
Egon Börger and Robert Stärk

Abstract State Machines

A Method for High-Level System Design and Analysis

March 11, 2003

Springer-Verlag

Berlin Heidelberg NewYork
London Paris Tokyo
Hong Kong Barcelona
Budapest

Preface

Quelli che s’innamoran di pratica senza scienzia
sono come ’l nocchieri ch’entra in navilio sanza timone o bussola,

che mai ha certezza dove si vada.1

— Leonardo da Vinci

Ich habe oft bemerkt, dass wir uns durch allzuvieles Symbolisieren
die Sprache für die Wirklichkeit untüchtig machen.2

— Christian Morgenstern

This is the place to express our thanks. First of all we thank all those who
over the years have actively contributed to shaping the novel software design
and analysis method explained in this book. They are too numerous to be
mentioned here. They all appear in some way or the other on the following
pages, in particular in the bibliographical and historical Chap. 9 which can
be read independently of the book. We then thank those who have helped
with detailed critical comments on the draft chapters to shape the way our
arguments are presented in this book: M. Börger (Diron Münster), I. Craggs
(IBM Hursley), G. Del Castillo (Siemens München), U. Glässer (Simon Fraser
University, Vancouver, Canada), J. Huggins (Kettering University, Michigan,
USA), B. Koblinger (IBM Heidelberg), P. Päppinghaus (Siemens München),
A. Preller (Université de Montpellier, France), M.-L. Potet (INP de Greno-
ble, France), W. Reisig (Humboldt-Universität zu Berlin, Germany), H. Rust
(Universität Cottbus, Germany), G. Schellhorn (Universität Augsburg, Ger-
many), B. Thalheim (Universität Cottbus, Germany) and a dozen student
generations at Università di Pisa. We thank M. Barmet (ETH Zürich) for her
solutions of the exercises in Chap. 8. We also thank L. Logrippo (University
of Ottawa, Canada) and D. Beecher (Carleton University, Canada) for their
help with translating the above observation by Leonardo, and F. Capocci and
I. Mulvany from Springer-Verlag for their careful copyediting of the typo-
script.

Egon Börger, Robert Stärk
Pisa and Zürich, Christmas 2002

1 Those who fall in love with practice without scienti�c knowledge or method are
like the helmsman who enters a ship without rudder or compass, who is never
certain which way it might go.

2 I have often observed that by over-symbolizing we make the language ine�cient
to use in the real world.

Contents

1 Introduction . 1
1.1 Goals of the Book and Contours of its Method 3

1.1.1 Stepwise Refinable Abstract Operational Modeling . . . 3
1.1.2 Abstract Virtual Machine Notation 5
1.1.3 Practical Benefits . 6
1.1.4 Harness Pseudo-Code by Abstraction and Refinement . 8
1.1.5 Adding Abstraction and Rigor to UML Models 9

1.2 Synopsis of the Book . 10

2 ASM Design and Analysis Method . 13
2.1 Principles of Hierarchical System Design. 13

2.1.1 Ground Model Construction (Requirements Capture) . 16
2.1.2 Stepwise Refinement (Incremental Design) 20
2.1.3 Integration into Software Practice 26

2.2 Working Definition . 27
2.2.1 Basic ASMs . 28
2.2.2 Definition . 28
2.2.3 Classification of Locations and Updates 33
2.2.4 ASM Modules . 36
2.2.5 Illustration by Small Examples . 37
2.2.6 Control State ASMs . 44
2.2.7 Exercises . 53

2.3 Explanation by Example: Correct Lift Control 54
2.3.1 Exercises . 62

2.4 Detailed Definition (Math. Foundation) 63
2.4.1 Abstract States and Update Sets 63
2.4.2 Mathematical Logic . 67
2.4.3 Transition Rules and Runs of ASMs 71
2.4.4 The Reserve of ASMs . 76
2.4.5 Exercises . 82

2.5 Notational Conventions . 85

VIII Contents

3 Basic ASMs . 87
3.1 Requirements Capture by Ground Models 87

3.1.1 Fundamental Questions to be Asked 88
3.1.2 Illustration by Small Use Case Models 92
3.1.3 Exercises . 109

3.2 Incremental Design by Refinements . 110
3.2.1 Refinement Scheme and its Specializations 111
3.2.2 Two Refinement Verification Case Studies 117
3.2.3 Decomposing Refinement Verifications 133
3.2.4 Exercises . 134

3.3 Microprocessor Design Case Study . 137
3.3.1 Ground Model DLX

seq . 138
3.3.2 Parallel Model DLX

par Resolving Structural Hazards . 140
3.3.3 Verifying Resolution of Structural Hazards (DLX

par) . 143
3.3.4 Resolving Data Hazards (Refinement DLX

data) 148
3.3.5 Exercises . 156

4 Structured ASMs (Composition Techniques) 159
4.1 Turbo ASMs (seq, iterate, submachines, recursion) 160

4.1.1 Seq and Iterate (Structured Programming) 160
4.1.2 Submachines and Recursion (Encapsulation and Hiding)167
4.1.3 Analysis of Turbo ASM Steps . 174
4.1.4 Exercises . 178

4.2 Abstract State Processes (Interleaving) . 180

5 Synchronous Multi-Agent ASMs . 187
5.1 Robot Controller Case Study . 188

5.1.1 Production Cell Ground Model . 188
5.1.2 Refinement of the Production Cell Component ASMs . 193
5.1.3 Exercises . 196

5.2 Real-Time Controller (Railroad Crossing Case Study) 198
5.2.1 Real-Time Process Control Systems. 198
5.2.2 Railroad Crossing Case Study . 201
5.2.3 Exercises . 205

6 Asynchronous Multi-Agent ASMs . 207
6.1 Async ASMs: Definition and Network Examples 208

6.1.1 Mutual Exclusion . 210
6.1.2 Master–Slave Agreement . 212
6.1.3 Network Consensus . 214
6.1.4 Load Balance . 215
6.1.5 Leader Election and Shortest Path 216
6.1.6 Broadcast Acknowledgment (Echo) 218
6.1.7 Phase Synchronization . 220
6.1.8 Routing Layer Protocol for Mobile Ad Hoc Networks . 223

Contents IX

6.1.9 Exercises . 228
6.2 Embedded System Case Study . 229

6.2.1 Light Control Ground Model . 229
6.2.2 Signature (Agents and Their State) 231
6.2.3 User Interaction (Manual Control) 231
6.2.4 Automatic Control . 236
6.2.5 Failure and Service . 237
6.2.6 Component Structure . 239
6.2.7 Exercises . 240

6.3 Time–Constrained Async ASMs . 240
6.3.1 Kermit Case Study (Alternating Bit/Sliding Window) 241
6.3.2 Processor-Group-Membership Protocol Case Study . . . 252
6.3.3 Exercises . 259

6.4 Async ASMs with Durative Actions . 260
6.4.1 Protocol Verification using Atomic Actions 261
6.4.2 Refining Atomic to Durative Actions 268
6.4.3 Exercises . 271

6.5 Event–Driven ASMs . 271
6.5.1 UML Diagrams for Dynamics . 274
6.5.2 Exercises . 282

7 Universal Design and Computation Model 283
7.1 Integrating Computation and Specification Models 283

7.1.1 Classical Computation Models . 285
7.1.2 System Design Models . 293
7.1.3 Exercises . 300

7.2 Sequential ASM Thesis (A Proof from Postulates) 301
7.2.1 Gurevich’s Postulates for Sequential Algorithms 302
7.2.2 Bounded-Choice Non-Determinism 307
7.2.3 Critical Terms for ASMs . 307
7.2.4 Exercises . 311

8 Tool Support for ASMs . 313
8.1 Verification of ASMs . 313

8.1.1 Logic for ASMs . 314
8.1.2 Formalizing the Consistency of ASMs 315
8.1.3 Basic Axioms and Proof Rules of the Logic 317
8.1.4 Why Deterministic Transition Rules? 326
8.1.5 Completeness for Hierarchical ASMs 328
8.1.6 The Henkin Model Construction 330
8.1.7 An Extension with Explicit Step Information 334
8.1.8 Exercises . 336

8.2 Model Checking of ASMs . 338
8.3 Execution of ASMs . 340

X Contents

9 History and Survey of ASM Research . 343
9.1 The Idea of Sharpening Turing’s Thesis 344
9.2 Recognizing the Practical Relevance of ASMs 345
9.3 Testing the Practicability of ASMs . 349

9.3.1 Architecture Design and Virtual Machines 349
9.3.2 Protocols . 351
9.3.3 Why use ASMs for Hw/Sw Engineering? 352

9.4 Making ASMs Fit for their Industrial Deployment 354
9.4.1 Practical Case Studies . 354
9.4.2 Industrial Pilot Projects and Further Applications 356
9.4.3 Tool Integration . 362

9.5 Conclusion and Outlook . 365

References . 369

List of Problems . 431

List of Figures . 433

List of Tables . 435

Index . 437

1 Introduction

The method. This book introduces a systems engineering method which
guides the development of software and embedded hardware–software systems
seamlessly from requirements capture to their implementation. It helps the
designer to cope with the three stumbling-blocks of building modern software
based systems: size, complexity and trustworthiness. The method bridges the
gap between the human understanding and formulation of real-world prob-
lems and the deployment of their algorithmic solutions by code-executing ma-
chines on changing platforms. It covers within a single conceptual framework
both design and analysis, for procedural single-agent and for asynchronous
multiple-agent distributed systems. The means of analysis comprise as meth-
ods to support and justify the reliability of software both verification, by
reasoning techniques, and experimental validation, through simulation and
testing.

The method improves current industrial practice in two directions:

– On the one hand by accurate high-level modeling at the level of abstrac-
tion determined by the application domain. This raises the level of abstrac-
tion in requirements engineering and improves upon the loose character of
human-centric UML descriptions.

– On the other hand by linking the descriptions at the successive stages of the
system development cycle in an organic and effectively maintainable chain
of rigorous and coherent system models at stepwise refined abstraction
levels. This fills a widely felt gap in UML-based techniques.

Contrary to UML, the method has a simple scientific foundation, which adds
precision to the method’s practicality. Within the uniform conceptual frame-
work offered by the method one can consistently relate standard notions,
techniques and notations currently in use to express specific system features
or views, each focussed on a particular system aspect, such as its structure,
environment, time model, dynamics, deployment, etc. (see Sect. 7.1). Thereby
the method supports a rigorous integration of common design, analysis and
documentation techniques for model reuse (by instantiating or modifying the
abstractions), validation (by simulation and high-level testing), verification
(by human or machine-supported reasoning), implementation and mainte-
nance (by structured documentation). This improves upon the loose ties

2 1 Introduction

between different system design concepts as they are offered by the UML
framework.

Target audience. This book combines the features of a handbook and
of a textbook and thus is addressed to hardware–software system engi-
neers (architects, designers, program managers and implementers) and re-
searchers as well as to students. As a handbook it is conceived as a Mod-
eling Handbook for the Working Software Engineer who needs a practical
high-precision design instrument for his daily work, and as a Compendium
for Abstract State Machines (ASMs). As a textbook it supports both self-
study (providing numerous exercises) and teaching (coming with detailed
lecture slides in ppt and/or pdf format on the accompanying CD and website
http://www.di.unipi.it/AsmBook/). We expect the reader to have some
experience in design or programming of algorithms or systems and some ele-
mentary knowledge of basic notions of discrete mathematics, e.g. as taught in
introductory computer science courses. Although we have made an effort to
proceed from simple examples in the earlier chapters to more complex ones
in the later chapters, all chapters can be read independently of each other
and unless otherwise stated presuppose only an understanding of a rather
intuitive form of abstract pseudo-code, which is rigorously defined as ASM
in Sect. 2.2.2. We have written the text to enable readers who are more in-
terested in the modeling and less in the verification aspects to skip the proof
sections.1 The hurried reader may skip the numerous footnotes where we re-
fer to interesting side issues or to related arguments and approaches in the
literature.

There is another book through which the reader can learn the ASM
method explained in this book, namely [406], which contains the up-to-now
most comprehensive non-proprietary real-life ASM case study, covering in
every detail ground modeling, refinement, structuring, implementation, veri-
fication and validation of ASMs. The focus of that book however is an anal-
ysis of Java and its implementation on the Java Virtual Machine (including
a detailed definition and analysis of a compiler and a bytecode verifier), as
a consequence it uses only basic and turbo ASMs (see Sect. 2.2, 4.1). The
present book is an introduction to practical applications of the ASM method
via small or medium-size yet characteristic examples from various domains:
programming languages, architectures, embedded systems, components, pro-
tocols, business processes. It covers also real-time and asynchronous ASMs.
In addition it provides the historical and the theoretical background of the
method. We hope this book stimulates further technological and research de-
velopments, ranging from industrial applications to theoretical achievements.
1 Mentioning this possibility does not mean that we consider system veri�cation as

an optional. It reects the support the method presented in this book provides to
systematically separate different concerns within a well-defined single framework
so that one can ultimately tie the di�erent threads together to achieve a design
which via its analysis is certi�able as trusted (see Sect. 2.1).

http://www.di.unipi.it/AsmBook/

1.1 Goals of the Book and Contours of its Method 3

In various places we state some problems whose solution we expect to con-
tribute to the further advancement of the ASM method. They are collected
in a list at the end of the book.

In the rest of this introduction we state in more detail the practical and
theoretical goals of the book and survey its technical contents.

1.1 Goals of the Book and Contours of its Method

Through this book we want to introduce the reader into a hierarchical mod-
eling technique which

– makes accurate virtual machine models amenable to mathematical and
experimental analysis,

– links requirements capture to detailed design and coding,
– provides on the fly a documentation which can be used for inspection, reuse

and maintenance.

The open secret of the method is to use abstraction and stepwise refine-
ment, which often are erroneously understood as intrinsically “declarative”
or syntax-based concepts, on a semantical basis and to combine them with
the operational nature of machines. Such a combination (Sect. 1.1.1) can be
obtained by exploiting the notion of Abstract State Machines (Sect. 1.1.2) –
which gave the name to the method – and results in considerable practical
benefits for building trustworthy systems (Sect. 1.1.3). We also shortly de-
scribe here what is new in the ASM method with respect to the established
method of stepwise refining pseudo-code (Sect. 1.1.4) and what it adds to
UML based techniques (Sect. 1.1.5).

1.1.1 Stepwise Refinable Abstract Operational Modeling

The hardware and software system engineering method that this book intro-
duces is based upon semantical abstraction and structuring concepts which
resolve the tension deriving from the simultaneous need for heterogeneity,
to capture the richness and diversity of application domain concepts and
methods, and for unification, to guarantee a consistent seamless development
throughout. In fact it allows one to efficiently relate the two distant ends of
each complex system development effort, namely the initial problem descrip-
tion for humans and the code running on machines to solve the problem.
More precisely, using this method the system engineer can

– derive from the application-domain-governed understanding of a given
problem, gained through requirements analysis, a correct and complete
human-centric task formulation, called the ground model , which is the re-
sult of the requirements capture process, is expressed in application-domain

4 1 Introduction

terms, is easy to understand and to modify, and constitutes a binding con-
tract between the application domain expert (in short: the customer) and
the system designer,2

– refine the ground model by more detailed descriptions which result from
the relevant design decisions, taken on the way to the executable code
and documented by the intermediate models which typically constitute a
hierarchy of refined models,

– link the most detailed specification to generated code, to be run on various
platforms and implementing computers and to be shown to correctly solve
the problem as formulated in the ground model (the contract with the
customer).

The conceptual key for crossing these rather different and for complex
software systems numerous levels of abstraction is to maintain, all the way
from the ground model to the code, a uniform algorithmic view, based upon
an abstract notion of run, whether of agents reacting to events or of a vir-
tual machine executing sequences of abstract commands. Having to deal in
general with sets of “local actions” of multiple agents, an encompassing con-
cept of basic “actions” is defined as taking place in well-defined abstract
local states (which may depend on environmently determined items) and
producing well-defined next states (including updates of items in the envi-
ronment). We interpret simultaneous basic local actions as a generalized form
of Dijkstra’s guarded commands [185]: under explicitly stated conditions they
perform updates of finitely many “locations”, which play the role of abstract
containers for values from given domains of objects, considered at whatever
given level of abstraction. Those objects residing in locations, together with
the functions and relations defined on them, determine the abstract states
the computation is about.3 The simple and intuitive mathematical form we
adopt to represent this idea of transformations of abstract states for the sys-
tem engineering method explained in this book is the notion of Abstract State
Machines (ASM).4

2 This does not preclude evolution of the ground model during the development
process. Ground models need to be developed \for change", but at each de-
velopment stage one version of a well-de�ned ground model is maintained; see
below.

3 Object-oriented methods in general and UML in particular share this �rst-order
logic \view of the world" as made up of \things" (\abstractions that are �rst-
class citizens in a model" [69]) and their \relationships".

4 The idea of using \abstract" state transformations for speci�cation purposes is
not new. It underlies the event driven version of the B method [5, 6] with its char-
acteristic separation of individual assignments from their scheduling. It underlies
numerous state machine based speci�cation languages like the language of stat-
echarts [271] or Lampson’s SPEC [316], which besides parallelism (in the case of
SPEC including the use of quanti�ers in expressions) and non-determinism o�er
constructs for non-atomic (sequential or submachine) execution, see Chap. 4. It
underlies the wide-spectrum high-level design language COLD (see Sect. 7.1.2).
It also underlies rule-based programming, often characterized as repeated local-

1.1 Goals of the Book and Contours of its Method 5

1.1.2 Abstract Virtual Machine Notation

This book explains the three constituents of the ASM method : the notion of
ASM, the ground model technique and the refinement principle. The concept
of ASMs (read: pseudo-code or Virtual Machine programs working on ab-
stract data as defined in Sects. 2.2, 2.4) offers what for short we call freedom
of abstraction, namely the unconstrained possibility of expressing appropriate
abstractions directly, without any encoding detour, to

– build ground models satisfying the two parties involved in the system con-
tract, tailoring each model to the needs of the problem as determined by
the particular application, which may belong to any of a great variety of
conceptually different domains (see Sect. 2.1.1), and keeping the models
simple, small and flexible (easily adaptable to changing requirements),

– allow the designer to keep control of the design process by appropriate
refinement steps which are fine-tuned to the implementation ideas (see
Sect. 2.1.2).

Most importantly ASMs support the practitioner in exploiting their power
of abstraction in terms of an operational system view which faithfully reflects
the natural intuition of system behavior,5 at the desired level of detail and
with the necessary degree of exactitude. The underlying simple mathemati-
cal model of both synchronous and asynchronous computation allows one to
view a system as a set of cooperating idealized mathematical machines which
step by step – where the chosen level of abstraction determines the power of
a step – perform local transformations of abstract global states. Essentially
each single machine (driven by an agent, also called a thread) can be viewed
as executing pseudo-code on arbitrary data structures, coming with a clear
notion of state and state transition. This empowers the designer to work at
every level of development with an accurate yet transparent concept of sys-
tem runs for modeling the dynamic system behavior, whether the execution
is done mentally (for the sake of high-level analysis) or by real machines (for
the sake of high-level testing of scenarios). The availability of the concept of
a run at each level of abstraction provides the possibility of also modeling
non-functional features, like performance or reliability, or run time inspection
of metadata associated with components as offered by CORBA and COM.
Due to the mathematical nature of the concepts involved, established struc-
turing, validation and verification techniques can be applied to ASM models,
supporting architectural structuring principles and providing platform and

ized transformations of shared data objects (like terms, trees, graphs), where
the transformations are described by rules which separate the description of the
objects from the calculations performed on them and on whose execution various
constraints and strategies may be imposed.

5 See the observation in [399, Sect. 2.4] that even the knowledge base of experts
has an operational character and guarded command form: \in this situation do
that", which is also the form of the ASM transition rules de�ned in Sect. 2.2.2.

6 1 Introduction

programming language-independent executable models which are focussed
on the application-domain-relevant problem aspects and lend themselves to
reuse in a design-for-change context.

1.1.3 Practical Benefits

The need to improve current industrial software engineering practice is widely
felt. To mention only a few striking examples: too many software projects fail
and are canceled before completion or are not delivered on time or exceed
their budget,6 the energy spent on testing code is ever increasing and tends to
represent more than half of the entire development cost, the number of errors
found in complex software is often rather high, there is almost no software
warranty whatsoever, but again and again the world is surprised by Trojan
horses and security holes, etc.

The major benefit the ASM method offers to practitioners for their daily
work is that it provides a simple precise framework to communicate and
document design ideas and a support for an accurate and checkable overall
understanding of complex systems. Using a precise, process-oriented, intuitive
semantics for pseudo-code on arbitrary data structures, the developer can
bind together the appropriate levels of abstraction throughout the entire
design and analysis effort. This implies various concrete benefits we are going
to shortly mention now.

First of all the ASM method supports quality from the beginning using hi-
erarchical modeling, based on ground modeling and stepwise refinement cou-
pled to analysis. The method establishes a discipline of development which
allows structuring (into appropriate abstractions), verification and validation
to become criteria for good design and good documentation.7 By its concep-
tual simplicity and the ease of its use, the ASM method makes the quality of
the models depend only on the expertise in the application or design domain
and on the problem understanding, not on the ASM notation. This is the
reason why we expect to contribute with this book to making the method
become part of every development activity which aims at ensuring that the
produced model has the desired properties (e.g. to satisfy the needs of the
future users), instead of waiting until the end of the development process to
let another team (or the users) remove bugs in the code.8

6 Some �gures from the Standish Group 1998: 9% out of the 175 000 surveyed
software projects are delivered on time and under budget, 52% go over budget
by an average of 18%, 31% are canceled before completion.

7 A quote from the recommendations of the UK Defense Standard 00{54, 1999
(Requirements for Safety-Related Electronic Hardware in Defense Equipment):
\A formally-de�ned language which supports mathematically-based reasoning
and the proof of safety properties shall be used to specify a custom design." See
http://www.dstan.mod.uk/data/00/054/02000100.pdf.

8 We believe it to be mistaken to relegate the speci�cation and veri�cation work,
if done at all, to separate so-called \formal methods" teams. The work of such

http://www.dstan.mod.uk/data/00/054/02000100.pdf

1.1 Goals of the Book and Contours of its Method 7

The freedom ASMs offer to model arbitrarily complex objects and oper-
ations directly, abstracting away from inessential details (e.g. of encoding of
data or control structures), allows one to isolate the hard part of a system and
to turn it into a precise model which exposes the difficulties of the system but
is simple enough to be understood and satisfactorily analyzed by humans.

As a by-product such core models and their refinements yield valuable
system documentation: (a) for the customers, allowing them to check the
fulfillment of the software contract by following the justification of the de-
sign correctness, provided in the form of verified properties or of validated
behavior (testing for missing cases, for unexpected situations, for the inter-
action of to-be-developed components within a given environment, etc.), (b)
for the designers, allowing them to explore the design space by experiments
with alternative models and to record the design rationale and structure for
a checkable communication of design ideas to peers and for later reuse (when
the requirements are changed or extended, but the design diagrams on the
whiteboard are already erased or the developers are gone),9 (c) for the users,
allowing them to get a general understanding of what the system does, which
supports an effective system operator training and is sufficiently exact to pre-
vent as much as possible a faulty system use,10 and (d) for the maintainers,
allowing them to analyse faulty run-time behavior in the abstract model.

Despite the abstract character of ASM models, which characterizes them
as specifications, they can and have been refined to machine executable ver-
sions in various natural ways (see Sect. 8.3). Due to their abstract character
they support generic programming, hardware–software co-design as well as
portability of code between platforms and programming languages – the ma-
jor goal of the “model driven architecture” approach to software development.
ASM models are in particular compatible with cross-language interoperable
implementations as in .NET. Since they are tunable to the desired level of
abstraction, they support information hiding for the management of software
development and the formulation of well-defined interfaces for component–
based system development. The general refinement notion supports a method
of stepwise development with traceable links between different system views

teams may contribute to a better high-level understanding of the system under
development, but if the program managers and the implementers do not under-
stand the resulting formalizations, this does not solve the fundamental problem
of keeping the models at the di�erent abstraction levels in sync with the �nal
code { the only way to make sure the code does what the customer expects from
the agreed upon ground model. The ASM method is not a formal method in the
narrow understanding of the term, but supports any form of rigorous design jus-
ti�cation. This includes in particular mathematical proofs, which represent the
most successful justi�cation technique our civilization has developed for mental
constructions { the type of device to which models and programs belong. See
the footnote to the \language and communication problem" at the beginning of
Sect. 2.1.1.

9 In this way a design does not remain only in the head of its creator and can play
a role in later phases of the software life cycle.

8 1 Introduction

and levels. In particular this allows one to localize the appropriate design
level where changing requirements can be taken into account and where one
can check that the design change is not in conflict with other already realized
system features.

1.1.4 Harness Pseudo-Code by Abstraction and Refinement

As is well-known, pseudo-code and the abstraction-refinement pair are by no
means new in computer science, often they are even looked at with scepticism
– by theoreticians who complain about the lack of an accurate semantics for
pseudo-code, by practitioners who complain about the difficulty of under-
standing the mathematics behind formalisms like abstract data types, alge-
braic specifications, formal methods refinement schemes, etc. So what value
does the ASM method add to these omnipresent ideas and how does it avoid
the difficulty to apply them in practical software engineering tasks?

The ASM method makes the computational meaning of abstraction and
refinement available explicitly, in a mathematically precise but simple, easily
understandable and easily implementable pseudo-code-like setting, including
the crucial notion of runs. The formulation uses only standard mathemati-
cal and algorithmic terms, circumventing the unnecessary formalistic logico-
algebraic complications that practitioners so often rightly complain about, so
that the method comes as a set of familiar intuitive concepts which naturally
support the practitioners’ daily development work. To read and write ASMs
no knowledge of the underlying theory is needed, though it is the mathe-
matical underpinning which makes the method work. This is analogous to
the role of axiomatic set theory, which provides the precise setting in which
mathematicians work without knowing about the logical foundation.

Looking back into the history of computing reveals that the ingredients
of the concept of the Abstract State Machine were there for decades before
they appeared combined in the definition discovered in [248], triggered by a
purely foundational concern:11 (a) pseudo-code, (b) IBM’s concept of virtual
machines [305] and Dijkstra’s related concept of abstract machines [183] (both
born as operating system abstractions), and (c) Tarski structures as the most
general concept of abstract states [325, 265, 359, 210]. It is the mathemati-
cal character one can attach through the notion of ASM to the semantically
open-ended loose notions of pseudo-code and virtual machines which turns
these concepts into elements of a scientifically well-founded method; it is the
natural expression of fundamental intuitions of computing through ASMs and
the simplicity of their definition which make the ASM method comprehen-
sible for the practitioner and feasible for large-scale industrial applications.
10 An important example of an erroneous use of a system whose control is shared

by humans and computers, e.g. in modern aircrafts, is known as mode confusion.
See [322] and the notion of control state ASM in Sect. 2.2.6, which provides a
way to make the overall mode structure of a system transparent.

11 See Chap. 9 for details.

1.1 Goals of the Book and Contours of its Method 9

The ASM method does nothing else than putting the elementary definition
of local updates of abstract states together with Wirth’s original stepwise
refinement approach [429] and with the concept of ground model [71, 72, 76]
to link requirements capture to code generation in a coherent framework.
Historically speaking the ASM method “complete(s) the longstanding struc-
tural programming endeavour (see [164]) by lifting it from particular ma-
chine or programming notation to truly abstract programming on arbitrary
structures” [86, Sect. 3.1]. It also appears as a natural completion of the
evolution during the last century from programming to generic programming
and high-level platform-independent modeling: leading from programming-
any-which-way in the 1950s to programming-in-the-small in the 1960s to
programming-in-the-large in the 1970s to programming-in-the-world since
the 1990s12 where, due to the evergrowing hardware performance, security,
robustness and reusability play a larger role than time or space efficiency.

1.1.5 Adding Abstraction and Rigor to UML Models

UML exercises a strong attraction by the multitude it offers for radically
different interpretations of crucial semantical issues. On the tool side this is
reflected by the numerous “UML+. . .-systems”, e.g. UML+RUP, UML+XP,
UML+IBM Global Services Method, etc. However, this conceptual multitude
is not mediated (except for being simply declared to constitute so-called “se-
mantical variation points”), in addition it is represented by a limited graphi-
cal notation and prevents UML from supporting precise practical refinement
schemes (see Sect. 2.1.2, 3.2). Furthermore, the drive in UML to structure
models right from the beginning at the class level imposes a rather low level
of abstraction, typically close to procedural code, besides leading to the risk
of a conceptual explosion of the class hierarchy. It also makes it difficult to
model features which relate to multiple classes and which are often spread
in the class hierarchy (e.g. safety, security, logging), or to describe crosscut-
ting concerns relating to one feature at different class levels. Furthermore, it
has no clear semantical model of “atomic” versus “durative” actions and of
asynchronous computation of multiple threads.

The ASM method we explain in this book provides a means to han-
dle such architectural features in an accurate yet transparent way and at a
higher level of abstraction than UML, providing support for a truly human
centric yet precise algorithmic design and analysis, which is completely freed
from the shackles of programming language constructs and of specific typing
disciplines. For example, it provides a simple accurate semantics for stan-
dard diagram techniques (see the notion of control state ASMs in Sect. 2.2.6
and the ASM definition of UML activity diagrams in Sect. 6.5.1) and for use
cases and their refinements to rigorous behavioral models (see Chap. 3), it
12 The wording is taken from Garlan’s lectures on Software Architecture held at

the Lipari Summer School on Software Engineering, July 2002.

10 1 Introduction

supports component techniques (see Sect. 3.1.2 and [406]), it uniformly re-
lates sequential and asynchronous computations capturing the data exchange
of interacting objects (see Sect. 6), it provides a clear definition of “atomic”
and “composed” computation step (see Chap. 4), etc. To realize further de-
sign steps, high-level ASM models can be refined by object-oriented mappings
to classes, by introducing type disciplines where useful, by restricting runs
when needed to satisfy specific scheduling principles, etc.

1.2 Synopsis of the Book

This book was conceived to serve the double purpose of (a) a modeling hand-
book and textbook, teaching how to practically apply the ASM method for
industrial system design and analysis (including its management and its doc-
umentation), and of (b) an ASM compendium, providing the underlying the-
ory and a detailed account of ASM research. The domains of application
cover sequential systems (e.g. programming languages and their implemen-
tation), synchronous parallel systems (e.g. general and special-purpose ar-
chitectures), asynchronous distributed systems and real-time systems (net-
work and communication and database protocols, control systems, embedded
systems). This also determines the structure of the book, which leads from
the definition of basic single-agent ASMs in Chap. 2 with an illustration
of the principles of hierarchical system design by ground model construc-
tion and stepwise refinements in Chap. 3 to structured ASMs in Chap. 4,
synchronous multi-agent ASMs in Chap. 5, and asynchronous multi-agent
ASMs in Chap. 6. This is followed by Chap. 7 on the universality of ASMs,
Chap. 8 on ASM tool support (on computer-supported verification of ASMs
and on ASM execution and validation techniques). It concludes with Chap. 9,
which surveys the ASM research, together with its applications and industrial
exploitations, from its beginning to today and comes with an, as we hope,
complete annotated bibliography of ASM related papers from 1984–2002.

A detailed index (including also the major ASMs defined in this book) and
lists of figures and tables aid navigation through the text. The use of the book
for teaching is supported by numerous exercises, most of them coming with
solutions on the accompanying CD, and by pdf and powerpoint format slides
on the CD, covering most of the chapters or sections of the book. Additional
material (including lecture slides) and corrections are solicited and will be
made available on the ASM book web site at http://www.di.unipi.it/
AsmBook/. This includes the set of LATEX macros we have used to write the
ASMs in this book. They come with a tutorial explaining to the reader how
to write his own ASMs in a strikingly simple and elegant way using this set
of macros, which by its very nature can be extended and tailored to specific
needs.
Central themes of the chapters. In Chap. 2 we introduce the three con-
stituents of the ASM approach to system design and analysis: the concept of

http://www.di.unipi.it/AsmBook/
http://www.di.unipi.it/AsmBook/

1.2 Synopsis of the Book 11

abstract state machines, the ground model method for requirements capture,
and the refinement method for turning ground models by incremental steps
into executable code. The notion of basic ASMs is defined which captures
the fundamental concept of “pseudo-code over abstract data”, supporting its
intuitive understanding by a precise semantics defined in terms of abstract
state and state transition. Finite State Machines (FSMs) are extended by
control state ASMs.

In Chap. 3 we illustrate the ground model method for reliable requirements
capture (formulating six fundamental categories of guideline questions) and
the refinement method for crossing levels of abstraction to link the models
through well-documented incremental development steps. The examples are
control state ASMs for some simple devices (ATM, Password Change, Tele-
phone Exchange), a command-line debugger control model, a database recov-
ery algorithm, a shortest path algorithm and a proven-to-be-correct pipelined
microprocessor model. Sect. 3.2.3 presents Schellhorn’s scheme for modular-
izing and implementing ASM refinement correctness proofs.

In Chap. 4 some standard refinements for structuring ASMs are defined
and their applications illustrated. The building blocks of turbo ASMs are
sequential composition, iteration, parameterized (possibly recursive) subma-
chines; they permit us to integrate common syntactical forms of encapsulation
and state hiding, like the notion of a local state and a mechanism for returning
values and error handling. We characterize turbo ASM subcomputations as
SEQ/PAR-tree computations. Abstract State Processes realize the above con-
structs in a white-box view where interleaving permits us within a context of
parallel execution to also follow the single steps of a component computation.
As an illustration we provide succinct turbo ASMs for standard programming
constructs, including the celebrated Structured Programming Theorem and
forms of recursion which are common in functional programming.

In Chap. 5 multi-agent synchronous ASMs are defined which support
modularity for the design of large systems. They are illustrated by sync
ASMs for solving a typical industrial plant control problem (Production Cell)
and the Generalized Railroad Crossing problem (verified real-time gate con-
troller).

In Chap. 6 asynchronous multi-agent ASMs (async ASMs) are defined and
illustrated by modeling and analyzing characteristic distributed network al-
gorithms (for consensus, master–slave agreement, leader election, phase syn-
chronization, load balance, broadcast acknowledgement), a position-based
routing protocol for mobile ad hoc networks, a requirements capture case
study for a small embedded (Light Control) system, two time-constrained al-
gorithms which support fault tolerance for a distributed service (Kermit and
a Group Membership protocol), Lamport’s mutual exclusion algorithm Bak-
ery with atomic or with durative actions, and the event-driven UML activity
diagrams.

12 1 Introduction

In the foundational Chap. 7 we investigate the universality properties of
ASMs. We show that ASMs capture the principal models of computation
and specification in the literature, including the principal UML concepts. We
explain the ASM thesis, which extends Church’s and Turing’s thesis, and
prove its sequential version from a small number of postulates.

Chapter 8 is dedicated to tool support for ASMs. In Sect. 8.1 we deal
with techniques for mechanically verifying ASM properties, using theorem
proving systems or model checkers. We present a logic tailored for ASMs
and the transformation from ASMs to FSMs which is needed for model-
checking ASMs. In Sect. 8.3 we survey various methods and tools which have
been developed for executing ASMs for simulation and testing purposes. The
history of these developments is presented in Sect. 9.4.3, which is part of
Chap. 9, where we survey the rich ASM literature and the salient steps of
the development of the ASM method from the epistemological origins of the
notion of ASM.

2 ASM Design and Analysis Method

In this chapter1 we introduce the three constituents of the ASM method
for system design and analysis: the concept of abstract state machines, the
ground model method for requirements capture, and the refinement method for
turning ground models by incremental steps into executable code. We focus
on motivating and defining the fundamental notions underlying the ASM
approach; therefore the examples are tailored to illustrate the outstanding
single features of basic ASMs. In Chap. 3 both ground model construction
and ASM refinement are explained in more detail and these are illustrated by
less elementary examples of some interest in their own right. In Chap. 4, 5, 6
the basic ASMs are extended to structured ASMs, synchronous multi-agent
ASMs, and asynchronous multi-agent ASMs, and these are illustrated by
more involved case studies.

The notion of ASMs captures some fundamental operational concepts of
computing in a notation which is familiar from programming practice and
mathematical standards. In fact it is correct to view basic ASMs as “pseudo-
code over abstract data”, since their (simple) semantics supports this intu-
itive understanding by a precise notion of a tunable abstract state and state
transition, as expressed by the working definition in Sect. 2.2. This defini-
tion lays a rigorous foundation for using ASMs as ground models and for
stepwise refinement (Sect. 2.1). We use the popular LIFT example to illus-
trate the particularly important subclass of control state ASMs, which add
to the mode-control mechanism of finite state machines (FSMs), synchronous
parallelism and the manipulation of data structures (Sect. 2.3). In the last
two sections we provide a more detailed formal definition of basic ASMs and
survey our notation.

2.1 Principles of Hierarchical System Design

The ASM method which is explained in this book is a systems engineering
technique which supports the integration of problem-domain-oriented mod-
eling and analysis into the development cycle. Its goal is to improve indus-
trial system development by accurate high-level modeling which is linked
1 For lecture slides see AsmMethod (; CD), RefinemtMeth (; CD), Falko (; CD),
AsmDefinition (; CD).

14 2 ASM Design and Analysis Method

seamlessly, in a way the practitioner can verify and validate, to executable
code. Two conceptually and technically different tasks of system development,
known as requirements capture (or elicitation) and system design proper,
have to be brought together in a coherent way by such a hierarchical ap-
proach to system design, as we are going to shortly describe here and to
explain in more detail in the two subsections below. When we speak about
systems, we mean both hardware and software systems, given that by its
machine and programming-language-independent nature the ASM method
works for descriptions of both hardware and software systems and in fact
supports hardware/software co-design techniques.

The ASM method offers a uniform conceptual framework to fulfill these
two tasks: the modeling of their algorithmic content as distinct from (though
relatable to) the description of technological, managerial, financial and simi-
lar so-called non-functional system features. In fact the requirements can be
captured by constructing ground model ASMs, in which non-functional fea-
tures can be formulated as constraints or assumptions. Ground model ASMs
are system “blueprints” whose role is to “ground designs in the reality”. They
represent succinct process-oriented models of the to-be-implemented piece of
“real world”, transparent for both the customer and the software designer
so that they can serve as the basis for the software contract , a document
which binds the two parties involved. Ground models come with a sufficiently
precise yet abstract, unambiguous meaning to carry out an implementation-
independent, application-oriented requirements analysis (i.e. both verification
and validation) prior to coding. In particular, the requirements validation one
can perform on ground model ASMs allows one to explore the problem space
and the viability of different solutions before embarking on any particular
one; it also enhances the traditional test activities by starting test reasoning
and test executions right at the beginning of the project. In fact the opera-
tional character of ground model ASMs allows one to define the system test
plan, and to already perform tests for (prototypical executable versions of)
the ground model, using it as a playground for simulation experiments with
and debugging of the design long before its expensive coding begins. Start-
ing from such ground model ASMs, a hierarchy of intermediate models can
be constructed by stepwise refining ASMs, leading to efficiently executable
code, where each step can be justified (i.e. verified and validated) as the cor-
rect implementation of some explicitly stated design decision. In this way not
only can a ground model be linked to its implementation via traceable re-
quirements, but also a documentation of the entire design is provided which
supports design reuse and code maintenance, namely through reflecting or-
thogonal design decisions in intermediate models, a fundamental feature for
a method which supports design-for-change.

The key strategy for developing such a hierarchy of models is an exam-
ple of the so-called divide-and-conquer technique, consisting of a systematic
separation of different concerns with the ultimate goal of bringing the differ-

2.1 Principles of Hierarchical System Design 15

ent threads together in the appropriate place. Major concerns to be separated
include orthogonal design decisions, as well as design and analysis, as follows.

– Separating orthogonal design decisions. From the system engineering point
of view, this principle supports the wisdom of separating system design
from its implementation and is motivated mainly by two reasons. One
is to keep the design space open as much as possible, to explore differ-
ent possible software structures, avoiding premature design decisions, in-
cluding whether a component should be realized in software or in hard-
ware. The other reason is to structure the design space, defining precise
interfaces for a system decomposition (called system architecture) which
supports “specifying-for-change” and explicit documentation of design de-
cisions, thus enhancing practical software management and maintenance
procedures. From the analysis point of view, adherence to this principle
provides the means to split the overall validation and verification tasks
into manageable subtasks for orthogonal system components. In particular
it opens the way to unit tests and to the use of mathematical verification
techniques which are based upon reasoning from assumptions.

– Separating design from analysis. This principle is twofold, namely first to
separate experimental validation, which is based upon simulations and pro-
vides the possibility to reason from the results of laboratory test execu-
tions and to detect incomplete and erroneous specifications at the stage
of requirements capture, from mathematical verification of the blueprint
(ground model), and second to separate the characteristic concerns for dis-
tinct levels of verification. The verification layers to be distinguished come
with established degrees of to-be-provided detail,2 whether by reasoning
for human inspection (mathematical design justification) or by using rule-
based reasoning systems (mechanical design justification). Such systems
can come as inference calculi operated by humans or as computerized sys-
tems, either interactive systems or automatic tools, where within the latter
one has to distinguish model checkers and theorem provers. Each verifica-
tion or validation technique comes with its characteristic implications for
the degree of detail needed for the underlying specification and for the cost
of the verification effort.

This systematic separation of design and analysis concerns distinguishes
the ASM method from most other approaches in the literature, which instead
establish a priori determined intimate links between, on the one hand, the lan-
guage structures offered for modeling and, on the other hand, corresponding
validation and verification techniques, with the well-known resulting advan-
2 An inherent di�culty of system design is to decide upon how much detail and

consequently degree of formality is appropriate for the intended system level. As
more details are given, it becomes more di�cult to understand and formulate
the checkable correctness conditions. On the other hand, omitting details often
hides a misunderstanding of some relevant system feature.

16 2 ASM Design and Analysis Method

tages and disadvantages. Arguably, the most general3 abstraction mechanism
associated with the concept of ASMs allows one to work with a general design
language and to commit to a connection to specific platforms or language fea-
tures or to particular analysis tools (simulators, provers, etc.) only where this
provides a benefit.4 The technical support for the needed crossing of abstrac-
tion levels is the ASM refinement method, whose flexibility and applicability
to complex systems meets that of the ASM abstraction method. It enables
the designer to adopt for the validation of his ASM models any appropriate
simulation technique, whether mental simulation or testing of scenarios or
computer execution, etc. Similarly, for verifying model properties any appro-
priate method can be chosen, whether mathematical proof or model checking
or mechanically supported automatic or interactive theorem proving. Because
this is a book, for the analysis of the ASMs in this text we will use mental
model simulation and mathematical verification. In Chap. 8.1, 8.3 we present
the various execution and validation mechanisms which have been built for
ASMs and the links of ASMs to model checkers and to theorem provers.5

Before defining basic ASMs, in the next two sections we characterize in
more detail how the ASM method supports hierarchical system design by
ground model construction and stepwise refinement of models.

2.1.1 Ground Model Construction (Requirements Capture)

In this section we characterize in general terms how building ground model
ASMs helps to solve three major problems of requirements capture. For a
concrete illustration of the ASM ground model method see the Daemon Game
example in Fig. 2.13, the LIFT example in Sect. 2.3, further introductory
examples in Sect. 3.1 and more advanced examples in Chap. 3–6.

Elicitation of requirements is a notoriously difficult and most error prone
part of the system development activities. In [287] it is reported that soft-
ware developers in the information technology, production and service sec-
tors consistently ranked requirements specification and managing customer
requirements as the most important problem they faced, and that more than
half of the respondents rated it as a major problem. Requirements capture
is largely a formalization task, namely to realize the transition from natural-
language problem descriptions – which are often incomplete or interspersed
with misleading details, partly ambiguous or even inconsistent – to a suffi-
ciently precise, unambiguous, consistent, complete and minimal description,
3 See the discussion in Chap. 7.
4 In fact the ASM method o�ers a speci�cation language which �ts the needs

of the so-called \model driven architecture" approach to platform-independent
software development (http://www.omg.org/mda/). The goal there is to separate
abstract and model-driven descriptions of the functionality of components or
software systems from their later mapping to multiple speci�c target platforms,
operating systems, programming languages or middleware techniques.

5 Their applications are also surveyed in Chap. 9, which can be read independently
of the other chapters.

http://www.omg.org/mda/

2.1 Principles of Hierarchical System Design 17

which can serve as a basis for the contract between the customer or domain
expert and the software designer. We use the term ground model for such an
accurate description resulting from the requirements elicitation (and possible
extensions which may be recognized as necessary during later design phases).
The formalization task requires the solution of three problems which relate
to the support that ground models provide for software quality assurance
through model inspection, verification and testing.

The first one is a language and communication problem, implied by the
needed mediation between the application domain, where the task originates
which is to be accomplished by the system to be built, and the world of
mathematical (often inappropriately called formal6) models, where the rel-
evant piece of reality has to be represented. The language in which the
ground model is formulated must be appropriate in order to naturally yet
accurately express the relevant features of the given application domain and
to be easily understandable by the two parties involved in establishing the
software contract,7 i.e. the application domain expert (the contractor) and
the system designer. This means in particular that it must be possible to
calibrate the degree of formality of the language to the given problem do-
main, so as to support the concentration on domain issues instead of issues
of formal notation. For example, the language should be tunable to naturally
express data-oriented applications (as does for example the entity relation-
ship model), but also to naturally express function-oriented applications (as
do flow diagrams) and control-oriented applications (as do automata, whether
sequential or distributed). Therefore, the modeling language has to provide
a general (conceptual and application-oriented) data model together with a
function model (for defining the system dynamics by rule-executing agents)
and an appropriate interface to the environment (the users or neighboring
systems or applications).

The second formalization problem is a verification-method problem which
stems from the fact that there are no mathematical means to prove the cor-
rectness of the passage from an informal to a precise description. Never-
theless, means must be provided to establish that the precise requirements
6 The use of the term formal in this context is misleading. Standard mathemat-

ical rigor which supports content-oriented precise intuitive reasoning has to be
distinguished from the degree of precision of methods which are based upon for-
malizations in the syntax of some �xed logic and characterized by rule-based
mechanical or mechanizable reasoning schemes. The ASM method is not a \for-
mal method" in this restricted understanding of the term, although it supports
mathematical veri�cation.

7 This notion of ground model as software contract is more general than the one
known from Ei�el [333], which is formulated in terms of pre/postconditions for
executable (in fact Ei�el) code. Ground models are speci�cations. Their raison
d’être precedes that of the �nal code, to which they may be linked not directly,
but through a hierarchy of stepwise-re�ned models which bridges the gap between
the abstraction levels of the ground models { the software contract { and the
code.

18 2 ASM Design and Analysis Method

model is complete and consistent, that it reflects the original intentions and
that these are correctly conveyed – together with the necessary underlying
application-domain knowledge – to the designer. Therefore, an inspection
of ground models by the application-domain expert must be possible,8 but
also forms of reasoning must be available to support the designer in formally
checking the completeness and internal consistency of the model, as well as
the consistency of different system views. These two complementary forms
of ground model verification are crucial for a realistic requirements-capture
method, since changes to be made in the final code, either to repair erro-
neous design decisions, or to add missing ones, due to a wrong or incomplete
specification which is discovered only during the coding phase, are known to
be difficult to handle and to result in prohibitive costs. A way to solve this
problem is to use a language like the broad-spectrum algorithmic language of
ASMs, which allows one to tailor the ground model to resemble the structure
of the real-world problem, to make its correctness checkable by inspection
and its completeness analyzable with respect to the problem to be solved.

The third problem is a validation problem. It must be possible to simulate
the ground model for running relevant scenarios (use cases; see Sect. 3.1.2),
which often are part of the requirements, and to define – prior to coding –
a precise system-acceptance test plan. The operational character of ground
model ASMs supports defining in abstract run-time terms the expected sys-
tem effect on samples – the so-called oracle definition which can be used
for static testing, where the code is inspected and compared to the speci-
fication, but also for dynamic testing where the execution results are com-
pared. Furthermore, ASM ground models can be used to guide the user in the
application-domain-driven selection of test cases, exhibiting in the specifica-
tion the relevant environment parts and the properties to be checked, showing
how to derive test cases from use cases. Last but not least, by appropriately
refining the oracle, one can also specify and implement a comparator by de-
termining for runs of the ground model and the code what are the states
of interest to be related (spied), the locations of interest to be watched, and
when their comparison is considered successful (the test equivalence relation).
These features for specifying a comparator using the knowledge about how
the oracle is refined reflect the ingredients of the general notion of ASM re-
finements described in the next section.9 Concerning simulations of ground
models, they are possible due to the executability of ASMs (by mental sim-
ulation or using the tools discussed in Section 8.3). This allows one to use a
8 Providing a precise ground against which questions can be formulated, ground

models support the rather Socratic method of asking \ignorant questions" [48]
to check whether the semantic interpretation of the informal problem description
is correctly captured by the mapping to the terms in the formal model.

9 The idea expressed in [87] to relate, for testing purposes, runs of ASMs to those
of the implementing code has been successfully exploited in [31] for dynamic
testing, by monitoring simultaneously the execution of components and of their
speci�cations.

2.1 Principles of Hierarchical System Design 19

ground model ASM seamlessly in two roles: (1) as an accurate requirements
specification (to be matched by the application-domain expert against the
given requirements) and (2) as a test model (to be matched by the tester
against executions of the final code), thus realizing one of the suggestions of
Extreme Programming.10

Although by the pragmatic nature of the concept there is no general
mathematical definition of the notion of ground models, they appear to be
characterized by the following intrinsic properties. They have to be

– precise at the appropriate level of detailing yet flexible, to satisfy the re-
quired accuracy and to be easily modifiable or extendable for reuse and to
be adaptable to different application domains,

– simple and concise to be understandable by both domain experts and
system designers and to be manageable for an analysis of model consis-
tency, completeness and minimality. To permit a reliable analysis of such
non-formalizable properties, given that they relate real-world features with
model elements, the simplicity of ground models requires that they avoid
as much as possible any extraneous encoding and through their abstrac-
tions “directly” reflect the structure of the real-world problem. It is for a
good reason that object-oriented design approaches share this fundamental
pragmatic concern,11

– abstract (minimal) yet complete. This notion of completeness cannot have
a mathematical definition, but it has a meaning, namely that every seman-
tically relevant feature is present, that all contract benefits and obligations
are mentioned and that there are no hidden clauses (including those related
to general laws, standards, regulations and current practice). In particu-
lar, a ground model must contain as interface all semantically relevant
parameters concerning the interaction with the environment, and where
appropriate also the basic architectural system structure. The complete-
ness property of ground model ASMs forces the requirements engineer to
produce a model which is “closed” modulo some “holes”, which are however
explicitly delineated, including a statement of the assumptions made for
them at the abstract level and to be realized through the detailed specifica-

10 The idea of executable speci�cations is not new. It has been heatedly discussed
in the literature; a good source is [204]. So-called \controlled" subsets of natural
languages proposed for software speci�cations tend to map into logic languages
and thus inherit their limitations; see, for example, the subset of English intro-
duced in [205], which is mapped to Prolog and so not surprisingly essentially
restricted to writing functional requirements speci�cations. In contrast, the lan-
guage of ASMs is as general as a scienti�c discourse of an algorithmic nature
does allow.

11 For example, S. McConnell writes in Code Complete (Microsoft Press, Redmond
1993): \The Object-Oriented paradigm is based upon the proposition that the
more closely a program’s structure resembles the real-world problem it is to
solve, the better the program will be." ASMs allow one to write such programs
in an application-oriented abstract form which is mappable to any platform or
programming language.

20 2 ASM Design and Analysis Method

tion left for later refinements.12 Minimality means that the model abstracts
from details that are relevant either only for the further design or only for
a portion of the application domain which does not influence the system
to be built,

– validatable and thus possibly falsifiable by experiment. A useful prerequi-
site is the largely operational character of ground models, which supports
the process-oriented understanding and the mental or machine simulation.
As a consequence, executable versions of ground models can also serve as
prototypes,

– equipped with a precise semantical foundation as a prerequisite for analysis
and as a basis for reliable tool development and prototyping.

One of the goals of this book is to explain how one can exploit ASMs
as a class of models serving as satisfactory ground models for requirements
capture. We want the reader to learn how to use the abstraction mechanism
inherent in ASMs for tailoring system specifications to the characteristic con-
ceptual frame of the underlying application-domain problem and to the de-
sired level of detail, or, stating it the other way round, to the intended level of
looseness, which represents the freedom the implementor is offered to exploit
the design space. One can learn the skill to overcome by satisfactory ground
models the tension between the simultaneous request for abstraction and for
accuracy. The needed validation of ground model ASMs is supported by the
operational character of abstract machines and by their precise semantical
foundation, which provide a natural basis for making ASMs executable in
various ways (see Section 8.3). Not only is there no inherent contradiction
in being both operational and abstract, contrary to a widely held belief,13

but the possibilities that the concept of ASMs offers to combine these two
properties in a single model is one of the reasons for the success of numerous
ground model ASMs. Important examples are ground model ASMs devel-
oped to define standards, e.g. the ASMs defining the ISO standard for PRO-
LOG [131], the IEEE standard for VHDL’93 [111], and the ITU standard
for SDL’2000 [292]. Consult Chap. 9 for many other real-life ground model
ASMs.

2.1.2 Stepwise Refinement (Incremental Design)

In this section we characterize in general terms the second building block of
the ASM system design and analysis method, namely stepwise refinement. For
a concrete illustration of the ASM refinement method see the introductory
examples in Sect. 3.2 and more advanced examples in Chap. 3–6.
12 See [320] for methods to check a set of criteria which identify missing (as well as

incorrect or ambiguous) requirements and have been related to process-control
systems by the Requirements State Machine model, an instance of MealyAsms

de�ned on p. 287.
13 See the discussion of logico-algebraic design approaches at the end of Sect. 7.1.2.

2.1 Principles of Hierarchical System Design 21

The idea of using various forms of refinement for incremental system de-
sign is long established and in fact characterizes the structured programming
approach [429, 184]. One of the established guiding principles of refinement
notions in the literature is expressed as follows:

Principle of substitutivity: it is acceptable to replace one program
by another, provided it is impossible for a user of the programs to
observe that the substitution has taken place. [176, p. 47]

Many refinement concepts in the literature are tailored to match this a
priori epistemological principle, and as a result are restricted in various ways
which limit their range of applicability. Among the restrictions of this sort
are the following ones:

– Restriction to certain forms of programs, e.g. viewed as sequences of opera-
tions (straight-line programs). As a consequence, the refined programs are
even structurally equivalent to their abstract counterpart, i.e. with cor-
responding operations occurring in the same places, thus precluding the
analysis of the role of other forms of control for refinement, e.g. parallelism
or iteration.

– Restriction to programs with only monolithic state operations, expressed by
global functions of the state without the possibility of modifying elements
of the state. This makes it difficult to exploit combinations of local effects
for overall refinements and leads to the well-known frame problem, which
typically makes formal specifications of programs more difficult to write
and to read than the programs that they describe.

– Restriction to observations interpreted as pairs of input/output sequences
or of pre-post-states, typically with the same input/output representa-
tion at the abstract and the refined level. This focus on the functional
input/output behavior of terminating runs or on the pre-post-states of
data-refined operations is implied by the declarative dictate to “forget the
state” with its “internal” actions, so that what remains from computa-
tions are “traces” (sequences of labels for external actions) and refinement
becomes a subset relation of traces. This precludes us from relating arbi-
trary segments of abstract and refined computations, using an equivalence
notion for state elements (locations) which is fine-tuned to the problem
under investigation (think about an interface whose natural description
involves some state-related items). As a consequence, the invariants to
be compared of the abstract and refined programs are viewed in terms of
pre- or post-condition strengthenings or weakenings, which restricts a more
general analysis of the effect of invariants as a retrenchment of the class
of possible models. The fact that often no change of input/output repre-
sentation is permitted also precludes the possibility of refining “abstract
input”, e.g. in the form of monitored data, by “controlled data” which are
computed through concrete computation steps (see Sect. 2.2.3).

22 2 ASM Design and Analysis Method

– Restriction to logic or proof-rule-oriented refinement schemes [5, 167]. Tai-
loring refinement schemes to fit a priori fixed proof principles quickly leads
to severe restrictions of the design space.14

Another restriction that many (but not all) approaches to refinement
come with and which makes applications difficult is to allow only abstraction
functions instead of relations.

In contrast, the ASM refinement method offers an open framework
which integrates numerous well-known more specific notions of refinement
(see [24, 334, 337, 25, 167, 176]), similarly to the way the notion of ASMs
covers other models of computation and approaches to system design (see
Sect. 7.1). The guiding principle of the refinement method is its problem-
orientation. In fact its development during the last decade15 was driven by
practical refinement tasks and geared to support divide-and-conquer tech-
niques for both design and verification, without privileging one to the detri-
ment of the other. The “freedom of abstraction” offered by ASMs, i.e. the
availability in ASMs of arbitrary structures to reflect the underlying notion
of state, provides the necessary instrument to fine tune the mapping of a
given (the “abstract”) machine to a more concrete (the “refined”) one, with
its observable (typically more detailed) state and its observable (typically
more involved) computation, in such a way that the intended “equivalence”
between corresponding run segments of the two ASMs becomes observable
(can be explicitly defined and proved to hold under precisely stated boundary
conditions). The focus is not on generic notions of refinements which can be
proved to work in every context and to provide only effects which can never be
detected by any user of the new program. Instead the concern is to support a
disciplined use of refinements which correctly reflect and explicitly document
an intended design decision, adding more details to a more abstract design
description, e.g. for making an abstract program executable, for improving a
program by additional features or by restricting it through precise boundary
conditions which exclude certain undesired behaviors. There is no a priori
commitment to particular notions of state, program, run, equivalence, or to
any particular method to establish the correctness of the refinement step.
The major and usually difficult task is to first listen to the subject, to find
the right granularity and to formulate an appropriate refinement – or ab-
straction in the case of a re-engineering project – that faithfully reflects the
14 An illustrative example is the restrictive use of assignments in CSP where two

processes P ,Q can be put in parallel P || Q only if the write variables of P are
disjoint from the variables of Q , see [281, p. 188]. A related restriction applies
to the multiple substitution operator in the B method, e.g. parallel substitutions
in a B machine need to modify disjoint variables (but may share variables for
reading). For another example from the B method see Exercise 7.1.6. Similarly,
when the temporal-logic-based live sequence charts of [165] are extended by as-
signments [270] to make them more appropriate to real-life scenario descriptions,
a restriction to local variables is imposed.

15 See Chap. 9 for a detailed survey.

2.1 Principles of Hierarchical System Design 23

underlying design decision or re-engineering idea, and only then to look for
appropriate means to justify that under the precisely stated conditions the
refinement correctly implements the given model, or that the re-engineered
abstract model correctly abstracts from the given code. Whatever feasible
method is available can – indeed should – be adopted, whether for verification
(by reasoning) or for validation (e.g. testing model-based run-time assertions
through a simulation), to establish that the intended design assumptions hold
in the implementation and that refined runs correctly translate the effect of
abstract ones.

As result of this openness of the ASM refinement method to any con-
crete refinement scheme and to a variety of analysis tools, ASM refinements
on the one side can capture the various more restricted refinement notions
studied in the literature and on the other side scale to industrial-size sys-
tems. In fact they support the splitting of a complex design task into simpler,
piecemeal-verifiable and validatable steps, which are linked together into a hi-
erarchy and as a result contribute to effective procedures for maintenance and
reuse of system developments. In particular, for system design, ASM refine-
ments permit us to explicitly capture orthogonalities by modular machines
(components),16 supporting the well-known software engineering principles
of “design-for-change” and “design-for-reuse”,17 also by enhancing the very
communication and exchange of designs. For system verification, ASM refine-
ments support divide-and-conquer and proof reuse18 techniques which are
more widely applicable than so-called compositional, mostly syntax-oriented,
proof methods in the literature. Above all they can be used by practitioners
without the need of extensive special training. In fact to

(0) show that an implementation S∗ satisfies a desired property P∗

the ASM method allows the designer to

(1) build an abstract model S ,
(2) prove a possibly abstract form P of the property in question to hold

under appropriate assumptions for S ,
16 For a real-life example, which we cannot show in this book, see [406], where ASM

components have been used to construct a hierarchically decomposed model for
Java and its implementation on the Java Virtual Machine. Horizontal re�nements
de�ne piecemeal natural extensions of the language, from imperative to object-
oriented, exception handling and concurrency features; vertical stepwise detailing
of models decomposes the JVM into its loader, veri�er, preparator, interpreter
components, and transforms in a proven-to-be-correct way the Java model to its
JVM implementation.

17 Complex examples are to be found in the numerous extensions and adaptations
of ASM models discussed in Sect. 9.2.

18 An industrial-strength example is the reuse of the Prolog-to-WAM (Warren
Abstract Machine) compilation correctness proof [132] for the compilation of
CLP(R)-programs to CLAM (Constraint Logic Arithmetical Machine) code [133]
and of Protos-L programs to PAM (Protos Abstract Machine) code [42, 41], two
machines developed at IBM. See details in Sect. 9.2.

24 2 ASM Design and Analysis Method

Fig. 2.1 The ASM refinement scheme

σ1 · · · σn︸ ︷︷ ︸
n steps of M ∗

-State S∗ S∗′

6

?

≡
6

?

≡

-State S S ′

m steps of M︷ ︸︸ ︷
τ1 · · · τm

With an equivalence notion ≡ between data in
locations of interest in corresponding states.

(3) show S to be correctly refined by S∗ and the assumptions to hold in S∗.

The practice of system design shows that the overall task (0), which for
real-life systems is usually too complex to be tackled at a single blow, can
be accomplished by splitting it into a series of manageable subtasks (1)–(3),
each step reflecting a part of the design. Last but not least, through the
analysis reports the ASM refinements provide for system users a reliable sys-
tem documentation, which can be put to further use for system maintenance
(exploiting the accurate and precise detailed information in the refinement
documentation), e.g. to examine the model for fault analysis or to recog-
nize which parts of the code are affected to correct bugs which have been
reported.19 One can exploit such an improved system documentation also to
support practical reuse techniques (exploiting orthogonalities and hierarchi-
cal layers, including the reuse of proof techniques, e.g. for versioning). In this
sense the ASM refinement method pushes Wirth’s [429] and Dijkstra’s [184]
refinement program to its most general consequences.

Without entering into technical details, which are explained in Sect. 3.2,
we illustrate here the scheme for an ASM refinement step, which generalizes
the more restricted refinement notions in the literature. The scheme can also
19 For an illustration of this maintenance feature see the use of ASMs in the in-

dustrial re-engineering project reported in [121]. The report is available also as
a powerpoint slide show in Falko (; CD).

2.1 Principles of Hierarchical System Design 25

be viewed as describing an abstraction step if it is used for a high-level model
of an implementation, as happens in re-engineering projects.20

Figure 2.1, which enriches the traditional commutative refinement dia-
grams, shows that to refine an ASM M to an ASM M ∗, one has the freedom
(and the task) to define the following items:

– the notion of a refined state,
– the notion of states of interest and of correspondence between M -states S

and M ∗-states S∗ of interest, i.e. the pairs of states in the runs one wants
to relate through the refinement, including usually the correspondence of
initial and (if there are any) of final states,

– the notion of abstract computation segments τ1, . . . , τm , where each τi rep-
resents a single M -step, and of corresponding refined computation segments
σ1, . . . , σn , of single M ∗-steps σj , which in given runs lead from correspond-
ing states of interest to (usually the next) corresponding states of interest
(the resulting diagrams will be called (m,n)-diagrams and the refinements
(m,n)-refinements),

– the notion of locations of interest and of corresponding locations, i.e. pairs
of (possibly sets of) locations one wants to relate in corresponding states,
where locations represent abstract containers for data (see the definition
of ASM locations below),

– the notion the of equivalence ≡ of the data in the locations of interest; these
local data equivalences usually accumulate to the notion of the equivalence
of corresponding states of interest.

The scheme shows that an ASM refinement allows one to combine in a
natural way a change of the signature (through the definition of the cor-
respondence of states, of corresponding locations and of the equivalence of
data) with a change of the control (defining the “flow of operations” appear-
ing in the corresponding computation segments). These are two features that
many notions of refinement in the literature can deal with at most separately.
Notably the scheme includes the case of optimizations where in the optimized
model the computation segments may be shorter than their corresponding ab-
stract counterpart, due to an (m, 0)-refinement with m > 0, or where some
abstract state locations may have been eliminated.21 It also includes the sym-
metric case where the implementation may have longer run segments than the
specification, due to (0,n)-refinements with n > 0 discussed in Sect. 3.2.22

20 See [26] for an illustration by an industrial case study, which is available also as
a powerpoint slide show in Debugger (; CD).

21 This covers the extension of the traditional trace-based notion of abstraction
function to abstraction relations, or equivalently adding to the re�ned model so-
called history variables to keep track of the abstract state locations which have
been optimized away.

22 This covers the extension of the traditional trace-based notion of abstractions
of type (1, 1) by so-called prophecy variables. For an illustrative example see the
machine EarlyChoice and its implementation LateChoice on p. 116.

26 2 ASM Design and Analysis Method

Fig. 2.2 Models and methods in the development process

TEST
CASES

domains
transition system

stepwise
refinement
reflecting
design

dynamic functions
external functions

decisions

manual

mechanized

PROVER

adding assumptionsadding definitions

SIMULATOR

using data from
application domain

Verification

Application Domain Knowledge

Ground Model

Informal Requirements

Code

Validation

+

Furthermore, the scheme covers the refinement involved in the specification
of comparators used in testing code against abstract models, as explained
on p. 18. Once the notions of corresponding states and of their equivalence
have been determined, one can define that M ∗ is a correct refinement of M
if and only if every (infinite) refined run simulates an (infinite) abstract run
with equivalent corresponding states (see Sect. 3.2 for a precise definition).
By this definition, refinement correctness implies for the special case of ter-
minating deterministic runs the equivalence of the input/output behavior of
the abstract and the refined machine, a special feature on which numerous
refinement notions in the literature are focussed.

To make the relation between functions in corresponding states easy to
see, we often use in the two ASMs the same names for the corresponding
functions. When there seems to be a danger of misunderstanding, we index
them by the name of the ASM they belong to.

2.1.3 Integration into Software Practice

We summarize the discussion in this section by two diagrams which illus-
trate the role a smooth combination of stepwise refinements of ground model
ASMs with established design and analysis techniques can play for consider-
able improvements in the various phases of the software development cycle.
Figure 2.2 pictorially summarizes the different verification and validation
techniques which can be applied to ASM models in the design hierarchy
leading from a ground model to executable code. A practical combination of
these different techniques requires a transparent conceptual continuity of the

2.2 Working De�nition 27

Fig. 2.3 Integrating ASMs into the V-scheme

at each level
verification
validation and

(ground model/doc)
customer feedback

Compiled Executable Code
CODING UNIT TEST

(test of functions)

Module Test Plan
(against specification of
module functionality)

MODULE TEST

(against specification&
test plan for ground model)

SYSTEM TEST

MAINTENANCE

Module Architechture
SOFTWARE DESIGN

Acceptance Test Plan
Ground Model (Sw Arch)
SYSTEM ANALYSIS

REQUIREMENTS CAPTURE

kind ASMs offer from the ground model through the intermediate levels to
the implementation.

Figure 2.3 presents the levels in the well-known V-scheme, where ASMs
can be integrated in a uniform way, so that the ground model can be kept in
agreement with the ASMs describing the further refinements of the system
by modules and units. Established testing procedures can be enhanced in
this way by performing them for (executable versions of) the refined ASMs
at each level, side by side with the other development activities mentioned
in the V-model, namely requirements capture, analysis, design, and coding.
Formally verified development of components may make unit testing spurious,
as has been reported for the Meteor project [37] based upon the use of the B
method.

2.2 Working Definition

In this section we define basic ASMs in a form which justifies their intu-
itive understanding as pseudo-code over abstract data. We define the ASM
function classification, which incorporates a powerful semantical abstraction,
modularization and information-hiding mechanism, and can be used besides
the usual purely syntactical module notation. We illustrate the two definitions
by simple examples in Sect. 2.2.5. We then define the particularly important
subclass of control state ASMs which represent a normal form of UML activity
diagrams and naturally extend finite state machines by synchronous paral-
lelism and by the possibility to also manipulate data. In Sect. 2.3 we illustrate

28 2 ASM Design and Analysis Method

the definitions, as well as the ASM ground model and analysis method, by
the celebrated LIFT example. Section 2.4 provides a more detailed recursive
definition of the syntax and the semantics of basic ASMs.

In this section we use two fundamental concepts of computation theory
and logic, namely of the transition system and of the interpretation of pred-
icate logic terms and formulae. They are explained in standard textbooks
(e.g. see [70]) and are reviewed in Sect. 2.4.

2.2.1 Basic ASMs

Historically the notion of ASMs moved from a definition which formalizes
simultaneous parallel actions of a single agent to a generalization where mul-
tiple agents act and interact in an asynchronous manner.23 Also, some ex-
tensions by particular though for applications rather useful features were
introduced, dealing with forms of non-determinism (“choice” or existential
quantification) and of unrestricted synchronous parallelism (universal quan-
tification “forall”). The search for postulates from which to prove the ASM
thesis (see Sect. 7.2) led to a distinction between so-called sequential ASMs
(with only fixed amount of computation power per step and only bounded
synchronous parallelism),24 and synchronous parallel and distributed ASMs.
Instead of such a classification in terms of the underlying logic, we follow
practical system design criteria, where for a specification the distinctive fea-
tures are whether the system to be described has one or more agents. In the
former case the question is how the agent interacts with its environment,
in the latter case whether the multiple agents act in a synchronous or in
an asynchronous manner, and furthermore whether they are distributed or
not. We also consider the orthogonal classification whether (and how) the
programs executed by the agents are structured, giving rise to submachine
concepts.

This leads us to define in this chapter basic ASMs as single-agent ma-
chines which may dispose of potentially unrestricted non-determinism and
parallelism (appearing in the form of the “choose” and “forall” rules de-
fined below) and to distinguish a version with flat programs from structured
versions (Chap. 4). This class of single-agent ASMs is then extended to syn-
chronous (Chap. 5) and to asynchronous (Chap. 6) multi-agent ASMs.

2.2.2 Definition

Basic ASMs are finite sets of so-called transition rules of the form

if Condition then Updates
23 See Chap. 9 for the historical details.
24 This class of machines is intimately related to the class of quanti�er-free inter-

pretations in logic, as observed in [54, Sect. 2].

2.2 Working De�nition 29

which transform abstract states. (Two more forms are introduced below.) The
Condition (also called guard) under which a rule is applied is an arbitrary
predicate logic formula without free variables, whose interpretation evaluates
to true or false. Updates is a finite set of assignments of the form

f (t1, . . . , tn) := t

whose execution is to be understood as changing (or defining, if there was
none) in parallel the value of the occurring functions f at the indicated argu-
ments to the indicated value. More precisely, in the given state (see below)
first all parameters ti , t are evaluated to their values, say vi , v , then the value
of f (v1, . . . , vn) is updated to v , which represents the value of f (v1, . . . , vn)
in the next state. Such pairs of a function name f , which is fixed by the
signature, and an optional argument (v1, . . . , vn), which is formed by a list of
dynamic parameter values vi of whatever type, are called locations. They rep-
resent the abstract ASM concept of basic object containers (memory units),
which abstracts from particular memory addressing and object referencing
mechanisms.25 Location-value pairs (loc, v) are called updates and represent
the basic units of state change.

This abstract understanding of memory and memory update allows the
designer to combine the operational nature of the concepts of location and
update with the freedom of tailoring them to the level of abstraction which is
appropriate for the given design or analysis task, namely when defining the
machine state. The notion of ASM states is the classical notion of mathemat-
ical structures where data come as abstract objects, i.e. as elements of sets
(also called domains or universes, one for each category of data) which are
equipped with basic operations (partial functions in the mathematical sense)
and predicates (attributes or relations). The instantiation of a relation or
function to an object o can be described by the process of parameterization
of, say, f to the function o.f , which to each x assigns the value f (o, x).26 For
the evaluation of terms and formulae in an ASM state, the standard inter-
pretation of function symbols by the corresponding functions in that state is
used. Without loss of generality we usually treat predicates as characteristic
functions and constants as 0-ary functions. Partial functions are turned into
total functions by interpreting f (x) = undef with a fixed special value undef
as f (x) being undefined. The reader who is not familiar with this notion
of structure may view a state as a “database of functions” (read: a set of
function tables) instead of predicates.
25 One may imagine functions as represented by tables. Then a location is a table

entry and an update describes an update of the value residing in the table entry.
In fact ASMs provide a precise and simple foundation for the di�erent forms of
Parnas tables; see Sect. 7.1. A particular form of such a table notation for a class
of basic ASMs is reported in [149] to have been introduced successfully into an
industrial software process. See also the graphical notation on p. 31.

26 This simple logical framework covers the object-oriented understanding of the
states of an object as (paraphrasing G. Booch) \encompassing all of the prop-

30 2 ASM Design and Analysis Method

The notion of the ASM run is an instance of the classical notion of the
computation of transition systems. An ASM computation step in a given state
consists in executing simultaneously all updates of all transition rules whose
guard is true in the state, if these updates are consistent, in which case the
result of their execution yields the next state.27 In the case of inconsistency
the computation does not yield a next state, a situation which typically is
reported by executing engines with an error message. A set of updates is
called consistent if it contains no pair of updates with the same location,
i.e. no two elements (loc, v), (loc, v ′) with v 6= v ′. An ASM step resembles
a database transaction; it is performed as an atomic action with no side
effects.28

In general, ASMs are reactive systems which iterate their computation
step, but for the special case of terminating runs one can choose among
various natural termination criteria, namely that no rule is applicable any
more (see Definition 2.4.22) or that the machine yields an empty update
set (see Definition 4.1.2), or that the state does not change any more (the
criterion apparently adopted by AsmL [201]).

When analyzing runs S0,S1, . . . of an ASM, we call Sn the n-th state or
state n and denote the value of a term t in S = Sn by tS or tn . By the
interval (Sn ,Sm) we denote the states between Sn and Sm . We say that Sn

is before Sm (and write Sn < Sm) if n < m.
Simultaneous execution provides a rather useful instrument for high-level

design to locally describe a global state change, namely as obtained in one step
through executing a set of updates. The only limitation – imposed by the need
of uniquely identifying objects residing in locations – is the consistency of the
set of updates to be executed. The local description of global state change also
implies that by definition the next state differs from the previous state only
at locations which appear in the update set. This avoids the rightly criticized
length increase of numerous forms of specifications which have to express as
the effect of an operation not only what is changed but also what remains
unchanged (the so-called frame problem of specification approaches, which
work with a global notion of state or with purely axiomatic descriptions).29

Simultaneous execution also provides a convenient way to abstract from
sequentiality where it is irrelevant for an intended design. This synchronous
parallelism in the ASM execution model directly supports refinements to par-
allel or distributed implementations. It is enhanced by the following notation
to express the simultaneous execution of a rule R for each x satisfying a given
condition ϕ (where typically x will have some free occurrences in R which
are bound by the quantifier):

erties of the object plus the current values of each of these properties", formally
represented by a set of locations for each property.

27 More precisely, it yields the next internal state, see below Sect. 2.2.3.
28 It is characteristic of the ASM method to abstract away every e�ect one considers

as irrelevant, so that all the visible e�ects are principal ones.
29 For some examples see Sect. 7.1.

2.2 Working De�nition 31

forall x with ϕ
R

Similarly, non-determinism as a convenient way to abstract from details of
scheduling of rule executions can be expressed by rules of the form

choose x with ϕ
R

where ϕ is a Boolean-valued expression and R is a rule. The meaning of
such an ASM rule is to execute rule R with an arbitrary x chosen among
those satisfying the selection property ϕ. If there exists no such x , nothing
is done.30 For rules of such forms we sometimes use graphical notations as
follows:

forall x with ϕ
R

choose x with ϕ
R

or a linear notation (with an additional keyword do to ease the parsing)

forall x with ϕ do R choose x with ϕ do R

or R1 par . . . par Rn for an ASM consisting of the set {R1, . . . ,Rn} of
rules Ri . This is why we consider a set of rules and the par-composition of
all these rules as the same machine. We freely use common abbreviations
and standard variations of notations where convenient and without risk of
misunderstanding. For example we often express the range of the quantifiers
by usual set notation or by a mixture of set and property notation, where X
stands for a set:

choose x ∈ X with ϕ
R

Similarly, we freely use combinations of where, let, if-then-else, etc. which
are easily reducible to the above basic definitions. Instead of let x = s in
(let y = t in R) we also use the shorthand let {x = s, y = t} in R and the
same with a successive vertical displacement of x = s, y = t . Sometimes we
also use the table-like case notation with pattern matching, in which case
we try out the cases in the order of writing, from top to bottom. We also use
rule schemes, namely rules with variables, and named parameterized rules,
mainly as an abbreviational device to enhance the readability or as macro
allowing us to reuse machines and to display a global machine structure. For
example

if . . . a = (x , y) . . . then . . . x . . . y . . .

abbreviates
30 In [379] the application of choose to empty sets is forbidden for the sake of some

algebraic properties of the operator.

32 2 ASM Design and Analysis Method

if . . . ispair(a) . . . then . . . fst(a) . . . snd(a) . . .

sparing us the need to write explicitly the recognizers and the selectors. Sim-
ilarly, an occurrence of

r(x1, . . . , xn)

where a rule is expected stands for the corresponding rule R (which is sup-
posed to be defined somewhere else, with r(x1, . . . , xn) = R appearing in the
declaration part (see below) of the ASM where r(x1, . . . , xn) is used). Such
a “rule call” r(x1, . . . , xn) is used only when the parameters are instantiated
by legal values (objects, functions, rules, whatever) so that the resulting rule
has a well-defined semantical meaning on the basis of the explanations given
above.31 The use of submachines and of macros supports the modularization
and stepwise refinement of large machines.

For purposes of separation of concerns it is often convenient to impose
for a given ASM additional constraints on its runs to circumscribe those
one wants to consider as legal. Logically speaking this means restricting the
class of models satisfying the given specification (read: the design space).
Such restrictions are particularly useful if the constraints express reasoning
assumptions for a high-level machine which are easily shown to hold in a
refined target machine. The constraint mechanism (which frequently is used
also to impose desired properties on the functions appearing in the signature
of the machine) allows the designer to smoothly combine in the specification
so-called declarative and axiomatic features with operational ones without
having to pay the price for the above-mentioned frame problem. As part of
the run constraints a set of final states may be defined, although usually we
rely upon the standard notion of termination that a state is final for M if
none of the rules of M can be fired.

In summary, to define an ASM M one has to indicate its signature, the
set of declarations of functions and rules (including the function classification
explained in Sect. 2.2.3 and constraints on signature and runs, thus deter-
mining the class of possible states of the machine), the set of its initial states,
and the (unique) main rule which is often identified with the machine M .
Often we only indicate the rules with the understanding that the signature
is defined by what appears in the rules. For the use of a module notation to
structure declarations into manageable groups see Sect. 2.2.4.

ASMs as defined here circumscribe non-determinism to appear through
choose-rules (or external or shared functions; see below). The definitions of
non-deterministic machines in the literature, including the early definition
of ASMs in [245], allow the “user” of a machine to choose among rules to
be applied, hiding an implicit top-level choose-construct ranging on a set of
rules (see the investigation in Sect. 4.2). An ASM as defined here and in [248]
fires in every state all of its rules; every rule of the machine produces a (pos-
sibly empty) update set, the union of all of which (if consistent) determines
31 For a precise semantical de�nition of such submachine calls see Sect. 4.1.2.

2.2 Working De�nition 33

the resulting next state, uniquely modulo the non-determinism which is cir-
cumscribed by the occurrences of choose-rules (and by the values that the
monitored and shared functions described in the next section happen to have
in the given state).

The preceding definitions are completed in the following section by the
classification of the functions which may occur in ASM rules and are then
illustrated by simple examples in Sect. 2.2.5. The reader interested in a math-
ematically detailed recursive definition of the syntax and semantics of ASM
rules may consult Sect. 2.4.

Problem 1 (Abstract performance evaluation models). Exploit the
abstract notion of ASM runs to formulate interesting performance evaluation
models at different levels of performance analysis and to relate these levels
in a methodologically fruitful way.

2.2.3 Classification of Locations and Updates

A priori no restriction is imposed either on the abstraction level or on the
complexity or on the means of definition of the functions used to compute
the arguments and the new value denoted by ti , t in function updates. In
support of the principles of separation of concerns, information hiding, data
abstraction, modularization and stepwise refinement, the ASM method ex-
ploits, however, the following distinctions reflecting the different roles these
functions (and more generally locations) can assume in a given machine, as
illustrated by Fig. 2.4. For a purely syntactical splitting of large ASMs into
manageable modules see Sect. 2.2.4

Fig. 2.4 Classification of ASM functions, relations, locations

controlled out

derived

(monitored)
in

(interaction)

static

shared

dynamic

basic

function/relation/location

34 2 ASM Design and Analysis Method

The major distinction for a given ASM M is between its static functions
– which never change during any run of M so that their values for given
arguments do not depend on the states of M – and dynamic ones, which
may change as a consequence of updates by M or by the environment (read:
by some other – say an unknown – agent representing the context in which
M computes), so that their values for given arguments may depend on the
states of M . By definition static functions can be thought of as given by the
initial state, so that, where appropriate, handling them can be clearly sepa-
rated from the description of the system dynamics. Whether the meaning of
these functions is determined by a mere signature (“interface”) description,
or by axiomatic constraints, or by an abstract specification, or by an ex-
plicit or recursive definition, or by a program module, depends on the degree
of information-hiding the specifier wants to realize. Static 0-ary functions
represent constants, whereas with dynamic 0-ary functions one can model
variables of programming (not to be confused with logical variables). Dy-
namic functions can be thought of as a generalization of array variables or
hash tables.

The dynamic functions are further divided into four subclasses. Controlled
functions (for M) are dynamic functions which are directly updatable by and
only by the rules of M , i.e. functions f which appear in at least one rule of M
as the leftmost function (namely in an update f (s) := t for some s, t) and
are not updatable by the environment (or more generally by another agent
in the case of a multi-agent machine). These functions are the ones which
constitute the internally controlled part of the dynamic state of M .

Monitored functions, also called in functions, are dynamic functions which
are read but not updated by M and directly updatable only by the environ-
ment (or more generally by other agents). They appear in updates of M , but
not as the leftmost function of an update. These monitored functions consti-
tute the externally controlled part of the dynamic state of M . To describe
combinations of internal and external control of functions, one can use inter-
action functions, also called shared functions, defined as dynamic functions
which are directly updatable by the rules of M and by the environment and
can be read by both (so that typically a protocol is needed to guarantee con-
sistency of updates). The concepts of monitored and shared functions allow
one to separate in a specification the computation concerns from the commu-
nication concerns. In fact, the definition does not commit to any particular
mechanism (e.g. message passing via channels) to describe the exchange of
information between an agent and its environment (and similarly between ar-
bitrary agents in the case of a multi-agent machine). As with static functions
the specification of monitored functions is open to any appropriate method.
This feature helps the system designer to control the amount of information
which he wants to give to the programmer. The only (but crucial) assump-
tion made is that in a given state the values of all monitored functions are
determined.

2.2 Working De�nition 35

Out functions are dynamic functions which are updated but not read
by M and are monitored (read but not updated) by the environment or in
general by other agents. Formally, such output functions do appear in some
rules of M , but only as the leftmost function of an assignment.32

We call functions external for M if for M they are either static or moni-
tored.

An orthogonal, pragmatically important classification comes through the
distinction of basic and of derived functions. Basic functions are functions
which are taken for granted (declared as “given”, typically those forming
the basic signature); derived functions are functions which even if dynamic
are not updatable either by M or by the environment, but may be read by
both and yield values which are defined by a fixed scheme in terms of other
(static or dynamic) functions (and as a consequence may sometimes not be
counted as part of the basic signature). Thus derived functions are a kind
of auxiliary function coming with a specification or computation mechanism
which is given separately from the main machine; they may be thought of as
a global method with read-only variables.

The classification principle explained above for functions is applied in the
same way to (sets of) locations or updates.

A frequently encountered kind of function are choice functions, used in
particular to abstract from details of static or dynamic scheduling strategies.
Rules of the form

choose x ∈ X do R(x)

can be interpreted as an abbreviation for R(select(X)) where select is a se-
lection function which applied to states with non-empty X yields an element
of X .33

A widely used special notation is

let x = new(X) in R

which is intended to provide a completely fresh (i.e. previously not used)
element and to put it into X . We use it also in the simultaneous form

let x1, . . . , xn = new(X) in R
32 Whereas in [245, 248] the output was disregarded, for the foundational analysis

in [61] of the interaction between multi-agent parallel synchronous computa-
tional systems the output is introduced via a mechanism of sending information
between agents, separated from updating by special \rules" Output(t) (which
collect the values of terms t in the current state into an output multiset). We
prefer to keep the simpler basic framework where the output functions are par-
ticular controlled functions; their values may well be multisets should one need
to keep track of multiple instances of the same output value, issued by one agent
in one basic computation step or simultaneously by di�erent agents.

33 There is a price to pay in terms of the underlying logic when moving the non-
determinism from selection functions into choose-rules; see Sect. 8.1.1.

36 2 ASM Design and Analysis Method

with the understanding that pairwise different fresh elements are provided.
The new elements come from a set Reserve whose role is to provide new ele-
ments whenever needed. Usually it is supposed to be infinite and to be part
of the state, but without any structure. Nevertheless, when specifying ASMs
we use freshly imported elements without further definition as arguments of
standard operations, such as operations over sets, lists, trees, etc., abstract-
ing from the definitions of such derived functions.34 For a detailed technical
justification and discussion of choice functions and of the new construct see
Sect. 2.4.

Via the classification of locations, machine states are divided into an in-
ternal part, consisting of all the controlled and the internally updated shared
locations with their values, and an external part, consisting of all the ex-
ternal and the externally updated shared locations with their values. Cor-
respondingly we sharpen the definition of the ASM run given in Sect. 2.2.2
by stipulating that the set of updates an ASM M yields when applied in
state S is a set of internal updates of M which determines the next internal
state S ′, with unchanged values of the external and non-updated shared lo-
cations of M . The next state in which M may be applied is defined as the
state resulting from S ′ by a set of external updates and possibly updates
of some shared locations of M , as provided by the environment changes of
monitored and shared locations of S .35 When there are no updates made
by the environment or when no confusion is to be expected, we identify the
next internal state with the next state (formally one may consider this as as-
suming that the external updates provided by the environment are executed
simultaneously with the updates computed by the machine).

2.2.4 ASM Modules

In this section we outline a standard module concept to syntactically struc-
ture large ASMs. The module interface for the communication with other
modules is described by import and export clauses. The import clause speci-
fies the names which are imported from other modules, and the export clause
lists the names which can be imported by other modules. Obviously the tran-
sitive closure of the import clauses is not allowed to be cyclic. Every module
is allowed to use only identifiers which are defined in the module or imported
from other modules.
34 From the logical point of view this means assuming on the set Reserve some

\external" structure to be given without further de�nition, such as powersets,
cartesian products etc. together with their standard operations involving reserve
elements. For a formalization of such a background structure for the Reserve set
and an analysis of its foundational implications for the concept of choice see [57].

35 If a shared location in one \step" is updated both internally and externally, the
external update wins, unless a protocol for updating the location speci�es such
conict situations di�erently.

2.2 Working De�nition 37

An ASM module is defined as a pair consisting of Header and Body. A
module header consists of the name of the module, its import and its export
clause, and its signature:

MODULE m
IMPORT m1(id11, . . . , id1l1), . . . ,mk (idk1, . . . , idklk)
EXPORT id1, . . . , ide

SIGNATUREs

where idi1, . . . , idili are names for functions or rules which are imported from
another module mi , and id1, . . . , ide are the names for functions or rules
which can be exported from module m. The signature s of a module, which
determines its notion of state, contains all the basic functions occurring in
the module and all the functions which appear in the parameters of any of
the imported modules. We assume that there are no name clashes in these
signatures.

The body of an ASM module consists of declarations (definitions) of func-
tions and rules

decl1 . . . declnaxioms

and may include also axioms expressing constraints one wants to assume for
some of these functions or rules.

An ASM is then a module together with an optional characterization
of the class of initial states and with a compulsory additional (the main)
rule. We write ASMs in the same way as modules with MODULE replaced
by ASM ; the name of the ASM is used also as the name of the main rule.
Executing an ASM means executing its main rule.

Every ASM M becomes an ASM module if its main rule is added (with
name, say, M) to the declarations and the name M to the export list.

2.2.5 Illustration by Small Examples

We are now going to illustrate the function classification and the ASM con-
structs for parallelism and non-determinism by simple examples.

Clock. The following real-time clock illustrates the function classification.

Clock = if DisplayTime + Delta = CurrTime then
DisplayTime := CurrTime

CurrTime is a 0-ary monitored function which is supposed to be strictly
increasing in a domain of real values determined by the desired precision.
DisplayTime is a 0-ary controlled function whose values can be determined
as belonging to some (not furthermore specified) set Time, and which is type
compatible (or made so using some static conversion function) with the values
of CurrTime. Delta is a 0-ary static real-valued function which determines

38 2 ASM Design and Analysis Method

the system dependent time granularity (and in this sense may be dynamic as
part of another machine where it is controlled by an agent playing the role
of the system operator); + is a static function representing the addition of
reals for the needed precision.

One can separate the description of the rule guard computation from the
rule itself by defining ClockTick as a derived 0-ary Boolean-valued function,
e.g. by the specification

ClockTick = (DisplayTime + Delta = CurrTime)

or by an independent machine which computes ClockTick . Formulated this
way the example exhibits the pattern of sustaining signals (or, more gen-
erally, events) which is supported in synchronous programming languages
by the special construct sustain S ; e.g. in Esterel it is described as an infi-
nite loop to emit S at each clock tick [266].36 Here the signal is CurrTime,
and Emit(CurrTime) means to update the output channel DisplayTime by
DisplayTime := CurrTime.

Sustain(signal) = if ClockTick then Emit(signal)

Experience shows that the use of derived functions is crucial for obtain-
ing a manageable well-structured specification. The figures in the industrial
project survey [121] report that in the ground model ASM of 120 rules devel-
oped there (which led to a final program of 9000 lines of generated C++ code),
out of 315 functions only 71 were controlled against 116 derived, 59 static
and 69 monitored ones. Numerous ASM models in the literature demonstrate
the considerable modularization effect obtained by using static, derived and
monitored functions.37

Resolving conflicting writes to shared variables. Hardware design lan-
guages provide constructs to cope with the problem that for given variables v ,
multiple and possibly conflicting update requests for val(v) by independent
processes may occur concurrently. In the IEEE standard for VHDL’93, for
example, such conflicts are resolved by an implementation-defined resolution
mechanism which can be represented by an external function resolve, se-
lecting one value out of a set competingVal(v) of values currently offered to
36 We disregard in this example the peculiar handling of termination and timeout

in Esterel, which is based upon the Watchdog construct.
37 For example, the derived function procdef [71] dynamically determining the al-

ternatives for a goal in a logic program abstractly represents a chunk of code
which is responsible for much of the complexity of the WAM implementation of
PROLOG [132], whereas in the same model the static function unify hides the
details of a uni�cation algorithm. The functions DrivingVal and EffectiveVal , de-
rived from signal sources respectively from the port-signal association of a VHDL
program [112], modularize a complex signal propagation scheme. The monitored
event function in the ASM model for the Parallel Virtual Machine [107] en-
capsulates an asynchronous message-passing system underlying the interaction
between PVM tasks and daemons; see Sect. 6.5.

2.2 Working De�nition 39

update v . competingVal is a dynamic function which collects every update
request to v by any of the involved processes which share v . These two func-
tions determine the interface for the following variable assignment rule taken
from [112, Sect. 4.2], where a static function kind is used to distinguish shared
from local variables (whose values are stored in the environment of the pro-
cess they belong to). The rule does not depend on the interface specification
and determines the range of possible implementations modulo the interface.
For example, it covers also the case of composite variables in VHDL’93 with
possibly interleaved assignments to the component variables, simply by ap-
plying resolve componentwise.

VhdlSelectedAssign =if Process executes v = exp then
if kind(v) = local then val(Process, v) := value(exp)

else val(v) := resolve(competingVal(v))

Bounded synchronous parallelism. We illustrate here the bounded syn-
chronous parallelism of ASMs, i.e. the application of forall to finite sets of
cardinality bounded by a fixed n. Consider cycling through a finite num-
ber n of given machines. The following ASM describing this has as static
functions mod, the successor function and the equality over natural num-
bers, and might be considered as parameterized by a sequence of rules of
length n + 1. A frequent special case is Alternate(R,S), which alternates
two machines R and S .

CycleThru(R0, . . . ,Rn) = forall i ≤ n do
if cycle = i then

Ri

cycle := (cycle + 1) mod (n + 1)

Another example is taken from operating systems where an interrupt
controller schedules the CPU access of a hardware-determined number of
independent devices devicei(i ≤ n). The scheduler operates on a dynamic
interrupt request array which records every socketi when it has been set to
high by devicei , namely to signal the need of a driver process to get executed
using the CPU. This is expressed by the following rule taken from [186], where
the additional guard expresses that, upon termination of the currDevice,
updating its requestFrom(currDevice) has priority over storing a new request.

InterruptStorage = if not terminating(currDevice) then
forall i ≤ n do if socketi = high and not requestFrom(devicei)

then {socketi := low , requestFrom(devicei) := true}

Conway’s game of life. We use Conway’s game of life to illustrate the
unbounded synchronous parallelism of ASMs. Imagine a grid of square cells,
elements of an abstract domain Cell , which can be alive or dead. The rule of
survival describing the behavior of a single cell states that a cell with 3 alive
neighbors gets (or remains) alive, whereas a cell with less than 2 or more than

40 2 ASM Design and Analysis Method

3 alive neighbors dies. We represent this rule using an abstract predicate alive
on Cell together with a derived function aliveNeighb: Cell → N (not specified
further here) which indicates for each cell the number of its alive neighbors.
Then the rule of the game for a cell c is expressed by the following ASM:

Conway(c) =
if aliveNeighb(c) = 3 then alive(c) := true
if aliveNeighb(c) < 2 or aliveNeighb(c) > 3 then alive(c) := false

Now, in every state of their life, all the cells are supposed to execute their
life rule simultaneously, all in the same state, never mind the topology and
the finite cardinality of Cell (which may be imagined also as a dynamic set).
The following ASM expresses this behavior.

GameOfLife = forall c ∈ Cell do Conway(c)

In the next section we illustrate with Turner’s Daemon Game another use of
the synchronous ASM parallelism, namely to describe independent actions of
multiple players without committing to any particular scheduling.

Swapping elements. The meaning of non-determinism as expressed by
choose-rules is often explained by the following ASM which provides a spec-
ification for sorting of an array say a, namely by iterating a local swap (in
a way not furthermore determined here).38 In this example the synchronous
parallelism avoids the use of intermediate storage.

SwapSort = choose i , j ∈ dom(a) with i < j and a(i) > a(j)
Swap(a(i), a(j))

Swap(x , y) = {x := y , y := x}

Choosing variable assignments. In the high-level Common Object-ori-
ented Language for Design39 the following construct allows us to express a
non-deterministic choice of a subset of variables in a set Var and a subset of
values in a set Value for updating the chosen variables to the chosen values.

ColdModify(Var) =
choose n ∈ N, choose x1, . . . , xn ∈ Var , choose v1, . . . , vn ∈ Value

forall 1 ≤ i ≤ n do val(xi) := vi

38 The turbo ASMs Quicksort on p. 172 and Mergesort on p. 173 correctly
re�ne this speci�cation.

39 For more details on COLD see Sect. 7.1.2.

2.2 Working De�nition 41

Ambiguous grammars. The following ASM illustrates the power of non-
determinism which is provided by the choose construct. It generates for a
given alphabet A and a given natural number n > 0 exactly the set of all
pairs vw of different words v ,w over A, both of length n. It does it in the
sense that if all possible choices are realized, the set of reachable states vw of
this ASM (where v ,w represent the only two controlled functions), started
with say vw = ab for some letters a 6= b in A, is the desired set.

DifferentWords(A,n) = choose i with 1 ≤ i ≤ n
choose a, b ∈ A with a 6= b

v(i) := a
w(i) := b

forall j with 1 ≤ j ≤ n and j 6= i
choose c, d ∈ A

v(j) := c
w(j) := d

The language generated by this ASM is accepted by some non-deterministic
finite automaton with O(n2) states, but every unambiguous automaton that
accepts it needs at least 2n states [304]. A similar example from op.cit., for
arbitrary fixed n, is the set {0, 1}n−11{0, 1}∗ of words over alphabet 0, 1
with a 1 in the n-th place. There is a non-deterministic FSM with O(n)
states which accepts the set, but every deterministic FSM accepting this set
has at least 2n states. It is generated as a set of all possible values of out by
the following ASM:

choose v ∈ {0, 1}n−1,w ∈ {0, 1}∗ in out := v1w

Problem 2 (Alternating choose/forall classification). Classify ASMs
by alternations of choose, forall and relate the resulting classes of machines
to known quantifier hierarchies in logic and complexity theory.

Scheduling non-deterministic rule execution. For the special case of
non-deterministic choice among rules R(i) we use the following abbreviation
(in the literature often [] is used instead of or):

R(0) or . . . or R(n − 1) = choose i < n do R(i)

The same rule is also expressed by R(select), where select is a 0-ary monitored
choice function taking rules with index < n. The refinement of this rule to
Round Robin scheduling can be obtained by adding in parallel the scheduler
as follows:

RoundRobin = {R(select), select := select + 1 mod n}

This is a special case of the following general scheme for scheduling by a
scheduler the non-deterministic execution R(select) of rules selected from an
often dynamic set S . The use of such a possibly dynamic scheduler function

42 2 ASM Design and Analysis Method

allows one to restrict the unconstrained non-determinism (so-called inter-
leaving) by conditions which may still leave some freedom to choose the next
rule to be executed, maybe also in dependence of the state where scheduler is
used. One can either specify select as derived function, e.g. by an equational
definition, or include an update to this purpose in the scheduled machine as
follows.

Scheduling(S , scheduler) =
R(select)
select := scheduler(S , select)

New-instruction in Java. We illustrate the use of the special form let x =
new(X) by a description of the creation of new class instances in Java. If in
the current program (read: in the abstract syntax tree described by the unary
function pgm) at the current position (described by the 0-ary function pos)
an instruction new c occurs for execution, then (in case class c is initialized)
a new reference to an object of that class is placed on the heap with all its
instance fields initialized to the default value of the class. To formalize that
the new reference is returned, it is substituted in the abstract syntax tree for
the executed instruction new c. The test whether c is initialized is due to the
language manual requirement that Java classes have to be initialized before
being accessed. The predicate initialized which we consider in the rule below
as monitored can be refined independently of its use here, together with the
corresponding submachine initialize(c) for initializing a class; see [406]. This
description is concisely and completely expressed by the following ASM rule
taken from [406]:

JavaInstanceCreation = if pgm(pos) = new c then
if initialized(c) then

let ref = new(Reference) in
heap(ref) := Object(c, InstFieldsDefaultVal(c))
pgm(pos) := ref

else initialize(c)

Creating new Occam processes. Another example illustrating the use of
let x = new(X) is an ASM formalization of the semantics of instructions
which handle the parallelism in the programming language OCCAM. When
an agent (in OCCAM parlance a daemon process) a in running mode, upon
walking through an abstract syntax tree, in its current position has to exe-
cute an instruction par(a, k), it spawns k new child daemons, activates them
– i.e. equips each of them with an instance of the current variable environ-
ment a.env , places it at the start position pos(a, i) of its respective code and
puts it to running mode – , leaves its trace as parent process to whom to
report, and goes itself to its next position in idle mode. This is succinctly ex-
pressed by the following rule taken from [104] (and refined there into a model
for its Transputer implementation), which is instantiated to the subprocess

2.2 Working De�nition 43

spawning rule AltTmSpawn for alternating Turing machines on p. 290 and
is similar to the UML activity diagram rule UmlFork on p. 279. If you
wonder how after having fired this rule a daemon process returns to running
mode, see Exercises 2.2.1, 2.2.2.

OccamParSpawn =
if a.mode = running and instr(a.pos) = par(a, k) then

forall 1 ≤ i ≤ k let b = new(Agent) in
Activate(b, a, i)
parent(b) := a

a.mode := idle
a.pos := next(a.pos)

where Activate(b, a, i) =
{b.env := a.env , b.pos := pos(a, i), b.mode := running}

Function classification to support modularity. Judicious selection of
which functions or locations in an ASM specification are external and which
ones are internal helps to achieve modular descriptions and supports infor-
mation hiding, enhanced by an appropriate mix of (explicit or inductive)
declarative and of operational definition elements. For example, the com-
plex signal assignment S ← INERTIAL . . . with inertial delay in the hardware
design language VHDL’93 can be defined operationally by the simple rule
below taken from [111, Sect. 3.2.2], using separately defined explicit as well
as recursive external functions. The meaning of the inertial delay instruc-
tion S ← INERTIAL exp1 AFTER time1, . . . , expn AFTER timen extends the
simpler TRANSPORT delay which preemptively schedules for signal S on the
driver(P ,S) of process P each value val(expi) for time currTime + timei .
Pre-emption means that values which were scheduled on the driver for time
points ≥ currTime + time1 are deleted; it can be defined explicitly by a func-
tion |<, which for given driver and time t retains precisely the driver elements
(’transactions’) with time component < t . This results in the TRANSPORT
driver update by driver(P ,S) |<currTime+time1 ∗Waveform where

Waveform =< (val(exp1), time ′1), . . . , (val(expn), time ′n) >

and time ′i = currTime + timei , describing that after pre-emption of the cur-
rent driver the waveform constituted by the schedule for the new values is
appended. Note that by the discrete VHDL time model the sequence of time
values timei is strictly increasing. In addition to this, the inertial delay manip-
ulates the driver also for elements with time < time ′1, namely by an algorithm
which keeps the first driver element and rejects all transactions whose value
is not equal to the value val(exp1) of the first new transaction. The reject
procedure is defined in the IEEE language reference manual for VHDL. This
yields the following definition of inertial delay signal assignments:

InertialSignalAssign =if Process executes
S ← INERTIAL exp1 AFTER time1, . . . , expn AFTER timen then

44 2 ASM Design and Analysis Method

if time1 = 0 then driver(Process,S) := Waveform
else driver(Process,S) :=

fst(driver(Process,S)) ∗ reject(driver ′, time ′1) ∗Waveform
where

driver ′ = tail(driver(Process,S)) |<time1+currTime

Waveform =< (val(exp1), time ′1), . . . , (val(expn), time ′n) >
forall i ≤ n time ′i = currTime + timei

reject can be defined recursively on transaction lists Trans as follows:

reject(Trans,Val) =
if Trans = empty or val(last(Trans)) 6= Val then empty
else reject(front(Trans,Val)) ∗ last(Trans)

A further variation of inertial signal assignments by an explicit pulse rejec-
tion limit, which may be different from the first driver element, is captured
by a simple modification of driver ′ defined in [111]. This book is full of fur-
ther examples which illustrate this flexibility in exploiting the advantages of
different specification styles within the uniform semantical ASM framework.

2.2.6 Control State ASMs

In this section we define a particularly frequent class of ASMs which represent
a normal form for UML activity diagrams and allow the designer to define ma-
chines which below the main control structure of finite state machines provide
synchronous parallelism and the possibility of manipulating data structures.
We illustrate the definition here by small machines describing the state con-
trol structure of pipe statements in the system-level extension SpecC of C,
of multi-threaded Java with an abstract scheduler, of the Java Virtual Ma-
chine, and of Turner’s Daemon Game (which we use also as a first example to
discuss the use of ASMs for ground model construction). The enrichment of
the FSM control structure by parallelism and/or data structure manipulation
is used also in numerous FSM extensions, e.g. to StreamProcessingFsms
(p. 287), TimedAutomata (p. 288), co-design FSMs, etc., and provides also
a uniform scheme for the generalization to stronger machine concepts like
PushDownAutomaton and TuringLikeMachines (see Sect. 7.1). It also
reflects the control function which places often play in Petri nets; e.g. see the
machines in Sect. 6.1.

Definition 2.2.1. A control state ASM is an ASM whose rules are all of the
form defined and pictorially depicted in Fig. 2.5. Note that in a given control
state i , these machines do nothing when no condition condj is satisfied.

The finitely many control states ctl state ∈ {1, . . . ,m} resemble the so-
called “internal” states of Finite State Machines and can be used to describe
different system modes. A particularly frequent form of control state ASM

2.2 Working De�nition 45

Fig. 2.5 Control state ASMs

n

cond 1

cond nrule

1rule

i

j

jn

1

if ctl state = i then
if cond1 then

rule1

ctl state := j1
· · ·

if condn then
rulen

ctl state := jn

Fig. 2.6 Control state ASMs: alternative definition

rule

ncond

1cond

i

j

jn

1

if ctl state = i then
rule
if cond1 then

ctl state := j1
· · ·

if condn then
ctl state := jn

is described in Fig. 2.6, which is equivalent to the original definition (see
Exercise 2.2.5).

A typical example coming from language standardization is the machine
SpecCPipe in Fig. 2.7, taken from [344] where an ASM definition is pro-
posed for the semantics of the SpecC language, an extension of C by system-
level features which are used in industrial hardware design. The machine
is a control state ASM which defines the top-level sequential structure of
the execution semantics of so-called pipe statements. These statements are
parameterized by an Init ialization statement, a cond ition which guards an
iterative process, by an Incrementing statement used to advance the itera-
tion, and by finitely many subprocesses which are spawned and deleted in
a synchronized manner to fill, run and eventually flush the pipe. The corre-
sponding submachines which appear in Fig. 2.7 can be defined as independent
modules; see [344].

As with FSMs, one could consider deterministic and non-deterministic
control state ASMs, using non-determinism as a mechanism to resolve possi-
bly conflicting updates of ctl state. For the reasons explained in Sect. 2.2.2
we prefer also for control state ASMs the parallel synchronous understanding
of ASMs as firing in each step every rule. The designer can control possible
conflicts, e.g. by taking care that the rule guards condk of rules fireable in
control state i are disjoint.

For the graphical representation of control states we will use in this book
both their inscription into circles, as in Fig. 2.5, and the usual flowchart

46 2 ASM Design and Analysis Method

Fig. 2.7 Control state ASM for SpecC pipe statements

yes

no yes

no

... p1

running

n

FillLoop(cond,Incr,p 1 ... p

FlushLoop(p

n

)

Spawn(p 1 ... p)n

)

seq Incr

cond

flushingfinished

fillingInitinit

stm
advance

cond

Fig. 2.8 Opposite conditions in control state ASMs

rule 2

i

no

yes

2j

1j1rulecond if ctl state = i then
if cond then

rule1

ctl state := j1
else

rule2

ctl state := j2

or UML notation where the control states appear as named directed arcs
(arrows) or as unnamed arcs. The former notation, which is common in au-
tomata theory, helps to visually distinguish the role of control states – to “pass
control” – from that of ASM rules, which describe the update “actions” con-
cerning the underlying data structure and are inscribed into rectangles, often
separated from the rule guards which are written into rhombs or hexagons
labeling the arcs outgoing the control states as in Fig. 2.5 or ingoing as in
Fig. 2.6, following the practice of UML activity diagrams. The most com-
mon cases are those of diagrams with one or with two opposite conditions in
the rhombs or hexagons (n = 1, 2); in the latter case usually the condition
is written into the rhomb and the two exiting arcs are labeled with “yes”
and “no”, respectively (Fig. 2.8), which are sometimes colored in grey to let
them stand out better. As an example see the Switch(condi , ctli)i machine
in Fig. 2.9, which under condition condi switches to control state ctli . When
using graphical notation we allow ourselves sometimes some self-explaining
variations of the layout, which can always be reduced to the official definition
explained above.

2.2 Working De�nition 47

Fig. 2.9 Switch machine

nctl

cond 0

1ctl1cond cond0 nctl

Definition 2.2.2. When it is convenient to have also a textual representa-
tion besides the graphical one, we use the following translation.

Fsm(i , if cond then rule, j) =
if ctl state = i and cond then {rule, ctl state := j}

Using this notation the textual representation of the rule in Fig. 2.5 be-
comes the set of rules Fsm(i , if condk then rulek , jk) for k = 1, . . . ,n. If in
ctl state = i the cond ition is not satisfied (and if there is no other rule for
this control state), then what is often called a persistent if-then is realized:
the machine remains in ctl state = i until cond becomes true, in which case
the machine proceeds to ctl state = j . An example is the special case of an
alternating Switch((high, 1), (low , 0)), known as FlipFlop.

FlipFlop =
{Fsm(0, if high then skip, 1),Fsm(1, if low then skip, 0)}

Sometimes we will have ASMs which are built up from control state ASMs
as submachines whereas the main machine has only one control state, see
for example Fig. 2.13. In this case we omit in the textual representation
mentioning the unique control state and its trivial updates; e.g. see the textual
definition of DaemonGame in Sect. 2.1.1.

Control state ASMs represent a normal form of (synchronous) UML activ-
ity diagrams. In fact UML activity diagrams are defined as graphs connecting
by labeled arcs so-called action nodes (rectangles, describing atomic actions
to be performed and control to proceed) and branching nodes (rhombs, de-
scribing a case distinction resulting in the control to proceed to one among
finitely many directions). Such diagrams can obviously be constructed by
appropriately combining control state ASM rules as in Fig. 2.5, where the
extreme cases are allowed to have rules without guard (read: with an always
true guard, expressing that the rule is executed unconditionally) or rhombs
not followed by a rectangle (as known from automata theory such successive
rhombs can be compressed to one). Thus the normal form claim follows if
one accepts the interpretation of the (intentionally undefined) UML notion
of action as the application of an ASM rule.40

40 In [98, 99, 153] the semantics of UML activity diagrams and state machines is
formalized based upon that interpretation of actions. See also Sect. 6.5.

48 2 ASM Design and Analysis Method

Fig. 2.10 Multiple thread Java machine execJavaThread

t is current active thread execJava
t

in ExecRunnableThread

resume
suspend thread

Choose t

yesno

The proviso of synchrony made in the preceding argument stems from
the fact that the concurrent nodes of UML activity diagrams may behave
asynchronously. Concurrent nodes of UML in the synchronous understanding
are covered by the action nodes considered above, since an ASM rule can
consist of a finite number of subrules to be fired simultaneously. Concurrent
nodes of UML in the asynchronous understanding, however, are different. As
we will see in Chap. 6, they can be understood as calls of asynchronous multi-
agent ASMs which work with a priori unrelated clocks, but are (expected to
be) synchronized after each of them has returned a result, as described in
Exercise 2.2.1 for OccamParSpawn.

The multiple thread Java control structure, characterized by an
abstract scheduler (not detailed here) in the way implied by the language
reference manual, illustrates the graphical notation we use for control state
ASMs. In this example there is only one main control state in which a
thread t among the executable runnable ones is chosen to execute the un-
derlying single-threaded Java interpreter execJava, where in case the newly
chosen t is different from the currently active thread , it must first be re-
sumed and the currently active thread be suspended. The resulting machine
ExecJavaThread expresses the separation of the semantics of thread exe-
cution from thread scheduling and is formalized by Fig. 2.10, taken from [406,
p. 7] where the macros and execJava are further refined, which in the diagram
appear as abstract submachines.

The Java VM and bytecode verifier interaction in Fig. 2.11 has
one main control state in which a decision is taken as to which of the two
submachines is executed: trustfulVM for the trustful execution of JVM code
or verifyVM for the verification of all the methods of a (newly loaded) class.
The almost self-explanatory definition of RefineDiligentVM in Fig. 2.11
has been exploited in [406] (where also the definition of the macros can be
found) to modularize the specification and the verification of the JVM at
each of four levels of the two submachines determined by language layers.

Figure 2.12 exhibits the main control state of the verifyVM machine
governing the instantiation of its three submachines by an instruction to be
verified. The submachines check the conditions to be verified and in case no
failure has to be reported propagate the result to all successor instructions
of the instruction which had been chosen for the current verification step.

2.2 Working De�nition 49

Fig. 2.11 Decomposing JVM into trustfulVM and verifyVM

failure

yes yes

no

report

trustfulVM

verifyVM

set next method up for verification

to be verified
current method still

to be verified
some method still

no

Fig. 2.12 Decomposing verifyVM into propagateVMs and checks

record pc as verified

no

yes

propagateVM(pc)

check(pc)choose pc for verification

report failure

(Each submachine is layered into further submachines corresponding to lan-
guage levels; see [406].) This machine illustrates again the frequent use of the
choose construct for implementation-independent abstract scheduling.

Turner’s daemon game. We illustrate by this example the use of the con-
trol state ASM notation and of synchronous parallelism in defining a ground
model ASM, which allows one to answer at an abstract level the questions
posed in [416] concerning implementations of the game. For the sake of brevity
we slightly rephrase the original problem formulation.

Design a system for the following multi-player game. A daemon gen-
erates bump signals at random. Players in the environment of the
system have to guess whether the number of generated bump sig-
nals is odd or even, by sending a Probe signal. The system replies
by sending the signal Win or Lose if the number of the generated
bump signals is odd or even, respectively. The system keeps track
of the score of each player. The score is initially 0. It is increased
(decreased) by 1 for each unsuccessful/successful guess. A player can
ask for the current value of the score by the signal Result , which
is answered by the system with the signal Score. Before a player
can start playing, the player must log in by the signal NewGame.
A player logs out by the signal EndGame. The system allocates a
player a unique ID on logging in, and de-allocates it on logging out.

50 2 ASM Design and Analysis Method

The system cannot tell whether different IDs are being used by the
same player.

One can recognize three categories of agents: users, players and the system. In
the problem description users and players are not distinguished consistently.
A player (or better a play, given that every user is allowed to have simul-
taneously different plays open) is created and initialized upon a user’s (not
a player’s) NewGame input. This is expressed by the following rule, where
the parameter usr is an element of the domain of all users (USER) and in
is its input function, which we assume to be monitored by the system and
consumed (e.g. by switching to value undef) when reading its value upon
firing the rule:

NewGame(usr) =
if usr .in = NewGame and usr ∈ USER then

let p = new(PLAY) in Initialize(p)

The macro Initialize(p) certainly includes the initialization of the score
function p.score := 0 and communicating the created play to usr , say by
usr .out := p. (See also the refinement below.) By formalizing logging in
with the new construct, applied to a set PLAY (not furthermore speci-
fied), we avoid any particular mechanism of allocation of IDs as part of
Initialize(p).41 The corresponding log out rule (for a play, not a user) is as
follows:

EndGame(p) =
if p.in = EndGame and p ∈ PLAY then Delete(p,PLAY)

Delete(p,PLAY) is supposed to have the effect that p is deleted from the
dynamic set PLAY , e.g. by setting PLAY (p) := false (or maybe with addi-
tional information to a garbage collector that p can be reused as an element
of Reserve). This is all one needs to specify the “de-allocation” of a play.

To formalize the effect of moves in a play, we have to be clear about
what the bump signals are. Apparently the only property which determines
the meaning of the game is that the response of the system to an input
p.in = Probe is to answer to p either Win or Lose and to internally update
p.score accordingly. The nature of the bump does not matter really, so that we
abstract from its implementation-oriented description in the problem formu-
lation and formalize its effect by a predicate winning(lot), with a parameter
41 This answers the questions which are discussed in [416] about the \identi�cation

of players and games": \Presumably some identi�ers are needed, but how should
they be allocated and what should they distinguish?" \The players should be an
anonymous part of the environment of the system." The answer is: each play is
added upon creation as a fresh element to the abstract set PLAY from where it
inherits its attributes and within which it has its \identity" as an element of the
set, e.g. entitling it to send inputs Probe,Result ,EndGame to the system.

2.2 Working De�nition 51

Fig. 2.13 Daemon game ASM

p.score := p.score + 1

p.score := p.score − 1
No

Yes

winning(lot)

Delete p from PLAY

p.out := p.score

p.out := Lose

let p = new(PLAY)

p.out := Win

Initialize p
usr.in = NewGame

p.in = Probe
and p in PLAY

p.in = Result
and p in PLAY

p.in = EndGame

and usr in USER

and p in PLAY

forall usr in USER, forall p in PLAY

lot representing a monitored function which will allow us to speak about var-
ious implementations of this notion of randomly issuing bump signals. This
results in the following rule:

Probe(p) = if p.in = Probe and p ∈ PLAY then
if winning(lot) then {p.score := p.score + 1, p.out := Win}

else {p.score := p.score − 1, p.out := Lose}

The request for the current result is formalized by sending the internal score
as output to the play which required the information:

Result(p) = (if p.in = Result and p ∈ PLAY then p.out := p.score)

It remains for us to decide how the system handles simultaneous requests from
users or plays. In order not to compromise the range of possible schedulings
which can be used in an implementation, we exploit the synchronous par-
allelism of ASMs to make the system react in every step to every request
which presents itself, serving every request independently of each other and
immediately, in an atomic way, i.e. we construct a DaemonGame ASM which
is quantified over all users and plays.42 See the definition in Fig. 2.13.

DaemonGame =
forall usr ∈ USER do NewGame(usr)
forall p ∈ PLAY do {Probe(p),Result(p),EndGame(p)}

42 As explained in Sect. 2.2.6, in the textual de�nition we skip mentioning the
unique control state and its trivial update.

52 2 ASM Design and Analysis Method

The problem solution formulated in SDL in [416, Chap. 5.5] is accompa-
nied by an extensive discussion of typical ground model issues which can
be clarified on the basis of the ASM model above. One question is about
the nature of the bump-issuing daemon, namely whether it is an “integral
part of the description” or an “artefact of the informal explanation”. The
implementation-oriented bump details in the problem description seem to
be an artefact, because for the functionality of the game it does not matter
whether winning or loosing is determined by an oracle or a random 0-1 func-
tion or an alternating 0-1 function, etc. The integral part is to declare bump
(or lot , as we have preferred to say to render its random character) as moni-
tored for the system and thereby to isolate all further questions about it as
belonging to a separate part of the further implementation of the system. For
example, the question whether the bump count is global (“since the system
started”) or per play is the question whether all plays read a unique bump
location, bump, or whether one wants to derive the bump values local to a
play from such a globally updated location, bump, say by

p.bump = bump − p.bumpinit

with an update p.bumpinit := bump to be added to the macro Initialize(p).
Another question is about the interruption of Probe or Result : “Should it

be allowable for another signal to be processed by the system between Probe
and Win/Lose, or between Result and Score?” The expected answer “Probe
and Result should be followed by their respective responses before any other
signal is processed” is realized for the ASM model automatically, namely by
the atomicity of single steps (rule execution).

Also, robustness conditions are asked for, such as: “What should happen if
a player who is already logged in tries to issue NewGame again?”; “NewGame
should be allowed to happen in a current game, but should be ignored.”;
“What should happen if a player issues any signal other than NewGame
before logging into a game?”; “The intention was to allow Probe, Result ,
or EndGame when a game is not current, but to ignore these signals.” All
this is guaranteed by the fact that in the considered cases, no ASM rule is
applicable.

Other questions are about excluding behavior: “What should happen if
the player issues Win, Lose, or Score signals?”; “The intention was to disallow
such behavior: it simply must not happen, as opposed to happening but be
ignored.” In fact it is excluded in the ASM model by the signature condition
for the input functions x .in ∈ {NewGame,Probe,Result ,EndGame}.

Reference. There are numerous formalizations for the Daemon Game in the
literature. Compare the DaemonGame ASM, for example, with the Petri net
in [50, Fig. 7, p. 314] or the process algebra (LOTOS) specification in [68,
Sect. 6].

2.2 Working De�nition 53

2.2.7 Exercises

Exercise 2.2.1. (; CD) Complete OccamParSpawn by a rule which
wakes up an Occam process after all its children have reported their ter-
mination.

Exercise 2.2.2. (; CD) Refine the reporting of subprocesses to a parent
process in Exercise 2.2.1 by introducing a children count at parent nodes. As a
consequence of this children count, if two or more children want to report their
termination simultaneously, their subtraction has to be taken with cumulative
effect, e.g. by introducing multi-sets of items to be subtracted.43

Exercise 2.2.3 (Doubly linked lists). (; CD) Write an ASM which pro-
vides a rule for each of the following operations and test predicates, respec-
tively, and definitions for derived functions on double-linked lists over a set
VALUE of values. Assume a set NODE of nodes with a special constant null
which is not in NODE . The unary dynamic functions prev , next and cont
return the previous node, the next node and the content of a node. A double
linked list L is represented by head(L) and tail(L), which contain the first
and the last node of L.

Implement the following operations as ASMs:

CreateList(L): create an empty double-linked list L
Append(L,Val): append at the end of L the new element Val
Insert(L,Val , i): insert before the ith element of L the new element Val
Delete(L, i): delete the ith element from L
Update(L, i ,Val): update the value of the ith element of L to Val
Cat(L1,L2,L): concatenate lists L1, L2 in the given order into list L
Split(L,n,L1,L2): split L into L1, containing the first n elements of L,

and L2 containing the rest list of L

Define the following derived functions:

get(L, i): return the value of the ith element of L
index (L,Val): return the index of the first element of L with value Val
length(L): return the length of L
occurs(L,Val): return true, if Val is an element of L, and false otherwise.

Prove the following properties to hold for the operations:

– If the next-link of x points to y , then the previous-link of y points to x .
– A list L is empty iff the next-link of its head points to its tail.
43 Note that the vast majority of sequential as well as of distributed algorithms in a

natural way do not lead to multiple occurrences of items, so that except for a few
cases ASMs could be satisfactorily explained and used in terms of sets instead of
multi-sets. In [262, 263] basic ASMs are extended by cumulative updates covering
some relevant common data structures.

54 2 ASM Design and Analysis Method

– After applying Append(L,Val), the list is not empty.
– A newly created linked list is empty and its length is 0.
– By Append/Delete the list length increases/decreases by 1.
– Executing Insert(L,n,Val) followed by Delete(L,n) is the identity for L.

Exercise 2.2.4. (; CD) Define an ASM which computes a non-recursive
function. For an analysis of universal computation systems in terms of
their functions for input, output, 1-step transition and termination criterion
see [146] or the textbook elaboration in [70, pp. 129–136].

