
Solutions to Exercises

2.2.1 See [104]. Hint: See the UML activity diagram rule UmlJoin on p. 280.

2.2.2 See [105].

2.2.3 For a solution DoublyLinkedList see AsmMethod (; CD). Hint:
Define a macro Link(x , y) which links two nodes x and y together. It is
also convenient to use the n-fold application of the function next applied to
node x , nextn(x).

2.2.4 See Sect. 4.1.1 and define a turbo ASM which for any argument simply
outputs the value of a static non-recursive function on that argument.

2.2.5 Distinguish the cases whether the alternation of the conditions is true
or not.

2.3.1 Use an induction on walks through the diagram of Fig. 2.14.

2.3.2 Use Lemma 2.3.1. Note that every application of Depart, Continue,
Stop counts as one step and that in case of more than one lift (n > 1), the no-
tion of “point of attraction” is dynamically determined by Attracted(d ,L)
refined below.

2.3.3 Use Lemma 2.3.2.

2.3.7 Hint: an object-oriented language will allow us to naturally reflect the
parameterization of the Lift ASM by the elements of an abstract domain
Lift.

2.3.8 See Sect. 6.4 for a definition of durative actions.

2.4.1 Let l be a location. If l has the same content in A and B, then there is
no update for l in the difference B−A and (A + (B−A))(l) = A(l) = B(l).
Otherwise, if A(l) 6= B(l), then the update (l ,B(l)) is in B − A and hence
(A + (B− A))(l) = B(l).

2

2.4.2 Let (l , v) be an update in B−A. Then A(l) 6= B(l) = v . According to
Def. 2.4.8, we know that α(A(l)) = A′(α(l)) and α(v) = α(B(l)) = B′(α(l)).
Since α is injective, it follows that A′(α(l)) 6= B′(α(l)) = α(v), hence the
update (α(l), α(v)) is in B′ − A′.
Since α is surjective, every update in B′ −A′ has the form (α(l), α(v)) for a
location l of A and an element v in |A|, where A′(α(l)) 6= B′(α(l)) = α(v).
Since α is an isomorphism, A(l) 6= B(l) = v . Hence (l , v) is an update in
B− A.

2.4.3 1. That ⊕ is associative follows directly from Def. 2.4.10.
Assume that (l , v) belongs to (U⊕V)⊕W . If (l , v) in W , then (l , v) ∈ V⊕W
and hence (l , v) ∈ U ⊕ (V ⊕W). If l does not have an update in W but
(l , v) ∈ V , then (l , v) ∈ V ⊕ W and hence also (l , v) ∈ U ⊕ (V ⊕ W).
Otherwise, l does not have an update neither in V nor W but (l , v) ∈ U .
Then l does not have an update in V ⊕W and hence (l , v) ∈ U ⊕ (V ⊕W).
Assume that (l , v) belongs to U ⊕ (V ⊕W). If (l , v) ∈ V ⊕W , then either
(l , v) ∈W or l is not updated in W and (l , v) ∈ V . If (l , v) ∈W , then (l , v)
belongs also to (U ⊕V)⊕W . If l is not updated in W and (l , v) ∈ V , then
(l , v) ∈ U ⊕V and hence (l , v) ∈ (U ⊕V)⊕W . If l is not updated in V ⊕W ,
then (l , v) ∈ U and there is no update for l neither in V nor in W . Hence,
(l , v) ∈ U ⊕V and thus (l , v) ∈ (U ⊕V)⊕W .
2. Assume that U and V are consistent. Assume that (l , v) ∈ U ⊕ V and
(l ,w) ∈ U ⊕ V . If l has an update in V , then (l , v) ∈ V and (l ,w) ∈ V ,
hence v = w , since V is consistent. If l is not updated in V , then (l , v) ∈ U
and (l ,w) ∈ U , and since U is consistent, it follows that v = w . Hence,
U ⊕V is consistent.
3. Assume that U and V are consistent. By 2, we know that U ⊕ V is
consistent. We have to show that A + (U ⊕V) = (A + U) + V .
Let l be a location. If l is not updated in U ⊕ V , then (A + (U ⊕ V))(l) =
A(l) and, since this implies that l is neither updated in U nor in V , also
((A + U) + V)(l) = A(l). Otherwise, there is an update for l in U ⊕ V , say
(l , v), and (A + (U ⊕ V))(l) = v . If (l , v) ∈ V , then ((A + U) + V)(l) = v .
If l is not updated in V and (l , v) ∈ U , then (A + U)(l) = v and hence
((A + U) + V)(l) = v .

2.4.4 Equation 1 is not true in general.
Take U = {(l , 0)}, V = {(l , 1)} and W = ∅. Then U ⊕ (V ∪W) = {(l , 1)},
whereas (U ⊕V) ∪ (U ⊕W) = {(l , 0), (l , 1)}.
If (U ⊕V)∪(U ⊕W) is consistent, then U ⊕(V ∪W) = (U ⊕V)∪(U ⊕W).
Equation 2 is true, i.e. (U ∪V)⊕W = (U ⊕W) ∪ (V ⊕W).
Assume that (l , v) ∈ (U ∪ V)⊕W . If (l , v) ∈W , then (l , v) ∈ U ⊕W . If l
is not updated in W then (l , v) ∈ U ∪V . If (l , v) ∈ U , then (l , v) ∈ U ⊕W .
If (l , v) ∈ V , then (l , v) ∈ V ⊕W .

