Log again (although it's been destroyed) so that we can use it for error reporting at 
any time. This is the idea behind the Phoenix Singleton design pattern. 

Just as the legendary Phoenix bird rises repeatedly from its own ashes, the Phoenix singleton is able to rise 
again after it has been destroyed. A single instance of the Singleton object at any given moment is still 
guaranteed (no two singletons ever exist simultaneously), yet the instance can be created again if the dead 
reference is detected. With the Phoenix Singleton pattern, we can solve the KDL problem easily: 
Keyboard and Display can remain "regular" singletons, while Log becomes a Phoenix singleton. 

The implementation of the Phoenix Singleton with a static variable is simple. When we detect the dead 
reference, we create a new Singleton object in the shell of the old one. (C++ guarantees this is possible. 
Static objects' memory lasts for the duration of the program.) We also register this new object's destruction 
with atexit. We don't have to change Instance; the only change is in the OnDeadReference 
primitive. 

class Singleton 
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{ 
   ... as before ... 
   void KillPhoenixSingleton(); // Added 
}; 
 
void Singleton::OnDeadReference() 
{ 
   // Obtain the shell of the destroyed singleton 
   Create(); 
   // Now pInstance_ points to the "ashes" of the singleton 
   // - the raw memory that the singleton was seated in. 
   // Create a new singleton at that address 
   new(pInstance_) Singleton; 
   // Queue this new object's destruction 
   atexit(KillPhoenixSingleton); 
   // Reset destroyed_ because we're back in business 
   destroyed_ = false; 
} 
 
void Singleton::KillPhoenixSingleton() 
{ 
   // Make all ashes again 
   // - call the destructor by hand. 
   // It will set pInstance_ to zero and destroyed_ to true 
   pInstance_->~Singleton(); 
} 

The new operator that OnDeadReference uses is called the placement new operator. The placement 
new operator does not allocate memory; it only constructs a new object at the address passed—in our case, 
pInstance_. For an interesting discussion about the placement new operator, you may want to consult 
Meyers (1998b). 

The Singleton above added a new member function, KillPhoenixSingleton. Now that we use 
new to resurrect the Phoenix singleton, the compiler magic will no longer destroy it, as it does with static 
variables. We built it by hand, so we must destroy it by hand, which is what 
atexit(KillPhoenixSingleton) ensures. 

Let's analyze the flow of events. During the application exit sequence, Singleton's destructor is called. 
The destructor resets the pointer to zero and sets destroyed_ to true. Now assume some global object 
tries to access Singleton again. Instance calls OnDeadReference. OnDeadReference 
reanimates Singleton and queues a call to KillPhoenixSingleton, and Instance successfully 
returns a reference to a valid Singleton object. From now on, the cycle may repeat. 

The Phoenix Singleton class ensures that global objects and other singletons can get a valid instance of it, 
at any time. This is a strong enough guarantee to make the Phoenix singleton an appealing solution for 
robust, all-terrain objects, like the Log in our problem. If we make Log a Phoenix singleton, the program 
will work correctly, no matter what the sequence of failures is. 

6.6.1 Problems with atexit 

If you compared the code given in the previous section with Loki's actual code, you would notice a 
difference: The call to atexit is surrounded by an #ifdef preprocessor directive: 

#ifdef ATEXIT_FIXED 
   // Queue this new object's destructor 
   atexit(KillPhoenixSingleton); 
#endif 
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If you don't #define ATEXIT_FIXED, the newly created Phoenix singleton will not be destroyed, and it 
will leak, which is exactly what we are striving to avoid. 

This measure has to do with an unfortunate omission in the C++ standard. The standard fails to describe 
what happens when you register functions with atexit during a call made as the effect of another 
atexit registration. 

To illustrate this problem, let's write a short test program: 

#include <cstdlib> 
void Bar() 
{ 
   ... 
} 
void Foo() 
{ 
   std::atexit(Bar); 
} 
int main() 
{ 
   std::atexit(Foo); 
} 

This little program registers Foo with atexit. Foo calls atexit(Bar), a case in which the behavior is 
not covered by the two standards. Because atexit and destruction of static variables go hand in hand, 
once the application exit sequence has started, we're left on shaky ground. Both the C and C++ standards 
are self-contradictory. They say that Bar will be called before Foo because Bar was registered last, but at 
the time it's registered, it's too late for Bar to be first because Foo is already being called. 

Does this problem sound too academic? Let's put it another way: At the time of this writing, on three 
widely used compilers, the behavior ranges from incorrect (resource leaks) to application crashes.[2] 

[2] I have had a newsgroup (comp.std.c++) and e-mail discussion with Steve Clamage, chairman of the 
ANSI/ISO C++ Standards Committee, regarding the state of affairs with atexit. He was well aware of the 
problem and had already submitted a defect report for both C9X and C++. The submittal can be found at 
http://anubis.dkuug.dk/jtc1/sc22/wg21/docs/lwg-issues.html#3. Fortunately, the current proposed resolution 
favors the Singleton implementation discussed in this chapter: Even for functions called during exit 
processing, atexit still behaves in a stack manner, which is what is wanted. At the time of this writing, the 
resolution is approved and ready to be committed to the standard. 

Compilers will take some time to catch up with the solution to this problem. As of this moment, the macro 
is in there. On some compilers, if you create a Phoenix singleton the second time, it will eventually leak. 
Depending on what your compiler's documentation says, you may want to #define ATEXIT_FIXED 
prior to including the Singleton.h header file. 

 

6.7 Addressing the Dead Reference Problem (II): 
Singletons with Longevity 

The Phoenix singleton is satisfactory in many contexts but has a couple of disadvantages. The Phoenix 
singleton breaks the normal lifetime cycle of a singleton, which may confuse some clients. If the singleton 
keeps state, that state is lost after a destruction-creation cycle. The implementer of a concrete singleton that 
uses the Phoenix strategy must pay extra attention to keeping state between the moment of destruction and 
the moment of reconstruction. 

http://anubis.dkuug.dk/jtc1/sc22/wg21/docs/lwg-issues.html#3
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This is annoying especially because in situations such as the KDL example, you do know what the order 
should be: No matter what, if Log gets created, it must be destroyed after both Keyboard and Display. 
In other words, in this case we need Log to have a longer lifetime than Keyboard and Display. We 
need an easy way to control the lifetime of various singletons. If we can do that, we can solve the KDL 
problem by assigning Log a longer lifetime than both Display and Keyboard. 

But wait, there's more: This problem applies not only to singletons but also to global objects in general. 
The concept emerging here is that of longevity control and is independent of the concept of a singleton: 
The greater longevity an object has, the later it will be destroyed. It doesn't matter whether the object is a 
singleton or some global dynamically allocated object. We need to write code like this: 

// This is a Singleton class 
class SomeSingleton { ... }; 
// This is a regular class 
class SomeClass { ... }; 
 
SomeClass* pGlobalObject(new SomeClass); 
 
int main() 
{ 
   SetLongevity(&SomeSingleton().Instance(), 5); 
   // Ensure pGlobalObject will be deleted 
   // after SomeSingleton's instance 
   SetLongevity(pGlobalObject, 6); 
   ... 
} 

The function SetLongevity takes a reference to an object of any type and an integral value (the 
longevity). 

// Takes a reference to an object allocated with new and 
// the longevity of that object 
template <typename T> 
void SetLongevity(T* pDynObject, unsigned int longevity); 

SetLongevity ensures that pDynObject will outlive all objects that have lesser longevity. When the 
application exits, all objects registered with SetLongevity are deleted in decreasing order of their 
longevity. 

You cannot apply SetLongevity to objects whose lifetimes are controlled by the compiler, such as 
regular global objects, static objects, and automatic objects. The compiler already generates code for 
destroying them, and calling SetLongevity for those objects would destroy them twice. (That never 
helps.) SetLongevity is intended for objects allocated with new only. Moreover, by calling 
SetLongevity for an object, you commit to not calling delete for that object. 

An alternative would be to create a dependency manager, an object that controls dependencies between 
other objects. DependencyManager would expose a generic function SetDependency as shown: 

class DependencyManager 
{ 
public: 
   template <typename T, typename U> 
   void SetDependency(T* dependent, U& target); 
   ... 
}; 
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DependencyManager's destructor would destroy the objects in an ordered manner, destroying 
dependents before their targets. 

The DependencyManager-based solution has a major drawback—both objects must be in existence. 
This means that if you try to establish a dependency between Keyboard and Log, for example, you must 
create the Log object—even if you are not going to need it at all. 

In an attempt to avoid this problem, you might establish the Keyboard-Log dependency inside Log's 
constructor. This, however, tightens the coupling between Keyboard and Log to an unacceptable degree: 
Keyboard depends on Log's class definition (because Keyboard uses the Log), and Log depends on 
Keyboard's class definition (because Log sets the dependency). This is a circular dependency, and, as 
discussed in detail in Chapter 10, circular dependencies should be avoided. 

Let's get back then to the longevity paradigm. Because SetLongevity has to play nice with atexit, we 
must carefully define the interaction between these two functions. For example, let's define the exact 
sequence of destructor calls for the following program. 

class SomeClass { ... }; 
 
int main() 
{ 
   // Create an object and assign a longevity to it 
   SomeClass* pObj1 = new SomeClass; 
   SetLongevity(pObj1, 5); 
   // Create a static object whose lifetime 
   // follows C++ rules 
   static SomeClass obj2; 
   // Create another object and assign a greater 
   // longevity to it 
   SomeClass* pObj3 = new SomeClass; 
   SetLongevity(pObj3, 6); 
   // How will these objects be destroyed? 
} 

main defines a mixed bag of objects with longevity and objects that obey C++ rules. Defining a 
reasonable destruction order for these three objects is hard because, aside from using atexit, we don't 
have any means of manipulating the hidden stack maintained by the runtime support. 

A careful constraints analysis leads to the following design decisions. 

• Each call to SetLongevity issues a call to atexit. 
• Destruction of objects with lesser longevity takes place before destruction of objects with greater 

longevity. 
• Destruction of objects with the same longevity follows the C++ rule: last built, first destroyed. 

In the example program, the rules lead to the following guaranteed order of destruction: *pObj1, obj2, 
*pObj3. The first call to SetLongevity will issue a call to atexit for destroying *pObj3, and the 
second call will correspondingly issue a call to atexit for destroying *pObj1. 

SetLongevity gives developers a great deal of power for managing objects' lifetimes, and it has well-
defined and reasonable ways of interacting with the built-in C++ rules related to object lifetime. Note, 
however, that, like many other powerful tools, it can be dangerous. The rule of thumb in using it is as 
follows: Any object that uses an object with longevity must have a shorter longevity than the used object. 
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6.8 Implementing Singletons with Longevity 

Once SetLongevity's specification is complete, the implementation is not that complicated. 
SetLongevity maintains a hidden priority queue, separate from the inaccessible atexit stack. In turn, 
SetLongevity calls atexit, always passing it the same pointer to a function. This function pops one 
element off the stack and deletes it. It's that simple. 

The core is the priority queue data structure. The longevity value passed to SetLongevity establishes 
the priorities. For a given longevity, the queue behaves like a stack. Destruction of objects with the same 
longevity follows the last in, first out rule. In spite of its name, we cannot use the standard 
std::priority_queue class because it does not guarantee the ordering of the elements having the 
same priority. 

The elements that the data structure holds are pointers to the type LifetimeTracker. Its interface 
consists of a virtual destructor and a comparison operator. Derived classes must override the destructor. 
(You will see in a minute what Compare is good for.) 

namespace Private 
{ 
   class LifetimeTracker 
   { 
   public: 
      LifetimeTracker(unsigned int x) : longevity_(x) {} 
      virtual ~LifetimeTracker() = 0; 
      friend inline bool Compare( 
         unsigned int longevity, 
         const LifetimeTracker* p) 
      { return p->longevity_ > longevity; } 
   private: 
      unsigned int longevity_; 
   }; 
   // Definition required 
   inline LifetimeTracker::~LifetimeTracker() {} 
} 

The priority queue data structure is a simple dynamically allocated array of pointers to 
LifetimeTracker: 

namespace Private 
{ 
   typedef LifetimeTracker** TrackerArray; 
   extern TrackerArray pTrackerArray; 
   extern unsigned int elements; 
} 

There is only one instance of the Tracker type. Consequently, pTrackerArray is exposed to all the 
Singleton problems just discussed. We are caught in an interesting chicken-and-egg problem: 
SetLongevity must be available at any time, yet it has to manage private storage. To deal with this 
problem, SetLongevity carefully manipulates pTrackerArray with the low-level functions in the 
std::malloc family (malloc, realloc, and free).[3] This way, we transfer the chicken-and-egg 
problem to the C heap allocator, which fortunately is guaranteed to work correctly for the whole lifetime of 
the application. This being said, SetLongevity's implementation is simple: It creates a concrete tracker 
object, adds it to the stack, and registers a call to atexit. 

[3] Actually, SetLongevity uses std::realloc only. The realloc function can replace both 
malloc and free: If you call it with a null pointer, it behaves like std::malloc; if you call it with a zero 
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size, it behaves like std::free. Basically, std::realloc is a one-stop shop for malloc-based 
allocation. 

The following code makes an important step toward generalization. It introduces a functor that takes care 
of destroying the tracked object. The rationale is that you don't always use delete to deallocate an object; 
it can be an object allocated on an alternate heap, and so on. By default, the destroyer is a pointer to a 
function that calls delete. The default function is called Delete and is templated with the type of the 
object to be deleted. 

//Helper destroyer function 
template <typename T> 
struct Deleter 
{ 
   static void Delete(T* pObj) 
   { delete pObj; } 
}; 
 
// Concrete lifetime tracker for objects of type T 
template <typename T, typename Destroyer> 
class ConcreteLifetimeTracker : public LifetimeTracker 
{ 
public: 
      ConcreteLifetimeTracker(T* p, 
         unsigned int longevity, 
         Destroyer d) 
         :LifetimeTracker(longevity), 
      ,pTracked_(p) 
      ,destroyer_(d) 
      {} 
      ~ConcreteLifetimeTracker() 
      { 
         destroyer_(pTracked_); 
      } 
   private: 
      T* pTracked_; 
      Destroyer destroyer_; 
   }; 
   void AtExitFn(); // Declaration needed below 
} 
 
template <typename T, typename Destroyer> 
void SetLongevity(T* pDynObject, unsigned int longevity, 
   Destroyer d = Private::Deleter<T>::Delete) 
{ 
   TrackerArray pNewArray = static_cast<TrackerArray>( 
           std::realloc(pTrackerArray, sizeof(T) * (elements + 1))); 
   if (!pNewArray) throw std::bad_alloc(); 
   pTrackerArray = pNewArray; 
   LifetimeTracker* p = new ConcreteLifetimeTracker<T, Destroyer>( 
       pDynObject, longevity, d); 
   TrackerArray pos = std::upper_bound( 
      pTrackerArray, pTrackerArray + elements, longevity, Compare); 
   std::copy_backward(pos, pTrackerArray + elements, 
      pTrackerArray + elements + 1); 
   *pos = p; 
   ++elements; 
   std::atexit(AtExitFn); 
} 
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It takes a while to get used to things like std::upper_bound and std::copy_backward, but indeed 
they make nontrivial code easy to write and read. The function above inserts a newly created pointer to 
ConcreteLifetimeTracker in the sorted array pointed to by pTrackerArray, keeps it ordered, and 
handles errors and exceptions. 

Now the purpose of LifetimeTracker::Compare is clear. The array to which pTrackerQueue 
points is sorted by longevity. Objects with longer longevity are toward the beginning of the array. Objects 
of the same longevity appear in the order in which they were inserted. SetLongevity ensures all this. 

The AtExitFn function pops the object with the smallest longevity (that is, the one at the end of the array) 
and deletes it. Deleting the pointer to LifetimeTracker invokes ConcreteLifetimeTracker's 
destructor, which in turn deletes the tracked object. 

static void AtExitFn() 
{ 
   assert(elements > 0 && pTrackerArray != 0); 
   // Pick the element at the top of the stack 
   LifetimeTracker* pTop = pTrackerArray[elements - 1]; 
   // Remove that object off the stack 
   // Don't check errors-realloc with less memory 
   // can't fail 
   pTrackerArray = static_cast<TrackerArray>(std::realloc( 
       pTrackerArray, sizeof(T) * --elements)); 
   // Destroy the element 
   delete pTop; 
} 

Writing AtExitFn requires a bit of care. AtExitFn must pop the top element off the stack and delete 
it. In its destructor, the element deletes the managed object. The trick is, AtExitFn must pop the stack 
before deleting the top object because destroying some object may create another one, thus pushing 
another element onto the stack. Although this looks quite unlikely, it's exactly what happens when 
Keyboard's destructor tries to use the Log. 

The code conveniently hides the data structures and AtExitFn in the Private namespace. The clients see 
only the tip of the iceberg—the SetLongevity function. 

Singletons with longevity can use SetLongevity in the following manner: 

class Log 
{ 
public: 
   static void Create() 
   { 
      // Create the instance 
      pInstance_ = new Log; 
      // This line added 
      SetLongevity(*this, longevity_); 
   } 
   // Rest of implementation omitted 
   // Log::Instance remains as defined earlier 
private: 
   // Define a fixed value for the longevity 
   static const unsigned int longevity_ = 2; 
   static Log* pInstance_; 
}; 
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If you implement Keyboard and Display in a similar fashion, but define longevity_ to be 1, the Log 
will be guaranteed to be alive at the time when both Keyboard and Display are destroyed. This solves 
the KDL problem—or does it? What if your application uses multiple threads? 

 

6.9 Living in a Multithreaded World 

Singleton has to deal with threads, too. Suppose we have an application that has just started, and two 
threads access the following Singleton: 

Singleton& Singleton::Instance() 
{ 
   if (!pInstance_)                     // 1 
   { 
      pInstance_ = new Singleton;       // 2 
   } 
   return *pInstance_;                  // 3 
} 

The first thread enters Instance and tests the if condition. Because it's the very first access, 
pInstance_ is null, and the thread reaches the line marked // 2 and is ready to invoke the new operator. 
It might just happen that the OS scheduler unwittingly interrupts the first thread at this point and passes 
control to the other thread. 

The second thread enters the stage, invokes Singleton::Instance(), and finds a null pInstance_ 
as well because the first thread hasn't yet had a chance to modify it. So far, the first thread has managed 
only to test pInstance_. Now say the second thread manages to call the new operator, assigns 
pInstance_ in peace, and gets away with it. 

Unfortunately, as the first thread becomes conscious again, it remembers it was just about to execute line 2, 
so it reassigns pInstance_ and gets away with it, too. When the dust settles, there are two Singleton 
objects instead of one, and one of them will leak for sure. Each thread holds a distinct instance of 
Singleton, and the application is surely slipping toward chaos. And that's only one possible situation—
what if multiple threads scramble to access the singleton? (Imagine yourself debugging this.) 

Experienced multithreaded programmers will recognize a classic race condition here. It is to be expected 
that the Singleton design pattern meets threads. A singleton object is a shared global resource, and all 
shared global resources are always suspect for race conditions and threading issues. 

6.9.1 The Double-Checked Locking Pattern 

A thorough discussion of multithreaded singletons was first presented by Douglas Schmidt (1996). The 
same article describes a very nifty solution, called the Double-Checked Locking pattern, devised by Doug 
Schmidt and Tim Harrison. 

The obvious solution works but is not appealing: 

Singleton& Singleton::Instance() 
{ 
   // mutex_ is a mutex object 
   // Lock manages the mutex 
   Lock guard(mutex_); 
   if (!pInstance_) 
   { 
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      pInstance_ = new Singleton; 
   } 
   return *pInstance_; 
} 

Class Lock is a classic mutex handler (refer to the appendix for details on mutexes). Lock's constructor 
locks the mutex, and its destructor unlocks the mutex. While mutex_ is locked, other threads that try to 
lock the same mutex are waiting. 

We got rid of the race condition: While a thread assigns to pInstance_, all others stop in guard's 
constructor. When another thread locks the lock, it will find pInstance_ already initialized, and 
everything works smoothly. 

However, a correct solution is not always an appealing one. The inconvenience is its lack of efficiency. 
Each call to Instance incurs locking and unlocking the synchronization object, although the race 
condition occurs only, so to say, once in a lifetime. These operations are usually very costly, much more 
costly than the simple if (!pInstance_) test. (On today's systems, the times taken by a test-and-
branch and a critical-section lock differ typically by a couple of orders of magnitude.) 

A would-be solution that attempts to avoid the overhead is presented in the following code: 

Singleton& Singleton::Instance() 
{ 
   if (!pInstance_) 
   { 
      Lock guard(mutex_); 
      pInstance_ = new Singleton; 
   } 
   return *pInstance_; 
} 

Now the overhead is gone, but the race condition is back. The first thread passes the if test, but just when 
it is about to enter the synchronized portion of code, the OS scheduler interrupts it and passes control to the 
other thread. The second thread passes the if test itself (and to no one's surprise, finds a null pointer), 
enters the synchronized portion, and completes it. When the first thread is reactivated, it also enters the 
synchronized portion, but it's just too late—again, two Singleton objects are constructed. 

This seems like one of those brainteasers with no solution, but in fact there is a very simple and elegant 
one. It's called the Double-Checked Locking pattern. 

The idea is simple: Check the condition, enter the synchronized code, and then check the condition again. 
By this time, rien ne va plus—the pointer is either initialized or null all right. The code that will help you 
to understand and savor the Double-Checked pattern follows. Indeed, there is beauty in computer 
engineering. 

Singleton& Singleton::Instance() 
{ 
   if (!pInstance_)           // 1 
   {                          // 2 
      Guard myGuard(lock_);   // 3 
      if (!pInstance_)        // 4 
      { 
         pInstance_ = new Singleton; 
      } 
   } 
   return *pInstance_; 
} 
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Assume the flow of execution of a thread enters the twilight zone (commented line 2). Here several threads 
may enter at once. However, in the synchronized section only one thread makes it at a time. On line 3, 
there's no twilight anymore. All is clear: The pointer has been either fully initialized or not at all. The first 
thread that enters initializes the variable, and all others fail the test on line 4 and do not create anything. 

The first test is quick and coarse. If the Singleton object is available, you get it. If not, further 
investigation is necessary. The second test is slow and accurate: It tells whether Singleton was indeed 
initialized or the thread is responsible for initializing it. This is the Double-Checked Locking pattern. Now 
we have the best of both worlds: Most of the time the access to the singleton is as fast as it gets. During 
construction, however, no race conditions occur. Awesome. But . . . 

Very experienced multithreaded programmers know that even the Double-Checked Locking pattern, 
although correct on paper, is not always correct in practice. In certain symmetric multiprocessor 
environments (the ones featuring the so-called relaxed memory model), the writes are committed to the 
main memory in bursts, rather than one by one. The bursts occur in increasing order of addresses, not in 
chronological order. Due to this rearranging of writes, the memory as seen by one processor at a time 
might look as if the operations are not performed in the correct order by another processor. Concretely, the 
assignment to pInstance_ performed by a processor might occur before the Singleton object has been 
fully initialized! Thus, sadly, the Double-Checked Locking pattern is known to be defective for such 
systems. 

In conclusion, you should check your compiler documentation before implementing the Double-Checked 
Locking pattern. (This makes it the Triple-Checked Locking pattern.) Usually the platform offers 
alternative, nonportable concurrency-solving primitives, such as memory barriers, which ensure ordered 
access to memory. At least, put a volatile qualifier next to pInstance_. A reasonable compiler 
should generate correct, nonspeculative code around volatile objects. 

 

6.10 Putting It All Together 

This chapter has wandered around various possible implementations of Singleton, commenting on their 
relative strengths and weaknesses. The discussion doesn't lead to a unique implementation because the 
problem at hand is what dictates the best Singleton implementation. 

The SingletonHolder class template defined by Loki is a Singleton container that assists you in using 
the Singleton design pattern. Following a policy-based design (see Chapter 1), SingletonHolder is a 
specialized container for a user-defined Singleton object. When using SingletonHolder, you pick the 
features needed, and maybe provide some code of your own. In extreme cases, you might still need to start 
all over again—which is okay, as long as those are indeed extreme cases. 

This chapter visited quite a few issues that are mostly independent of each other. How, then, can Singleton 
implement so many cases without utter code bloating? The key is to decompose Singleton carefully into 
policies, as discussed in Chapter 1. By decomposing SingletonHolder into several policies, we can 
implement all the cases discussed previously in a small number of lines of code. By using template 
instantiation, you select the features needed and don't pay anything for the unneeded ones. This is 
important: The implementation of Singleton put together here is not the do-it-all class. Only the features 
used are ultimately included in the generated code. Plus, the implementation leaves room for tweaks and 
extensions. 

6.10.1 Decomposing SingletonHolder into Policies 
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Let's start by delimiting what policies we can distinguish for the implementations discussed. We identified 
creation issues, lifetime issues, and threading issues. These are the three most important aspects of 
Singleton development. The three corresponding polices therefore are as follows: 

1. Creation. You can create a singleton in various ways. Typically, the Creation policy invokes the 
new operator to create an object. Isolating creation as a policy is essential because it enables you 
to create polymorphic objects. 

2. Lifetime. We identified the following lifetime policies: 
a. Following C++ rules—last created, first destroyed 
b. Recurring (Phoenix singleton) 
c. User controlled (singleton with longevity) 
d. Infinite (the "leaking" singleton, an object that's never destroyed) 

3. ThreadingModel. Whether singleton is single threaded, is standard multithreaded (with a mutex 
and the Double-Checked Locking pattern), or uses a nonportable threading model. 

All Singleton implementations must take the same precautions for enforcing uniqueness. These are not 
policies, because changing them would break the definition of Singleton. 

6.10.2 Defining Requirements for SingletonHolder's Policies 

Let's define the necessary requirements that SingletonHolder imposes on its policies. 

The Creation policy must create and destroy objects, so it must expose two corresponding functions. 
Therefore, assuming Creator<T> is a class compliant with the Creation policy, Creator<T> must 
support the following calls: 

T* pObj = Creator<T>::Create(); 
Creator<T>::Destroy(pObj); 

Notice that Create and Destroy must be two static members of Creator. Singleton does not hold a 
Creator object—this would perpetuate the Singleton lifetime issues. 

The Lifetime policy essentially must schedule the destruction of the Singleton object created by the 
Creation policy. In essence, Lifetime policy's functionality boils down to its ability to destroy the Singleton 
object at a specific time during the lifetime of the application. In addition, Lifetime decides the action to be 
taken if the application violates the lifetime rules of the Singleton object. Hence: 

• If you need the singleton to be destroyed according to C++ rules, then Lifetime uses a mechanism 
similar to atexit. 

• For the Phoenix singleton, Lifetime still uses an atexit-like mechanism but accepts the re-
creation of the Singleton object. 

• For a singleton with longevity, Lifetime issues a call to SetLongevity, described in Sections 
6.7 and 6.8. 

• For infinite lifetime, Lifetime does not take any action. 

In conclusion, the Lifetime policy prescribes two functions: ScheduleDestruction, which takes care 
of setting the appropriate time for destruction, and OnDeadReference, which establishes the behavior in 
case of dead-reference detection. 

If Lifetime<T> is a class that implements the Lifetime policy, the following expressions make sense: 

void (*pDestructionFunction)(); 
... 
Lifetime<T>::ScheduleDestruction(pDestructionFunction); 
Lifetime<T>::OnDeadReference(); 
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The ScheduleDestruction member function accepts a pointer to the actual function that performs the 
destruction. This way, we can compound the Lifetime policy with the Creation policy. Don't forget that 
Lifetime is not concerned with the destruction method, which is Creation's charter; the only preoccupation 
of Lifetime is timing—that is, when the destruction will occur. 

OnDeadReference throws an exception in all cases except for the Phoenix singleton, a case in which it 
does nothing. 

The ThreadingModel policy is the one described in the appendix. SingletonHolder does not support 
object-level locking, only class-level locking. This is because you have only one object anyway. 

6.10.3 Assembling SingletonHolder 

Now let's begin defining the SingletonHolder class template. As discussed in Chapter 1, each policy 
mandates one template parameter. In addition to it, we prepend a template parameter (T) that's the type for 
which we provide singleton behavior. The SingletonHolder class template is not itself a Singleton. 
SingletonHolder provides only singleton behavior and management over an existing class. 

template 
< 
   class T, 
   template <class> class CreationPolicy = CreateUsingNew, 
   template <class> class LifetimePolicy = DefaultLifetime, 
   template <class> class ThreadingModel = SingleThreaded 
> 
class SingletonHolder 
{ 
public: 
   static T& Instance(); 
private: 
   // Helpers 
   static void DestroySingleton(); 
   // Protection 
   SingletonHolder(); 
   ... 
   // Data 
   typedef ThreadingModel<T>::VolatileType InstanceType; 
   static InstanceType* pInstance_; 
   static bool destroyed_; 
}; 

The type of the instance variable is not T* as you would expect. Instead, it's 
ThreadingModel<T>::VolatileType*. The ThreadingModel<T>::VolatileType type 
definition expands either to T or to volatile T, depending on the actual threading model. The 
volatile qualifier applied to a type tells the compiler that values of that type might be changed by 
multiple threads. Knowing this, the compiler avoids some optimizations (such as keeping values in its 
internal registers) that would make multithreaded code run erratically. A safe decision would be then to 
define pInstance_ to be type volatile T*: It works with multithreaded code (subject to your 
checking your compiler's documentation) and doesn't hurt in single-threaded code. 

On the other hand, in a single-threaded model, you do want to take advantage of those optimizations, so T* 
would be the best type for pInstance_. That's why the actual type of pInstance_ is decided by the 
ThreadingModel policy. If ThreadingModel is a single-threaded policy, it simply defines 
VolatileType as follows: 

template <class T> class SingleThreaded 
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{ 
   ... 
public: 
   typedef T VolatileType; 
}; 

A multithreaded policy would have a definition that qualifies T with volatile. See the appendix for 
more details on threading models. 

Let's now define the Instance member function, which wires together the three policies. 

template <...> 
T& SingletonHolder<...>::Instance() 
{ 
   if (!pInstance_) 
   { 
      typename ThreadingModel<T>::Lock guard; 
      if (!pInstance_) 
      { 
         if (destroyed_) 
         { 
            LifetimePolicy<T>::OnDeadReference(); 
            destroyed_ = false; 
         } 
         pInstance_ = CreationPolicy<T>::Create(); 
         LifetimePolicy<T>::ScheduleCall(&DestroySingleton); 
      } 
   } 
   return *pInstance_; 
} 

Instance is the one and only public function exposed by SingletonHolder. Instance implements 
a shell over CreationPolicy, LifetimePolicy, and ThreadingModel. The 
ThreadingModel<T> policy class exposes an inner class Lock. For the lifetime of a Lock object, all 
other threads trying to create objects of type Lock will block. (Refer to the appendix.) 

DestroySingleton simply destroys the Singleton object, cleans up the allocated memory, and sets 
destroyed_ to true. SingletonHolder never calls DestroySingleton; it only passes its address 
to LifetimePolicy<T>::ScheduleDestruction. 

template <...> 
void SingletonHolder<...>::DestroySingleton() 
{ 
   assert(!destroyed_); 
   CreationPolicy<T>::Destroy(pInstance_); 
   pInstance_ = 0; 
   destroyed_ = true; 
} 

SingletonHolder passes pInstance_ and the address of DestroySingleton to 
LifetimePolicy<T>. The intent is to give LifetimePolicy enough information to implement the 
known behaviors: C++ rules, recurring (Phoenix singleton), user controlled (singleton with longevity), and 
infinite. Here's how: 

• Per C++ rules. LifetimePolicy<T>::ScheduleDestruction calls atexit, passing it the 
address of DestroySingleton. OnDeadReference throws a std::logic_error 
exception. 
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• Recurring. Same as above, except that OnDeadReference does not throw an exception. 
SingletonHolder's flow of execution continues and will re-create the object. 

• User controlled. LifetimePolicy<T>::ScheduleDestruction calls 
SetLongevity(GetLongevity(pInstance)). 

• Infinite. LifetimePolicy<T>::ScheduleDestruction has an empty implementation. 

SingletonHolder handles the dead-reference problem as the responsibility of LifetimePolicy. It's 
very simple: If SingletonHolder::Instance detects a dead reference, it calls 
LifetimePolicy::OnDeadReference. If OnDeadReference returns, Instance continues with 
re-creating a new instance. In conclusion, OnDeadReference should throw an exception or terminate the 
program if you do not want Phoenix Singleton behavior. For a Phoenix singleton, OnDeadReference 
does nothing. 

Well, that is the whole SingletonHolder implementation. Of course, now much work gets delegated to 
the three policies. 

6.10.4 Stock Policy Implementations 

Decomposition into policies is hard. After you do that, the policies are easy to implement. Let's collect the 
policy classes that implement the common types of singletons. Table 6.1 shows the predefined policy 
classes for SingletonHolder. The policy classes in bold are the default template parameters. 

Table 6.1. Predefined Policies for SingletonHolder 
Policy Predefined Class 

Template 
Comment 

Creation CreateUsingNew Creates an object by using the new operator and 
the default constructor. 

  CreateUsingMalloc Creates an object by using std::malloc and its 
default constructor. 

  CreateStatic Creates an object in static memory. 
Lifetime DefaultLifetime Manages the object's lifetime by obeying C++ 

rules. Uses atexit to get the job done. 
  PhoenixSingleton Same as DefaultLifetime but allows re-

creation of the Singleton object. 
  SingletonWithLongevity Assigns longevity to the Singleton object. 

Assumes the existence of a namespace-level 
function GetLongevity that, called with 
pInstance_, returns the longevity of the Singleton 
object. 

  NoDestroy Does not destroy the Singleton object. 
ThreadingModel SingleThreaded See the appendix for details about threading 

models. 
  ClassLevelLockable   

What remains is only to figure out how to use and extend this small yet mighty SingletonHolder 
template. 

 

6.11 Working with SingletonHolder 
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The SingletonHolder class template does not provide application-specific functionality. It merely 
provides Singleton-specific services over another class—T in the code in this chapter. We call T the client 
class. 

The client class must take all the precautionary measures against unattended construction and destruction: 
The default constructor, the copy constructor, the assignment operator, the destructor, and the address-of 
operator should be made private. 

If you take these protective measures, you also have to grant friendship to the Creator policy class that 
you use. These protective measures and the friend declaration are all the changes needed for a class to 
work with SingletonHolder. Note that these changes are optional and constitute a trade-off between 
the inconvenience of touching existing code and the risk of spurious instances. 

The design decisions concerning a specific Singleton implementation usually are reflected in a type 
definition like the following one. Just as you would pass flags and options when calling some function, so 
you pass flags to the type definition selecting the desired behavior. 

class A { ... }; 
typedef SingletonHolder<A, CreateUsingNew> SingleA; 
// from here on you use SingleA::Instance() 

Providing a singleton that returns an object of a derived class is as simple as changing the Creator policy 
class: 

class A { ... }; 
class Derived : public A { ... }; 
 
template <class T> struct MyCreator : public CreateUsingNew<T> 
{ 
   static T* Create() 
   { 
      return new Derived; 
   } 
}; 
 
typedef SingletonHolder<A, StaticAllocator, MyCreator> SingleA; 

Similarly, you can provide parameters to the constructor or use a different allocation strategy. You can 
tweak Singleton along each policy. This way you can largely customize Singleton, while still 
benefiting from default behavior when you want to. 

The SingletonWithLongevity policy class relies on you to define a namespace-level function 
GetLongevity. The definition would look something like this: 

inline unsigned int GetLongevity(A*) { return 5; } 

This is needed only if you use SingletonWithLongevity in the type definition of SingleA. 

The intricate KDL problem has driven our tentative implementations. Here's the KDL problem solved by 
making use of the Singleton class template. Of course, these definitions go to their appropriate header 
files. 

class KeyboardImpl { ... }; 
class DisplayImpl { ... }; 
class LogImpl { ... }; 
   ... 
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inline unsigned int GetLongevity(KeyboardImpl*) { return 1; } 
inline unsigned int GetLongevity(DisplayImpl*) { return 1; } 
// The log has greater longevity 
inline unsigned int GetLongevity(LogImpl*) { return 2; } 
 
typedef SingletonHolder<KeyboardImpl, SingletonWithLongevity> Keyboard; 
typedef SingletonHolder<DisplayImpl, SingletonWithLongevity> Display; 
typedef SingletonHolder<LogImpl, SingletonWithLongevity> Log; 

It's a rather easy-to-grasp and self-documenting solution, given the complexity of the problem. 

 

6.12 Summary 

The introduction to this chapter describes the most popular C++ implementations of Singleton. It's 
relatively easy to protect Singleton against multiple instantiations because there is good language support 
in this area. The most complicated problem is managing a singleton's lifetime, especially its destruction. 

Detecting postdestruction access is easy and inexpensive. This dead-reference detection ought to be part of 
any Singleton implementation. 

We discussed four main variations on the theme: the compiler-controlled singleton, the Phoenix singleton, 
the singleton with longevity, and the "leaking" singleton. Each of these has different strengths and 
weaknesses. 

There are serious threading issues surrounding the Singleton design pattern. The Double-Checked Locking 
pattern is of great help in implementing thread-safe singletons. 

In the end, we collected and classified the variations, which helped us in defining policies and 
decomposing Singleton along these policies. We identified three policies with Singleton: Creation, 
Lifetime, and ThreadingModel. We harnessed the policies in a class template SingletonHolder 
with four template parameters (the client type plus one parameter for each policy) that cover all the 
combinations among these design choices. 

 

6.13 SingletonHolder Class Template Quick Facts 

• SingletonHolder's declaration is as follows: 

template < 
   class T, 
   template <class> class CreationPolicy = CreateUsingNew, 
   template <class> class LifetimePolicy = DefaultLifetime, 
   template <class> class ThreadingModel = SingleThreaded 
> 

• class SingletonHolder; 
• You instantiate SingletonHolder by passing it your class as the first template parameter. You 

select design variations by combining the other four parameters. Example: 

class MyClass { ... }; 
typedef Singleton<MyClass, CreateStatic> 
   MySingleClass; 
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• You must define the default constructor, or you must use a creator other than the stock 
implementations of the Creator policy. 

• The canned implementations of the three policies are described in Table 6.1. You can add your 
own policy classes as long as you respect the requirements. 
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Chapter 7. Smart Pointers 
Smart pointers have been the subject of hecatombs of code written and rivers of ink consumed by 
programmers and writers around the world. Perhaps the most popular, intricate, and powerful C++ idiom, 
smart pointers are interesting in that they combine many syntactic and semantic issues. This chapter 
discusses smart pointers, from their simplest aspects to their most complex ones and from the most obvious 
errors in implementing them to the subtlest ones—some of which also happen to be the most gruesome. 

In brief, smart pointers are C++ objects that simulate simple pointers by implementing operator-> and 
the unary operator*. In addition to sporting pointer syntax and semantics, smart pointers often perform 
useful tasks—such as memory management or locking—under the covers, thus freeing the application 
from carefully managing the lifetime of pointed-to objects. 

This chapter not only discusses smart pointers but also implements a SmartPtr class template. 
SmartPtr is designed around policies (see Chapter 1), and the result is a smart pointer that has the exact 
levels of safety, efficiency, and ease of use that you want. 

After reading this chapter, you will be an expert in smart pointer issues such as the following: 

• The advantages and disadvantages of smart pointers 
• Ownership management strategies 
• Implicit conversions 
• Tests and comparisons 
• Multithreading issues 

This chapter implements a generic SmartPtr class template. Each section presents one implementation 
issue in isolation. At the end, the implementation puts all the pieces together. In addition to understanding 
the design rationale of SmartPtr, you will know how to use, tweak, and extend it. 

 

7.1 Smart Pointers 101 

So what's a smart pointer? A smart pointer is a C++ class that mimics a regular pointer in syntax and some 
semantics, but it does more. Because smart pointers to different types of objects tend to have a lot of code 
in common, almost all good-quality smart pointers in existence are templated by the pointee type, as you 
can see in the following code: 

template <class T> 
class SmartPtr 
{ 
public: 
   explicit SmartPtr(T* pointee) : pointee_(pointee); 
   SmartPtr& operator=(const SmartPtr& other); 
   ~SmartPtr(); 
   T& operator*() const 
   { 
      ... 
      return *pointee_; 
   } 
   T* operator->() const 
   { 
      ... 
      return pointee_; 
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   } 
private: 
   T* pointee_; 
   ... 
}; 

SmartPtr<T> aggregates a pointer to T in its member variable pointee_. That's what most smart 
pointers do. In some cases, a smart pointer might aggregate some handles to data and compute the pointer 
on the fly. 