Exercise 2.2.5. (; CD) Show that the notions of control state ASMs de-
fined by Figs. 2.5, 2.6 are equivalent.

Exercise 2.2.6. Define Switch(condi , ctli)i≤n by CycleThru.

2.3 Explanation by Example: Correct Lift Control

In this section we illustrate the definition of (control state) ASMs by con-
structing for the popular lift example a ground model for which we prove the
desired correctness properties. The model can easily be refined to executable
code. For the sake of brevity we slightly rephrase the original 1984 problem
formulation by N. Davis, which is reprinted in [5].

Design the logic to move n lifts between m floors satisfying the fol-
lowing requirements:
1. Each lift has for each floor one button which, if pressed, illumi-

nates and causes the lift to visit (read: move to and stop at) that
floor. The illumination is cancelled when the floor is visited by
the lift.

2. Each floor (except ground and top) has two buttons to request an
up-lift and a down-lift. They are cancelled when a lift visits the
floor and is either traveling in the desired direction, or visits the
floor with no requests outstanding. In the latter case, if both floor
request buttons are illuminated, only one should be cancelled.

3. A lift without requests should remain in its final destination and
await further requests.

4. Each lift has an emergency button which, if pressed, causes a
warning to be sent to the site manager. The lift is then deemed
“out of service”. Each lift has a mechanism to cancel its “out of
service” status.

Prove its correctness (well functioning) in the following sense:
1. All requests for floors within lifts must be serviced eventually,

with floors being serviced sequentially in the direction of travel.
2. All requests for lifts from floors must be serviced eventually, with

all floors given equal priority.

2.3 Explanation by Example: Correct Lift Control 55

Fig. 2.14 Lift ground model

H
A
N
G
E

floor(L) := floor(L)+/−1

Cdir(L) := opposite(dir(L))
CancelRequest(opposite(dir(L)),L)

halting

not Attracted(dir(L),L) &

floor(L) := floor(L)+/−1

moving

E
U
N
I
T
N
O
C

Attracted(opposite(dir(L)),L)

STOP

DEPART

Attracted(dir(L),L)

not CanContinue(L)

CanContinue(L)

CancelRequest(dir(L),L)

Lift FSMs. Looking at the relation between lifts and floors, a lift does
nothing else than moving between or halting at floors. To pass from halting
to moving, a lift has to Depart, and vice versa to Stop. In its moving
state a lift may also Continue, typically44 when arriving at a floor without
request; when halting45 it has also to be able to Change its direction. This
consideration brings us to a first view of a single lift as an FSM with the two
control states moving and halting and four transitions (“symbolic” rules) not
furthermore specified (and thereby non-deterministic). This is depicted in
Fig. 2.14 (the specification of the macros resolve the non-determinism).

This level of abstraction allows one to prove (see Exercise 2.3.1) the follow-
ing lemma, which will be useful for the correctness proof. To have a definite
start condition we assume for the initialization that every lift is halting at
the ground floor and directed up. Unless otherwise stated, we consider in the
following only runs which are started in the initial state.

Lemma 2.3.1. For every lift the non-empty runs have the regular form
(Depart Continue

∗
Stop)+ (Change (Depart Continue

∗
Stop)∗)∗.

Enriching lift FSM transitions by floor manipulations. We now refine
this FSM by assigning to the abstract transitions a more detailed meaning
concerning the visited floors. This refinement is a (1, 1)-refinement in which
each abstract lift “operation” is replaced by a more detailed one; we interpret
here an ASM rule (which may contain parallel actions) as an operation. For
the sake of modularity we add a lift parameter L to the transition names to
44 This becomes an additional requirement that a lift does not stop at oors without

request.
45 Clearly a lift is di�erent from a paternoster and thus we assume as an additional

requirement that it will never change its direction when moving.

56 2 ASM Design and Analysis Method

indicate their uniform dependence upon the currently considered element in
the abstract set Lift .

We assume a static ordered set of floors with functions +1,−1, ground , top
to be given; the controlled function floor(L) takes its values in this set Floor .
The direction dir(L) of a Lift is either up or down. Since the requested “logic
to move” abstracts from matters like the duration of moves, closing or opening
doors, etc., the immediate (atomic) effect of MoveLift is to update floor(L)
by adding or subtracting 1 from it, depending on dir(L).

MoveLift(L) =
if dir(L) = up then floor(L) := floor(L) + 1
if dir(L) = down then floor(L) := floor(L)− 1

DEPART. Requirements 1, 2 (given at the beginning of this section) de-
mand that a lift L leaves its halting state when it is Attracted. We use
Attracted in this intermediate model as a monitored function, constrained
to reflect the abstract lift operation of cancelling requests when stopping or
changing direction. Requirement 2 together with correctness property 2 imply
that any L departs only in its direction dir(L) of travel, so that a halting L
will Depart if it is Attracted(dir(L),L), i.e. attracted in its direction of
travel. This analysis leads to the following refinement of Depart:

Depart(L) = if Attracted(dir(L),L) then MoveLift(L)

CONTINUE. Similarly to Depart, Continue also updates floor(L) if L
CanContinue, so that Continue is refined as follows:

Continue(L) = if CanContinue(L) then MoveLift(L)

STOP. Requirements 1, 2 imply that when a lift stops at a floor, the requests
pending there in the lift’s direction of travel have to be cancelled. Therefore
the refinement of Stop is as follows:

Stop(L) = if not CanContinue(L) then
CancelRequest(dir(L),L)

CHANGE. Correctness property 2 (together with the obvious minimal-
ity assumption that a lift should not change its direction without being at-
tracted in the opposite direction of its direction of travel) implies that L
should change its direction of travel when and only when it is not attracted
in its current direction dir(L) but attracted in the opposite direction. Re-
quirement 2 implies that upon changing direction, L also has to cancel a
request at floor(L) for the opposite direction. Thus we arrive at the following
refinement of Change:

Change(L) = let d = dir(L) and d ′ = opposite(dir(L)) in
if not Attracted(d ,L) and Attracted(d ′,L) then
{dir(L) := d ′,CancelRequest(d ′,L)}

2.3 Explanation by Example: Correct Lift Control 57

Thus we arrive at the following refinement for the Lift ASM.

Lift(this) =
Fsm(halting ,Depart(this),moving)
Fsm(moving ,Continue(this),moving)
Fsm(moving ,Stop(this), halting)
Fsm(halting ,Change(this), halting)

Clearly the parameterization with this suggests and paves the way for (but
does not depend upon) an object-oriented implementation of a Lift class
with methods Depart, Continue, Stop, Change, so that Lift appears as
the set of current Lift instances. Often, instead of this, also self is used.

At the level of abstraction at which we have defined Lift we can add fur-
ther information to the analysis of Lift FSM runs as regular expressions given
in Lemma 2.3.1, namely on the floors traversed by a computation segment in
Depart Continue

∗
Stop and on the floors in which a Change takes place.

This is expressed by the following lemma which is proved in Exercise 2.3.2.

Lemma 2.3.2. Running from any state which is reachable from the initial
state, Lift(this) moves floor by floor in its direction of travel to the dy-
namically farthest point of attraction in that direction where, after at most
2 · |Floor | steps, it Stops and then either waits – namely iff it is not attracted
in any direction – or it Changes direction and moves in the new direction.

Corollary 2.3.1. Requirement 3 is satisfied by Lift(this).

Refinement by request manipulations. The next refinement step is
again a (1, 1)-refinement, this time a mixture of a pure data refinement
and an operation refinement. It consists in more detailed definitions for
the rule guards (a pure data refinement which replaces an abstract func-
tion by a derived one) and for the CancelRequest macro appearing in
Fig. 2.14. The rule guards are derived from an internal request function
hasToDeliverAt(L,floor) (reflecting requirement 1 when inside the lift a but-
ton is pressed) and an external request function existsCallFromTo(floor , dir)
(reflecting requirement 2 when on a floor outside the lift the up or down
button is pressed). These two functions are shared between the lift user (who
sets them, being part of the environment) and the lift control (which has
to reset them in CancelRequest to satisfy requirements 1, 2). The shared
function existsCallFromTo(floor , dir) is supposed to be initially everywhere
false. By requirement 2 it is constrained to be always false for the extreme
cases (ground , down) and (top, up). The additional constraint that it is false
as well for (floor(L), dir(L)) when L is halting formalizes that where a lift is
halting no further call can be made for going in its direction of travel. Sim-
ilarly, hasToDeliverAt(L,floor) is assumed to be initially everywhere false.
The constraint that it is always false for (L,floor(L)) when L is halting for-
malizes that no further delivery can be requested for a floor where the lift is
halting.

58 2 ASM Design and Analysis Method

Definition 2.3.1. A lift has to visit a floor, if inside the lift the button for
that floor is pressed, or outside the lift the button at that floor is pressed due
to a pending request on that floor.

HasToVisit(L,floor) ⇐⇒ hasToDeliverAt(L,floor) or
∃dir : existsCallFromTo(floor , dir)

A lift is attracted in a direction d if it has to visit a floor in that direction.

Attracted(d ,L) ⇐⇒
d = up and ∃f > floor(L): HasToVisit(L, f) or
d = down and ∃f < floor(L): HasToVisit(L, f)

The definition of CanContinue realizes the priority given in requirement 2
to keeping the direction of travel of a lift.

CanContinue(L) ⇐⇒ Attracted(dir(L),L) and
not hasToDeliverAt(L,floor(L)) and
not existsCallFromTo(floor(L), dir(L))

The macro for canceling a request in a lift for a floor and canceling a request
from a floor for a direction is refined by the following ASM:46

CancelRequest(dir ,L) =
hasToDeliverAt(L,floor(L)) := false
existsCallFromTo(floor(L), dir) := false

For the ASM with these three definitions, which we call again Lift, one can
add and prove the information missing in Lemma 2.3.2 about turning off
requests which have been served, as is proved in Exercise 2.3.3

Lemma 2.3.3. In runs of Lift, when moving to the farthest point of at-
traction in its direction of travel, it Stops at each floor where it is attracted,
with respect to its direction of travel, and turns off the (internal) delivery
request and the (external) call from that floor to go into the current direction
of travel. When it Changes, it turns off the (external) call from its current
floor to go into the new direction of travel.47

46 A modularization e�ect can be obtained by adding a third parameter floor to
the macro so that a scheduler can use it to cancel requests issued to a lift inde-
pendently of its current oor.

47 Without contradicting the requested well functioning properties, it may happen
that Lift(L) stops at a oor f with an external request in the opposite direction
d ′ of its direction of travel d , but with no other request pending (imagine a cus-
tomer left after having pushed the down-button setting existsCallFromTo(f , d ′)
to true). Upon arrival at f , L cancels the external d-request and then remains
halting without Change because there is no other oor left it HasToVisit.
existsCallFromTo(f , d ′) will be reset only should a request for another (higher
or lower) oor arrive to make L again attracted.

2.3 Explanation by Example: Correct Lift Control 59

Proposition 2.3.1. The machine Lift satisfies the well functioning prop-
erties 1, 2.

Proof. The claim follows from Lemmas 2.3.1, 2.3.2, 2.3.3 by induction on
Lift runs, since every internal request from within a lift, and every not-yet-
serviced external request from a floor, cause the lift to be eventually attracted
in the requested direction. ut

Remark 2.3.1. If a lift is requested on floor f in direction d , then the person
at that floor has to wait at most 1 + 2 · dist(L, f , d) steps until the lift L
stops at floor f and either arrives in direction d or waits at f to change its
direction. The distance is defined as follows. First, by |f |d we denote the
maximum distance that a lift can travel in direction d starting at floor f .

|f |d =
{

m − f , if d = up;
f , if d = down.

Then the distance to the lift L can be computed as follows, where e = dir(L)
and ` = floor(L):

dist(L, f , d) =

 |`|e − |f |d , if e = d and |f |d ≤ |`|e ;
|`|e + 2m − |f |d + 2, if e = d and |`|e < |f |d ;
|`|e + m − |f |d + 1, if e 6= d .

Remark 2.3.2. The proof does not exclude real-life situations with crowded
lifts, where requests may be satisfied logically, but the lack of capacity pre-
vents users from entering the lift. This problem has no logical solution, and
should be solved by providing more capacity (larger bandwidth) on the basis
of a performance analysis of the model.

Adding exception handling. Part of the requirements capture task is to
check that all the requirements have been analyzed. In large applications this
is a difficult task, whereas for the simple example here it is easy to check that
our Lift machine constructed so far fulfills all the requirements except num-
ber 4. We capture this requirement by a frequently occurring refinement step,
called incremental or conservative extension, adding an exception handling
machine to a machine which describes the functionality of faultless behavior.

Conservative extensions are typically used to incrementally introduce new
behavior in a modular and controllable fashion, e.g. robustness conditions.
To define a conservative extension of a given machine, one has to do the
following:

– Define the condition for the “new case” in which the new machine should
execute and the given machine either has no well-defined behavior or should
be prevented from executing. In the example this condition is expressed by
a shared Boolean-valued error function which is supposed to become true
when an emergency has happened.

60 2 ASM Design and Analysis Method

Fig. 2.15 Lift exception handling model

no yes

error(L)

repaired(L)

LIFT

error(L) := false

SendWarning

– Define the new machine with the desired additional behavior, e.g. an ex-
ception handling machine which is executed in case an error has been
thrown. The return from the “new” to the “old” machine, if there is any, is
typically a result of the computation of the new machine. For the lift the
new machine consists of two rules, an out-of-service entry rule with guard
error(L) = true to SendWarning to the site manager, and an exit rule
with guard, say repaired(L) = true, to cancel the “out-of service” status
(reset error) for returning in the normal case machine. No requirement has
been formulated for the service action proper, so that there is no further
rule to be defined here.

– Add the new machine and restrict the given machine to the “old case” by
guarding it by the negation of the “new case” condition, in the example
error(L) 6= true.

The resulting machine is defined in Fig. 2.15 (where we omit depicting the
two control states normal, in which error(L) is checked, and out-of-service in
which repaired(L) is checked). It satisfies requirement 4 (see Exercise 2.3.4).
A real-life example which follows the rather typical pattern explained here for
the simple lift control is the refinement of the Java machine by an exception
handling mechanism that has been proven to be correct in [406, Chap. 6].

Scheduling refinement. If one wants to separate the investigation of the
correctness conditions for single lifts from an analysis – in a dedicated re-
finement step – of the possible schedulings for a set of multiple lifts, one can
synchronize all lift instances in parallel, guaranteeing the independence of
their actions and the preservation of the properties shown above for every
instance of Lift. In the following definition we denote by Lift(L) the result
of replacing this by L in Lift .

ParLift = forall L ∈ Lift do Lift(L)

Such a parallel lift machine makes all lifts attracted by all external calls,
i.e. where existsCallFromTo(floor , d) is true for some direction d so that
it can happen that the same request is serviced by every lift. This can be
avoided by introducing a scheduler scheduledTo which assigns exactly one lift

2.3 Explanation by Example: Correct Lift Control 61

to each external call. A modular way to achieve this for our Lift machine
is to refine the interface predicates HasToVisit, CanContinue and the
CancelRequest macro defined in Def. 2.3.1, strengthening48 the listening
to every external request from a floor F by the more specific listening to
a request from the scheduler, namely L = scheduledTo(floor , dir). Thus we
obtain a lift ParLift with scheduler by replacing Def. 2.3.1 with the following
one.

Definition 2.3.2. A Lift has to visit a floor, if inside the lift the button for
that floor is pressed, or on that floor a request has been made and the lift
has been selected by the scheduler.49

HasToVisit(L,floor) ⇐⇒ hasToDeliverAt(L,floor) or
∃dir : existsCallFromTo(floor , dir) and L = scheduledTo(floor , dir)

CanContinue(L) ⇐⇒ Attracted(dir(L),L) and
not hasToDeliverAt(L,floor(L)) and
not (existsCallFromTo(floor(L), dir(L)) and

L = scheduledTo(floor(L), dir(L)))

To refine CancelRequest we guard the canceling of an external request
from a floor for a direction by L = scheduledTo(floor(L), dir). Under appro-
priate assumptions, scheduledTo can be proved to preserve the correctness
properties for ParLift, though this may lead to longer waiting times for the
lift users (see Exercise 2.3.5).

CancelRequest(dir ,L) =
hasToDeliverAt(L,floor(L)) := false
if L = scheduledTo(floor(L), dir) then

existsCallFromTo(floor(L), dir) := false

Refinement to requirement changes. We illustrate with two small ex-
amples how to exploit modeling with ASMs for “design-for-change”, namely
by refinements which cope with additional requirements brought in after the
original design task has been accomplished. Consider the additional request
to schedule only non-crowded lifts. This can be accommodated by constrain-
ing the scheduler scheduledTo to choose only lifts which are nonCrowded ,
but at a price: such a simple minded refinement of the scheduling affects the
48 One could think of simply replacing the predicate existsCallFromTo(F ,Dir)

by L = scheduledTo(F ,Dir), but that would lead to a less modular re�ne-
ment. The modularity of our re�nement implies also that we leave it to the
scheduler and not to the lift’s request canceling to invalidate the scheduling
L = scheduledTo(F ,Dir) once this order has been executed.

49 For purposes of modularization one could assume that scheduledTo(floor , dir)
implies existsCallFromTo(floor , dir), so that listening to external calls in the
macro HasToVisit becomes replacable by listening to the scheduler.

62 2 ASM Design and Analysis Method

correctness property in Proposition 2.3.1, namely in case of a continuously
crowded lift. We leave it as an exercise to construct a counter-example.

Consider the additional request to reserve a lift Ln,m for a floor section,
say [n,m], and floor 1 with 1 < n < m. It suffices to

– constrain the internal call function hasToDeliverAt(Ln,m) to those floors,
– restrict the external call function existsCallFromTo for those floors to calls

within that section – a “hardware” requirement,
– restrict the scheduler scheduledTo to take into account the requested target

section.

The correctness property is relativized to the served section (see Exer-
cise 2.3.6).

References. In the literature there are numerous formalizations for the lift
control. See in particular the Petri net in [371, Sect. 4, Fig. 26] and the B
machine in [5, Sect. 8.3] (which has inspired our Lift ASM).

2.3.1 Exercises

Exercise 2.3.1. (; CD) Prove Lemma 2.3.1.

Exercise 2.3.2. (; CD) Prove Lemma 2.3.2 by an induction on runs of an
arbitrary L ∈ Lift .

Exercise 2.3.3. (; CD) Prove Lemma 2.3.3.

Exercise 2.3.4. Show the machine in Fig. 2.15 to satisfy requirement 4.

Exercise 2.3.5. Formulate assumptions on the scheduler scheduledTo under
which it can be proved to preserve the correctness properties for ParLift.
Show by an example that this refinement may lead to longer waiting times
for the lift users.

Exercise 2.3.6. Prove the correctness property for Ln,m .

Exercise 2.3.7. (; CD) Refine the above Lift ASM to an executable pro-
gram of a programming language of your choice.

Exercise 2.3.8. (; CD) Extend the Lift ASM by introducing opening and
closing doors first as atomic action, then as durative action, then together
with error handling for cases where doors do not open or close.

2.4 Detailed De�nition (Math. Foundation) 63

2.4 Detailed Definition (Math. Foundation)

In this section we provide a detailed mathematical definition for the syn-
tax and semantics of ASMs. We first introduce the notion of the abstract
state and summarize some elementary definitions from mathematical logic.
Then we proceed to the update set semantics of ASM transition rules, in-
cluding already the extension by sequencing and calling turbo submachines,
which is explained in Chap. 4. Finally, we extend it to ASMs with a reserve,
mathematically clarifying what the introduction of fresh elements means in
a parallel context where multiple independent choices of new elements may
take place simultaneously.50 The mathematical definition will be extended to
asynchronous multi-agent ASMs in Sect. 6.1. The reader is advised to skip
this section and to come back to it only should the need be felt during further
reading of the book.

2.4.1 Abstract States and Update Sets

The states of ASMs are algebraic structures as introduced in standard math-
ematical logic or universal algebra textbooks. Algebraic structures can be
viewed as abstract memories. The arguments of the functions are the loca-
tions of the memory, whereas the values of the functions are its contents. In
a similar way relational structures are sometimes viewed as databases. The
tuples of the relations correspond to the rows of the database tables.

Definition 2.4.1 (Signature). A signature Σ is a finite collection of func-
tion names. Each function name f has an arity, a non-negative integer.
Nullary function names are called constants. Function names can be static or
dynamic. The dynamic functions are further classified according to Fig. 2.4.
Every ASM signature is assumed without further mention to contain the
static constants undef , true, false.

Signatures are also called vocabularies. The arity of a function name is the
number of arguments that the function takes. Be aware that, as we will see
below, the interpretation of dynamic nullary functions can change from one
state to the next, so that they correspond to the variables of programming.

Example 2.4.1. The signature Σbool of Boolean algebras contains two con-
stants 0 and 1, a unary function name ‘−’ and two binary function names
‘+’ and ‘∗’.

Definition 2.4.2 (State). A state A for the signature Σ is a non-empty
set X , the superuniverse of A, together with interpretations of the function
names of Σ. If f is an n-ary function name of Σ, then its interpretation f A

is a function from X n into X ; if c is a constant of Σ, then its interpretation
cA is an element of X . The superuniverse X of the state A is denoted by |A|.

50 For lecture slides see AsmDefinition (; CD).

64 2 ASM Design and Analysis Method

The superuniverse of a state is also called the base set of the state. The
elements of a state are the elements of the superuniverse of the state. It is
assumed without further mention that the interpretations of the constants
undef , true, false are always pairwise different elements in any state. The
constant undef represents an undetermined object, the default value of the
superuniverse.

Formally, function names are interpreted in states as total functions. We
view them, however, as being partial and define the domain of an n-ary
function name f in A to be the set of all n-tuples (a1, . . . , an) ∈ |A|n such
that f A(a1, . . . , an) 6= undef A.

A relation is a function that has always the value true, false or undef .
Think about an n-ary relation R as the set of all n-tuples (a1, . . . , an) such
that R(a1, . . . , an) = true. We allow relations to be partial.51

In applications, the superuniverse X of a state A is usually divided into
smaller universes, modeled by their characteristic functions (unary relations).
The universe represented by R is the set of all elements a of A for which
R(a) = true. If a unary function R represents a universe, then we simply
write a ∈ R as an abbreviation for the formula R(a) = true.

Example 2.4.2. Consider the two states A and B for the signature Σbool

of Example 2.4.1. The superuniverse of the state A is the set {0, 1}. The
functions are interpreted as follows, where a, b are 0 or 1:

0A = 0 (zero)
1A = 1 (one)
−Aa = 1− a (logical complement)
a +A b = max(a, b) (logical or)
a ∗A b = min(a, b) (logical and)

The superuniverse of the state B is the power set of the set of non-negative
integers N. The functions are interpreted as follows, where a, b are subsets
of N:

0B = ∅ (empty set)
1B = N (full set)
−Ba = N \ a (set of all n ∈ N such that n /∈ a)
a +B b = a ∪ b (set of all n ∈ N such that n ∈ a or n ∈ b)
a ∗B b = a ∩ b (set of all n ∈ N such that n ∈ a and n ∈ b)

51 We deviate from [248] in this point. Our relations are functions that can be par-
tial and hence take the value undef , whereas in [248] relations (or predicates) are
total functions that can only take the values true or false. The treatment of re-
lations as possibly partial functions simpli�es, for example, the reserve condition
in Def. 2.4.23. Unlike [248] we distinguish also between terms and formulas (see
Sect. 2.4.2). The guards of if-then-else rules, which are boolean terms in [248],
are formulas in our framework. Since the only atomic formulas are equations
between terms which are either true or false by de�nition, formulas are always
de�ned and we do not have to worry about unde�ned guards in if-then-else
rules. Note that the main reason for restricting predicates to total boolean func-
tions in [248] is to ensure that boolean terms are always true or false.

2.4 Detailed De�nition (Math. Foundation) 65

Both states, A and B, are so-called Boolean algebras.

Example 2.4.3. The memory of a computer system can be viewed as an al-
gebraic structure. Let us assume that the machine uses a 64-bit processor.
Then the superuniverse of a state for the system is the set {0, 1}64 consisting
of all 64-bit strings. The constants 0, 1 and the basic functions +, ∗ have their
standard interpretation. In addition there is a unary dynamic function mem.
The value mem(i) is the content of cell i in the memory. The expression
mem(i + mem(j)) denotes the content of cell i + mem(j), etc.

In dynamic situations, it is convenient to view an abstract state as a kind
of memory that maps locations to values.

Definition 2.4.3 (Location). A location of A is a pair (f , (a1, . . . , an)),
where f is an n-ary function name and a1, . . . , an are elements of |A|. The
value f A(a1, . . . , an) is called the content of the location in A. The elements
of the location are the elements of the set {a1, . . . , an}.

A state A can be viewed as a function that maps the locations of A to its
contents. We write A(l) for the content of the location l in A.

Definition 2.4.4 (Update and update set). An update for A is a pair
(l , v), where l is a location of A and v is an element of |A|. The update is
trivial, if v is the content of l in A. An update set is a set of updates.

The meaning of the update is that the content of the location l in A has
to be changed to the value v . An update specifies how the function table of
a dynamic function has to be updated at the corresponding location. Since
due to the parallelism a transition rule may prescribe updating the same
function at the same arguments several times, we require such updates to
be consistent. Two updates clash, if they refer to the same location but are
distinct.

Definition 2.4.5 (Consistent update set). An update set U is called
consistent, if it has no clashing updates, i.e. if for any location l and all
elements v ,w , it is true that if (l , v) ∈ U and (l ,w) ∈ U , then v = w .

If an update set U is consistent, it can be fired in a given state. The result
is a new state in which the interpretations of dynamic function names are
changed according to U . The interpretations of static function names are the
same as in the old state.

Definition 2.4.6 (Firing of updates). The result of firing a consistent
update set U in a state A is a new state A + U with the same superuniverse
as A such that for every location l of A:

(A + U)(l) =
{

v , if (l , v) ∈ U ;
A(l), if there is no v with (l , v) ∈ U .

The state A + U is called the sequel of A with respect to U .

66 2 ASM Design and Analysis Method

Since U is consistent, the state A + U is determined in a unique way.
Note that only those locations can have a new content in state A + U with
respect to state A for which there is an update in U .

Given two states A and B with the same superuniverse and the same
signature, there always exists a unique set of non-trivial updates that can be
fired in state A to obtain state B. This update set is called the difference
B− A of B and A.

Definition 2.4.7 (Difference). Let A and B be two states with the same
superuniverse. Then B− A = {(l ,B(l)) | B(l) 6= A(l)}.

The difference B−A of two states is always a consistent update set. Hence
it can be fired in state A, and the result is the state B.

Lemma 2.4.1. A + (B− A) = B.

The basic idea of an abstract state is that the internal structure of the
superuniverse is not important. The internal representation of the elements
of an abstract state is hidden. What matters are the operations than can be
performed on the elements. This principle of information hiding is expressed
by the notion of an isomorphism. If the superuniverses of two abstract states
can be mapped to each other one-to-one and the interpretations of the func-
tions agree on corresponding elements, then the states are identified.

Before we introduce isomorphisms of abstract states, we define how func-
tions that are defined on the superuniverse of an abstract state are extended
to locations and update sets in the obvious way. A function α with domain |A|
is extended to locations of A and update sets for A as follows:

– If l = (f , (a1, . . . , an)), then α(l) = (f , (α(a1), . . . , α(an))).
– If U is an update set for A, then α(U) = {(α(l), α(v)) | (l , v) ∈ U }.

A homomorphism is a function from one state into another that maps
the content of a location to the content of the corresponding location in the
other state.

Definition 2.4.8 (Homomorphism). Let A and B be two states over the
same signature. A homomorphism from A to B is a function α from |A|
into |B| such that α(A(l)) = B(α(l)) for each location l of A.

Example 2.4.4. Consider the two boolean algebras A and B from Exam-
ple 2.4.2. Let n ∈ N. For a subset X ⊆ N define

αn(X) =
{

1, if n ∈ X ;
0, otherwise.

Then αn is a homomorphism from B to A.

Definition 2.4.9 (Isomorphism). An isomorphism from A to B is a homo-
morphism from A to B which is a one-to-one function from |A| onto |B|. Two
states A and B are called isomorphic, if there exists an isomorphism from A
to B.

2.4 Detailed De�nition (Math. Foundation) 67

The following lemma says that if two states are isomorphic, then their
sequels with respect to a consistent update set are also isomorphic.

Lemma 2.4.2. Let α be an isomorphism from A to B. If U is a consistent
update set for A, then α(U) is a consistent update set for B and α is an
isomorphism from A + U to B + α(U).

Proof. That the update set α(U) is consistent follows, since α is one-one.
To show that α is a homomorphism from A + U to B + α(U), we take an
arbitrary location l of A.
If the update (l , v) is in U , then the update (α(l), α(v)) is in α(U). By
Def. 2.4.6, (A + U)(l) = v and (B + α(U))(α(l)) = α(v).
If there is no update for l in U , then there is also no update for α(l) in α(U).
Hence, by Def. 2.4.6, (A + U)(l) = A(l) and (B + α(U))(α(l)) = B(α(l)).
Since α is a homomorphism from A to B, we have α(A(l)) = B(α(l)). ut

The composition U ⊕V of two update sets U and V is the set of updates
obtained from U by adding the updates of V and overwriting updates in U
which are redefined in V . The composition of update sets corresponds to the
sequential application of the updates.

Definition 2.4.10 (Composition of update sets).

U ⊕V = V ∪ {(l , v) ∈ U | there is no w with (l ,w) ∈ V }

The composition of update sets is associative. If U and V are consistent,
then U ⊕V is consistent, too. Applying the update set U ⊕V to state A is
the same as first applying U and then V .

Lemma 2.4.3. Let U ,V ,W be update sets.

1. (U ⊕V)⊕W = U ⊕ (V ⊕W)
2. If U and V are consistent, then U ⊕V is consistent.
3. If U and V are consistent, then A + (U ⊕V) = (A + U) + V .

2.4.2 Mathematical Logic

In first-order logic (FOL), terms and formulas play a central role. Terms
and formulas are syntactic objects. They are interpreted in abstract states.
Terms denote elements of the states, whereas formulas denote properties of
the elements. Terms are built up from variables and constants using function
names. Formulas are built up from equations between terms using boolean
connectives and quantifiers. Terms are denoted by r , s, t ; formulas are denoted
by ϕ,ψ. Variables are a special kind of identifier and are denoted by x , y , z .

Definition 2.4.11 (Term). Let Σ be a signature. The terms of Σ are syn-
tactic expressions generated as follows:

68 2 ASM Design and Analysis Method

1. Variables x , y , z , . . . are terms.
2. Constants c of Σ are terms.
3. If f is an n-ary function name of Σ, n > 0, and t1, . . . , tn are terms, then

f (t1, . . . , tn) is a term.

A term which does not contain variables is called a ground term. A term
is called static, if it contains static function names only. By t s

x we denote
the result of replacing the variable x in term t everywhere by the term s
(substitution of s for x in t).

Example 2.4.5. The following are terms of the signature Σbool:

+(x , y), +(1, ∗(z , 0))

They are usually written as x + y and 1 + (z ∗ 0).

Since terms are syntactic objects, they do not have a meaning. A term
can be evaluated in a state, if elements of the superuniverse are assigned to
the variables of the term.

Definition 2.4.12 (Variable assignment). Let A be a state. A variable
assignment for A is a finite function ζ which assigns elements of |A| to a finite
number of variables. We write ζ[x 7→ a] for the variable assignment which
coincides with ζ except that it assigns the element a to the variable x . So we
have:

ζ[x 7→ a](y) =
{

a, if y = x ;
ζ(y), otherwise.

Variable assignments are also called environments. The range ran(ζ) of a
variable assignment ζ is the set of all elements that occur in bindings of ζ.

Given a variable assignment a term can be interpreted in a state.

Definition 2.4.13 (Interpretation of terms). Let A be a state of Σ, ζ be
a variable assignment for A and t be a term of Σ such that all variables of t
are defined in ζ. By induction on the length of t , a value [[t]]Aζ is defined as
follows:

1. [[x]]Aζ = ζ(x)
2. [[c]]Aζ = cA

3. [[f (t1, . . . , tn)]]Aζ = f A([[t1]]Aζ , . . . , [[tn]]Aζ)

The interpretation of t depends on the values of ζ on the variables of t only.

Lemma 2.4.4 (Coincidence). If ζ and η are two variable assignments for t
such that ζ(x) = η(x) for all variables x of t , then [[t]]Aζ = [[t]]Aη .

A homomorphism from one state into another preserves the values of
terms. By α ◦ ζ we denote the variable assignment that binds a variable x
defined in ζ to the value α(ζ(x)).

2.4 Detailed De�nition (Math. Foundation) 69

Lemma 2.4.5 (Homomorphism). If α is a homomorphism from A to B,
then α([[t]]Aζ) = [[t]]Bα◦ζ for each term t .

If we substitute the term s for the variable x in t and evaluate the result
t s

x in a state A under a variable assignment ζ, then we obtain the same value
as when we first evaluate s in A under ζ and then the term t in A under
the extended variable assignment, where the variable x is bound to the value
of s.

Lemma 2.4.6 (Substitution). Let a = [[s]]Aζ . Then [[t s
x]]Aζ = [[t]]Aζ[x 7→a].

Example 2.4.6. Consider the state A for Σbool of Example 2.4.2. Let ζ be a
variable assignment with ζ(x) = 0, ζ(y) = 1 and ζ(z) = 1. Then we have:

[[(x + y) ∗ z]]Aζ = 1.

The same term can be interpreted in the state B of Example 2.4.2. Let
η(x) = {2, 3, 5}, η(y) = {2, 7} and η(z) = {3, 7, 11}. Then we have:

[[(x + y) ∗ z]]Bη = {3, 7}.

In the first case, the value of the term is a non-negative integer, whereas
in the second case the value of the term is a set of non-negative integers.
If we take the homomorphism α7 from Example 2.4.4, then ζ = α7 ◦ η and
α7({3, 7}) = 1.

Definition 2.4.14 (Formula). Let Σ be a signature. The formulas of Σ
are generated as follows:

1. If s and t are terms of Σ, then s = t is a formula.
2. If ϕ is a formula, then ¬ϕ is a formula.
3. If ϕ and ψ are formulas, then (ϕ∧ψ), (ϕ∨ψ) and (ϕ→ ψ) are formulas.
4. If ϕ is a formula and x a variable, then (∀x ϕ) and (∃x ϕ) are formulas.

The logical connectives and quantifiers have the standard meaning:

symbol name meaning
¬ negation not
∧ conjunction and
∨ disjunction or (inclusive)
→ implication if-then
∀ universal quantification for all
∃ existential quantification there is

The equivalence ϕ ↔ ψ is defined by (ϕ → ψ) ∧ (ψ → ϕ). A formula
s = t is called an equation. The expression s 6= t is an abbreviation for the
formula ¬(s = t). In order to increase the readability of formulas parentheses
are often omitted. For example, the following conventions are used:

70 2 ASM Design and Analysis Method

Table 2.1 The semantics of formulas

[[s = t]]Aζ =

{
true, if [[s]]Aζ = [[t]]Aζ ;
false, otherwise.

[[¬ϕ]]Aζ =

{
true, if [[ϕ]]Aζ = false;
false, otherwise.

[[ϕ ∧ ψ]]Aζ =

{
true, if [[ϕ]]Aζ = true and [[ψ]]Aζ = true;
false, otherwise.

[[ϕ ∨ ψ]]Aζ =

{
true, if [[ϕ]]Aζ = true or [[ψ]]Aζ = true;
false, otherwise.

[[ϕ→ ψ]]Aζ =

{
true, if [[ϕ]]Aζ = false or [[ψ]]Aζ = true;
false, otherwise.

[[∀x ϕ]]Aζ =

{
true, if [[ϕ]]Aζ[x 7→a] = true for every a ∈ |A|;
false, otherwise.

[[∃x ϕ]]Aζ =

{
true, if there exists an a ∈ |A| with [[ϕ]]Aζ[x 7→a] = true;
false, otherwise.

ϕ ∧ ψ ∧ χ stands for ((ϕ ∧ ψ) ∧ χ),
ϕ ∨ ψ ∨ χ stands for ((ϕ ∨ ψ) ∨ χ),
ϕ ∧ ψ → χ stands for ((ϕ ∧ ψ)→ χ), etc.

The variable x is bound by the quantifier ∀ (∃ resp.) in ∀x ϕ (∃x ϕ resp.)
and the scope of x is the formula ϕ. A variable x occurs free in a formula, if
it is not in the scope of a quantifier ∀x or ∃x . A formula is called a sentence,
if it does not contain free variables. By ϕ t

x we denote the result of replacing
all free occurrences of the variable x in ϕ by the term t . Thereby, bound
variables of ϕ are renamed if necessary.

Formulas can be interpreted in a state with respect to a variable assign-
ment. Formulas are either true or false in a state and are therefore also called
Boolean-valued expressions. The truth value of a formula in a state is com-
puted recursively. The classical truth tables for the logical connectives and
the classical interpretation of quantifiers are used. The equality sign is inter-
preted as identity.

Definition 2.4.15 (Interpretation of formulas). Let A be a state of Σ,
ϕ be a formula of Σ and ζ be a variable assignment in A such that all free
variables of ϕ are defined in ζ. By induction on the length of ϕ, a truth value
[[ϕ]]Aζ is defined in Table 2.1.

Definition 2.4.16 (Range of a formula). The range of a formula ϕ with
respect to the variable x in a state A under ζ is the set of all elements of A
that make the formula true:

range(x , ϕ,A, ζ) = {a ∈ |A| : [[ϕ]]Aζ[x 7→a] = true}

2.4 Detailed De�nition (Math. Foundation) 71

The interpretation of a formula ϕ depends on the values of ζ on the free
variables of ϕ only.

Lemma 2.4.7 (Coincidence). If ζ and η are two variable assignments
for ϕ such that ζ(x) = η(x) for all free variables x of ϕ, then [[ϕ]]Aζ = [[ϕ]]Aη .

If we substitute a term t for a variable x in a formula ϕ and interpret the
resulting formula ϕ t

x in a state A with respect to a variable assignment ζ,
then we obtain the same truth value as when we first evaluate the term t in A
with respect to ζ, re-define the variable x in the environment to the value
of t and interpret the formula ϕ in A with respect to the new environment.

Lemma 2.4.8 (Substitution). Let t be a term and a = [[t]]Aζ .
Then [[ϕ t

x]]Aζ = [[ϕ]]Aζ[x 7→a].

Isomorphic structures satisfy the same formulas. An isomorphism between
two states preserves the truth value of formulas.

Lemma 2.4.9 (Isomorphism). Let α be an isomorphism from A to B.
Then [[ϕ]]Aζ = [[ϕ]]Bα◦ζ .

Formulas are often used to express properties of abstract states. They are
used to express properties of functions of an abstract state. They are also
used to express invariants in runs of ASMs.

Definition 2.4.17 (Model). We say that a state A is a model of ϕ (written
A |= ϕ), if [[ϕ]]Aζ = true for all variable assignments ζ for ϕ.

Example 2.4.7. The states A and B of Example 2.4.2 are models of the fol-
lowing equations:

(x + y) + z = x + (y + z), (x ∗ y) ∗ z = x ∗ (y ∗ z),
x + y = y + x , x ∗ y = y ∗ x ,
x + (x ∗ y) = x , x ∗ (x + y) = x ,
x + (y ∗ z) = (x + y) ∗ (x + z), x ∗ (y + z) = (x ∗ y) + (x ∗ z),
x + (−x) = 1, x ∗ (−x) = 0.

These formulas are called axioms of a Boolean algebra.

2.4.3 Transition Rules and Runs of ASMs

In mathematics, states like Boolean algebras are static. They do not change
over time. In computer science, states are dynamic. They evolve by being
updated during computations. Updating abstract states means to change the
interpretation of (some of) the functions of the underlying signature. The
way ASMs update states is described by transition rules of the following
form which define the syntax of ASM programs. The transition rules P , Q
are syntactic expressions generated as follows:

72 2 ASM Design and Analysis Method

1. Skip Rule: skip
Meaning: Do nothing.

2. Update Rule: f (s1, . . . , sn) := t
Syntactic condition: f is an n-ary dynamic function name of Σ
Meaning: Update the value of f at (s1, . . . , sn) to t .

3. Block Rule: P par Q
Meaning: P and Q are executed in parallel.

4. Conditional Rule: if ϕ then P else Q
Meaning: If ϕ is true, then execute P , otherwise execute Q .

5. Let Rule: let x = t in P
Meaning: Assign the value of t to x and then execute P .

6. Forall Rule: forall x with ϕ do P
Meaning: Execute P in parallel for each x satisfying ϕ.

7. Choose Rule: choose x with ϕ do P
Meaning: Choose an x satisfying ϕ and then execute P .

8. Sequence Rule: P seq Q
Meaning: P and Q are executed sequentially, first P and then Q .

9. Call Rule: r(t1, . . . , tn)
Meaning: Call transition rule r with parameters t1, . . . , tn .

The variables x in let, forall and choose are logical variables (also called
read only variables). Their values cannot be updated by a transition rule and
are not stored in the state but in a finite environment. The scope of x in
let is the rule P (but not the term t), whereas the scope of x in forall and
choose is the formula ϕ and the transition rule P .

let x = t in P︸︷︷︸
scope of x

forall x with ϕ do P︸ ︷︷ ︸
scope of x

choose x with ϕ do P︸ ︷︷ ︸
scope of x

An occurrence of a variable x is free in a transition rule, if it is not in the
scope of a let x , forall x or choose x .

Definition 2.4.18 (Rule declaration). A rule declaration for a rule name r
of arity n is an expression

r(x1, . . . , xn) = P ,

where P is a transition rule and the free variables of P are contained in the
list x1, . . . , xn .

In a rule call r(t1, . . . , tn) the variables xi in the body P of the rule
declaration are replaced by the parameters ti . Since here we have no concept
of global variables, the formal parameters of the head are the only freely
occurring variables in the body of rule declarations.

Definition 2.4.19 (ASM). An abstract state machine M consists of a sig-
nature Σ (including a classification of functions according to Fig. 2.4), a set
of initial states for Σ, a set of rule declarations, and a distinguished rule
name of arity zero called the main rule name of the machine.

2.4 Detailed De�nition (Math. Foundation) 73

In a given state, a transition rule of an ASM produces for each variable
assignment an update set. Since the rule can contain recursive calls to other
rules, it is also possible that it has no semantics at all. The semantics of a
transition rule is therefore defined by a calculus in Table 2.2.

Definition 2.4.20 (Semantics of transition rules). A transition rule P
yields the update set U in state A under a variable assignment ζ, iff
yields(P ,A, ζ,U) is derivable in the calculus in Table 2.2.

The calculus in Table 2.2 depends on the rule declarations of a given
ASM M . If we want to emphasize the dependence on M we say that a tran-
sition rule P yields the update set U in state A under ζ with respect to M .

If the rule declarations of M do not contain choose, then for each tran-
sition rule P there is at most one update set U such that yields(P ,A, ζ,U)
is derivable in Table 2.2. This unique update set is sometimes denoted by
[[P]]Aζ , if it exists.

Rules are called by name. This means that in a call r(t1, . . . , tn) the
variables x1, . . . , xn are replaced in the body P of the rule by the param-
eters t1, . . . , tn . The parameters are not evaluated in the state where the rule
is called but only later when it is used in the body (maybe in different states
due to sequential compositions). Call-by-value evaluation of rule calls can be
simulated as follows:

r(y1, . . . , yn) = (let x1 = y1, . . . , xn = yn in P)

Then upon calling r(t1, . . . , tn) the parameters are evaluated in the same
state.

For the practice of modeling it is useful to generalize the call-by-name
semantics of rule calls to rule declarations with location variables and rule
variables. In this extension of ASMs each formal parameter of a rule decla-
ration is either a logical variable as above or a location variable or a rule
variable. In the body of the rule declaration, a location variable l can be used
in terms and also on the left-hand side of an update as in l := t . A rule
variable can be used at places where transition rules are expected. In a rule
call, a logical variable has to be replaced by a term; a location variable has to
be replaced by a location term, which is a term that starts with a dynamic
function name; a rule variable has to be replaced by a transition rule. After
the substitution, the body must be a correct transition rule. Location vari-
ables are used in ASM macros like the Swap macro on p. 40. Rule variables
are used in rule schemes.

Since there are no global variables in the rule declarations of an ASM, the
semantics of a transition rule depends on the values of ζ on the free variables
of the rule only. Hence, if a rule is closed (does not contain free variables),
its semantics depends on the state only.

Lemma 2.4.10 (Coincidence). If ζ(x) = η(x) for all free variables x of a
transition rule P and P yields U in A under ζ, then P yields U in A under η.

74 2 ASM Design and Analysis Method

Table 2.2 Inductive definition of the semantics of ASM rules

yields(skip,A, ζ, ∅)

yields(f (s1, . . . , sn) := t ,A, ζ, {(l , v)})
where l = (f , ([[s1]]Aζ , . . . , [[sn]]Aζ))

and v = [[t]]Aζ

yields(P ,A, ζ,U) yields(Q ,A, ζ,V)

yields(P par Q ,A, ζ,U ∪V)

yields(P ,A, ζ,U)

yields(if ϕ then P else Q ,A, ζ,U)
if [[ϕ]]Aζ = true

yields(Q ,A, ζ,V)

yields(if ϕ then P else Q ,A, ζ,V)
if [[ϕ]]Aζ = false

yields(P ,A, ζ[x 7→ a],U)

yields(let x = t in P ,A, ζ,U)
where a = [[t]]Aζ

yields(P ,A, ζ[x 7→ a],Ua) for each a ∈ I

yields(forall x with ϕ do P ,A, ζ,
⋃

a∈I Ua)
where I = range(x , ϕ,A, ζ)

yields(P ,A, ζ[x 7→ a],U)

yields(choose x with ϕ do P ,A, ζ,U)
if a ∈ range(x , ϕ,A, ζ)

yields(choose x with ϕ do P ,A, ζ, ∅) if range(x , ϕ,A, ζ) = ∅

yields(P ,A, ζ,U) yields(Q ,A + U , ζ,V)

yields(P seq Q ,A, ζ,U ⊕V)
if U is consistent

yields(P ,A, ζ,U)

yields(P seq Q ,A, ζ,U)
if U is inconsistent

yields(P t1···tn
x1···xn

,A, ζ,U)

yields(r(t1, . . . , tn),A, ζ,U)

where r(x1, . . . , xn) = P is a
rule declaration of M

If we substitute a static term t for a variable x in a transition rule P
and execute the rule P t

x in a state A under a variable assignment ζ, then we
obtain the same update set as when we first evaluate the term t in A under ζ,
re-define the variable x in the environment to the value of t and execute the
rule P in A under the new environment.

Lemma 2.4.11 (Substitution). Let t be a static term and a = [[t]]Aζ . Then
the rule P t

x yields the update set U in state A under ζ iff P yields U in A
under ζ[x 7→ a].

An ASM is not allowed to depend on the internal structure of the base
set of a state. Everything on which the ASM depends must be explicit in the
state and the functions of the state. If two states are isomorphic, then the
update sets produced by a transition rule can be mapped to each other by
the same isomorphism.

2.4 Detailed De�nition (Math. Foundation) 75

Lemma 2.4.12 (Isomorphism). If α is an isomorphism from A to B and
P yields U in A under ζ, then P yields α(U) in B under α ◦ ζ.

A move of an ASM consists of firing the updates produced by the main
rule of the machine, if they do not clash. A move is a single computation
step in the run of an ASM. Since the main rule of an ASM does not have
parameters and there are no free global variables in the rule declarations of
an ASM, the notion of a move does not depend on a variable assignment.

Definition 2.4.21 (Move of an ASM). We say that a machine M can
make a move from state A to B (written A

M=⇒ B), if the main rule of M
yields a consistent update set U in state A and B = A + U . The updates in
U are called internal updates, to be distinguished from the possible updates
of monitored or shared locations; B is called the next internal state.

If α is an isomorphism from state A to A′ and M can make a move from A
to B, then by Lemma 2.4.2 and Lemma 2.4.12 the machine M can also make
a move from A′ to B′, where B′ is the isomorphic image of B under α, i.e.,
the following diagram commutes:

A
M=⇒ B

α ↓ ↓ α

A′
M=⇒ B′

A run of an ASM starts in an initial state of the machine. As long as
the machine can make a move, the run proceeds, requiring only that the
interspersed moves of the environment, namely to update monitored or shared
locations, produce a consistent state for the next machine move.52 If in a state
the machine cannot produce a consistent update set or no update set at all
(due to non-termination of a recursion), then the state is considered to be
the last state in the run. Because of the non-determinism of the choose rule
and of moves of the environment, an ASM can have several different runs
starting in the same initial state.

Definition 2.4.22 (Run of an ASM). Let M be an ASM with signa-
ture Σ. A run of M is a finite or infinite sequence A0,A1, . . . of states for Σ
such that A0 is an initial state of M and for each n, either M can make a
move from An into the next internal state A′n and the environment produces
a consistent set of external or shared updates U such that An+1 = A′n + U ,
or M cannot make a move in state An and An is the last state in the run.
52 Unless otherwise stated, we avoid the commitment to particular scheduling or

timing schemes. We stipulate only that after every move of an ASM which pro-
duces its next internal state, if there are some environment moves, then they must
provide a stable next state where the subsequent ASM move can take place. This
includes the possibility of data exchange via input/output between machine and
environment.

76 2 ASM Design and Analysis Method

Sometimes we distinguish internal runs, where after the initial state the
environment makes no move, from runs with interspersed environment moves
which are then also called interactive runs. In applications, the external up-
dates in interactive runs are often further restricted by stating constraints
which are required to hold in all (but not necessarily in the internal) states
of the run. The constraints express preconditions on the behavior of the en-
vironment. Often the constraints are stated as first-order formulas that have
to hold in every state.

Remark 2.4.1 (Choice functions). Sometimes one can replace the choose
operator by monitored choice functions so that the choices are made by the
environment and not by the system. For example, if we know that in each
possible state of an ASM the formula

∀x (ϕ(x)→ ∃y ψ(x , y))

is true, then we can replace the transition rule

forall x with ϕ(x) do
choose y with ψ(x , y) do R(x , y)

by the simpler

forall x with ϕ(x) do R(x , f (x))

where f is a monitored function that has to satisfy, in each state, ψ(x , f (x))
for every x with ϕ(x). In case we do not know that for each x an appropriate y
can be chosen, we have to require that the function f satisfies

∀x (ϕ(x) ∧ ∃y ψ(x , y)→ ψ(x , f (x))

and to insert an additional guard as follows:

forall x with ϕ(x) do
if ψ(x , f (x)) then R(x , f (x))

In general, each occurrence of choose needs its own choice function that
depends on the enclosing forall and choose variables.

2.4.4 The Reserve of ASMs

Algorithms often need to increase their working space. This is reflected in
ASMs by an import construct operating on a possibly infinite reserve set.
In this section we provide three rules for this construct which guarantee that
parallel imports yield fresh (pairwise different) elements and that permuta-
tions of the reserve set do not change the semantics of ASM rules, i.e. that the
semantics does not depend on which reserve elements are chosen by import.

The ASM reserve set is part of the base set. New elements are allocated
using the construct

2.4 Detailed De�nition (Math. Foundation) 77

Table 2.3 The semantics of ASMs with a reserve

yields(P ,A, ζ[x 7→ a],U)

yields(import x do P ,A, ζ,V)

if a ∈ Res(A) \ ran(ζ) and
V = U ∪ {((Reserve, a), false)}

yields(P ,A, ζ,U) yields(Q ,A, ζ,V)

yields(P par Q ,A, ζ,U ∪V)
if Res(A) ∩ El(U) ∩ El(V) ⊆ ran(ζ)

yields(P ,A, ζ[x 7→ a],Ua) for each a ∈ I

yields(forall x with ϕ do P ,A, ζ,
⋃

a∈I

Ua)

if I = range(x , ϕ,A, ζ) and for a 6= b
Res(A) ∩ El(Ua) ∩ El(Ub) ⊆ ran(ζ)

import x do P

which means “choose an element x from the reserve, delete it from the reserve
and execute P”. The special notation

let x = new(X) in P

is then a syntactic abbreviation for importing a new element, adding it to
the subuniverse X and executing P , i.e.

import x do
X (x) := true
P

The reserve of a state is represented using a special unary, dynamic re-
lation Reserve that cannot be updated directly by an ASM but will be up-
dated automatically upon execution of each import. The reserve Res(A) of
a state A is the set of elements a of A such that Reserve(a) = true in A. The
reserve elements of a state are not allowed to be in the domain and range
of any basic function of the state (except for the special relation Reserve).
This condition is expressed by the following definition, where the elements of
a location l = (f , (a1, . . . , an)) are the arguments a1, . . . , an .

Definition 2.4.23 (Reserve condition). We say that a state A satisfies
the reserve condition with respect to an environment ζ, if the following two
conditions hold for each element a ∈ Res(A) \ ran(ζ):

R1. The element a is not the content of a location of A.
R2. If a is an element of a location l of A which is not a location for Reserve,

then the content of l in A is undef .

The new rules for import are listed in Table 2.3. Rather than using ac-
tions (equivalence classes of update sets modulo permutations of the reserve,
see [248]), we add additional constraints to the rules for par and forall. By
El(U) we denote the set of elements that occur in the updates of an update
set U . The elements of an update (l , v) are the value v and the elements of
the location l .

78 2 ASM Design and Analysis Method

When a new element is imported by import we require that it is an
element of the reserve of A but does not occur in the range of the variable
assignment ζ which possibly contains other new elements that are imported
in the same step. The variable is bound to the new element and the body of
the import rule is executed in the new environment. The function Reserve
is updated at the new element to false (by the system and not directly by
the ASM).

The constraint for P par Q says that the reserve elements of the update
set U for P are disjoint from the reserve elements of the update set V for Q
except for reserve elements in the range of ζ. We have to exclude the range
of ζ, since otherwise the execution of a rule like

import x do (f (x) := 0 par g(x) := 0)

would be impossible.
In order that the constraints in Table 2.3 work correctly, we have to require

that in the scope of a bound variable the same variable is not used again as
a bound variable (in a let, forall, choose, or import). Otherwise, it could
happen that a reserve element that is imported and bound to a variable is
hidden and then imported again as in the following example:

import x do
f (x) := 0 par
let x = 1 in

import y do f (y) := x

The same reserve element could be used for x as well as for y , since the
outermost x is hidden by the let and not visible in the environment, when y
is imported.

The range of a formula has to be redefined such that reserve elements
which are not in the range of the environment are excluded in the forall rule
and cannot be chosen in the choose rule (cf. Def. 2.4.16).

Definition 2.4.24 (Range of a formula). The range of a formula ϕ with
distinguished variable x in a state A under ζ is the set of all elements of A
that are not in Res(A) \ ran(ζ) and make the formula true:

range(x , ϕ,A, ζ) = {a ∈ |A| : a /∈ Res(A) \ ran(ζ), [[ϕ]]Aζ[x 7→a] = true}

The elements of Res(A) \ ran(ζ) have to be excluded, since otherwise the
transition rule

forall x with x = x do f (x) := 1

would fully exhaust the reserve in one step and destroy the reserve condition.
If the constraints in Table 2.3 are enforced and a transition rule yields a

consistent update set in a state that satisfies the reserve condition, then the
state also satisfies the reserve condition after firing the updates. Hence, the
reserve condition is preserved in runs of ASMs.

2.4 Detailed De�nition (Math. Foundation) 79

Lemma 2.4.13 (Preservation of the reserve condition). If a state A
satisfies the reserve condition wrt. ζ and P yields a consistent update set U
in A under ζ, then

1. for every element a of U which is in in the reserve of A but not in the
range of ζ, the update ((Reserve, a), false) is in U ,

2. the sequel A + U satisfies the reserve condition wrt. ζ.

Proof. We first show that statement 1 implies statement 2. Let l be a location
and v its content in A + U . Then either the update (l , v) is in U or v is the
content of l in A. We have to show that the reserve conditions R1 and R2 of
Def. 2.4.23 are satisfied in A + U . Let a be in Res(A + U) \ ran(ζ). Then a
is also in Res(A).
Case 1. (l , v) ∈ U : Then a cannot be an element of (l , v), since otherwise,
by 1, the update ((Reserve, a), false) would be in U and a could not be in
the reserve of A + U .
Case 2. A(l) = v : Since A satisfies the reserve condition wrt. ζ, a is different
from v and, if a is an element of l and l not a location for Reserve, then v is
undef .
Now we prove statement 1 by induction on the definition of “yields”. We
can assume that the bound variables of P are not in the domain of the
environment ζ. We consider the critical cases:
Case let: Assume that a = [[t]]Aζ and

yields(P ,A, ζ[x 7→ a],U)
yields(let x = t in P ,A, ζ,U)

Since A satisfies the reserve consider wrt. ζ and x is not in the domain of ζ,
the state A satisfies the reserve condition also with respect to the extended
environment ζ[x 7→ a]. Let b be an element of U which is in Res(A) \ ran(ζ).
Then b must be different from a, since the value of the term t in A under ζ
is the content of a location of A or an element in the range of ζ. Hence b
is in Res(A) \ ran(ζ[x 7→ a]) and, by the induction hypothesis, the update
((Reserve, b), false) is in U .
Case import: Assume that a ∈ Res(A) \ ran(ζ) and

yields(P ,A, ζ[x 7→ a],U)
yields(import x do P ,A, ζ,U ∪ {((Reserve, a), false)})

Let b be an element of U which is in Res(A) \ ran(ζ). If b = a, this case is
proven, since the update ((Reserve, a), false) is automatically added. Other-
wise, b is in Res(A) \ ran(ζ[x 7→ a]) and we can apply the induction hypoth-
esis.
Case seq: Assume that U is consistent and

80 2 ASM Design and Analysis Method

yields(P ,A, ζ,U) yields(Q ,A + U , ζ,V)
yields(P seq Q ,A, ζ,U ⊕V)

By the induction hypothesis for P and since statement 1 implies statement 2,
the state A + U satisfies the reserve condition wrt. ζ. Let a be an element of
U ⊕V which is in Res(A)\ran(ζ). If a is an element of an update of U , then
by the induction hypothesis for P , the update ((Reserve, a), false) is in U
and hence also in U ⊕ V . Otherwise, a is an element of an update of V . If
a is not in the reserve von A + U , then a must have been deleted from the
reserve of A by an update ((Reserve, a), false) of U . If a is in Res(A + U),
then by the induction hypothesis for Q , the update ((Reserve, a), false) is
in V and hence also in U ⊕V . ut

If a state satisfies the reserve condition with respect to a variable en-
vironment, then a permutation of the elements of the reserve that are not
in the range of the environment can always be extended to an automor-
phism of the abstract state which is the identity on the non-reserve elements
and the elements in the range of the environment. Hence, the Isomorphism
Lemma 2.4.12, which is also true for ASMs with a reserve, can be used to
rename the reserve elements using appropriate permutations.

Lemma 2.4.14 (Permutation of the reserve). Let A be a state that
satisfies the reserve condition wrt. ζ. If α is a function from |A| to |A| that
permutes the elements in Res(A) \ ran(ζ) and is the identity on non-reserve
elements of A and on elements in the range of ζ, then α is an isomorphism
from A to A.

Proof. Let l be a location of A with content v . If l does not contain elements of
Res(A)\ran(ζ), then α(l) = l . By R1 of Def. 2.4.23, v is not in Res(A)\ran(ζ)
and therefore α(v) = v .
If l contains an element of Res(A) \ ran(ζ), then so also does α(l). If l is not
a location for Reserve then, by R2 of Def. 2.4.23, we obtain that v = undef .
By R1 of Def. 2.4.23, undef is not in the reserve of A. Therefore, α maps
undef to undef and the content of α(l) is α(v). If l is a location for Reserve,
then v = true and, since α maps true to true, the content of α(l) is α(v). ut

The update set computed by a transition rule in a state is unique modulo
permutations of the reserve (if no choose is used). This is the mathematical
justification for the constraints in Table 2.3. The lemma is true only for ASMs
that produce finite update sets (see Exercise 2.4.15).

Lemma 2.4.15 (Independence of the choice of reserve elements).
Let P be a rule of an ASM without choose. If A satisfies the reserve condition
wrt. ζ and P yields two finite update sets U and U ′ in A under ζ, then there
exists a permutation α of Res(A) \ ran(ζ) such that α(U) = U ′.

2.4 Detailed De�nition (Math. Foundation) 81

Proof. By induction on the definition of “yields”. We assume that the bound
variables of P are not in the domain of ζ. We consider the critical cases.
Case import: Assume that a, a ′ ∈ Res(A) \ ran(ζ) and

yields(P ,A, ζ[x 7→ a],U)
yields(import x do P ,A, ζ,U ∪ {((Reserve, a), false)})

yields(P ,A, ζ[x 7→ a ′],U ′)
yields(import x do P ,A, ζ,U ′ ∪ {((Reserve, a ′), false)})

Let α be the permutation of Res(A) \ ran(ζ) that transposes a and a ′.
Since α is an automorphism of A and α ◦ (ζ[x 7→ a]) = ζ[x 7→ a ′], we can
apply Lemma 2.4.12 and obtain yields(P ,A, ζ[x 7→ a ′], α(U)).
Since x is not defined in ζ, we have ran(ζ[x 7→ a ′]) = ran(ζ) ∪ {a ′} and
therefore A satisfies the reserve condition wrt. ζ[x 7→ a ′]. By the induction
hypothesis, there exists a permutation β of Res(A)\(ran(ζ)∪{a ′}) such that
β(α(U)) = U ′. The composition β ◦ α is a permutation of Res(A) \ ran(ζ).
Since β(α(a)) = a ′, the function β ◦ α maps the update ((Reserve, a), false)
to ((Reserve, a ′), false).
Case par: Assume that

yields(P ,A, ζ,U) yields(Q ,A, ζ,V)
yields(P par Q ,A, ζ,U ∪V)

yields(P ,A, ζ,U ′) yields(Q ,A, ζ,V ′)
yields(P par Q ,A, ζ,U ′ ∪V ′)

and Res(A)∩El(U)∩El(V) ⊆ ran(ζ) and Res(A)∩El(U ′)∩El(V ′) ⊆ ran(ζ).
By the induction hypothesis there exist permutations α and β of the set
Res(A) \ ran(ζ) such that α(U) = U ′ and β(V) = V ′.
Let γ be the restriction of α ∪ β to El(U) ∪ El(V). The function γ is well-
defined. Let a be an element in El(U) ∩ El(V). If a is not in Res(A), then
α(a) = a = β(a). If a is in Res(A), then a ∈ ran(ζ) and α(a) = a = β(a).
The function γ is injective. Assume that α(a) = β(b), where a ∈ El(U) and
b ∈ El(V). Let c = α(a). If c is not in Res(A), then c = α(c) and therefore
a = α(a) = c = β(b) = b. If c is in Res(A), then c ∈ Res(A)∩El(U ′)∩El(V ′)
and therefore c ∈ ran(ζ) and c = α(c). As in the previous case, we can
conclude that a = b.
Since El(U)∪El(V) is finite, there exists a permutation δ of Res(A)\ ran(ζ)
such that δ(U) = γ(U) = α(U) = U ′, δ(V) = γ(V) = β(V) = V ′ and thus
δ(U ∪V) = U ′ ∪V ′.
Case seq: Assume that U and U ′ are consistent and

yields(P ,A, ζ,U) yields(Q ,A + U , ζ,V)
yields(P seq Q ,A, ζ,U ⊕V)

82 2 ASM Design and Analysis Method

yields(P ,A, ζ,U ′) yields(Q ,A + U ′, ζ,V ′)
yields(P seq Q ,A, ζ,U ′ ⊕V ′)

By the induction hypothesis there exists a permutation α of Res(A) \ ran(ζ)
such that α(U) = U ′. Since α is an automorphism of A (Lemma 2.4.14), it
is an isomorphism of A + U to A + U ′ (Lemma 2.4.2). Since α ◦ ζ = ζ, by
Lemma 2.4.12, it follows that yields(Q ,A + U ′, ζ, α(V)).
By Lemma 2.4.13, it follows that A+ U ′ satisfies the reserve condition wrt. ζ
and Res(A + U ′) \ ran(ζ) is contained in Res(A) \ El(U ′).
By the induction hypothesis, there exists a permutation β of
Res(A + U ′) \ ran(ζ) such that β(α(V)) = V ′.
Hence, β ◦α is a permutation of Res(A)\ran(ζ). Since β(U ′) = U ′, it follows
that (β ◦ α)(U ⊕V) = U ′ ⊕V ′. ut

Remark 2.4.2 (Syntax of ASMs). Table 2.4 contains some variations of the
syntax of ASMs that appear in the literature. If closing keywords are omit-
ted, then the corresponding opening keyword extends as much as possible,
indicated by indentation. In a parallel block, the keywords do in-parallel
and enddo are often omitted. In a sequential block, however, the keyword
step is often inserted before each transition rule. In writing ASMs, parallel
blocks (no keywords) are treated differently from sequential blocks (additional
keywords) because they are used more often. More often than the extend
construct we use the variation let x = new(D) in P , where the body P
is executed in parallel with placing the fresh element x into the set D , as
defined on p. 77.

2.4.5 Exercises

Exercise 2.4.1. (; CD) Prove Lemma 2.4.1 (Difference of states).

Exercise 2.4.2. (; CD) Let A and B be two states with the same supe-
runiverse and the same signature. Assume that α is an isomorphism from A
to A′ and also an isomorphism from B to B′. Show that α(B−A) = B′−A′.

Exercise 2.4.3. (; CD) Prove Lemma 2.4.3 (Properties of ⊕).

Exercise 2.4.4. (; CD) Which of the following equations are true?

1. U ⊕ (V ∪W) = (U ⊕V) ∪ (U ⊕W)
2. (U ∪V)⊕W = (U ⊕W) ∪ (V ⊕W)

Prove the equation or give a counter example.

Exercise 2.4.5. (; CD) Prove Lemma 2.4.5 (Terms and homomorphisms).

Exercise 2.4.6. (; CD) The set of free variables of a term is defined as
follows:

2.4 Detailed De�nition (Math. Foundation) 83

Table 2.4 Variations of the syntax of ASMs

if ϕ then
P

else
Q

endif

if ϕ then P else Q

[do in-parallel]
P1

...
Pn

[enddo]

P1 par . . . par Pn

{P1, . . . ,Pn} P1 par . . . par Pn

do forall x :ϕ
P

enddo

forall x with ϕ do P

choose x :ϕ
P

endchoose

choose x with ϕ do P

step
P

step
Q

P seq Q

extend D with x
P

endextend

import x do
D(x) := true seq P

1. FV(x) = {x}
2. FV(c) = ∅
3. FV(f (t1, . . . , tn)) = FV(t1) ∪ . . . ∪ FV(tn)

The set of free variables of a formula is defined as follows:

1. FV(s = t) = FV(s) ∪ FV(t)
2. FV(¬ϕ) = FV(ϕ)
3. FV(ϕ ∧ ψ) = FV(ϕ ∨ ψ) = FV(ϕ→ ψ) = FV(ϕ) ∪ FV(ψ)
4. FV(∀x ϕ) = FV(∃x ϕ) = FV(ϕ) \ {x}

The set of free variables of a transition rule is defined as follows:

1. FV(skip) = ∅
2. FV(f (t1, . . . , tn) := s) = FV(t1) ∪ . . . ∪ FV(tn) ∪ FV(s)
3. FV(P par Q) = FV(P) ∪ FV(Q)
4. FV(if ϕ then P else Q) = FV(ϕ) ∪ FV(P) ∪ FV(Q)
5. FV(let x = t in P) = FV(t) ∪ (FV(P) \ {x})
6. FV(forall x with ϕ do P) = (FV(ϕ) ∪ FV(P)) \ {x}

84 2 ASM Design and Analysis Method

7. FV(choose x with ϕ do P) = (FV(ϕ) ∪ FV(P)) \ {x}
8. FV(P seq Q) = FV(P) ∪ FV(Q)
9. FV(r(t1, . . . , tn)) = FV(t1) ∪ . . . ∪ FV(tn)

10. FV(import x do P) = FV(P) \ {x}

Let A be a state. Prove the following coincidence properties:

1. If ζ(x) = η(x) for all x ∈ FV(t), then [[t]]Aζ = [[t]]Aη (Lemma 2.4.4).
2. If ζ(x) = η(x) for all x ∈ FV(ϕ), then [[ϕ]]Aζ = [[ϕ]]Aη (Lemma 2.4.7).
3. If ζ(x) = η(x) for all x ∈ FV(P) and P yields U in A under ζ, then P

yields U in A under η (Lemma 2.4.10).

Exercise 2.4.7. (; CD) Prove the substitution Lemmas 2.4.6, 2.4.8, 2.4.11
for terms, formulas and transition rules.

Exercise 2.4.8. (; CD) Show that the substitution Lemma 2.4.11 for tran-
sition rules is in general not true for non-static terms.

Hint : If a transition rule does contain seq, then different occurrences of the
same term may be evaluated in different states.

Exercise 2.4.9. (; CD) Prove the isomorphism Lemmas 2.4.9, 2.4.12 for
formulas and transition rules.

Exercise 2.4.10. (; CD) We say that two transition rules P and Q are
equivalent (written P ≡ Q), if for each ASM M , for each state A and each
variable assignment ζ that assigns values to the free variables of P and Q
the following holds: P yields U in A under ζ wrt M if and only if Q yields U
in A under ζ wrt M . In other words, two transition rules are equivalent, if
they produce the same update sets in all states.

Show that the following transition rules are equivalent:

1. (P par skip) ≡ P
2. (P par Q) ≡ (Q par P)
3. ((P par Q) par R) ≡ (P par (Q par R))
4. (P par P) ≡ P [if P is deterministic (without choose)]
5. (if ϕ then P else Q) par R ≡ if ϕ then (P par R) else (Q par R)
6. (P seq skip) ≡ P
7. (skip seq P) ≡ P
8. ((P seq Q) seq R) ≡ (P seq (Q seq R))
9. (if ϕ then P else Q) seq R ≡ if ϕ then (P seq R) else (Q seq R)

Show that the following transition rules are in general not equivalent:

1. ((P par Q) seq R) 6≡ ((P seq R) par (Q seq R))
2. (P seq (Q par R)) 6≡ ((P seq Q) par (P seq R))
3. (let x = t in P) 6≡ P t

x

2.5 Notational Conventions 85

Exercise 2.4.11 (Substitutivity of equivalent rules). (; CD) Let
R[P] be a transition rule with occurrences of P . By R[Q] we denote the
result of replacing the occurrences of P by Q . Prove the following substitu-
tivity property: If P ≡ Q , then R[P] ≡ R[Q].

Exercise 2.4.12. (; CD) We say that two transition rules P and Q are
extensionally equal, if for each ASM M , for each state A and each variable
assignment ζ that assigns values to the free variables of P and Q the following
holds: if P yields a consistent update set U in A under ζ wrt. M , then there
exists a consistent update set V such that Q yields V in A under ζ wrt. M
and A + U = A + V and vice versa. In other words, two transition rules are
extensionally equal, if they have the same moves.

1. Give an example of two transition rules P and Q which are extensionally
equal but not equivalent.

2. Show that Exercise 2.4.11 is not true for the extensional equality.

Hence, the equivalence notion between transition rules of Exercise 2.4.10 has
better properties than the extensional equality.

Exercise 2.4.13. (; CD) Prove the isomorphism Lemma 2.4.12 for ASMs
with a reserve (Table 2.3).

Exercise 2.4.14. (; CD) Add the remaining cases to the proof of Lemma
2.4.15 about the independence of the choice of reserve elements.

Exercise 2.4.15. (; CD) Show that Lemma 2.4.15 about the independence
of the choice of reserve elements is in general not true for ASMs that produce
infinite update sets.

2.5 Notational Conventions

Throughout the book we stick to standard mathematical and programming
terminology. For a quick reference we nevertheless list here some frequently
used notation.

We freely mix mathematical and programming notations. For example
we write both f (x) and x .f for the value of f at argument x . We also write
both f (x)(y) and f (x , y) to denote the value of f for argument (x , y). The
composition of two functions f and g is written as f ◦ g and is defined by
(f ◦ g)(x) = f (g(x)).

We also follow a common practice and often distinguish two functions
with the same name by their signature (the types of their domains or ranges).
Frequently we identify sets and predicates with their characteristic functions.
For example we write P(s) := true to express that s is added to the set
{x | P(x)}. We often abbreviate P(s) = true by P(s) and P(s) = false by
¬P(s) or not P(s).

86 2 ASM Design and Analysis Method

X ∗ denotes the set of all sequences of elements of X . We use list and se-
quence as synonyms. [a1, . . . , an] is the list containing the elements a1, . . . , an ;
[] denotes the empty list; length(l) returns the number of elements in list l .

We use Hilbert’s choice operator ε and description operator ι, where
εx (P(x)) denotes an object satisfying P(x) and ιx (P(x)) denotes the unique
object satisfying P(x). Both operators yield an undefined value if there is no
such object respectively if the uniqueness is violated. We write Powerset(a)
for the set of all subsets of a.

For ASM-related concepts we write U \Updates(F) for the set of updates
in U minus every update whose function name belongs to a function in F .
We write also Updates(f1, . . . , fn) for Updates({f1, . . . , fn}). We write U � Loc
for the restriction of U to locations in Loc. For the set of locations appearing
in an update set we write Loc(U):

U � Loc = {(l , v) ∈ U | l ∈ Loc}, Loc(U) = {l | (l , v) ∈ U for some v}

The set of locations determined by a set T of ground terms in a state is
denoted by Loc(T)A:

Loc(T)A = {(f , ([[t1]]A, . . . , [[tn]]A)) | f (t1, . . . , tn) ∈ T}

We write Loc(t)A for Loc({t})A.

Sources and Historical Remarks

The definition of (basic) ASMs appeared in [245, 248]. The ground model and
refinement methods were introduced into ASMs in [71, 72, 76]. The use of
ASM models to develop practical, high-level design based testing methods,
suggested in [86, p. 36],[87, p. 6] has been started in [121, 28, 208, 237].
Generalizing FSMs to control state ASMs appeared in [86], the extension of
basic ASMs by sequencing and submachine operations in [134]. The function
classification in [245] was extended in [80, 86] from where part of Sect. 2.1 is
taken. The treatment of the Reserve set and the justification of the import
construct are taken from [203] and simplify the definitions in [248]. See
Chap. 9 for historical details.

3 Basic ASMs

In this chapter1 we illustrate the ASM ground model method for reliable re-
quirements capture, and the refinement method for crossing levels of abstrac-
tion to link ASM models through well-documented incremental development
steps. Due to their introductory character, the examples in Sects. 3.1, 3.2
can be used as finger exercises. The reader who looks for more challenging
refinements supporting design-driven verifications may prefer to switch di-
rectly to the database recovery and shortest path algorithms in Sect. 3.2
and to Sect. 3.3 where we use ASMs to stepwise refine and verify-on-the-
fly a pipelined microprocessor out of its serial register transfer level ground
model. Chapters 4, 5, 6 contain further case studies for the ground model
and the refinement method. For more complex applications which do not fit
the dimensions of a text book we refer the reader to the ASM models in the
Java/JVM book [406] and to the literature which is surveyed in Chap. 9.

3.1 Requirements Capture by Ground Models

In this section we formulate six fundamental categories of questions to be
used as guidelines for capturing requirements. We apply them to build ground
model control state ASMs for some simple devices (ATM, Password Change,
Telephone Exchange). We then illustrate by a command-line debugger control
model the use of ground models in a reverse engineering context, where the
ground model is the concrete one from which more abstract models are de-
rived by abstraction, the reverse of refinement. Finally we exemplify the use of
ground model ASMs for the development of accurate conceptual frameworks
by defining some basic component model notions.

Real-life ground model ASMs are obviously larger than what can be pre-
sented here. Representative examples are the ground model ASMs for lan-
guage standards (e.g. the ISO standard for PROLOG [101, 291, 131], the
IEEE standard for VHDL’93 [111, 112], the ITU standard for SDL’2000 [292,
194]), for the semantics of major programming and design languages (in-
1 Lecture slides can be found in GroundModelsSimpleExls (; CD), RefinemtMeth

(; CD), DbRecovery (; CD), ShortestPath (; CD), PipeliningRISC (; CD),
Debugger (; CD), Backtracking (; CD), ComponentModel (; CD).

88 3 Basic ASMs

cluding C [285], C++ [420], Java [406], Occam with its characteristic non-
determinism and parallelism [105, 104],2 Oberon [310], UML [98, 99, 153],
some industrial domain-specific languages [385, 312]), for industry stan-
dards [224] and for industrial-size control systems (e.g.[121]), etc., as surveyed
in Chap. 9. However, the problems encountered when building such models
have been solved by applying the techniques and ideas explained through the
examples in this book.

Problem 3 (Framework for architecture description languages).
Define a unifying ASM model for architecture description languages, such
that different instantiations of parameters and of macros reflect the differ-
ences between specific languages. Use the model to compare different concrete
architecture description languages.

Problem 4 (Framework for security models). Define practical security
models and relate them to the security models of current systems, e.g. as
used for smart cards. As an example to start with, restrict the Java Virtual
Machine model JVM in [406] to an appropriate submachine JVMC which
executes Java Card instructions [155] and then put the execution of single
instructions under an additional guard FirewallCheck which formalizes when
a security exception has to be raised, to be dealt with by new rules for
firewall-related methods in the Java Card API.

3.1.1 Fundamental Questions to be Asked

In this section we formulate six categories of questions we found useful as
a practical guide for the formalization task leading from loosely formulated
requirements to accurate, application-domain-oriented models. We motivate
the questions through an analysis of a short list of requirements for invoicing
orders, which served for a comparative investigation of specification methods
to find out “What questions are prompted by one’s particular method of
specification?”[12, p. XIII].3 Due to the vagueness and incompleteness of
these requirements, which are characteristic of a certain class of informal
requirement descriptions, their analysis brings out very clearly the need to
ask and answer each of the six groups of questions. Although the questions
are not specific to any system-description approach, building ground model
ASMs naturally leads us to ask and answer all of them.

Here is the list of fundamental requirements capture questions.

1. Who are the system agents and what are their relations? In particular,
what is the relation between the system and its environment?

2 For Occam programs which present non-determinism and parallelism we de�ne
an interpreter in Sect. 6.5.1, adopting multi-agent async ASMs tailored to sup-
port the use of graphical UML diagrams.

3 An Invoice machine is treated in more detail in GroundModelsSimpleExls
(; CD), data-re�ning ground model operations, see Exercise 3.1.8.

3.1 Requirements Capture by Ground Models 89

2. What are the system states?
– What are the domains of objects and what are the functions, predicates

and relations defined on them? This question is stressed by the object-
oriented approach to system design.

– What are the static and the dynamic parts (including input/output)
of states?

3. How and by which transitions (actions) do system states evolve?
– Under which conditions (guards) do the state transitions (actions) of

single agents happen and what is their effect on the state?
– What is supposed to happen if those conditions are not satisfied?

Which forms of erroneous use are to be foreseen and which excep-
tion handling mechanisms should be installed to catch them? What
are the desired robustness features?

– How are the transitions of different agents related? How are the “in-
ternal” actions of agents related to “external” actions (of the environ-
ment)?

4. What is the initialization of the system and who provides it? Are there
termination conditions and, if yes, how are they determined? What is
the relation between initialization/termination and input/output?

5. Is the system description complete and consistent?
6. What are the system assumptions and what are the desired system

properties?

We quote below from [12] (slightly rephrased) the problem description for
invoicing orders ,which we will analyze guided by the above questions.

R0.1 The subject is to invoice orders.
R0.2 To invoice is to change the state of an order (to change it from

the state pending to invoiced).
R0.3 On an order, we have one and only one reference to an ordered

product of a certain quantity. The quantity can be different
from other orders.

R0.4 The same reference can be ordered on several different orders.
R0.5 The state of the order will be changed to invoiced if the ordered

quantity is either less than or equal to the quantity which is in
stock according to the reference of the ordered product.

Case 1:
R1.1 All the ordered references are in stock.
R1.2 The stock or the set of the orders may vary due to the

entry of new orders or cancelled orders, or due to hav-
ing a new entry of quantities of products in stock at the
warehouse. But we do not have to take these entries into
account.

R1.3 This means that you will not receive two entry flows (or-
ders, entries in stock). The stock and the set of orders are
always given to you in an up-to-date state.

90 3 Basic ASMs

Case 2:
You do have to take into account the entry of new orders, can-
cellation of orders, and entries of quantities in the stock.

What do the requirements say about the state of the system? By R0.1 there
is a set ORDER which is static in case 1 (R1.3) and dynamic in Case 2;
no initialization and no bounds are specified. By R0.2 there is a dynamic
function state: ORDER → {pending , invoiced}. R0.1/2 seem to imply that
initially state(o) = pending for all orders o. By R0.3/5 there are two func-
tions, both static in Case 1 (R1.3) and maybe dynamic in Case 2; their ini-
tialization and dynamics are unspecified. The function product : ORDER →
PRODUCT represents the (or an?) ordered product in stock order. The
function orderQuantity : ORDER → QUANTITY by R0.3/4 is not injec-
tive, not constant. By R0.5 there is a function stockQuantity : PRODUCT →
QUANTITY which apparently is thought to be dynamic – a static inter-
pretation is not reasonable – but nothing is specified when and by whom it
should be updated.

What do the requirements say about the agents of the system and how
the system evolves? By R0.1/2 there is only one transition. R0.5 does not
mention the update of stockQuantity . It leaves open whether the invoicing
is done simultaneously for all orders, or only for a subset of orders (with a
synchronization for concurrent access of the same product by different or-
ders?). In case the update is meant to be made for one order at a time it
remains unspecified in which succession and with what successful termination
or abruption mechanism this should be realized. R0.5 leaves open the time
model (duration of invoicing) as well as questions concerning error, exceptions
and robustness conditions.

Additionally for Case 2, the informal description does not specify the
agents for dynamic manipulation of orders and stock products, how they
interact for shared data (namely the elements of ORDER and the func-
tion stockQuantity(Product)), whether they act independently or following
a schedule (interleaving?), whether the arrival and cancellation sequence of
orders is to be reflected by invoicing, and whether also Product is dynamic,
etc.

Modulo all those missing pieces of information, one can nevertheless rea-
son upon possible rules for invoicing orders. In the static case, a single-order
rule can be formalized as follows. Per step at most one order is invoiced,
with an unspecified schedule (thus also not taking into account any arrival
time of orders) and with an abstract deletion function (whose update in an
asynchronous multiple-order environment may be defined to have cumulative
effect, see the definition of Total in the rule AllOrNone below).

SingleOrder =
choose Order ∈ ORDER with state(Order) = pending and

orderQuantity(Order) ≤ stockQuantity(product(Order))

3.1 Requirements Capture by Ground Models 91

do
state(Order) := invoiced
DeleteStock(orderQuantity(Order), product(Order))

An “all-or-none” strategy, where simultaneously all orders for one product
are invoiced (or none if the stock cannot satisfy the request), is expressed by
the following rule. For variations see Exercise 3.1.1.

AllOrNone = choose Product ∈ PRODUCT
let Pending = {o | state(o) = pending , product(o) = Product}

Total =
∑

Order∈Pending orderQuantity(Order)
if Total ≤ stockQuantity(Product) then

forall Order ∈ Pending
state(Order) := invoiced

DeleteStock(Total ,Product)
else report “stock cannot satisfy all orders of chosen Product”

For the dynamic case the following rule formalizes invoicing en bloc all
entering orders, using a (user-determined?) monitored function in. Similarly
one can proceed for cancellation of orders and for entering new items into
the stock (see Exercise 3.1.2).

IncomingOrders = if in = (Prod1Qty1 . . .ProdnQtyn) then
forall 1 ≤ i ≤ n let o = new(ORDER) in

orderQuantity(o) := Qtyi

product(o) := Prodi

state(o) := pending

The preceding discussion of even so small a set of so elementary re-
quirements confirms the basic features that a satisfactory method of require-
ments capture should possess. Among them are a most general (application-
oriented) notion of state, of simultaneous independent local transformations
with global effect (as provided by the ASM construct forall), and of loose
scheduling schemes (as provided by the ASM construct choose) – the ingredi-
ents of basic ASMs. A pragmatic naming principle, concerning high-level ab-
straction and suggested by the example, is to use meaning-conveying names,
possibly chosen from the application domain, so that the comprehensibility
of the system by the user is enhanced and that too early a consideration of
problem-irrelevant representation issues is avoided. (Certainly one has to be
aware of the danger that anthropomorphic terms may bring with them tacit
assumptions one better avoids; but the concern about the danger of using an-
thropomorphic terms has been vastly exaggerated in the literature on formal
methods.) Another principle is to avoid details which are irrelevant for the
problem domain, such as detailed type or procedure declarations, or struc-
turing of classes or modules, which belong to further design steps or to the
implementation, not to the problem. Methodologically, ground model ASMs

92 3 Basic ASMs

as a result of the elicitation of requirements are closer to the application do-
main than the nowadays fashionable UML requirements models, which from
the very beginning are concerned about the class structure underlying the
system to be developed – a structure one can certainly impose on a ground
model ASM as additional refinement, as was hinted at above for the Lift ex-
ample in Sect. 2.3. But following a clear separation of different concerns this
should be done only when the analysis of an appropriate software architecture
is started.

3.1.2 Illustration by Small Use Case Models

In this section we illustrate through simple examples some typical issues of
requirements capture. We start with ground model ASMs for two elementary
state control devices (ATM, Password Change) to explain the concept of use
case descriptions of a system and their refinements. Use cases, often also
called scenarios, can be seen as segments of abstract computations defining
intended interactions between users and the system proper, and thus provide
a way to piecemeal determine the system requirements. This includes the
special case where the system is entirely defined by an interface offering a
set of single one-step operations, see the Invoice Machine in Exercise 3.1.8. A
telephone exchange example serves to illustrate the use of control state ASMs
for specifications resembling message sequence charts, namely by a use case
description of interactions of members of teams of agents. By a debugger
control model we show how scenarios can also be exploited as high-level sys-
tem test cases. The last example illustrates using a ground model ASM to
precisely define basic concepts for a conceptual framework for language and
platform independent component-based programming.

The refinement steps in this section lead from use case descriptions with
symbolic (“stateless”) operations to use case models with state-based op-
erations, which are then extended incrementally (by adding new features)
or by data refinements (increasing the degree of detailing for operations).
For the ATM we exhibit a data refinement and for the Password Change a
(1,n)-refinement.

ATM (Cash machine). Here is a typical software engineering textbook
description of requirements for an ATM.

Design the control for an ATM, and show it to be well functioning,
where via a GUI the customer can perform the following operations:
Op1. Enter the ID. Only one attempt is allowed per session; upon

failure the card is withdrawn.
Op2. Ask for the balance of the account. This operation is allowed

only once and only before attempting to withdraw money.
Op3. Withdraw money from the account. Only one attempt is al-

lowed per session. A warning is issued if the amount required
exceeds the balance of the account.

3.1 Requirements Capture by Ground Models 93

Fig. 3.1 UseCaseAtm model

EnterMoney

EnterBalance

service

NoFurtherService

EnterMoney

money
choose

balancepin
await

another
choose

EnterGoodPinInsertCard

EnterWrongPin

card
await

Acc. The central system, which is supposed to be designed sepa-
rately, receives the information about every withdrawal and
updates the account balance correspondingly. The ATM be-
comes inaccessible for the customer for any other transaction
until this update has become effective.

Ref. Extend the ATM to go out-of-service when not enough money
is left.

Clearly this description views an ATM as offering customers specific se-
quences of operations, e.g. the sequence Op1, Op2, Op3, but not the sequence
Op1, Op3, Op2. Some operation is missing in the list: apparently entering the
ID requires having inserted a card. As a first modeling step we extract from
the description the complete intended sequencing of user operations. The op-
erations themselves remain symbolic, determined only by their name without
describing the effect of their execution upon the underlying state. This leads
to the control state ASM defined in Fig. 3.1, representing a compact use case
description.

The next requirements elicitation step provides a meaning to the sym-
bolic operations of the use case model, determining the effect of their exe-
cution upon the underlying state.4 A monitored function CurrIn represents
customer input with values belonging to abstract sets ID ,MONEY etc. An-
other pair of monitored functions CurrCard , inserted serves to indicate the
currently inserted card. To let the ATM communicate with the customer we
use for simplicity an output function Out whose values abstractly represent
4 It represents a data re�nement step as de�ned in Sect. 3.2.

94 3 Basic ASMs

the appropriate messages (to be displayed on the screen; see below), the re-
turned card and possibly the granted money. According to requirement Op1,
the insertion of a card preceding entering an ID can then be formalized as
follows, where inserted is viewed as a flag:

InsertCard = if inserted then Out := EnterPinMsg

To model requirement Op1 one has to clarify the meaning of “failure”. Pre-
sumably the ID is a pin number, required to be the pin number of the inserted
card and known to the system by some static function pin. By the accessibil-
ity requirement Acc, access should be granted only if account(CurrCard) is
accessible, where the shared function accessible indicates whether a previous
customer ATM operation is still pending in the central system;5 account is a
static function. This interpretation of requirement Op1 is summarized by the
following definitions (see the footnote to the proof of Lemma 3.1.1 concerning
the withdrawal of the card in the case also of an inaccessible account):

EnterGoodPin = if CurrIn = pin(CurrCard) and
accessible(account(CurrCard))

then Out := ChooseServiceMsg

EnterWrongPin = if CurrIn ∈ ID then
if CurrIn 6= pin(CurrCard)

then Out := WrongPinMsg
elseif ¬accessible(account(CurrCard))

then Out := AccountNotAccessible

To model requirement Op3 an additional static function is needed to check
that the required amount of money is allowed for the account of CurrCard . By
requirement Acc one also has to reflect that the granted amount of money
is deleted from the account by the central system. We formalize this by a
deletion macro which is not specified further here, for which we assume the
property invoked in the correctness proof below, namely that the execution
of the macro has the effect of calling the appropriate deletion operation in
the central system. We make sure that further access to the ATM is denied
for the customer until the deletion has become effective, making the account
again accessible. This results in the following rule. We leave the definition of
similar rules EnterBalance and NoFurtherService as Exercise 3.1.3.

EnterMoney = if CurrIn ∈ MONEY then
ProcessMoneyRequest(CurrIn)

5 The requirements do not determine whether accessible is shared between the
central system and a particular ATM or for a class of ATMs, but since this feature
does inuence the behavior of ATMs, it is part of the requirements elicitation to
ask such a question and to document the answer for the contract.

3.1 Requirements Capture by Ground Models 95

ProcessMoneyRequest(In) =
if allowed(In,CurrCard) then GrantMoney(In)
else Out := {NotAllowedMsg ,CurrCard}

GrantMoney(In) =
Out := {ExitMsg ,money(In),CurrCard}
SubtractFrom(account(CurrCard), In)
accessible(account(CurrCard)) := false

For the ASM resulting from the above refinement of the use case ASM
in Fig. 3.1 one can prove that it functions correctly with respect to the
given requirements (Ref is discussed below). The operational character of
the intuitive understanding of correct functioning is reflected by the notion
of ASM run which underlies the following lemma.

Lemma 3.1.1 (ATM correctness). The use case ASM in Fig. 3.1 with
operations labeling the arcs defined as above, satisfies the following properties
requested by the requirements:

1. Per session only one attempt is possible to enter a correct pin number;
upon failure the card is withdrawn.

2. Per session only one attempt is possible to withdraw money; a warning
is issued if the amount required exceeds the balance.

3. Asking for the balance of the account is possible only once and only
before attempting to withdraw money.

4. The central system receives the information about every withdrawal and
updates the account balance correspondingly. Any further transaction is
disallowed until the account has been updated.

Proof. One can proceed by an analysis of ASM runs. Property 1 follows from
the definition of rule EnterWrongPin whereby the ATM is brought back
to the AwaitCard control state, informing the customer and withholding the
card.6 Property 2 follows from the definition of the rule EnterMoney, which
brings the ATM back to the AwaitCard state, giving back the card. Prop-
erty 3 follows from the sequencing of operations in the control state diagram.
Property 4 is guaranteed by the assumption for the deletion operation in rule
EnterMoney and by setting there accessible(account(CurrCard)) to false
so that the rule guards for entering a pin number prevent further transactions
until the central system changes the accessibility predicate back to true. ut

To satisfy the requirement Ref we now extend the ATM ASM by an
out-of-service feature. What is meant by this requirement? Probably a new
rule GoOutOfService should be added to bring the current control into
6 Certainly the card withdrawal in the case of an inaccessible account speci�es a

rather severe security policy. Other decisions can be described by a more realistic
WrongPinOrInaccessibleAccount re�ning EnterWrongPin.

96 3 Basic ASMs

an OutOfService state when there is not enough money left. This is easily
accommodated by adding a new rule for a spontaneous transition of the
ATM (say in its idle control state AwaitCard) when the amount of money
left has reached a minimum, which can be predefined statically or updatable
via service and maintenance:

GoOutOfService =
if MoneyLeft < min then ctl state := OutOfService

For correctness reasons, which the requirements engineer should point out to
the customer, one should also prevent the machine from being executed when
MoneyLeftBelowRequest(CurrIn), e.g. when MoneyLeft−CurrIn < 0.7

This can be obtained by guarding the processing of money requests, us-
ing the conservative extension scheme already explained for adding excep-
tion handling to the LIFT ASM in Fig. 2.15. In this case we restrict the
ASM for the “normal” ATM behavior by the negation of the new guard
MoneyLeftBelowRequest(CurrIn) and add a new rule to inform the
customer (and to call a bank-note supply service) in the other case. One
then has to refine also the successful execution of money request processing,
namely to update the MoneyLeft after a money request has been granted.
This illustrates a frequent type of special refinement step consisting in replac-
ing one operation by another one, which represents a (1, 1)-refinement step
in Fig. 2.1. Using ASMs one can deal with “operations” which are defined
by a step of an entire machine; in this case the operation to be refined is
the macro GrantMoney(In), which is extended by the additional update
MoneyLeft := MoneyLeft − In. This leads to the following refinement for
entering money requests, where their processing is triggered.

EnterMoney = if CurrIn ∈ MONEY then
if not MoneyLeftBelowRequest(CurrIn) then

ProcessMoneyRequest(CurrIn)
else Out := {NotEnoughMoneyLeftMsg ,CurrCard}

7 As B. Thalheim commented in an e-mail of December 11 (2002) to E. B�orger, this
prevents an unsatisfactory behavior found in the ATM software of some German
banks where a money withdrawal transaction is programmed as a sequence of
three sub-transactions: customer validation (PIN control etc.), posting (account
update) and money dispensing. As a result it can happen that the account update
transaction is executed, debiting the customer’s account for the allowed sum,
even if the dispensing sub-transaction does not complete normally, for instance
when the amount cannot be paid because the money is not physically available in
the ATM. Apparently in such cases, the banks undo the debiting of the account
when the customer complains (sic!). In the ground model the faulty situation
springs up through inspection, by elementary application-driven reasoning, prior
to any software testing. Furthermore a simple ground model analysis (see below)
reveals one among numerous ways of how the program can handle the problem
correctly { whereas apparently the banks judge it di�cult, or doable only at
prohibitive cost, to �x the incriminated code.

3.1 Requirements Capture by Ground Models 97

ProcessMoneyRequest(In) =
if allowed(In,CurrCard) then

GrantMoney(In)
MoneyLeft := MoneyLeft − CurrIn

else Out := {NotAllowedMsg ,CurrCard}

The atomic interpretation we have used up to now for the meaning of “money
withdrawal” is subject to discussion. Namely one may think that entering
the request for money withdrawal implies a further choice between standard
amounts (say from a set Std) and a user-defined amount. We show how to
accommodate such a further detailing of requirements by a (1,n)-refinement
with n > 1, where one step of the abstract machine is replaced by a sequence
of steps of the refined machine.

Determining the operation sequences which constitute the refined inter-
pretation of EnterMoney leads to the use case description in Fig. 3.2 with
the following interpretation of the rules labeling the arcs. We leave it to
the reader as Exercise 3.1.4 to convince himself that the ATM Correctness
Lemma 3.1.1 remains true for the refined ASM.

ChooseWithdrawal = if (CurrIn = Withdrawal) then skip
EnterStandardAmount = if CurrIn ∈ Std then

ProcessMoneyRequest(CurrIn)
ChooseOtherAmount = if (CurrIn = OtherAmount) then skip
EnterAmount = if CurrIn ∈ MONEY then

ProcessMoneyRequest(CurrIn)

The machine in Fig. 3.2 satisfies all the initial requirements – except
for the request of GUI support for the customer operations. To determine
the place of this non-functional requirement in the model a data refinement
suffices, a step-by-step or (1, 1)-refinement8 which for our example is con-
ceptually pretty simple but offers a precise interface to determine in terms of
appropriate quality criteria the properties expected from a professional screen
layout implementation. In fact one can implement the current control state
ctl state as the current screen CurrScreen and define for each control state c
the desired screen through which the customer inputs values for CurrIn and
receives messages from the ATM.9 Formally we define for every ATM control
state c:

ctl state = c is refined as CurrScreen = screen(c)

We leave it as exercise to show that the GUI refinement preserves the ATM
Correctness Lemma 3.1.1 (Exercise 3.1.5), also under additional robustness
constraints (Exercise 3.1.6).
8 See the de�nition in Sect. 3.2.
9 At the level of detail reached by this re�nement step, the assumption about input

to be consumed by �ring rules is easily satis�ed. This illustrates the advantage
one can take in the high-level model to simply assume properties which one
knows to be easily satis�able at a more detailed level.

98 3 Basic ASMs

Fig. 3.2 RefinedAtm use case model

choose
amount

InsertCard

EnterStandardAmount

service

GoOutOfService

EnterGoodPin

EnterMoney

ChooseOtherAmount

another
choose

NoFurtherService EnterBalance

choose
money
balance

EnterWrongPin

EnterAmount

out of
service

amount
enter

card
await

pin
await

ChooseWithdrawal

Problem 5 (Modeling business rules). Select an interesting set of busi-
ness rules, complex enough to be worth building and analyzing a high level
model.

Password change. This example serves to illustrate that for control state
ASMs, (1,n)-refinements consisting of the replacement of a machine step by a
sequence of n steps of another machine, where n may be fixed or variable, are
conceptually supported by replacements of nodes by graphs in the underlying
control state diagrams. We start with the problem formulation.

Design a program, and show it to be well functioning, which allows
a user to change his password using the following sequence of oper-
ations:
Op1. Enter the user ID and the (current) password. Access should

be refused if the ID or the password is incorrect.
Op2. Enter twice the new password. The new password request

should be rejected if the new password is syntactically incorrect
or not correctly repeated. Otherwise the new password should
be stored as the password valid from now on.

R1. Refine the machine by a line editor for inputting passwords.
R2. Refine the machine by restricting the number of attempts to

define the new password.

The requirements suggest a clear sequencing of user operations, which is
formalized by the control state ASM in Fig. 3.3.

In this case also the definition of the abstract operations is clear, formu-
lated using a static function IsKnownID and a dynamic function pwd , for

3.1 Requirements Capture by Ground Models 99

Fig. 3.3 PasswordChange use case model

IsPasswd(in)

no

AcceptNewPwd
NewPwd
reenter

yes

yes

no

yes

no

no

yes

RejectNewPwd
enter

NewPwd

AcceptPwdStoreNewPwd

RejectUserID

enter
pwduserID

enter

RejectPwd in = pwd(userID)

IsKnownID(in)

in = NewPwd

AcceptUserID

Fig. 3.4 Character inputting machine

1 mm −
mString

Enter
1

ret ret retBackSpace

TypeChar

1 timesm −

BackSpace

TypeChar

entered

TypeChar =
if in ∈ CHAR then

str := str ∗ in
display := display ∗ in

BackSpace =
if in = backspace then

str := tail(str)
display := tail(display)

example AcceptUserid = UserID := in, AcceptNewPwd = NewPwd :=
in, etc. In every control state of the machine, the user has to provide a value
for the input function in before it can be checked to represent a correct
UserID or password. If one wants to reflect the structure of these inputting
operations, character typing submachines like EnterString(n,m) for enter-
ing a string of length n ≤ l ≤ m (e.g. see Fig. 3.4 for EnterString(1,m))
can be placed in Fig. 3.3 between each control state and the following test
rhomb.

100 3 Basic ASMs

Fig. 3.5 (1,n)-refinement of control state ASMs

k1 jirule ji knby . . .

The form of these submachines can vary; the simplest type corresponds
to a (1,n)-refinement diagram with fixed n, as depicted in Fig. 3.5. The
number n is dynamically determined when the subprogram contains a loop,
like in Fig. 3.4. What these submachines have in common is a unique start
and exit state which makes it possible to “hang” them into a control state of
another machine.

We leave it as Exercise 3.1.10 to refine the Password Change machine to
satisfy R2 and to justify its correctness.

Telephone exchange. The following example shows how the successive in-
teractions of members of teams of largely independent agents can be con-
trolled by a basic ASM with parameterized rules, to be instantiated by ap-
propriate agents (single agents or agents which stand for a team, i.e. a possi-
bly ordered set of agents). In this way Message Sequence Chart specifications
turn out to correspond to a special class of control state ASMs (see also the
Session Initiation Protocol slide in GroundModelsSimpleExls (; CD)). We
define an ASM to control a network through which pairs of subscribers es-
tablish and clear phone conversations, according to the problem description
(paraphrased) from [430].

Subscribers at each moment are in one status out of the following:
Free: neither engaged in, nor attempting, any phone conversation;
Unavailable: due to a timeout or an unsuccessful attempt to call;
AttemptingInit : attempting as initiator of a phone conversation to

call somebody by dialing his number;
WaitingInit : waiting as initiator for somebody to answer, after hav-

ing been connected;
SpeakingInit : speaking as initiator to the called subscriber;
WaitingRecip: status of a recipient when his phone is ringing or when

he has suspended an established conversation;
SpeakingRecip: status of a recipient when he is speaking to the ini-

tiator of the phone conversation.
The system and the subscribers can execute the following operations:
– Free Subscribers can Lift their handset, thus becoming attempt-

ing initiators.
– In every initiator status, initiators (and only them) can Clear

their call, thus becoming again free.
– Initiators in attempting status can Dial, trying to complete a

subscriber’s number.

3.1 Requirements Capture by Ground Models 101

Fig. 3.6 TelephoneExchange use case ASM

Free(s)

Unavailable(t)

Dial(s)

SpeakingRecip(t)

WaitingRecip(t)

Free(t)

Unavailable(s)Free(s)

ClearUnavailable(s)

Connect(s,t)

MakeUnavailable(s)

WrongNumber(s)ClearAttempt(s)

Lift(s)

Suspend(t) Answer(t)

Failure(s)

ClearSpeak(s)

ClearWait(s) WaitingInit(s)

SpeakingInit(s)

AttemptingInit(s)

Free(s)

Free(t)

– The system can MakeUnavailable an initiator, due to a timeout,
or due to an unsuccessful attempt to call because of Failure (when
the called subscriber is not free) or WrongNumber.

– The system can Connect an initiator and a free recipient, making
them both waiting (for the recipient to answer).

– A recipient can Answer and Suspend a phone call.

The description lends itself to a formalization by a control state ASM where
the status of a subscriber is reflected by a control state, but it remains
to beclarified how different subscribers and teams (pairs of connected sub-
scribers) can be handled by one basic ASM. The fact that the requirements
are described in an operation-oriented way provides a clue to a solution.
We parameterize the rules of the ASM by single subscribers or pairs of sub-
scribers so that in reality at each moment there can be many active instances
of the machine. Thus the above status requirements are modeled by the se-
quencing of subscriber and system operations defined via the use case ASM
in Fig. 3.6. Each subscriber s has its own control state ctl state(s) and its
own input in(s). The predicate Free(s), for example, is an abbreviation for
ctl state(s) = Free. Control states of pairs of connected subscribers are de-
picted as pairs of their single control states.

To formalize the above requirements for system and subscriber operations
we refine the symbolic operations of Fig. 3.6, using again a pure data refine-
ment. Due to the control nature of the telephone exchange problem, most of
the operations consist merely in the control state transition of the use case
ASM, so that their defining rules have the form if Cond then skip and only
the guard remains to be defined. This is the case for the three internal (input-

102 3 Basic ASMs

free) transitions {MakeUnavailabe,WrongNumber,Failure}, but also
for the following operations where the guard consists only in the subscriber’s
inputting the call of that operation:

if in(s) ∈ {ClearAttempt ,ClearUnavailable,Answer ,Suspend}
then skip

The guard for MakeUnavailable(s) is

Currtime − LastOpenTime(s) > MaxPause

with a dynamic function LastOpenTime(s) which has to be initialized by
Lift(s) and to be refreshed by each operation Dial(s), recording the value
of the monitored increasing function Currtime when s last called an opera-
tion. The guard for WrongNumber(s) is IncorrectNr(DialedSofar(s)) with
a static predicate IncorrectNr and a dynamic function DialedSofar(s) which
also has to be initialized at Lift(s) and to be refreshed at each operation
Dial(s). The guard for Failure(s) can be formulated as the conjunction of
CorrectNr(DialedSofar(s)) and ctl state(subscriber(DialedSofar(s))) 6= Free
with abstract static function subscriber .

The guard for Lift(s) is simply that this operation is called by the sub-
scriber, and its updates initialize the two dynamic functions DialedSofar and
LastOpenTime. Analogously, Dial(s) also updates these two functions, but
it is guarded by the condition that the number dialed so far can be completed.
Certainly we assume that the domains where the predicates CompletableNr ,
IncorrectNr , CorrectNr yield value true are pairwise disjoint.

Lift(s) = if in(s) = Lift then
DialedSofar(s) := []
LastOpenTime(s) := Currtime

Dial(s) = if CompletableNr(DialedSofar(s)) then
DialedSofar(s) := Append(in(s),DialedSofar(s))
LastOpenTime(s) := Currtime

The team-building operation Connect(s, t) establishes the initiator s of
the phone conversation as the caller of the subscriber t who has the dialed
number.

Connect(s, t) = if t = subscriber(DialedSofar(s)) then
if CorrectNr(DialedSofar(s)) and Free(t) then

caller(t) := s

Correspondingly the ClearSpeak(s), ClearWait(s) operations, whose
guard is simply that the operation is called by the first team member s,
reset the caller of t to uncouple the team formed by Connect(s, t), e.g. by

let t = (ιr caller(r) = s) in caller(t) := undef .

3.1 Requirements Capture by Ground Models 103

Problem 6 (Internet telephony protocols). Model a real-life protocol
for Internet telephony, e.g. the Session Initiation Protocol (SIP) which has
the potential of becoming fundamental for an integrated use of XML-based
web services through the Internet, see http://www.cs.columbia.ed/~hgs/
sip/ or http://ietf.org/rfc/rfc3261.txt. The model will consist in an
asynchronous ASM (See Chap. 6) whose components are control state ASMs.

Command-line debugger. The debugger control state model serves to il-
lustrate how scenarios can be formulated in terms of ground models and be
exploited as high-level system test cases. The model is extracted from an
industrial re-engineering case study reported in [26].10

The goal of the case study was to reverse engineer a command line debug-
ger (of 30 K lines of C++ code) which works in a stack-based COM execution
environment. Three debugger models have been abstracted, forming a refine-
ment hierarchy11 which specifies the Application Programming Interfaces by
which the debugger components interact with each other. The control model
we explain here is a control state ASM which has been used for the simulation
of various scenarios.

The role of the control state ASM is to model how the debugger control
dbgMode moves between the user, the debugger and the run-time system.
dbgMode = Init means that the user is in control to start the debugger.
dbgMode = Break means that the user can emit commands to the debugger
for exiting it, or for controlling the execution (e.g. to run a program, to step
through managed code, setting breakpoints or stopping events, etc.), or for
inspecting the program state (e.g. to view threads, stack frames, variables,
events, etc.). When dbgMode = Run, the run-time system has the control
and the debugger waits for a callback; eventually the run-time system will
switch dbgMode to TryToBreak passing the control to the debugger, namely
upon a callback event. Since the focus in this model is on sequencing the
interactions between the three agents involved, most of the relevant state
information is represented by functions which are monitored for some of the
parties involved and implicitly set by others. For example the user clearly sets
command and dbgEvents (indicating whether stopping upon certain events
is turned On or Off , e.g., dbgEvents(classLoadEvent) = Off). The run time
system sets callback , indicating for example that the executed process was
exited, the required step was completed, the module to be observed was
(un)loaded, a thread was created, a breakpoint was hit, etc. The debugger
watches callback to know when to proceed, with the assumption that the
run-time issues at most one event at a time, and only in mode Run, and then
waits for an acknowledgment from the debugger. The run-time system also
10 Case studies like [26, 121, 102, 97] represent examples where the ground model

is the most concrete model, extracted for re-engineering purposes from existing
code. For the sake of analysis such a detailed ground model typically is further
abstracted into higher-level models before being re-implemented.

11 Characteristic examples of these re�nement steps are explained in Sect. 3.2.

http://www.cs.columbia.ed/~hgs/sip/
http://www.cs.columbia.ed/~hgs/sip/
http://ietf.org/rfc/rfc3261.txt

104 3 Basic ASMs

Fig. 3.7 Debugger control state ASM

OnStoppingEvent

OnNonEmptyEventQueue

OnNonEmptyEventQueueOnAnyEvent

RunQ

OnStart

TryToBreak

Run

OnNonStoppingEvent

OnRunningCommand

OnEmptyEventQueue

OnExit

Init

Break

OnBreakingCommand

sets the boolean function eventQueueFlag indicating whether there are events
still to be handled before the control goes back to the user (by giving him
the prompt). The result of this analysis is the control state ASM in Fig. 3.7
(disregarding the transitions to and from RunQ explained below).

Test experiments have been made with user scenarios for this debugger
control model, one of them reported in an animation on slide number 13
in Debugger (; CD) and reproducible also as Gedankenexperiment.12 This
exhibited an undesired behavior of the debugger and indicated a natural
way to correct it in the control state machine, namely by leading transition
OnNonEmptyEventQueue not any more back to control state Run, but
to a new control state RunQ from where a new transition leads back to
TryToBreak so that Break mode remains reachable. Later this bug was found
to have been fixed also in the C++ code, independently and at the same time,
by the development team. An analogous experience is reported also in another
industrial project [121] where ASMs were used for re-engineering C++ code.

Problem 7 (ASM synthesis from use cases). Develop a tool to trans-
form use cases into executable ASMs whose runs realize the given use
cases. See Harel’s play-in/play-out approach in [270] which is based upon a
temporal-logic extension [165] of message sequence charts and UML sequence
diagrams for specifying system scenarios.
12 Imagine upon hitting a breakpoint in the run-time system followed by switching

the control to TryToBreak , there is an event in the queue so that the machine goes
back to Run. Imagine that then a non-stopping class loading event happens. Then
the control cannot go back to Break { although it should because a breakpoint
was hit { since there is no direct transition from Run to Break .

3.1 Requirements Capture by Ground Models 105

Component model. We show here how to use ground model ASMs to de-
fine an abstract framework for the analysis of component composition issues.
The material is extracted from [410]. The goal is to provide concepts for
components which

– export and import parameterized services under usage constraints,
– come with interface specifications depending on views,
– can be composed and refined by connectors,

based upon abstract notions of component, connector, service, specification,
view, and constraint (related to the underlying logic). We formulate signature
and constraints for these notions and use them in a scheme for a dynamic
consistency check of component structures. We illustrate connectors by com-
municators appearing in the UPnP networking architecture model with an
ASM for routing messages [223]. The purpose of this section is to motivate
some reader to work on the following problem. For a reverse engineering
technique to build a real-life processor out of its formally specified basic ar-
chitectural components see [102].

Problem 8 (Modeling middleware techniques). Develop a compre-
hensive ASM model for real-life multi-platform middleware techniques for
component composition (e.g. Corba) or for the component concept of a real-
life component based programming system (e.g. JavaBeans).

The structure of the component model provides for each of the above
mentioned notions an abstract set equipped with related functions satisfying
certain axioms. Functions Exports, Imports, Constraint , Name : yield for each
component c ∈ COMPONENT the sets of exported and imported services,
the constraints which express allowed usages (e.g. an application ordering) of
the services exported by a component, and its name.

Exports: COMPONENT → Powerset(EXP SERVICE)
Imports: COMPONENT → Powerset(IMP SERVICE)
Constraint : COMPONENT → CONSTRAINT
Name: COMPONENT → STRING

Services can be exported or imported.

SERVICE = EXP SERVICE ∪ IMP SERVICE

Each service is parameterized by a list of pairs of types and modes, has a
result type, a unique component to which it belongs, and a name.

ServiceParam: SERVICE → (TYPE ×MODE)∗

MODE = {in, out , inout}
ServiceResType: SERVICE → TYPE
Component : SERVICE → COMPONENT
Name: SERVICE → STRING

106 3 Basic ASMs

Each exported service has an associated use structure determining its allowed
usages in relation to other services which are imported in the body of the
exporting component and may be used to execute the exported service. The
set of these imported services in a given use structure is provided by a func-
tion ContainedServices. The use structure has to meet the constraints of the
components from where those imported services are imported, a property
which can be checked by a function.

ImportStructure: EXP SERVICE → USE STRUCTURE
ContainedServices: USE STRUCTURE → Powerset(IMP SERVICE)
MeetsConstraint : USE STRUCTURE × CONSTRAINT → BOOL

The class SPEC of interface descriptions for services under given views is
deliberately kept abstract, together with functions determining for each ex-
ported service the specification provided for it and for each imported service
the specification required for it.13 Therefore also the satisfaction relation is
kept abstract which determines whether a given (expservice) specification
satisfies a given (impservice) specification so that the service to be exported
can safely be plugged into the component where to import it. Its instantia-
tion depends also on the logic adopted to describe the intended semantical
relations between specifications.

ProvidedSpec: VIEW × EXP SERVICE → SPEC
RequiredSpec: VIEW × IMP SERVICE → SPEC
SatisfiesSpec: VIEW × SPEC × SPEC → BOOL

Similarly the domain of connectors, whose goal is to support the interaction
of components, comes with a Connector function together with its two pro-
jection functions, connecting the service required (imported) by a component
to an exported service of another component. Two axioms are imposed on
connectors.

Connector : IMP SERVICE × EXP SERVICE → CONNECTOR
ImportService : CONNECTOR → IMP SERVICE
ExportService : CONNECTOR → EXP SERVICE

Connector Axiom 1. Every import service is connected to at most one ex-
ported service by either a connector or an abstract connector.

Connector Axiom 2. No export service uses in its body an import service to
which it is linked by a connector-chain (non-cyclic connectors).

An export service sexp uses in its body an import service simp , if

simp ∈ ContainedServices(ImportStructure(sexp)).
13 See [31] for an interesting proposal to implement behavioral interface speci�ca-

tions, including component interaction, via AsmL on the .NET platform; ASMs
are used as vehicle to convey to the client an understanding of component be-
havior without relying on implementation details.

3.1 Requirements Capture by Ground Models 107

Component systems are defined as sets S of component structures as de-
scribed above. In such a system the sets and functions of each of its component
structures S are parameterized by S , although notationally we suppress the
parameter when it is clear from the context. The following well-formedness
condition is imposed on component systems.

Component System Axiom. Every component and every connector in a com-
ponent system belongs to exactly one component structure of the system.

Using the above defined signature of component structures and component
systems, we now define a dynamic consistency check for component struc-
tures, based upon a consistency notion for component structures which cap-
tures the correctness of the connections and the satisfaction of the constraints.
The consistency check machine below is defined to be implementable as
stand-alone process for each single component structure; this requirement is
satisfied using the forall construct to govern the component wise sequential
check of the connectors and the constraints.

ComponentConsistencyCheck(S) = forall c ∈ COMPONENT (S)
Fsm(checkSpec,CheckConnectSpec(c), checkConstr)
Fsm(checkConstr ,CheckConstraints(c), checked)

CheckConnectSpec(c) outputs an error message if some import ser-
vice is without connector or if some connector connects an import service to
an export service without matching signature or with a specification which
for some view is not satisfied. The use of the ι-operator to describe for an
import service the export service to which it is connected is justified by the
first connector axiom. The relation equivSignatures(s, s ′) expresses that the
elements of the parameter lists ServiceParam(s) and ServiceParam(s ′) as
well as ServiceResType(s) and ServiceResType(s ′) are pairwise equivalent.

CheckConnectSpec(c) = forall simp ∈ Imports(c)
if ∀s Connector(simp , s) = undef then

ImpServiceNotConnected(simp)
else let sexp = ιs(Connector(simp , s) 6= undef)

if not equivSignatures(simp , sexp) then
output errorInConnector(simp , sexp ,NoSignatureMatch)

forall v ∈ VIEW if not
SatisfiesSpec(v ,ProvidedSpec(v , sexp),RequiredSpec(v , simp))

then output errorInConnector(simp , sexp ,NoSpecMatch)

The submachine CheckConstraints(c) checks for each exported ser-
vice the constraints of all used components (those from where services are
imported to execute a service exported by the component) to meet the related
use structure.

108 3 Basic ASMs

CheckConstraints(c) =
forall sexp ∈ Exports(c) forall c′ ∈ UsedComponents(sexp)

if not MeetsConstraint(ImportStructure(sexp),Constraint(c′))
then output error(sexp , c′,ComponentConstraintViolated)

where UsedComponents(s) = {c ∈ COMPONENT |
∃simp ∈ ContainedServices(ImportStructure(s))
∃sexp ∈ Exports(c) (Connector(simp , sexp) 6= undef)}

In a similar way one can define a notion of system refinement with a check-
ing machine. In [410] such a refinement is defined independently from each
other for types, views and components, so that the check can be defined by
independent machines

CheckTypeRefinement(R,S)
CheckViewRefinement(R,S)
CheckComponentRefinement(R,S)

which can be executed in parallel.
To conclude we illustrate connectors by their instance in the networking

architecture UPnP where they have the role of communicators, in particular
to route messages between agents. To perform this task each communica-
tor is equipped with a mailbox of MESSAGE s which may or may not be
ReadyToDeliver, as expressed by a monitored predicate. Communicators Re-
solveMessages selected among those ReadyToDeliver in their mailbox. More
precisely they Transform an inbound message into a set of outbound mes-
sages addressed to all recipients at the message destination. The information
on these recipients is supposed to be retrievable from an addressTable. The
chosen messages are discarded from the mailbox and are forwarded to ev-
ery recipient, which can be reached using the routingTable for the message
destination address, which is an external function that represents the global
network topology by mapping addresses to neighboring agents. This is for-
malized by the following ASM taken from[223] (where the auxiliary functions
are refined to AsmL executable value returning procedures; see Sect. 4.1.2):

Communicator =
choose SelMsg ⊆ {m ∈ mailbox | ReadyToDeliver(m)}

forall msg ∈ SelMsg
Delete(msg ,mailbox)
forall m ∈ ResolveMessage(msg)

if Recipient(m) 6= undef then
InsertMsg(m,Recipient(m))

where ResolveMessage(m) =
{Transform(m, a) | a ∈ addressTable(destination(m))}

Recipient(m) = routingTable(destination(m))

3.1 Requirements Capture by Ground Models 109

3.1.3 Exercises

Exercise 3.1.1. (; CD) Formulate a variant of rule AllOrNone which
chooses a maximal satisfiable subset of simultaneously invoiced pending or-
ders for the same product. Formulate a maximal-sale rule where the strategy
is to obtain a maximal quantity of sold items.

Exercise 3.1.2. Formulate rules similar to IncomingOrders for the can-
cellation of orders and for entering new items into the stock.

Exercise 3.1.3. Define refined rules for the transitions EnterBalance and
NoFurtherService of machine UseCaseAtm.

Exercise 3.1.4. Explain why the ATM Correctness Lemma 3.1.1 remains
true for the ASM with refined submachine EnterMoney.

Exercise 3.1.5. Explain why the ATM Correctness Lemma 3.1.1 is pre-
served by the GUI data refinement step.

Exercise 3.1.6. (; CD) Formulate desirable robustness properties for the
ATM and refine the ASM to incorporate them.

Exercise 3.1.7. Refine the ATM ASM to an executable program in your
favorite programming language or ASM execution engine. In case you use
Java, can you justify the correctness of your implementation on the basis of
the ASM model for Java in [406]?

Exercise 3.1.8 (Data refinement for an invoice machine). (; CD)

1. Specify a one-user system to handle invoices for orders from clients and
to accordingly maintain the record of products (prices and availability
in stock), showing also how to incorporate subsystems for error de-
tection and statistics. The system should provide a (“for change”) ex-
tendable set of operations, including, for example, the following ones:
creating/modifying products, clients, invoices; reporting errors in han-
dling products, invoices, clients; retrieving information on clients, prod-
ucts, invoices and their past. For customers’ inspection, use abstract
and application-domain-oriented operations and then data refine them
by more detailed equivalent operations.

2. Refine the specification by specifying also an appropriate GUI.
3. Illustrate the restrictions of the “one-user one-operation per time system”

with respect to a distributed multiple-user version.

Exercise 3.1.9 (Data refinement of line-editor operations).

1. Define a buffer with the operations InsertChar, DeleteChar and
ForwardCursor, BackwardCursor from the following given opera-
tions:

110 3 Basic ASMs

insert(String ,Character ,Position)
delete(String ,Position)

2. Add display-oriented features, distinguishing between printable and un-
printable characters, using operation prefix (String , l) providing the prefix
of length l of String , operation blanks(Length) yielding a string of blanks
of given Length, and operation fill(String , l) filling String with blanks to
reach at least length l .

Exercise 3.1.10. (; CD) Refine the Password Change machine to sat-
isfy R2 and justify its correctness for the requirements.

Exercise 3.1.11 (AlarmClock). (; CD) Design an alarm clock, which
automatically every second updates and displays currtime, and allows setting
of currtime or alarm time (hour, minute) by the user. currtime is displayed
at each update. To initiate (re)setting currtime/alarm time, the user pushes
a time/alarm button. The clock, upon reaching the alarm time, rings until
either the user cancels the alarm by pressing the “alarm stop” button or
30 seconds have elapsed. The execution of “ring” may be made dependable
upon the position of an alarm-on/off-button, to be set by the user. Refine
the alarm to provide for three consecutive ringings with an interval of five
minutes between them.