3

Assume that (l , v) ∈ (U ⊕W) ∪ (V ⊕W). If (l , v) ∈W , then (l , v) belongs
also to (U ∪ V) ⊕W . If l is not updated in W , then (l , v) is in U or in V
and hence also in (U ∪V)⊕W .

2.4.5 The proof of Lemma 2.4.5 goes by induction on the size of the term t .
Case 1, t is a variable x : α([[x]]Aζ) = α(ζ(x)) = (α ◦ ζ)(x) = [[x]]Bα◦ζ
Case 2, t is a constant c: α([[c]]Aζ) = α(cA) = cB = [[c]]Bα◦ζ
Case 3. t is the term f (s1, . . . , sn).

α([[f (s1, . . . , sn)]]Aζ) = α(f A([[s1]]Aζ , . . . , [[sn]]Aζ)) [Def. 2.4.13]

= f B(α([[s1]]Aζ), . . . , α([[sn]]Aζ)) [Def. 2.4.8]

= f B([[s1]]Bα◦ζ , . . . , [[sn]]Bα◦ζ) [Ind. hyp.]

= [[f (s1, . . . , sn)]]Bα◦ζ [Def. 2.4.13]

2.4.6 1. The coincidence Lemma 2.4.4 for terms is proved by induction on
the size of the term t using Def. 2.4.13 of the interpreation of terms.
2. The coincidence Lemma 2.4.7 for formulas is proved by induction on the
size of the formula ϕ using the definition of the semantics of formulas in
Table 2.1.
3. The coincidence Lemma 2.4.10 for transition rules is proved by induction
on the definition of the “yields” relation in Table 2.2. In the case of forall and
choose one has to use the following fact which is an immediate consequence
of Lemma 2.4.7: range(x , ϕ,A, ζ) = range(x , ϕ,A, η), if ζ(y) = η(y) for every
variable in FV(ϕ) \ {x} (see also Def. 2.4.16). In the case of a rule call one
has tu use the fact that, by definition, in a rule declaration r(x1, . . . , xn) = R
the body R contains no free variables except x1, . . . , xn (Def. 2.4.18).

2.4.7 The substitution Lemma 2.4.6 for terms is proved by induction on
the size of the term t . The substitution Lemma 2.4.8 formulas is proved
by induction on the size of the formula ϕ. The substitution Lemma 2.4.11
for transition rules is proved by induction on the definition of the “yields”
relation in Table 2.2. We consider the case of the sequential composition seq,
since in this case, the assumption is used that the substituted term is static.
Assume that t is a static term and a = [[t]]Aζ . Assume that

– yields(P t
x ,A, ζ,U) and U is consistent

– yields(Q t
x ,A + U , ζ,V)

– yields((P seq Q) t
x ,A, ζ,U ⊕V)

By the induction hypothesis applied to yields(P t
x ,A, ζ,U) we obtain that

yields(P ,A, ζ[x 7→ a],U).
Since t is a static term, it has the same value in the states A and A + U , i.e.
[[t]]Aζ = [[t]]A+U

ζ = a.

4

Hence, by the induction hypothesis applied to yields(Q t
x ,A + U , ζ,V) we

obtain yields(Q ,A + U , ζ[x 7→ a],V).
This means that yields(P seq Q ,A, ζ[x 7→ a],U ⊕V).
The other direction is shown in a similar way.

2.4.8 Let t be the term f (0) and P be the transition rule

f (0) := 1 seq f (1) := x .

Then P t
x is the transition rule

f (0) := 1 seq f (1) := f (0).

Let A be a state in which f (0) is equal to 0, i.e. [[f (0)]]A = 0.
Then P t

x yields the update set

{((f , 0), 1), ((f , 1), 1)}

in A under ζ, whereas P yields the update set

{((f , 0), 1), ((f , 1), 0)}

in A under ζ[x 7→ 0].

2.4.9 The isomorphism Lemma 2.4.9 formulas is proved by induction on the
size of the formula ϕ. In the base case, Lemma 2.4.5 is used for terms. The
isomorphism Lemma 2.4.12 for transition rules is proved by induction on the
definition of the “yields” relation in Table 2.2.

2.4.10 The equivalences between the rules are proved using the definition
of the “yield” relation in Table 2.2.

1. (P par skip) ≡ P
Assume that P par skip yields U . This implies that there exist V and W
such that P yields V , skip yields W , and U = V ∪W . Since the skip
rule always yields the empty set, it follows that W = ∅ and thus U = V .
Hence, P yields U .
If P yields U , then also P par skip yields U .

2. (P par Q) ≡ (Q par P)
Assume that P par Q yields U . This implies that there exist V and W
such that P yields V and Q yields W , and U = V ∪ W . But then
Q par P yields W ∪V , hence Q par P yields U .
Hence the commutativity of par follows from the commutativity of the
set union (∪).