The two operators give SmartPtr pointer-like syntax and semantics. That is, you can write 

class Widget 
{ 
public: 
   void Fun(); 
}; 
 
SmartPtr<Widget> sp(new Widget); 
sp->Fun(); 
(*sp).Fun(); 

Aside from the definition of sp, nothing reveals it as not being a pointer. This is the mantra of smart 
pointers: You can replace pointer definitions with smart pointer definitions without incurring major 
changes to your application's code. You thus get extra goodies with ease. Minimizing code changes is very 
appealing and vital for getting large applications to use smart pointers. As you will soon see, however, 
smart pointers are not a free lunch. 

 

7.2 The Deal 

But what's the deal with smart pointers? you might ask. What do you gain by replacing simple pointers 
with smart pointers? The explanation is simple. Smart pointers have value semantics, whereas some simple 
pointers do not. 

An object with value semantics is an object that you can copy and assign to. Type int is the perfect 
example of a first-class object. You can create, copy, and change integer values freely. A pointer that you 
use to iterate in a buffer also has value semantics—you initialize it to point to the beginning of the buffer, 
and you bump it until you reach the end. Along the way, you can copy its value to other variables to hold 
temporary results. 

With pointers that hold values allocated with new, however, the story is very different. Once you have 
written 

Widget* p = new Widget; 

the variable p not only points to, but also owns, the memory allocated for the Widget object. This is 
because later you must issue delete p to ensure that the Widget object is destroyed and its memory is 
released. If in the line after the line just shown you write 

p = 0; // assign something else to p 

you lose ownership of the object previously pointed to by p, and you have no chance at all to get a grip on 
it again. You have a resource leak, and resource leaks never help. 
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Furthermore, when you copy p into another variable, the compiler does not automatically manage the 
ownership of the memory to which the pointer points. All you get is two raw pointers pointing to the same 
object, and you have to track them even more carefully because double deletions are even more 
catastrophic than no deletion. Consequently, pointers to allocated objects do not have value semantics—
you cannot copy and assign to them at will. 

Smart pointers can be of great help in this area. Most smart pointers offer ownership management in 
addition to pointer-like behavior. Smart pointers can figure out how ownership evolves, and their 
destructors can release the memory according to a well-defined strategy. Many smart pointers hold enough 
information to take full initiative in releasing the pointed-to object. 

Smart pointers may manage ownership in various ways, each appropriate to a category of problems. Some 
smart pointers transfer ownership automatically: After you copy a smart pointer to an object, the source 
smart pointer becomes null, and the destination points to (and holds ownership of) the object. This is the 
behavior implemented by the standard-provided std::auto_ptr. Other smart pointers implement 
reference counting: They track the total count of smart pointers that point to the same object, and when this 
count goes down to zero, they delete the pointed-to object. Finally, some others duplicate their pointed-
to object whenever you copy them. 

In short, in the smart pointers' world, ownership is an important topic. By providing ownership 
management, smart pointers are able to support integrity guarantees and full value semantics. Because 
ownership has much to do with constructing, copying, and destroying smart pointers, it's easy to figure out 
that these are the most vital functions of a smart pointer. 

The following few sections discuss various aspects of smart pointer design and implementation. The goal 
is to render smart pointers as close to raw pointers as possible, but not closer. It's a contradictory goal: 
After all, if your smart pointers behave exactly like dumb pointers, they are dumb pointers. 

In implementing compatibility between smart pointers and raw pointers, there is a thin line between nicely 
filling compatibility checklists and paving the way to chaos. You will find that adding seemingly 
worthwhile features might expose the clients to costly risks. Much of the craft of implementing good smart 
pointers consists of carefully balancing their set of features. 

 

7.3 Storage of Smart Pointers 

To start, let's ask a fundamental question about smart pointers. Is pointee_'s type necessarily T*? If not, 
what else could it be? In generic programming, you should always ask yourself questions like these. Each 
type that's hardcoded in a piece of generic code decreases the genericity of the code. Hardcoded types are 
to generic code what magic constants are to regular code. 

In several situations, it is worthwhile to allow customizing the pointee type. One situation is when you deal 
with nonstandard pointer modifiers. In the 16-bit Intel 80x86 days, you could qualify pointers with 
modifiers like __near, __far, and __huge. Other segmented memory architectures use similar 
modifiers. 

Another situation is when you want to layer smart pointers. What if you have a LegacySmartPtr<T> 
smart pointer implemented by someone else, and you want to enhance it? Would you derive from it? That's 
a risky decision. It's better to wrap the legacy smart pointer into a smart pointer of your own. This is 
possible because the inner smart pointer supports pointer syntax. From the outer smart pointer's viewpoint, 
the pointee type is not T* but LegacySmartPtr<T>. 
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There are interesting applications of smart pointer layering, mainly because of the mechanics of 
operator->. When you apply operator-> to a type that's not a built-in pointer, the compiler does an 
interesting thing. After looking up and applying the user-defined operator-> to that type, it applies 
operator-> again to the result. The compiler keeps doing this recursively until it reaches a pointer to a 
built-in type, and only then proceeds with member access. It follows that a smart pointer's operator-> 
does not have to return a pointer. It can return an object that in turn implements operator->, without 
changing the use syntax. 

This leads to a very interesting idiom: pre-and postfunction calls (Stroustrup 2000). If you return an object 
of type PointerType by value from operator->, the sequence of execution is as follows: 

1. Constructor of PointerType 
2. PointerType::operator-> called; likely returns a pointer to an object of type 

PointeeType 
3. Member access for PointeeType—likely a function call 
4. Destructor of PointerType 

In a nutshell, you have a nifty way of implementing locked function calls. This idiom has broad uses with 
multithreading and locked resource access. You can have PointerType's constructor lock the resource, 
and then you can access the resource; finally, Pointer Type's destructor unlocks the resource. 

The generalization doesn't stop here. The syntax-oriented "pointer" part might sometimes pale in 
comparison with the powerful resource management techniques that are included in smart pointers. It 
follows that, in rare cases, smart pointers could drop the pointer syntax. An object that does not define 
operator-> and operator* violates the definition of a smart pointer, but there are objects that do 
deserve smart pointer–like treatment, although they are not, strictly speaking, smart pointers. 

Look at real-world APIs and applications. Many operating systems foster handles as accessors to certain 
internal resources, such as windows, mutexes, or devices. Handles are intentionally obfuscated pointers; 
one of their purposes is to prevent their users from manipulating critical operating system resources 
directly. Most of the time, handles are integral values that are indices in a hidden table of pointers. The 
table provides the additional level of indirection that protects the inner system from the application 
programmers. Although they don't provide an operator->, handles resemble pointers in semantics and 
in the way they are managed. 

For such a smart resource, it does not make sense to provide operator-> or operator*. However, you 
do take advantage of all the resource management techniques that are specific to smart pointers. 

To generalize the type universe of smart pointers, we distinguish three potentially distinct types in a smart 
pointer: 

• The storage type. This is the type of pointee_. By "default"—in regular smart pointers—it is a 
raw pointer. 

• The pointer type. This is the type returned by operator->. It can be different from the storage 
type if you want to return a proxy object instead of just a pointer. (You will find an example of 
using proxy objects later in this chapter.) 

• The reference type. This is the type returned by operator*. 

It would be useful if SmartPtr supported this generalization in a flexible way. Thus, the three types 
mentioned here ought to be abstracted in a policy called Storage. 

In conclusion, smart pointers can, and should, generalize their pointee type. To do this, SmartPtr 
abstracts three types in a Storage policy: the stored type, the pointer type, and the reference type. Not all 
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types necessarily make sense for a given SmartPtr instantiation. Therefore, in rare cases (handles), a 
policy might disable access to operator-> or operator* or both. 

 

7.4 Smart Pointer Member Functions 

Many existing smart pointer implementations allow operations through member functions, such as Get for 
accessing the pointee object, Set for changing it, and Release for taking over ownership. This is the 
obvious and natural way of encapsulating SmartPtr's functionality. 

However, experience has proven that member functions are not very suitable for smart pointers. The 
reason is that the interaction between member function calls for the smart pointer for the pointed-to object 
can be extremely confusing. 

Suppose, for instance, that you have a Printer class with member functions such as Acquire and 
Release. With Acquire you take ownership of the printer so that no other application prints to it, and 
with Release you relinquish ownership. As you use a smart pointer to Printer, you may notice a 
strange syntactical closeness to things that are very far apart semantically. 

SmartPtr<Printer> spRes = ...; 
spRes->Acquire(); // acquire the printer 
... print a document ... 
spRes->Release(); // release the printer 
spRes.Release();  // release the pointer to the printer 

The user of SmartPtr now has access to two totally different worlds: the world of the pointed-to object 
members and the world of the smart pointer members. A matter of a dot or an arrow thinly separates the 
two worlds. 

On the face of it, C++ does force you routinely to observe certain slight differences in syntax. A Pascal 
programmer learning C++ might even feel that the slight syntactic difference between & and && is an 
abomination. Yet C++ programmers don't even blink at it. They are trained by habit to distinguish such 
syntax matters easily. 

However, smart pointer member functions defeat training by habit. Raw pointers don't have member 
functions, so C++ programmers' eyes are not habituated to detect and distinguish dot calls from arrow calls. 
The compiler does a good job at that: If you use a dot after a raw pointer, the compiler will yield an error. 
Therefore, it is easy to imagine, and experience proves, that even seasoned C++ programmers find it 
extremely disturbing that both sp.Release() and sp->Release() compile flag-free but do very 
different things. The cure is simple: A smart pointer should not use member functions. SmartPtr uses 
only nonmember functions. These functions become friends of the smart pointer class. 

Overloaded functions can be just as confusing as member functions of smart pointers, but there is an 
important difference. C++ programmers already use overloaded functions. Overloading is an important 
part of the C++ language and is used routinely in library and application development. This means that 
C++ programmers do pay attention to differences in function call syntax—such as Release(*sp) versus 
Release(sp)—in writing and reviewing code. 

The only functions that necessarily remain members of SmartPtr are the constructors, the destructor, 
operator=, operator->, and unary operator*. All other operations of SmartPtr are provided 
through named nonmember functions. 
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For reasons of clarity, SmartPtr does not have any named member functions. The only functions that 
access the pointee object are GetImpl, GetImplRef, Reset, and Release, which are defined at the 
namespace level. 

template <class T> T* GetImpl(SmartPtr<T>& sp); 
template <class T> T*& GetImplRef(SmartPtr<T>& sp); 
template <class T> void Reset(SmartPtr<T>& sp, T* source); 
template <class T> void Release(SmartPtr<T>& sp, T*& destination); 

• GetImpl returns the pointer object stored by SmartPtr. 
• GetImplRef returns a reference to the pointer object stored by SmartPtr. GetImplRef 

allows you to change the underlying pointer, so it requires extreme care in use. 
• Reset resets the underlying pointer to another value, releasing the previous one. 
• Release releases ownership of the smart pointer, giving its user the responsibility of managing 

the pointee object's lifetime. 

The actual declarations of these four functions in Loki are slightly more elaborate. They don't assume that 
the type of the pointer object stored by SmartPtr is T*. As discussed in Section 7.3, the Storage policy 
defines the pointer type. Most of the time, it's a straight pointer, except in exotic implementations of 
Storage, when it might be a handle or an elaborate type. 

 

7.5 Ownership-Handling Strategies 

Ownership handling is often the most important raison d'âtre of smart pointers. Usually, from their clients' 
viewpoint, smart pointers own the objects to which they point. A smart pointer is a first-class value that 
takes care of deleting the pointed-to object under the covers. The client can intervene in the pointee 
object's lifetime by issuing calls to helper management functions. 

For implementing self-ownership, smart pointers must carefully track the pointee object, especially during 
copying, assignment, and destruction. Such tracking brings some overhead in space, time, or both. An 
application should settle on the strategy that best fits the problem at hand and does not cost too much. 

The following subsections discuss the most popular ownership management strategies and how SmartPtr 
implements them. 

7.5.1 Deep Copy 

The simplest strategy applicable is to copy the pointee object whenever you copy the smart pointer. If you 
ensure this, there is only one smart pointer for each pointee object. Therefore, the smart pointer's destructor 
can safely delete the pointee object. Figure 7.1 depicts the state of affairs if you use smart pointers with 
deep copy. 

Figure 7.1. Memory lay out for smart pointers with deep copy 
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At first glance, the deep copy strategy sounds rather dull. It seems as if the smart pointer does not add any 
value over regular C++ value semantics. Why would you make the effort of using a smart pointer, when 
simple pass by value of the pointee object works just as well? 

The answer is support for polymorphism. Smart pointers are vehicles for transporting polymorphic objects 
safely. You hold a smart pointer to a base class, which might actually point to a derived class. When you 
copy the smart pointer, you want to copy its polymorphic behavior, too. It's interesting that you don't 
exactly know what behavior and state you are dealing with, but you certainly need to duplicate that 
behavior and state. 

Because deep copy most often deals with polymorphic objects, the following naive implementation of the 
copy constructor is wrong: 

template <class T> 
class SmartPtr 
{ 
public: 
   SmartPtr(const SmartPtr& other) 
   : pointee_(new T(*other.pointee_)) 
   { 
   } 
   ... 
}; 

Say you copy an object of type SmartPtr<Widget>. If other points to an instance of a class 
ExtendedWidget that derives from Widget, the copy constructor above copies only the Widget part of 
the ExtendedWidget object. This phenomenon is known as slicing—only the Widget "slice" of the 
object of the presumably larger type ExtendedWidget gets copied. Slicing is most often undesirable. It 
is a pity that C++ allows slicing so easily—a simple call by value slices objects without any warning. 

Chapter 8 discusses cloning in depth. As shown there, the classic way of obtaining a polymorphic clone for 
a hierarchy is to define a virtual Clone function and implement it as follows: 

class AbstractBase 
{ 
   ... 
   virtual Base* Clone() = 0; 
}; 
 
 
class Concrete : public AbstractBase 
{ 
   ... 
   virtual Base* Clone() 
   { 
      return new Concrete(*this); 



 145

   } 
}; 

The Clone implementation must follow the same pattern in all derived classes; in spite of its repetitive 
structure, there is no reasonable way to automate defining the Clone member function (beyond macros, 
that is). 

A generic smart pointer cannot count on knowing the exact name of the cloning member function—maybe 
it's clone, or maybe MakeCopy. Therefore, the most flexible approach is to parameterize SmartPtr 
with a policy that addresses cloning. 

7.5.2 Copy on Write 

Copy on write (COW, as it is fondly called by its fans) is an optimization technique that avoids 
unnecessary object copying. The idea that underlies COW is to clone the pointee object at the first attempt 
of modification; until then, several pointers can share the same object. 

Smart pointers, however, are not the best place to implement COW, because smart pointers cannot 
differentiate between calls to const and non-const member functions of the pointee object. Here is an 
example: 

template <class T> 
class SmartPtr 
{ 
public: 
   T* operator->() { return pointee_; } 
   ... 
}; 
 
class Foo 
{ 
public: 
   void ConstFun() const; 
   void NonConstFun(); 
}; 
 
 
... 
SmartPtr<Foo> sp; 
sp->ConstFun(); // invokes operator->, then ConstFun 
sp->NonConstFun(); // invokes operator->, then NonConstFun 

The same operator-> gets invoked for both functions called; therefore, the smart pointer does not have 
any clue whether to make the COW or not. Function invocations for the pointee object happen somewhere 
beyond the reach of the smart pointer. (Section 7.11 explains how const interacts with smart pointers and 
the objects they point to.) 

In conclusion, COW is effective mostly as an implementation optimization for full-featured classes. Smart 
pointers are at too low a level to implement COW semantics effectively. Of course, smart pointers can be 
good building blocks in implementing COW for a class. 

The SmartPtr implementation in this chapter does not provide support for COW. 

7.5.3 Reference Counting 
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Reference counting is the most popular ownership strategy used with smart pointers. Reference counting 
tracks the number of smart pointers that point to the same object. When that number goes to zero, the 
pointee object is deleted. This strategy works very well if you don't break certain rules—for instance, you 
should not keep dumb pointers and smart pointers to the same object. 

The actual counter must be shared among smart pointer objects, leading to the structure depicted in Figure 
7.2. Each smart pointer holds a pointer to the reference counter (pRefCount_ in Figure 7.2) in addition to 
the pointer to the object itself. This usually doubles the size of the smart pointer, which may or may not be 
an acceptable amount of overhead, depending on your needs and constraints. 

Figure 7.2. Three reference counted smart pointers pointing to the same object 

 

There is another, subtler overhead issue. Reference-counted smart pointers must store the reference counter 
on the free store. The problem is that in many implementations, the default C++ free store allocator is 
remarkably slow and wasteful of space when it comes to allocating small objects, as discussed in Chapter 4. 
(Obviously, the reference count, typically occupying 4 bytes, does qualify as a small object.) The overhead 
in speed stems from slow algorithms in finding available chunks of memory, and the overhead in size is 
incurred by the bookkeeping information that the allocator holds for each chunk. 

The relative size overhead can be partially mitigated by holding the pointer and the reference count 
together, as in Figure 7.3. The structure in Figure 7.3 reduces the size of the smart pointer to that of a 
pointer, but at the expense of access speed: The pointee object is an extra level of indirection away. This is 
a considerable drawback because you typically use a smart pointer several times, whereas you obviously 
construct and destroy it only once. 

Figure 7.3. An alternate structure of reference counted pointers 
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The most efficient solution is to hold the reference counter in the pointee object itself, as shown in Figure 
7.4. This way SmartPtr is just the size of a pointer, and there is no extra overhead at all. This technique 
is known as intrusive reference counting, because the reference count is an "intruder" in the pointee—it 
semantically belongs to the smart pointer. The name also gives a hint about the Achilles' heel of the 
technique: You must design up front or modify the pointee class to support reference counting. 

Figure 7.4. Intrusive reference counting 

 

A generic smart pointer should use intrusive reference counting where available and implement a 
nonintrusive reference counting scheme as an acceptable alternative. For implementing nonintrusive 
reference counting, the small-object allocator presented in Chapter 4 can help a great deal. The SmartPtr 
implementation using nonintrusive reference counting leverages the small-object allocator, thus slashing 
the performance overhead caused by the reference counter. 

7.5.4 Reference Linking 

Reference linking relies on the observation that you don't really need the actual count of smart pointer 
objects pointing to one pointee object; you only need to detect when that count goes down to zero. This 
leads to the idea of keeping an "ownership list," as shown in Figure 7.5.[1] 

[1] Risto Lankinen described the reference-linking mechanism on the Usenet in November 1995. 

Figure 7.5. Reference linking in action 
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All SmartPtr objects that point to a given pointee form a doubly linked list. When you create a new 
SmartPtr from an existing SmartPtr, the new object is appended to the list; SmartPtr's destructor 
takes care of removing the destroyed object from the list. When the list becomes empty, the pointee object 
is deleted. 

The doubly linked list structure fits reference tracking like a glove. You cannot use a singly linked list 
because removals from such a list take linear time. You cannot use a vector because the SmartPtr objects 
are not contiguous (and removals from vectors take linear time anyway). You need a structure sporting 
constant-time append, constant-time remove, and constant-time empty detection. This bill is fit precisely 
and exclusively by doubly linked lists. 

In a reference-linking implementation, each SmartPtr object holds two extra pointers—one to the next 
element and one to the previous element. 

The advantage of reference linking over reference counting is that the former does not use extra free store, 
which makes it more reliable: Creating a reference-linked smart pointer cannot fail. The disadvantage is 
that reference linking needs more memory for its bookkeeping (three pointers versus only one pointer plus 
one integer). Also, reference counting should be a bit speedier—when you copy smart pointers, only an 
indirection and an increment are needed. The list management is slightly more elaborate. In conclusion, 
you should use reference linking only when the free store is scarce. Otherwise, prefer reference counting. 

To wrap up the discussion on reference count management strategies, let's note a significant disadvantage 
that they have. Reference management—be it counting or linking—is a victim of the resource leak known 
as cyclic reference. Imagine an object A holds a smart pointer to an object B. Also, object B holds a smart 
pointer to A. These two objects form a cyclic reference; even though you don't use any of them anymore, 
they use each other. The reference management strategy cannot detect such cyclic references, and the two 
objects remain allocated forever. The cycles can span multiple objects, closing circles that often reveal 
unexpected dependencies that are very hard to debug. 

In spite of this, reference management is a robust, speedy ownership-handling strategy. If used with 
precaution, reference management makes application development significantly easier. 
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7.5.5 Destructive Copy 

Destructive copy does exactly what you think it does: During copying, it destroys the object being copied. 
In the case of smart pointers, destructive copy destroys the source smart pointer by taking its pointee object 
and passing it to the destination smart pointer. The std::auto_ptr class template features destructive 
copy. 

In addition to being suggestive about the action taken, "destructive" also vividly describes the dangers 
associated with this strategy. Misusing destructive copy may have destructive effects on your program data, 
your program correctness, and your brain cells. 

Smart pointers may use destructive copy to ensure that at any time there is only one smart pointer pointing 
to a given object. During the copying or assignment of one smart pointer to another, the "living" pointer is 
passed to the destination of the copy, and the source's pointee_ becomes zero. The following code 
illustrates a copy constructor and an assignment operator of a simple SmartPtr featuring destructive copy. 

template <class T> 
class SmartPtr 
{ 
public: 
   SmartPtr(SmartPtr& src) 
   { 
      pointee_ = src.pointee_; 
      src.pointee_ = 0; 
   } 
   SmartPtr& operator=(SmartPtr& src) 
   { 
      if (this != &src) 
      { 
         delete pointee_; 
         pointee_ = src.pointee_; 
         src.pointee_ = 0; 
      } 
      return *this; 
   } 
   ... 
}; 

C++ etiquette calls for the right-hand side of the copy constructor and the assignment operator to be a 
reference to a const object. Classes that foster destructive copy break this convention for obvious reasons. 
Because etiquette exists for a reason, you should expect negative consequences if you break it. Indeed, 
here they are: 

void Display(SmartPtr<Something> sp); 
... 
SmartPtr<Something> sp(new Something); 
Display(sp);  // sinks sp 

Although Display means no harm to its argument (accepts it by value), it acts like a maelstrom of smart 
pointers: It sinks any smart pointer passed to it. After Display(sp) is called, sp holds the null pointer. 

Because they do not support value semantics, smart pointers with destructive copy cannot be stored in 
containers and in general must be handled with almost as much care as raw pointers. 

The ability to store smart pointers in a container is very important. Containers of raw pointers make 
manual ownership management tricky, so many containers of pointers can use smart pointers to good 
advantage. Smart pointers with destructive copy, however, do not mix with containers. 
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On the bright side, smart pointers with destructive copy have significant advantages: 

• They incur almost no overhead. 
• They are good at enforcing ownership transfer semantics. In this case, you use the "maelstrom 

effect" described earlier to your advantage: You make it clear that your function takes over the 
passed-in pointer. 

• They are good as return values from functions. If the smart pointer implementation uses a certain 
trick,[2] you can return smart pointers with destructive copy from functions. This way, you can be 
sure that the pointee object gets destroyed if the caller doesn't use the return value. 

[2] Invented by Greg Colvin and Bill Gibbons for std::auto_ptr. 

• They are excellent as stack variables in functions that have multiple return paths. You don't have 
to remember to delete the pointee object manually—the smart pointer takes care of this for you. 

The destructive copy strategy is used by the standard-provided std::auto_ptr. This brings destructive 
copy another important advantage: 

• Smart pointers with destructive copy semantics are the only smart pointers that the standard 
provides, which means that many programmers will get used to their behavior sooner or later. 

For these reasons, the SmartPtr implementation should provide optional support for destructive copy 
semantics. 

Smart pointers use various ownership semantics, each having its own trade-offs. The most important 
techniques are deep copy, reference counting, reference linking, and destructive copy. SmartPtr 
implements all these strategies through an Ownership policy, allowing its users to choose the one that best 
fits an application's needs. The default strategy is reference counting. 

 

7.6 The Address-of Operator 

In striving to make smart pointers as indistinguishable as possible from their native counterparts, designers 
stumbled upon an obscure operator that is on the list of overloadable operators: unary operator&, the 
address-of operator.[3] 

[3] Unary operator& is to differentiate it from binary operator&, which is the bitwise AND operator. 

An implementer of smart pointers might choose to overload the address-of operator like this: 

template <class T> 
class SmartPtr 
{ 
public: 
   T** operator&() 
   { 
      return &pointee_; 
   } 
   ... 
}; 

After all, if a smart pointer is to simulate a pointer, then its address must be substitutable for the address of 
a regular pointer. This overload makes code like the following possible: 
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void Fun(Widget** pWidget); 
... 
SmartPtr<Widget> spWidget(...); 
Fun(&spWidget); // okay, invokes operator* and obtains a 
                // pointer to pointer to Widget 

It seems very desirable to have such an accurate compatibility between smart pointers and dumb pointers, 
but overloading the unary operator& is one of those clever tricks that can do more harm than good. 
There are two reasons why overloading unary operator& is not a very good idea. 

One reason is that exposing the address of the pointed-to object implies giving up any automatic ownership 
management. When a client freely accesses the address of the raw pointer, any helper structures that the 
smart pointer holds, such as reference counts, become invalid for all purposes. While the client deals 
directly with the address of the raw pointer, the smart pointer is completely unconscious. 

The second reason, a more pragmatic one, is that overloading unary operator& makes the smart pointer 
unusable with STL containers. Actually, overloading unary operator& for a type pretty much makes 
generic programming impossible for that type, because the address of an object is too fundamental a 
property to play with naively. Most generic code assumes that applying & to an object of type T returns an 
object of type T*—you see, address-of is a fundamental concept. If you defy this concept, generic code 
behaves strangely either at compile time or—worse—at runtime. 

Thus, it is not recommended that unary operator& be overloaded for smart pointers or for any objects in 
general. SmartPtr does not overload unary operator&. 

 

7.7 Implicit Conversion to Raw Pointer Types 

Consider this code: 

void Fun(Something* p); 
... 
SmartPtr<Something> sp(new Something); 
Fun(sp); // OK or error? 

Should this code compile or not? Following the "maximum compatibility" line of thought, the answer is 
yes. 

Technically, it is very simple to render the previous code compilable by introducing a user-defined 
conversion: 

template <class T> 
class SmartPtr 
{ 
public: 
   operator T*() // user-defined conversion to T* 
   { 
      return pointee_; 
   } 
   ... 
}; 

However, this is not the end of the story. 
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User-defined conversions in C++ have an interesting history. Back in the 1980s, when user-defined 
conversions were introduced, most programmers considered them a great invention. User-defined 
conversions promised a more unified type system, expressive semantics, and the ability to define new 
types that were indistinguishable from built-in ones. With time, however, user-defined conversions 
revealed themselves as awkward and potentially dangerous. They might become dangerous especially 
when they expose handles to internal data (Meyers 1998a, Item 29), which is precisely the case with the 
operator T* in the previous code. That's why you should think carefully before allowing automatic 
conversions for the smart pointers you design. 

One potential danger comes inherently from giving the user unattended access to the raw pointer that the 
smart pointer wraps. Passing the raw pointer around defeats the inner workings of the smart pointer. Once 
unleashed from the confines of its wrapper, the raw pointer can easily become a threat to program sanity 
again, just as it was before smart pointers were introduced. 

Another danger is that user-defined conversions pop up unexpectedly, even when you don't need them. 
Consider the following code: 

SmartPtr<Something> sp; 
... 
// A gross semantic error 
// However, it goes undetected at compile time 
delete sp; 

The compiler matches operator delete with the user-defined conversion to T*. At runtime, operator 
T* is called, and delete is applied to its result. This is certainly not what you want to do to a smart 
pointer, because it is supposed to manage ownership itself. An extra unwitting delete call throws out the 
window all the careful ownership management that the smart pointer performs under the covers. 

There are quite a few ways to prevent the delete call from compiling. Some of them are very ingenious 
(Meyers 1996). One that's very effective and easy to implement is to make the call to delete 
intentionally ambiguous. You can achieve this by providing two automatic conversions to types that are 
susceptible to a call to delete. One type is T* itself, and the other can be void*. 

template <class T> 
class SmartPtr 
{ 
public: 
   operator T*() // User-defined conversion to T* 
   { 
      return pointee_; 
   } 
   operator void*() // Added conversion to void* 
   { 
      return pointee_; 
   } 
   ... 
}; 

A call to delete against such a smart pointer object is ambiguous. The compiler cannot decide which 
conversion to apply, and the trick above exploits this indecision to good advantage. 

Don't forget that disabling the delete operator was only a part of the issue. Whether to provide an 
automatic conversion to a raw pointer remains an important decision in implementing a smart pointer. It's 
too dangerous just to let it in, yet too convenient to rule it out. The final SmartPtr implementation will 
give you a choice about that. 
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However, forbidding implicit conversion does not necessarily eliminate all access to the raw pointer; it is 
often necessary to gain such access. Therefore, all smart pointers do provide explicit access to their 
wrapped pointer via a call to a function: 

void Fun(Something* p); 
... 
SmartPtr<Something> sp; 
Fun(GetImpl(sp)); // OK, explicit conversion always allowed 

It's not a matter of whether you can get to the wrapped pointer; it's how easy it is. This may seem like a 
minor difference, but it's actually very important. An implicit conversion happens without the programmer 
or the maintainer noticing or even knowing it. An explicit conversion—as is the call to GetImpl—passes 
through the mind, the understanding, and the fingers of the programmer and remains written in the code for 
everybody to see it. 

Implicit conversion from the smart pointer type to the raw pointer type is desirable, but sometimes 
dangerous. SmartPtr provides this implicit conversion as a choice. The default is on the safe side—no 
implicit conversions. Explicit access is always available through the GetImpl function. 

 

7.8 Equality and Inequality 

C++ teaches its users that any clever trick such as the one presented in the previous section (intentional 
ambiguity) establishes a new context, which in turn may have unexpected ripples. 

Consider tests for equality and inequality of smart pointers. A smart pointer should support the same 
comparison syntax that raw pointers support. Programmers expect the following tests to compile and run 
as they do for a raw pointer. 

SmartPtr<Something> sp1, sp2; 
Something* p; 
... 
if (sp1)  // Test 1: direct test for non-null pointer 
   ... 
if (!sp1)    // Test 2: direct test for null pointer 
   ... 
if (sp1 == 0)   // Test 3: explicit test for null pointer 
   ... 
if (sp1 == sp2) // Test 4: comparison of two smart pointers 
   ... 
if (sp1 == p)   // Test 5: comparison with a raw pointer 
   ... 

There are more tests than depicted here if you consider symmetry and operator!=. If we solve the 
equality tests, we can easily define the corresponding symmetric and inequality tests. 

There is an unfortunate interference between the solution to the previous issue (preventing delete from 
compiling) and a possible solution to this issue. With one user-defined conversion to the pointee type, most 
of the test expressions (except test 4) compile successfully and run as expected. The downside is that you 
can accidentally call the delete operator against the smart pointer. With two user-defined conversions 
(intentional ambiguity), you detect wrongful delete calls, but none of these tests compiles anymore—
they have become ambiguous too. 

An additional user-defined conversion to bool helps, but this, to nobody's surprise, introduces new trouble. 
Given this smart pointer: 
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template <class T> 
class SmartPtr 
{ 
public: 
   operator bool() const 
   { 
      return pointee_ != 0; 
   } 
   ... 
}; 

the four tests compile, but so do the following nonsensical operations: 

SmartPtr<Apple> sp1; 
SmartPtr<Orange> sp2; // Orange is unrelated to Apple 
if (sp1 == sp2)       // Converts both pointers to bool 
                      // and compares results 
   ... 
if (sp1 != sp2)       // Ditto 
   ... 
bool b = sp1;         // The conversion allows this, too 
if (sp1 * 5 == 200)   // Ouch! SmartPtr behaves like an integral 
                      // type! 
   ... 

As you can see, it's either not at all or too much: Once you add a user-defined conversion to bool, you 
allow SmartPtr to act as a bool in many more situations than you actually wanted. For all practical 
purposes, defining an operator bool for a smart pointer is not a smart solution. 

A true, complete, rock-solid solution to this dilemma is to go all the way and overload each and every 
operator separately. This way any operation that makes sense for the bare pointer makes sense for the 
smart pointer, and nothing else. Here is the code that implements this idea. 

template <class T> 
class SmartPtr 
{ 
public: 
   bool operator!() const // Enables "if (!sp) ..." 
   { 
      return pointee_ == 0; 
   } 
   inline friend bool operator==(const SmartPtr& lhs, 
      const T* rhs) 
   { 
      return lhs.pointee_ == rhs; 
   } 
   inline friend bool operator==(const T* lhs, 
      const SmartPtr& rhs) 
   { 
      return lhs == rhs.pointee_; 
   } 
   inline friend bool operator!=(const SmartPtr& lhs, 
      const T* rhs) 
   { 
      return lhs.pointee_ != rhs; 
   } 
   inline friend bool operator!=(const T* lhs, 
      const SmartPtr& rhs) 
   { 
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      return lhs != rhs.pointee_; 
   } 
   ... 
}; 

Yes, it's a pain, but this approach solves the problems with almost all comparisons, including the tests 
against the literal zero. What the forwarding operators in this code do is to pass operators that client code 
applies to the smart pointer on to the raw pointer that the smart pointer wraps. No simulation can be more 
realistic than that. 

We still haven't solved the problem completely. If you provide an automatic conversion to the pointee type, 
there still is the risk of ambiguities. Suppose you have a class Base and a class Derived that inherits 
Base. Then the following code makes practical sense yet is ill formed due to ambiguity. 

SmartPtr<Base> sp; 
Derived* p; 
... 
if (sp == p) {}  // error! Ambiguity between: 
                 // '(Base*)sp == (Base*)p' 
                 // and 'operator==(sp, (Base*)p)' 

Indeed, smart pointer development is not for the faint of heart. 

We're not out of bullets, though. In addition to the definitions of operator== and operator!=, we can 
add templated versions of them, as you can see in the following code: 

template <class T> 
class SmartPtr 
{ 
public: 
   ... as above ... 
   template <class U> 
   inline friend bool operator==(const SmartPtr& lhs, 
      const U* rhs) 
   { 
      return lhs.pointee_ == rhs; 
   } 
   template <class U> 
   inline friend bool operator==(const U* lhs, 
      const SmartPtr& rhs) 
   { 
      return lhs == rhs.pointee_; 
   } 
   ... similarly defined operator!= ... 
}; 

The templated operators are "greedy" in the sense that they match comparisons with any pointer type 
whatsoever, thus consuming the ambiguity. 

If that's the case, why should we keep the nontemplated operators—the ones that take the pointee type? 
They never get a chance to match, because the template matches any pointer type, including the pointee 
type itself. 

The rule that "never" actually means "almost never" applies here, too. In the test if (sp == 0), the 
compiler tries the following matches. 
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• The templated operators. They don't match because zero is not a pointer type. A literal zero can be 
implicitly converted to a pointer type, but template matching does not include conversions. 

• The nontemplated operators. After eliminating the templated operators, the compiler tries the 
nontemplated ones. One of these operators kicks in through an implicit conversion from the literal 
zero to the pointee type. Had the nontemplated operators not existed, the test would have been an 
error. 

In conclusion, we need both the nontemplated and the templated comparison operators. 

Let's see now what happens if we compare two SmartPtrs instantiated with different types. 

SmartPtr<Apple> sp1; 
SmartPtr<Orange> sp2; 
if (sp1 == sp2) 
   ... 

The compiler chokes on the comparison because of an ambiguity: Each of the two SmartPtr 
instantiations defines an operator==, and the compiler does not know which one to choose. We can 
dodge this problem by defining an "ambiguity buster" as shown: 

template <class T> 
class SmartPtr 
{ 
public: 
   // Ambiguity buster 
   template <class U> 
   bool operator==(const SmartPtr<U>& rhs) const 
   { 
      return pointee_ == rhs.pointee_; 
   } 
   // Similarly for operator!= 
   ... 
}; 

This newly added operator is a member that specializes exclusively in comparing SmartPtr<...> 
objects. The beauty of this ambiguity buster is that it makes smart pointer comparisons act like raw pointer 
comparisons. If you compare two smart pointers to Apple and Orange, the code will be essentially 
equivalent to comparing two raw pointers to Apple and Orange. If the comparison makes sense, then the 
code compiles; otherwise, it's a compile-time error. 

SmartPtr<Apple> sp1; 
SmartPtr<Orange> sp2; 
if (sp1 == sp2)   // Semantically equivalent to 
                  // sp1.pointee_ == sp2.pointee_ 
   ... 

There is one unsatisfied syntactic artifact left, namely, the direct test if (sp). Here life becomes really 
interesting. The if statement applies only to expressions of arithmetic and pointer type. Consequently, to 
allow if (sp) to compile, we must define an automatic conversion to either an arithmetic or a pointer 
type. 

A conversion to arithmetic type is not recommended, as the earlier experience with operator bool 
witnesses. A pointer is not an arithmetic type, period. A conversion to a pointer type makes a lot more 
sense, and here the problem branches. 



 157

If you want to provide automatic conversions to the pointee type (see previous section), then you have two 
choices: Either you risk unattended calls to operator delete, or you forgo the if (sp) test. The 
tiebreaker is between the lack of convenience and a risky life. The winner is safety, so you cannot write if 
(sp). Instead, you can choose between if(sp != 0) and the more baroque if (!!sp). End of story. 

If you don't want to provide automatic conversions to the pointee type, there is an interesting trick you can 
use to make if (sp) possible. Inside the SmartPtr class template, define an inner class Tester and 
define a conversion to Tester*, as shown in the following code: 

template <class T> 
class SmartPtr 
{ 
   class Tester 
   { 
      void operator delete(void*); 
   }; 
public: 
   operator Tester*() const 
   { 
      if (!pointee_) return 0; 
      static Tester test; 
      return &test; 
   } 
   ... 
}; 

Now if you write if (sp), operator Tester* enters into action. This operator returns a null value if 
and only if pointee_ is null. Tester itself disables operator delete, so if somebody calls delete sp, 
a compile-time error occurs. Interestingly, Tester's definition itself lies in the private part of SmartPtr, 
so the client code cannot do anything else with it. 

SmartPtr addresses the issue of tests for equality and inequality as follows: 

• Define operator== and operator!= in two flavors (templated and nontemplated). 
• Define operator!. 
• If you allow automatic conversion to the pointee type, then define an additional conversion to 

void* to ambiguate a call to the delete operator intentionally; otherwise, define a private inner 
class Tester that declares a private operator delete, and define a conversion to Tester* 
for SmartPtr that returns a null pointer if and only if the pointee object is null. 

 

7.9 Ordering Comparisons 

The ordering comparison operators are operator<, operator<=, operator>, and operator>=. You 
can implement them all in terms of operator<. 

Whether to allow ordering of smart pointers is an interesting question in and of itself and relates to the dual 
nature of pointers, which consistently confuses programmers. Pointers are two concepts in one: iterators 
and monikers. The iterative nature of pointers allows you to walk through an array of objects using a 
pointer. Pointer arithmetic, including comparisons, supports this iterative nature of pointers. At the same 
time, pointers are monikers—inexpensive object representatives that can travel quickly and access the 
objects in a snap. The dereferencing operators * and -> support the moniker concept. 
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The two natures of pointers can be confusing at times, especially when you need only one of them. For 
operating with a vector, you might use both iteration and dereferencing, whereas for walking through a 
linked list or for manipulating individual objects, you use only dereferencing. 

Ordering comparisons for pointers is defined only when the pointers belong to the same contiguous 
memory. In other words, you can use ordering comparisons only for pointers that point to elements in the 
same array. 

Defining ordering comparisons for smart pointers boils down to this question: Do smart pointers to the 
objects in the same array make sense? On the face of it, the answer is no. Smart pointers' main feature is to 
manage object ownership, and objects with separate ownership do not usually belong to the same array. 
Therefore, it would be dangerous to allow users to make nonsensical comparisons. 

If you really need ordering comparisons, you can always use explicit access to the raw pointer. The issue 
here is, again, to find the safest and most expressive behavior for most situations. 

The previous section concludes that an implicit conversion to a raw pointer type is optional. If 
SmartPtr's client chooses to allow implicit conversion, the following code compiles: 

SmartPtr<Something> sp1, sp2; 
if (sp1 < sp2) // Converts sp1 and sp2 to raw pointer type, 
               // then performs the comparison 
... 