Exercise 3.1.12. Refine the AlarmClock of the previous exercise (a) by
adding more time zones, e.g. allowing the display of the local time and the
time of another time zone, (b) by adding two independent stopwatch timers
(which can be set, started, stopped and read off as usual), (c) by adding
the possibility of adjusting the time to the exact time of the atomic clock in
Braunschweig.

Exercise 3.1.13. Refine the TelephoneExchange ASM to handle also
phone conferences with up to n partners.

Exercise 3.1.14 (Refining forall machines). (; CD) Refine the 1-step
machine ComponentConsistencyCheck(S) by an iterated control state
ASM working in each iteration on one component only, but with an abstract
scheduling for the iteration order. Prove the equivalence.

3.2 Incremental Design by Refinements

In this section we define the notion of ASM refinement, illustrate the fre-
quent special patterns of conservative extension, of procedural (submachine)
refinement and of pure data refinement, and explain the general scheme for
proving the correctness of ASM refinements. As the first examples for prov-
ing some system properties by building a sequence of proven-to-be-correct

3.2 Incremental Design by Re�nements 111

stepwise refined ASMs we consider in Sect. 3.2.2 two well-known algorithms
for database recovery and for the shortest path problem. For other examples
see Sect. 3.3 and Chapters 5, 6. In Sect. 3.2.3 we explain Schellhorn’s scheme
for modularizing ASM refinement correctness proofs.

3.2.1 Refinement Scheme and its Specializations

We formulate here the meaning underlying the ASM refinement step scheme
in Fig. 2.1 by defining in what sense every (infinite) refined run correctly
simulates an (infinite) abstract run with equivalent corresponding states.

Definition 3.2.1 (Correct refinement). Fix any notions ≡ of equivalence
of states14 and of initial and final states. An ASM M ∗ is a correct refinement
of an ASM M if and only if for each M ∗-run S∗0 ,S

∗
1 , . . . there is an M -run

S0,S1, . . . and sequences i0 < i1 < . . . , j0 < j1 < . . . such that i0 = j0 = 0 and
Sik
≡ S∗jk

for each k and either

– both runs terminate and their final states are the last pair of equivalent
states, or

– both runs and both sequences i0 < i1 < . . ., j0 < j1 < . . . are infinite.

The states Sik
,S∗jk

are the corresponding states of interest. They represent
the end points of the corresponding computation segments (those of inter-
est) in Fig. 2.1, for which the equivalence is defined in terms of a relation
between their corresponding locations (those of interest).15 We leave it as Ex-
ercise 3.2.1 to show that in Def. 3.2.1, the sequences of corresponding states
can be chosen to be minimal in the sense that between two sequence elements
there are no other equivalent states. We refer to Fig. 2.1 when using the term
(m,n)-refinement (steps), as defined in Sect. 2.1.2.

When every (infinite) abstract run correctly simulates an (infinite) refined
run with equivalent corresponding states, the refinement is called complete.
Correct refinements which are not complete frequently occur in practice.

Definition 3.2.2 (Complete refinement). M ∗ is a complete refinement
of M if and only if M is a correct refinement of M ∗.

Corollary 3.2.1. For deterministic ASMs (without choose), refinement
correctness and completeness imply for terminating runs the equivalence of
the input/output behavior of the abstract and the refined machine.
14 As explained in Sect. 2.1.2 such a notion of equivalence typically is an equivalence

between corresponding states of interest which is based upon the equivalence of
the data in the locations of interest in these states.

15 Sometimes it is convenient to assume that terminating runs are extended to
in�nite sequences which become constant in the �nal state.

112 3 Basic ASMs

Purely incremental refinement, also known as conservative extension, has
been described for the lift control in Sect. 2.3 and illustrated by the extension
of the ATM machine by GoOutOfService in Sect. 3.1.2. Another example
was given in Fig. 2.11 where a bytecode verifier is added to the trustful Java
interpreter component of the Java Virtual Machine.

Procedural refinement , also called submachine refinement, consists in re-
placing one machine by another (usually more complex) machine. A charac-
teristic example is the refinement of a Prolog machine which uses an abstract
function unify to a machine which calls a submachine implementing a uni-
fication procedure [132] – example of a (1,n)-refinement where n can be
determined only dynamically since it depends on the size of the to be unified
terms. (1,n)-refinements with n > 1 have their typical use in compiler veri-
fication when replacing a source code instruction by a chunk of target code;
for numerous examples see [104, 102, 439, 273, 231].

It is important for the practicability of ASM refinements that the size
of m and n in (m,n)-refinements is allowed to depend dynamically on the
state. Characteristic examples appear in [132]. Lemma 6.4.2 provides a case
where n is fixed, but grows with the number of protocol members, or where
n = ∗ is finite but without a priori bound, depending on the execution time
of the participating processes. The correctness proof of a Java-to-JVM com-
piler in [406, Sect. 14.2] uses (1,n)-refinements with 0 ≤ n ≤ 3 depending
on the length of the computation which leads the JVM machine from one
to its next state of interest (i.e. one corresponding to a state of the Java
machine). In [141] the correctness proof for exception handling in Java/JVM
uses (m,n)-refinements where m is determined by the number of Java state-
ments jumped over during the search for the exception handler. Although
by a theorem of Schellhorn [387, Theorem 12] every (m,n)-refinement with
n > 1 can be reduced to (m, 1)-refinements, this is typically at the price of
having more involved equivalence notions which may complicate the proofs.
Practical experience shows that (m,n)-refinements with n > 1 and including
(m, 0), (0,n)-steps support the feasibility of decomposing complex (global)
actions into simpler (locally describable) ones whose behavior can be verified
in practice.

For control state ASMs the graph structure provides a frequent special
case of procedural refinement, namely replacing a control state transition –
a machine rule at a node with well-defined entries i and exits j – by a new
submachine M with the same number of entries and exits. This is illustrated
in Fig. 3.5 for the replacement of Fsm(i , rule, j) by Fsm(i ,M , j) (tacitly
assuming the renaming of the entry/exit nodes of M to the given ones i , j ,
which is incorporated into the diagram notation).

As an example we refine the operation OnStart which in the command-
line debugger in Fig. 3.7 leads from control state Init to Break . The Object
Model, intermediate between the control state and the ground model, reflects
the static (compile time) program components of the run-time system (such

3.2 Incremental Design by Re�nements 113

as module, class, function) and offers a partial view of the dynamic model
(e.g. processes, threads). It thus refines the related user commands, e.g. set-
ting breakpoints, stepping commands, requesting to control the execution by
inspection of the run-time stack, of frames. In the debugger object model,
OnStart is refined to first initializeCOM , then to createNewShell (initializ-
ing its environment, process, thread, frame, breakpoints, etc.) with a pointer
to the services, followed by setDbgCallback to provide the services access to
the client’s callback methods. The resulting refined machine is illustrated on
slide 19 of RefinemtMeth (; CD).

Due to the synchronous parallelism of ASMs, in a (1, 1)-refinement an
action – a part of a parallel step, not limited to a single “operation” – can
be replaced by multiple parallel actions which are viewed as part of a new
parallel step. Formally speaking, in an ASM a rule can be refined by finitely
many other rules which are executed in parallel. An interesting example has
been put on slide 20 of RefinemtMeth (; CD), where the callback for loading
modules in the control state debugger is refined in the object model to first
bind in parallel each of the shell’s breakpoints to the module in question,
and only then to call the debugee to continue. Analyzing this rule and the
symmetric rule refinement for unloading of modules in the debugger object
model, a mismatch was detected between the way loading and unloading of
module callbacks was implemented; see [26, Sect. 4.3]. Debugger (; CD)
contains further examples of such procedural refinements of control state
ASMs.

A pure data refinement is given by (1, 1)-refinements where abstract states
and ASM rules are mapped to concrete ones in such a way that the effect of
each concrete operation on concrete data types is the same as the effect of
the corresponding abstract operation on abstract data types.

A frequent type of an ASM data refinement, which exploits the general-
ization of “operation” to “ASM rule”, is the transition from a use case model
with abstract (symbolic) rules to a model which assigns a state transforma-
tion meaning to the rule names; see the use case model refinements for the
lift ASM in Sect. 2.3 and for the ATM machine in Sect. 3.1.2. As another
example we show how the notion of backtracking can be captured by an ASM
in such a way that applying to it appropriate data refinements yields well-
known logic and functional programming patterns and generative grammars
(context free and attribute grammars).

The Backtrack machine dynamically constructs a tree of alternatives
and controls its traversal. When its mode is ramify , it creates as many new
children nodes to be computation candidates for its currnode as there are
computation alternatives, provides them with the necessary env ironment and
switches to select ion mode. In mode = select , if at currnode there are no
more candidates the machine Backtracks, otherwise it lets the control move
to TryNextCandidate to get executed. The external function alternatives
determines the solution space, depending upon its parameters and possibly

114 3 Basic ASMs

the current state. The dynamic function env records the information every
new node needs to carry out the computation determined by the alternative it
is associated with. The macro Back moves currnode one step up in the tree,
to parent(currnode), until the root is reached where the computation stops.
TryNextCandidate moves currnode one step down in the tree to the next
candidate, where next is a possibly dynamic choice function which determines
the order for trying out the alternatives. Typically, the underlying execution
machine will update mode from execute to ramify , in the case of a successful
execution, or to select if the execution fails. This model is summarized by
the following definition:

Backtrack = {Ramify,Select} where
Ramify =

if mode = ramify then
let k = |alternatives(Params)|
let o1, . . . , ok = new(NODE)

candidates(currnode) := {o1, . . . , ok}
forall 1 ≤ i ≤ k

parent(oi) := currnode
env(oi) := i -th(alternatives(Params))

mode := select
Select =

if mode = select then
if candidates(currnode) = ∅ then Back

else
TryNextCandidate

mode := execute
Back =

if currnode = root
then mode := Stop
else currnode := parent(currnode)

TryNextCandidate =
currnode := next(candidates(currnode))
Delete(next(candidates(currnode)), candidates(currnode))

We show now that by data refinements Backtrack can be turned into
the backtracking engine for the core of ISO Prolog [131], of IBM’s constraint
logic programming language CLP(R) [133], of the functional programming
language Babel [118], of context free and of attribute grammars [297].

To obtain the backtracking engine for Prolog, we instantiate alternatives
to the function procdef (stm, pgm), yielding a sequence of clauses in pgm,
which have to be tried out in this order to execute the current goal stm,
together with the needed state information from currnode. We determine
next as head function on sequences, reflecting the depth-first left-to-right
tree traversal strategy of ISO Prolog. It remains to add the execution engine

3.2 Incremental Design by Re�nements 115

for Prolog specified as an ASM in [131], which switches mode to ramify if the
current resolution step succeeds and otherwise switches mode to select .

The backtracking engine for CLP(R) is the same. One only has to extend
procdef by an additional parameter for the current set of constraints for the
indexing mechanism and to add the CLP(R) engine specified as ASM in [133].

The functional language Babel uses the same function next , whereas
alternatives is instantiated to fundef (currexp, pgm), yielding the list of defin-
ing rules provided in pgm for the outer function of currexp. The Babel execu-
tion engine specified as an ASM in [118] applies the defining rules in the given
order to reduce currexp to normal form (using narrowing, a combination of
unification and reduction).

To instantiate Backtrack for context free grammars G generating left-
most derivations we define alternatives(currnode,G) to yield the sequence
of symbols Y1, . . . ,Yk of the conclusion of a G-rule whose premise X labels
currnode, so that env records the label of a node, either a variable X or
terminal letter a. The definition of alternatives includes a choice between
different rules X → w in G . For leftmost derivations next is defined as for
Prolog. As machine in mode = execute one can add the following rule. For
nodes labeled by a variable it triggers further tree expansion, and for termi-
nal nodes it extracts the yield (concatenating the terminal letter to the word
generated so far) and moves the control to the parent node to continue the
derivation in mode = select .

Execute(G) = if mode = execute then
if env(currnode) ∈ VAR then mode := ramify else

output := output ∗ env(currnode)
currnode := parent(currnode)
mode := select

For attribute grammars it suffices to extend the instantiation for con-
text free grammars as follows. For the synthesis of the attribute X .a of
a node X from its children’s attributes we add to the else-clause of the
Back macro the corresponding update, e.g. X .a := f (Y1.a1, . . . ,Yk .ak)
where X = env(parent(currnode)) and Yi = env(oi) for children nodes
oi . Inheriting an attribute from the parent and siblings can be included in
the update of env (e.g. upon node creation), extending it to update also
node attributes. The attribute conditions for grammar rules are included
in Execute(G) as an additional guard to yielding output, of the form
Cond(currnode.a, parent(currnode).b, siblings(currnode).c). We leave it as
Exercise 3.2.3 to formulate an ASM for tree adjoining grammars, general-
izing Parikh’s analysis of context free languages.

We conclude this section with a particular case of (n,m)-refinement where
n < m, which is known in the literature under the name of premature choice.
It deals with implementations of an early choice in an abstract model by a
later choice in the refined model. For the traditional trace-based refinement

116 3 Basic ASMs

approach which works with abstractions of type (1, 1) this case presents a
technical problem of proof-theoretic nature, usually solved by introducing
so-called prophecy variables. For a clear and succinct exposition see [316,
Sect. 8]. The ASM refinement notion covers this case, as we are going to
illustrate here by the reliable channel example taken from [316, p. 8.10]: “A
reliable channel accepts messages and delivers them in FIFO order, except
that if there is a crash, it may lose some messages.” The following basic ASM
describes the crucial three operations of putting and getting Messages, where
the queue operations to insert, delete, return a message are kept abstract,
and of crashes which may result in the loss of some or all messages in the
queue:

EarlyChoice = Put or Get or Crash

where
Put(m) = insert(m, queue)
Get = {delete(head(queue), queue), return(head(queue))
Crash = choose q ∈ {s | s subsequence of queue}

forall m ∈ q delete(m, queue)

A typical implementation, like the Internet’s TCP protocol, ensures FIFO
delivery and gets rid of retransmitted duplicates by consecutive message num-
bering, discarding any message whose number is smaller than the last assigned
number. Since the underlying Internet message transport is not FIFO, if after
a crash a later outstanding undelivered message overtakes an earlier one, the
latter will be lost – but this will be known only after the overtaking has taken
place, which may be long after the crash and the subsequent recovery. One can
model such an implementation by “marking” the messages which are queued
at the time of a crash and letting the get-operation choose whether to drop
or to keep a marked message. This yields a refined basic ASM LateChoice

where the set Message is refined to pairs (x .mssg , x .mark) with attributes
mssg and a Boolean-valued mark (with default value “false” to be assigned
when insert ing a new message into the queue). LateChoice has the same
rule as EarlyChoice but with a redefined crash operation, which marks all
messages in the queue; it has a redefined return macro, which has the choice
whether to skip or to in fact return a marked message.

Crashref = forall x ∈ queue x .mark := true
returnref = (if head(queue).mark then skip) or return(head(queue))

We leave it as Exercise 3.2.6 to formulate conditions under which the machine
EarlyChoice is correctly refined by LateChoice.

Problem 9 (Framework for communication models). Formulate a
uniform model of communication from which practical communication mech-
anisms and communication models proposed in the literature can be obtained
by instantiating the abstractions. Use the framework for a comparison of dif-
ferent communication models.

3.2 Incremental Design by Re�nements 117

3.2.2 Two Refinement Verification Case Studies

In this section we show how to use ASM refinements for proving system
properties. We use two well-known algorithms for the shortest path problem
and for database recovery, specified following [409, 260] by a ground model
ASM which is detailed incrementally by proven to be correct refinement steps.

Shortest path (graph traversal) problem. The goal is to exhibit an
efficient program which computes the reachability set of a given graph and
can be proved to do so. The task is performed by defining the following
hierarchy of ASMs leading from a ground model to Dijkstra’s algorithm [182]
and to an executable program, where each refinement step implements a
design decision which is documented by the correctness proof:16

– a ground model computing graph reachability sets: ShortestPath0,
– wave propagation of frontier: ShortestPath1,
– neighborhoodwise frontier propagation: ShortestPath2,
– edgewise frontier extension per neighborhood: ShortestPath3,
– queue/stack implementation of frontier/neighborhoods: ShortestPath4,
– introducing weights for measuring paths and computing shortest paths:

ShortestPath5 (Dijkstra’s algorithm,)
– instantiating data structures for measures and weights: a C++ program.

The ground model serves to specify an algorithm which, given a directed
graph (NODE ,E , source) with a distinguished source node, labels every node
which is reachable from source via edges in E and terminates for finite graphs.
The idea is to start at source, move along edges to neighbor nodes and label
every reached node as visited. In the initial state only source is labeled as
visited. Termination is achieved by pushing in each step the set of already
visited nodes one edge further without revisiting nodes which have already
been labeled as visited. This algorithmic idea is formalized by the following
ASM for which the correctness and termination property can be proved easily.

ShortestPath0 =
forall (u, v) ∈ E with u ∈ visited and v /∈ visited

visited(v) := true

Lemma 3.2.1 (Correctness). Each node which is reachable from source
is exactly once labeled as visited.

Proof. The existence claim follows by an induction on the length of the paths
from source. The initialization assumption guarantees the basis of the in-
duction. The uniqueness property follows from the rule guard which ensures
that only nodes which are not yet labeled as visited are considered for being
labeled as visited. ut
16 An asynchronous shortest path ASM, MinPathToLeader, which works in ar-

bitrary connected networks, is de�ned in Sect. 6.1.5.

118 3 Basic ASMs

Fig. 3.8 ShortestPath1

scan delete u from frontier
shift frontier to neighb(u)

forall u in frontier

Lemma 3.2.2 (Termination). The machine ShortestPath0 terminates
for finite graphs, in the sense that it reaches a state in which there is no longer
any edge (u, v) ∈ E whose tail u is labeled as visited but whose head v is
not.

Proof. Follows from the fact that by each rule application, the (finite) set of
nodes which are not labeled as visited decreases. ut

The goal of the first refinement step is to identify the frontier of the wave
propagation, namely as the dynamic set of nodes which have been labeled as
visited in the last step. The assumption that initially only source is labeled
as visited is turned into the equation frontier = {source} which holds in the
initial state. This leads to the following ASM where the frontier is moved
simultaneously for each node in frontier to all its neighbors (restricted to
those which have not yet been labeled as visited). Nodes are labeled as visited
when they become members of frontier , hence frontier is a subset of visited .
See Fig. 3.8.

ShortestPath1 =
forall u ∈ frontier

frontier(u) := false
ShiftFrontierToNeighb(u)

ShiftFrontierToNeighb(u) =
forall v ∈ neighb(u) do ShiftFrontierTo(v)

ShiftFrontierTo(v) = if v /∈ visited then
visited(v) := true
frontier(v) := true

Neighbors of a node u are those connected to u by an edge:

neighb(u) = {v | (u, v) ∈ E}.

It is easy to show that all nodes which are reachable from source by a path
of length ≤ t are labeled as visited by ShortestPath1 in ≤ t steps (Exer-
cise 3.2.7).

Lemma 3.2.3. The steps of ShortestPathi for i = 0, 1 are in 1-1 corre-
spondence and perform the same labelings.

3.2 Incremental Design by Re�nements 119

Fig. 3.9 ShortestPath2

scan
not empty

frontier
choose u in frontier

delete u from frontier
shift frontier to neighb(u)

Proof. Ths follows by an induction on the runs, proving that in each state the
set of nodes u such that u is visited and there is an edge (u, v) ∈ E such that v
is not visited is contained in frontier (so that ShiftFrontierToNeighb(u)
is applied). ut

Corollary 3.2.2. ShortestPath1 terminates and satisfies the correctness
property of Lemma 3.2.1.

The goal of the second refinement step is to start reducing the parallelism
by shifting the frontier in each step to the neighborhood of only one node. To
leave the design space open, we keep the scheduling of the node for the next
frontier propagation step abstract and determine those nodes by a choice
function select . When it comes to prove certain properties, this function will
be constrained by appropriate conditions (e.g. fairness to obtain completeness
of node visits). This leads to the following ASM which has the same macros as
ShortestPath1, not repeated here. See the equivalent description in Fig. 3.9
which realizes the idea that each run of ShortestPath1 can be simulated
by a breadth-first run of ShortestPath2 producing the same labelings of
nodes as visited (Exercise 3.2.8).

ShortestPath2 = choose u ∈ frontier
frontier(u) := false
ShiftFrontierToNeighb(u)

Lemma 3.2.4 (Slow down by nodewise frontier propagation).

1. For each step t and each u ∈ frontiert(ShortestPath2) there exists a
t ′ ≤ t such that u ∈ frontiert′(ShortestPath1).

2. If ShortestPath2 in step t labels a node as visited, then
ShortestPath1 does the same in some step t ′ ≤ t .

Proof. Both statements follow by an induction on t . ut

Corollary 3.2.3. ShortestPath2 terminates for finite graphs and satisfies
the correctness property of Lemma 3.2.1.

The goal of the second refinement step is to continue reducing the paral-
lelism by edgewise frontier extension per neighborhood. This comes up to re-
fine the ShortestPath2-rule ShiftFrontierToNeighb(u) to an iterating

120 3 Basic ASMs

Fig. 3.10 ShiftFrontierToNeighb(u)

yesno choose v in neighb
delete v from neighb
shift frontier to v

label

neighb
not empty

initialize neighb by neighb(u)

Fig. 3.11 ShortestPath3

choose u in frontier

choose v in neighb

shift frontier to v

label
initialize neighb by neighb(u)

neighb
not empty

frontier
not empty

scan delete u from frontier

delete v from neighb
yesno

submachine which – after appropriate initialization for neighb = neighb(u) –
selects one by one every node v of neighb to edgewise ShiftFrontierTo(v),
so that the same labeling of nodes as visited is obtained. Replacing the ma-
chine ShiftFrontierToNeighb(u) in ShortestPath2 by the iterating
machine defined in Fig. 3.10 yields the machine ShortestPath3 in Fig. 3.11.

Corollary 3.2.4. The correctness and termination of ShortestPath2 are
preserved by the refinement to ShortestPath3.

The next step is a data refinement which implements frontier by a queue
and neighb by a stack. Therefore, choose of frontier becomes the function
which selects the first element at the left end, and insert becomes the func-
tion which appends its argument at the right end, together with the standard
queue functions like delete, meaning frontier := rest(frontier). We have to
maintain the property that no node occurs more than once in frontier . For the
stack we have the obvious functions choose = top, delete = pop and assume
for the initialization that neighb(u) is given as stack. Let ShortestPath4

be the resulting ASM which is easily shown to preserve correctness and ter-
mination of ShortestPath3 (Exercise 3.2.9).

To refine ShortestPath4 to a machine which computes a shortest path
for each reachable node, the weight of paths from source has to be defined
and computed. The idea is to measure paths by the accumulated weight
of their edges. The weight of edges is determined by an abstract function
weight : E → R

+ that assigns a non-negative real number to each edge of the

3.2 Incremental Design by Re�nements 121

graph. The path weight : PATH → R is defined in the usual inductive manner
from edge weight (from which it is distinguished from by its type); ε stands
for the empty path:

weight(ε) = 0,weight(pe) = weight(p) + weight(e).

One can then define minWeight : NODE → R by

minWeight(u) = inf {weight(p) | p is a path from source to u}.

The algorithmic idea is to compute minWeight by successive approximations
of an upper bound upbd : NODE → R for each node encountered on a path
from source. Approximations come into the picture because nodes may be
connected to source by more than one path, whose weights have to be com-
pared to determine a minimal one. The assumption for the initial state is
refined to upbd(u) =∞ for every node u except upbd(source) = 0.

Consider now any frontier shift from a node u to one of its neighbors v ,
i.e. a step where a path from source to u is extended by the edge e = (u, v) to
reach v . If the current upper bound upbd(v) as candidate for minWeight(v)
can be improved by the weight of the newly considered path from source to u
followed by e, then upbd(v) is lowered via u, namely to upbd(u) + weight(e).

This idea is realized by refining the operation ShiftFrontierTo(v) in
ShortestPath4 to the following LowerUpbd(v , u):

LowerUpbd(v , u) = let e = (u, v) in
if upbd(u) + weight(e) < upbd(v) then

upbd(v) := upbd(u) + weight(e)
if v /∈ visited then

frontier(v) := true
visited(v) := true

Let ShortestPath5 be the result of replacing in ShortestPath4 the ma-
chine ShiftFrontierTo(v) by LowerUpbd(v , u) and initializing neighb
by (u,neighb(u)) (since the parameter u is needed for lowering upbd(v)).
Moreover, frontier is implemented as a priority queue in which the node
which is selected is always the one with the least upbd value:

u = choose(frontier) ⇐⇒ ∀v ∈ frontier(upbd(u) ≤ upbd(v))

This machine is known as Dijkstra’s algorithm [182].

Lemma 3.2.5. Dijkstra’s algorithm terminates for finite graphs.

Proof. Consider any run of ShortestPath5. Each node of the graph is added
at most once to the priority queue frontier . Hence the control state scan is
reached at most |NODE | times. ut

Theorem 3.2.1 (Correctness). minWeight(u) = upbd(u) holds for every
node u when Dijkstra’s algorithm terminates.

122 3 Basic ASMs

Proof. We call a node u complete, if its upper bound is already the weight of
the shortest path from source to u, i.e., if upbd(u) = minWeight(u).
The following two invariants hold whenever ShortestPath5 is in the control
state scan:

1. If u is visited but not in frontier , then u is complete.
2. If u is complete, u is not in frontier and e is an edge from u to v , then

upbd(v) ≤ minWeight(u) + weight(e).

The two invariants are certainly satisfied in the initial state, where all nodes
different from source are not complete and visited = frontier = {source}.
Assume now that the machine is control state scan and that u is the least
element of the priority queue frontier . Since u is removed from frontier , we
have to show that u is complete and that the invariant 2 for u is still true in
the next state, where the machine is in control state scan (after all neighbors
of u have been lowered).
Consider a shortest path from source to u. (Since u is in frontier, it is reach-
able from source.) Starting at source we proceed on the path until we reach
the first node which is in frontier . We call this node v and claim that v is
complete. Why? First observe that each initial segment of a shortest path
from source to a node is also a shortest path. Hence, if e = (a, b) is an edge
on a shortest path, then minWeight(b) = minWeight(a) + weight(e). Hence
we can start at source and repeatedly use invariant 2 and see that all nodes
on the path up to and including v are complete.
Since u is the least element of frontier and v is complete, it follows that
upbd(u) ≤ minWeight(v). Since v is on a shortest path from source to u,
we also have minWeight(v) ≤ minWeight(u). Hence, it follows that u is
complete.
All neighbors of u are lowered in the following label phase and therefore
invariant 2 is satisfied for u in the next scan state. ut

A similar refinement step of ShortestPath4 with an abstract measure
leads to Moore’s algorithm [336] and a solution of the constrained shortest
path problem. For more information on this refinement step and its imple-
mentation in C++ see [409].

As one among numerous other possible refinements of ShortestPath2

we mention the algorithm defined in [237] to compute from an ASM an
FSM to be used for testing the ASM. ShiftFrontierToNeighb(u) is re-
fined as including into frontier , which initially contains an initial state of
the ASM, every “relevant” nextState v which results from applying to u
any machine action a from a set action. This parameter typically contains
the rules of the original ASM which are to–be–tested. The algorithm keeps
track of the used transitions (triples (u, a, v)); for relevant next states it also
keeps track of the corresponding so-called hyperstates. These hyperstates are

3.2 Incremental Design by Re�nements 123

equivalence classes of states of the original ASM. They form the states of
the to–be–generated FSM and are computed from the ASM states by a func-
tion hyperstate. Thus the algorithm is parametric in the underlying notions of
action, nextState, relevant , hyperstate and initial states which can be adapted
to the particular testing goals.17

AsmGenFsm = choose u ∈ frontier
frontier(u) := false
forall a ∈ action forall v with nextState(u, a, v)

transition(u, a, v) := true
if relevant(u, a, v) then

frontier(v) := true
hyper(hyperstate(v)) := true

Database recovery. The goal of this example is to design and verify by
stepwise refinement an ASM model for a recovery algorithm for a multiple-
user, concurrently accessed database, which guarantees despite system fail-
ures the atomicity of the effect of durative database transactions (either
committing all the transaction updates or aborting all of them) and the
durability of the effect of committed transactions. We construct a database
ground model for which it is easy to prove the atomicity and durability of
transactions under appropriate run constraints. The model uses three kinds
of storage – stable, volatile, committed – with abstract operations Read,
Write, Commit, Abort, Recover, Fail, Flush and some auxiliary func-
tions. We then refine volatile and committed storage with related operations
by stable and cache memory with log management and prove it to be correct.
In exercises we formulate three more provably correct refinements, namely
by run-time computation of auxiliary functions, by the sequentialization of
parallelism and by computing run constraints.

Ground model DbRecovery. The database is accessed by elements of
an external set TRANSACTION of sequences of user OPERATION s. In
each step the database executes one operation, the one currently issued as
the value of a monitored function currOp. The atomicity property requires
that, independently of whether the operations issued by any transaction t
are interleaved with operations issued by other transactions, transaction t
completes in one of the following two ways:

normally with the commit operation. By the durability requirement com-
mitting means that the values of all write operations of t have to remain
in the database until they are overwritten by a subsequent transaction.

17 In [237] frontier is also re�ned to a sequence of reachable ASM states to{
be{traversed, with head as the selection function. This realizes an implemen-
tation step of the sort considered above in passing from ShortestPath3 to
ShortestPath4.

124 3 Basic ASMs

abnormally with the abort operation. This requires the values of all writes
of t to be replaced with the previous values, which remain until the next
overwrite. Every system failure occurring when t is active aborts t so
that the database values after a failure reflect only updates which have
been made by transactions committed before the failure.

Each operation is of one of the four types read, write, commit, abort, and each
has its issuing user and possibly a read/write location and a write value. This
is formalized by the following four external functions:

issuer : OPERATION → TRANSACTION
type: OPERATION → {read ,write, commit , abort}
loc: OPERATION → LOC
val : OPERATION → VALUE

The goal of the recovery algorithm we are going to define is to install the
committed database – commDb consisting of the last committed values – as
current database currDb, consisting of the most recent values over volatile or
stable storage. At the time of recovery, the recovery information is required
to be in the stable database stableDb (as specified in the ground model below
by the rule Fail, which transfers stableDb to currDb, possibly overwritten
in the sequel by Recover to commDb. The first refinement step provides a
more detailed version of this requirement.). For each transaction an auxiliary
controlled function writeSet records the set of locations for which the given
transaction has issued a write operation. A monitored function fail indicates
the presence or absence of a system failure, treated as an event which is
consumed by firing the corresponding Fail rule below. Not to commit to any
particular flushing policy, we treat also cacheFlush as a monitored function
indicating when the cache value in the given location has to be copied to
stable storage. In the ground model flushing appears only for specification
purposes; its detailed meaning is realized through the refinements. Initially,
stableDb, currDb and commDb are supposed to be everywhere undefined and
writeSet to yield everywhere ∅.

stableDb, currDb, commDb: LOC → VALUE
writeSet : TRANSACTION → PowerSet(LOC)
fail : BOOL
cacheFlush: LOC → BOOL

The database recovery ASM is a machine which – when operating in its nor-
mal mode – either executes the issued user operation and flushes some values
or reacts to a failure. In mode recovering it tries to recover from a failure to-
gether with the corresponding flush operation. This yields the use case defini-
tion of the control state ASM in Fig. 3.12.18 Note, that UserOperation and

3.2 Incremental Design by Re�nements 125

Fig. 3.12 DbRecovery ASM

FAIL

no
yes

fail = false

FLUSH
USER OPERATION

fail = truenormal recovering

RECOVER

Flush, which appear in the same box in Fig. 3.12, are executed in parallel
according to the standard ASM semantics.

We now define the ground model meaning for the symbolic operations
occurring in Fig. 3.12. Of the four user operations, at this level of abstraction
reading has no recovery effect (Read = skip). Write means to write the
given value into the given location in volatile memory (currDb) and to record
that location as a location being written and therefore subject to later commit
or abort. Commit and Abort are inverse to each other and mean to transfer
all written locations from volatile storage currDb to commDb and vice versa.
Flush transfers the toBeFlushed values from currDb to the stable storage
stableDb, and Failing inversely restores all stable locations in currDb. Hence,
the effect of Fail is that all values that are in currDb but not yet in stableDb
get lost (the cache memory is cleared). To Recover means to restore all
committed locations in currDb. This is summarized by the following definition
of the above-mentioned symbolic operations, in terms of macros which will
be further refined below.

UserOperation = case type(currOp) of
read → Read

write →Write

commit → Commit

abort → Abort

Read = skip
Write = {WriteIntoVolatileLoc,RecordLoc}
Commit = Commit(issuer(currOp))
Abort = Abort(issuer(currOp))
Flush = forall l with toBeFlushed(l) do Flush(l)
Fail = forall l ∈ LOC do RestoreStableValue(l)
Recover = forall l ∈ LOC do RestoreCommValue(l)

WriteIntoVolatileLoc = currDb(loc(currOp)) := val(currOp)
18 The guard fail = false in the rule leading from recovering back to normal be-

comes necessary only when the above-formulated assumption that the event fail
is consumed by �ring Fail is no longer satis�ed and that during recovery no new
failure can occur.

126 3 Basic ASMs

RecordLoc = let t = issuer(currOp) in
writeSet(t) := writeSet(t) ∪ {loc(currOp)}

Commit(t) = forall l ∈ writeSet(t) do commDb(l) := currDb(l)
Abort(t) = forall l ∈ writeSet(t) do currDb(l) := commDb(l)
toBeFlushed(l) ⇐⇒ (cacheFlush(l) = true)
Flush(l) = stableDb(l) := currDb(l)
RestoreStableValue(l) = currDb(l) := stableDb(l)
RestoreCommValue(l) = currDb(l) := commDb(l)

A transaction is called active in state S , if since its first read/write, in
some preceding state T ≤ S , neither does it commit nor abort nor does
the system recover in the open interval (T ,S). We use here the following
expressions:

– t does operation o iff type(currOp) = o and issuer(currOp) = t and
ctl state = normal and fail = false,

– t commits/aborts a write to l iff t commits/aborts and l ∈ writeSet(t),
– t encounters a failure in S iff t is active and fail = true in S ,
– t terminates in S iff t commits or aborts or encounters a failure in S .

Runs of the recovery algorithm are restricted to satisfy the constraint of
strictness of the external operation schedule. In strict runs, each transaction
is terminated by a commit , abort or a system failure. Moreover, transactions
are prevented from writing to locations which contain uncommitted values,
so that any transaction that writes to a location l terminates before the next
read/write to l .

Definition 3.2.3. A run of the database recovery algorithm is strict, if

– operations are issued only by active transactions,
– if transaction t in state S writes to a location l and transaction t ′ writes

to or reads from l in a later state T > S , then t is not active any more in
state T .

It should be noted that in a strict run a transaction may not read from or
write to a data location once it has written to it.

Lemma 3.2.6 (Strictness). If a transaction t is active in state S of a strict
run and the location l is in writeSet(t), then there exists a state T < S where
t writes to l . Hence, if two different transactions t and t ′ are active in state S ,
then writeSet(t) ∩ writeSet(t ′) = ∅.

The first property to show is the durability for commDb-values in runs of
DbRecovery. In the proofs below we say that in a state S the machine is
running when fail = false holds in S . Similarly we say that S is “normal”
or “recovering” if fail = false holds in S and the control state is normal or
recovering , respectively.

3.2 Incremental Design by Re�nements 127

Proposition 3.2.1 (Durability). In strict runs of DbRecovery, when a
write of a value v to a location l in state R is committed in a state S > R,
then commDb(l) = v holds from the next state S + 1 until some transaction
commits a new write to l .

Proof. A write by transaction t of v to l in state R yields currDb(l) = v
and l ∈ writeSet(t) in state R + 1. A commit of t in state S > R yields
commDb(l) = currDb(l) in state S + 1. This implies commDb(l)S+1 = v
for the following reason: by strictness, from state R (excluded) until state S
(included) no transaction writes to l or aborts a write to l and there is no
system failure followed by an application of Recover. Therefore, currDb(l)
is not updated in (R,S], so that commDb(l)S+1 = v . If for some T no
transaction commits a write to l in (S ,T], commDb(l) = v continues to hold
in (S ,T]. ut

The second property to show is the atomicity for values of currDb in runs of
DbRecovery.

Proposition 3.2.2 (Atomicity). In runs of DbRecovery, if transaction t
in state R writes value v to location l and thereafter terminates in state S ,
in every following normal state T > S until which no other Write to l is
issued the value currDb(l)T is

– the value v , if t terminates by a commit ,
– the old value currDb(l)R before the last writing, if t terminates by an abort

or a system failure.

Proof. After t issued a Write in state R, resulting in currDb(l) = v and
l ∈ writeSet(t) in state R + 1, there are two cases upon termination of t in a
state S ∈ (R,T): either t commits in S (Case 1) or t aborts or encounters a
failure in S (Case 2).
Case 1 : t commits in S . By strictness this implies that (1) currDb(l) is not
updated in (R,S] – since from state R (excluded) until state S (included) no
transaction writes to l or aborts a write to l and there is no system failure
followed by an application of Recover. Applying Commit in S yields (2)
currDb(l)S+1 = currDb(l)S = commDb(l)S+1. This implies currDb(l)T = v
by Lemma 3.2.7 below and (1).
Case 2 : t aborts or encounters a failure in S . By strictness, (1) commDb(l)
is not updated in [R,T], since no transaction commits a write to l in [R,T].
By Lemma 3.2.8 below, (2) currDb(l)R = commDb(l)R. We now distinguish
whether t aborts or encounters a failure in S .
Case 2.1 : t aborts in S ∈ (R,T). Then

currDb(l)T = currDb(l)S+1 by Lemma 3.2.7
= commDb(l)S since t aborts in S
= commDb(l)R by (1)
= currDb(l)R by (2)

128 3 Basic ASMs

Case 2.2 : t encounters a failure in S . Let S ′ be the first non-failure state in
(S ,T) (which does exist since a normal state T is reached). This state is the
result of applying Recover so that the following holds:

currDb(l)S ′+1 = commDb(l)S ′ by rule Recover

= commDb(l)R by (1)
= currDb(l)R by (2)
= currDb(l)T by Lemma 3.2.7

ut

Lemma 3.2.7 (Preservation of committed values). Committed values
in currDb(l) are preserved between normal states without writes to l , i.e. if
currDb(l)S = commDb(l)S in a normal state S and if T is a later normal
state until which no transaction writes to l , then currDb(l)T = currDb(l)S .

Proof. The following property can be proved by induction on T − S :

If S ≤ T , S is normal, currDb(l)S = commDb(l)S , and no write is
issued to l in [S ,T), then
– if T is normal, then currDb(l)T = commDb(l)T = commDb(l)S ,
– if T is recovering, then commDb(l)T = commDb(l)S .

If S = T , nothing has to be shown. Otherwise, if S < T , the induction
hypothesis can be applied to T − 1 and depending on whether T − 1 is
normal or recovering , the property is carried over from T − 1 to T . ut

Lemma 3.2.8. In a state where a write to l is issued, the equation
commDb(l) = currDb(l) holds.

Proof. In a strict run the following invariant holds for each state S :

If S is normal, then commDb(l)S = currDb(l)S or there exists an
active transaction t in S that has issued a write to l in some state
T < S .

Hence, if a write to l is issued in S , then by strictness the second possibility
is excluded. ut

Refinement of DbRecovery. The refinement consists in distributing the
current database currDb into stableDb and a cache memory. The committed
database commDb becomes a derived function that can be computed from a
log of all writes using the set of committed transactions. This implies on the
one hand that currDb is computed as follows from stableDb and the volatile
cache: LOC → VALUE :

currDb(l) =
{

stableDb(l), if cache(l) = undef ;
cache(l), otherwise.

3.2 Incremental Design by Re�nements 129

On the other hand it implies that the dynamic recording of commDb is com-
puted in stable storage.

Since the cache flush policy is independent of the recovery mechanism,
the problem is that, upon system failure, writes in the cache by uncommitted
transactions (with values possibly flushed to stable storage) must be undone,
and writes in the cache of committed transactions (whose values might reside
only in the cache) must be redone (reinstalled). The idea consists in keeping
track of writes/commits via log records of all writes, to be stored in stable
or volatile memory, and a dynamic list of committed transactions residing in
stable storage.

We therefore introduce a dynamic subset log ⊆ LOG of an ordered set of
records of all current writes, equipped with standard order-related functions
<, next , max and functions to retrieve the transaction which issued a write,
the location where it has written and the new value written there:

issuer : LOG → TRANSACTION
loc: LOG → LOC
afterImage: LOG → VAL

The commDb is now computed by the equation

commDb(l) = afterImage(lastRcd(l , commRcds))

using the following auxiliary derived functions to determine the last record
lastRcd : LOC × 2LOG → LOG for a location in a set of log entries, the
records of committed transactions (commRcds), the set of last committed
records (lastCommRcds) and the dynamic function

committed : TRANSACTIONS → BOOL

representing the set of committed transactions.

lastRcd(l ,L) = max{r ∈ L | loc(r) = l}
commRcds = {r ∈ log | committed(issuer(r))}
lastCommRcds = {r ∈ commRcds | r = lastRcd(loc(r), commRcds)}

When the database has to Undo a recorded write, the following derived
function undoRcd(r) is used to determine the last committed record r ′ of a
write to the location in question, with the understanding that undoRcd(r) =
undef if (as happens initially) no appropriate record r ′ exists:

undoRcd(r) = max{r ′ ∈ commRcds | r ′ < r , loc(r ′) = loc(r)}

The log is stored in stable or volatile memory and has a monitored subset
stableLog ⊆ log satisfying the following two run constraints:

Run Constraint RCS1. Upon system failure, records of last committed values
(“last committed records”) must be in stable storage:
lastCommRcds ⊆ stableLog ⊆ log .

130 3 Basic ASMs

Run Constraint RCS2. If a location has no record in the stable log portion,
then its value in stableDb must be undef :
if ¬∃r ∈ stableLog with loc(r) = l , then stableDb(l) = undef .

The Run Constraint RCS1 ensures that, in the case of a system failure
when the records in log \ stableLog are lost, the record lastRcd(l , commRcds)
does not change for any location l . The Run Constraint RCS2 ensures that
if a value of an uncommitted write to location l has already been flushed to
stableDb(l) and therefore stableDb(l) 6= undef , then there is also a record of
the write to l in stableLog .

The decision for which locations the cache values should be removed upon
flushing is reflected by a monitored function cacheRemove: LOC → BOOL
subject to the following constraint:

Run Constraint RCS3. cacheRemove(l) = false upon reading/writing to l
and upon undoing/redoing an l -record.

Without this constraint inconsistent update sets could be created, for exam-
ple, when in the same computation step a value v is written to a location l of
the cache with the update ((cache, l), v) and the previous value of l is flushed
and removed from the cache with the update ((cache, l ,), undef).

The rules of the refined ASM DbRecovery
′ are obtained from those of

DbRecovery by extending the two rules Read and Fail and by detailing
the macros as follows. In Write, to WriteIntoVolatileLoc to currDb
is replaced by cache, to RecordLoc the fields of the next free LOG entry
are written with the write information by Writelog. Commit(t) becomes
inserting t into the list of committed transactions. Abort(t) means to Undo

all log entries issued by t . The predicate toBeFlushed is strengthened to
flush only values from locations which have a defined cache value, in Flush

currDb is replaced by cache and a cache removal is added where requested by
the monitored function cacheRemove. In Fail, the update of log to its part
in stable log memory is added and to RestoreStableValue(l) becomes
cache(l) := undef . To RestoreCommValue(l) becomes to Redo the cache
value for l from its last record in log in case (the transaction of) this record is
committed, and otherwise to Undo it from the record provided by undoRcd .

WriteIntoVolatileLoc = cache(loc(currOp)) := val(currOp)
RecordLoc = Writelog(next(max (log)))
Commit(t) = committed(t) := true
Abort(t) = forall r ∈ log with issuer(r) = t do Undo(r)
toBeFlushed(l) ⇐⇒ (cacheFlush(l) = true and cache(l) 6= undef)
Flush(l) =

stableDb(l) := cache(l)
if cacheRemove(l) then cache(l) := undef

RestoreStableValue(l) = cache(l) := undef
RestoreCommValue(l) = let r = lastRcd(l , log) in

3.2 Incremental Design by Re�nements 131

if r 6= undef then
if committed(issuer(r)) then Redo(r) else Undo(r)

Read = let l = loc(currOp) in
if cache(l) = undef then cache(l) := stableDb(l)

Fail = forall l ∈ LOC do RestoreStableValue(l)
log := stableLog

Writelog(r) =
issuer(r) := issuer(currOp)
loc(r) := loc(currOp)
afterImage(r) := val(currOp)
log := log ∪ {r}

Redo(r) = cache(loc(r)) := afterImage(r)
Undo(r) = cache(loc(r)) := afterImage(undoRcd(r))

For the definition of equivalence between the refined ASM DbRecovery
′

and DbRecovery there is a one-to-one correspondence between homony-
mous rules. Furthermore, we stipulate for the equivalence notion that homony-
mous locations are identical via the following definition of currDb, commDb,
writeSet in DbRecovery

′:

– currDb as defined on p. 128,
– commDb as defined on p. 129,
– If t is active, then

writeSet(t) = {l ∈ LOC | ∃r ∈ log | issuer(r) = t ∧ loc(r) = l}.

Theorem 3.2.2 (Recovery equivalence theorem). In runs of the ma-
chines DbRecovery and DbRecovery

′ started in equivalent initial states,
in every pair of corresponding states corresponding locations are equivalent.

Proof. It follows by a run induction from the following equivalence of the
effect of every refined DbRecovery

′-operation macro to the effect of the
homonymous DbRecovery-macro in every state S DbRecovery

′ reaches:

Flush: if cacheFlush(l) holds in S , then stableDb(l)S+1 = currDb(l)S ,
Write: if t writes v to l in S , then currDb(l)S+1 = v and l ∈ writeSet(t)S+1,
Commit: if t commits in S and l ∈ writeSet(t)S , then

commDb(l)S+1 = currDb(l)S ,
Abort: if t aborts in S and l ∈ writeSet(t)S , then

currDb(l)S+1 = commDb(l)S ,
Fail: if fail = true in S , then currDb(l)S+1 = stableDb(l)S for every l ,
Recover: if the machine recovers in S , then currDb(l)S+1 = commDb(l)S

for every l .

132 3 Basic ASMs

It therefore remains to prove those equations in DbRecovery
′ together with

the equivalence of corresponding locations.
ad FLUSH. By the definition of currDb(l) on p. 128 there are two cases to
distinguish.
Case 1. cache(l)S = undef . Then by definition currDb(l)S = stableDb(l)S .
Since by applying Flush stableDb(l) is not changed, stableDb(l)S+1 =
stableDb(l)S = currDb(l)S .
Case 2. Otherwise. Then by definition currDb(l)S = cache(l)S and by firing
Flush stableDb(l)S+1 = cache(l)S = currDb(l)S .
ad WRITE. Write of v to l in S yields cache(l)S+1 = v , so that by
definition currDb(l)S+1 = v . log has a new l -record with issuer t , so that
l ∈ writeSet(t)S+1.
ad FAIL. Fail in S yields cache(l)S+1 = undef for every l , so that by
definition currDb(l)S+1 = stableDb(l)S .
ad RECOVER. We distinguish two cases depending on whether the function
lastRcd(l , log) is defined.
Case 1: in S there is no l -record in log . Then there has been no committed
write to l , so that commDb(l)S = undef . As a consequence of the Fail

in state S − 1 we have cache(l)S = undef . The Recover in state S does
not update cache(l). Hence, cache(l)S+1 = undef . By the Run Constraint
RCS2, we have stableDb(l)S = undef = stableDb(l)S+1. Hence we obtain,
currDb(l)S+1 = stableDb(l)S+1 = undef = commDb(l)S .
Case 2: r = lastRcd(l , log) is defined. Let t = issuer(r).
Case 2.1. committed(t)S = true. Then cache(l)S+1 = afterImage(r)S =
commDb(l)S by Redo and definition.
Case 2.2. Otherwise, currDb(l)S+1 = cache(l)S+1 = afterImage(r ′)S for the
last committed l -record r ′ < r ∈ logS (by Undo). Since r is the last l -record
in logS though not committed, r ′ is the last committed l -record in logS . Thus
afterImage(r ′)S = commDb(l)S .
ad COMMIT. By l ∈ writeSet(t)S there is a record in log with issuer t
and location l , so that t writes a value v to l in some state R < S . By the
strictness constraint on runs, t is active in S . By Lemma 3.2.9 this implies
for the last l -record r ∈ logS that currDb(l)S = v = afterImage(r)S . Apply-
ing Commit in S yields committed(t)S+1 = true. Therefore, currDb(l)S =
afterImage(r)S = commDb(l)S+1 by the definition of commDb.
ad ABORT. By l ∈ writeSet(t)S there is an l -record r ∈ logS with issuer t .
By strictness, t is active in S . By Lemma 3.2.9 r is the last l -record r ∈ logS .
Undo in S yields cache(l)S+1 = afterImage(r ′)S for the last committed
l -record r ′ < r in logS . Since r is the last l -record in logS , r ′ is the last
committed l -record in logS . Thus afterImage(r ′)S = commDb(l)S by the def-
inition of commDb. Therefore currDb(l)S+1 = cache(l)S+1 = commDb(l)S .

ut

3.2 Incremental Design by Re�nements 133

Fig. 3.13 Components of ASM refinement diagrams

. . .

~

.

. . .

~
~~ ~~ ~~

s’

*’s*s

s

*’s*s

s

*s

s’s

Lemma 3.2.9 (Persistence of write effects of active transactions).
If t writes v to l in state R and is still active in state S > R, then the last
l -record in logS is the record r written at R and currDb(l)S = v .

Proof. By induction on the number of states S > R. See [260, Lemma 5]. ut

3.2.3 Decomposing Refinement Verifications

We formulate here Schellhorn’s [387] scheme for establishing invariants to
prove the correctness of an ASM refinement. The idea consists in decomposing
the commuting diagram in Fig. 2.1 into more basic diagrams with end points
s, s∗ which satisfy an invariant ≈ implying the to be established equivalence
≡. The method is to follow the two runs, for each pair of corresponding
states – not both final – satisfying ≈, looking for a successor pair s ′, s∗′

(of corresponding states satisfying ≈). Three cases are possible for such run
extensions: only one of the two runs can be extended or both are extendable.
These cases give rise to three types of basic diagram, as shown in Fig. 3.13:

– (m, 0)-triangles representing a computation segment which leads in m > 0
steps to an s ′ ≈ s∗,

– (0,n)-triangles representing a computation segment which leads in n > 0
steps to an s∗′ ≈ s,

– (m,n)-trapezoids representing computation segments which lead in m > 0
steps to an s ′ and in n > 0 steps to an s∗′ such that s ′ ≈ s∗′.

Definition 3.2.4 (Forward simulation condition). FSC is defined as
the following run condition: for every pair (s, s∗) of states, if s ≈ s∗ and not
both are final states, then

– either the abstract run can be extended by an (m, 0)-triangle leading in
m > 0 steps to an s ′ ≈ s∗ satisfying (s ′, s∗) <m0 (s, s∗) for a well-founded
relation <m0 limiting successive applications of (m, 0)-triangles,

– or the refined run can be extended by a (0,n)-triangle leading in n > 0
steps to an s∗′ ≈ s satisfying the condition (s, s∗′) <0n (s, s∗) for a well-
founded relation <0n limiting successive applications of (0,n)-triangles,19

– or both runs can be extended by an (m,n)-trapezoid leading in m > 0
abstract steps to an s ′ and in n > 0 refined steps to an s∗′ such that
s ′ ≈ s∗′. Any of the three possible subcases m < n, m > n (typical for
optimizations) or m = n is allowed here.

134 3 Basic ASMs

In [387] Schellhorn proves the following theorem, the basis for the machine
verification in KIV [388, 389] of the proven to be correct hierarchy of ASMs
relating Prolog to its compilation to WAM code [132].

Theorem 3.2.3. (Decomposition of ASM refinement diagrams). M ∗ is a
correct refinement of M with respect to an equivalence notion ≡ and a notion
of initial/final states if there is a relation ≈ (a coupling invariant) such that

1. the coupling invariant implies the equivalence,
2. each refined initial state s∗ is coupled by the invariant to an abstract

initial state s ≈ s∗,
3. the forward simulation condition FSC holds.

Problem 10 (ASM refinement theory). Develop the refinement the-
ory of ASMs further, providing practical refinement schemes which reflect
frequently used patterns. Implement these schemes in a theorem-proving
system. Compare them to specific refinement schemes in the literature
(see [24, 334, 337, 25, 167, 176]).

3.2.4 Exercises

Exercise 3.2.1. Show that in the refinement Def. 3.2.1, the sequences of
corresponding states can be chosen to be minimal in the sense that between
two sequence elements there are no other equivalent states, i.e. there are no
ik < i < ik+1, jk < j < jk+1 such that Si ≡ S∗j .

Exercise 3.2.2. Define a data refinement of sets to lists. Show why the
abstraction function is not necessarily total nor injective.

Exercise 3.2.3. (; CD) Refine Backtrackto an ASM for tree adjoining
grammars, generalizing Parikh’s analysis of context free languages by “pump-
ing” of context free trees from basis trees (with terminal yield) and recursion
trees (with terminal yield except for the root variable).

Exercise 3.2.4 (Communication via offer and request matching).
(; CD) The communication in the programming language Occam is realized
via channels, each of which for a communication to take place requires ex-
actly one reader x and one writer y 20: the reader is positioned to execute an
instruction c?v to read into val(v , env(x)) the value coming through a chan-
nel bind(c, env(x)), and the writer is positioned to execute an instruction
d !t to write val(t , env(y)) into that channel bind(d , env(y)). In the instan-
taneous communication rule the channel synchronizes the reader’s request
19 This well-founded order condition is guaranteed in re�nements of event-based B

systems by the VARIANT clause, containing an expression for a natural number
which has to be shown to decrease for each rule application [11].

20 Their uniqueness is guaranteed by constraints on the channels and shared vari-
ables in Occam programs; see [105, Sect. 2].

3.2 Incremental Design by Re�nements 135

and the writer’s offer without being updated itself, serving only as a medium
which realizes an agreement between the two processes (matching request
and offer).

OccamCommunication(x , v , c, y , t , d) =
if mode(x) = running and instr(pos(x)) = c?v and

mode(y) = running and instr(pos(y)) = d !t and
bind(c, env(x)) = bind(d , env(y))

then {val(v , env(x)) := val(t , env(y)), proceed x , proceed y}
where proceed z = (pos(z) := next(pos(z)))

The rule can be refined by introducing a channel agent which establishes
the communication once a reader and a writer have arrived independently,
recording as the channel attributes their identity, the variable and the mes-
sage value. Prove the machine OccamChannel consisting of the following
three rules to be a correct refinement of OccamCommunication; determine
the corresponding states, the locations of interest, their equivalence, the re-
finement type.

In(x , c, v) = if mode(x) = running and instr(pos(x)) = c?v then
put x asleep at next(pos(x))
{reader(bind(c, env(x))) := x , var(bind(c, env(x))) := v}

Out(x , c, t) = if mode(x) = running and instr(pos(x)) = c!t then
put x asleep at next(pos(x))
{writer(bind(c, env(x))) :=x ,msg(bind(c, env(x))) :=val(t , env(x))}

Chan(c) = if reader(c),writer(c) 6= nil then
val(var(c), env(reader(c))) := msg(c)
{wake up reader(c), wake up writer(c), clear c}

where
put z asleep at p = {mode(z) := sleeping , pos(z) := p}
wake up z = (mode(z) := running)
clear c = {reader(c) := nil ,writer(c) := nil}

Exercise 3.2.5 (Communication via handshaking). In process algebra
systems like LOTOS [68], process communication is specified via so-called
gates where the participating agents have to “agree on offered values”. This
can be viewed as a special case of shared memory communication, namely via
gate locations g shared for reading and/or writing. The general scheme for
two processes P ,Q is as follows, where we use predicates α, β to determine
the choice the processes may have for agreeing upon a consistent update of
gate g with a value determined by terms s, t :

Handshaking(P , α, s,Q , β, t) =
choose x with α(x) in {g := s(x),P(x)}
choose y with β(y) in {g := t(y),Q(y)}

136 3 Basic ASMs

Use Handshaking to express the parallel execution of {g := 17,P} and
choose y ∈ N in {g := y ,Q(y)}. Simulate OccamCommunication by a
Handshaking ASM for appropriately defined P , α, s,Q , β, t (assuming that
at each moment for each channel c at most one process is allowed to read and
at most one to write to c). See also the description by AspHandshaking on
p. 185.

Exercise 3.2.6. (; CD) Formulate appropriate conditions under which
EarlyChoice is correctly refined by LateChoice and prove the correctness
of the refinement.

Exercise 3.2.7. Prove that all nodes which are reachable from source by a
path of length ≤ t are labeled as visited by ShortestPath1 in ≤ t steps.

Exercise 3.2.8. (; CD) Show that each run of ShortestPath1 can be
simulated by a breadth-first run of ShortestPath2 producing the same
labelings of nodes as visited.

Exercise 3.2.9. Prove that the refinement to ShortestPath4 preserves
the correctness and termination of ShortestPath3.

Exercise 3.2.10. Refine ShortestPath4 to efficient code.

Exercise 3.2.11. (; CD) Formulate a stack ASM with operations Add(e)
and Remove using a static concatenation function. Data refine this machine
by dynamic functions head, next. Prove that the refinement is correct in the
sense that corresponding runs have equivalent stacks and that executions of
Add(e), Remove operations correspond to each other.

Exercise 3.2.12. (; CD) Refine DbRecovery
′ to M ∗ by computing de-

rived functions, e.g. afterImage(undoRcd(r)). Formulate the correctness of
this refinement and prove it.

Exercise 3.2.13. (; CD) Refine M ∗ of the preceding exercise to M] by
sequentializing forall as iterated log scanning in Fail, Abort, Recover.
Formulate and prove the correctness of this refinement.

Exercise 3.2.14. (; CD) Refine M] of the preceding exercise to M [by im-
plementing run conditions, e.g. the following two constraints on cache policy
for log.

RCS1. The records of all last committed writes must be in stable stor-
age (for reinstallment during recovery), formally: lastCommRcds ⊆
stableLog ⊆ log . Hint: Refine Commit by flushing log to stableLog .

RCS2. If there is no stableLog record of a write to l , then stableDb(l) =
undef . Hint: maintain for each l the last log record with l (refining
Write); constrain flushing from cache to stableDb by a check of the
index of the last record for the location of the value to be flushed
against the index of the last record in stable storage.

Formulate and prove the correctness of this refinement.

3.3 Microprocessor Design Case Study 137

3.3 Microprocessor Design Case Study

In this section we illustrate the ASM method for ground model construction
and stepwise refinement by a real-life architecture design case study, namely
the provably correct optimization of a microprocessor, starting from its serial
ground model at the register transfer level and leading to its pipelined parallel
version. The example also illustrates how one can use the ASM method to deal
with hardware/software co-design problems in an accurate but nevertheless
transparent way. The reader who is not interested in architecture problems
may skip this section, which is a re-elaboration of [119]. For applications of
the method to commercial processors and for its extension to derive from the
ASM models simulators and debuggers see [411] and the references at the
end of the chapter.

Building a ground model in this context means modeling a microproces-
sor in architectural terms, avoiding any overhead which does not belong to
the application domain but only to the needs of the formalization (e.g. by
FSMs tailored for model checking or by logical theories which support me-
chanical verification in PVS or HOL). Refinement means to optimize the
processor model by standard techniques, verifying on-the-fly the correctness
of the optimization. As an example we choose pipelining, a key implementa-
tion technique to make fast CPUs. In fact the guideline for the refinement
steps we introduce below is to mimic as closely as possible state-of-the-art
incremental hardware design techniques and forms of reasoning the designers
use to justify their design, which typically are expressed in terms of the local
state to describe an overall “global-state” transformation. As a result the
approach introduced in this section can be used (a) to teach the basics of
RISC processors and more generally of architectures and their implementa-
tion, (b) to refine the ASM models for architectures further to support their
mechanical verification (see the analysis of the models below in KIV and
PVS [217, 407]), their validation (through experimentation with a machine-
executable version,21 and their proven-to-be-correct synthesis by correctness-
preserving transformations (see [279]).

We concentrate our attention on control, where notoriously most errors
are found during the design of a processor. As a typical microprocessor we
consider the processor DLX developed by Hennessy and Patterson [278] ex-
hibiting the core features of RISC processors with a standard five-stage in-
struction pipeline. Pipelining provides a simultaneous execution of multiple
instructions exploiting independences between segments into which instruc-
tion execution can be decomposed, as a result of which the overall execution
speed for programs is improved despite a possible slow-down for the latency
of single instructions. Since pipelining is not visible to the programmer, it is
all the more crucial to ensure that the semantics of instructions is preserved
21 An architecture similar to the ASM model DLX

pipe developed below for the
pipelined version of DLX has been implemented in [168].

138 3 Basic ASMs

by the concurrency inherent in this technique. We prove the correctness of
Hennessy and Patterson’s pipelined processor with respect to its serial model
which comes with a one-instruction-at-a-time view of the processor. The task
therefore consists in (a) defining a ground model DLX

seq for the datapath
and the serial control of DLX, (b) refining this model to the pipelined version
DLX

pipe of DLX (in fact in three steps, gradually exposing the complications
of pipelining), (c) defining in which sense (and under which conditions on the
underlying hardware and compiler) the machines are equivalent and (d) justi-
fying the correctness of the refinements. In other words we are going to make
the following statement precise enough to make it subject to a mathematical
proof.

Theorem 3.3.1 (Correctness of DLX
pipe). For each DLX program, the

result of its serial (one-instruction-at-a-time) execution in the ground model
DLX

seq is the same as the result of its pipelined (up to five instructions
at–a–time) execution in the pipelined model DLX

pipe .

DLX incorporates pipelining techniques which resolve structural, data
and control hazards: instruction scheduling, forwarding, new hardware links
with additional control logic, and stalling. This suggests three application-
domain-driven refinement steps of the ground model DLX

seq : a parallel ver-
sion DLX

par which resolves structural hazards, a refinement to DLX
data

which resolves data hazards, and a refinement to DLX
pipe which resolves

control hazards. Each refined model is proven to be correct with respect to
the preceding model, lifting piecemeal the compiler assumptions which in
the abstract models guarantee hazard-freeness for the conflict types that the
model does not resolve. The proof principles we use are inductions and case
distinctions which correspond to the pipelining conflict types, that is to say
to standard methods to solve the conflicts and to justify the solution.

3.3.1 Ground Model DLX
seq

DLX comprises instructions for arithmetical and set operations, absolute
and conditional jumps (branches), interrupts, and memory access which we
classify in corresponding sets Alu, Set, Jump, Branch, Interrupt, Mem =
Load ∪ Store. We abstract from particularities of the instruction format by
working with abstract functions which provide what is encoded in an instruc-
tion, namely its operation opcode, its first and second operand fstop, sndop
(names of registers in an abstract register file whose contents are given by
a function reg),22 the destination register dest for the result computed by
an instruction, and a flag iop indicating whether the instruction operation is
an immediate one or not, i.e. whether it works with an immediate argument
value ival which is encoded in the instruction itself and not taken from the

3.3 Microprocessor Design Case Study 139

Fig. 3.14 The serial DLX model DLX
seq

MDR B

IARMEMADDRIAR

WORD
SUB

C

Subword

PC

LOAD

PassBtoMDRStore

STORE

I2S
IAR

I2S

Acc

C

IAR

Mem

WRITEBACK

A

Write
Back

IAR
S2I
IAR

Pipelining Stages

WB

MEM

EX

ID

IF

Jumps

Jump
Branch Set

Alu

ALU

Alu

Link

LINK

Addr

Store

Mem
S2I

JUMP
BRANCH TRAP

Link
Jump

Branch Trap

no

no yes

no

yes

Fetch FETCH

OPERANDOperand

Load
Store

yes

register file. As for the size of the register file, we also make no assumption
about the bandwidth of the memory which is represented by a function mem.

In the one-instruction-at-a-time-view DLX executes at each clock cycle
exactly one instruction and does this in up to five successive steps. Dur-
ing I nstruction Fetch an instruction is fetched from memory to a datapath
register IR, followed by I nstruction Decoding which includes extracting the
operands from the register file registers fstop, sndop – we suppress the stan-
dard argument IR, writing nthop instead of nthop(IR) – and assigning them
to register file exit ports A,B which are connected to the ALU input. Dur-
ing the EX ecution proper, in the case of an Alu or Set instruction the ALU
is used to compute the value of the operation opcode for the input values
in A,B and to assign it to the register file entry port C . In the case of a
22 The practice to notationally suppress the standard interpretation of registers by

the register content function reg and to write R ← S for reg(R) := reg(S) comes
close to ASM terms, where a register can be interpreted as a 0-ary function
whose value represents the register content, so that one could also write directly
R := S . The di�erence between the ASM notation and the notation which is
common in architecture texts becomes visible in examples like dest(IR) ← C ,
which stands for reg(dest(reg(IR))) := reg(C) and not for dest(IR) := C , since
the range of dest is the register �le and not the register contents.

140 3 Basic ASMs

Jump, Branch or Memory instruction the needed address is computed from
A,PC , ival and stored in PC (involving also an interrupt address register
IAR in the case of an interrupt instruction) or in a memory address register
MAR. In the MEM ory stage the memory data register MDR is used for load-
ing from or storing to mem at MAR, followed in case of a Load instruction
by transferring the relevant portion of the MDR-value to C . Finally, in the
W riteBack stage the result value is written back from C to the dest ination
register in the register file. The stages of this standard execution of a single
instruction are reflected by the ground model control states in Fig. 3.14. The
macros for DLX

seq are defined in Table 3.1 (together with their refinement
for DLX

par , to be explained below).
For the sake of completeness we explain some more details which appear in

Fig. 3.14. The rhombs denote tests of whether the fetched instruction in IR is
of the indicated type, formally JumpBranch = opcode(IR) ∈ Jump ∪Branch,
etc. The jump instructions of DLX comprise a system jump called TRAP –
which saves the current value of PC in the interrupt address register IAR
and updates PC to ival(IR) – as well as jumps which establish also a so-called
“link”, meaning that they save the current value of PC in C from where it
will be written back to the destination register in the register file. We write
JumpLink = Jump \ {TRAP} ⊇ Link . DLX has besides TRAP two interrupt
instructions Interrupt = {MOVS2I, MOVI2S} to move addresses between the
register file and the special interrupt address register IAR. We use next to
denote the next instruction address. When no confusion is to be feared, we
omit the superscripts seq or par .

The idea of pipelining is to fire simultaneously the rules of all stages,
one per instruction in its current stage, exploiting their independence where
possible. In doing this one has to resolve conflicts which may arise due to
a simultaneous access to a hardware resource – the so-called structural haz-
ards – or because an instruction execution may need data which have to be
computed by a preceding instruction whose pipelined execution is not yet
terminated – the so-called data hazards – or because the instruction fetched
after a jump or branch instruction may not be the one to jump to – the
so-called control hazards. We split this task into three subtasks by stepwise
refining DLX

seq to first DLX
par , then DLX

data and then DLX
pipe , verifying

on-the-fly at each step the corresponding conflict resolution.

3.3.2 Parallel Model DLX
par Resolving Structural Hazards

We refine here DLX
seq to DLX

par , obtained by replacing the global control
states by local rule guards, which are applied to instructions in their pipelin-
ing stages, and by detailing the rule macros to avoid structural conflicts.
In addition we illustrate what is called “speeding up pipe stages”, namely
by incorporating the SubWord-step into the DLX

par -rule WB. The mo-
tivation for such speed ups derives from the fact that when all pipe stages
proceed simultaneously, the time needed for moving an instruction one step

3.3 Microprocessor Design Case Study 141

Table 3.1 The macros for DLX
seq and DLX

par

DLX
seq

DLX
par

Fetch IR ← mem(PC)
PC ← next(PC)

IR ← meminstr (PC)
if not jumps then PC ← next(PC)

Operand A ← fstop
B ← sndop

A ← fstop
B ← sndop

Alu if iop(opcode) then
C ← opcode(A, ival)

else
C ← opcode(A,B)

if opcode(IR1) ∈ Alu ∪ Set then
if iop(opcode(IR1)) then

C ← opcode(IR1)(A, ival(IR1))
else

C ← opcode(IR1)(A,B)

Memaddr MAR ← A + ival if opcode(IR1) ∈ Load ∪ Store then
MAR ← A + ival(IR1)

PassBtoMDR MDR ← B if opcode(IR1) ∈ Store then
SMDR ← B

Movs2i C ← IAR if opcode(IR1) = MOVS2I then
C ← IAR

Movi2s IAR ← A if opcode(IR1) = MOVI2S then
IAR ← A

Branch if reg(A) = 0 then
PC ← PC + ival

if opcode(IR1) ∈ Branch then
if reg(A) = 0 then

PC ← PC 1 + ival(IR1)

Trap IAR ← PC
PC ← ival

if opcode(IR1) = TRAP then
IAR ← PC 1
PC ← ival(IR1)

Jumplink if iop(opcode) then
PC ← PC + ival

else PC ← A

if opcode(IR1) ∈ Jump ∪ Link then
if iop(opcode(IR1)) then

PC ← PC 1 + ival(IR1)
else PC ← A

Link C ← PC if opcode(IR1) ∈ Link then
C ← PC 1

Load MDR ← mem(MAR) if opcode(IR2) ∈ Load then
LMDR ← mem(MAR)

Store mem(MAR)← MDR if opcode(IR2) ∈ Store then
mem(MAR)← SMDR

Subword C ← opcode(MDR)

Writeback dest ← C if opcode(IR3) ∈
Alu ∪ Set ∪ Link ∪ {MOVS2I}

then
dest(IR3)← C 1

if opcode(IR3) ∈ Load then
dest(IR3)← opcode(IR3)(LMDR)

142 3 Basic ASMs

down the pipeline is a machine cycle, so that the length of the latter is de-
termined by the time required for the slowest pipe stage. The parallelization
of the rules of all five instruction stages leads to the following definition. We
use IF , ID ,EX ,MEM ,WB to denote a pipe stage as well as the submachine
corresponding to a stage. When we want to denote a pipe stage PS of an
instruction we also write PS (instr); we are confident that given the context
any confusion with the application of machine PS to instr is avoided.

DLX
par = {IF, ID,EX,MEM,WB} where

IF = Fetch

ID = {Operand,PreserveID}
EX = {Alu,Memaddr,PassBtoMDR,Movi2s,Movs2i} ∪

{Branch,Trap,Jumplink,Link,PreserveEX}
MEM = {Load,Store,PreserveMEM}
WB = Writeback

We explain now through commenting upon the refined definition of the
macros in Table 3.123 how DLX

par resolves the structural conflicts. Four
groups of resources have to be doubled so that any combination of operations
can occur in pipe stages which are executed simultaneously in one clock cycle,
namely the memory access (to fetch instructions independently from other
load or store operations), an addition mechanism (to increment the program
counter PC independently from other ALU operations), the memory data
register (for overlapping load and store instructions), and latches for the
instruction register IR, for PC and for the register file entry C (to hold
values which are needed later in a pipeline cycle of an instruction).

A memory access conflict between instruction fetching and load/store in-
structions is avoided by increasing the memory bandwidth, introducing an
additional memory access function meminstr , used only for fetching instruc-
tions and assumed to be a subfunction of mem. This models the Harvard-
architecture principle and abstracts from any particular implementation fea-
ture related to using separate instruction and data caches.24 To avoid using
the ALU for incrementing PC a separate PC -incrementer is provided, an-
other abstract function next . The guard defined below for the Fetch macro
prevents PC from being updated by the IF–rule when a jump or branch rule
has to update it in its execution phase.

jumps = opcode(IR1) ∈ Jump or
(opcode(IR1) ∈ Branch and opcode(IR1)(A) = true)

23 When we want to di�erentiate between the di�erent de�nitions for a macro we
add as a superscript the corresponding re�nement.

24 The proof below uses the fact that DLX programs are not self-modifying, i.e.
that meminstr is static (de�ned by the initialization) whereas mem is dynamic.
For a formalization of this property in the context of the KIV veri�cation of
Theorem 3.3.2 see [217].

3.3 Microprocessor Design Case Study 143

Some of the values which appear during the execution of an instruction at
a certain pipe stage are needed at later pipe stages and have to be copied
in order not to get overwritten by a subsequent instruction occurring in the
pipeline. This is the case for segments of IR, for PC and C . Since we abstract
from the instruction format and decoding details we use additional registers
IR1, IR2, IR3, PC 1, C 1 to keep copies through the pipe stages EX , MEM ,
WB by the following preservation rules (see below for the instruction schedul-
ing reasons which motivate the update of PC 1).

PreserveID = {IR1← IR,PC 1← next(next(PC))}
PreserveEX = IR2← IR1
PreserveMEM = {IR3← IR2,C 1← C}

In DLX
seq the memory data register MDR is the only interface between

the register-file and the memory and serves for both loading and storing. In
DLX

par a load instruction I which in the pipeline immediately precedes a
store instruction I ′ would compete with I ′ for writing into MDR in its pipe
stage MEM (when I ′ in its pipe stage EX wants to write B into MDR).
This resource conflict is resolved by doubling MDR into two registers LMDR
and SMDR and by correspondingly refining the Mem-related rules. The new
rule PassBtoMDR requires a new direct hardware link from the exit of B
to the entry of SMDR in order to avoid the use of the ALU for this data
transfer. Similarly the price for speeding up the pipe stages by integrating
Subword into WB is linking the exit of LMDR directly (without passing
through C 1) to the entry of the register-file and adding to the latter a selector
for choosing among C 1 and (the required portion of) LMDR.

3.3.3 Verifying Resolution of Structural Hazards (DLX
par)

As a first proof step to establish Theorem 3.3.1 we now provide a meaning
and a proof for the correctness of the parallelization of DLX

seq stated in
Theorem 3.3.2 below. The separation of the resolution of structural hazards,
which results from the parallelization, from the resolution of data and control
hazards is reflected by assuming here that the instruction scheduling by the
underlying compiler prevents data or control hazards from occurring. In the
following refinement steps this assumption will be lifted first for data and
then for control hazards.

Theorem 3.3.2 (Correctness of DLX
par). For an arbitrary DLX pro-

gram P , let C be the DLX
seq -computation started with P and let C par

be the corresponding DLX
par -computation started with the corresponding

program Ppar . Then C and C par compute the same result if C par is data-
hazard-free.

144 3 Basic ASMs

Table 3.2 The result locations for DLX instructions

Result location
of instr

Updated by instr of type To be collected after
the end of pipe state

〈reg , dest(instr)〉 Alu ∪ Set ∪ Load ∪ Link ∪ {MOVS2I} WB(instr)

〈reg , IAR〉 {TRAP, MOVI2S} EX (instr)

〈reg ,PC 〉 Jump ∪ Branch EX (instr)

/∈ Jump ∪ Branch IF (instr)

〈mem, arg〉 Store MEM (instr)

where arg = value of reg(fstop(instr)) + ival(instr) when fetching instr

Proof. The task to accomplish consists in first defining (a) the correspondence
and equivalence of computations in terms of their result, (b) the notion of
data-hazard and data-hazard-freeness together with the instruction schedul-
ing for programs P by transformed programs Ppar which prevents control
hazards from occurring, and then proving the statement. We start by defin-
ing the notions of result location, of used location and of relevant location,
which allows us to recover DLX

seq–states from successive DLX
par –states by

local projections.
We say that two computations correspond to each other if their initializa-
tions coincide on the common signature except where explicitly stated other-
wise. For DLX

seq–initializations we assume reg(IR) = undef and ctl state =
Fetch, and for DLX

par –initializations we assume reg(PC 1) = reg(C 1) =
reg(IRi) = undef for i = 1, 2, 3. We say that a computation is initialized or
starts with an instruction instr if mem(PC) = meminstr (PC) = instr .
We decompose computations as follows into segments which are relevant for
a given instruction. An instruction cycle for an occurrence of instr is defined
for DLX

seq as any subcomputation which starts with ctl state = Fetch and
mem(PC) = instr and leads to the next state with ctl state = Fetch. In
DLX

par –computations it is defined as any subcomputation which starts with
fetching instr and ends with the first following pipe stage of instr at the end
of which the values of all the result locations of instr , as defined below, are
computed. We call this pipe stage the end stage of (that occurrence of) instr ;
whether it is EX (instr), MEM (instr) or WB(instr) depends on instr and is
defined in Table 3.2. The result of an occurrence of instr or of an instr cycle
is defined by the values f (a) which are assigned to the result locations 〈f , a〉
of instr as part of its execution. The result of a computation is defined as the
sequence of the results of its instruction cycles.
The notion of instruction cycles allows us to provide the proof instructionwise
by showing that in every pair (C , C par) of corresponding DLX

seq ,DLX
par –

computations, any corresponding instruction cycles compute the same result.

3.3 Microprocessor Design Case Study 145

Table 3.3 The critical stages for usage of locations in DLX

Location Updated by instr of type Critical use
in stage

〈reg ,nthop〉 Alu ∪ Set ∪ {MOVI2S} ∪ Branch ∪ Jump \ {TRAP} EX (instr)

Load ∪ Store MEM (instr)

〈reg , IAR〉 {MOVS2I} EX (instr)

〈reg ,PC 〉 Jump ∪ Branch EX (instr)

/∈ Jump ∪ Branch IF (instr)

〈mem, arg〉 Load MEM (instr)

where arg = value of reg(fstop(instr)) + ival(instr) when fetching instr

The correspondence between instruction cycles in C and in C par is defined
by the order in which they occur: if I1, I2, . . . and I ′1, I

′
2, . . . are the instruction

cycles of C and C par , respectively, in the order in which they appear there,
then Ii and I ′i correspond to each other. By I0, I ′0 we indicate the initial state.
We say that I0, I ′0 formalize the “result” of “no computation step”.
The result of an instruction instr execution depends on the data used by
the instruction, namely besides the static information encoded in instr the
value of the PC , of the operands in the register file or of mem locations and
possibly of the interrupt address register. In Table 3.3 we list the locations
and instruction uses, together with the critical pipelining stage at which the
correct value is needed. Conflicts can arise in two ways, namely (a) if I ′ uses,
as one of its operands, the content of the destination register of a preceding
instruction I in the pipe, and (b) if I ′ enters in the pipe shortly after a jump
or branch instruction. To separate the analysis of data from that of control
hazards we distinguish whether or not the data dependence concerns a jump
or branch instruction.

Definition 3.3.1. Denote by I
1,2,3
< I ′ that an instruction cycle for I ′ is

starting 1,2 or 3 steps after the one for I . We say that I ′ is data-dependent

on I iff I
1,2,3
< I ′ and one of the following two conditions holds:

– dest(I) ∈ {fstop(I ′), sndop(I ′)} and I ′ 6∈ Jump ∪ Branch
– dest(I) = fstop(I ′) and I ′ ∈ Jump ∪ Branch

A DLX
par -computation is data hazard free if it contains no occurrence of an

instruction which is in the pipe together with an occurrence of an instruction
on which it is data-dependent.

When a jump or branch instruction I is fetched, the two instruction cycles
starting 1 and 2 steps later generate results which could spoil the continuation

146 3 Basic ASMs

of the computation once the jump has been executed (after the stage EX (I)
which updates PC to its correct value). Therefore we assume in this section
that P is transformed to Ppar by placing two empty instructions after each
jump or branch instruction. We stipulate that these empty instructions do not
start an instruction cycle25 and that they are put into new locations which
are linked by the extended next function to preserve the given connections.
This explains the update of PC 1 in Operand

par .26

The decomposition of computations into instruction cycles allows us to prove
the theorem instructionwise, using an inductive argument. For the induction
step we need a stronger inductive hypothesis than that stated in the theorem.
For its formulation we introduce a notion of relevant locations which allows
us to locally relate the global serial states of DLX

seq and their pipelined
virtual counterparts.27 For the proof of the following lemma, which implies
Theorem 3.3.2, the notion will be refined by admitting as additional irrelevant
locations all those where in a hazardous situation – which may occur because
it is not prevented any more by the instruction scheduler or compiler – the
refined architecture takes care of providing the right values for the locations
when needed. In this way we make it explicit where and how the compiler
assumptions can be weakened if the hardware is strengthened to solve a given
type of conflicts. This illustrates the potential of ASM modeling to describe
hardware/software co-design problems.

Lemma 3.3.1 (DLX
par Lemma). For n ≥ 0 let ICn , IC par

n be the nth
instruction cycle in computations C and C par , respectively.

Completeness: If C par is data hazard free, then ICn and IC par
n are instruction

cycles for the same occurrence of a DLX–instruction instr and start with
the same values for the relevant locations used by instr .

Correctness: If IC and IC par are instruction cycles for any instr in C and
C par , respectively, which start with the same values for the relevant loca-
tions used by instr and if instr is not data dependent on any instruction
in the pipe, then IC and IC par compute the same result.

A location l used by instr is called relevant except in the following two cases:
25 This is a typical example of a clear though loosely expressed hypothesis, made for

the sake of a proof, which for a mechanical proof veri�cation has to be detailed
further. For example see the KIV veri�cation of Theorem 3.3.2 in [217].

26 When a jump or branch instruction I is fetched at address l = reg(PC), PC
is updated to l ′ = next(l), which in Ppar is the address of undef . But in the
EX(I){stage the new value of PC must be computed on the basis of the value
of next(next(l ′)), i.e. the value of next(l) for P . Therefore, PC 1 has to store
this value when PC { in case a jump or branch instruction has been fetched {
contains the address of the empty instruction.

27 This replaces the use of the ushing technique which is common in the pipelining
veri�cation literature.

3.3 Microprocessor Design Case Study 147

Irrelev 1. l = 〈reg , IAR〉 and instr = MOVS2I enters the pipe 1, 2 or 3 stages
after an occurrence of MOVI2S or of TRAP .28

Irrelev 2. l = 〈mem, arg〉 and instr ∈ Load enters the pipe 1, 2, or 3 stages
after an occurrence of a Store instruction for the same value arg .29

We leave it as Exercise 3.3.1 to prove that this lemma implies Theorem 3.3.2.
It therefore remains to prove the DLX

par Lemma. We proceed by induc-
tion on n. The claim for n = 0 holds by the assumption that C and C par

correspond to each other and therefore are initialized with the same static
functions and with the same dynamic functions reg , mem. In the induction
step, by inductive hypothesis, for each i ≤ n, the ith instruction cycle IC p

i

in C par starts with the same values for the relevant locations used by instri

as does the ith instruction cycle ICi in C and they both compute the same
result. Therefore ICn+1 and IC p

n+1 are instruction cycles for the same in-
struction instr and start with the same values for the relevant locations used
by that instruction. To prove the correctness claim we first observe that due
to the absence of stalls, the (n +1)th instruction cycle in C par starts after the
first step of IC p

n in case the instruction instrn is neither a branch instruction
with true branching condition nor a jump; otherwise the (n +1)th instruction
cycle in C par starts after the third step of IC p

n due to the following Jump
Lemma whose proof we leave as Exercise 3.3.2.

Lemma 3.3.2 (Jump Lemma). If a jump or branch instruction I is
fetched in a DLX

par -computation, then the following two fetched instruc-
tions are empty and at stage ID(I) the register PC 1 is updated by the
correct value to be used for the computation of the possible new PC -value
in stage EX (I).

Therefore, for the location PC the two machines produce the same result.
Since the other result locations depend on the instruction type, the claim
of the DLX

par lemma can be established by a case distinction. For each
case one shows that through corresponding updates in IC and IC par , by the
28 No conict can arise from using 〈reg , IAR〉 because MOVS2I, the only instruction

which uses IAR, can never be in conict with any preceding instruction. If I
writes into IAR, then I ∈ {TRAP , MOVI2S} and I writes into IAR in its third

pipe stage; therefore if I
1,2,3
< I ′, then I has already written into IAR when I ′

uses it.
29 No conict can arise from using a memory location because load instructions

{ the only ones which use memory locations { can never be in conict with
preceding store instructions { the only ones which write into memory loca-
tions. Indeed if I ∈ Store and I ′ ∈ Load , then I updates its result location
〈mem, reg(fstop(I)) + ival(I)〉 in its fourth pipe stage and I ′ reads the value of
the location 〈mem, reg(fstop(I))+ ival(I)〉 in its fourth pipe stage too. Therefore

if I
1,2,3
< I ′ and I ′ loads the value of the result location of I as updated by I ,

then I has already updated this result location when I ′ loads from there.

148 3 Basic ASMs

definition of the rule macros in Table 3.1 the same value is computed for
the result location in question.30 The proof exploits the fact that in ASM
computations every controlled location keeps its value unchanged as long as
it is not updated by a rule execution. ut

3.3.4 Resolving Data Hazards (Refinement DLX
data)

We now enrich the architecture DLX
par so that it can handle data hazards

for linear code, i.e. conflicts for non-jump/branch instructions I ′, freeing the
compiler from the work of avoiding those conflicts. This means to weaken
the data-hazard-freeness assumption, allowing data hazards between I ′ and
I to occur but guaranteeing their resolution by the architecture. The three
standard methods to do this, namely the forwarding technique, new hard-
ware links coming with appropriate additional control logic (multiplexers),
and stalling, appear in the form of corresponding rule refinements. Thus the
refined model is defined as follows, with locally defined refinements at each
stage.

DLX
data = {IFdata , IDdata ,EX

data ,MEM
data ,WB

data}

Therefore, in this section let I ′ be a non-jump/branch instruction which
is data-dependent on I , i.e. satisfies the first case of Def. 3.3.1. We will spec-
ify the rule refinements piecemeal, following the case distinctions between
whether the data hazard to be handled involves a memory access or not and
whether the distance between the data dependent instructions in the pipe
is 1, 2 or 3. In each case more hazardous locations are identified to be han-
dled by a new rule branch and as a consequence to become “irrelevant”31 for
providing the correct argument values which are needed by I ′ in stage EX
or MEM . In the case of no data dependence in the pipe, the rule branch of
DLX

par applies which makes the refinement into a conservative one. In the
case analysis we justify the correctness of the refined architecture DLX

data

and therefore establish the following theorem.

Theorem 3.3.3 (Correctness of DLX
data). For an arbitrary DLX pro-

gram P , let C be the DLX
seq -computation started with P and let C data be

the corresponding DLX
data -computation started with Ppar . Assume that in

30 In [217, 407] this case distinction is detailed for a mechanical veri�cation using
KIV.

31 The notion of \irrelevant" locations realizes an abstract form of the standard
implementation technique by a scoreboard to keep track of data dependences.
See Exercise 3.3.7. Not surprisingly, the formalization of an equivalent of this
notion for the mechanical veri�cation of Theorem 3.3.2 in KIV and PVS has
led to a rather complex predicate; see [217, 407]. Part of the complication stems
from the need to formalize the basic semantical ASM property that in any com-
putation a location remains unchanged unless it is updated (by a rule execution
for controlled locations and by the environment for monitored locations).

3.3 Microprocessor Design Case Study 149

C data no occurrence of a jump or branch instruction is in the pipe together
with an occurrence of an instruction on which it is data dependent. Then C
and C data compute the same result.

Proof. Localizing the hazardous locations and turning them into irrelevant
ones allows us again to establish the claim instructionwise, proving the fol-
lowing analogon of Lemma 3.3.1. We leave it as Exercise 3.3.4 to show that
this lemma implies Theorem 3.3.3.

Lemma 3.3.3 (DLX
data Lemma). For n ≥ 0 let ICn and IC data

n be the
nth instruction cycle in computations C and C data , respectively.

Completeness: If C data is free of hazards for jump or branch instructions,
then ICn , IC data

n are instruction cycles for the same occurrence of a DLX–
instruction I ′ and start with the same values for the relevant locations
used by I ′.

Correctness: Let IC , IC par and IC data be instruction cycles for any I ′ in C ,
C par and C data , respectively, which start with the same values for the
relevant locations used by I ′. The following holds:
Conservativity: If I ′ is not data dependent on any instruction in the pipe,

then IC data , IC par compute the same result.

Refinement: If I ′ 6∈ Jump ∪Branch is data dependent on some I
1,2,3
< I ′,

then IC data , IC compute the same result.

The proof for the completeness part of the DLX
data lemma follows the lines

of the proof of Lemma 3.3.1, including the proof of the Jump Lemma 3.3.2.
For the conservativity claim one can easily see that if I ′ is data independent
of any I which precedes it in the pipe, then for each DLX

data -rule applied
in IC data for the execution of (this occurrence of) I ′, in any of its five pipe
stages, the branch is taken which constitutes the corresponding DLX

par -
rule. Since by assumption IC par and IC data start with the same values for
the relevant locations used by I ′, the effect of these rule applications to I ′

in IC data is the same as in IC par and in particular the values of the result
locations of I ′ computed in IC par and IC data coincide. From Lemma 3.3.1 it
follows that IC and IC data also compute the same result.
It remains to define the refinement of the rule macros and to prove the re-
finement claim for them. The assumption on jump/branch instructions im-
plies a) I ∈ Alu ∪ Set ∪ Load ∪ Link ∪ {MOVS2I} and b) I ′ 6= MOVS2I, i.e.
I ′ ∈ Alu ∪ Set ∪ Load ∪ Store ∪ {MOVI2S}. The reason is that only in these
cases are dest(I), fstop(I’), sndop(I’) defined (see Table 3.4 and the assump-
tion dest(I) = R31 for I ∈ Link). Therefore, we distinguish three cases,
depending on whether the data hazard involves a memory access or not, to-
gether with two subcases, depending on the distance between data dependent-
instructions in the pipe. For each case we show that the values of the result

150 3 Basic ASMs

Table 3.4 Domain of definition of DLX instruction parameters

function de�ned for instr

dest(instr) ∈ Alu ∪ Set ∪ Load ∪ Link ∪ {MOVS2I}
fstop(instr) ∈ Alu ∪ Set ∪Mem ∪ JumpLink ∪ Branch ∪ {MOVI2S}
sndop(instr) ∈ Alu ∪ Set ∪ Store

locations of I ′ in IC are the same as the ones produced by executing I ′

through the refined rules in IC data .

Case I 6∈ Mem. In this case I ∈ Alu ∪ Set ∪ Link ∪ {MOVS2I}. dest(I)
receives the value needed by I ′ through its update to the value of C1 in
stage WB(I); this value has been copied in stage MEM(I) from C where it
appeared in stage EX(I), as the result of an Alu∪Set–operation or as content
of PC1 or of IAR. Therefore in case I ′ enters the pipe 3 or 2 steps after I ,
the ID(I’)-stage overlaps with stage WB(I) or MEM(I) so that the correct
updates of the arguments of I ′ can be made by directly copying C ′ ∈ {C 1,C}
to nthReg ∈ {A,B}, instead of waiting for nthop ∈ {fstop, sndop} to receive
the correct value. In case I ′ enters the pipe one step after I , the expected
operand value valnth is computed during the stage ID(I’) and is available
in stage EX(I’) but not before. As a consequence the data hazard can be
resolved for the first subcase by refining the ID-rule Operand and for the
second subcase by refining the EX-rules concerned in this subcase, namely
Alu,Movi2s,Memaddr,PassBtoMDR.

Subcase I
2,3
< I ′. To forward values directly from the register file entries

C ′ ∈ {C ,C 1} to the register file exits nthReg ∈ {A,B}, direct hardware links
between them are needed to support the following refinement of Operand.
For brevity we write Operand

par
nth for nthReg ← nthop and express by a

derived function C ′, to be refined by a third case below, the necessary dis-
tinction if the code requires two successive updates of dest(I). In that case,
as defined by the serial semantics of DLX

seq the last update counts.

Operanddata = {Operanddata
fst ,Operanddata

snd } where Operanddata
nth =

if nthop ∈ {dest(IR3), dest(IR2)} then nthReg ← C ′

else Operand
par
nth

C ′ =
{

C 1, if nthop(IR) = dest(IR3) 6= dest(IR2);
C , if nthop(IR) = dest(IR2).

Since the rule refinement strengthens the architecture to resolve a possible
data conflict, in this subcase by loading anyway the correct arguments for

3.3 Microprocessor Design Case Study 151

the EX-or MEM-stage rules of I ′ into A, B, we can weaken the assumptions
in Lemma 3.3.3 by enlarging the set of non-relevant locations used by I ′:
Irrelev 3. < reg ,nthop(I ′) > such that I ′ 6∈ Jump ∪ Branch and for some

I
3,2
< I ′ with I 6∈ Mem holds nthop(I ′) = dest(I).

Subcase I
1
< I ′. In this case I ′ immediately follows I in the pipe, so that

the result to be computed by I comes out of the ALU and goes into the
register file entry C at the end of stage EX(I) and can be forwarded directly,
without passing through the register file exits A, B, as next ALU-input to
compute the EX rules for I ′ with the correct arguments. This is at the
expense of introducing a direct link between C and both ALU ports (for
I ′ ∈ Alu ∪ Set), IAR (for I ′ = MOVI2S), MAR and SMDR (for I ′ ∈ Mem)
together with some control logic (multiplexers) for selecting the forwarded
value as the ALU input rather than the value from the register file. Since
these rules are refined furthermore for other conflict cases below, we show
here only in the example of the Memaddr macro how the conflict is resolved
in the present subcase. For brevity of exposition we use a derived function
valnth, to be refined by a third case below, to express values taken either
regularly (from the nth register file exit: fstReg = A or sndReg = B) or
forwarded from C .

valnth =
{

C , if nthop(IR1) = dest(IR2);
nthReg , otherwise.

if opcode(IR1) ∈ Load ∪ Store then
if fstop(IR1) = dest(IR2) then MAR ← valfst + ival(IR1)
else Memaddr

par

Irrelev 4. < reg ,nthop(I ′) > such that for some I
1
< I ′ with I 6∈ Mem one

of the following holds:

– opcode(I ′) ∈ Alu ∪ Set , iop(opcode(I ′)), dest(I) = fstop(I ′),nth = fst ;
– opcode(I ′) ∈ Alu ∪ Set , iop(opcode(I ′)) = false, dest(I) = nthop(I ′);
– opcode(I ′) ∈ Mem ∪ {MOVI2S}, dest(I) = fstop(I ′),nth = fst ;
– opcode(I ′) ∈ Store, dest(I) = sndop(I ′),nth = snd .

Case I ∈ Mem, I ′ 6∈ Mem. In this case I ∈ Load and I ′ ∈ Alu ∪ Set ∪
{MOVI2S}. The value val loaded by I is available only at the end of stage
MEM (I), namely in LMDR or (due to a possible stall; see below) in a new
latch LMDR1. Therefore, instructions I ′ 6∈ Mem which enter the pipe 3 or 2
steps later than I can grep such an operand value in their stage ID(I ′) or
EX (I ′), so that it suffices to furthermore refine Operand and the relevant
EX -stage rules Alu, MOVI2S. If, however, I ′ enters the pipe immediately
after I , then the pipeline has to be stopped for one stage, starting at the

152 3 Basic ASMs

latest just before stage EX (I ′), in such a way that after the pipeline takes off
again, I ′ can grep from LMDR the value I has in the meantime loaded there.
Since the MEM -stage rule applied to I may overwrite the value LMDR of an
immediately preceding load instruction,32 we add a preservation rule to let
immediately after stage WB a copy of LMDR be available also outside the
register file for possible use in Alu

data and MOVI2S
data .

WB
data = {Writeback

par ,PreserveWB} where

PreserveWB = {IR4← IR3,LMDR1← LMDR}

Subcase I
2,3
< I ′. We refine Operand

data by refining the derived function
C ′ as follows:

C ′ =

C 1, if nthop(IR) = dest(IR3) 6= dest(IR2)

and opcode(IR3) 6∈ Load ;
LMDR, if nthop(IR) = dest(IR3) 6= dest(IR2)

and opcode(IR3) ∈ Load ;
C , if nthop(IR) = dest(IR2).

Similarly we refine valnth together with Alu
par and Movi2s

par as follows:

valnth =

C , if nthop(IR1) = dest(IR2);
LMDR, if nthop(IR1) = dest(IR3) 6= dest(IR2)

and opcode(IR3) ∈ Load ;
LMDR1, if nthop(IR1) = dest(IR4) 6= dest(IR2), dest(IR3)

and opcode(IR3), opcode(IR4) ∈ Load ;
nthReg , otherwise.

Alu
data = if opcode(IR1) ∈ Alu ∪ Set then

if not (dataDep1 or dataDep2) then Alu
par else

if iop(opcode(IR1)) and dataDep1 then

C ← opcode(IR1)(valfst , ival(IR1))
if not iop(opcode(IR1)) and dataDep2 then

C ← opcode(IR1)(valfst , valsnd)
Movi2s

data = if (opcode(IR1) = MOVI2S) then

if dataDep1 then IAR ← valfst else Movi2s
par

where

dataDep1 = (fstop(IR1) = dest(IR2)) or for some n ∈ {3, 4}
fstop(IR1) = dest(IRn) and opcode(IRn) ∈ Load

32 This case has been forgotten in [119], as observed by Holger Hinrichsen (e-mail to
E. B�orger of February 11, 1998) pointing to the case of an ADD instruction whose
two operand registers are loaded by two immediately preceding load instructions.
See also Exercise 3.3.6.

3.3 Microprocessor Design Case Study 153

dataDep2 = (dest(IR2) ∈ {fstop(IR1), sndop(IR1)}) or

for some n ∈ {3, 4}
(dest(IRn) ∈ {fstop(IR1), sndop(IR1)} and opcode(IRn) ∈ Load)

Since in this way the correct arguments for the EX ,MEM -stage rules applied
to I ′ are fed into A,B or directly forwarded to the operation in question, the
corresponding argument locations become irrelevant:
Irrelev 5. < reg ,nthop(I ′) > such that I ′ 6∈ Mem ∪ Jump ∪ Branch and

for some I ∈ Load with dest(I) = nthop(I ′) the following holds: I
3
< I ′ or

(I
2
< I ′, iop(opcode(I ′)),nth = fst) or (I

2
< I ′, otiop(opcode(I ′))) .

Subcase I
1
< I ′. In this case the pipelined execution of I ′ (and therefore also

of later instructions) has to be stopped at the latest just before stage EX (I ′),
until the value to be loaded by I becomes available in LMDR. We reflect the
common practice of adding a pipeline interlock, which detects this situation
and stops the pipelining until the conflict has been resolved, by introducing
the following additional rule guard (the second clause is explained below):

loadRisk = opcode(IR2) ∈ Load and

(IR1 6∈ Mem ∪ Jump ∪ Branch and

dest(IR2) ∈ {fstop(IR1), sndop(IR1)})
or (IR1 ∈ Mem and dest(IR2) = fstop(IR1))

By putting the rules of stages EX, ID, IF under this additional guard we
achieve that in the case of a load risk they are not executed whereas the rules
of MEM ,WB continue to be executed. This leads to the following refinement
of the rules for these three stages. Since in this model we abstract from
control hazards, the EX -rules which update PC do not change from DLX

par

to DLX
data . The final refined DLX

data -macros are explained below.

ID
data = if not loadRisk then {Operand

data ,PreserveID}
EX

data = if not loadRisk then

{Alu
data ,Memaddr

data ,PassBtoMDR
data ,Movi2s

data}
∪{Movs2i

par ,Branch
par ,Trap

par ,Jumplink
par ,Link

par}
∪{PreserveEX

par}

To reset loadRisk to false once it has become true, in that case we fetch the
default element undef = opcode(undef) 6∈ Load to update IR2.

IF
data = if (not loadRisk) then Fetch

par else IR2← undef

154 3 Basic ASMs

In this way we obtain that after the execution of this new rule, the full
pipelined execution will be resumed. At this point I ′ = reg(IR1) still holds
but I has been copied from Ir2 to IR3. Now consider the two cases arising
from whether I ′ also depends on the instruction fetched right before I or
not. If not, the data dependence considered here can be proved with the
arguments used for the previous subcase to be resolved by the refined EX -
rules. In the other case we need to distinguish whether that instruction is a
load instruction or not. In the first subcase the data conflict is resolved by
the LMDR1-value taken as the argument by the EX (I ′)-rule. In the second
subcase the data conflict is resolved by the ID(I ′)-rule. This analysis shows
that we can add the following locations to the irrelevant ones.
Irrelev 6. < reg ,nthop(I ′) > such that I ′ 6∈ Mem ∪ Jump ∪ Branch and for

some I ∈ Load with dest(I) = nthop(I ′) holds I
1
< I ′.

Case I , I ′ ∈ Mem. The two subcases complete the definition of EX
data and

MEM
data .

Subcase I
2,3
< I ′. If I

3
< I ′, the refined rule Operand

data provides the

correct value loaded by I as operand for I ′. If I
2
< I ′, this value can be

forwarded to I ′ in its stage EX , namely through refining the rules Memaddr,
PassBtoMDR as defined below, at the hardware price of new direct links
between LMDR and MAR,SMDR.

Memaddr
data = if opcode(IR1) ∈ Load ∪ Store then

if not dataDep1 then Memaddr
par else

MAR ← (valfst , ival(IR1))
PassBtoMDR

data = if opcode(IR1) ∈ Store then

if not dataDep1 then PassBtoMDR
par else

SMDR ← valsnd

where dataDep1 = (fstop(IR1) = dest(IR2)) or for some n ∈ {3, 4}
fstop(IR1) = dest(IRn) and opcode(IRn) ∈ Load

The locations resulting as irrelevant via this refinement are the following:
Irrelev 7.

– < reg ,nthop(I ′) > for I ′ ∈ Mem and some I ∈ Load satisfying I
3
< I ′ and

nthop(I ′) = dest(I);

– < reg , fstop(I ′) > for I ′ ∈ Mem and some I ∈ Load satisfying I
2
< I ′ and

fstop(I ′) = dest(I);

– < reg , sndop(I ′) > for I ′ ∈ Store and some I ∈ Load satisfying I
2
< I ′ and

sndop(I ′) = dest(I).

3.3 Microprocessor Design Case Study 155

Subcase I
1
< I ′. Since the Mem-instruction I ′ can use the value loaded by

the preceding instruction I in two ways, as datum to be stored or as address
for the load or store operation, we distinguish these two cases.

Case dest(I) = sndop(I ′). Then I ′ ∈ Store and the value loaded by I
is needed by I ′ in its MEM -stage, during which it is available in LMDR.
Therefore, this case can be handled again by forwarding, refining Store, at
the expense of a direct link between LMDR and the memory input port and
of adding the following non-relevant locations:
Irrelev 8. < reg , sndop(I ′) > for I ′ ∈ Store and some I ∈ Load satisfying

I
1
< I ′ and sndop(I ′) = dest(I).

MEM
data = {Store

data ,Load
par ,PreserveMEM} where

Store
data = if opcode(IR2) ∈ Store then

if opcode(IR3) ∈ Load and dest(IR3) = sndop(IR2)
then mem(MAR)← LMDR
else Store

par

Case dest(I) = fstop(I ′). In this case I ′ needs its first operand during its
EX-stage when the memory address is computed. But dest(I) is loaded into
LMDR only during stage MEM (I) so that the pipeline must be interrupted
again for one clock cycle; namely we have to uphold the execution of the rules
for stage EX (I ′) and therefore also for the two preceding stages ID , IF . This
explains the second clause in the definition of loadRisk above. Thereby the
modified rules resolve the data conflict in this case, establishing the claim of
the lemma with the following additional non-relevant locations:
Irrelev 9. < reg , fstop(I ′) > for I ′ ∈ Mem and some I ∈ Load satisfying

I
1
< I ′ and fstop(I ′) = dest(I). ut

Problem 11 (Cost evaluation of hardware links). Devise a notation
for ASM architecture rules which exhibits together with the updates also the
hardware links (i.e. the “connection” between terms and their value provid-
ing subterms), to serve as a measure for the hardware cost of a proposed
refinement.

Problem 12 (Abstract analysis of out-of-order pipelining). Enhance
the method shown above to verify common out-of-order-completion tech-
niques, appropriate for pipelines with long-running operations, where an in-
struction fetched early may complete after an instruction fetched later (see
for example the architecture in [102]).

Problem 13 (Abstract analysis of superscalar pipelining). Enhance
the method shown above to verify common superscalar architecture tech-
niques where multiple instructions can be fetched simultaneously. See [147]
for a superscalar DLX version.

156 3 Basic ASMs

3.3.5 Exercises

Exercise 3.3.1. Prove that Lemma 3.3.1 implies Theorem 3.3.2.

Exercise 3.3.2. (; CD) Prove the Jump Lemma 3.3.2.

Exercise 3.3.3. (; CD) Go through the details of the case distinction for
the proof of Lemma 3.3.1, checking the correctness of the refined macros.

Exercise 3.3.4. Prove that Lemma 3.3.3 implies Theorem 3.3.3.

Exercise 3.3.5. (; CD) Refine DLX
data to a machine DLX

pipe which is
fully pipelined, i.e. resolves also control hazards coming with nonlinear code;
prove its correctness.

Exercise 3.3.6. (; CD) Formulate a machine DLX
data where the data

conflict between an instruction I ′ 6∈ Mem∪Jump∪Branch and two preceding
load instructions is resolved without using a latch LMDR1.

Exercise 3.3.7. Refine DLX
data to a machine where the data conflict recog-

nition and stalling are implemented using a scoreboard which keeps track at
run-time for each register whether the pipe contains an instruction modifying
that register. The scoreboard technique supports pipelining of architectures
where, in contrast to DLX, instructions may differ significantly with respect
to their execution time, e.g. when involving besides an integer-arithmetic
ALU also a floating point unit or a graphical unit.

Sources and Historical Remarks

The ground model and refinement methods were introduced into ASMs
in [71, 72, 76], further developed in [132, 114, 42, 41, 104, 119, 120, 138, 406]
and adopted in numerous ASM projects, see Chap. 9 for details. The commu-
tative diagram of Fig. 2.1 underlying Def. 3.2.1, 3.2.2 was introduced in [129]
as scheme for the refinements used to prove the correctness of the Prolog-
to-Wam compilation. An investigation of mechanizable proof support for the
ASM refinement scheme, together with a detailed comparison of various spe-
cializations of the scheme to refinement notions in the literature, appeared
in [387]. Pure data refinements are the basis for numerous algebraic and set-
theoretic refinement notions [167, 176], including those used in VDM [199]
and Z [431].

The use of the stepwise ASM-refinement method for design-driven ar-
chitecture verification was initiated by the Transputer case study in [104]
and was extended to pipelining DLX in [119] (which contains also a detailed
comparison with other methods to verify pipelined RISC machines, in par-
ticular model checking and the use of theorem provers like PVS or HOL).
In [217, 407] KIV and PVS have been used to machine-verify the paralleliza-
tion of the serial ground model ASM (Theorem 3.3.2). The use of ASMs

3.3 Microprocessor Design Case Study 157

for modeling and verifying pipelining methods grew out from the reverse
engineering project of a special-purpose parallel architecture in [102] where
pipelining comes together with VLIW parallelism and where the modular-
ity of the hardware description technique is exploited to structure a real-life
processor into simple and rigorously defined basic components. The method
has been adopted in [286] for the verified layered specification of the early
commercial RISC microprocessor ARM2 with a simpler three-stage pipeline;
that model in turn is used in [412] to illustrate how to automatically trans-
form register transfer descriptions of microprocessors into executable ASMs.
In [411] the method is enhanced to using ASMs for behavioral and structural
descriptions of application-specific instruction set processors, from which bit-
true and cycle-accurate simulators and debuggers are derived. See Sect. 9.3
for details.

We were led by [12, 48] to formulate the guideline questions for require-
ments capture. The Telephone Exchange ASM in Sect. 3.1.2 has been inspired
by the B machine in [5, Sect. 8.2]. The backtracking ASM is extracted from
the two core Prolog rules in [131].

4 Structured ASMs (Composition Techniques)

The characteristics of basic ASMs – simultaneous execution of multiple
atomic actions in a global state – come at a price, namely the lack of di-
rect support for practical composition and structuring principles. To make
such features available as standard refinements for high-level system design
and abstract programming in the large, we define in this chapter1 two classes
of ASMs which offer as building blocks sequential composition, iteration,
and parameterized (possibly recursive) submachines extending the macro-
notation used with basic ASMs. The chapter can be read independently of
Chap. 3 and most of Chap. 2; it suffices to know the definition of basic ASMs.

Turbo ASMs as defined in Sect. 4.1 capture the mentioned submachine
notions in a black-box view which matches the synchrony hypothesis of syn-
chronous programming languages [266], as in Esterel where the program re-
action is considered as instantaneous although it is made up of a sequence
of elementary actions (“micro-steps”) which are performed in a fixed order.
Turbo ASMs hide the internals of subcomputations by compressing them
into one step (hence the name) and thus fit the synchronous parallelism of
basic ASMs (as well as the parallelism of asynchronous ASMs defined in
Chap. 6).Abstract State Processes as defined in Sect. 4.2 realize them in a
white-box view, where interleaving permits one within a context of parallel
execution to also follow the single steps of a component computation.

Turbo ASMs permit us to integrate into their semantical composition
principles the common syntactical forms of encapsulation and state hiding,
such as the notion of a local state and a mechanism for returning values
and error handling. We illustrate the use of these composition techniques
by succinct turbo ASMs for standard programming constructs, including the
concepts underlying the celebrated Structured Programming Theorem 4.1.1
and some widely used forms of recursion (Sect. 4.1.2). In fact the scheme
we provide for computing recursively defined functions by turbo ASMs nat-
urally integrates functional description and programming techniques into the
“high-level programming” by ASMs. In Sect. 4.1.3 we identify the standard
tree structure of turbo ASM subcomputations. A logic for turbo ASMs is
investigated in Sect. 8.1.1.
1 Lecture slides can be found in TurboASM (; CD), RecursionAsm (; CD), ASP

(; CD).

160 4 Structured ASMs (Composition Techniques)

4.1 Turbo ASMs (seq, iterate, submachines, recursion)

We extend the basic ASMs in Sect. 4.1.1 by operators for sequential compo-
sition and for iteration of ASMs, and in Sect. 4.1.2 by parameterized subma-
chines which may recursively call themselves and thus genuinely enrich the
notational macro-shorthand. The definitions realize a black-box view of the
compound machine, defined to hide the details of its internal subcomputa-
tion and to yield its global effect (if any) in one step, executable in parallel
with the other rules.2 We call turbo ASM every ASM which can be obtained
from basic ASMs by applying finitely often and in any order the operators
of sequential composition, iteration and submachine call. Since a turbo ASM
subcomputation may execute an a priori unlimited number n of basic ma-
chine steps, which could go to infinity, this naturally leads to the possibility
of non-terminating subcomputations. In such a case the overall computation
step into which the subcomputation is inserted as a turbo step is undefined.

For logical reasons explained in Sect. 8.1.4, for turbo ASMs where se-
quential composition is combined with recursion one better restricts non-
determinism to external functions, avoiding the use of the choose-construct.
The resulting ASM runs are deterministic modulo the external functions since
choices if any are made outside the machine. This is not to forbid the choose-
construct, but to make us aware of the proof-theoretic problems related to
its indiscriminate use.

Another proviso dictated by reasons of practicability concerns changes
of monitored and external updates of shared functions for turbo ASMs. To
make the analysis of the global effect of hidden subcomputations feasible
it is assumed for turbo ASMs that “during” a black-box step the values of
monitored and shared functions are not updated externally, i.e. their values
are fixed for every turbo computation participating in the considered single
global machine step. Otherwise the behavior of turbo ASMs easily becomes
hard to follow.

4.1.1 Seq and Iterate (Structured Programming)

In this section we define the turbo ASM seq-construct, which combines si-
multaneous atomic updates of basic ASMs in a global state with sequential
execution. It naturally extends to the generic turbo ASM iterate-construct
from which the classical iteration-operators are derived.

To get a clue for the intended smooth integration of (“the effect of”) sub-
computations into atomic state changes, consider the way ASMs avoid the
frame problem: the global one-step effect of an ASM – the transformation of
2 The de�nition of turbo ASMs avoids the complicated details of the standard

pseudo-code solution of the problem where a non-atomic command is broken
into atomic subcommands which are connected by a program counter, as in
SPEC [316, Sects. 3, 17].

4.1 Turbo ASMs (seq, iterate, submachines, recursion) 161

the given state into the next state – is determined in a fixed manner by the
function next defined in Lemma 4.1.2 as the overall result of a set of “local”
updates (if this set is consistent). Therefore, submitting to next in a given
state an update set which may result from any finite number of elementary
computation steps suffices to encapsulate those steps and turn their effect
into an “atomic” step.3 It is a natural extension of the parallel synchronism
of basic ASMs to collect into one set not only updates which have been made
in one step, but to allow two or more “basic” steps – taking obviously into
account that sequential execution should allow later overwriting of earlier
updates. In this way the apparent dichotomy between “atomic” and “com-
pound” actions turns into a question of machine view, whether one wants to
analyze it at the high level of abstraction of a turbo-ASM (black-box view) or
at the more detailed level of a basic ASM (white-box view). What is “basic”
and what is “turbo” is relative to the level of abstraction chosen by the de-
signer for machine executions, in analogy to the different roles that controlled
and external functions play for the structure of the underlying state.

To separate the computational issues of composition from concerns related
to state sharing we assume in the following that the submachines we are
considering all have the same signature.

We denote the sequential composition of two ASM rules P ,Q by P seq Q
and define its semantics as the effect of first executing P in the given state A
and then Q in the resulting state A + U (if it is defined), where U is the set
[[P]]A of updates produced by P in A. To reflect the fact that Q may overwrite
a location which has been updated by P we use the notation U ⊕V for the
merging of two update sets, which is defined as follows. We merge only if U
is consistent, otherwise we stick to U , because then we want both A+ U and
A + (U ⊕V) to be undefined.

Definition 4.1.1. Let P and Q be ASM rules.

[[P seq Q]]A = [[P]]A ⊕ [[Q]]A+[[P]]A

U ⊕V =
{
{(loc, val) ∈ U |loc 6∈ Locs(V)} ∪V , if consistent(U);
U , otherwise.

The definition implies that a sequential computation gets stuck once an
inconsistency is encountered in its first part.

Lemma 4.1.1 (Persistence of inconsistency). If [[P]]A is not consistent,
then [[P seq Q]]A = [[P]]A.
3 In this way the de�nition of turbo ASMs avoids the �xpoint problem synchronous

programming languages have to cope with due to their synchrony hypothesis. For
example in Esterel [266] the current event is a �xpoint of a function which may
not be monoton and therefore may have more than one �xpoint; as a consequence
the language associates a meaning only to those programs where the �xpoint is
unique. This property is not necessarily transparent to the user but is checked
by the compiler.

162 4 Structured ASMs (Composition Techniques)

The next lemma expresses that the definition of the ASM seq constructor
captures the classical meaning of the sequential composition of machines.4

We leave the proof as Exercise 4.1.2.

Lemma 4.1.2 (Compositionality and semi-ring properties of seq).
Denote by next the function defined by next(R)(A, ζ) = A + [[P]]Aζ .

next(P seq Q) = next(Q) ◦ next(P)

[[skip seq P]]A = [[P]]A = [[P seq skip]]A

[[P seq (Q seq R)]]A = [[(P seq Q) seq R]]A

Iterating seq encapsulates computations with a finite number of iterated
steps into one step, namely defined by R0 = skip and Rn+1 = Rn seq R.
Denote by An the state (if defined) which is obtained by firing the update
set produced by Rn in state A.

There are two natural stop situations for iterated rule applications with-
out a priori fixed bounds, namely when the update set becomes empty (the
case of successful termination) and when it becomes inconsistent (the case of
failure, given the persistence of inconsistency as formulated in Lemma 4.1.1).5

Both cases provide a fixpoint limn→∞[[Rn]]A = [[Rn−1]]A for the first n where
the update set produced by R in the state obtained by firing Rn−1 in A is
empty or inconsistent. This motivates the following definition and explains
the corollary.

Definition 4.1.2. [[iterate R]]A = limn→∞[[Rn]]A, if for some n ≥ 0 it holds
that [[R]]An = ∅ or inconsistent([[R]]An).

Corollary 4.1.1 (Well-definedness of iterate R). If [[R]]An−1 is inconsis-
tent or empty, then [[Rn]]A = [[Rm]]A for all m ≥ n > 0.

The sequence ([[Rn]]A)n>0 eventually becomes constant only upon termi-
nation or failure. Otherwise, the computation diverges and the update set for
the iteration is undefined. A famous example for a turbo ASM with diverging
(though, if viewed differently, useful) computation is iterate a := a + 1.

We now illustrate the sequential iteration of turbo ASMs by two examples
and by deriving some standard constructs of structured programming.

Example 4.1.1 (Turbo ASM starting the Java class initialization). In Java
each class is automatically initialized upon its first use. The order of class
initialization is required to respect the class hierarchy, i.e. the superclass of
a class c has to be initialized before c. Therefore, when upon the first use
4 We assume strictness for every f , meaning that f (x) is unde�ned if x is unde�ned.
5 We do not include here the case of an update set whose �ring does not change

the given state, although including this case would provide an alternative stop
criterion which is also viable for implementations of ASMs.

4.1 Turbo ASMs (seq, iterate, submachines, recursion) 163

of a class its initialization is triggered, this trigger must be passed along
the class hierarchy until an initialized class c′ is encountered (i.e. satisfy-
ing initialized(c′), as eventually will happen towards the top of the class
hierarchy). To abstract from the standard sequential implementation (where
obviously the class initialization is started in a number of steps depending on
how many not yet initialized classes there are above the given class) the it-
erate-construct turns out to be handy, offering an atomic operation to push
all initialization methods in the right order onto the frame stack. This is ex-
pressed by the following turbo ASM which uses a macro createInitFrame of
simple frame updates (for details see [406], from where the machine is taken).

Initialize(class) ≡ c := class seq
iterate

if ¬initialized(c) then createInitFrame(c)
if ¬initialized(superClass(c)) then c := superClass(c))

The finiteness of the acyclic class hierarchy in Java guarantees that this ma-
chine yields a well-defined update set.

Example 4.1.2 (Turbo ASM for iterative ASM While). The following itera-
tive ASM while repeats the execution of its body rule as long as it produces
a non-empty update set and the cond ition holds:6

while (cond) R = iterate (if cond then R).

This while loop, if started in state A, terminates if eventually [[R]]An becomes
empty or the condition cond becomes false in An (with consistent and non-
empty previous update sets [[R]]Ai and previous states Ai satisfying cond).
If the iteration of R reaches an inconsistent update set (failure) or yields an
infinite sequence of consistent non-empty update sets, then the state resulting
from executing the while loop starting in A is not defined (divergence of
the while loop). In these two cases the function next(while (cond) R) is
undefined on A.

A while loop may satisfy more than one of the above conditions, like
while (false) skip. There are four typical cases:

success: while (cond) skip or while (false) R
failure: while (true) a := 1, a := 2
divergence: while (true) a := a

Structured programming constructs. Turbo ASMs provide the concep-
tual ingredients of structured programming. We illustrate this here in a highly
abstract manner with sequentially iterated turbo ASMs, namely by providing
a surprisingly elementary proof for a general form of the celebrated Structured
Programming Theorem of Böhm and Jacopini [66]. In doing this we construct
by sequential iteration simple turbo ASMs to compute arbitrary computable
6 See Example 4.1.4 for a slightly di�erent recursively de�ned While.

164 4 Structured ASMs (Composition Techniques)

functions, in a way which combines the advantages of Gödel–Herbrand-style
functional and of Turing-style imperative programming.

The structured programming example shows more than what it states,
and it would be mistaken to take it as of only theoretical interest. The atom-
icity of the turbo ASM sequentialization and iteration is the key for a rigorous
definition of the semantics of some fundamental UML notions, e.g. the event-
triggered exiting from compound actions of UML activity and state machine
diagrams, where the intended instantaneous effect of exiting has to be com-
bined with the request to exit nested diagrams sequentially following the
subdiagram order; see [98, 99].

Problem 14 (Analysis of turbo control state ASM networks). Gen-
eralize the work done for Mealy automata in [145], investigating networks of
turbo control state ASMs built up using seq, iterate, and the synchronous
parallelism of basic ASMs to provide sequencing, parallel composition and
feedback operators.

Definition 4.1.3. We call Böhm–Jacopini-ASM any turbo ASM M which
can be defined, using only seq, while, from basic ASMs whose non-controlled
functions are restricted to one (a 0-ary) input function (whose value is fixed
by the initial state), one (a 0-ary) output function, and the initial functions
of recursion theory (see below) as static functions. The purpose of the 0-ary
input function, which we write inM , is to contain the number sequence which
is given as the input for the computation of the machine. Similarly outM is
used to receive the output of M . The initial functions of recursion theory are
the following functions from Cartesian products of natural numbers into the
set of natural numbers: +1, all the projection functions U n

i , all the constant
functions C n

i and the characteristic function of the predicate 6= 0.
Following the standard definition we call a number theoretic function

f :Nn → N computable by an ASM M if for every n-tuple x ∈ Nn of argu-
ments on which f is defined, the machine started with input x terminates
with output f (x). By “M started with input x” we mean that M is started in
the state where all the dynamic functions different from inM are completely
undefined and where inM = x . Assuming the external function inM not to
change its value during an M -(turbo)computation, it is natural to say that
M “terminates in a state with output” y , if in this state outM gets updated
for the first time, namely to y . In all the machines constructed below this
will always be the state in which the intended turbo-computation reached its
final goal.

Theorem 4.1.1 (Structured programming theorem).
Every computable function can be computed by a Böhm–Jacopini ASM.

Proof. We define by induction for each partial recursive definition of a com-
putable function f a machine F computing it. Each initial function f is com-
puted by the following machine F consisting of only one function update
which reflects the defining equation of f .

4.1 Turbo ASMs (seq, iterate, submachines, recursion) 165

F ≡ outF := f (inF)

In the inductive step we construct, for every partial recursive definition of a
function f from its constituent functions fi , a machine F which mimics the
standard evaluation procedure underlying that definition. We use the follow-
ing macros which describe (a) inputting from some external input source in
to a machine F before it gets started, and (b) extracting the machine output
upon termination of F to some external target location out . These macros
reflect the mechanism for providing arguments and yielding values which is
implicit in the standard use of functional equation systems to determine the
value of a function for a given argument.