5

3. ((P par Q) par R) ≡ (P par (Q par R))
The associativity of par follows from the the associativity of the set
union.

4. (P par P) ≡ P [if P is deterministic (without choose)]
Assume that P is a deterministic rule of an ASM without choose. As-
sume that P par P yields U . This implies that there exist V and W such
that P yields V , P yields W , and U = V ∪W . Since P is deterministic,
the update sets V and W are equal, hence U = V = W and P yields U .
If P yields U , then P par P yields U ∪ U = U . (This is true even for
non-deterministic rules P .)

5. (if ϕ then P else Q) par R ≡ if ϕ then (P par R) else (Q par R)
Assume that (if ϕ then P else Q) par R yields U . This implies that
there exist V and W such that if ϕ then P else Q yields V , R yields W ,
and U = V ∪W . If ϕ is true, then P yields V and hence P par R yields
V ∪W . If ϕ is false, then Q yields V and hence Q par R yields V ∪W .
In both cases if ϕ then (P par R) else (Q par R) yields U .

6. (P seq skip) ≡ P
Assume that P seq skip yields U in A. There are two cases.
Case 1 : P yields U in A and U is inconsistent.
Case 2 : P yields V in A, V is consistent, skip yields W in A + V , and
U = V ⊕W . But then W is the empty set and U = V . Hence, in both
cases P yields U in A.
If P yields U in A, then P seq skip yields also U in A.

7. (skip seq P) ≡ P
If skip seq P yields U in A, then, since skip yields ∅ and A + ∅ = A, it
follows that P yields U in A.

8. ((P seq Q) seq R) ≡ (P seq (Q seq R))
The associativity of seq follows using the properties of ⊕ in Lemma 2.4.3.
Assume that P seq (Q seq R) yields U in A. Then there are several
cases.
Case 1. P yields U in A and U is inconsistent. In this case (P seq Q) seq
R also yields U in A

Case 2. P yields V in A, V is consistent, (Q seq R) yields W in A + V
and U = V ⊕W .
Case 2.1. Q yields W in A+V and W is inconsistent. Then V⊕W is also
inconsistent, P seq Q yields V ⊕W in A and hence (P seq Q) seq R
yields U in A.
Case 2.2. Q yields X in A+V , X is consistent, R yields Y in (A+V)+X
and W = X⊕Y . In this case P seq Q yields V⊕X in A. By Lemma 2.4.3,
(A+V)+X is equal to A+(V ⊕X). Therefore R yields Y in A+(V ⊕X)

6

and (P seq Q) seq R yields (V ⊕ X) ⊕ Y in A. By the associativity
of ⊕, (V ⊕X)⊕Y = V ⊕ (X ⊕Y) = V ⊕W = U .
The converse direction is proved in a similar way.

9. (if ϕ then P else Q) seq R ≡ if ϕ then (P seq R) else (Q seq R)
Assume that (if ϕ then P else Q) seq R yields U in A. Then there are
two cases:
Case 1. U is inconsistent and if ϕ then P else Q yields U in A. If ϕ is
true in A, then P yields U in A and also P seq R yields U in A. If ϕ
is false in A, then Q yields U in A and also Q seq R yields U in A. In
both cases, if ϕ then (P seq R) else (Q seq R) yields U in A.
Case 2. if ϕ then P else Q yields V in A, V is consistent, R yields W
in A + V , and U = V ⊕W . If ϕ is true in A, then P yields V in A
and hence P seq R yields V ⊕ W in A. If ϕ is false in A, then Q
yields V in A and hence Q seq R yields V ⊕W in A. In both cases
if ϕ then (P seq R) else (Q seq R) yields V ⊕W = U in A.
The converse direction is proved in a similar way.

Counter examples are:

1. ((P par Q) seq R) 6≡ ((P seq R) par (Q seq R))
Let A be a state with p = 0 and q = 0. The rule

(p := 1 par q := 1) seq r := p + q

updates r to 2 in A. The rule

(p := 1 seq r := p + q) par (q := 1 seq r := p + q)

updates r to 1 in A. Hence, the two transition rules are not equivalent.
2. (P seq (Q par R)) 6≡ ((P seq Q) par (P seq R))

Let P be the rule c := 0 par d := 0. Then the rule

P seq (c := 1 par d := 1)

yields the update set {(c, 1), (d , 1)}. The rule

(P seq c := 1) par (P seq d := 1)

yields the inconsistent update set {(d , 0), (c, 1), (c, 0), (d , 1)}.
3. (let x = t in P) 6≡ P t

x

Let A be a state with f (0) = 0. Then

let x = f (0) in (f (0) := 1 seq f (1) := x)

updates f at the argument 1 to the value 0, whereas

f (0) := 1 seq f (1) := f (0)

udates f at the argument 1 to the value 1.

7

2.4.11 Using the definition of the “yields” relation in Table 2.2 the fol-
lowing property is proved by induction on the size of R: If P ≡ Q and
yields(R[P],A, ζ,U), then yields(R[Q],A, ζ,U). In the case that the occur-
rence of P in R[P] is R[P] itself, R[Q] is equal to Q and, since P ≡ Q ,
nothing has to be shown. Otherwise one can assume that the occurrences
of P are in the components of R.