This means that if we want to disable ordering comparisons, we must be proactive, disabling them 
explicitly. A way of doing this is to declare them and never define them, which means that any use will 
trigger a link-time error. 

template <class T> 
class SmartPtr 
{ ... }; 
 
template <class T, class U> 
bool operator<(const SmartPtr<T>&, const U&); // Not defined 
template <class T, class U> 
bool operator<(const T&, const SmartPtr<U>&); // Not defined 

However, it is wiser to define all other operators in terms of operator<, as opposed to leaving them 
undefined. This way, if SmartPtr's users think it's best to introduce smart pointer ordering, they need 
only define operator<. 

// Ambiguity buster 
template <class T, class U> 
bool operator<(const SmartPtr<T>& lhs, const SmartPtr<U>& rhs) 
{ 
   return lhs < GetImpl(rhs); 
} 
// All other operators 
template <class T, class U> 
bool operator>(SmartPtr<T>& lhs, const U& rhs) 
{ 
   return rhs < lhs; 
} 
... similarly for the other operators ... 

Note the presence, again, of an ambiguity buster. Now if some library user thinks that 
SmartPtr<Widget> should be ordered, the following code is the ticket: 
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inline bool operator<(const SmartPtr<Widget>& lhs, 
   const Widget* rhs) 
{ 
   return GetImpl(lhs) < rhs; 
} 
 
inline bool operator<(const Widget* lhs, 
   const SmartPtr<Widget>& rhs) 
{ 
   return lhs < GetImpl(rhs); 
} 

It's a pity that the user must define two operators instead of one, but it's so much better than defining eight. 

This would conclude the issue of ordering, were it not for an interesting detail. Sometimes it is very useful 
to have an ordering of arbitrarily located objects, not just objects belonging to the same array. For example, 
you might need to store supplementary per-object information, and you need to access that information 
quickly. A map ordered by the address of objects is very effective for such a task. 

Standard C++ helps in implementing such designs. Although pointer comparison for arbitrarily located 
objects is undefined, the standard guarantees that std::less yields meaningful results for any two 
pointers of the same type. Because the standard associative containers use std::less as the default 
ordering relationship, you can safely use maps that have pointers as keys. 

SmartPtr should support this idiom, too; therefore, SmartPtr specializes std::less. The 
specialization simply forwards the call to std::less for regular pointers: 

namespace std 
{ 
   template <class T> 
   struct less<SmartPtr<T> > 
      : public binary_function<SmartPtr<T>, SmartPtr<T>, bool> 
   { 
      bool operator()(const SmartPtr<T>& lhs, 
         const SmartPtr<T>& rhs) const 
      { 
         return less<T*>()(GetImpl(lhs), GetImpl(rhs)); 
      } 
   }; 
} 

In summary, SmartPtr does not define ordering operators by default. It declares—without 
implementing—two generic operator<s and implements all other ordering operators in terms of 
operator<. The user can define either specialized or generic versions of operator<. 

SmartPtr specializes std::less to provide an ordering of arbitrary smart pointer objects. 

 

7.10 Checking and Error Reporting 

Applications need various degrees of safety from smart pointers. Some programs are computation-
intensive and must be optimized for speed, whereas some others (actually, most) are input/output intensive, 
which allows better runtime checking without degrading performance. 
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Most often, right inside an application, you might need both models: low safety/high speed in some critical 
areas, and high safety/lower speed elsewhere. 

We can divide checking issues with smart pointers into two categories: initialization checking and 
checking before dereference. 

7.10.1 Initialization Checking 

Should a smart pointer accept the null (zero) value? 

It is easy to implement a guarantee that a smart pointer cannot be null, and it may be very useful in practice. 
It means that any smart pointer is always valid (unless you fiddle with the raw pointer by using 
GetImplRef). The implementation is easy with the help of a constructor that throws an exception if 
passed a null pointer. 

template <class T> 
class SmartPtr 
{ 
public: 
   SmartPtr(T* p) : pointee_(p) 
   { 
      if (!p) throw NullPointerException(); 
   } 
   ... 
}; 

On the other hand, the null value is a convenient "not a valid pointer" placeholder and can often be useful. 

Whether to allow null values affects the default constructor, too. If the smart pointer doesn't allow null 
values, then how would the default constructor initialize the raw pointer? The default constructor could be 
lacking, but that would make smart pointers harder to deal with. For example, what should you do when 
you have a SmartPtr member variable but don't have an appropriate initializer for it at construction time? 
In conclusion, customizing initialization involves providing an appropriate default value. 

7.10.2 Checking Before Dereference 

Checking before dereference is important because dereferencing the null pointer engenders undefined 
behavior. For many applications, undefined behavior is not acceptable, so checking the pointer for validity 
before dereference is the way to go. Checks before de reference belong to SmartPtr's operator-> and 
unary operator*. 

In contrast to the initialization check, the check before dereference can become a major performance 
bottleneck in your application, because typical applications use (dereference) smart pointers much more 
often than they create smart pointer objects. Therefore, you should keep a balance between safety and 
speed. A good rule of thumb is to start with rigorously checked pointers and remove checks from selected 
smart pointers as profiling demonstrates a need for it. 

Can initialization checking and checking before dereference be conceptually separated? No, because there 
are links between them. If you enforce strict checking upon initialization, then checking before dereference 
becomes redundant because the pointer is always valid. 

7.10.3 Error Reporting 

The only sensible choice for reporting an error is to throw an exception. 
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You can do something in the sense of avoiding errors. For example, if a pointer is null upon dereference, 
you can initialize it on the fly. This is a valid and valuable strategy called lazy initialization—you construct 
the value only when you first need it. 

If you want to check things only during debugging, you can use the standard assert or similar, more 
sophisticated macros. The compiler ignores the tests in release mode, so, assuming you remove all null 
pointer errors during debugging, you reap the advantages of both checking and speed. 

SmartPtr migrates checking to a dedicated Checking policy. This policy implements checking functions 
(which can optionally provide lazy initialization) and the error reporting strategy. 

 

7.11 Smart Pointers to const and const Smart Pointers 

Raw pointers allow two kinds of constness: the constness of the pointed-to object and that of the 
pointer itself. The following is an illustration of these two attributes: 

const Something* pc = new Something; // points to const object 
pc->ConstMemberFunction(); // ok 
pc->NonConstMemberFunction(); // error 
delete pc; // ok (surprisingly)[4] 
Something* const cp = new Something; // const pointer 
cp->NonConstMemberFunction(); // ok 
cp = new Something; // error, can't assign to const pointer 
const Something* const cpc = new Something; // const, points to const 
cpc->ConstMemberFunction(); // ok 
cpc->NonConstMemberFunction(); // error 
cpc = new Something; // error, can't assign to const pointer 

[4] Every once in a while, the question "Why can you apply the delete operator to pointers to const?" 
starts a fierce debate in the comp.std.c++ newsgroup. The fact is, for better or worse, the language allows it. 

The corresponding uses of SmartPtr look like this: 

// Smart pointer to const object 
SmartPtr<const Something> spc(new Something); 
// const smart pointer 
const SmartPtr<Something> scp(new Something); 
// const smart pointer to const object 
const SmartPtr<const Something> scpc(new Something); 

The SmartPtr class template can detect the constness of the pointed-to object either through partial 
specialization or by using the TypeTraits template defined in Chapter 2. The latter method is preferable 
because it does not incur source-code duplication as partial specialization does. 

SmartPtr imitates the semantics of pointers to const objects, const pointers, and the combinations 
thereof. 

 

7.12 Arrays 
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In most cases, instead of dealing with heap-allocated arrays and using new[] and delete[], you're 
better off with std::vector. The standard-provided std::vector class template provides everything 
that dynamically allocated arrays provide, plus much more. The extra overhead incurred is negligible in 
most cases. 

However, "most cases" is not "always." There are many situations in which you don't need and don't want 
a full-fledged vector; a dynamically allocated array is exactly what you need. It is awkward in these cases 
to be unable to exploit smart pointer capabilities. There is a certain gap between the sophisticated 
std::vector and dynamically allocated arrays. Smart pointers could close that gap by providing array 
semantics if the user needs them. 

From the viewpoint of a smart pointer to an array, the only important issue is to call delete[] 
pointee_ in its destructor instead of delete pointee_. This issue is already tackled by the 
Ownership policy. 

A secondary issue is providing indexed access, by overloading operator[] for smart pointers. This is 
technically feasible; in fact, a preliminary version of SmartPtr did provide a separate policy for optional 
array semantics. However, only in very rare cases do smart pointers point to arrays. In those cases, there 
already is a way of providing indexed accessing if you use GetImpl: 

SmartPtr<Widget> sp = ...; 
// Access the sixth element pointed to by sp 
Widget& obj = GetImpl(sp)[5]; 

It seems like a bad decision to strive to provide extra syntactic convenience at the expense of introducing a 
new policy. 

SmartPtr supports customized destruction via the Ownership policy. You can therefore arrange array-
specific destruction via delete[]. However, SmartPtr does not provide pointer arithmetic. 

 

7.13 Smart Pointers and Multithreading 

Most often, smart pointers help with sharing objects. Multithreading issues affect object sharing. Therefore, 
multithreading issues affect smart pointers. 

The interaction between smart pointers and multithreading takes place at two levels. One is the pointee 
object level, and the other is the bookkeeping data level. 

7.13.1 Multithreading at the Pointee Object Level 

If multiple threads access the same object and if you access that object through a smart pointer, it can be 
desirable to lock the object during a function call made through operator->. This is possible by having 
the smart pointer return a proxy object instead of a raw pointer. The proxy object's constructor locks the 
pointee object, and its destructor unlocks it. The technique is illustrated in Stroustrup (2000). Some code 
that illustrates this approach is provided here. 

First, let's consider a class Widget that has two locking primitives: Lock and Unlock. After a call to 
Lock, you can access the object safely. Any other threads calling Lock will block. When you call 
Unlock, you let other threads lock the object. 

class Widget 
{ 
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   ... 
   void Lock(); 
   void Unlock(); 
}; 

Next, we define a class template LockingProxy. Its role is to lock an object (using the Lock/Unlock 
convention) for the duration of LockingProxy's lifetime. 

template <class T> 
class LockingProxy 
{ 
public: 
   LockingProxy(T* pObj) : pointee_ (pObj) 
   { pointee_->Lock(); } 
   ~LockingProxy() 
   { pointee_->Unlock(); } 
   T* operator->() const 
   { return pointee_; } 
private: 
   LockingProxy& operator=(const LockingProxy&); 
   T* pointee_; 
}; 

In addition to the constructor and destructor, LockingProxy defines an operator-> that returns a 
pointer to the pointee object. 

Although LockingProxy looks somewhat like a smart pointer, there is one more layer to it—the 
SmartPtr class template itself. 

template <class T> 
class SmartPtr 
{ 
   ... 
   LockingProxy<T> operator->() const 
   { return LockingProxy<T>(pointee_); } 
private: 
   T* pointee_; 
}; 

Recall from Section 7.3, which explains the mechanics of operator->, that the compiler can apply 
operator-> multiple times to one -> expression, until it reaches a native pointer. Now imagine you 
issue the following call (assuming Widget defines a function DoSomething): 

SmartPtr<Widget> sp = ...; 
sp->DoSomething(); 

Here's the trick: SmartPtr's operator-> returns a temporary LockingProxy<T> object. The 
compiler keeps applying operator->. LockingProxy<T>'s operator-> returns a Widget*. The 
compiler uses this pointer to Widget to issue the call to DoSomething. During the call, the temporary 
object LockingProxy<T> is alive and locks the object, which means that the object is safely locked. As 
soon as the call to DoSomething returns, the temporary LockingProxy<T> object is destroyed, so the 
Widget object is unlocked. 

Automatic locking is a good application of smart pointer layering. You can layer smart pointers this way 
by changing the Storage policy. 
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7.13.2 Multithreading at the Bookkeeping Data Level 

Sometimes smart pointers manipulate data in addition to the pointee object. As you read in Section 7.5, 
reference-counted smart pointers share some data—namely the reference count—under the covers. If you 
copy a reference-counted smart pointer from one thread to another, you end up having two smart pointers 
pointing to the same reference counter. Of course, they also point to the same pointee object, but that's 
accessible to the user, who can lock it. In contrast, the reference count is not accessible to the user, so 
managing it is entirely the responsibility of the smart pointer. 

Not only reference-counted pointers are exposed to multithreading-related dangers. Reference-tracked 
smart pointers (Section 7.5.4) internally hold pointers to each other, which are shared data as well. 
Reference linking leads to communities of smart pointers, not all of which necessarily belong to the same 
thread. Therefore, every time you copy, assign, and destroy a reference-tracked smart pointer, you must 
issue appropriate locking; otherwise, the doubly linked list might get corrupted. 

In conclusion, multithreading issues ultimately affect smart pointers' implementation. Let's see how to 
address the multithreading issue in reference counting and reference linking. 

7.13.2.1 Multithreaded Reference Counting 

If you copy a smart pointer between threads, you end up incrementing the reference count from different 
threads at unpredictable times. 

As the appendix explains, incrementing a value is not an atomic operation. For incrementing and 
decrementing integral values in a multithreaded environment, you must use the type 
ThreadingModel<T>::IntType and the AtomicIncrement and AtomicDecrement functions. 

Here things become a bit tricky. Better said, they become tricky if you want to separate reference counting 
from threading. 

Policy-based class design prescribes that you decompose a class into elementary behavioral elements and 
confine each of them to a separate template parameter. In an ideal world, SmartPtr would specify an 
Ownership policy and a ThreadingModel policy and would use them both for a correct implementation. 

In the case of multithreaded reference counting, however, things are much too tied together. For example, 
the counter must be of type ThreadingModel<T>::IntType. Then, instead of using operator++ 
and operator——, you must use AtomicIncrement and AtomicDecrement. Threading and reference 
counting melt together; it is unjustifiably hard to separate them. 

The best thing to do is to incorporate multithreading in the Ownership policy. Then you can have two 
implementations: RefCounting and RefCountingMT. 

7.13.2.2 Multithreaded Reference Linking 

Consider the destructor of a reference-linked smart pointer. It likely looks like this: 

template <class T> 
class SmartPtr 
{ 
public: 
   ~SmartPtr() 
   { 
      if (prev_ == next_) 
      { 
         delete pointee_; 
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      } 
      else 
      { 
         prev_->next_ = next_; 
         next_->prev_ = prev_; 
      } 
   } 
   ... 
private: 
   T* pointee_; 
   SmartPtr* prev_; 
   SmartPtr* next_; 
}; 

The code in the destructor performs a classic doubly linked list deletion. To make implementation simpler 
and faster, the list is circular—the last node points to the first node. This way we don't have to test prev_ 
and next_ against zero for any smart pointer. A circular list with only one element has prev_ and next_ 
equal to this. 

If multiple threads destroy smart pointers that are linked to each other, clearly the destructor must be 
atomic (uninterruptible by other threads). Otherwise, another thread can interrupt the destructor of a 
SmartPtr, for instance, between updating prev_->next_ and updating next_->prev_. That thread 
will then operate on a corrupt list. 

Similar reasoning applies to SmartPtr's copy constructor and the assignment operator. These functions 
must be atomic because they manipulate the ownership list. 

Interestingly enough, we cannot apply object-level locking semantics here. The appendix divides locking 
strategies into class-level and object-level strategies. A class-level locking operation locks all objects in a 
given class during that operation. An object-level locking operation locks only the object that's subject to 
that operation. The former technique leads to less memory being occupied (only one mutex per class) but 
is exposed to performance bottlenecks. The latter is heavier (one mutex per object) but might be speedier. 

We cannot apply object-level locking to smart pointers because an operation manipulates up to three 
objects: the current object that's being added or removed, the previous object, and the next object in the 
ownership list. 

If we want to introduce object-level locking, the starting observation is that there must be one mutex per 
pointee object—because there's one list per pointee object. We can dynamically allocate a mutex for each 
object, but this nullifies the main advantage of reference linking over reference counting. Reference 
linking was more appealing exactly because it didn't use the free store. 

Alternatively, we can use an intrusive approach: The pointee object holds the mutex, and the smart pointer 
manipulates that mutex. But the existence of a sound, effective alternative—reference-counted smart 
pointers—removes the incentive to provide this feature. 

In summary, smart pointers that use reference counting or reference linking are affected by multithreading 
issues. Thread-safe reference counting needs integer atomic operations. Thread-safe reference linking 
needs mutexes. SmartPtr provides only thread-safe reference counting. 

 

7.14 Putting It All Together 
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Not much to go! Here comes the fun part. So far we have treated each issue in isolation. It's now time to 
collect all the decisions into a unique SmartPtr implementation. 

The strategy we'll use is the one described in Chapter 1: policy-based class design. Each design aspect that 
doesn't have a unique solution migrates to a policy. The SmartPtr class template accepts each policy as a 
separate template parameter. SmartPtr inherits all these template parameters, allowing the corresponding 
policies to store state. 

Let's recap the previous sections by enumerating the variation points of SmartPtr. Each variation point 
translates into a policy. 

• Storage policy (Section 7.3). By default, the stored type is T* (T is the first template parameter of 
SmartPtr), the pointer type is again T*, and the reference type is T&. The means of destroying 
the pointee object is the delete operator. 

• Ownership policy (Section 7.5). Popular implementations are deep copy, reference counting, 
reference linking, and destructive copy. Note that Ownership is not concerned with the mechanics 
of destruction itself; this is Storage's task. Ownership controls the moment of destruction. 

• Conversion policy (Section 7.7). Some applications need automatic conversion to the underlying 
raw pointer type; others do not. 

• Checking policy (Section 7.10). This policy controls whether an initializer for SmartPtr is valid 
and whether a SmartPtr is valid for dereferencing. 

Other issues are not worth dedicating separate policies to them or have an optimal solution: 

• The address-of operator (Section 7.6) is best not overloaded. 
• Equality and inequality tests are handled with the tricks shown in Section 7.8. 
• Ordering comparisons (Section 7.9) are left unimplemented; however, Loki specializes 

std::less for SmartPtr objects. The user may define an operator<, and Loki helps by 
defining all other ordering comparisons in terms of operator<. 

• Loki defines const-correct implementations for the SmartPtr object, the pointee object, or both. 
• There is no special support for arrays, but one of the canned Storage implementations can dispose 

of arrays by using operator delete[]. 

The presentation of the design issues surrounding smart pointers made these issues easier to understand 
and more manageable because each issue was discussed in isolation. It would be very helpful, then, if the 
implementation could decompose and treat issues in isolation instead of fighting with all the complexity at 
once. 

Divide et Impera— this old principle coined by Julius Caesar can be of help even today with smart 
pointers. (I'd bet money he didn't predict that.) We break the problem into small component classes, called 
policies. Each policy class deals with exactly one issue. SmartPtr inherits all these classes, thus 
inheriting all their features. It's that simple—yet incredibly flexible, as you will soon see. Each policy is 
also a template parameter, which means you can mix and match existing stock policy classes or build your 
own. 

The pointed-to type comes first, followed by each of the policies. Here is the resulting declaration of 
SmartPtr: 

template 
< 
   typename T, 
   template <class> class OwnershipPolicy = RefCounted, 
   class ConversionPolicy = DisallowConversion, 
   template <class> class CheckingPolicy = AssertCheck, 
   template <class> class StoragePolicy = DefaultSPStorage 
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> 
class SmartPtr; 

The order in which the policies appear in SmartPtr's declaration puts the ones that you customize most 
often at the top. 

The following four subsections discuss the requirements of the four policies we have defined. A rule for all 
policies is that they must have value semantics; that is, they must define a proper copy constructor and 
assignment operator. 

7.14.1 The Storage Policy 

The Storage policy abstracts the structure of the smart pointer. It provides type definitions and stores the 
actual pointee_ object. 

If StorageImpl is an implementation of the Storage policy and storageImpl is an object of type 
StorageImpl<T>, then the constructs in Table 7.1 apply. 

Here is the default Storage policy implementation: 

template <class T> 
class DefaultSPStorage 
{ 
protected: 
   typedef T* StoredType;    //the type of the pointee_ object 
   typedef T* PointerType;   //type returned by operator-> 
   typedef T& ReferenceType; //type returned by operator* 
public: 
   DefaultSPStorage() : pointee_(Default()) 
{} 
   DefaultSPStorage(const StoredType& p): pointee_(p) {} 
   PointerType operator->() const { return pointee_; } 
   ReferenceType operator*() const { return *pointee_; } 
   friend inline PointerType GetImpl(const DefaultSPStorage& sp) 
   { return sp.pointee_; } 
   friend inline const StoredType& GetImplRef( 
      const DefaultSPStorage& sp) 
   { return sp.pointee_; } 
   friend inline StoredType& GetImplRef(DefaultSPStorage& sp) 
   { return sp.pointee_; } 
protected: 
   void Destroy() 
   { delete pointee_; } 
   static StoredType Default() 
   { return 0; } 
private: 
   StoredType pointee_; 
}; 

In addition to DefaultSPStorage, Loki also defines the following: 

• ArrayStorage, which uses operator delete[] inside Release 
• LockedStorage, which uses layering to provide a smart pointer that locks data while 

dereferenced (see Section 7.13.1) 
• HeapStorage, which uses an explicit destructor call followed by std::free to release the data 
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Table 7.1. Storage Policy Constructs 
Expression Semantics 
StorageImpl<T>::StoredType The type actually stored by the implementation. Default: 

T*. 
StorageImpl<T>::PointerType The pointer type defined by the implementation.  

This is the type returned by SmartPtr's operator->. Default: 
T*. Can be different from StorageImpl<T>::StoredType 
when you're using smart pointer layering (see Sections 7.3 and 
7.13.1). 

StorageImpl<T>::ReferenceType The reference type. This is the type returned by 
SmartPtr's operator*. Default: T&. 

GetImpl(storageImpl) Returns an object of type 
StorageImpl<T> ::StoredType. 

GetImplRef(storageImpl) Returns an object of type 
StorageImpl<T> ::StoredType&, qualified with const 
if storageImpl is const. 

storageImpl.operator->() Returns an object of type 
StorageImpl<T> ::PointerType. Used by SmartPtr's 
own operator->. 

storageImpl.operator*() Returns an object of type 
StorageImpl<T> ::ReferenceType. Used by 
SmartPtr's own operator*. 

StorageImpl<T>::StoredType p;

p = storageImpl.Default(); 

Returns the default value (usually zero). 

storageImpl.Destroy() Destroys the pointee object. 

7.14.2 The Ownership Policy 

The Ownership policy must support intrusive as well as nonintrusive reference counting. Therefore, it uses 
explicit function calls rather than constructor/destructor techniques, as Koenig (1996) does. The reason is 
that you can call member functions at any time, whereas constructors and destructors are called 
automatically and only at specific times. 

The Ownership policy implementation takes one template parameter, which is the corresponding pointer 
type. SmartPtr passes StoragePolicy<T>::PointerType to OwnershipPolicy. Note that 
OwnershipPolicy's template parameter is a pointer type, not an object type. 

If OwnershipImpl is an implementation of Ownership and ownershipImpl is an object of type 
OwnershipImpl<P>, then the constructs in Table 7.2 apply. 

Table 7.2. Ownership Policy Constructs 
Expression Semantics 
P val1; P val2 = OwnershipImplImpl. 
Clone(val1); 

Clones an object. It can modify the source value 
if OwnershipImpl uses destructive copy. 

const P val1; P val2 = ownershipImpl. 
Clone(val1); 

Clones an object. 

P val;bool unique = ownershipImpl. 
Release(val); 

Releases ownership of an object. Returns true if 
the last reference to the object was released. 

bool dc = States whether OwnershipImpl uses 
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OwnershipImpl<P>::destructiveCopy; destructive copy. If that's the case, SmartPtr 
uses the Colvin/Gibbons trick (Meyers 1999) 
used in std::auto_ptr. 

An implementation of Ownership that supports reference counting is shown in the following: 

template <class P> 
class RefCounted 
{ 
   unsigned int* pCount_; 
protected: 
   RefCounted() : pCount_(new unsigned int(1)) {} 
   P Clone(const P & val) 
   { 
      ++*pCount_; 
      return val; 
   } 
   bool Release(const P&) 
   { 
      if (!--*pCount_) 
      { 
         delete pCount_; 
         return true; 
      } 
      return false; 
   } 
   enum { destructiveCopy = false }; // see below 
{; 

Implementing a policy for other schemes of reference counting is very easy. Let's write an Ownership 
policy implementation for COM objects. COM objects have two functions: AddRef and Release. Upon 
the last Release call, the object destroys itself. You need only direct Clone to AddRef and Release to 
COM's Release: 

template <class P> 
class COMRefCounted 
{ 
public: 
   static P Clone(const P& val) 
   { 
      val->AddRef(); 
      return val; 
   } 
   static bool Release(const P& val) 
   { 
      val->Release(); 
      return false; 
   } 
   enum { destructiveCopy = false }; // see below 
}; 

Loki defines the following Ownership implementations: 

• DeepCopy, described in Section 7.5.1. DeepCopy assumes that pointee class implements a 
member function Clone. 

• RefCounted, described in Section 7.5.3 and in this section. 
• RefCountedMT, a multithreaded version of RefCounted. 
• COMRefCounted, a variant of intrusive reference counting described in this section. 
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• RefLinked, described in Section 7.5.4. 
• DestructiveCopy, described in Section 7.5.5. 
• NoCopy, which does not define Clone, thus disabling any form of copying. 

7.14.3 The Conversion Policy 

Conversion is a simple policy: It defines a Boolean compile-time constant that says whether or not 
SmartPtr allows implicit conversion to the underlying pointer type. 

If ConversionImpl is an implementation of Conversion, then the construct in Table 7.3 applies. 

The underlying pointer type of SmartPtr is dictated by its Storage policy and is 
StorageImpl<T>::PointerType. 

As you would expect, Loki defines precisely two Conversion implementations: 

• AllowConversion 
• DisallowConversion 

Table 7.3. Conversion Policy Construct 
Expression Semantics 
bool allowConv = 
ConversionImpl<P>::allow; 

If allow is true, SmartPtr allows implicit 
conversion to its underlying pointer type. 

 
Table 7.4. Checking Policy Constructs 

Expression Semantics 
S value; checkingImpl.OnDefault(value); SmartPtr calls OnDefault in the default 

constructor call. If CheckingImpl does 
not define this function, it disables the 
default constructor at compile time. 

S value; checkingImpl.OnInit(value); SmartPtr calls OnInit upon a 
constructor call. 

S value; checkingImpl.OnDereference 
(value); 

SmartPtr calls OnDereference before 
returning from operator-> and 
operator*. 

const S 
value;checkingImpl.OnDereference(value); 

SmartPtr calls OnDereference before 
returning from the const versions of 
operator-> and operator*. 

7.14.4 The Checking Policy 

As discussed in Section 7.10, there are two main places to check a SmartPtr object for consistency: 
during initialization and before dereference. The checks themselves might use assert, exceptions, or lazy 
initialization or not do anything at all. 

The Checking policy operates on the StoredType of the Storage policy, not on the PointerType. (See 
Section 7.14.1 for the definition of Storage.) 

If S is the stored type as defined by the Storage policy implementation, and if CheckingImpl is an 
implementation of Checking, and if checkingImpl is an object of type CheckingImpl<S>, then the 
constructs in Table 7.4 apply. 
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Loki defines the following implementations of Checking: 

• AssertCheck, which uses assert for checking the value before dereferencing. 
• AssertCheckStrict, which uses assert for checking the value upon initialization. 
• RejectNullStatic, which does not define OnDefault. Consequently, any use of 

SmartPtr's default constructor yields a compile-time error. 
• RejectNull, which throws an exception if you try to dereference a null pointer. 
• RejectNullStrict, which does not accept null pointers as initializers (again, by throwing an 

exception). 
• NoCheck, which handles errors in the grand C and C++ tradition—that is, it does no checking at 

all. 

 

7.15 Summary 

Congratulations! You have just read one of the longest, wildest chapters of this book—an effort that we 
hope has paid off. Now you know a lot of things about smart pointers and are equipped with a pretty 
comprehensive and configurable SmartPtr class template. 

Smart pointers imitate built-in pointers in syntax and semantics. In addition, they perform a host of tasks 
that built-in pointers cannot. These tasks might include ownership management and checking against 
invalid values. 

Smart pointer concepts go beyond actual pointer behavior; they can be generalized into smart resources, 
such as monikers (handles that don't have pointer syntax, yet resemble pointer behavior in the way they 
enable resource access). 

Because they nicely automate things that are very hard to manage by hand, smart pointers are an essential 
ingredient of successful, robust applications. As small as they are, they can make the difference between a 
successful project and a failure—or, more often, between a correct program and one that leaks resources 
like a sieve. 

That's why a smart pointer implementer should invest as much attention and effort in this task as possible; 
the investment is likely to pay in the long term. Similarly, smart pointer users should understand the 
conventions that smart pointers establish and use them in accordance with those conventions. 

The presented implementation of smart pointers focuses on decomposing the areas of functionality into 
independent policies that the main class template SmartPtr mixes and matches. This is possible because 
each policy implements a well-defined interface. 

 

7.16 SmartPtr Quick Facts 

• SmartPtr declaration: 

template 
< 
   typename T, 
   template <class> class OwnershipPolicy = RefCounted, 
   class ConversionPolicy = DisallowConversion, 
   template <class> class CheckingPolicy = AssertCheck, 
   template <class> class StoragePolicy = DefaultSPStorage 
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> 
class SmartPtr; 

• T is the type to which SmartPtr points. T can be a primitive type or a user-defined type. The 
void type is allowed. 

• For the remaining class template parameters (OwnershipPolicy, ConversionPolicy, 
CheckingPolicy, and StoragePolicy), you can implement your own policies or choose 
from the defaults mentioned in Sections 7.14.1 through 7.14.4. 

• OwnershipPolicy controls the ownership management strategy. You can select from the 
predefined classes DeepCopy, RefCounted, RefCountedMT, COMRefCounted, RefLinked, 
DestructiveCopy, and NoCopy, described in Section 7.14.2. 

• ConversionPolicy controls whether implicit conversion to the pointee type is allowed. The 
default is to forbid implicit conversion. Either way, you can still access the pointee object by 
calling GetImpl. You can use the AllowConversion and DisallowConversion 
implementations (Section 7.14.3). 

• CheckingPolicy defines the error checking strategy. The defaults provided are AssertCheck, 
AssertCheckStrict, RejectNullStatic, RejectNull, RejectNullStrict, and 
NoCheck (Section 7.14.4). 

• StoragePolicy defines the details of how the pointee object is stored and accessed. The default 
is DefaultSPStorage, which, when instantiated with a type T, defines the reference type as T&, 
the stored type as T*, and the type returned from operator-> as T* again. Other storage types 
defined by Loki are ArrayStorage, LockedStorage, and HeapStorage (Section 7.14.1). 
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Chapter 8. Object Factories 
Object-oriented programs use inheritance and virtual functions to achieve powerful abstractions and good 
modularity. By postponing until runtime the decision regarding which specific function will be called, 
polymorphism promotes binary code reuse and extensibility. The runtime system automatically dispatches 
virtual member functions to the appropriate derived object, allowing you to implement complex behavior 
in terms of polymorphic primitives. 

You can find this kind of paragraph in any book teaching object-oriented techniques. The reason it is 
repeated here is to contrast the nice state of affairs in "steady mode" with the unpleasant "initialization 
mode" situation in which you must create objects in a polymorphic way. 

In the steady state, you already hold pointers or references to polymorphic objects, and you can invoke 
member functions against them. Their dynamic type is well known (although the caller might not know it). 
However, there are cases when you need to have the same flexibility in creating objects—subject to the 
paradox of "virtual constructors." You need virtual constructors when the information about the object to 
be created is inherently dynamic and cannot be used directly with C++ constructs. 

Most often, polymorphic objects are created on the free store by using the new operator: 

class Base { ... }; 
class Derived : public Base { ... }; 
class AnotherDerived : public Base { ... }; 
... 
// Create a Derived object and assign it to a pointer to Base 
Base* pB = new Derived; 

The issue here is the actual Derived type name appearing in the invocation of the new operator. In a way, 
Derived here is much like the magic numeric constants we are advised not to use. If you want to create 
an object of the type AnotherDerived, you have to go to the actual statement and replace Derived 
with AnotherDerived. You cannot make the new operator act more dynamically: You must pass it a 
type, and that type must be exactly known at compile time. 

This marks a fundamental difference between creating objects and invoking virtual member functions in 
C++. Virtual member functions are fluid, dynamic—you can change their behavior without changing the 
call site. In contrast, each object creation is a stumbling block of statically bound, rigid code. One of the 
effects is that invoking virtual functions binds the caller to the interface only (the base class). Object 
orientation tries to break dependency on the actual concrete type. However, at least in C++, object creation 
binds the caller to the most derived, concrete class. 

Actually, it makes a lot of conceptual sense that things are this way: Even in everyday life, creating 
something is very different from dealing with it. You are supposed, then, to know exactly what you want to 
do when you embark on the creation of an object. However, sometimes 

• You want to leave this exact knowledge up to another entity. For instance, instead of invoking 
new directly, you might call a virtual function Create of some higher-level object, thus allowing 
clients to change behavior through polymorphism. 

• You do have the type knowledge, but not in a form that's expressible in C++. For instance, you 
might have a string containing "Derived", so you actually know you have to create an object of 
type Derived, but you cannot pass a string containing a type name to new instead of a type name. 

These two issues are the fundamental problems addressed by object factories, which we'll discuss in detail 
in this chapter. The topics of this chapter include the following: 
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• Examples of situations in which object factories are needed 
• Why virtual constructors are inherently hard to implement in C++ 
• How to create objects by substituting values for types 
• An implementation of a generic object factory 

By the end of this chapter, we'll put together a generic object factory. You can customize the generic 
factory to a large degree—by the type of product, the creation method, and the product identification 
method. You can combine the factory thus created with other components described in this book, such as 
Singleton (Chapter 6)—for creating an application-wide object factory—and Functor (Chapter 5)—
for tweaking factory behavior. We'll also introduce a clone factory, which can duplicate objects of any type. 

 

8.1 The Need for Object Factories 

There are two basic cases in which object factories are needed. The first occurs when a library needs not 
only to manipulate user-defined objects, but also to create them. For example, imagine you develop a 
framework for multiwindow document editors. Because you want the framework to be easily extensible, 
you provide an abstract class Document from which users can derive classes such as TextDocument and 
HTMLDocument. Another framework component may be a DocumentManager class that keeps the list 
of all open documents. 

A good rule to introduce is that each document that exists in the application should be known by the 
DocumentManager. Therefore, creating a new document is tightly coupled with adding it to 
DocumentManager's list of documents. When two operations are so coupled, it is best to put them in the 
same function and never perform them separately: 

class DocumentManager 
{ 
   ... 
public: 
   Document* NewDocument(); 
private: 
   virtual Document* CreateDocument() = 0; 
   std::list<Document*> listOfDocs_; 
}; 
 
Document* DocumentManager::NewDocument() 
{ 
   Document* pDoc = CreateDocument(); 
   listOfDocs_.push_back(pDoc); 
   ... 
   return pDoc; 
} 

The CreateDocument member function replaces a call to new. NewDocument cannot use the new 
operator because the concrete document to be created is not known by the time DocumentManager is 
written. In order to use the framework, programmers will derive from DocumentManager and override 
the virtual member function CreateDocument (which is likely to be pure). The GoF book (Gamma et al. 
1995) calls CreateDocument a factory method. 

Because the derived class knows exactly the type of document to be created, it can invoke the new 
operator directly. This way, you can remove the type knowledge from the framework and have the 
framework operate on the base class Document only. The override is very simple and consists essentially 
of a call to new; for example: 
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Document* GraphicDocumentManager::CreateDocument() 
{ 
   return new GraphicDocument; 
} 

Alternatively, an application built with this framework might support creation of multiple document types 
(for instance, bitmapped graphics and vectorized graphics). In that case, the overridden 
CreateDocument function might display a dialog to the user asking for the specific type of document to 
be created. 

Thinking of opening a document previously saved on disk in the framework just outlined brings us to the 
second—and more complicated—case in which an object factory may be needed. When you save an object 
to a file, you must save its actual type in the form of a string, an integral value, an identifier of some sort. 
Thus, although the type information exists, its form does not allow you to create C++ objects. 

The general concept underlying this situation is the creation of objects whose type information is genuinely 
postponed to runtime: entered by the end user, read from a persistent storage or network connection, or the 
like. Here the binding of types to values is pushed even further than in the case of polymorphism: When 
using polymorphism, the entity manipulating an object does not know its exact type; however, the object 
itself is of a well-determined type. When reading objects from some storage, the type comes "alone" at 
runtime. You must transform type information into an object. Finally, you must read the object from the 
storage, which is easy once an empty object is created, by invoking a virtual function. 

Creating objects from "pure" type information, and consequently adapting dynamic information to static 
C++ types, is an important issue in building object factories. Let's focus on it in the next section. 

 

8.2 Object Factories in C++: Classes and Objects 

To come up with a solution, we need a good grasp of the problem. This section tries to answer the 
following questions: Why are C++ constructors so rigid? Why don't we have flexible means to create 
objects in the language itself? 

Interestingly, seeking an answer to this question takes us directly to fundamental decisions about C++'s 
type system. To find out why a statement such as 

Base* pB = new Derived; 

is so rigid, we must answer two related questions: What is a class, and what is an object? This is because 
the culprit in the given statement is Derived, which is a class name, and we'd like it to be a value, that is, 
an object. 

In C++, classes and objects are different beasts. Classes are what the programmer creates, and objects are 
what the program creates. You cannot create a new class at runtime, and you cannot create an object at 
compile time. Classes don't have first-class status: You cannot copy a class, store it in a variable, or return 
it from a function. 

In contrast, there are languages in which classes are objects. In those languages, some objects with certain 
properties are simply considered classes by convention. Consequently, in those languages, you can create 
new classes at runtime, copy a class, store it in a variable, and so on. If C++ were such a language, you 
could have written code like the following: 

// Warning-this is NOT C++ 
// Assumes Class is a class that's also an object 
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Class Read(const char* fileName); 
Document* DocumentManager::OpenDocument(const char* fileName) 
{ 
   Class theClass = Read(fileName); 
   Document* pDoc = new theClass; 
   ... 
} 

That is, we could pass a variable of type Class to the new operator. In such a paradigm, passing a known 
class name to new is the same as using a hardcoded constant. 

Such dynamic languages trade off some type safety and performance for the sake of flexibility, because 
static typing is an important source of optimization. C++ took the opposite approach, sticking to a static 
type system, yet trying to provide as much flexibility as possible in this framework. 

The bottom line is that creating object factories is a complicated problem in C++. In C++ there is a fracture 
between types and values: A value has a type attribute, but a type cannot exist on its own. If you want to 
create an object in a totally dynamic way, you need a means to express and pass around a "pure" type and 
build a value from it on demand. Because you cannot do this, you somehow must represent types as 
objects—integers, strings, and so on. Then, you must employ some trick to exchange the value for the right 
type, and finally to use that type to create an object. This object-type-object trade is fundamental for object 
factories in statically typed languages. 

We will call the object that identifies a type a type identifier. (Don't confuse it with typeid.) The type 
identifier helps the factory in creating the appropriate type of object. As will be shown, sometimes you 
make the type identifier–object exchange without knowing exactly what you have or what you will get. It's 
like a fairy tale: You don't know exactly how the token works (and it's sometimes dangerous to try to 
figure it out), but you pass it to the wizard, who gives you a valuable object in exchange. The details of 
how the magic happens must be encapsulated in the wizard . . . the factory, that is. 

We will explore a simple factory that solves a concrete problem, try various implementations of it, and 
then extract the generic part of it into a class template. 

 

8.3 Implementing an Object Factory 

Say you write a simple drawing application, allowing editing of simple vectorized drawings consisting of 
lines, circles, polygons, and so on.[1] In a classic object-oriented manner, you define an abstract Shape 
class from which all your figures will derive: 

[1] This "Hello, world" of design is a good basis for C++ interview questions. Although many candidates 
manage to conceive such a design, few of them know how to implement the loading of files, which is a rather 
important operation. 

class Shape 
{ 
public: 
   virtual void Draw() const = 0; 
   virtual void Rotate(double angle) = 0; 
   virtual void Zoom(double zoomFactor) = 0; 
   ... 
}; 

You might then define a class Drawing that contains a complex drawing. A Drawing essentially holds a 
collection of pointers to Shape—such as a list, a vector, or a hierarchical structure—and provides 
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operations to manipulate the drawing as a whole. Two typical operations you might want to do are saving a 
drawing as a file and loading a drawing from a previously saved file. 