F (in) ≡ inF := in seq F
out := F (in) ≡ inF := in seq F seq out := outF

We start with the case of function composition. If functions g , h1, . . . , hm are
computed by Böhm–Jacopini-ASMs G ,H1, . . . ,Hm , then their composition f
defined by f (x) = g(h1(x), . . . , hm(x)) is computed by the following machine
F = FctCompo:7

FctCompo(G ,H1, . . . ,Hm) =
{H1(inF), . . . ,Hm(inF)} seq outF := G(outH1 , . . . , outHm

)

Unfolding this structured program reflects the order one has to follow for
evaluating the subterms in the defining equation for f , an order which is
implicitly assumed in the equational (functional) definition. First, the input
is passed to the constituent functions hi to compute their values, whereby
the input functions of Hi become controlled functions of F . The parallel
composition of the submachines Hi(inF) reflects that their computations are
completely independent from each other;8 what counts and is expressed is
that all of them have to terminate before the next “functional” step is taken.
That next step consists in passing the sequence of outHi as input to the
constituent function g . Finally the value of g on this input is computed and
assigned as output to outF .
Similarly, let a function f be defined from g , h by primitive recursion:

f (x , 0) = g(x), f (x , y + 1) = h(x , y , f (x , y))

and let Böhm–Jacopini-ASMs G ,H be given which compute g , h. Then the
following machine F = PrimitiveRecursion computes f , composed as a se-
quence of three submachines. The start submachine evaluates the first defin-
ing equation for f by initializing the recursor rec to 0 and the intermediate
7 For reasons of simplicity but without loss of generality we assume that the sub-

machines have pairwise disjoint signatures. Remember that we use sets to denote
the rules of an ASM which are to be executed in parallel.

8 As a consequence they can be done in any order, with or without interleaving of
their substeps. See the discussion of ASMs for forms of recursion in Sect. 4.1.2.

166 4 Structured ASMs (Composition Techniques)

value ival to g(x). The while submachine evaluates the second defining equa-
tion for f for increased values of the recursor as long as the input value y has
not been reached. The output submachine provides the final value of ival as
output. As in the case of simultaneous substitution, the sequentialization and
iteration described here make explicit the bare minimum on ordering com-
putational substeps, which is assumed and in fact needed in the standard
functional use of the defining equations for f .9

PrimitiveRecursion(G ,H) = let (x , y) = inF in

{ival := G(x), rec := 0} seq

(while (rec < y) {ival := H (x , rec, ival), rec := rec + 1}) seq

outF := ival

If f is defined from g by the µ-operator, i.e. f (x) = µy(g(x , y) = 0), and if
a Böhm–Jacopini-ASM G computing g is given, then the following machine
F = MuOperator computes f . The start submachine computes g(x , rec)
for the initial recursor value 0, and the iterating machine computes g(x , rec)
for increased values of the recursor until 0 shows up as computed value of g ,
in which case the reached recursor value is set as output.

MuOperator(G) = {G(inF , 0), rec := 0} seq

(while (outG 6= 0) {G(inF , rec + 1), rec := rec + 1}) seq

outF := rec
ut

Remark 4.1.1 (Functional versus imperative programming). The construction
of Böhm–Jacopini-ASMs illustrates, through the idealized example of com-
puting recursive functions, how ASMs allow us to pragmatically reconcile the
often discussed conceptual dichotomy between functional and imperative pro-
gramming. In this context functional programs are characterized as different
from imperative ones because “rather than telling the computer what to do,
they define what it is that the computer is to provide” (quoted from [166]).
The equations which appear in the Gödel–Herbrand-type definition of par-
tial recursive functions “define what it is that the computer is to provide”
only on the basis of the implicit assumptions made for the procedure to be
followed for the manipulation of arguments and values during the evaluation
of terms. The corresponding Böhm–Jacopini-ASMs constructed above make
this machinery explicit, exhibiting how to evaluate the subterms when us-
ing the equations, as much as is needed to make the functional shorthand
9 Of course di�erent uses of such equations can be imagined, but that would mean

that the equations come with other underlying evaluation mechanisms which are
taken for granted and could be made explicit as an abstract machine.

4.1 Turbo ASMs (seq, iterate, submachines, recursion) 167

work correctly in the way it was hardwired in our brains through training at
school.10

4.1.2 Submachines and Recursion (Encapsulation and Hiding)

In this section the purely notational macro technique is extended by a con-
structor to build large turbo ASMs from parameterized submachines which
justifies also recursive submachine calls. The resulting atomic submachine
view is illustrated by a hierarchical decomposition of the Java Virtual Ma-
chine. We use turbo submachines to define encapsulation and state hiding
mechanisms for ASMs with local state, return values and error handling.
Value-returning turbo ASMs exactly reflect the abstraction made in func-
tional programming from everything except the input–output (argument–
value) relation. Since the turbo ASM submachine concept expresses in ab-
stract form the usual imperative calling mechanism, one can use it in par-
ticular to make the common intuitive understanding of recursion precise in
terms of single-agent ASMs. We illustrate this by turbo ASMs for Mergesort
and Quicksort.

Turbo ASM submachines. The notion of basic ASM avoids domain theo-
retic complications – arising when explaining by denotational methods what
it means to iterate the execution of a machine “until . . .” – by defining only
the one-step computation relation and by relegating fixpoint (termination)
concerns to the metatheory. In the same spirit we define the semantics of
submachine calls only for the case where the possible chain of nested calls
of that machine is finite, leaving it to the programmer to guarantee that a
potentially infinite chain of recursive procedure calls is indeed well founded
with respect to some order. The resulting definition directly supports the
practitioners’ algorithmic understanding and use of submachine calls.

The definition for rules is therefore extended to allow also named pa-
rameterized rule (submachine) calls R(a1, . . . , an) with actual parameters
a1, . . . , an , coming with a rule definition of the following form:

R(x1, . . . , xn) = body

where body is a rule. R is called the rule name, and x1, . . . , xn are the for-
mal parameters of the rule definition, comprising all the free occurrences of
variables in body and binding them.

The basic intuition the practice of computing provides for the interpre-
tation of a named rule is to define its semantics as the interpretation of the
rule body with the formal parameters replaced by the actual arguments. In
other words, nested calls of a recursive rule R are unfolded into a sequence
10 See Sect. 4.1.2, where we provide abstract machines for forms of recursion, il-

lustrating further how ASMs allow one to capture the encapsulation techniques
which come with the functional programming paradigm.

168 4 Structured ASMs (Composition Techniques)

R1,R2, . . . of rule incarnations where each Ri may trigger one more execu-
tion of the rule body, relegating the interpretation of possibly yet another call
of R to the next incarnation Ri+1. This may produce an infinite sequence,
namely if there is no ordering of the procedure calls with respect to which
the sequence will decrease and reach a basis for the recursion. In this case
the semantics of the call of R is undefined. If, however, a basis for the recur-
sion does exist, say Rn , it yields a well-defined value for the semantics of R
through the chain of successive calls of Ri ; namely for each 0 ≤ i < n with
R = R0, Ri inherits its semantics from Ri+1. This is formalized as follows
where without loss of generality we assume that rules are called by name,
i.e. the formal parameters are substituted in the rule body by the actual pa-
rameters so that these are evaluated only when used (this is not necessarily
in the state in which the rule is called, due to the presence of seq). Call by
value can be obtained by R(t) ≡ (let x = t in body).

Definition 4.1.4 (Turbo submachine). Let R be a named rule declared
by R(x1, . . . , xn) = body and let A be a state. If [[body [a1/x1, . . . , an/xn]]]A is
defined, then

[[R(a1, . . . , an)]]A = [[body [a1/x1, . . . , an/xn]]]A

As expected, a rule definition R(x) = R(x) yields no value for any [[R(a)]]A.

Example 4.1.3. Passing of parameters in recursive calls circumvents the need
we had in Example 4.1.1 to initially assign the parameter value to a local
variable, yielding the following recursive turbo ASM to start the Java class
initialization. As in Example 4.1.1, the termination depends on the finiteness
of the class hierarchy and the termination of createInitFrame(c).

InitializeRec(c) =
if initialized(superClass(c)) then createInitFrame(c)
else createInitFrame(c) seq InitializeRec(superClass(c))

Example 4.1.4 (Turbo ASM for recursive While). The following recursive
whileRec behaves differently from the iterative ASM-while in Example 4.1.2.
It leads to termination only if the condition cond eventually becomes false,
and not in the case where eventually the update set of the body rule becomes
empty. For example whileRec(true, skip) does not terminate.

whileRec(cond ,R) =if cond then R seq whileRec(cond ,R)

Atomic view of turbo ASM submachines. This view is illustrated by
the JVM submachine verifyVM in Fig. 2.11, viewed as a component added
to the trustful interpreter and called from there as a turbo ASM when a new
class is loaded. Independently from its use as a turbo ASM it can be investi-
gated also in a white-box manner, as a stand-alone component, in support of
a separation of different verification concerns concerning the different levels

4.1 Turbo ASMs (seq, iterate, submachines, recursion) 169

of the hierarchical decomposition of the Java Virtual Machine into loading,
verifying and executing machines for the five principal language layers (im-
perative core, static classes, object-oriented features, exception handling and
concurrency). For example verifyVM is shown in [406, Chap. 17] to always
terminate and to be sound and complete with respect to correctly typeable
compiled Java programs; in terms of its interface it is also shown (in [406,
Chap. 18]) to correctly interact with the trustful JVM interpreter and the
class loader.

The atomicity of turbo ASM submachines served in [99] to model the
event-triggered run-to-completion scheme of UML state machines (see Sect.
6.5.1). Using turbo ASMs we are going to introduce now encapsulation and
state-hiding mechanisms which are common for submachine concepts, such
as local state, return values and error handling.

Turbo ASMs with local state. In traditional ASMs all the dynamic func-
tions are global. However, the use of only locally visible parts of the state
can naturally be incorporated into turbo ASMs. It suffices to extend the def-
inition of named rules by allowing some dynamic functions to be declared as
local. It means that each call of the rule works with its own incarnation of
local dynamic functions f , which are initialized upon rule invocation by an
initialization rule Init(f) preceding the execution of the rule body.

We therefore allow definitions of named rules to contain also (horizontally
or vertically displayed) declarations of dynamic functions as local, together
with an optional initialization rule, e.g. in the following form:

name(x1, . . . , xn) =
local f1[Init1] . . . local fk [Initk]
body

where body and Initi are rules. The formal parameters x1, . . . , xn bind their
free occurrences in body and Initi . The functions f1, . . . , fk are treated as local
functions whose scope is the rule where they are introduced. They are not
considered to be part of the signature of the main ASM. Initi is a rule used
for the initialization of fi . We write local f := t for local f [f := t].

For the semantic interpretation of a call of a rule with local dynamic
functions, the updates to the local functions are collected together with all
other function updates made through executing the body. This includes the
updates required by the initialization rules. The restriction of the scope of the
local functions to the rule definition is obtained by then removing from the
update set U , which is available after the execution of the body of the call,
the set Updates(f1, . . . , fk) of updates concerning the local functions f1, . . . , fk .
This is summarized by the following definition.

Definition 4.1.5 (Turbo ASMs with local functions). Let R be a rule
declaration with local functions as given above. The two terms in the following
equation are either both undefined or both defined and equal:

170 4 Structured ASMs (Composition Techniques)

[[R(a1, . . . , an)]]A = [[({Init1, . . . , Initk} seq body)[a1/x1, . . . , an/xn]]]A

\Updates(f1, . . . , fk)

We assume that there are no name clashes for local functions between
different incarnations of the same rule (i.e. each rule incarnation has its own
set of local dynamic functions).

Error handling. Modern programming languages support exception-hand-
ling techniques which separate error handling from normal execution of code.
Producing an inconsistent update set is an abstract form of throwing an
exception. This allows us to introduce for turbo ASMs an abstract method
for catching an inconsistent update set and of executing error handling rules.

Let T be a set of terms. The semantics of try P catch T Q is the
update set of P , if this update set is consistent on the locations determined
by elements of T . Otherwise it is the update set of Q .11

Definition 4.1.6. Let P and Q be turbo ASMs and T a set of terms. We
define

[[try P catch T Q]]A =
{

[[P]]A, if consistent [[P]]A � Loc(T)A;
[[Q]]A, otherwise.

Turbo ASMs with return values. A frequent special use of turbo ASMs
is to compute functions of the input. Storing an output value in a global dy-
namic function out , as we did for the proof of Theorem 4.1.1, violates good
information-hiding principles. A mechanism is needed which allows one to re-
trieve the intended return value of a named rule R from a location determined
by the rule caller, independently of R. It suffices to provide a notation for
locations from where to extract such result values from the final state of the
turbo submachine computation. We use for named rules with n parameters
the common notation l ← R(a1, . . . , an) to denote the overall effect (update
set) of executing the rule body, where the 0-ary dynamic function l has been
substituted for a reserved 0-ary function result. result and therefore its re-
placements by programmer-defined locations l play the role of placeholders
in which to store the intended return value. They represent an abstract in-
terface offered for communicating results from a rule execution to the caller,
typically implemented as the top of a stack from where the caller gets the
computed value when the control comes back from the callee.

Definition 4.1.7. Let R(x1, . . . , xn) = body be the declaration for R.

[[l ← R(a1, . . . , an)]]A = [[body [l/result, a1/x1, . . . , an/xn]]]A

11 Since for turbo ASMs the rule enclosed by the try block is executed either
completely or not at all, there is no need for any finally clause to remove trash.

4.1 Turbo ASMs (seq, iterate, submachines, recursion) 171

Two rules l ← R(a1, . . . , an) and l ′ ← R(a ′1, . . . , a
′
n) with different lo-

cations l , l ′ can be applied simultaneously with different return values for
l and l ′. When a term l of the form f (t1, . . . , tn) is used in l ← R(a1, . . . , an),
a good encapsulation discipline will take care that R does not modify the
values of ti , because they contribute to determining the location where the
caller expects to find the return value.

We use this notation now to model frequent forms of recursion, illustrating
thereby how to naturally reflect functional programming features by value-
returning turbo ASMs.

Modeling recursion by turbo ASMs. There are many ways to explain
the meaning of various forms of recursion. Turbo ASM submachines ab-
stractly model the standard imperative calling mechanism, which provides
the key for expressing the common intuitive understanding of recursion in
terms of single-agent ASM computations. By the atomicity of their black-box
computations, turbo ASMs allow us to reflect exactly the machinery which
underlies the common mathematical use of functional equations to evaluate
function values. We illustrate this here for the classical recursive definitions
of the Quicksort and Mergesort algorithms.12 Our intention is not to suggest
replacing succinct and perfectly clear recursive definitions by ASM specifi-
cations, but to show that WITHIN the ASM framework one is justified in
freely using recursion in the way we have learnt to.

The update set produced by executing a turbo ASM call represents the
total effect of executing the submachine in the call state (atomicity of the
turbo ASM computation). Using the machine to return a value adds a form
of functional abstraction from everything in that computation except the
resulting input–output (argument–value) relation.13 Technically we combine
the turbo ASM notation for value returning machines with the let-construct
to pass the result of machines Ri by value to other machines S , mimicking the
use of activation records to store parameters as local variables. Since for each
submachine call a dedicated placeholder is needed to record the result of the
subcomputation, in the following definition we apply an external function new
to the dynamic set FUN0 of 0-ary dynamic functions (“write variables”). As
stated in Sect. 2.2.3, new is supposed to provide each time a completely fresh
12 This answers the question raised in [340]: \If algorithms are machines, then which

machine is the Mergesort?" The answer is di�erent from the one in [261, 60],
where it is argued that \recursive computations are to be viewed as a special case
of distributed computation": each recursive call is executed by a newly created
callee agent expected to return his result to the caller. The way we de�ne the
result of the turbo ASM call implies that from the caller’s view it is returned
immediately, directly reecting the functional view which only uses the result
in the given evaluation process and abstracts from how and by whom the result
has been obtained. As a consequence our explanation of recursion does not need
to invoke multiple agents, but it is compatible with using them for a distributed
implementation.

13 The pure functional e�ect of course is achieved only if the submachine compu-
tation on the caller’s side a�ects only the result location.

172 4 Structured ASMs (Composition Techniques)

location, i.e. a location which has never been used before and is also not used
for any other simultaneous call of new . This suffices to make the assumptions
underlying the functional handling of intermediate values explicit.14

Definition 4.1.8 (Using return values in turbo ASMs). Let Ri ,S be
turbo ASMs with formal parameter sequences xi of Ri and parameters yi of
S . We define:

let {y1 = R1(a1), . . . , yn = Rn(an)} in S =
let l1, . . . , ln = new(FUN0) in

forall 1 ≤ i ≤ n do li ← Ri(ai) seq
let y1 = l1, . . . , yn = ln in S

Note that let {x1 = R1, x2 = R2} in S can be different from let x1 =
R1 in (let x2 = R2 in S) (Exercise 4.1.4).

The preceding definition allows one to explicitly capture the abstract ma-
chine which underlies the common mathematical evaluation procedure for
functional expressions, including those defined by forms of recursion. We il-
lustrate this by the following turbo ASM definitions of Quicksort and of
Mergesort which exactly mimic the usual recursive definition of the algo-
rithms to provide as result a sorted version of any given list. The compu-
tation suggested by the well-known recursive equations to quicksort L pro-
ceeds as follows: FIRST partition the tail of the list into the two sublists
tail(L)<head(L), tail(L)≥head(L) of elements < head(L) respectively ≥ head(L)
and quicksort these two sublists separately (independently of each other),
THEN concatenate the results taking head(L) between them. The fact that
this description uses various auxiliary list and comparison operations is re-
flected by the appearance of corresponding auxiliary functions in the following
turbo ASM.

Quicksort(L) = if| L |≤ 1 then result := L else
let

x = Quicksort(tail(L)<head(L))
y = Quicksort(tail(L)≥head(L))

in result := concatenate(x , head(L), y)
14 Strictly speaking this de�nition introduces a new rule into Table 2.2, given that

the signature becomes dynamic: new 0-ary functions (parameterless locations)
are introduced which can be updated, namely to keep incarnations of variables for
the entire subcomputation. One can however easily avoid this and separate the
\logical" (read-only) variables from the variables for locations (write-variables)
by using a monadic function result which takes locations as arguments; to guar-
antee that the results of invocations with di�erent arguments are stored in dif-
ferent locations it su�ces to pass to result di�erent arguments l , l ′. Formally in
Def. 4.1.7 instead of l use result(l), and in Def. 4.1.8 write yi = result(li). Then
let {y1 = R1(a1), . . . , yn = Rn(an)} in S can be eliminated via Def. 4.1.8 and
be reduced to the rules in Table 2.2.

4.1 Turbo ASMs (seq, iterate, submachines, recursion) 173

In Exercise 4.1.5 we formulate a procedural refinement of list partitioning
in Quicksort.

The computation suggested by the usual recursive equations to merge-
sort a given list L consists in FIRST splitting it into a LeftHalf (L) and a
RightHalf (L) (if there is something to split) and mergesort these two sublists
separately (independently of each other), THEN to Merge the two results by
an auxiliary elementwise Merge operation. This is expressed by the following
turbo ASM which besides two auxiliary functions LeftHalf , RightHalf comes
with an external function Merge defined below as a submachine.

Mergesort(L) = if |L| ≤ 1 then result := L else
let

x = Mergesort(LeftHalf (L))
y = Mergesort(RightHalf (L))

in result←Merge(x , y)

Usually Merge is defined by a recursion, suggesting the following com-
putation scheme which is formalized by the turbo ASM below. If both lists
are non-trivial, by a case distinction the smaller one of the two list heads is
determined and placed as the first element of the result list, concatenating it
with the result of a separate and independent Merge operation for the two
lists remaining after having removed the chosen smaller head element.

Merge(L,L′) =
if L = ∅ or L′ = ∅ then result := ιl(l ∈ {L,L′} and l 6= ∅)
elseif head(L) ≤ head(L′) then

let x = Merge(tail(L),L′) in result := concatenate(head(L), x)
else

let x = Merge(L, tail(L′)) in result := concatenate(head(L′), x)

For a data refinement of Mergesort and Merge see Exercise 4.1.6.

Other ways of adding recursion to ASMs. The inductive semantics
for turbo ASMs in Table 2.2 describes the semantical basis for Schmid’s
AsmGofer system [390]. A slightly different approach to recursion is taken in
Xasm [17]. In this section, we point out the essential differences. We focus
just on recursion and omit other features of Xasm like the evaluation of terms
with side effects (update sets) or the so-called external functions of Xasm.

For the definition of the semantics of recursive calls in Xasm we need in
addition to the predicate yields(P ,A, ζ,U) two new predicates run(P ,A, ζ,B)
and final(P ,A, ζ). The predicate run(P ,A, ζ,B) means that there exists a fi-
nite run of P from A into state B where the free variables of P are defined in
the environment ζ. The predicate final(P ,A, ζ) means that A is a final state
for P under ζ.

The predicates yields(P ,A, ζ,U), run(P ,A, ζ,B) and final(P ,A, ζ) are
defined by simultaneous induction. The clauses for “yields” are the same as
in Table 2.2 except for rule calls. The new clauses are listed in Table 4.1.

174 4 Structured ASMs (Composition Techniques)

Table 4.1 Inductive definition of the semantics of Xasm rule calls

run(P ,A, ζ,A)

run(P ,A, ζ,B) yields(P ,B, ζ,U)

run(P ,A, ζ,B + U)
if U is consistent

yields(P ,A, ζ, ∅)
�nal(P ,A, ζ)

run(P ,A, η,B) �nal(P ,B, η)

yields(r(t),A, ζ,B− A)

where r(x) = P is a rule declaration,

a = [[t]]Aζ and η = ζ[x 7→ a]

The predicates “yields” and “run” mutually depend on each other. In the
definition of a finite “run” the predicate “yields” is used. Conversely, in the
definition of “yields” for rule calls, the predicate “run” is used.

How does a (possibly recursive) rule call r(t) in Xasm work? Assume
that r(x) = P is a rule declaration. First the argument t is evaluated in the
current state A and the current environment ζ. The value of t is assigned to
the variable x in a new environment η. Then a new run is started for the
body P in state A with the environment η. If after finitely many steps, the
run terminates in a final state B (where P yields an empty update set), then
the rule call r(t) yields the difference between the final state B and the initial
state A.

Hence the essential difference between a rule call in Xasm and a rule call
of a turbo ASM is that in Xasm the rule call means the repeated execution
of the body, whereas for turbo ASMs it is just the one-time execution. In the
presence of sequential composition (seq) the two approaches have the same
expressive power, since the iterated execution of an ASM can be obtained
as one step of an enclosing turbo ASM. From the logical point of view, the
turbo ASM calls are simpler, since they just mean that the call has to be
replaced by its body (see Sect. 8.1.1).

4.1.3 Analysis of Turbo ASM Steps

In this section we analyze the runs which are mapped to single steps of turbo
ASMs, elucidating the microsteps which are hidden in a turbo ASM step.

To focus on the crucial aspects and without loss of generality we disregard
in this section the choose construct, given that its effect can be replaced by
the use of external selection functions. The inductive definition of the big-
step semantics of turbo ASMs in Fig. 2.2 shows that the microsteps of a
turbo ASM step are either basic ASM steps – yielding a set of updates – or
the steps encapsulated in the execution of sequential machines P seq Q or of
submachine calls r(t). Purely sequential machines, i.e. defined without par or
forall, represent classical imperative programs with recursive procedure calls.

4.1 Turbo ASMs (seq, iterate, submachines, recursion) 175

Table 4.2 Partial evaluation of turbo ASM rules

ev(skip,A, ζ) = ∅
ev(f (s) := t ,A, ζ) = {((f , a), b)} where a = [[s]]Aζ and b = [[t]]Aζ
ev(P par Q ,A, ζ) = ev(P ,A, ζ) ∪ ev(Q ,A, ζ)

ev(if ϕ then P else Q ,A, ζ) =

{
ev(P ,A, ζ), if [[ϕ]]Aζ = true;
ev(Q ,A, ζ), otherwise.

ev(let x = t in P ,A, ζ) = ev(P ,A, ζ[x 7→ a]) where a = [[t]]Aζ
ev(forall x with ϕ do P ,A, ζ) =

⋃
a∈range(x ,ϕ,A,ζ) ev(P ,A, ζ[x 7→ a])

ev(P seq Q ,A, ζ) = {(P seq Q ,A, ζ)}
ev(r(t),A, ζ) = {(r(t),A, ζ)}

In computing a (macro)step of a purely sequential turbo ASM P in state A,
the intermediate states can be analyzed as pairs (U ,S) of the update set U
accumulated so far and a sequence (stack) S of frames (P ,B, ζ) still to be ex-
ecuted, each consisting of the residual program P , the state B in which it has
to be executed and the environment (interpretation of free variables) ζ for the
execution. Starting with (∅, (P ,A, ζ)), the intermediate micro-computation is
finished when the stack has become empty, and the accumulated update set
is the yield of the computed turbo macrostep. In computing macrosteps of
purely parallel machines, i.e. defined without seq, one encounters successively
at each level of submachine call unfolding a computed update set (the yield
of a basic ASM step, all of which have to be collected at the end to form the
turbo yield) and a set of call frames (r(t),A, ζ) of the rule calls still to be
unfolded. These intermediate states are naturally represented in a tree with
one level for each unfolding.

Since in general several sequential machines can run in parallel, to label
the nodes in the trees which represent intermediate states during the com-
putation of a turbo macrostep we need besides update sets (to which we
add the keyword PAR to remind us that this update set has to be collected
as part of the final yield) and call frames (r(t),A, ζ) also sequential frames
(P seq Q ,A, ζ). To reflect the moments where a new turbo subcomputation
step appears we define in Table 4.2 a partial evaluation function for turbo
ASMs, which differs from the big-step semantics of turbo ASMs defined in
Fig. 2.2 by leaving rule calls and sequential rules unevaluated.

Figure 4.3 illustrates the five types of microsteps whose iteration describes
a macrostep of a turbo program. The basic ASM TurboMicroStep, not
recursive and defined below without using seq or submachine calls, computes
the sequence of microsteps of any macrostep of a turbo ASM which yields
an update set U . Its initial state is defined for any turbo program P applied
in state A with environment ζ as the following tree StartTree(P ,A, ζ): the
root is labeled with (PAR, ∅) and has a subtree whose nodes are labeled with

176 4 Structured ASMs (Composition Techniques)

Table 4.3 Operations on PAR/SEQ trees for hidden turbo ASM steps

rPAR U
�
��	

@
@@Rr · · ·

V1

r
Vn

; r
U ⊕ (V1 ∪ . . . ∪Vn)

rPAR U

?r
(r(t),A, ζ)

; rPAR U
�
��	

@
@@Rr · · · r︸ ︷︷ ︸

ev(P
t
x
,A,ζ)

if r(x) = P is a
rule declaration

r
(P seq Q ,A, ζ)

; rSEQ (Q ,A, ζ)

?rPAR ∅
�
��	

@
@@Rr · · · r︸ ︷︷ ︸

ev(P,A,ζ)

rSEQ (Q ,A, ζ)

?r
U

; rPAR U
�
��	

@
@@Rr · · · r︸ ︷︷ ︸

ev(Q,A+U ,ζ)

if U is consistent

rSEQ (Q ,A, ζ)

?r
U

; r
U

if U is inconsistent

the elements of ev(P ,A, ζ), denoting the list of elements of ev(P ,A, ζ) with
updates combined into a single set:

ev(P ,A, ζ) = [U ,F1, . . . ,Fk] for ev(P ,A, ζ) = U ∪ {F1, . . . ,Fk}

where U is an update set and Fi are frames.
At each frame TurboMicroStep performs a further microstep. Rule

SpawnCall unfolds one submachine call. Rule SpawnSeqBegin starts the
computation of the first submachine P of a sequential machine P seq Q .
It transforms the node labeled with the sequential frame (P seq Q ,A, ζ)
into a SEQ subtree whose root records the “residual” frame (Q ,A, ζ) and

4.1 Turbo ASMs (seq, iterate, submachines, recursion) 177

has as subtree StartTree(P ,A, ζ). Once the first submachine has success-
fully computed a consistent update set U , the second submachine Q is going
to be executed by rule SpawnSeqCont, which transforms the SEQ tree
into the continuation tree ContTree(U , (Q ,A + U , ζ)), which is defined like
StartTree(Q ,A + U , ζ) except for recording in its root the intermediate up-
date set U instead of the ∅. In case of an inconsistent yield U , this failure
set is collected by rule CollectSeqFail to be collected by the parent node
via rule Collect.

TurboMicroStep = if ∃n ∈ NODE (label(n) /∈ UpdateSet) then
forall n ∈ NODE do

SpawnCall(n)
SpawnSeqBegin(n)
SpawnSeqCont(n)
CollectSeqFail(n)
Collect(n)

Since the three spawn rules are variations of the OccamParSpawn ma-
chine on p. 43, with “activation” of nodes meaning here to label them by the
appropriate frame, we use without further explanation tree extension macros
like “create children of n for F” or “insert m as child of n”. As usual we
write children(n) for the set of all nodes m such that parent(m) = n. If the
set contains exactly one element, we denote it by child(n). The following
submachines of TurboMicroStep formalize the tree transformation steps
illustrated in Table 4.3.

SpawnCall(n) = if label(n) = (PAR,U) then
forall m ∈ children(n) with label(m) is a call frame do

let (r(t),A, ζ) = label(m),V ∪ Frames = ev(body(r) t
x ,A, ζ) in

label(m) := V
create children of n for Frames

SpawnSeqBegin(n) = if label(n) = (P seq Q ,A, ζ) then
label(n) := (SEQ, (Q ,A, ζ))
let m = new(NODE) in

insert m as child of n
label(m) := (PAR, ∅)
create children of m for ev(P ,A, ζ)

SpawnSeqCont(n) =
if label(n) = (SEQ, (Q ,A, ζ)) and label(child(n)) ∈ UpdateSet

then let U = label(child(n)) in
if consistent(U) then

label(n) := (PAR,U)
let V ∪ Frames = ev(Q ,A + U , ζ) in

label(child(n)) := V

178 4 Structured ASMs (Composition Techniques)

create children of n for Frames
CollectSeqFail(n) =

if label(n) = (SEQ, (Q ,A, ζ)) and label(child(n)) /∈ UpdateSet
then label(n) := label(child(n))

Collect(n) =
if label(n) = (PAR,U) and ∀m ∈ children(n) (label(m) ∈ UpdateSet)
then label(n) := U ⊕

⋃
m∈children(n) label(m)

Proposition 4.1.1 (Turbo step analysis). For every turbo ASM P ,
state A, environment ζ and update set U it holds that P in A with envi-
ronment ζ yields in one step U if and only if TurboMicroStep started
in StartTree(P ,A, ζ) terminates with the tree consisting of its root labeled
by U .

Proof. The claim from left to right follows by an induction on the big-step
semantics of turbo ASMs defined in Table 2.2. The other direction follows by
an induction on the TurboMicroStep computation. For the inductive steps
in the case of SEQ nodes or nodes labeled with a call frame or a sequential
frame use the following lemma.

Lemma 4.1.3. If ev(P ,A, ζ) = U ∪ {(Pi ,A, ηi) | 1 ≤ i ≤ k} and
yields(Pi ,A, ηi ,Vi), then yields(P ,A, ζ,U ∪

⋃
1≤i≤k Vi).

The lemma follows from the definition of ev in Table 4.2 by an induction on
the size of P . For details (though formulated in slightly different terms) see
[203, Sect. 4]. ut

Problem 15 (Definition of the notion of transactions). Use turbo
ASMs for an abstract definition of the notion of database transaction, ex-
ploiting the black-box view to hide events within transactions. For a detailed
analysis of the problem and an async ASM model for transactions see [368].

4.1.4 Exercises

Exercise 4.1.1 (Problems with ASM programming solutions for
P seq Q). Given two basic ASMs P ,Q , define a basic control state ASM
which simulates P seq Q . Consider the problem of initialization when your
machine is to be called successively by different machines. Consider the prob-
lems when one tries to incorporate, say, a (1, 2)-refinement P ′ of P and a
(1, 3)-refinement Q ′ of Q into (a refinement (P seq Q)′ of) P seq Q .

Exercise 4.1.2. Prove Lemma 4.1.2.

Exercise 4.1.3. Rephrase the proof for Theorem 4.1.1 replacing the function
out by the value returning mechanism l ← R(a1, . . . , an).

4.1 Turbo ASMs (seq, iterate, submachines, recursion) 179

Exercise 4.1.4. Construct an example where let {x1 = R1, x2 = R2} in S
is different from let x1 = R1 in (let x2 = R2 in S).

Exercise 4.1.5. (Procedural refinement of list partitioning in Quicksort).
Refine Quicksort to a control state turbo ASM where the partitioning
of L into L<head(L) and L≥head(L) is computed using the following basic
ASM Partition(l , h, p), working on the representation of lists as functions
L: [r , s] → VAL from intervals of natural numbers to a set of values. When
r < s, Partition is started with the search boundaries l = r , h = s and the
list head pivot = L(r). It terminates when reaching l = h with L(l) = pivot ,
all L-elements smaller than the pivot to the left of l , and all the others at l or
to the right of l . Until reaching l = h, the partitioning procedure alternates
between searching from above for list elements L(h) ≤ pivot and searching
from below for list elements L(l) ≥ pivot . When such an element is encoun-
tered and it is 6= the element at the other current search boundary – one
of them is the pivot – then the boundary elements L(l),L(h) are swapped
(using the Swap-machine from p. 40) and the search switches to the other
boundary. When L(h) ≤ pivot ≤ L(l) ≤ L(h) before l = h is encountered (as
happens if pivot has multiple occurrences in the list), h can be decreased by
one. Show the refinement to be correct.

Partition(l , h, pivot) =
if L(h) > pivot then h := h − 1
elseif L(l) < pivot then l := l + 1
elseif L(l) > L(h) then Swap(L(l),L(h))
elseif l < h then h := h − 1

Exercise 4.1.6. (; CD) (Data refinement of Mergesort and Merge).
Prove that the following definition of the equivalence of corresponding loca-
tions provides a (1, 1)-refinement to a model where lists are represented as
functions L: [l , h]→ VAL from intervals of natural numbers to a set of values.

– L = ∅ ≡ l > h, | L |≤ 1 ≡ l ≥ h
– head(L) = L(l), tail(L) = L \ {(l ,L(l))}
– LeftHalf (L) = [l , half (l + h)], RightHalf (L) = [half (l + h) + 1, h] where

half (2x) = x , half (2x + 1) = x + 1 (for example)
– concatenate(v ,L) = {(l , v)} ∪ RightShift(L, 1) where RightShift(L,n) =
λx .L(x − n)

Exercise 4.1.7. Refine the turbo ASM of Exercise 4.1.6 to an executable
program in the programming language of your choice.

Exercise 4.1.8. Define TurboMicroStep as composition of a submachine
for purely sequential turbo ASMs and a machine for purely parallel turbo
ASMs.

180 4 Structured ASMs (Composition Techniques)

4.2 Abstract State Processes (Interleaving)

By interleaving evolving programs, in this section we integrate into the ASM
model of synchronous parallel rule execution a white-box view of subcom-
putations which allows one to control at the top level the single steps of a
structured component program. This naturally leads us to provide a name for
the program constructor which describes the non-deterministic rule schedul-
ing known as interleaving, viewed as a mechanism to let multiple processes
proceed independently from each other, one at a time (mono-agent view of
“parallel” processes).15 This entails another constructor, namely for selec-
tive synchronization whereby interleaved processes can be constrained to act
in parallel only if they all contribute to a selected update (read: “share a
selected event”). This leads us to extend basic ASMs to Abstract State Pro-
cesses (ASPs) by adding three process-algebraic operators then, intlea and
sync (t).

To describe the program evolution of an ASP implied by the white-box
view of sequential execution steps we adopt the structured programming
approach. Therefore, to define the semantics of an ASP construct P we have
to indicate which pair (P ′,U) of the so-called residual program P ′ and of the
update set U it yields in an arbitrary state A. We concentrate our attention
here upon the definition of the semantics of ASPs, given that the extension
of the syntax of ASMs to that of ASPs is a routine matter. For the sake of
clarity we split the definition into two tables. Table 4.4, which we shall explain
below, extends Table 2.2 to derive statements of the form yields(P ,A,P ′,U)
for standard ASPs, defined by the constructs defining turbo ASMs where we
distinguish white-box sequencing from its turbo black-box version by writing
then instead of seq.

The execution of skip and assignment processes yields the empty residual
process nil. A conditional process as defined in Table 4.4 blocks other pro-
cesses with which it may be synchronized if, in the case where the condition
is true, its subprocess P , or otherwise Q , cannot proceed. Therefore, one has
to distinguish two interpretations of if Cond then R. The persistent one is
defined as if Cond then R else nil; it has a blocking effect in case Cond is
false, since no inference rule is provided to execute the empty program nil.
The transient version is defined as if Cond then R else skip, which in case
Cond is false uses the inference rule for skip. We use the persistent version
as the default. One may compare this with the blocking evaluation of guards,
e.g. in the high-level design language COLD [197], whereas in ASMs the rule
of a “blocked” process does not prevent other rules from being executed in
parallel.

For the formulation of processes which involve the manipulation of logical
variables it is notationally convenient to view states A as sets of pairs (l , v)
15 The same integration of interleaving into the synchronous parallelism of basic

ASMs appears in [379].

4.2 Abstract State Processes (Interleaving) 181

Table 4.4 Inductive definition of the semantics of standard ASP rules

yields(skip,A,nil, ∅)
yields(f (s1, . . . , sn) := t ,A,nil, {((f , ([[s1]]A, . . . , [[sn]]A)), [[t]]A)})

yields(P ,A,P ′,U)

yields(if ϕ then P else Q ,A,P ′,U)
[[ϕ]]A = true

yields(Q ,A,Q ′,V)

yields(if ϕ then P else Q ,A,Q ′,V)
[[ϕ]]A = false

yields(P x ′

x
,A[x ′ 7→ a],P ′,U)

yields(let x = t in P ,A,P ′,U ∪ {(x ′, a)})
a = [[t]]A

x ′ fresh

yields(P ya
x
,A[ya 7→ a],Pa ,Ua) for each a ∈ I = range(x , ϕ,A)

yields(par{P(x) | ϕ(x)},A,par{Pa | a ∈ I },
⋃

a∈I Ua ∪ {(ya , a)}) ya fresh

yields(P x ′

x
,A[x ′ 7→ a],P ′,U) for some a ∈ I = range(x , ϕ,A)

yields(choose{P(x) | ϕ(x)},A,P ′,U ∪ {(x ′, a)}) x ′ fresh

yields(P ,A,P ′,U)

yields(P then Q ,A,P ′ then Q ,U)
P ′ 6= nil

yields(P ,A,nil,U)

yields(P then Q ,A,Q ,U)

yields(P t1···tn
x1···xn

,A,P ′,U)

yields(r(t1, . . . , tn),A,P ′,U)

r(x1, . . . , xn)
= P

of locations l and their values v and to identify free variables with 0-ary
function symbols so that their interpretation is incorporated into A, instead
of being kept in a separate environment function ζ. Thus we write A[x ′ 7→ a]
for the extension of A by the new location x ′ with value a.

In the let-construct local variables appear to which precomputed values
are assigned. In basic or turbo ASMs this preliminary computation step re-
mains implicit as part of the unique computation step associated with the
machine let x = t in P , whose execution implies a form of sequentialization
which is typical for the call-by-value discipline, namely to first compute t in
the given state and then to execute P with the computed value recorded in
the local variable x . These variables are called logical because their binding
to the current value of t holds only for the atomic execution of P . Since in
ASPs such a program P is not executed atomically, but may lead after one
step to a residual program P ′ which involves further steps, the incarnation x ′

of the variable x with its interpretation by the value t has to survive until the
residual process has become empty (reduced to nil). This holds analogously
also for the other ASP constructors.

We therefore use for each execution of an ASP constructor c(x) P in a
given state a fresh instance of x , say x ′, standing for a new 0-ary function

182 4 Structured ASMs (Composition Techniques)

which records for the entire execution of the constructor body P the value
assigned in the given state to the parameter x . Formally this makes the
signature of ASPs dynamic, though the dynamics is restricted to creating new
incarnations of local variables, whereas in basic or turbo ASMs the signature
is static. By imposing the condition of x ′ being fresh (meaning by this that it
is sufficiently new not to be mixed up with any other variable,16 namely that
it is not used before and not simultaneously anywhere else) we guarantee
that the currently determined value for x will not collide with any other
value determined in a different process or in a different step for the same
parameter x (“same” in the syntactic sense). For brevity we write x , although
we allow it to denote a tuple of parameters.

For notational uniformity we write in this section par {P(x) | ϕ(x)} in-
stead of forall x with ϕ do P . In case ϕ evaluates to finitely many elements,
par {P1, . . . ,Pn} stands for par {P(x) | ϕ(x)}, where {P(x) | ϕ(x)} =
{P1, . . . ,Pn}. This avoids having to fuss with fixed parameter instances. We
do so similarly for choose {P(x) | ϕ(x)} and for the synchronization and
interleaving operators sync (t) and intlea defined below. See Table 4.6 for a
summary of some alternative notations borrowed from the process-algebraic
literature. When applying ASP operators to sets of processes, it is notation-
ally convenient to assume the following implicit transformation, which will
not be mentioned furthermore: whenever the application of an inference rule
leads to a residual program oper{P}, where oper is any of the operators and
{P} is a singleton set of processes, the residual program is considered as au-
tomatically rewritten into P . Similarly, oper{} is rewritten into nil. By ϕ t

x
we denote the result of replacing all free occurrences of the variable x in ϕ
by the term t .

choose-processes as defined in Table 4.4 are blocking in case there is
nothing to choose from (empty choice set), since for this case we provide
no inference rule. This is in contrast to the basic or turbo ASM choose-
construct, which in the case of an empty choice set is treated as equivalent
to skip.

The submachine call defined in Table 4.4 is by reference. The call-by-value
version can be defined using the let-construct.

In Table 4.5 we add to standard ASPs the interleaving operator intlea
and the related selective synchronization operator sync (t).

Interleaving is a choice among processes to perform the next step where,
however, the programs of the not-chosen processes remain in force for sub-
sequent choices. To exhibit the analogy of interleaving to synchronous par-
16 See Sect. 2.4.4 for the characterization of this use of the import-construct to ob-

tain fresh local variables x ′. One can use a similar expedient to the one explained
in the footnote to Def. 4.1.8 to separate the \logical" (read-only) variables from
the variables for locations (write-variables). It su�ces to write var(x ′) instead
of x ′ with a monadic function var which takes variables as arguments; to guar-
antee that di�erent incarnations of x are stored in di�erent locations it su�ces
to pass to var di�erent arguments x ′, x ′′.

4.2 Abstract State Processes (Interleaving) 183

Table 4.5 Semantics of interleaving and selective synchronization

yields(P ya
x
,A[ya 7→ a],Pa ,Ua) for some a ∈ I = range(x , ϕ,A)

yields(intlea {P(x) | ϕ(x)},A, intlea {Pc | c ∈ I },Ua ∪
⋃

c∈I {(yc , c)})

where yc fresh for all c ∈ I , Pb = P yb
x

for b ∈ I \ {a}

yields(P ya
x
,A[ya 7→ a],Pa ,Ua) Loc(t)A ∈ Loc(Ua) for each a ∈ I

yields(sync (t){P(x) | ϕ(x)},A, sync (t){Pa | a ∈ I },
⋃

a∈I Ua ∪ {(ya , a)})

where I=range(x , ϕ,A), ya fresh for all a ∈ I

yields(P ya
x
,A[ya 7→ a],Pa ,Ua) Loc(t)A 6∈ Loc(Ua) for some a ∈ I

yields(sync (t){P(x) | ϕ(x)},A, sync (t){Pc | c ∈ I },Ua ∪
⋃

c∈I {(yc , c)})

where I = range(x , ϕ,A), yc fresh for all c ∈ I , Pb = P yb
x

for b ∈ I \ {a}

allelism, which involves a form of universal quantification, we formulate the
intlea-rule for an arbitrary set of processes determined by a property ϕ(x).
As a consequence, to determine the set of the processes Pb which have not
been chosen but are put into interleaving with the residual process Pa of the
one process chosen for execution, one needs to keep track of the instantia-
tions of P(x) by the elements b which satisfy the condition ϕ. Formally, this
requires us to bind pairwise different new incarnations yb of the parameter x
to b. In the case of an explicitly given set P1, . . . ,Pn of processes where the
parameter instances are fixed, our notational convention eliminates the need
to reinstantiate the fixed parameter indices 1 ≤ i ≤ n.

The synchronization operator sync (t) allows one to prevent the occur-
rence of actions which do not involve an update of (the location determined
by) t by all the synchronized processes.

Whereas every basic ASM program yields in every state an update set
(though it may be inconsistent, in which case the computation is abrupted),
when executing an ASP it may happen that the current program in the
current state has no yield because no axiom or inference rule can be applied.
This produces a form of ASP termination which does not exist for basic
ASMs, that of a (static) deadlock. It can arise in the following cases for the
residual program:

– a conditional expression with blocked argument process,
– a sequential expression with blocked first argument,
– a choice expression where all alternatives are blocked,
– a parallel expression with at least one blocked process,
– an interleaving expression where all component processes are blocked.

Local sequential scheduling of subprocesses. For an illustration of the
combination of interleaving with white-box sequential execution imagine a
set R of processes R of form

184 4 Structured ASMs (Composition Techniques)

Table 4.6 Syntactic variations of some ASP constructs

choose x with ϕ do P
| {P(x) | ϕ(x)}

choose {P(x) | ϕ(x)}

forall x with ϕ do P
|| {P(x) | ϕ(x)}

par {P(x) | ϕ(x)}

| t | {P(x) | ϕ(x)} sync (t){P(x) | ϕ(x)}

||| {P(x) | ϕ(x)} intlea {P(x) | ϕ(x)}

operator{P1, . . . ,Pn}
(operator =|, ||, | t |, |||)

operator{P(x) | ϕ(x)}
where {P(x) | ϕ(x)} = {P1, . . . ,Pn}

R = FirstR then SecondR

which are constrained to be interleaved such that the order of execution of
the subprocesses SecondR is determined by the order of execution of the
subprocesses FirstR. For a local realization of such a scheduling we equip
each process self with its instance self.ticket of a location ticket which keeps
track of the order in which the interleaving operator chooses the subpro-
cesses FirstR for execution. This allows one to (a) locally record “when”
self has been called to start the execution of its first subprocess, and (b)
to locally advance ticket to the next free position in the dynamic ordering
of calls of subprocesses FirstR, namely by putting two updates to get and
advance the current ticket in parallel with Firstself: self.ticket := ticket
and ticket := ticket + 1. Then Secondself can be scheduled when its ticket
is, say, “displayed”, i.e. when the guard self.ticket = display is true, adding
to Secondself an update to advance the display . This yields the following
transformation of intlea (R) into intlea (LocalSeqSched(R)).

LocalSeqSchedule(R) = First ′R then Second ′R where
First ′R =par {FirstR,GetAndAdvanceOrderPos(R)}
GetAndAdvanceOrderPos(R) =

par {R.ticket := ticket , ticket := ticket + 1}
Second ′R = if displayed(R.ticket) then

par {SecondR,AdvanceDisplay(R)}
displayed(Ticket) = (Ticket = display)
AdvanceDisplay(R) = (display := display + 1)

Handshaking. For an illustration of the effect of selective synchronization in
the ASP context consider again Exercise 3.2.5 on process communication via
rendez-vous. If the ASM defined there is interpreted as an ASP by replacing
the outer par by sync (g), the two subprocesses are allowed to proceed in-
dependently of each other, in an interleaved manner, as long as their updates
do not affect the synchronization gate g , whereas the Handshaking ASM

4.2 Abstract State Processes (Interleaving) 185

forces both processes to always execute simultaneously and with a consistent
gate update.

AspHandshaking(P , ϕ, s,Q , ψ, t) = sync (g){R,S} where
R = choose x with ϕ(x) in (g := s(x) then P(x))
S = choose y with ψ(y) in (g := t(y) then Q(y))

This ASP formulation of handshaking realizes the “agreement on values
offered at a gate” by the consistency condition for the gate updates. If one
wants to faithfully reflect also that gates, in the process-algebraic view, are
only virtually updated, serving only as communication medium, one can de-
clare the updates of g to be transient, i.e. not relevant for the resulting state
transformation. This can be done by simply not considering these transient
updates in the definition of the next-state function, which associates new
states to given states and update sets, in analogy to the restriction of update
sets for the treatment of local functions and for defining the error handling
of turbo ASMs in Sect. 4.1.2.

Problem 16 (Analysis of ASP runs). Characterize the possible runs of
ASPs, similarly to the characterization of turbo ASM runs in Sect. 4.1.3.

Problem 17 (ASP refinement techniques). Adapt the structured and
proof-oriented process-algebra refinement techniques defined in [176] to ASPs.

Problem 18 (ASP verification techniques). Investigate which process-
algebraic proof rules can be generalized to support deductive and possibly
mechanically verified reasoning about ASP runs.

Problem 19 (ASP implementation). Extend an implementation of basic
or turbo ASMs to an implementation of ASPs to pave the way for an imple-
mentation of (an approximation of) asynchronous ASMs defined in Chap. 6.

Sources and Historical Remarks

The definition of turbo ASMs, though not the name, appeared in [134] where
also related notions in the ASM literature are discussed. The section on mod-
eling recursion by turbo ASMs is extracted from [95]. The turbo ASM compo-
sition concepts are realized in the ASM engine AsmGofer [390] and apparently
also in AsmL [201]. The analysis of turbo ASMs is based upon [203]. A logic
for turbo ASMs appeared in [405] and is investigated in Sect. 8.1.1. ASPs
appeared for the first time in [67] where references can be found to other ap-
proaches to combine state-based methods with behavioral process-algebraic
concepts.

5 Synchronous Multi-Agent ASMs

In this chapter1 the single-agent ASMs of Chaps. 3, 4 are extended to multi-
agent synchronous ASMs (sync ASM) which support modularity for the
design of large systems. We illustrate this by sync ASMs for two popular
benchmark case studies for the verified design of reactive control systems: a
controller for the Production Cell [323] (Sect. 5.1), solving a typical indus-
trial plant control problem, and a real-time gate controller for the Gener-
alized Railroad Crossing [277] (Sect. 5.2), both controllers coming with to-
be-verified safety, liveness and performance requirements. Although the case
studies are really small (leading to roughly 1 K lines of controller code), they
allow us to explain how to apply practically useful software architecture prin-
ciples to modularize systems, starting from ground model ASMs and leading
to verified code. The chapter can be read independently of the preceding
Chaps. 4 and 3 and most of Chap. 2; it suffices to know the definition of
basic ASMs and of ASM refinements.

A multi-agent synchronous ASM is defined as a set of agents which execute
their own basic or turbo ASMs in parallel, synchronized using an implicit
global system clock. Semantically a sync ASM is equivalent to the set of all its
constituent single-agent ASMs, operating in the global states over the union
of the signatures of each component. Examples par excellence are offered
by programs in synchronous programming languages [266] where runs are
totally ordered sets of “logical instants” at which “events” occur (read: sets
of simultaneous occurrences of possibly value-carrying signals through which
the programs communicate among themselves and with the environment) to
which all subprocesses of the executed program react instantaneously. The
sequence of events determining a run is the sequence of states forming the
run of the underlying multi-agent synchronous ASM, where the global clock
tick (a built-in signal which is supposed to be present in every event) plays
the role of a step counter.

The practical usefulness of sync ASMs derives from the possibility of
equipping each agent with its own set of states and rules and of defining and
analyzing the interaction between components using precise interfaces over
common locations. To denote the instance of a function f for an agent a we
write a.f and often omit mentioning a when it is clear from the context.
1 Lecture slides can be found in ProdCell (; CD), GateController (; CD).

188 5 Synchronous Multi-Agent ASMs

5.1 Robot Controller Case Study

This section reviews the ASM solution [120, 332] for the Production Cell
control problem [323], which together with the ASM solution [43] for the fre-
quently used Steam Boiler case study [9] constituted the first explicit test of
the integratability of the ASM method into the various phases of an indus-
trial software development cycle (see Sect. 9.4.1 for historical details). The
declared goal was to cover the following major development steps (see the
V-scheme levels in Fig. 2.3):

1. elicit the given requirements by capturing them into a ground model
ASM, inspectable by an application-domain expert,

2. stepwise refine this abstract model to executable (in this case C++) code
whose module structure reflects the application-domain-driven compo-
nent architecture of the ground model,

3. mathematically verify the required safety, performance and liveness prop-
erties (which were model checked and PVS-verified in [424, 362, 207]),

4. validate the code by extensive experimentation with the production cell
simulator built at the FZI in Karlsruhe,

5. provide for maintenance purposes a transparent and complete documen-
tation of the design (which in fact was submitted as an inspection case
study to a Dagstuhl seminar on “Practical Methods for Code Documen-
tation and Inspection” [117]).

Since in this section a production cell controller is developed to illustrate
how sync ASMs enhance the modularity of specifications and their implemen-
tations, we concentrate here upon the design – ground model construction
and its refinement2 – and refer the reader to the above-mentioned publica-
tions concerning the verification, validation and documentation aspects for
which this book presents other more challenging examples. One example is
in Sect. 5.2.2, which explains the verification of a real-time controller (there
the design task is pretty obvious).

5.1.1 Production Cell Ground Model

We start by extracting from the task description [323] what are the agents
and the basic objects, operations and interactions of the system.

. . . the production cell is composed of two conveyor belts, a position-
ing table, a two-armed robot, a press, and a traveling crane. Metal
plates inserted in the cell via the feed belt are moved to the press.
There, they are forged and then brought out of the cell via the other
belt and the crane.

2 For a further analysis of the compositional aspects of the production cell ASM
in terms of its submachines see [353].

5.1 Robot Controller Case Study 189

Fig. 5.1 Production cell plant

Travelling
Crane

Elevating
Rotary Table

metal
plates

Feed Belt

Deposit Belt

Robot

Arm 1

Arm 2

Press

We reflect the structure of the plant (see Fig. 5.1) by mapping each system
device to an agent executing a basic ASM, to be refined to a C++-module
of the final controller.3 The reader may wonder whether it is appropriate to
synchronize the production cell agents. Their runs could certainly be consid-
ered as those of an asynchronous ASM as defined in Chap. 6, but at the price
of proof complications which are unnecessary semantically (from the system
behavior viewpoint), given that the dependences among the production cell
components are sequential – each device interacts in order with exactly one
predecessor and one successor – and determined by the order in which the
metal blanks pass through the system, as will become clear from the analysis
of the device task descriptions below.

Transport belts. Although in [323] the two transport belts come with dif-
ferent descriptions, for reuse purposes we define an abstract TransportBelt

and instantiate it to a FeedBelt and a DepositBelt.

The task of the feed belt consists in transporting metal blanks to
the elevating rotary table. The belt is powered by an electric motor,
which can be started up or stopped by the control program. A pho-
toelectric cell is installed at the end of the belt; it indicates whether
a blank has entered or left the final part of the belt. . . . the pho-
toelectric cells switch on when a plate intercepts the light ray. Just
after the plate has completely passed through it, the light barrier
switches off. At this precise moment, the plate . . . has just left the
belt to land on the elevating rotary table – provided of course that
the latter machine is correctly positioned . . . the feed belt may only

3 We skip here the rather unnatural traveling crane speci�cation which has been
added to the case study only to make the system closed for the simulator.

190 5 Synchronous Multi-Agent ASMs

Fig. 5.2 TransportBelt ground model

Run

yes

no

Stop
Piece

Deliverable
PieceAt

LightBarrier

DeliverPiece

Fig. 5.3 Durative version of DeliverPiece

FeedBeltFree := true
TableLoaded := true

Critical
Run

Not PieceAt
LightBarrier

convey a blank through its light barrier, if the table is in loading
position . . . do not put blanks on the table, if it is already loaded . . .

Abstracting from the motors one arrives at the control state ASM in Fig. 5.2
with a monitored function PieceAtLightBarrier representing the sensor values
and delivery macros PieceDeliverable, DeliverPiece.

The formalization of the above feed belt task description can be completed
by instantiating the delivery macros as follows. We define PieceDeliverable
as a derived predicate TableReadyForLoading which interfaces the elevating
rotary table (ERT).

TableReadyForLoading ⇐⇒
ERT .ctl state = StoppedInLoadPos and not TableLoaded

With the definition of the DeliverPiece macro in Fig. 5.3 we illustrate an
abstract durative delivery action. The location FeedBeltFree which is moni-
tored for the insertion of new blanks to the feed belt realizes a 0-1-counter.4

FeedBelt = TransportBelt where
PieceAtLightBarrier = (PhotoelectricCell = on)
PieceDeliverable = TableReadyForLoading

We leave it as an exercise to formulate a turbo ASM for the DeliverPiece

macro in Fig. 5.3 (Exercise 5.1.1) and to instantiate TransportBelt to a
DepositBelt (Exercise 5.1.2).
4 For reasons of uniformity of exposition the feed belt ASM here slightly di�ers

from the one in [120], which reects that by the original requirements in [323] the
feed belt is allowed to carry two pieces, one of which at most is at the light barrier.
What is needed to modify the de�nition of TransportBelt correspondingly?

5.1 Robot Controller Case Study 191

Fig. 5.4 ElevRotTable ground model

StoppedIn
UnloadPos

not Table
LoadedLoadPos

MoveTo

Table
Loaded

MoveTo
UnloadPosLoadPos

StoppedIn

Elevating rotary table. For the ground model we again abstract from the
peculiar way in which the ERT appears in the task description to rotate and
lift pieces, driven by motors. This leads to capture the table task description
below by the control state ASM ElevRotTable defined in Fig. 5.4, with
monitored function TableLoaded (which is shared by the feed belt and the
robot) and abstract actions MoveToUnloadPos, MoveToLoadPos. We leave
it as Exercise 5.1.3 to refine the rule MoveToUnloadPos to a durative
abstract action.

The task of the elevating rotary table is to rotate the blanks by about
45 degrees and to lift them to a level where they can be picked up
by the first robot arm. The vertical movement is necessary because
the robot arm is located at a different level than the feed belt and
because it cannot perform vertical translations. The rotation of the
table is also required, because the arm’s gripper is not rotary and is
therefore unable to place the metal plates into the press in a straight
position by itself.

Robot. The robot is the central component of the production cell.

The robot comprises two orthogonal arms. For technical reasons, the
arms are set at two different levels. Each arm can retract or extend
horizontally. Both arms rotate jointly. Mobility on the horizontal
plane is necessary, since elevating rotary table, press, and deposit
belt are all placed at different distances from the robot’s turning
center. The end of each robot arm is fitted with an electromagnet
that allows the arm to pick up metal plates. The robot’s task consists
in: taking metal blanks from the elevating rotary table to the press;
transporting forged plates from the press to the deposit belt.

It is advisable to capture these robot requirements at the ground model
level by a simple control state ASM Robot as defined in Fig. 5.5, where
abstracting from the details of the movements of the robot or its arms, the
sequence of the load or unload actions is controlled by derived or monitored
functions which indicate when to start or stop a device action or moving to
the position of the next device action. Yield(DevAction) and Next(DevAction)

192 5 Synchronous Multi-Agent ASMs

Fig. 5.5 Robot ground model

Next(DevAction)
MovingTo

DevAction

ReachedPosFor
Next(DevAction)Next(DevAction)

WaitingFor

Yield(DevAction)

Completed
DevAction

ForAction
DevReady

DevAction
WaitingFor

Table 5.1 Robot macros

DevAction Next(DevAction) Yield(DevAction)

TableUnload PressUnload TableLoaded := false

PressUnload DepBeltLoad PressLoaded := false

DepBeltLoad PressLoad DepBeltLoadable := false

PressLoad TableUnload PressLoaded := true

are defined by Table 5.1, formalizing the indications given in the task descrip-
tion for the order of the robot actions. The derived action guards represent
interfaces which are defined in the ground model as follows:

RobotActionGuards =
DevReadyForUnload = DevInUnloadPos and DevLoaded where

Dev ∈ {Table,Press}
TableInUnloadPos = (ERT .ctl state = StoppedInUnloadPos)

PressReadyForLoad = PressInLoadPos and not PressLoaded where
PressInActionPos = (Press.ctl state = OpenForAction)
Action ∈ {Load ,Unload}

DepBeltReadyForLoad = (DepBeltLoadable = true)

Press. The press goes through the cycle of loading, forging and unloading
under the control of the robot which loads it with blanks and retrieves forged
pieces. Abstracting from the motors the press task description below can be
captured by the simple control state ASM in Fig. 5.6, using the monitored
function PressLoaded (which is controlled by the robot). Another monitored
function signals when the forging has been completed.

The task for the press is to forge metal blanks. The press consists
of two horizontal plates, with the lower plate being movable along a
vertical axis. The press operates by pressing the lower plate against

5.1 Robot Controller Case Study 193

Fig. 5.6 Press ground model

ClosedFor
Forging

Press

MoveTo
TopPosCompleted

Forging
BottomPos

MoveTo

LoadedLoad
OpenForMoveTo

MiddlePosLoaded
not Press

Unload
OpenFor

the upper plate. Because the robot arms are placed on different hori-
zontal planes, the press has three positions. In the lower position, the
press is unloaded by arm 2, while in the middle position it is loaded
by arm 1. The operation of the press is coordinated with the robot
arms as follows: 1. Open the press in its lower position and wait until
arm 2 has retrieved the metal plate and left the press, 2. Move the
lower plate to the middle position and wait until arm 1 has loaded
and left the press, 3. Close the press, i.e. forge the metal plate. This
processing sequence is carried out cyclically.

At the level of abstraction of the Production Cell ground model some of
the safety properties required in [323] can be proved only from appropriate
assumptions on the abstract device actions. We leave it as Exercise 5.1.5 to
formulate such assumptions.

5.1.2 Refinement of the Production Cell Component ASMs

The refinements in this section are procedural or data refinements and are
easily seen to be correct, once it is established that they concern the way the
functionality of the single devices is achieved internally, maintaining the in-
terfaces through which the ground model ASM components interact.5 A first
refinement step for movements – making them durative – has already been
indicated in Exercises 5.1.1 and 5.1.3. The refinements that we introduce now
instantiate the movements as driven by the actuators (electric motors and
electromagnets) and as monitored via the additional sensors (switches and
potentiometers) mentioned in the above task descriptions. The level of ab-
straction achieved by this refinement step turned out to be already appropri-
ate for the last refinement step, a direct and structure preserving translation
to C++ modules, for which we refer to [332].6

5 As observed in [120] the \ground model as composition of independent subma-
chines which interact through rigorously de�ned interfaces yields the possibility
to combine components even if they are chosen from di�erent levels of abstrac-
tion", a feature which has been used also for the Java/JVM component machines
in [406] and is systematically exploited in applications of AsmL to \substitute
low-level implementations by high-level speci�cations" [29] for testing and check-
ing purposes at run-time.

6 A main requirement for the ASM compiler developed in [391] was that the trans-
lation scheme preserves the speci�cation structure without generating ine�cient

194 5 Synchronous Multi-Agent ASMs

Refining belts, ERT, press. It is easy to data-refine the FeedBelt move-
ment as motor-driven, namely by characterizing the control states as re-
flecting the motor states FeedBeltMot ∈ {on, off }, combined with a flag
Delivering to distinguish between Run and CriticalRun.

ctl state = Run ; FeedBeltMot = on and not Delivering
ctl state = CriticalRun ; FeedBeltMot = on and Delivering
ctl state = Stop ; FeedBeltMot = off

Correspondingly the refined (non-optimized) feed belt control state up-
date ctl state := Run becomes FeedBeltMot := on and Delivering := false,
etc. Refining in the same way the elevating rotary table, following the de-
tailed indications of the above task description, leads to a (1,2)-refinement
because of the independence of the motors

TableElevationMot ∈ {Idle,Up,Down}
TableRotationMot ∈ {Idle, clockwise, counterClockwise}

which drive the vertical and the rotary movement (see the disjunction defining
MovingToActionPos). The movements come with monitored boundary values
BottomPosition, TopPosition, MinRotation, MaxRotation.

ctl state = StoppedInLoadPos ; BottomPosition and MinRotation
and TableElevationMot = TableRotationMot = Idle

ctl state = StoppedInUnloadPos ; TopPosition and MaxRotation
and TableElevationMot = TableRotationMot = Idle

ctl state = MovingToLoadPos ;

TableElevationMot = Up or TableRotationMot = clockwise
ctl state = MovingToUnloadPos ; TableElevationMot = Down or

TableRotationMot = counterClockwise

We leave it as Exercise 5.1.6 to similarly refine the Press ground model
by detailing the control states Open/ClosedForAction and MovingToAnyPos
and to prove the refinements to be correct (Exercise 5.1.7).

Refining the robot. We now refine the actions of the Robot ground model.
A RobotRotationMot drives the rotation, which is measured by a monitored
function Angle with values in the intervals shown in Table 5.2 with boundary
values at which the rotation motor has to stop. Motors Arm1Mot, Arm2Mot
with values idle, extend, retract drive the extension or retraction of the two
arms to reach either the table and the press or the press and the deposit belt.
The monitored functions ArmiExt (i = 1, 2) indicate the current arm exten-
sions and have the significant boundary values Arm1AtTable, ArmiAtPress,
Arm2AtDepBelt, defining the position at the device where an arm has to pick
up or drop a piece. Power switches for magnets ArmiMagnet ∈ {on, off } at

code. As a consequence the code generated by this compiler (e.g. for the Produc-
tion Cell ASM) is easy to inspect, an important feature for supporting compiler
inspection and veri�cation.

5.1 Robot Controller Case Study 195

the end of the arms (i = 1, 2) serve to pick up or release the metal pieces.
The refinement in these terms of ctl state = WaitingForDevAction as well as
of ctl state = MovingToDevAction is defined in Table 5.2. It yields a (1,1)-
refinement for each robot wait and move rule (for each relevant DevAction),
and for each device action rule it yields a (1,3)-refinement describing the
succession of arm extension, action on a metal piece and arm retraction.7

To avoid repetitions we use abbreviations which convey their meaning,
like ArmToDev for one of Arm1ToTable, Arm2ToDepBelt or ArmiToPress
(i = 1, 2), and similarly ArmAtDev for one of Arm1AtTable, Arm2AtDepBelt
or ArmiAtPress. We denote by Act(ArmAtDev) the (Un)Load action the
robot is supposed to perform when the arm is positioned at the indicated de-
vice. ArmsRetracted stands for Arm1Ext = Arm2Ext = retracted , RobotIdle
for RobotRotationMot = Arm1Mot = Arm2Mot = idle. Summarizing,
RobotRefined consists of the following five groups of rules:

RobotWaiting, RobotActionExtension,RobotActionProper,
RobotActionRetraction, RobotMoving,

one for each instance of parameters.

RobotWaiting(DevAction) =
if WaitingForDevAction and DevReadyForAction then

Arm(DevAction)Mot := extend

RobotActionExtension(ArmToDev ,ArmAtDev) =
if extending ArmToDev and ArmExt = ArmAtDev then

ArmMot := idle
where let mov ∈ {extend , retract} in moving ArmToDev =

(Angle = ArmToDev and ArmMot = mov)
RobotActionProper(ArmToDev ,ArmAtDev) =

if extended ArmAtDev then
ArmMagnet := on/off (ArmAtDev)
ArmMot := retract
Yield Act(ArmAtDev)

where
on/off (Arm1OverTable) = on/off (Arm2IntoPress) = on
on/off (Arm2OverDepBelt) = on/off (Arm1IntoPress) = off
extended ArmAtDev = (Angle = ArmToDev and

ArmExt = ArmAtDev and ArmMot = idle)
RobotActionRetraction(ArmToDev) =

if retracting ArmToDev and ArmExt = retracted then
RobotRotationMot := rot(Arm,Dev)

7 The placement of the Yield of an action as part of the proper action rule corrects
an obvious oversight which entered [120] by a misleading symmetry argument
for the two transport belts and was discovered in [362] when model checking the
re�ned Production Cell ASM.

196 5 Synchronous Multi-Agent ASMs

Table 5.2 Refining robot waiting/moving

WaitingFor Angle Arm1 Arm2

DevAction Magnet Magnet

TableUnload Arm1ToTable off off

PressUnload Arm2ToPress on off

DepBeltLoad Arm2ToDepBelt on on

PressLoad Arm1ToPress on off

and ArmsRetracted and RobotIdle

MovingTo RobotRotation Arm1 Arm2 Angle

DevAction Mot Magn. Magn.

PressUnload counterClock on off [Arm1ToTable,Arm2ToPress]

DepBeltLoad counterClock on on [Arm2ToPress,Arm2ToDepBelt]

PressLoad counterClock on off [Arm2ToDepBelt ,Arm1ToPress]

TableUnload clockwise off off [Arm1ToPress,Arm1ToTable]

and ArmsRetracted and Arm1Mot = Arm2Mot = Idle

ReachedPos Press DepBelt Press Table

ForDevAction Unload Load Load Unload

Angle Arm2ToPress Arm2ToDepBelt Arm1ToPress Arm1ToTable

ArmMot := idle
where rot(Arm,Dev) =

if Arm = Arm1 and Dev = Press
then clockwise
else counterclockwise

RobotMoving(DevAction) =
if MovingToDevAction and ReachedPosForDevAction then

RobotRotationMot := idle

We leave it as Exercise 5.1.8 to similarly define the refined notion of
(Un)LoadingDevice. To establish the required safety and liveness properties
for the refined Production Cell ASM, it suffices to show that it satisfies the
assumptions under which these properties have been proved for the ground
model (Exercise 5.1.9).

5.1.3 Exercises

Exercise 5.1.1. Formulate a turbo ASM for the DeliverPiece macro in
Fig. 5.3.

5.1 Robot Controller Case Study 197

Exercise 5.1.2. (; CD) Instantiate TransportBelt to a DepositBelt

which reflects the following task description in [323]: “The task of the deposit
belt is to transport the work pieces unloaded by the second robot arm to the
traveling crane. A photoelectric cell is installed at the end of the belt; it
reports when a work piece reaches the end section of the belt. The control
program then has to stop the belt. The belt can restart as soon as the traveling
crane has picked up the work piece. . . . photoelectric cells switch on when
a plate intercepts the light ray. Just after the plate has completely passed
through it, the light barrier switches off. At this precise moment, the plate is
in the correct position to be picked up by the traveling crane.”

Exercise 5.1.3. (; CD) Refine the rule MoveToUnloadPos in rule
ElevRotTable to a durative abstract action.

Exercise 5.1.4. (; CD) The order of robot actions suggested in [323] im-
plies the Last Piece Problem: if in a run a last piece is loaded to the press,
the robot cannot unload it. Solve the problem.

Exercise 5.1.5. (; CD) Formulate assumptions for the Production Cell
ground model ASM and prove from them the following safety properties for
appropriately initialized runs.

The feed belt never puts pieces on the table when the table is loaded or
not stopped in its loading position. The robot never rotates over its bounds,
never puts a piece into the press when the press is loaded and never drops
pieces outside safe areas. The loaded first robot arm is never moved above
the loaded table if the table is in unloading position; the loaded second robot
arm is never moved over the deposit belt unless the deposit belt is loadable.
The press never closes when a robot arm is positioned in it; it is never moved
downwards/upwards from its bottom/top position.

Prove in the same way the following liveness property: every piece which
enters the feed belt eventually is forged and leaves the deposit belt.

Exercise 5.1.6. (; CD) Refine the Press ground model by detailing the
control states Open/ClosedForAction and MovingToAnyPos in terms of the
functions

PressMot ∈ {Idle,Up,Down},
ActionPos ∈ {BottomPos,MiddlePos,TopPos},
PressLoaded .

Exercise 5.1.7. Prove the refinements of the Belts, ERT and the Press in
the Production Cell ASM to be correct.

Exercise 5.1.8. (; CD) Define the refined notion of (Un)LoadingDevice
and its being completed.

Exercise 5.1.9. (; CD) Prove that the refined Production Cell ASM sat-
isfies the assumptions which were used in Exercise 5.1.5 to prove the safety
and liveness properties required by the task description.

198 5 Synchronous Multi-Agent ASMs

5.2 Real-Time Controller
(Railroad Crossing Case Study)

In this section we define real-time controller ASMs which mediate between
continuous processes and discrete computations controlling them. Real-time
controller ASMs reflect Parnas’ four-variable model for process control sys-
tems. We illustrate the concept by a real-time controller ASM which we verify
to correctly control the gate of the real-time Railroad Crossing case study
proposed in [277]. For a non-standard approach to real-time ASMs based
upon the use of infinitesimals see [379].

5.2.1 Real-Time Process Control Systems

A fundamental problem one has to solve for software controllers of real-time
processes consists in mapping continuous objects to approximations in dis-
crete states. This comprises a sampling and a synchronization problem. The
sampling problem consists in finding appropriate methods to approximate
the continuous flow of physical process data by a finite number of discrete
samples, taken at real-time moments which form an increasing discrete se-
quence (tn)n∈N. The synchronization problem consists in synchronizing the
control program with input/output devices to guarantee for the software sys-
tem – which needs stable states for reading its input, for internal controller
steps, and for sending output – a correct reactive behavior with respect to the
physical environment. In Parnas’ Four-Variable Model [360] the requirements
for the physical process with its MONitored and CONtrolled physical vari-
ables are mapped to requirements for the software program with its discrete
software input and output via INput and OUTput devices (Fig. 5.7). The in-
put device transforms continuous physical quantities, e.g. those measured by
sensors, into discrete software input values, whereas the output device trans-
forms discrete software output into values for actuators that manipulate the
continuous physical process.

To guarantee stable states for reading input, internal controller steps,
and sending output, many process control systems are based upon the
Environment-Controller Separation Principle : at each moment, the software
controller either takes input from the environment through its input device,
without involving any internal computation step, or it makes an internal com-
putation step (including the preparation of the next output to be sent to the
output device), without involving any further input reading. Its appropri-
ateness for the control of the physical system depends on the correctness of
the sampling mechanism and on sufficient hardware speed to guarantee the
timely execution of the internal controller steps with respect to the frequency
of sampling. The correctness of synchronous (e.g. Esterel) programs for reac-
tive systems largely depends on strict time requirements on input rate and
system response time (read: on simultaneity and precedence conditions for

5.2 Real-Time Controller (Railroad Crossing Case Study) 199

Fig. 5.7 Parnas’ four-variable model

Device

DiscreteSw
INPUT

OUTput
Device

DiscreteSw
OUTPUT

SOFT

INput

PhysProcessREQ

Controller

CONtrolled
PhysVarsPhysVars

MONitored

Goal: define SOFT to
correctly implement REQ

Fig. 5.8 Neural abstract machine model

ClearState

no

yes

NK Step

computed
more units to be

compute
activate

Neural Kernelconsumed
new input to be

input

the event ordering). The separation principle underlies the black-box view
of neural nets modeled by the turbo ASM NeuralAM in Fig. 5.8 (taken
from [142]). In its input phase the neural kernel is activated by the arrival of
new input from the environment, to perform on that input an internal com-
putation which ends with emitting an output to the environment and going
to the input state. The internal computation consists of a finite sequence of
atomic actions which are performed by the basic computing units (nodes of
a directed data-flow graph); e.g. in the so-called forward propagation mode,
the network input is transmitted by the input units to the internal units,
which propagate their results through the graph until the output units are
reached and the machine signals to the environment its readiness to take new
input.

An analogous environment–controller separation is used to synchronize
circuits by a clock which alternates between low and high pulse, like FlipFlop

on p. 47. The circuit is viewed as a black box with input lines (representing
the environment) and output lines. When the clock pulse is low, the box and
the output are idle and the input may change; when the clock pulse is high,
the box and the output may change and the input is idle.

200 5 Synchronous Multi-Agent ASMs

The definition of ASM runs implicitly incorporates the environment–
controller separation principle by splitting a step into internal and external
updates. We now make this distinction explicit for ASMs which work in a
real-time context. To ease the exposition we continue to stick to the idealiza-
tion that actions are atomic,8 meaning that the controller executes instan-
taneously and that the environment changes take place instantaneously.9 To
be sure that at each real-time moment there is a well-defined state, the runs
are supposed to satisfy the environment–controller separation principle. This
leads to the following definition (which we formulate for ASMs tout court,
since M may be basic, turbo, sync or async).

Definition 5.2.1 (Real-time controller ASM). A real-time controller
ASM is an ASM M whose runs – called real-time controller runs – satisfy
the following properties:

– There is a discrete sequence 0 = t0 < t1 < . . . of real numbers, called
the computationally significant real-time moments of M , with associated
states S (tn) in which currtime = tn holds for the monitored real-valued
system time currtime. Set σ(tn) = S (tn)− {currtime}.

– Every state σ(tn+1) is obtained from the preceding computationally sig-
nificant state σ(tn) either by an internal machine step or by an external
environment step, i.e.:
internal step: either by a move of M 10 to its next internal state, and be-

tween tn and tn+1 no update occurred for any external location or any
shared location which was not updated in the internal move of M ,

external step: or by environmental updates of external or shared locations,
and between tn and tn+1 no internal update of M occurred.

The sequences (tn)n∈N of real-time controller runs are usually restricted to
discrete ones where each real number t has only finitely many preceding com-
putationally significant run moments tn < t . This excludes so-called Zeno-
runs.

Definition 5.2.2 (Extension of real-time controller runs). A run
(tn ,S (tn))n∈N of a real-time controller ASM M is canonically extended by
states S (t) for arbitrary real-time moments tn < t < tn+1 as follows:

– currtime = t holds in S (t),
– in the case of an internal step: σ(t) = σ(tn+1), the state resulting from the

M -step at tn ,
8 In Sect. 6.4 it is shown how a natural re�nement of the notion of an ASM run

gently leads from atomic to durative actions.
9 It is typical for the so-called synchronization hypothesis, which underlies syn-

chronous languages, that events are assumed not to consume time so that time
\passes" only between two events. See also the proposal in [14] to view real-time
systems as resulting from discrete systems by the inclusion of clock variables.

10 In the case of an async ASM M read: of some agent of M .

5.2 Real-Time Controller (Railroad Crossing Case Study) 201

– in the case of an external step: σ(t) = σ(tn), the unchanged M -state (since
between tn and tn+1 no internal M -step takes place and the instantaneous
change of external locations by definition becomes effective only at tn+1).

5.2.2 Railroad Crossing Case Study

In this section we analyze the ground model ASM in [253] for the real-time
controller of the Railroad Crossing problem [277] to illustrate how the ASM
method allows one to couple high-level design with an on-the-fly verifica-
tion of the design correctness. We concentrate here on analyzing and proving
safety and liveness and formulate other provable system properties as exer-
cises. To simplify the formulation we treat the machine as a sync ASM of a
track and a gate controller, without restricting the generality of the solution.

Ground model construction. The system is required to operate a gate
at a railroad crossing. A set of trains travel on multiple tracks in both direc-
tions. Each track has four sensors, detecting when a train enters or exits the
crossing: L1,L2 for trains coming from the left, R1,R2 for trains coming from
the right. Based on these sensor signals, a controller should signal the gate
to open/close. It is part of the contract to verify for the system that when a
train is in the crossing, the gate is closed (Safety) and that the gate is open
when no train is in the crossing (Liveness).

We start with unfolding the assumptions for the motion of trains and for
the time relation between trains and the gate. The motion of trains can be
characterized for every track by a train motion sequence t0 < t1 < . . . of real
numbers with the following three properties:

Initial State: at the initial moment t0, the observed track segment [L1,R1] is
empty.

Train Pattern: If t3i+1 appears in the sequence, then t3i+2 and t3i+3 appear
in the sequence,
– at t3i+1, an incoming train is detected at either L1 or R1,
– at t3i+2 this train reaches the crossing,
– at t3i+3 this train is detected to have left the crossing at L2 or R2.

Completeness: The sequence t0 < t1 < . . . covers exactly the trains that
appear on this track.

The train approaching time is determined by the minimum and maximum
time dmin ≤ dmax for a train to reach the crossing after having been detected
at L1 or R1, formally:

∀i in a train motion sequence holds t3i+2 − t3i+1 ∈ [dmin , dmax]

The gate closure and opening time dclose and dopen are characterized by
the assumption that during no interval [t , t +dclose] or [t , t +dopen] is a signal
to close or open in force without at some moment in this interval the gate
being closed or opened.11 For the gate versus the train time one obviously

202 5 Synchronous Multi-Agent ASMs

has to assume that the gate closes in time before the fastest train reaches the
crossing: dclose < dmin .

In the signature we find, besides the monitored system time currtime,
a monitored function TrackStatus: TRACK → {empty , coming , inCrossing}
and a controlled function Deadline: TRACK → REAL∪{∞} to measure the
allowable WaitTime = dmin−dclose between the appearance of a train and the
latest possible moment to start the gate closing (for the gate to be closed in
time). A function Dir ∈ {open, close} controlled by the track control signals
when to open or close the gate. The actual gate status opened or closed is
the value of the gate control state, which therefore is called GateStatus.

The sync RailCrossCtl ASM consists of the basic ASMs TrackCtl

and GateCtl controlling the tracks and the gate in the presence of the
environment which sets the monitored function TrackStatus. For each track
the deadline is set upon arrival of a train, the signal to close is sent to the
gate control upon deadline expiration, and the deadline is cleared when the
track becomes empty. The signal to open is sent to the gate only when it is
safe to do so. GateCtl is an instance of the FlipFlop on p. 47. We refer
to its two control state transitions as OpenGate and CloseGate.

TrackCtl =
forall x ∈ TRACK

SetDeadline(x)
SignalClose(x)
ClearDeadline(x)

SignalOpen
where

SetDeadline(x) = if TrackStatus(x) = coming and
Deadline(x) =∞ then Deadline(x) := currtime + WaitTime

SignalClose(x) = if currtime = Deadline(x) then Dir := close
ClearDeadline(x) = if TrackStatus(x) = empty and

Deadline(x) <∞ then Deadline(x) :=∞
SignalOpen = if Dir = close and SafeToOpen then Dir := open
SafeToOpen = ∀x ∈ TRACK

TrackStatus(x) = empty or currtime + dopen < Deadline(x)

GateCtl = Switch((Dir = open, opened), (Dir = close, closed))12

11 These stipulations foresee that the gate control may react to closure/opening
commands from the controller with some (bounded) delay. Since we assume the
controller to react immediately, i.e. at the instant when it is enabled, and since
we want to consider the machine consisting of controller and gate control as
a sync ASM, we assume that should a possible gate reaction delay be desired,
then it is taken into account by the system clock. For an async ASM such an
assumption is not necessary.

12 Obviously one can sharpen the guards in GateCtl and SignalClose so that each
step changes the state. See Exercise 5.2.1.

5.2 Real-Time Controller (Railroad Crossing Case Study) 203

Runs of RailCrossCtl are defined as real-time controller ASM runs
which satisfy the train motion condition via the following constraint on the
moments of change of TrackStatus: among the computationally significant
moments of the run, every track x has a subsequence 0 = t0 < t1 < . . . of
significant moments of x such that the value of TrackStatus(x) is

– empty over every interval [t3i , t3i+1),
– coming over every interval [t3i+1, t3i+2), and dmin ≤ (t3i+2− t3i+1) ≤ dmax

holds,
– inCrossing over every interval [t3i+2, t3i+3),
– empty over [tk ,∞) if tk is the final significant moment in the sequence, in

which case k is a multiple of 3.

In those runs, the TrackCtl is assumed to react immediately, the reaction
time of GateCtl is assumed as bounded in the sense of the above gate
closure/opening time property.

Verifying safety and liveness. Supported by the above defined precise
forms of intuitive railcrossing related concepts, the design of RailCrossCtl

can be certified to be correct by proving that under the indicated assump-
tions the runs of the machine satisfy the required safety and liveness prop-
erties (Theorem 5.2.1). In a similar way one can also certify product-quality
features, in this case that e.g. the closing of the gate and – under appropriate
assumptions – its opening are never interrupted and that the liveness fails
if dopen or Dclose are replaced with smaller values. For proofs of this and of
other run-time system properties see the exercises below and [253]. The proof
for Theorem 5.2.1 below is intended to be read by a design or certification
expert and therefore is formulated in intuitive terms made mathematically
precise, following a successful and longstanding tradition of applied math-
ematics. One should be aware that a higher level of certification where all
proof details are filled in and checked by machines comes at the price of a
considerably higher cost, due to the fact that it increases tremendously the
labor intensive and error prone formalization effort.13

Theorem 5.2.1. In every run of RailCrossCtl the following holds:

Safety: Whenever a train is in the crossing, the gate is closed. Formally: if
GateStatus(x) = inCrossing over a real-time interval [t3i+2, t3i+3) for
some track x , then GateStatus = closed over [t3i+1 + dmin , t3i+3] ⊇
[t3i+2, t3i+3].

Liveness: Whenever the crossing is empty (i.e. TrackStatus(x) 6= inCrossing
for every x) in an open real-time interval (α, β) with α + dopen < β −
Dclose , the gate is open in the closed interval [α+ dopen , β −Dclose] with
Dclose = dmax −WaitTime = dclose + (dmax − dmin).

13 In [35, 34] a timed logic is developed for the veri�cation of a class of ASMs with
explicit continuous time and is applied to a formal veri�cation of RailCrossCtl.

204 5 Synchronous Multi-Agent ASMs

Proof. Safety. If GateStatus(x) = inCrossing over [t3i+2, t3i+3), the prop-
erties of the train motion sequence for x and the immediate reaction of
TrackCtl imply that SetDeadline(x) fires at t3i+1, setting Deadline(x) to
α = t3i+1 + WaitTime, so that TrackStatus(x) 6= empty over I = (α, t3i+3).
Hence over I , x makes SafeToOpen false and thereby disables SignalOpen.
This implies that OpenGate is disabled over I since SignalClose(x) fires at
α so that, immediately after α, Dir = close holds and remains unchanged
over I . But Dir = close immediately after α implies that GateStatus = closed
holds for some α < t < α + dclose = t3i+1 + dmin and that it remains so as
long as SignalOpen is disabled, i.e. over I = (α, t3i+3). But then it continues
to hold over [t3i+1 + dmin , t3i+3] since only OpenGate – which is fireable only
after SignalOpen – can change it to opened .
Liveness. The empty crossing premise for (α, β) implies by the Deadline
Lemma 5.2.1 that for every track x the following inequalities hold:

Deadline(x) ≥ β −Dclose > α+ dopen over (α, β).

Therefore, SafeToOpen holds when currtime = α and thus Dir = open holds
immediately after α (possibly through firing of SignalOpen). Dir remains
open over (α, β−Dclose), since over this interval Deadline(x) ≥ β−Dclose >
currtime holds for every x and thus disables SignalClose(x). As a consequence
also CloseGate is disabled over (α, β −Dclose).
Dir = open over (α, β − Dclose) together with the assumption on the gate
opening time dopen imply that GateStatus = opened for some α < t <
α + dopen ; this remains so as long as CloseGate is disabled, namely over
(α, β−Dclose). Therefore, GateStatus = opened over [α+ dopen , β−Dclose)],
since only CloseGate – which is fireable only after some SignalClose(x) has
been executed – can change it to closed . ut

Lemma 5.2.1 (Deadline Lemma). Let x be a track with significant mo-
ments 0 = t0 < t1 < Then the following holds:

1. Deadline(x) = ∞ over (t3i , t3i+1] and Deadline(x) = t3i+1 + WaitTime
over (t3i+1, t3i+3].

2. If TrackStatus(x) 6= inCrossing over an interval (α, β), then over this
interval Deadline(x) ≥ β−Dclose with Dclose = dclose + (dmax − dmin) =
dmax −WaitTime.

Proof. Property 1 follows by induction on i . Property 2 is proved indi-
rectly. Assume Deadline(x) < β + WaitTime − dmax at some t ∈ (α, β).
Property 1 implies that Deadline(x) = t3i+1 + WaitTime holds at t for
some t ∈ (t3i+1, t3i+3]. Then t3i+1 < t < β ≤ t3i+2 since, by hypothe-
sis, (α, β) and the inCrossing interval [t3i+2, t3i+3) are disjoint. Therefore,
β − t3i+1 ≤ t3i+2 − t3i+1 ≤ dmax , and thus β − dmax ≤ t3i+1. This implies
β−Dclose = β−dmax +WaitTime ≤ t3i+1+WaitTime = Deadline(x)(at t) <
β −Dclose(by assumption), which is a contradiction. ut

5.2 Real-Time Controller (Railroad Crossing Case Study) 205

5.2.3 Exercises

Exercise 5.2.1. Sharpen the guards in SignalClose and GateCtl to obtain
a machine where each step changes the state.

Exercise 5.2.2. (; CD) Internalize the timing conditions of train motion
sequences to represent the environment by agents, one for each track, exe-
cuting a TimedAutomaton (p. 288).

Exercise 5.2.3. (; CD) Refine RailCrossCtl by introducing gate posi-
tions between Closed = 0o and Opened = 90o . Clarify the real-world timing
assumptions which allow that Dir = close/open only when GateStatus =
opened/closed .

Exercise 5.2.4 (Verifying RailCrossCtl run-time properties[253]).
(; CD)
Prove for significant moments 0 = t0 < t1 < . . . of track x :

1. SetDeadline(x) fires exactly at every t3i+1 (when TrackStatus(x) has be-
come coming).

2. SignalClose(x) fires exactly at every t3i+1 + WaitTime.
3. ClearDeadline(x) fires exactly at every t3i for i > 0 (when TrackStatus(x)

has become empty).
4. Define s(x) as the local SafeToOpen(x) condition, namely by

TrackStatus(x) = empty or currtime + dopen < Deadline(x). Show:
– If WaitTime > dopen , then s(x) holds over every interval [t3i , t3i+1 +

WaitTime − dopen) and fails over every interval [t3i+1 + WaitTime −
dopen , t3i+3).

– If WaitTime ≤ dopen , then s(x) holds over every interval [t3i , t3i+1]
and fails over every interval (t3i+1, t3i+3).

– s(x) changes from false to true at every t3i with i > 0 (when
TrackStatus(x) has become empty).

5. SignalOpen fires exactly when SafeToOpen becomes true. If SafeToOpen
becomes true at t , then some TrackStatus(x) has become empty at t .

6 Asynchronous Multi-Agent ASMs

In this chapter1 the single-agent (basic or turbo) ASMs of Chaps. 3 and 4
and the multi-agent synchronous ASMs of Chap. 5 are extended to asyn-
chronous multi-agent ASMs and shown to be useful for the design and the
analysis of distributed systems. In Sect. 6.1 we define async ASMs and illus-
trate them by characteristic distributed network algorithms (for consensus,
master–slave agreement, leader election, phase synchronization, load balance,
broadcast acknowledgment) and a position-based routing protocol for mobile
ad hoc networks. In Sect. 6.2 we show async ASMs at work in a require-
ments capture case study for a small embedded system (Light Control). In
Sect. 6.3 we use async ASMs to model and analyze two time-constrained al-
gorithms which support fault tolerance for a distributed computing service,
namely in Sect. 6.3.1 the modem and network communication protocol Ker-
mit for correct file transfer, well-known from TCP/IP installations, and in
Sect. 6.3.2 a Processor Group Membership protocol. In Sect. 6.4 we use the
ASM refinement method to show – adopting Lamport’s famous mutual exclu-
sion algorithm Bakery as an example – how time-constrained algorithms with
“atomic actions” can naturally be turned in a provably correct way to reflect
also the “real-time duration” of actions. We show that it suffices to refine
the global state view of atomic non-overlapping reads and writes in shared
registers to a local state view of single agents whose overlapping reads and
writes to the same location are governed by the constraints that async ASM
runs impose on controlled, monitored and shared locations. Section 6.5 deals
with event-driven ASMs. As a concrete illustration we model in Sect. 6.5.1
event-driven UML activity diagrams by async ASMs with turbo components
and apply them for a compact one-page definition of an interpreter for Occam
programs.

This chapter can be read independently of the preceding Chaps. 3–5 and
most of Chap. 2; it suffices to know the definition of basic ASMs, of the ASM
refinement concept and, for the examples in Sect. 6.5.1, of the notion of turbo
ASMs.
1 Lecture slides can be found in AsyncASM (; CD), LightControl (; CD),
LightControlRequirements (; CD), Kermit (; CD), GroupMemberProtocol
(; CD), Bakery (; CD).

208 6 Asynchronous Multi-Agent ASMs

6.1 Async ASMs: Definition and Network Examples

The monitored and shared locations and functions in basic ASMs abstract
from detailed modeling of the actions of the environment, thus supporting
for basic ASMs the characteristic splitting of the dynamics of a system into a
machine computation part and a part which describes, in a possibly declar-
ative manner, the assumed environment properties. For a computation step
of a basic ASM to happen, all locations are supposed to have well-defined
values. In fact Definition 2.4.22 incorporates the environment–controller sep-
aration principle explained in Sect. 5.2.1, in the sense that the value changes
for monitored locations are assumed to take place in such a way that the new
value is stable each time the machine is going to perform a step. The changes
of monitored locations can be viewed as resulting from “monitored” moves of
“unknown” environment agents, made independently of the machine moves,
which are “controlled” by the executing agent, but synchronized with the
machine moves as happening either simultaneously with them or “between
successive” ones.

The definition of async ASMs generalizes this situation to an arbitrary
finite number of independent agents, each executing a basic or structured
ASM2 in its own local state. A problem to solve for runs of such asyn-
chronously cooperating agents originates in the possible incomparability of
their moves which may come with different data, clocks, moments and du-
ration of execution. This makes it difficult to uniquely define a global state
where moves are executed to locate changes of monitored functions in an
ordering of moves. The coherence condition in the definition of asynchronous
multi-agent ASM runs below postulates well-definedness for a relevant por-
tion of state in which an agent is supposed to perform a step, thus provid-
ing a notion of “local” stable view of “the” state in which an agent makes
a move. The underlying synchronization scheme is described using partial
orders for moves of different agents which reflect causal dependencies, deter-
mining which move depends upon (and thus must come “before”) which other
move. This synchronization scheme is as liberal as it can be, restricted only
by the consistency condition for the updates which is logically indispensable,
and thus can be instantiated by any consistent synchronization mechanism.

Definition 6.1.1 (Asynchronous multi-agent ASM). An async ASM
is given by a family of pairs (a,ASM (a)) of pairwise different agents, elements
of a possibly dynamic finite set Agent, each executing its basic or structured
ASM ASM (a). A run of an async ASM, also called a partially ordered run,3

2 For the de�nition of async ASMs it is convenient to consider sync ASMs as
given by a one-agent ASM where the synchronized subagents are viewed as a
team. This allows one to let the behaviorally relevant causal dependencies and
the di�erent clocks of independent agents stand out distinctly, separate from
the modularity relevant distinction of the substates of each (asynchronous or
synchronous) agent.

6.1 Async ASMs: De�nition and Network Examples 209

is a partially ordered set (M , <) of moves m (read: rule applications) of its
agents satisfying the following conditions:

finite history: each move has only finitely many predecessors, i.e. for each
m ∈ M the set {m ′|m ′ < m} is finite,

sequentiality of agents: the set of moves {m|m ∈ M , a performs m} of every
agent a ∈ Agent is linearly ordered by <,

coherence: each finite initial segment (downward closed subset) X of (M , <)
has an associated state σ(X) – think of it as the result of all moves in X
with m executed before m ′ if m < m ′ – which for every maximal element
m ∈ X is the result of applying move m in state σ(X − {m}).

The coherence condition immediately implies the following lemma.

Lemma 6.1.1 (Linearization of partially ordered runs). Let X be a
finite initial segment of a run of an async ASM. All linearizations of X yield
runs with the same final state.

This definition provides no clue to how to construct partially ordered
runs for an async ASM, but it makes explicit the freedom that one has in
implementing the described causal dependencies of certain local actions of
otherwise independent agents. This means the freedom to model independent
actions by synchronous parallelism or interleaving or explicit scheduling, etc.
Notably the definition also imposes no fairness condition on runs (“a move
which is enabled infinitely often is chosen infinitely often”), giving the de-
signer the freedom to formulate and rely upon the fairness concept which
is appropriate for the system under investigation. This freedom to instanti-
ate partially ordered runs to particular classes of asynchronous runs, going
together with the freedom of abstraction explained already for basic ASMs
in Chap. 2, partly explains the naturality with which other models for dis-
tributed computation could be embedded into ASMs, like co-design FSMs,
UNITY, Petri nets, Message Sequence Charts (with their typical partial event
order), etc., but not the other way round; see the detailed investigation in
Sect. 7.1.

Agents define the locus of computation; the use of “global states” asso-
ciated with run segments of async ASMs is an idealization which does not
imply any “global control”. Each agent is dynamically equipped with its own
program4 operating on its own state, determining a partial view of the sys-
tem state as illustrated in Fig. 6.1 from [292, Annex F1]. Using agents, one
3 In the literature also the term distributed run is used in this sense. We will

try to stick to the term partially ordered run to avoid the connotations of the
widespread understanding of distribution as placement of agents on hardware.
The understanding of moves as moves of agents can be made explicit by in-
troducing a function which to each move associates the agent which makes the
move.

4 We allow the program of an agent to change dynamically.

210 6 Asynchronous Multi-Agent ASMs

can easily provide the aspects of what in the literature are called inter-object
descriptions, namely by multiple-agent ASMs, as opposed to intra-object de-
scriptions, namely by single-agent ASMs. The relation between global and
local states is supported by the use of the reserved name self in functions and
rules to denote the agents which are executing the underlying “same” but dif-
ferently instantiated basic, structured or sync ASM, similar to the use of this
in object-oriented programming to denote the object for which the currently
executed instance method has been invoked. For a function f : X × Y → Z ,
the expression f (self) denotes the private version λy f (self, y) – belonging
to agent self – of a function from Y to Z . This self reference feature is
rather useful for describing networks of agents which mostly run their own
instances of one and the same program; e.g. one can associate with each agent
its instance of a set of neighbor agents by parameterizing neighb ⊆ Agent as
neighb(self). An often useful side effect is that neighb can also be viewed as
an idealized global function neighb: Agent → PowerSet(Agent). Thus the use
of self in async ASMs has the three typical object characteristics, namely to
provide a unique identity and to encapsulate behavior and a persistent state,
as illustrated for example by software architecture components. When it is
clear from the context who is denoted by self, notationally self is omitted.

In the rest of this section we use async ASMs to define and analyze some
small-size but characteristic distributed algorithms taken from [372], where
they are treated in terms of Petri nets. In statements and proofs we often
use without further statement the standard fairness condition that every
enabled agent (read: agent with a true rule guard) will eventually make a
move, meaning that there is no infinite order-respecting sequence of moves
where an agent is enabled in each state without making a move. We conclude
the section with an async ASM taken from [47] which models a routing layer
protocol for mobile ad hoc networks. Larger examples appear in the following
sections of this chapter.

6.1.1 Mutual Exclusion

The goal of mutual exclusion algorithms is to allow every interested process
to eventually obtain for temporarily exclusive use some shared resource, thus
preventing two users from using the shared resource simultaneously. So there
is a set Agent of agents, each one with the right to access a resource from
a set of Resources, where different agents may have the same or overlapping
resources. A dynamic function owner : Resource → Agent records the current
exclusive user of a given resource. A mutual exclusion algorithm has to ma-
nipulate updates of owner in such a way that every attempt by an agent to
become an owner of his resource will eventually succeed. Ideally, every agent
(denoted by self) would like to execute alternately the following two rules to
get hold of and later to release the desired resource (where none stands for
the default value undef of the set Agent):

6.1 Async ASMs: De�nition and Network Examples 211

Fig. 6.1 Global state and partial views in an async ASM

View(ag4,S)

ag4.program

Global State S

Agents
ag1

ag2

ag4 ag3

P3

P2
P1

Programs

DiningPhilosopher =
if owner(resource) = none then owner(resource) := self
if owner(resource) = self then owner(resource) := none

Conflicts in using a resource which is shared among different agents are
resolved by defining a partial order among possibly conflicting moves in an
(appropriately initialized) run of an async ASM where each agent has the
above two rules. Realizing such an order reflects appropriate scheduling and
priority policies. It has become common to phrase this sort of problem as the
problem of dining philosophers sitting around a table where the resource of
every philosopher is a pair of a left fork and a right fork, both needed for
eating but shared with the corresponding left or right neighbor philosopher,
so that formally resource(self) = (leftFork(self), rightFork(self)).

An example are Multiple-Read-One-Write algorithms allowing at each
step one agent to start a read or a write operation in a given file, up to
maxRead > 0 simultaneous reads, but only 1 write (not overlapping with
any read). So let Agent be the set of agents which are allowed to access for
read/write operations the files belonging to a set File, equipped with func-
tions user ,maxRead ,maxWrite: File → N indicating the number of agents
which are currently reading or writing, respectively, and allowed to simulta-
neously read or write the given file, where maxWrite = 1 ≤ maxRead . The
basic ASM for file read/write access which is associated with each agent of the
async MultipleReadOneWrite ASM is defined in Fig. 6.2. Assume that
initially user(file) = 0. The function finished : File → Bool indicates whether

212 6 Asynchronous Multi-Agent ASMs

Fig. 6.2 Basic MultipleReadOneWrite ASM (act=Read,Write)

Finished(file)

act
wait

act

Accessible(file)act

DecreaseUser(file)act

IncreaseUser(file)act

an agent has finished his current file operation. The macros are defined as
follows:

MultipleReadOneWriteMacros =
actAccessible(file) ≡ user(file) < maxact(file)

where act ∈ {Read ,Write}
ReadIn/DecreaseUser(file) ≡ user(file) := user(file)± 1
WriteIn/DecreaseUser(file) ≡ user(file) := user(file)±maxRead(file)

If instead of 1 attempt one wants to allow multiple simultaneous file ac-
cess attempts, maxRead becomes a cumulative counter to have the ex-
pected overall effect, i.e. ReadAccessible(file) becomes user(file)+newUsers ≤
maxRead(file), where newUsers indicates the number of users attempting to
access the file for reading.

For the definition of the partial orders underlying the partially ordered
runs of a concrete mutual exclusion algorithm see the investigation of the
async Bakery ASM in Sect. 6.4.

6.1.2 Master–Slave Agreement

In this section we define an async ASM which can be proved to achieve the
following goal: before a master process launches an order to slave processes,
they are asked whether they are ready to accept or have to refuse the job.
The master process waits for their confirmation and then definitely sends the
job – for execution in case all slaves did accept, otherwise for cancellation.

The algorithmic idea consists in letting the initially idle master Enquire
about a job to be launched, followed by waitingForAnswers from the slaves
and then – once the AnswersArrived – to OrderOrCancel and return idle.
The slaves Answer the enquiry, followed by waitingForOrder until the Or-
derArrived in which case either all slaves become busy executing the ordered
job or all slaves go into the control state done. Thus each agent of the async
MasterSlaveAgreement ASM executes the corresponding basic ASM de-
fined in Fig. 6.3 with the macros below, started with all agents idle, undefined
order, answer and asked = false. We abstract from an explicit representation
of the message passing by declaring the functions asked, answer, order to be
shared among slave and master processes (see Exercise 6.1.1). For iterated use

6.1 Async ASMs: De�nition and Network Examples 213

Fig. 6.3 Basic ASM of MasterSlaveAgreement agents

idle Enquire
for answer

waiting

OrderOrCancel AnswersArrived

waiting
for order

Answer

OrderArrived

order = job

no yes

idle

done busy

the algorithm should be equipped with an additional ClearOrder command
to reset order when the slaves return to idle.

MasterMacros =
Enquire = forall s ∈ Slave s.asked := true
AnswersArrived = forall s ∈ Slave s.answer ∈ {accept , refuse}
OrderOrCancel =

if ∃s ∈ Slave with s.answer = refuse then order := cancel
else order := job

clear answer
clear answer = forall s ∈ Slave s.answer := undef

SlaveMacros =
Answer = if asked then choose r ∈ {accept , refuse}

answer := r
asked := false

OrderArrived = order ∈ {job, cancel}

Proposition 6.1.1 (Correctness of MasterSlaveAgreement). In ev-
ery properly initialized run of a master and its slaves, all equipped with the
corresponding basic master/slave ASM, after the master has started an En-
quiry, eventually the master becomes idle and either all slaves become done
or all slaves become busy executing the job ordered by the master.

Proof. Follows by an induction on (initial segments of) runs. ut

214 6 Asynchronous Multi-Agent ASMs

Fig. 6.4 Basic ASM of Consensus agents

yes

no

Answer

yes no

there are
requests

LaunchNewRequest
chosenRule =

Request
LaunchNew

Complete
ExpectedReplies

= Answer
chosenRule

pending

agreed

6.1.3 Network Consensus

In this section we define an async ASM which can be proved to achieve
consensus among homogeneous agents, arranged as nodes of arbitrary finite
connected networks, using only communication between neighbors, without
broker or mediator. The algorithmic idea is that every agent may (a) launch
a request to its neighbors and wait for the replies, (b) agree with the replies
received from its neighbors, (c) reply to requests received from its neighbors –
until all agents agree (maybe never). But in case they do agree, the consensus
is not revoked.

As signature we have a finite connected set Agent , each equipped with an
external neighborhood function neighb ⊆ Agent and with mail boxes

Request ⊆ {RequestFrom(n) | n ∈ neighb}
Reply ⊆ {ReplyFrom(n) | n ∈ neighb}

and ctl state ∈ {pending , agreed}. For the sake of generality we work with
abstract messages (requests and answers), simply inserting or deleting them
into the corresponding mailbox. Initially all agents are pending with empty
Request and full Reply = {ReplyFrom(n) | n ∈ neighb}. Since the above al-
gorithmic specification leaves a non-deterministic choice whether to Answer
a request, or to LaunchNewRequest, or to Agree with the replies received to
a launched request, we reflect this choice by an auxiliary function chosen-
Rule. Thus each agent of the async Consensus ASM executes the properly
initialized basic ASM defined in Fig. 6.4 with the macros below.

ConsensusMacros =
ExpectedRepliesComplete = (Reply = full)
LaunchNewRequest =

BroadcastRequest
Reply := empty

BroadcastRequest = forall n ∈ neighb

6.1 Async ASMs: De�nition and Network Examples 215

insert RequestFrom(self) into Request(n)
Answer = forall r ∈ Request

delete r from Request
send answer for r

send answer for RequestFrom(n) =
insert ReplyFrom(self) into Reply(n)

Proposition 6.1.2 (Correctness of Consensus). In every properly ini-
tialized non-empty run of agents equipped with the basic consensus ASM, if
the run terminates, then every agent is in ctl state = agreed with full Reply
and empty Request set.

Proof. Assuming that every enabled agent will eventually make a move, the
claim follows from the definition of LaunchNewRequest and Answer by a
run induction. Whenever Reply = full for an agent a, then there is no
RequestFrom(a) in Request(n) for any n ∈ neighb(a). ut

6.1.4 Load Balance

In this section we define an async ASM which can be proved to achieve a
workload balance among the agents of a ring, using only communication be-
tween right/left neighbors. The algorithmic idea for determining the leader is
that every agent (ring node) alternately sends a workLoad information mes-
sage to his rightNeighbor , then a task transfer message to his leftNeighbor ,
possibly transferring a task to balance the workload with the left neighbor,
and then updates his workload to balance it with his right neighbor. Even-
tually the difference between the workload of two nodes becomes at most 1.
The ordering of these actions is important and reflected by the sequence of
values of ctl state in

{informRightNeighb, checkWithLeftNeighb, checkWithRightNeighb}.

For the sake of generality we keep the message passing mechanism and the
effective task transfer abstract; we thus update for each agent two mail-
boxes neighbLoad , transferLoad , which record the information received on
the current workLoad of leftNeighb and on the workload transfered5 by the
rightNeighb. Initially, every agent is about to informRightNeighb with empty
(i.e. undefined) neighbLoad , transferLoad . We assume here a fixed number of
agents and constant total workload (see Exercise 6.1.4). Thus each agent of
the async LoadBalance ASM executes the properly initialized basic ASM
defined in Fig. 6.5 with the macros below.

LoadBalanceMacros =
Send(workLoad) = (rightNeighb.neighbLoad := workLoad)
BalanceWithLeftNeighb = if arrived(neighbLoad) then

5 In the de�nition below the workload transfer units are 0 or 1; see Exercise 6.1.5.

216 6 Asynchronous Multi-Agent ASMs

Fig. 6.5 Basic ASM of LoadBalance agents

Left
Neighb

Send(workLoad)
checkWith

BalanceWithLeftNeighb

checkWith
Right

Neighb

BalanceWithRightNeighb

Neighb
Right
inform

transfer task to leftNeighb
arrived(l) = (l 6= undef)
transfer task to leftNeighb =

leftNeighb.transferLoad := transfer
workLoad := workLoad − transfer
neighbLoad := undef

where transfer =
{

1, if workLoad > neighbLoad ;
0, else

BalanceWithRightNeighb = if arrived(transferLoad) then
accept task from rightNeighb

accept task from rightNeighb =
workLoad := workLoad + transferLoad
transferLoad := undef

Proposition 6.1.3 (Correctness of LoadBalance). In every properly
initialized run of agents equipped with the basic LoadBalance ASM, even-
tually the workload difference between two nodes becomes ≤ 1.

Proof. By induction on the weight of run workload differences. Let w be the
sum of the workLoad of all nodes and let a be the number of agents. Case 1:
w is divisible by a. Then eventually workLoad(n) = w/a for every node n.
Case 2: otherwise. Then eventually and permanently the workLoad of any
pair of nodes will differ by at most 1. For proof details see [372, Chap. 82].

ut

6.1.5 Leader Election and Shortest Path

In this section we define an async ASM which can be proved to achieve the
election of a leader (and to be refined by the computation of a shortest path

6.1 Async ASMs: De�nition and Network Examples 217

Fig. 6.6 Basic ASM of LeaderElection agents

Improve proposals
Proposals

EmptyProposals

Proposals

EmptyProposals
ImproveByProposals

Neighbours
propose To check

there are

propose

yes

no

to the leader), established in terms of an order of homogeneous agents in fi-
nite connected networks, using only communication between neighbor nodes.
Let leader = max (Agent) with respect to a linear order < of the set Agent .
The algorithmic idea is that every agent proposes to his neighbors his cur-
rent leader cand idate, checks the leader proposals received from his neighbors
and upon detecting a proposal which improves his leader candidate, he im-
proves his candidate for his next proposal. Initially every agent is without
proposals from his neighbors and is supposed to proposeToNeighbors himself
as cand idate . Eventually cand = max (Agent) will hold for all agents. Thus
each agent of the async LeaderElection ASM executes the properly ini-
tialized basic ASM defined in Fig. 6.6 with the macros below.

LeaderElectionMacros =
propose = forall n ∈ neighb insert cand to proposals(n)
proposals improve = max (proposals) > cand
improve by proposals = cand := max (proposals)
EmptyProposals = (proposals := empty)
there are proposals = (proposals 6= empty)

Proposition 6.1.4 (Correctness of LeaderElection). In every prop-
erly initialized run of agents equipped with the basic LeaderElection

ASM, eventually every agent is in ctl state = checkProposals with cand =
max (Agent) and empty proposals.

Proof. Assuming that every enabled agent will eventually make a move, the
claim follows by an induction on runs and on

∑
{leader − cand(n) | n ∈

Agent} which measures the distances of candidates from the leader. ut

We now refine the LeaderElection ASM by computing for each agent
also a shortest path to the leader.6 This is realized by providing for every
agent, in addition to the leader candidate, also a neighbor (except for the
leader) which is currently known to be closest to the leader, together with

218 6 Asynchronous Multi-Agent ASMs

the minimal distance to the leader via that neighbor. The refinement is an ex-
ample of a pure data refinement and consists in enriching cand and proposals
by a neighbor with minimal distance to the leader. This is recorded in new
dynamic functions nearNeighb: Agent and distance: Distance (e.g. Distance =
N ∪ {∞}), so that proposals ⊆ Agent × Agent × Distance (triples of leader
cand , nearNeighbor and distance to the leader). Initially nearNeighbor = self
and distance =∞ except for the leader where distance = 0.

Thus each agent of the refined async MinPathToLeader ASM exe-
cutes the properly initialized basic ASM defined in Fig. 6.6 with the refined
macros below. Priority is given to determine the largest among the proposed
neighbors (where Max over triples takes the max over the proposed neigh-
bor agents), among the proposalsFor the current cand the one with minimal
distance is chosen.

MinPathToLeaderMacros =
propose = forall n ∈ neighb

insert (cand ,nearNeighb, distance) to proposals(n)
proposals improve = let m = Max (proposals) in

m > cand or
(m = cand and minDistance(proposalsFor m) + 1 < distance)

improve by proposals =
cand := Max (proposals)
update PathInfo to Max (proposals)

update PathInfo to m =choose (n, d) with
(m,n, d) ∈ proposals and d = minDistance(proposalsFor m)

nearNeighb := n
distance := d + 1

Proposition 6.1.5 (Correctness of MinPathToLeader). In every prop-
erly initialized run of agents equipped with the basic MinPathToLeader

ASM, eventually every agent is in ctl state = checkProposals with cand =
max (Agent), empty proposals, distance= the minimal distance of a path from
agent to leader, and nearNeighbor a neighbor on a minimal path to the leader
(except for leader where nearNeighbor = leader).

Proof. This follows with the same induction as for the LeaderElection with
side induction on the minimal distances in proposalsFor Max(proposals). ut

6.1.6 Broadcast Acknowledgment (Echo)

In this section we define an async ASM which can be proved to guarantee an
initiator ’s message being broadcast and acknowledged (“echoed”) through
a finite connected network, using only communication between neighbors.
The initiator (a distinguished node) broadcasts an info to all his neighbors,
6 For a stepwise re�ned single-agent basic ShortestPath ASM see Sect. 3.2.2.

6.1 Async ASMs: De�nition and Network Examples 219

Fig. 6.7 Basic ASM of Echo agents (Initator/OtherAgent rules)

listening
ToInfo

InformedBy
SomeNeighbour

InformAllOther
Neighbours

InformedByAll
OtherNeighbours

waiting
ForAck

informed
InformParent

Neighbour

broad
cast

InformAll
Neighbours

waiting For
Echo

InformedBy
AllNeighbours

echo
Arrived

ClearEcho

waits for their acknowledgments, and when these arrive terminates by clearing
the echo, say for the next round. This triggers every node which has been
informedBySomeNeighbor (its parent node) to InformAllOtherNeighbors and
to wait in turn for their acknowledgments to come back, and to then forward
his own acknowledgment to the parent node.

For the sake of generality we keep the message-passing mechanism ab-
stract, providing for each agent a mailbox indicator informedBy : Agent →
Bool recording whether a message (with information from the parent node or
with an acknowledgment) from a neighbor agent has been sent (arrived); read
u.informedBy(v) = true as: u has a not-yet-read message from v . Initially the
initiator is ready to broadcast , whereas all other agents are listeningToInfo
with undefined parent and no message around (informedBy everywhere false).
Thus the initiator and each other agent of the async Echo ASM executes
the properly initialized basic ASM defined in Fig. 6.7 with the macros below.

EchoInitiatorMacros =
InformAllNeighbors = forall u ∈ neighb u.informedBy(self) := true
InformedByAllNeighbors = forall u ∈ neighb informedBy(u) = true
clearEcho = forall u ∈ neighb informedBy(u) := false

EchoAgentMacros =
informedBySomeNeighbor = ∃u ∈ neighb informedBy(u) = true
InformAllOtherNeighbors =

choose u ∈ neighb with informedBy(u)

220 6 Asynchronous Multi-Agent ASMs

forall v ∈ neighb − {u} v .informedBy(self) := true
informedBy(u) := false
parent := u

informedByAllOtherNeighbors = forall v ∈ neighb − {parent}
informedBy(v) = true

InformParentNeighbor =
parent .informedBy(self) := true
clearAcknowledgment

clearAcknowledgment =
forall u ∈ neighb − {parent} informedBy(u) := false
parent := undef

Proposition 6.1.6 (Correctness of Echo). In every properly initialized
run of agents equipped with the basic Echo ASMs for the initiator and
the other agents, the initiator terminates (termination). He terminates only
when all other agents have been informed about his originally sent message
(correctness).

Proof. Follows from the following two lemmas. ut

Lemma 6.1.2 (Downward Lemma). In every run of the async Echo

ASM, each time an agent executes InformAllOtherNeighbors, in the span-
ning tree of agents waitingForAck the distance to the initiator grows until
leafs are reached.

Proof. By downward induction on echo ASM runs. ut

Lemma 6.1.3 (Upward Lemma). In every run of the async Echo ASM,
each time an agent executes InformParentNeighbor , in the spanning tree the
distance to the initiator of nodes with a subtree of informed agents shrinks,
until the initiator is reached.

Proof. By upward induction on runs of the async echo ASM. ut

6.1.7 Phase Synchronization

In this section we define an async ASM which can be proved to guarantee
the synchronized execution of computations by phases, occurring at nodes of
an undirected tree (connected acyclic network), using only communication
between tree neighbors. The algorithmic idea is that every agent (tree node)
before becoming busy in a new phase has to synchronize with its neighbor
nodes (to make sure the busy ones are working in the same new phase) by
(a) moving the synchronization up along the tree structure, (b) waiting until
all agents are waiting for the phase increase to start, (c) increasing its phase,
when the phase shift becomes movable down, and moving the phase shift

6.1 Async ASMs: De�nition and Network Examples 221

Fig. 6.8 Basic ASM of PhaseSync agents

Synchronization
MovableUp

busy

MoveSynchronizationUp

waiting

PhaseShift
MovableDown

MovePhaseShiftDown

further down along the tree structure – until all nodes have become busy in
the new phase.

We keep the message-passing mechanism abstract, associating with ev-
ery agent a synchPartner and a waitPartner which indicate the neighbor
node an agent is synchronized with (in moving the synchronization through
the tree) resp. waiting for (to reverse the previous upward synchronization
downwards). Initially every agent is busy in phase = 0 with no synchPartner
and no waitPartner . Each MoveSynchronizationUp of an agent self shifts the
synchPartner up (read: by sending a message to him from self) and records
it as waitPartner (e.g. to expect a message from him to self), to be used
for the subsequent MovePhaseShiftDown which will be done in the reversed
order. Therefore by the connectedness of the graph, for each phase p eventu-
ally pairs of matching wait and synchronization partners will be met making
PhaseShiftMovableDown, determined by a node self in phase p which for this
phase is the synchPartner of its waitPartner (read: has received a synchro-
nization message from the expected node). More precisely a pair of nodes u
and its wait partner v = u.waitPartner(p), where u is the synchronization
partner of v , i.e. v .synchPartner(p) = u (read: u is waiting for a message
from v and v has sent the expected message to u).

Each agent of the async PhaseSync ASM executes the properly initial-
ized basic ASM defined in Fig. 6.8 with the macros below.

PhaseSyncMacros =
SynchronizationMovableUp = ∃y ∈ neighb

SynchronizationMovableUpTo(y)
SynchronizationMovableUpTo(y) = forall z ∈ neighb − {y}

z .synchPartner(phase(self)) = self
MoveSynchronizationUp =

choose y ∈ neighb with SynchronizationMovableUpTo(y)
MoveSynchronizationUpTo(y)

MoveSynchronizationUpTo(y) = forall z ∈ neighb − {y}
z .synchPartner(phase(self)) := undef
self.synchPartner(phase(self)) := y

222 6 Asynchronous Multi-Agent ASMs

self.waitPartner(phase(self)) := y
PhaseShiftMovableDown =

self is synchPartner of its waitPartner
self is synchPartner of its waitPartner =

waitPartner(phase(self)).synchPartner(phase(self)) = self
MovePhaseShiftDown =

phase := phase + 1
forall z ∈ neighb − {waitPartner}

self.synchPartner(phase(self)) := z
waitPartner(phase(self)).synchPartner(phase(self)) := undef

Proposition 6.1.7 (Correctness of PhaseSync). In every properly ini-
tialized run of agents equipped with the basic PhaseSync ASM, in any state
any two busy agents are in the same phase (correctness property). If every
enabled agent will eventually make a move, then each agent will eventually
reach each phase (liveness property).

Proof. Use the following lemma. ut

Lemma 6.1.4. For every phase p, whenever in a run a state is reached
where for the first time an agent u = self becomes synchPartner of its
waitPartner say v (for phase(self) = p), every element of subtree(u, v) ∪
subtree(v , u) ∪ {u, v} is waiting in phase p, where subtree(x , y) = {n |
n reachable by a path from x without touching y}.

The proof of the lemma follows from the following two claims.
Claim 1. When the synchronization is moved up in phase(u) = p from

busy u to v = u.synchPartner(p), the elements of subtree(u, v) are waiting,
u becomes waiting, and they all remain so until the next application of a
Shift rule MovePhaseShiftDown.

Proof. This follows by induction on the applications of the Synchronization
rule. For n = 1 the claim is true since it holds at the leaves. For n + 1 the
claim follows by the induction hypothesis and the Synchronization rule from

subtree(u, v) =
⋃
i<n

subtree(ui , u) ∪ {u0, . . . , un−1}

neighb(u) = {u0, . . . , un} with v = un (by connectedness). ut

Claim 2. For every infinite run and every phase p, a state is reached in
which all agents are waiting in phase p and some agent in phase p becomes
synchPartner of its waitPartner .

Proof. By induction on p. ut

6.1 Async ASMs: De�nition and Network Examples 223

6.1.8 Routing Layer Protocol for Mobile Ad Hoc Networks

Following [47] we illustrate async ASMs to model a distributed location ser-
vice for mobile ad hoc networks. The service touches three layers of the
communication architecture, namely the lower so-called Media Access layer
(MAC), the higher Transport layer and the intermediate network layer. The
network layer, constituted by mobile hosts which act as both communica-
tion endpoints and routers, is split into two sublayers: at the higher layer
a Distributed Location Service (DLS) mediates between the transport layer
and a lower layer Position-Based Routing (PBR) protocol, which in turn
interacts with the MAC layer. The communication mechanism itself, typ-
ically using a wireless communication network, is kept abstract in terms
of two types of appropriately parameterized primitives, PacketToLayer and
PacketFromLayer for sending or receiving data packets to and from the
Layers. It is assumed that each PacketToLayer(p) operation triggers a corre-
sponding event PacketFromLayer(p) through which the target Layer receives
the sent packet p.