2.4.12 1. Consider the following two transition rules:

if c 6= 0 then c := 0︸ ︷︷ ︸
P

c := 0︸ ︷︷ ︸
Q

Then P and Q are extensionally equal but not equivalent in sense of Exer-
cise 2.4.10.
2. Consider the following context:

c := 1 par ∗︸ ︷︷ ︸
R[∗]

Then R[Q] yields in every state the inconsistent update set {(c, 0), (c, 1)}. In
a state A with c = 0, the rule R[P], however, yields the update set {(0, 1)}.
Hence P and Q are extensionally equal but R[P] and R[Q] are not.

2.4.13 Let α be an isomorphism from A to B. Then α maps the reserve
of A onto the reserve of B, i.e. α(Res(A)) = Res(B). We have to show that
the side conditions for the modified rules for “yields” in Table 2.3 are also
true for B.
Case import: If a ∈ Res(A) \ ran(ζ), then α(a) ∈ Res(B) \ ran(α ◦ ζ).
Case par: If ResA ∩ El(U) ∩ El(V) ⊆ ran(ζ), then
Res(B) ∩ El(α(U)) ∩ El(α(V)) ⊆ ran(α ◦ ζ).

2.4.14 In the case of skip or a basic update, there is nothing to show. We
can simply take the identity function which permutes Res(A) \ ran(ζ).
In the case of if ϕ then P else Q we apply the induction hypothesis either
to P or to Q depending on whether the guard ϕ is true or false in A under ζ.
In the case of let assume that a = [[t]]Aζ and

yields(P ,A, ζ[x 7→ a],U)
yields(let x = t in P ,A, ζ,U)

yields(P ,A, ζ[x 7→ a],U ′)
yields(let x = t in P ,A, ζ,U ′)

Since x is not in the domain of ζ, we have ran(ζ[x 7→ a]) = ran(ζ)∪{a} and
Res(A)\ran(ζ[x 7→ a]) is contained in Res(A)\ran(ζ). Hence, A satisfies the
reserve condition with respect to the extended environment ζ[x 7→ a]. By the
induction hypothesis, there exists a permuation α of Res(A) \ ran(ζ[x 7→ a])
such that α(U) = U ′. The function α is also a permuation of Res(A)\ran(ζ).

8

In the case of forall assume that I = range(x , ϕ,A, ζ) and

yields(P ,A, ζ[x 7→ a],Ua) for each a ∈ I
yields(forall x with ϕ do P ,A, ζ,

⋃
a∈I Ua)

yields(P ,A, ζ[x 7→ a],U ′a) for each a ∈ I
yields(forall x with ϕ do P ,A, ζ,

⋃
a∈I U ′a)

and for all a, b ∈ I , if a 6= b, then

Res(A) ∩ El(Ua) ∩ El(Ub) ⊆ ran(ζ),

Res(A) ∩ El(U ′a) ∩ El(U ′b) ⊆ ran(ζ).

By the inductions hypothesis, there exists for each a ∈ I a permutation
αa of Res(A) \ ran(ζ[x 7→ a]) such that αa(Ua) = U ′a . Let γ be the union
of the permuations αa restricted to the set

⋃
a∈I El(Ua). As in the case of

par the function γ is well-defined and one-one. Since the set
⋃

a∈I El(Ua) is
finite, there exists a permutation of Res(A) \ ran(ζ) that agrees with γ on⋃

a∈I El(Ua) and therefore maps
⋃

a∈I Ua to
⋃

a∈I U ′a .
In the case of a rule call, we can simply apply the induction hypothesis.

2.4.15 Let A be a state that contains two copies of the set of natural
numbers, one copy 0, 1, 2, . . . for a subuniverse Nat and one copy 0̂, 1̂, 2̂, . . .
for the Reserve. Consider the following transition rule:

forall x ∈ Nat do
import y do f (x) := y

Two possible update sets of the transition rule in state A are:

U = {((f ,n), n̂) | n ∈ N} ∪ {((Reserve, n̂), false) | n ∈ N}
U ′ = {((f ,n), n̂ + 1) | n ∈ N} ∪ {((Reserve, n̂), false) | n > 0}

In the first case, the reserve is fully exhausted after firing the updates of U .
In the second case, the reserve still contains the element 0̂ after firing U ′.
A map α that maps U to U ′ has to map n̂ to n̂ + 1. The map α, however,
cannot be a permutation of the reserve, since 0̂ is not met by α.

3.1.1 See GroundModelsSimpleExls (; CD).

3.1.6 Use a conservative refinement. A robustness-rule usually has the form
if Cond ′ then . . ., where Cond ′ selects the relevant ways in which the Cond
guarding a “normal” rule r is expected to be violated (preventing r from
being fired), without other rules of the machine being enabled.