Saving shapes is easy: Just provide a pure virtual function such as Shape::Save(std:: ostream&). 
Then the Drawing::Save operation might look like this: 

class Drawing 
{ 
public: 
   void Save(std::ofstream& outFile); 
   void Load(std::ifstream& inFile); 
   ... 
}; 
 
void Drawing::Save(std::ofstream& outFile) 
{ 
   write drawing header 
   for (each element in the drawing) 
   { 
       (current element)->Save(outFile); 
   } 
} 

The Shape-Drawing example just described is often encountered in C++ books, including Bjarne 
Stroustrup's classic (Stroustrup 1997). However, most introductory C++ books stop when it comes to 
loading graphics from a file, exactly because the nice model of having separate drawing objects breaks. 
Explaining the gory details of reading objects makes for a big parenthesis, which understandably is often 
avoided. On the other hand, this is exactly what we want to implement, so we have to bite the bullet. A 
straightforward implementation is to require each Shape-derived object to save an integral identifier at the 
very beginning. Each object should have its own unique ID. Then reading the file would look like this: 

// a unique ID for each drawing object type 
namespace DrawingType 
{ 
const int 
   LINE = 1, 
   POLYGON = 2, 
   CIRCLE = 3 
}; 
 
void Drawing::Load(std::ifstream& inFile) 
{ 
   // error handling omitted for simplicity 
   while (inFile) 
   { 
      // read object type 
      int drawingType; 
      inFile >> drawingType; 
 
      // create a new empty object 
      Shape* pCurrentObject; 
      switch (drawingType) 
      { 
         using namespace DrawingType; 
      case LINE: 
         pCurrentObject = new Line; 
         break; 
      case POLYGON: 
         pCurrentObject = new Polygon; 
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         break; 
      case CIRCLE: 
         pCurrentObject = new Circle; 
         break; 
      default: 
         handle error—unknown object type 
      } 
      // read the object's contents by invoking a virtual fn 
      pCurrentObject->Read(inFile); 
      add the object to the container 
   } 
} 

This is indeed an object factory. It reads a type identifier from the file, creates an object of the appropriate 
type based on that identifier, and invokes a virtual function that loads that object from the file. The only 
problem is that it breaks the most important rules of object orientation: 

• It performs a switch based on a type tag, with the associated drawbacks, which is exactly what 
object-oriented programs try to eliminate. 

• It collects in a single source file knowledge about all Shape-derived classes in the program, 
which again you must strive to avoid. For one thing, the implementation file of Drawing::Save 
must include all headers of all possible shapes, which makes it a bottleneck of compile 
dependencies and maintenance. 

• It is hard to extend. Imagine adding a new shape, such as Ellipse, to the system. In addition to 
creating the class itself, you must add a distinct integral constant to the namespace DrawingType, 
you must write that constant when saving an Ellipse object, and you must add a label to the 
switch statement in Drawing::Save. This is an awful lot more than what the architecture 
promised—total insulation between classes—and all for the sake of a single function! 

We'd like to create an object factory that does the job without having these disadvantages. One practical 
goal worth pursuing is to break the switch statement apart—so that we can put the Line creation 
statement in the file implementation for Line—and do the same for Polygon and Circle. 

A common way to keep together and manipulate pieces of code is to work with pointers to functions, as 
discussed at length in Chapter 5. The unit of customizable code here (each of the entries in the switch 
statement) can be abstracted in a function with the signature 

Shape* CreateConcreteShape(); 

The factory keeps a collection of pointers to functions with this signature. In addition, there has to be a 
correspondence between the IDs and the pointer to the function that creates the appropriate object. Thus, 
what we need is an associative collection—a map. A map offers access to the appropriate function given 
the type identifier, which is precisely what the switch statement offers. In addition, the map offers the 
scalability that the switch statement, with its fixed compile-time structure, cannot provide. The map can 
grow at runtime—you can add entries (tuples of IDs and pointers to functions) dynamically, which is 
exactly what we need. We can start with an empty map and have each Shape-derived object add an entry 
to it. 

Why not use a vector? IDs are integral numbers, so we can keep a vector and have the ID be the index in 
the vector. This would be simpler and faster, but a map is better here. The map doesn't require its indices to 
be adjacent, plus it's more general—vectors work only with integral indices, whereas maps accept any 
ordered type as an index. This point will become important when we generalize our example. 

We can start designing a ShapeFactory class, which has the responsibility of managing the creation of 
all Shape-derived objects. In implementing ShapeFactory, we will use the map implementation found 
in the standard library, std::map: 
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class ShapeFactory 
{ 
public: 
   typedef Shape* (*CreateShapeCallback)(); 
private: 
   typedef std::map<int, CreateShapeCallback> CallbackMap; 
public: 
   // Returns 'true' if registration was successful 
   bool RegisterShape(int ShapeId, 
      CreateShapeCallback CreateFn); 
   // Returns 'true' if the ShapeId was registered before 
   bool UnregisterShape(int ShapeId); 
   Shape* CreateShape(int ShapeId); 
private: 
   CallbackMap callbacks_; 
}; 

This is a basic design of a scalable factory. The factory is scalable because you don't have to modify its 
code each time you add a new Shape-derived class to the system. ShapeFactory divides responsibility: 
Each new shape has to register itself with the factory by calling RegisterShape and passing it its 
integral identifier and a pointer to a function that creates an object. Typically, the function has a single line 
and looks like this: 

Shape* CreateLine() 
{ 
   return new Line; 
} 

The implementation of Line also must register this function with the ShapeFactory that the application 
uses, which is typically a globally accessible object.[2] The registration is usually performed with startup 
code. The whole connection of Line with the Shape Factory is as follows: 

[2] This brings us to the link between object factories and singletons. Indeed, more often than not, factories 
are singletons. Later in this chapter is a discussion of how to use factories with the singletons implemented 
in Chapter 6. 

// Implementation module for class Line 
// Create an anonymous namespace 
//  to make the function invisible from other modules 
namespace 
{ 
   Shape* CreateLine() 
   { 
      return new Line; 
   } 
   // The ID of class Line 
   const int LINE = 1; 
   // Assume TheShapeFactory is a singleton factory 
   // (see Chapter 6) 
   const bool registered = 
      TheShapeFactory::Instance().RegisterShape( 
         LINE, CreateLine); 
} 

Implementing the ShapeFactory is easy, given the amenities std::map has to offer. Basically, 
ShapeFactory member functions forward only to the callbacks_ member: 

bool ShapeFactory::RegisterShape(int shapeId, 
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   CreateShapeCallback createFn) 
{ 
   return callbacks_.insert( 
      CallbackMap::value_type(shapeId, createFn)).second; 
} 
 
bool ShapeFactory::UnregisterShape(int shapeId) 
{ 
   return callbacks_.erase(shapeId) == 1; 
} 

If you're not very familiar with the std::map class template, the previous code might need a bit of 
explanation: 

• std::map holds pairs of keys and data. In our case, keys are integral shape IDs, and the data 
consists of a pointer to function. The type of our pair is std::pair<const int, 
CreateShapeCallback>. You must pass an object of this type when you call insert. 
Because that's a lot to write, it's better to use the typedef found inside std::map, which provides 
a handy name—value_type—for that pair type. Alternatively, you can use std::make_pair. 

• The insert member function we called returns another pair, this time containing an iterator 
(which refers to the element just inserted) and a bool that is true if the value didn't exist before, 
and false otherwise. The.second field access after the call to insert selects this bool and 
returns it in a single stroke, without our having to create a named temporary. 

• erase returns the number of elements erased. 

The CreateShape member function simply fetches the appropriate pointer to a function for the ID 
passed in, and calls it. In the case of an error, it throws an exception. Here it is: 

Shape* ShapeFactory::CreateShape(int shapeId) 
{ 
   CallbackMap::const_iterator i = callbacks_.find(shapeId); 
   if (i == callbacks_.end()) 
   { 
      // not found 
      throw std::runtime_error("Unknown Shape ID"); 
   } 
   // Invoke the creation function 
   return (i->second)(); 
} 

Let's see what this simple class brought us. Instead of relying on the large, know-it-all switch statement, 
we obtained a dynamic scheme requiring each type of object to register itself with the factory. This moves 
the responsibility from a centralized place to each concrete class, where it belongs. Now whenever you 
define a new Shape-derived class, you can just add files instead of modifying files. 

 

8.4 Type Identifiers 

The only problem that remains is the management of type identifiers. Still, adding type identifiers requires 
a fair amount of discipline and centralized control. Whenever you add a new shape class, you must check 
all the existing type identifiers and add one that doesn't clash with them. If a clash exists, the second call to 
RegisterShape for the same ID fails, and you won't be able to create objects of that type. 

We can solve this problem by choosing a more generous type than int for expressing the type identifier. 
Our design doesn't require integral types, only types that can be keys in a map, that is, types that support 
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operator== and operator<. (That's why we can be happy we chose maps instead of vectors.) For 
example, we can store type identifiers as strings and establish the convention that each class is represented 
by its name: Line's identifier is "Line", Polygon's identifier is "Polygon", and so forth. This 
minimizes the chance of clashing names because class names are unique. 

If you enjoy spending your weekends studying C++, maybe the previous paragraph rang a bell for you. 
Let's use type_info! The std::type_info class is part of the runtime type information (RTTI) 
provided by C++. You get a reference to a std:: type_info by invoking the typeid operator on a 
type or an expression. What seems nice is that std::type_info provides a name member function that 
returns a const char* pointing to a human-readable name of the type. For your compiler, you might 
have seen that typeid(Line).name() points to the string "class Line", which is exactly what we 
wanted. 

The problem is, this does not apply to all C++ compiler implementations. The way type_info::name is 
defined makes it unsuitable for anything other than debugging purposes (such as printing it in a debug 
console). There is no guarantee that the string is the actual class name, and worse, there is no guarantee 
that the string is unique throughout the application. (Yes, you can have two classes that have the same 
name according to std::type_info::name.) And the shotgun argument is that there's no guarantee 
that the type name will be unique in time. There is no guarantee that typeid(Line).name() points to 
the same string when the application is run twice. Implementing persistence is an important application of 
factories, and std::type_info::name is not persistent. All this makes std::type_info 
deceptively close to being useful for our object factory, but it is not a real solution. 

Back to the management of type identifiers. A decentralized solution for generating type identifiers is to 
use a unique value generator—for instance, a random number or random string generator. You would use 
this generator each time you add a new class to the program, then hardcode that random value in the source 
file and never change it.[3] This sounds like a brittle solution, but think of it this way: If you have a random 
string generator that has a 10-20 probability of repeating a value in a thousand years, you get a rate of error 
smaller than that of a program using a "perfect" factory. 

[3] Microsoft's COM factory uses such a method. It has an algorithm for generating unique 128-bit identifiers 
(called globally unique identifiers, or GUIDs) for COM objects. The algorithm relies on the uniqueness of the 
network card serial number or, in the absence of a card, the date, time, and other highly variable machine 
states. 

The only conclusion that can be drawn here is that type identifier management is not the business of the 
object factory itself. Because C++ cannot guarantee a unique, persistent type ID, type ID management 
becomes an extra-linguistic issue that must be left to the programmers. 

We have described all the elements in a typical object factory, and we have a prototype implementation. 
It's time now for the next step—the step from concrete to abstract. Then, enriched with new insights, we'll 
go back to concrete. 

 

8.5 Generalization 

Let's enumerate the elements involved in our discussion of object factories. This gives us the intellectual 
workout necessary for putting together a generic object factory. 

• Concrete product. A factory delivers some product in the form of an object. 
• Abstract product. Products inherit a base type (in our example, Shape). A product is an object 

whose type belongs to a hierarchy. The base type of the hierarchy is the abstract product. The 
factory behaves polymorphically in the sense that it returns a pointer to the abstract product, 
without conveying knowledge of the concrete product type. 
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• Product type identifier. This is the object that identifies the type of the concrete product. As 
discussed, you have to have a type identifier to create a product because of the static C++ type 
system. 

• Product creator. The function or functor is specialized for creating exactly one type of object. We 
modeled the product creator using a pointer to function. 

The generic factory will orchestrate these elements to provide a well-defined interface, as well as defaults 
for the most used cases. 

It seems that each of the notions just enumerated will transform into a template parameter of a Factory 
template class. There's only one exception: The concrete product doesn't have to be known to the factory. 
Had this been the case, we'd have different Factory types for each concrete product we're adding, and we 
are trying to keep Factory insulated from the concrete types. We want only different Factory types for 
different abstract products. 

This being said, let's write down what we've grabbed so far: 

template 
< 
   class AbstractProduct, 
   typename IdentifierType, 
   typename ProductCreator 
> 
class Factory 
{ 
public: 
   bool Register(const IdentifierType& id, ProductCreator creator) 
   { 
      return associations_.insert( 
         AssocMap::value_type(id, creator)).second; 
   } 
   bool Unregister(const IdentifierType& id) 
   { 
      return associations_.erase(id) == 1; 
   } 
   AbstractProduct* CreateObject(const IdentifierType& id) 
   { 
      typename AssocMap::const_iterator i = 
         associations_.find(id); 
      if (i != associations_.end()) 
      { 
         return (i->second)(); 
      } 
      handle error 
   } 
private: 
   typedef std::map<IdentifierType, AbstractProduct> 
      AssocMap; 
   AssocMap associations_; 
}; 

The only thing left out is error handling. If we didn't find a creator registered with the factory, should we 
throw an exception? Return a null pointer? Terminate the program? Dynamically load some library, 
register it on the fly, and retry the operation? The actual decision depends very much on the concrete 
situation; any of these actions makes sense in some cases. 

Our generic factory should let the user customize it to do any of these actions and should provide a 
reasonable default behavior. Therefore, the error handling code should be pulled out of the 
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CreateObject member function into a separate FactoryError policy (see Chapter 1). This policy defines 
only one function, OnUnknownType, and Factory gives that function a fair chance (and enough 
information) to make any sensible decision. 

The policy defined by FactoryError is very simple. FactoryError prescribes a template of two parameters: 
IdentifierType and AbstractProduct. If FactoryErrorImpl is an implementation of 
FactoryError, then the following expression must apply: 

FactoryErrorImpl<IdentifierType, AbstractProduct> factoryErrorImpl; 
IdentifierType id; 
AbstractProduct* pProduct = factoryErrorImpl.OnUnknownType(id); 

Factory uses FactoryErrorImpl as a last-resort solution: If CreateObject cannot find the 
association in its internal map, it uses FactoryErrorImpl<IdentifierType, Abstract-
Product>::OnUnknownType for fetching a pointer to the abstract product. If OnUnknownType throws 
an exception, the exception propagates out of Factory. Otherwise, CreateObject simply returns 
whatever OnUnknownType returned. 

Let's code these additions and changes (shown in bold): 

template 
< 
   class AbstractProduct, 
   typename IdentifierType, 
   typename ProductCreator, 
   template<typename, class> 
      class FactoryErrorPolicy 
> 
class Factory 
   : public FactoryErrorPolicy<IdentifierType, AbstractProduct> 
{ 
public: 
   AbstractProduct* CreateObject(const IdentifierType& id) 
   { 
      typename AssocMap::const_iterator i = associations_.find(id); 
      if (i != associations_.end()) 
      { 
         return (i->second)(); 
      } 
      return OnUnknownType(id); 
   } 
private: 
   ... rest of functions and data as above ... 
}; 

The default implementation of FactoryError throws an exception. This exception's class is best made 
distinct from all other types so that client code can detect it separately and make appropriate decisions. 
Also, the class should inherit one of the standard exception classes so that the client can catch all kinds of 
errors with one catch block. DefaultFactoryError defines a nested exception class (called Exception)[4] 
that inherits std::exception. 

[4] There is no need to make the name distinctive (like FactoryException), because the type is already 
inside class template DefaultFactoryError. 

template <class IdentifierType, class ProductType> 
class DefaultFactoryError 
{ 
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public: 
   class Exception : public std::exception 
      { 
      public: 
         Exception(const IdentifierType& unknownId) 
            : unknownId_(unknownId) 
         { 
         } 
         virtual const char* what() 
         { 
            return "Unknown object type passed to Factory."; 
         } 
         const IdentifierType GetId() 
         { 
            return unknownId_; 
         }; 
      private: 
         IdentifierType unknownId_; 
      }; 
protected: 
   StaticProductType* OnUnknownType(const IdentifierType& id) 
   { 
      throw Exception(id); 
   } 
}; 

Other, more advanced implementations of FactoryError can look up the type identifier and return a pointer 
to a valid object, return a null pointer (if the use of exceptions is undesirable), throw some exception object, 
or terminate the program. You can tweak the behavior by defining new FactoryError implementations and 
specifying them as the fourth argument of Factory. 

 

8.6 Minutiae 

Actually, Loki's Factory implementation does not use std::map. It uses a drop-in replacement for map, 
AssocVector, which is optimized for rare inserts and frequent lookups, the typical usage pattern of 
Factory. AssocVector is described in detail in Chapter 11. 

In an initial draft of Factory, the map type was customizable by virtue of its being a template parameter. 
However, often AssocVector fits the bill exactly; in addition, using standard containers as template 
template parameters is not, well, standard. This is because implementers of standard containers are free to 
add more template arguments, as long as they provide defaults for them. 

Let's focus now on the ProductCreator template parameter. Its main requirement is that it have 
functional behavior (accept operator() and take no arguments) and return a pointer convertible to 
AbstractProduct*. In the concrete implementation shown earlier, ProductCreator was a simple 
pointer to a function. This suffices if all we need is to create objects by invoking new, which is the most 
common case. Therefore, we choose 

AbstractProduct* (*)() 

as the default type for ProductCreator. The type looks a bit like a confusing emoticon because its 
name is missing. If you put a name after the asterisk within the parentheses, 

AbstractProduct* (*PointerToFunction)() 
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the type reveals itself as a pointer to a function taking no parameters and returning a pointer to 
AbstractProduct. If this still looks unfamiliar to you, you may want to refer to Chapter 5, which 
includes a discussion on pointers to functions. 

By the way, speaking of that chapter, there is a very interesting template parameter you can pass to 
Factory as ProductCreator, namely Functor<AbstractProduct*>. If you choose this, you gain 
great flexibility: You can create objects by invoking a simple function, a member function, or a functor, 
and bind appropriate parameters to any of them. The glue code is provided by Functor. 

Our Factory class template declaration now looks like this: 

template 
< 
   class AbstractProduct, 
   class IdentifierType, 
   class ProductCreator = AbstractProduct* (*)(), 
   template<typename, class> 
      class FactoryErrorPolicy = DefaultFactoryError 
> 
class Factory; 

Our Factory class template is now ready to be of use. 

 

8.7 Clone Factories 

Although genetic factories producing clones of the universal soldier are quite a scary prospect, cloning 
C++ objects is a harmless and useful activity most of the time. Here the goal is slightly different from what 
we have dealt with so far: We no longer have to create objects from scratch. We have a pointer to a 
polymorphic object, and we'd like to create an exact copy of it. Because we don't exactly know the type of 
the polymorphic object, we don't exactly know what new object to create, and this is the actual issue. 

Because we do have an object at hand, we can apply classic polymorphism. Thus, the usual idiom used for 
object cloning is to declare a virtual Clone member function in the base class and to have each derived 
class override it. Here's an example using our geometric shapes hierarchy: 

class Shape 
{ 
public: 
   virtual Shape* Clone() const = 0; 
   ... 
}; 
 
class Line : public Shape 
{ 
public: 
   virtual Line* Clone() const 
   { 
      return new Line(*this); 
   } 
   ... 
}; 

The reason that Line::Clone does not return a pointer to Shape is that we took advantage of a C++ 
feature called covariant return types. Because of covariant return types, you can return a pointer to a 
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derived class instead of a pointer to the base class from an overridden virtual function. From now on, the 
idiom goes, you must implement a similar Clone function for each class you add to the hierarchy. The 
contents of the functions are the same: You create a Polygon, you return a new Polygon(*this), and 
so on. 

This idiom works, but it has a couple of major drawbacks: 

• If the base class wasn't designed to be cloneable (didn't declare a virtual function equivalent to 
Clone) and is not modifiable, the idiom cannot be applied. This is the case when you write an 
application using a class library that requires you to derive from its base classes. 

• Even if all the classes are changeable, the idiom requires a high degree of discipline. Forgetting to 
implement Clone in some derived classes will remain undetected by the compiler and may cause 
runtime behavior ranging from bizarre to pernicious. 

The first point is obvious; let's discuss the second one. Imagine you derived a class DottedLine from 
Line and forgot to override DottedLine::Clone. Now say you have a pointer to a Shape that actually 
points to a DottedLine, and you invoke Clone on it: 

Shape* pShape; 
... 
Shape* pDuplicateShape = pShape->Clone(); 

The Line::Clone function will be invoked, returning a Line. This is a very unfortunate situation 
because you assume pDuplicateShape to have the same dynamic type as pShape, when in fact it 
doesn't. This might lead to a lot of problems, from drawing unexpected types of lines to crashing the 
application. 

There's no solid way to mitigate this second problem. You can't say in C++: "I define this function, and I 
require any direct or indirect class inheriting it to override it." You must shoulder the painful, repetitive 
task of overriding Clone in every shape class, and you're doomed if you don't. 

If you agree to complicate the idiom a bit, you can get an acceptable runtime check. Make Clone a public 
nonvirtual function. From inside it call a private virtual function called, say, DoClone, and then enforce 
the equality of the dynamic types. The code is simpler than the explanation: 

class Shape 
{ 
   ... 
public: 
   Shape* Clone() const//nonvirtual 
   { 
      // delegate to DoClone 
      Shape* pClone = DoClone(); 
      // Check for type equivalence 
      // (could be a more sophisticated test than assert) 
      assert(typeid(*pClone) == typeid(*this)); 
      return pClone; 
   } 
private: 
   virtual Shape* DoClone() const = 0; // private 
}; 

The only downside is that you can no longer use covariant return types. 
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Shape derivees would always override DoClone, leave it private so that clients cannot call it, and leave 
Clone alone. Clients use Clone only, which performs the runtime check. As you have certainly figured 
out, programming errors, such as overriding Clone or making DoClone public, can still sneak in. 

Don't forget that, no matter what, if you cannot change all the classes in the hierarchy (the hierarchy is 
closed) and if it wasn't designed to be cloneable, you don't have any chance of implementing this idiom. 
This is quite a dismissive argument in many cases, so we should look for alternatives. 

Here a special object factory may be of help. It leads to a solution that doesn't have the two problems 
mentioned earlier, at the cost of a slight performance hit—instead of a virtual call, there is a map lookup 
plus a call via a pointer to a function. Because the number of classes in an application is never really big 
(they are written by people, aren't they?), the map tends to be small, and the hit should not be significant. 

It all starts from the idea that in a clone factory, the type identifier and the product have the same type. You 
receive as a type identifier the object to be duplicated and pass as output a new object that is a copy of the 
type identifier. To be more precise, they're not quite the same type: A cloning factory's IdentifierType 
is a pointer to AbstractProduct. The exact deal is that you pass a pointer to the clone factory, and you 
get back another pointer, which points to a cloned object. 

But what's the key in the map? It can't be a pointer to AbstractProduct because you don't need as 
many entries as the objects we have. You need only one entry per type of object to be cloned, which brings 
us again to the std::type_info class. The type identifier passed when the factory is asked to create a 
new object is different from the type identifier that's stored in the association map, and that makes it 
impossible for us to reuse the code we've written so far. Another consequence is that the product creator 
now needs the pointer to the object to be cloned; in the factory we created earlier from scratch, no 
parameter was needed. 

Let's recap. The clone factory gets a pointer to an AbstractProduct. It applies the typeid operator to 
the pointed-to object and obtains a reference to a std::type_info object. It then looks up that object in 
its private map. (The before member function of std::type_info introduces an ordering over the set 
of std::type_info objects, which makes it possible to use a map and perform fast searches.) If an 
entry is not found, an exception is thrown. If it is found, the product creator will be invoked, with the 
pointer to the AbstractProduct passed in by the user. 

Because we already have the Factory class template handy, implementing the CloneFactory class 
template is a simple exercise. (You can find it in Loki.) There are a few differences and new elements: 

• CloneFactory uses TypeInfo instead of std::type_info. The class TypeInfo, discussed 
in Chapter 2, is a wrapper around a pointer to std::type_info, having the purpose of defining 
proper initialization, assignment, operator==, and operator<, which are all needed by the 
map. The first operator delegates to std::type_info::operator==; the second operator 
delegates to std::type_info::before. 

• There is no longer an IdentifierType because the identifier type is implicit. 
• The ProductCreator template parameter defaults to AbstractProduct* 

(*)(Abstract-Product*). 
• The IdToProductMap is now AssocVector<TypeInfo, ProductCreator>. 

The synopsis of CloneFactory is as follows: 

template 
< 
   class AbstractProduct, 
   class ProductCreator = 
      AbstractProduct* (*)(AbstractProduct*), 
   template<typename, class> 
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      class FactoryErrorPolicy = DefaultFactoryError 
> 
class CloneFactory 
{ 
public: 
   AbstractProduct* CreateObject(const AbstractProduct* model); 
   bool Register(const TypeInfo&, 
      ProductCreator creator); 
   bool Unregister(const TypeInfo&); 
private: 
   typedef AssocVector<TypeInfo, ProductCreator> 
      IdToProductMap; 
   IdToProductMap associations_; 
}; 

The CloneFactory class template is a complete solution for cloning objects belonging to closed class 
hierarchies (that is, class hierarchies that you cannot modify). Its simplicity and effectiveness stem from 
the conceptual clarifications made in the previous sections and from the runtime type information that C++ 
provides through typeid and std::type_info. Had RTTI not existed, clone factories would have 
been much more awkward to implement—in fact, so awkward that putting them together wouldn't have 
made much sense in the first place. 

 

8.8 Using Object Factories with Other Generic Components 

Chapter 6 introduced the SingletonHolder class, which was designed to provide specific services to 
your classes. Because of the global nature of factories, it is natural to use Factory with 
SingletonHolder. They are very easy to combine by using typedef. For instance: 

typedef SingletonHolder< Factory<Shape, std::string> > ShapeFactory; 

Of course, you can add arguments to either SingletonHolder or Factory to choose different trade-
offs and design decisions, but it's all in one place. From now on, you can isolate a bunch of important 
design choices in one place and use ShapeFactory throughout the code. Within the simple type 
definition just shown, you can select the way the factory works and the way the singleton works, thus 
exploiting all the combinations between the two. With a single line of declarative code, you direct the 
compiler to generate the right code for you and nothing more, just as at runtime you'd call a function with 
various parameters to perform some action in different ways. Because in our case it all happens at compile 
time, the emphasis is more on design decisions than on runtime behavior. Of course, runtime behavior is 
affected as well, but in a more global and subtle way. By writing "regular" code, you specify what's going 
to happen at runtime. When you write a type definition such as the one above, you specify what's going to 
happen during compile time—in fact, you kind of call code-generation functions at compile time, passing 
arguments to them. 

As alluded to in the beginning of this chapter, an interesting combination is to use Factory with 
Functor: 

typedef SingletonHolder 
< 
   Factory 
   < 
      Shape, std::string, Functor<Shape*> 
   > 
> 
ShapeFactory; 
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This gives you great flexibility in creating objects, by leveraging the power of Functor (for which 
implementation we took great pains in Chapter 5). You can now create Shapes in almost any way 
imaginable by registering various Functors with the Factory, and the whole thing is a Singleton. 

 

8.9 Summary 

Object factories are an important component of programs that use polymorphism. Object factories help in 
creating objects when their types are either not available or are available only in a form that's incompatible 
for use with language constructs. 

Object factories are used mostly in object-oriented frameworks and libraries, as well as in various object 
persistence and streaming schemes. The latter case was analyzed in depth with a concrete example. The 
solution essentially distributes a switch of type across multiple implementation files, thus achieving low 
coupling. Although the factory remains a central authority that creates objects, it doesn't have to collect 
knowledge about all the static types in a hierarchy. Instead, it's the responsibility of each type to register 
itself with the factory. This marks a fundamental difference between the "wrong" and the "right" approach. 

Type information cannot be easily transported at runtime in C++. This is a fundamental feature of the 
family of languages to which C++ belongs. Because of this, type identifiers that represent types have to be 
used instead. They are associated with creator objects that are callable entities, as described in Chapter 5 
on generalized functors (pointers to functions or functors). A concrete object factory starting from these 
ideas was implemented and was then generalized into a class template. 

Finally, we discussed clone factories (factories that can duplicate polymorphic objects). 

 

8.10 Factory Class Template Quick Facts 

• Factory declaration: 

template 
< 
   class AbstractProduct, 
   class IdentifierType, 
   class ProductCreator = AbstractProduct* (*)(), 
   template<typename, class> 
      class FactoryErrorPolicy = DefaultFactoryError 
> 
class Factory; 

• AbstractProduct is the base class of the hierarchy for which you provide the object factory. 
• IdentifierType is the type of the "cookie" that represents a type in the hierarchy. It has to be 

an ordered type (able to be stored in a std::map). Commonly used identifier types are strings 
and integral types. 

• ProductCreator is the callable entity that creates objects. This type must support 
operator(), taking no parameters and returning a pointer to AbstractProduct. A 
ProductCreator object is always registered together with a type identifier. 

• Factory implements the following primitives: 

bool Register(const IdentifierType& id, ProductCreator creator); 
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Registers a creator with a type identifier. Returns true if the registration was successful; false 
otherwise (if there already was a creator registered with the same type identifier). 

bool Unregister(const IdentifierType& id); 

Unregisters the creator for the given type identifier. If the type identifier was previously registered, the 
function returns true. 

AbstractProduct* CreateObject(const IdentifierType& id); 

Looks up the type identifier in the internal map. If it is found, it invokes the corresponding creator for the 
type identifier and returns its result. If the type identifier is not found, the result of 
FactoryErrorPolicy<IdentifierType, AbstractProduct>:: OnUnknownType is returned. 
The default implementation of FactoryErrorPolicy throws an exception of its nested type 
Exception. 

 

8.11 CloneFactory Class Template Quick Facts 

• CloneFactory declaration: 

template 
< 
   class AbstractProduct, 
   class ProductCreator = 
      AbstractProduct* (*)(const AbstractProduct*), 
   template<typename, class> 
      class FactoryErrorPolicy = DefaultFactoryError 
> 
class CloneFactory; 

• AbstractProduct is the base class of the hierarchy for which you want to provide the clone 
factory. 

• ProductCreator has the role of duplicating the object received as a parameter and returning a 
pointer to the clone. 

• CloneFactory implements the following primitives: 
• bool Register(const TypeInfo&, ProductCreator creator); 

Registers a creator with an object of type TypeInfo (which accepts an implicit conversion constructor 
from std::type_info). Returns true if the registration was successful; false otherwise. 

bool Unregister(const TypeInfo& typeInfo); 

Unregisters the creator for the given type. If the type was previously registered, the function returns true. 

AbstractProduct* CreateObject(const AbstractProduct* model); 

Looks up the dynamic type of model in the internal map. If it is found, it invokes the corresponding 
creator for the type identifier and returns its result. If the type identifier is not found, the result of 
FactoryErrorPolicy<OrderedTypeInfo, AbstractProduct> ::OnUnknownType is 
returned. 
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Chapter 9. Abstract Factory 
This chapter discusses a generic implementation of the Abstract Factory design pattern (Gamma et al. 
1995). An abstract factory is an interface for creating a family of related or dependent polymorphic objects. 

Abstract factories can be an important architectural component because they ensure that the right concrete 
objects are created throughout a system. You don't want a FunkyButton to appear on a 
ConventionalDialog; you can use the Abstract Factory design pattern to ensure that a FunkyButton 
can appear only on a FunkyDialog. You do this by controlling a small piece of code; the rest of the 
application works with the abstract types Dialog and Button. 

After reading this chapter, you will 

• Understand the area of applicability of the Abstract Factory design pattern 
• Know how to define and implement Abstract Factory components 
• Know how to use the generic Abstract Factory facility provided by Loki and how to extend it to 

suit your needs 

 

9.1 The Architectural Role of Abstract Factory 

Let's say you are in the enviable position of designing a "find 'em and kill 'em" game, like Doom or Quake. 

You want to entice regular taxpayers to enjoy your game, so you provide an Easy level. On the Easy level, 
the enemy soldiers are rather dull, the monsters move like molasses, and the super-monsters are quite 
friendly. 

You also want to entice hardcore gamers to play your game, so you provide a Diehard level. On this level, 
enemy soldiers fire three times a second and are karate pros, monsters are cunning and deadly, and really 
bad super-monsters appear once in a while. 

A possible modeling of this scary world would include defining a base class Enemy and deriving the 
refined interfaces Soldier, Monster, and SuperMonster from it. Then, you derive SillySoldier, 
SillyMonster, and SillySuperMonster from these interfaces for the Easy level. Finally, you 
implement BadSoldier, BadMonster, and BadSuperMonster for the Diehard level. The resulting 
inheritance hierarchy is shown in Figure 9.1. 

Figure 9.1. A hierarchy for a game with two levels of difficulty 
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It is worth noting that in your game, an instantiation of BadSoldier and an instantiation of 
SillyMonster never "live" at the same time. It wouldn't make sense; the player plays either the easy 
game with SillySoldiers, SillyMonsters, and SillySuperMonsters, or the tough game in the 
company of BadSoldiers, BadMonsters, and Bad SuperMonsters. 

The two categories of types form two families; during the game, you always use objects in one of the two 
families, but you never combine them. 

It would be nice if you could enforce this consistency. Otherwise, if you're not careful enough throughout 
the application, the beginner happily punching SillySoldiers could suddenly meet a BadMonster 
around the corner, get whacked, and exercise that money-back guarantee. 

Because it's better to be careful once than a hundred times, you gather the creation functions for all the 
game objects into a single interface, as follows: 

class AbstractEnemyFactory 
{ 
public: 
   virtual Soldier* MakeSoldier() = 0; 
   virtual Monster* MakeMonster() = 0; 
   virtual SuperMonster* MakeSuperMonster() = 0; 
}; 

Then, for each play level, you implement a concrete enemy factory that creates enemies as prescribed by 
the game strategy. 

class EasyLevelEnemyFactory : public AbstractEnemyFactory 
{ 
public: 
   Soldier* MakeSoldier() 
   { return new SillySoldier; } 
   Monster* MakeMonster() 
   { return new SillyMonster; } 
   SuperMonster* MakeSuperMonster() 
   { return new SillySuperMonster; } 
}; 
 
class DieHardLevelEnemyFactory : public AbstractEnemyFactory 
{ 
public: 
   Soldier* MakeSoldier() 
   { return new BadSoldier; } 
   Monster* MakeMonster() 
   { return new BadMonster; } 
   SuperMonster* MakeSuperMonster() 
   { return new BadSuperMonster; } 
}; 

Finally, you initialize a pointer to AbstractEnemyFactory with the appropriate concrete class: 

class GameApp 
{ 
   ... 
   void SelectLevel() 
   { 
      if (user chooses the Easy level) 
      { 
         pFactory_ = new EasyLevelEnemyFactory; 
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      } 
      else 
      { 
         pFactory_ = new DieHardLevelEnemyFactory; 
      } 
   } 
private: 
   // Use pFactory_ to create enemies 
   AbstractEnemyFactory* pFactory_; 
}; 

The advantage of this design is that it keeps all the details of creating and properly matching enemies 
inside the two implementations of AbstractEnemyFactory. Because the application uses pFactory_ 
as the only object creator, consistency is enforced by design. This is a typical usage of the Abstract Factory 
design pattern. 

The Abstract Factory design pattern prescribes collecting creation functions for families of objects in a 
unique interface. Then you must provide an implementation of that interface for each family of objects you 
want to create. 

The product types advertised by the abstract factory interface (Soldier, Monster, and SuperMonster) 
are called abstract products. The product types that the implementation actually creates (SillySoldier, 
BadSoldier, SillyMonster, and so on) are called concrete products. These terms should be familiar 
to you from Chapter 8. 

The main disadvantage of Abstract Factory is that it is type intensive: The abstract factory base class 
(AbstractEnemyFactory in the example) must know about every abstract product that's to be created. 
In addition, at least in the implementation just provided, each concrete factory class depends on the 
concrete products it creates. 

You can reduce dependencies by applying the techniques described in Chapter 8. There, you created a 
concrete object not by knowing its type but by knowing its type identifier (such as an int or a string). 
Such a dependency is much weaker. 

However, the more you reduce dependencies, the more you also reduce type knowledge, and consequently 
the more you undermine the type safety of your design. This is yet another instance of the classic dilemma 
of better type safety versus lesser dependencies that often appears in C++. 

As often happens, getting the right solution involves a trade-off between competing benefits. You should 
choose the setting that best suits your needs. As a rule of thumb, try to go with a static model when you 
can, and rely on a dynamic model when you must. 

The generic implementation of Abstract Factory presented in the following sections sports an interesting 
feature that reduces static dependencies without compromising type safety. 

 

9.2 A Generic Abstract Factory Interface 

As hinted in Chapter 3, the Typelist facility makes implementing generic Abstract Factories a slam-
dunk. This section describes how to define a generic AbstractFactory interface with the help of 
typelists. 

The example shown in the previous section is a typical use of the Abstract Factory design pattern. To recap: 
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• You define an abstract class (the abstract factory class) that has one pure virtual function for each 
product type. The virtual function corresponding to type T usually returns a T*, and its name is 
CreateT, MakeT, or something similar. 

• You define one or more concrete factories that implement the interface defined by the abstract 
factory. You implement each member function by creating a new object of a derived type, usually 
by invoking the new operator. 

All this seems simple enough, but as the number of products created by the abstract factory grows, the 
code becomes less and less maintainable. Furthermore, at any moment you might decide to plug in an 
implementation that uses a different allocation, or a prototype object. 

A generic Abstract Factory would be of help here, but only if it's flexible enough to easily accommodate 
things such as custom allocators and passing arguments to constructors. 

Recall the class template GenScatterHierarchy from Chapter 3. GenScatterHierarchy 
instantiates a basic template—provided by the user—with each type in a typelist. By its structure, the 
resulting instantiation of GenScatterHierarchy inherits all the instantiations of the user-provided 
template. In other words, if you have a template Unit and a typelist TList, 
GenScatterHierarchy<TList, Unit> is a class that inherits Unit<T> for each type T in TList. 

GenScatterHierarchy can be very useful for defining an abstract factory interface—you define an 
interface that can create objects of one type, and then you apply that interface to multiple types with 
GenScatterHierarchy. 

The "unit" interface, which can create objects of a generic type T, is as follows. 

template <class T> 
class AbstractFactoryUnit 
{ 
public: 
   virtual T* DoCreate(Type2Type<T>) = 0; 
   virtual ~AbstractFactoryUnit() {} 
}; 

This little template looks perfectly kosher—virtual destructor and all[1]—but what's that Type2Type 
business? Recall from Chapter 2 that Type2Type is a simple template whose unique purpose is to 
disambiguate overloaded functions. Okay, but then where are those ambiguous functions? 
AbstractFactoryUnit defines only one DoCreate function. There will be several 
AbstractFactoryUnit instantiations in the same inheritance hierarchy, as you'll see in a moment. The 
Type2Type<T> helps in disambiguating the various DoCreate overloads generated. 

[1] See Chapter 4 for an extended discussion of virtual destructors. 

The generic AbstractFactory interface uses GenScatterHierarchy in conjunction with 
AbstactFactoryUnit, as follows: 

template 
< 
   class TList, 
   template <class> class Unit = AbstractFactoryUnit 
> 
class AbstractFactory : public GenScatterHierarchy<TList, Unit> 
{ 
public: 
   typedef TList ProductList; 
   template <class T> T* Create() 
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   { 
      Unit <T>& unit = *this; 
      return unit.DoCreate(Type2Type<T>()); 
   } 
}; 

Aha, there's Type2Type in action to make it clear which DoCreate function is called by Create. Let's 
analyze what happens when you type the following: 

// Application code 
typedef AbstractFactory 
< 
   TYPELIST_3(Soldier, Monster, SuperMonster) 
> 
AbstractEnemyFactory; 

As Chapter 3 explains, the AbstractFactory template generates the hierarchy depicted in Figure 9.2. 
AbstractEnemyFactory inherits AbstractFactoryUnit<Soldier>, 
AbstractFactoryUnit<Monster>, and AbstractFactoryUnit<SuperMonster>. Each defines 
one pure virtual member function Create, so AbstractEnemyFactory has three Create overloads. 
In a nutshell, AbstractEnemyFactory is pretty much equivalent to the abstract class of the same name 
defined in the previous section. 