Sending and receiving are operated asynchronously at mobile hosts which
are formalized by a finite set of Nodes n with fixed (static) address(n) and
a dynamic (monitored) position pos(n), belonging to an abstract set of geo-
graphical Positions. To each node n two independent agents pbr and dls are
attached (formally via node(pbr) = node(dls) = n) to perform the position-
based routing – executing a basic ASM PosBasedRouting – and the dis-
tributed location service – executing a basic ASM DistrLocationServ.

When the associated mobile host node(self) is switchedOn, position-based
routing agents run the cyclic detection of the nearest reachable neighbors,
elaborate packets coming from MAC and forward to MAC the packets which
arrive from DLS. When a PacketFromDLS arrives, the position of its receiver
is retrieved where it is forwarded as PacketToMAC. The elaboration of pack-
ets from MAC comprises (a) the handling of neighbor detection packets,
i.e. with type(p) ∈ Detection = {NeighborRequest ,NeighborReply}, and (b)
the delivery of data packets (with type(p) ∈ DataPacket) or of location dis-
covery packets (of type(p) ∈ Discovery = {locationRequest , locationReply}
which are either to be delivered locally – if address(receiver(p)) matches
the address of the node of the routing agent – or to be forwarded to the
position of the appropriate neighbor (if it exists) on the way to their re-
mote destination. This neighbor is computed by a function computeNeighbor
for the node of the routing agent relative to the packet receiver’s posi-
tion. Informative definitions for RunNearestNeighborDetectionCycle,
Handle(NeighborRequest , p) and Handle(NeighborReply , p) involve timing is-
sues which are given below.

PosBasedRouting = if switchedOn(node(self)) then
RunNearestNeighborDetectionCycle

ElaborateMacPackets

224 6 Asynchronous Multi-Agent ASMs

ForwardFromDlsToMac

where
ForwardFromDlsToMac = if PacketFromDLS (p) then

PacketToMAC (p, position(receiver(p)))
ElaborateMacPackets = if PacketFromMAC (p) then

if type(p) ∈ Detection then Handle(type(p), p)
if type(p) ∈ Discovery ∪DataPacket then

if localDelivery(p) then PacketToDLS (p)
else ForwardToNeighbor(p)

localDelivery(p) = (address(receiver(p)) = address(node(self))
ForwardToNeighbor(p) =

let neighb = computeNeighbor(node(self), position(receiver(p)))
if neighb 6= undef then PacketToMAC (p, position(neighb))

The task of distributed location service agents is to elaborate packets
coming from the Transport or the PBR layer. When the Transport layer
consecutively sends packets belonging to a sequence, the dls agent first has
to determine the current position of the destination node where to send the
packets in the sequence. A monitored predicate FirstPacket is used to dis-
tinguish when the subcomputation DiscoverDestinationPosition has to
be started from the address of the receiver and then to send there this first
packet, recorded at firstpacket(self). Subsequent packets are sent to PBR
with the position of their receiver updated by the destination position dis-
covered for the first packet.

DistrLocationServ = if switchedOn(node(self)) then
ElaborateTransportPackets

ElaboratePbrPackets

where
ElaborateTransportPackets = if PacketFromTransport(p) then

if FirstPacket(p) then
DiscoverDestinationPosition(address(receiver(p))
firstpacket(self) := p

else
PacketToPBR(p)
position(receiver(p)) := position(receiver(firstpacket(self)))

ElaboratePbrPackets = if PacketFromPBR(p) then
if type(p) ∈ Discovery then HandleDiscoveryPacket(p)
else PacketToTransport(p)

Discovery packets arriving from PBR are handled as follows. In case of a
locationReply the discovered destination position is recorded where to send
the firstpacket and the remaining packets of the sequence. In case the location
for a locationRequest has been found, one has to HandleLocationReply,
i.e. to send back to the sender at PBR a locationReply packet containing the
discovered destination position. Otherwise the locationRequest packet has to

6.1 Async ASMs: De�nition and Network Examples 225

be forwarded to the appropriate neighbor, which is computed and assigned
to the receiver of the packet using a function nextHypercubicNeighbor for the
node of the dls agent relative to the packet’s final destination address. This
function reflects the hypercube underlying the network; see [47] for more de-
tails. We define DiscoverDestinationPosition, HandleLocationReply

below, where further details about the representation of nodes in packets are
provided.

HandleDiscoveryPacket(p) =
if type(p) = locationReply then

position(receiver(firstpacket(self))) := position(sender(p))
PacketToPBR(firstpacket(self))

if type(p) = locationRequest then
if RequestedLocationFound then HandleLocationReply(p)
else ForwardRequestToNeighbor

RequestedLocationFound = (address(p) = address(node(self)))
ForwardRequestToNeighbor =

let neighb = nextHypercubicNeighbor(node(self), address(p))
{receiver(p) := neigh,PacketToPBR(p)}

To specify DiscoverDestinationPosition and HandleLocationReply

implies detailing some attributes of packets, in particular how the relevant
information about the address and position of the sender and receiver nodes
of packets is represented. Including sender and receiver nodes directly (“un-
encoded”) into packets would imply the unrealistic consequence that dynamic
displacements of sender or receiver nodes, by the very magic of that ideal-
ization, become automatically known also to every sent packet. Therefore a
substitute of nodes has to be introduced to play the role of sender and receiver
with their static address and their position at the moment of sending. Let
NodeRef be a set of node references with functions address and geographic
position to represent sender and receiver information in packets, values of
nextHypercubicNeighbor, etc. We use the following macros decorate and pack
when new node references are created for new packets to be sent, as needed
to discover a destination position or to handle a location reply:

decorate(nref , a, p) = {address(nref) := a, position(nref) := p}
pack(p, r , s, t) = {receiver(p) := r , sender(p) := s, type(p) := t}

DiscoverDestinationPosition(addr) =
let neighb = nextHypercubicNeighbor(node(self), addr)
let r , s = new(NodeRef) let q = new(Packet)

decorate(r , address(neighb), position(neighb))
decorate(s, address(node(self)), pos(node(self)))
pack(q , r , s, locationRequest)
address(q) := addr
PacketToPBR(q)7

226 6 Asynchronous Multi-Agent ASMs

HandleLocationReply(p) =
let r , s = new(NodeRef) let q = new(Packet)

decorate(r , address(sender(p)), position(sender(p)))
decorate(s, address(node(self)), pos(node(self)))
pack(q , r , s, locationReply)
PacketToPBR(q)

Detection of nearest neighbors. Neighbors of nodes n are recorded by
references neighbor(n, s) to nodes whose geographic position is within a given
sector s, which is an element of a static set Sector which is associated with
each node and whose size depends on the network. The requirement that
the computations of new nearest neighbors within the sectors do not inter-
fere with each other is modeled below by using the forall construct together
with a monitored predicate UpdateNeighborEvent(s) which indicates that a
new neighbor detection cycle has to be started for the indicated sector (we
suppress the parameter for the executing pbr agent). Each sector also has
its own detection cycle timeout, when neighbor is updated by the found
NewNeighbor. The timeout is represented by Timer(s) which upon start-
ing a neighbor detection cycle is set to the local current time now(node)
at the mobile host increased by a network-wide cycle duration. NeighborRe-
quest and NeighborReply packets p keep track of their sector and the timeout
by appropriate dynamic functions sector(p) and deadline(p). This explains
the machine RunNearestNeighborDetectionCycle to IssueNeighbor-
Request packets (addressed to any node with current pos(node) ∈ s) upon
UpdateNeighborEvent, and to update upon detection cycle timeout neigh-
bor(n,s) by the nearest NewNeighbor(n, s) received in any NeighborReply
within its deadline.

RunNearestNeighborDetectionCycle =
let node = node(self), pos = pos(node),now = now(node)
forall s ∈ Sector

if UpdateNeighborEvent(s) then StartNewDetectionCycle(s)
if DetectionCycleTimeout(s) then EndDetectionCycle(s)

where
StartNewDetectionCycle(s) =

IssueNeighborRequest(s, pos,now)
{ResetNewNeighbor(s),SetTimer(s)}

ResetNewNeighbor(s) = (NewNeighbor(node, s) := undef)
SetTimer(s) = (Timer(self, s) := now + duration)
IssueNeighborRequest(s, pos,now) =

let r , t = new(NodeRef) let q = new(Packet)
decorate(r , anyAddress, anyPosition ∈ s)8

7 The idealized view of a global async ASM state allows us to abstract from the
sequentialization an implementation needs for the decoration of node references,
the packing and the sending of the packet.

6.1 Async ASMs: De�nition and Network Examples 227

decorate(t , address(node), pos)
sector(q) := s
deadline(q) := now + duration
pack(q , r , t ,NeighborRequest)
PacketToMAC (q , s)

DetectionCycleTimeout(s) = (now > Timer(self, s))
EndDetectionCycle(s) = {UpdateNeighbor(s),ResetTimer(s)}
UpdateNeighbor(s) = if NewNeighbor(node, s) ∈ NodeRef then

neighbor(node, s) := NewNeighbor(node, s)
ResetTimer(s) = (Timer(self, s) :=∞)

To Handle(NeighborRequest,p) means to send a NeighborReply for the
corresponding sector back to the sender’s position, copying also the packet
deadline which is checked against the local time of the sender when it
comes to Handle(NeighborReply,p). Upon receipt of a NeighborReply packet,
NewNeighbor may be updated, namely when it is not nearer to the receiver
– i.e. the sender of the corresponding original NeighborRequest packet –
than the sender of the NeighborReply packet (assuming for the initialization
position(undef , s) =∞).

Handle(NeighborRequest , p) =
let r , s = new(NodeRef) let q = new(Packet)

decorate(r , address(sender(p)), position(sender(p)))
decorate(s, address(node(self)), pos(node(self))
pack(q , r , s,NeighborReply)
deadline(q) := deadline(p)
sector(q) := sector(p)
PacketToMAC (q , position(sender(p)))

Handle(NeighborReply , p) = if ReplyComesWithinDeadline(p) then
if NewNeighbor(node(self), sector(p)) = undef or

SenderNearerThanNewNeighbor(p) then
NewNeighbor(node(self), sector(p)) := sender(p)

ReplyComesWithinDeadline(p) = (now(node(self)) ≤ deadline(p))
SenderNearerThanNewNeighbor(p) =

distance(pos(node(self)), position(sender(p))
< distance(pos(node(self)), position(NewNeighbor(node(self), s)))

Problem 20 (Patterns of component hierarchies). Develop ASM
models for run-time structures which provide useful patterns for hierarchical
behavioral system descriptions in terms of interacting abstract components.
8 Upon packet arrival the variable anyAddress is to be instantiated by (matched

against) an address, and similarly for anyPosition ∈ s.

228 6 Asynchronous Multi-Agent ASMs

6.1.9 Exercises

Exercise 6.1.1. Data-refine the ASM MasterSlaveAgreement by re-
placing the shared functions asked, answer, order by messages.

Exercise 6.1.2. Show that in Answer of the ConsensusMacros, forall
r ∈ Request can be equivalently replaced by choose r ∈ Request .

Exercise 6.1.3. Refine the async LoadBalance ASM to an async ASM
whose runs terminate when the workLoad difference of all node pairs is ≤ 1.

Exercise 6.1.4 (Dynamic workload). Refine the async LoadBalance

ASM to an async ASM where new nodes with new workload can be introduced
and where the total workload can also decrease.

Exercise 6.1.5 (Optimized workload transfer). Can one refine the
async LoadBalance ASM to an async ASM where the load transfer among
neighbors is not one-by-one but tries to locally balance the workload in one
blow?

Exercise 6.1.6. (; CD) Refine in the async LeaderElection ASM the
CHECK submachine by a machine which checks proposals elementwise. Prove
that the refinement is correct.

Exercise 6.1.7. Adapt the MinPathToLeader ASM with respect to a
partial order instead of a total order.

Exercise 6.1.8. (; CD) Reuse the LeaderElection ASM to define an al-
gorithm which, given the leader, computes for each agent the distance (length
of a shortest path) to the leader and a neighbor where to start a shortest path
to the leader.

Exercise 6.1.9 (Echo to multiple initiators). (; CD) Refine the async
Echo ASM to the case of a network with more than one initiator.

Exercise 6.1.10 (Ring buffers [254]). (; CD) Prove the async ASm
RingBuffer defined below, consisting of two agents, one executing rule
RingBufferInput and one RingBufferOutput, to correctly define a
first-in, first-out ring buffer of fixed size N . The input at buffer position i
cannot be taken until input has been taken at all previous buffer positions
and either i < N or the value at buffer position i − N has been outputted;
the value at buffer position i cannot be outputted until input at this buffer
position has been taken and the values of all previous buffer positions have
been outputted. Buffer is a function defined on {0, . . . ,N − 1} (with a data
range without need of further specification, except for the shared function In
taking the input there). First and Last are counters indicating the next buffer
slot to be used for input or output. (Turning In into a monitored function
with appropriate assumptions on In would allow one to skip the guard and
the update for In.)

6.2 Embedded System Case Study 229

RingBufferInput = if First − Last 6= N and In 6= undef then
Buffer(First) := In
First := First + 1 mod N
In := undef

RingBufferOutput = if First 6= Last then
Out := Buffer(Last)
Last := Last + 1 mod N

Define another async ASM where instead of one machine for inputting and
one for outputting there are N machines, one for each buffer position, each of
which alternates putting values to and getting them from its buffer position.
Define a reasonable notion of equivalence and show that with respect to this
notion the two async ASMs are equivalent.

Exercise 6.1.11. Describe the pattern of moves of PosBasedRouting in-
volving the first and subsequent elements of a sequence of data packets newly
arriving from the Transport layer, including the moves concerning the cor-
responding newly created detection and discovery packets. Formulate condi-
tions from which it can be proved that packets of such a sequence are received
in the right order.

6.2 Embedded System Case Study

In this section we construct an async ground model ASM coming with an exe-
cutable refinement for an embedded control system Light Control, a reference
case study in the literature for requirements capture methods [115, 113].9 This
section can be read independently from the other chapters; only the defini-
tion of async ASMs is needed. For this reason we briefly rephrase the ground
model problem, which motivates this section, and refer the reader for a more
detailed explanation of this concept to Sects. 2.1.1, 3.1.

6.2.1 Light Control Ground Model

In defining the async LightControl ASM we illustrate how to gently trans-
form informal requirements into a succinct operational model of the to-be-
implemented piece of “real world”, transparent for both the customer and the
software designer so that it can serve as a basis for the software contract. This
implies removing from the given requirements their inconsistencies, ambigui-
ties, incomplete or unnecessarily detailed parts, without adding details which
belong to the subsequent software design, thus assigning to the requirements
a sufficiently precise yet abstract, unambiguous meaning as a basis for their
implementation-independent, application-oriented analysis, prior to coding.
9 A stepwise re�nement of an async ground model ASM to C++ code for the

popular Steam Boiler Control case study [7, 8, 9] appeared in [43].

230 6 Asynchronous Multi-Agent ASMs

In fact this analysis must be two-fold to support a professional formulation of
an unambiguous contract between the application-domain expert (standing
for the customer) and the system designer. In the formulation of this con-
tract the ground model represents for the customer the binding development
goal and for the system designer a reliable (i.e. clear, stable and complete)
starting point for the implementation. This means that one has to be able

– to analytically and experimentally check the correctness and completeness
of the accurate specification with respect to the informal requirements
(faithfulness and adequacy), which is the reason for which the model is (a)
formulated in application-domain-oriented terms to make it inspectable
for the domain expert, (b) refined to an executable version (in this case
in AsmGofer [390]) serving for high-level simulation, test and debugging
right at the beginning of the software project,

– to check by analytical means the internal consistency and the intrinsic
completeness of the requirements, leaving as much space as possible for
adapting the model to requirements changes which typically occur during
the design.

This book is not the right place to illustrate the process of ground model
construction, which is by no means linear, but iterative and typically comes
with extensive simulation, high-level proving activities, layout of test plans,
etc., as illustrated in Fig. 2.2. Instead we lead the reader to the final result of
the analysis of the original specification reported in [125], thereby illustrating
mainly the use of ground model ASMs for a good documentation which helps
to keep the requirements traceable to the code – during refinement steps one
has to make sure nothing is forgotten – and to enhance the maintainability
and extendability of the working software system. We therefore explain how
with the async LightControl ASM below one succeeds in disambiguating
informally presented requirements, to structure them, to analyze them (with
respect to internal consistency and correctness) and to complete them.10 from
the customer’s, not the designer’s point of view, in a way which makes them
prototypically executable.

Starting from the original LightControlRequirements (; CD),11 ref-
ered to as Problem Description, we answer in the following subsections one
by one the fundamental questions for requirements capture formulated in
Sect. 3.1. Section 6.2.2 contains the formal counterparts of the Problem De-
scription’s objects and their properties. The Problem Description mentions
three categories of needs, the user needs, the facility manager needs, and fault
tolerance. For modularization purposes we parameterize the user and the fa-
cility manager needs so that they can be grouped in Sect. 6.2.3 as the possible
manual interactions with the control system, separated from the automatic
actions (Sect. 6.2.4) which are triggered by the control system. In Sect. 6.2.5
10 Concrete examples of problems identi�ed in the informal requirements are listed

in [125, p. 601 and 619].

6.2 Embedded System Case Study 231

the required failure and service features are captured. In Sect. 6.2.6 we make
the emerging system architecture (the component structure) explicit.

6.2.2 Signature (Agents and Their State)

The basic system objects are two sorts of location, namely rooms and (sections
of) hallways, equipped with light groups (two groups of ceiling lights for
rooms—one near the window and one near the wall, called window and wall
ceiling lights—and ceiling lights for hallways) which come with operations
of pushing various buttons (on the wall or a control panel) and of actuating
dimmers. Locations are also associated with various motion detectors, light
sensors and door-closing contacts. There are also status lines which report
status values of the associated light groups. Also staircases are mentioned, but
they enter the problem really only through their motion detector. Therefore
we avoid the proliferation of irrelevant object types by including staircase
motion detectors in the class of motion detectors which are related to the
doors for entering a hallway from a staircase. These objects enter our model
as parameters12 for the various actions described in the following sections for
the three types of agents: users, the facility manager and the control system.13

6.2.3 User Interaction (Manual Control)

The single manual actions which appear in the Problem Description are to
push a RoomWallButton or a HallwayButton or the ControlPanel

(user actions) and to ManuallySwitchOff lights in rooms and hallways
(facility manager action). This leads to the four basic ASMs that we are
going to describe in this section. How they work together as components of
the async LightControl ASM is defined in Sect. 6.2.6.

RoomWallButton (User action in rooms). In every room both (wall
and window ceiling) light groups have a wall switch which can be pushed
by users. The switch behavior triggered by pushing the button is formulated
as follows: (a) If the ceiling light group is completely on, it will be switched
off, (b) otherwise it will be switched on completely. This is captured by the
basic ASM RoomWallButton, where the external button-pressing event is
reflected by an event function lightgroup wall button pressed – a monitored
11 We thank JUCS for the permission to reproduce here the requirements document

which was published in [113].
12 These parameters are naturally implementable as instances of appropriate

classes.
13 In a systematic documentation of the requirements elicitation one has to explic-

itly list the complete signature: the basic objects have to be de�ned through the
lexicon, their properties and constraints have to be stated, making sure that the
list is complete and correct with respect to the underlying application-domain in-
formation. We abstain from doing this here; any practical (computer supported)
systematic method serves the purpose.

232 6 Asynchronous Multi-Agent ASMs

function supposed to become true when the corresponding button has been
pressed and to become false when the rule fires whose guard contains the event
function (PushButtonReq).14 This interpretation resolves the incompleteness
of the definition for push button in the dictionary of the Problem Description
where it is not made clear when the light effect should take place, at the
beginning or at the end of the possibly prolonged button-pushing action.

RoomWallButton(room, lightgroup) =
if lightgroup wall button pressed(room, lightgroup) then

if lightgroup is completely on(room, lightgroup) then
SwitchLightgroupOff(room, lightgroup)

else SwitchLightgroupCompletelyOn(room, lightgroup)

The submachines for switching a light group off or completely on are
defined as setting all lights in the corresponding room to minDimValue or
maxDimValue respectively.15 This definition resolves the apparent contra-
diction in the Problem Description where it is considered as safe to allow a
person who wants to rest in a room to choose a light scene in which all the
lights are switched off and the room is dark (U1Req). The function mode
determines for each room whether the light was set by the user (Manual) or
by the control system (Ambient).16

SwitchLightgroupOff(room, lightgroup) =
mode(room) := Manual
forall light ∈ lights in group(room, lightgroup)

SwitchLight(room, light ,minDimValue)
SwitchLightgroupCompletelyOn(room, lightgroup) =

mode(room) := Manual
forall light ∈ lights in group(room, lightgroup)

SwitchLight(room, light ,maxDimValue)

HallwayButton (User action in hallways). The switch buttons in hall-
way sections are linked in parallel. The light in any hallway section is required
to be on if some of these buttons are defective (any hallway button defect).17

The event function hallway button pressed indicates that a switch button has
been pressed and is supposed to become false by firing the rules in which the
event appears in the guard.
14 Such detailings of requirements have to be listed in a systematic documentation

of all the decisions taken to interpret or complete the Problem Description.
15 It is good practice to use symbolic names rather than constants.
16 This interpretation of Ambient does not preclude letting the light from the sun

be part of what is understood by the environmental light.
17 See requirement NF5, where we interpret \not controllable manually" in view

of the safety requirement U1 as meaning that at least one hallway button is
defective (NF5aReq). A \local" interpretation of \not controllable manually" in
NF5 is obtained by parameterizing any hallway button defective with buttons.

6.2 Embedded System Case Study 233

HallwayButton(hallway) =
if hallway button pressed(hallway) and

not any hallway button defect(hallway) then
if light is on(hallway) then

SwitchLightsOff(hallway)
else SwitchLightsOn(hallway)

Switching on/off for a location (room or hallway) is defined as setting
all lights of the location to minDimValue and maxDimValue, respectively.
We group these lights for short as lights at(location).18 We use an abstract
machine SwitchLight, not defined further here, which will be refined for
the machine ServiceReport.

SwitchLightsOn(location) =
forall light ∈ lights at(location)

SwitchLight(location, light ,maxDimValue)
SwitchLightsOff(location) =

forall light ∈ lights at(location)
SwitchLight(location, light ,minDimValue)

if location is room(location) then mode(location) := Manual

ManuallySwitchOff (Manager action). The possibility foreseen in re-
quirement FM6 for the facility manager to switch off the ceiling light in a
location if it is not occupied is captured by the following basic ASM.

ManuallySwitchOff(location) =
if manually switch off pressed(location) and

not occupied(location) then SwitchLightsOff(location)

The Problem Description takes the meaning of locations being occupied
for granted. However, since the motion sensors of locations sense only mo-
tion, they will report “no motion” if somebody occupies a location with-
out making any movement. Therefore19 a better definition for a location
to be not occupied is that there has been no motion for a period of
max quiet time (RoomOccupationReq), to be measured starting from the
time of the last motion. To guarantee the consistency between user and facil-
ity manager light updates in rules RoomWallButton, HallwayButton,
ManuallySwitchOff, ControlPanel we assume that the motion sensor
detects when users push buttons (MotionDetectorReq). This is a semantic
constraint which relates the notion of being occupied to the event functions
pressed associated with buttons.
18 Although for uniformity reasons we formulate SwitchLightsOn for locations,

we will use it only for hallways, because by requirement U5,U6,U9 and the dictio-
nary entry \light scene", the light in a room is switched on only for a lightgroup
as a whole.

19 The question changes if other sensors are installed. This is a simple example of
a hardware/software co-design issue.

234 6 Asynchronous Multi-Agent ASMs

occupied(location) =
current time − last motion(location) ≤ max quiet time

A basic ObserveMotionDetector ASM has the task of recording the
time of the last motion. It reads a monitored function somebody is moving
which yields the value of the given motion detector, assumed to be true if
the given motion detector is defective (NF5bReq) (to satisfy requirement
NF5). To also reflect the malfunction requirement NF4 we include the case
that somebody is moving is true for a location if at least one of its motion
detectors does not work correctly, so that in this case the light cannot be
switched off by the facility manager.

ObserveMotionDetector(location) =
if somebody is moving(location) then

last motion(location) := current time

ControlPanel (User room control panel action). According to U5,
U6, U9 in the Problem Description, with the control panel the user can con-
trol the ceiling lights and the light scene, namely to switch on/off the ceil-
ing light groups, to set a light scene or to activate the last-set light scene.
This is formalized by the following basic ASM, which uses an event function
switch value to express the on/off position chosen by the user for the switch
in question.

ControlPanel(room, switch) =
if switch pressed(room, switch) then case switch of

LightGroup(lg)→
case switch value(room, switch) of

On → SwitchLightgroupCompletelyOn(room, lg)
Off → SwitchLightgroupOff(room, lg)

SceneSelection →
case switch value(room, switch) of

Scene(s)→ SetLightScene(room, s)
AmbientSelection →

ActivateLightScene(room, last light scene(room))

Obviously one has to guarantee that simultaneous pushing on wall buttons
and on the control panel does not produce effects which exclude each other.
One can for example assume that the hardware solves this conflict, or one
could establish a fixed priority (PushButtonReq).

The submachine for scene selection either activates the light scene to
the one passed as parameter (in ambient mode) or (in manual mode) sets
last light scene to the parameter (whereafter that scene can be activated by
pressing AmbientSelection).

SetLightScene(room, scene) =
if mode(room) = Ambient then ActivateLightScene(room, scene)
else last light scene(room) := scene

6.2 Embedded System Case Study 235

By requirement 2.10 (Paragraph 19) in the Problem Description a light
scene contains an ambient light level and an ordered list of lights together with
a dim value for each light. As the Problem Description dictionary indicates for
“light scene”, the control system has to switch on the lights in the given order
with the corresponding dim value in order to achieve the specified ambient
light level. Reflecting requirement FM1 the control system must also take
into account the ambient light from outside. We capture these requirements
by introducing a function lights to turn on which computes an ordered set
containing all lights that should be switched on in this order, together with
their dim values (LightSceneReq). Introducing an order makes the dictionary
definition of “light scene” uniform with respect to the way light scenes and
their light groups are built from components, achieving easy adaptability to
changing requirements. The function depends for each room on the value of
the outdoor light sensor and of the activated light scene. This specification
still leaves much freedom for detailing the structure of light scenes.20

ActivateLightScene(room, scene) =
mode(room) := Ambient
last light scene(room) := scene
if scene = default light scene(room) and

outdoor light sensor defect(room) then
SwitchLightsOn(room)

else let lights on =
lights to turn on(room, outdoor sensor(room), scene)

forall (light , value) ∈ lights on
SwitchLight(room, light , value)

forall light ∈ lights at(room) \ {l | (l , v) ∈ lights on}
SwitchLight(room, light ,minDimValue)

The derived function lights to turn on takes into account the information
about malfunctioning lights, so that requirement NF2 is correctly reflected,
guaranteeing that “if any outdoor light sensor does not work correctly,
the default light scene for all rooms is that both ceiling light groups are
on”. Also, the part of NF1 which complements NF2 is captured, namely by
the assumption that the value of outdoor sensor(room) remains constant if
the sensor does not work correctly (OutdoorSensorReq). This assumption
shows that NF1 is not a requirement on the controller, but on the way the
sensor values are transmitted as input to the controller. The definition of
ActivateLightScene contains a decision about the interpretation of re-
quirement U10. The Problem Description does not state what it means to
20 The fact that we use this function only for rooms and not for hallways reects that

we consider the requirements FM1 and NF3 as useless for hallways (HallwayReq),
since they have no windows, as is suggested by Fig. 1 in Paragraph 5 of the
Problem Description, and if one does not want to consider light that may come
into hallways through open room doors.

236 6 Asynchronous Multi-Agent ASMs

maintain the ceiling light group on a given light scene; we take it as request-
ing that the ceiling lights are set to minDimValue if they do not enter the
lights to be turned on for the given light scene (U10Req).

6.2.4 Automatic Control

The automatic control system is required to be able to switch on/off any light
in any location and to guarantee for rooms the use of the daylight.

AutoSwitchOn. Automatic switch-on is used to guarantee safe illumina-
tion at any time (U1, U13, U14). The lights in the hallway sections are
not dimmable, so that switching on can be done there only completely.
Switching on is triggered by the two events (1) motion in the hallway
(somebody is moving) and (2) a door is open (some door is open).

AutoSwitchOnInHallway(hallway) =
if (somebody is moving(hallway) or some door is open(hallway))

and light is off (hallway) then SwitchLightsOn(hallway)

The analogous machine for rooms is more complicated. According to require-
ments U3 and U4 in the Problem Description one has to distinguish two cases:

U3 If the room is reoccupied within T1 minutes after the last person has left
the room, the chosen light scene has to be re-established.

U4 If the room is reoccupied after more than T1 minutes since the last person
has left the room, the default light scene has to be established.

In the first case, instead of establishing the chosen light scene we use the last
light scene (U3Req) since otherwise the requirements would be incoherent
(see Exercise 6.2.1). We do not commit here to any particular definition of
default light scene (DefaultLightSceneReq).21

AutoSwitchOnInRoom(room) =
if (somebody is moving(room) or some door is open(room))

and light is off (room)
then ActivateLightScene(room, scene)
where

scene =if recently occupied(room)
then last light scene(room)
else default light scene(room)

recently occupied(room) =
current time − last motion(room) ≤ t1(room)

21 The de�nition in the dictionary is probably not reasonable because, with that
de�nition, requirement U4 makes no sense.

6.2 Embedded System Case Study 237

AutoSwitchOff. The control system switches off the light in a location
which has been unoccupied for T3 or T2 minutes respectively (FM2, FM3). In
accordance with requirement NF5 we do not switch off the light in a hallway
section if one of its buttons is defective. To reflect the malfunction condition
NF4, we stipulate that occurrence of a malfunction for a motion sensor is in-
terpreted as the presence of motion, so that the location appears as occupied.

AutoSwitchOff(location) =
if location is hallway(location) ∧ any hallway button defect(location)

then skip
elseif ¬occupied(location) ∧ no motion for long time(location)
∧ ¬some door is open(location) ∧ ¬light is off (location)

then Switch lights off (location)
where no motion for long time(location) =

if location is room(location) then
current time − last motion(location) > t3(location)

else current time − last motion(location) > t2(location)

UseDaylight. The control system should use daylight to achieve the desired
ambient light level (FM1). We model this by reactivating the current light scene
if the room is in ambient mode and there is no request for the ceiling lights.
The following rule also reflects requirement U10 that “the ceiling light groups
should be maintained depending on the current light scene”.

UseDaylight(room) =
if no event for ceiling light(room) and mode(room) = Ambient

then ActivateLightScene(room, last light scene(room))

Requirement U2 that “as long as a room is occupied, the chosen light
scene has to be maintained” is fulfilled automatically because an ASM state
remains unchanged unless a specific (user or control system) action triggers a
change for the value of some specified functions for some specified arguments.

6.2.5 Failure and Service

Little is said in the Problem Description about the possibly complex failure-
handling and the data reports from the normal system operation.

Malfunction. There are two actions to describe, namely identifying and
handling malfunctions. Identifying malfunctions is a rather difficult applica-
tion domain and less a software design problem. Not surprisingly the Problem
Description does not provide any further details on this issue so that we as-
sume having a function malfunction occurs which tells whether a component
works correctly or not; a component may be a hallway button, a light sensor,
a motion sensor or any light. For building a concrete plant with its control
software, this function has to be further specified by the domain expert, to-
gether with the support requested in FM8 for finding the reasons for occurring

238 6 Asynchronous Multi-Agent ASMs

malfunctions. To reflect the malfunction requirement FM1 we stipulate that
this function can be updated also manually.

Malfunction = forall component ∈ all components
if malfunction occurs(component) then

Handle malfunction(component)

According to U8, FM7 and FM10, the handling of malfunction logs the cor-
responding information. In the case in which a hallway button is defective we
switch on the lights in that hallway (NF5). In case a hallway motion detector is
defective, by assumption (NF5bReq) the function somebody is moving is true
and we therefore switch on the lights by rule AutoSwitchOnInHallway.
In the following rule we use i as index which has to match the name of the
corresponding device (sensor, button).

HandleMalfunction(component) = case component of
OutdoorLightSensor(i)→

forall room ∈ rooms under lightsensor(i)
ReportAndRecord(LightSensorDefect(i))
InformUser(room,LightSensorDefect(i))

MotionSensor(location, i)→
if location is room(location) then

InformUser(location,MotionSensorDefect(location, i))
ReportAndRecord(MotionSensorDefect(location, i))

HallwayButton(hallway , i)→
SwitchLightsOn(hallway)
ReportAndRecord(HallwayButtonDefect(hallway , i))

Luminaire(location, light)→
ReportAndRecord(LightDefect(location, light))

where ReportAndRecord(item) =
InformFacilityManager(item)
WriteLogInDatabase(item)

ServiceReport. For the requirement (FM9) to report on energy consump-
tion we data-refine SwitchLight by storing the current light dim value in
a function dim value. Switching the light then includes setting a dim value.
As requested in the Problem Description, if the dim value is less than 10%
of the maximum dim value, then the light is switched off.

SwitchLight(location, light , value) =
dim value(location, light) := value
if value < maxDimValue ÷ 10 then

status of light(location, light) := Light Off
else status of light(location, light) := Light On

With dim value one can compute the current power consumption (derived
function), taking into account the malfunctioning of lights) as follows:

6.2 Embedded System Case Study 239

power consumption =
∑

[p(l , dim value(l)) | l ∈ dom(dim value)]
where p(l , v) =case light defect(l) of

NotDefect → c ∗ v
DefectOn → c ∗maxDimValue
DefectOff → c ∗minDimValue

We use the constant c to adjust the dim value to the electrical power. The
energy consumption is the integral of the power consumption over the time.
Therefore we store the power consumption in each step in a dynamic function
and define the energy consumption as the product of the interval te with the
sum of the power consumptions. We assume that the following rule will be
executed every te minutes.

ReportEnergyConsumption =
consumption(current time) := power consumption
energy consumption(current time) := te ∗

∑
t consumption(t)

Other features the Problem Description talks about without giving any
indication as to what is required are setting parameters, detecting unreason-
able input, etc., which can be defined in a routine way by basic ASMs.

6.2.6 Component Structure

In this section we capture the system architecture which emerges from the
Problem Description and is constituted by three major components:

LightControl =
ManualLightControl

AutomaticLightControl

FailureAndService

ManualLightControl =
forall location ∈ all locations

ManuallySwitchOff(location)
if location is room(location) then

RoomWallButton(location,LightGroupWall)
RoomWallButton(location,LightGroupWindow)
ControlPanel(location, switch(location))

if not location is room(location) then
HallwayButton(location)

AutomaticLightControl = forall location ∈ all locations
AutoSwitchOff(location)
ObserveMotionDetector(location)
if location is room(location) then

AutoSwitchOnInRoom(location)
UseDaylight(location)

240 6 Asynchronous Multi-Agent ASMs

if not location is room(location) then
AutoSwitchOnInHallway(location)

FailureAndService =
Malfunction

ReportEnergyConsumption

One can use different policies for the synchronization of the three subma-
chines of LightControl to guarantee the consistency of their updates in
the shared data area. One possibility is to make specific priority or scheduling
assumptions on possibly conflicting actions, as we have indicated at various
places during the formalization of the requirements. Another possibility is to
impose a concrete scheduling on the coordination of the three submachines.
Such a global policy relegates the consistency problem to the local levels of
the single submachines. The Problem Description leaves these crucial issues
completely open. In the ground model we could have reflected this freedom
explicitly by introducing appropriate choice functions which determine at
which time which submachine is running. For an executable version one has
to take some concrete realistic decisions.

For the AsmGofer-executable version in [390] the manual and the auto-
matic submachines alternate at a fixed rate – fast enough to guarantee the
desired reaction time to user or environment input – and the failure and
service submachines are executed in between with a certain frequency, again
determined by the time requirements for failure handling and general ser-
vices. In the initial state all locations are empty, rooms are in Manual mode
with default light scene as last light scene, last motion = 0 and all lights are
off.

6.2.7 Exercises

Exercise 6.2.1. (; CD) Define for LightControl a scenario where a per-
son upon entering a room twice, without changing the light scene and with
nobody else in the room, for the first time gets the default light scene and,
upon re-entering, gets the chosen light scene of another person who has been
in the room before.

6.3 Time–Constrained Async ASMs

In this section we specify and verify two time-constrained algorithms which
support fault tolerance for a distributed computing service, namely by elab-
orating the async ASM from [283] for the file transfer protocol Kermit [163]
(Sect. 6.3.1) and the async ASM from [256] for a Processor-Group Member-
ship protocol from [162] (Sect. 6.3.2).

6.3 Time{Constrained Async ASMs 241

6.3.1 Kermit Case Study (Alternating Bit/Sliding Window)

The goal of file transfer protocols is to guarantee that the files are trans-
ferred from sender to receiver correctly (without fail and in the right order),
despite an unreliable network which may lose messages or deliver them in an
order which is different from the sending order. The basic idea of the classical
modem and network communication protocol we are going to analyze here
is that every file is sent and retransmitted upon timeout until an acknowl-
edgment of receipt arrives from the receiver, in which case the current file
transfer is closed and the next one is started.

Two standard techniques are used for the identification of messages. One is
the alternating bit technique where sender and receiver use a synchronization
bit to identify the single file to be transferred currently: the sender sends every
copy of the currently to be transferred file with attachment of its current
synchronization bit (the current file number modulo 2), which upon message
arrival is extracted and resent by the receiver as acknowledgment to the
sender. Both sender and receiver check for every received bit for whether
it matches their own current synchronization bit; in case of matching it is
flipped – in reality the current file number is updated, which modulo 2 yields
the new synchronization bit – and the current file transfer round is closed
(which at the receiver’s side includes accepting the current file). The second
technique is an optimization which permits one to have finitely many files
in transit simultaneously. As the file IDs of the files which are currently in
transit the sender and receiver use, say, numbers within boundary values
low ≤ high, determining an integer interval called “window”; these numbers
are checked upon message arrival to match the current interval boundaries,
triggering the sliding of the boundaries in case of matching – hence the name
sliding window technique – to provide room for the transfer of the next file.

There are numerous papers in the literature analyzing with different tech-
niques the communication protocols based upon these two message identifi-
cation mechanisms. There are too many to list all of them; to mention a few,
see [10], which uses the B method, and [372, Chaps. 27 and 28], [202, p. 390,
Fig. 1], which use Petri nets. We show here that the two mechanisms can
be captured and verified uniformly by the following sender and receiver rule
templates – rules Send, ReSend, Check for the sender and rule Receive for
the receiver – which we instantiate below to the alternating-bit protocol and
then refine to the sliding-window optimization. In [283] it is shown how by ap-
propriate reuse of verified alternating-bit and sliding-window protocol ASMs
the complete Kermit protocol can be specified and verified, reflecting its four
principal layers: (1) a session layer which controls sending and receiving files,
(2) a transport layer which makes the message carrier sufficiently reliable, (3)
a datalink layer which formats messages as strings to conform to communica-
tion network standards (on message start marking, its length, number, type,
datum, checksum, end – features which are easily reflected by a pure data
refinement of message data, types, numbers and related functions), and (4) a

242 6 Asynchronous Multi-Agent ASMs

presentation layer which cuts strings into sequences of short strings, typically
of printable ASCII characters, to be sent through the network (another pure
data refinement step).

KermitTemplate =
Send = if SendingTime then StartNxtFileTransfer
ReSend = if RetransmitTime then Retransmit
Check = if CheckingTime then

if Match then CloseCurrFileTransfer
ClearCurrMsg

Receive = if ArrivalTime then
ClearCurrMsg
AcknowledgeReceipt
if Match then AcceptCurrFile

Also, the signature of sender and receiver agents is largely uniform, re-
flected by the parameterization of functions by self. A function file(self): (N\
{0})×DATA incorporates the sequence of files to be transferred or stored; it
is monitored for the sender and controlled for the receiver. null : DATA is a
placeholder for “no-data” in acknowledgment messages. A controlled function
currNum(self):N yields the number of the file which is currently transferred
or the next one to be stored. This function is refined below to denote an in-
terval (the “sliding window”). We use send(self) as abstract message sending
action, which we assume to know its destination (whether as predefined or as
retrievable from the message argument). queue(self): MESSAGE∗ is a shared
function where an input agent a(self), delivering to self messages from an
abstract message carrier, appends arriving input in(a) at one end and where
self fetches at the other end the next message to receive. Messages can be
viewed here as consisting of a file together with an identifier, provided by pro-
jection functions data,msgId defined on MESSAGE = DATA×MsgID . For
reasons of uniformity we denote the alternating bit message identifier by a
derived function bit(self) = currNum(self)mod2, called the alternating bit of
the agent, and write also bit instead of msgId . A message (file(i), Id) is called
an i -msg and a message (null , Id) acknowledging the receipt of (file(i), Id) is
called an i -ack, where Id = i or Id = i mod 2. The sender uses also a moni-
tored function timeout on which fairness constraints will be imposed below,
without which the protocol would not be correct.

Alternating-bit instance. The agents of the async AlternatingBit

ASM therefore are a sender and a receiver plus two input agents, representing
the ends of the not completely reliable message-carrying medium – the net-
work which remains implicit as environment. The input agents apply the rule
KermitInput to deliver their input in, received from the network, by ap-
pending it to the queue which is shared with the input agent’s client (sender
or receiver). It will be in terms of this in function, shared between the input
agent and the network, that we formulate the limit one has to impose on the

6.3 Time{Constrained Async ASMs 243

Fig. 6.9 Alternating bit sender ASM

Retransmitsend

match

timeout

CloseCurrFileTransfer

RefreshMsgId
TransmitNxtFile

check

forgetfulness of the communication mechanism to still be able to guarantee
a correct file transfer (see the Message Carrier Reliability assumption).

KermitInput = if in(self) 6= undef then
append in(self) to queue(self)
in(self) := undef

Once the sender has started to send a new file,22 it switches to check mode
to retransmit that file – until its receipt is acknowledged by a message from
the receiver which matches the current msgId , in which case the sender closes
the transfer of that file and starts to send the next file. This results in the
following alternating-bit instance of the macros for the KermitTemplate

sender rules and yields the AlternatingBitSender in Fig. 6.9.

AlternatingBitSenderMacros =
SendingTime = (ctl state = send)
StartNxtFileTransfer =
{TransmitNxtFile,RefreshMsgId , ctl state := check} where

TransmitNxtFile = send (file(currNum + 1), currNum + 1 mod 2)
RefreshMsgId = currNum := currNum + 1

CheckingTime = (ctl state = check) and queue 6= empty
Match = (msgId(fst(queue)) = bit)
CloseCurrFileTransfer = (ctl state := send)
ClearCurrMsg = delete fst(queue) from queue
RetransmitTime = (ctl state = check and timeout)
Retransmit = {send (file(currNum), bit), timeout := false}

Analogously we define the AlternatingBitReceiver with the same macro
definitions for ClearCurrMsg ,Match,RefreshMsgId as for the sender plus the
following further macro instances in Receive.
22 We use send without parameters for a control state and with parameters to

denote an abstract message-sending action.

244 6 Asynchronous Multi-Agent ASMs

AlternatingBitReceiverMacros =
ArrivalTime = (queue 6= empty)
AcknowledgeReceipt = send (null ,msgId(fst(queue)))
AcceptCurrFile = {file(currNum) := data(fst(queue)),RefreshMsgId}

To prove AlternatingBit correct and complete we have to formu-
late the AlternatingBit run assumptions, including the initialization. For
the initial state we assume that at both sender and receiver there are no
messages (i.e. queue = empty , in = undef , no message is in transit, say
InTransit = empty where by definition InTransit(self) contains (in their
sending order) all messages sent to self which are not lost and did not
yet arrive, including in(a) of the input agent a(self) if in(a) 6= undef).
For the sender we stipulate ctl state = send , so that SendingTime is true,
timeout = false and currNum = 0, so that bit(sender) = 0. The first file to be
transferred is file(1); when executing Send and thereby StartNxtFileTransfer
for the first time, the sender sends file(currNum + 1) and increases its cur-
rent file number currNum by 1, so that it becomes the same as the current
value of currNum(receiver). For the receiver we assume currNum = 1, so
that bit(receiver) = 1, file(x) = undef for every x . By InArrival(self) we
denote the concatenation of InTransit(self) and queue(self).

Async AlternatingBit runs are constrained to satisfy the following
five assumptions. Not to distract the attention from the main issue for this
protocol, we disregard an irrelevant technicality, namely the sender internal
non-determinism resulting from the possibility that the guards of both Check
and ReSend may become true simultaneously, depending on how the values
of timeout are related to CheckingTime. It does not matter which scheduling
is chosen as long as eventually each enabled rule will be applied.

Timeout: When for both sender and receiver InArrival is empty and it is not
SendingTime, then timeout eventually becomes true.

Carrier Reliability: For every tail ρ of each infinite run, if in ρ an agent
applies send infinitely often, some of the messages sent do not get lost
and arrive as input value in at their target.

Message Order:23 Messages which do not get lost during the transmission
and are received as input at their target, arrive there one after the other
in the order they have been sent.

Agent Fairness: In every tail ρ of each infinite run and for every agent other
than the message carrier, if the agent is enabled infinitely often in ρ, then
it will make a move in ρ.

Order of Moves: On instances of a non-lost message m the agents move in the
following order: sender, Input(receiver), receiver; receiver, Input(sender),
sender, i.e.:
– a Send or ReSend move with send m comes before the corresponding

Input(receiver) move with in = m, which in turn comes before the
corresponding Receive with fst(queue) = m.

6.3 Time{Constrained Async ASMs 245

– Receive with fst(queue) = m comes before Input(sender) with the
corresponding in = m, which in turn comes before the corresponding
Check with fst(queue) = m.

Proposition 6.3.1 (AlternatingBit run-time verification). Every run
of AlternatingBit transfers files correctly, transferring all files and in an
order-preserving way in the following sense:

Correctness: In every reachable state of the run and for every file number x :
– file(receiver)(x) = file(sender)(x), if they are defined,
– file(receiver)(x − 1) is defined when x = currNum(receiver) > 1 and

remains unchanged from then on.
Completeness: A specimen of every (data, id) sent by the sender or receiver

will eventually enter and leave InArrival(receiver) or InArrival(sender),
respectively. A specimen of every file which is sent by the sender is eventu-
ally received, and an acknowledgment of its receipt is eventually received
by the sender.

Proof. To easen the exposition we assume the moves to happen at real-time
moments which are used to refer to the moves and respect the given partial or-
der, i.e. we consider an arbitrary interleaving of moves in the run and take care
not to use any property which holds only for the particular interleaving. The
simple proof idea is illustrated in Fig. 6.10 and can be expressed as follows.
Split the run into i -phases of all moves belonging to the transfer of file(i). Let
Sendi be the ith application of the Send rule, and similarly let Matchi(agent)
be the ith application by agent of the rule with true premise Match. Into
phasei(sender) we put all the moves from Sendi included to Sendi+1 ex-
cluded, i.e. all the moves which happen in states where either Sendi is en-
abled or (currNum(sender) = i and Sendi+1 is not enabled); we say that the
receiver is in phasei if currNum(receiver) = i . This reflects that the receiver
enters phase i + 1 by move Matchi(receiver) and then stays phase-ahead of
the sender until move Matchi(sender) included. Therefore [Sendi ,Sendi+1),
where sender emits only i -msgs, can be split into [Sendi ,Matchi(receiver))
(where the receiver emits only (i−1)-acks belonging to still-transiting retrans-
missions of an already-received file) and [Matchi(receiver),Matchi(sender)]
(where the receiver emits only i -acks).
This idea is made precise in the following three lemmas which are used to
verify AlternatingBit runs.

Lemma 6.3.1 (Phases of AlternatingBit). For AlternatingBit runs
the following properties hold:
23 The optimization by the sliding-window technique below avoids this rather un-

realistic order assumption.

246 6 Asynchronous Multi-Agent ASMs

Fig. 6.10 Phases in AlternatingBit runs

Match2(receiver)Send

Match (receiver)

2

3

1

1−msgs 1

2−msgs

3

1−ack

(1−ack)*2−ack

currNum(receiver)

2Send

1Send

3

2

1

0

currNum(sender)

– For every i ≥ 1, when the sender reaches phase i to fire Sendi increasing
currNum(sender) to i , the receiver has already moved to phase i . Thus
during sender phase i , receiver is in phase i or i + 1.

– During (Sendi ,Matchi(receiver)], bit and currNum are the same at sender
and receiver. Match(receiver) fires only when bit(sender) = bit(receiver).

– currNum(receiver) = currNum(sender) + 1 holds in

(Matchi(receiver),Sendi+1],

so that Send fires only when bit(sender) 6= bit(receiver).

Lemma 6.3.2 (InArrival message order). For AlternatingBit runs
the following properties hold:

– During sender phase i ≥ 1, InArrival(sender) can contain only (i−1)-acks
followed by i -acks.

– During receiver phase i ≥ 1, InArrival(receiver) can contain only (i − 1)-
msgs followed by i -msgs.

– In every state the concatenation InArrival(sender)InArrival(receiver) has
the form (i − 1 − MSG)∗(i − MSG)∗ (where MSG is either ack or msg)
with bit-sequence flip(bit(sender))∗bit(sender)∗.

Corollary 6.3.1. When the sender has an ack with bit(sender) InArrival ,
then bit(sender) = flip(bit(receiver)).

Lemma 6.3.3 (InArrival(receiver)-data). In every reachable state of
AlternatingBit runs, InArrival(receiver) messages contain the data of

6.3 Time{Constrained Async ASMs 247

– file(currNum(sender)), if their msgId is bit(sender)
– file(currNum(sender)− 1) otherwise.

We now prove the correctness claim from these lemmas. file(receiver) is
updated only by AcceptCurrFile in Match(receiver), in a state where (by
the phase lemma) sender and receiver have the same currNum and bit –
which is the bit of the accepted message, so that the InArrival(receiver)-
data lemma implies the first claim. The second claims follows since initially
currNum(receiver) = 1; it is increased (by 1) only through RefreshMsgId in
AcceptCurrFile as part of Match(receiver), when file(receiver) is defined for
currNum(receiver).
The first claim of file transfer completeness follows from the constraints on the
AlternatingBit run and from the rules Retransmit , Input , ClearCurrMsg .
To establish the second claim let a file be sent by Sendi . Then the first
time it leaves queue(receiver) its msgId matches bit(receiver) (by the phase
lemma) so that AcceptCurrFile in Matchi(receiver) stores the file at the re-
ceiver and AcknowledgeReceipt sends the first i -ack. Therefore, when the
first i -ack eventually leaves queue(sender), it is received by Matchi(sender)
firing CloseCurrFileTransfer . ut

Proof.[AlternatingBit Phases] Induction on i . Case i = 1: by initialization.
Sendi+1 is preceded by Matchi(sender) whose i -ack must have been sent by
a preceding Receive of an i -msg, which in turn can come only after or at
Matchi(receiver): that move is the only one which can bring receiver into
phase i + 1. From then until Sendi+1 holds bit(sender) 6= bit(receiver). ut

Proof.[InArrival message order] Simultaneous induction on phase changing
moves Sendi , Matchi(receiver). Since j -msgs are sent in order j = 1, 2, . . .,
by the Message Order Assumption they can be received only in this order, so
that also j -acks may be sent and arrive only in this order. Therefore, when the
first i -ack is matched by the sender, only i -acks can be left InArrival(sender),
and only i -msgs can still be InArrival(receiver), from where they will be dis-
carded. The next sender move is Sendi+1, so that until Sendi+2 (excluded),
messages which are newly transmitted to InArrival(receiver), yielding ac-
knowledgments which may reach InArrival(sender), can be only (i +1)-msgs.
The second claim for i -msgs which are InArrival(receiver) and eventually get
matched by Matchi(receiver) follows by a symmetric argument. The third
claim is implied by the first two as follows. From the state (included) where
Sendi takes place until the state (included) where receiver move Matchi takes
place there can be no i -ack InArrival(sender); similarly from receiver move
Matchi – which switches its phase to i +1 – until Sendi+1 included, there can
be no (i + 1)-msg InArrival(receiver). Therefore, during the sender phase i ,
InArrival(sender)InArrival(receiver) is of form (i − 1 −MSG)∗(i −MSG)∗

(where MSG is either ack or msg), and therefore its bit-sequence has the form
flip(bit(sender))∗bit(sender)∗. ut

248 6 Asynchronous Multi-Agent ASMs

Proof.[Corollary] Let ack be an i -ack. Then the sender is in phase i or i +
1 (InArrival message order lemma). Upon sending in Matchi(receiver) the
first i -ack, by the phase lemma the receiver has flipped its bit from bit(sender)
to the opposite bit and has passed from its and the sender’s phase i to
phase i + 1. Therefore the claim follows in case the sender in the considered
state is still in phase i or has just made move Sendi+1. Through Sendi+1 the
bit(sender) changes to the complement of i -ack. ut

Proof.[InArrival(receiver)-data] If an i -msg m is InArrival(receiver) in state
S , the receiver is in phase i or i + 1 (InArrival message order lemma) and
the phase of the sender is i or i + 1 (phase lemma). Thus if msgId(m) =
bit(sender), bit(sender) and therefore currNum(sender) do not change af-
ter Sendi until S , which by Retransmit implies the first claim. Otherwise
between Sendi and reaching S , Sendi+1 has fired as the only rule which
changes currNum(sender). This proves the second claim. ut

Refinement to sliding window. AlternatingBit can be refined to its
“sliding window” optimization as follows. The idea that allows (multiple in-
stances of) different files to be in transit simultaneously consists in grouping
the files at both sender and receiver into an interval such that (a) a new round
for the transmission of the next file is started by inserting (really a name of)
that file at the upper end, and (b) retransmission upon timeout resends the
file at the lower end. The receiver window remains synchronized with (i.e.
never wider than) the sender window since only the sender can initiate a new
round, namely upon receiving an acknowledgment for the file with number
low . With this optimization one also gets rid of the unnatural message-order
assumption made for the alternating-bit protocol verification.

To identify the different files which are in transit simultaneously the set
BOOL does not suffice any more for msgId , which is therefore refined to,
fir example, N; for mnemonic reasons we then write fileNum for msgId . The
role of currNum(self) in AcceptCurrFile and in CloseCurrFileTransfer is re-
fined by using fileNum(fst(queue)) instead. The roles of currNum(self) in
Match, as well as in StartNxtFileTransfer and Retransmit for determining
which file to send next or to retransmit, are refined via a pair of integer
interval boundaries identifying the “window” of files which are currently in
transit: high(sender) refines the role of currNum in Send , low(sender) the one
of currNum in Retransmit . Correspondingly SendingTime is refined by not
windowFull , where windowFull = (high(sender)− low(sender)+1 = winsize)
for an implementation dependent constant winsize = maxWindowSize; the
bit-test msgId(fst(queue)) = bit at sender and receiver is refined to the “win-
dow test” Match = low ≤ fileNum(fst(queue)) ≤ high.

The refinement of CloseCurrFileTransfer has to take into account the
policy adopted to guarantee the protocol to be complete, namely that only
the message at the low window end is retransmitted upon timeout . The
Matching file may not be the one at low(sender) because for this pro-

6.3 Time{Constrained Async ASMs 249

tocol no message ordering assumption is made. Therefore, no relation is
known between the order in which messages are sent and arrive, in par-
ticular not for sent i -msgs and received i -acks. As a consequence, to pre-
vent future retransmissions of an acknowledged file, in case this file is
not the one numbered low , to CloseCurrFileTransfer one has to store
the acknowledgment, say by setting receivedAck(fileNum(fst(queue))) to
true. Only when receivedAck(low) becomes true can the corresponding file
transfer round be completely closed by sliding the window at the lower
end via low := low + 1; see SlideWindow(sender). Analogously a rule
SlideWindow(receiver) slides the receiver window upon arrival of a new mes-
sage m whose fileNum(m) ≤ high(sender) does not match yet the upper re-
ceiver window bound high(receiver). In this case SlideWindow(receiver) can
be executed – correctly so, since a new file can arrive only when the receiver
window is not full and its number is never smaller than low(receiver). After
the sliding action fileNum(m) matches the receiver window bounds and thus
is accepted. The sliding may increase high(receiver) by 1, as is always the
case at the sender site, but only if starting the transmission of the new file by
StartNxtFileTransfer has made the sender window full, due to the unknown
order in which sent messages arrive (if they arrive at all).

This leads to the async SlidingWindow ASM with sender, receiver, in-
put and hidden message carrier as independent agents. Their rules instantiate
the KermitTemplate. We list below only the new rules SlideWindow and
those macros which refine the homonymous ones of AlternatingBit. We
“team” SlideWindow with the sender or receiver, respectively, instead of in-
troducing independent agents, because we want to neglect, as already done
for AlternatingBit, the possible though irrelevant non-determinism among
receiver rules as well as among sender rules. For the sender it is here not only
between Send and ReSend , but includes also Check (because the control state
check disappeared) and SlideWindow(sender), depending on the scheduling
of SendingTime, CheckingTime, RetransmitTime and of receivedAck(low) be-
coming true. The only relevant issue is that each enabled rule will eventually
fire.

The AlternatingBit initialization and run constraints are carried over
to SlidingWindow, deleting the message order assumption and refining the
initialization by low = 1, high = 0 (for both sender and receiver) and by the
sender condition receivedAck(x) = false for all x .

SlidingWindowSenderMacros =
SendingTime = not windowFull
StartNxtFileTransfer = {TransmitNxtFile,RefreshMsgId}

TransmitNxtFile = send (file(high + 1), high + 1)
RefreshMsgId = high := high + 1

CheckingTime = queue 6= empty
Match = low ≤ fileNum(fst(queue)) ≤ high
CloseCurrFileTransfer = receivedAck(fileNum(fst(queue))) := true

250 6 Asynchronous Multi-Agent ASMs

Fig. 6.11 SlidingWindowReceiver ASM

If fileNum(fst(queue)) > high then

AcceptCurrFile

 low := max{0,fileNum(fst(queue)) − winsize + 1}

no
ClearCurrMsgyes

AcknowledgeReceipt
Match ArrivalTime

 high := fileNum(fst(queue))

RetransmitTime = timeout
Retransmit = {send (file(low), low), timeout := false}
SlideWindow(sender) = if receivedAck(low) then low := low + 1

Including SlideWindow(receiver) into SlidingWindowReceiver yields
the machine illustrated by Fig. 6.11 with its new macros defined below.
The value high(receiver) is the highest number of any file sent and re-
ceived so far, which is ≤ high(sender). Therefore when a newly sent file
arrives at receiver (for the first time) and the new file number exceeds
winsize, then file(low(receiver)) has been already received (and stored), so
that SlideWindow(receiver) can safely be fired sliding low(receiver).

SlidingWindowReceiver = {Receive,SlideWindow(receiver)}
where

Receive = if ArrivalTime and Match then
{AcknowledgeReceipt ,AcceptCurrFile,ClearCurrMsg}

AcceptCurrFile = (file(fileNum(fst(queue))) := data(fst(queue)))
SlideWindow(receiver) =

if ArrivalTime and fileNum(fst(queue)) > high then
high := fileNum(fst(queue))
low := max{0,fileNum(fst(queue))− winsize + 1}

Proposition 6.3.2 (SlidingWindow run-time verification). Every run
of SlidingWindow transfers files correctly, transferring all files and in an
order preserving way in the following sense:

InArrival Completeness: For every (data, id) which is sent by the sender or
receiver, an instance will eventually enter and leave InArrival(receiver)
or InArrival(sender).

File Completeness: Every file which is sent by the sender is eventually re-
ceived and stored by the receiver, and an acknowledgment of its receipt
is eventually received by the sender.

Proof. The first claim follows from the run constraints and the refined rules
Retransmit , Input , SlideWindow(receiver), ClearCurrMsg .

6.3 Time{Constrained Async ASMs 251

Fig. 6.12 Phases in SlidingWindow runs

j (j=1,2,3)

[1,0]

[3,..] [2,4]

[1,3]2*,3,4−msgs

Slide

1*,2,3−msgs

4

1*,2,3−acks
Slide

2*,3,4−acks
2Slide

[2,..]

1Slide

[1,..]

[1,0]

window(sender) window(receiver)

For the second claim we use again a phase lemma. The critical moves which
delimit the transfer of file(i) are Slidei(sender) – increasing low from i to i +1
– and Slidei(receiver), starting file(i)-reception by increasing high from i − 1
to i and directly followed by Receive of the first instance of an i -msg. The
file(i)-transfer interval to be analyzed is therefore (Slidei−1,Slidei] at the
sender. We say that the receiver is in phase i if high(receiver) = i ; thus
this phase is (Slidei ,Slidei+1]. The following lemma which is illustrated in
Fig. 6.12 for winsize = 3, can be proved by an induction on runs.

Lemma 6.3.4 (SlidingWindow run phases). In phase i ≥ 1, the sender
can send finitely many i -msgs and for each 0 < j < winsize at most one i + j -
msg. The sender can fire Slidei to enter phase i +1 only after the receiver has
already made a Slidei+j move for some 0 ≤ j < winsize followed by a Receive
move where data(i -msg) = file(sender)(i) is stored in file(receiver)(i) and
the first i -ack is sent.

Corollary 6.3.2. In every reachable state of SlidingWindow runs and for
every file number i , file(receiver)(i) = file(sender)(i) if both are defined.
file(receiver)(i) is defined when phase(receiver) ≥ i .

The second claim can be proved as follows. If an i -msg has been sent, by the
phase lemma and the first claim at the latest when the sender is ready to fire
Slidei , the receiver has received a copy of an i -msg and stored file(i). When
the first i -ack eventually leaves queue(sender), the transfer phase for file(i)
terminates by applying CloseCurrFileTransfer which will be followed by an
application of SlideWindow(sender) when low = i . ut

252 6 Asynchronous Multi-Agent ASMs

6.3.2 Processor-Group-Membership Protocol Case Study

A classical approach to fault tolerance for distributed computing services con-
sists in forming a server group whose members cooperate to provide (“identi-
cal versions” of) the intended service and to whose sites the relevant service
state information is replicated. Group-membership protocols have to ensure
that despite information propagation delays and server failures, the service
state information which is stored at each group member remains up-to-date
and is the same for all group members (in the steady state). In the case of
processor-group membership, via message exchange a global agreement has
to be achieved about who are the members of the group of all correctly func-
tioning processors in the system; every time a processor in the system fails
or starts working again a new agreement has to be achieved (read: a new
group has to be formed). We take a real-time constrained processor-group
membership protocol from [162] to illustrate how to make intricate timing
and message-passing assumptions precise in terms of asynchronous runs of an
accurate abstract model, for which one can formulate the correctness proper-
ties of interest explicitly, to make them verifiable by rigorous mathematical or
machine-assisted proofs prior to the protocol implementation. We focus here
on building an async ground model ASM GroupMember and defining its
runs; see [256] for the correctness proof, which consists in an analysis of these
GroupMember runs as illustrated above in detail for AlternatingBit

runs.

Signature and state constraints. The objects of study are processors p,
elements of a finite domain PROCESSOR, each equipped with its own real-
time Clock(p): REAL ∪ {∞}, a strictly increasing monitored function which
assumes the value ∞ in a final state if there is one. The independence of
these clocks is constrained only by the delivery bound formulated below for
the travel time of messages between processors. On each alive processor p,
one among the finitely many processes is scheduled to run as the current
process CurProc(p), among them the membership server MS(p) and the
broadcast server BS(p) described below.24 The scheduling is done by the
Scheduler(p) described below. Processes execute various tasks from their
deadline (i.e. the moment scheduled for their start) to completion. The task
scheduling is supposed to be earliest-deadline-first; Dline(x) denotes the min-
imum among the deadlines of the tasks waiting to be handled by x and is
defined below for x = MS(p),BS(p). Processors p can be interrupted between
tasks, namely if one of their task-executing processes is scheduled after its
deadline; a function Status(p): {sober , crashed , recovered} indicates for each
processor its current failure status.
24 In fact these two are the only processes we model explicitly. The passing of time

abstractly reects the moves of other processes, not speci�ed further here, whose
deadline misses or other performance failures are assumed to be detected and
turned into processor crashes.

6.3 Time{Constrained Async ASMs 253

The idea of the protocol, made precise in Theorem 6.3.1 below, is to keep
the correctly working processors in a group, all of whose members have the
same membership view, which has to include each of them. A processor stays
in its group until either some processor fails (in which case within a bounded
failure detection delay a new group without that processor will be formed)
or some processor recovers and attempts to rejoin (namely by creating a new
group which – within a bounded join delay – will be joined by every other
correctly working processor). The group and the local membership views are
maintained by two processes of each group member, namely periodic broad-
casting of messages attesting the presence in the group (via the broadcast
server BS(p)) and elaboration (via the membership server MS(p)) of ar-
rived or missing expected broadcast messages from group members or about
recovery from a crash (with subsequent formation of a new group).

The fault tolerance life cycle of processors shown in Fig. 6.13 captures
that the protocol distinguishes two ways to trigger and handle a crash, in-
volving either the broadcast server BS(p) or the membership server MS(p).
BS(p) periodically sends a broadcast message indicating to all processors
that p is alive, wherefore the period dh is called heartbeat; if BS(p) is
scheduled too late – meaning that Clock(p) exceeds the p-broadcast time
BCastTime(p) = Dline(BS(p)) in a state in which p is sober and the cur-
rently scheduled process is CurProc(p) = BS(p) – then p has missed the
deadline of a broadcast and therefore is interrupted by BS(p)Crash. The sec-
ond reason for interruption of p (see MS(p)Crash) is that MS(p) is scheduled
too late – meaning that in a sober state with CurProc(p) = MS(p) processing
a so-called new-group message as its current message CurMsg(p), Clock(p)
exceeds the message deadline Timestamp(CurMsg(p)). In this case p misses
the deadline of this new-group message, which is a broadcast every mem-
bership server sends out after its processor has recovered from a crash when
handling in rule Initialize the processor’s entry into a new processor-group.
The membership server MS(p) is called (i.e. assigned by the Scheduler(p)
agent to CurrProc(p)) for a processor to Recover(p), but maintains also the
processor group information, namely Group(p) and the membership view
Members(p) (see below), while p is alive; this is done by handling incom-
ing messages which either announce the constitution of a new group (type
newGp) or report the processors present in a group (type present).

Elements of MESSAGE = MSGTYPE × REAL× 2PROCESSOR are kept
abstract; their type (newGp or present), timestamp and view are accessible
via functions Type(m), Timestamp(m) and View(m). Timestamp(m) records
the time the group was created by Initialize(p) and is used here as group Id.
View(m) represents the set of all members of processor group Timestamp(m).
Each message has a deadline which is defined as follows.

Deadline(m) =
{

Timestamp(m), if Type(m) = newGp;
Timestamp(m) + dn , if Type(m) = present .

254 6 Asynchronous Multi-Agent ASMs

Fig. 6.13 Fault tolerance life cycle of processors

Status(p) =
recovered

Status(p) =

Recover(p)

MS(p)Crash

Initialize(p)

BS(p)Crash

crashed
Status(p) =

sober

Here dn is a delay which is supposed to be greater than the maximum network
propagation delay, giving every correctly functioning processor a chance to
see such messages; for newGp-messages this delay is already included in the
definition of their timestamp when they are created by the Initialize(p) macro
in rule MS(p).

Since the message CurMsg(p) currently seen by MS(p) should always
store the one with the earliest deadline, the equation

Dline(MS(p)) = Deadline(CurMsg(p))

has to hold.
Also, the message-passing procedure is kept abstract. An abstract action

Broadcast m delivers messages m – say by setting InTransit(m) := true
– to the network, which acts as an implicit environment agent forwarding
m to an agent executing MsgCarrier(p) which puts to the set InBox (p)
every message InMsg(p) which arrives at p. From InBox (p) an agent execut-
ing Custodian(p) selects the message with the minimal timestamp (earliest
deadline) and assigns it to MS(p) as CurMsg(p), from where an agent execut-
ing Scheduler(p) will assign it to CurProc(p) on an earliest-deadline-first
basis applied to MS(p),BS(p) (if enabled, see rule Schedule(p)). The restric-
tion to enabled processes reflects the scheduling uncertainty assumption made
for the system, meaning that a task with deadline d may not be scheduled
until d − du , where du is a system-wide upper uncertainty bound. Therefore,
processes on p are called enabled only when their deadline is ≥ Clock(p)−du :

EnabledBS (p) = (DlineBS (p) ≥ Clock(p)− du)
EnabledMS (p) =

CurMsg(p) 6= undef and DlineMS (p) ≥ Clock(p)− du

Two assumptions are made for the message-passing system. By the relia-
bility assumption every message which has been broadcast by a processor will
be delivered to every processor. The delivery-bound assumption relates differ-
ent processor clocks via a message-delivery (carry-time) bound by stipulating
that a broadcast by p at Clock(p)-time t1 will be received by any processor q

6.3 Time{Constrained Async ASMs 255

at Clock(q)-time t2 within a delay dc , i.e. such that 0 < t2 − t1 ≤ dc holds
(see below for a formulation in terms of GroupMember runs).

Before defining the async GroupMember ASM and its runs we state the
correctness goal of the processor-group membership protocol.

Theorem 6.3.1 (Processor-group membership correctness). In runs
of GroupMember the following properties hold.

Stability of local views: Once a processor joins a group, it stays there until
either a processor fails or one recovers and attempts to rejoin.

Agreement on history: If two processors are joined to a common group g and
none of them crashes between joining g and joining the next group, then
that next group is the same for both processors.

Agreement on group membership: Alive processors in a group have the same
membership view.

Reflexivity: The membership view of an alive processor in a group contains
that processor.

Bounded join delay: There is a constant join delay dj such that if a processor
becomes sober at time t then, by time t + dj , it will join a new group
along with every other processor that stays correct from t to t + dj .25

Bounded failure detection delay: There is a constant failure delay df such
that if a processor belonging to a group g fails at time t then, by time
t + df , all the members of g that stay correct in [t , t + df] will join a new
group not containing p.

Agents, rules and runs. From the architectural point of view it is natu-
ral to analyze the asynchronous membership-protocol interactions of pro-
cessor group members at the level of the instances of the protocol code
for every processor. This means to group the GroupMember rules related
to one processor p into one basic ASM GroupMember(p), teaming to-
gether the agents which execute the machines Scheduler(p), MS(p), BS(p),
MsgCarrier(p), Custodian(p) defined below.

GroupMember(p) =
{Scheduler(p),MS(p),BS(p),MsgCarrier(p),Custodian(p)}

The one-agent team resolves some possible update conflicts at the local pro-
cessor level, namely for CurMsg(p) by MS(p) and Custodian(p) and for
InBox (p) by MsgCarrier(p) and Custodian(p). Note that the guards of
Scheduler(p), MS(p) and BS(p) as well as the guards of MsgCarrier(p)
and Custodian(p) are pairwise disjoint. The machine GroupMember is de-
fined as an async ASM which has one agent per processor p ∈ PROCESSOR,
25 Correctness for a processor means being without a pending task whose dead-

line has been exceeded. See below for a precise formulation in terms of
GroupMember runs.

256 6 Asynchronous Multi-Agent ASMs

each executing the basic ASM GroupMember(p) whose monitored func-
tions are its instances of Clock and InMsg , all other dynamic functions being
controlled or derived.

For the partially ordered runs of GroupMember in addition to the as-
sumptions listed above two further run constraints are made. First, a recovery
bound requires that there is a minimum delay dr on recovery time, i.e. the
time elapsing between a processor crash and the next time it becomes sober
again (see below for a more precise formulation). Second, the system con-
stants are supposed to satisfy dh > du (the heartbeat leaves enough time
for scheduling), dn > dc + du (the deadline of new-group messages leaves
enough time for the message to arrive at every destination and then to be
scheduled), and dr > dh + du (the recover time leaves enough time for at
least one heartbeat to be broadcast and scheduled). For the initialization it
is assumed that at every processor Status = crashed , InBox (p) = ∅, all of
CurMsg , Group, Members, StartUpTime, BCastTime are undefined.

The Scheduler(p) rules assign values to CurProc(p). Recover(p) reflects
that upon recovery of p, it is MS(p) which has to initialize p. Schedule(p)
schedules the protocol processes MS(p), BS(p) in a non-pre-emptive way
on an earliest-deadline-first basis. Non-pre-emptiveness means that only pro-
cessors can be interrupted, whereas tasks run until their completion; thus
Schedule(p) is executable only when p is sober and upon completing run-
ning its current task has set CurProc(p) to undef. The earliest-deadline-first
principle applies only to enabled processes – as defined above, those whose
deadline is not yet missed, taking into account the possible delay due to the
scheduling uncertainty. It has to be guaranteed also that scheduling takes
place only when either an apt process has been assigned by Custodian(p)
to CurMsg(p) – i.e. a process with minimal deadline and timestamp issued
not before the recovery of p from its last crash, called StartUpTime(p) – or
there is no such AptMsg , where

AptMsg(p) = {m ∈ InBox (p) | Deadline(m) ≥ Clock(p)− du and
Timestamp(m) ≥ StartUpTime(p)}

Scheduler(p) = {Recover(p),Schedule(p)} where
Recover(p) = if Status(p) = crashed then

Status(p) := recovered
CurProc(p) := MS (p)

Schedule(p) =
if CurProc(p) = undef and Status(p) = sober

and (CurMsg(p) 6= undef or AptMsg(p) = ∅)
then CurProc(p) := MinEnabled(p)

MinEnabled(p) =
x if (Enabledx and not Enabledy)

or (Enabledx and Enabledy and Dline(x) < Dline(y))
y if (Enabledx and Enabledy and Dline(x) ≥ Dline(y))

where (x , y) ∈ {(MS(p),BS(p)), (BS(p),MS(p))}

6.3 Time{Constrained Async ASMs 257

The membership server MS(p) has four rules. When MS(p) is scheduled
to Initialize the recovered processor p, it cancels the information about the
group p may have belonged to previously and broadcasts the information
about the readiness of p to form a new group (with timestamp) Clock(p)+dn ,
adding to the current processor time the delay dn > dc +du to guarantee that
all processors have a chance to receive that message within the maximum
delivery time dc , considering also the possible delay du due to uncertain
scheduling.

MS(p) = {Initialize(p),NewGroup(p),ChangeGroup(p),MS (p)Crash}

Initialize(p) =
if Status(p) = recovered and CurProc(p) = MS(p) then

Reset(p)
ResetGroupInfo(p)
StartUpTime(p) := Clock(p) + dn

BroadcastNewGroup(p)
Status(p) := sober
CurProc done

where
Reset(p) = {BCastTime(p) := undef ,CurMsg(p) := undef }
ResetGroupInfo(p) = {Group(p) := undef ,Members(p) := undef }
BroadcastNewGroup(p) = Broadcast(newGp,Clock(p) + dn , {p})
CurProc done = (CurProc(p) := undef)

When MS(p) is scheduled to timely handle a new-group message, it re-
ports p as present in the new group and synchronizes the heartbeat of p to
that of the new group, canceling any pending heartbeat.

NewGroup(p) =
if Status(p) = sober and CurProc(p) = MS(p) and

Type(CurMsg(p)) = newGp and
Clock(p) ≤ Timestamp(CurMsg(p)) then

BroadcastRegistration(p)
SynchronizeWithNewGroup(p)
CurMsg done
CurProc done

where
BroadcastRegistration(p) =

Broadcast(present ,Timestamp(CurMsg(p)), {p})
SynchronizeWithNewGroup(p) =

BCastTime(p) := Timestamp(CurMsg(p)) + dh

CurMsg done = (CurMsg(p) := undef)

When MS(p) is scheduled to handle a presence message, it checks whether
p’s group has changed – which is the case if the Members(p) do not corre-
spond any more to the processors which are viewed as present in the group

258 6 Asynchronous Multi-Agent ASMs

Timestamp(CurMsg(p)). In this case the group is updated, including the
reported membership information.

ChangeGroup(p) = if Status(p) = sober and CurProc(p) = MS(p)
and Type(CurMsg(p)) = present then

CurMsg done
CurProc done
if Members(p) 6= View(CurMsg(p)) then

UpdateGroupMembership(p)
where UpdateGroupMembership(p) =

Members(p) := View(CurMsg(p))
Group(p) := Timestamp(CurMsg(p))

When MS(p) is scheduled to handle the deadline miss of a new-group
message, it interrupts p.

MS (p)Crash = if Status(p) = sober and CurProc(p) = MS (p) and
Type(CurMsg(p)) = newGp then

if Clock(p) > Timestamp(CurMsg(p)) then Status(p) := crashed

The broadcast server BS(p) has two rules. When it is scheduled and
detects the deadline miss of a broadcast, it interrupts p. When the broadcast
is within the deadline, p reports its presence in its group BCastTime(p) and
updates its next heartbeat deadline.

BS(p) = {BS (p)Crash,Presence(p)} where
BS (p)Crash = if Status(p) = sober and CurProc(p) = BS (p) then

if Clock(p) > BCastTime(p) then Status(p) := crashed
Presence(p) = if Status(p) = sober and CurProc(p) = BS(p) then

if Clock(p) ≤ BCastTime(p) then
BroadcastPresence(p)
BCastTime(p) := BCastTime(p) + dh

CurProc done where
BroadcastPresence(p) = Broadcast(present ,BCastTime(p), p)

The MsgCarrier(p) transfers every incoming message to InBox , bund-
ling them into one per group (i.e. with the same timestamp).

MsgCarrier(p) = if InMsg(p) 6= undef then let (a, b, c) = InMsg(p)
if a = newGp or InBox (p) has no message with Timestamp b then

InBox (p) := InBox (p) ∪ {InMsg(p)}
else let m = ιx (x ∈ InBox (p) and Timestamp(x) = b)

InBox (p) := (InBox (p) \ {m}) ∪ {(a, b,View(m) ∪ {c})}

The Custodian(p) assigns the next message with minimal deadline to
CurMsg(p), realizing the requirement that the membership servers see mes-
sages in their deadline order.

6.3 Time{Constrained Async ASMs 259

Custodian(p) = if Status(p) = sober and CurMsg(p) = undef and
AptMsg(p) contains a message with minimal deadline then

deliver m from InBox (p) to MS (p)
where

m = ιx (x has minimal deadline in AptMsg(p))
deliver m from InBox (p) to MS (p) =

InBox (p) := InBox (p) \ {m}
CurMsg(p) := m

We conclude this section by illustrating how to make intuitive protocol-
related notions mathematically precise in terms of GroupMember runs,
turning the processor-group membership correctness statement above into
the genuinely mathematical Theorem 6.3.1, proved in [256]. Let Σ(p) be
the signature of GroupMember(p) without InTransit ; Σ−(p) the signa-
ture Σ(p) without the monitored functions Clock(p), InMsg(p); S− the
restriction of S to Σ−(p); Sn the nth state of a run and tn the value
of t in state Sn . The dr -recovery bound run constraint then reads as fol-
lows: if p gets crashed in Sn and recovered in Sn+k for some k > 0,
then Clock(p)n+k − Clock(p)n ≥ dr . The dc-delivery bound reads: if p
sends msg = (type, time, view) to q (i.e. sets InTransit(msg) to true) in
Sn of p, then there is a unique state Sk of q such that InMsg(q)k = msg ,
InBox (q)k+1 contains some (type, time, view ′) with view ′ ⊇ view , and 0 <
Clock(q)k − Clock(p)n ≤ dc . The correctness of p in state Sn means that
Clock(p)n ≥ StartUpTime(p)n and BCastTime(p)n ≥ Clock(p)n and that
for all m ∈ InBox (q)n with Timestamp(m) ≥ StartUpTime(p)n the condi-
tion Deadline(m) ≥ Clock(p)n holds. Correctness of p in a real-time interval
[t , t ′] then means that p is correct in every state Sn with k ≤ n ≤ k ′, where
Clock(p)k ≤ t < Clock(p)k+1 and Clock(p)′k − 1 < t ′ ≤ Clock(p)′k .

6.3.3 Exercises

Exercise 6.3.1. (; CD) Define the refinement relation between runs of
AlternatingBit and SlidingWindow runs.

Exercise 6.3.2. Optimize SlideWindow(sender) in rule SlidingWindow

by sliding the window to the nearest position where receivedAck is false.
Justify the correctness of the optimization.

Exercise 6.3.3. (; CD) Refine SlidingWindow by a machine with bound
2×winsize for message numbers. Show by an example that 2×winsize message
numbers are necessary.

Exercise 6.3.4. (; CD) Phrase the correctness and completeness proofs in
Sect. 6.3.1 in terms of the partial ordering of moves only, without labeling
moves by real-time moments.

260 6 Asynchronous Multi-Agent ASMs

Exercise 6.3.5. (; CD) Adapt the sliding-window correctness proof for
an asynchronous ASM where the sender or receiver rules which could fire
independently are not teamed.

Exercise 6.3.6. (; CD) Show that in every reachable state of runs of the
machine SlidingWindow the following window properties hold:

– Windows never exceed winsize: high − low + 1 ≤ winsize always holds at
both sender and receiver.

– The receiver window is never ahead of the sender window:
bound(receiver) ≤ bound(sender) for bound = low , high.

– Once the receiver window gets full, it remains full.
– For files with fileNum < low(sender), the sender has received an acknowl-

edgment: 0 ≤ i < low(sender) implies receivedAck(i).

Exercise 6.3.7. (; CD) Define the partial-order relation for moves of
agents in GroupMember runs.

Exercise 6.3.8. (; CD) Prove the finite history property for runs of
GroupMember.

Exercise 6.3.9. Prove the coherence property for GroupMember runs.

Exercise 6.3.10. Modify the rules of GroupMember(p) to include the
bound dr on recovery time and the bound dc on message delivery time, so
that the two constraints on these bounds can be deleted from the definition
of GroupMember runs and be proved instead to always hold.

Exercise 6.3.11. (; CD) Modify Broadcast m in GroupMember(p) to
keep the size of InTransit bounded.

Exercise 6.3.12. (; CD) Modify GroupMember(p) to keep the number
of messages in InBox (p) bounded, deleting unselectable messages, e.g. those
arriving while p is crashed so that they may never be seen by MS (p) and
never be removed from InBox (p).

6.4 Async ASMs with Durative Actions

In this section we elaborate the async ASM model developed in [114] for the
mutual exclusion algorithm Bakery from [314, 315], to illustrate the ASM
refinement method for turning in a provably correct way time-constrained
atomic actions (read: execution of ASM rules) to machine executions taking
time (real-time “durative actions”). We use a double refinement. First we
prove the protocol correctness on the basis of atomic actions – atomic non-
overlapping reads and writes to shared registers – for the concrete protocol
BakeryGround by

6.4 Async ASMs with Durative Actions 261

(a) abstracting it into a high-level model BakeryHigh for which the cor-
rectness can be easily derived from natural axioms,

(b) proving the ground model BakeryGround to satisfy the axioms (i.e.
to be a correct refinement of the abstract model).26

Then we refine atomic to durative actions – possibly overlapping reads and
writes which take time – and show this to preserve the refinement relation
between the abstract BakeryHigh and the concrete BakeryGround model
together with the 2-step protocol correctness proof. The refinement of atomic
to durative actions turns out to be essentially a refinement of the global to a
local, agent-based, state view, which can be captured by a detailed analysis
of which locations are monitored or controlled for which agent and what are
the causal dependencies and the time relations among read/write accesses to
locations shared by different agents.

Problem 21 (Framework for deployment structures). Develop ASM
models for accessing resource structures which can be put to use to describe
deployment structures.

6.4.1 Protocol Verification using Atomic Actions

A mutual exclusion protocol is required to guarantee three properties when
applied each time a process – among any finite number of processes – wants
to enter a “critical code section”:

Mutual exclusion: it never happens that two processes are simultaneously in
the critical section.

Deadlock freedom: every process which attempts to enter the critical section
will eventually enter it.

Fairness: the first-come-first-served principle holds (for a reasonable notion
of coming-first, which has to be defined).

Bakery ground model ASM. In the Bakery protocol tickets are assigned
to interested customer processes Pi (1 ≤ i ≤ n) and compared to let the one
with the smallest ticket access the critical section CS . The customers Start
to showInterest by entering a doorway (mode) and initializing their ticket. In
the doorway, once they canGetTicket – namely the next available new ticket,
say larger than the maximum ticket encountered in a doorwayRead (reading
in doorway mode) of all issued tickets – they exposeTicket . Then they wait ,
each for its turn to access CS , performing a repeated waitReadCheck (reading
and checking in wait mode) of all tickets – until one process canGo into CS
when there is no other process with a smaller ticket. The Entry into CS
is eventually followed by an Exit to cancelTicket and move outside, namely
26 The reason for presenting the more detailed model �rst is not only historical,

but also that the abstraction reects Lamport’s concrete algorithm and thus is
easier to capture if the low-level algorithm has been understood.

262 6 Asynchronous Multi-Agent ASMs

Fig. 6.14 Control state ASM BakeryCustomerScheme

Ticket

Exit =

Entry = canGo CS

cancelTicket outside

Exit

wait

Ticket =

showInterest

doorway

CS

canGetTicket

outside

exposeTicket

doorway

wait

Start Entry

done

interestedStart =

when the CS code is done. This sequence of four basic protocol moves of each
customer is formalized by the control state ASM BakeryCustomerScheme

in Fig. 6.14.
In Lamport’s algorithm the ticket of Pi is written (exposed for reading by

the other processes) only by Pi , namely in a register Ri . These registers are
however shared for reading, to copy them into a private array P , recording for
the array owner Pi what it has last received as the value read in the register
of other customers. Reading and checking Rj and recording their values in
P(Pi ,Pj) during the doorway or the wait phase of Pi are done independently
for each i , j , namely by independent reader processes.

Consequently, the signature of the async ground model ASM has two
finite (supposed to be static) sets, CUSTOMER and READER, of agents
equipped with their instance of the following functions. For customer self
a function mode: {doorway ,wait ,CS , outside} indicates the control states of
BakeryCustomerScheme in which the four basic protocol moves are ex-
ecuted. The monitored functions interested and done represent the events
which trigger the Start or the Exit of a protocol execution. A register R:N is
used to post tickets to the other customers; R(self) is controlled (for private
writing), R(Y) for Y 6= self is monitored (for public reading). The private
copies of other customers’ tickets are held in a function P : CUSTOMER → N

with P(self) controlled and P(Y) for Y 6= self monitored for self. The
above-mentioned auxiliary reader processes are captured by a static injective
function self.reader : CUSTOMER \ {self} → READER yielding for each
other customer the reader of self which reports the ticket value from the
register of that customer. We also write readerX (Y) or reader(X ,Y) for
X .reader(Y).

6.4 Async ASMs with Durative Actions 263

Fig. 6.15 Control state ASM BakeryReader

doorwayRead waitReadCheck

doorway wait

doorwayRead =

masterIn
doorway

reportTicket
(subject)

doorway

check wait

yes no

masterIn

waitReadCheck =

reportTicket
(subject) wait

canGoBefore(subject)

Each reader self, one per ordered pair of customers to guarantee inde-
pendent readings, serves its self.master : CUSTOMER concerning the ticket
value of its self.subject : CUSTOMER when master .mode ∈ {doorway ,wait}.
In the macro doorwayRead , when the reader is in doorway mode, synchronized
with its masterIndoorway mode, it reports the ticket value from the regis-
ter of its subject customer and switches to self.mode = wait . When again
mode-synchronized with masterInwait , it restarts to reportTicket(subject),
but now also checks whether the master canGoBefore(subject) and in the
latter case switches back to doorway mode. This is formalized by the basic
ASM BakeryReader in Fig. 6.15.

The independence of readers implies that the reader function can be char-
acterized as follows:

reader(c)(y) = ιr(r ∈ READER and r .master = c and r .subject = y).

For reader self the locations master .P(master), master .mode, R(subject)
are monitored, and master .P(subject) with subject 6= master is controlled.
The locations reader(c).mode are monitored for every customer c for the
inspection of wait/doorway ticket values.

The ground model ASM BakeryGround for Lamport’s algorithm con-
sists of the BakeryCustomerScheme and the BakeryReader rules for
each customer and each reader with the macros instantiated as follows.

264 6 Asynchronous Multi-Agent ASMs

Mod in the definition of the macro masterInMod is any mode value. The
canGoBefore(c) relation reflects that only those customers are considered
which currently have an interest to access CS and that for customers which
happen to have got the same ticket a static decision is taken upon who will
be served first (here that master comes before (is < than) the subject).

showInterest = {R := 1,P(self) := 1}
exposeTicket = {R := nextTicket ,P(self) := nextTicket}
nextTicket = 1 + max{P(X) | X ∈ CUSTOMER}
cancelTicket = (R := 0)
canGetTicket =
∀y ∈ CUSTOMER \ {self} (mode(self.reader(y)) = wait)

canGo = ∀y ∈ CUSTOMER \ {self} (mode(self.reader(y)) = doorway)

masterInMod = (master .mode = Mod)
reportTicket(subject) = (master .P(subject) := R(subject))
canGoBefore(subject) = notInterested(subject) or comesLater(subject)
notInterested(subject) = (master .P(subject) = 0)
comesLater(subject) = master .P(master) < master .P(subject) or

master .P(master) = master .P(subject) and master < subject

Concerning the runs of BakeryGround we simplify the exposition by
projecting the moves of customers and readers – atomic reads and writes to
shared locations – to real-time moments ≥ 0. Since atomic moves take place
in zero time, the state change due to a move at time t is effective at time t +ε
for sufficiently small ε (for any positive ε such that t + ε is smaller than the
time moment of the next move). By the sequentiality of agents two moves of
one agent take place at different moments. Let therefore St denote the state at
time t , resulting from all (finitely many) moves taking place before t . We make
the diligence assumption that no agent can become continuously enabled
without eventually making a move and that done will eventually become
true each time the corresponding customer is in CS , whereas interested may
eventually stay false forever. Initially for each customer c we assume that
mode = outside and R = P(c) = 0 hold, for each reader mode = doorway .

The mapping of BakeryGround moves to real-time moments yields for
each customer protocol execution the real-time intervals between moves which
are illustrated in Fig. 6.16 and have to be analyzed to prove the mutual
exclusion properties. If customer X executes Start and then Ticket at mo-
ments a, b, the open interval x = (a, b) is called a doorway of X ; within
this interval the readers of X do doorwayRead . By the assumption that no
agent stalls forever, for every Start move at a there is a bound b defining
the doorway. If X after Ticket executes Entry and Exit at moments c, d ,
W (x) = (b, c) is called the wait section of the doorway x ; during this inter-
val the readers of X are busy with waitReadCheck . CS (x) = (c, d) is called
the critical section interval of x . If after b customer X makes no more move,

6.4 Async ASMs with Durative Actions 265

Fig. 6.16 Real-time intervals between atomic customer moves

Start EntryTicket Exit

x = Doorway(X) W(x) CS(x)

a b c d

we set W (x) = (b,∞), CS (x) = undef . It remains to prove that for each
doorway x , W (x) is bounded and CS (x) is defined.
High-level bakery model. Since the real-time ordering of moves by the
moments when they take place makes certain moves comparable which in
Lamport’s original formulation are intended to be independent, e.g. moves
of the readers belonging to one master, we define a high-level model which
abstracts completely from readers and turns out to be more appropriate for
an analysis of independent reader and customer moves.

The async ASM BakeryHigh is defined as the instantiation of the
BakeryCustomerScheme by the following macros, using a monitored
ticket function T and a monitored canGo predicate Go constrained below
by four natural axioms C0–C3 which suffice to establish the mutual exclu-
sion properties. From the high-level proof we can then infer these proper-
ties for the ground model by showing that BakeryGround is a correct
refinement of BakeryHigh since the axioms are easily shown to be true for
BakeryGround runs.

showInterest = (R := 1)
exposeTicket = (R := nextTicket)
nextTicket = T (self)
cancelTicket = (R := 1)
canGetTicket = true
canGo = Go(self)

We introduce an order for doorways in terms of which we formulate con-
straints on a) assigning T (x) to customers X who leave a doorway x to enter
W (x)27 and b) on permitting customers to Go from a wait interval to CS ,
in such a way that the resulting BakeryHigh runs satisfy the three desired
properties: mutual exclusion in accessing CS , fairness, deadlock freedom. To
avoid repetitive case distinctions between processes which are or are not in-
terested, we use the ticket value ∞ for T−values and R-values of customers
who are not interested. Formally for a function f : CUSTOMER → N we de-
fine f ′(X) as follows (and use it analogously also for values f (x) on doorways
of X):

f ′(X) =
{

n × f (X) + id(X), if f (X) > 0;
∞, else.

266 6 Asynchronous Multi-Agent ASMs

Assuming 0 ≤ id(X) < n this definition guarantees that T ′(x) 6= T ′(y) if
X 6= Y . We now order doorways x , y of customers X 6= Y by the order
of the issued tickets in case the doorways overlap, otherwise by the natural
<-relation between real intervals:

x � y = (x ∩ y 6= ∅ and T ′(x) < T ′(y))
x ≺ y = (x < y or x � y) where x < y = ∀a ∈ x∀b ∈ y a < b

Lemma 6.4.1. For doorways x , y of different agents the condition x ≺ y or
y ≺ x holds.

In the BakeryHigh run C0 guarantees that issued tickets are natural
numbers > 1. C1 stipulates that if a doorway of Y comes before a doorway
of X , then either Y has left the corresponding CS before X gets the ticket
or the tickets of Y and X respect the temporal precedence of doorways with
overlapping wait intervals. C1 requires that X can leave its wait interval only
if during waitReadCheck , for every other customer the ticket of X at some
moment turned out to be smaller than the ticket posted in the register of
that other customer. C3 expresses an induction principle for wait intervals.

Definition 6.4.1. The BakeryHigh run constraints C0–C3 on the moni-
tored functions T and Go are defined as follows for any doorways x , y :

C0: T (x) ∈ N, T (x) > 1.
C1: If y < x , then either CS (y) < sup(x) or T ′(y) < T ′(x).
C2: If Go(X) holds at any moment t > sup(x), then for every Y 6= X there

is a moment b ∈W (x) such that T ′(x) < R′b(Y).
C3: If W (y) is bounded for all y ≺ x , then W (x) is bounded.

Refinement correctness. We prove that the abstraction of BakeryHigh

from BakeryGround is correct, which means to prove that via the refine-
ment relation, C0–C3 hold in BakeryGround runs. The correspondence
of locations is given by the homonyms in the signatures. The corresponding
states of interest are those in which the two instances of the same customer
move in BakeryCustomerScheme are executed. The correspondence of
computation segments is defined by the following mapping of move sequences.
The definition provides an example for a refinement which uses type (1, 1),
(1, 2), (1,n + 1) (where n is the number of processes whose tickets have to
be inspected), and type (1, ∗) where no concrete bound can be given on the
number of concrete steps simulating an abstract step unless some information
is made available on the execution time of agents.

– Start of X BakeryGround followed by one doorwayRead move of each
reader of X – i.e. until canGetTicket(X) becomes true – is mapped to Start
of X in BakeryHigh.

27 Thus the doorway determines the entry order into CS , a feature called Bakery
De�nability Property in [3, 2].

6.4 Async ASMs with Durative Actions 267

– Ticket moves are mapped to each other.
– waitReadCheck moves of every reader of X = master – i.e. until canGo(X)

becomes true – followed by Entry of X in BakeryGround is mapped to
Entry of X in BakeryHigh.

– Exit moves are mapped to each other.

Lemma 6.4.2 (Bakery refinement correctness). Constraints C0–C3 are
satisfied by BakeryGround runs.

Proof. For C0. When nextTicket(X) is taken at sup(x), X contributes to the
maximum with value X .P(X) = 1, which has been set by the Start move, so
that nextTicket(X) > 1.
For C1. Let t be the time of the reader(X ,Y)-move during x . Case 1. Y
applies Exit from CS (y) before this reading time t , i.e. during the interval
(sup(y), t). Then CS (y) < t < sup(x). Case 2. Otherwise. Then Rt(y) =
T (y) and therefore T (x) ≥ 1 + Rt(y) > T (y) > 0. Hence T ′(x) > T ′(y).
For C2. canGo(X) becomes true at t > sup(x) when for every Y 6= X ,
X .reader(Y) has finished its waitReadCheck moves in W (x). Thus for each
Y 6= X , the moment of the last waitRead move of X .reader(Y) is a mo-
ment b ∈ W (x) such that T ′(x) < R′b(Y), as established by the following
waitCheck move of X .reader(Y).
ad C3. Indirect proof. Assume W (y) is bounded for all y ≺ x but W (x)
is unbounded. Then we can derive the following two claims which provide a
contradiction.

Claim 1: There is some b ∈ W (x) which is later than any sup(CS (y)) (if
y ≺ x) and later than any sup(y) (if x ≺ y).

Claim 2: Claim 1 implies that every X .reader(Y) finishes his waitReadCheck
moves in W (x), so that W (x) is bounded.

For Claim 1. By the co-finiteness property of runs there are only finitely many
y ≺ x , all with sup(CS (y)) <∞ (since W (y) is bounded and by assumption
no process stalls forever). Also for each Y there is at most one y � x , since
y � x implies T ′(x) < T ′(y) (in case of y > x by C1 and the unboundedness
of W (x)). This implies the claim by the hypothesis that W (x) is unbounded.
For Claim 2. If X .reader(Y) finishes its waitReadCheck moves before b ∈
W (x), it finishes them in W (x). In fact, otherwise by the definition of b
in Claim 1, no Y 6= X has mode doorway at t ≥ b. Therefore at t ≥ b,
X .reader(Y) waitReads 0 or T (y) for some y � x . In both cases the next
waitChecg succeeds (in the second case by T ′(x) < T ′(y), which is true by
C1 if x < y , and true by definition of � if x � y). ut

High-level protocol verification. We derive here from the axioms C0–C3
for BakeryHigh runs the correctness of the protocol, namely that doorways
are linearly ordered by ≺, that all waiting sections are finite and that the
first-come-first-served property holds: y ≺ x implies CS (y) < CS (x).

268 6 Asynchronous Multi-Agent ASMs

Lemma 6.4.3 (FCFS schedule and mutual exclusion). If y ≺ x and
W (x) is bounded, then W (y) is bounded and CS (y) < CS (x).

Proof. Indirect proof. Since W (x) is bounded, by C2 there is for Y some
b ∈W (x) such that T ′(x) < R′b(Y). This implies sup(y) < b (Claim 1) and
under the hypothesis not CS (y) < CS (x) also T ′(y) < T ′(x) (Claim 2); see
below. Then for some ε, Rsup(y)+ε(Y) = T ′(y) < T ′(x) < R′b(Y) implies
that Y must be writing to its register R(Y) sometime in (sup(y), b). But the
first register write after sup(y) takes place in an Exit move. Therefore Y has
left CS (y) during W (x) – implying CS (y) < CS (x) – and W (y) is bounded,
contradicting the hypothesis.
For Claim 1. y ≺ x implies inf (y) ≤ sup(x) < b. But b ∈ (inf (y), sup(y)]
would imply Rb(Y) = 1, contradicting 1 < T (x) and T ′(x) < R′b(Y). There-
fore b > sup(y).
For Claim 2. This follows for y � x from the definition of �, for y < x from
C1 and the hypothesis not CS (y) < CS (x). ut

Lemma 6.4.4 (Liveness). Every W(x) is bounded.

Proof. This follows from the induction principle C3 for the (by the co-
finiteness property well-founded) ordering of doorways by ≺, using the tran-
sitivity lemma below. ut

Lemma 6.4.5. ≺ is transitive.

Proof. Indirect proof. Assume x ≺ y ≺ z ≺ x and let n be the number of
occurrences of < in this chain. In the case n = 0 or n = 2, 3 a contradiction
follows from the transitivity and non-reflexivity of the ordering < of reals and
of real intervals. Case n = 1: without loss of generality assume x ≺ y ≺ z < x ,
so that T ′(x) < T ′(y) < T ′(z). By the FCFS lemma, x ≺ y ≺ z ≺ x implies
that W (x), W (y), W (z) are infinite, so that CS (z) is undefined. C1 then
implies T ′(z) < T ′(x), a contradiction. ut

6.4.2 Refining Atomic to Durative Actions

In an async ASM run with durative actions every move µ of any agent takes
place during a non-empty open real-time interval, say Time(µ) = (a, b) with
0 ≤ a < b, where b is a real number or ∞. Such moves can be ordered
by an ordering of their (possibly overlapping) time intervals. To capture the
duration of rule executions it suffices to refine the notion of state and of run,
keeping the rules of BakeryGround and BakeryHigh, so that we will
speak of durative runs of these async ASMs as opposed to their atomic runs
above. The environment–controller separation principle that every durative
run has to satisfy for the moves of any agent concerning monitored and
controlled locations, establishing which moves take place without changes

6.4 Async ASMs with Durative Actions 269

of which monitored locations, has also to guarantee well-defined values of
monitored locations during the intervals in which moves of agents take place,
besides assuring the coherence condition of partially ordered runs.

To formulate the environment–controller separation principle for the Bak-
ery protocol denote by St(A) the local state of agent A at time t , i.e. the
state St at time t restricted to the locations of A, more precisely to (loc, val)
pairs with locations loc ∈ Loc(T)St , where T is the set of terms in the sig-
nature of A. The following separation constraints which are additionally im-
posed on runs with durative actions (besides the above diligence constraint,
the assumption on interested and done and the initialization) guarantee the
coherence condition for customer and reader moves.

– No customer move and no reader waitCheck move does overlap with any
monitored move for any of its monitored locations. This condition assures
Sb(A) to be the result of applying µ to Sa(A) for these moves of agents A
with Time(µ) = (a, b).

– No read move does overlap with a move concerning the mode of its master,
but it may overlap with a write move concerning the register of its subject.

– Register regularity: let Time(µ) = (a, b) for a read move µ of r =
X .reader(Y). The read result stored in X .P(Y) in state Sb(r) is the value
of R(Y) at any of
– either Y ’s last passive moment ≤ a before starting the read move
– or a passive moment of Y in the read move interval (a, b).

Here A is called passive in an interval I if I ∩Time(µ) = ∅ for every move µ
of A. Denote by Sc(A) � Control(A) the restriction of Sc(A) to the controlled
locations of A.

Lemma 6.4.6 (State stability). If [a, b] is a passive interval of an agent A
in a durative BakeryGround run, then Sb(A) � control(A) = Sa(A) �
control(A).

Proof. By definition only A can update its controlled locations though in the
meantime the monitored locations may change their values. ut

Lemma 6.4.7 (Sequentiality). For each agent A, the set of duration times
of moves of A is linearly ordered by the < relation on open real intervals.
If A executes µ during (a, b) and then µ′ during (c, d), the interval [b, c] is
passive for A.

Proof. By the sequentiality condition of partially ordered runs. ut

The mapping of atomic moves to real-time moments in Fig. 6.16 is refined
for durative moves by Fig. 6.17. If X executes Start during (a1, a2) and then
Ticket during (b1, b2), the doorway of X starts when Start is finished and lasts
until Ticket has finished, i.e. x = (a2, b2). If X after Ticket executes Entry
during (c1, c2) and Exit during (d1, d2), the Wait interval starts when Ticket

270 6 Asynchronous Multi-Agent ASMs

Fig. 6.17 Real-time intervals between durative customer moves

2 1 21 c2121 da b dcba

ExitTicket EntryStart

x = Doorway(X) W(x) CS(x)

has finished and lasts until the beginning of Entry , i.e. W (x) = (b2, c1).
CS (x) = (c1, d2) starts when Entry begins and lasts until Exit is finished.
The BakeryHigh run constraints C0, C1, C3 remain in force for durative
runs, but the constraint C2 on the monitored function Go is refined to regular
register reading when checking the ticket values in a waiting interval against
the values posted by competitors. With durative actions, X can leave its wait
interval only if for every other customer Y its ticket at some passive moment
for Y , satisfying the register regularity principle, has a smaller value than
the ticket posted in the register of Y :

Definition 6.4.2. C2: If Go(X) holds at any moment t > sup(x), then for
every Y 6= X there is a passive moment b for Y such that T ′(x) < R′b(Y)
and either b ∈W (x) or b is Y ’s last passive moment ≤ inf (W (x)).

Refinement correctness for durative runs. We have to show that C0–
C3 hold for durative BakeryGround runs. The proofs for C0, C3 carry over
from atomic runs without change. For C2 Go(X) becomes true when every
X .reader(Y) finishes its waitReadCheck moves. For Y 6= X consider the last
waitRead move µ of X .reader(Y) during W (x). As the desired b take the
moment chosen via the register regularity assumption for µ.

For C1 let µ be the doorwayRead move of X .reader(Y) during x . Case
1. Y makes an Exit move ν from CS (y) ending not later than µ, i.e. such that
supTime(ν) ≤ supTime(µ). Then CS (y) < supTime(ν) ≤ supTime(µ) ≤
sup(x). Case 2. Otherwise. Let Time(µ) = (a, b). If Y makes an Exit move ν
from CS (y), set e = supTime(ν) > supTime(µ) = b, otherwise set e =
∞ > b. Then R(Y) = T (y) holds over [sup(y), e) ⊇ [sup(y), b), in particular
Rt(Y) = T (y) for the moment chosen via the register regularity principle
for µ. (NB. Y is passive at sup(y)). Therefore T (x) ≥ 1+Rt(Y) > T (y) > 0.
Hence T ′(x) > T ′(y).

High-level protocol verification for durative runs. Only the proof of
Lemma 6.4.3 has to be paraphrased, using the refined version of C2. In
fact b is chosen passive for Y ; thus the write move of Y to R(Y) some-
time in (sup(y), b) by the refined C2 starts before supW (x). The proof for
Claim 1 here reads as follows. First of all inf (y) ≤ b holds, since, by the
regularity of register reads, b < inf (y) forces b to be the last passive mo-
ment ≤ inf (W (x)), whereas inf (y) is passive for Y and inf (y) < sup(x) =

6.5 Event{Driven ASMs 271

infW (x)). Secondly b ∈ [inf (y), sup(y)) would imply Rb(Y) = 1, contra-
dicting 1 < T (x) and T ′(x) < R′b(Y). Finally b 6= sup(y), since otherwise
Rb(Y) = T (y) contradicting T ′(y) < T ′(x).

Problem 22 (Analysis techniques for async ASMs). Develop a prac-
tical method (conceptual framework and proof principles) for the analysis
of concurrent algorithms in terms of truly concurrent runs, i.e. operating
directly in terms of partially ordered async ASM runs and circumventing to
map moves to linear time. A first step in this direction appears in [258] and is
illustrated there by a variation of the above correctness proof for the Bakery
algorithm. The relevant definitions are in the lecture slides Bakery (; CD).
See also the proof principles developed in [372, Parts C,D] for the verification
of concurrent network algorithms.

6.4.3 Exercises

Exercise 6.4.1. (; CD) In Lamport’s bakery algorithm, instead of reading
values from a global system clock, tickets (time stamps) are associated with
each customer. Define an async Bakery ASM which uses global clock values
instead of tickets.

Exercise 6.4.2. (; CD) Show that the async Bakery ASMs with dura-
tive actions remain correct and fair if the register regularity condition is
changed to Lamport’s register regularity condition [315], where as the read-
result stored in P(X ,Y) in state Sb(r) also the value of R(Y) at Y ’s first
passive moment ≥ b can be taken.

Exercise 6.4.3. (; CD) Show that in the bakery algorithm Lamport’s reg-
ister regularity condition allows overtaking of readers to happen.

Exercise 6.4.4. (; CD) Show the correctness and fairness of the async
Bakery ASMs with durative actions also for safe registers [315]: a read that
is concurrent (overlapping) with a write may return any value, but otherwise
returns the result of the last write preceding it.

6.5 Event–Driven ASMs

In this section we present event driven ASMs, basic as well as synchronous and
asynchronous ones, in combination with turbo ASMs. We apply the concept
to provide a precise model for the UML event mechanism, detailed for UML
activity diagrams with and without multiplicities (cloning of processes) and
asynchronous concurrent nodes. As an illustration we provide a succinct flow-
diagram-based description of an interpreter for Occam programs.

272 6 Asynchronous Multi-Agent ASMs

Abstracting from the particularities of special event classes, which do dis-
tinguish different event handling models, one can interpret events as instan-
taneous state changes, whose effect can be described by predicates in terms
of abstract states. The atomicity of events is reflected by the atomicity of
state changes in ASM steps, obtained via firing sets of updates. The different
possible ways an event may be originated – by a single agent (e.g. acting as
environment) or by multiple agents which interact in a synchronous man-
ner (e.g. to produce a set of simultaneous occurrences of signals forming the
event) – are captured by monitored functions and the synchronous parallelism
of ASMs.28 Technically the general understanding of events leads us to split
ASM rule conditions into an “event” and a “guard” part. This distinction
comes out very clearly in active databases which can be modeled by rules of
the following form:

ActiveDatabaseRule = if event and guard then action

An event in active databases represents the trigger which may (but not nec-
essarily does) result in firing a rule. The guard which comes as an additional
condition for a rule to get executed describes the relevant state part (also
called the context) in which the event occurs. The action describes the task
to be carried out by the database rule. Different active databases result from
varying (a) the underlying notion of state, as constituted by the syntax and
semantics of events, guards and actions, and of their relation to the underly-
ing database states, (b) the scheduling of the evaluation of guard and action
components relative to the occurrence of events (coupling modes, priority
declarations, etc.), (c) the rule ordering (if any). See [160].

Many FSMs and reactive control systems present this feature of event-
triggered rules, typically with signals or passage of time as events. The general
pattern of such rules is the following:

upon event do action

standing for if event then action (where as usual we interpret action as
an ASM rule). The frequently imposed constraint that each event is instan-
taneously perceived by all involved processes (underlying for example the
semantics of synchronous programming languages) is directly captured by
the synchronous parallelism of basic or turbo ASMs. We illustrate this by us-
ing instances of the machine Sustain from p. 38 and of Switch(condi , ctli)i

from Fig. 2.9 as components to build a stopwatch:
28 This general understanding of events does not abstract from states and does

not relegate their description to a few variables which appear as parameters,
di�erently from declarative process algebra systems like CSP [281], where com-
putations are abstracted into \agreement protocols", machines into \patterns
of possible behavior" which are de�ned entirely in terms of the occurrence and
availability of events, with events understood as instantaneous, atomic, possibly
parameterized interactions (\agreements") between such \processes".

6.5 Event{Driven ASMs 273

The basic stopwatch receives an input signal START STOP that
alternatively puts it in “running” and “stopped” states. Initially the
stopwatch is stopped. It also receives a signal HS each 1/100 second.
The stopwatch computes an integer TIME, whole value is the total
amount of time (counted in 1/100 second) spent in the “running”
state. [266, p. 25]

We instantiate the monitored function ClockTick of Sustain(signal) by the
environment-controlled time pulse HS (with its desired frequency) and use
CountTicks as name for the TIME signal . We use a user-controlled monitored
function StartStop for the event which triggers switching between the two
control states stopped and running . We use the Switch instance

{Switch(StartStop, running),Switch(StartStop, stopped)}

This leads to the following control state ASM (see the flowchart definition in
Clock (; CD)) to compute and display the number of time intervals spent
running , started in ctl state = stopped with CountTicks = 0. We leave it
as Exercise 6.5.1 to explain what could go wrong with Sustain(CountTicks)
instead of Sustain(CountTicks + 1).

BasicStopWatch = {ClockRun,ClockReStart} where
ClockRun = if (ctl state = running) then

upon ClockTick do CountTicks := CountTicks + 1
Sustain(CountTicks + 1)
Switch(StartStop, stopped)

ClockReStart =
if ctl state = stopped then Switch(StartStop, running)

The basic stopwatch works properly only if correctly initialized. To ex-
tend it to a StopWatchWithReset it suffices to add a ReSet rule, which
brings the machine upon a user-controlled Reset signal from stopped to a
new control state start ,29 where a new rule ClockStart upon a StartStop
signal initializes CountTicks. A natural assumption for using stopwatches is
that StartStop and Reset are disjoint so that they never happen together
(avoiding an inconsistent update of ctl state).

ReSet = Switch(Reset , start)
ClockStart = if (ctl state = start) then

upon StartStop do CountTicks := 0
Switch(StartStop, running)

An example for a data flow machine with input events – value carrying
signals – is the Neural Net Machine in Fig. 5.8, which in ctl state = input is
triggered by the arrival of newInputToBeConsumed . Another machine with
input events is the widely used parallel virtual machine (PVM) [214] which
29 What has to be changed to allow resetting also from running state?

274 6 Asynchronous Multi-Agent ASMs

realizes a distributed computation model characterized by the reactive behav-
ior of concurrently operating PVM daemon processes, each residing on one
of several host computers. The daemons are triggered by the environment;
they carry out the PVM instructions of the local tasks they have to manage
and interact with each other through asynchronous message-passing. No dae-
mon can influence when, from where and which request or message will reach
him; rather he has to wait for the next such event to come. This intuition
can be faithfully modeled by introducing a monitored event function which
for a given daemon might yield a PVM instruction or a message as value. If
event(pvmd) is defined and has the value instr/mssg, then the daemon pvmd
is going to execute/read instr/mssg, formalized by the following rule scheme
taken from [107, 108]:

if event(pvmd) = instr/mssg then execute instr/read mssg

for each individual PVM instruction instr or PVM message mssg, where ex-
ecute instr/read mssg represents the corresponding updates. A typical in-
tegrity constraint on the function event is that a defined value of event(pvmd)
remains stable until the PVM daemon pvmd has evaluated the function and
that event(pvmd) is reset or indicates the next event as soon as the pvmd has
read the current value. “Consuming an event” can be modeled also locally,
per reacting agent and without granting access to the updates of the global
state which characterize the event, namely by an update, upon reacting to
the event, of a local copy of a synchronization bit which is flipped each time
the event “happens”. Assume that EventBit(event) is flipped each time the
event “happens”. Every agent who is supposed to react to the event by an
action(event) is equipped with an instance self.EventBit of this event bit
function, to be switched upon reacting to the event.

ConsumeEvent =
if event and self.EventBit(event) = EventBit(event) then

action(event)
self.EventBit(event) := 1− self.EventBit(event)

The most traditional form of event is a procedure or operation call. Typ-
ically such “input” or “communication” events (monitored or shared func-
tions) come with varying mechanisms or assumptions for the agents which
update (produce and/or delete) events and for the (synchronous or asyn-
chronous) scheduling schemes used by them for the purpose. To provide a
concrete example, in the following section we present a model for a UML
variant of event-triggered FSMs.

6.5.1 UML Diagrams for Dynamics

In UML four types of diagrams are proposed for the description of system
dynamics, namely interaction (sequence and collaboration) diagrams, state

6.5 Event{Driven ASMs 275

Fig. 6.18 Sequential UML nodes

action

A
in out

branch

cond1

cond n

1out

outn

in

activity

D

entry

exit
out

[event]

in

machine and activity diagrams. For all four of them a precise semantical
foundation can be given by identifying them as a particular subclass of sync
or async ASMs. We show this here for activity diagrams which can be clas-
sified into mono-agent basic and multi-agent synchronous and asynchronous
diagram classes, extending networks of hierarchical FSMs. We first describe
the signature and then the ASM rules of activity diagrams.

An activity diagram is a finite directed graph whose nodes are classified
into atomic and composite ones. Each atomic node represents an atomic (not
decomposable) guarded action whose execution is considered as not inter-
ruptible and performed in zero (“insignificant”) time in case the guard is
true. Multiple invocations of action nodes are allowed to be executed con-
currently. This is modeled by basic ASM steps, so that we identify atomic
UML actions with basic ASM rules. A composite node represents a struc-
tured (decomposable) computation which is considered to take some time to
complete and to be interruptible by the occurrence of (external or internal)
events. The distinction between sequential and concurrent composition nodes
is captured by defining sync and async activity ASMs. Arcs between nodes
specify transitions from one action or activity to the next and can be labeled
by an event (so-called triggered transitions) and by a guard which together
condition the firing of the transition.

Atomic nodes are action or branching nodes. Action nodes are of form
node(in, if guard then act , out , isDynamic, dynArgs, dynMult) with in de-
noting the unique incoming arc, out the unique outgoing arc, act the asso-
ciated atomic action conditioned by guard ; isDynamic denotes whether the
action has to be executed in dynMult many parallel instances with parameters
Li from the set dynArgs of sequences of objects {L1, . . . ,Ln}. We denote these
node parameters by homonymous functions in(n), action(n), out(n) etc.; see
Fig. 6.18.

There are two special parameterless action nodes, namely exactly one
initial node per diagram indicating the default starting place, and final
nodes indicating where the control flow for the diagram terminates. By
initArc(diagram) we denote the arc exiting the initial node of the given

276 6 Asynchronous Multi-Agent ASMs

diagram, by finalArc(diagram) any arc entering one of its final nodes. The
notation is justified since without loss of generality one can assume that these
arcs are “fused” into one arc entering one distinguished final node.

Basic activity diagrams. Activity diagrams with only action and branch-
ing nodes are a special case of basic control state ASMs. In fact the view
that being positioned on the arc in(n) ingoing a node n results in perform-
ing action(n) and moving to an arc out(n) can be rendered as executing
action(n) in control state ctl state = n and being led by out(n) to a node
next(n) as next ctl state. Therefore the semantics of an action node n is
a rule FSM(n, action,next(n)) as described below, where in preparation of
a further refinement coming with the semantics of activity nodes we add
ctl state = n as an additional predicate active(n) to the guard. For a com-
pact formulation of multiple action instances, isDynamic(n) = false is re-
quired to imply that dynArgs(n) yields the empty parameter list, so that
correctMultiplicity(n) means that either ¬isDynamic(n) or dynArgs(n) con-
tains exactly dynMult(n) parameter lists. Thus the meaning of action nodes
is captured by the following basic ASM rule where, as required in the UML
manuals, no action is performed if | dynArgs(n) |6= dynMult(n).30

ActionNode(n) = FSM(n, action,next(n)) where
action = if active(n) and guard and correctMultiplicity(n) then

act
forall L ∈ dynArgs(n) with guard(L) = true do act(L)

Branching nodes node(in, (condi)i≤k , (outi)i≤k) express alternative con-
trol state flow with alternatives checked in sequential order. As for action
nodes we include also here being active into the formulation of the rule guard.

BranchNode(n) = FSM(n, test ,next(n,min{i ≤ k | condi}))
where test = if active(n) then skip

Synchronous activity diagrams. Basic activity diagrams are extended
by so-called sequential composite or activity nodes. These nodes represent an
entire activity subdiagram, which comes with entry and exit actions (to be
performed on entering/leaving the node) and with events which interrupt the
subcomputations in a context of multiple synchronous agents (clones). The
form of activity nodes is

node(in, entry , exit , diagram, out , event , isDynamic, dynArgs, dynMult)
30 We reect that the parameterization of guards for multiple instances of actions

may inuence their truth value. It happens frequently in UML documents that
such semantically relevant issues are not even contemplated. A bene�t of at-
tempts to capture the intended generality by precise models consists in revealing
whether what UML calls \semantic variation points" represent a real freedom
for implementations or simply an omission of semantically relevant issues. See
for example [98, 99].

6.5 Event{Driven ASMs 277

extending that of action nodes by the entry/exit actions entry, exit, the asso-
ciated activity subdiagram and an optional event which labels the outgoing
arc to determine possible interrupts of the subdiagram execution. Due to the
view of atomic actions as not interruptable, events are never associated with
arcs leaving action nodes. Activities instead are intended to have duration
and to be interruptable, so that multiple instances of a subcomputation can-
not be captured by the simple parallelism of a basic ASM but have to be
associated with subagents (clones which are in synchrony, i.e. are executed
in parallel with the master agent of the activity diagram).31 Being active(n)
then has to be refined to include as guard also the condition that currently
the executing agent hears noInterrupt(self); in preparation of the extension
to the asynchronous case of subdiagrams which are executed by multiple
principal (non-clone) agents we also include here already a running mode
(with a function mode(self) which will change to mode = interrupted when
interrupt events for subagents occur).

active(n) ≡ ctl state = n and noInterrupt and mode = running

The parameterization of the durative subcomputations is captured by an
env ironment function associated with agents.

EnterActivity(n) = if active(n) and correctMultiplicity(n) then
entry(n)
ctl state := initArc(diagram(n))
if isDynamic(n) then clone(dynArg(n), diagram(n))

where
correctMultiplicity(n) =
¬isDynamic(n) or dynMult(n) =| dynArgs(n) |

clone(Arg ,Dgm) = forall L ∈ Arg let a = new(Agent) in
isClone(a,Dgm) := true
activate(a,Dgm,L)

activate(a,Dgm,L) =
ctl state(a) := initArc(Dgm)
mode(a) := running
env(a) := insert(L, env(self))

There are two ways to exit an activity diagram, either normally or due
to an interrupt. The normal exit takes place when the subcomputation of an
agent has reached a final node of an activity diagram whose outgoing arc is
not labeled by an event. If the agent is a clone or the principal agent leaving
the Main diagram, it terminates its computation (formally by being deleted
31 Since here we deal only with UML activity diagrams, we assume that ev-

ery element put into the set Agent is automatically equipped with the ASM
rules we are de�ning to execute UML activity diagrams. This saves the update
ASM (a) := ASM (self) in the activate macro below. In the case that dynArg is
empty, EnterActivity lets the main agent proceed without creating any clone.

278 6 Asynchronous Multi-Agent ASMs

from Agent), otherwise the control of the principal agent is led to the next
node by the outgoing arc and the exit action is performed, determined by
the nearest activity node actRoot(n) to whose diagram n belongs.32

NormalExitActivity(n) = if FinalActDgmNode(n) and
active(n) and event(actRoot(n)) = undef then

if not isClone(self, diagram(actRoot(n))) and
not diagram(actRoot(n)) = Main then

exit(actRoot(n))
ctl state := next(actRoot(n))

else delete(self,Agent)

Exit from a diagram whose outgoing arc is labeled by an event depends
on the event to have occurred(ev), a notion which is kept abstract in UML
to be adaptable to different event-handling mechanisms. The UML semantics
of event processing is based on the run to completion assumption: events are
processed one at a time and when the machine is in a stable configuration,
i.e. a new event is processed only when all the consequences of the previ-
ous event have been exhausted. The first condition can be translated by a
corresponding assumption on the monitored predicate occurred . The second
condition is more difficult to capture, given the requirement that the exit ac-
tions of interrupted nested diagrams are performed following the subdiagram
relation, from the bottom to the nearest event occurrence on an arc outgoing
an enclosing activity diagram. We have to use turbo ASMs to capture this
phenomenon.