3.1.8 See GroundModelsSimpleExls (; CD).

9

3.1.10 See GroundModelsSimpleExls (; CD). Use a conservative extension.

3.1.11 See GroundModelsSimpleExls (; CD).

3.1.14 Use iterated choose as in [410, Fig. 5.3] and shown on slide 21 in
ComponentModel (; CD).

3.2.3 See slide 7 of Backtracking (; CD).

3.2.4 See [105, Sect. 4].

3.2.6 Consider in corresponding segments of computation from a crash
(included) to the next crash (excluded) a) the (1, 1)-diagrams originating
from applications of homonymous rules, and b) the (0, 1)-diagrams originat-
ing from applications of Get in the implementation LateChoice where the
refined returnref takes the first alternative (read: decides to delete a message
from the queue without returning it). To reflect that the same messages get
lost you will have to assume that in the crash the choice function selectearly

chooses exactly those elements for deletion from the queue for which selectlate

chooses the first alternative of the refined returnref . For a prophecy variable
solution see [316, p. 8.14].

3.2.8 Simulate each step of the machine ShortestPath1 in state t , applied
to frontiert(ShortestPath1), by selecting successively all the elements of
frontiert(ShortestPath1).

3.2.11 See Stack (; CD).

3.2.12 Refine Writelog by logging also the before-image of the written
location (fetched from stable or cache memory), to be used in Undo. See
[260, Sect. 4.1].

3.2.13 Refine Fail to initialize an iterator thisRec for scanning all records in
stableLog for recovery. Refine Abort to first initialize the iterator thisRec and
then scanning all log records of the considered transaction. Refine Writelog

by linking the new log to the current transaction’s last log record. See [260,
Sect. 4.2].

3.2.14 See [260, Sect. 4.3].

3.3.2 Use an induction on the number of fetched jump or branch instructions.

3.3.3 See the KIV verification in [217, 407].

3.3.5 See [119, Sect. 5]. First eliminate the insertion of two empty instruc-
tions in Ppar , using a special decoding which permits us to detect jump or
branch instructions at the end of the IF-stage, and anticipating the compu-
tation of the new PC -value to the ID-stage. Then consider the possible cases
for data-dependent jump instructions and refine the rule macros accordingly.

10

3.3.6 Anticipate the load risk detection (and the stalling) to the ID-stage
instead of waiting until the EX -stage. See [279].

4.1.6 See the AsmGofer program in [390].

5.1.2 See [120].

5.1.3 Introduce an additional control state MovingToUnloadPos and use a
monitored function UnloadPosReached . See Exercise 5.1.1.

5.1.4 See [120].

5.1.5 See [120, 424, 207].

5.1.6 See [120].

5.1.8 See [120].

5.1.9 See [120].

5.2.2 See slide 20 in GateController (; CD).

5.2.3 See slide 28 in GateController (; CD).

5.2.4 See [253].

6.1.6 See [372, Fig. 32.1].

6.1.8 See [372, Fig. 32.2].

6.1.9 Use a pure data refinement, recording the initiator’s identity when
informing neighbors and letting the initiator wait for the echo to is own
initiative.

6.1.10 See [254].

6.2.1 See [125, p. 612].

6.3.1 Consider in particular the restriction to the case where except for the
initially empty sender and receiver interval [1, 0], the windows do not exceed
length 1.

6.3.3 For the first part use msgId = fileNum(m) mod 2×winsize and adapt
Match. For the second part see [283].

6.3.4 See [258] and the lecture slides Bakery (; CD).

11

6.3.5 Investigate applications of ReSend which could be in parallel with
applications of SlideWindow(sender).

6.3.6 See [283]

6.3.7 Use the broadcast reliability assumption.

6.3.8 Use the finiteness of PROCESSOR, the monotonicity of every Clock(p),
the positive heartbeat interval dh > du , the lower recovery bound dr >
dh + du , the new group timestamp increment dn > dc + du , and the upper
delivery bound dc .

6.3.11 Instead of sending a single copy of m to the entire group, make
InTransit binary to send one copy to each processor p, to be deleted by the
MsgCarrier(p) when put into InBox (p).

6.3.12 Modify Custodian(p) to delete messages with timestamp< Clock(p)
(if p is crashed) or with timestamp < StartUpTime(p) (if p is alive).

6.4.1 See [3, Fig. 3, p. 6].

6.4.2 See [114].

6.4.3 Consider a reader and a writer where for two reads overlapping with a
write, the first read gets the later write value and the second read the earlier
one.

6.4.4 Adapt the above proofs, using C0–C3, or see [3].

6.5.2 See [266, p. 26].

7.1.3 See StreamProcessingFsm.

7.1.5 See [177].

7.2.1 Let Σ be the signature with two nullary dynamic functions c and d
and a static unary function f . We consider the algorithm A given by the
following ASM update rule:

c := d

Let T = {c, d , f (c)}. By Lemma 7.2.3 we know that A satisfies the sequential-
time, the abstract-state and the uniformly-bounded-exploration postulate.
Let A and B be two states with base set {0, 1} and the following properties:

A |= c = 0 ∧ d = 1 ∧ f (0) = 0 ∧ f (1) = 0
B |= c = 0 ∧ d = 1 ∧ f (0) = 0 ∧ f (1) = 1

12

Since the states A and B differ only in the interpretation of f (1), they coincide
over T . In the successor states, where c = d = 1, we have τA(A) |= f (c) = 0
and τB (A) |= f (c) = 1. Hence, τA(A) and τA(B) do not coincide over T .
Note, that the set T is even closed under subterms.