Figure 9.2. The class hierarchy generated for AbstractEnemyFactory 

 

The template member function Create of AbstractFactory is a dispatcher that routes the creation 
request to the appropriate base class: 

AbstractEnemyFactory* p = ...; 
Monster* pOgre = p->Create<Monster>(); 
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One important advantage of the automatically generated version is that AbstractEnemyFactory is a 
highly granular interface. You can automatically convert a reference to an AbstractEnemyFactory to 
a reference to an AbstractFactory<Soldier>, AbstractFactory <Monster>, or 
AbstractFactory<SuperMonster>. This way, you can pass only small subunits of the factory to 
various parts of your application. For instance, a certain module (Surprises.cpp) needs only to create 
SuperMonsters. You can communicate to that module in terms of pointers or references to 
AbstractFactory<SuperMonster>, so that Surprises. cpp is not coupled with Soldier and 
Monster. 

Using AbstractFactory's granularity, you can reduce the coupling that affects the Abstract Factory 
design pattern. You gain this decoupling without sacrificing the safety of your abstract factory interface 
because only the interface, not the implementation, is granular. 

This brings us to the implementation of the interface. The second important advantage of the automatically 
generated AbstractEnemyFactory is that you can automate the implementation, too. 

 

9.3 Implementing AbstractFactory 

Now that we have defined the interface, we should look into ways to make implementation as easy as 
possible. 

Given the use of typelists in defining the interface, a natural way of building a generic implementation of 
AbstractFactory would be to employ typelists of concrete products. In practical terms, building the 
Easy level concrete factory should be as simple as the following: 

// Application code 
typedef ConcreteFactory 
< 
   // The abstract factory to implement 
   AbstractEnemyFactory, 
   // The policy for creating objects 
   // (for instance, use the new operator) 
   OpNewFactoryUnit, 
   // The concrete classes that this factory creates 
   TYPELIST_3(SillySoldier, SillyMonster, SillySuperMonster) 
> 
EasyLevelEnemyFactory; 

The three arguments to the (now hypothetical) ConcreteFactory class template are enough information 
to implement a complete factory: 

• AbstractEnemyFactory provides the abstract factory interface to implement and, implicitly, 
the list of products. 

• OpNewFactoryUnit is the policy that dictates how objects are actually created. (Chapter 1 
discusses the policy class concept in detail.) 

• The typelist provides the collection of concrete classes that the factory is supposed to create. Each 
concrete type in the typelist maps to the abstract type of the same index in AbstractFactory's 
typelist. For example, SillyMonster (index 1) is the concrete type for Monster (same index in 
the definition of AbstractEnemyFactory). 

Now that we have established the synopsis of ConcreteFactory, let's figure out how we can implement 
it. Simple math leads us to the conclusion that there should be as many pure virtual function overrides as 
there are definitions. (Otherwise we wouldn't be able to instantiate ConcreteFactory, and by definition, 
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ConcreteFactory must be ready to serve.) Consequently, ConcreteFactory should inherit 
OpNewFactoryUnit (which is responsible for implementing DoCreate) instantiated with every type in 
the typelist. 

Here the GenLinearHierarchy class template, which complements GenScatterHierarchy (see 
Chapter 3), can be of great use because it takes care of all the details of generating the instantiations for us. 

AbstractEnemyFactory must be the root of the hierarchy. All DoCreate implementations and 
ultimately EasyLevelEnemyFactory must derive from it. Each instantiation of OpNewFactoryUnit 
overrides one of the three DoCreate pure virtual functions defined by AbstractEnemyFactory. 

Let's proceed by defining OpNewFactoryUnit. Obviously, OpNewFactoryUnit is a class template 
having the type to create as a template parameter. In addition, GenLinearHierarchy requires that 
OpNewFactoryUnit accept an additional template parameter and derive from it. 
(GenLinearHierarchy uses this second parameter to generate the string-shaped inheritance hierarchy 
shown in Figure 3.6.) 

template <class ConcreteProduct, class Base> 
class OpNewFactoryUnit : public Base 
{ 
   typedef typename Base::ProductList BaseProductList; 
protected: 
   typedef typename BaseProductList::Tail ProductList; 
public: 
   typedef typename BaseProductList::Head AbstractProduct; 
   ConcreteProduct* DoCreate(Type2Type<AbstractProduct>) 
   { 
      return new ConcreteProduct; 
   } 
}; 

OpNewFactoryUnit must do only some type calculations for figuring out which abstract product to 
implement. 

Each OpNewFactoryUnit instantiation is a component in a food chain. Each OpNewFactoryUnit 
instantiation "eats" the head of the product list by overriding the appropriate DoCreate function, and 
passes the beheaded ProductList down the class hierarchy. Thus, the topmost OpNewFactoryUnit 
instantiation (the one just below AbstractEnemyFactory) implements 
DoCreate(Type2Type<Soldier>), and the bottommost OpNewFactoryUnit instantiation 
implements DoCreate(Type2Type<SuperMonster>). 

Let's recap how OpNewFactoryUnit honors its position in the food chain. First, OpNewFactoryUnit 
imports the ProductList type from its base class and renames it BaseProductList. (If you look at 
AbstractFactory's definition, you'll see that indeed it exports the ProductList type.) The abstract 
product that OpNewFactoryUnit implements is the head of BaseProductList, hence 
AbstractProduct's definition. Finally, OpNewFactoryUnit reexports BaseProductList::Tail 
as ProductList. This way the remaining list is passed down the inheritance hierarchy. 

Notice that OpNewFactoryUnit::DoCreate does not return a pointer to AbstractProduct, as its 
pure counterpart does. Instead, OpNewFactoryUnit::DoCreate returns a pointer to a 
ConcreteProduct object. Does it still qualify as an implementation of the pure virtual function? The 
answer is yes, thanks to a C++ language feature called covariant return types. C++ allows you to override 
a function that returns a pointer to a base class with a function that returns a pointer to a derived class. It 
makes a lot of sense. With covariant return types, you either know the exact type of the concrete factory 
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and you get maximum type information, or you know only the base type of the factory and you get lesser 
type information. 

ConcreteFactory must generate a hierarchy using GenLinearHierarchy. Its implementation is 
straightforward: 

template 
< 
   class AbstractFact, 
   template <class, class> class Creator = OPNewFactoryUnit 
   class TList = typename AbstractFact::ProductList 
> 
class ConcreteFactory 
   : public GenLinearHierarchy< 
      typename TL::Reverse<TList>::Result, Creator, AbstractFact> 
{ 
public: 
   typedef typename AbstractFact::ProductList ProductList; 
   typedef TList ConcreteProductList; 
}; 

The class hierarchy that GenLinearHierarchy generates for ConcreteFactory is shown in Figure 
9.3. 

Figure 9.3. The class hierarchy generated for EasyLevelEnemyFactory 
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There is only one twist: ConcreteFactory must reverse the concrete product list when passing it to 
GenLinearHierarchy. Why? Well, we have to go back to Figure 3.6, which shows how 
GenLinearHierarchy generates a hierarchy. GenLinearHierarchy distributes types in the typelist 
to its Unit template argument from the bottom up; the first element in the typelist is passed to the Unit 
instantiation that's at the bottom of the class hierarchy. However, OpNewFactoryUnit implements the 
DoCreate overloads in a top-down fashion. In conclusion, ConcreteFactory reverses the typelist 
TList using the TL::Reverse compile-time algorithm (see Chapter 3) before passing it to 
GenLinearHierarchy. 

If, at this point, you still find AbstractFactory and ConcreteFactory a bit confusing or too 
complicated, take heart. It is because the two class templates make nonchalant use of typelists. Typelists 
themselves are likely a new concept to you, and it will take some time to get used to them. If you think of 
typelists as a black-box concept—"typelists are to types what regular lists are to values"—the 
implementations in this chapter are very simple. And once you truly get used to typelists, the sky's the limit. 
Unconvinced? Read on. 

 

9.4 A Prototype-Based Abstract Factory Implementation 

The Prototype design pattern (Gamma et al. 1995) describes a method for creating objects starting from a 
prototype, an archetypal object. You obtain new objects by cloning the prototype. And the gist of it all is 
that the cloning function is virtual. 

As Chapter 8 discusses in detail, the essential problem in creating polymorphic objects is the virtual 
constructor dilemma: Creation from scratch needs knowledge about the type of object being created, yet 
polymorphism fosters not knowing the exact type. 

The Prototype pattern avoids the dilemma by using a prototype object. If you have one object—a 
prototype—you can take advantage of virtual functions. The virtual constructor dilemma still applies to the 
prototype itself, but it's much more localized. 

A prototype-based approach to building enemies for the game in our example would prescribe holding 
pointers to the base classes Soldier, Monster, and SuperMonster. Then we would write code like the 
following:[2] 

[2] Warning—this code has trouble with exception safety. Fixing it is left as an exercise for the reader. 

class GameApp 
{ 
   ... 
   void SelectLevel() 
   { 
      if (user chooses Diehard level) 
      { 
         protoSoldier_.reset(new BadSoldier); 
         protoMonster_.reset(new BadMonster); 
         protoSuperMonster_.reset(new BadSuperMonster); 
      } 
      else 
      { 
         protoSoldier_.reset(new SillySoldier); 
         protoMonster_.reset(new SillyMonster); 
         protoSuperMonster_.reset(new SillySuperMonster); 
      } 
   } 
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   Soldier* MakeSoldier() 
   { 
      // Each enemy class defines a Clone virtual function 
      // that returns a pointer to a new object 
      return pProtoSoldier_->Clone(); 
   } 
   ... MakeMonster and MakeSuperMonster similarly defined ... 
private: 
   // Use these prototypes to create enemies 
   auto_ptr<Soldier> protoSoldier_; 
   auto_ptr<Monster> protoMonster_; 
   auto_ptr<SuperMonster> protoSuperMonster_; 
}; 

Of course, real-world code would better separate the interface and the implementation. The basic idea is 
that GameApp holds pointers to base enemy classes—the prototypes. GameApp uses these prototypes to 
create enemy objects by calling the virtual function Clone on the prototypes. 

A prototype-based Abstract Factory implementation would collect a pointer for each product type and use 
the Clone function to create new products. 

In a ConcreteFactory that uses prototypes, there's no longer a need to provide the concrete types. In 
our example, building SillySoldiers or BadSoldiers is only a matter of providing the appropriate 
prototypes to the factory object. The prototype's static type is the base (Soldier) class. The factory does 
not have to know the concrete types of the objects; it just calls the Clone virtual member function for the 
appropriate prototype object. This reduces the concrete factory's dependency on the concrete types. 

For the GenLinearHierarchy expansion mechanism to work correctly, however, there has to be a 
typelist. Recall ConcreteFactory's declaration: 

template 
< 
   class AbstractFact, 
   template <class, class> class Creator, 
   class TList 
> 
class ConcreteFactory; 

TList is the concrete product list. In the EasyLevelEnemyFactory, TList was 
TYPELIST_3(SillySoldier, SillyMonster, SillySuperMonster). If we use the Prototype 
design pattern, TList becomes irrelevant. However, GenLinearHierarchy needs TList for 
generating one class for each product in the abstract product list. What to do? 

In this case, a natural solution is to pass ConcreteFactory the abstract product list as the TList 
argument. Now GenLinearHierarchy generates the right number of classes, and there's no need to 
change ConcreteFactory's implementation. 

ConcreteFactory's declaration now becomes 

template 
< 
   class AbstractFact, 
   template <class, class> class Creator, 
   class TList = typename AbstractFact::ProductList 
> 
class ConcreteFactory; 



 201

(Recall from AbstractFact's definition in Section 9.3 that it defines the inner type ProductList.) 

Let's now implement PrototypeFactoryUnit, the unit template that holds the prototype and calls 
Clone. The implementation is straightforward and is actually simpler than OpNewFactoryUnit. This is 
because OpNewFactoryUnit had to maintain two typelists (the abstract products and the concrete 
products), whereas PrototypeFactoryUnit deals only with the abstract product list. 

template <class ConcreteProduct, class Base> 
class PrototypeFactoryUnit : public Base 
{ 
   typedef typename Base::ProductList BaseProductList; 
protected; 
   typedef typename Base::ProductList TailProductList; 
public; 
   typedef typename Base::ProductList::Head AbstractProduct; 
   PrototypeFactoryUnit(AbstractProduct* p = 0) 
      :pPrototype_(p) 
   {} 
   friend void DoGetPrototype(const PrototypeFactoryUnit& me, 
      AbstractProduct*& pPrototype) 
   { 
      pPrototype = me.pPrototype_; 
   } 
   friend void DoSetPrototype(PrototypeFactoryUnit& me, 
      AbstractProduct* pObj) 
   { 
      me.pPrototype_=pObj; 
   } 
   template <class U> 
   void GetPrototype(AbstractProduct*& p) 
   { 
      return DoGetPrototype(*this, p); 
   } 
   template <class U> 
   void SetPrototype(U* pObj) 
   { 
      DoSetPrototype(*this, pObj); 
   } 
   AbstractProduct* DoCreate(Type2Type<AbstractProduct>) 
   { 
      assert(pPrototype_); 
      return pPrototype_->Clone(); 
   } 
private: 
   AbstractProduct* pPrototype_; 
}; 

The PrototypeFactoryUnit class template makes some assumptions that may or may not apply to 
your concrete situation. First, PrototypeFactoryUnit doesn't own its prototype; sometimes, you 
might want SetPrototype to delete the old prototype before reassigning it. Second, 
PrototypeFactoryUnit uses a Clone function that supposedly clones the product. In your application 
you might use a different name, either because you are constrained by another library or because you 
prefer another naming convention. 

If you need to customize your prototype-based factory, you need only write a template similar to 
PrototypeFactoryUnit. You can inherit PrototypeFactoryUnit and override only the functions 
you want. For example, say you want to implement DoCreate so that it returns a null pointer if the 
prototype pointer is null. 
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template <class AbstractProduct, class Base> 
class MyFactoryUnit 
   : public PrototypeFactoryUnit<AbstractProduct, Base> 
{ 
public: 
   // Implement DoCreate so that it accepts a null prototype 
   // pointer 
   AbstractProduct* DoCreate(Type2Type<AbstractProduct>) 
   { 
      return pPrototype_ ? pPrototype_->Clone() : 0; 
   } 
}; 

Let's get back to our game example. To define a concrete factory, all you have to write in the application 
code is the following: 

// Application code 
typedef ConcreteFactory 
< 
   AbstractEnemyFactory, 
   PrototypeFactoryUnit 
> 
EnemyFactory; 

To conclude, the AbstractFactory/ConcreteFactory duo offers you the following features: 

• You can easily define factories with the help of typelists. 
• Because AbstractFactory inherits each of its units, the interface is very granular. You can 

pass individual "creator units" (pointers or references to AFUnit<T> sub objects) to different 
modules, thus reducing coupling. 

• You can use ConcreteFactory to implement the AbstractFactory by providing a policy 
template that dictates the creation method. For statically bound creation policies (such as 
OpNewFactoryUnit, which uses the new operator), you need to pass the typelist of concrete 
products that the factory creates. 

• A popular creation policy is to apply the Prototype design pattern; you can easily use Prototype 
with ConcreteFactory by using the canned PrototypeFactoryUnit class template. 

Try to obtain all these benefits with a handcrafted implementation of the Abstract Factory design pattern. 

 

9.5 Summary 

The Abstract Factory design pattern fosters an interface for creating a family of related or dependent 
polymorphic objects. Using Abstract Factory, you can divide implementation classes into disjoint families. 

It is possible to implement a generic abstract factory interface by using typelists and policy templates. The 
typelists provide the product list (both concrete and abstract) and the policy templates. 

The AbstractFactory class template provides a skeleton for defining abstract factories and works in 
conjunction with the AFUnit class template. AbstractFactory requires a user-provided abstract 
product typelist. Internally, AbstractFactory uses GenScatterHierarchy (see Chapter 3) to 
generate a granular interface that inherits AFUnit<T> for each product T in the abstract product typelist. 
This structure gives you the opportunity to reduce coupling by passing only individual factory units to 
various parts of an application. 
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The ConcreteFactory template helps with implementing the AbstractFactory interface. 
ConcreteFactory uses a FactoryUnit policy for creating objects. Internally, Concrete Factory 
uses GenLinearHierarchy (see Chapter 3). Loki provides two predefined implementations of the 
FactoryUnit policy: OpNewFactoryUnit, which creates objects by calling the new operator, and 
PrototypeFactoryUnit, which creates objects by cloning a prototype. 

 

9.6 AbstractFactory and ConcreteFactory Quick Facts 

• AbstractFactory synopsis: 

template 
< 
   class TList, 
   template <class> class Unit = AbstractFactoryUnit 
> 
class AbstractFactory; 

where TList is the typelist of abstract products that the factory creates, and Unit is the template 
that defines the interface for each type in TList. For example, 

typedef AbstractFactory<TYPELIST_3(Soldier, Monster, SuperMonster> 
   AbstractEnemyFactory; 

defines an abstract factory capable of creating Soldiers, Monsters, and SuperMonsters. 

• AbstractFactoryUnit<T> defines an interface consisting of a pure virtual function with the 
signature T* DoCreate(Type2Type<T>). Usually you don't call DoCreate directly; instead, 
you use AbstractFactory::Create. 

• AbstractFactory exposes a Create template function. You can instantiate Create with any 
of the types of the abstract products. For example: 

AbstractEnemyFactory *pFactory = ...; 
Soldier *pSoldier = pFactory->Create<Soldier>(); 

• For implementing the interface that AbstractFactory defines, Loki provides the 
ConcreteFactory template. ConcreteFactory's synopsis is 

template 
< 
   class AbstractFact, 
   template <class, class> class FactoryUnit = OpNewFactoryUnit, 
   class TList = AbstractFact::ProductList 
> 
class ConcreteFactory; 

where AbstractFact is the instantiation of AbstractFactory that is to be implemented, 
FactoryUnit is the implementation of the FactoryUnit creation policy, and TList is the 
typelist of concrete products. 

• The FactoryUnit policy implementation has access to both the abstract product and the 
concrete product that it must create. Loki defines two Creator policies: OpNewFactoryUnit 
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(Section 9.3) and PrototypeFactoryUnit (Section 9.4). They can also serve as examples for 
implementing custom implementations of the FactoryUnit policy. 

• OpNewFactoryUnit uses the new operator for creating objects. If you use 
OpNewFactoryUnit, you must provide a concrete product typelist as the third parameter to 
ConcreteFactory. For example: 

typedef ConcreteFactory 
< 
   AbstractEnemyFactory, 
   OpNewFactoryUnit, 
   TYPELIST_3(SillySoldier, SillyMonster, SillySuperMonster) 
> 

• EasyLevelEnemyFactory; 
• PrototypeFactoryUnit stores pointers to abstract product types and creates new objects by 

calling the Clone member function of their respective prototypes. This implies that 
PrototypeFactoryUnit requires each abstract product T to define a virtual member function 
Clone that returns a T* and whose semantics is to duplicate the object. 

• When using PrototypeFactoryUnit with ConcreteFactory, you don't provide the third 
template argument to ConcreteFactory. For example: 

typedef ConcreteFactory 
< 
   AbstractEnemyFactory, 
   PrototypeFactoryUnit, 
> 
EnemyFactory; 
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Chapter 10. Visitor 
This chapter discusses generic components that use the Visitor design pattern (Gamma et al. 1995). Visitor 
is a powerful—if controversial—design pattern that changes the dependency trade-offs involved in class 
design. 

Visitor gives you a surprising amount of flexibility in a certain area: You can add virtual functions to a 
class hierarchy without recompiling them or their existing clients. However, this flexibility comes at the 
expense of disabling features that designers take for granted: You cannot add a new leaf class to the 
hierarchy without recompiling the hierarchy and all its clients. Therefore, Visitor's operational area is 
limited to very stable hierarchies (you seldom add new classes) and heavy processing needs (you often add 
new virtual functions). 

Visitor goes against programmers' intuition; therefore, a careful implementation and rigorous discipline are 
essential to using it successfully. This chapter's goal is to craft a dependable generic implementation of 
Visitor that leaves as little burden on the application programmer as possible. 

After reading this chapter, you will 

• Understand how Visitor works 
• Know when to apply the Visitor pattern and, equally important, when not to 
• Understand the basic implementation of a visitor (the GoF implementation) 
• Know how to overcome some drawbacks of the GoF Visitor implementation 
• Learn how most of the decisions that pertain to implementing Visitor can be moved up to a library 
• Be armed with powerful generic components that will help you greatly in implementing visitors 

that specifically solve your problems 

 

10.1 Visitor Basics 

Let's consider a class hierarchy whose functionality you want to enhance. To do this, you can either add 
new classes or add new virtual member functions. 

Adding new classes is easy. You derive from a leaf class and implement the needed virtual functions. You 
don't need to change or recompile any existing classes. It's code reuse at its best. 

In contrast, adding new virtual functions is difficult. To be able to manipulate objects polymorphically (via 
pointers to the root class), you must add virtual member functions to the root class, and possibly to many 
other classes in the hierarchy. This is a major operation. It modifies the root class on which all the 
hierarchy and clients are dependent. As the ultimate result, you have to recompile the world. 

In a nutshell, from a dependency standpoint, new classes are easy to add, and new virtual member 
functions are difficult to add. 

But suppose that you have a hierarchy to which you seldom add new classes, but to which you often need 
to add virtual member functions. In this case, you have an advantage that you don't need, namely, the ease 
of adding classes. You also have a drawback that's annoying, namely, the difficulty of adding new virtual 
member functions. Here's where Visitor can be of help. Visitor trades the advantage you don't care about 
for an advantage you need. Visitor enables you to add new virtual functions to a hierarchy easily, while 
also making it more difficult to add new classes. The runtime cost of this wizardry is at least an extra 
virtual call, as you will see. 
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Visitor applies best when operations on objects are distinct and unrelated. The "state and operations" 
paradigm for each class becomes of little relevance. A view that separates types from operations is more 
appropriate. For such cases, it makes more sense to keep various implementations of a conceptual 
operation together, rather than spread them over the class hierarchy. 

Suppose, for example, that you develop a document editor. Document elements such as paragraphs, vector 
drawings, and bitmaps are represented as classes derived from a common root, say, DocElement. The 
document is a structured collection of pointers to DocElements. You need to iterate through this structure 
and perform operations such as spell checking, reformatting, and statistics gathering. In an ideal world, you 
should implement those operations mostly by adding code, not by modifying existing code. Furthermore, 
you ease maintenance if you put all the code pertaining to, say, getting document statistics in one place. 

Document statistics may include the number of characters, nonblank characters, words, and images. These 
would naturally belong to a class called DocStats. 

class DocStats 
{ 
   unsigned int 
      chars_, 
      nonBlankChars_, 
      words_, 
      images_; 
   ... 
public: 
   void AddChars(unsigned int charsToAdd) 
   { 
      chars_ += charsToAdd; 
   } 
   ...similarly defined AddWords, AddImages... 
   // Display the statistics to the user in a dialog box 
   void Display(); 
}; 

If you used a classic object-oriented approach to grabbing statistics, you would define a virtual function in 
DocElement that deals with gathering statistics. 

class DocElement 
{ 
   ... 
   // This member function helps the "Statistics" feature 
   virtual void UpdateStats(DocStats& statistics) = 0; 
}; 

Then each concrete document element would define the function in its own way. For example, class 
Paragraph and class RasterBitmap, which are derived from DocElement, would implement 
UpdateStats as follows: 

void Paragraph::UpdateStats(DocStats& statistics) 
{ 
   statistics.AddChars(number of characters in the paragraph); 
   statistics.AddWords(number of words in the paragraph); 
} 
 
void RasterBitmap::UpdateStats(DocStats& statistics) 
{ 
   // A raster bitmap counts as one image 
   // and nothing else (no characters etc.) 
   statistics.AddImages(1); 
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} 

Finally, the driver function would look like this: 

void Document::DisplayStatistics() 
{ 
   DocStats statistics; 
   for (each DocElement in the document) 
   { 
      element->UpdateStats(statistics); 
   } 
   statistics.Display(); 
} 

This is a fairly good implementation of the Statistics feature, but it has a number of disadvantages. 

• It requires DocElement and its derivees to have access to the DocStats definition. 
Consequently, every time you modify DocStats, you must recompile the whole DocElement 
hierarchy. 

• The actual operations of gathering statistics are spread throughout the UpdateStats 
implementations. A maintainer debugging or enhancing the Statistics feature must search and edit 
multiple files. 

• The implementation technique does not scale with respect to adding other operations that are 
similar to gathering statistics. To add an operation such as "increase font size by one point," you 
will have to add another virtual function to DocElement (and suffer all of the hassles that this 
implies). 

A solution that breaks the dependency of DocElement on DocStats is to move all operations into the 
DocStats class and let it figure out what to do for each concrete type. This implies that DocStats has a 
member function void UpdateStats(DocElement&). The document then simply iterates through its 
elements and calls UpdateStats for each of them. 

This solution effectively makes DocStats invisible to DocElement. However, now DocStats depends 
on each concrete DocElement that it needs to process. If the object hierarchy is more stable than its 
operations, the dependency is not very annoying. Now the problem is that the implementation of 
UpdateStats has to rely on the so-called type switch. A type switch occurs whenever you query a 
polymorphic object on its concrete type and perform different operations with it depending on what that 
concrete type is. DocStats::UpdateStats is bound to do such a type switch, as in the following: 

void DocStats::UpdateStats(DocElement& elem) 
{ 
   if (Paragraph* p = dynamic_cast<Paragraph*>(&elem)) 
   { 
      chars_ += p->NumChars(); 
      words_ += p->NumWords(); 
   } 
   else if (dynamic_cast<RasterBitmap*>(&elem)) 
   { 
      ++images_; 
   } 
   else ... 
   add one 'if' statement for each type of object you inspect 
} 

(The definition of p inside the if test is legal because of to a little-known addition to C++. You can define 
and test a variable right in an if statement. The lifetime of that variable extends to that if statement and 
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its else part, if any. Although it's not an essential feature and writing cute code per se is not 
recommended, the feature was invented especially to support type switches, so why not reap the benefits?) 

Whenever you see something like this, a mental alarm bell should go off. Type switching is not at all a 
desirable solution. (Chapter 8 presents a detailed argument.) Code that relies on type switching is hard to 
understand, hard to extend, and hard to maintain. It's also open to insidious bugs. For example, what if you 
put the dynamic_cast for a base class before the dynamic_cast for a derived class? The first test will 
match derived objects, so the second one will never succeed. One of the goals of polymorphism is to 
eliminate type switches because of all the problems they have. 

Here's where the Visitor pattern can be helpful. You need new functions to act virtual, but you don't want 
to add a new virtual function for each operation. To effect this, you must implement a unique bouncing 
virtual function in the DocElement hierarchy, a function that "teleports" work to a different hierarchy. 
The DocElement hierarchy is called the visited hierarchy, and the operations belong to a new visitor 
hierarchy. 

Each implementation of the bouncing virtual function calls a different function in the visitor hierarchy. 
That's how visited types are selected. The functions in the visitor hierarchy called by the bouncing function 
are virtual. That's how operations are selected. 

Following are a few lines of code to illustrate this idea. First, we define an abstract class 
DocElementVisitor that defines an operation for each type of object in the DocElement hierarchy. 

class DocElementVisitor 
{ 
public: 
   virtual void VisitParagraph(Paragraph&) = 0; 
   virtual void VisitRasterBitmap(RasterBitmap&) = 0; 
   ... other similar functions ... 
}; 

Next we add the bouncing virtual function, called Accept, to the class DocElement hierarchy, one that 
takes a DocElementVisitor& and invokes the appropriate VisitXxx function on its parameter. 

class DocElement 
{ 
public: 
   virtual void Accept(DocElementVisitor&) = 0; 
   ... 
}; 
 
void Paragraph::Accept(DocElementVisitor& v) 
{ 
   v.VisitParagraph(*this); 
} 
 
void RasterBitmap::Accept(DocElementVisitor& v) 
{ 
   v.VisitRasterBitmap(*this); 
} 

Now here's DocStats in all its splendor: 

class DocStats : public DocElementVisitor 
{ 
public: 
   virtual void VisitParagraph(Paragraph& par) 
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   { 
      chars_ += par.NumChars(); 
      words_ += par.NumWords(); 
   } 
   virtual void VisitRasterBitmap(RasterBitmap&) 
   { 
      ++images_; 
   } 
   ... 
}; 

(Of course, a real-world implementation would likely pull out the functions' implementations from the 
class definition to a separate source file.) 

This small example also illustrates a drawback of Visitor: You don't really add virtual member functions. 
True virtual functions have full access to the object for which they're defined, whereas from inside 
VisitParagraph you can access only the public part of Paragraph. 

The driver function Document::DisplayStatistics creates a DocStats object and invokes 
Accept on each DocElement, passing that DocStats object as a parameter. As the DocStats object 
visits various concrete DocElements, it gets nicely filled up with the appropriate data—no type switching 
needed! 

void Document::DisplayStatistics() 
{ 
   DocStats statistics; 
   for (each DocElement in the document) 
   { 
      element->Accept(statistics); 
   } 
   statistics.Display(); 
} 

Let's analyze the resulting context. We have added a new hierarchy, rooted in DocElementVisitor. 
This is a hierarchy of operations—each of its classes is actually an operation, like DocStatsis. Adding a 
new operation becomes as easy as deriving a new class from DocElementVisitor. No element of the 
DocElement hierarchy needs to be changed. 

For instance, let's add a new operation, IncrementFontSize, as a helper in implementing an Increase 
Font Size hot key or toolbar button. 

class IncrementFontSize : public DocElementVisitor 
{ 
public: 
   virtual void VisitParagraph(Paragraph& par) 
   { 
      par.SetFontSize(par.GetFontSize() + 1); 
   } 
   virtual void VisitRasterBitmap(RasterBitmap&) 
   { 
      // nothing to do 
   } 
   ... 
}; 
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That's it. No change to the DocElement class hierarchy is needed, and there is no change to the other 
operations. You just add a new class. DocElement::Accept bounces IncrementFontSize objects 
just as well as it bounces DocStats objects. The resulting class structure is represented in Figure 10.1. 

Figure 10.1. The visitor and visited hierarchies, and how operations are teleported 

 

Recall that, by default, new classes are easy to add, whereas new virtual member functions are not easy. 
We transformed classes into functions by bouncing back from the DocElement hierarchy to the 
DocElementVisitor hierarchy; thus, DocElementVisitor's derivatives are objectified functions. 
This is how the Visitor design pattern works. 

 

10.2 Overloading and the Catch-All Function 

Although not germane to the Visitor pattern, leveraging C++ overloading (or not) has a tremendous impact 
on implementing designs that use Visitor. 

In DocElementVisitor, we defined one member function per type visited: 
VisitParagraph(Paragraph&), VisitRasterBitmap(RasterBitmap&), and so on. These 
functions foster a kind of redundancy. The name of the element visited is also encoded in the function 
name. 

Usually it's best to avoid redundancy. We can get rid of it by leveraging C++ overloading. We simply 
name all the functions Visit and leave it to the compiler to figure out which overload of Visit to call 
based on the type of the parameter passed to it. So an alternative DocElementVisitor definition looks 
like this: 

class DocElementVisitor 
{ 
public: 
   virtual void Visit(Paragraph&) = 0; 
   virtual void Visit(RasterBitmap&) = 0; 
   ... other similar functions ... 
}; 

It also becomes simpler to define all the Accept member functions. They now exhibit a nice uniformity. 

void Paragraph::Accept(DocElementVisitor& v) 
{ 
   v.Visit(*this); 
} 
 
void RasterBitmap::Accept(DocElementVisitor& v) 
{ 
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   v.Visit(*this); 
} 

They look so similar that you might be tempted to factor them out in the base class DocElement. Wrong. 
The similarity is only a mirage. Actually, the functions are quite different: The static type of *this in 
Paragraph::Accept is Paragraph&, and in RasterBitmap:: Accept it's RasterBitmap&. It is 
this static type that helps the compiler figure out which overload of DocElementVisitor::Visit to 
call. If you implement Accept in DocElement, the static type of *this would be DocElement&, 
which doesn't provide the compiler with the needed type information. So base class factoring is not an 
option. It actually invalidates our design. 

Using overloading introduces an interesting idea. Let's assume that all DocElement derivatives 
implement Accept by simply bouncing to DocElementVisitor::Visit. Then we can provide 
DocElementVisitor with the following catch-all overload. 

class DocElementVisitor 
{ 
public: 
   ... as above ... 
   virtual void Visit(DocElement&) = 0; 
}; 

When will this overload be called? If you directly derive a new class from DocElement and don't provide 
an appropriate Visit overload for it in DocElementVisitor, then overloading rules and automatic 
derived-to-base conversions come into play. The reference to the unknown class will be automatically 
converted to a reference to the DocElement base class, and the catch-all member function will be called. 
If you don't put the catch-all in there, you'll get a compile-time error. Whether you prefer this way or the 
other depends on the concrete situation. 

You can do a lot of things inside the catch-all overload. Refer, for example, to John Vlissides' work 
(Vlissides 1998, 1999). You can take contingency measures, do something very generic, or fall back to a 
type switch (hack by using dynamic_cast) to find out the actual type of the DocElement. 

 

10.3 An Implementation Refinement: The Acyclic Visitor 

So you have decided to use Visitor. Let's get pragmatic. In a real-life project, how should you organize the 
code? 

A dependency analysis of the earlier example reveals the following: 

• For the DocElement class definition to compile, it must know about the DocElementVisitor 
because DocElementVisitor appears in the DocElement::Accept member function 
signature. A forward declaration would suffice. 

• For the DocElementVisitor class definition to compile, it has to know about all the concrete 
classes (at least) in the DocElement hierarchy because the class names appear in 
DocElementVisitor's VisitXxx member functions. 

This type of dependency is called a cyclic dependency. Cyclic dependencies are well-known maintenance 
bottlenecks. DocElement needs DocElementVisitor, and Doc ElementVisitor needs all of 
DocElement's hierarchy. Consequently, DocElement depends on its own subclasses. Actually, this is a 
cyclic name dependency; that is, the class definitions depend only on their names in order to compile. Thus, 
a sensible division of classes into files would look like this: 
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// File DocElementVisitor.h 
class DocElement; 
class Paragraph; 
class RasterBitmap; 
... forward declarations for all DocElement derivatives ... 
 
class DocElementVisitor 
{ 
   virtual void VisitParagraph(Paragraph&) = 0; 
   virtual void VisitRasterBitmap(RasterBitmap&) = 0; 
   ... other similar functions ... 
}; 
// File DocElement.h 
class DocElementVisitor; 
 
class DocElement 
{ 
public: 
   virtual void Accept(DocElementVisitor&) = 0; 
   ... 
}; 

Furthermore, each one-line Accept implementation needs the definition of DocElement Visitor, and 
each concrete visitor has to include its classes of interest. All this leads to an intricate map of dependencies. 

What becomes really cumbersome is adding new derivatives to DocElements. But hold on, we're not 
supposed to add any new elements to the DocElement hierarchy. Visitor applies best to stable hierarchies 
to which you want to add operations without touching them. Recall, however, that Visitor can do this for 
you at the expense of making it hard to add derivatives to the visited hierarchy (in our example, the 
hierarchy rooted in DocElement). 

But life is change. Let's face it, here on Earth, there's no such thing as a stable hierarchy. Occasionally you 
will have to add a new class to the DocElement hierarchy. For the previous example, here's what you 
must do to add a class VectorGraphic derived from DocElement: 

• Go to DocElementVisitor.h and add a new forward declaration for VectorGraphic. 
• Add a new pure overload to DocElementVisitor, as follows: 

class DocElementVisitor 
{ 
   ... as before ... 
   virtual void VisitVectorGraphic(VectorGraphic&) = 0; 
}; 

• Go to every concrete visitor and implement VisitVectorGraphic. Depending on the task, the 
function can be a do-nothing function. Alternatively, you can define 
DocElementVisitor::VisitVectorGraphic as a do-nothing, as opposed to a pure, 
function, but in this case, the compiler won't remind you if you don't implement it in concrete 
visitors. 

• Implement Accept in the VectorGraphic class. Don't forget to do this. If you derive directly 
from DocElement and forget to implement Accept, there's no problem—you'll get a compile-
time error. But if you derive from another class, such as Graphic, and if that class defines 
Accept, the compiler won't utter a word about your forgetting to make VectorGraphic 
visitable. This bug won't be detected until runtime, when you notice that your Visitor framework 
refuses to call any implementation of VisitVectorGraphic. Quite a nasty bug to deal with. 
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Corollary: All of the DocElement and DocElementVisitor hierarchies will be recompiled, and you 
need to add a considerable amount of mechanical code, all simply to keep things working. Depending on 
the size of the project, this requirementcould range from being annoying to being totally unacceptable. 

Robert Martin (1996) invented an interesting variation of the Visitor pattern that leverages 
dynamic_cast to eliminate cyclicity. His approach defines a strawman base class, BaseVisitor, for 
the visitor hierarchy. BaseVisitor is only a carrier of type information. It doesn't have any content; 
therefore, it is totally decoupled. The visited hierarchy's Accept member function accepts a reference to 
BaseVisitor and applies dynamic_cast against it to detect a matching visitor. If Accept finds a 
match, it jumps from the visited hierarchy to the visitor hierarchy. 

This might sound weird at first, but it's very simple. Let's see how we can implement an acyclic visitor for 
our DocElement/DocElementVisitor design. First, we define a visitor archetypal base class, the 
strawman. 

class DocElementVisitor 
{ 
public: 
   virtual void ~DocElementVisitor() {} 
}; 

The do-nothing virtual destructor does two important things. First, it gives DocElementVisitor RTTI 
(runtime type information) capabilities. (Only types with at least one virtual function support 
dynamic_cast.) Second, the virtual destructor ensures correct polymorphic destruction of 
DocElementVisitor objects. A polymorphic hierarchy without virtual destructors engenders undefined 
behavior if a derived object is destroyed via a pointer to a base object. Thus, we nicely solve two 
dangerous problems with one line of code. 

The DocElement class definition remains the same. Of interest to us is its definition of the 
Accept(DocElementVisitor&) pure virtual function. 

Then, for each derived class in the visited hierarchy (the one rooted in DocElement), we define a small 
visiting class that has only one function, VisitXxxx. For instance, for Paragraph, we define the 
following: 

class ParagraphVisitor 
{ 
public: 
   virtual void VisitParagraph(Paragraph&) = 0; 
}; 

The Paragraph::Accept implementation looks like this: 

void Paragraph::Accept(Visitor& v) 
{ 
   if (ParagraphVisitor* p = 
      dynamic_cast<ParagraphVisitor*>(&v)) 
   { 
      p->VisitParagraph(*this); 
   } 
   else 
   { 
      optionally call a catch-all function 
   } 
} 
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The prima donna here is dynamic_cast, which enables the runtime system to figure out whether v is 
actually a subobject of an object that also implements ParagraphVisitor and, if so, to obtain a pointer 
to that ParagraphVisitor. 

RasterBitmap and the other DocElement-derived classes define similar implementations of Accept. 
Finally, a concrete visitor derives from DocElementVisitor and the archetypal visitors of all classes 
that are of interest to it. For instance: 

class DocStats : 
   public DocElementVisitor,  // Required 
   public ParagraphVisitor,   // Wants to visit Paragraph objects 
   public RasterBitmapVisitor // Wants to visit RasterBitmap 
                              // objects 
{ 
public: 
   void VisitParagraph(Paragraph& par) 
   { 
      chars_ += par.NumChars(); 
      words_ += par.NumWords(); 
   } 
   void VisitRasterBitmap(RasterBitmap&) 
   { 
      ++images_; 
   } 
}; 

The resulting class structure is presented in Figure 10.2. The horizontal dotted lines depict dependency 
layers, and the vertical ones depict the insulation between hierarchies. Notice how dynamic_cast 
provides the means to jump magically from one hierarchy to the other by leveraging the strawman 
DocElementVisitor class. 

Figure 10.2. Class structure for an acyclic visitor 

 

The described structure encompasses a lot of details and interactions. However, the basic structure is 
simple. Let's recap everything by analyzing an event flow. We assume that we have a pointer, pDocElem, 
to a DocElement whose dynamic ("real") type is Paragraph. Then we do the following: 

DocStats stats; 
pDocElem->Accept(stats); 
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The following events happen, in order. 

1. The stats object is automatically converted to a reference to DocElementVisitor because it 
inherits this class publicly. 

2. The virtual function Paragraph::Accept is called. 
3. Paragraph::Accept attempts a dynamic_cast<ParagraphVisitor*> against the 

address of the DocElementVisitor object that it received. Because that object's dynamic 
type is DocStats and because DocStats inherits publicly from both 
DocElementVisitor and ParagraphVisitor, the cast succeeds. (Here is where the 
teleporting occurs!) 