A static function upDgm: DIAGRAM → DIAGRAM determines the sub-
diagram relation, assigning to a diagram its immediately enclosing diagram
(if any), either the main diagram or the diagram of an activity or a concur-
rent node (see below). Let scope(e) denote the set of nodes which are in the
scope of exactly the given occurrence of event e on an arc outgoing an ac-
tivity diagram, following the subdiagram relation to avoid conflicts between
different occurrences of events. When a principal agent self hears event e
(implying that noInterrupt has become false), its subcomputation has to be
interrupted to transfer the control to n = next(actRoot(e, ctl state(self)))
where actRoot(e,node) yields the nearest activity node whose outgoing arc
is labeled by the occurrence of e with scope(e) comprising node. The inter-
rupt also triggers the sequence of exit actions and of clone interruption on
the way from currDgm = diagram(ctl state(self)) to diagram(n).

InterruptExit(e) = if self hears e and not isClone(self) then
let n = next(actRoot(e, ctl state(self)))

exitFromTo(currDgm, diagram(n))
32 This would be the place to include the condition that also all clone computations

of the diagram have reached a �nal node. The UML texts leave it unclear whether
this condition is intended.

6.5 Event{Driven ASMs 279

Fig. 6.19 UML concurrent nodes

D1 Dn

in

out

ctl state(self) := n
where self hears e =

occurred(e) and ctl state(self) ∈ scope(e)

Here exitFromTo(D ,D ′) denotes the turbo ASM which iterates along the
diagram nesting to perform exit(T) and to deleteClones(T)33 for each ac-
tivity diagram T encountered between D and D ′. We leave the definition as
Exercise 6.5.3.

Asynchronous activity diagrams. Adding composite concurrent nodes,
which permit us to split a single flow of control into multiple concurrent flows
of control to synchronize concurrent processes, results in asynchronous activ-
ity diagrams. Concurrent nodes are of form node(in,D , out) (see Fig. 6.19)
with a sequence D = D1, . . . ,Dm of subdiagrams not consisting of only initial
or final nodes. The upper synchronization bar is called fork, the lower one
join.34

Entering a concurrent node means to activate all of its subdiagrams so
that at each moment in each of these subdiagrams at least one agent is active,
until exiting the corresponding join becomes possible when and only if all sub-
diagram computations have been terminated. This is easily described by the
splitting rule UmlFork, which is analogous to the rule OccamParSpawn

(p. 43) and goes together with the synchronization rule UmlJoin. Here it be-
comes relevant that active(n) is refined to include also mode(self) = running .
The set of Subagents is defined by the parent relation.

UmlFork(n) = if ConcurNode(n) and active(n) then
let a1, . . . , am = new(Agent) forall 1 ≤ i ≤ m

activate(ai ,Di)
entry(Di)
parent(di) := d

33 deleteClones(T) deletes from Agent every clone for any activity subdiagram T ′

of T .
34 The initial (resp. �nal) node of the subdiagrams Di is considered to be repre-

sented by the fork (resp. join) bar. The balancing property is assumed whereby
the number of ows that leave a fork must match the number of ows that enter
its corresponding join.

280 6 Asynchronous Multi-Agent ASMs

mode(self) := waiting

UmlJoin(n) = if ConcurNode(n) and ctl state = n and
mode = waiting and forall ai ∈ Subagent(self)

mode(ai) = running and ctl state(ai) = finalArc(Di)
then

ctl state(self) := next(n)
mode(self) := running
forall a ∈ Subagent(self) do delete(a,Agent)

To define a reasonable refinement of the InterruptExit rule for asyn-
chronous activity diagram ASMs is more complicated. It requires us to refine
the exitFromTo macro to a ExitSubDgm machine which takes into account
also the nesting in concurrent subdiagrams. The UML manuals say (almost)
nothing about this; in [98, 99] a scheme is described which, however, leaves
many critical points unmentioned. Here too we restrict ourselves to delineate
a rather generic scheme which a standardization effort may instantiate to a
reasonable concrete definition.

AsyncInterruptExit(e) =
if self hears e and not isClone(self) then

forall EvNode ∈ EvCtl(e, currDgm) do ExitSubDgm(EvNode)

Occam interpreter. To conclude this section we exploit the combination of
graphical UML notation with the semantical rigor of activity diagram ASMs
for a compact formulation of an ASM interpreter for Occam programs [105].
The description starts from the usual graphical layout of a program as a
flowchart, flattening the structured program. As a result the standard se-
quential and syntax-directed part of control is already incorporated into the
underlying graph structure and thus semantically defined by the ASM rules
for activity diagrams with atomic and concurrent nodes.35 It only remains to
define the semantical meaning of the atomic actions – basic Occam instruc-
tions – which are executed by the respective agents upon passing through the
action nodes of the diagram. This is defined by Fig. 6.20 (taken from [98])
with the specific Occam action and guard macros defined in OccamActions

below. We use Occam notation, function e for the environment (i.e. the as-
sociation of values to local variables) of each agent a, eval for expression
evaluation under a given environment, s[v/t] for the result of substituting v
in s by t , c!t for offering the value of t at channel c and c?v for requesting
through c a value for v .

OccamActions =
writerAvailable(c) ≡ ∃writer ∈ AGENT ∃n ∈ NODE

active(writer) = in(n) and action(n) = d !t and
35 As a consequence of attening, the description in Fig. 6.20 uses no activity nodes.

Using them one could reect the code structure directly.

6.5 Event{Driven ASMs 281

Fig. 6.20 Semantics of Occam: activity diagram ASM

stop

stop:

D k D k

collect e

c ? v1 1

c ? vk k

c ? vk k

c ? v1 1

assign(v,t)

assign:

skip:

skip

bool:

alt:par:

pass e pass e b:

b:

com:

c?v
writerAvailable(c)/

eval(b,e)

not eval(b,e)

d!t
readerAvailable(d)/

eval(c, e(a)) = eval(d , e(writer))
readerAvailable(c) ≡ ∃reader ∈ AGENT ∃n ∈ NODE

active(reader) = in(n) and action(n) = c?v and
eval(d , e(a)) = eval(c, e(reader))

assign(v , t) ≡ e := e[v/eval(t , e)]
c?v ≡ e(a) := e(a)[v/eval(t , e(writer for c))]
d !t ≡ skip
b : c?v ≡ writerAvailable(c) and eval(b, e(a)) = true
pass e ≡ e(a) := e(parent(a))
collect e ≡ e(self) := ∪1≤i≤k e(ai)

In the Fork rule pass e is added to the updates of activate(a,D), in the
Join rule collect e to the updates of self. Occam syntax conditions guarantee
that the definition of reader and writer for a channel is consistent, since
for each channel at each moment at most one pair of reader/writer exists
which are available for each other.36 From this definition of the semantics of
Occam one can derive its implementation to Transputer code by a series of
stepwise ASM refinements, as done in [104] where also the correctness of the
transformation is proved.
36 The ALT construct as described in Fig. 6.20 really provides the deterministic

Transputer implementation of this construct, due to the underlying UML as-
sumption that the guards of branching nodes have to be evaluated in sequential
order and to be disjoint and complete. One can reect the non-deterministic Oc-
cam interpretation of this construct by interpreting the guards gi as driven by
monitored choice functions.

282 6 Asynchronous Multi-Agent ASMs

Problem 23 (Modeling and analyzing a real-life operating system).
Use structured async ASMs to model a real-life operating system of your

choice as a layered event-based system. See the small MINIX case study for
the X86 architecture in [186].

6.5.2 Exercises

Exercise 6.5.1. Explain what could go wrong with Sustain(CountTicks)
instead of Sustain(CountTicks + 1) in BasicStopWatch.

Exercise 6.5.2. (; CD) Extend StopWatchWithReset to a stopwatch
with intermediate time handling: “A new input signal LAP now allows us to
record an intermediate time (for instance, the time spent by one runner for
one trap lap) while continuing to measure the global time. One occurrence of
LAP freezes the time on display, while the internal stopwatch time continues
to be computed as before. The next occurrence of LAP puts the stopwatch
back in a state displaying the running time.”[266, p. 26]

Exercise 6.5.3. Write a turbo ASM for the exitFromTo(D ,D ′) macro which
is used in InterruptExit.

Sources and Historical Remarks

The extension of basic ASMs to async (there called distributed) ASMs ap-
peared in [248], together with the async Bakery ASMs [114]. This definition
builds upon and supersedes earlier more restricted definitions of concurrency
for ASMs, defined to capture the parallelism of Occam [257, 105], of various
parallel forms of Prolog [375, 122, 123, 374] and of the Chemical Abstract
Machine and the π-calculus [227]. The first combination of async ASMs with
turbo ASMs appeared in [98, 99], which is the basis for the UML activity
diagram model in Sect. 6.5.1. See Sect. 9.2 for details.

7 Universal Design and Computation Model

This chapter is devoted to an investigation of the universality properties of
ASMs1. ASMs are put into relation with other well-known system design
and analysis approaches and models of computation (which are assumed to
be known, though references are given so that the details we refer to can
be checked). The chapter can be read independently from the others; for an
understanding only the definition of ASMs is needed.

In Sect. 7.1 we show how ASMs capture the principal models of computa-
tion and specification in the literature, including major UML concepts. Our
main goal is to illustrate the possibility that ASMs offer to smoothly integrate
useful concepts and techniques which have been tailored and are successfully
applied for specific goals or application domains. As a by-product we obtain
a uniform set of transparent model descriptions which – starting from scratch
– provide the conceptual basis for a comparative investigation of specification
methods and constitute a useful definitional framework for teaching compu-
tation theory. Sect. 7.2 is primarily of logical interest. It contains Gurevich’s
mathematical analysis of the epistemological universality claim, which be-
came known as the “ASM thesis”, together with the proof for its sequential
version from a small number of postulates.

7.1 Integrating Computation and Specification Models

In this section we show how widely used current models of specification and
computation can be naturally mapped into the ASM framework, including
basic UML concepts for which our models provide an abstract precise mean-
ing. We model them by ASMs, starting from scratch and providing a uniform
set of transparent easily understandable descriptions which are faithful to the
basic intuitions and concepts of each investigated system.2 Our main goal is to
provide a mathematical basis for technical comparison of established models
of computation, contributing to rationalizing the scientific evaluation of dif-
ferent system specification approaches in the literature by clarifying in detail
their merits and drawbacks. As a side effect we obtain a small set of defi-
1 Lecture slides can be found in UniversalCompModel (; CD).

284 7 Universal Design and Computation Model

nitions which unravel the basic common structure of the myriad of different
machine concepts which are studied in computation theory.

Starting from a subclass of UML diagrams for system dynamics – namely
control state ASMs as defined in Fig. 2.5 – we investigate in Sect. 7.1.1
Turing-machine-like classical models of computation (automata, substitution
systems, structured programming) and in Sect. 7.1.2 the major currently used
system design models (executable high-level design languages like UNITY
or COLD, state-based specification languages like Petri nets, B, UML state
machines and activity diagrams, stateless modeling approaches like functional
programming or axiomatic logico-algebraic design systems).

The ASM models in this section are different from the ones which come
out of the proofs for the two special versions of the ASM thesis in Sect. 7.2
and in [61], where a small number of postulates is exhibited from which every
synchronous parallel computational device can be proved to be simulatable
in lock-step by an appropriate ASM. The construction there depends on the
way the abstract postulates capture the amount of computation (by every
single agent) and of the communication (between the synchronized agents)
allowed in a synchronous parallel computation step. The desire to prove com-
putational universality from abstract postulates implies the necessity to first
capture the huge class of data structures and the many ways they can be
used in a basic computation step and then to unfold every concrete basic
parallel communication and computation step from the postulates; this un-
avoidably yields some “encoding” and “decoding” overhead to guarantee, for
every computational system which possibly could be proposed, a represen-
tation by the abstract concepts of the postulates. As a side effect of this –
epistemologically significant – generality of the postulates, the application
of the Blass and Gurevich proof scheme to established models of compu-
tation may yield “abstract” machine models which are more involved than
necessary and may blur features which really distinguish different concrete
systems. Furthermore, postulating by an existential statement that “states”
are appropriate equivalence classes of structures of a fixed signature (in the
sense of logic), that the evolution happens as the iteration of single “steps”
and that the single-step “exploration space” is bounded (i.e. that there is a
uniform bound on the memory locations that the basic computation steps
depend upon, up to isomorphism) does not by itself provide, for a given
computation or specification model, a standard reference description of its
characteristic states, of the objects entering a basic computation step, and of
its next-step function.

The goal in this section is that of explicitly and naturally modeling systems
of specification and computation – closely and faithfully, at their level of
abstraction as the spirit of the ASM thesis requires – based upon an analysis
2 The particularly natural way ASMs capture other computation models and thus

turn out to be \universal" contrasts with the di�culties one encounters when
trying to reverse the simulation, de�ning ASMs in other computational frame-
works.

7.1 Integrating Computation and Speci�cation Models 285

of the characteristic conceptual features of each of them. In other words we
look for ground model ASMs3 for each established model of computation or
of high-level system design which include asynchronous multi-agent systems,
for which no proof of the ASM thesis is known, and which

– for every framework directly reflect the basic intuitions and concepts, by
gently and explicitly capturing the basic data structures and single com-
putation steps which characterize the investigated system,

– are formulated in a way which is uniform enough to allow explicit compar-
isons between the considered classical system models.

By deliberately keeping the ASM ground model for each proposed system
as close as possible to the original usual description of the system, so that
it can be recognized straightforwardly to be simulated correctly and step by
step by its ground model, we provide for the full ASM thesis, i.e. including
distributed systems, a strong theoretical argument which

– avoids a sophisticated existence proof for the ASM models from abstract
postulates,

– avoids decoding of concrete concepts from abstract postulates,
– avoids a sophisticated proof to establish the correctness of the ASM models.

7.1.1 Classical Computation Models

In this section we use the control state ASMs of Fig. 2.5 to construct mostly
basic ASMs for classical automata and substitution systems (see any textbook
on computation theory, e.g. [70]): FSMs (finite state machines à la Moore-
Mealy and their more recent extensions by stream-processing or by timing
conditions or by co-design control features), pushdown automata and compu-
tation universal automata (à la Turing, Scott, Eilenberg, Minsky, Wegner),
and replacement systems (à la Thue, Markov, Post). Conceptually, modeling
structured and functional programming concepts and tree computations (in-
cluding language-generating grammars like context-free, attribute and tree
adjoining grammars) also belong here, which have already been analyzed in
Sections 4.1, 3.2.

Variations of Mealy/Moore automata. By the very definition of control
state ASMs given in Fig. 2.5, deterministic Mealy and Moore automata are
ASMs where every rule has the following form (see Fig. 7.1), with skip instead
of the output assignment in the case of Moore automata.

Fsm(i , if in = a then out := b, j)

Writing programs in the usual tabular form, with one entry (i , a, j , b) for
every instruction “in state i reading input a, go to state j and print output b”,
3 For the concept of a ground model see Sect. 2.1.1.

286 7 Universal Design and Computation Model

Fig. 7.1 Mealy automata rules

in = a out := b

yields the following guard-free FSM rule scheme for updating (ctl state, out),
where the parameters Nxtctl ,Nxtout are the two projection functions which
define the program table, mapping “configurations” (i , a) of control state and
input to the next control state j and output b.

MealyFsm(Nxtctl ,Nxtout) =
ctl state := Nxtctl(ctl state, in)
out := Nxtout(ctl state, in)

Since the input function in is monitored, it is not updated in the rule
scheme, though one could certainly make it shared to formalize an input
tape which is scanned letterwise from, say, left to right (see as an example
StreamProcessingFsm below). The question of 1-way or 2-way automata
is a question of whether one also includes into the instructions Moves of the
input head (say on the input tape), yielding additional updates of the head
position and a refinement of in to in(head) (the input portion seen by the
new reading head):

TwoWayFsm(Nxtctl ,Nxtout ,Move) =
ctl state := Nxtctl(ctl state, in(head))
out := Nxtout(ctl state, in(head))
head := head + Move(ctl state, in(head))

Non-deterministic versions of FSMs, as well as of all the machines we
consider below.4 are obtained by placing the above rules under a choose
operator to allow choices among different R ∈ Rules, obtaining rules of the
form choose R ∈ Rule in R.

We illustrate an instance of this scheme for the extension of FSMs to
machines which compute stream functions S m → S n over a data set S (typ-
ically the set S = A∗ of finite or S = AN of infinite words over a given
alphabet A), yielding an output stream out resulting from consumption of
the input stream in. Non-deterministically in each step these automata

– read (consume) at every input port a prefix of the input stream in,
– produce at each output port a part of the output stream out ,
– proceed to the next control state ctl state.
4 Therefore below we will only mention deterministic machine versions. See also

Sect. 4.2.

7.1 Integrating Computation and Speci�cation Models 287

To extend the MealyFsm machines to a model of these stream processing
FSMs it suffices to introduce two choice-supporting functions Prefix : Ctl ×
S m → PowerSet(S m

fin), yielding sets of finite prefixes among which to choose
for a given control state and input stream, and Transition: Ctl × (S m

fin) →
PowerSet(Ctl×S n

fin) describing the possible choices for the next control state
and the next finite bit of output. The rule extension for stream processing
FSMs is then as follows, where input consumption is formalized by deletion
of the chosen prefix from the shared function in:5

StreamProcessingFsm(Prefix ,Transition) =
choose pref ∈ Prefix (ctl state, in)

choose (c, o) ∈ Transition(ctl state, pref)
ctl state := c
out := concatenate(o, out)
in := delete(pref , in)

Mealy/Moore automata give rise to Mealy/Moore ASMs (defined in [86]),
a subclass of control state ASMs where the emission of output is generalized
to arbitrary ASM rules:

MealyAsm = Fsm(i , if in = a then rule, j)

An instance of MealyAsms are Leveson’s Requirements State Machines
(RSM), introduced to relate a general set of completeness criteria for re-
quirements specifications to process-control systems [320]. In an RSM, each
rule guard is an input predicate conditioning the value and the timing of
the sensor input, and the to-be-generated output to the actuators is de-
scribed by an output predicate. The special-purpose specification language
SpecTRM-RL which has been developed to overlay the low-level RSM model
offers a particular form of abstraction, supported by a set of tools [321].
MealyAsms also appear as components of co-design FSMs, where turbo
ASM component rules are needed to compute arbitrary combinational (ex-
ternal and instantaneous) functions. Co-design FSMs are used in [319] for
high-level architecture design and specification and for a precise comparison
of current models of computation. Usually co-design FSMs come together
with a global agent scheduler or with timing conditions for agents which
perform durative (not only atomic) actions.6 We illustrate the inclusion of
timing conditions by an extension of Mealy–ASMs to timed automata [13].
In these automata letter input comes at a real-valued occurrence time which
5 In [293] these machines are used to enrich the classical networks of stream-

processing FSMs (stream-processing components communicating among each
other via input/output ports) by ASM state transformations of individual com-
ponents. They are applied to provide a uniform semantics to common visual
notations for discrete event systems.

6 For modeling durative actions see Sect. 6.4.

288 7 Universal Design and Computation Model

is used in the transitions where clocks record the time difference of the cur-
rent input with respect to the previousInput, derived from those two in-
put functions and their (typically external) occurrenceTime by the equation
time∆ = occurrenceTime(in) − occurrenceTime(previousIn). Firing of tran-
sitions may be subject to clock constraints and includes clock updates (re-
setting a clock or adding to it the last input time difference). Typically the
constraints are about input to occur within (<,≤) or after (>,≥) a given
(constant) time interval, leaving some freedom for timing runs, i.e. choos-
ing sequences of occurrenceTime(in) to satisfy the constraints. Thus timed
automata can be modeled as control state ASMs where all rules have the
following form (the parameters Constraint and Reset are allowed to change
with the control state or the input):

TimedAutomaton(i , a,Constraint ,Reset) =
Fsm(i , if TimedIn(a) then ClockUpdate(Reset), j) where

TimedIn(a) = (in = a and Constraint(time∆) = true)
ClockUpdate(Reset) = forall c ∈ Clock do

if c ∈ Reset then clock(c) := 0
else clock(c) := clock(c) + time∆

In pushdown automata the Mealy automaton “reading from the input
tape” and “writing to the output tape” is extended to reading from input
and/or a stack and writing on the stack . Since these machines may have
control states with no input-reading or no stack-reading, pushdown automata
can be defined as control state ASMs where all rules have one of the following
forms with the usual meaning of the stack operations push, pop (optional
items are enclosed in []):

PushDownAutomaton =
Fsm(i , if Reading(a, b) then StackUpdate(w), j) where

Reading(a, b) = [in = a] and [top(stack) = b]
StackUpdate(w) = stack := push(w , [pop](stack))

Turing-like automata. Writing pushdown transitions in tabular form (us-
ing an auxiliary function defined by Pop&Push(s,w , 1) = push(w , pop(s) and
Pop&Push(s,w , 0) = push(w , s)

PushDownAutomaton(Nxtctl ,Write,Pop) =
ctl state := Nxtctl(ctl state, in, top(stack))
stack := Pop&Push(stack ,w , b) where

w = Write(ctl state, in, top(stack))
b = Pop(ctl state, in, top(stack))

identifies the “memory refinement” of FSM input and output tape to input
and stack memory. The general scheme becomes explicit with Turing ma-
chines which combine input and output into one tape memory with moving
head. All the Turing-like machines we mention below are control state ASMs

7.1 Integrating Computation and Speci�cation Models 289

which in each step, placed in a certain position of their memory, read this
memory in the env ironment of that position and react by updating mem
and pos. Variations of these machines are due to variations of mem, pos, env ,
whereas their rules are all of the following form:

TuringLikeMachine(mem, pos, env) =
Fsm(i , if Cond(mem(env(pos)) then update (mem(env(pos)), pos), j)

For the original Turing machines this scheme is instantiated by mem = tape
containing words, integer positions pos: Z where single letters are retrieved,
env = identity , Writes in the position of the tape head. This leads to extend-
ing the rules of TwoWayFsm as follows (replacing in by tape and Nxtout
by Write):

TuringMachine(Nxtctl ,Write,Move) =
ctl state := Nxtctl(ctl state, tape(head))
tape(head) := Write(ctl state, tape(head))
head := head + Move(ctl state, tape(head))

The alternating variation of Turing machines can be obtained by ex-
tending TuringMachine with a data refinement of OccamParSpawn on
p. 43 to spawn subprocesses. An alternating TM-computation is focussed
to either accept or reject the initial input tape, whereto it is permitted
to also invoke TM-subcomputations and to explore whether some or all of
them accept or reject their input. For this purpose to the traditional control
states, which are termed normal and in which the given TuringMachine

is executed, four new types are added: control states which (a) simply ac-
cept or which (b) simply reject or which (c) accept if some subcomputa-
tion accepts and reject if every subcomputation rejects (existential type)
or which (d) accept if every subcomputation accepts and reject if some
subcomputation rejects (universal type). When in an existential or uni-
versal control state the subcomputations are created and put into running
mode (rule AltTmSpawn below), the invoking computation turns to idle
mode to observe whether the yield of the subcomputations switches from
undef to either accept or reject and to define its own yield correspond-
ingly (rules TmYieldExistential, TmYieldUniversal below). Different
subcomputations of an alternating Turing machine, whose program is de-
fined by the given functions Nxtctl ,Write,Move, are distinguished by pa-
rameterizing the machine instances by their executing agents a, obtaining
TuringMachine(Nxtctl ,Write,Move)(a) from the ASM TuringMachine

defined above by replacing the dynamic functions ctl state, tape, head
with their instances a.ctl state, a.tape, a.head . This leads us to the fol-
lowing definition, combining TuringMachine with a data refinement of
OccamParSpawn. For simplicity of exposition but without loss of general-
ity we assume that in an existential or universal state, the alternating Turing

290 7 Universal Design and Computation Model

machine does not print or move its head and NxtCtl yields the set of possi-
ble next control states where the subcomputations are started. We use the
derived function children(a) = {c | parent(c) = a}.

AlternatingTm(Nxtctl ,Write,Move) =
if type(self.ctl state) = normal then

TuringMachine(Nxtctl ,Write,Move)(self)
if type(self.ctl state) ∈ {existential , universal} then

AltTmSpawn(self)
TmYieldExistential(self)
TmYieldUniversal(self)

if type(self.ctl state) ∈ {accept , reject} then
yield(self) := type(self.ctl state)

where
AltTmSpawn(a) = if a.mode = running then

forall j ∈ Nxtctl(a.ctl state, a.tape(a.head)) do
let b = new(Agent) in

Activate(b, a, j)7

parent(b) := a
a.mode := idle

Activate(b, a, j) =
b.mode := running
b.yield := undef
b.ctl state := j
forall pos ∈ domain(a.tape) do b.tape(pos) := a.tape(pos)
b.head := a.head

TmYieldExistential(a) =
if a.mode = idle and type(a.ctl state) = existential then

if ∀c ∈ children(a) yield(c) = reject then yield(a) := reject
if ∃c ∈ children(a) yield(c) = accept then yield(a) := accept

TmYieldUniversal(a) =
if a.mode = idle and type(a.ctl state) = universal then

if ∀c ∈ children(a) yield(c) = accept then yield(a) := accept
if ∃c ∈ children(a) yield(c) = reject then yield(a) := reject

In contrast to Turing and register machines, their generalizations intro-
duced by Scott [398] and Eilenberg [192] instead of read/write operations on
words stored in a tape provide data processing for arbitrary data, residing in
abstract memory, by arbitrarily complex mem-transforming functions. Look-
ing back, the incorporation of abstract arbitrary data processing lets these
7 The fact that the program of Occam subprocesses is static is reected in

OccamParSpawn (p. 43) by positioning the agents upon their creation at their
start position in that program. Similarly in AlternatingTm every subcompu-
tation is supposed to execute the same program, namely the one de�ned by
Nxtctl ,Write,Move and type. Therefore we skip mentioning in Activate the
�xed association of program(b) to b.

7.1 Integrating Computation and Speci�cation Models 291

two machine concepts appear as precursors of ASMs, even before Abstract
Data Types and the notion of states as structures became fashionable.8 How-
ever, the unfortunate “generalization” of the local Turing machine operations
on the tape – deemed to be not abstract enough and too close to an imple-
mentation view – by global functional memory tests/updates exposed both
of them to the frame problem and made them irrelevant for practical sys-
tem design. Eilenberg’s X-machines can be modeled as instances of Mealy
ASMs whose rules in addition to yielding output also update mem via global
memory functions f (one for each input and control state):

XMachine = Fsm(i , if in = a then {out := b,mem := f (mem)}, j)

The global memory Actions of Scott machines come with the standard
control flow directed by global memory Test predicates, formally described
by a function IfThenElse defined by the given program. This yields control
state ASMs consisting of rules of the following form:

ScottMachine(Action,Test) =
ctl state := IfThenElse(ctl state,Test(ctl state)(mem))
mem := Action(ctl state)(mem)

Wegner’s interactive Turing machines [423] can in each step receive some
input from the environment and yield output to the environment. Thus they
simply extend the TuringMachine by an additional input parameter and
an output action:9

TuringInteractive(Nxtctl ,Write,Move) =
ctl state := Nxtctl(ctl state, tape(head), input)
tape(head) := Write(ctl state, tape(head), input)
head := head + Move(ctl state, tape(head), input)
output(ctl state, tape(head), input)

Considering the output as written on an in-out tape results in defining
output := concatenate(input ,Out(ctl state, tape(head), input)) as the output
action using a function Out defined by the program. Viewing the input as
a combination of preceding inputs/outputs with the new user input results
in defining input as a derived function input = combine(output , user input)
8 In [282] X-machines are even suggested as a software engineering framework for

\building correct business process solutions".
9 This description clari�es the limitations of Wegner’s rather particular model

for systems of interacting machines, compared with the concept of asyn-
chronous multi-agent ASMs in Chap. 6. See the Neural Abstraction Machine
in Fig. 5.8 with an analogous interaction scheme between machine and environ-
ment, but a more realistic internal machine computation. An abstract form of
TuringInteractive is used in [298] under the name of interactive ASM to com-
pute sequence functions (from �nite sequences of multi-sets to sets of sequences
of multi-sets).

292 7 Universal Design and Computation Model

depending on the current output and user input . The question of single-
stream versus multiple-stream interacting Turing machines (SIM/MIM) is
only a question of instantiating input to a stream vector (inp1, . . . , inpn).

Substitution systems. The substitution systems à la Thue, Markov, Post
are Turing-like machines operating over mem: A∗ for some finite alphabet A
with a finite set of word pairs (vi ,wi), where in each step one occurrence
of a “premise” vi in mem is replaced by the corresponding “conclusion” wi .
The difference between Thue systems and Markov algorithms is that Markov
algorithms have a fixed scheduling mechanism for choosing the replacement
pair and for choosing the occurrence of the to be replaced vi . In the Thue
ASM rule below10 we use mem([p, q]) to denote the subword of mem be-
tween the pth and the qth letter of mem, which matches v if it is identical
to v . By mem(w/[p, q]) we denote the result of substituting w in mem for
mem([p, q]). The non-determinism of Thue systems is captured by two se-
lection functions. For the Markov version we show how one can include the
condition on matching already into the specification of these selection func-
tions.

ThueSystem(ReplacePair) =
let (v ,w) = selectrule(ReplacePair ,mem)
let (p, q) = selectsub(mem)

if match(mem([p, q]), v) then mem := mem(w/[p, q])

The Markov ASM is obtained from the Thue ASM by a pure data re-
finement, instantiating selectrule(ReplacePair ,mem) to yield the first (v ,w) ∈
ReplacePair with a premise occurring in mem, and selectsub(mem, v) to de-
termine the leftmost occurrence of v in mem. Similarly the ASM for Post
normal systems is obtained by instantiating selectrule(ReplacePair ,mem) to
yield a pair (v ,w) ∈ ReplacePair with a premise occurring as an initial sub-
word of mem, selectsub(mem) to determine this initial subword of mem, and
by updates of mem which delete the initial subword v and copy w at the end
of mem.

Concluding the ASM modeling of classical notions of computation in this
section one can say that, with hindsight, it comes as no surprise that the
numerous definitions of the notion of algorithms found in the 1930s and 1940s,
in an attempt to mathematically capture the intuitive notion of computable
function, all turned out to be equivalent. They are all variations (mostly
data refinements) of the TuringLikeMachine model, which has been made
explicit above. This positions also the Church-Turing thesis (e.g. see [70,
Chap. AI]) with respect to the more general ASM thesis in Sect. 7.2.
10 To be precise: the rule we state below de�nes what in the literature goes under

the name of semi-Thue systems. Thue systems are semi-Thue systems which for
each replacement pair (v ,w) contain also the inverse pair (w , v).

7.1 Integrating Computation and Speci�cation Models 293

7.1.2 System Design Models

In this section we show how to model by ASMs the basic semantical con-
cepts of the executable high-level design languages UNITY and COLD, of
widely used sequential and distributed state-based specification languages
(illustrated for sequential systems by Parnas tables and B machines, and for
distributed systems by Petri Nets), of dedicated virtual machines (e.g. data
flow machines), and of stateless modeling systems (axiomatic logic-based sys-
tems, like denotational semantics and process algebraic systems). Conceptu-
ally, sequential functional programming concepts also belong here, which have
already been analyzed in terms of turbo ASMs in Sect. 4.1.2. For modeling
dynamic UML diagrams by basic, sync and async ASMs see Sect. 6.5.1.

UNITY [329]. Unity computations are sequences of state transitions where
each step comprises the simultaneous execution of multiple conditional vari-
able assignments, including quantified array variable assignments of form
forall 0 ≤ i < N do a(i) := b(i). States are formed by variables (0-ary
dynamic functions which may be shared, respecting some naming conven-
tions), conditions are typically formulated in terms of <,=, and steps are
executions of program statements which correspond in an obvious way to
basic ASM rules. The steps are scheduled using a global clock (Unity system
time) which synchronizes the system components for an interleaving seman-
tics: per step one statement of one component program in the system is
scheduled using non-deterministic schedulers (required to respect a certain
fairness condition on infinite runs).11 As in basic ASMs, there is no further
control flow. Identifying components with basic ASMs and systems with sets
of components leads therefore to the following computational model for Unity
systems (which come with a particular proof system, geared to extract proofs
from the program text):

UnitySystem(S) =
choose com ∈ Component(S), choose rule ∈ Rule(com)

rule

Problem 24 (Mobile ASM framework). In [331] Unity is extended to
Mobile Unity, adding to programs location parameters and rules for tran-
sient interactions (engagement and disengagement of variable assignments,
based upon a react-to construct which guarantees an assignment to be ex-
ecuted each time a condition is true), together with a distinction between
transactions (statements composed by seq which cannot be interrupted by
non-reactive statements) and reactive statements (which are executed only at
seq composition points of transactions). Starting from this model define gen-
eral concepts for mobile ASMs and use them for an investigation of concepts
of mobile code in the literature.
11 Dijkstra’s guarded commands come with the same type of non-deterministic

choice of one command per step.

294 7 Universal Design and Computation Model

COLD [197]. In the Common Object-oriented Language for Design states
are realized as structures, including abstract data types (ADT) linked to
an underlying dynamic logic proof system which is geared to provide proofs
for algebraic specifications of states and their dynamics (à la Z and VDM).
Computations are sequences of state transitions (due to the execution of pro-
cedure calls, built from statements viewed as expressions with side effects)
allowing synchronous parallelism of simultaneous multiple conditional vari-
able assignments (but no explicit forall construct) and non-deterministic
choices among variable assignments and rules (procedure invocations). Thus
a Cold class (with a set of states, one initial state, and a set of transition
relations) corresponds in a standard way to a control state ASM, except that
different states of a same class are allowed to have different signatures. The
black-box view offered for sequencing and iteration is directly reflected by
the corresponding turbo ASM constructs, taking into account that Cold pro-
vides a separate guard statement for blocking evaluation of guards which is
executed only (with skip effect) when the guard becomes true.12

See the machine ColdModify(Var) on p. 40 for the idiomatic high-level
construct Mod of Cold which supports non-determinism in choosing subsets
of variables to be updated by chosen values. A similar construct Use permits
one to choose procedures from a set Proc to be called in sequence.

ColdUse(Proc) = choose n ∈ N, choose p1, . . . , pn ∈ Proc
p1 seq . . . seq pn

Parnas tables. An elaborate definition has been given in [360] for the se-
mantics of a complex classification of Parnas tables which underlies the SCR
method [276].13 Their semantical meaning as a special matrix notation – a
2-dimensional layout of the CASE construct – for sequential systems with
finitely many (controlled or monitored) state variables can be succinctly ex-
pressed by basic ASMs, providing an easily accessible foundation for the sys-
tematic use of such tables in system engineering. Normal tables (see Fig. 7.2)
are used to express the assignment of a value ti,j to a dynamic function f (x , y)
under the ith row condition ri and the j th column condition cj (where it is
assumed that for each x , y at most one pair of row and column condition is
true); formally:

NormalTable = forall i ≤ m, j ≤ n
if RowCondi and ColumnCondj then f (x , y) := ti,j

Inverted tables (see Fig. 7.2) are used to assign a value tj to f (x , y) un-
der a leading row condition and a side condition (assumed to be sufficiently
12 See Sect. 4.2 for modeling blocking guards.
13 The frame problem enters Parnas-table-based methods through the declarative

x/x ′-notation for values of variables x in a given state and their value x ′ in the
next state, yielding the quickly overwhelming so-called NC-clauses (No Change).

7.1 Integrating Computation and Speci�cation Models 295

Fig. 7.2 Normal and inverted Parnas tables

N (f) c1 · · · cj · · · cn

r1 t1,1 . . . t1,n
...
ri ti,j

...
rm tm,1 . . . tm,n

I (f) t1 · · · tj · · · tn

r1 c1,1 . . . c1,n

...
ri ci,j

...
rm cm,1 . . . cm,n

Fig. 7.3 Parnas decision tables

D(f) t1 · · · tj · · · tn

s1 r1,1 . . . r1,j . . . r1,n

...
...

...
...

sm rm,1 . . . rm,j . . . rm,n

disjoint as for normal tables, to prevent inconsistent (“ambiguous”) function
updates), formally described by the following rules (for all i ≤ n, j ≤ m):14

InvertedTable(i , j) = if RowCondi(x , y) then
if SideCondi,j then f (x , y) := tj

Decision tables (see Fig. 7.3) trigger a column action tj under a parame-
terized column condition, formally expressed by the following set of rules (for
all j ≤ n, where disjoint properties avoid column actions conflicts):

DecisionTable(j) = if ∀i ≤ m RowCondi,j (si) then trigger tj

VDM, Z, B [199, 431, 5]. These three high-level design languages share
the notion of computation as a sequence of state transitions given by a
before-after relation, where states are formed by variables taking values in
certain sets (in VDM built up from basic types by constructors) with ex-
plicitly or implicitly defined auxiliary functions and predicates. The single
(in basic B sequencing-free and loop-free) transitions can be modeled in a
canonical way by basic ASM rules which capture also the “unbounded” as
well as the “bounded” choice and the parallelism B offers in terms of si-
multaneous (“multiple generalized”) substitution. The basic scheme is deter-
mined by what Abrial calls the “pocket calculator model”, which views a
machine (program) as offering a set of operations (in VDM procedures with
side effects) which are callable one at a time, e.g. in the non-deterministic
form choose R ∈ Operation in R or harnessed by a scheduler let R =
14 Where useful it would probably be allowed to let SideCondi,j also depend on

(x , y). A similar remark applies to other Parnas tables.

296 7 Universal Design and Computation Model

scheduled(Operation) in R;15 similarly for events which in event-B are al-
lowed to happen only one per time unit. The structuring mechanisms for
large and refined B machines are captured by turbo ASMs, including also
the mechanism operations typically come with to hide the machine state: it
is allowed to activate (call) an operation for certain parameters, which re-
sults in an invariant-preserving state modification, but besides calling the
operation and taking its result no other direct access to the state is granted.
Historically, this view has led to a certain bias to functional modeling that
one can observe in the use of VDM.

By the logical nature of Z specifications, their before-after expressions
define the entire system dynamics. In B, as in the ASM method, the for-
mulation of the system dynamics – in B by operations (in event-based B by
events [6, 10, 11]), in ASMs by rules – is separated from the formulation of
the static state invariants and of the dynamic run constraints, which express
the desired system properties that one has to prove to hold through every
possible state evolution. However for carrying out these proofs, in contrast to
the ASM method,16 there is a fixed link between B and a computer-assisted
proof system17 relating syntactical program constructs to proof rules which
are used to establish program invariants and dynamic constraints along with
the program construction. Thus, defining modules becomes intimately related
to inventing lemmas. This fits also the basically axiomatic foundation of B
as of Z and VDM, whose logical complexity tends to turn aside the atten-
tion of practitioners: VDM by a denotational semantics; Z by axiom systems
formulated in (mainly first-order) logic; B by Dijkstra’s weakest precondi-
tion theory, interpreted in set-theoretic models and based upon the syntactic
global concept of substitution (from which local assignment x := t and par-
allel composition are derived). In contrast to Z, which due to the purely
axiomatic character of Z descriptions has intrinsic problems in turning spec-
ifications into executable code (see [267]), VDM and B are geared to obtain
software modules from abstract specifications via refinements which are tai-
15 This view points to a methodological di�erence between the forces which drove

the development of the B method compared to that of the ASM method. Abrial’s
B method is the result of an engineer’s bottom-up analysis: \The ideas behind
the concept of abstract machine have all been borrowed from those ideas that
are behind some well-known programming features such as modules, packages,
abstract data types or classes" [6, p. 175]. Also the event-B notion of basic events,
which corresponds to the guarded update rules of basic ASMs, came out of the
concern to \separate assignments from scheduling". Gurevich’s concept of ASMs
is the result of a logician’s top-down analysis, brought to light by a mathematical
reection on the ASM thesis (and turned by an extensive experimentation with
practical applications of the concept into the basis of the system engineering
method explained in this book; see Chap. 9 for the historical details).

16 See Sect. 2.1 for an explanation of the methodological reasons. As to a pragmatic
reason to consider, see the remark in [316, p. 8.1]: \A spec should be written to
be as clear as possible to the clients, not to make it easy to prove the correctness
of an implementation. The reason for these priorities is that we expect to have
more clients for the spec than implementers."

7.1 Integrating Computation and Speci�cation Models 297

lored to the proof rules used for proving that the refined operations satisfy
“unchanged” properties of their abstract counterparts. For example when re-
fining B machines, at most one operation of an included machine is allowed
to be called from within an operation of the including machine [5, p. 317]
(see Exercise 7.1.6 for the reason).

Petri Nets [372]. The general view of Petri nets is that of distributed
transition systems transforming objects under given conditions. In Petri’s
classical version the objects are marks on places (“passive net components”
where objects are stored), and the transitions (“active net components”)
modify objects by adding and deleting marks on the places or, more gener-
ally speaking, generating and consuming data, constituting the put-and-get
pattern of Petri net computation steps. In modern instances (e.g. the pred-
icate/transition nets) places are locations for objects belonging to abstract
data types (read: variables taking values of given type, so that a marking
becomes a variable interpretation), and transitions update variables and ex-
tend domains under conditions which are described by arbitrary first-order
formulae. The distributed nature of Petri nets is captured by modeling them
as async ASMs, as defined in Chap. 6, associating with each transition one
agent to execute the transition. Each single transition is modeled by a basic
ASM rule of the following form, where pre/post-places are sequences or sets
of places which participate in the “information flow relation” (the local state
change) due to the transition and Cond is an arbitrary first-order formula.
By modeling Petri net states as ASM states we include the abstract Petri
net view proposed in [372], where states are interpreted as logical predicates
which are associated with places and transformed by actions.

PetriTransition = if Cond(prePlaces) then Updates(postPlaces)
where Updates(postPlaces) = a set of function updates

For ASM models of specific Petri nets which exploit the distributed character
of such nets see Chap. 6.1.

Virtual machines. IBM’s Virtual Machine [305] and Dijkstra’s Abstract
Machine [183] concept originated in the 1960s as a high-level operating sys-
tem abstraction, but quickly spread to hierarchical system design in general,
ranging from programming language platforms to layered software architec-
tures, and nowadays has become ubiquitous in high-level system design. The
definition of ASMs provides an explicit mathematical description of the class
of machines covered by this concept and thus not surprisingly found quickly
numerous applications for modeling complex virtual machines (e.g. Warren’s
17 The above-mentioned pocket-calculator view of abstract machines has a coun-

terpart in Abrial’s interesting concept of a \pocket prover", coming out of the
concern about simple and natural moves for the human interaction with the
prover via the screen, the mouse and the keyboard.

298 7 Universal Design and Computation Model

Abstract Machine [132] and its extensions [40, 133, 42, 41, 39], the Trans-
puter [104], the RISC machine DLX [119], the Java Virtual Machine architec-
ture [406], the Neural Net (abstract data flow) Machine [142], and the UPnP
architecture [224]).

A small-size example of such a virtual machine is illustrated in Fig. 5.8
by the top level of the Neural Abstract Machine model defined in [142]. It
reflects the view of a Neural Net as a black-box yielding output to the en-
vironment, as result of a hidden internal computation of the Neural Kernel
submachine which is triggered by an input taken from the environment. The
internal computation consists of an iteration of atomic actions, until there
are no moreUnitsToBeComputed, performed by the basic computing units,
which are the nodes of a directed data-flow graph which are scheduled for
execution. In each unit computation step, the to-be-scheduled Units for the
next execution step are determined by an external scheduler nextExecUnits,
depending on the inputType which decides whether the net works in forward
or in backward mode. In forward-propagation mode, the network input is
transmitted by the input units to the internal units, which update their lo-
cal state and propagate their result value through the graph until the output
units are reached; similarly for the backward mode. Results are propagated
to all destination or source units and thus eventually will reach the output
or input units (depending on the forward or backward mode). This is sum-
marized by the following refinement of the submachines in Fig. 5.8, assuming
that activateNeuralKernel provides the correct initialization by the current
newInputToBeConsumed.

NeuralKernelStep(nextExecUnits) = forall u ∈ schedUnits
computeUnit(u)
schedUnits := nextExecUnits(schedUnits, inputType)

where
computeUnit(u) = let dir = inputType, result = Value(u, dir)

updateLocalState(u, result , dir)
propagate(u, result , dir)

propagate(u, data, forward) = forall d ∈ dest(u)
inForward internal(d , u) := internalValueForw(d , u, data)
if u ∈ outputUnits then output(u) := externalValueForw(u, data)

propagate(u, data, backward) = forall s ∈ source(u)
inBackward internal(s, u) := internalValueBack(s, u, data)
if u ∈ inputUnits then outputBack(u) := externalValueBack(u, data)

Logico-algebraic design systems. The fascinating idea of writing speci-
fications as logical formulae with computations corresponding to logical de-
ductions, furthermore in such a way that logical conjunction corresponds to
system composition and logical implication to refinement, has led to a myriad
of logic and algebraic specification and “declarative programming” languages

7.1 Integrating Computation and Speci�cation Models 299

and calculi. Examples are algebraic specification systems, Prolog and its nu-
merous variants, VDM, Z.18 the equational and rewriting logic system Maude
(see http://maude.csl.sri.com), and innumerable “logics of programs” of-
fering proof calculi to support verification of program properties.

An authoritative reference we disagree with is [280, p. 576] where it is
maintained that “all the properties of a program and all the consequences
of executing it can, in principle, be found out from the text of the program
itself by means of purely deductive reasoning”. It is certainly an advantage
that once a complete logical specification is in place, a (possibly machine
supported) proof for the desired program properties provides a rather high
degree of reliability (assuming the implementation of the prover and its han-
dling by the operating system are correct). Unfortunately this advantage has
to be paid for at such a high price that, despite the longstanding world-
wide research effort in this direction, logical specifications are simply not
part of standard industrial software engineering practice (though they are
used with success in certain well-delineated areas, among which are the de-
sign and verification of medium-size control systems, protocols and hard-
ware [215, 159, 156, 307, 303, 196, 65]). This is so not only for the extraor-
dinary cost of logical formalizations of real-life software projects, due to the
considerable technico-mathematical skill and the time needed to carry to the
end a large scale logico-algebraic design and verification project, but also for
intrinsic reasons, three of which are to be mentioned here. All declarative
specifications by their very logical nature are subject to the frame problem of
having to describe not only the local changes, but also everything that is sup-
posed not to change. Every logic system implies a fixed level of abstraction for
design and verification. Most logic-based verification methods and tools “in
dealing primarily with syntactic and structural aspects of software . . . fail to
address major issues of software quality having to do with semantic aspects of
software”, as one of the originators of the successful logic-based PVS system
states [419, p. 345]. These three features lead to the rightly criticized “formal
specification explosion phenomenon” that formal specifications which come
in the form of a huge logical formula or system of algebraic equations tend
to become orders of magnitude larger than the executable code, making it
difficult (if possible at all) to fully understand them and to derive an efficient
program from them. Minor but not negligible disadvantages derive from the
typical external non-determinism in inference rule applications, which does
not necessarily reflect the computationally intended scheduling,19 and from
18 The view expressed in [267, p. 89], that \the most important characteristic of

Z, which singles it out from every other formal method, is that it is completely
independent of any idea of computation", explains why Z speci�cations typically
lead to abstract data types. The ASM method deliberately starts with a notion
of computing state changes by destructive (though abstract) assignments.

19 This is illustrated by the so-called SOS speci�cations of non-deterministic ex-
pression evaluation schemes, where the non-determinism of the describing and
of the described systems match perfectly. However, when it comes to specifying

http://maude.csl.sri.com

300 7 Universal Design and Computation Model

Fig. 7.4 Register machine rules

reg(i) = 0

reg(i) := reg(i) +/− 1
no

yes

the natural drive of logical descriptions to lead to the rather special case of
purely functional specifications (so-called “big-step semantics” with exclusive
consideration of relations between initial and final states).20

The ASM method allows one to use such logic-based design and verifi-
cation techniques where appropriate – desired, technically feasible and cost-
effective – , integrating them into the high-level but state-based, genuinely
semantical and computation-oriented specification and analysis techniques
which are possible with ASMs. Successful projects in this direction have been
reported using theorem proving systems (KIV, PVS, Isabelle) and model
checkers, see e.g. [369, 229, 388, 439, 188, 187, 389, 386, 207], [424, 425, 428]
and Chaps. 8.1 and 9 for details. This confirms the fallacious nature of the
controversy which purports a dichotomy between using declarative methods
(from logic or algebra) and operational methods (using state-based transition
rules or code) to model and investigate complex systems. The most important
methodological issue which decides the practicality of a design and analysis
method is that of the levels of abstraction the method allows one to target
and of the refinement schemes it offers to relate the models at different levels
of abstraction.

7.1.3 Exercises

Exercise 7.1.1 (Variations of Turing machines). Extend the 1-tape
Turing machine (TM) to a k -tape and to an n-dimensional TM by data
refining the 1-tape Turing memory and the related operations and functions.

Exercise 7.1.2 (Register machines [70, Chap. AI1]). Formulate regis-
ter machines (i.e. with rules as shown in Fig. 7.4) as instances of Turing-like

the semantics of expression evaluation in real-life languages with assignment ex-
pressions, like C or C++, the so-called natural semantics descriptions if provided
at all tend to become unacceptably complex, due to the di�culties of describing
by purely structural and deductive means the underlying order for the evaluation
of subexpressions. See the analysis in [440].

20 In [4] such \de�nite limitations" of the classical denotational paradigm are recog-
nized: \... the appropriateness of modeling programs by functions is increasingly
open to question. Neither concurrency nor ‘advanced’ imperative features have
been captured denotationally in a fully convincing fashion".

7.2 Sequential ASM Thesis (A Proof from Postulates) 301

machines. What has to be changed in your definition for the variant where
the registers instead of numbers contain words?

Exercise 7.1.3 (Stream X-machines). (; CD) Define a stream-process-
ing version of Eilenberg’s X-machines.

Exercise 7.1.4 (Parallel random access machine). Formulate PRAM
models with exclusive and with concurrent writing. For the case of concur-
rency distinguish the purely non-deterministic case from the case where all
processors seeking to write to a memory location must agree on the value to
be written, from the priority model.

Exercise 7.1.5 (Schönhage storage modification machines). (; CD)
A Schönhage storage modification machine (SMM) has as memory a dynamic
graph whose nodes n are named (not necessarily uniquely) by sequences of
labels for edges, forming a path from a distinguished center node to n. Besides
the usual instructions for control (Goto s, if input = i goto si (for i=0,1),
if n = n ′ then s else s ′ conditioned by an equality test for node names)
and instructions to write output symbols on an output tape, there are two
characteristic instructions to create new nodes and to redirect edges between
nodes: (1) new (n, e) redirects edge e from (the node named by) n to a new
node which is linked (by an edge) to the same nodes that n is linked to, and
(2) set e to n ′ redirects e to n′. Describe SMMs as ASMs using only 0-ary
or unary dynamic functions, no static or shared function and only input as
monitored function. (In [177] it is also shown that every ASM restricted in
this way is lock-step equivalent to an SMM.)

Exercise 7.1.6 (Refinement restrictions in B). Consider the following
rules which both satisfy the invariant v ≤ w : Increment ≡ if v < w then
v := v + 1, Decrement ≡ if v < w then w := w − 1. Show that the
invariant will be broken at w = v + 1 by every machine which contains the
rule if v < w then {Increment,Decrement}.

Exercise 7.1.7. Define an ASM for one of the earliest virtual machines,
Landin’s SECD (Stack-Environment-Control-Dump) machine [317] for eval-
uating LISP constructs, where the stack is used to record intermediate expres-
sion evaluation results, the environment for the variable values, the control
for the program counter, and the dump as a stack of states which are to be
restored after the completion of the function applications.

7.2 Sequential ASM Thesis (A Proof from Postulates)

What became known as the ASM thesis was first formulated in 1985 by
Gurevich in a note to the American Mathematical Society [241] where it reads
as follows (dynamic structures stand for what nowadays are called ASMs):

302 7 Universal Design and Computation Model

Every computational device can be simulated by an appropriate dy-
namic structure – of appropriately the same size – in real time.

In this section we derive the thesis from a few postulates for the case of
so-called sequential algorithms:

Every sequential algorithm can be step-for-step simulated by an ap-
propriate sequential ASM.

By a sequential algorithm we mean a sequential-time, bounded parallel
algorithm. The property sequential-time means that the computation steps
of the algorithm are linearly ordered and that the algorithm is not multi-
threaded. By bounded parallel we mean that the algorithm is allowed to do
operations in parallel. There exists, however, a bound on the amount of work
the algorithm can do in parallel in one computation step. The bound depends
on the algorithm only and not on the input.

7.2.1 Gurevich’s Postulates for Sequential Algorithms

We now formulate three postulates and show that any algorithm (or computer
system) that satisfies the three postulates can be step-for-step simulated by
an ASM. Let A be an algorithm.

Postulate 1 (Sequential time). The algorithm A is associated with

– a set S(A), the set of states of A,
– a subset I(A) ⊆ S(A), the set of initial states of A,
– a map τA:S(A)→ S(A), the one-step transformation of A.

The sequential-time postulate can be explained as follows. First, the states
of an algorithm are considered to be the full instantaneous descriptions of the
algorithm and not the internal control states or modes of the algorithm. A run
(or computation) of an algorithm is a finite or infinite sequence S0,S1,S2, . . .
of states, where S0 is an initial state, the transition from S0 to S1 is the first
computation step, the transition from S1 to S2 is the second computation
step, and so on. The computation steps are linearly ordered. The behavior of
the algorithm is fully described by its one-step transformation τA.

Notice that the one-step transformation may consist of several distinct
actions. For example, a Turing machine can change its control state, print a
symbol at the current tape cell, and move its head, all in one step.

We call a state reachable, if it occurs in a run of A. The set of reachable
states is a subset of S(A). The set of reachable states is fully determined by
I(A) and τA. We do not assume that S(A) is the set of reachable states.
Intuitively, it is the set of a priori states of the algorithm A, which is often
much simpler than the set of reachable states.

One could associate a set T (A) of final states with the algorithm A. It
would be natural then to restrict τA to S(A) \ T (A). Final states are not

7.2 Sequential ASM Thesis (A Proof from Postulates) 303

needed in the main theorem below and therefore we assume that τA is total
and τA(S) = S if the algorithm A terminates in state S .

Postulate 2 (Abstract state).

– The states of A are algebraic first-order structures.
– All states of A have the same finite signature.
– The one-step transformation τA does not change the base set of the state.
– S(A) and I(A) are closed under isomorphisms.
– If A,B ∈ S(A) and α is an isomorphism from A to B, then α is also an

isomorphism from τA(A) to τA(B).

We discuss the abstract-state postulate as follows. The huge experience
of mathematical logic and its applications indicates that any static math-
ematical situation can be faithfully described as a first-order structure. It
is convenient to identify the states with the corresponding structures. The
mathematical notion of structure is explained in detail in Sect. 2.4.1. The
structures are called first-order, since they are used to give semantics of first-
order logic (see Sect. 2.4.2 for details). When structures represent states of
algorithms, they may contain “higher-order” objects like sets of elements,
functions mapping elements to elements, etc. Such structures can be seen as
special first-order structures.

It is assumed that the signatures of the states are finite. This reflects the
assumption that the program of an algorithm A can be given by a finite text.
The choice of the signature is dictated by the chosen abstraction level.

While the base set can change from one initial state to another, it does
not change during the computation. All states of a given run have the same
base set. If an algorithm needs new elements (new memory) at run-time,
then the operating system usually provides new space. We assume that new
elements come from a reserve which is already present in the initial state and
that a special external function (which is part of the signature) fishes the
new elements out of the reserve.

The last part of the abstract-state postulate reflects the fact that we
are working on a fixed level of abstraction. An algorithm is not allowed to
depend on the internal representations of a state. The details on which the
algorithm depends must be present in the isomorphism type of the state. If
the algorithm depends on the internal structure of the base set of a state,
then the signature and the basic functions have to be readjusted.

Since the one-step transformation of an algorithm does not change either
the base set of a state or its signature, the difference between a state A and
its successor state τA(A) can be described as a set of non-trivial updates (for
the definition of the difference between two structures see Def. 2.4.7).

Definition 7.2.1 (Delta). ∆(A,A) = τA(A)− A.

The difference ∆(A,A) is always a consistent set of updates. When it is
fired in state A, the successor state τA(A) is obtained, i.e., A + ∆(A,A) =
τA(A).

304 7 Universal Design and Computation Model

According to the abstract-state postulate an algorithm does not distin-
guish between isomorphic states. A state is just a particular implementation
of its isomorphism type. An algorithm can only access elements of the base
set via ground terms that contain functions from the signature of the state.
Two states coincide over a set T of ground terms, if every term in T evaluates
to the same value in both states.

Definition 7.2.2 (Coincide). Let T be a set of ground terms. Two states
A and B coincide over T , if [[s]]A = [[s]]B for each term s ∈ T .

The uniformly-bounded-exploration postulates says that an algorithm ex-
amines only a bounded number of elements in any state. There must exist
a finite set T of ground terms – depending on the algorithm only and not
on the initial state – such that the next computation step of the algorithm
depends only on that part of the state which can be accessed via terms in T .

Postulate 3 (Uniformly bounded exploration). There exists a finite
set T of ground terms such that whenever two states A and B coincide
over T , then ∆(A,A) = ∆(A,B). The terms in T are called critical terms
of A.

Example 7.2.1. For the Turing machines on p. 289 the critical terms are:
head , Nxtctl(ctl state, tape(head)), Write(ctl state, tape(head)),
head + Move(ctl state, tape(head)).

A consequence of the uniformly-bounded-exploration postulate is that
the changes that have to be made to state A in order to obtain the successor
state τA(A) can be described by critical terms. The arguments of locations
that have to be updated as well as their new content are values of critical
terms.

Lemma 7.2.1 (Critical terms). Let A be an algorithm that satisfies the
three postulates. If A ∈ S(A) and ((f , (a1, . . . , an)), v) is an update in
∆(A,A), then a1, . . . , an as well as v are values of critical terms of A.

Proof. By contradiction. Suppose that one of the arguments a1, . . . , an of the
update or v is not the value of a critical term. Let α be the function that
replaces this element in the base set of A with a fresh element b. Let B be the
isomorphic image of A under α. By the abstract-state postulate, it follows
that B ∈ S(A) and that α is also an isomorphism from τA(A) to τA(B);
hence ((f , (α(a1), . . . , α(an)), α(v)) is an update in ∆(A,B).
We claim that A and B coincide over T . Let s ∈ T . By Lemma 2.4.5, it
follows that α([[s]]A) = [[s]]B. Since [[s]]A is not mapped to b by α, we have
[[s]]A = α([[s]]A) = [[s]]B.
By the uniformly bounded exploration postulate, it follows that ∆(A,A)
equals ∆(A,B). Since one of the elements in ((f , (α(a1), . . . , α(an)), α(v)) is
the fresh element b, it follows that b occurs also in an update of ∆(A,A).
This gives the desired contradiction. ut

7.2 Sequential ASM Thesis (A Proof from Postulates) 305

Thus every update in ∆(A,A) can be programmed by an update rule
f (s1, . . . , sn) := t , where the terms s1, . . . , sn and t are critical terms of A.
Let PA

A be the parallel combination of all these update rules:

PA
A = {f (s1, . . . , sn) := t | s1, . . . , sn , t ∈ T ,

((f , [[s1]]A, . . . , [[sn]]A), [[t]]A) ∈ ∆(A,A)}

Since T is finite and the signature of A is finite, the set PA
A is finite, too.

By Lemma 7.2.1, we obtain that the update set that is computed by PA
A in

state A is exactly the update set of the one-step transformation τA.

Corollary 7.2.1. PA
A yields the update set ∆(A,A) in each state of A.

For two different states A and B the programs PA
A and PB

A can be quite
different. However, if A and B are similar with respect to the values of
critical terms, then the two programs are equal, as we will see below in
Corollary 7.2.2. Two states are called T -similar, if they satisfy the same
equations between terms in T .

Definition 7.2.3 (Similar). Let T be a set of ground terms. A state A is
T -similar to B iff for all terms s, t ∈ T : A |= s = t ⇐⇒ B |= s = t .

If two states coincide over T , then they are T -similar. The converse is in
general not true. If two states are T -similar, they can have disjoint universes
and therefore they may not coincide over T . However, there always exists an
isomorphic state which coincides over T with the other state.

Lemma 7.2.2 (Similarity). Let T be a set of ground terms. If A and B are
T -similar, then there exists a state C which is isomorphic to A and coincides
with B over T .

Proof. We can assume that the base set of A is disjoint from the base set of B.
Otherwise we take an isomorphic copy of A with no elements from B. Let α
be the function that replaces in the base set of A the values of terms of T with
their corresponding value in B, i.e., α([[s]]A) = [[s]]B for each term s in T , and
α(a) = a if a is not the value of a term of T in A. Since A and B are T -similar
and |A| is disjoint from |B|, the function α is well-defined and a bijection.
Let C be the isomorphic image of A under α. We claim that C coincides
with B over T . Let s ∈ T . By Lemma 2.4.5, we have [[s]]C = α([[s]]A). Since
α([[s]]A) = [[s]]B by the definition of α, it follows that [[s]]C = [[s]]B. ut

Corollary 7.2.2. If A and B are T -similar, where T is the set of critical
terms of A, then PA

A = PB
A .

Proof. By Lemma 7.2.2 there exists a state C ∈ S(A) that is isomorphic to A
and coincides with B over T . Let α be an isomorphism from A to C. By
the abstract-state postulate it follows that α(∆(A,A)) = ∆(A,C). Hence,
PA

A = PC
A. Since the states C and B coincide over T , by the uniformly-

bounded-exploration postulate, ∆(A,C) = ∆(A,B). Hence, PC
A = PB

A . ut

306 7 Universal Design and Computation Model

The main theorem now uses the fact that the set T of critical terms is finite
and that there exist only finitely many different similarity types with respect
to T . Moreover, the similarity type of a state can be described by a finite
boolean combination of equations betweenthe terms of T .

Theorem 7.2.1 (Sequential ASM thesis [249]). If an algorithm A sat-
isfies the sequential-time postulate, the abstract-state postulate and the
uniformly-bounded-exploration postulate, then the one-step transformation
of A can be programmed by an ASM of the following kind:

if ϕ1 then f1(s1,1, . . . , s1,n1) := t1
...
if ϕk then fk (sk ,1, . . . , sk ,nk

) := tk

The guards ϕi are boolean combinations of equations between terms.

Proof. Let T be the set of critical terms of A. For a state B let ϕB be
the boolean combination of equations and negated equations between critical
terms that characterizes its similarity type:

ϕB =
∧∧

s,t∈T
B|=s=t

s = t ∧
∧∧

s,t∈T
B 6|=s=t

¬(s = t)

Since T is finite, there exists a finite set {A1, . . . ,An} of states of A such that
every state of A is T -similar to one of the states Ai . The ASM that computes
the one-step transformation τA of A is the following parallel combination of
guarded updates:

if ϕA1 then PA1
A

...
if ϕAk

then PAk

A

Let B be a state of A. There exists a state Ai such that B is T -similar
to Ai . Hence, B satisfies the guard ϕAi

. By Corollary 7.2.1, it follows that
PB

A yields the update set ∆(A,B) in state B. By Corollary 7.2.2, it follows
that PB

A = PAi

A . Therefore, the ASM computes the update set ∆(A,B) which
is defined as τA(B)−B. In other words, the ASM can make a move from B
to τA(B) for each B ∈ S(A). Hence, the ASM simulates the algorithm A
step-for-step. ut

So far, the algorithm A has been deterministic. The postulates and the
main theorem, however, can be extended to non-deterministic algorithms.

7.2 Sequential ASM Thesis (A Proof from Postulates) 307

7.2.2 Bounded-Choice Non-Determinism

Non-deterministic algorithms are useful, for example, as higher-level descrip-
tions of complicated deterministic algorithms. There are two possibilities for
adding non-determinism to algorithms. In the first approach, the choices are
made by the environment via monitored functions that can be viewed as
external oracles. This approach is already covered by Theorem 7.2.1.

Sometimes it is convenient to pretend that the choices are made by the
algorithms themselves rather than by the environment. In that case the one-
step transformation τA of an algorithm is no longer a function from S(A)
to S(A) but a binary relation on S(A), i.e. τA ⊆ S(A)×S(A). The abstract-
state postulate has to be changed as follows:

– If (A,B) ∈ τA, then the base set of B is that of A.
– If A,B ∈ S(A) and α is an isomorphism from A to B, then for every

state A′ with (A,A′) ∈ τA there exists a state B′ with (B,B′) ∈ τA such
that α is an isomorphism from A′ to B′.

The ∆(A,A) is no longer a single update set but a set of possible update
sets. For each state B that is a possible successor state of A according to τA,
the difference B− A is added to ∆(A,A):

∆(A,A) = {B− A | (A,B) ∈ τA}

The uniformly-bounded-exploration postulate can then be used unchanged.
If a non-deterministic algorithm satisfies the non-deterministic versions

of the sequential-time, the abstract-state and the uniformly-bounded-explo-
ration postulates, then there exists a natural number k such that for each
state A ∈ S(A) the set {B | (A,B) ∈ τA} has at most k members. This can be
seen as follows. As in the deterministic case, each element that is used in an
update set of ∆(A,A) can be described by a critical term (cf. Lemma 7.2.1).
Since the set of critical terms is finite, there exists a bound for the number
of update sets in ∆(A,A) that depends on the algorithm A only and not on
the state A. The main theorem 7.2.1 remains valid except that the ASMs PA

A

now have the form

choose i ∈ {1, 2, . . . , k} do
if i = 1 then R1
...
if i = k then Rk

where the transition rules Ri consist of a finite set of parallel updates.

7.2.3 Critical Terms for ASMs

An ASM transition rule P of the signature Σ can be seen as an algorithm.
The states of P are arbitrary structures for Σ and all states are initial. The

308 7 Universal Design and Computation Model

one-step transformation of P is defined by τP (A) = A+[[P]]A (we assume that
P does not contain choose and hence P yields a unique update set [[P]]A in
state A). It is obvious that P satisfies the sequential-time and the abstract-
state postulate. The last part of the abstract-state postulate follows from
Lemma 2.4.2 and 2.4.12.

The transition rule P , however, may not satisfy the uniformly-bounded-
exploration postulate, e.g. if P contains forall or P contains quantifiers.
For example, the ShortestPath algorithm on p. 82 is highly parallel and
not sequential. The work performed by the algorithm in one step cannot be
bounded by a finite set of ground terms:

forall x , y with E (x , y) ∧ visited(x) ∧ ¬visited(y) do visited(y) := true

If we allow quantifiers in the guards of ASM rules, we can check in one step
whether a finite graph is a clique (complete graph):

if ∀x ∀y E (x , y) then clique := true else clique := false

The algorithm changes only one boolean 0-ary function clique, but it explores
the whole graph in one step and it is not uniformly-bounded.

ASM rules without forall and without quantifiers satisfy the uniformly-
bounded-exploration postulate. The proof of the following lemma shows how
we can obtain the set of critical terms. Together with Theorem 7.2.1 on the
sequential ASM thesis we can even use the lemma to eliminate let and seq
and to obtain normal forms of transition rules. Notice that in the presence
of seq, the rule let x = t in P is in general not equivalent to P t

x , since the
term t may contain dynamic functions that have different interpretations at
different occurrences of x in P .

Since in the presence of let not all terms are ground, we have to extend
the notion “two states coincide over T” to sets T of terms that may contain
variables.

Definition 7.2.4. Let T be a set of terms and ζ be a variable assignment.
Two states A and B coincide over T under ζ, if ζ(x) ∈ |A| ∩ |B| for every
variable x occurring in a term of T and [[s]]Aζ = [[s]]Bζ for each term s ∈ T .

Lemma 7.2.3 (Critical terms for ASMs). If an ASM rule is composed
of updates and skip using par, if-then-else (with quantifier-free guards),
let and seq, then it satisfies the uniformly-bounded-exploration postulate.

Proof. We show that for each such transition rule P , there exists a finite set T
of terms such that the variables of T are free variables of P and the following
two conditions hold:

1. If P yields the update set U in state A under ζ and A coincides with B
over T under ζ , then P yields U in B under ζ.

2. If P yields U in A under ζ, then every element occurring in an update
of U is a value of a term from T in A under ζ, i.e. El(U) ⊆ {[[s]]Aζ | s ∈ T}.

7.2 Sequential ASM Thesis (A Proof from Postulates) 309

The proof is by induction on the size of the transition rule P .
Case 1. f (s1, . . . , sn) := t : We choose T = {s1, . . . , sn , t}.
Case 2. P par Q : By the induction hypothesis, we obtain sets TP for P and
TQ for Q . We choose T = TP ∪ TQ .
Case 3. if ϕ then P else Q : By the induction hypothesis, we obtain sets TP

for P and TQ for Q . We choose

T = TP ∪ TQ ∪ {s, t | s = t is an equation in ϕ}.

If A and B coincide over T under ζ, then [[ϕ]]Aζ = [[ϕ]]Bζ , since ϕ is quantifier-
free and all terms occurring in atomic equations of ϕ have the same values
in A and B under ζ.
Case 4. let x = t in P : by the induction hypothesis, we obtain a term set TP

for P . We choose T = {s[t/x] | s ∈ TP} ∪ {t}, i.e. we substitute the term t
for x in every term of TP and finally add t to the set. Assume that A and B
coincide over T under ζ. Let a = [[t]]Aζ = [[t]]Bζ . Then A and B coincide
over TP under ζ[x 7→ a] (Lemma 2.4.6). The rule let x = t in P yields U
in A under ζ iff P yields U in A under ζ[x 7→ a].
Case 5. P seq Q : By the induction hypothesis, we obtain term sets TP for P
and TQ for Q . We choose T = TP ∪ T TP

Q (the exponentiation is defined
below). Assume that P yields a consistent update set U in A under ζ and
Q yields V in A + U under ζ. Hence, P seq Q yields U ⊕ V in A under ζ.
Assume that A and B coincide over T under ζ. By the induction hypothesis,
we know that P yields U in B under ζ and El(U) ⊆ {[[s]]Aζ | s ∈ T}. Hence
we can apply Lemma 7.2.4 below and obtain that A+ U and B+ U coincide
over TQ under ζ. By the induction hypothesis, it follows that Q yields V in
B + U under ζ. Hence, P seq Q yields U ⊕V in B under ζ. ut

What remains to be done is to define the exponentiation S T for sets of
terms S and T . First we denote by sT the set of terms that are obtained by
replacing some subterms in s by terms of T . The set sT can be defined by
induction on the size of s:

x T = {x}
cT = {c} ∪ T
f (s1, . . . , sn)T = {f (r1, . . . , rn) | ri ∈ sT

i for i = 1, . . . ,n} ∪ T

The term set sT is finite, if T is finite, and s ∈ sT . For a set S of terms we
define S T = {sT | s is subterm of a term of S}. Finally we have to prove the
following technical lemma that yields the properties of S T that are needed to
compute the critical terms for the sequential composition of transition rules.

Lemma 7.2.4. If A and B coincide over T∪S T under ζ and U is a consistent
update set such that all elements occurring in updates of U are values of terms
from T in A under ζ, then for each term s ∈ S there exists a term t ∈ sT

such that [[s]]A+U
ζ = [[t]]Aζ = [[t]]Bζ = [[s]]B+U

ζ .

310 7 Universal Design and Computation Model

Proof. We show by induction on the length of a subterm s of S that there
exists a term r ∈ sT such that [[s]]A+U

ζ = [[r]]Aζ = [[r]]Bζ = [[s]]B+U
ζ .

Let f (s1, . . . , sn) be a subterm (of a term) of S .
By the induction hypothesis, we obtain terms ri ∈ sT

i with

[[si]]A+U
ζ = [[ri]]Aζ = [[ri]]Bζ = [[si]]B+U

ζ for i = 1, . . . ,n.

Let l be the location (f , ([[s1]]A+U
ζ , . . . , [[sn]]A+U

ζ)).
Case 1. There exists an update for l in U :
By assumption, there exists a term t ∈ T such that (l , [[t]]Aζ) ∈ U . We have:

[[f (s1, . . . , sn)]]A+U
ζ = [[t]]Aζ = [[t]]Bζ = [[f (s1, . . . , sn)]]B+U

ζ

By definition, the term t belongs to f (s1, . . . , sn)T .
Case 2. There is no update for l in U : Then we have

[[f (s1, . . . , sn)]]A+U
ζ = f A+U ([[s1]]A+U

ζ , . . . , [[sn]]A+U
ζ)

= f A([[r1]]Aζ , . . . , [[rn]]Aζ)
= [[f (r1, . . . , rn)]]Aζ
= [[f (r1, . . . , rn)]]Bζ
= f B([[r1]]Bζ , . . . , [[rn]]Bζ)
= f B+U ([[s1]]B+U

ζ , . . . , [[sn]]B+U
ζ)

= [[f (s1, . . . , sn)]]B+U
ζ

Since the term f (r1, . . . , rn) belongs to f (s1, . . . , sn)T , the proof is completed.
ut

Problem 25 (Linear time lower bounds). In [56] it is shown that there
exists a lock-step universal sequential ASM U, i.e. for a constant c and under
honest time counting, U simulates every other sequential ASM in lock-step
with log factor c. The proof method yields linear-time hierarchy theorems for
random-access machines and ASMs. Use this linear-time hierarchy method
to establish linear lower bounds for interesting linear time problems.

Problem 26 (Computational complexity with respect to abstract
data types). Use ASMs to analyze the complexity of algorithms directly in
terms of their underlying data structure, to make the relation explicit between
the purely conceptual (“algorithmic”) complexity and the complexity due to
encodings into specific data structures.

Problem 27 (Framework for synchronous languages). In [61] an ax-
iomatic characterization of synchronous parallel computations is proposed.
It uses a notion of “sequential subprocesses” called proclets (“subprocesses
so small that they no longer involve unbounded parallelism”) which work in
parallel, communicating with each other by messages, to compute one overall

7.2 Sequential ASM Thesis (A Proof from Postulates) 311

synchronous parallel step. The axiomatic description, resulting from a general
epistemological analysis, is illustrated by classic examples, notably parallel
random-access machines, alternating Turing machines, and Boolean circuits.
These machines are easily modeled directly without going through proclets.
Compare for example the verbal description of the alternating Turing machine
in [61, Sect. 8.3] with the explicit composition of AlternatingTm (p. 290)
out of the ordinary TuringMachine and of AltTmSpawn – a simple refine-
ment of the standard subprocess creating machine OccamParSpawn (p. 43)
– as components. It would be interesting to try out proclets (or maybe use
sync ASMs?) to model in a real-time context the synchronous parallelism of
synchronous languages [266], e.g. Esterel [49] where an overall computation
step involving substeps of communicating parallel processes is described by
a fixpoint computation (to be guaranteed by program properties which are
checked by the compiler). Evaluate the ASM-based and the fixpoint-based
analysis, in particular concerning a transparent model for the semantics-
preserving implementation of synchronous parallel languages.

7.2.4 Exercises

Exercise 7.2.1. (; CD) Let T be the set of critical terms of an algorithm A
that satisfies the sequential-time, the abstract-state and the uniformly-
bounded-exploration postulate. Show that the following is not true: if two
states A and B of A coincide over T , then τA(A) and τA(B) also coincide
over T .

Sources and Historical Remarks

The ASM models in Sect. 7.1 are taken from [86, 91, 93]. Section 7.2 is based
on [249]. For a detailed historical account and a discussion of the method-
ological role of the ASM thesis see Chap. 9.

8 Tool Support for ASMs

In this chapter we discuss the various forms of tool support for the analysis
of ASMs, namely by mechanical verification systems and by environments to
refine ASMs into executable programs one can use for validation purposes.

8.1 Verification of ASMs

In the preceding chapters numerous proofs have been given to illustrate how
one can verify dynamic properties for given ASMs by exploiting the fact that
ASMs are not logical formulae, but machines coming with a notion of run
which lends itself to traditional inductive arguments. The proofs range from
simple to more challenging ones and are of a mathematical nature, provid-
ing for human experts, of the considered application domain or of software
design, arguments which are deemed to be rigorous and complete enough to
represent a verification of the claims of interest. Certainly such proofs pro-
vide no absolute guarantee, they may be incomplete or contain flaws. If the
complexity is not prohibitive, the proofs may be detailed further to become
still more trustworthy, e.g. by formalizations in appropriate logical calculi or
for mechanical machine-supported verification. This will entail a considerably
higher effort and cost, which the development manager should be aware of;
see the evaluation in [65] and the positive experience with the industrial use
of the B method [37].

There is no obstacle of principle to applying mechanical theorem proving
and model checking systems to verify the properties of ASMs. In fact KIV,
Isabelle, PVS and model checkers have been successfully used in this way
(for verifying correctness properties for compilers, architectures, protocols,
control programs etc., as has been pointed out in the preceding chapters)
and numerous logics have been developed to deal with specific features of
ASM verification (see Sect. 9.4.3 for detailed references). In Sect. 8.1.1 we
present the unifying logic developed in [405], which is tailored for ASMs in
terms of an atomic predicate for function updates (together with a definedness
predicate for the termination of the evaluation of turbo ASMs). This chapter
can be read independently of the others except for the definition of ASMs in
Sect. 2.4, but the reader is supposed to have a basic knowledge of first-order

314 8 Tool Support for ASMs

logic. In Sect. 8.2 we briefly explain the basic transformation of ASMs to
FSMs which underlies the applications of model checking to ASMs.

8.1.1 Logic for ASMs

The logic for ASMs that we describe in this section differs from other logics
that have been proposed for ASMs in two points: (i) it is complete for the
class of ASMs that do not contain cycles in the dependency graph of rule
declarations (so-called hierarchical ASMs); (ii) it can be applied also to turbo
ASMs where the evaluation of transition rules might not terminate.

The reader may wonder why a logic for a computationally universal mech-
anism like hierarchical ASMs can be complete at all? The answer is that the
logic is not able to talk about full ASM runs. Instead, the logic talks about
single steps of an ASM and therefore the logic is complete for statements
about the single steps of an ASM like the invariants of rules, the consistency
conditions for rules, or the step-for-step equivalence of rules. Moreover, the
completeness theorem holds for the uninterpreted logic, where the static func-
tions do not have a fixed standard interpretation. Hence, the logic is complete
in the same sense as first-order logic (FOL) is complete. In fact, it turns out
that the logic for ASMs is a definitional extension of FOL. This means that
the formulas of the rich language of the logic for ASMs (including the modal
operators and a special predicate for function updates) can be translated into
pure first-order formulas.

If we allow cycles in the dependency graph of rule declarations (as it is
allowed for turbo ASMs), then the logic cannot be complete, since iteration
and while-loops can be recursively defined and therefore it is possible to talk
about the outcome of full ASMs runs. The same arguments, that are used to
show that the dynamic logic is not complete, can be applied in this case.

Since ASMs are special instances of transition systems, the logic contains
modal operators. We do not, however, stick to modal logic, since in some sit-
uations it can be more convenient and even more economical to use functions
with an additional argument that specifies the nth state of the run of an
ASM (explicit time versus implicit time). This has been shown to be useful
in correctness proofs of ASM refinements (see Sect. 3.2.2).

What comes closest to the logic is known as dynamic logic with array
assignments [268, 269]. In the dynamic logic with array assignments, the
programs are sequential while-programs that manipulate arrays. There is no
notion of parallel execution. Hence, the dynamic logic with array assignments
is not concerned with the parallel execution of assignments and therefore does
not need a notion of consistency for programs. The substitution principle
which is used in its axiomatization is derivable (see Lemma 8.1.11).

For reasons that we explain below in Sect. 8.1.4 we exclude the choose
construct from the logic. This means that the transition rules that are allowed
in ASMs of the logic are deterministic. It does not mean that everything has
to be deterministic. The logic can still be used to prove the properties of

8.1 Veri�cation of ASMs 315

interactive ASMs where the environment updates certain locations, as long
as the assumptions about the environment can be formulated in FOL.

8.1.2 Formalizing the Consistency of ASMs

We let the letters P , Q , R range over the transition rules of ASMs as defined
in detail in Sect. 2.4.3. The transition rules are not allowed to contain the
choose construct. They may, however, contain a version of try-else. The
meaning of try P else Q is: execute P ; if it yields a consistent update set,
return the update set and do not execute Q at all; otherwise, execute Q and
the result of the whole transition rule is the evaluation of Q . In terms of the
calculus for the “yields” predicate in Table 2.2:

yields(P ,A, ζ,U)
yields(try P else Q ,A, ζ,U)

if U is consistent

yields(P ,A, ζ,U) yields(Q ,A, ζ,V)
yields(try P else Q ,A, ζ,V)

if U is inconsistent

We extend the language of first-order predicate logic (see Sect. 2.4.2) by
a modal operator [R] for each transition rule R. The intended meaning of a
formula [R]ϕ is that the formula ϕ is true after firing R. More precisely, the
formula [R]ϕ is true iff one of the following conditions is satisfied:

1. R is not defined or the update set of R is inconsistent, or
2. R is defined, the update set of R is consistent and ϕ is true in the next

state after firing the update set of R.

Equivalently we can say that the formula [R]ϕ is true in state A under the
variable assignment ζ iff for each update set U such that R yields U in A
under ζ and U is consistent, the formula ϕ is true in the state A+ U under ζ
(see Table 8.1).

In order to express the definedness and the consistency of the transi-
tion rules we extend the set of formulas by the atomic formulas def(R) and
upd(R, f , x , y). The semantics of these formulas is defined in Table 8.1. The
formula def(R) asserts that the rule R is defined. The rule R is defined in
a state A under a variable assignment α, if there exists an update set U
(consistent or contradictory) such that R yields U in A under ζ according to
Table 2.2. The formula upd(R, f , x , y) asserts that rule R is defined and yields
an update set which contains an update for f at x to y . The argument x of
the function f has to be read as a finite vector of variables.

The basic properties of def and upd are listed in Table 8.2 and Table 8.3.
Note that the equivalences in Table 8.2 and Table 8.3 are not the definitions
of def and upd. The equivalences are just properties which are true under the
interpretation of def and upd given in Table 8.1. The equivalences cannot be
considered as definitions, since D9 and U9 depend on the rule declarations of
the given ASM and the call graph of the rule definitions may contain cycles.

316 8 Tool Support for ASMs

Table 8.1 The semantics of modal formulas and basic predicates

[[[R]ϕ]]Aζ =

 true, if [[ϕ]]A+U
ζ = true for each consistent update set U

such that yields(R,A, ζ,U) is derivable in Table 2.2;
false, otherwise.

[[def(R)]]Aζ =

{
true, if there exists an update set U such that

yields(R,A, ζ,U) is derivable in Table 2.2;
false, otherwise.

[[upd(R, f , s, t)]]Aζ =

{
true, if there exists an update set U such that

yields(R,A, ζ,U) and ((f , [[s]]Aζ), [[t]]Aζ) ∈ U ;
false, otherwise.

Table 8.2 Axioms for definedness

D1. def(skip)

D2. def(f (s) := t)

D3. def(P par Q)↔ def(P) ∧ def(Q)

D4. def(if ϕ then P else Q)↔ (ϕ ∧ def(P)) ∨ (¬ϕ ∧ def(Q))

D5. def(let x = t in P)↔ ∃x (x = t ∧ def(P)) if x /∈ FV(t)

D6. def(forall x with ϕ do P)↔ ∀x (ϕ→ def(P))

D7. def(P seq Q)↔ def(P) ∧ [P]def(Q)

D8. def(try P else Q)↔ def(P) ∧ (Con(P) ∨ def(Q))

D9. def(r(t))↔ def(P t
x

) if r(x) = P is a rule declaration of M

Table 8.3 Axioms for updates

U1. ¬upd(skip, f , x , y)

U2. upd(f (s) := t , f , x , y)↔ s = x ∧ t = y , ¬upd(f (s) := t , g , x , y) if f 6= g

U3. upd(P par Q , f , x , y)↔ def(P par Q) ∧ (upd(P , f , x , y) ∨ upd(Q , f , x , y))

U4. upd(if ϕ then P else Q , f , x , y)↔ (ϕ∧upd(P , f , x , y))∨(¬ϕ∧upd(Q , f , x , y))

U5. upd(let z = t in P , f , x , y)↔ ∃z (z = t ∧ upd(P , f , x , y)) if z /∈ FV(t)

U6. upd(forall z with ϕ do P , f , x , y)↔
def(forall z with ϕ do P) ∧ ∃z (ϕ ∧ upd(P , f , x , y))

U7. upd(P seq Q , f , x , y)↔
(upd(P , f , x , y) ∧ [P]inv(Q , f , x)) ∨ (Con(P) ∧ [P]upd(Q , f , x , y))

U8. upd(try P else Q , f , x , y)↔
(Con(P) ∧ upd(P , f , x , y)) ∨ (def(P) ∧ ¬Con(P) ∧ upd(Q , f , x , y))

U9. upd(r(t), f , x , y)↔ upd(P t
z
, f , x , y) if r(z) = P is a rule declaration of M

8.1 Veri�cation of ASMs 317

The formula Con(R) used in D8, U7 and U8 asserts that R is defined and
consistent. It is an abbreviation defined as follows:

Con(R) = def(R) ∧
∧∧

f dyn.

∀x , y , z (upd(R, f , x , y) ∧ upd(R, f , x , z)→ y = z)

The formula is true in a state if, and only if, the rule R is defined in the state
and yields a consistent update set:

[[Con(R)]]Aζ = true ⇐⇒ there exists a consistent U with yields(R,A, ζ,U).

The formula inv(R, f , x) in U7 asserts that the rule R is defined and does not
update the function f at the argument x . It is a simple abbreviation defined
as follows:

inv(R, f , x) = def(R) ∧ ∀y ¬upd(R, f , x , y)

Note that it would be wrong to define the predicate upd(R, f , x , y) by saying
that f (x) is different from y in the present state but equal to y in the next
state after the firing of rule R:

upd(R, f , x , y) ⇐⇒ f (x) 6= y ∧ [R]f (x) = y (wrong definition)

Using this definition, the predicate upd(f (0) := 1, f , 0, 1) would be false in a
state where f (0) is equal to 1, although the rule f (0) := 1 does update the
function f at the argument 0 to 1.

8.1.3 Basic Axioms and Proof Rules of the Logic

The set of formulas (Def. 2.4.14) is extended such that it includes also
formulas [R]ϕ containing the modal operator [R] and formulas def(R) and
upd(R, f , s, t) containing the new basic predicates. The formulas of the logic
for abstract state machines are generated by the following grammar:

ϕ,ψ ::= s = t | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | ϕ→ ψ | ∀x ϕ | ∃x ϕ |
def(R) | upd(R, f , s, t) | [R]ϕ

A formula is called pure (or first-order), if it contains neither the predicate
def nor upd nor the modal operator [R]. A formula is called static, if it does
not contain dynamic function names. The class of formulas that are used as
guards in if-then-else or to specify ranges in forall is not extended. It still
consists of the first-order formulas as in Sect. 2.4.3.

The semantics of formulas is given by the definitions in Table 2.1 and
Table 8.1. Since formulas now contain rule names and the interpretation of
rule names depends on a given abstract state machine M consisting of a set
of rule declarations, we have to make M explicit when defining the notion of
logical consequence:

Definition 8.1.1 (Logical consequence). Let M be an ASM. A formula ϕ
is a logical consequence of a set Ψ of formulas with respect to M (written
Ψ |=M ϕ), if [[ϕ]]Aζ = true for all states A and variable assignments ζ such
that [[ψ]]Aζ = true for every ψ ∈ Ψ .

318 8 Tool Support for ASMs

The substitution of a term t for a variable x in a formula ϕ is denoted
by ϕ t

x and is defined as usual. Variables bound by a quantifier, a let or a
forall have to be renamed when necessary. The substitution is also performed
inside the transition rules that occur in formulas. The following substitution
property holds (cf. Lemmas 2.4.6, 2.4.8, 2.4.11).

Lemma 8.1.1 (Substitution for modal formulas). Let t be a static term
and a = [[t]]Aζ . Then [[ϕ]]Aζ[x 7→a] = [[ϕ t

x]]Aζ .

We define two transition rules P and Q to be equivalent, if they are defined
and consistent in the same states and produce the same next state when
they are fired. An observer from outside cannot distinguish two equivalent
transition rules by just looking at the runs generated by them.

Definition 8.1.2 (Equivalence). The formula P ' Q is defined as follows:

P ' Q = (Con(P) ∨ Con(Q))→ (Con(P) ∧ Con(Q) ∧∧∧
f dyn.

∀x , y (upd(P , f , x , y)→ (upd(Q , f , x , y) ∨ f (x) = y)) ∧∧∧
f dyn.

∀x , y (upd(Q , f , x , y)→ (upd(P , f , x , y) ∨ f (x) = y)))

The formula P ' Q has the intended meaning:

Lemma 8.1.2. The formula P ' Q is true in A under ζ iff the following
two conditions are true:

1. [[Con(P)]]Aζ = [[Con(Q)]]Aζ
2. If P yields U in A under ζ and Q yields V in A under ζ, and U and V

are consistent, then A + U = A + V .

We already know that the axioms D1–D9 and U1–U9 are valid for a given
abstract state machine M . Together with the following principles they will
be the basic axioms and proof rules of the logic L(M). We start with the
standard axioms and rules of the classical predicate calculus with equality.
The quantifier axioms 1 and 2 as well as the substitution scheme, however,
have to be restricted to static terms which do not contain dynamic function
names. The reason for the restriction is that, if we substitute a term t for
a variable x , then t can be evaluated in a different states due to the modal
operators.

Axiom 3 is the so-called axiom K of modal logic. Together with the ne-
cessitation rule 4 it allows us to derive all the modal principles that are valid
in arbitrary Kripke frames. Axiom 5 uses the fact that a rule R which is not
defined or yields an inconsistent update set cannot be fired in a state. Since
there is no successor state in this case, the necessity operator [R] is trivial.
Axiom 6 can be applied because the transition rules are deterministic. In
modal logic the axiom for deterministic accessibility relations is written as
3ϕ→ 2ϕ or ¬2¬ϕ→ 2ϕ.

8.1 Veri�cation of ASMs 319

The Barcan axiom 7 is true, since the universe does not change during
the run of an ASM. Hence the quantifiers range over the same set in every
state of a computation. Axioms 8 and 9 assert that the meaning of pure,
static first-order formulas (which do not contain dynamic function names) is
the same in all states of a computation.

Axiom 12 asserts that if a rule updates a function, then the rule is defined.
Axiom 13 says that, if a rule updates a function f at the argument x to the
value y , then in the next state the value of f at x is equal to y . If the rule
does not update f at the argument x , then the value of f in the next state is
the same as in the present state (Axiom 14).

The extensionality axiom 15 asserts that the modal operators of two equiv-
alent transition rules are the same. Axioms 16 and 17 are wellknown from
dynamic logic. They express the property that the empty rule has no effect
on a state and that the sequential composition of transition rules corresponds
to their sequential execution.

I. Classical logic with equality: We use the axioms and proof rules of the
classical predicate calculus with equality. The quantifier axioms, however, are
restricted.
II. Restricted quantifier axioms:

1. ∀x ϕ→ ϕ t
x if t is static or ϕ is pure

2. ϕ t
x → ∃x ϕ if t is static or ϕ is pure

III. Modal axioms and proof rules:

3. [R](ϕ→ ψ) ∧ [R]ϕ→ [R]ψ
4.

ϕ

[R]ϕ
5. ¬Con(R)→ [R]ϕ
6. ¬[R]ϕ→ [R]¬ϕ

IV. The Barcan axiom:

7. ∀x [R]ϕ→ [R]∀xϕ if x /∈ FV(R).

V. Axioms for pure static formulas:

8. ϕ→ [R]ϕ if ϕ is pure and static
9. Con(R) ∧ [R]ϕ→ ϕ if ϕ is pure and static

VI. Axioms for def and upd:

10. D1–D9 in Table 8.2
11. U1–U9 in Table 8.3

VII. Update axioms for transition rules:

12. upd(R, f , x , y)→ def(R)

320 8 Tool Support for ASMs

13. upd(R, f , x , y)→ [R]f (x) = y
14. inv(R, f , x) ∧ f (x) = y → [R]f (x) = y

VIII. Extensionality axiom for transition rules:

15. P ' Q → ([P]ϕ↔ [Q]ϕ)

IX. Axioms from dynamic logic:

16. [skip]ϕ↔ ϕ
17. [P seq Q]ϕ↔ [P][Q]ϕ

The notion of derivability is defined as usual.

Definition 8.1.3 (Derivablility in the logic). Let M be an ASM. We
write Ψ `M ϕ, if there exists a finite subset Θ ⊆ Ψ such that the formula∧∧
Θ → ϕ is derivable using the axioms and proof rules I–IX.

Note that axioms D9 and U9 depend on the rule declarations of the given
abstract state machine M . Therefore, M has to be added as a parameter in
Ψ `M ϕ. Since the principles I–IX are valid, the logic is sound.

Theorem 8.1.1 (Soundness of the logic). If Ψ `M ϕ, then Ψ |=M ϕ.

Remark 8.1.1. The formula ∀x ϕ → ϕ t
x is not valid for non-static terms t .

Consider the following tautology:

∀x (x = 0→ [f (0) := 1]x = 0).

If we substitute the term f (0) for x , then we obtain the formula

f (0) = 0→ [f (0) := 1]f (0) = 0.

This formula is not valid. Hence, the quantifier axioms must be restricted.

Several axioms use the formula Con(R), which asserts the consistency of
the transition rule R. For example, Con(R) is used in Axioms 5 and 9 as
well as in the extensionality Axiom 15. Since the notion of consistency is
fundamental, we mention several equivalences which express the consistency
of a compound transition rule in terms of the consistency of its components.

Lemma 8.1.3. The following consistency properties are derivable:

18. Con(skip)
19. Con(f (s) := t)
20. Con(P par Q)↔ Con(P) ∧ Con(Q) ∧ joinable(P ,Q)
21. Con(if ϕ then P else Q)↔ (ϕ ∧ Con(P)) ∨ (¬ϕ ∧ Con(Q))
22. Con(let x = t in P)↔ ∃x (x = t ∧ Con(P)) if x /∈ FV(t)
23. Con(forall x with ϕ do P)↔

∀x (ϕ→ Con(P) ∧ ∀y(ϕ y
x → joinable(P ,P y

x))
24. Con(P seq Q)↔ Con(P) ∧ [P]Con(Q)

8.1 Veri�cation of ASMs 321

25. Con(try P else Q)↔ Con(P) ∨ (def(P) ∧ Con(Q))
26. Con(r(t))↔ Con(P t

x) if r(x) = P is a rule declaration of M

The predicate joinable(P ,Q) which is used in property 20 above to reduce
the consistency of a parallel composition P par Q into consistency properties
of P and Q is defined as follows (where x , y , z are not free in P):

joinable(P ,Q) =
∧∧

f dyn.

∀x , y , z (upd(P , f , x , y) ∧ upd(Q , f , x , z)→ y = z)

It expresses the property that the update sets of P and Q do not conflict.
This means that whenever P and Q both update a function f at the same
argument x , then the new values of f at x are the same.

If a function f (x) is equal to y in the next state after firing a consistent
rule R, then either R does update the function f at the argument x to y or
R does not update the function f at the argument x and f (x) is equal to y
in the present state. This principle is not a basic axiom of the logic, since it
is derivable.

Lemma 8.1.4. The following principles are derivable:

27. Con(R) ∧ [R]f (x) = y → upd(R, f , x , y) ∨ (inv(R, f , x) ∧ f (x) = y)
28. Con(R) ∧ [R]ϕ→ ¬[R]¬ϕ
29. [R]∃x ϕ↔ ∃x [R]ϕ, if x /∈ FV(R).

Axiom U7 and Axiom 14 use the predicate inv(R, f , x) that expresses the
property that the rule R is defined and does not update the function f at
the argument x . The following properties of inv are useful if one has to show
that a compound transition rule does not update certain functions at certain
arguments.

Lemma 8.1.5. The following properties of inv are derivable:

30. inv(skip, f , x)
31. inv(f (s) := t , f , x)↔ x 6= s
32. inv(P par Q , f , x)↔ inv(P , f , x) ∧ inv(Q , f , x)
33. inv(if ϕ then P else Q)↔ (ϕ ∧ inv(P , f , x)) ∨ (¬ϕ ∧ inv(Q , f , x))
34. inv(let z = t in P , f , x)↔ ∃z (z = t ∧ inv(P , f , x)) if z /∈ FV(t)
35. inv(forall z with ϕ do P , f , x)↔ ∀z (ϕ→ inv(P , f , x)))
36. inv(P seq Q , f , x)↔ inv(P , f , x) ∧ [P]inv(Q , f , x)
37. inv(try P else Q , f , x)↔

(Con(P) ∧ inv(P , f , x)) ∨ (def(P) ∧ ¬Con(P) ∧ inv(Q , f , x))
38. inv(r(t), f , x)↔ inv(P t

z , f , x) if r(z) = P is a rule declaration of M

The system for formal reasoning about abstract state machines of [238]
contains also for every rule R a modal operator [R]. The logic contains besides
true and false a third truth-value which stands for undefined. The basic
axioms FM1, FM2, AX1, AX2 of [238] are derivable in our system using
the update Axioms 13 and 14.

322 8 Tool Support for ASMs

Lemma 8.1.6. The following principles of [238] are derivable:

39. s = x → (y = t ↔ [f (s) := t]f (x) = y)
40. s 6= x → (y = f (x)↔ [f (s) := t]f (x) = y)
41. [P]f (x) = y ∧ [Q]f (x) = y → [P par Q]f (x) = y
42. f (x) 6= y ∧ ([P]f (x) = y ∨ [Q]f (x) = y)→ [P par Q]f (x) = y .

The following inverse implication of principles 41 and 42 is not mentioned
in [238] (maybe because of the lack of a consistency notion), but is derivable
here:

Con(P par Q) ∧ [P par Q]f (x) = y →
([P]f (x) = y ∧ [Q]f (x) = y) ∨ (f (x) 6= y ∧ ([P]f (x) = y ∨ [Q]f (x) = y))

Several principles known from dynamic logic are derivable using the exten-
sionality Axiom 15.

Lemma 8.1.7. The following principles are derivable:

43. [if ϕ then P else Q]ψ ↔ (ϕ ∧ [P]ψ) ∨ (¬ϕ ∧ [Q]ψ)
44. [let x = t in P]ϕ↔ ∃x (x = t ∧ [P]ϕ), if x /∈ FV(t) ∪ FV(ϕ).
45. [try P else Q]ϕ↔ [P]ϕ ∧ ((def(P) ∧ ¬Con(P))→ [Q]ϕ)
46. [r(t)]ϕ↔ [P t

x]ϕ, if r(x) = P is a rule declaration of M .

A more intensional equivalence of rules can be defined as follows:

P
.' Q = (def(P) ∨ def(Q))→ (def(P) ∧ def(Q) ∧∧∧

f dyn.

∀x , y (upd(P , f , x , y)↔ upd(Q , f , x , y)))

The formula P
.' Q asserts that the transition rules P and Q are defined in

the same states and yield the same update sets. The so-obtained notion of
equivalence is stronger than the one used in the extensionality Axiom 15.

Lemma 8.1.8. P
.' Q → P ' Q is derivable.

In the sequent calculus for an extended dynamic logic proposed in [394]
to express the properties of ASMs, new rules are introduced that express the
commutativity, the associativity and similar properties of the parallel com-
bination of the transition rules. In our system, these properties are derivable
(cf. Exercise 2.4.10).

Lemma 8.1.9. The following principles of [394] are derivable:

47. (P par skip)
.' P

48. (P par Q)
.' (Q par P)

49. ((P par Q) par R)
.' (P par (Q par R))

50. (P par P)
.' P

51. (if ϕ then P else Q) par R
.' if ϕ then (P par R) else (Q par R)

52. R par (if ϕ then P else Q)
.' if ϕ then (R par P) else (R par Q)

8.1 Veri�cation of ASMs 323

If we can derive P
.' Q in the logic, then we immediately obtain the

principle [P]ϕ↔ [Q]ϕ using Lemma 8.1.8 and the extensionality Axiom 15.
For example, the commutativity of the parallel composition yields:

53. [P par Q]ϕ↔ [Q par P]ϕ

Lemma 8.1.10. The following properties of the sequential composition are
derivable:

54. (P seq skip)
.' P

55. (skip seq P)
.' P

56. ((P seq Q) seq R)
.' (P seq (Q seq R))

57. (if ϕ then P else Q) seq R
.' if ϕ then (P seq R) else (Q seq R)

The dynamic logic with array assignments (see [268]) uses a substitution
principle which is derivable in our system. Let ϕ be a quantifier-free, pure
(first-order) formula. Then by ϕ t

f (s) we denote the formula which is obtained
in the following way. First, ϕ is transformed into an equivalent formula

ϕ↔ ∃x ∃y
(n∧∧

i=1

f (xi) = yi ∧ ψ
)
,

where x = x1, . . . , xn , y = y1, . . . , yn and ψ does not contain f . Then we
define:

ϕ t
f (s) = ∃x ∃y

(n∧∧
i=1

((xi = s ∧ yi = t) ∨ (xi 6= s ∧ f (xi) = yi)) ∧ ψ
)

The substitution of t for f (s) can be generalized to arbitrary first-order for-
mulas by first bringing them into prenex form and then applying the trans-
formation to the quantifier-free kernel.

Lemma 8.1.11. For any first-order formula ϕ, the following substitution
principle is derivable: ϕ t

f (s) ↔ [f (s) := t]ϕ.

An ASM is called simple, if it is defined by a single rule R, which has the
following form:

if ϕ1 then f (s1) := t1
if ϕ2 then f (s2) := t2

...
if ϕn then f (sn) := tn

R

Simple ASMs have the obvious properties formulated in the following
lemma. Property 61 is a variant of the basic axiom that is used in [365]
to prove the partial correctness of imperative programs. It can easily be
extended to disjoint if-then rules with simultaneous function updates.

Lemma 8.1.12. Let R be the rule of a simple ASM. Then,

324 8 Tool Support for ASMs

58. Con(R)↔
∧∧
i<j

(ϕi ∧ ϕj ∧ si = sj → ti = tj)

59. upd(R, f , x , y)↔
n∨∨

i=1

(ϕi ∧ x = si ∧ y = ti)

60. inv(R, f , x)↔
n∧∧

i=1

(ϕi → x 6= si)

61.
n∨∨

i=1

ϕi ∧
∧∧
i<j

¬(ϕi ∧ ϕj) ∧
n∧∧

i=1

(ϕi → ψ ti

f (si)
)→ [R]ψ, if ψ is first-order.

Iteration can be reduced to recursion. We can define the while rule re-
cursively, as follows (cf. Example 4.1.2):

while ϕ do P = if ϕ then (P seq while ϕ do P)

The expression while ϕ do P has to be read as a rule call r(x), where x are
the free variables of ϕ and P . So the above equation stands for the following
rule declaration:

r(x) = if ϕ then (P seq r(x))

Lemma 8.1.13. The following properties of the while rule are derivable:

62. Con(while ϕ do P)↔ (ϕ→ Con(P) ∧ [P]Con(while ϕ do P))
63. [while ϕ do P]ψ ↔ (ϕ ∧ [P][while ϕ do P]ψ) ∨ (¬ϕ ∧ ψ)

Several properties of ASMs can be expressed in the basic logic. Let M be
the distinguished rule name of the ASM and ϕinit a formula characterizing
the initial states of M . Then we can express:

– ψ is an invariant of M by (ϕinit → ψ) ∧ (ψ → [M]ψ).
– ψ ensures the consistency of M by (ϕinit → ψ) ∧ (ψ → Con(M) ∧ [M]ψ).

Compiler correctness. The statement in [406] for the correctness of the
compiler from Java to the JVM can be formulated as follows:

(ϕinit → ϕeqv) ∧
(ϕeqv → [J](ϕeqv ∨ [V]ϕeqv ∨ [V][V]ϕeqv ∨ [V][V][V]ϕeqv))

Here, J is an ASM that specifies the semantics of a Java source level program
according to the Java Language Specification; V is an ASM that specifies
the Java Virtual Machine. The two ASMs have disjoint dynamic function
names and use the same static functions. The formula ϕeqv expresses that
two dynamic states of the two ASMs are equivalent for a given Java program
and its compiled bytecode program. The above formula says, that if two
states are equivalent, then for each step of the Java source code interpreter J
the bytecode interpreter V has to make zero, one, two or three steps to
reach an equivalent state again. The proof in [406], which comprises 83 cases,
could be mechanically checked in the basic system with appropriate structural
induction principles for lists and abstract syntax trees (which are encoded
using static functions).

8.1 Veri�cation of ASMs 325

Problem 28 (Mechanical verification of Java-to-JVM compilation
and bytecode verification). Use your favorite theorem prover (PVS, Is-
abelle, KIV, . . .) to mechanically verify the correctness and completeness
proofs given in [406] on the basis of ASM models for the Java-to-JVM com-
pilation and JVM bytecode verification.

Verification of MergeSort. For an application of the logic to turbo ASMs
consider the following specification of the MergeSort algorithm:

Msort(l , r) =
if l < r then

let m = b(l + r)/2c in
(Msort(l ,m) par Msort(m + 1, r)) seq Merge(l ,m, r)

The ASM uses a unary dynamic function f that represents an array. The
parameters l and r in Msort(l , r) are the left and the right bound of the
subarray f (l . . r) that has to be sorted.

f · · ·
↑
l

· · · ·
↑
m

· · · ·
↑
r

· · · ·

The middle point m between l and r is computed and the subarrays f (l . .m)
and f (m + 1 . . r) are recursively sorted in parallel by the calls Msort(l ,m)
and Msort(m + 1, r). After that, the two sorted halves are merged together
using Merge(l ,m, r):

Merge(l ,m, r) =
(forall i with l ≤ i ≤ r do g(i) := f (i)) seq
MergeCopy(l ,m,m + 1, r , l)

MergeCopy(i ,m, j , r , k) =
if k ≤ r then

if (i ≤ m ∧ j ≤ r ∧ g(i) ≤ g(j)) ∨ (r < j) then
f (k) := g(i) par MergeCopy(i + 1,m, j , r , k + 1)

else
f (k) := g(j) par MergeCopy(i ,m, j + 1, r , k + 1)

A second unary function g is used in which a copy of f is stored before the
merging starts. MergeCopy(i ,m, j , r , k) merges the subarrays g(i . .m) and
g(j . . r) into f (k . . r). The parameter i runs over the first half of g from l
to m; the parameter j runs over the second half of g from m + 1 to r ; the
parameter k runs over the whole array f from l to r .

The following statements about the Msort algorithm can then be derived
in the logic using additional axioms for induction on natural numbers:

– Msort always terminates and computes a consistent set of updates:

∀l , r ∈ NCon(Msort(l , r))

326 8 Tool Support for ASMs

– The result of executing Msort is an ordered array:

∀l , r ∈ N [Msort(l , r)]∀i (l ≤ i < r → f (i) ≤ f (i + 1))

– The result of Msort is a permutation of the original array:

∀l , r ∈ N∃π ∈ Perm([l . . r])∀i ∈ [l . . r] upd(Msort(l , r), f , i , f (π(i)))

– There are no updates outside of the subarray f (l . . r):

∀l , r ∈ N∀x , y (upd(Msort(l , r), f , x , y)→ x ∈ [l . . r])

The machines Msort, Merge and MergeCopy can then be refined to
sequential programs Msort

′, Merge
′ and MergeCopy

′ by replacing every
occurrence of the parallel composition par by the seq operator. The formula

∀l , r ∈ N (Msort(l , r)
.'Msort

′(l , r))

expresses that the refinement is correct.

8.1.4 Why Deterministic Transition Rules?

If a transition rule contains choose then it is no longer deterministic. For a
given transition rule R there can be several different update sets U such that
yields(R,A, ζ,U) is derivable in Table 2.2. In the definition of a run of an
ASM (Def. 2.4.22) one has to choose an update set in each step to obtain the
next state of the run. As a consequence, there can be several different runs
for a given initial state of a machine.

Unfortunately, the formalization of consistency cannot be applied directly
to non-deterministic ASMs. The formula Con(R) (as defined in Sect. 8.1.2)
expresses the property that the union of all possible update sets of R in a
given state is consistent. This is clearly not what is meant by consistency.
Therefore, in a logic for ASMs with choose one had to add Con(R) as an
atomic formula to the logic.

The first question would be, what is the semantics of Con(R) for possibly
non-deterministic rules? One possibility would be to define

[[Con(R)]]Aζ = true ⇐⇒ for each update set U , if yields(R,A, ζ,U),
then U is consistent.

Hence, R is consistent, if each update set for R is consistent. (If R is not de-
fined in state A, it is considered as consistent, too.) But then, the property 20
of Lemma 8.1.3 is no longer true:

Con(P par Q)→ Con(P)

For example, if Q is not defined in a state, then the parallel composition
P par Q is also not defined and therefore, by definition, consistent. The
rule P , however, could be inconsistent. Property 20 could be re-written as
follows:

Con(P par Q)↔ (def(P par Q)→ Con(P) ∧ Con(Q) ∧ joinable(P ,Q))

8.1 Veri�cation of ASMs 327

Another possibility would be to define the consistency of rules as weak
consistency :

[[Con(R)]]Aζ = true ⇐⇒ there exists a consistent update set U
such that yields(R,A, ζ,U).

For this weak notion of consistency, however, we could not use the relation
joinable(P ,Q) in property 20 in Lemma 8.1.3. It is not clear what we should
use instead:

Con(P par Q)↔ Con(P) ∧ Con(Q) ∧ ?

A third possibility is to combine definedness and strong consistency as
follows:

[[Con(R)]]Aζ = true ⇐⇒ there exists an update set U
such that yields(R,A, ζ,U), and
for each update set U , if yields(R,A, ζ,U),
then U is consistent.

But what about property 24 in Lemma 8.1.3? Is the following implication
still true under the new interpretation of consistency?

Con(P seq Q)→ [P]Con(Q)

Assume that P yields U in A under ζ and U is consistent. How do we know
that the rule Q is defined in state A + U ? How do we know that there exists
a V such that Q yields V in A + U under ζ?

One problem remains in all three cases, namely how to characterize the
update predicate for sequential compositions (Axiom U7 in Table 8.3). What
should be on the right-hand side of the following equivalence?

upd(P seq Q , f , x , y)↔ ?

Consider the case, where P yields U in A under ζ and U is consistent,
((f , a), b) ∈ U and the rule Q does not update the function f at the argu-
ment a in the state A+ U after firing the rule P with the update set U in A.
This case cannot be expressed by the formula

upd(P , f , a, b) ∧ [P]inv(Q , f , a),

since the rule P could have several different consistent update sets and the
rule Q could update the function f at the argument a after firing one of
them, although it does not after firing the given update set U of P .

Because of all the problems, it seems impossible to find natural and simple
axioms for the choose rule together with sequential composition and recur-
sive rule declarations. Therefore we follow the approach that non-determinism
is modeled from outside by choice functions such that, in the view of the tran-
sition rules, everything is deterministic (cf. Remark 2.4.1).

328 8 Tool Support for ASMs

8.1.5 Completeness for Hierarchical ASMs

The main technical result of this section is that the logic is complete for
so-called hierarchical ASMs.

Definition 8.1.4 (Hierarchical ASM). An ASM is called hierarchical, if
the call graph of the rule declarations does not contain cycles.

An ASM is hierarchical iff it is possible to assign levels to the rule names
of the machine such that in each rule declaration r(x) = P the levels of rule
names in P are less than the level of r .

In an earlier version of [405] the completeness of the logic for hierarchi-
cal ASMs was obtained via an extension of the Henkin model construction.
Later, G. R. Renardel de Lavalette observed that, in the case of hierarchi-
cal ASMs, the logic for ASMs is a definitional extension of first-order logic
(FOL). This means that there exists a translation of formulas ϕ of the logic
for a hierarchical ASM M into first-order formulas ϕ∗ with the following
properties:

1. The equivalence ϕ↔ ϕ∗ is derivable in L(M).
2. If ϕ is derivable in L(M), then ϕ∗ is derivable in FOL.

Hence, for hierarchical ASMs, it is possible to eliminate the modal opera-
tor [R] as well as the atomic formulas def(R) and upd(R, f , s, t). Due to par-
allel updates, however, the translation of modal formulas into FOL is more
complicated than the comparable embedding of the logic of modification and
creation in [373].

We first observe that the transition rules of hierarchical ASMs are always
defined. If R is a transition rule which uses rules from a hierarchical ma-
chine M , then the formula def(R) is derivable in L(M). Therefore we can
identify the formula def(R) with the constant > (true).

Moreover, we can assume that atomic formulas are restricted to simple
formulas x = y , f (x) = y , upd(R, f , x , y). To bring general atomic formulas
into this form, one can apply the following principles of L(M):

s = t ↔ ∃x (s = x ∧ t = x)
upd(R, f , s, t) ↔ ∃x , y (s = x ∧ t = y ∧ upd(R, f , x , y))
f (s) = y ↔ ∃x (s = x ∧ f (x) = y)

The translation of modal formulas into FOL distributes over negation,
boolean connectives and quantifiers. For eliminating upd(R, f , x , y) we use
the axioms U1–U9 in Table 8.3. For eliminating the modal operator [R] in
[R]ϕ we first translate ϕ into a first-order formula and use then the following
equivalences of L(M):

8.1 Veri�cation of ASMs 329

[R]x = y ↔ (Con(R)→ x = y)
[R]f (x) = y ↔ (Con(R)→ upd(R, f , x , y) ∨ (inv(R, f , x) ∧ f (x) = y))
[R]¬ϕ ↔ (Con(R)→ ¬[R]ϕ)
[R](ϕ ∧ ψ) ↔ ([R]ϕ ∧ [R]ψ)
[R](ϕ ∨ ψ) ↔ ([R]ϕ ∨ [R]ψ)
[R](ϕ→ ψ) ↔ ([R]ϕ→ [R]ψ)
[R]∀x ϕ ↔ ∀x [R]ϕ
[R]∃x ϕ ↔ ∃x [R]ϕ

In order to see that the translation is well-defined we define a rank for for-
mulas and transition rules. The rank is also used to show that the translation
into FOL has the above property 1.

|s = t | = 0
|¬ϕ| = |ϕ|+ 1
|ϕ ∧ ψ| = |ϕ ∨ ψ| = |ϕ→ ψ| = max(|ϕ|, |ψ|) + 1
|∀x ϕ| = |∃x ϕ| = |ϕ|+ 1
|upd(R, f , x , x)| = |ψ|+ 1, if upd(R, f , x , x)↔ ψ is an instance of U1–U9
|[R]ϕ| = |R|+ |ϕ|+ 1
|R| = max(|Con(R)|, |upd(R, f , x , y)|, |inv(R, f , x)|) + 1

That the rank is defined for each formula ϕ and transition rule R can be
seen as follows. First, one assigns levels to the rule names of the hierarchical
ASM such that the levels in the rule body are less than the level of the rule
name for each rule declaration. Then one shows by main induction on the
maximum level of a rule name occurring in ϕ or R and side induction on the
size (number of symbols) of ϕ or R that |upd(R, f , x , y)| and |ϕ| is defined.

The completeness and compactness theorems then follow from the corre-
sponding results for FOL.

Theorem 8.1.2 (Completeness). Let M be a hierarchical ASM and Ψ be
a set of sentences. If Ψ |=M ϕ, then Ψ `M ϕ.

Theorem 8.1.3 (Compactness). If each finite subset of a set of formulas Ψ
is satisfiable, then Ψ is satisfiable.

Remark 8.1.2 (Incompleteness for turbo ASMs). For ASMs with recursive
rule declarations the logic is incomplete. Consider an ASM over the vocabu-
lary of arithmetic with the following recursive rule declaration (there are no
dynamic function names):

r(x , y) = if x = y then skip else r(x , y + 1)

Let ϕN be the conjunction of the following seven formulas:

∀x (x + 1 6= 0) ∀x , y (x + 1 = y + 1→ x = y)
∀x (x + 0 = x) ∀x , y (x + (y + 1) = (x + y) + 1)
∀x (x ∗ 0 = x) ∀x , y (x ∗ (y + 1) = (x ∗ y) + x)
∀x def(r(x , 0))

330 8 Tool Support for ASMs

Note that yields(r(x , t),A, ζ,U) is derivable in Table 2.2 iff U is the empty set
and ζ(x) = [[t + 1 + . . .+ 1]]Aζ . Hence, [[def(x , 0)]]Aζ = true iff ζ(x) is reachable
from 0 by a finite number of successor steps. Therefore a structure A is a
model of ϕN iff A is isomorphic to the structure of natural numbers. An
arithmetical sentence ψ is true in the structure of natural numbers iff the
formula ϕN → ψ is valid. Since the set of true arithmetical sentences is not
recursively enumerable, there cannot be a finitary, sound and complete formal
system for the logic.

Remark 8.1.3. The extensionality Axiom 15, Axiom 16 for skip and Ax-
iom 17 for the sequential compositions are not used for the completeness
Theorem 8.1.2. Since the axioms are valid, they must be derivable for hier-
archical ASMs (as a consequence of the completeness theorem).

8.1.6 The Henkin Model Construction

In this section we present a different completeness proof that follows the tradi-
tional Henkin-style completeness proof for classical first-order predicate logic.
We do not expand the language by so-called witnessing constants (Henkin
constants) but use variables for that purpose. This is possible because we
consider countable signatures only. We start with some standard definitions.

Definition 8.1.5. A set Φ of formulas is satisfiable iff there exists a struc-
ture A and a variable assignment ζ such that [[ϕ]]Aζ = true for each ϕ ∈ Φ.

Definition 8.1.6. A set Φ of formulas is inconsistent iff there exists a finite
subset Ψ ⊆ Φ such that

∧∧
Ψ → ⊥ is derivable.

Definition 8.1.7. A set Φ of formulas is maximal consistent iff the following
two conditions are true:

1. Φ is consistent.
2. If Φ ∪ {ϕ} is consistent, then ϕ ∈ Φ.

Definition 8.1.8. A set Φ of formulas contains witnesses iff for each formula
∃x ϕ ∈ Φ there exists a variable y such that ϕ y

x ∈ Φ.

Proposition 8.1.1. If Φ is a consistent set of sentences, then there exists a
maximal consistent set Ψ such that Φ ⊆ Ψ and Ψ contains witnesses.

Lemma 8.1.14. Let Φ be a maximal consistent set of formulas.

1. For each formula ϕ, either ϕ ∈ Φ or ¬ϕ ∈ Φ.
2. If ϕ ∈ Φ and ϕ→ ψ is derivable, then ψ ∈ Φ.

For a set Φ and a transition rule R the set ΦR is defined to be the set of
formulas ϕ such that [R]ϕ is in Φ:

ΦR = {ϕ | [R]ϕ ∈ Φ}

8.1 Veri�cation of ASMs 331

If Φ is the set of formulas which are true in a state A and if R is consistent
in A, then ΦR is the set of formulas which are true after firing the rule R in
state A.

Lemma 8.1.15. Let Φ be a maximal consistent set of formulas that con-
tains witnesses. If Con(R) ∈ Φ, then ΦR is maximal consistent and contains
witnesses.

Proof. We first show that ΦR is consistent. Suppose that ΦR is inconsistent
and Ψ is a finite subset of ΦR such that

∧∧
Ψ → ⊥ is derivable. By Axiom 3

and Rule 4, it follows that
∧∧
{[R]ϕ | ϕ ∈ Ψ} → [R]⊥ is derivable. According

to the definition of ΦR, the formula [R]ϕ is in Φ for each ϕ ∈ Ψ . Since
Con(R) ∧ [R]⊥ → ⊥ is an instance of Axiom 9 and Con(R) ∈ Φ, it follows
that Φ is inconsistent. Contradiction. Therefore, ΦR is consistent.
Assume that ΦR ∪ {ϕ} is consistent. We have to show that ϕ belongs
to ΦR, i.e. that the formula [R]ϕ is in Φ. Since Φ is maximal consistent, by
Lemma 8.1.14 either [R]ϕ or ¬[R]ϕ belongs to Φ. If [R]ϕ ∈ Φ, we have com-
pleted the proof. Otherwise, the formula ¬[R]ϕ is in Φ. Since ¬[R]ϕ→ [R]¬ϕ
is an instance of Axiom 6 and Φ is deductively closed (Lemma 8.1.14), it
follows that [R]¬ϕ ∈ Φ and thus ¬ϕ in ΦR. Since ΦR ∪ {ϕ} is consistent, the
second case is not possible. Hence, ΦR is maximal consistent.
Finally we show that ΦR contains witnesses. Assume that ∃x ϕ ∈ ΦR. This
means that [R]∃x ϕ ∈ Φ. We can assume that the variable x is not free in R.
Since [R]∃x ϕ → ∃x [R]ϕ is derivable (Lemma 8.1.4) and Φ is deductively
closed (Lemma 8.1.14), the formula ∃x [R]ϕ belongs to Φ. Since Φ contains
witnesses, there exists a variable y such that [R]ϕ y

x ∈ Φ. By the definition of
the set ΦR, it follows that ϕ y

x ∈ ΦR. ut

For each maximal consistent set Φ which contains witnesses we define a
structure AΦ. We start by defining an equivalence relation ∼Φ on the set of
variables:

x ∼Φ y ⇐⇒ (x = y) ∈ Φ

The equivalence class of a variable x is denoted by [x]Φ and the set of all
equivalence classes by |Φ|. The universe |AΦ| of the structure AΦ is the set |Φ|.
For equivalence classes X ,Y ∈ |Φ| we define

f AΦ(X) = Y ⇐⇒ there exist x ∈ X and y ∈ Y such that (f (x) = y) ∈ Φ.