8.1.1 To verify the validity of the properties D1–D9 in Table 8.2 and U1–
U9 in Table 8.3 one has to study the semantics of the predicates “upd” and
“def” in Table 8.1 as well as the inductive definition of the “yields” relation
in Table 2.2.

8.1.2 The validity of the substitution principle in Lemma 8.1.1 is shown
by induction on the length of the modal formula ϕ using the substitution
lemmas 2.4.6, 2.4.8 and 2.4.11.
The substitution principle is in general not true for non-static terms. Let f
be a dynamic function and A be a state in which f (0) is equal to 0. Let ϕ be
the formula [f (0) := 1](x = 0) and t be the non-static term f (0). Then we
have:

[[[f (0) := 1](f (0) = 0)]]Aζ = false
[[[f (0) := 1](x = 0)]]Aζ[x 7→0] = true

8.1.3 We show just one direction of Lemma 8.1.2. The converse direction is
proved in a similar way.
Assume that [[P ' Q]]Aζ = true.

That [[Con(P)]]Aζ = [[Con(Q)]]Aζ follows from the definition of the formula
P ' Q .
Assume that P yields a consistent update set U in A under ζ and Q yields a
consistent update set V . We have to show that A+U = A+V . Since Con(P)
and Con(Q) are true in A under ζ, the following two formulas are also true:∧∧

f dyn.

∀x , y (upd(P , f , x , y)→ (upd(Q , f , x , y) ∨ f (x) = y))

∧∧
f dyn.

∀x , y (upd(Q , f , x , y)→ (upd(P , f , x , y) ∨ f (x) = y))

Let a be a possible argument of f and b be the value of f (a) in state A + U .
We have to show that f (a) is equal to b also in A + V .
Case 1. The update ((f , a), b) is in U : Then upd(P , f , x , y) is true, if we assign
a to x and b to y . Hence, upd(Q , f , x , y) or f (x) = y is true, which means
that the update ((f , a), b) is in V or f (a) is equal to b in A. If ((f , a), b) is
in V , then f (a) is equal to b in A + V . Otherwise, f (a) is equal to b in A.
Suppose that there is an update ((f , a), c) in V with c 6= b. This would imply
that ((f , a), c) is also U and U would be inconsistent. Since, f (a) is equal
to v in A, it is also equal to v in A + V .

13

Case 2. There is no update for (f , a) in U and f (a) is equal to b in A: If there
is no update for (f , a) in V , then f (a) is equal to b in A + V . Otherwise,
there is an update ((f , a), c) in V . It follows that f (a) is equal to c in A.
Hence, b = c and we are done.

8.1.4 We have to show that the axioms of the logic are valid. The validity
of the restricted quantifier axioms 1 and 2 follows from Lemma 8.1.1.
The modal axiom 3 is valid, since the modal operators have a Kripke seman-
tics (see Table 8.1).
The necessitation rule 4 preserves validity.
Axiom 5 is valid, since if Con(R) is false, then either R is not defined or yields
an inconsistent update set.
Axiom 6 is valid, since we consider only deterministic ASMs that do not
contain choose. Assume that [R]ϕ is false in A under ζ. We want to show
that [R]¬ϕ is true in A under ζ. Assume that R yields a consistent update
set U in A under ζ. Suppose that ϕ is true in A + U under ζ. Then [R]ϕ
would be true in A under ζ which is not the case by assumption. Hence, ϕ
must be false in A + U under ζ.
The Barcan Axiom 7 is valid, since the base set of a state does not change
when a rule is fired. Assume that ∀x [R]ϕ is true in A under ζ and R yields
the consistent update set U in A under ζ. We want to show that ∀x ϕ is true
in A + U under ζ. Let a ∈ |A|. By the assumption it follows that [R]ϕ is
true in A under ζ[x 7→ a]. Since the variable x is not free in rule R, by the
Coincidence Lemma 2.4.10, R yields U in A under ζ[x 7→ a]. Hence, ϕ is true
in A + U under ζ[x 7→ a].
Axiom 8 is valid, since the truth value of a static, pure first-order formula ϕ
depends only on the interpretation of the static functions. Hence, if ϕ is true
in A under ζ, then ϕ is true in every possible sequel A + U .
For the same reason axiom 9 is valid. If a static, pure first-order formula ϕ
is true in a state A + U under ζ, then it is also true in A under ζ.
The validity of the axioms D1–D9 in Table 8.2 and U1–U9 in Table 8.3 has
to be shown in Exercise 8.1.1.
Axiom 12 is valid, since according to the definition of the semantics of the
predicate upd in Table 8.1, if upd(R, f , x , y) is true, then R yields an update
set and hence R is defined.
The validity of Axiom 13 can be seen as follows. Assume that upd(R, f , x , y)
is true in A under ζ. This means that R yields a consistent update set U
in A under ζ such that the update ((f , ζ(x)), ζ(y)) is in U . Hence, f (x) = y
is true in A + U under ζ.
For Axiom 14 assume that inv(R, f , x) and f (x) = y are true in A un-
der ζ. Assume that R yields the consistent update set U in A under ζ. Since
∀y ¬upd(R, f , x , y) is true in A, there is no update for the location (f , ζ(x))
in U and therefore f (x) = y is still true in A + U under ζ.