4. Now Paragraph::Accept has obtained a pointer to the ParagraphVisitor part of the 
DocStats object. Paragraph::Accept will invoke the virtual function VisitParagraph 
on that pointer. 

5. The virtual call reaches DocStats::VisitParagraph. DocStats::VisitParagraph also 
receives as its parameter a reference to the visited paragraph. The visit is completed. 

Let's examine the new dependency chart. 

• DocElement's class definition depends on DocElementVisitor by name. Dependency by 
name means that a forward declaration of DocElementVisitor is enough. 

• ParagraphVisitor—and, in general, all XxxVisitor base classes—depends by name on the 
classes that it visits. 

• The Paragraph::Accept implementation fully depends on ParagraphVisitor. Full 
dependency means that the full class definition is needed in order to compile the code. 

• Any concrete visitor's class definition fully depends on DocElementVisitor and on all of the 
base visitors XxxVisitor that it wants to visit. 

The Acyclic Visitor pattern eliminates cyclic dependencies but in exchange leaves you with even more 
work to do. Basically, from now on, you must maintain two parallel sets of classes: the visited hierarchy 
rooted in DocElement; and the visitor classes XxxVisitor, one for each concrete visited class. 
Maintaining two parallel class hierarchies is not desirable because it requires much discipline and attention. 

A note on efficiency in comparing the "plain" Visitor with the Acyclic Visitor: In the latter, there's one 
extra dynamic cast in the path. Its cost in time might be constant or might increase logarithmically or 
linearly with the number of polymorphic classes in the program, depending on your compiler vendor. The 
cost might be important if efficiency is an issue. So in some cases you might be forced to use the "plain" 
Visitor and to maintain cyclic dependencies. 

Because of this overall grim picture, Visitor is, unsurprisingly, a controversial pattern. Even Ralph Gamma 
of GoF fame says that on his list of bottom-ten patterns, Visitor is at the very bottom (Vlissides 1999). 

Visitor is clumsy, rigid, hard to extend, and hard to maintain. However, with perseverance and diligence 
we can put together a Visitor library implementation that is win-win: easy to use, extend, and maintain. 
The next sections show how. 

 

10.4 A Generic Implementation of Visitor 

Let's divide the implementation into two major units: 

• Visitable classes. These are the classes belonging to the hierarchy that we want to visit (add 
operations to). 
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• Visitor classes. These classes define and implement the actual operations. 

Table 10.1. Component Names 
Name Belongs To Represents 
BaseVisitable Library The root of all hierarchies that can be visited 
Visitable Library A mix-in class that confers visitable properties to 

a class in the visitable hierarchy 
DocElement Application A sample class—the root of the hierarchy we 

want to make visitable 
Paragraph,RasterBitmap Application Two sample visitable concrete classes, derived 

from DocElement 
Accept Library and 

application 
The member function that's called for visiting the 
visitable hierarchy 

BaseVisitor Library The root of the visitor hierarchy 
Visitor Library A mix-in class that confers visitor properties to a 

class in the visitor hierarchy 
Statistics Application A sample visitor concrete class 
Visit Library and 

application 
The member function that is called back by the 
visitable elements, for its visitors 

The approach is simple and consistent: We try to factor out as much code as possible into the library. If we 
succeed in doing that, we will be rewarded with simplified dependencies. That is, instead of the two 
parts—visitor and visitable—depending on each other, both will depend on the library. This is good 
because the library is supposed to be much more immutable than the application. 

We first try to implement a generic Acyclic Visitor, since it has better behavior with regard to dependency 
and insulation. Later, we'll tweak it for performance. In the end, we return to implementing a classic GoF 
Visitor that is speedier at the expense of some flexibility. 

In the discussion on implementation, the names listed and defined in Table 10.1 apply. Some of the names 
in the table actually describe class templates, or, better said, will become class templates as we increasingly 
make our code more generic. For now, it's important to define the entities that the names represent. 

Let's focus on the visitor hierarchy first. Here things are quite simple—we must provide some base classes 
for the user, classes that define a Visit operation for a given type. In addition, we must provide the 
strawman class that's used by the dynamic cast as required by the Acyclic Visitor pattern. Here it is: 

class BaseVisitor 
{ 
public: 
   virtual ~BaseVisitor() {} 
}; 

That's not a lot of reuse, but somebody has to write this little class. 

Now we provide a simple class template Visitor. Visitor<T> defines a pure virtual function for 
visiting an object of type T. 

template <class T> 
class Visitor 
{ 
public: 
   virtual void Visit(T&) = 0; 
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}; 

In the general case, Visitor<T>::Visit might return something other than void. 
Visitor<T>::Visit can pass a useful result via Visitable::Accept. Consequently, let's add a 
second template parameter to Visitor: 

template <class T, typename R = void> 
class Visitor 
{ 
public: 
   typedef R ReturnType; 
   virtual ReturnType Visit(T&) = 0; 
}; 

Whenever you want to visit a hierarchy, you first derive your ConcreteVisitor from BaseVisitor, 
and as many Visitor instantiations as types you want to visit. 

class SomeVisitor : 
   public BaseVisitor // required 
   public Visitor<RasterBitmap>, 
   public Visitor<Paragraph> 
{ 
public: 
   void Visit(RasterBitmap&); // visit a RasterBitmap 
   void Visit(Paragraph &);   // visit a Paragraph 
}; 

The code looks clean, simple, and easy to use. Its structure makes it clear which classes your code visits. 
Even better, the compiler does not allow you to instantiate SomeVisitor if you don't define all the 
Visit functions. There is a name dependency between SomeVisitor's class definition and the names of 
the classes it visits (RasterBitmap and Paragraph). This dependency is quite understandable, because 
SomeVisitor knows about these types and needs to do specific operations on them. 

We have now concluded the visitor side of the implementation. We defined a simple base class that acts as 
the boot for dynamic_cast (BaseVisitor) and a class template (Visitor) that generates a pure 
virtual function (Visit) for each visited type. 

The code we have written so far, in spite of its small quantity, has fairly good reuse potential. The 
Visitor class template generates a separate type for each visited class. The library client is relieved of 
the burden of littering the implementation with all those little classes such as ParagraphVisitor and 
RasterBitmapVisitor. The types generated by the Visitor class template will ensure the link with 
the Visitable classes. 

This brings us to the visitable hierarchy. As discussed in the previous section, the visitable hierarchy in an 
Acyclic Visitor implementation has the following responsibilities: 

• Declare a virtual pure Accept function that takes a reference to a Visitor in the base class. 
• Override and implement that Accept function in each derived class. 

To carry the first responsibility we add a pure virtual function to the BaseVisitable class and require 
DocElement—and in general any root of a visitable hierarchy in the application space—to inherit from it. 
BaseVisitable looks like this: 

template <typename R = void> 
class BaseVisitable 
{ 
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public: 
   typedef R ReturnType; 
   virtual ~BaseVisitable() {} 
   virtual ReturnType Accept(BaseVisitor&) = 0; 
}; 

Trivial. Things become interesting when we try to carry the second responsibility, that is, to implement 
Accept in the library (not in the client). The Accept function implementation is not big, but it's annoying 
to have each client class take care of it. It would be nice if its code belonged to the library. As prescribed 
by the Acyclic Visitor pattern, if T is a visited class, T::Accept's implementation applies 
dynamic_cast<Vistor<T>*> to the BaseVisitor. If the cast succeeds, T::Accept bounces back 
to the Visitor<T>::Visit. However, as mentioned in Section 10.2, simply defining Accept in the 
Base Visitable class does not work, because the static type of *this in BaseVisitable does not 
provide the appropriate information to visitors. 

We need a way to implement Accept in the library and to inject this function into the application's 
DocElement hierarchy. Alas, C++ has no such direct mechanism. There are workarounds that use virtual 
inheritance, but they are less than stellar and have non-negligible costs. We have to resort to a macro and 
require each class in the visitable hierarchy to use that macro inside the class definition. 

Using macros, with all the clumsiness they bring, is not an easy decision to make, but any other solution 
does not add much commodity, at considerable expense in time and space. Because C++ programmers are 
known to be practical people, efficiency is reason enough for relying on macros from time to time instead 
of using esoteric but ineffective techniques. 

The single most important rule in defining a macro is to let it do as little as possible by itself and to 
forward to a "real" entity (function, class) as quickly as possible. We define the macro for visitable classes 
as follows: 

#define DEFINE_VISITABLE() \ 
   virtual ReturnType Accept(BaseVisitor& guest) \ 
   { return AcceptImpl(*this, guest); } 

The client must insert DEFINE_VISITABLE() in each class of the visitable hierarchy. 
DEFINE_VISITABLE() defines the Accept member function to forward to another function—
AcceptImpl. AcceptImpl is a template function parameterized with the type of *this. This way 
AcceptImpl gains access to the much-needed static type. We define AcceptImpl in the very base of 
the hierarchy, in BaseVisitor. This way, all derivatives will have access to it. Here's the changed 
BaseVisitable class: 

template <typename R = void> 
class BaseVisitable 
{ 
public: 
   typedef R ReturnType; 
   virtual ~BaseVisitable() {} 
   virtual ReturnType Accept(BaseVisitor&) = 0; 
protected: // Give access only to the hierarchy 
   template <class T> 
   static ReturnType AcceptImpl(T& visited, BaseVisitor& guest) 
   { 
      // Apply the Acyclic Visitor 
      if (Visitor<T>* p = dynamic_cast<Visitor<T>*>(&guest)) 
      { 
         return p->Visit(visited); 
      } 
      return ReturnType(); 
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   } 
}; 

The fact that we have managed to move AcceptImpl to the library is important. It's not only a matter of 
automating the client's job. The presence of AcceptImpl in the library gives us the opportunity to adjust 
its implementation depending on various design constraints, as will become clear later. 

The resulting design of Visitor/Visitable hides a great many details from the user, doesn't have 
annoying usage caveats, and works like a charm. Here's the current codebase for our generic Acyclic 
Visitor implementation. 

// Visitor part 
class BaseVisitor 
{ 
public: 
   virtual ~BaseVisitor() {} 
}; 
template <class T, typename R = void> 
class Visitor 
{ 
public: 
   typedef R ReturnType; // Available for clients 
   virtual ReturnType Visit(T&) = 0; 
}; 
 
// Visitable part 
template <typename R = void> 
class BaseVisitable 
{ 
public: 
   typedef R ReturnType; 
   virtual ~BaseVisitable() {} 
   virtual R Accept(BaseVisitor&) = 0; 
protected: 
   template <class T> 
   static ReturnType AcceptImpl(T& visited, BaseVisitor& guest) 
   { 
      // Apply the Acyclic Visitor 
      if (Visitor<T>* p = 
         dynamic_cast<Visitor<T>*>(&guest)) 
      { 
         return p->Visit(visited); 
      } 
      return ReturnType(); 
   } 
}; 
 
#define DEFINE_VISITABLE() \ 
   virtual ReturnType Accept(BaseVisitor& guest) \ 
   { return AcceptImpl(*this, guest); } 

Ready for a test drive? Here it is: 

class DocElement : public BaseVisitable<> 
{ 
public: 
   DEFINE_VISITABLE() 
}; 
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class Paragraph : public DocElement 
{ 
public: 
   DEFINE_VISITABLE() 
}; 
 
class MyConcreteVisitor : 
   public BaseVisitor,  // required 
   public Visitor<DocElement>,// visits DocElements 
   public Visitor<Paragraph>   // visits Paragraphs 
{ 
public: 
   void Visit(DocElement&) { std::cout << "Visit(DocElement&) \n"; } 
   void Visit(Paragraph&) { std::cout << "Visit(Paragraph&) \n"; } 
}; 
int main() 
{ 
   MyConcreteVisitor visitor; 
   Paragraph par; 
   DocElement* d = &par;  // "hide" the static type of 'par' 
   d->Accept(visitor); 
} 

This little program will output 

Visit(Paragraph&) 

which means that everything works just fine. 

Of course, this toy example doesn't show very much about the power of the codebase we've put together. 
However, given all the pains we've been through in implementing visitors from scratch in the previous 
sections, it's clear we now have a device that makes it easy to create visitable hierarchies correctly and to 
visit them. 

Let us review the actions you must carry out to define a visitable hierarchy. 

• Derive the root of your hierarchy from BaseVisitable<YourReturnType>. 
• Add to each class SomeClass in the visitable hierarchy the DEFINE_VISITABLE() macro. (By 

now your hierarchy is ready to be visited—however, no dependency of any Visitor class is in 
sight!) 

• Derive each concrete visitor SomeVisitor from BaseVisitor. Also, for each class X that you 
need to visit, derive SomeVisitor from Visitor<X, YourReturnType>. Provide overrides 
for the Visit member function for each visited type. 

The resulting dependency chart is simple. The class definition of SomeVisitor depends by name on each 
visited class. The implementations of the Visit member functions fully depend on the classes they 
manipulate. 

That's pretty much it. Compared with the previously discussed implementations, this one leaves us much 
better off. With the help of our Visitor implementation, we now have an ordered way to make visitable 
hierarchies, and we have reduced client code and dependencies to the bare necessity. 

In special cases, you might prefer to implement Accept directly rather than to use the 
DEFINE_VISITABLE macro. Suppose you define a Section class, derived from DocElement, which 
contains several Paragraphs. For a Section object, you would like to visit each Paragraph in that 
Section. In this case, you might want to implement Accept manually: class Section : public 
DocElement 
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// Won't use the DEFINE_VISITABLE() macro 
// because it's going to implement Accept by itself 
{ 
   ... 
   virtual ReturnType Accept(BaseVisitor& v) 
   { 
      for (each paragraph in this section) 
      { 
         current_paragraph->Accept(v); 
      } 
   } 
}; 

As you can see, there's nothing you cannot do when you use the Visitor implementation. The code we 
defined only frees you from the grunt work you would have to do if you started from scratch. 

We have finished defining the kernel Visitor implementation, which includes pretty much anything that is 
germane to basic visiting needs. But read on, there's a lot more to come. 

 

10.5 Back to the "Cyclic" Visitor 

The generic Acyclic Visitor implementation defined in the previous section should be satisfactory in most 
situations. However, if you are developing a speed-hungry application, that dynamic cast in Accept might 
render you pensive and your speed measurements could make you downright depressed. Here's why. If you 
use dynamic_cast against some object, the runtime support has quite a few things to do. The RTTI code 
must figure out whether the conversion to the target type is legal and, if it is, must compute a pointer to 
that target type. 

Let's detail a bit how a compiler writer can achieve this. One reasonable solution is to assign a unique 
integral identifier to each type in the program. The integral identifier also comes in handy when it comes to 
exception handling, so it's quite a wise integrating solution. Then in each class's virtual table, the compiler 
puts (a pointer to) a table of identifiers of all its subtypes. Together with these identifiers, the compiler has 
to store the offsets of the relative positions of the subobjects within the big object. This would be enough 
information to perform a dynamic cast correctly. When a dynamic_cast <T2*>(p1) occurs and p1 is 
of type "pointer to T1," the runtime support code walks through the table of types for p1. If a match with 
T2 is found, the runtime support code will perform the needed pointer arithmetic and pass back the result. 
Otherwise, the result is a null pointer. Details—such as multiple inheritance—render the dynamic cast 
code even more complicated and slower. 

The solution just outlined has O(n) complexity with respect to the number of base classes of a class. In 
other words, the time taken by a dynamic cast increases linearly as you use deeper and broader inheritance 
hierarchies. 

Another solution is to use hash tables, thus offering increased speed at the expense of memory use. Yet 
another solution might use a big matrix for the whole application, thus making the dynamic cast take 
constant time, but at a significant cost in size, especially for programs with many classes. (A possible idea 
would be to compress that matrix; all this reveals the wonderful life of C++ compiler writers.) 

The bottom line is that dynamic_cast does have a cost, which is unpredictable and can become 
unacceptable for some particular needs of an application. This means we should extend our Visitor 
implementation to accommodate the GoF "cyclic" Visitor, which is faster because it doesn't use 
dynamic_cast, but is harder to maintain. 
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Recall from the opening of this chapter how the GoF Visitor works. The following list summarizes the 
main differences between the GoF Visitor and the Acyclic Visitor as implemented by Loki. 

• The BaseVisitor class is no longer a strawman; it defines one Visit pure virtual member 
function for each visited type (assuming we decide to rely on overloading). 

• The AcceptImpl function must change. Ideally, the DEFINE_VISITABLE() macro remains 
unchanged. 

Now, it all boils down to this: We have a collection of types we want to visit. Say they are DocElement, 
Paragraph, and RasterBitmap. How can we express and manipulate a collection of types? The 
question is a transparent hint to refer to Chapter 3, which describes typelists in detail and defines a 
complete typelist facility. 

Typelists are exactly what we need here. We want to pass a typelist to a CyclicVisitor template as a 
template argument, thus saying, "I want this CyclicVisitor to be able to visit the following types." It 
would be elegant to say 

// Forward declarations needed by the typelist below 
class DocElement; 
class Paragraph; 
class RasterBitmap; 
 
// Visits DocElement, Paragraph, and RasterBitmap 
typedef CyclicVisitor 
< 
   void, // return type 
   TYPELIST_3(DocElement, Paragraph, RasterBitmap) 
> 
MyVisitor; 

CyclicVisitor depends by name on DocElement, Paragraph, and RasterBitmap. 

Let's see which additions we need to make to the current codebase. We use the same procedure we used in 
Chapter 9 for defining a generic Abstract Factory implementation: 

// Consult Visitor.h for the definition of Private::VisitorBinder<R> 
template <typename R, class TList> 
class CyclicVisitor : public GenScatterHierarchy<TList, 
   Private::VisitorBinder<R>::Result> 
{ 
   typedef R ReturnType; 
   template <class Visited> 
   ReturnType Visit(Visited& host) 
   { 
      Visitor<Visited>& subObj = *this; 
      return subObj.Visit(host); 
   } 
}; 

Remarkably, CyclicVisitor uses Visitor as a building block. Refer to Chapter 3 for the technique 
and to Chapter 9 for a similar example. Essentially, CyclicVisitor inherits a Visitor<T> for each 
type T in the typelist TList. 

The net effect is that if you pass CyclicVisitor a typelist, it ends up inheriting from Visitor 
instantiated with every type in that typelist, thus declaring one Visit pure virtual function per type. In 
other words, it's functionally equivalent to the base Visitor as prescribed by the GoF Visitor pattern. 
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After you specify your CyclicVisitor of choice through a typedef, say MyVisitor, all you have to do 
is use the DEFINE_CYCLIC_VISITABLE(MyVisitor) macro in your visitable classes appropriately. 
For example: 

typedef CyclicVisitor 
< 
   void, // return type 
   TYPELIST_3(DocElement, Paragraph, RasterBitmap) 
> 
MyVisitor; 
 
class DocElement 
{ 
public: 
   virtual void Visit(MyVisitor&) = 0; 
}; 
 
class Paragraph : public DocElement 
{ 
public: 
   DEFINE_CYCLIC_VISITABLE(MyVisitor); 
}; 

That's it! Just as in a handmade implementation of the GoF Visitor, you still have to contribute some 
discipline. The difference now is that the number of things you have to remember and implement yourself 
is much smaller. To make a hierarchy visitable with our GoF Visitor implementation, do the following: 

• Forward declare all the classes in the hierarchy. 
• Write a typedef for CyclicVisitor, instantiated with the return type and with the list of the 

types you want to visit. (Let's call it MyVisitor.) 
• Define a virtual pure function Visit for your base class. 
• Add DEFINE_CYCLIC_VISITABLE(MyVisitor) to each class of your hierarchy, or 

implement Accept by hand for classes that you want to sport a different behavior. 
• Have each of your concrete visitors inherit from MyVisitor. 
• Update the MyVisitor template instantiation (the typedef) whenever you add a new class to 

the visitable hierarchy, then—sigh—recompile. 

Compared with a handmade GoF Visitor implementation, the generic approach is cleaner. The number of 
points of maintenance is reduced to your MyVisitor type definition. 

As a practical piece of advice for designing with Visitor, it's best to start with the Acyclic Visitor, which is 
easier to maintain, and switch to the GoF Visitor only if you really must optimize. The nice part is that the 
generic componentry makes it very easy to experiment—you need change only one declaration. There's no 
code to hack into. The details of implementing Visitor are in the library. You need adjust only the 
declarative link between the client and library in order to achieve two different implementations of Visitor. 

 

10.6 Hooking Variations 

Visitor has a number of variations and customizations. This section is dedicated to mapping the hooks that 
you might need so that you can add these to the implementation that we've put in place. 

10.6.1 The Catch-All Function 
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We discussed the catch-all function in Section 10.2. A Visitor may encounter an unknown type derived 
from the base class (in our example, DocElement). In this case, you may want either a compile-time error 
to occur or a default action to be carried out at runtime. 

Let's analyze the catch-all issue for the GoF Visitor and the Acyclic Visitor implementations provided by 
our generic components. 

For the GoF Visitor, things are quite simple. If you include the root class of your hierarchy in the typelist 
you pass to CyclicVisitor, then you give yourself the opportunity to implement the catch-all function. 
Otherwise, you take the compile-time error route. The following code illustrates the two options: 

// Forward declarations needed for the GoF Visitor 
class DocElement; // Root class 
class Paragraph; 
class RasterBitmap; 
class VectorizedDrawing; 
 
typedef CyclicVisitor 
< 
   void, // Return type 
   TYPELIST_3(Paragraph, RasterBitmap, VectorizedDrawing) 
> 
StrictVisitor; // No catch-all operation; 
               // will issue a compile-time error if you try 
               // visiting an unknown type 
 
typedef CyclicVisitor 
< 
   void, // return type 
   TYPELIST_4(DocElement, Paragraph, RasterBitmap, 
      VectorizedDrawing) 
> 
NonStrictVisitor; // Declares Visit(DocElement&), which will be 
                  // called whenever you try visiting 
                  // an unknown type 

All this was quite easy. Now let's talk about the catch-all function within our Acyclic Visitor generic 
implementation. 

In Acyclic Visitor an interesting twist occurs. Although essentially catch-all is all about visiting an 
unknown class by a known visitor, the problem appears reversed: An unknown visitor visits a known class! 

Let's look again at our AcceptImpl implementation for Acyclic Visitor. 

template <typename R = void > 
class BaseVisitable 
{ 
   ... as above ... 
   template <class T> 
   static ReturnType AcceptImpl(T& visited, 
      BaseVisitor& guest) 
   { 
      if (Visitor<T>* p = 
         dynamic_cast<Visitor<T>*>(&guest)) 
      { 
         return p->Visit(visited); 
      } 
      return ReturnType(); // Attention here! 
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   } 
}; 

Suppose you add a VectorizedDrawing to your DocElement hierarchy in a sneaky way—you don't 
notify any concrete visitors about it. Whenever VectorizedDrawing is visited, the dynamic cast to 
Visitor<VectorizedDrawing> fails. This is because your existing concrete visitors are not aware of 
the new type, so they didn't derive from Visitor<VectorizedDrawing>. Because the dynamic cast 
fails, the code takes the alternate route and returns the default value of ReturnType. Here's the exact 
place where the catch-all function can enter into action. 

Because our AcceptImpl function hardcodes the return ReturnType() action, it quite rigidly 
imposes a design constraint without leaving room for variation. Therefore, let's put a policy in place that 
dictates the catch-all behavior: 

template 
< 
   typename R = void, 
   template <typename, class> class CatchAll = DefaultCatchAll 
> 
class BaseVisitable 
{ 
   ... as above ... 
   template <class T> 
   static ReturnType AcceptImpl(T& visited, 
      BaseVisitor& guest) 
   { 
      if (Visitor<T>* p = 
         dynamic_cast<Visitor<T>*>(&guest)) 
      { 
         return p->Visit(visited); 
      } 
      // Changed 
      return CatchAll<R, T>::OnUnknownVisitor(visited, guest); 
   } 
}; 

The CatchAll policy can do whatever the design requires. It can return a default value or error code, throw 
an exception, call a virtual member function for the visited object, try more dynamic casts, and so on. The 
implementation of OnUnknownVisitor depends largely on the concrete design needs. In some cases, 
you might want to enforce visitation for all the types in the hierarchy. In other cases, you might want to 
visit some types freely and to ignore all others silently. The Acyclic Visitor implementation favors the 
second approach, so the default CatchAll looks like this: 

template <class R, class Visited> 
struct DefaultCatchAll 
{ 
   static R OnUnknownVisitor(Visited&, BaseVisitor&) 
   { 
      // Here's the action that will be taken when 
      // there is a mismatch between a Visitor and a Visited. 
      // The stock behavior is to return a default value 
      return R(); 
   } 
}; 

Should you need a different behavior, all you have to do is plug a different template into 
BaseVisitable. 
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10.6.2 Nonstrict Visitation 

Maybe it's human nature, but the have-your-cake-and-eat-it-too ideal is every programmer's mantra. If 
possible, programmers would like a fast, noncoupled, flexible visitor that would read their minds and 
figure out whether an omission is a simple mistake or a deliberate decision. On the other hand, unlike their 
customers, programmers are practical, down-to-earth people, with whom you can haggle about trade-offs. 

Following this line of thought, the flexibility of CatchAll renders users of GoF Visitor envious. As it is 
now, the GoF Visitor implementation is strict—it declares one pure virtual function for each type visited. 
You must derive from BaseVisitor and implement each and every Visit overload, and if you don't, 
you cannot compile your code. 

However, sometimes you don't really want to visit each type in the list. You don't want the framework to 
be so strict about it. You want options: Either you implement Visit for a type, or OnUnknownVisitor 
will be automatically called for your CatchAll implementation. 

For this kind of situation, Loki introduces a class called BaseVisitorImpl. It inherits BaseVisitor 
and uses typelist techniques for accommodating typelists. You can look up its implementation in Loki (file 
Visitor.h). 

 

10.7 Summary 

This chapter discussed the Visitor pattern and the problems it addresses. Essentially, Visitor allows you to 
add virtual functions to a class hierarchy without modifying the classes in that hierarchy. In some cases, 
Visitor can lead to a clever, extensible design. 

However, Visitor has a bunch of problems, to the point that its use with any but the most stable class 
hierarchies is unjustifiably hard. Acyclic Visitor is of help, at the expense of a decrease in efficiency. 

By using careful design and advanced implementation techniques, you can ensure that the generic Visitor 
components get the best out of the Visitor pattern. Although the implementation fully preserves Visitor's 
power, it mitigates most of its shortcomings. 

In an application, Acyclic Visitor should be the variant of choice, unless you need all the speed you can get. 
If speed is important, you can use a generic implementation of the GoF Visitor that keeps maintenance low 
(a single, clear point of maintenance) and compile-time cost reasonable. 

The generic implementation leverages advanced C++ programming techniques, such as dynamic casts, 
typelists, and partial specialization. The outcome is that all the common, repetitive parts of implementing 
visitors for any concrete need have been absorbed by the library. 

 

10.8 Visitor Generic Components Quick Facts 

• To implement the Acyclic Visitor, use BaseVisitor (as the strawman base class), Visitor, 
and Visitable: 

class BaseVisitor; 
 
template <class T, typename R = void> 
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class Visitor; 
 
template 
 < 
   typename R = void, 
   template<class, class> CatchAll = DefaultCatchAll 
> 
class BaseVisitable; 

• The first template parameter of Visitor and BaseVisitable is the return type of the Visit 
and Accept member functions, respectively. It defaults to void (this is the return type assumed 
in the GoF book examples and in most Visitor descriptions). 

• The second template parameter of BaseVisitable is the policy for handling the catch-all issue 
(see Section 10.2). 

• Derive the root of your hierarchy from BaseVisitable. Then use the macro 
DEFINE_VISITABLE() in each class in the hierarchy, or provide a handmade implementation of 
Accept(BaseVisitor&). 

• Derive your concrete Visitor classes from BaseVisitor. Also derive your concrete visitor from 
Visitor<T>, for each type T you are interested in visiting. 

• For the GoF Visitor, use the CyclicVisitor template: 

template <typename R, class TList> 
class CyclicVisitor; 

• Specify the types visited in the TList template argument. 
• Use CyclicVisitor with your code just as you would use a classic GoF visitor. 
• If you need to implement only part of a GoF Visitor (the nonstrict variant), derive your visitable 

hierarchy from BaseVisitorImpl. BaseVisitorImpl implements all the Visit overloads 
to call OnUnknownVisitor. You can override part of this behavior. 

• The OnUnknownVisitor static member function of the CatchAll policy provides a catch-all 
sink for Acyclic Visitor. If you use BaseVisitorImpl, it will provide a catch-all for the GoF 
Visitor, too. The stock implementation of OnUnknownVisitor returns a default-constructed 
value of the return type you chose. You can override this behavior by providing custom 
implementations of CatchAll. TE
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Chapter 11. Multimethods 
This chapter defines, discusses, and implements multimethods in the context of C++. 

The C++ virtual function mechanism allows dispatching of a call depending on the dynamic type of one 
object. The multimethods feature allows dispatching of a function call depending on the types of multiple 
objects. A universally good implementation requires language support, which is the route that languages 
such as CLOS, ML, Haskell, and Dylan have taken. C++ lacks such support, so its emulation is left to 
library writers. 

This chapter discusses some typical solutions and some generic implementations of each. The solutions 
feature various trade-offs in speed, flexibility, and dependency management. To describe the technique of 
dispatching a function call depending on multiple objects, this book uses the terms multimethod (borrowed 
from CLOS) and multiple dispatch. A particularization of multiple dispatch for two objects is known as 
double dispatch. 

Implementing multimethods is a problem that's as fascinating as it is dreaded, one that has stolen lots of 
hours of good, healthy sleep from designers and programmers.[1] 

[1] If you have trouble implementing multimethods, you can look at this chapter as a sleep aid—which I hope 
doesn't mean it has an actual soporific effect. 

The topics of this chapter include 

• Defining multimethods 
• Identifying situations in which the need for multiobject polymorphism appears 
• Discussing and implementing three double dispatchers that foster different trade-offs 
• Enhancing double-dispatch engines 

After reading this chapter, you will have a firm grasp of the typical situations for which multimethods are 
the way to go. In addition, you will be able to use and extend several robust generic components, provided 
by Loki, that implement multimethods. 

This chapter limits discussion to multimethods for two objects (double dispatch). You can use the 
underlying techniques to extend the number of supported objects to three or more. It is likely, though, that 
in most situations you can get away with dispatching depending on two objects, and therefore you'll be 
able to use Loki directly. 

 

11.1 What Are Multimethods? 

In C++, polymorphism essentially means that a given function call can be bound to different 
implementations, depending on compile-time or runtime contextual issues. 

Two types of polymorphism are implemented in C++: 

• Compile-time polymorphism, supported by overloading and template functions[2] 

[2] A more generous view of polymorphism would qualify automatic conversions as the crudest form 
of polymorphism. They allow, for example, std::sin to be called with an int although it was 
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written for a double. This polymorphism through coercion is only apparent, because the same 
function call will be issued for both types. 

• Runtime polymorphism, implemented with virtual functions 

Overloading is a simple form of polymorphism that allows multiple functions with the same name to 
coexist in a scope. If the functions have different parameter lists, the compiler can differentiate among 
them at compile time. Overloading is simple syntactic sugar, a convenient syntactic abbreviation. 

Template functions are a static dispatch mechanism. They offer more sophisticated compile-time 
polymorphism. 

Virtual member function calls allow the C++ runtime support, instead of the compiler, to decide which 
actual function implementation to call. Virtual functions bind a name to a function implementation at 
runtime. The function called depends on the dynamic type of the object for which you make the virtual call. 

Let's now see how these three mechanisms for polymorphism scale to multiple objects. Overloading and 
template functions scale to multiple objects naturally. Both features allow multiple parameters, and 
intricate compile-time rules govern function selection. 

Unfortunately, virtual functions—the only mechanism that implements runtime polymorphism in C++—
are tailored for one object only. Even the call syntax—obj.Fun (arguments)—gives obj a privileged 
role over arguments. (In fact, you can think of obj as nothing more than one of Fun's arguments, 
accessible inside Fun as *this. The Dylan language, for example, accepts the dot call syntax only as a 
particular expression of a general function-call mechanism.) 

We define multimethods or multiple dispatch as the mechanism that dispatches a function call to different 
concrete functions depending on the dynamic types of multiple objects involved in the call. Because we 
can take compile-time multiobject polymorphism for granted, we need only implement runtime multiobject 
polymorphism. Don't be worried; there's a lot left to talk about. 

 

11.2 When Are Multimethods Needed? 

Detecting the need for multimethods is simple. You have an operation that manipulates multiple 
polymorphic objects through pointers or references to their base classes. You would like the behavior of 
that operation to vary with the dynamic type of more than one of those objects. 

Collisions form a typical category of problems best solved with multimethods. For instance, you might 
write a video game in which moving objects are derived from a Game Object abstract class. You would 
like their collision to behave differently depending on which two types collide: a space ship with an 
asteroid, a ship with a space station, or an asteroid with a space station.[3] 

[3] This example and names were borrowed from Scott Meyers's More Effective C++ (1996a), Item 31. 

For example, suppose you want to mark overlapping areas of drawing objects. You write a drawing 
program that allows its users to define rectangles, circles, ellipses, polygons, and other shapes. The basic 
design is an object-oriented classic: Define an abstract class Shape and have all the concrete shapes derive 
from it; then manipulate a drawing as a collection of pointers to Shape. 

Now say the client comes and asks for a nice-to-have feature: If two closed shapes intersect, the 
intersection should be drawn in a way different from each of the two shapes. For instance, the intersection 
area could be hatched, as in Figure 11.1. 



 230

Figure 11.1. Hatching the intersection of two shapes 

 

Finding a single algorithm that will hatch any intersection is difficult. For instance, the algorithm that 
hatches the intersection between an ellipse and a rectangle is very different (and much more complex) 
from the one that hatches the intersection between two rectangles. Besides, an overly general algorithm 
(for instance, one that operates at a pixel level) is likely to be highly inefficient, since some intersections 
(such as rectangle-rectangle) are trivial. 

What you need here is a battery of algorithms, each specialized for two shape types, such as rectangle-
rectangle, rectangle-polygon, polygon-polygon, ellipse-rectangle, ellipse-polygon, and ellipse-ellipse. At 
runtime, as the user moves shapes on the screen, you'd like to pick up and fire the appropriate algorithms, 
which in turn will quickly compute and hatch the overlapping areas. 

Because you manipulate all drawing objects as pointers to Shape, you don't have the type information 
necessary to select the suitable algorithm. You have to start from pointers to Shape only. Because you 
have two objects involved, simple virtual functions cannot solve this problem. You have to use double 
dispatch. 

 

11.3 Double Switch-on-Type: Brute Force 

The most straightforward approach to a double dispatch implementation is to implement a double switch-
on-type. You try to dynamic cast the first object against each of the possible left-hand types in succession. 
For each branch, you do the same with the second argument. When you have discovered the types of both 
objects, you know which function to call. The code looks like this: 

// various intersection algorithms 
void DoHatchArea1(Rectangle&, Rectangle&); 
void DoHatchArea2(Rectangle&, Ellipse&); 
void DoHatchArea3(Rectangle&, Poly&); 
void DoHatchArea4(Ellipse&, Poly&); 
void DoHatchArea5(Ellipse&, Ellipse&); 
void DoHatchArea6(Poly&, Poly&); 
 
void DoubleDispatch(Shape& lhs, Shape& rhs) 
{ 
   if (Rectangle* p1 = dynamic_cast<Rectangle*>(&lhs)) 
   { 
      if (Rectangle* p2 = dynamic_cast<Rectangle*>(&rhs)) 
         DoHatchArea1(*p1, *p2); 
      else if (Ellipse p2 = dynamic_cast<Ellipse*>(&rhs)) 
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         DoHatchArea2(*p1, *p2); 
      else if (Poly p2 = dynamic_cast<Poly*>(&rhs)) 
         DoHatchArea3(*p1, *p2); 
      else 
         Error("Undefined Intersection"); 
   } 
   else if (Ellipse* p1 = dynamic_cast<Ellipse*>(&lhs)) 
   { 
      if (Rectangle* p2 = dynamic_cast<Rectangle*>(&rhs)) 
         DoHatchArea2(*p2, *p1); 
      else if (Ellipse* p2 = dynamic_cast<Ellipse*>(&rhs)) 
         DoHatchArea5(*p1, *p2); 
      else if (Poly* p2 = dynamic_cast<Poly*>(&rhs)) 
         DoHatchArea4(*p1, *p2); 
      else 
         Error("Undefined Intersection"); 
   } 
   else if (Poly* p1 = dynamic_cast<Poly*>(&lhs)) 
   { 
      if (Rectangle* p2 = dynamic_cast<Rectangle*>(&rhs)) 
         DoHatchArea2(*p2, *p1); 
      else if (Ellipse* p2 = dynamic_cast<Ellipse*>(&rhs)) 
         DoHatchArea4(*p2, *p1); 
      else if (Poly* p2 = dynamic_cast<Poly*>(&rhs)) 
         DoHatchArea6(*p1, *p2); 
      else 
         Error("Undefined Intersection"); 
   } 
   else 
   { 
      Error("Undefined Intersection"); 
   } 
} 

Whew! It's been quite a few lines. As you can see, the brute-force approach asks you to write a lot of 
(allegedly trivial) code. You can count on any dependable C++ programmer to put together the appropriate 
web of if statements. In addition, the solution has the advantage of being fast if the number of possible 
classes is not too high. From a speed perspective, DoubleDispatch implements a linear search in the set 
of possible types. Because the search is unrolled—a succession of if-else statements as opposed to a 
loop—the speed is very good for small sets. 

One problem with the brute-force approach is sheer code size, which makes the code unmaintainable as the 
number of classes grows. The code just given deals with only three classes, yet it's already of considerable 
size. The size grows exponentially as you add more classes. Imagine how the code of DoubleDispatch 
would look for a hierarchy of 20 classes! 

Another problem is that DoubleDispatch is a dependency bottleneck—its implementation must know 
of the existence of all classes in a hierarchy. It is best to keep the dependency net as loose as possible, and 
DoubleDispatch is a dependency hog. 

The third problem with DoubleDispatch is that the order of the if statements matters. This is a very 
subtle and dangerous problem. Imagine, for instance, you derive class RoundedRectangle (a rectangle 
with rounded corners) from Rectangle. You then edit DoubleDispatch and insert the additional if 
statement at the end of each if-else statement, right before the Error call. You have just introduced a 
bug. 

The reason is that if you pass DoubleDispatch a pointer to a RoundedRectangle, the 
dynamic_cast<Rectangle*> succeeds. Because that test is before the test for 
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dynamic_cast<RoundedRectangle*>, the first test will "eat" both Rectangles and Rounded 
Rectangles. The second test will never get a chance. Most compilers don't warn about this. 

A candidate solution would be to change the tests as follows: 

void DoubleDispatch(Shape& lhs, Shape& rhs) 
{ 
   if (typeid(lhs) == typeid(Rectangle)) 
   { 
      Rectangle* p1 = dynamic_cast<Rectangle*>(&lhs); 
      ... 
   } 
   else ... 
} 

The tests are now for the exact type instead of the exact or derived type. The typeid comparison shown 
in this code fails if lhs is a RoundedRectangle, so the tests continue. Ultimately, the test against 
typeid(RoundedRectangle) succeeds. 

Alas, this fixes one aspect but breaks another: DoubleDispatch is too rigid now. If you didn't add 
support for a type in DoubleDispatch, you would like DoubleDispatch to fire on the closest base 
type. This is what you'd normally expect when using inheritance—by default, derived objects do what base 
objects do unless you override some behavior. The problem is that the typeid-based implementation of 
DoubleDispatch fails to preserve this property. The rule of thumb that results from this fact is that you 
must still use dynamic_cast in DoubleDispatch and "sort" the if tests so that the most derived 
classes are tried first. 

This adds two more disadvantages to the brute-force implementation of multimethods. First, the 
dependency between DoubleDispatch and the Shape hierarchy deepens—DoubleDispatch must 
know about not only classes but also the inheritance relationships between classes. Second, maintaining 
the appropriate ordering of dynamic casts puts a supplemental burden on the shoulders of the maintainer. 

 

11.4 The Brute-Force Approach Automated 

Because in some situations the speed of the brute-force approach can be unbeatable, it's worth paying 
attention to implementing such a dispatcher. Here's where typelists can be of help. 