The function f AΦ is well-defined, since the formula

x1 = x2 ∧ f (x1) = y1 ∧ f (x2) = y2 → y1 = y2

is derivable and Φ is deductively closed. For the totality of f AΦ we use the
fact that Φ contains witnesses and therefore, for each variable x there exists
a variable y such that the equation f (x) = y belongs to Φ.

Instead of [[ϕ]]AΦζ and [[t]]AΦζ we just write [[ϕ]]Φζ and [[t]]Φζ . By ε we denote the
variable assignment that assigns the equivalence class [x]Φ to each variable x .

332 8 Tool Support for ASMs

It is easy to see that the interpretation of terms in the structure AΦ under ε
has the following property:

[[t]]Φε = [x]Φ ⇐⇒ (t = x) ∈ Φ

We could as well define the relation ∼Φ between arbitrary terms of the
language as it is usually done in completeness proofs for first-order predicate
logic. Since for each term t there exists a variable x such that the equation
t = x belongs to Φ, the set of equivalence classes of terms would be isomorphic
to the set of equivalence classes of variables. The reason that we define the
relation ∼Φ between variables only is that, if a transition rule is fired, then the
interpretation of terms (which contain dynamic function names) can change,
whereas the values assigned to variables do not change. In this way it is easier
to see that the universe does not change when a rule is fired (in the proof of
the following lemma).

Lemma 8.1.16. Let ϕ be a formula. Then for any maximal consistent set Φ
of formulas which contains witnesses the following two statements are true:

F1. If ϕ ∈ Φ, then [[ϕ]]Φε = true.
F2. If (¬ϕ) ∈ Φ, then [[ϕ]]Φε = false.

Proof. By induction on the rank |ϕ| of a formula ϕ. The critical case is that
of a modal formula [R]ϕ. We assume that F1 and F2 are true for all formulas
with rank less than |[R]ϕ| and prove the following statement:

(∗) If Con(R) ∈ Φ and R yields U in Φ under ε, then U is consistent and
AΦ + U = AΦR

.

Statement (∗) means that if the formula Con(R) is in Φ and the update set
of R in the structure AΦ under ε is U , then U is consistent and the result of
firing U in state AΦ is equal to the structure associated with the set ΦR (which
is maximal consistent and contains witnesses according to Lemma 8.1.15).
Assume that Con(R) belongs to Φ and R yields U in Φ under ε. Since
|Con(R)| < |[R]ϕ|, by the induction hypothesis F1 for Con(R) and Φ, it fol-
lows that [[Con(R)]]Φε = true, which means by definition, that U is consistent.
Since Φ is deductively closed, by Axioms 8 and 9 it follows that

(x = y) ∈ Φ ⇐⇒ [R](x = y) ∈ Φ ⇐⇒ (x = y) ∈ ΦR.

Hence, the equivalence relation ∼Φ is the same as ∼ΦR
and the universe of

the structure AΦ is identical to the universe of AΦR , i.e., |Φ| = |ΦR|.
Let x be a variable. By Lemma 8.1.14, inv(R, f , x) ∈ Φ or ¬inv(R, f , x) ∈ Φ.
Assume that inv(R, f , x) ∈ Φ. Since |inv(R, f , x)| < |[R]ϕ|, by the induction
hypothesis F1 for inv(R, f , x) and Φ, it follows that [[inv(R, f , x)]]Φε = true.
This means that there is no update for f at the argument [x]Φ in U . Hence,
f AΦ+U ([x]Φ) = [y]Φ, where y is a variable such that the equation f (x) = y is

8.1 Veri�cation of ASMs 333

in Φ. By Axiom 14, it follows that [R]f (x) = y ∈ Φ and thus f (x) = y belongs
to ΦR. Hence, f AΦR ([x]Φ) = [y]Φ and f has the same value at [x]Φ in the struc-
tures AΦ+U and AΦR . If ¬inv(R, f , x) ∈ Φ, then the formula ∃y upd(R, f , x , y)
is in Φ. Since Φ contains witnesses, there exists a variable z such that
upd(R, f , x , z) ∈ Φ. Since |upd(R, f , x , z)| < |[R]ϕ|, by the induction hypoth-
esis F1 for upd(R, f , x , z) and Φ, it follows that [[upd(R, f , x , z)]]Φε = true.
Hence, ((f , [x]Φ), [z]Φ) ∈ U and therefore f AΦ+U ([x]Φ) = [z]Φ. By Axiom 13,
it follows that [R]f (x) = z ∈ Φ and thus the equation f (x) = z is in ΦR.
Hence, f AΦR ([x]Φ) = [z]Φ and f has the same value at [x]Φ in the structures
AΦ + U and AΦR , too. Since the variable x was chosen arbitrarily, the proof
of statement (∗) is completed.
F1: Assume that [R]ϕ ∈ Φ. By Lemma 8.1.14, we know that either Con(R) ∈
Φ or ¬Con(R) ∈ Φ. If Con(R) ∈ Φ, then ΦR is maximal consistent and
contains witnesses (Lemma 8.1.15). Since ϕ ∈ ΦR and |ϕ| < |[R]ϕ|, by the
induction hypothesis F1 for ϕ and ΦR, it follows that [[ϕ]]ΦR

ε = true. By (∗), it
follows that [[[R]ϕ]]Φε = true. In the second case, if ¬Con(R) ∈ Φ, then by the
induction hypothesis F2 for Con(R) and Φ, if follows that [[Con(R)]]Φε = false
and thus [[[R]ϕ]]Φε = true.
F2: Assume that ¬[R]ϕ ∈ Φ. Since Φ is deductively closed, by Axioms 5 and 6,
we obtain that Con(R) ∈ Φ and [R]¬ϕ ∈ Φ. Since Con(R) ∈ Φ, we can
apply Lemma 8.1.15 and obtain that ΦR is maximal consistent and contains
witnesses. By the induction hypothesis F2 for ϕ and ΦR, it follows that
[[ϕ]]ΦR

ε = false. By (∗), we obtain [[[R]ϕ]]Φε = false.
Another important case is that of a formula upd(R, f , s, t). Since Φ contains
witnesses, there exist variables x and y such that the equations s = x and
t = y belong to Φ. Moreover, there exists a ψ such that upd(R, f , x , y) ↔ ψ
is an instance of U1–U9. By the definition of the rank of formulas, it follows
that |ψ| < |upd(R, f , x , y)| = |upd(R, f , s, t)|.
F1: Assume that upd(R, f , s, t) ∈ Φ. Since Φ is deductively closed, the for-
mulas upd(R, f , x , y) and ψ are also in Φ. By the induction hypothesis for ψ
and Φ, it follows that [[ψ]]Φε = true. Since upd(R, f , x , y) ↔ ψ is valid in any
structure, [[upd(R, f , x , y)]]Φε = true. Since the equations s = x and t = y
belong to Φ, [[upd(R, f , s, t)]]Φε = true.
F2: Assume that ¬upd(R, f , s, t) ∈ Φ. Since Φ is deductively closed, the
formulas ¬upd(R, f , x , y) and ¬ψ are also in Φ. By the induction hypothesis
for ψ and Φ, it follows that [[ψ]]Φε = false. Hence, [[upd(R, f , s, t)]]Φε = false.

ut

The completeness of the logic for hierarchical ASMs is a consequence of
the preceding lemma.

Theorem 8.1.4 (Completeness). Let M be a hierarchical ASM and Ψ be
a set of sentences. If Ψ |=M ϕ, then Ψ `M ϕ.

334 8 Tool Support for ASMs

Proof. Assume that ϕ is not derivable from Ψ . Then the set Ψ ∪ {¬ϕ} is
consistent and can be extended to a maximal consistent set Θ that contains
witnesses (Proposition 8.1.1). By Lemma 8.1.16, it follows that the structure
AΘ is a model of Ψ in which the formula ϕ is false. Hence ϕ is not a conse-
quence of Ψ . ut

8.1.7 An Extension with Explicit Step Information

For proving properties of ASMs it is often convenient to use “the function f
in the nth state of the run”. For that purpose we extend the signature Σ
of the given (deterministic) ASM for each dynamic function name f by a
new function name with one additional argument and write fn(t) instead
of f (n, t). We write An for the nth state of the run of the ASM started in
state A. (If the run is finite and n exceeds the length of the run, then An is
defined to be equal to the last state of the run.) The idea is that fn is the
function f in the nth state of the run.

We now work in two-sorted predicate logic. Each structure A is extended
by a copy of the structure of the natural numbers. The quantifiers ∀x ∈ N
and ∃x ∈ N range over the set of natural numbers. Terms of the sort of
natural numbers are denoted by ν. The grammar for formulas is extended by
the following new atomic formulas:

ϕ,ψ ::= . . . | defν(R) | updν(R, f , s, t) | [R]νϕ

The semantics of the new formulas is defined as follows, where n = [[ν]]Aζ :

[[defν(R)]]Aζ = [[def(R)]]An

ζ

[[updν(R, f , s, t)]]Aζ = [[upd(R, f , s, t)]]An

ζ

[[[R]νϕ]]Aζ = [[[R]ϕ]]An

ζ

For example, defν(R) is true in the present state A, if the rule R is defined in
the nth state of the run of the ASM starting in state A, where n is the value
of the term ν. The new function names are interpreted in the obvious way:

f A(n, a) = f An (a), for each n ∈ N and a ∈ |A|.

For formulas ϕ, not containing the new symbols with subscripts, we define
a transformation ϕ(ν) as follows:

(s = t)(ν) = s(ν) = t (ν) (∀x ϕ)(ν) = ∀x ϕ(ν)

(¬ϕ)(ν) = ¬ϕ(ν) (∃x ϕ)(ν) = ∃x ϕ(ν)

(ϕ ∧ ψ)(ν) = ϕ(ν) ∧ ψ(ν) upd(R, f , s, t)(ν) = updν(R, f , s, t)
(ϕ ∨ ψ)(ν) = ϕ(ν) ∨ ψ(ν) ([R]ϕ)(ν) = [R]νϕ
(ϕ→ ψ)(ν) = ϕ(ν) → ψ(ν) def(R)(ν) = defν(R)

Hence, ϕ(ν) is obtained from ϕ by subscripting dynamic function names as
well as the modal operators and the predicates def and upd in ϕ with ν.
The subscript is neither applied inside modal formulas [R]ϕ nor inside the

8.1 Veri�cation of ASMs 335

atomic formulas except in equations. Inside the terms of equations it is applied
everywhere:

x (ν) = x f (t)(ν) =
{

fν(t (ν)), if f is dynamic;
f (t (ν)), otherwise.

As expected, the value of a term t (ν) is the value of t in the nth state of the
run of the ASM and the formula ϕ(ν) is equivalent to the formula ϕ in the
nth state, where n is the value of the term ν.

Lemma 8.1.17. If n = [[ν]]Aζ , then [[t (ν)]]Aζ = [[t]]An

ζ and [[ϕ(ν)]]Aζ = [[ϕ]]An

ζ .

We write Conν(R) for Con(R)(ν) and invν(R, f , x) for inv(R, f , x)(ν).
The basic logic of Sect. 8.1.3 is extended by the following principles, where

PM is the main rule of the ASM. First we add appropriate axioms for the
structure of natural numbers including the induction scheme 64. Axiom 65
asserts that ϕ(0) is equivalent to ϕ, since the functions f0 are, by definition,
the same as the functions in the initial state. Axioms 66 and 67 characterize
ϕ(ν+1) depending on whether the main rule of the ASM is consistent or not
in state ν. If PM is not consistent in state ν, then by definition the state ν+1
is the same as state ν. The proof rule 68 allows us to transfer axioms and
theorems of the basic system into statements about the νth state of a run.
Hence, we do not need new axioms for defν(R) and updν(R, f , x , y), since we
can transfer the axioms D1–D9 and U1–U9 using Rule 68.

X. Axioms for the structure of natural numbers:
For example, the Peano Axioms including the induction scheme:

64. ϕ(0) ∧ ∀x ∈ N (ϕ(x)→ ϕ(x + 1))→ ∀x ∈ Nϕ(x)

XI. Axioms and proof rules for formulas with step information:

65. ϕ(0) ↔ ϕ
66. Conν(PM)→ (ϕ(ν+1) ↔ [PM]νϕ)
67. ¬Conν(PM)→ (ϕ(ν+1) ↔ ϕ(ν))
68.

ϕ

ϕ(ν)

Why is Rule 68 sound? Assume that ϕ is derivable. We want to show that
ϕ(ν) is valid. Let A be a state and n be the value of ν in A. Since ϕ is valid,
it is true in the nth state An of the run starting with A. By Lemma 8.1.17,
it follows that ϕ(ν) is true in A.

The following proof rules are derivable using the induction scheme 64 and
65–68. The rule on the left-hand side says that, if ϕ is an invariant of PM

and if it is true in the initial state, then it is true in all states of the run. The
rule on the right-hand side says that, if ϕ is an invariant which ensures the
consistency of PM and ϕ is true in the initial state, then PM is consistent in
all states of the run.

336 8 Tool Support for ASMs

ϕ→ [PM]ϕ
ϕ→ ∀x ∈ Nϕ(x)

ϕ→ Con(PM) ∧ [PM]ϕ
ϕ→ ∀x ∈ NConx (PM)

The following characterizing formulas for fν are derivable as well:

69. ∀x (f0(x) = f (x))
70. Conν(PM)→

∀x , y(fν+1(x) = y ↔ updν(PM , f , x , y) ∨ (invν(PM , f , x) ∧ fν(x) = y))
71. ¬Conν(PM)→ ∀x (fν+1(x) = fν(x))

In the extended system, several properties of the ASM can be expressed
in a simple way (where ϕinit and ϕstop are formulas characterizing the initial
and halting states of the ASM):

– The ASM is consistent: ϕinit → ∀x ∈ NConx (PM).
– The ASM terminates: ϕinit → ∃x ∈ Nϕ(x)

stop.
– The formula ψ is an invariant of the ASM: ϕinit → ∀x ∈ Nψ(x).

8.1.8 Exercises

Exercise 8.1.1. (; CD) Show that the properties D1–D9 in Table 8.2 and
U1–U9 in Table 8.3 are valid under the interpretations given in Table 8.1.

Exercise 8.1.2. (; CD) Prove Lemma 8.1.1 (Substitution for modal for-
mulas). Show that it is in general not true for non-static terms that contain
dynamic functions.

Exercise 8.1.3. (; CD) Prove Lemma 8.1.2 (cf. Exercise 2.4.12).

Exercise 8.1.4. (; CD) Prove Theorem 8.1.1 (Soundness of the logic).

Exercise 8.1.5. (; CD) Show that the following equivalence is derivable:

72. (Con(R)→ [R]ϕ)↔ [R]ϕ

Exercise 8.1.6. (; CD) Show that the Axiom 8, ϕ→ [R]ϕ, for pure, static
first-order formulas ϕ can be replaced by the following two axioms:

73. x = y → [R]x = y
74. x 6= y → [R]x 6= y

Exercise 8.1.7. (; CD) Show that the Axiom 9, Con(R) ∧ [R]ϕ → ϕ, for
pure, static first-order formulas ϕ can be replaced by the following axiom:

75. Con(R) ∧ [R]⊥ → ⊥

Exercise 8.1.8. (; CD) Show that the properties of Con in Lemma 8.1.3
are derivable in the logic.

Exercise 8.1.9. (; CD) Prove Lemma 8.1.4.

8.1 Veri�cation of ASMs 337

Exercise 8.1.10. (; CD) Show that the properties of inv in Lemma 8.1.5
are derivable in the logic.

Exercise 8.1.11. (; CD) Show that the axioms FM1, FM2, AX1, AX2
of [238] in Lemma 8.1.6 are derivable.

Exercise 8.1.12. (; CD) Consider the following generalization of for-
mula 41 in Lemma 8.1.6:

[P]ϕ ∧ [Q]ϕ→ [P par Q]ϕ

Is this principle derivable for arbitrary first-order formulas ϕ?

Exercise 8.1.13. (; CD) Show that the formulas in Lemma 8.1.7, 8.1.8,
8.1.9, 8.1.10, 8.1.11, 8.1.12, and 8.1.13 are derivable in the logic.

Exercise 8.1.14. (; CD) Show that the following equivalence is derivable:

76. P ' Q ↔ ((Con(P) ∨ Con(Q))→ (Con(P) ∧ Con(Q) ∧∧∧
f dyn.

∀x , y ([P]f (x) = y ↔ [Q]f (x) = y)))

Exercise 8.1.15. (; CD) Show that the following substitution principle for
transition rules is derivable (cf. Exercise 2.4.11):

77. P
.' Q → R[P]

.' R[Q]

Exercise 8.1.16. (; CD) Define a weak consistency predicate con(R) by

con(R) =
∧∧

f dyn.

∀x , y , z (upd(R, f , x , y) ∧ upd(R, f , x , z)→ y = z)

Show that the following relations between con(R) and Con(R) are derivable:

78. Con(R)↔ (def(R) ∧ con(R))
79. ¬def(R)→ con(R)
80. con(R)↔ (def(R)→ Con(R))

Show that the following properties of con are derivable (cf. Lemma 8.1.3):

81. con(skip)
82. con(f (s) := t)
83. con(P par Q)↔ (def(P par Q)→ con(P) ∧ con(Q) ∧ joinable(P ,Q))
84. con(if ϕ then P else Q)↔ (ϕ ∧ con(P)) ∨ (¬ϕ ∧ con(Q))
85. con(let x = t in P)↔ ∃x (x = t ∧ con(P)) if x /∈ FV(t)
86. con(forall x with ϕ do P)↔

(def(forall x with ϕ do P)→
∀x (ϕ→ con(P) ∧ ∀y (ϕ y

x → joinable(P ,P y
x))))

87. con(P seq Q)↔ con(P) ∧ [P]con(Q)
88. con(try P else Q)↔ (def(try P else Q)→ con(P) ∨ con(Q))
89. con(r(t))↔ con(P t

x), if r(x) = P is a rule declaration of M .

338 8 Tool Support for ASMs

Exercise 8.1.17. (; CD) Extend the logic to the try-catch construct of
Def. 4.1.6 in Sect. 4.1.2.

Exercise 8.1.18. (; CD) Show that [P seq Q]ϕ↔ [P][Q]ϕ (Axiom 17) is
derivable for hierarchical ASMs.

Exercise 8.1.19. (; CD) Show that P ' Q → ([P]ϕ↔ [Q]ϕ) (Axiom 15)
is derivable for hierarchical ASMs.

Exercise 8.1.20. (; CD) Show that [skip]ϕ ↔ ϕ (Axiom 16) is derivable
for hierarchical ASMs.

8.2 Model Checking of ASMs

In a model checking environment like SMV, a system is specified as a finite
state machine. The states of the FSM are given by a finite number of state
variables, which do not necessarily have to be binary but can take values
from an arbitrary user-defined finite range. The state variables correspond to
nullary dynamic functions of an ASM. Hence, if one wants to use the SMV
model checker to explore the state space of a given ASM, one has to eliminate
all dynamic function symbols of arity greater than zero in the given ASM. In
addition, the model checker can only be used if the universe of the initial state
of the ASM is finite and the static functions are known to the model checker.
One must also be aware that in SMV a variable without update is supposed
to take any possible value of its range in the next state (non-determinism by
under-specification), whereas in an ASM a nullary dynamic function without
update does not change its value in the next computation step.

In [426] an elimination procedure for dynamic functions of arity greater
than zero is presented, which we briefly summarize here. We start with a
signature Σ, a finite state A for Σ and an ASM rule P . The goal is to
transform P into an equivalent transition rule that does not use dynamic
functions of arity greater than zero. Of course, this is only possible, if we
extend the signature and add new nullary functions:

– For each element of the universe of A a new static constant is added to Σ.
The new constants are called values. The finite set of values is denoted
by V , i.e. V = {c1, . . . , cm}.

– For each dynamic function name f in Σ of arity n > 0 and each tu-
ple (v1, . . . , vn) of values, a new nullary dynamic function `f ,v1,...,vn

is added
to Σ (called a location).

The new names have the obvious interpretation. A value ci is identified with
the element of A it denotes, and hence |A| = V . A location `f ,v1,...,vn is
interpreted as the content of the location (f , (v1, . . . , vn)) in A.

By R[s] we denote a transition rule with several occurrences of a term s,
and by R[t] we denote the result of replacing the indicated occurrences of s

8.2 Model Checking of ASMs 339

by the term t . An occurrence of a term is called critical, if it is inside the
argument of a dynamic function. For example, assuming that + is static, f
is dynamic, and `1 + f (`2 + 3) is a top-level term, the occurrence of `1 is not
critical whereas the occurrence of `2 is.

We assume that the given transition rule P is a simple transition rule built
from updates using if-then-else and parallel composition. Moreover, the rule
guards in P are quantifier-free formulas (boolean combinations of equations
between terms). Hence, P does not contain variables and all terms in P
are ground terms. The following transformations are applied to P until all
dynamic functions of arity greater than zero have disappeared:

R[f (v1, . . . , vn)] =⇒ R[`f ,v1,...,vn
] if f is dynamic and

v1, . . . , vn are values

R[f (v1, . . . , vn)] =⇒ R[c] if the occurrences of f
are critical, f is static,
and f A(v1, . . . , vn) = c

R[`] =⇒ if ` = c1 then R[c1]
...
if ` = cm then R[cm]

if the occurrences of `
are critical

In the first transformation a dynamic function is replaced by a location
provided that the arguments of the function are all values. The occurrence of
the dynamic function can be on the left-hand side of an update or anywhere
inside a term or a rule guard.

The arguments of functions become values by applying repeatedly trans-
formations 2 and 3. In transformation 2, a static function is evaluated (com-
puted) at given arguments. In transformation 3, a location is replaced by a
case distinction on the possible values of the location.

Transformations 1 and 2 are called simplifications, whereas transforma-
tion 3 is called an unfolding. Unfoldings have to be applied with care, since
they can lead to an explosion of the size of the resulting ASM. Such an ex-
plosion is bad from the viewpoint of model checking, since in model checking
the explosion is mostly caused by the number of state variables and the re-
sulting huge state space, whereas the description of the transition system in
the language of the model checker is in general small.

For a different approach to generating for testing purposes an FSM from
an ASM see the algorithm AsmGenFsm on p. 123.

Problem 29 (Implement a model checker for ASMs). The model
checker should directly support ASMs using efficient data structures for dy-
namic functions and update sets. It should also support symbolic model
checking of ASMs, where regions of the state space are represented by first-
order formulas and pre- and post-images of regions can be computed effi-
ciently.

340 8 Tool Support for ASMs

8.3 Execution of ASMs

We briefly survey here various methods and systems which support the ex-
ecution of ASMs for simulation and testing purposes. For more detailed in-
formation on the systems we refer to the indicated code and documentation
sources, which are mostly publicly accessible. For a description of the histor-
ical development of ASM tools see Sect. 9.4.3.

By their very definition as machines, ASMs are executable for mental
simulation. As the previous chapters show, the run-based understanding and
analyzability of ASMs are rather helpful for supporting the practitioner’s
daily work, independently from the possibility of developing automatic ex-
ecution mechanisms. In the same vein the notion of ground models is more
general than that of mechanically executable specifications. Ground models
as software contracts, as explained in Chap. 2, are not limited to models at
a high but fixed level of abstraction of code of some programming language
or for machine-executable specifications. Ground models are specifications
which come with a notion of run, but their raison d’être precedes that of
machine-executable code to which they may be linked more or less directly,
possibly through a hierarchy of stepwise refined models which bridge the gap
between the abstraction level of the ground model – the software contract
– and its executable version. There are different ways to make ASM models
executable, which can be classified into four major groups.

user-scenario simulation of concrete ASMs by embedding the abstract
machines into a run-time environment where each time the value for
an argument of a domain-specific external function is required during
execution, this value is provided as a user-scenario determined input. This
“coding-free” method of testing user-scenarios for high-level ASMs has
been successfully used in the industrial re-engineering project Falko [121];
the Workbench [170] provided the basic execution engine for ASM rules.

coding concrete ASMs directly in some programming language. This method
is illustrated by C++ programs refining ground model ASMs for the small
case studies known under the names of Steam-Boiler and Production-
Cell; see [43, 332]. It has been applied also to a ground model ASM for
the operating system MINIX on the X86-architecture, which has been
refined in [186] to code written in C and in Java. In [150] the method is
reported to be used with Java for a complex industrial telecommunication
software project.

interpreting concrete ASMs by an interpreter for a class of ASMs. The first
example of such an interpreter is Kappel’s ASM interpreter in [301], writ-
ten in Prolog to make the Prolog models in [71, 72, 74] executable. An
industrial counterpart was developed as early as 1991 in [143] and was
used in the context of the ISO standardization process of Prolog [101]. An
elegant 9-line Prolog interpreter for basic ASMs appeared in [36]. Later
numerous other interpreters were written in various languages and for

8.3 Execution of ASMs 341

various purposes. We refer the reader to Chap. 9 for the complete details
and mention here only two such interpreters which have been successfully
used in industrial projects. The ASM Workbench [170] provides not only
an interpreter for a large class of ASMs (namely supporting basic ASMs
with external functions written in ML), but also a tool environment in-
cluding basic functionalities such as parsing, abstract syntax trees, type
checking, pretty printing, and in particular a transformation of ASMs
into FSMs which can be model-checked using SMV, see [175]. The ASM
Workbench has been successfully used for testing purposes in the FALKO
project [121]. In [355] it is used to define an executable semantics for
UML which covers real-time aspects. The machine AsmGofer [391, 390]
is equipped with a graphical user interface to execute turbo ASMs, thus
supporting the structuring and composition concepts defined in [134]. It
has been illustrated by the Light Control Case Study [125] and has been
applied in an industrial ASIC design and verification project (including
a compiler from ASM to VHDL) and for testing the Java and the JVM
models in [406] against current implementations of Java/JVM. In [152]
it has been extended by a simulator for UML state machines.

compiling ASMs to executable code. Three systems are to be mentioned
under this heading. In [391] a scheme is developed for compiling ASMs
from the syntax of the ASM Workbench [170] to C++, coding algebraic
types, pattern matching, functional expressions, dynamic functions and
simultaneous updates in such a way that efficient C++ code is obtained
without losing the structure of the original ASM specification. The pro-
prietary compiler has been successfully applied in a middle sized software
development project at Siemens [121, 391]; the ASM-to-VHDL compiler
developed in [392] has been used at Siemens in an ASIC design and ver-
ification project.

In 2001/02 the ASM-based language AsmL running now on the
.NET platform has been made accessible at Microsoft Research [201]
and has been applied within Microsoft (see [27, 28, 224, 30, 31]), in-
cluding test-case generation from AsmL specifications (see the algorithm
AsmGenFsm on p. 123). This language exploits the abstraction potential
of ASMs to offer object-oriented and component-based structuring prin-
ciples. Like Eiffel [333], AsmL supports the formulation of pre-conditions
and post-conditions in the specification of functions: if the pre-condition
is not true, or if after the execution of the function the post-condition
is not true, then an exception is thrown. Currently Microsoft Research
supports the development of an SDL-to-AsmL compiler at the Humboldt
University of Berlin to make the ASM definition of the SDL’2000 seman-
tics (see [194]) executable.1

1 Personal communication (e-mail of October 8, 2002) from A. Prinz and M. v.
L�owis to E. B�orger.

342 8 Tool Support for ASMs

The Open Source project Xasm [15, 17] at present comes with an
Xasm-compiler to C, a run-time system and a graphical debugging and
animation interface. It offers an interface to C allowing (a) C-functions
to be used as static or monitored ASM-functions and (b) ASMs to be
called from within C-programs. It has been applied for Montages and
Teich’s architecture and compiler co-generation project, as described in
Sect. 9.4.2. In [299] it has been used to execute tests of a compiler for the
extension mpC of ANSI C by arrays and parallelism. In [51] it is used as
target for translating specifications written in SiteLang, a language which
extends basic ASM constructs by constructs tailored for stepwise refin-
able specifications of information services. For the treatment of recursion
in Xasm see the end of Sect. 4.1.2.

Unfortunately none of these systems comes with a manual which describes
by a hierarchy of stepwise refined ASM models the design decisions which led
from the underlying ASM concept to the implementation (except for the
submachine concept of AsmGofer which is documented by the turbo ASM
definition in [134] and is realized also in AsmL).2 More importantly none of
these systems supports the powerful ASM refinement techniques other than
the submachine concepts realized in AsmGofer, AsmL and XASM. Also none
of these systems supports async ASMs.

Problem 30 (Implement ASM refinement techniques). Enhance an
ASM execution engine to support provably correct ASM refinement tech-
niques which allow us to make the intended equivalence of the specification
and its implementation during the design process checkable. Link this to
existing (a) system documentation and versioning techniques, (b) theorem
provers.

Problem 31 (Implement asynchronous ASMs). Extend an ASM exe-
cution engine to one which also implements async ASMs and offers for exper-
imentation with different schedulers a facility to plug in different scheduling
policies which realize the partial order underlying async ASM runs.

2 In AsmL seq is written step, iterate is written step until fixpoint, do R
until Cond, and while Cond do R is written step until/while Cond R. In
addition sequential stepwise iteration is o�ered through sequences and sets, and
the construct try P catch T Q is simpli�ed to try P catch Q (deleting from
the construct the possibility to explicitly program exception patterns T). Sub-
machine calls appear as method calls for which, besides the general version called
\update procedures", also the specialization to functions as used in programming
is o�ered.

9 History and Survey of ASM Research

The ASM method for the high-level design and analysis of computing systems
and their stepwise refinement to executable code grew naturally out of the
foundational concern which led to the discovery of the notion of ASMs, al-
though it took some time for the concept to sink in. Indeed, as often happens
with ideas which change the way we look at things, its “real”ization – through
becoming the basis for an intellectual, human-centric though machine sup-
ported instrument for practical system design and analysis – encountered
significant resistance in the scientific community. In this chapter, which can
be read independently of the rest of the book, we survey the rich ASM liter-
ature and the salient steps of the development of the ASM method from its
epistemological origins. The survey covers the period from 1984 to 2002.1

From 1984 to today one can distinguish four phases which we are going
to survey in the following sections:

– Idea of a sharpened Church–Turing thesis for “an alternative com-
putation model which explicitly recognizes finiteness of computers” [240].

– Recognition of the practical potential of the abstract machine concept
for building and analyzing reliable ground models and their refinements to
executable code, an insight which came through the experience gained at
the beginning of the 1990s by extensive modeling of the semantics of various
programming languages and their implementation [76].

– Practicability test for ASM-based concepts in real-life applications, a
broadband experimental effort which shaped the ASM design and analysis
method through numerous modeling and verification projects for real-life
architectures, virtual machines, protocols, and controller software. Carried
out 1993–1995 [80], it influenced the final definition of ASMs in [248].

– Integration of the ASM method into established software development
environments which created the practical ASM approach to high-level sys-
tem design and analysis, as one sees it nowadays, ready to be deployed
in industrial settings [86]. In 2000/01 also the first part of the original
foundational goal was completed by the discovery of a proof for the se-

1 This chapter is an elaboration of [92]. We gratefully acknowledge the permis-
sion of the J. of Universal Computer Science to reuse the paper which is freely
available at the JUCS web site.

344 9 History and Survey of ASM Research

quential ASM thesis from three basic postulates [249] and of its extension
to synchronous parallel algorithms [61].

9.1 The Idea of Sharpening Turing’s Thesis

It was an epistemological concern which led Gurevich to the idea of abstract
state machines, namely the goal to sharpen the Church–Turing thesis by
an “alternative to the notion of a potentially infinite machine”, named a
“uniform family of finite machines” and described as a notion which “is to
remain informal” [240, p. 1]. In 1985 the program was made more precise
in a note to the American Mathematical Society [241], from which we quote
the central part:

First, we adapt Turing’s thesis to the case when only devices with
bounded resources are considered. Second, we define a more general
kind of abstract computational device, called dynamic structures,
and put forward the following new thesis: Every computational de-
vice can be simulated by an appropriate dynamic structure – of ap-
propriately the same size – in real time; a uniform family of computa-
tional devices can be uniformly simulated by an appropriate family
of dynamic structures in real time. In particular, every sequential
computational device can be simulated by an appropriate sequential
dynamic structure.

In 1988 a more detailed exposition of this primarily complexity theoretic
program appeared [242], but again without any concrete definition of the
abstract machine concept. Apparently at that time there was still some hesi-
tation on “different classes of dynamic structures” which “may be defined by
imposing syntactical restrictions on transition rules, by allowing or forbidding
the evolution of the signature (the language) of the current configuration, by
allowing or forbidding the creation of new universes (sorts, types) and the
elimination of old ones, and so on” ([242, p. 413]). In this period there was
also the formulation of the Kolmogorov–Uspenskii thesis [306] as stating that
“every computation, performing only one restricted local action at a time,
can be viewed as the computation of an appropriate Kolmogorov–Uspenskii
machine” [243], a subclass of what became known as Schönhage’s storage
modification machines [396], which later could be characterized as a class of
unary sequential ASMs [177].

In a series of lectures entitled “Toward an alternative computation the-
ory: algorithms and dynamic model semantics”, delivered to the computer
science PhD program in Pisa from May 26 to June 6, 19862 Gurevich ex-
2 In previous publications, e.g. [92], erroneously only the year 1987 was named.

As B�orger found out from his notes, he had invited Gurevich to lecture for the
�rst time in the Spring of 1986, then again in May 1987 (where the title of the
course was \Dynamic algebra semantics").

9.2 Recognizing the Practical Relevance of ASMs 345

plained the concept of dynamic structures – later called evolving algebras
and eventually ASMs – by examples, namely Turing machines, stack ma-
chines and some Pascal programs. Börger learnt ASMs from these lectures
and suggested adding the course material to [244, Sect. 10, 11].3 There the
proposal appears to use “dynamic structures” for an operational semantics
of imperative programming languages, realized for the core of Modula-2 in
Morris’ PhD thesis [338]. During the winter of 1988/89 ASMs were tried
out to define the semantics of Prolog by an execution-oriented yet abstract
model, which was intended to become complete and precise, but nevertheless
of manageable size and reflecting the logical content of Prolog programs in
a transparent way, to be useful to programmers [71, 72, 74]. The goal was
achieved by introducing the notion of a ground model and the stepwise refine-
ment method into modeling with ASMs (see Sects. 2.1.2, 3.2), exploiting the
possibilities for abstraction that are inherent in the ASM concept. Stepwise
refinements allowed us to separate orthogonal language features by modules
of rule sets (horizontal refinement) and to deal with them at different levels
of detail (vertical refinement), supported by an appropriate classification of
functions into static and dynamic, external and internal (later more precisely
distinguished into basic and derived, monitored (or input), output, controlled,
and shared functions or locations [80, 86]; see Fig. 2.4).

9.2 Recognizing the Practical Relevance of ASMs

Through his sabbatical work at IBM Germany in 1989/1990 Börger realized
that his ASM model for Prolog solved some central problems that the ISO
Prolog standardization committee had faced for years [101], in particular the
database update view problem [103, 126] and the semantical problems re-
lated to Prolog’s solution-collecting predicates [130]. In fact a version of this
ground model became the ISO standard definition of the dynamic semantics
of Prolog [291], after many unsuccessful attempts documented in the litera-
ture to provide such a definition using traditional approaches (see the detailed
discussion in [71, Sect. 4]). Through the work with the software engineers
from IBM, Quintus, Bim, Interface and Siemens, who at the time were de-
veloping commercial implementations of Prolog, the usefulness of the ASM
concept became apparent for supporting changing designs in an industrial
standardization and development process. It was recognized that flexibility is
gained by using ASMs for modeling and for prototypical (mental or machine
supported) simulations. This showed up through the ease with which ASMs
allowed the practitioners to perform the following three of their daily duties:

– to rigorously model and document design decisions, i.e. building ground
models4 in a faithful and objectively checkable manner. This means turn-

3 The stack and Turing machine ASMs went into [245, Sect. 4, 6].

346 9 History and Survey of ASM Research

ing descriptions expressed in application domain (typically natural lan-
guage) terms into precise abstract definitions (see Sects. 2.1.1, 3.1), which
the software engineers were comfortable to manipulate as a semantically
well-founded form of pseudo-code over abstract data,

– to adapt abstract models to changing requirements, and to refine them in
successive steps – in a controllable and well-documentable way – to their
implementation, thus providing practical forms of refinement for link-
ing ground models by hierarchies of intermediate models (modules) to ex-
ecutable code (see Sects. 2.1, 3.2 and RefinemtMeth (; CD)),

– to turn such precise abstract pseudo-code models into prototypical exe-
cutable versions which can be used for simulations prior to coding of
the system under development (see Section 8.3).

Unfolding the potential of the concept of ASMs for such a method of
modeling-for-change, at the desired level of abstraction, to be used together
with an appropriately chosen mathematical verification and experimental val-
idation technique, was the result of extensive experimentation during the
years 1990–1992. It was focussed on the following three issues:

1. Adaptations and extensions of models via horizontal refinements,
realized by refining the basic ASM model for Prolog to some of the major
extensions of the language and their implementations, to be precise the
following seven ones (see Backtrack on p. 114):
– Colmerauer’s Prolog III, obtained by adding to the unifiability check

of the Prolog model a solvability test for general constraints [135],
– IBM’s Protos-L, developed and implemented on the Protos Abstract

Machine at IBM Germany, obtained from the Prolog model by adding
to it type constraints and a solvability predicate [40, 42, 41],

– the functional-logic language Babel and its implementation on the Nar-
rowing Machine [118], obtained by adding to the backtracking rules of
the Prolog model rules for the reduction of functional expressions to
normal form,

– Lloyd’s and Hill’s logic programming language Gödel, obtained by ab-
stracting in the Prolog model from the deterministic and sequential
execution strategy of ISO Prolog [124],

– B. Müller’s object-oriented Prolog [348, 347], obtained by enriching
the four ASM rules for the user-defined core of Prolog [75] with rules
for object creation and deletion, data encapsulation, inheritance, mes-
sages, polymorphism and dynamic binding,

– Sauer’s adaption of the Prolog model to an ASM defining the se-
mantics of the domain-specific language HERA, tailored for program-
ming scheduling algorithms for business processes on the basis of given
heuristics [385, Chap. 3.3],

– the main parallel extensions of Prolog (see below).
4 Ground models [80] were originally called primary models [76, Sect. 3].

9.2 Recognizing the Practical Relevance of ASMs 347

2. Stepwise detailing of models by vertical refinements, realized for the
WAM implementation of Prolog by defining a chain of 12 proven-to-be-
correct refinement steps which link the high-level Prolog model (in fact its
streamlined version in [131]) to its implementation by Warren Abstract
Machine code [128, 129, 132]. It turned out that the models and the
proofs could be reused and extended to derive the correctness also for
the following four implementations:
– the implementation of a high-level CLP(R) model on the Constrained

Logic Arithmetical Machine, developed at IBM Yorktown Heights [133],
– the implementation of a high-level Protos-L model on the Protos Ab-

stract Machine [42, 41],5

– the parallel execution of Prolog on distributed memory [21] (see also
the related later work [351]),

– the implementation of scoping of procedure definitions in a sub-
language of Lambda-Prolog where implications are allowed in the
goals [313].

3. Making abstract models executable for their experimental valida-
tion, realized during the academic year 1989/90 in Kappel’s Diplom
thesis at the University of Dortmund [301, 302], and a year later at
Quintus [143], allowing one to simulate the ASM Prolog models defined
in [71, 72].

The method of successive refinements of ASMs was applied in [251] to
modeling the dynamic semantics of C, structuring an earlier flat version of
this model, which had followed the spirit of the early unstructured Modula-2
ASM [338] and had inspired a similar project for Cobol (started in [417],
though not continued). Before that, in Blakley’s PhD thesis [53] an un-
structured ASM model for a subset of Smalltalk had been defined. Inspired
by [338], ASMs are used in [232] to provide a succinct operational description
of typical object-oriented features like object creation, overriding, dynamic
binding and inheritance in the context of data models. In [397] an ASM rule
was added to define cooperative message handling, by describing the run-time
search of the most specific cooperation contract in the inheritance hierarchy
which implements a cooperative message, i.e. a message which involves several
objects on the basis of cooperation contracts. Later the modeling of object-
oriented programming language features was taken up once more in Ann
Arbor, using once more the refinement method to extend the ASM model for
C to one for C++ [420].

In 1991 Gurevich wrote for his column on Logic in Computer Science in
the Bulletin of the EATCS the so-called ASM tutorial [245], which is based
on lecture notes from his Fall 1990 course on Principles of Programming
5 Beierle [39] turned this construction into a general implementation scheme for

CLP(X) over an unspeci�ed constraint domain X, by designing a generic ex-
tension WAM(X) of the Warren Abstract Machine and a corresponding generic
compilation scheme of CLP(X) programs to WAM(X) code.

348 9 History and Survey of ASM Research

Languages at the University of Michigan, containing most notably the first
definition of a subclass of basic ASMs.6 In the same year a textbook intro-
duction to ASMs was written [73]. This was illustrated with machines which
operate on standard data structures and with the tree-based core Prolog ma-
chine [75], drawn from the notes of Börger’s lectures on the Semantics of
Programming Languages in a summer school held in 1989 in Cortona/Italy
which triggered the first European PhD project on ASMs [375]. Gurevich
completed the tutorial definition in the so-called Lipari guide [248], which
are the lecture notes of a course delivered in 1993 at the Lipari/Sicily sum-
mer school on the Specification and Validation Methods for Programming
Languages and Systems [79]. The definition has essentially remained stable
since then,7 in fact it constitutes the basis for the proof established five years
later for the sequential version of the ASM thesis from three fundamental
postulates [249]. As observed by Blass [54, p. 11], this subclass of so-called
sequential ASMs is natural from a logical point of view, corresponding to the
class of quantifier-free interpretations in logic.

The tutorial and the Lipari guide incorporate the experience which had
been gained through the early applications of ASMs,8 those described above
and those reported in the contributions to the first international ASM work-
shop which was organized as part of the 13th World Computer Congress in
Hamburg in 1994 [361]; see below. Besides the introduction of the choose
and forall operators, the major addition of the Lipari guide to the tutorial
concerns the notion of async (there called distributed) ASM runs. In [257]
an ASM model had been developed for the parallelism of Occam. It was
presented by Gurevich in May 1990 in another series of lectures in Pisa,
which inspired the concrete theme for Riccobene’s PhD thesis [375] to re-
fine the ASM model for Prolog by the different forms of parallelism en-
countered in Parlog, Concurrent Prolog, Guarded Horn Clauses, and Pan-
dora [122, 123, 374]. Later another instance of refinement and parallelization
of Prolog to a semi-ring based constraint system appeared [52], replacing the
Call and Select Rules of [71] by a Reduction Rule which activates a child pro-
cess simultaneously for each alternative of the current process. The notion
of parallelism in these models was generalized in [227] where ASM models
appear for the Chemical Abstract Machine and the π-calculus. Eventually in
6 The operators choose and forall do not appear { non-deterministic choice is

handled by external choice functions. The semantics of conicting rules is dif-
ferent from the de�nition adopted later: in the case of a conict among rules a
consistent rule subset is chosen for execution.

7 The initially present construct to shrink domains, which was motivated by con-
cerns about resource bounds, was abandoned because it belongs to garbage col-
lection rather than to high-level speci�cation. Concerning variations concern-
ing non-determinism and inconsistent update sets see the previous footnote
and [262].

8 See the acknowledgment in [248, p. 11].

9.3 Testing the Practicability of ASMs 349

1995, the Lipari guide definition of distributed ASM runs superseded these
more restricted definitions of concurrency for ASMs (see Def. 6.1.1).

9.3 Testing the Practicability of ASMs

Once the practical potential of the ASM notion had been understood, a nat-
ural next step was to test its practical impact by trying out ASMs for the
modeling and rigorous mathematical and experimental analysis of a variety
of complex real-life computing devices, looking for relevant problems beyond
those of the semantics of programming languages. In the Fall of 1992 Börger
defined this program and started it with his students by systematically ex-
tending the application of ASMs to the specification and analysis of virtual
machines, processor architectures, protocols, embedded controller software
and requirements capture. As part of this effort the 1993 Lipari Summer
School on Specification and Validation Methods [79] was organized, which
triggered the fundamental Lipari Guide [248] and a series of papers applying
ASMs [133, 420, 114, 283, 256].9 The endeavor attracted many researchers
and resulted in the elaboration of a fully fledged system design and anal-
ysis method built upon the notion of ASMs, pragmatically confirming the
definition of ASMs in the Lipari guide.

9.3.1 Architecture Design and Virtual Machines

For computer architectures, the work on program started during the winter
term 1992/93 with a reverse engineering study, commissioned by a group of
physicists in Pisa and Rome for the massively parallel APE100 architecture,
a rather successful dedicated machine which had been developed for float-
ing point intensive numerical simulations in Lattice Gauge Theory [32, 33].
As part of the work for Del Castillo’s Tesi di Laurea, a programmer’s view
ground model has been defined in [97] and refined in [102] to a provably cor-
rect decomposition of the control unit processor zCPU, a VLSI-implemented
microprocessor with pipelining and VLIW parallelism, built from formally
specified basic architectural components. The intermediate models, obtained
by stepwise refinement, correspond to views of the architecture provided by
different languages used within the APE100 compilation chain, a crucial part
of the software environment of the machine. A companion Tesi di Laurea [119]
had the goal of isolating the underlying pipelining scheme and of proving its
correctness via stepwise refined models. Hennessy and Patterson’s RISC ma-
chine DLX was chosen as the reference architecture to treat the standard
9 A companion Lipari Summer School on Architecture Design and Validation Meth-

ods followed in 1997 [88]. Another one was organized in 2002 on Software En-
gineering, with three of the seven courses based on ASMs (held by Gurevich,
B�orger and Riccobene).

350 9 History and Survey of ASM Research

pipelining methods which handle structural hazards, data hazards and con-
trol hazards, respectively. Starting from the one-instruction-at-a-time view
of the processor, each hazard is dealt with in one dedicated refinement step
which concentrates on the corresponding machine property (see Sect. 3.3).
This ASM based architecture design and verification method was taken up
by other research projects; see below.

For virtual machines, the program to extend the WAM work [132] beyond
issues concerning the implementation of programming languages started with
modeling the well-known Oak National Laboratory public domain software
system PVM [214], a general-purpose environment for heterogeneous dis-
tributed computing. The virtual machine appears there logically as a single
distributed-memory computer, “created” by PVM out of a dynamic heteroge-
neous set of physically interconnected and concurrently operating machines,
namely host computers which can be dynamically added to or deleted from
the virtual machine and may belong to a variety of architectures (including
serial, parallel and vector computers). Glässer suggested trying out the no-
tion of async ASMs for modeling PVM. In [107, 108] a ground model for
the Parallel Virtual Machine is defined at the C-interface level, where it ap-
pears as an async ASM with a characteristic event handling mechanism and
message-passing interface (reflecting the uniform access that the PVM agents
(“daemons”) have to daemons on other host machines, whether multicast or
point-to-point between single tasks).

The cooperation on modeling the PVM triggered the project to provide
a ground model for the, at the time, new IEEE standard VHDL’93 [288] of
the hardware design language VHDL. The models defined in [111, 112] come
as an async ASM and cover the entire language with the new features of the
1993 standard, in particular the complete signal behavior and the time model,
including pulse rejection limits and the various wait and signal assignment
statements involved in the subtle issues related to postponed processes. Later,
these ASM models were used in W. Müller’s PhD thesis at the University
of Paderborn [349] for defining the semantics of a pictorial extension PHDL
of VHDL’93, by a group of Toshiba engineers for an extension to analog
VHDL and Verilog [383, 384, 380, 382, 381], and recently for an adaptation
to SystemC [345] and to SpecC [344].

Conversations with Langmaack since 1991 on the relations between the
ASM-based method used for proving the correctness of Prolog-to-Wam com-
pilation [132] and the European ProCoS project on provably correct sys-
tems [318], which aimed in particular at a correctness proof for executing
compiled Occam programs [350] on the Transputer architecture [236], have
led to the Transputer-verification ASM case study. In [104] the Transputer
instruction set architecture has been modeled by a hierarchy of stepwise re-
fined ASMs to support the correctness and completeness proof for the gen-
eral compilation scheme of Occam programs to Transputer code proposed
in [289, 290]. As the basis for the semantics of truly concurrent and non-

9.3 Testing the Practicability of ASMs 351

deterministic Occam programs an appropriate ground model ASM has been
used, which was defined in [105]. It leads from the programmer level (see
Fig. 6.20) by various proven-to-be-correct refinement steps to the starting
point of the hierarchy of Transputer models, namely a machine which ap-
pears as an abstract processor running a high- and a low-priority queue of
Occam processes. This ASM-based method for a mathematical verification of
real-life compilation schemes with respect to a rigorous semantics of source
and target languages has been taken up again in the Verifix project discussed
below, based upon the recognition in the ProCoS project that to establish
the correctness of (modulo hardware correctness) reliable initial compilers,
in addition to verifying the compiling function the verification of a compiler
implementation is also needed.

9.3.2 Protocols

Using ASMs for modeling and verifying protocols has been started in three
papers which were published in [79]. The work in [114] is an answer to one of
the, at the time, frequent public challenges of ASMs: Abraham and Magidor
at a Dagstuhl seminar in June 1993 expressed doubt that the atomic character
of function updates in ASM transitions would prevent these machines from
naturally reflecting complex combinations of low level durative actions. The
discussion in the seminar focussed on the concrete example of Lamport’s
mutual exclusion protocol known as the bakery algorithm [314, 315], for which
Abraham had presented a new proof method, relying on a distinction between
a lower and a higher view of the algorithm [2, 3]. In [114] three ASMs are
built. The first one serves as a ground model to faithfully reflect Lamport’s
protocol. By abstracting from the low-level read and write operations of the
ground model, a high-level model with atomic actions (non-overlapping reads
and writes) is defined and then

– proven to have the desired correctness and liveness properties (under four
natural assumptions about the abstract functions that were used),

– proven to be correctly refined by the ground model (proving that the as-
sumptions made for the abstract model hold for the implementation).

In the third ASM, the state of the abstract machine is refined by replacing
atomic actions with durative ones, allowing overlapping of reads and writes
to shared registers. It is proved that this refined notion of state satisfies the
corresponding assumptions made for the machine with atomic actions. The
resulting correctness and liveness proofs for the bakery algorithm consid-
erably shorten numerous other proofs in the literature. The arguments are
expressed using a mapping of ASM moves to moments of continuous and
linear real time (see Sect. 6.4), but they can and have been rephrased in
the more general terms of partial orders [258] which characterize the notion
of async ASM runs. A further analysis of the role of timing constraints on

352 9 History and Survey of ASM Research

async ASM runs for proving the correctness of refinements of asynchronous
algorithms with continuous time appears in [157].

Reference [283] contains another illustration of the technique of stepwise
ASM refinements for a real-world protocol, providing a faithful readable spec-
ification together with an understandable correctness proof (see Sect. 6.3.1).
The Kermit file-transfer protocol chosen as the object of the study had been
presented by Knuth in his foreword to the Kermit book [163] by expressing
the

hope that many readers of this book will be challenged to find high-
level concepts and invariant relations by which various versions of
the Kermit protocol can be proved correct in a mathematical sense.

Huggins deals with a complete version of Kermit, showing how this proto-
col combines the underlying alternating bit protocol and its sliding windows
extensions, thus differing from numerous earlier verification studies in the lit-
erature which had focussed on these two simple protocols in isolation. Later,
two other ASM formalizations of the alternating bit protocol alone appear,
one in [328, Chap. 5] as an illustration of a modularization and communica-
tion concept implemented on top of ASMs, the other one in [239] to illustrate
the application of algebraic-categorical composition schemes to ASMs.

In [256] a processor group membership protocol is modeled as an async
ASM (see Sect. 6.3.2), a typical protocol of the kind used to achieve fault
tolerance for distributed computing services. The underlying assumptions for
the well-functioning of the protocol are made explicit, such as the reliability of
the message passing mechanism, lower bounds for processor recovery, upper
bounds for message exchange time, etc. These assumptions are then proved to
imply the correctness of the protocol, namely that despite delays in message
passing and server failures, the protocol achieves a global agreement about
the set of all correctly functioning processors in a synchronous system.

This debut of ASMs for protocol verification triggered numerous other
ASM projects in the area, which are discussed below.

9.3.3 Why use ASMs for Hw/Sw Engineering?

In the first half of the 1990s, the concept of ASMs encountered considerable
scepticism and not seldom strong opposition in the scientific community, even
in Europe. Interestingly enough the criticism came from two directions, on
the one side from researchers whose longstanding trust in purely declarative
logico-algebraic methods made them view ASMs as nothing else than yet
another form of an old fashioned low-level operational method, on the other
side from researchers who claimed earlier fathership for the notion in a vari-
ety of forms.10 Both objections contain a grain of truth. They motivated the
attempt, made in 1995 [80] and again in 1998 [86], to understand better the
relation between ASMs and established formal methods and to formulate the
stringent scientific reasons why, after decades of intensive research in the area,

9.3 Testing the Practicability of ASMs 353

an apparently new concept was proposed as the basis for a practical high-
level system design and analysis method. The articles explain that although
a logician discovered the concept of ASMs, as an outsider driven by a founda-
tional concern, the notion triggered the development of a method which allows
one to really “complete the longstanding structural programming endeavour
(see [164]) by lifting it from particular machine or programming notation to
truly abstract programming on arbitrary structures” [86, Sect. 3.1]. As a mat-
ter of fact the notion is made up of three ingredients which had been there
already for a long time but with nobody to bring them together, namely the
notion of pseudo-code, IBM’s concept of virtual machines [305] together with
Dijkstra’s related concept of abstract machines [183] and the fundamental
idea of using Tarski structures as the most general notion of abstract states,
an idea which pervaded the area of abstract data types and algebraic speci-
fications [325, 265, 359, 210] without becoming relevant for practical system
design:

ASM = Abstract State + Abstract Machine.

10 Among the earlier de�nitions we know, the one which comes closest to basic
ASMs is that of data space de�ned in [161]. It proposes to mathematically cap-
ture the notion of a virtual machine as a \mathematical machine with structured
states", which \emphasizes the interaction between data and control structures",
to be used for implementations of abstract models and their testing at high ab-
straction levels. The de�nition given is that of an arbitrary partial function
(called \processor") which transforms elements of a set X of abstract states and
for whose description an unrestricted access is allowed to what is called an \in-
formation structure", namely an arbitrary set of static functions with domain X
and arbitrary data types as range. The class of allowed processors is not speci-
�ed; judging from the provided examples and later case studies it seems to have
been intended to permit for their de�nition standard programming constructs
plus some bounded parallelism (read: simultaneous application of di�erent func-
tions). These partial functions roughly correspond to the next state function of
basic ASMs, but without providing a concrete universal set of machine oper-
ations { �a la basic ASM transition rules of Sect. 2.2.2 { which compute these
functions. To characterize states it is said that each information structure func-
tion \describes some aspects of the states, and for any given state x , we expect
the combination or ‘sum’ of all aspects to determine the ‘meaning’ of x ." Two
properties (of completeness and orthogonality of information structures) are de-
�ned which permit states to be viewed as the Cartesian product of the ranges of
the functions in the information structure. This stands for the concrete de�nition
of ASM states as algebras of the underlying signature. Data spaces are exposed to
the frame problem by the decision to use total functions to determine next states
in a functional manner, instead of going via updates of �nitely many locations of
dynamic functions (in fact no classi�cation of functions �a la Sect. 2.2.3 is given).
The de�nition of \implementation" realizes that \for the successful re�nement
of a given level of abstraction, it is necessary to consider the control structure
together with the collection of data types whose interaction is de�ned by that
control structure"; however, it restricts implementations to (1,m)-re�nements
with m > 0 (see Sect. 2.1.2).

354 9 History and Survey of ASM Research

9.4 Making ASMs Fit for their Industrial Deployment

The positive experience gained through the multitude and diversity of suc-
cessful ASM-based modeling and verification projects convinced Börger of
the potential of ASMs for industrial system development and brought him to
the decision, in the Spring of 1994, to apply ASMs to down-to-earth software
engineering problems and to pave the way for their industrial deployment. At
the time it was hard to find support for projects directed towards this goal,
the effort was judged even by some leading peer in the ASM community to
be a waste of time. Nevertheless it attracted more and more researchers and
eventually led to an industrially viable, theoretically well-founded system de-
velopment method built around the concept of an ASM, an approach which
supports practical system design and analysis by application-tailored high-
level modeling that is seamlessly linked to executable code, going through
mathematically verifiable, experimentally validatable and objectively docu-
mentable refinement steps.

The program was articulated through the following three major themes
surveyed below:

– investigation of practically relevant case studies and system development
problems, to identify the strengths and weaknesses of ASMs for software
development, and to compare ASMs with established formal methods,

– application of ASMs in challenging industrial software engineering projects,
– integration of tools for simulation, verification, documentation and main-

tenance of ASMs during the software development process.

9.4.1 Practical Case Studies

In the Spring of 1994 the preparation of a research competition among meth-
ods for semantics and specification was started with the declared goal to
“contribute to a realistic comparison, from the point of view of practicality
for applications under industrial constraints, of the major techniques which
are currently available for formally supported specification, design, and ver-
ification of large programs and complex systems” [9, p. 1]. This developed
into the Steam Boiler Dagstuhl Seminar [7] – by the name of the industrial
case study that the participants were asked to solve – and into the Steam
Boiler Case Study Book [8], which came out of a subsequent international call
for participation. Although only a quarter of the numerous solutions came
up with a validatable executable model, to provide a complete ASM solution
turned out to be a relatively easy task. In [43] first a ground model ASM is
defined – a rigorous form of the given problem description which is phrased
in such a way that it can be checked by the domain expert to be faithful
to the intended requirements. Then the ground model is stepwise refined to
C++ code, each intermediate model reflecting some design decision.11 Proofs
for some of the required system properties are reported, and during a demo

9.4 Making ASMs Fit for their Industrial Deployment 355

to the seminar Durdanovic showed his C++ program to successfully con-
trol the simulator [326] that Lötzbeyer had built at FZI in Karlsruhe for an
experimental evaluation of the problem solutions.

Mearelli’s Tesi di Laurea, started at the beginning of 1995, had the goal of
extending the positive experience made with the development of the steam-
boiler control software by a test of the integratability of the ASM method
into the various phases of the software development cycle. As an experimental
guide an ASM ground model for the, at the time, freshly published Produc-
tion Cell Case Study [323] was developed and stepwise refined to C++ code
(see [120, 332] and Sect. 5.1), with particular attention to the following two
features:

– the modularity of the specification and the code and their structural simi-
larity (to support code inspection), together with their complete documen-
tation as support for inexpensive changes and easy maintenance,

– the applicability of standard verification and validation methods to prove
the desired properties stated in the requirements.

In fact in [120] all the required correctness, safety, performance and live-
ness conditions are proved by mathematical argument – typically for the
high-level model under appropriate assumptions, proving these assumptions
to hold at the refined level. The C++ code produced by implementing the fi-
nal refined ASM model [332], taking care that the specification can be traced
through the structure of the code, has been validated by extensive experi-
mentation with the simulator built at the FZI in Karlsruhe. It has also been
submitted for an inspection process to another software engineering Dagstuhl
Seminar, organized in 1997 and focussed on “Practical Methods for Code Doc-
umentation and Inspection” [117]. To test the integratability of mechanical
verification methods into the software development with ASMs, the Produc-
tion Cell models were used for model checking experiments [424, 362] and for
theorem proving with PVS [207]. As one of the first test examples for his code
generator from ASM specifications (see below), Schmid has used the Produc-
tion Cell ASM for generating efficient C++ code whose structure allows one
to trace the specification to support the reliability of code inspection [391].

In 1999, through another software engineering Dagstuhl seminar, it has
been tried to bring together once more researchers from academia and prac-
titioners from the software industry to evaluate the contribution of so-called
formal and informal methods for solving practical system engineering prob-
lems. The seminar was focussed on problems encountered in industrial soft-
ware development processes to capture, document and validate requirements
in a principled manner [115]. This seminar, too, was centered around a prac-
tical case study which triggered some complete solutions published in [113].
11 One can view it also the other way round as lifting the C++ code to a more

abstract level with simultaneous updates, access to historical function values,
etc., a methodological view which was held by Durdanovic and has been further
elaborated in [171].

356 9 History and Survey of ASM Research

The ASM solution of this Light Control Case Study (see [125] and Sect. 6.2)
showed that building and simulating ASM ground models is an efficient
method to capture, validate and document requirements for a precise rea-
son: it allows one to document in a traceable way the desired mix of rigorous,
explicit (“formal”) elements of description and of others intended to remain
vague and implicit (“informal”). Such a mix is needed to bridge the gap be-
tween the views of the application-domain expert and of the system designer,
persons who speak different languages but nevertheless have to understand
each other to be able to agree on the definite characteristics of the system
to be developed. This observation has led to Cavarra’s PhD project [152],
where an attempt is made to link ASMs to so-called semi-formal specifica-
tion techniques as they are used in industrial practice. The formal versus
semi-formal issue is an instance of the more general need for an encom-
passing framework to combine heterogeneous specification elements, which
is discussed in [219, 16, 172]. The 1999 Dagstuhl Seminar [115] brought out
this requirements engineering aspect of the systematic separation of different
concerns, which has been advocated in [80, Sect. 4] as a characteristic and
major distinctive feature of the ASM method compared to other approaches
to system design (see also [77, 247]). It was pointed out again in [87, Sect. 1]
that such a separation of orthogonal system features, and of different meth-
ods to model and analyze them, is necessary for a successful combination of
multiple ways to construct and relate different system views – by modeling,
simulating and verifying the system with different degrees of precision. In-
deed it is one of the reasons for the success of the ASM method that the
mathematical “openness” of the basic ASM concept allows fine-tuning this
separation-for-integration strategy – a classical divide-et-impera approach –
to the needs of the system to be developed or investigated (see Sect. 2.1).

Also, other case studies which had been presented during this period as
challenges to the scientific community have been elaborated using ASMs.
Examples are the ASM solution [284] to the Broy–Lamport specification
problem [144], which had been formulated in 1994 for the Dagstuhl seminar
on reactive systems, or the real-time-based ASM modeling and verification
in [253, 34, 35] of the Railroad Crossing Problem to which Heitmeyer and
Mandrioli’s book [277] is dedicated (see Sect. 5.2).

9.4.2 Industrial Pilot Projects and Further Applications

ASMs at Siemens/Munich. For his sabbatical year 1995/96 Börger de-
cided to find out whether the above-described applications of ASMs to re-
quirements capture and to design and analysis of controller software scale
to the needs of industrial design environments. This developed into a fruit-
ful cooperation during the years 1996–1999 with Päppinghaus at Siemens in
Munich, largely focussed on design methods for railway-related software [96].
It led to a rather successful application of ASMs in a middle-sized indus-
trial software development project (FALKO, May 1998–March 1999, reported

9.4 Making ASMs Fit for their Industrial Deployment 357

in [121], see Falko (; CD)). The salient methodological outcome of this
cooperation was the creation of the first prototypical ASM based industrial
development environment, which supports a seamless flow from the defini-
tion of an ASM ground model to compilable (in the specific case C++) code,
including high-level testing and code maintenance.

Obviously, to make this project succeed, appropriate ASM tools had to be
created and used extensively. In the Spring of 1995 Del Castillo had started his
PhD work, located at the university of Paderborn, to build a tool environment
for the specification and simulation of ASMs. The FALKO ground model
was formulated in the ASM-SL language that Del Castillo meanwhile had
defined for the ASM Workbench [170], so that in the FALKO design phase
early versions of this machine could be used for extensive testing of the high-
level FALKO models, prior to coding. At the end of the design phase, as
part of his PhD project, which started in the summer of 1998 at Siemens
Corporate Research in Munich, Schmid developed a compiler from ASM-
SL to C++ [391] – it generated the program which since March 1999 is in
daily, failure-free use by the Vienna Subway Operator for the validation of
subway operational services. For documentation and maintenance purposes
Schmid developed a literate programming tool allowing one to keep a single
collection of consistent HTML documents from which the ASM-SL code can
be extracted as input to the ASM Workbench or to the compiler, but also in
pretty-printed form for the human reader.

In the third part of his PhD work [392, Chap. 2], Schmid successfully ap-
plied this tool-supported structured ASM modeling and refinement technique
also in a large ASIC design and verification project at Siemens München. This
includes the definition of a notion of ASM components which was used for the
behavioral specification of digital hardware circuits, and of the development
of a compiler from ASM components to VHDL.

CO-Monitoring system. Another early industrial application of tool-
supported ASMs, namely for an automated fire detection system adopted by
three major German coal mines, is reported in [148]. Kappel’s Prolog-based
interpreter for basic ASMs [301] was extended for this project to support
the parallel execution of independent modules, representing distributed pro-
cesses which are synchronized via stream based communication. The exten-
sion comes with a visualization mechanism for run data.

DFG projects Deduktion/Verifix. In 1994 Börger suggested to the
German Research Council project “Deduktion” to apply mechanical proof
verification for proving properties of ASM models of real-life programs [393].
In particular, some of the refinement steps in the above-mentioned WAM cor-
rectness proof have been mechanically verified using Isabelle [369], whereas
using KIV the entire proof has been elaborated for a mechanical check, us-
ing not only all the 12 refinement steps from [132], but adding one more
intermediate model to make the proof feasible for the machine [388, 386].
In [387] a scheme is extracted from that work for proving the correctness

358 9 History and Survey of ASM Research

of ASM refinements using generalized forward simulation (see Sect. 3.2.3).
This use of ASMs for proving the correctness of compilation schemes has
been further developed in a part of the Verifix project [229] of the Ger-
man Research Council, where instead of schemes for compilation into virtual
machine code the correctness of concrete compilers compiling into real-life
machine languages is investigated. We mention only a few examples from
the subpart of the Verifix project where ASMs are used, which appeared
in [211, 439, 188, 212, 274, 275, 231, 273]. A ground model ASM for the
DEC-Alpha processor family has been extracted from the manufacturer’s
handbook; compiler back-ends have been built based on realistic intermedi-
ate languages to prove their correctness, using generic PVS theories developed
in [187] to define refinement relations between ASMs; and ASMs have been
used to describe compilers which verify the correctness of the code they gen-
erate, etc. For the specification of source languages Montages (see below) has
also been used, adopting however attribute grammars to formulate static se-
mantics features. In [335] appropriate ASM models are defined to prove the
correctness for the static link technique.

Montages at ETH Zürich. A related research effort has been under-
taken at ETH Zürich, triggered by Gurevich’s ASM lectures delivered there in
the Spring of 1995. It was driven by the Montages project [311, 19], geared to
support, by an appropriate combination of graphical and textual elements,
the simultaneous specification of the static and dynamic semantics of pro-
gramming languages, exploiting the syntax-driven modularity which is typ-
ical for sequential languages where instructions are executed one after the
other and one per step. The method is illustrated by a complete definition
of the syntax, static and dynamic semantics of Oberon in [310] and of C
in [285]. In [18] a development tool (Gem-Mex) for creating Montages is
presented which has been applied to provide an executable semantics for
Mosses’ Action Notation [16]. A successful application of Montages to the
design and specification of a domain-specific language for a Swiss bank is
reported in [312].

SDL-2000 standard. Another remarkable industrial exploitation of
ASMs comes with the abstract operational ASM definition of the new in-
dustrial standard for the design language SDL, widely used for over 20 years
to develop distributed systems. In November 2000, the international stan-
dardization body ITU-T for telecommunications accepted the ASM model
as the official definition of the 2000 standard of the language. The project
of modeling the intricate static and dynamic semantics of the distributed
real-time features of SDL as executable ASMs, in the context of rich data
and hierarchical control structures together with advanced object-oriented
and exception-handling features, was started in [225], proposed to the SDL
Forum in [220], and led through three years of intensive work by a body of ex-
perts [221, 222, 195, 367] to the complete standard definition [292]. It covers
the static and the dynamic part of the semantics, currently an SDL-to-AsmL

9.4 Making ASMs Fit for their Industrial Deployment 359

compiler, and further tool support of the ASM model for the standard are in
development [194].

ASM analysis of Java and the JVM. The project to apply ASMs
to a systematic investigation of Java and its implementation on the Java
Virtual Machine was born from a debate, in March 1997 in Dagstuhl, on
How to use Abstract State Machines in Software Engineering [83]. The mod-
eling experiments during the first two years [138, 137, 139, 140, 141] were
geared to establish through this concrete real-life case study the respective
merits of functional, axiomatic and operational abstract-state-based specifi-
cation features. They were followed by two more years of mathematical and
experimental analysis, streamlining and structuring the ASM models of Java
and of the Java Virtual Machine (see Figs. 2.10, 2.11, 2.12), and adding cor-
rectness and completeness proofs for a standard compiler of Java programs
to JVM code and for the security critical bytecode verifier component of the
JVM [406]. The technique of structuring the ASM models into language layers
and machine components [89] is based upon the composition and submachine
concepts which were developed in [134] (see the concept of turbo ASMs in
Sect. 4.1). It led to a natural refinement of the high-level Java/JVM mod-
els to AsmGofer executable models [390] which can be used for code-testing
purposes. In a recent evaluation of about 40 Java/JVM research projects
worldwide it is stated that “the Jbook (i.e. [406]) ... gives the most com-
prehensive and consistent formal account of the combination of Java and
the JVM, to date”[272, Sect. 6.2]. In [23] the new Java memory models are
modeled and analyzed using ASMs.

Architecture projects. Mention has already been made above of the in-
dustrial extensions of the ASM models for VHDL [111, 112] to analog VHDL
and Verilog [383, 384, 380, 382, 381], to PHDL [349], to SystemC [345] and
to SpecC [344], as well as of Schmid’s compiler from ASM components to
VHDL [392, Chap. 2]. The ASM modeling method for instruction set architec-
tures developed in the APE100 project [102] has been enhanced in [174, 173]
to instrument models to collect data for evaluating design alternatives.

In [217, 407] some steps were taken to mechanically verify the pipelining
correctness proof using the KIV system and PVS, but unfortunately without
covering the complete hierarchy of the four models in [119], so that an omis-
sion of a hazard case in the last refinement step remained undetected until
Hinrichsen found it during his work on generating pipelined systems from
sequential processor specifications [279] (see Sect. 3.3). The design and veri-
fication method of [119] has been applied in [286] to an advanced commercial
RISC processor with a simpler pipelining scheme. It is reused in [412] to illus-
trate an approach to automatically transform register transfer descriptions of
microprocessors into Xasm-executable ASMs [15], thus allowing one to gen-
erate a simulator for a processor architecture from its netlist description or
from a graphical description of its data-path. In the same spirit, in [413] an
ASM model was developed for a VLIW digital signal processor of the Texas

360 9 History and Survey of ASM Research

Instruments TMS3200 C6200 family. These papers are part of an architec-
ture and compiler co-generation project, led by Teich at the University of
Paderborn, where ASMs and their execution in Xasm [15] were systemati-
cally applied to the hierarchical modeling of application specific instruction
set processors [411].

Further ASM applications. Since 1994 numerous advanced applica-
tions of ASMs appeared for protocol verification and in other fields of com-
puter science, namely formal grammars, databases and electronic commerce,
software architecture, finite model theory, complexity theory. In [297, 341,
342] async ASMs are used to model various formal and natural language
grammars (see the definition of Execute(G) on p. 115, Exercise 3.2.3 and
Backtracking (; CD)). In [260] the database undo-redo recovery algorithm
is modeled at several levels of abstraction, showing the ground model to
be correct and proving the correctness of each of the four refinement steps,
leading to a model incorporating cache and log management (see Sect. 3.2).
An ASM-based definition of the concept of database transactions is given
in [368]. In [38] ASMs are used to describe the semantics of a domain-specific
language, tailored to program the control for event-driven database applica-
tions. In [200] an ASM-based prototype system is described for specifying
electronic commerce applications. The contribution of ASMs here is to pro-
vide a rigorous and transparent way for describing the state changes involved
in electronic commerce negotiations, concerning the traded products, the ne-
gotiators, their orders, the laws accepted as basis for the particular negotia-
tion, etc. This paper and its companion paper [1] triggered the recent study of
decision problems for restricted classes of relational ASM-transducers [404].
In [300] ASMs are used to specify a name-management model. In [22] ASMs
are used to define the semantics of patterns and for correctness proofs for
workarounds. In [208, 28, 237, 216, 209] ASMs are exploited for testing issues,
as suggested in [86, p. 36] and [87, p. 6] on the basis of the positive experience
with running ASM test suites in one of the first industrial ASM projects [121]
(see the beginning of Sect. 9.4.2 and the discussion of the ASM Workbench in
Sect. 9.4.3). In [410] the proposal of an ASM-based approach to software ar-
chitecture design is made, allowing one to specify software systems by appro-
priately connecting components which are characterized abstractly in terms
of the services they export or import (see Sect. 3.1.2 and ComponentModel
(; CD)). In [395, 328] interacting ASMs are defined. In [154] the task and
data parallelism of the programming language P3L is analyzed on the basis
of an ASM model. In [352] the theme of modeling PVM [107, 108] is taken up
again using ASMs to propose a definition for the semantics of grid systems.

The early ASM specifications and verifications of protocols have been con-
tinued in [45], where the Kerberos Authentication System is modeled by a
hierarchy of proven-t- be-correct stepwise refined ASMs, disclosing the min-
imum assumptions to guarantee the correctness of the system as well as
its security weaknesses. In [46] the Needham–Schroeder protocol is analyzed

9.4 Making ASMs Fit for their Industrial Deployment 361

to illustrate a general ASM framework for a practical analysis of crypto-
graphic protocols. For a recent AsmL-executable model of abstract encryp-
tion see [377]. Stroetmann defined a ground model ASM for the constrained
shortest path problem and proved it to be correct from a small number of nat-
ural axioms [409]. He then refined the ground model in a proven-to-be-correct
way down to (but excluding) the level of an efficient proprietary Siemens im-
plementation of the algorithm in C++ (see Sect. 3.2). During his research
stay in Pisa in 1997/98, Durand investigated the cache coherence protocol in
the Stanford FLASH multiprocessor system. In [189] a high-level ASM speci-
fication and a correctness proof are provided which detected some incoherent
and incomplete features in the given protocol description. This model has
been used in [425] as a case study for a real-life application of model checking
to ASMs, using the SMV model checker. In [193] a two-level ASM speci-
fication of a distributed termination detection algorithm is given together
with an equivalence proof between the two machines. In [47] async ASMs
are used to model a new routing layer protocol for mobile ad hoc networks
(see Sect. 6.1.8). In [254] two ASMs for a ring-buffer algorithm proposed by
Lamport are used to illustrate that the notion of equivalence depends on the
level of abstraction at which the algorithm is viewed (see Exercise 6.1.10).

Foundational progress. It is characteristic for ASM workshops and collec-
tions of ASM papers [361, 79, 85, 84, 226, 255, 110, 109, 55, 106] to contain
both theoretical and practical contributions. In fact in addition to the theoret-
ical papers mentioned already above, there have been important contributions
of ASMs also in complexity and finite model theory, although the observation
in [191] is still true, namely that the theoretical potential of ASMs has been
recognized and explored to a less extent than their practical applications.
In [56] ASMs are used as computation models to reflect the practical expe-
rience that for real-life computations, constant factors matter. Based upon
this model, linear-time hierarchy theorems for random access machines and
ASMs are proven. It is shown that there exists a sequential ASM U and a
constant c such that, under honest time counting, U simulates every other
sequential ASM in lock-step with log factor c.

In [233] finite model theory is extended to metafinite models, covering
the mixture of finite and potentially infinite features as they appear typically
in practical applications in the states of an ASM. Reference [57] is an inves-
tigation into the notion of the reserve set of an (untyped) ASM, exploring
the ideas of adding structure within the reserve and the non-determinism of
importing new elements (see Sect. 2.4.4).

In [62, 59, 63] a polynomial time version of ASMs is defined and in-
vestigated which captures the portion of the complexity class PTIME, where
parallel algorithms (with arbitrary finite structures as inputs) are not allowed
arbitrary choice. In [64] this choiceless polynomial-time variant of ASMs is
explored as a query language for relational databases. In [235, 402] a restric-
tion is defined to capture log-space computable functions on structures. The

362 9 History and Survey of ASM Research

ASM choice construct (choose x : F (x)) motivated also [58], where extensions
of first-order logic with the choice construct are studied.

References [401, 403, 354] deal with decision problems for restricted classes
of ASMs. In [44] ASMs are used to model knowledge discovery and belief
revision. In [234] quantum algorithms are axiomatized in the spirit of [61]
and the ASM thesis is proved for them from these axioms.

Recent industrial ASM applications. Since the Fall of 1998 when
Gurevich joined Microsoft Research, various applications of ASMs within
Microsoft have been reported. The first one [264] is an ASM specification
of the Windows Card Runtime Environment with a verification of certain
safety properties. During 1999/2000, a command-line debugger of a stack-
based run-time environment has been reverse engineered from the given 30k
lines of C++ code, using three successive abstraction steps: one to extract
the ground model which defines the same core functionality as the debug-
ger, one to reflect the compile time structure of the underlying architecture
(of modules of classes containing functions containing code) together with
a restricted view of the run-time structure, and eventually a control state
ASM focussing on the interaction between the command issuing user and
the reacting run-time environment (see Sect. 3.1.2 and Debugger (; CD)).
In [224] an async real-time constrained ASM has been developed to specify
the Universal Plug and Play (UPnP) architecture for peer-to-peer network
connectivity of intelligent devices (see the Communicator on p. 108). A
refined AsmL executable model is derived which can be used to inspect ASM
runs for conformance testing.

In [428] an ongoing industrial project in Australia is mentioned where
ASMs are used to specify and model check a railway interlocking system.
In [150] the development of a high-level abstract model of the core function-
ality of an entity in a mobile telephony network is reported which served as
the basis for a C++ product implementation.

9.4.3 Tool Integration

Already at the time of the very first industrial application of ASMs in the
context of the ISO standardization of Prolog, the issue of how to turn the
abstract specifications into executable ones for high-level simulations prior to
coding was recognized as crucial. Since then it has been resolved in various
ways, as we are going to survey in this section. The progress made over the
years in using ASMs in industrial projects for building models of software
systems at various abstraction levels made it clear, however, that it is not
enough to build simulators. They must also be linked to standard verification,
testing, refinement, versioning and maintenance methods and tools as used
in current development environments.

ASM interpreters. The first interpreter for sequential ASMs was de-
veloped in 1989/90, in Kappel’s Diplom thesis at the University of Dort-
mund [301]. At the same time, at Quintus a special interpreter for Prolog

9.4 Making ASMs Fit for their Industrial Deployment 363

ASMs was built [143]. Both interpreters served to execute the ASM models
proposed in 1990 and accepted in 1995 for the ISO standardization [101]. In
1995 an elegant 9-line Prolog interpreter for sequential ASMs appeared [36].
The same year in Oslo [180] a functional ASM interpreter was implemented.
As Huggins reports (see [87, footnote 3]), at the University of Michigan an in-
terpreter for sequential ASMs was developed (in C) by Harrison and Huggins
from 1991–1994. Huggins also implemented an automated partial evaluator
for sequential ASMs [252] which was extended in [178]. From 1994–1996 the
Michigan interpreter was upgraded by Mani to async ASMs, but no larger
application has been reported.

In 1995, Glässer, Del Castillo and Durdanovic proposed an abstract ASM
machine (at the time called EAM for abstract evolving algebra machine).
It is defined by stepwise refinement as a platform for implementing ASM
tools and led to the design of a virtual machine architecture as a basis for
a sequential implementation of the EAM [171]. This was the start for two
PhD projects, both located at the University of Paderborn and with the goal
of developing a practically useful tool support for ASMs. The first result to
come out was Del Castillo’s ASM Workbench [169, 170], which has been used
in a methodologically interesting way in the FALKO project at Siemens [121]
(see Falko (; CD)). The high-level ASMs of the to-be-developed railway
process software were tested for some scenarios provided by the customers
by running the scenarios on the Workbench, where, upon calling an abstract
function for some argument, the requested value is taken from its instance in
the particular scenario (read from a file which describes the given use case).
Reference [190] continues the ideas developed in [171] by building an ASM
Virtual Architecture as the basis for a comprehensive ASM tool environment
which comes up to industrial efficiency standards.

In [366] the MAX tool supporting the generation of language-specific soft-
ware from formal specifications is presented which uses functional algebraic
attribution techniques for the static semantics and ASMs for the dynamic
semantics. The development tool Gem-Mex presented in [18] for creating
Montages has been extended by Anlauff to the system Xasm [15] for pro-
ducing efficiently executable and easily reusable ASMs and comes with an
Xasm-compiler, a run-time system and a graphical debugging and animation
interface. It contains a mechanism for structuring ASMs based on compo-
nents which can be compiled separately and thus be put into a library for
later reuse. Technically this is achieved by enhancing a static module con-
cept, where submachines can be used as ASM rules or as external functions,
by access/update constructs which provide information on permissions to
read/write locations of submachines. An application of this component con-
cept is presented in [20]. (For a different set of modularity concepts, geared
to define and refine the I/O-behavior of programs according to their abstract
syntax, see [230].) Xasm offers an interface to C allowing (a) C-functions to
be used as static or monitored ASM-functions, and (b) ASMs to be called

364 9 History and Survey of ASM Research

from within C-programs. In [309] a denotational semantics is proposed for
Xasm. The applications of Xasm for Montages and Teich’s architecture and
compiler co-generation project are described above.

The development of AsmGofer [390] was driven by the goal of enabling
the executability of the models for Java and the JVM defined in [406], al-
though it represents a general interpreter for a large class of structured ASMs
(e.g. see its use in the Light Control case study [125] or the use of its variation
AsmHugs in [26]). It comes with GUI support, debugging facilities and sup-
port for a literate programming technique. The structuring and composition
concepts implemented in AsmGofer have been defined in [134] (see Sect. 4.1)
and have been used to decompose the Java/JVM models into language lay-
ered and functional components [89] . The definition of these concepts was
driven by the double concern (a) to distill some forms of standard program-
ming constructs which are really needed in large applications, and (b) to
integrate them as natural standard refinements into the ASM world with
simultaneous multiple updates of a global state. As a consequence these con-
cepts are special cases of the more general algebraic concepts investigated
in [330].

The MOSES tool suite in [293] is tailored for the specification and pro-
totypical implementation of visual notations for discrete-event systems. It
comes with a graph editor (from visual notation), a simulator with animator,
a debugger and some management tools.

Recently a new specification language AsmL running on the .NET plat-
form has been made accessible at Microsoft Research [201]. In [27, 28, 30]
some applications of AsmL within Microsoft are reported. An important new
feature of AsmL is the way it exploits the abstraction potential of ASMs to of-
fer component-based and object-oriented structuring principles. The natural-
ness with which object-oriented features can be described by ASMs had been
observed and used already in [232, 53, 348, 347, 366, 310, 295, 294] and has led
to Zamulin’s systematic investigation of objects and generic types for ASMs
[434, 433, 432, 435, 436, 437, 438]. A related effort was made in [99, 98, 296]
and in Cavarra’s PhD thesis [152] to exploit ASMs for a rigorous support of
object-oriented UML techniques and concepts (see Sect. 6.5.1), triggered in
the summer of 1999 by an evaluation of the high-level design characteristics of
UML and of ASMs in an industrial software development environment [100].
This has inspired also the work in [355], where the ASM Workbench [170]
is used to define an executable semantics for UML which covers real-time
aspects, and the work in [356, 153].

Linking ASMs to verification tools. The successful link of ASMs to
theorem-proving systems like Isabelle, KIV and PVS, and to model check-
ing [426] has been mentioned above. An interesting variation of model check-
ing, applied to the railroad crossing ASM of [253], appears in [34, 35]. See [213]
for interfacing ASMs with the MDG tool. Recently [408] KIV has been used
also for checking the programs in Sun’s Java manual against their ASM spec-

9.5 Conclusion and Outlook 365

ification in [138]. A description of the tableau proof method in terms of ASMs
at various levels of refinement leading from the textbook level to an imple-
mentation appears in [136].

Numerous logics have been developed to formalize ASMs and to support
mechanical reasoning for them. See [238, 363, 365, 394, 414, 35]. In [370]
the co-induction proof scheme is justified for ASMs, characterizing them as
a class of Di-algebras and proposing “the Di-algebra thesis which improves
the Turing thesis and which corresponds directly to the evolving algebra
thesis: Real world computable algorithms coincide with algorithms specifiable
by completely constraint Di-algebra specifications” [370, Sect. 3]. The logic
in [405] unifies some of these logics. It is based on an atomic predicate for
function updates and on a definedness predicate for the termination of the
evaluation of structured sequential ASM rules. For a more detailed exposition
see Section 8.1.

9.5 Conclusion and Outlook

In this chapter we have described how the mathematical notion of Abstract
State Machines, discovered by a reflection upon how to sharpen Turing’s
thesis, through a collaborative effort led to an engineering method which
supports the trustworthy design and analysis of complex real-life systems. It
is characteristic for the ASM method and for its short history that it spans
from an accurate theoretical foundation to practical applications in industrial
development environments.

In fact on the theoretical side, the concept of ASMs provides the founda-
tion for a logic-based taxonomy of discrete systems into classes of “sequential”
and asynchronous systems [90]. The epistemological appropriateness of this
classification of models of computation by logic-driven criteria can be justified
by the ASM thesis explained in Sect. 7.2 and is supported by the arguments
which prove from a few postulates its sequential and its parallel synchronous
version. The universality of the ASM model of computation is pragmatically
confirmed by

– the naturalness with which other models of computation can be defined as
ASM instances, directly, without any extraneous encoding (but typically
not vice versa), as shown in Sect. 7.1,

– the flexibility with which ASMs could be adapted to the diversity of mod-
eling problems and techniques in different application domains and at dif-
ferent design levels, as illustrated in Chapters 3–6 of this book,

– the degree by which ASMs support a truly generic form of programming,
yielding programs – in fact semantically well-defined pseudo-code – which
can be instantiated by a variety of refinements of their abstract control and
data structures and can be ported between languages and platforms in a
semantically transparent way, as discussed in Sect. 8.3.

366 9 History and Survey of ASM Research

The retrospective shows that the driving force for the development of the
ASM method came from the practical computer technology side, that is to
say from the use of ASMs in cutting edge, mostly industrial, applications and
case studies where the interesting problems to be solved showed up.12 The
simple character of the underlying notion of Virtual Machine, stripped down
to its essentials – see the definition of ASMs in Sect. 2.2 and its mathematical
underpinning in Sect. 2.4 – is the key to the industrial practicability of the
method and to its wide-ranged usability. It makes the ASM method rather
unique that within a single precise conceptual framework it supports the
major activities which occur during the typical software life cycle, namely:

– requirements capture by constructing satisfactory ground models,
– detailed design by stepwise refinement of models to executable code,
– validation of models by their simulation, which is possible due to the

notion of run coming with ASMs,
– verification of model properties by proof techniques or model checking,
– documentation for inspection, reuse and maintenance, by providing

through the intermediate models explicit descriptions of the software struc-
ture and of the major design decisions.

We have tried in this book to introduce the reader to each of these pos-
sible uses of ASMs. In doing this we had to stick to small or medium-size
examples and case studies we have chosen from the literature, given the pro-
prietary character of the larger industrial applications mentioned above in
this chapter. A real-life public-domain case study which involves all the de-
sign and analysis capabilities offered by the ASM method is contained in the
Jbook [406], which however will attract only those who are interested in the
specific theme of modeling and investigating the principles of the static and
dynamic semantics of a modern programming language and of its implemen-
tation.

To conclude we want to draw the attention of the reader also to a prag-
matic way in which the ASM method brings theory and practice fruitfully
together. Namely the method not only turned out to be useful for the daily
work of the software practicianer, but it appears to be attractive also for
the more theoretically minded persons. This stems from the fact that the
method offers a concrete practical way, not obscured by the futile formal-
ization features that Christian Morgenstern warns us against (see p. V), to
turn the construction and investigation of real-life sw/hw systems into an
intellectually rewarding engineering task – a noble task of applied, experi-
mentally backed-up mathematics, or of scientifically well-founded engineer-
12 Also the name change to Abstract State Machines was triggered by the concern

to better render the practical relevance of the notion and in fact was pushed by
our colleagues in industry [191]. The new name was found by P�appinghaus after
two extensive community-wide electronic discussions and replaced the more the-
oretical sounding name evolving algebras which itself already was a replacement
of the original dynamic structures and later dynamic algebras.

9.5 Conclusion and Outlook 367

ing of computing devices if one prefers to look at it the other way round.13

It is interesting to observe that though coming from an engineering instead
of a logico-mathematical perspective, Abrial’s B method, which is similar in
various respects and has been rather successful for a variety of safety-relevant
large-scale industrial applications, 14 also shares this insight that

the task of programming (in the small as well as in the large) can be
accomplished by returning to mathematics [5, p. xi].

Thus we are back at Leonardo da Vinci’s observation on p. V which opened
this book.

13 See the following remark by an observer of ASMs, N. Shankar (e-mail of Febru-
ary 12, 2002 to B�orger): \The ASM model imposes a logical structure on tran-
sition systems that has inspired very capable mathematicians to construct re-
markably elegant proofs. It is one of the few formal notations that appeals to
both mathematicians and engineers."

14 See the rich documentation of the MATISSE project (Methodologies and Tech-
nologies for Industrial Strength Systems Engineering, IST-1999-11435), in par-
ticular the interesting three handbooks for the project mangager, the program
manager and the practitioner, at http://www.matisse.qinetiq.com/).

http://www.matisse.qinetiq.com/

References

1. S. Abiteboul, V. Vianu, B. Fordham, and Y. Yesha. Relational transducers
for electronic commerce. In Proc. 17th ACM Sympos. Principles of Database
Systems (PODS 1998), pp. 179{187. ACM Press, 1998.

Relational transducers mapping sequences of input relations to sequences of
output relations are proposed for high-level declarative speci�cations of busi-
ness models. See [404] for a related class of ASM-transducers. 360, 399,
425

2. U. Abraham. Models for Concurrency. Gordon and Breach, 1999. 266, 351

3. U. Abraham. Bakery algorithms. Manuscript of 41 pages from University of
Beer Sheva, Nov 19, 2001. 266, 351

4. S. Abramsky. Semantics of interaction. In A. Pitts and P. Dybjer (eds.),
Semantics and Logics of Computation, pp. 1{31. Cambridge University Press,
Cambridge, 1997. 300

5. J.-R. Abrial. The B-Book. Cambridge University Press, Cambridge, 1996. 4,
22, 54, 62, 157, 295, 297, 367

6. J.-R. Abrial. Extending B without changing it (for developing distributed
systems). In H. Habrias (ed.), Proc. 1st Conf. on the B Method, pp. 169{190.
IRIN Institut de recherche en informatique de Nantes, 1996. 4, 296

7. J.-R. Abrial, E. B�orger, and H. Langmaack. Methods for Semantics and
Specification, Vol. 117. Dagstuhl Seminar No. 9523, Schloss Dagstuhl, Int.
Conf. and Research Center for Computer Science, May 1995. 229, 354, 369

8. J.-R. Abrial, E. B�orger, and H. Langmaack (eds.). Formal Methods for In-
dustrial Applications. Specifying and Programming the Steam Boiler Control,
Lecture Notes in Computer Science, Vol. 1165. Springer-Verlag, 1996.

Contains the problem description for the steam boiler control competition [7]
and 22 proposed solutions obtained using the major known formal methods,
with text and complete documentation on the accompanying CD. 229, 354

9. J.-R. Abrial, E. B�orger, and H. Langmaack. The steam boiler case study:
Competition of formal program speci�cation and development methods. In J.-
R. Abrial, E. B�orger, and H. Langmaack (eds.), Formal Methods for Industrial
Applications. Specifying and Programming the Steam-Boiler Control, Lecture
Notes in Computer Science, Vol. 1165, pp. 1{12. Springer-Verlag, 1996.

Motivation of the steam-boiler control competition [7] and short characteri-
zation of the 22 problem solutions appearing in the book. 188, 229, 354

10. J.-R. Abrial and L. Mussat. Speci�cation and design of a transmission pro-
tocol by successive re�nements using B. In M. Broy and B. Schieder (eds.),
Mathematical Methods in Program Development. Springer-Verlag, 1996. 241,
296

370 References

11. J.-R. Abrial and L. Mussat. Introducing dynamic constraints in B. In D. Bert
(ed.), B’98: Recent Advances in the Development and Use of the B Method,
Lecture Notes in Computer Science, Vol. 1393, pp. 82{128. Springer-Verlag,
1998. 134, 296

12. M. Allemand, C. Attiogb�e, and H. Habrias (eds.). Comparing Systems Speci-
fication Techniques., ISBN 2-906082-29-5. IRIN Nantes, March 1998. 88, 89,
157

13. R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer
Science, 126:183{235, 1994. 287

14. R. Alur and T. Henzinger. Real-time system = discrete system + clock
variables. Software Tools for Technology Transfer, 1:86{109, 1997. 200

15. M. Anlau�. XASM { an extensible, component-based Abstract State Ma-
chines language. In Y. Gurevich, P. Kutter, M. Odersky, and L. Thiele (eds.),
Abstract State Machines: Theory and Applications, Lecture Notes in Com-
puter Science, Vol. 1912, pp. 69{90. Springer-Verlag, 2000.

The XASM (Extensible ASM) language for producing executable ASMs
is presented. A development environment for XASM systems is described.
(XASM was formerly known as Aslan.) Also appears in TIK-Report No. 87,
pp. 1{21, ETH Z�urich, March 2000. See [17]. 342, 359, 360, 363, 370, 375,
414, 427

16. M. Anlau�, S. Chakraborty, P. Kutter, A. Pierantonio, and L. Thiele. Gener-
ating an Action Notation environment from Montages descriptions. Software
Tools and Technology Transfer, 3:431{455, 2001.

Montages [19] are used to provide executable semantics for Action Notation.
A preliminary version was published by M. Anlau�, P. Kutter, A. Pierantonio
and L. Thiele under the title \Generating an Action Notation Environment
from Montages Descriptions" in Proc. 2nd Int. Workshop on Action Semantics
(AS’99), ed. by P. Mosses and D. Watt, University of Aarhus, Department of
Computer Science, BRICS Notes Series NS-99-3, March 1999, pp. 1{42. 356,
358

17. M. Anlau� and P. Kutter. Xasm Open Source. Web pages at http://www.
xasm.org/, 2001.

The extensible ASM project [15] is Open Source. 173, 342, 370

18. M. Anlau�, P. Kutter, and A. Pierantonio. Montages/Gem-Mex: a meta
visual programming generator. TIK-Report 35, ETH Z�urich, Switzerland,
1998.

An introduction to Montages [311] and Gem-Mex, the development tool for
creating Montages (using a graphical editor) and generating language in-
terpreters from them, supporting also debugging and animation features. A
description of their use and some small examples can be found in Formal
Aspects of and Development Environments for Montages by the same au-
thors, published in M. Sellink (ed.): 2nd Int. Workshop on the Theory and
Practice of Algebraic Speci�cations, Springer Workshops in Computing 1997.
Another description is in Tool Support for Language Design and Prototyping
with Montages published by the same authors in Proc. of Compiler Con-
struction (CC’99), Springer Lecture Notes in Computer Science, Vol. 1575,
pp. 296{300, Springer-Verlag 1999. Another illustration is in [20]. 358, 363,
371, 427

19. M. Anlau�, P. Kutter, and A. Pierantonio. Enhanced control ow graphs in
Montages. In D. Bjoerner and M. Broy (eds.), Proc. Perspectives of System

http://www.xasm.org/
http://www.xasm.org/

References 371

Informatics (PSI’99), Lecture Notes in Computer Science, Vol. 1755, pp. 40{
53. Springer-Verlag, 1999.

A re�ned de�nition of Montages, based on the notion of �nite state machines,
triggered by the use of Montages for de�ning the static semantics of Java in
[421] which showed some shortcomings of the original formulation in [311].
358, 370, 371, 414, 428

20. M. Anlau�, P. Kutter, A. Pierantonio, and A. S�unb�ul. Using domain-speci�c
languages for the realization of component composition. In T. Maibaum
(ed.), Fundamental Approaches to Software Engineering (FASE 2000), Lec-
ture Notes in Computer Science, Vol. 1783, pp. 112{126, 2000.

An illustration of how to apply Montages [311, 19] and of its tool environment
Gem-Mex [18] for the implementation of component interaction. 363, 370

21. L. Araujo. Correctness proof of a distributed implementation of Prolog by
means of Abstract State Machines. J. Universal Computer Science, 3(5):416{
422, 1997.

Building upon [132], a speci�cation and a proof of correctness for the Prolog
Distributed Processor (PDP), a WAM extension for parallel execution of Pro-
log on distributed memory, are provided. A preliminary version appeared in
1996 under the title Correctness Proof of a Parallel Implementation of Pro-
log by Means of Evolving Algebras as Technical Report DIA 21-96 of Dpto.
Inform�atica y Autom�atica, Universidad Complutense de Madrid. 347, 380,
389

22. U. Assmann, A. Heberle, W. L�owe, A. Ludwig, and R. Neumann. Language
concepts and design patterns. Manuscript, 1999.

ASMs are used to de�ne the semantics of patterns and for correctness proofs
for workarounds. 360

23. V. Awhad and C. Wallace. A uni�ed formal speci�cation and analysis of the
new Java memory models. In E. B�orger, A. Gargantini, and E. Riccobene
(eds.), Abstract State Machines 2003–Advances in Theory and Applications,
Lecture Notes in Computer Science, Vol. 2589, pp. 166{185. Springer-Verlag,
2003.

See [421]. 359, 428

24. R. J. R. Back. On correct re�nement of programs. J. Computer and System
Sciences, 23(1):49{68, 1979. 22, 134

25. R. J. R. Back and J. von Wright. Refinement Calculus: A Systematic Intro-
duction. Springer-Verlag, 1998. 22, 134

26. M. Barnett, E. B�orger, Y. Gurevich, W. Schulte, and M. Veanes. Using
Abstract State Machines at Microsoft: A case study. In Y. Gurevich, P. Kut-
ter, M. Odersky, and L. Thiele (eds.), Abstract State Machines: Theory and
Applications, Lecture Notes in Computer Science, Vol. 1912, pp. 367{380.
Springer-Verlag, 2000.

A description of a reverse-engineering case study, modeling a command-line
debugger of a stack-based run-time environment at three levels of abstraction.
For a powerpoint slide show see Debugger (; CD). 25, 103, 113, 364

27. M. Barnett, C. Campbell, W. Schulte, and M. Veanes. Speci�cation, simu-
lation and testing of COM components using Abstract State Machines. In
R. Moreno-D��az and A. Quesada-Arencibia (eds.), Formal Methods and Tools
for Computer Science (Local Proceedings of Eurocast 2001), pp. 266{270, Ca-
nary Islands, Spain, February 2001. Universidad de Las Palmas de Gran Ca-
naria.

372 References

A description of the use of AsmL to specify, simulate, and test the interfaces
of Microsoft COM components. 341, 364

28. M. Barnett, L. Nachmanson, and W. Schulte. Conformance checking of
components against their non-deterministic speci�cations. Technical Report
MSR-TR-2001-56, Microsoft Research, Redmond, Washington, June 2001.

A method for testing a Microsoft COM (Component Object Model) compo-
nent against a (possibly non-deterministic) ASM speci�cation is presented.
See [31]. 86, 341, 360, 364, 372

29. M. Barnett and W. Schulte. Spying on components: A runtime veri�cation
technique. In G. T. Leavens, M. Sitaraman, and D. Giannakopoulou (eds.),
Workshop on Specification and Verification of Component-Based Systems, pp.
7{13. Technical Report TR 01-09a, Iowa State University, 2001.

A predecessor of [31]. 193, 372

30. M. Barnett and W. Schulte. The ABCs of speci�cation: AsmL, behavior, and
components. Informatica, 25(4):517{526, 2002.

See [31]. 341, 364, 372

31. M. Barnett and W. Schulte. Contracts, components and their runtime ver-
i�cation on the .NET platform. J. Systems and Software, Special Issue on
Component-Based Software Engineering, 2002, to appear.

Continuing [28, 29, 30] AsmL is proposed to implement behavioral interface
speci�cations, including component interaction, on the .NET platform. 18,
106, 341, 372

32. A. Bartoloni et al. A hardware implementation of the APE100 architecture.
Int. J. Mod. Phys., C(4):969, 1993.

The architecture which has been chosen by B�orger for Del Castillo’s Tesi di
Laurea to try out ASMs for modeling real-world architectures, in the context
of a reengineering project for this machine which had been launched by a
group of physicists in Pisa and Rome; see [97],[102]. 349, 372

33. A. Bartoloni et al. The software of the APE100 architecture. Int. J. Mod.
Phys., C(4):955, 1993.

See comment to [32]. 349

34. D. Beauquier and A. Slissenko. The railroad crossing problem: Towards se-
mantics of timed algorithms and their model-checking in high-level languages.
In M. Bidoit and M. Dauchet (eds.), TAPSOFT’97: Theory and Practice of
Software Development, 7th Int. Joint Conf. CAAP/FASE, Lecture Notes in
Computer Science, Vol. 1214, pp. 201{212. Springer-Verlag, 1997.

A semantics of ASMs with continuous time using in�nitesimals is de�ned,
their runs are decribed in some �rst order logic. The framework is used to
discuss the veri�cation of the railroad crossing problem, based upon its ASM
speci�cation in [253]. An early version appeared in 1996 as Technical Report
96-10 of Dept. of Informatics, Universit�e Paris 12. For a continuation see [35].
203, 356, 364, 372, 373, 407

35. D. Beauquier and A. Slissenko. A �rst-order logic for speci�cation of timed
algorithms: Basic properties and a decidable class. Annals of Pure and Applied
Logic, 113(1{3):13{52, 2001.

A continuation of [34]. The authors de�ne (a) a class of algorithms (a mod-
i�ed version of ASMs) with explicit continuous time, and (b) a First-Order
Timed Logic which su�ces to write requirements speci�cations close to nat-
ural language, enhancing the logic in [34]. The timed logic description of the

References 373

semantics of that class of ASMs can be viewed as a basic set of inductive
invariants for proving the properties of timed ASMs. The authors consider
a decidable class of veri�cation problems and outline a compact veri�cation
proof of the Generalized Railroad Crossing Problem [253]. A �rst version of
this work appeared under the title On Semantics of Algorithms with Contin-
uous Time in October 1997 as TR 97-15 of Dept. of Informatics, Universit�e
Paris 12. A survey of that TR and of [34] appears under the title Verifica-
tion of Timed Algorithms: Gurevich Abstract State Machines versus First-
Order Timed Logic in Y. Gurevich and P. Kutter and M. Odersky and L.
Thiele (eds.): Abstract State Machines { ASM 2000, Int. Workshop on Ab-
stract State Machines, Monte Verita, Switzerland, Local Proceedings, March
2000, ETH Z�urich, TIK-Report No. 87, pp. 22{39. Continuation in TR-00-23
of June 2000, Universit�e Paris-12, by the same authors and with the title
A First Order Logic for Specification of Timed Algorithms: Basic Properties
and a Deciadable Class. For a set of more e�cient inductive invariants for
ASMs and a short formal proof of the Generalized Railroad Crossing Prob-
lem along the same lines, see \A Predicate Logic Framework for Mechanical
Veri�cation of Real-Time Gurevich Abstract State Machines: A Case Study
with PVS", by the same authors together with T. Colard, Technical Report
TR{00{25, Universit�e Paris 12, Department of Informatics, 2000, available at
http://www.univ-paris12.fr/lacl/. 203, 356, 364, 365, 372, 407

36. B. Beckert and J. Posegga. leanEA: A lean evolving algebra compiler. In H. K.
B�uning (ed.), Proc. the Annual Conf. of the European Association for Com-
puter Science Logic (CSL’95), Lecture Notes in Computer Science, Vol. 1092,
pp. 64{85. Springer-Verlag, 1996.

A 9-line Prolog interpreter for sequential ASMs, including discussion of exten-
sions for layered ASMs. A preliminary version appeared in April 1995 under
the title leanEA: A poor man’s evolving algebra compiler as internal report
25/95 of Fakult�at f�ur Informatik, Universit�at Karlsruhe. 340, 363

37. P. Behm, P. Benoit, A. Faivre, and J. M. Meynadier. Meteor: A successful
application of B in a large project. In FM’99, Lecture Notes in Computer
Science, Vol. 1708, pp. 348{387. Springer-Verlag, 1999. 27, 313

38. H. Behrends. Beschreibung ereignisgesteuerter Aktivitäten in datenbankge-
stützten Informationssystemen. PhD thesis, University of Oldenburg, Ger-
many, 1995.

Uses ASMs to de�ne the semantics of a language which is tailored to program
the control of event-driven database applications. The speci�cation proceeds
by stepwise re�nement of event processing, rule selection among the event
triggered rules, and action execution following the priorities of the selected
rules. Thesis supervised by Appelrath. Issued as TR 3/95 of CS Departement
of the University of Oldenburg, October 1995, 278 pages. 360

39. C. Beierle. Formal design of an abstract machine for constraint logic pro-
gramming. In B. Pehrson and I. Simon (eds.), IFIP 13th World Computer
Congress, Vol. I: Technology/Foundations, pp. 377{382, Elsevier, Amsterdam,
1994.

Develops a general implementation scheme for CLP(X) over an unspeci�ed
constraint domain X, namely by designing a generic extension WAM(X) of the
Warren Abstract Machine and a corresponding generic compilation scheme of
CLP(X) programs to WAM(X) code. The scheme is based on the speci�cation
and correctness proof for compilation of Prolog programs in [132] and on joint
work with B�orger; see [40, 42, 41]. 298, 347, 419

http://www.univ-paris12.fr/lacl/

374 References

40. C. Beierle and E. B�orger. Correctness proof for the WAM with types. In
E. B�orger, G. J�ager, H. Kleine B�uning, and M. M. Richter (eds.), Com-
puter Science Logic, Lecture Notes in Computer Science, Vol. 626, pp. 15{34.
Springer-Verlag, 1992.

The speci�cation and correctness proof for compiling Prolog to WAM [132]
is extended in modular fashion to the type-constraint logic programming lan-
guage Protos-L which extends Prolog with polymorphic order-sorted (dy-
namic) types. In this paper, the notion of types and dynamic type constraints
are kept abstract (as constraints) in order to permit applications to di�erent
constraint formalisms like Prolog III or CLP(R). The theorem is proved that
for every appropriate type-constraint logic programming system L, every com-
piler to the WAM extension with an abstract notion of types which satis�es
the speci�ed conditions, is correct. Reference [41] extends the speci�cation
and the correctness proof to the full Protos Abstract Machine by re�ning the
abstract type constraints to the polymorphic order-sorted types of PROTOS-
L. Also issued as IBM Germany Science Center Research Report IWBS 205,
1991. Revised and �nal version published in [42]. 298, 346, 373, 374, 390

41. C. Beierle and E. B�orger. Re�nement of a typed WAM extension by polymor-
phic order-sorted types. Formal Aspects of Computing, 8(5):539{564, 1996.

Continuation of [42] which is extended to the full Protos Abstract Machine by
re�ning the abstract type constraints to the polymorphic order-sorted types of
PROTOS-L. Preliminary version published under the title A WAM Extension
for Type-Constraint Logic Programming: Specification and Correctness Proof
as Research Report IWBS 200, IBM Germany Science Center, Heidelberg,
December 1991. 23, 156, 298, 346, 347, 373, 374, 378, 381, 389

42. C. Beierle and E. B�orger. Speci�cation and correctness proof of a WAM exten-
sion with abstract type constraints. Formal Aspects of Computing, 8(4):428{
462, 1996.

Revised version of [40]. 23, 156, 298, 346, 347, 373, 374, 378, 381, 389

43. C. Beierle, E. B�orger, I. Durdanovi�c, U. Gl�asser, and E. Riccobene. Re�ning
abstract machine speci�cations of the steam boiler control to well documented
executable code. In J.-R. Abrial, E. B�orger, and H. Langmaack (eds.), Formal
Methods for Industrial Applications. Specifying and Programming the Steam-
Boiler Control, Lecture Notes in Computer Science, No. 1165, pp. 62{78.
Springer-Verlag, 1996.

The steam-boiler control speci�cation problem is used to illustrate how ASMs
applied to the speci�cation and the veri�cation of complex systems can be
exploited for a reliable and well-documented development of executable, but
formally inspectable and systematically modi�able code. A hierarchy of step-
wise re�ned abstract machine models is developed, the ground version of
which can be checked for whether it faithfully reects the informally given
problem. The sequence of machine models yields various abstract views of the
system, making the various design decisions transparent, and leads to a C++
program. This program has been demonstrated during the Dagstuhl Seminar
on Methods for Semantics and Speci�cation, in June 1995, to control the FZI
Steam-Boiler simulator satisfactorily. The proofs of properties of the ASM
models provide insight into the structure of the system which supports easily
maintainable extensions and modi�cations of both the abstract speci�cation
and the implementation. For a continuation of this use of ASMs for reliable
software development see [120, 125]. 188, 229, 340, 354

44. C. Beierle and G. Kern-Isberner. Modeling knowledge discovery and be-
lief revision by Abstract State Machines. In E. B�orger, A. Gargantini, and

References 375

E. Riccobene (eds.), Abstract State Machines 2003–Advances in Theory and
Applications, Lecture Notes in Computer Science, Vol. 2589, pp. 186{203.
Springer-Verlag, 2003. 362

45. G. Bella and E. Riccobene. Formal analysis of the Kerberos authentication
system. J. Universal Computer Science, 3(12):1337{1381, 1997.

A formal model of the whole system is reached through stepwise re�nements
of ASMs, and is used as a basis both to discover the minimum assumptions to
guarantee the correctness of the system and to analyse its security weaknesses.
Each re�ned model comes together with a correctness re�nement theorem.
360

46. G. Bella and E. Riccobene. A realistic environment for crypto-protocol anal-
yses by ASMs. In U. Gl�asser and P. Schmitt (eds.), Proc. 5th Int. Workshop
on Abstract State Machines, pp. 127{138. Magdeburg University, 1998.

ASMs are used to give a model of a general, realistic environment in which
cryptographic protocols can be faithfully analyzed. The Needham{Schroeder
protocol is investigated as an example. 360, 403

47. A. Benczur, U. Gl�asser, and T. Lukovszki. Formal description of a distributed
location service for mobile ad hoc networks. In E. B�orger, A. Gargantini, and
E. Riccobene (eds.), Abstract State Machines 2003–Advances in Theory and
Applications, Lecture Notes in Computer Science, Vol. 2589, pp. 204{217.
Springer-Verlag, 2003.

Models a new routing layer protocol of mobile ad hoc networks by an async
ASM, coming with sublayers for the location service and for the position
based routing between known locations. 210, 223, 225, 361

48. D. M. Berry. The importance of ignorance in requirements engineering. J. Sys-
tems and Software, 28(2):179{184, 1995. 18, 157

49. G. Berry and G. Gonthier. The Esterel synchronous programming lan-
guage: Design, semantics, implementation. Science of Computer Program-
ming, 19:87{152, 1992. 311

50. J. Billington. Protocol speci�cation using p-graphs, a technique based on
coloured Petri nets. In W. Reisig and G. Rozenberg (eds.), Lectures on Petri
Nets II: Applications, Lecture Notes in Computer Science, Vol. 1492. Springer-
Verlag, 1998. 52

51. A. Binemann-Zdanowicz. Towards information systems modeling on the ba-
sis of ASM semantics. Technical Report 12/01, Brandenburg University of
Technology at Cottbus, Germany, December 2001.

Proposes an ASM based approach to modeling information services, using a
special-purpose language SiteLang. Speci�cations which are written in Site-
Lang are compiled to input for Xasm [15]. 342

52. S. Bistarelli and E. Riccobene. An operational model for the SCLP language.
ILPS Workshop on Tools and Environments for CLP held in Port Je�erson
USA, 1997.

Re�nement and parallelization of the ASM model for Prolog to a semi-ring
based constraint system, replacing the Call and Select rules of [71] by a Reduc-
tion rule which activates a child process simultaneously for each alternative of
the current process. For the proceedings see http://www.clip.dia.fi.upm.
es/Tools_Environ/proceedings.html. 348

53. B. Blakley. A Smalltalk Evolving Algebra and its Uses. PhD thesis, University
of Michigan, Ann Arbor, Michigan, 1992.

http://www.clip.dia.fi.upm.es/Tools_Environ/proceedings.html
http://www.clip.dia.fi.upm.es/Tools_Environ/proceedings.html

376 References

A reduced version of Smalltalk is formalized by sequential ASMs. A Hoare-
style proof system is de�ned for reasoning about storage allocation and deal-
location in ASMs. Missing constructs concern processes, inheritance, memory
allocation and deallocation. Thesis supervised by Gurevich. 347, 364

54. A. Blass. Abstract State Machines and pure mathematics. In Y. Gurevich,
P. Kutter, M. Odersky, and L. Thiele (eds.), Abstract State Machines: Theory
and Applications, Lecture Notes in Computer Science, Vol. 1912, pp. 9{21.
Springer-Verlag, 2000.

A discussion of connections, similarities, and di�erences between concepts and
issues arising in the study of ASMs and those of set theory and logic. 28,
348

55. A. Blass, E. B�orger, and Y. Gurevich. Abstract State Machines. Dagstuhl
Seminar No. 02101, Schloss Dagstuhl, Int. Conf. and Research Center for
Computer Science, March 2002. 361

56. A. Blass and Y. Gurevich. The linear time hierarchy theorems for Abstract
State Machines. J. Universal Computer Science, 3(4):247{278, 1997.

Contrary to polynomial time, linear time depends on the computation model.
In 1992, N. Jones designed speci�c computation models where the linear-
speed-up theorem fails and linear-time computable functions form a proper
hierarchy. In this paper linear-time hierarchy theorems for random access
machines and ASMs are proven. In particular it is shown that there exists a
lock-step universal sequential ASM U, i.e. with a constant c such that, under
honest time counting, U simulates every other sequential ASM in lock-step
with log factor c. The result has been anounced under the title Evolving
Algebras and Linear Time Hierarchy in B. Pehrson and I. Simon (eds.), IFIP
13th World Computer Congress, Vol. I: Technology/Foundations, Elsevier,
Amsterdam, 1994, 383{390. 310, 361, 380, 407, 419

57. A. Blass and Y. Gurevich. Background, reserve, and Gandy machines. In
P. Clote and H. Schwichtenberg (eds.), Computer Science Logic (Proceed-
ings of CSL 2000), Lecture Notes in Computer Science, Vol. 1862, pp. 1{17.
Springer-Verlag, 2000.

An investigation into the notion of the reserve set of an ASM, exploring the
ideas of adding structure within the reserve (such as the hereditarily �nite
sets of [62]) and the non-determinism of importing new elements. 36, 361

58. A. Blass and Y. Gurevich. The logic of choice. J. Symbolic Logic, 65(3):1264{
1310, 2000.

Motivated by the choice construct of ASMs, extensions of �rst-order logic
with the choice construct (choose x : F (x)) are studied. Some results about
Hilbert’s ε operator are proven. The main part of the paper concerns the case
where all choices are independent. Previously appeared as Technical Report
CSE-TR-369-98, EECS Dept., University of Michigan, 1998. 362

59. A. Blass and Y. Gurevich. New zero-one law and strong extension axioms.
Bull. EATCS, 72:103{122, 2000.

A formulation of Shelah’s proof of a zero-one law for the choiceless polynomial
time variant of ASMs [62]. 361

60. A. Blass and Y. Gurevich. Algorithms vs. machines. Bull. EATCS, 74:96{118,
2002.

In reaction to [340] the mergesort algorithm is described in terms of dis-
tributed ASMs. See the description of recursive algorithms by turbo ASMs in
[95]. 171

References 377

61. A. Blass and Y. Gurevich. Abstract State Machines capture parallel algo-
rithms. ACM Trans. Computational Logic, 2002, to appear.

The axiomatization of sequential algorithms as the basis for a derivation of the
sequential ASM thesis from the proposed axioms [249] is extended to parallel
synchronous algorithms. A preliminary version appeared in November 2001
as Microsoft Research Technical Report TR-2001-117. See the adaptation to
quantum algorithms in [234]. 35, 284, 310, 311, 344, 362, 405, 406

62. A. Blass, Y. Gurevich, and S. Shelah. Choiceless polynomial time. Annals of
Pure and Applied Logic, 100:141{187, 1999.

The question \Is there a computation model whose machines do not distin-
guish between isomorphic structures and compute exactly polynomial time
properties?" became a central question of �nite model theory. The negative
answer was conjectured in [244]. A related question is what portion of PTIME
can be naturally captured by a computation model (when inputs are arbitrary
�nite structures). A PTIME version of ASMs is used to capture the portion
of PTIME where algorithms are not allowed arbitrary choice but parallelism
is allowed and, in some cases, implements choice. Earlier versions appeared as
Technical Report CSE-TR-338-97, EECS Department, University of Michi-
gan, 1997, and Technical Report MSR-TR-99-08, Microsoft Research, Febru-
ary 1999. See [235]. 361, 376, 377, 405, 425

63. A. Blass, Y. Gurevich, and S. Shelah. On polynomial time computation over
unordered structures. J. Symbolic Logic, 67(3):1093{1125, 2001.

A consideration of several algorithmic problems near the border of the known,
logically de�ned complexity classes contained in polynomial time, including
the choiceless polynomial time de�ned in [62]. 361

64. A. Blass, Y. Gurevich, and J. Van den Bussche. Abstract State Machines
and computationally complete query languages. In Y. Gurevich, P. Kutter,
M. Odersky, and L. Thiele (eds.), Abstract State Machines: Theory and Appli-
cations, Lecture Notes in Computer Science, Vol. 1912, pp. 22{33. Springer-
Verlag, 2000.

The use of the choiceless polynomial-time variant of ASMs [62] as a query
language for relational databases is explored. Also appears in TIK-Report
No. 87, pp. 40{65, ETH Z�urich, March 2000, and as Microsoft Research Tech-
nical Report MSR-TR-99-95. Republished in Information and Computation
174(1):20{36, 2002. 361

65. R. Bloom�eld, D. Craigen, F. Koob, M. Ullman, and S. Wittmann. Formal
methods di�usion: Past lessons and future prospects. In Proc. SAFECOMP
2000, Lecture Notes in Computer Science, Vol. 1943, pp. 211{226. Springer-
Verlag, 2000.

The full technical report is available at http://www.bsi.bund.de/aufgaben/
projekte/fmethode/sonstige/fms_v1.0.pdf. 299, 313

66. C. B�ohm and G. Jacopini. Flow diagrams, Turing Machines, and languages
with only two formation rules. Commun. ACM, 9(5):366{371, 1966. 163

67. T. Bolognesi and E. B�orger. Abstract State Processes. In E. B�orger, A. Gar-
gantini, and E. Riccobene (eds.), Abstract State Machines 2003–Advances in
Theory and Applications, Lecture Notes in Computer Science, Vol. 2589, pp.
22{32. Springer-Verlag, 2003.

Process-algebraic structuring techniques and concurrency patterns are com-
bined with the state-based abstraction mechanism and synchronous paral-
lelism of ASMs. Extended ASM programs are de�ned which are structured

http://www.bsi.bund.de/aufgaben/projekte/fmethode/sonstige/fms_v1.0.pdf
http://www.bsi.bund.de/aufgaben/projekte/fmethode/sonstige/fms_v1.0.pdf

378 References

and evolve like process-algebraic behaviour expressions operating on evolving
states. This supersedes the preceding de�nition given in the extended abstract
presented to the Dagstuhl Seminar on ASMs in March 2002. 185

68. T. Bolognesi and E. Brinksma. Introduction to the ISO speci�cation language
LOTOS. Comput. Netw. and ISDN Syst., 14(1):25{59, 1987. 52, 135

69. G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language
User Guide. Addison Wesley, 1999. 4

70. E. B�orger. Computability, Complexity, Logic (English translation of “Bere-
chenbarkeit, Komplexität, Logik”), Studies in Logic and the Foundations of
Mathematics, Vol. 128. North-Holland, 1989. 28, 54, 285, 292, 300

71. E. B�orger. A logical operational semantics for full Prolog. Part I: Selec-
tion core and control. In E. B�orger, H. Kleine B�uning, M. M. Richter, and
W. Sch�onfeld (eds.), CSL’89. 3rd Workshop on Computer Science Logic, Lec-
ture Notes in Computer Science, Vol. 440, pp. 36{64. Springer-Verlag, 1990.

See Comments to [74]. 9, 38, 86, 156, 340, 345, 347, 348, 375, 378, 382, 383,
388, 389, 390, 413

72. E. B�orger. A logical operational semantics of full Prolog. Part II: Built-in
predicates for database manipulation. In B. Rovan (ed.), Mathematical Foun-
dations of Computer Science, Lecture Notes in Computer Science, Vol. 452,
pp. 1{14. Springer-Verlag, 1990.

See Comments to [74]. 9, 86, 156, 340, 345, 347, 378, 382, 383, 388, 389, 390,
413

73. E. B�orger. Dynamische Algebren und Semantik von Prolog. In E. B�orger
(ed.), Berechenbarkeit, Komplexität, Logik, pp. 476{499. Vieweg, 3rd edn.,
1992.

The �rst textbook de�nition of ASMs, elaborating notes of a series of lectures
on the Semantics of Programming Languages delivered to a summer school
organized by B�orger in Cortona in 1989. The de�nition is illustrated with
machines operating on standard data structures and by the tree based version
[75] of the core Prolog ASM in [71]. 348, 378, 381, 388, 389, 406

74. E. B�orger. A logical operational semantics for full Prolog. Part III: Built-in
predicates for �les, terms, arithmetic and input-output. In Y. N. Moschovakis
(ed.), Logic From Computer Science, Berkeley Mathematical Sciences Re-
search Institute Publications, Vol. 21, pp. 17{50. Springer-Verlag, 1992.