14

The validity of the extensionality axiom 15 follows from Lemma 8.1.2 and
Exercise 8.1.3.
The Axiom 16 is trivial, since skip yields the empty update set and A + ∅ is
the same as A.
For the validity of Axiom 17 we use Lemma 2.4.3. Assume that [P seq Q]ϕ
is true in A under ζ. Assume that P yields the consistent update set U in A
under ζ and Q yields the consistent update set V in A + U . Then, P seq Q
yields U ⊕ V in A under ζ and, since U ⊕ V is consistent, the formula ϕ is
true in A + (U ⊕V). By Lemma 2.4.3, the state A + (U ⊕V) is the same as
(A + U) + V and therefore [Q]ϕ is true in A + U and [P][Q]ϕ is true in A.
The converse implication of Axiom 17 is shown in a similar way.

8.1.5 Use axiom 5.

8.1.6 That the axiom 8 is derivable from the formulas 73 and 74 can be
derived by induction on the length of ϕ. We can assume that ϕ is built up
from equations s = t or negated equations s 6= t between static terms s and t
using ∧, ∨, ∀x and ∃x . In the case of ∀x one needs the Barcan Axiom 7.

8.1.7 We can derive Axiom 9 from the formula 75 by a case distinction on
ϕ ∨ ¬ϕ together with the Axiom 8.

8.1.8 The formulas 18–23 and 26 are derivable with the corresponding ax-
ioms in the tables 8.2 and 8.3
The equivalence 24 is derivable by a case distinction on Con(P) ∨ ¬Con(P)
in addition to the axioms 5, 9, D7 and U7.
The equivalence 25 is derivable by a case distinction on Con(P) ∨ ¬Con(P)
in addition to the axioms D8 and U8.

8.1.9 For the formula 27 of Lemma 8.1.4 assume Con(R) and [R]f (x) = y .
We make a case distinction on inv(R, f , x) ∨ ¬inv(R, f , x).
Case 1. inv(R, f , x): Let z with f (x) = z .
By Axiom 14, we obtain [R]f (x) = z .
Therefore, [R]y = z and, since Con(R), by Axiom 9, y = z .
Hence, inv(R, f , x) ∧ f (x) = y .
Case 2. ¬inv(R, f , x): Then ∃z upd(R, f , x , z). Let z with upd(R, f , x , z).
By Axiom 13, [R]f (x) = z and therefore [R]y = z .
Since Con(R), by Axiom 9, y = z .
Hence, upd(R, f , x , y).
The principle 28 can be derived with Axioms 6 and 9.
The implication ∃x [R]ϕ→ [R]∃x ϕ of the equivalence 29 can easily be derived
from ϕ→ ∃x ϕ via [R]ϕ→ [R]∃x ϕ.

15

For the converse implication [R]∃x ϕ→ ∃x [R]ϕ, assume [R]∃x ϕ.
If ¬Con(R), then we obtain [R]ϕ by Axiom 5 and therefore ∃x [R]ϕ.
Otherwise, we have Con(R). Suppose that ¬∃x [R]ϕ.
Then we can derive:

∀x¬[R]ϕ
∀x [R]¬ϕ (Axiom 6)
[R]∀x ¬ϕ (Axiom 7)

Together with the assumption [R]∃x ϕ we obtain [R]⊥.
Since we have Con(R), we can derive ⊥ using Axiom 9.
Hence, ∃x [R]ϕ.

8.1.10 The formulas 30, 32–35, 37 and 38 are derivable with the correspond-
ing axioms in the tables 8.2 and 8.3
The equivalence 31 is derivable with axioms D2 and U2.
The equivalence 36 is derivable with axioms 5 and 6 in addition to D7 and
U7 and the property 27.

8.1.11 The property 39 is derivable with axioms U2, 13 and the formulas 19
and 27.
The principle 40 is derivable with Axioms U2, 9, 14 and the formula 19.
By case distinction on Con(P par Q) ∨ ¬Con(P par Q) we can derive prin-
ciples 41 and 42 using axioms 5, 13 and 14 and formula 27.

8.1.12 Let A be a state with a = 0 and b = 0. Let ϕ be the formula

(a = 1 ∧ b = 0) ∨ (a = 0 ∧ b = 1).

Then, A |= [a := 1]ϕ ∧ [b := 1]ϕ, but A 6|= [a := 1 par b := 1]ϕ.

8.1.13 Lemma 8.1.7:
Formula 43 can be derived by a case distinction on ϕ ∨ ¬ϕ:
In case of ϕ we can derive if ϕ then P else Q

.' P .
In case of ¬ϕ we can derive if ϕ then P else Q

.' Q .
Then, formula 43 is derivable with the extensionality Axiom 15.
Formula 45 can be derived by a case distinction on

(def(P) ∧ ¬Con(P)) ∨ ¬(def(P) ∧ ¬Con(P)).