Recall from Chapter 3 that Loki defines a typelist facility—a collection of structures and compile-time 
algorithms that allow you to manipulate collections of types. A brute-force implementation of 
multimethods can use a client-provided typelist that specifies the classes in the hierarchy (in our example, 
Rectangle, Poly, Ellipse, etc.). Then a recursive template can generate the sequence of if-else 
statements. 

In the general case, we can dispatch on different collections of types, so the typelist for the left-hand 
operand can differ from the one for the right-hand operand. 

Let's try outlining a StaticDispatcher class template that performs the type deduction algorithm and 
then fires a function in another class. Explanations follow the code. 

template 
< 
   class Executor, 
   class BaseLhs, 
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   class TypesLhs, 
   class BaseRhs = BaseLhs, 
   class TypesRhs = TypesLhs 
   typename ResultType = void 
> 
class StaticDispatcher 
{ 
   typedef typename TypesLhs::Head Head; 
   typedef typename TypesLhs::Tail Tail; 
public: 
   static ResultType Go(BaseLhs& lhs, BaseRhs& rhs, 
      Executor exec) 
   { 
      if (Head* p1 = dynamic_cast<Head*>(&lhs)) 
      { 
         return StaticDispatcher<Executor, BaseLhs, 
            NullType, BaseRhs, TypesRhs>::DispatchRhs( 
               *p1, rhs, exec); 
      } 
      else 
      { 
         return StaticDispatcher<Executor, BaseLhs, 
            Tail, BaseRhs, TypesRhs>::Go( 
               lhs, rhs, exec); 
      } 
   } 
   ... 
}; 

If you are familiar with typelists, the workings of StaticDispatcher are seen to be quite simple. 
StaticDispatcher has surprisingly little code for what it does. 

StaticDispatcher has six template parameters. Executor is the type of the object that does the 
actual processing—in our example, hatching the intersection area. We'll discuss what Executor looks 
like a bit later. 

BaseLhs and BaseRhs are the base types of the arguments on the left-hand side and the right-hand side, 
respectively. TypesLhs and TypesRhs are typelists containing the possible derived types for the two 
arguments. The default values of BaseRhs and TypesRhs foster a dispatcher for types in the same class 
hierarchy, as is the case with the drawing program example. 

ResultType is the type of the result of the double-dispatch operation. In the general case, the dispatched 
function can return an arbitrary type. StaticDispatcher supports this dimension of genericity and 
forwards the result to the caller. 

StaticDispatcher::Go tries a dynamic cast to the first type found in the TypesLhs typelist, against 
the address of lhs. If the dynamic cast fails, Go delegates to the remainder (tail) of TypesLhs in a 
recursive call to itself. (This is not a true recursive call, because each time we have a different instantiation 
of StaticDispatcher.) 

The net effect is that Go performs a suite of if-else statements that apply dynamic_cast to each type 
in the typelist. When a match is found, Go invokes DispatchRhs. DispatchRhs does the second and 
last step of the type deduction—finding the dynamic type of rhs. 

template <...> 
class StaticDispatcher 
{ 



 234

   ... as above ... 
   template <class SomeLhs> 
   static ResultType DispatchRhs(SomeLhs& lhs, BaseRhs& rhs, 
      Executor exec) 
   { 
      typedef typename TypesRhs::Head Head; 
      typedef typename TypesRhs::Tail Tail; 
 
      if (Head* p2 = dynamic_cast<Head*>(&rhs)) 
      { 
         return exec.Fire(lhs, *p2); 
      } 
      else 
      { 
          return StaticDispatcher<Executor, SomeLhs, 
             NullType, BaseRhs, Tail>::DispatchRhs( 
                lhs, rhs, exec); 
      } 
   } 
}; 

DispatchRhs performs the same algorithm for rhs as Go applied for lhs. In addition, when the 
dynamic cast on rhs succeeds, DispatchRhs calls Executor::Fire, passing it the two discovered 
types. Again, the code that the compiler generates is a suite of if-else statements. Interestingly, the 
compiler generates one such suite of if-else statements for each type in TypesLhs. Effectively, 
StaticDispatcher manages to generate an exponential amount of code with two typelists and a fixed 
codebase. This is an asset, but also a potential danger—too much code can hurt compile times, program 
size, and total execution time. 

To treat the limit conditions that stop the compile-time recursion, we need to specialize 
StaticDispatcher for two cases: The type of lhs is not found in TypesLhs, and the type of rhs is 
not found in TypesRhs. 

The first case (error on lhs) appears when you invoke Go on a StaticDispatcher with NullType as 
TypesLhs. This is the sign that the search depleted TypesLhs. (Recall from Chapter 3 that NullType is 
used to signal the last element in any typelist.) 

template 
< 
   class Executor, 
   class BaseLhs, 
   class BaseRhs, 
   class TypesRhs, 
   typename ResultType 
> 
class StaticDispatcher<Executor, BaseLhs, NullType, 
   BaseRhs, TypesRhs, ResultType> 
{ 
   static void Go(BaseLhs& lhs, BaseRhs& rhs, Executor exec) 
   { 
      exec.OnError(lhs, rhs); 
   } 
}; 

Error handling is elegantly delegated to the Executor class, as you will see later in the discussion on 
Executor. 
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The second case (error on rhs) appears when you invoke DispatchRhs on a Static Dispatcher 
with NullType as TypesRhs. Hence the following specialization: 

template 
< 
   class Executor, 
   class BaseLhs, 
   class TypesLhs, 
   class BaseRhs, 
   class TypesRhs, 
   typename ResultType 
> 
class StaticDispatcher<Executor, BaseLhs, TypesLhs, 
   BaseRhs, NullType, ResultType> 
{ 
public: 
   static void DispatchRhs(BaseLhs& lhs, BaseRhs& rhs, 
      Executor& exec) 
   { 
      exec.OnError(lhs, rhs); 
   } 
}; 

It is time now to discuss what Executor must implement to take advantage of the double-dispatch engine 
we have just defined. 

StaticDispatcher deals only with type discovery. After finding the right types and objects, it passes 
them to a call of Executor::Fire. To differentiate these calls, Executor must implement several 
overloads of Fire. For example, the Executor class for hatching shape intersections is as follows: 

class HatchingExecutor 
{ 
public: 
   // Various intersection algorithms 
   void Fire(Rectangle&, Rectangle&); 
   void Fire(Rectangle&, Ellipse&); 
   void Fire(Rectangle&, Poly&); 
   void Fire(Ellipse&, Poly&); 
   void Fire(Ellipse&, Ellipse&); 
   void Fire(Poly&, Poly&); 
 
   // Error handling routine 
   void OnError(Shape&, Shape&); 
}; 

You use HatchingExecutor with StaticDispatcher as shown in the following code: 

typedef StaticDispatcher<HatchingExecutor, Shape, 
   TYPELIST_3(Rectangle, Ellipse, Poly)> Dispatcher; 
Shape *p1 = ...; 
Shape *p2 = ...; 
HatchingExecutor exec; 
Dispatcher::Go(*p1, *p2, exec); 

This code invokes the appropriate Fire overload in the HatchingExecutor class. You can see the 
StaticDispatcher class template as a mechanism that achieves dynamic overloading—it defers 
overloading rules to runtime. This makes StaticDispatcher remarkably easy to use. You just 
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implement HatchingExecutor with the overloading rules in mind, and then you use 
StaticDispatcher as a black box that does the magic of applying overloading rules at runtime. 

As a nice side effect, StaticDispatcher will unveil any overloading ambiguities at compile time. For 
instance, assume you don't declare HatchingExecutor::Fire(Ellipse&, Poly&). Instead, you 
declare HatchingExecutor::Fire(Ellipse&, Shape&) and Hatching 
Executor::Fire(Shape&, Poly&). Calling HatchingExecutor::Fire with an Ellipse and a 
Poly would result in an ambiguity—both functions compete to handle the call. Remarkably, 
StaticDispatcher signals the same error for you and with the same level Multimethods Chapter 11 of 
detail. StaticDispatcher is a tool that's very consistent with the existing C++ overloading rules. 

What happens in the case of a runtime error—for instance, if you pass a Circle as one of the arguments 
of StaticDispatcher::Go? As hinted earlier, StaticDispatcher handles border cases by simply 
calling Executor::OnError with the original (not cast) lhs and rhs. This means that, in our example, 
HatchingExecutor::OnError (Shape&, Shape&) is the error handling routine. You can use this 
routine to do whatever you find appropriate—when it's called, it means that StaticDispatcher gave 
up on finding the dynamic types. 

As discussed in the previous section, inheritance adds problems to a bruteforce dispatcher. That is, the 
following instantiation of StaticDispatcher has a bug: 

typedef StaticDispatcher 
< 
   SomeExecutor, 
   Shape, 
   TYPELIST_4(Rectangle, Ellipse, Poly, RoundedRectangle) 
> 
MyDispatcher; 

If you pass a RoundedRectangle to MyDispatcher, it will be considered a Rectangle. The 
dynamic_cast<Rectangle*> succeeds on a pointer to a RoundedRectangle, and because the 
dynamic_cast<RoundedRectangle*> is lower on the food chain, it will never be given a chance. 
The correct instantiation is 

typedef StaticDispatcher 
< 
   SomeExecutor, 
   Shape, 
   TYPELIST_4(RoundedRectangle, Ellipse, Poly, Rectangle) 
> 
Dispatcher; 

The general rule is to put the most derived types at the front of the typelist. 

It would be nice if this transformation could be applied automatically, and typelists do support that. We 
have a means to detect inheritance at compile time (Chapter 2), and typelists can be sorted. This led to the 
DerivedToFront compile-time algorithm in Chapter 3. 

All we have to do to take advantage of automatic sorting is to modify the implementation of 
StaticDispatcher as follows: 

template <...> 
class StaticDispatcher 
{ 
   typedef typename DerivedToFront< 
      typename TypesLhs::Head>::Result Head; 
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   typedef typename DerivedToFront< 
      typename TypesLhs::Tail>::Result Tail; 
public: 
   ... as above ... 
}; 

After all this handy automation, don't forget that all we have obtained is the code generation part. The 
dependency problems are still with us. Although it makes it very easy to implement brute-force 
multimethods, StaticDispatcher still has a dependency on all the types in the hierarchy. Its 
advantages are speed (if there are not too many types in the hierarchy) and nonintrusiveness—you don't 
have to modify a hierarchy to use StaticDispatcher with it. 

 

11.5 Symmetry with the Brute-Force Dispatcher 

When you hatch the intersection between two shapes, you might want to do it differently if you have a 
rectangle covering an ellipse than if you have an ellipse covering a rectangle. Or, on the contrary, you 
might need to hatch the intersection area the same way when an ellipse and a rectangle intersect, no matter 
which covers which. In the latter case, you need a symmetric multimethod—a multimethod that is 
insensitive to the order in which you pass its arguments. 

Symmetry applies only when the two parameter types are identical (in our case, BaseLhs is the same as 
BaseRhs, and LhsTypes is the same as RhsTypes). 

The brute-force StaticDispatcher defined previously is asymmetric; that is, it doesn't offer any built-
in support for symmetric multimethods. For example, assume you define the following classes: 

class HatchingExecutor 
{ 
public: 
   void Fire(Rectangle&, Rectangle&); 
   void Fire(Rectangle&, Ellipse&); 
   ... 
   // Error handler 
   void OnError(Shape&, Shape&); 
}; 
 
typedef StaticDispatcher 
< 
   HatchingExecutor, 
   Shape, 
   TYPELIST_3(Rectangle, Ellipse, Poly) 
> 
HatchingDispatcher; 

The HatchingDispatcher does not fire when passed an Ellipse as the left-hand parameter and a 
Rectangle as the right-hand parameter. Even though from your HatchingExecutor's viewpoint it 
doesn't matter who's first and who's second, HatchingDispatcher will insist that you pass objects in a 
certain order. 

We can fix the symmetry in the client code by reversing arguments and forwarding from one overload to 
another: 

class HatchingExecutor 
{ 
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public: 
   void Fire(Rectangle&, Ellipse&); 
   // Symmetry assurance 
   void Fire(Ellipse& lhs, Rectangle& rhs) 
   { 
      // Forward to Fire(Rectangle&, Ellipse&) 
      //  by switching the order of arguments 
      Fire(rhs, lhs); 
   } 
   ... 
}; 

These little forwarding functions are hard to maintain. Ideally, StaticDispatcher would provide itself 
optional support for symmetry through an additional bool template parameter, which is worth looking 
into. 

The need is to have StaticDispatcher reverse the order of arguments when invoking the callback, for 
certain cases. What are those cases? Let's analyze the previous example. Expanding the template argument 
lists from their default values, we get the following instantiation: 

typedef StaticDispatcher 
< 
   HatchingExecutor, 
   Shape, 
   TYPELIST_2(Rectangle, Ellipse, Poly),  // TypesLhs 
   Shape, 
   TYPELIST_2(Rectangle, Ellipse, Poly),  // TypesRhs 
   void 
> 
HatchingDispatcher; 

An algorithm for selecting parameter pairs for a symmetric dispatcher can be as follows: Combine the first 
type in the first typelist (TypesLhs) with each type in the second typelist (TypesRhs). This gives three 
combinations: Rectangle-Rectangle, Rectangle-Ellipse, and Rectangle-Poly. Next, combine 
the second type in Types Lhs (Ellipse) with types in TypesRhs. However, because the first 
combination (Rectangle-Ellipse) has already been made in the first step, this time start with the 
second element in Types Rhs. This step yields Ellipse-Ellipse and Ellipse-Poly. The same 
reasoning applies to the next step: Poly in TypesLhs must be combined only with types starting with the 
third one in TypesRhs. This gives only one combination, Poly-Poly, and the algorithm stops here. 

Following this algorithm, you implement only the functions for the selected combination, as follows: 

class HatchingExecutor 
{ 
public: 
   void Fire(Rectangle&, Rectangle&); 
   void Fire(Rectangle&, Ellipse&); 
   void Fire(Rectangle&, Poly&); 
   void Fire(Ellipse&, Ellipse&); 
   void Fire(Ellipse&, Poly&); 
   void Fire(Poly&, Poly&); 
   // Error handler 
   void OnError(Shape&, Shape&); 
}; 

StaticDispatcher must detect all by itself the combinations that were eliminated by the algorithm just 
discussed, namely Ellipse-Rectangle, Poly-Rectangle, and Poly-Ellipse. For these three 
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combinations, StaticDispatcher must reverse the arguments. For all others, StaticDispatcher 
forwards the call just as it did before. 

What's the Boolean condition that determines whether or not argument swapping is needed? The algorithm 
selects the types in TL2 only at indices greater than or equal to the index of the type in TL1. Therefore, 
the condition is as follows: 

For two types T and U, if the index of U in TypesRhs is less than the index of T in TypesLhs, then the 
arguments must be swapped. 

For example, say T is Ellipse and U is Rectangle. Then T's index in TypesLhs is 1 and U's index in 
TypesRhs is 0. Consequently, Ellipse and Rectangle must be swapped before invoking 
Executor::Fire, which is correct. 

The typelist facility already provides the IndexOf compile-time algorithm that returns the position of a 
type in a typelist. We can then write the swapping condition easily. 

First, we must add a new template parameter that says whether the dispatcher is symmetric. Then, we add a 
simple little traits class template, InvocationTraits, which either swaps the arguments or does not 
swap them when calling the Executor::Fire member function. Here is the relevant excerpt. 

template 
< 
   class Executor, 
   bool symmetric, 
   class BaseLhs, 
   class TypesLhs, 
   class BaseRhs = BaseLhs, 
   class TypesRhs = TypesLhs, 
   typename ResultType = void 
> 
class StaticDispatcher 
{ 
   template <bool swapArgs, class SomeLhs, class SomeRhs> 
   struct InvocationTraits 
   { 
      static void DoDispatch(SomeLhs& lhs, SomeRhs& rhs, 
         Executor& exec) 
      { 
         exec.Fire(lhs, rhs); 
      } 
   }; 
   template <class SomeLhs, class SomeRhs> 
   struct InvocationTraits<True, SomeLhs, SomeRhs> 
   { 
      static void DoDispatch(SomeLhs& lhs, SomeRhs& rhs, 
         Executor& exec) 
      { 
         exec.Fire(rhs, lhs); // swap arguments 
      } 
   } 
public: 
   static void DispatchRhs(BaseLhs& lhs, BaseRhs& rhs, 
      Executor exec) 
   { 
      if (Head* p2 = dynamic_cast<Head*>(&rhs)) 
      { 
         enum { swapArgs = symmetric && 
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            IndexOf<Head, TypesRhs>::result < 
            IndexOf<BaseLhs, TypesLhs>::result }; 
         typedef InvocationTraits<swapArgs, BaseLhs, Head> 
            CallTraits; 
         return CallTraits::DoDispatch(lhs, *p2); 
      } 
      else 
      { 
         return StaticDispatcher<Executor, BaseLhs, 
            NullType, BaseRhs, Tail>::DispatchRhs( 
               lhs, rhs, exec); 
      } 
   } 
}; 

Support for symmetry adds some complexity to StaticDispatcher, but it certainly makes things much 
easier for StaticDispatcher's user. 

 

11.6 The Logarithmic Double Dispatcher 

If you want to avoid the heavy dependencies accompanying the brute-force solution, you must look into a 
more dynamic approach. Instead of generating code at compile time, you must keep a runtime structure 
and use runtime algorithms that help in dynamically dispatching function calls depending on types. 

RTTI (runtime type information) can be of further help here because it provides not only dynamic_cast 
and type identification, but also a runtime ordering of types, through the before member function of 
std::type_info. What before offers is an ordering relationship on all types in a program. We can use 
this ordering relationship for fast searches of types. 

The implementation here is similar to the one found in Item 31 of Scott Meyers's More Effective C++ 
(1996a), with some improvements: The casting step when invoking a handler is automated, and the 
implementation herein aims at being generic. 

We will avail ourselves of the OrderedTypeInfo class, described in Chapter 2. OrderedTypeInfo is 
a wrapper providing exactly the same functionality as std::type_info. In addition, 
OrderedTypeInfo provides value semantics and a caveat-free less-than operator. You can thus store 
OrderedTypeInfo objects in standard containers, which is of interest to this chapter. 

Meyers's approach was simple: For each pair of std::type_info objects you want to dispatch upon, 
you register a pointer to a function with the double dispatcher. The double dispatcher stores the 
information in a std::map. At runtime, when invoked with two unknown objects, the double dispatcher 
performs a fast search (logarithmic time) for type discovery, and if it finds an entry, fires the appropriate 
pointer to a function. 

Let's define the structure of a generic engine operating on these principles. We must templatize the engine 
with the base types of the two arguments (left-hand side and right-hand side). We call this engine 
BasicDispatcher, because we will use it as the base device for several more advanced double 
dispatchers. 

template <class BaseLhs, class BaseRhs = BaseLhs, 
   typename ResultType = void> 
class BasicDispatcher 
{ 
   typedef std::pair<OrderedTypeInfo, OrderedTypeInfo> 
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      KeyType; 
   typedef ResultType (*CallbackType)(BaseLhs&, BaseRhs&); 
   typedef CallbackType MappedType; 
   typedef std::map<KeyType, MappedType> MapType; 
   MapType callbackMap_; 
public: 
   ... 
}; 

The key type in the map is a std::pair of two OrderedTypeInfo objects. The std::pair class 
supports ordering, so we don't have to provide a custom ordering functor. 

BasicDispatcher can be more general if we templatize the callback type. In general, the callback does 
not have to be a function. It can be, for example, a functor (refer to the introduction of Chapter 5 for a 
discussion of functors). BasicDispatcher can accommodate functors by transforming its inner 
CallbackType type definition into a template parameter. 

An important improvement is to change the std::map type to a more efficient structure. Matt Austern 
(2000) explains that the standard associative containers have a slightly narrower area of applicability than 
one might think. In particular, a sorted vector in combination with binary search algorithms (such as 
std::lower_bound) might perform much better, in both space and time, than an associative container. 
This happens when the number of accesses is much larger than the number of insertions. So we should take 
a close look at the typical usage pattern of a double-dispatcher object. 

Most often, a double dispatcher is a write-once, read-many type of structure. Typically, a program sets the 
callbacks once and then uses the dispatcher many, many times. This is in keeping with the virtual functions 
mechanism, which double dispatchers extend. You decide, at compile time, which functions are virtual and 
which are not. 

It seems as if we're better off with a sorted vector. The disadvantages of a sorted vector are linear-time 
insertions and linear-time deletions, and a double dispatcher is not typically concerned about the speed of 
either. In exchange, a vector offers about twice the lookup speed and a much smaller working set, so it is 
definitely a better choice for a double dispatcher. 

Loki saves the trouble of maintaining a sorted vector by hand by defining an AssocVector class 
template. AssocVector is a drop-in replacement for std::map (it supports the same set of member 
functions), implemented on top of std::vector. AssocVector differs from a map in the behavior of 
its erase functions (AssocVector::erase invalidates all iterators into the object) and in the 
complexity guarantees of insert and erase (linear as opposed to constant). Because of the high degree 
of compatibility of AssocVector with std::map, we'll continue to use the term map to describe the 
data structure held by the double dispatcher. 

Here is the revised definition of BasicDispatcher: 

template 
< 
   class BaseLhs, 
   class BaseRhs = BaseLhs, 
   typename ResultType = void, 
   typename CallbackType = ResultType (*)(BaseLhs&, BaseRhs&) 
> 
class BasicDispatcher 
{ 
   typedef std::pair<TypeInfo, TypeInfo> 
      KeyType; 
   typedef CallbackType MappedType; 
   typedef AssocVector<KeyType, MappedType> MapType; 
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   MapType callbackMap_; 
public: 
   ... 
}; 

The registration function is easy to define. This is all we need: 

template <...> 
class BasicDispatcher 
{ 
   ... as above ... 
   template <class SomeLhs, SomeRhs> 
   void Add(CallbackType fun) 
   { 
      const KeyType key(typeid(SomeLhs), typeid(SomeRhs)); 
      callbackMap_[key] = fun; 
   } 
}; 

The types SomeLhs and SomeRhs are the concrete types for which you need to dispatch the call. Just like 
std::map, AssocVector overloads operator[] to find a key's corresponding mapped type. If the 
entry is missing, a new element is inserted. Then operator[] returns a reference to that new or found 
element, and Add assigns fun to it. 

The following is an example of using Add: 

typedef BasicDispatcher<Shape> Dispatcher; 
// Hatches the intersection between a rectangle and a polygon 
void HatchRectanglePoly(Shape& lhs, Shape& rhs) 
{ 
   Rectangle& rc = dynamic_cast<Rectangle&>(lhs); 
   Poly& pl = dynamic_cast<Poly&>(rhs); 
   ... use rc and pl ... 
} 
... 
Dispatcher disp; 
disp.Add<Rectangle, Poly>(HatchRectanglePoly); 

The member function that does the search and invocation is simple: 

template <...> 
class BasicDispatcher 
{ 
   ... as above ... 
   ResultType Go(BaseLhs& lhs, BaseRhs& rhs) 
   { 
      MapType::iterator i = callbackMap_.find( 
         KeyType(typeid(lhs), typeid(rhs)); 
      if (i == callbackMap_.end()) 
      { 
         throw std::runtime_error("Function not found"); 
      } 
      return (i->second)(lhs, rhs); 
   } 
}; 

11.6.1 The Logarithmic Dispatcher and Inheritance 
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BasicDispatcher does not work correctly with inheritance. If you register only 
HatchRectanglePoly(Shape& lhs, Shape& rhs) with BasicDispatcher, you get proper 
dispatching only for objects of type Rectangle and Poly—nothing else. If, for instance, you pass 
references to a RoundedRectangle and a Poly to BasicDispatcher::Go, BasicDispatcher 
will reject the call. 

The behavior of BasicDispatcher is not in keeping with inheritance rules, according to which derived 
types must by default act like their base types. It would be nice if BasicDispatcher accepted calls with 
objects of derived classes, as long as these calls were unambiguous per C++'s overloading rules. 

There are quite a few things you can do to correct this problem, but to date there is no complete solution. 
You must be careful to register all the pairs of types with Basic Dispatcher.[4] 

[4] I am convinced there is a solution to the inheritance problem. But, alas, writers of books have deadlines, 
too. 

11.6.2 The Logarithmic Dispatcher and Casts 

BasicDispatcher is usable, but not quite satisfactory. Although you register a function that handles the 
intersection between a Rectangle and a Poly, that function must accept arguments of the base type, 
Shape&. It is awkward and error-prone to ask client code (HatchRectanglePoly's implementation) to 
cast the Shape references back to the correct types. 

On the other hand, the callback map cannot hold a different function or functor type for each element, so 
we must stick to a uniform representation. Item 31 in More Effective C++ (Meyers 1996a) discusses this 
issue, too. No function-pointer-to-function-pointer cast helps because after you exit 
FnDoubleDispatcher::Add, you've lost the static type information, so you don't know what to cast to. 
(If this sounds confusing, try spinning some code and you'll immediately figure it out.) 

We will implement a solution to the casting problem in the context of simple callback functions (not 
functors). That is, the CallbackType template argument is a pointer to a function. 

An idea that could help is using a trampoline function, also known as a thunk. Trampoline functions are 
small functions that perform little adjustments before calling other functions. They are commonly used by 
C++ compiler writers to implement features such as covariant return types and pointer adjustments for 
multiple inheritance. 

We can use a trampoline function that performs the appropriate cast and then calls a function of the proper 
signature, thus making life much easier for the client. The problem, however, is that callbackMap_ must 
now store two pointers to functions: one to the pointer provided by the client, and one to the pointer to the 
trampoline function. This is worrisome in terms of speed. Instead of an indirect call through a pointer, we 
have two. In addition, the implementation becomes more complicated. 

An interesting bit of wizardry saves the day. A template can accept a pointer to a function as a nontype 
template parameter. (Most often in this book, nontype template parameters are integral values.) A template 
is allowed to accept pointers to global objects, including functions, as nontype template parameters. The 
only condition is that the function whose address is used as a template argument must have external 
linkage. You can easily transform static functions in functions with external linkage by removing static 
and putting them into unnamed namespaces. For example, what you would write as 

static void Fun(); 

in pre-namespace C++, you can write using an anonymous namespace as 
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namespace 
{ 
   void Fun(); 
} 

Using a pointer to a function as a nontype template argument means that we no longer need to store it in 
the map. This essential aspect needs thorough understanding. The reason we don't need to store the pointer 
to a function is that the compiler has static knowledge about it. Thus, the compiler can hardcode the 
function address in the trampo line code. 

We implement this idea in a new class that uses BasicDispatcher as its back end. The new class, 
FnDispatcher, is tuned for dispatching to functions only—not to functors. FnDispatcher aggregates 
BasicDispatcher privately and provides appropriate forwarding functions. 

The FnDispatcher::Add template function accepts three template parameters. Two represent the left-
hand-side and the right-hand-side types for which the dispatch is registered (ConcreteLhs and 
ConcreteRhs). The third template parameter (callback) is the pointer to a function. The added 
FnDispatcher::Add overloads the template Add with only two template parameters, defined earlier. 

template <class BaseLhs, class BaseRhs = BaseLhs, 
   ResultType = void> 
class FnDispatcher 
{ 
   BaseDispatcher<BaseLhs, BaseRhs, ResultType> backEnd_; 
   ... 
public: 
   template <class ConcreteLhs, class ConcreteRhs, 
      ResultType (*callback)(ConcreteLhs&, ConcreteRhs&)> 
   void Add() 
   { 
      struct Local // see Chapter 2 
      { 
         static ResultType Trampoline(BaseLhs& lhs, BaseRhs& rhs) 
         { 
            return callback( 
               dynamic_cast<ConcreteLhs&>(lhs), 
               dynamic_cast<ConcreteRhs&>(rhs)); 
         } 
        }; 
        return backEnd_.Add<ConcreteLhs, ConcreteRhs>( 
           &Local::Trampoline); 
   } 
}; 

Using a local structure, we define the trampoline right inside Add. The trampoline casts the arguments to 
the right types and then forwards to callback. Then, the Add function uses backEnd_'s Add function 
(defined by BaseDispatcher) to add the trampoline to callbackMap_. 

As far as speed is concerned, the trampoline does not incur additional overhead. Although it looks like an 
indirect call, the call to callback is not. As explained before, the compiler hardwires callback's 
address right into Trampoline so there is no second indirection. A clever compiler can even inline the 
call to callback if possible. 

Using the newly defined Add function is simple: 

typedef FnDispatcher<Shape> Dispatcher; 
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// Possibly in an unnamed namespace 
void HatchRectanglePoly(Rectangle& lhs, Poly& rhs) 
{ 
   ... 
} 
 
Dispatcher disp; 
disp.Add<Rectangle, Poly, Hatch>(); 

Because of its Add member function, FnDispatcher is easy to use. FnDispatcher also exposes an 
Add function similar to the one defined by BaseDispatcher, so you still can use this function if you 
need to.[5] 

[5] One case in which you cannot use FnDispatcher::Add is when you need to register dynamically 
loaded functions. Even in this case, however, you can make slight changes to your design so that you can 
take advantage of trampolines. 

 

11.7 FnDispatcher and Symmetry 

Because of FnDispatcher's dynamism, adding support for symmetry is much easier than it was with the 
static StaticDispatcher. 

All we have to do to support symmetry is to register two trampolines: one that calls the executor in normal 
order, and one that swaps the parameters before calling. We add a new template parameter to Add, as 
shown. 

template <class BaseLhs, class BaseRhs = BaseLhs, 
   typename ResultType = void> 
class FnDispatcher 
{ 
   ... 
   template <class ConcreteLhs, class ConcreteRhs, 
      ResultType (*callback)(ConcreteLhs&, ConcreteRhs&), 
      bool symmetric> 
   bool Add() 
   { 
      struct Local 
      { 
         ... Trampoline as before ... 
         static void TrampolineR(BaseRhs& rhs, BaseLhs& lhs) 
         { 
            return Trampoline(lhs, rhs); 
         } 
      }; 
      Add<ConcreteLhs, ConcreteRhs>(&Local::Trampoline); 
      if (symmetric) 
      { 
         Add<ConcreteRhs, ConcreteLhs>(&Local::TrampolineR); 
      } 
   } 
}; 

Symmetry with FnDispatcher has function-level granularity—for each function you register, you can 
decide whether or not you want symmetric dispatching. 
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11.8 Double Dispatch to Functors 

As described earlier, the trampoline trick works nicely with pointers to nonstatic functions. Anonymous 
namespaces provide a clean way to replace static functions with nonstatic functions that are not visible 
outside the current compilation unit. 

Sometimes, however, you need your callback objects (the CallbackType template parameter of 
BasicDispatcher) to be more substantial than simple pointers to functions. For instance, you might 
want each callback to hold some state, and functions cannot hold much state (only static variables). 
Consequently, you need to register functors, and not functions, with the double dispatcher. 

Functors (Chapter 5) are classes that overload the function call operator, operator(), thus imitating 
simple functions in call syntax. Additionally, functors can use member variables for storing and accessing 
state. Unfortunately, the trampoline trick cannot work with functors, precisely because functors hold state 
and simple functions do not. (Where would the trampoline hold the state?) 

Client code can use BasicDispatcher directly, instantiated with the appropriate functor type. 

struct HatchFunctor 
{ 
   void operator()(Shape&, Shape&) 
   { 
     ... 
   } 
}; 
 
typedef BasicDispatcher<Shape, Shape, void, HatchFunctor> 
   HatchingDispatcher; 

HatchFunctor::operator() itself cannot be virtual, because BasicDispatcher needs a functor 
with value semantics, and value semantics don't mix nicely with runtime polymorphism. However, 
HatchFunctor::operator() can forward a call to a virtual function. 

The real disadvantage is that the client loses some automation that the dispatcher could do—namely, 
taking care of the casts and providing symmetry. 

It seems as if we're back to square one, but only if you haven't read Chapter 5 on generalized functors. 
Chapter 5 defines a Functor class template that can aggregate any kind of functor and pointers to 
functions, even other Functor objects. You can even define specialized Functor objects by deriving 
from the FunctorImpl class. We can define a Functor to take care of the casts. Once the casts are 
confined to the library, we can implement symmetry easily. 

Let's define a FunctorDispatcher that dispatches to any Functor objects. This dispatcher will 
aggregate a BasicDispatcher that stores Functor objects. 

template <class BaseLhs, class BaseRhs = BaseLhs, 
   typename ResultType = void> 
class FunctorDispatcher 
{ 
   typedef Functor<ResultType, 
         TYPELIST_2(BaseLhs&, BaseRhs&)> 
      FunctorType; 
   typedef BasicDispatcher<BaseLhs, BaseRhs, ResultType, 
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         FunctorType> 
      BackEndType; 
   BackEndType backEnd_; 
      public: 
         ... 
      }; 

FunctorDispatcher uses a BasicDispatcher instantiation as its back end. BasicDispatcher 
stores objects of type FunctorType, which are Functors that accept two parameters (BaseLhs and 
BaseRhs) and return a ResultType. 

The FunctorDispatcher::Add member function defines a specialized FunctorImpl class by 
deriving from it. The specialized class (Adapter, shown below) takes care of casting the arguments to the 
right types; in other words, it adapts the argument types from BaseLhs and BaseRhs to SomeLhs and 
SomeRhs. 

template <class BaseLhs, class BaseRhs = BaseLhs, 
   ResultType = void> 
class FunctorDispatcher 
{ 
   ... as above ... 
   template <class SomeLhs, class SomeRhs, class Fun> 
   void Add(const Fun& fun) 
   { 
      typedef 
         FunctorImpl<ResultType, TYPELIST_2(BaseLhs&, BaseRhs&)> 
         FunctorImplType; 
      class Adapter : public FunctorImplType 
      { 
         Fun fun_; 
         virtual ResultType operator()(BaseLhs& lhs, BaseRhs& rhs) 
         { 
            return fun_( 
               dynamic_cast<SomeLhs&>(lhs), 
               dynamic_cast<SomeRhs&>(rhs)); 
         } 
         virtual FunctorImplType* Clone()const 
         { return new Adapter; } 
      public: 
         Adapter(const Fun& fun) : fun_(fun) {} 
      }; 
      backEnd_.Add<SomeLhs, SomeRhs>( 
         FunctorType((FunctorImplType*)new Adapter(fun)); 
   } 
}; 

The Adapter class does exactly what the trampoline function did. Because functors have state, Adapter 
aggregates a Fun object—something that was impossible with a simple trampoline function. The Clone 
member function, with obvious semantics, is required by Functor. 

FunctorDispatcher::Add has remarkably broad uses. You can use it to register not only pointers to 
functions, but also almost any functor you want, even generalized functors. The only requirements for the 
Fun type in Add is that it accept the function-call operator with arguments of types SomeLhs and 
SomeRhs and that it return a type convertible to ResultType. The following example registers two 
different functors to a FunctorDispatcher object. 

typedef FunctorDispatcher<Shape> Dispatcher; 
struct HatchRectanglePoly 

TE
AM
FL
Y

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Team-Fly® 



 248

{ 
   void operator()(Rectangle& r, Poly& p) 
   { 
    ... 
   } 
}; 
struct HatchEllipseRectangle 
{ 
   void operator()(Ellipse& e, Rectangle& r) 
   { 
      ... 
   } 
}; 
... 
Dispatcher disp; 
disp.Add<Rectangle, Poly>(HatchRectanglePoly()); 
disp.Add<Ellipse, Rectangle>(HatchEllipseRectangle()); 

The two functors don't have to be related in any way (as with inheriting from a common base). All they 
have to do is to implement operator() for the types that they advertise to handle. 

Implementing symmetry with FunctorDispatcher is similar to implementing symmetry in 
FnDispatcher. FunctorDispatcher::Add defines a new ReverseAdapter object that does the 
casts and reverses the order of calls. 

 

11.9 Converting Arguments: static_cast or dynamic_cast? 

All the previous code has performed casting with the safe dynamic_cast. But in the case of 
dynamic_cast, safety comes at a cost in runtime efficiency. 

At registration time, you already know that your function or functor will fire for a pair of specific, known 
types. Through the mechanism it implements, the double dispatcher knows the actual types when an entry 
in the map is found. It seems a waste, then, to have dynamic_cast check again for correctness when a 
simple static_cast achieves the same result in much less time. 

There are, however, two cases in which static_cast may fail and the only cast to rely on is 
dynamic_cast. The first occurs when you're using virtual inheritance. Consider the following class 
hierarchy: 

class Shape { ... }; 
class Rectangle : virtual public Shape { ... }; 
class RoundedShape : virtual public Shape { ... }; 
class RoundedRectangle : public Rectangle, 
   public RoundedShape { ... }; 

Figure 11.2 displays a graphical representation of the relationships between classes in this hierarchy. 

Figure 11.2. A diamond-shaped class hierarchy using virtual inheritance 
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This may not be a very smart class hierarchy, but one thing about designing class libraries is that you never 
know what your clients might need to do. There are definitely reasonable situations in which a diamond-
shaped class hierarchy is needed, in spite of all its caveats. Consequently, the double dispatchers we 
defined should work with diamond-shaped class hierarchies. 

The dispatchers actually work fine as of now. But if you try to replace the dynamic_casts with 
static_casts, you will get compile-time errors whenever you try to cast a Shape& to any of 
Rectangle&, RoundedShape&, and RoundedRectangle&. The reason is that virtual inheritance 
works very differently from plain inheritance. Virtual inheritance provides a means for several derived 
classes to share the same base class object. The compiler cannot just lay out a derived object in memory by 
gluing together a base object with whatever the derived class adds. 

In some implementations of multiple inheritance, each derived object stores a pointer to its base object. 
When you cast from derived to base, the compiler uses that pointer. But the base object does not store 
pointers to its derived objects. From a pragmatic viewpoint, all this means that after you cast an object of 
derived type to a virtual base type, there's no compile-time mechanism for getting back to the derived 
object. You cannot static_cast from a virtual base to an object of derived type. 

However, dynamic_cast uses more advanced means to retrieve the relationships between classes and 
works nicely even in the presence of virtual bases. In a nutshell, you must use dynamic_cast if you have 
a hierarchy using virtual inheritance. 

Second, let's analyze the situation with a similar class hierarchy, but one that doesn't use virtual 
inheritance—only plain multiple inheritance. 

class Shape { ... }; 
class Rectangle : public Shape { ... }; 
class RoundedShape : public Shape { ... }; 
class RoundedRectangle : public Rectangle, 
   public RoundedShape { ... }; 

Figure 11.3 shows the resulting inheritance graph. 

Figure 11.3. A diamond-shaped class hierarchy using nonvirtual inheritance 
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Although the shape of the class hierarchy is the same, the structure of the objects is very different. 
RoundedRectangle now has two distinct subobjects of type Shape. This means that converting from 
RoundedRectangle to Shape is now ambiguous: Which Shape do you mean—that in the 
RoundedShape or that in the Rectangle? Similarly, you cannot even static cast a Shape& to a 
RoundedRectangle& because the compiler doesn't know which Shape subobject to consider. 

We're facing trouble again. Consider the following code: 

RoundedRectangle roundRect; 
Rectangle& rect = roundRect;          // Unambiguous implicit conversion 
Shape& shape1 = rect; 
RoundedShape& roundShape = roundRect; // Unambiguous implicit 
                                          // conversion 
Shape& shape2 = roundShape; 
SomeDispatcher d; 
Shape& someOtherShape = ...; 
d.Go(shape1, someOtherShape); 
d.Go(shape2, someOtherShape); 

Here, it is essential that the dispatcher use dynamic_cast to convert the Shape& to a Rounded 
Shape&. If you try to register a trampoline for converting a Shape& to a RoundedRectangle&, a 
compile-time error occurs due to ambiguity. 

There is no trouble at all if the dispatcher uses dynamic_cast. A dynamic_cast<Rounded 
Rectangle&> applied to any of the two base Shape subobjects of a RoundedRectangle leads to the 
correct object. As you can see, nothing beats a dynamic cast. The dynamic_cast operator is designed to 
reach the right object in a class hierarchy, no matter how intricate its structure is. 

The conclusion that consolidates these findings is this: You cannot use static_cast with a double 
dispatcher in a class hierarchy that has multiple occurrences of the same base class, whether or not it is 
through virtual inheritance. 

This might give you a strong incentive to use dynamic_cast in all dispatchers. However, there are two 
supplemental considerations. 
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• Very few class hierarchies in the real world foster a diamond-shaped inheritance graph. Such class 
hierarchies are very complicated, and their problems tend to outweigh their advantages. That's 
why most designers avoid them whenever possible. 

• dynamic_cast is much slower than static_cast. Its power comes at a cost. There are many 
clients who have simple class hierarchies and who require high speed. Committing the double 
dispatcher to dynamic_cast leaves these clients with two options: Reimplement the whole 
dispatcher from scratch, or rely on some embarrassing surgery into library code. 

The solution that Loki adopts is to make casting a policy—CastingPolicy. (Refer to Chapter 1 for a 
description of policies.) Here, the policy is a class template with two parameters: the source and the 
destination type. The only function the policy exposes is a static function called Cast. The following is the 
DynamicCaster policy class. 

template <class To, class From> 
struct DynamicCaster 
{ 
   static To& Cast(From& obj) 
   { 
      return dynamic_cast<To&>(obj); 
   } 
}; 

The dispatchers FnDispatcher and FunctorDispatcher use CastingPolicy according to the 
guidelines described in Chapter 1. Here is the modified FunctorDispatcher class. The changes are 
shown in bold. 

template 
< 
   class BaseLhs, 
   class BaseRhs = BaseLhs, 
   ResultType = void, 
   template <class, class> class CastingPolicy = DynamicCaster 
> 
class FunctorDispatcher 
{ 
   ... 
   template <class SomeLhs, class SomeRhs, class Fun> 
   void Add(const Fun& fun) 
   { 
      class Adapter : public FunctorType::Impl 
      { 
         Fun fun_; 
         virtual ResultType operator()(BaseLhs& lhs, 
            BaseRhs& rhs) 
         { 
            return fun_( 
                CastingPolicy<SomeLhs, BaseLhs>::Cast(lhs), 
                CastingPolicy<SomeRhs, BaseRhs>::Cast(rhs)); 
         } 
         ... as before ... 
      }; 
      backEnd_.Add<SomeLhs, SomeRhs>( 
         FunctorType(new Adapter(fun)); 
   } 
}; 

Cautiously, the casting policy defaults to DynamicCaster. 
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Finally, you can do a very interesting thing with casting policies. Consider the hierarchy in Figure 11.4. 
There are two categories of casts within this hierarchy. Some do not involve a diamond-shaped structure, 
so static_cast is safe. Namely, static_cast suffices for casting a Shape& to a Triangle&. On 
the other hand, you cannot static_cast a Shape& to Rectangle& and any of its derivatives; you 
must use dynamic_cast. 

Figure 11.4. A class hierarchy with a diamond-shaped portion 

 

Suppose you define your own casting policy template for this class hierarchy, namely ShapeCast. You 
can make it default to dynamic_cast. You can then specialize the policy for the special cases: 

template <class To, class From> 
struct ShapeCaster 
{ 
   static To& Cast(From& obj) 
   { 
      return dynamic_cast<To&>(obj); 
   } 
}; 
 
template<> 
class ShapeCaster<Triangle, Shape> 
{ 
   static Triangle& Cast(Shape& obj) 
   { 
      return static_cast<Triangle&>(obj); 
   } 
}; 

You now get the best of both worlds—speedy casts whenever you can, and safe casts whenever you must. 

 

11.10 Constant-Time Multimethods: Raw Speed 

Maybe you have considered the static dispatcher but found it too coupled, have tried the map-based 
dispatcher but found it too slow. You cannot settle for less: You need absolute speed and absolute 
scalability, and you're ready to pay for it. 
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The price to pay in this case is changing your classes. You are willing to allow the double dispatcher to 
plant some hooks in your classes so that it leverages them later. 

This opportunity gives a fresh perspective to implementing a double-dispatch engine. The support for casts 
remains the same. The means of storing and retrieving handlers must be changed, however—logarithmic 
time is not constant time. 

To find a better dispatching mechanism, let's ask ourselves again, What is double dispatching? You can see 
it as finding a handler function (or functor) in a two-dimensional space. On one axis are the types of the 
left-hand operator. On the other axis are the types of the right-hand operator. At the intersection between 
two types, you find their respective handler function. Figure 11.5 illustrates double dispatch for two class 
hierarchies—one of Shapes and one of DrawingDevices. The handlers can be drawing functions that 
know how to render each concrete Shape object on each concrete DrawingDevice object. 

Figure 11.5. Dispatching on Shaped and DrawingDevices 

 

It doesn't take long to figure out that if you need constant-time searches in this two-dimensional space, you 
must rely on indexed access in a two-dimensional matrix. 

The idea takes off swiftly. Each class must bear a unique integral value, which is the index in the 
dispatcher matrix. That integral value must be accessible for each class in constant time. A virtual function 
can help here. When you issue a double-dispatch call, the dispatcher fetches the two indices from the two 
objects, accesses the handler in the matrix, and launches the handler. Cost: two virtual calls, one matrix 
indexing operation, and a call through a pointer to a function. The cost is constant. 

It seems as if the idea should work quite nicely, but some of its details are not easy to get right. For 
instance, maintaining indices is very likely to be uncomfortable. For each class, you must assign a unique 
integral ID and hope that you can detect any duplicates at compile time. The integral IDs must start from 
zero and have no gaps—otherwise, we would waste matrix storage. 

A much better solution is to move index management to the dispatcher itself. Each class stores a static 
integral variable; initially, its value is -1, meaning "unassigned." A virtual function returns a reference to 
that static variable, allowing the dispatcher to change it at runtime. As you add new handlers to the matrix, 
the dispatcher accesses the ID and, if it is -1, assigns the next available slot in the matrix to it. 

Here's the gist of this implementation—a simple macro that you must plant in each class of your class 
hierarchy. 

#define IMPLEMENT_INDEXABLE_CLASS(SomeClass) 
   static int& GetClassIndexStatic()\ 
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   {\ 
      static int index = -1;\ 
      return index;\ 
      }\ 
      virtual int& GetClassIndex()\ 
      {\ 
         assert(typeid(*this) == typeid(SomeClass));\ 
        return GetClassIndexStatic();\ 
   } 

You must insert this macro in the public portion of each class for which you want to support multiple 
dispatch.[6] 

[6] Yes, multiple, not only double, dispatch. You can easily generalize the index-based solution to support 
multiple dispatch. 

The BasicFastDispatcher class template exposes exactly the same functionality as the previously 
defined BasicDispatcher but uses different storage and retrieval mechanisms. 

template 
< 
   class BaseLhs, 
   class BaseRhs = BaseLhs, 
   typename ResultType = void, 
   typename CallbackType = ResultType (*)(BaseLhs&, BaseRhs&) 
> 
class BasicFastDispatcher 
{ 
   typedef std::vector<CallbackType> Row; 
   typedef std::vector<Row> Matrix; 
   Matrix callbacks_; 
   int columns_; 
public: 
   BasicFastDispatcher() : columns_(0) {} 
   template <class SomeLhs, SomeRhs> 
   void Add(CallbackType pFun) 
   { 
      int& idxLhs = SomeLhs::GetClassIndexStatic(); 
      if (idxLhs < 0) 
      { 
         callbacks_.push_back(Row()); 
         idxLhs = callbacks_.size() - 1; 
      } 
      else if (callbacks_.size() <= idxLhs) 
      { 
         callbacks_.resize(idxLhs + 1); 
      } 
      Row& thisRow = callbacks_[idxLhs]; 
      int& idxRhs = SomeRhs::GetClassIndexStatic(); 
      if (idxRhs < 0) 
      { 
         thisRow.resize(++columns_); 
         idxRhs = thisRow.size() - 1; 
      } 
      else if (thisRow.size() <= idxRhs) 
      { 
         thisRow.resize(idxRhs + 1); 
      } 
      thisRow[idxRhs] = pFun; 
   } 
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}; 

The callback matrix is implemented as a vector of vectors of MappedType. The 
BasicFastDispatcher::Add function performs the following sequence of actions: 

1. Fetches the ID of each class by calling GetClassIndexStatic. 
2. Performs initialization and adjustments if one or both indices were not initialized. For uninitialized 

indices, Add expands the matrix to accommodate one extra element. 
3. Inserts the callback at the correct position in the matrix. 

The columns_ member variable tallies the number of columns added so far. Strictly speaking, columns_ 
is redundant; a search for the maximum row length in the matrix would yield the same result. However, 
column_'s convenience justifies its presence. 

The BasicFastDispatcher::Go is easy to implement now. The main difference is that Go uses the 
virtual function GetClassIndex. 

template <...> 
class BasicFastDispatcher 
{ 
   ... as above ... 
   ResultType Go(BaseLhs& lhs, BaseRhs& rhs) 
   { 
      int& idxLhs = lhs.GetClassIndex(); 
      int& idxRhs = rhs.GetClassIndex(); 
      if (idxLhs < 0 || idxRhs < 0 || 
         idxLhs >= callbacks_.size() || 
         idxRhs >= callbacks_[idxLhs].size() || 
         callbacks_[idxLhs][idxRhs] == 0) 
      { 
         ... error handling goes here ... 
      } 
      return callbacks_[idxLhs][idxRhs].callback_(lhs, rhs); 
   } 
}; 

Let's recap this section. We defined a matrix-based dispatcher that reaches callback objects in constant 
time by assigning an integral index to each class. In addition, it performs automatic initialization of its 
support data (the indices corresponding to the classes). Users of BasicFastDispatcher must add a 
one-macro line, IMPLEMENT_INDEXABLE_CLASS (YourClass), to each class that is to use 
BasicFastDispatcher. 

 

11.11 BasicDispatcher and BasicFastDispatcher as Policies 

BasicFastDispatcher (matrix based) is preferable to BasicDispatcher (map based) when speed 
is a concern. However, the nice advanced classes FnDispatcher and FunctorDispatcher are built 
around BasicDispatcher. Should we develop two new classes—FnFastDispatcher and 
FunctorFastDispatcher—that use BasicFastDispatcher as their back end? 

A better idea is to try to adapt FnDispatcher and FunctorDispatcher to use either 
BasicDispatcher or BasicFastDispatcher, depending on a template parameter. That is, make the 
dispatcher a policy for the classes FnDispatcher and FunctorDispatcher, much as we did with the 
casting strategy. 
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The task of morphing the dispatcher into a policy is eased by the fact that Basic Dispatcher and 
BasicFastDispatcher have the same call interface. This makes replacing one with the other as easy as 
changing a template argument. 

The following is the revised declaration of FnDispatcher (FunctorDispatcher's declaration is 
similar). The changes are shown in bold. 

template 
< 
   class BaseLhs, 
   class BaseRhs = BaseLhs, 
   typename ResultType = void, 
   template <class, class> 
      class CastingPolicy = DynamicCaster, 
   template <class, class, class, class> 
      class DispatcherBackend = BasicDispatcher 
> 
class FnDispatcher; // similarly for FunctorDispatcher 

Table 11.1. DispatcherBackend Policy Requirements 
Expression Return 

Type 
Notes 

copy, assign, swap, destroy   Value semantics. 
backEnd.Add<SomeLhs, 
SomeRhs>(callback) 

void Add a callback to the backEnd object for 
types SomeLhs and SomeRhs. 

backEnd.Go(BaseLhs&, BaseRhs&) ResultType Performs a lookup and a dispatch for the 
two objects. Throws 
std::runtime_error if a handler is not 
found. 

backEnd.Remove<SomeLhs, 
SomeRhs>() 

bool Removes the callback for the types 
SomeLhs and SomeRhs. Returns true if 
there was a callback. 

backEnd.HandlerExists<SomeLhs, 
SomeRhs>() 

bool Returns true if a callback is registered 
for the types SomeLhs and SomeRhs. No 
callback is added. 

The two classes themselves undergo very few changes. 

Let's clarify the DispatcherBackend policy requirements. First of all, obviously, DispatcherBackend must 
be a template with four parameters. The parameter semantics are, in order 

• Left-hand operand type 
• Right-hand operand type 
• Return type of the callback 
• The callback type 

In Table 11.1, BackendType represents an instantiation of the dispatcher back-end template, and 
backEnd represents a variable of that type. The table contains functions that we haven't mentioned yet—
don't worry. A complete dispatcher must come with functions that remove callbacks and that do a 
"passive" lookup without calling the callback. These are trivial to implement; you can see them in Loki's 
source code, file MultiMethods.h. 
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11.12 Looking Forward 

Generalization is right around the corner. We can take our findings regarding double dispatch and apply 
them to implementing true generic multiple dispatch. 

It's actually quite easy. This chapter defines three types of double dispatchers: 

• A static dispatcher, driven by two typelists 
• A map-based dispatcher, driven by a map keyed by a pair of std::type_info objects[7] 

[7] Dressed as OrderedTypeInfo to ease comparisons and copying. 

• A matrix-based dispatcher, driven by a matrix indexed with unique numeric class IDs 

It's easy to generalize these dispatchers as follows. You can generalize the static dispatcher to one driven 
by a typelist of typelists, instead of two typelists. Yes, you can define a typelist of typelists because any 
typelist is a type. The following typedef defines a typelist of three typelists, possible participants in a 
triple-dispatch scenario. Remarkably, the resulting typelist is actually easy to read. 

typedef TYPELIST_3 
( 
   TYPELIST_3(Shape, Rectangle, Ellipse), 
   TYPELIST_3(Screen, Printer, Plotter), 
   TYPELIST_3(File, Socket, Memory) 
) 
ListOfLists; 

You can generalize the map-based dispatcher to one that is keyed by a vector of std:: type_info 
objects (as opposed to a std::pair). That vector's size will be the number of objects involved in the 
multiple-dispatch operation. A possible synopsis of a generalized BasicDispatcher is as follows: 

template 
< 
   class ListOfTypes, 
   typename ResultType, 
   typename CallbackType 
> 
class GeneralBasicDispatcher; 

The ListOfTypes template parameter is a typelist containing the base types involved in the multiple 
dispatch. For instance, our earlier example of hatching intersections between two shapes would have used 
a TYPELIST_2(Shape, Shape). 

You can generalize the matrix-based dispatcher by using a multidimensional array. You can build a 
multidimensional array with a recursive class template. The existing scheme of assigning numeric IDs to 
types works just as it is. This has the nice effect that if you modify a hierarchy once to support double 
dispatch, you don't have to modify it again to support multiple dispatch. 

All these possible extensions need the usual amount of work to get all the details right. A particularly nasty 
problem related to multiple dispatch and C++ is that there's no uniform way to represent functions with a 
variable number of arguments. 

As of now, Loki implements double dispatch only. The interesting generalizations just suggested are left in 
the dreaded form of the exercise for . . . you know. 
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11.13 Summary 

Multimethods are generalized virtual functions. Whereas the C++ runtime support dispatches virtual 
functions on a per-class basis, multimethods are dispatched depending on multiple classes simultaneously. 
This allows you to implement virtual functions for collections of types instead of one type at a time. 

By their nature, multimethods are best implemented as a language feature. C++ lacks such a feature, but 
there are several ways to implement it in libraries. 

Multimethods are needed in applications that call algorithms that depend on the type of two or more 
objects. Typical examples include collisions between polymorphic objects, intersections, and displaying 
objects on various target devices. 

This chapter limits discussion to the defining of multimethods for two objects. An object that takes care of 
selecting the appropriate function to call is called a double dispatcher. The types of dispatchers discussed 
are as follows: 

• The brute-force dispatcher. This dispatcher relies on static type information (provided in the form 
of a typelist) and does a linear unrolled search for the correct types. Once the types are found, the 
dispatcher calls an overloaded member function in a handler object. 

• The map-based dispatcher. This uses a map keyed by std::type_info objects. The mapped 
value is a callback (either a pointer to a function or a functor). The type discovery algorithm 
performs a binary search. 

• The constant-time dispatcher. This is the fastest dispatcher of all, but it requires you to modify the 
classes on which it acts. The change is to add a macro to each class that you want to use with the 
constant-time dispatcher. The cost of a dispatch is two virtual calls, a couple of numeric tests, and 
a matrix element access. 

On top of the last two dispatchers, higher-level facilities can be implemented: 

• Automated conversions. (Not to be confused with automatic conversions.) Because of their 
uniformity, the dispatchers above require the client to cast the objects from their base types to 
their derived types. A casting layer can provide a trampoline function that takes care of these 
conversions. 

• Symmetry. Some double-dispatch applications are symmetric in nature. They dispatch on the same 
base type on both sides of the double-dispatch operation, and they don't care about the order of 
elements. For instance, in a collision detector it doesn't matter whether a spaceship hits a torpedo 
or a torpedo hits a spaceship—the behavior is the same. Implementing support for symmetry in the 
library makes client code smaller and less exposed to errors. 

The brute-force dispatcher supports these higher-level features directly. This is possible because the brute-
force dispatcher has extensive type information available. The other two dispatchers use different methods 
and add an extra layer to implement automated conversions and symmetry. Double dispatchers for 
functions implement this extra layer differently (and more efficiently) than double dispatchers for functors. 

Table 11.2 compares the three dispatcher types defined in this chapter. As you can see, none of the 
presented implementations is ideal. You should choose the solution that best fits your needs for a given 
situation. 

Table 11.2. Comparison of Various Implementations of Double Dispatch 
  Static Dispatcher 

(StaticDispatcher) 
Logarithmic 
Dispatcher 

Constant-Time Dispatcher 
(BasicFastDispatcher) 
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(BasicDispatcher) 
Speed for few 
classes 

Best Modest Good 

Speed for 
many classes 

Low Good Best 

Dependency 
introduced 

Heavy Low Low 

Alteration of 
existing 
classes 
needed 

None None Add a macro to each class 

Compile-time 
safety 

Best Good Good 

Runtime safety Best Good Good 
 
 

11.14 Double Dispatcher Quick Facts 

• Loki defines three basic double dispatchers: StaticDispatcher, BasicDispatcher, and 
BasicFastDispatcher. 

• StaticDispatcher's declaration: 

template 
< 
   class Executor, 
   class BaseLhs, 
   class TypesLhs, 
   class BaseRhs = BaseLhs, 
   class TypesRhs = TypesLhs, 
   typename ResultType = void 
> 
class StaticDispatcher; 

where 

BaseLhs is the base left-hand type. 

TypesLhs is a typelist containing the set of concrete types involved in the double dispatch on the 
left-hand side. 

BaseRhs is the base right-hand type. 

TypesRhs is a typelist containing the set of concrete types involved in the double dispatch on the 
right-hand side. 

Executor is a class that provides the functions to be invoked after type discovery. Executor 
must provide an overloaded member function Fire for each combination of types in TypesLhs 
and TypesRhs. 

ResultType is the type returned by the Executor::Fire overloaded functions. The returned 
value will be forwarded as the result of StaticDispatcher::Go. 
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• Executor must provide a member function OnError(BaseLhs&, BaseRhs&) for error 
handling. StaticDispatcher calls Executor::OnError when it encounters an unknown 
type. 

• Example (assume Rectangle and Ellipse inherit Shape, and Printer and Screen inherit 
OutputDevice): 

struct Painter 
{ 
   bool Fire(Rectangle&, Printer&); 
   bool Fire(Ellipse&, Printer&); 
   bool Fire(Rectangle&, Screen&); 
   bool Fire(Ellipse&, Screen&); 
   bool OnError(Shape&, OutputDevice&); 
}; 
 
typedef StaticDispatcher 
< 
   Painter, 
   Shape, 
   TYPELIST_2(Rectangle, Ellipse), 
   OutputDevice, 
   TYPELIST_2(Printer&, Screen), 
   bool 
> 
Dispatcher; 

• StaticDispatcher implements the Go member function, which takes a BaseLhs&, a 
BaseRhs&, and an Executor&, and executes the dispatch. Example (using the previous 
definitions): 

Dispatcher disp; 
Shape* pSh = ...; 
OutputDevice* pDev = ...; 
bool result = disp.Go(*pSh, *pDev); 

• BasicDispatcher and BasicFastDispatcher implement dynamic dispatchers that allow 
users to add handler functions at runtime. 

• BasicDispatcher finds a handler in logarithmic time. BasicFastDispatcher finds a 
handler in constant time but requires the user to change the definitions of all dispatched classes. 

• Both classes implement the same interface, illustrated here for BasicDispatcher. 

template 
< 
   class BaseLhs, 
   class BaseRhs = BaseLhs, 
   typename ResultType = void, 
   typename CallbackType = ResultType (*)(BaseLhs&, BaseRhs&) 
> 
class BasicDispatcher; 

where 

CallbackType is the type of object that handles the dispatch. 

BasicDispatcher and BasicFastDispatcher store and invoke objects of this type. 

All other parameters have the same meaning as for StaticDispatcher. 
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• The two dispatchers implement the functions described in Table 11.1. 
• In addition to the three basic dispatchers, Loki also defines two advanced layers: FnDispatcher 

and FunctorDispatcher. They use one of BasicDispatcher or BasicFastDispatcher 
as a policy. 

• FnDispatcher and FunctorDispatcher have similar declarations, as shown here. 

template 
< 
   class BaseLhs, 
   class BaseRhs = BaseLhs, 
   ResultType = void, 
   template <class To, class From> 
     class CastingPolicy = DynamicCast 
   template <class, class, class, class> 
     class DispatcherBackend = BasicDispatcher 
> 
class FnDispatcher; 

where 

BaseLhs and BaseRhs are the base classes of the two hierarchies involved in the double 
dispatch. 

ResultType is the type returned by the callbacks and the dispatcher. 

CastingPolicy is a class template with two parameters. It must implement a static member 
function Cast that accepts a reference to From and returns a reference to To. The stock 
implementations DynamicCaster and StaticCaster use dynamic_cast and 
static_cast, respectively. 

DispatcherBackend is a class template that implements the same interface as 
BasicDispatcher and BasicFastDispatcher, described in Table 11.1. 

• Both FnDispatcher and FunctorDispatcher provide an Add member function or their 
primitive handler type. For FnDispatcher the primitive handler type is ResultType 
(*)(BaseLhs&, BaseRhs&). For FunctorDispatcher, the primitive handler type is 
Functor<ResultType, TYPELIST_2(BaseLhs&, Base Rhs&)>. Refer to Chapter 5 for 
a description of Functor. 

• In addition, FnDispatcher provides a template function to register callbacks with the engine: 

void Add<SomeLhs, SomeRhs, 
   ResultType (*callback)(SomeLhs&, SomeRhs&), 
   bool symmetric>(); 

• If you register handlers with the Add member function shown in the previous code, you benefit 
from automated casting and optional symmetry. 

• FunctorDispatcher provides a template Add member function: 

template <class SomeLhs, class SomeRhs, class F> 
void Add(const F& fun); 

• F can be any of the types accepted by the Functor object (see Chapter 5), including another 
Functor instantiation. An object of type F must accept the function-call operator with arguments 
of types BaseLhs& and BaseRhs& and return a type convertible to ResultType. 

• If no handler is found, all dispatch engines throw an exception of type std::runtime_error. 
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Appendix A. A Minimalist Multithreading Library 
A multithreaded program has multiple points of execution at the same time. Practically, this means that in 
a multithreaded program you can have multiple functions running at once. On a multiprocessor computer, 
different threads might run literally simultaneously. On a single-processor machine, a multithreading-
capable operating system will apply time slicing—it chops each thread at short time intervals, suspends it, 
and gives another thread some processor time. Multithreading gives the user the impression that multiple 
things happen at once. For instance, a word processor can verify grammar while letting the user enter text. 

Users don't like to see the hourglass cursor, so we programmers must write multithreaded programs. 
Unfortunately, as pleasing as it is to users, multithreading is traditionally very hard to program, and even 
harder to debug. Moreover, multithreading pervades application design. Making a library work safely in 
the presence of multiple threads cannot be done from the outside; it must be built in, even if the library 
does not use threads of its own. 

It follows that the components provided in this book cannot ignore the threading issue. (Well, they actually 
could, in which case most of them would be useless in the presence of multiple threads.) Because modern 
applications increasingly use multithreaded execution, it would be a pity to sweep multithreading under the 
rug out of laziness. 

This appendix provides tools and techniques that establish a sound ground for writing portable 
multithreaded object-oriented applications in C++. It does not provide a comprehensive introduction to 
multithreaded programming—a fascinating domain in itself. Trying to discuss a complete threading library 
en passant in this book would be a futile, doomed effort. The focus here is on figuring out the minimal 
abstractions that allow us to write multithreaded components. 

Loki's threading abilities are scarce compared with the host of amenities that a modern operating system 
provides, because its concern is only to provide thread-safe components. On the bright side, the 
synchronization concepts defined in this appendix are higher level than the traditional mutexes and 
semaphores and might help in the design of any object-oriented multithreaded application. 

 

A.1 A Critique of Multithreading 

The advantages of multithreading on multiprocessor machines are obvious. But when executed on a single 
processor, multithreading may seem a bit silly. Why would you want to slow down the processor with 
time-slicing algorithms? Obviously, you won't get any net gain. No miracle can occur—there's still only 
one processor, so overall multithreading will actually slightly reduce efficiency because of the additional 
swapping and bookkeeping. 

The reason that multithreading is important even on single-processor machines is efficient resource use. In 
a typical modern computer, there are many more resources than the processor. You have devices such as 
disk drives, modems, network cards, and printers. Because they are physically independent, these 
resources can work at the same time. For instance, there is no reason why the processor cannot compute 
while the disk spins and while the printer prints. However, this is exactly what would happen if your 
application and operating system committed exclusively to a single-threaded execution model. And you 
wouldn't be happy if your application didn't allow you to do anything while transferring data from the 
Internet through the modem. 

In the same vein, even the processor might be unused for extended periods of time. As you are editing a 
3D image, the short intervals between your mouse moves and clicks are little eternities to the processor. It 
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would be nice if the drawing program could use those idle times to do something useful, such as ray 
tracing or computing hidden lines. 

The main alternative to multithreading is asynchronous execution. Asynchronous execution fosters a 
callback model: You start an operation and register a function to be called when the operation completes. 
The main disadvantage of asynchronous execution compared with using multithreading is that it leads to 
state-rich programs. By using asynchronous execution, you cannot follow an algorithm from one point to 
another; you can only store a state and let the callbacks change that state. Maintaining such state is 
troublesome in all but the simplest operations. 

True threads don't have this problem. Each thread has an implicit state given by its execution point (the 
statement where the thread currently executes). You can easily follow what a thread does because it's just 
like following a simple function. The execution point is exactly what you have to manage by hand in 
asynchronous execution. (The main question in asynchronous programming is "Where am I now?") In 
conclusion, multithreaded programs can follow the synchronous execution model, which is good. 

On the other hand, threads are exposed to big problems as soon as they start sharing resources, such as data 
in memory. Because threads can be interrupted at any time by other threads (yes, that's any time, including 
in the middle of an assignment to a variable), operations that you thought were atomic are not. 
Unorganized access of threads to a piece of data is always lethal to that data. 

In single-threaded programming, data health is usually guaranteed at the entry and at the exit of a function. 
For instance, the assignment operator (operator=) of a String class assumes the String object is 
valid upon entry and at exit of the operator. With multithreaded programming, you must make sure that the 
String object is valid even during the assignment operation, because another thread may interrupt an 
assignment and do another operation against the String object. Whereas single-threaded programming 
accustoms you to think of functions as atomic operations, in multithreaded programming you must state 
explicitly which operations are atomic. In conclusion, multithreaded programs have big trouble sharing 
resources, which is bad. 

Most programming techniques for multithreading focus on providing synchronization objects that enable 
you to serialize access to shared resources. Whenever you do an operation that must be atomic, you lock a 
synchronization object. If other threads try to lock the same synchronization object, they are put on hold. 
You modify the data (and leave it in a coherent state) and then unlock the synchronization object. At that 
moment, some other thread will be able to lock the synchronization object and gain access to the data. This 
effectively makes every thread work on consistent data. 

The following sections define various locking objects. The synchronization objects provided herein are not 
comprehensive, yet you can do a great deal of multithreaded programming by using them. 

 

A.2 Loki's Approach 

To deal with threading issues, Loki defines the ThreadingModel policy. ThreadingModel prescribes a 
template with one argument. That argument is a C++ type for which you need to access threading 
amenities: 

template <typename T> 
class SomeThreadingModel 
{ 
   ... 
}; 
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The following sections progressively fill ThreadingModel with concepts and functionality. Loki defines a 
single threading model that is the default for most of Loki. 

 

A.3 Atomic Operations on Integral Types 

Assuming x is a variable of type int, consider this statement: 

++x; 

It might seem awkward that a book focused on design analyzes a simple increment statement, but this is 
the thing with multithreading—little issues affect big designs. 

To increment x, the processor has to do three operations: 

1. Fetch the variable from memory. 
2. Increment the variable inside the arithmetic logic unit (ALU) of the processor. The ALU is the 

only place where an operation can take place; memory does not have arithmetic capabilities of its 
own. 

3. Write the variable back to memory. 

Because the first operation reads, the second modifies, and the third writes the data, this troika is known as 
a read-modify-write (RMW) operation. 

Now suppose this increment happens in a multiprocessor architecture. To maximize efficiency, during the 
modify part of the RMW operation the processor unlocks the memory bus. This way another processor can 
access the memory while the first increments the variable, leading to better resource use. 

Unfortunately, another processor can start an RMW operation against the same integer. For instance, 
assume there are two increments on x, which initially has value 0, performed by two processors P1 and P2 
in the following sequence: 

1. P1 locks the memory bus and fetches x. 
2. P1 unlocks the memory bus. 
3. P2 locks the memory bus and fetches x (which is still 0). At the same time, P1 increments x inside 

its ALU. The result is 1. 
4. P2 unlocks the memory bus. 
5. P1 locks the memory bus and writes 1 to x. At the same time, P2 increments x inside its ALU. 

Because P2 fetched a 0, the result is, again, 1. 
6. P1 unlocks the memory bus. 
7. P2 locks the memory bus and writes 1 to x. 
8. P2 unlocks the memory bus. 

The net result is that although two increment operations have been applied to x starting from 0, the final 
value is 1. This is an erroneous result. Worse, neither processor (thread) can figure out that the increment 
failed and will retry it. In a multithreaded world, nothing is atomic—not even a simple increment of an 
integer. 

There are a number of ways to make the increment operation atomic. The most efficient way is to exploit 
processor capabilities. Some processors offer locked-bus operations—the RMW operation takes place as 
described previously, except that the memory bus is locked throughout the operation. This way, when P2 
fetches x from memory, it will be after its increment by P1 has completed. 
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This low-level functionality is usually packaged by operating systems in C functions that provide atomic 
increment and atomic decrement operations. 

If an OS defines atomic operations, it usually does so for the integral type that has the width of the memory 
bus—most of the time, int. The threading subsystem of Loki (file Threads.h) defines the type 
IntType inside each ThreadingModel implementation. 

The primitives for atomic operations, still inside ThreadingModel, are outlined in the following: 

template <typename T> 
class SomeThreadingModel 
{ 
public: 
   typedef int IntType; // or another type as dictated by the platform 
   static IntType AtomicAdd(volatile IntType& lval, IntType val); 
   static IntType AtomicSubtract(volatile IntType & lval, IntType val); 
   ... similar definitions for AtomicMultiply, AtomicDivide, 
   ... AtomicIncrement, AtomicDecrement ... 
   static void AtomicAssign(volatile IntType & lval, IntType val); 
   static void AtomicAssign(IntType & lval, volatile IntType & val); 
}; 

These primitives get the value to change as the first parameter (notice the pass by non-const reference 
and the use of volatile), and the other operand (absent in the case of unary operators) as the second 
parameter. Each primitive returns a copy of the volatile destination. The returned value is very useful 
when you're using these primitives because you can inspect the actual result of the operation. If you inspect 
the volatile value after the operation, 

volatile int counter; 
... 
SomeThreadingModel<Widget>::AtomicAdd(counter, 5); 
if (counter == 10) ... 

then your code does not inspect counter immediately after the addition because another thread can 
modify counter between the call to AtomicAdd and the if statement. Most of the time, you need to see 
what value counter has immediately after your call to AtomicAdd, in which case you write 

if (AtomicAdd(counter, 5) == 10) ... 

The two AtomicAssign functions are necessary because even the copy operation can be nonatomic. For 
instance, if your machine bus is 32 bits wide and long has 64 bits, copying a long value involves two 
memory accesses. 

 

A.4 Mutexes 

Edgar Dijkstra has proven that in the presence of multithreading, the thread scheduler of the operating 
system must provide certain synchronization objects. Without them, writing correct multithreaded 
applications is impossible. 

Mutexes are fundamental synchronization objects that allow threads to access shared resources in an 
ordered manner. This section defines the notion of a mutex. The rest of Loki does not use mutexes directly; 
instead, it defines higher-level means of synchronization that can be easily implemented with mutexes. 
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Mutex is a collocation of Mutual Exclusive, a phrase that describes the functioning of this primitive object: 
A mutex allows threads mutually exclusive access to a resource. 

The basic functions of a mutex are Acquire and Release. Each thread that needs exclusive access to a 
resource (such as a shared variable) acquires the mutex. Only one thread can acquire the mutex. After one 
thread acquires it, all other threads that invoke Acquire block in a wait state (the function Acquire does 
not return). When the thread that owns the mutex calls the Release function, the thread scheduler 
chooses one of the threads that is in a wait state on the same mutex and gives that thread the ownership of 
the mutex. 

The observable effect is that mutexes are access serialization devices: The portion of code between a call 
to mtx.Acquire() and a call to mtx.Release() is atomic with respect to the mtx object. Any other 
attempt to acquire the mtx object must wait until the atomic operation finishes. 

It follows that you should allocate one mutex object for each resource you want to share between threads. 
The resources you might want to share include, notably, C++ objects. Every nonatomic operation with 
these resources must start with acquiring the mutex and end with releasing the mutex. The nonatomic 
operations that you might want to perform include, notably, non-const member functions of thread-safe 
objects. 

For instance, imagine you have a BankAccount class that provides functions such as Deposit and 
Withdraw. These operations do more than add to and subtract from a double member variable; they also 
log additional information regarding the transaction. If BankAccount is to be accessed from multiple 
threads, the two operations must certainly be atomic. Here's how you can do this: 

class BankAccount 
{ 
public: 
   void Deposit(double amount, const char* user) 
   { 
      mtx_.Acquire(); 
      ... perform deposit transaction ... 
      mtx_.Release(); 
   } 
   void Withdraw(double amount, const char* user) 
   { 
      mtx_.Acquire(); 
      ... perform withdrawal transaction ... 
      mtx_.Release(); 
   } 
   ... 
private: 
   Mutex mtx_; 
   ... 
}; 

As you probably have figured out (if you didn't know already), failing to call Release for each Acquire 
you issue has deadly effects. You lock the mutex and leave it locked— all other threads trying to acquire it 
block forever. In the previous code, you must implement Deposit and Withdraw very carefully with 
regard to exceptions and premature returns. 

To mitigate this problem, many C++ threading APIs define a Lock object that you can initialize with a 
mutex. The Lock object's constructor calls Acquire, and its destructor calls Release. This way, if you 
allocate a Lock object on the stack, you can count on correct pairing of Acquire and Release, even in 
the presence of exceptions. 
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For portability reasons, Loki does not define mutexes on its own. It's likely you already use a 
multithreading library that defines its own mutexes. It would be awkward to duplicate their functionality. 
Instead, Loki relies on higher-level locking semantics that are implemented in terms of mutexes. 

 

A.5 Locking Semantics in Object-Oriented Programming 

Synchronization objects are associated with shared resources. In an object-oriented program, resources are 
objects. Therefore, in an object-oriented program, synchronization objects are associated with application 
objects. 

It follows that each shared object should aggregate a synchronization object and lock it appropriately in 
every mutating member function, much as the BankAccount example does. This is a correct way to 
structure an object supporting multithreading. The structure fostering one synchronization object per object 
is known as object-level locking. 

However, sometimes the size and the overhead of storing one mutex per object are too big. In this case, a 
synchronization strategy that keeps only one mutex per class can help. 

Consider, for example, a String class. From time to time, you might need to perform a locking operation 
on a String object. However, you don't want each String to carry a mutex object; that would make 
Strings big and their copying costly. In this case, you can use a static mutex object for all Strings. 
Whenever a String object performs a locking operation, that operation will block all locking operations 
for all String objects. This strategy fosters class-level locking. 

Loki defines two implementations of the ThreadingModel policy: ClassLevelLockable and 
ObjectLevelLockable. They encapsulate class-level locking and object-level locking semantics, 
respectively. The synopsis is presented here. 

template <typename Host> 
class ClassLevelLockable 
{ 
public: 
   class Lock 
   { 
   public: 
      Lock(); 
      Lock(Host& obj); 
      ... 
   }; 
   ... 
}; 
 
template <typename Host> 
class ObjectLevelLockable 
{ 
public: 
   class Lock 
   { 
   public: 
      Lock(Host& obj); 
      ... 
   }; 
   ... 
}; 
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Technically, Lock keeps a mutex locked. The difference between the two implementations is that you 
cannot construct an ObjectLevelLockable<T>::Lock without passing a T object to it. The reason is 
that ObjectLevelLockable uses per-object locking. 

The Lock nested class locks the object (or the entire class, in the case of ClassLevelLockable) for the 
lifetime of a Lock object. 

In an application, you inherit one of the implementations of ThreadingModel. Then you use the inner class 
Lock directly. For example, 

class MyClass : public ClassLevelLockable <MyClass> 
{ 
   ... 
}; 

Table A.1. Implementations of ThreadingModel 
Class Template Semantics 
SingleThreaded No threading strategy at all. The Lock and ReadLock classes are 

empty mock-ups. 
ObjectLevelLockable Object-level locking semantics. One mutex per object is stored. The 

Lock inner class locks the mutex (and implicitly the object). 
ClassLevelLockable Class-level locking semantics. One mutex per class is stored. The Lock

inner class locks the mutex (and implicitly all objects of a type). 

The exact locking strategy depends on the ThreadingModel implementation you choose to derive from. 
Table A.1 summarizes the available implementations. 

You can define synchronized member functions very easily, as outlined in the following example: 

class BankAccount : public ObjectLevelLockable<BankAccount> 
{ 
public: 
   void Deposit(double amount, const char* user) 
   { 
      Lock lock(*this); 
      ... perform deposit transaction ... 
   } 
   void Withdraw(double amount, const char* user) 
   { 
      Lock lock(*this); 
      ... perform withdrawal transaction ... 
   } 
   ... 
}; 

You no longer have any problem with premature returns and exceptions; the correct pairing of lock/unlock 
operations on the mutex is guaranteed by language invariants. 

The uniform interface supported by the dummy interface SingleThreaded gives syntactic consistency. 
You can write your code assuming a multithreading environment, and then easily change design decisions 
by modifying the threading model. 

The ThreadingModel policy is used in Chapter 4 (Small-Object Allocation), Chapter 5 (Generalized 
Functors), and Chapter 6 (Implementing Singletons). 
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A.6 Optional volatile Modifier 

C++ provides the volatile type modifier, with which you should qualify each variable that you share 
with multiple threads. However, in a single-threaded model, it's best not to use volatile because it 
prevents the compiler from performing some important optimizations. 

That's why Loki defines the inner class VolatileType. Inside SomeThreadingModel<Widget>, 
VolatileType evaluates to volatile Widget for ClassLevelLockable and 
ObjectLevelLockable, and to plain Widget for SingleThreaded. You can see VolatileType at 
work in Chapter 6. 

 

A.7 Semaphores, Events, and Other Good Things 

Loki's support for multithreading stops here. General multithreading libraries provide a richer set of 
synchronization objects and functions such as semaphores, events, and memory barriers. Also, the function 
that starts a new thread is conspicuously absent from Loki—witness to the fact that Loki aims to be thread 
safe but not to use threads itself. 

It is possible that a future version of Loki will provide a complete threading model. Multithreading is a 
domain that can greatly benefit from generic programming techniques. However, competition is heavy 
here—check out ACE (Adaptive Communication Environment) for a great, very portable multithreading 
library (Schmidt 2000). 

 

A.8 Summary 

Threads are absent from standard C++. However, synchronization issues in multithreaded programs 
pervade application and library design. The trouble is, the threading models supported by various operating 
systems are very different. Therefore, Loki defines a high-level synchronization mechanism having a 
minimal interaction with a threading model provided from the outside. 

The ThreadingModel policy and the three class templates that implement ThreadingModel define a 
platform for building generic components that support different threading models. At compile time, you 
can select support for object-level locking, class-level locking, or no locking at all. 

The object-level locking strategy allocates one synchronization object per application object. The class-
level locking strategy allocates one synchronization object per class. The former strategy is faster; the 
second uses a smaller amount of resources. 

All implementations of ThreadingModel support a unique syntactic interface. This makes it easy for the 
library and for client code to use a uniform syntax. You can adjust locking support for a class without 
incurring changes to its implementation. For the same purpose, Loki defines a do-nothing implementation 
that supports a single-threaded model. 
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