In the first case we can derive try P else Q
.' Q and in the second case

try P else Q
.' P .

Then we use the extensionality Axiom 15 and Axiom 5.

16

Formula 46 is derivable with the extensionality Axiom 15.
Lemma 8.1.8 derives with the definitions of

.' and '.
Lemma 8.1.9:
The principle 47 is derivable with axioms D1, D3, U1 and U3.
The formulas 48–50 can be derived with the Axioms D3 and U3.
The principles 51 and 52 are derivable with Axioms D3, D4, U3 and U4.
Lemma 8.1.10:
The property 54 is derivable with the Axioms 9 and 13.
The principle 55 can be derived with axioms 16 and 18
The property 56 is derivable with Axioms D7, U7, 5, 6 and 17 and the prop-
erties 24 and 8.1.4
The formula 57 can be derived with Axioms D4, D7, U4, U7 and 21 and
principle 43.
Lemma 8.1.11 can be derived with formulas 29 and 39.
Lemma 8.1.12:
By a case distinction on ϕi∨¬ϕi we can derive def(if ϕi then f (si) else skip)
for any i and so also def(R) .
Then, principles 58 and 59 follow with axioms D3, D4 and U2, U3, U4.
Like in the previous examples we can derive def(R).Then, 60 can be derived
with 59 and ¬∃yϕ→ ∀y¬ϕ.
Formula 61 can be derived from Lemma 8.1.11 using the following principle:

∧∧
i<j

¬(ϕi ∧ ϕj)→
(n∧∧

i=1

(ϕi → [f (si) := ti]ψ) ∧ (¬
n∨∨

i=1

ϕ→ ψ)↔ [R]ψ
)

Lemma 8.1.13:
Formula 62 is derivable with the definition of while ϕ do P and the formu-
las 18 and 21.
Formula 63 is derivable with the definition of while ϕ do P and formula 21.

8.1.14 Principle 76 is derivable with the axioms 8 and 13 and property 27.

8.1.15 Principle 77 can be derived by induction on the size of R with the
definition of

.'.

8.1.16 Property 78 can be derived with the definitions of Con(R) and con(R).
Formula 79 follows from Axiom 12.
By a case distinction on def(R) ∨ ¬def(R) we can derive property 80 using
formula 79.
The property 81 is derivable with Axiom 18.

17

The formula 82 is derivable with Axiom 19.
One direction of the implication 83 can be derived with principle 20 and
the other by a case distinction on def(P par Q) ∨ ¬def(P par Q) and the
property 79.
The principle 84 is derivable with Axiom U4.
The property 85 is derivable with Axiom U5.
One direction of the implication 86 can be derived with Axiom 23 and the
other by a case distinction on def(forall x with ϕ do P)∨¬def(forall x with
ϕ do P) and the property 79.
One direction of the implication 87 can be derived with Axiom U7 and the
other by a case distinction on def(P seq Q) ∨ ¬def(P seq Q) and the prop-
erty 79.
One direction of the implication 88 can be derived with Axiom 25 and the
other by a case distinction on

def(try P else Q) ∨ ¬def(try P else Q)

and the property 79.
The property 89 is derivable with Axiom U9.

8.1.17 We extend Table 2.2 by

yields(P ,A, ζ,U)
yields(try P catch T Q ,A, ζ,U)

if U � Loc(T) is consistent

yields(P ,A, ζ,U) yields(Q ,A, ζ,V)
yields(try P catch T Q ,A, ζ,V)

otherwise

It is convenient to define Con(R � T) as an abbreviation for

def(R) ∧
∧∧

f (t)∈T

∀y , z (upd(R, f , t , y) ∧ upd(R, f , t , z)→ y = z)

The following axioms have to be added to the logic:

1. def(try R catch T S)↔ (def(R) ∧ def(S)) ∨ Con(R � T)
2. upd(try R catch T S , f , x , y)↔

(Con(R � T)∧ upd(R, f , x , y))∨ (¬Con(R � T)∧ def(R)∧ upd(S , f , x , y))

The following property can then be derived:

Con(try R catch T S)↔ Con(R) ∨ (Con(S) ∧ def(R) ∧ ¬Con(R � T))

8.1.18 It is enough to proof the Axiom 17 for first-order ϕ, because in
Sect. 8.1.5 it is shown that in the case of hierarchical ASMs for any formula ϕ

18

there exists a first-order formula ϕ′ so that ϕ↔ ϕ′ is derivable (without using
Axioms 15, 16 and 17).
Axiom 17 for hierarchical ASMs is then derived by induction on the size of ϕ.
As in Sect. 8.1.5 we can assume that the formula ϕ is built up from equations
x = y and f (x) = y using boolean connectives and quantifiers. In case of an
equation x = y , Axioms 5, 6, 8 and 9 are used. In case of and equation
f (x) = y , Axioms 5, 6, 8, 13 and the formula 27 are used.

8.1.19 It is sufficient to derive the extensionality axiom 15 for first-order
formulas ϕ. In the case of an equation f (x) = y one can use one direction of
Exercise 8.1.14.

8.1.20 See the hint above.