This paper, along with [71] and [72] are the original 3 papers which provide
a complete ASM formalization of Prolog with all features discussed in the
international Prolog standardization working group (WG17 of ISO/IEC JTCI
SC22); see [101]. The speci�cation proposed as the ground model for Prolog
is developed by stepwise re�nement, describing orthogonal language features
by modular rule sets. An improved (tree instead of stack based) version is
found in [75, 73, 131]. These three papers were also published in 1990 as IBM
Germany Science Center Research Reports 111, 115 and 117 respectively.
The re�nement technique, used in combination with corresponding methods
of proof, is further developed in [132, 133, 114, 42, 41, 104, 119, 136, 120, 138,
406, 387]. For a systematic exposition and survey see [94]. Together with the
technique of building ground models, ASM re�nements became a constituent
of the ASM method. 340, 345, 378, 379, 382, 383, 389, 390

75. E. B�orger. A natural formalization of full Prolog. Newsletter of the Associa-
tion for Logic Programming, 5(1):8{9, 1992.

References 379

The paper explains the abstract tree structure and the four ASM transition
rules which govern the user-de�ned core of Prolog. See [74]. 346, 348, 378,
381, 387, 388, 389, 391, 418

76. E. B�orger. Logic programming: The Evolving Algebra approach. In
B. Pehrson and I. Simon (eds.), IFIP 13th World Computer Congress, Vol. I:
Technology/Foundations, pp. 391{395, Elsevier, Amsterdam, 1994.

Surveys the work which has been done from 1988{1994 on speci�cations of
logic programming systems by ASMs. 9, 86, 156, 343, 346, 419

77. E. B�orger. Review of E. W. Dijkstra and C. S. Scholten Predicate Calculus
and Program Semantics (Springer-Verlag 1989). Science of Computer Pro-
gramming, 23:1{11, 1994.

Discusses the weakness of identifying the notion of proof with \formal proofs"
and furthermore with \formal proofs in a strict format". Critically evaluates
the authors’ restricted view on the role of formal methods for program design
and veri�cation concerns. An abridged version appeared in J. Symbolic Logic
59:673{678, 1994. 356

78. E. B�orger. Annotated bibliography on Evolving Algebras. In E. B�orger (ed.),
Specification and Validation Methods, pp. 37{51. Oxford University Press,
1995.

An annotated bibliography of papers (as of 1994) which deal with or use
ASMs. For an updated version see [116]. 379, 381, 385

79. E. B�orger. Specification and Validation Methods. Oxford University Press,
1995.

The ASM related papers appearing in this volume are [248, 78, 133, 420, 114,
283, 256]. 348, 349, 351, 361

80. E. B�orger. Why use Evolving Algebras for hardware and software engineer-
ing? In M. Bartosek, J. Staudek, and J. Wiederman (eds.), Proc. SOFSEM’95,
22nd Seminar on Current Trends in Theory and Practice of Informatics, Lec-
ture Notes in Computer Science, Vol. 1012, pp. 236{271. Springer-Verlag,
1995.

A presentation of the salient features of ASMs, as part of a discussion and
survey of the use of ASMs in the design and analysis of hardware and software
systems. The leading example is detailed and improved in [119]. 86, 343, 345,
346, 352, 356

81. E. B�orger. Evolving Algebras and Parnas tables. In H. Ehrig, F. von Henke,
J. Meseguer, and M. Wirsing (eds.), Specification and Semantics. Dagstuhl
Seminar No. 9626, Schloss Dagstuhl, Int. Conf. and Research Center for Com-
puter Science, July 1996.

Extended abstract showing that Parnas’ approach to the use of function tables
for precise program documentation can be generalized in a natural way by
using ASMs for well-documented program development. 381

82. E. B�orger. Remarks on the history and some perspectives of Abstract State
Machines in software engineering. In W. Aspray, R. Keil-Slawik, and D. L.
Parnas (eds.), The History of Software Engineering, pp. 12{17. Dagstuhl Sem-
inar No. 9635, Schloss Dagstuhl, Int. Conf. and Research Center for Computer
Science, August 1996.

Survey of the development of the ASM method as of 1996. For an update in
2000 see [87]. 380, 381

380 References

83. E. B�orger. How to use Abstract State Machines in software engineering. In
S. J�ahnichen, J. Loeckx, D. Smith, and M. Wirsing (eds.), Logic for Systems
Engineering, Vol. 171, pp. 5{7. Schloss Dagstuhl, Int. Conf. and Research
Center for Computer Science, 3{7 March 1997.

The talk which triggered the �rst two years of work on the Java/JVM ASM
project, as a comparative �eld test of purely declarative (functional or ax-
iomatic) methods and their enhancement within an integrated abstract state-
based operational (ASM) framework [138, 137, 139, 140, 141]. See preface to
[406]. 359

84. E. B�orger. JUCS Special ASM Issue. Part II. In E. B�orger (ed.), J. Universal
Computer Science, Vol. 3(5). Springer-Verlag, 1997.

Introduction to the second part of the special ASM issue of the J. Universal
Computer Science. This May issue contains [311, 310, 439, 21, 120, 332, 424].
361

85. E. B�orger. Ten Years of Gurevich’s Abstract State Machines. In E. B�orger
(ed.), J. Universal Computer Science, Vol. 3(4). Springer-Verlag, 1997.

Introduction to the �rst special ASM issue of the J. Universal Computer
Science. This April issue contains [261, 56, 177, 409, 260, 313, 388]. 361, 381

86. E. B�orger. High-level system design and analysis using Abstract State Ma-
chines. In D. Hutter, W. Stephan, P. Traverso, and M. Ullmann (eds.), Cur-
rent Trends in Applied Formal Methods (FM-Trends 98), Lecture Notes in
Computer Science, Vol. 1641, pp. 1{43. Springer-Verlag, 1999.

A general introduction to and survey of the ASM method, including the
de�nition of the ASM concept and an illustration of the main characteristics of
the method, a comparison with other well-known system design and analysis
approaches, and experimental evidence for the ASM thesis. 9, 86, 287, 311,
343, 345, 352, 353, 360, 381, 426

87. E. B�orger. Abstract State Machines at the cusp of the millenium. In Y. Gure-
vich, P. Kutter, M. Odersky, and L. Thiele (eds.), Abstract State Machines:
Theory and Applications, Lecture Notes in Computer Science, Vol. 1912, pp.
1{8. Springer-Verlag, 2000.

A brief survey of the history of the development of the ASM method and the
current challenges in the �eld (continuation of [82]). 18, 86, 356, 360, 363,
379, 381

88. E. B�orger. Hardware Design and Validation Methods. Springer-Verlag, 2000.

The ASM related paper appearing in this volume is [140]. 349

89. E. B�orger. Design for reuse via structuring techniques for ASMs. In
R. Moreno-D��az, B. Buchberger, and J.-L. Freire (eds.), Computer Aided
Systems Theory–EUROCAST 2001, Lecture Notes in Computer Science,
Vol. 2178, pp. 20{35. Springer-Verlag, 2001.

The composition and structuring concepts for sequential ASMs de�ned in
[134] are used to illustrate a modular high-level de�nition of the architecture
of the Java Virtual Machine, unfolding its language layering and its functional
components for loader, veri�er, and interpreter. Extracted from [406]. 359,
364, 390

90. E. B�orger. Discrete systems modeling. In R. A. Meyers (ed.), Encyclopedia of
Physical Science and Technology, Vol. 4, pp. 535{546. Academic Press, San
Diego, 2001.

References 381

A classi�cation of discrete systems and of methods for their mathematical
veri�cation and experimental validation, using ASMs as the framework for
the taxonomy. 365

91. E. B�orger. Computation and speci�cation models. A comparative study. In
P. D. Mosses (ed.), Proc. 4th Int. Workshop on Action Semantics, BRICS
Series, Vol. NS-02-8, pp. 107{130. Department of Computer Science at Uni-
versity of Aarhus, December 2002.

Continuing the work in [81, 86, 142] representative computation models in
the literature are characterized as naturally arising special classes of ASMs.
Classical automata (Moore-Mealy, Co-Design FSM, Timed FSM, PushDown,
Turing, Scott, Eilenberg, Minsky, Wegner, Alternating TM), grammar for-
malisms, tree computation machines, structured and functional programs are
covered, as well as system design models like UNITY, COLD, B, SCR (Par-
nas tables), Petri nets, Neural Nets. Also logic based, functional-denotational
and process-algebraic systems including CSP, Z, VDM are discussed. A draft
has been presented under the title Definitional Suggestions for Computation
Theory to the Dagstuhl Seminar \Theory and Application of Abstract State
Machines", March 3{8, 2002. The �nal version appears in [93]. 311, 381

92. E. B�orger. The origins and the development of the ASM method for high-level
system design and analysis. J. Universal Computer Science, 8(1):2{74, 2002.

A historical and bibliographical survey of the ASM related literature from
1984{2002. Elaboration of [78, 82, 85, 116, 87]. 343, 344, 406

93. E. B�orger. Abstract State Machines: A unifying view of models of compu-
tation and of system design frameworks. Annals of Pure and Applied Logic,
2003, to appear.

An elaboration of [91]. 311, 381

94. E. B�orger. The ASM re�nement method. Formal Aspects of Computing, 14,
2003, to appear.

An exposition of the ASM re�nement method, including a survey of its devel-
opment in [75, 73, 131, 132, 133, 114, 42, 41, 104, 119, 136, 120, 138, 406, 387].
378

95. E. B�orger and T. Bolognesi. Remarks on turbo ASMs for computing func-
tional equations and recursion schemes. In E. B�orger, A. Gargantini, and
E. Riccobene (eds.), Abstract State Machines 2003 – Advances in Theory and
Applications, Lecture Notes in Computer Science, Vol. 2589, pp. 218{228.
Springer-Verlag, 2003.

The notation for value-returning turbo ASMs de�ned in [134] is extended to
simultaneous calls of multiple submachines and used to answer the question
raised in [340] of how to naturally model widely used forms of recursion by
abstract machines. The notation allows one to seamlessly integrate functional
description and programming techniques into ASMs. 185, 376

96. E. B�orger, H. Busch, J. Cuellar, P. P�appinghaus, E. Tiden, and I. Wildgruber.
Konzept einer hierarchischen Erweiterung von EURIS. Siemens ZFE T SE 1
Internal Report BBCPTW91-1 (pp. 1{43), Summer 1996.

ASMs are proposed for extending the EURIS method for the tool-supported
design of railway-related software. 356

97. E. B�orger, G. D. Castillo, P. Glavan, and D. Rosenzweig. Towards a math-
ematical speci�cation of the APE100 architecture: the APESE model. In
B. Pehrson and I. Simon (eds.), IFIP 13th World Computer Congress, Vol. I:
Technology/Foundations, pp. 396{401, Elsevier, Amsterdam, 1994.

382 References

De�nes an ASM model of the high-level programmer’s view of the APE100
parallel architecture. This model is re�ned in [102] to an ASM processor
model. 103, 349, 372, 419

98. E. B�orger, A. Cavarra, and E. Riccobene. An ASM semantics for UML ac-
tivity diagrams. In T. Rus (ed.), Algebraic Methodology and Software Tech-
nology, 8th Int. Conf., AMAST 2000, Iowa City, Iowa, USA, May 20-27,
2000 Proceedings, Lecture Notes in Computer Science, Vol. 1816, pp. 293{
308. Springer-Verlag, 2000.

ASMs are used to disambiguate the semantics for activity diagrams in UML,
de�ning a special subclass of ASMs appropriate to modeling such diagrams.
As illustration a one-page UML activity diagram de�nition is given for the
ASM model of Occam which appeared in [105]. For a continuation of this
work to make semantic features of UML precise see [99]. 47, 88, 164, 276,
280, 282, 364, 382, 393

99. E. B�orger, A. Cavarra, and E. Riccobene. Modeling the dynamics of UML
state machines. In Y. Gurevich, P. Kutter, M. Odersky, and L. Thiele (eds.),
Abstract State Machines: Theory and Applications, Lecture Notes in Com-
puter Science, Vol. 1912, pp. 223{241. Springer-Verlag, 2000.

The work in [98] providing a rigorous semantics for basic UML features is
extended by an ASM de�nition of the dynamic semantics of UML state ma-
chines. These machines integrate statecharts with the UML object model. A
rational reconstruction is given for the event-driven run to completion scheme
of UML (including the sequential entry/exit actions, the concurrent internal
activities, and the event-deferring mechanism) and for the concepts of ac-
tion and durative action. The models make the semantic variation points
of UML explicit, as well as various ambiguities and omissions in the o�cial
UML documents. For an executable version of these models see [152], where
various conict situations are also described which may arise through the
concurrent behavior of active objects. This argument has been reconsidered
by the same authors in Solving Conflicts in UML State Machines Concurrent
States presented to the Workshop on Concurrency Issues in UML { UML 2001,
Toronto/Canada, and in A precise semantics of UML State Machines: Making
Semantic Variation Points and Ambiguities Explicit in Proc. Int. Workshop
on Semantic Foundations of Engineering Design Languages (SFEDL’02) in
conjunction with the 5th European Joint Conferences on Theory and Prac-
tice of Software (ETAPS’02). See the continuation in [153]. 47, 88, 164, 169,
276, 280, 282, 364, 382, 393, 412

100. E. B�orger, M. Cesaroni, M. Falqui, and T. L. Murgi. Caso di Studio: Mail
From Form System. Internal Report FST-2-1-RE-02, Fabbrica Servizi Telem-
atici FST (Gruppo Atlantis), Uta (Cagliari), 1999.

Feasability study of using ASMs for software analysis and design in an in-
dustrial object-oriented software development environment. Two company
internal case studies are developed. In view of a possible integration, the use
of the ASM method for building ground models and re�ning them to code is
compared to the use of UML based tools, in particular Rational Rose. 364

101. E. B�orger and K. D�assler. Prolog: DIN papers for discussion. ISO/IEC
JTCI SC22 WG17 Prolog Standardization Document 58, National Physical
Laboratory, Middlesex, England, 1990.

A version of [71, 72, 74] proposed to the International Prolog Standardization
Committee as a complete formal semantics of Prolog. A streamlined version
is in [131], representing the de�nition of the dynamic core of Prolog which
has been accepted as the ISO standard [291]. 87, 340, 345, 363, 378, 389, 391

References 383

102. E. B�orger and G. Del Castillo. A formal method for provably correct compo-
sition of a real-life processor out of basic components (The APE100 Reverse
Engineering Study). In B. Werner (ed.), Proc. 1st IEEE Int. Conf. on Engi-
neering of Complex Computer Systems (ICECCS’95), pp. 145{148, November
1995.

Presents an ASM based technique by which a behavioural description of a
processor is obtained as the result of the composition of its (formally speci�ed)
basic architectural components. The technique is illustrated by the example
of a subset of the zCPU processor (used as the control unit of the APE100
parallel architecture). A more complete version, containing the full formal
description of the zCPU components, of their composition and of the whole
zCPU processor, appeared in Y. Gurevich and E. B�orger (eds.), Evolving
Algebras – Mini-Course, BRICS Technical Report (BRICS-NS-95-4), 195{
222, University of Aarhus, Denmark, July 1995. This work is based upon
G. Del Castillo’s Tesi di Laurea \Descrizione Matematica dell’Architettura
Parallela APE100", Universit�a di Pisa, academic year 1993/94. An extended
abstract \An Evolving Algebra model for the APE100 parallel architecture"
was presented to the 3d Annual Meeting of the Working Group 0.1.6 \Logik in
der Informatik" of the German Association for Computer Science, University
of Karlsruhe CS TR 23/95, pp. 48{51. 103, 105, 112, 155, 157, 349, 359, 372,
382, 383, 395, 407

103. E. B�orger and B. Demoen. A framework to specify database update views
for Prolog. In M. J. Maluszynski (ed.), PLILP’91. Third Int. Sympos. on
Programming Languages Implementation and Logic Programming., Lecture
Notes in Computer Science, Vol. 528, pp. 147{158. Springer-Verlag, 1991.

Provides a precise de�nition of the major Prolog database update views
(immediate, logical, minimal, maximal), within a framework closely related
to [71, 72, 74]. A preliminary version of this was published as The View
on Database Updates in Standard Prolog: A Proposal and a Rationale in
ISO/ETC JTCI SC22 WG17 Prolog Standardization Report no. 74, February
1991, pp. 3{10. 345, 388

104. E. B�orger and I. Durdanovi�c. Correctness of compiling Occam to Transputer
code. Computer Journal, 39(1):52{92, 1996.

The �nal draft version has been issued in BRICS Technical Report (BRICS-
NS-95-4); see [250]. It sharpens the re�nement method of [132] to cope
also with parallelism and non-determinism for an imperative programming
language. The paper provides a mathematical de�nition of the Transputer
instruction-set architecture for executing Occam together with a correctness
proof for a general compilation schema of Occam programs into Transputer
code.

Starting from the Occam model developed in [105], constituted by an ab-
stract processor running a high- and a low-priority queue of Occam processes
(which formalizes the semantics of Occam at the abstraction level of atomic
Occam instructions), increasingly more re�ned levels of Transputer semantics
are developed, proving correctness (and when possible also completeness) for
each re�nement step.

Along the way proof assumptions are collected, thus obtaining a set of natural
conditions for compiler correctness, so that the proof is applicable to a large
class of compilers. The formalization of the Transputer instruction-set archi-
tecture has been the starting point for applications of the ASM re�nement
method to the modeling of other architectures (see [102, 119]). 42, 88, 112,
156, 281, 298, 350, 378, 381, 384, 389, 405, 407, 408

384 References

105. E. B�orger, I. Durdanovi�c, and D. Rosenzweig. Occam: Speci�cation and com-
piler correctness. Part I: Simple mathematical interpreters. In U. Montanari
and E. R. Olderog (eds.), Proc. PROCOMET’94 (IFIP Working Conf. on
Programming Concepts, Methods and Calculi), pp. 489{508. North-Holland,
1994.

Improving upon the parse tree determined ASM in [257], a truly concur-
rent ASM model of Occam is de�ned as the basis for a proven-to-be-correct,
smooth transition to the Transputer instruction-set architecture. This model
is stepwise re�ned, in a proven-to-be-correct way, providing: (a) an asyn-
chronous implementation of synchronous channel communication, (b) its op-
timization for internal channels, (c) the sequential implementation of proces-
sors using priority and time-slicing. See [104] for the extension of this work to
cover the compilation to Transputer code. 88, 134, 280, 282, 351, 382, 383,
408

106. E. B�orger, A. Gargantini, and E. Riccobene (eds.). Abstract State Machines
2003–Advances in Theory and Applications, Lecture Notes in Computer Sci-
ence, Vol. 2589. Springer-Verlag, 2003.

This is the Proc. 10th Int. ASM Workshop (Taormina March 2003). 361

107. E. B�orger and U. Gl�asser. A formal speci�cation of the PVM architecture. In
B. Pehrson and I. Simon (eds.), IFIP 13th World Computer Congress, Vol. I:
Technology/Foundations, pp. 402{409, Elsevier, Amsterdam, 1994.

After B�orger’s lectures on ASMs at the University of Paderborn in the early
summer of 1993, Gl�asser suggested providing an ASM model for the Parallel
Virtual machine (PVM [214], the Oak Ridge National Laboratory software
system that serves as a general-purpose environment for heterogeneous dis-
tributed computing). The model in this paper de�nes PVM at the C-interface,
at the level of abstraction which is tailored to the programmer’s understand-
ing. Cf. the survey An abstract model of the parallel virtual machine (PVM)
presented at 7th Int. Conf. on Parallel and Distributed Computing Systems
(PDCS’94), Las Vegas/Nevada, 5.-9.10.1994. See [108] for an elaboration of
this paper. 38, 274, 350, 360, 401, 419

108. E. B�orger and U. Gl�asser. Modeling and Analysis of Distributed and Reac-
tive Systems using Evolving Algebras. In Y. Gurevich and E. B�orger (eds.),
Evolving Algebras – Mini-Course, BRICS Technical Report BRICS-NS-95-4,
pp. 128{153. University of Aarhus, Denmark, July 1995.

This is a tutorial introduction to the ASM approach to design and veri�-
cation of complex computing systems. The salient features of the method
are explained by showing how one can develop from scratch an easily un-
derstandable and transparent ASM model for PVM [214], the widespread
virtual architecture for heterogeneous distributed computing. 274, 350, 360,
384, 401, 407

109. E. B�orger and U. Gl�asser. Abstract State Machines 2001: New developments
and applications. In E. B�orger and U. Gl�asser (eds.), J. Universal Computer
Science, Vol. 7(11), pp. 914{917. Springer-Verlag, 2001.

Introduction to the third special ASM issue of JUCS, with papers selected
from those submitted after the Int. ASM’2001 Workshop held in Las Palmas.
This issue contains [262, 387, 405, 142, 194, 208, 391]. 361, 385

110. E. B�orger and U. Gl�asser. Abstract State Machines Workshop 2001. In
R. Moreno-D��az and A. Quesada-Arencibia (eds.), Formal Methods and Tools
for Computer Science, pp. 212{304. IUCTC Universidad de Las Palmas de
Gran Canaria, 2001.

References 385

Abstracts of talks presented to the Int. ASM’2001 Workshop held in Las
Palmas de Gran Canaria from February 13{19, 2001, as part of Eurocast
2001. See [109]. 361, 405

111. E. B�orger, U. Gl�asser, and W. M�uller. The semantics of behavioral VHDL’93
descriptions. In EURO-DAC’94. European Design Automation Conference
with EURO-VHDL’94, pp. 500{505, Los Alamitos, California, 1994. IEEE
Computer Society Press.

Provides a transparent but precise ASM de�nition of the signal behavior and
time model of full elaborated VHDL’93. This includes guarded signals, delta
and time delays, the two main propagation delay modes transport and iner-
tial, and the three process suspensions (wait on/until/for). Shared variables,
postponed processes and rejection pulses are covered. The work is extended
in [112]. 20, 43, 44, 87, 350, 359, 385, 411, 417, 418, 422

112. E. B�orger, U. Gl�asser, and W. M�uller. Formal de�nition of an abstract
VHDL’93 simulator by ea-machines. In C. Delgado Kloos and P. T. Breuer
(eds.), Formal Semantics for VHDL, pp. 107{139. Kluwer Academic Publish-
ers, 1995.

Extends the work in [111] by including the treatment of variable assignments
and of value propagation by ports. References [383, 380] extend the VHDL
model to analog VHDL and to Verilog. 38, 39, 87, 350, 359, 385, 411, 417,
418, 422

113. E. B�orger and R. Gotzhein. The light control case study. J. Universal Com-
puter Science, 6(7):580{585, 2000.

The introductory pp. 580{585 present the requirements engineering case
study, discussed during a Dagstuhl Seminar on Requirements Engineering
[115], and a synopsis of the six solutions published in the journal issue. For
the solution which uses ASMs see the comment to [125]. 229, 231, 355, 385

114. E. B�orger, Y. Gurevich, and D. Rosenzweig. The bakery algorithm: Yet an-
other speci�cation and veri�cation. In E. B�orger (ed.), Specification and Val-
idation Methods, pp. 231{243. Oxford University Press, 1995.

One ASM A1 is constructed to reect faithfully the algorithm. Then a more
abstract ASM A2 is constructed. It is checked that A2 is safe and fair, and
that A1 correctly implements A2. The proofs work for atomic as well as for,
mutatis mutandis, durative actions. See also [157, 258]. 156, 260, 282, 349,
351, 378, 379, 381, 393, 407, 408, 415

115. E. B�orger, B. H�orger, D. L. Parnas, and D. Rombach. Requirements Cap-
ture, Documentation, and Validation, Vol. 241. Dagstuhl Seminar No. 99241,
Schloss Dagstuhl, Int. Conf. and Research Center for Computer Science, June
1999.

The Light Control Case Study was proposed to the participants of the seminar
to discuss methods for solving requirements engineering problems. See [113]
for a detailed exposition of some of the proposed solutions, including [125].
229, 355, 356, 385, 388

116. E. B�orger and J. Huggins. Abstract State Machines 1988{1998: Commented
ASM bibliography. Bull. EATCS, 64:105{127, 1998.

The 1997 version of the annotated bibliography of papers which deal with or
use ASMs. An update of [78]. 379, 381

117. E. B�orger, P. Joannou, and D. L. Parnas. Practical Methods for Code Doc-
umentation and Inspection, Vol. 178. Dagstuhl Seminar No. 9720, Schloss

386 References

Dagstuhl, Int. Conf. and Research Center for Computer Science, May 1997.
188, 355, 387

118. E. B�orger, F. J. L�opez-Fraguas, and M. Rodr��guez-Artalejo. A model for
mathematical analysis of functional logic programs and their implementa-
tions. In B. Pehrson and I. Simon (eds.), IFIP 13th World Computer
Congress, Vol. I: Technology/Foundations, pp. 410{415, Elsevier, Amster-
dam, 1994.

De�nes an ASM model for the innermost version of the functional logic pro-
gramming language BABEL, extending the Prolog model of [131] by rules
which describe the reduction of expressions to normal form. The model is
stepwise re�ned towards a mathematical speci�cation of the implementation
of Babel by a graph-narrowing machine. The re�nements are proved to be
correct. A full version containing optimizations and proofs appeared under
the title Towards a Mathematical Specification of a Narrowing Machine as re-
search report DIA 94/5, Dpto. Inform�atica y Autom�atica, Universidad Com-
plutense, Madrid 1994. 114, 115, 346, 419

119. E. B�orger and S. Mazzanti. A practical method for rigorously controllable
hardware design. In J. P. Bowen, M. B. Hinchey, and D. Till (eds.), ZUM’97:
The Z Formal Specification Notation, Lecture Notes in Computer Science,
Vol. 1212, pp. 151{187. Springer-Verlag, 1997.

A technique for specifying and verifying the control of pipelined micropro-
cessors is described, illustrated through ASM models for Hennessy and Pat-
terson’s RISC architecture DLX. A serial DLX model is stepwise re�ned to
the parallel DLX with �ve-stage pipeline which is proved to be correct. Each
re�nement deals with a di�erent pipelining problem (structural hazards, data
hazards, control hazards) and the methods for its solution. This makes the
approach applicable to design-driven veri�cation as well as to the veri�cation-
driven design of RISC machines. A preliminary version appeared under the
title A correctness proof for pipelining in RISC architectures as DIMACS
(Rutgers University, Princeton University, ATT Bell Laboratories, Bellcore)
research report TR 96-22, pp. 1{60, Brunswick, New Jersey, July 1996. The
speci�cation was worked out in 1994/95 by S. Mazzanti for her Tesi di Lau-
rea Algebre Dinamiche per il DLX, Universit�a di Pisa, 1995, supervised by
B�orger. For a machine veri�cation using KIV and PVS of the re�nement of
the serial to the parallel model see [217, 407]. An omission in the proof for the
second re�nement step has been pointed out by Holger Hinrichsen, see [279]
and Sect. 3.2 of this book for a correction. The speci�cation and proof method
has ben applied in [286] to the commercial ARM2 RISC Microprocessor with
a simpler three-stage pipeline and enhanced in [412] to automatically trans-
form register transfer descriptions of microprocessors into executable ASMs.
137, 152, 156, 298, 349, 359, 378, 379, 381, 383, 401, 410, 411, 426

120. E. B�orger and L. Mearelli. Integrating ASMs into the software development
life cycle. J. Universal Computer Science, 3(5):603{665, 1997.

Presents a structured software engineering method which allows the software
engineer to control e�ciently the modular development and the maintenance
of well documented, formally inspectable and easily modi�able code out of
rigorous ASM models for requirement specifications. Shows that the code prop-
erties of interest (like correctness, safety, liveness and performance conditions)
can be proved at high levels of abstraction by traditional and reusable math-
ematical arguments which { where needed { can be computer veri�ed. Shows
also that the proposed method is appropriate for dealing in a rigorous but

References 387

transparent manner with hardware{software co-design aspects of system de-
velopment.
The approach is illustrated by developing a C++ program for the production-
cell case study. The program has been validated by extensive experimentation
with the FZI production cell simulator in Karlsruhe and has been submitted
for inspection to the Dagstuhl Seminar on \Practical Methods for Code Doc-
umentation and Inspection" [117]. Source code (the ultimate re�nement) for
the case study appears in [332]; model checking results for the ASM models
appear in [424] and in [362], where an error was detected in a re�nement step
for the deposit belt, due to an erroneous assumption of symmetry between
unloading actions for feed belt, press and deposit belt. For a PVS veri�cation
of the case see [207]. An abstract appeared under the title \The Evolving Al-
gebra Approach to Modular Development of Well Documented Software for
Complex Systems. A Case Study: The Production Cell Control Program" in
the Proc. DIMACS Workshop on Controllers for Manufacturing and Automa-
tion: Speci�cation, Synthesis, and Veri�cation Issues{CONMASSYV, May
1996, DIMACS. The work was part of Mearelli’s Tesi di Laurea Sviluppo
Sistematico di un Programma di Controllo per un Impianto di Produzione
Robotizzato, Pisa 1994/95, supervised by B�orger. 156, 188, 190, 193, 195,
355, 374, 378, 380, 381, 400, 401, 415, 416, 419, 423, 428

121. E. B�orger, P. P�appinghaus, and J. Schmid. Report on a practical application
of ASMs in software design. In Y. Gurevich, P. Kutter, M. Odersky, and
L. Thiele (eds.), Abstract State Machines: Theory and Applications, Lecture
Notes in Computer Science, Vol. 1912, pp. 361{366. Springer-Verlag, 2000.

A report on the successful use of ASMs at Siemens AG (from May 1998 to
March 1999) to redesign and implement the railway process model compo-
nent of FALKO, a railway timetable validation and construction program.
Extensive testing was done for the ASM model prior to its coding, using the
ASM Workbench [170]. For a powerpoint slide show see Falko (; CD). 24,
38, 86, 88, 103, 104, 340, 341, 357, 360, 363, 394, 423

122. E. B�orger and E. Riccobene. A mathematical model of concurrent Prolog. Re-
search Report CSTR-92-15, Dept. of Computer Science, University of Bristol,
Bristol, England, 1992.

An ASM formalization of Ehud Shapiro’s Concurrent Prolog. Adaptation of
the model de�ned for PARLOG in [123]. 282, 348, 403, 421

123. E. B�orger and E. Riccobene. A formal speci�cation of Parlog. In M. Droste
and Y. Gurevich (eds.), Semantics of Programming Languages and Model
Theory, pp. 1{42. Gordon and Breach, 1993.

An ASM formalization of Parlog, a well-known parallel version of Prolog.
This formalization separates explicitly the two kinds of parallelism occurring
in Parlog: AND{parallelism and OR{parallelism. It uses an implementation-
independent, abstract notion of terms and substitutions and is obtained by
combining the concurrent features of the Occam model of [257] with the logic
programming model of [75]. Also published as Technical Report TR 1/93
from Dipartmento di Informatica, Universit�a di Pisa, 1993. An improved and
extended version of the following two papers by the same authors: Logical
Operational Semantics of Parlog. Part I: And-Parallelism in H. Boley and
M. M. Richter (eds.): Processing Declarative Knowledge (Lecture Notes in
Arti�cial Intelligence, Vol. 567, pp. 191{198, Springer-Verlag, 1991). Logi-
cal Operational Semantics of Parlog. Part II: Or-Parallelism in A. Voronkov
(ed.): Logic Programming (Lecture Notes in Arti�cial Intelligence, Vol. 592,

388 References

pp. 27{34, Springer-Verlag, 1992). For an extension to Pandora see [374]. 282,
348, 387, 413, 421

124. E. B�orger and E. Riccobene. Logic + control revisited: An abstract interpreter
for G�odel programs. In G. Levi (ed.), Advances in Logic Programming Theory,
pp. 231{154. Oxford University Press, 1994.

Develops a simple ASM interpreter for G�odel programs. This interpreter ab-
stracts from the deterministic and sequential execution strategies of Prolog
[132] and thus provides a precise interface between logic and control compo-
nents for execution of G�odel programs. The construction is given in abstract
terms which cover the general logic programming paradigm and allow for
concurrency. 346, 421

125. E. B�orger, E. Riccobene, and J. Schmid. Capturing requirements by Abstract
State Machines: The light control case study. J. Universal Computer Science,
6(7):597{620, 2000.

ASMs are applied to the Light Control Case Study discussed during a
Dagstuhl Seminar on Requirements Engineering [115]. A ground model is
de�ned which captures the informal requirements as far as possible and doc-
uments their ambiguity and incompleteness. The ground model is then re�ned
into a form directly executable by AsmGofer [390]. 230, 341, 356, 364, 374,
385, 423, 424

126. E. B�orger and D. Rosenzweig. An analysis of prolog database views and
their uniform implementation. ISO/IEC JTCI SC22 WG17 Prolog Standard-
ization Document 80, National Physical Laboratory, Teddington, Middlesex,
England, 1991.

A mathematical analysis of the Prolog database views de�ned in [103]. The
analysis is derived by stepwise re�nement of the stack model for Prolog from
[132]. It leads to the proposal of a uniform implementation of the di�erent
views which discloses the tradeo�s between semantic clarity and e�ciency
of database update view implementations. Also issued as Research Report
CSE-TR-89-91 by the EECS Dept., University of Michigan, Ann Arbor. 345

127. E. B�orger and D. Rosenzweig. A formal speci�cation of Prolog by tree al-

gebras. In V. �Ceric, V. Dobri�c, V. Lu�zar, and R. Paul (eds.), Information
Technology Interfaces, pp. 513{518. University Computing Center, Zagreb,
Zagreb, 1991.

Prompted by discussion in the international Prolog standardization commit-
tee (ISO/IEC JTC1 SC22 WG17), this paper suggests replacing the stack-
based model of [71] and the stack implementation of the tree-based model
of [72] by a pure tree model for Prolog. See also [75, 73], which is the basis
for [131], where a mistake in the treatment of the catch built-in predicate is
corrected. 389, 413

128. E. B�orger and D. Rosenzweig. From Prolog algebras towards WAM { a math-
ematical study of implementation. In E. B�orger, H. Kleine B�uning, M. M.
Richter, and W. Sch�onfeld (eds.), CSL’90, 4th Workshop on Computer Sci-
ence Logic, Lecture Notes in Computer Science, Vol. 533, pp. 31{66. Springer-
Verlag, 1991.

Re�nes B�orger’s Prolog model [72] by elaborating the conjunctive component
{ as reected by compilation of clause structure into WAM code { and the
disjunctive component { as reected by compilation of predicate structure
into WAM code. The correctness proofs for these re�nements include last call
optimization, determinacy detection and virtual copying of dynamic code.
Extended in [129] and improved in [132]. 347, 389

References 389

129. E. B�orger and D. Rosenzweig. WAM algebras { a mathematical study of
implementation, Part 2. In A. Voronkov (ed.), Logic Programming, Lecture
Notes in Arti�cial Intelligence, Vol. 592, pp. 35{54. Springer-Verlag, 1992.

Re�nes the Prolog model of [128] by elaborating the WAM code for repre-
sentation and uni�cation of terms. The correctness proof for this re�nement
includes environment trimming, Warren’s variable classi�cation and switching
instructions. Improved in [132]. Also issued as Technical Report CSE-TR-88-
91 from EECS Dept, University of Michigan, Ann Arbor, Michigan, 1991.
156, 347, 388, 389

130. E. B�orger and D. Rosenzweig. The mathematics of set predicates in Prolog. In
G. Gottlob, A. Leitsch, and D. Mundici (eds.), Computational Logic and Proof
Theory, Lecture Notes in Computer Science, Vol. 713, pp. 1{13. Springer-
Verlag, 1993.

Provides a logical (proof{theoretical) speci�cation of the solution-collecting
predicates findall, bagof of Prolog. This abstract ASM-based de�nition allows
a logico{mathematical analysis, rationale and criticism of various proposals
made for implementations of these predicates (in particular of setof) in cur-
rent Prolog systems. Foundational companion to Sect. 5, on solution collect-
ing predicates, in [131]. Also issued as Prolog. Copenhagen papers 2, ISO/IEC
JTC1 SC22 WG17 Standardization report no. 105, National Physical Labo-
ratory, Middlesex, 1993, pp. 33{42. 345

131. E. B�orger and D. Rosenzweig. A mathematical de�nition of full Prolog. Sci-
ence of Computer Programming, 24:249{286, 1995.

An abstract ASM speci�cation of the semantics of Prolog, rigorously de�ning
the international ISO 1995 Prolog standard by stepwise re�nement. Revised
and �nal version of [71, 72, 101, 127, 75, 73]. An abstract of this was issued
as Full Prolog in a Nutshell in Logic Programming (Proc. 10th Int. Conf.
on Logic Programming) (D. S. Warren, Ed.), MIT Press 1993. A preliminary
version appeared under the title A Simple Mathematical Model for Full Prolog
as research report TR-33/92, Dipartimento di Informatica, Universit�a di Pisa,
1992. 20, 87, 114, 115, 157, 347, 378, 381, 382, 386, 388, 389, 413

132. E. B�orger and D. Rosenzweig. The WAM { de�nition and compiler correct-
ness. In C. Beierle and L. Pl�umer (eds.), Logic Programming: Formal Methods
and Practical Applications, Studies in Computer Science and Arti�cial Intel-
ligence, Vol. 11, Chap. 2, pp. 20{90. North-Holland, 1995.

The successive-re�nement method introduced for ASMs in [71, 72, 74] is ap-
plied to provide a hierarchy of models as a mathematical basis for construct-
ing provably correct compilers from Prolog to WAM. Various re�nement steps
take care of di�erent distinctive features (\orthogonal components") of WAM,
making the speci�cation as well as the correctness proof modular and ex-
tendible; examples of such extensions are found in [41, 42, 133, 21, 313].
An extension of this work to an imperative language with parallelism and
non-determinism has been provided in [104] and is further developed in
[137, 141, 406]. See [369, 388] for machine-checked versions of the correctness
proofs for the re�nement steps. Preliminary versions appeared in [128, 129]
and as Research Report TR-14/92, Dipartimento di Informatica, Universit�a
di Pisa, 1992. 23, 38, 112, 134, 156, 298, 347, 350, 357, 371, 373, 374, 378,
381, 383, 388, 389, 390, 415, 420, 423, 424

133. E. B�orger and R. Salamone. CLAM speci�cation for provably correct compi-
lation of CLP(R) programs. In E. B�orger (ed.), Specification and Validation
Methods, pp. 97{130. Oxford University Press, 1995.

390 References

Extends the speci�cation and correctness proof, for compiling Prolog pro-
grams to the WAM [132], to CLP(R) and the constraint logical arithmetical
machine (CLAM) developed at IBM Yorktown Heights. For full proofs, see
R. Salamone, \Una Speci�ca Astratta e Modulare della CLAM (An Abstract
and Modular Speci�cation of the CLAM)", Tesi di Laurea, supervised by
B�orger at Universit�a di Pisa, Italy, academic year 1992/93, pp. 113. 23, 114,
115, 298, 347, 349, 378, 379, 381, 389

134. E. B�orger and J. Schmid. Composition and submachine concepts for sequen-
tial ASMs. In P. Clote and H. Schwichtenberg (eds.), Computer Science Logic
(Proceedings of CSL 2000), Lecture Notes in Computer Science, Vol. 1862,
pp. 41{60. Springer-Verlag, 2000.

Structuring concepts for sequential composition and iteration, parameteriza-
tion, and encapsulation in ASMs are de�ned. The concept of recursive subma-
chines has been developed for its use in [406] to provide a modular de�nition
of the statics and the dynamics of Java and of the JVM architecture [89]
which can be naturally re�ned to an executable model, namely written in
AsmGofer [390]. 86, 185, 341, 342, 359, 364, 380, 381, 409, 416, 423, 425

135. E. B�orger and P. Schmitt. A formal operational semantics for languages
of type Prolog III. In E. B�orger, H. Kleine B�uning, M. M. Richter, and
W. Sch�onfeld (eds.), CSL’90, 4th Workshop on Computer Science Logic, Lec-
ture Notes in Computer Science, Vol. 533, pp. 67{79. Springer-Verlag, 1991.

An ASM formalization of Alain Colmerauer’s constraint logic programming
language Prolog III, obtained from the Prolog model in [71, 72, 74] through
extending uni�cations by constraint systems. This extension was the starting
point for the extension of [132] in [40]. A preliminary version of this was issued
as IBM Germany IWBS Report 144, 1990. 346

136. E. B�orger and P. Schmitt. A description of the tableau method using Abstract
State Machines. J. Logic and Computation, 7(5):661{683, 1997.

Starting from the textbook formulation of the tableau calculus, an opera-
tional description of the tableau method is given in terms of ASMs at various
levels of re�nement ending after four stages at a speci�cation that is close

to the leanTAP implementation of the tableau calculus in Prolog. Proofs of
correctness and completeness of the re�nement steps are given. 365, 378, 381

137. E. B�orger and W. Schulte. De�ning the Java Virtual Machine as platform
for provably correct Java compilation. In L. Brim, J. Gruska, and J. Zlatuska
(eds.), Mathematical Foundations of Computer Science 1998, 23rd Int. Sym-
pos., MFCS’98, Brno, Czech Republic, Lecture Notes in Computer Science,
Vol. 1450, pp. 17{35. Springer-Verlag, August 1998.

A de�nition of the Java Virtual Machine, along with a provably correct com-
pilation scheme for Java programs to the JVM, based on the ASM semantics
for Java presented in [138]. Streamlined, corrected and completed in [406].
The full version appears as Technical Report, Universit�at Ulm, Fakult�at f�ur
Informatik, Ulm, Germany, 1998. 359, 380, 389, 391, 409, 428

138. E. B�orger and W. Schulte. Programmer friendly modular de�nition of the
semantics of Java. In J. Alves-Foss (ed.), Formal Syntax and Semantics of
Java, Lecture Notes in Computer Science, Vol. 1523. Springer-Verlag, 1998.

Provides a system- and machine-independent de�nition of the semantics of
the full programming language Java as seen by the Java programmer. The
de�nition is modular, coming as a series of re�ned ASMs, dealing in suc-
cession with Java’s imperative core, its object-oriented features, exceptions

References 391

and threads. Streamlined, corrected and completed in [406]. An extended ab-
stract has been presented by B�orger to the IFIP WG 2.2 (University of Graz,
22{26 September, 1997) and by Schulte under the title Modular Dynamic Se-
mantics of Java to the Workshop on Programming Languages (Ahrensdorp,
FEHMARN Island, September 25, 1997), see University of Kiel, Dept. of CS
Research Report Series, TR Arbeitstagung Programmiersprachen 1997. An in-
dependently developed Java model using ASMs and Montages was published
later as a technical report in [421]. For an ASM model of Java which is geared
to the analysis of the concurrency features see [259]. 156, 359, 365, 378, 380,
381, 390, 391, 409, 428

139. E. B�orger and W. Schulte. Initialization problems for Java. Software – Con-
cepts and Tools, 19(4):175{178, 2000.

Using the models in [138, 137] and reporting results of experiments with
current implementations of the JVM it is shown that the treatment of initial-
ization of classes and interfaces in Java and in the Java Virtual Machine do
not match, a�icting the portability of Java programs. It is shown that con-
current initialization may deadlock and that various Java compilers violate
the initialization semantics through standard optimization techniques. 359,
380, 409, 428

140. E. B�orger and W. Schulte. Modular design for the Java VM architecture. In
E. B�orger (ed.), Architecture Design and Validation Methods, pp. 297{357.
Springer-Verlag, 2000.

Provides a modular de�nition of the Java VM architecture, at di�erent layers
of abstraction. The layers partly reect the layers made explicit in the speci-
�cation of the Java language in [138]. The ASM model for JVM de�ned here
and the ASM model for Java de�ned in [138] provide a rigorous framework
for a machine independent mathematical analysis of the language and of its
implementation, including compilation correctness conditions, safety and op-
timization issues. Streamlined, corrected and completed in [406]. 359, 380,
409, 428

141. E. B�orger and W. Schulte. A practical method for speci�cation and analysis
of exception handling: A Java/JVM case study. IEEE Trans. Software Eng.,
26(10):872{887, October 2000.

ASM models for exception handling in Java and the Java Virtual Machine
(JVM) are given, along with a compilation scheme for Java to JVM code.
It is proven that corresponding runs of the Java and JVM throw the same
exceptions with equivalent e�ect. A di�erent proof is o�ered in [406]. 112,
359, 380, 389, 409, 428

142. E. B�orger and D. Sona. A neural abstract machine. J. Universal Computer
Science, 7(11):1007{1024, 2001.

A parameterized Neural Abstract Machine is de�ned whose instantiations
cover the major neural networks in the literature. The re�nement for feed-
forward networks with back-propagation training is shown. 199, 298, 381,
384

143. D. Bowen. Implementation at Quintus of B�orger’s Prolog ASM. Personal
Communication to B�orger at Quintus in Palo Alto on November 5 and e-mail
of November 11, 1990.

The four ASM rules which constitute the core for user-de�ned predicates in
B�orger’s Prolog model [101, 75] have been implemented, making use of the
code available at Quintus to compute the abstract functions which appear in
that model, in particular the function unify, and the function procdef which for

392 References

a given goal (literal) and a given program yields the ordered set of alternatives
the program o�ers for resolving the goal. 340, 347, 363

144. M. Broy, S. Merz, and K. Spies. The RPC memory case study: A synopsis.
In M. Broy, S. Merz, and K. Spies (eds.), Formal Systems Specification – The
RPC-Memory Specification Case Study, Lecture Notes in Computer Science,
Vol. 1169. Springer-Verlag, August 1996.

For an ASM solution of the case study see [284]. 356, 411

145. A. Br�uggemann, L. Priese, D. R�odding, and R. Sch�atz. Modular decompo-
sition of automata. In E. B�orger, G. Hasenj�ager, and D. R�odding (eds.),
Logic and Machines: Decision Problems and Complexity, Lecture Notes in
Computer Science, Vol. 171, pp. 198{236. Springer-Verlag, 1984. 164

146. B. Buchberger and B. Roider. Input/output codings and transition functions
in e�ective systems. Int. J. General Systems, 4:201{209, 1978. 54

147. J. R. Burch. Techniques for verifying superscalar microprocessors. In Proc.
33rd Annual Conf. on Design Automation Conference, pp. 552{557, Las Ve-
gas, Nevada, 3{7 June 1996. ACM Press. 155

148. W. Burgard, A. B. Cremers, D. Fox, M. Heidelbach, A. M. Kappel, and
S. L�uttringhaus-Kappel. Knowledge-enhanced CO-monitoring in coal mines.
In Proc. Int. Conf. on Industrial and Engineering Applications of Artificial
Intelligence and Expert Systems (IEA-AIE), pp. 511{521, Fukuoka, Japan,
4{7 June 1996.

Extends the ASM interpreter of [301] by modules, which can be executed
in parallel, so that distributed processes can be represented which are syn-
chronized via stream communication. Also a graphical visualization is added,
which is needed for industrial applications of the system in a time- and
security-critical coal mining application reported in the paper. Available
at http://www.informatik.uni-bonn.de/~angelica/publications.html .
357, 413

149. C. Campbell and Y. Gurevich. Table ASMs. In R. Moreno-D��az and
A. Quesada-Arencibia (eds.), Formal Methods and Tools for Computer Sci-
ence (Local Proceedings of Eurocast 2001), pp. 286{290, Canary Islands,
Spain, February 2001. Universidad de Las Palmas de Gran Canaria.

A special table notation for a class of basic ASMs is presented. 29

150. G. D. Castillo and P. P�appinghaus. Designing software for internet telephony:
experiences in an industrial development process. In A. Blass, E. B�orger,
and Y. Gurevich (eds.), Theory and Applications of Abstract State Machines,
Schloss Dagstuhl, Int. Conf. and Research Center for Computer Science, 2002.

The development of a high-level abstract model of the core functionality of
an entity in a mobile telephony network is reported. The model served as the
basis for a C++ product implementation. 340, 362

151. S. Cater and J. Huggins. An ASM dynamic semantics for standard ML.
Technical Report CPSC-1999-2, Kettering University, Flint, Michigan, Octo-
ber 1999.

ASMs are used to provide dynamic semantics for the functional programming
language Standard ML. An extended abstract appears in Y. Gurevich, P.
Kutter, M. Odersky, and L. Thiele, eds., Abstract State Machines: Theory
and Applications, Lecture Notes in Computer Science, Vol. 1912, pp. 203{222,
Springer-Verlag, 2000, and in TIK-Report No. 87, pp. 68{99, ETH Z�urich,
March 2000.

http://www.informatik.uni-bonn.de/~angelica/publications.html

References 393

152. A. Cavarra. Applying Abstract State Machines to Formalize and Integrate the
UML Lightweight Method. PhD thesis, University of Catania, Sicily, Italy,
2000.

The thesis, which was supervised by B�orger and Riccobene, studies the use
of ASMs to rigorously support semi-formal speci�cation techniques as they
are used in industrial practice, with a focus on UML notations and concepts.
In addition to the work, which has been published in [98, 99], a simulator for
UML state machines has been developed using AsmGofer [390]. 341, 356,
364, 382, 393, 423

153. A. Cavarra, E. Riccobene, and P. Scandurra. Integrating UML static and
dynamic views and formalizing the interaction mechanism of UML state ma-
chines. In E. B�orger, A. Gargantini, and E. Riccobene (eds.), Abstract State
Machines 2003–Advances in Theory and Applications, Lecture Notes in Com-
puter Science, Vol. 2589, pp. 229{243. Springer-Verlag, 2003. 47, 88, 364,
382

154. A. Cavarra, E. Riccobene, and A. Zavanella. A formal model for the parallel
semantics of P3L. In J. Carroll, E. Damiani, H. Haddad, and D. Oppen-
heim (eds.), Proc. 2000 ACM Sympos. Applied Computing, Lecture Notes in
Computer Science, Vol. 2, pp. 804{812. ACM Press, 2000.

Provides an ASM formalization of the semantics of P3L, a programming lan-
guage with task and data parallelism. The model describes (a) how the com-
piler de�nes a network of processes starting from a given program, and (b)
the computation of the running processes. Some rewrite rules for trimming
the compiler for better program performance are proved to be correct. 360

155. Z. Chen. Java Card Technology for Smart Cards: Architecture and Program-
mer’s Guide. Addison Wesley, 2000.

See also http://java.sun.com/products/javacard/havacard21.html. 88

156. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press,
1999. 299

157. J. Cohen and A. Slissenko. On veri�cation of re�nements of asynchronous
timed distributed algorithms. In Y. Gurevich, P. Kutter, M. Odersky, and
L. Thiele (eds.), Abstract State Machines: Theory and Applications, Lecture
Notes in Computer Science, Vol. 1912, pp. 34{49. Springer-Verlag, 2000.

A study of the role of timing constraints for proving the correctness of re�ne-
ments of distributed asynchronous algorithms with continuous time, speci�ed
as distributed ASMs. The ASM investigation of Lamport’s Bakery Algorithm
in [114] is used as a case study. Also appears in TIK-Report No. 87, pp. 100{
114, ETH Z�urich, March 2000. 352, 385

158. K. Compton, Y. Gurevich, J. Huggins, and W. Shen. An automatic veri�-
cation tool for UML. Technical Report CSE-TR-423-00, EECS Department,
University of Michigan, 2000.

Using the ideas developed in [98, 99, 152], ASMs are used to give semantics for
UML state machines, as a basis for constructing an automated tool for ver-
ifying the properties of UML state machines. An extended abstract appears
as \A Semantic Model for the State Machine in the Uni�ed Modeling Lan-
guage" in G. Reggio, A. Knapp, B. Rumpe, B. Selic, and R. Wieringa (eds.),
\Dynamic Behaviour in UML Models: Semantic Questions", Workshop Pro-
ceedings, UML 2000 Workshop, Ludwig-Maximilians-Universit�at M�unchen,
Institut f�ur Informatik, Bericht 0006, October 2000, pp. 25{31.

http://java.sun.com/products/javacard/havacard21.html

394 References

159. D. Craigen, S. Gerhart, and T. Ralston. Formal methods reality check: In-
dustrial usage. IEEE Trans. Software Eng., 21(2):90{98, 1995. 299

160. A. B. Cremers, U. Griefahn, and R. Hinze. Deduktive Datenbanken. Vieweg,
1994. 272

161. A. B. Cremers and T. N. Hibbard. Formal modeling of virtual machines.
IEEE Trans. Software Eng., SE-4(5):426{436, 1978. 353

162. F. Cristian. Reaching agreement on processor-group membership in syn-
chronous distributed systems. Distributed Computing, 6:175{187, 1991. 240,
252

163. F. DaCruz. Kermit: A File Transfer Protocol. Digital Press, 1987.

See also the Kermit Web site http://www.columbia.edu/kermit. 240, 352,
410

164. O. Dahl, E. W. Dijkstra, and C. A. R. Hoare. Structured Programming.
Academic Press, 1972. 9, 353

165. W. Damm and D. Harel. LSCs: Breathing life into message sequence charts.
Formal Methods in System Design, 19(1):45{80, 2001. 22, 104

166. M. Davis. The Universal Computer: The Road from Leibniz to Turing. W.W.
Norton, New York, 2000. 166

167. W. P. de Roever and K. Engelhardt. Data Refinement: Model-Oriented Proof
Methods and their Comparison. Cambridge University Press, Cambridge,
1998. 22, 134, 156

168. M. Dehof and S. Tahar. Implementierung des DLX-RISC-Prozessors in einer
Standardzellen-Entwurfsumgebung. Technical Report SBF 358-C2-9/94, In-
stitue of Computer Design and Fault Tolerance, University of Karlsruhe, Ger-
many, 1994. 137

169. G. Del Castillo. Towards comprehensive tool support for Abstract State
Machines. In D. Hutter, W. Stephan, P. Traverso, and M. Ullmann (eds.),
Applied Formal Methods – FM-Trends 98, Lecture Notes in Computer Science,
Vol. 1641, pp. 311{325. Springer-Verlag, 1999.

A description of the ASM Workbench, an integrated environment for various
ASM tools; see [170]. Another description appears under the title The ASM
Workbench: an Open and Extensible Tool Environment for Abstract State
Machines in [226, pp. 139{154]. 363, 403

170. G. Del Castillo. The ASM Workbench. A Tool Environment for Computer-
Aided Analysis and Validation of Abstract State Machine Models. PhD thesis,
Universit�at Paderborn, Germany, 2001.

Published in: HNI-Verlagsschriftenreihe Vol. 83, 217 pages. The main contri-
bution of the thesis, supervised by B�orger and Gl�asser, is the de�nition of
the ASM-based speci�cation language ASM-SL and a tool architecture { the
ASM Workbench { based on ASM-SL. The tool environment includes basic
functionalities such as parsing, abstract syntax trees, type checking, pretty
printing, etc., and in particular a transformation of ASMs into FSMs which
can be model checked using SMV; see [175]. In the thesis a case study from
the domain of automated manufacturing is treated, namely the distributed
control for a material ow system. The ASM Workbench has been extensively
used for testing purposes in the FALKO project at Siemens [121]. It has been
used in [355] to provide an executable semantics for UML. 340, 341, 357,
363, 364, 387, 394, 419, 423, 429

http://www.columbia.edu/kermit

References 395

171. G. Del Castillo, I. Durdanovi�c, and U. Gl�asser. An evolving algebra abstract
machine. In H. K. B�uning (ed.), Proc. Ann. Conf. of the European Association
for Computer Science Logic (CSL’95), Lecture Notes in Computer Science,
Vol. 1092, pp. 191{214. Springer-Verlag, 1996.

Introduces the concept of an abstract machine (EAM) as a platform for the
systematic development of ASM tools and gives a formal de�nition of the
EAM ground model in terms of a universal ASM. The de�nition proceeds by
stepwise re�nement and leads to the design of a simple virtual machine archi-
tecture as a basis for a sequential implementation of the EAM. A preliminary
version appeared under the title Specification and Design of the EAM (EAM
– Evolving Algebra Abstract Machine) as Technical Report TR-RSFB-96-003,
Paderborn University, 1996. 355, 363, 397

172. G. Del Castillo and U. Gl�asser. Computer-aided analysis and validation of
heterogeneous system speci�cations. In F. Pichler, R. Moreno-D��az, and
P. Kopacek (eds.), Computer Aided Systems Theory: Proc. 7th Int. Work-
shop on Computer Aided Systems Theory (EUROCAST’99), Lecture Notes
in Computer Science, Vol. 1798, pp. 55{79. Springer-Verlag, 2000.

ASMs are proposed as a method for combining heterogeneous speci�cations.
As a case study, Petri-net and SDL speci�cations of a material ow system
are combined via ASMs and validated using SMV [175]. 356, 395

173. G. Del Castillo and W. Hardt. Fast dynamic analysis of complex hard-
ware/software systems based on Abstract State Machine models. In Proc.
6th Int. Workshop on Hardware/Software Codesign (CODES/CASHE’98)
(March 15–18, Seattle, Washington), pp. 77{81, 1998.

Provides experimental results for [174]. 359, 395

174. G. Del Castillo and W. Hardt. Towards a uni�ed analysis methodology
of HW/SW systems based on Abstract State Machines: Modeling of in-
struction sets. In Proc. GI/ITG/GMM Workshop “Methoden und Beschrei-
bungssprachen zur Modellierung und Verifikation von Schaltungen und Syste-
men”, Paderborn, Germany, March 1998.

Extending the processor description technique from [102], ASMs are used for
high-level analysis of hardware/software systems. The authors show how to
model instruction sets using ASMs and to instrument such models to collect
data for evaluating design alternatives. Experimental results appear in [173].
359, 395

175. G. Del Castillo and K. Winter. Model checking support for the ASM high-
level language. In S. Graf and M. Schwartzbach (eds.), Proc. 6th Int. Conf.
TACAS 2000, Lecture Notes in Computer Science, Vol. 1785, pp. 331{346.
Springer-Verlag, 2000.

Extending [424], the authors introduce an interface from the ASM Workbench
to the SMV model checking tool, based on an ASM-to-SMV transformation.
Previously appeared as Universit�at-GH Paderborn Technical Report TR-RI-
99-209. For an extension see [425, 426]. For an experiment with this interface
see [172]. 341, 394, 395, 428, 429

176. J. Derrick and E. Boiten. Refinement in Z and Object-Z. Formal Approaches
to Computing and Information Technology. Springer-Verlag, 2001. 21, 22,
134, 156, 185

177. S. Dexter, P. Doyle, and Y. Gurevich. Gurevich Abstract State Machines and
Sch�onhage Storage Modi�cation Machines. J. Universal Computer Science,
3(4):279{303, 1997.

396 References

A demonstration that, in a strong sense, Sch�onhage’s storage modi�cation
machines are equivalent to unary basic ASMs without external functions.
The unary restriction can be removed if the storage modi�cation machines
are equipped with a pairing function in an appropriate way. 301, 344, 380,
424

178. V. Di Iorio, R. Bigonha, and M. Maia. A self-applicable partial evaluator for
ASM. In Y. Gurevich, P. Kutter, M. Odersky, and L. Thiele (eds.), Abstract
State Machines – ASM 2000, Int. Workshop on Abstract State Machines,
Monte Verità, Switzerland, Local Proceedings, TIK-Report, No. 87, pp. 115{
130. ETH Z�urich, March 2000.

A partial evaluator for ASMs is described which is self-applicable. The use
of such a tool for compiler generation and techniques for describing language
semantics suitable for partial evaluation are discussed. Implementation details
are in An ASM Implementation of a Self-Applicable Partial Evaluator by V.
Di Iorio and R. Bigonha, Technical Report LLP-004-2000 of Programming
Languages Laboratory, DCC, Universidade Federal de Minas Gerais, 2000.
Extends the work of [252]. 363, 407

179. S. Diehl. Transformations of evolving algebras. In Proc. LIRA’97 (VIII Int.
Conf. on Logic and Computer Science), pp. 43{50, Novi Sad, Yugoslavia,
September 1997.

Constant propagation is introduced as a transformation on ASMs. ASMs
are extended by macro de�nitions, folding and unfolding transformations for
macros, a simple transformation to atten transition rules and a pass separa-
tion transformation for ASMs are de�ned. For all transformations the opera-
tional equivalence of the resulting ASMs with the original ASMs is proven. In
the case of pass separation, it is shown that the results of the computations in
the original and the transformed ASMs are equal. Pass separation is applied
to a simple interpreter. A preliminary version appeared in 1995 as Technical
Report 02/95 of Universit�at des Saarlandes.

180. D. Diesen. Specifying Algorithms Using Evolving Algebra. Implementation
of Functional Programming Languages. D Sc Thesis, Dept. of Informatics,
University of Oslo, Norway, March 1995.

A description of a functional interpreter for ASMs, with applications for func-
tional programming languages, along with a proposed extension to the lan-
guage of ASMs. 363

181. B. DiFranco. Specification of ISO SQL using Montages. Master’s thesis,
Universit�a di l’Aquila, Italy, 1997.

Tesi di Laurea, in Italian. 414

182. E. W. Dijkstra. A note on two problems in connexion with graphs. Nu-
merische Mathematik, 1:269{271, 1959. 117, 121

183. E. W. Dijkstra. Structure of the T.H.E. multiprogrammming system. Com-
mun. ACM, 11:341{346, 1968. 8, 297, 353

184. E. W. Dijkstra. Notes on structured programming. In O.-J. Dahl, E. W. Dijk-
stra, and C. A. R. Hoare (eds.), Structured Programming, pp. 1{82. Academic
Press, 1972. 21, 24

185. E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976. 4

186. S. Distefano. Architettura X86 e sistema dei processi di MINIX dalla specifica
ASM al codice eseguibile. Master’s thesis, University of Catania, Sicily, Italy,
1998/99.

References 397

The multiprogramming operating system MINIX together with the architec-
ture X86 are modeled as ASMs and re�ned to an implementation in Java and
in C. 39, 282, 340

187. A. Dold. A formal representation of Abstract State Machines using PVS.
Veri�x Technical Report Ulm/6.2, Universit�at Ulm, Germany, July 1998.

A technique for formally representing ASMs using the automated veri�ca-
tion system PVS is described, along with generic PVS theories which de�ne
re�nement relations between ASMs. An application to Representing the Al-
pha Processor Family using PVS by the same author appears as Veri�x/Uni
Ulm/4.1, University of Ulm, Germany, November 1995. 300, 358

188. A. Dold, T. Gaul, V. Vialard, and W. Zimmermann. ASM-based mecha-
nized veri�cation of compiler back-ends. In U. Gl�asser and P. Schmitt (eds.),
Proc. 5th Int. Workshop on Abstract State Machines, pp. 50{67. Magdeburg
University, 1998.

Using techniques from [439], an approach is described for mechanically prov-
ing the correctness of back-end rewrite system (BURS) speci�cations where
source and target languages are described by ASMs. The approach can be
used in conjunction with BURS-based back-end compiler generators. PVS
proof strategies are de�ned for the automatic veri�cation of BURS rules.
Similar aspects are treated by A. Dold and T. Gaul and W. Zimmermann in
Mechanized Verification of Compiler Back-Ends in Proc. Int. Workshop on
Software Tools for Technology Transfer (STTT’98), Aalborg, Denmark, July
12{13, 1998. 300, 358, 403

189. A. Durand. Modeling cache coherence protocol { a case study with FLASH.
In U. Gl�asser and P. Schmitt (eds.), Proc. 5th Int. Workshop on Abstract
State Machines, pp. 111{126. Magdeburg University, 1998.

During his research stay in Pisa in 1997/98, upon B�orger’s suggestion Durand
investigated the cache coherence protocol in the Stanford FLASH multipro-
cessor system, for which he provides a high-level speci�cation and correctness
proofs related to data consistency. For a model checking veri�cation of the
model using SMV see [425]. 361, 403, 428

190. I. Durdanovi�c. From operational speci�cations to real architectures. Draft of
PhD Thesis (NEC Research Institute Princeton), March 2, 2000.

This PhD project, supervised by B�orger, continues the ideas presented in
[171]. An ASM Virtual Architecture is de�ned as the basis for a comprehen-
sive ASM tool environment. The developed base system contains an ASM
parser and a compiler into ASM/VA code which is a form of high-level C++
programs whose actual re�nement into C++ is supported by programs in a
C++ library. 363

191. E.A. Community. Name change to replace EA by something better. Electronic
Discussion at ea@ira.uka.de, September 6 to October 11 (1996).

The discussion was proposed with the following motivation: \Algebra" makes
the theoreticians think that the approach belongs to the algebraic speci�ca-
tion and veri�cation research area { and their dissatisfaction and misjudge-
ment comes from our violating so many (I would say almost all) of their
cherished concepts and beliefs. \Algebra" makes the practitioners think that
we want them to use algebraic notation and equations or laws { and this is
enough for them not even to look further at what we really do. \Evolving" is
either not understood at all or in the best of all cases interpreted as implying
that the signature should be allowed to change { this comes from the anal-
ogy with biological systems where the concept is used that way. (B�orger on

398 References

Sept. 6)

In a lively discussion, two dozen names were proposed, resulting in P�apping-
haus’ proposal of (Gurevich’s) Abstract State Machines to become generally
accepted. Here are the concluding messages of October 10/11 which resume
this decision.

From: Erik.Tiden@zfe.siemens.de
To: eboerger@prosun.�rst.gmd.de
Subject: Name of the beast.

Dear Prof. B�orger, I write in English, so that you can quote me to your
community if you wish. The name \Gurevich Machines" is impossible in in-
dustry, because it only evokes associations of useless (in industrial practice)
theoretical concepts. The name\Abstract State Machines" on the other hand,
is �ne. That’s also what we will keep on calling them here at Siemens central
research. Thus, if you stick to \Gurevich Machines" you will end up with
two names. Now, if you regard ASMs as a theoretical exercise, investigation,
whatever, into the foundations of CS or some such worthy cause, then you
can call them whatever you like of course. If you want to make ASMs into
something which is useful in practice, calling them GM is simply foolish. Best
regards, Erik Tiden.

Answer of October 11.
From: Egon B�orger eboerger@prosun.�rst.gmd.de
To: Erik.Tiden@zfe.siemens.de
Subject: Abstract State Machines (Gurevich Machines).

Dear Dr. Tiden, thanks for your valuable comment on the EA name problem
which I am going to answer in English so that the whole community can fol-
low this. I do not know whether you did follow the entire discussion; I had
started it pushed by the need to �nd a name which helps those of us who aim
at practical (in particular industrial) applications of the speci�cation, veri�-
cation and code development method which has been built around Gurevich’s
notion of evolving algebras. I am glad that through the discussion we have
found such a name, namely Gurevich (’s Abstract State) Machines. By the
way, the �rst step to this solution, namely the proposal to call the beasts
Abstract State Machines, came from one of your collaborators, Dr. Paepping-
haus, to whom I am grateful for his suggestion. Adding the inventor’s name
to Abstract State Machines is in accordance with usual practice and provided
the chance to conclude the search not with two really di�erent names (EA
and ASM) but with ONE name which is generally accepted by the commu-
nity. Gurevich Machines or Abstract State Machines are not two di�erent
names but only shorthands for Gurevich’s Abstract State Machines. Here is
another variation, appearing in the title for one of my forthcoming lectures:
Abstract State Machines (Gurevich Machines). An interesting feature which
makes Gurevich’s ASMs unique is that they have both practical AND the-
oretical relevance (although surprisingly enough the theoretical potential of
the notion of Gurevich Machines has been recognized and explored even less
than its practical relevance). Therefore it IS valuable to have a unique name
which takes into account the sometimes diverging interests. I hope this is a
satisfactory answer to your message. With best wishes, Egon B�orger. 361,
366

192. S. Eilenberg. Automata, Machines and Languages, Vol. A. Academic Press,
1974. 290

193. R. Eschbach. A termination detection algorithm: Speci�cation and ver-
i�cation. In J. Wing, J. C. P. Woodcock, and J. Davies (eds.), Proc.

References 399

FM’99, Vol. II, Lecture Notes in Computer Science, Vol. 1709, pp. 1720{
1737. Springer-Verlag, 1999.

A two-level speci�cation of a distributed termination detection algorithm is
given using ASMs. The lower-level speci�cation of the algorithm is proved
equivalent to the upper-level speci�cation. 361

194. R. Eschbach, U. G�asser, R. Gotzhein, M. v. L�owis, and A. Prinz. Formal
de�nition of SDL-2000 { compiling and running SDL speci�cations as ASM
models. J. Universal Computer Science, 7(11):1025{1050, 2001.

Contains the most recent and detailed survey of the SDL-2000 formal seman-
tics de�nition [292] that was accepted in 2000 by ITU-T, the international
standardization body for telecommunication. The focus of this survey is on
the dynamic semantics, where ASMs have been applied as the underlying
framework. In particular, the SDL Abstract Machine (SAM) model including
real time, the de�nition of SAM programs and their execution by the SDL
Virtual Machine (SVM) (SDL-to-ASM compiler and further tool support) are
presented. 87, 341, 359, 384, 402, 412

195. R. Eschbach, U. Gl�asser, R. Gotzhein, and A. Prinz. On the formal se-
mantics of SDL-2000: A compilation approach based on an abstract SDL
machine. In Y. Gurevich, P. Kutter, M. Odersky, and L. Thiele (eds.), Ab-
stract State Machines: Theory and Applications, Lecture Notes in Computer
Science, Vol. 1912, pp. 242{265. Springer-Verlag, 2000.

An overview of the semantics of SDL-2000, whose complete and �nal de�ni-
tion which uses ASMs appears in [292]. A simpli�ed language SPL is de�ned
and described using ASMs to point out some of the unique features of the se-
mantics of SDL-2000. Also in TIK-Report No. 87, pp. 131{151, ETH Z�urich,
March 2000. 358, 403

196. H. Eveking. Machine assisted veri�cation. In E. B�orger (ed.), Architecture
Design and Validation Methods, pp. 191{242. Springer-Verlag, 2000. 299

197. L. M. G. Feijs and H. B. M. Jonkers. Formal Specification and Design. Cam-
bridge University Press, Cambridge, 1992. 180, 294, 405

198. L. M. G. Feijs, H. B. M. Jonkers, C. P. J. Koymans, and G. R. Renardel
de Lavalette. Formal de�nition of the design language COLD-K. Technical
Report No. 234/87, Philips Research Laboratories, 1987.

Also appeared as ESPRIT Document No. METEOR/t7/PRLE/7, 1987. Final
update in August 1989. 405

199. J. Fitzgerald and P. G. Larsen. Modeling Systems. Practical Tool and Tech-
niques in Software Development. Cambridge University Press, Cambridge,
1998. 156, 295

200. B. Fordham, S. Abiteboul, and Y. Yesha. Evolving databases: An application
to electronic commerce. In Proc. Int. Database Engineering and Applications
Sympos. (IDEAS), pp. 191{200, Montreal, August 1997.

The paper describes an ASM-based prototype system, in the spirit of ac-
tive databases, for specifying electronic commerce applications. An extensi-
ble database model called \evolving databases" (EDB) is de�ned based upon
ASMs. It is applied to capture in a rigorously transparent way the state
changes involved in electronic commerce negotiations, concerning the traded
products, the negotiators, their orders and the laws accepted as the basis for
the particular negotiation. See [1]. 360

201. Foundations of Software Engineering Group, Microsoft Research. AsmL. Web
pages at http://research.microsoft.com/foundations/AsmL/, 2001. 30,
185, 341, 364

http://research.microsoft.com/foundations/AsmL/

400 References

202. G. Franceschinis and M. Ribaud. E�cient performance analysis techniques
for stochastic well-formed nets and stochastic-process algebras. In W. Reisig
and G. Rozenberg (eds.), Lectures on Petri Nets II: Applications, Vol. 1492,
pp. 386{437. Springer-Verlag, 1998. 241

203. N. G. Fruja and R. F. St�ark. The hidden computation steps of turbo Ab-
stract State Machines. In E. B�orger, A. Gargantini, and E. Riccobene (eds.),
Abstract State Machines 2003–Advances in Theory and Applications, Lecture
Notes in Computer Science, Vol. 2589, pp. 244{262. Springer-Verlag, 2003.
86, 178, 185

204. N. E. Fuchs. Speci�cations are (preferably) executable. Software Eng. J.,
7(5):323{334, September 1992.

Reprinted in: J. P. Bowen, M. G. Hinchey, High-Integrity System Specification
and Design, pp. 583{608. Springer-Verlag, London, 1999. 19

205. N. E. Fuchs, U. Schwertel, and R. Schwitter. Attempto controlled English {
not just another logic speci�cation. In P. Flener (ed.), Logic-Based Program
Synthesis and Transformation, 8th Int. Workshop LOPSTR’98, Lecture Notes
in Computer Science, Vol. 1559, pp. 1{20. Springer-Verlag, 1998. 19

206. M. Gaieb. Géneration de spécifications Centaur á partir de specifications
Montages. Master’s thesis, Universit�e de Nice { Sophia Antipolis, France,
June 1997.

This works investigate the possibilities of mapping the operational ASM se-
mantics of the static analysis phase of Montages [311] into the declarative
Natural Semantics framework. A formalization for the list arrows of Montages
is found { a feature that has not been fully formalized in [311]. In addition, the
Gem-Mex Montages tool is interfaced to the Centaur system (which executes
Natural Semantics speci�caions), and the tool suport of Centaur is exploited
in order to generate structural editors for languages de�ned with Montages.

207. A. Gargantini and E. Riccobene. Encoding Abstract State Machines in PVS.
In Y. Gurevich, P. Kutter, M. Odersky, and L. Thiele (eds.), Abstract State
Machines: Theory and Applications, Lecture Notes in Computer Science,
Vol. 1912, pp. 303{322. Springer-Verlag, 2000.

A framework for automatic translation from ASM to PVS is presented. Fol-
lowing a suggestion by B�orger, the ASM speci�cation of the Production Cell
problem [120] is used as a case study. Also appears in TIK-Report No. 87,
pp. 152{173, ETH Z�urich, March 2000. 188, 300, 355, 387, 425

208. A. Gargantini and E. Riccobene. ASM-based testing: Coverage criteria
and automatic test sequence generation. J. Universal Computer Science,
7(11):1051{1068, 2001.

ASMs are used for testing purposes, de�ning adequacy criteria measuring the
coverage achieved by a test suite, and determining whether su�cient testing
has been performed. An algorithm is de�ned to generate from ASMs test
sequences with desired coverage, exploiting the counter example generation
of SMV. See the continuation in [209]. 86, 360, 384, 400

209. A. Gargantini and E. Riccobene. Using Spin to generate tests from ASM
speci�cations. In E. B�orger, A. Gargantini, and E. Riccobene (eds.), Abstract
State Machines 2003–Advances in Theory and Applications, Lecture Notes in
Computer Science, Vol. 2589, pp. 263{277. Springer-Verlag, 2003.

Continuation of [208]. 360, 400

References 401

210. M. C. Gaudel. Génération et Preuve de Compilateurs Basées sur une
Sémantique Formelle des Langages de Programmation. Th�ese, L’Institut Na-
tional Polytechnique de Lorraine, France, 1980.

The work to which mostly the idea is attributed of using Tarski structures as
the most general notion of states. But see [359]. 8, 353, 419

211. T. Gaul. An Abstract State Machine speci�cation of the DEC-Alpha proces-
sor family. Veri�x Working Paper Veri�x/UKA/4, University of Karlsruhe,
Germany, 1995.

An ASM for the DEC-Alpha processor family is derived directly from the
original manufacturer’s handbook. The speci�cation omits certain less-used
instructions and VAX compatibility parts. 358, 401

212. T. Gaul, A. Heberle, and W. Zimmermann. An ASM speci�cation of the oper-
ational semantics of MIS. Veri�x Working Paper Veri�x/UKA/3, University
of Karlsruhe, Germany, 1998.

An ASM speci�cation of MIS, an intermediate programming language used
in the Veri�x project for provably correct compilation to the DEC-Alpha
microprocessor [211]. 358

213. A. Gawanmeh, S. Tahar, and K. Winter. Interfacing ASMs with the MDG
tool. In E. B�orger, A. Gargantini, and E. Riccobene (eds.), Abstract State
Machines 2003–Advances in Theory and Applications, Lecture Notes in Com-
puter Science, Vol. 2589, pp. 278{292. Springer-Verlag, 2003. 364

214. A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam.
PVM: Parallel Virtual Machine. A User’s Guide and Tutorial for Networked
Parallel Computing. MIT Press, 1994.

A high-level model of the system described in this book has been developed
in [107, 108]. 273, 350, 384

215. S. Gerhart, D. Craigen, and T. Ralston. Experience with formal methods in
critical systems. IEEE Software, 11(1):21{28, January 1994. 299

216. F. Giannuzzi. Studi di un metodo per la derivazione dei casi di test da speci-
fiche ASM. Tesi di laurea, Universit�a di Pisa, Italy, July 2001.

Studies the derivation of test cases from ASM speci�cations, illustrating an
application of the cause-e�ect-graph method for the Production Cell ASM
[120]. Supervised by Bertolino and B�orger. 360

217. M. Giese, D. Kempe, and A. Sch�onegge. KIV zur Veri�kation von ASM-
Spezi�kationen am Beispiel der DLX-Pipelining Architektur. Interner Bericht
16/97, Universit�at Karlsruhe, Germany, 1997.

The Karlsruhe Interactive Veri�er (KIV system) is used for the formal ver-
i�cation of the parallelization of the ASM speci�cation for the serial DLX
architecture, the �rst step of the re�nement to its parallel version with �ve-
stage pipelining in [119]. Two additions to the KIV system are described
which were designed in the course of this case study. 137, 142, 146, 148, 156,
359, 386

218. U. Gl�asser. Systems level speci�cation and modeling of reactive systems:
Concepts, methods, and tools. In F. Pichler, R. Moreno-D��az, and R. Al-
brecht (eds.), Computer Aided Systems Theory–EUROCAST’95: Proc. 5th
Int. Workshop on Computer Aided Systems Theory (Innsbruck, Austria, May
1995), Lecture Notes in Computer Science, Vol. 1030, pp. 375{385. Springer-
Verlag, 1996.

402 References

The paper investigates the derivation of formal requirements and design spec-
i�cations at systems level as part of a comprehensive design concept for com-
plex reactive systems. In this context the meaning of correctness with re-
spect to the embedding of mathematical models into the physical world is
discussed.

219. U. Gl�asser. Combining Abstract State Machines with predicate transition
nets. In F. Pichler and R. Moreno-D��az (eds.), Computer Aided Systems The-
ory – EUROCAST’97 (Proc. 6th Int. Workshop on Computer Aided Systems
Theory, Las Palmas de Gran Canaria, Spain, Feb. 1997), Lecture Notes in
Computer Science, Vol. 1333, pp. 108{122. Springer-Verlag, 1997.

The work investigates the formal relation between ASMs and Pr/TPredicate
Transition (Pr/T-) Nets with the aim of integrating both approaches into
a common framework for modeling concurrent and reactive system behavior,
where Pr/T-nets are considered as a graphical interface for distributed ASMs.
For the class of strict Pr/T-nets (which constitutes the basic form of Pr/T-
nets) a transformation to distributed ASMs is given. 356

220. U. Gl�asser. ASM semantics of SDL: Concepts, methods, tools. In Y. Lahav,
A. Wolisz, J. Fischer, and E. Holz (eds.), Proc. 1st Workshop of the SDL
Forum Society on SDL and MSC, Informatik-Berichte, Vol. 104 (ISSN 0863-
095), pp. 271{280. Humboldt-Universit�at Berlin, 1998.

Proposal to the SDL Forum to use ASMs for a de�nition of the semantics
of SDL which is abstract but through its operational character is apt to be
transformed to an executable model. Detailed in [225]. 358

221. U. Gl�asser. Analysis and Validation of Formal Requirement Specifications in
Model-Based Engineering of Concurrent Systems. Habilitationsschrift, Uni-
versity of Paderborn, Germany, 1999.

Contains a systematic treatment of the work started in [225] providing ASM
models for the dynamic semantics of SDL. Completed in [292]; see [194] for a
survey. 358, 403

222. U. Gl�asser, R. Gotzhein, and A. Prinz. Towards a new formal SDL semantics
based on Abstract State Machines. In G. v. Bochmann, R. Dssouli, and
Y. Lahav (eds.), SDL’99 – The Next Millenium, Proc. 9th SDL Forum, pp.
171{190. Elsevier Science B.V., 1999.

Based upon the idea proposed in [225], ASMs are applied to formally de�ne
the behavior model of a sample SDL-2000 speci�cation. See also \SDL For-
mal Semantics De�nition" by the same authors, published as University of
Paderborn Report No. TR SFBR-99-065, June 1999. See the completion of
the work in [292] and the survey [194]. 358, 403, 419

223. U. Gl�asser, Y. Gurevich, and M. Veanes. An abstract communication model.
Technical Report MSR-TR-2002-55, Microsoft Research, Redmond, Washing-
ton, May 2002.

From [224] an abstract communication model is extracted. 105, 108, 402

224. U. Gl�asser, Y. Gurevich, and M. Veanes. High-level executable speci�cation
of the universal plug and play architecture. In Proc. 35th Hawaii Int. Conf.
on System Sciences – 2002, pp. 1{10. IEEE Computer Society Press, 2002.

An AsmL speci�cation of the Universal Plug and Play (UPnP) architecture
for peer-to-peer network connectivity of intelligent devices. A more detailed
version appeared in June 2001 as Microsoft Research Technical Report MSR-
TR-2001-59 under the title \Universal Plug and Play Models". See [223]. 88,
298, 341, 362, 402

References 403

225. U. Gl�asser and R. Karges. Abstract State Machine Semantics of SDL. J. Uni-
versal Computer Science, 3(12):1382{1414, 1997.

A formal semantic model of Basic SDL-92 { according to the ITU-T Rec-
ommendation Z.100 { is de�ned in terms of an abstract SDL machine based
on the concept of a multi-agent real-time ASM. The resulting interpretation
model is not only mathematically precise but also reects the common un-
derstanding of SDL in a direct and intuitive manner; it provides a concise
and understandable representation of the complete dynamic semantics of Ba-
sic SDL-92. Moreover, the model can easily be extended and modified. The
article considers the behavior of channels, processes and timers with respect
to signal transfer operations and timer operations. Continuation of this work
and merging it with work by Gotzhein and by Prinz [222, 221, 367] led to the
ITU-T standard de�nition of SDL-2000 [292, 195]. 358, 402

226. U. Gl�asser and P. Schmitt (eds.). Proc. 5th Int. Workshop on Abstract
State Machines, Germany, 1998. GI Jahrestagung 1998, Otto-von-Guericke-
Universit�at Magedeburg.

Extended abstracts of the talks presented to the workshop which was orga-
nized as part of the 28th Annual Conf. of the German Computer Science
Society (GI Jahrestagung). See [435, 395, 328, 188, 274, 414, 189, 46, 169].
361, 394, 427

227. P. Glavan and D. Rosenzweig. Communicating evolving algebras. In
E. B�orger, H. Kleine B�uning, G. J�ager, S. Martini, and M. M. Richter (eds.),
Computer Science Logic, Lecture Notes in Computer Science, Vol. 702, pp.
182{215. Springer-Verlag, 1993.

A theory of concurrent computation within the framework of ASMs is de-
veloped, generalizing [257, 122]. As an illustration models are given for the
Chemical Abstract Machine and the π-calculus. See [248] for a more general
de�nition of the notion of distributed ASM runs. 282, 348

228. P. Glavan and D. Rosenzweig. Evolving algebra model of programming lan-
guage semantics. In B. Pehrson and I. Simon (eds.), IFIP 13th World Com-
puter Congress, Vol. I: Technology/Foundations, pp. 416{422, Elsevier, Am-
sterdam, 1994.

De�nes an ASM interpretation of many-step SOS, denotational semantics and
Hoare logic for the language of while-programs and states correctness and
completeness theorems, based on a simple owchart model of the language.
419

229. W. Goerigk, A. Dold, T. Gaul, G. Goos, A. Heberle, F. W. von Henke, U. Ho�-
mann, H. Langmaack, H. Pfeifer, H. Ruess, and W. Zimmermann. Com-
piler correctness and implementation veri�cation: The veri�x approach. In
P. Fritzson (ed.), Int. Conf. on Compiler Construction, Proc. Poster Session
of CC’96, Link�oping, Sweden, 1996. IDA Technical Report LiTH-IDA-R-96-
12.

In this project a method is developed to establish, modulo hardware cor-
rectness, the correctness of reliable initial compilers (not only compiler spec-
i�cations) for an appropriate high-level system programming language. The
approach is based upon multiple-phase compilation (with closely related in-
termediate languages) and a diagonal bootstrapping technique. The follow-
ing three major steps are performed. (1) Veri�cation of a speci�cation of the
compilation function with respect ot the semantics of the source and target
language and a correctness de�nition. Here ASMs are used to rigorously de-
�ne source and target language semantics and the correctness property. PVS

404 References

is used for proof support. (2) Veri�cation of a compiler implementation in a
high-level language, using generators to generate the front end and parts of
the back end. Small (proven to be correctly implemented) checker routines
are used to verify by syntactical a posteriori code inspection that the input
and output of the generators have the needed properties (program checking).
(3) Veri�cation of a compiler implementation in binary. An initial bootstrap
compiler is used which is proved (once) to be correctly implemented in binary.
In the project this is a compiler from COMLISP to Transputer code, whose
semantics are de�ned by SOS methods. No further binary code veri�cation
is necessary. For the program checker and other system software it su�ces
to implement them correctly in the high-level source language of the initial
compiler (using standard program transformation or veri�cation techniques).
300, 358

230. G. Goos, A. Heberle, W. L�owe, and W. Zimmermann. On modular de�nitions
and implementations of programming languages. In Y. Gurevich, P. Kutter,
M. Odersky, and L. Thiele (eds.), Abstract State Machines – ASM 2000,
Int. Workshop on Abstract State Machines, Monte Verita, Switzerland, Local
Proceedings, TIK-Report, No. 87, pp. 174{208. ETH Z�urich, March 2000.

A formal composition and re�nement (correct implementation) mechanism
for state-transition systems is presented which exploits the abstract syntax
of programs. Applications are made to language semantic de�nitions using
ASMs. Montages [311] is characterized as a set of parameterized ASMs. 363

231. G. Goos and W. Zimmermann. Verifying compilers and ASMs. In Y. Gure-
vich, P. Kutter, M. Odersky, and L. Thiele (eds.), Abstract State Machines:
Theory and Applications, Lecture Notes in Computer Science, Vol. 1912, pp.
177{202. Springer-Verlag, 2000.

ASMs are used to describe verifying compilers: compilers which verify the
correctness of their generated code. 112, 358

232. G. Gottlob, G. Kappel, and M. Schre. Semantics of object-oriented data
models { the evolving algebra approach. In J. W. Schmidt and A. A. Stogny
(eds.), Next Generation Information Technology, Lecture Notes in Computer
Science, Vol. 504, pp. 144{160. Springer-Verlag, 1991.

Uses ASMs to de�ne, in the context of a graphical object-oriented data model
design language, the operational semantics of object creation, of overriding
and dynamic binding, and of inheritance at the type level (type specialization)
and at the instance level (object specialization). Issued also as technical report
MooD-TR 90/02, Technische Universit�at Wien, December 20, 1990. See [397].
347, 364, 424

233. E. Gr�adel and Y. Gurevich. Meta�nite model theory. Information and Com-
putation, 140(1):26{81, 1998.

Computer systems, e.g. databases, are not necessarily �nite because they
may involve, for example, arithmetic. Motivated by such computer science
challenges and by ASM applications, meta�nite structures, as they typically
appear in ASM states, are de�ned and �nite model theory is extended to
meta�nite models. An early version has been presented under the title To-
wards a Model Theory of Metafinite Structures to the Logic Colloquium 1994;
see the abstract in the J. Symbolic Logic. An intermediate version appeared
in Logic and Computational Complexity, Selected Papers, Lecture Notes in
Computer Science, Vol. 960, pp. 313{366, Springer-Verlag, 1995. 361

234. E. Gr�adel and A. Nowack. Quantum computing and Abstract State Ma-
chines. In E. B�orger, A. Gargantini, and E. Riccobene (eds.), Abstract State

References 405

Machines 2003–Advances in Theory and Applications, Lecture Notes in Com-
puter Science, Vol. 2589, pp. 309{323. Springer-Verlag, 2003.

Derives the ASM thesis for quantum algorithms from postulates which are
inspired by the axiomatization of parallel algorithms in [61]. 362, 377

235. E. Gr�adel and M. Spielmann. Logspace reducibility via Abstract State Ma-
chines. In J. Wing, J. Woodcock, and J. Davies (eds.), Proc. FM’99, Vol. II,
Lecture Notes in Computer Science, Vol. 1709, pp. 1738{1757. Springer-
Verlag, 1999.

ASMs are used to investigate logspace reducibility among structures, captur-
ing the choiceless fragment of logspace. A continuation of [62]. See also [402].
361, 377, 425

236. I. Graham. The Transputer Handbook. Prentice-Hall, 1990.

Together with [289, 290], this book served as the basis for the ASM model
developed for the Transputer in [104]. 350, 411

237. W. Grieskamp, Y. Gurevich, W. Schulte, and M. Veanes. Generating �nite
state machines from Abstract State Machines. In Software Engineering Notes,
Vol. 27.4, pp. 112{122. ISSTA 02, 2002.

Proposes a scheme for grouping ASM states into �nitely many equivalence
classes (\hyperstates") on which an FSM is induced to reect the ASM tran-
sitions for testing purposes. A preliminary version was presented to the Int.
ASM’01 Workshop in February 2001 [110]. It appeared in October 2001 under
the title \Conformance Testing with Abstract State Machines" as MSR-TR-
2001-97 and in May 2002 revised under the same number with the new title.
86, 122, 123, 360

238. R. Groenboom and G. R. Renardel de Lavalette. A formalization of evolving
algebras. In S. Fischer and M. Trautwein (eds.), Proc. Accolade 95, pp. 17{28.
Dutch Research School in Logic, ISBN 90-74795-31-5, 1995.

The authors present the syntax and semantics for a Formal Language for
Evolving Algebra (FLEA) covering sequential ASMs. This language is then
extended to a multi-modal language FLEA′, and it is sketched how one can
transfer the axioms of the logic MLCM to FLEA′. MLCM is a Modal Logic of
Creation and Modi�cation, a dynamic logic which is incorporated in Jonker’s
Common Object-Oriented Language for Design, COLD [197, 198]. See [405].
321, 322, 337, 365, 425

239. M. Grosse-Rhode. A formal speci�cation framework for evolving algebras.
Unpublished manuscript. Technical University of Berlin, 1996.

Applies some algebraic-categorical composition schemes to ASMs, illustrated
on an alternating-bit protocol speci�cation. 352

240. Y. Gurevich. Reconsidering Turing’s Thesis: Toward more realistic semantics
of programs. Technical Report CRL-TR-36-84, EECS Department, University
of Michigan, September 1984.

An attempt to reconsider Turing’s Thesis, taking into account that resources
are bounded. The earliest known paper in which the ideas behind ASMs began
to take form. See the continuation in [241]. 343, 344, 405

241. Y. Gurevich. A new thesis. Abstracts, American Mathematical Society,
6(4):317, August 1985.

Following [240], for the �rst time the ASM Thesis is stated, but no de�nition
for ASMs is given yet. See the continuation in [244, 242]. 301, 344, 405, 406

406 References

242. Y. Gurevich. Algorithms in the world of bounded resource. In R. Herken
(ed.), The Universal Turing Machine – A Half-Century Story, pp. 407{416.
Oxford University Press, 1988.

Early complexity theoretical motivation for the introduction of ASMs is dis-
cussed. 344, 405

243. Y. Gurevich. Kolmogorov machines and related issues. Bull. EATCS, 35:71{
82, 1988.

The Kolmogorov{Uspenskii thesis is stated that every computation, perform-
ing only one restricted local action at a time, can be viewed as the computa-
tion of an appropriate Komogorov{Uspenskii machine. 344

244. Y. Gurevich. Logic and the challenge of computer science. In E. B�orger (ed.),
Current Trends in Theoretical Computer Science, pp. 1{57. Computer Science
Press, 1988.

Part 2 contains the �rst small examples for ASMs, drawn from Gurevich’s
lectures in Semantics of Programming Languages delivered in Pisa in May
1986 (not \in the Spring of 1987" as stated erroneously, e.g. in [92]. 345, 377,
405

245. Y. Gurevich. Evolving algebras. A tutorial introduction. Bull. EATCS,
43:264{284, 1991.

The ASM thesis is stated. A slightly revised version was reprinted under the
title \Evolving Algebras: An attempt to discover semantics" in G. Rozenberg
and A. Salomaa Eds, Current Trends in Theoretical Computer Science, World
Scienti�c, 1993, pp. 266{292. A german textbook version of the de�nition
appeared in [73]. For a more elaborate and complete de�nition see [248]. 32,
35, 86, 345, 347, 406, 407

246. Y. Gurevich. Evolving Algebras. In B. Pehrson and I. Simon (eds.), IFIP
13th World Computer Congress, Vol. I: Technology/Foundations, pp. 423{
427, Elsevier, Amsterdam, 1994.

The opening talk at the �rst ASM workshop. Sections: Introduction, The
ASM Thesis, Remarks, Future Work. 407, 419

247. Y. Gurevich. Logic activities in Europe. ACM SIGACT News, 25(2):11{24,
1994.

A critical analysis of European logic activities in computer science. Subsec-
tion 4.6 Mathematics and Pedantics discusses the separation of di�erent levels
of veri�cation in the context of modeling with ASMs. 356

248. Y. Gurevich. Evolving algebras 1993: Lipari Guide. In E. B�orger (ed.), Spec-
ification and Validation Methods, pp. 9{36. Oxford University Press, 1995.

The notion of sequential ASMs de�ned in [245] is extended to cover distributed
computations. A later update May 1997 Draft of the ASM Guide appeared as
Technical Report CSE-TR-336-97, EECS Dept., University of Michigan. 8,
32, 35, 64, 77, 86, 282, 343, 348, 349, 379, 403, 406, 407, 414

249. Y. Gurevich. Sequential Abstract State Machines capture sequential algo-
rithms. ACM Trans. Computational Logic, 1(1):77{111, July 2000.

The notion of \sequential algorithm" is axiomatized to derive from three
basic axioms the sequential version of the \ASM thesis" which was proposed
in [241, 245]. An early version appeared under di�erent titles as Microsoft
Research Technical Reports MSR-TR-99-09 and MSR-TR-99-65, and in Bull.
EATCS 67 (February 1999), 93{124. See [61] for an extension to the notion
of \synchronous parallel algorithms". 306, 311, 344, 348, 377

References 407

250. Y. Gurevich and E. B�orger. Evolving algebras { mini course. BRICS Technical
Report BRICS-NS-95-4, ISSN 0909-3206, University of Aarhus, Denmark,
July 1995.

Contains reprints of the papers [56, 245, 246, 248, 252, 254, 251, 114, 102,
104, 108] which were used as material for a course on ASMs delivered by the
two authors at BRICS, Aarhus, in the summer of 1995. 383

251. Y. Gurevich and J. Huggins. The semantics of the C programming language.
In E. B�orger, H. Kleine B�uning, G. J�ager, S. Martini, and M. M. Richter
(eds.), Computer Science Logic, Lecture Notes in Computer Science, Vol. 702,
pp. 274{309. Springer-Verlag, 1993.

The method of successive re�nements is used to give a succinct dynamic se-
mantics of the C programming language. For a correction of minor errors and
omissions see the ERRATA in Lecture Notes in Computer Science, Vol. 832,
pp. 334{336, Springer-Verlag, 1994. An early version appeared under the ti-
tle The Evolving Algebra Semantics of C: Preliminary Version as Technical
Report CSE-TR-141-92, EECS Department, University of Michigan, Ann Ar-
bor, 1992. This work is included in the PhD thesis Evolving Algebras: Tools
for Specification, Verification, and Program Transformation of the second au-
thor, pp. IX+91, supervised by Gurevich at the University of Michigan, Ann
Arbor, 1995. For an extension to C++ see [420]. For an addition of the statics
of C to the model see [285]. 347, 407, 411, 428

252. Y. Gurevich and J. Huggins. Evolving algebras and partial evaluation. In
B. Pehrson and I. Simon (eds.), IFIP 13th World Computer Congress, Vol. I:
Technology/Foundations, pp. 587{592, Elsevier, Amsterdam, 1994.

The paper describes an automated partial evaluator for sequential ASMs im-
plemented at the University of Michigan. It takes an ASM and a portion of
its input and produces a specialized ASM using the provided input to execute
rules when possible and generating new rules otherwise. A full version appears
as J. Huggins, \An O�ine Partial Evaluator for Evolving Algebras", Techni-
cal Report CSE-TR-229-95, EECS Department, University of Michigan, Ann
Arbor, 1995. This work is included in the PhD thesis Evolving Algebras: Tools
for Specification, Verification, and Program Transformation of the second au-
thor, pp. IX+91, University of Michigan, Ann Arbor, 1995. For an extension
of this work see [178]. 363, 396, 407

253. Y. Gurevich and J. Huggins. The railroad crossing problem: An experiment
with instantaneous actions and immediate reactions. In Proc. CSL’95 (Com-
puter Science Logic), Lecture Notes in Computer Science, Vol. 1092, pp. 266{
290. Springer-Verlag, 1996.

An ASM solution for the railroad crossing problem in [277]. The paper exper-
iments with agents that perform instantaneous actions in continuous time at
the moment they are enabled. A preliminary version appeared under the ti-
tle The Railroad Crossing Problem: An Evolving Algebra Solution as research
report LITP 95/63 of Centre National de la Recherche Scienti�que, Paris,
and under the title The Generalized Railroad Crossing Problem: An Evolving
Algebra Based Solution as research report CSE-TR-230-95 of EECS Depart-
ment, University of Michigan, Ann Arbor, MI. For a further investigation see
[34, 35]. 201, 203, 205, 356, 364, 372, 373, 410

254. Y. Gurevich and J. Huggins. Equivalence is in the eye of the beholder. The-
oretical Computer Science, 179(1{2):353{380, 1997.

A response to a paper of Leslie Lamport, \Processes are in the Eye of the
Beholder" which is published in the same volume. It is discussed how the

408 References

same two algorithms may and may not be considered equivalent. In addition, a
direct proof is given of an appropriate equivalence of two particular algorithms
considered by Lamport. A preliminary version appeared as research report
CSE-TR-240-95, EECS Dept., University of Michigan, Ann Arbor, Michigan
1995. 228, 361, 407

255. Y. Gurevich, P. Kutter, M. Odersky, and L. Thiele (eds.). Abstract State
Machines: Theory and Applications, Lecture Notes in Computer Science,
Vol. 1912. Springer-Verlag, 2000.

Proc. Int. Workhop ASM2000 held at Monte Verit�a, Switzerland, March 2000.
361

256. Y. Gurevich and R. Mani. Group membership protocol: Speci�cation and
veri�cation. In E. B�orger (ed.), Specification and Validation Methods, pp.
295{328. Oxford University Press, 1995.

A processor-group membership protocol involving timing constraints is for-
mally speci�ed and veri�ed using distributed ASMs. 240, 252, 259, 349, 352,
379

257. Y. Gurevich and L. S. Moss. Algebraic operational semantics and Occam. In
E. B�orger, H. Kleine B�uning, and M. M. Richter (eds.), CSL’89, 3rd Workshop
on Computer Science Logic, Lecture Notes in Computer Science, Vol. 440, pp.
176{192. Springer-Verlag, 1990.

The �rst application of ASMs to distributed parallel computing with the
challenge of true concurrency. For an improved (no longer parse tree deter-
mined, but truly concurrent) ASM model for Occam and its re�nement to a
Transputer implementation see [105, 104]. 282, 348, 384, 387, 403, 413

258. Y. Gurevich and D. Rosenzweig. Partially ordered runs: A case study. In
Y. Gurevich, P. Kutter, M. Odersky, and L. Thiele (eds.), Abstract State
Machines: Theory and Applications, Lecture Notes in Computer Science,
Vol. 1912, pp. 131{150. Springer-Verlag, 2000.

The ASM investigation [114] of Lamport’s Bakery Algorithm is sharpened
in terms of partially ordered runs, abstracting from the mapping of moves
to linear realtime. Some properties are proved which are useful for reasoning
about partially ordered runs. The paper also appeared as a technical report in
TIK-Report No. 87, ETH Z�urich, March 2000, and in MSR-TR-99-98. 271,
351, 385

259. Y. Gurevich, W. Schulte, and C. Wallace. Investigating Java concurrency
using Abstract State Machines. In Y. Gurevich, P. Kutter, M. Odersky, and
L. Thiele (eds.), Abstract State Machines: Theory and Applications, Lecture
Notes in Computer Science, Vol. 1912, pp. 151{176. Springer-Verlag, 2000.

An ASM speci�cation and veri�cation of Java’s model of concurrency, in-
cluding threads and synchronization. Also in TIK-Report No. 87, pp. 227{
271, ETH Z�urich, March 2000, and in University of Delaware Department of
Computer & Information Sciences TR 2000-04. 391

260. Y. Gurevich, N. Soparkar, and C. Wallace. Formalizing database recovery.
J. Universal Computer Science, 3(4):320{340, 1997.

A database recovery algorithm (the undo-redo algorithm) is modeled at sev-
eral levels of abstraction, with veri�cation of the correctness of the high-
level model and of each of the four re�nement steps. An updated version
of the Technical Reports CSE-TR-249-95 and CSE-TR-327-97 of EECS De-
partment, University of Michigan, Ann Arbor, and of the paper Formaliz-
ing Recovery in Transaction-Oriented Database Systems of C. Wallace and

References 409

Y. Gurevich and N. Soparkar, published in S. Chaudhuri and A. Deshpande
and R. Krishnamurthy (eds.): Proc. 7th Int. Conf. on Management of Data,
Tata McGraw-Hill, New Delhi, India, 1995, pp. 166{185. 117, 133, 360, 380

261. Y. Gurevich and M. Spielmann. Recursive Abstract State Machines. J. Uni-
versal Computer Science, 3(4):233{246, 1997.

A de�nition of recursive ASMs in terms of distributed ASMs is suggested.
A preliminary version appeared as Technical Report CSE-TR-322-96, EECS
Department, University of Michigan, Ann Arbor, 1996. For a de�nition of
recursive ASMs in terms of sequential ASMs see [134]. 171, 380

262. Y. Gurevich and N. Tillmann. Partial updates: Exploration. J. Universal
Computer Science, 7(11):918{952, 2001.

A solution is proposed for the problem of cumulative updates for counters,
steps and maps. See the continuation in [263]. 53, 348, 384, 409

263. Y. Gurevich and N. Tillmann. Partial updates exploration II. In E. B�orger,
A. Gargantini, and E. Riccobene (eds.), Abstract State Machines 2003–
Advances in Theory and Applications, Lecture Notes in Computer Science,
Vol. 2589, pp. 57{86. Springer-Verlag, 2003.

Continuation of [262]. 53, 409

264. Y. Gurevich and C. Wallace. Speci�cation and veri�cation of the Windows
Card runtime environment using Abstract State Machines. Technical Report
MSR-TR-99-07, Microsoft Research, Redmond, Washington, February 1999.

An ASM speci�cation of the Windows Card Runtime Environment and a
veri�cation of certain safety properties. 362

265. J. V. Guttag, E. Horowitz, and D. R. Musser. Abstract data types and
software validation. Commun. ACM, 21(12), 1978. 8, 353, 419

266. N. Halbwachs. Synchronous Programming of Reactive Systems. Kluwer Aca-
demic Publishers, 1993. 38, 159, 161, 187, 273, 282, 311

267. J. A. Hall. Taking Z seriously. In ZUM’97, Lecture Notes in Computer
Science, Vol. 1212, pp. 89{91. Springer-Verlag, 1997. 296, 299

268. D. Harel. Dynamic logic. In D. M. Gabbay and F. Guenthner (eds.), Handbook
of Philosophical Logic, Vol. II, pp. 497{604. Reidel, Dordrecht, 1983. 314,
323

269. D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. MIT Press, 2000. 314

270. D. Harel and R. Marelly. Capturing and executing behavioral requirements:
the play-in/play-out approach. Technical Report MCS01-15, Weizmann In-
stitute of Science, Israel, 2001. 22, 104

271. D. Harel and M. Politi. Modeling reactive systems with statecharts. McGraw-
Hill, 1998. 4

272. P. Hartel and L. Moreau. Formalizing the safety of Java, the Java Virtual
Machine and Java Card. ACM Computing Surveys, 33(4):517{558, 2001.

A review of the literature on formal approaches of Java and its implementation
with focus on safety issues and their impact on smart cards. Sect. 6.2 evaluates
the ASM based work in this area [138, 137, 139, 140, 141, 406, 421]. 359, 425

273. A. Heberle. Korrekte Transformationsphase – der Kern korrekter Übersetzer.
PhD thesis, Universit�at Karlsruhe, Germany, 2000.

The essential results of the thesis (which is written in German) are published
in [274, 275]. 112, 358, 410

410 References

274. A. Heberle and W. L�owe. On ASM-based speci�cation of programming
language semantics and reusable correct compilations. In U. Gl�asser and
P. Schmitt (eds.), Proc. 5th Int. Workshop on Abstract State Machines, pp.
68{90. Magdeburg University, 1998.

General equivalence-preserving transformations on ASM speci�cations of pro-
gramming languages are de�ned, to be used for the de�nition of provably
correct compilation schemes. An extensible language AL is introduced for
specifying dynamic language semantics in a way which facilitates the reuse of
veri�ed transformations. Some of the results are from [273]. 358, 403, 409

275. A. Heberle, W. L�owe, and M. Trapp. Safe reuse of source to intermedi-
ate language compilations. In R. Chillarege (ed.), Proc. 9th. Int. Symp. on
Software Reliability Engineering, Fast Abstract and Industrical Tracts, Pader-
born, Germany, 4{7 November 1998.

See http://www.chillarege.com/issre/fastabstracts/98417.html.
Contains some results of [273]. 358, 409

276. C. Heitmeyer. Using SCR methods to capture, document, and verify computer
system requirements. In E. B�orger, B. H�orger, D. L. Parnas, and D. Rom-
bach (eds.), Requirements Capture, Documentation, and Validation. Dagstuhl
Seminar No. 99241, Schloss Dagstuhl, Int. Conf. and Research Center for
Computer Science, 1999. 294

277. C. Heitmeyer and D. Mandrioli. Formal Methods for Real-Time Computing,
Trends in Software, Vol. 5. John Wiley, 1996.

Extensive study of the Railroad Crossing Problem, proposed as a case study
for real-time computing and solved using various popular speci�cation and
veri�cation methods. For an ASM solution see [253]. 187, 198, 201, 356, 407

278. J. L. Hennessy and D. A. Patterson. Architecture: A Quantitative Approach.
Morgan Kaufman, 2nd edn., 1996. 137

279. H. Hinrichsen. Formally correct construction of a pipelined DLX architecture.
Technical Report TR 98-5-1, Darmstad University of Technology, Dept. of
Electrical and Computer Engineering, Germany, 1998.

In an e-mail to B�orger on February 11, 1998, Hinrichsen points out that for a
correct handling of the instruction sequence 1. LOAD R1 A, 2. LOAD R2 B,
3. ADD R3 R1 R2, the ADD instruction must be stalled for one clock cycle.
This corrects an omission of a hazard case in the last re�nement step of [119].
137, 359, 386

280. C. A. R. Hoare. An axiomatic basis for computer programming. Commun.
ACM, 12(10):576{580, 583, 1969. 299

281. C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
22, 272

282. M. Holcombe and F. Ipate. Correct Systems. Building a Business Process
Solution. Springer-Verlag, 1998. 291

283. J. Huggins. Kermit: Speci�cation and veri�cation. In E. B�orger (ed.), Specifi-
cation and Validation Methods, pp. 247{293. Oxford University Press, 1995.

The Kermit �le-transfer protocol [163] is speci�ed and veri�ed using ASMs
at several layers of abstraction. This work is part of the author’s PhD thesis
Evolving Algebras: Tools for Specification, Verification, and Program Trans-
formation, pp. IX+91, University of Michigan, Ann Arbor, 1995. 240, 241,
349, 352, 379

http://www.chillarege.com/issre/fastabstracts/98417.html

References 411

284. J. Huggins. Broy-Lamport Speci�cation Problem: A Gurevich Abstract State
Machine Solution. Technical Report CSE-TR-320-96, EECS Dept., University
of Michigan, 1996.

Upon B�orger’s suggestion, Huggins developed an ASM solution to the spec-
i�cation problem proposed by Broy and Lamport, in conjunction with the
Dagstuhl Seminar on Reactive Systems, held in Dagstuhl, Germany, 26{30
September, 1994. A preliminary version appeared as Technical Report CSE-
TR-223-94, EECS Department, University of Michigan, Ann Arbor, 1994.
Other solutions of this problem were published in [144]. 356, 392

285. J. Huggins and W. Shen. The static and dynamic semantics of C. Techni-
cal Report CPSC-2000-4, Kettering University, Computer Science Program,
Flint, Michigan, 2000.

The ASM for C in [251] is extended to provide both static and dynamic seman-
tics for C, using Montages [311]. An extended abstract appears in Y. Gurevich,
P. Kutter, M. Odersky, and L. Thiele, eds., Abstract State Machines { ASM
2000, Int. Workshop on Abstract State Machines, Monte Verita, Switzerland,
Local Proceedings, TIK-Report No. 87, pp. 272{283, ETH Z�urich, March
2000. A previous version appears as Kettering University Computer Science
Program Technical Report CPSC-1999-1. 88, 358, 407

286. J. Huggins and D. Van Campenhout. Speci�cation and veri�cation of pipelin-
ing in the ARM2 RISC microprocessor. ACM Trans. Des. Autom. of Electron.
Syst., 3(4):563{580, 1998.

An extended abstract describing a layered ASM speci�cation of the advanced
RISC machine processor ARM2, one of the early commercial RISC micro-
processors. The method developed in [119] is applied for the layered speci-
�cation and the correctness proof for the ARM2’s pipelining techniques. In
[412] this ASM model of the ARM is used to illustrate an approach to au-
tomatically transform register transfer descriptions of microprocessors into
executable ASMs. A full version of the paper appears as University of Michi-
gan EECS Department Technical Report CSE-TR-371-98. An earlier version
appears in Proc. IEEE Int. High Level Design Validation and Test Workshop
(HLDTV’97), November 1997. 157, 359, 386, 427

287. M. Ibanez and H. Rempp. European user survey analysis. Technical Report
TR 95104, European Software Institute, Bilbao, Spain, January 30 1996. 16

288. IEEE Std 1076-1993. IEEE Standard VHDL Language Reference Manual.
IEEE, New York, USA, 1993.

The standard description of the hardware design language VHDL’93 which
has been formalized by an ASM ground model in [111, 112]. 350

289. INMOS. Transputer Instruction Set – A Compiler Writer’s Guide. Prentice-
Hall, Englewood Cli�s, NJ, 1988.

INMOS Document 72 TRN 119 05. See the comment to [236]. 350, 405

290. INMOS. Transputer Implementation of Occam – Communication Process
Architecture. Prentice-Hall, Englewood Cli�s, NJ, 1989.

See comment to [236]. 350, 405

291. ISO. Prolog-Part 1: General core. ISO Standard Information Technology{
Programming Languages ISO/IEC 13211-1, ISO/ICE, January 1995. 87,
345, 382

292. ITU-T. SDL formal semantics de�nition. ITU-T Recommendation Z.100
Annex F, International Telecommunication Union, November 2000.

412 References

This document contains the complete, internationally standardized formal
semantics de�nition of SDL-2000, a design language for the development
of distibuted real-time systems in general and telecommunication systems
in particular. SDL is industrially applied in the telecommunications indus-
try, for instance, to the development of UMTS protocols and Intelligent
Networks. The dynamic semantics of SDL-2000 is de�ned using ASMs as
the underlying mathematical framework. For further information see http:
//rn.informatik.uni-kl.de/projects/sdl. For a survey see [194]. 20, 87,
209, 358, 399, 402, 403

293. J. W. Janneck. Syntax and Semantics of Graphs. PhD thesis, ETH Z�urich,
Switzerland, 2000.

Published in: Berichte aus der Informatik, TIK Series Vol. 38, Shaker Verlag
Aachen (ISBN 3-8265-7688-8), pp. XI+177. The classical networks of stream
processing �nite state machines (with their notion of network components
with input and output ports to communicate among each other) are enriched
by ASM state transformations of individual components. The resulting ma-
chines are applied to give a uniform rigorous semantics to common visual
notations for discrete event systems, together with a prototypical implemen-
tation. Illustration by Petri nets. 287, 364

294. J. W. Janneck and P. Kutter. Mapping automata: Simple Abstract State
Machines. TIK-Report 49, ETH Z�urich, Switzerland, June 1998.

Mapping automata are de�ned as ASMs where the state is formed by a sin-
gle binary function (interpreted as mapping which assigns to every object in
the base set U a unary function over objects), and the rules are built from
updates of that binary function in the usual way. Using the standard coding
of arbitrary structures into the structure of one binary function, the resulting
correspondence between mapping automata and ASMs is shown to preserve
the desired computational equivalence. Also appears in Y. Gurevich, P. Kut-
ter, M. Odersky, and L. Thiele, eds., Abstract State Machines { ASM 2000,
Int. Workshop on Abstract State Machines, Monte Verita, Switzerland, Local
Proceedings, TIK-Report No. 87, pp. 310{325, ETH Z�urich, March 2000. An
implementation in Java is reported in Object-Based Mapping Automata (Ref-
erence Manual) by J. W. Janneck, TIK-Report No. 50, ETH Z�urich, June
1998. Mapping automata are used in [296] for a description of the semantics
of UML statecharts. 364, 412

295. J. W. Janneck and P. Kutter. Object-based Abstract State Machines. TIK-
Report 47, ETH Z�urich, Switzerland, 1998.

Proposes to view ASMs as classes attached to objects which communicate
only by message passing. Illustration by a class de�nition for Petri net places
and transitions. 364

296. Y. Jin, R. Esser, and J. W. Janneck. Describing the syntax and semantics of
UML statecharts in a heterogeneous modeling environment. In Proc. DIA-
GRAMS 2002, pp. 320{334, 2002.

Based upon the syntactical description of UML statecharts by attributed
graphs coming with well-formedness conditions, the mapping automata of
[294] are used to describe the semantics of UML statecharts. Compared with
the ASM model of UML statecharts in [99], the focus here is on a discussion
of transition conicts. 364, 412

297. D. E. Johnson and L. S. Moss. Grammar formalisms viewed as Evolving
Algebras. Linguistics and Philosophy, 17:537{560, 1994.

http://rn.informatik.uni-kl.de/projects/sdl
http://rn.informatik.uni-kl.de/projects/sdl

References 413

Distributed ASMs are used to model formalisms for natural language syntax.
The authors start by de�ning an ASM model of context-free derivations which
abstracts from the parse tree descriptions used in [257, 123] and from the
dynamic tree generation appearing in [127, 131]. Then the basic model of
context-free rules is extended to characterize in a uniform and natural way
di�erent context-sensitive languages in terms of ASMs. See [341, 342]. 114,
360, 417

298. J. J�urjens. Principles for secure system development. PhD thesis, Wolfson
College Oxford, England, 2001. 291

299. A. Kalinov, A. Kossatchev, A. Petrenko, M. Posypkin, and V. Shishkov. Using
ASM speci�cations for compiler testing. In E. B�orger, A. Gargantini, and
E. Riccobene (eds.), Abstract State Machines 2003–Advances in Theory and
Applications, Lecture Notes in Computer Science, Vol. 2589, p. 415. Springer-
Verlag, 2003.

Also presented under the title \Using ASM speci�cation for automatic test
suite generation for mpC parallel programming language compiler" to AS2000
(4th international workshop on Action Semantics and related frameworks),
Copenhagen, July 2002. 342

300. A. Kaplan and J. Wileden. Formalization and application of a unifying model
for name management. In Proc. 3rd ACM SIGSOFT Sympos. on the Foun-
dations of Software Engineering, Software Engineering Notes, Vol. 20(4), pp.
161{172, October 1995.

Presents a unifying model for name management, using ASMs as the speci�-
cation language for the model. A preliminary version appeared in July 1995
as CMPSCI Technical Report 95-60 of Computer Science Department, Uni-
versity of Massachusetts, Amherst. 360

301. A. M. Kappel. Implementation of Dynamic Algebras with an Application
to Prolog. Diplom thesis, Computer Science Dept., Universit�at Dortmund,
Germany, 1990.

This Diplom thesis was triggered by B�orger’s lectures on ASM models for Pro-
log [71, 72], delivered in June 1989 to A. B. C. Cremers’ and H. Ganzinger’s
\Diplomanden-und Doktorandenseminar" at the University of Dortmund.
Kappel de�nes a language for the speci�cation of sequential ASMs and de-
signs an abstract target machine (namely a Prolog program) for executing a
class of sequential ASMs, including those of the ASM models for Prolog in
[71, 72]. A prototype of the compiler has been implemented in Prolog, all the
examples have been tested for Quintus Prolog on a SPARC station 1+ and
for LPA Prolog on an IBM PC AT. A short version of the paper appeared in
[302]; a parallel extension of the interpreter appears in [148]. 340, 347, 357,
362, 392, 413

302. A. M. Kappel. Executable speci�cations based on dynamic algebras. In
A. Voronkov (ed.), Logic Programming and Automated Reasoning, Lecture
Notes in Arti�cial Intelligence, Vol. 698, pp. 229{240. Springer-Verlag, 1993.

Short version of [301]. 347, 413

303. C. Kern and M. Greenstreet. Formal veri�cation in hardware design: A survey.
ACM Trans. Des. Autom. of Electron. Syst., 4:123{193, 1999. 299

304. C. M. R. Kintala, Kong-Yee Pun, and D. Wotschke. Concise representations of
regular languages by degree and probabilistic �nite automata. Math. Systems
Theory, 26(4):379{395, 1993. 41

414 References

305. E. Kohlbrenner, D. Morris, and B. Morris. The history of virtual machines.
Web pages at http://cne.gmu.edu/itcore/virtualmachine/history.htm.
8, 297, 353

306. A. N. Kolmogorov and V. A. Uspenskii. On the de�nition of an algorithm.
AMS Translations, 2nd Series, 29:217{245, 1993. 344

307. T. Kropf. Introduction to Formal Hardware Verification. Springer-Verlag,
1999. 299

308. P. Kutter. An ASM macro language for sets. TIK-Report 34, ETH Z�urich,
Switzerland, January 1998.

A small set of simple, generic macros that allow one to manipulate and
parametrize sets in ASMs, without changing the semantics given in [248].

309. P. Kutter. Montages – Engineering of Computer Languages. PhD thesis,
ETH Z�urich, Switzerland, 2002.

Contains a denotational semantics of XASM [15] (announced on June 5, 2002
as TIK Report No. 136 under the title \The formal de�nition of Anlau�’s
eXtensible Abstract State Machines"), which is an ASM semantics of Mon-
tages, an example language illustrating the description of language features
found in sequential Java (see [421]). 364, 428

310. P. Kutter and A. Pierantonio. The formal speci�cation of Oberon. J. Uni-
versal Computer Science, 3(5):443{503, 1997.

A presentation of the syntax, static semantics and dynamic semantics of
Oberon, using ASMs and Montages [311]. The dynamic semantics previously
appeared as P. Kutter, \Dynamic Semantics of the Oberon Programming
Language", TIK-Report No. 25, ETH Z�urich, Feburary 1997. 88, 358, 364,
380

311. P. Kutter and A. Pierantonio. Montages: Speci�cations of realistic program-
ming languages. J. Universal Computer Science, 3(5):416{442, 1997.

The authors introduce Montages, a version of ASMs speci�cally tailored for
specifying the static and dynamic semantics of programming languages. Mon-
tages combine graphical and textual elements to yield speci�cations similar in
structure, length and complexity to those in common language manuals, but
with a formal semantics. A preliminary version appeared in July 1996 under
the title Montages: Unified Static and Dynamic Semantics of Programming
Languages as Technical Report 118 of Universita de L’Aquila. At that same
university also the �rst application of Montages appeared in a Tesi di Laurea
[181]. See [19] for an extension of Montages with a �nite-state machine model.
358, 370, 371, 380, 400, 404, 411, 414, 428

312. P. Kutter, D. Schweizer, and L. Thiele. Integrating domain speci�c language
design in the software life cycle. In Proc. Int. Workshop on Current Trends
in Applied Formal Methods, Lecture Notes in Computer Science, Vol. 1641,
pp. 196{212. Springer-Verlag, 1998.

A report on an industrial case study, applying ASMs and Montages [311] to
the design, speci�cation and implementation of a driver speci�cation language
needed in the context of a complex data warehouse problem at Union Bank
of Switzerland. 88, 358

313. K. Kwon. A structured presentation of a closure-based compilation method
for a scoping notion in logic programming. J. Universal Computer Science,
3(4):341{376, 1997.

An extension to logic programming which permits scoping of procedure def-
initions is described at a high level of abstraction (using ASMs) and re�ned

http://cne.gmu.edu/itcore/virtualmachine/history.htm

References 415

(in a provably-correct manner) to a lower level, building upon the method
developed in [132]. The PhD thesis upon which this paper is based was sub-
mitted to Duke University on December 12, 1994, under the title \Towards
a Veri�ed Abstract Machine for a Logic Programmming Language with a
Notion of Scope", No. CS 1994-36, pp. 189. 347, 380, 389

314. L. Lamport. A new solution of Dijkstra’s concurrent programming problem.
Commun. ACM, 17(8):453{455, 1974.

De�nition of the bakery algorithm to solve the mutual exclusion problem; see
also [315]. An ASM analysis of this algorithm appears in [114]. 260, 351, 415

315. L. Lamport. On interprocess communication. Part I: Basic formalism. Part
II: Algorithms. Distributed Computing, 1:77{101, 1986.

See [314]. 260, 271, 351, 415

316. B. W. Lampson. Principles of computer systems. MIT Lecture Notes 6.826
and http://research.microsoft.com/Lampson, Spring 1999. 4, 116, 160,
296

317. P. J. Landin. A λ-calculus approach. In L. Fox (ed.), Advances in Program-
ming and Non-Numerical Computation, pp. 97{141. Pergamon Press London,
1966.

See also the paper A formal description of Algol 60 by the same author
in T. B. Steel (ed.). Formal Language Description Languages for Computer
Programming, North-Holland, Amsterdam, 1966. 301

318. H. Langmaack. The ProCoS approach to correct systems. Real-Time Systems,
13:253{275, 1997. 350

319. L. Lavagno, A. Sangiovanni-Vincentelli, and E. M. Sentovitch. Models of
computation for system design. In E. B�orger (ed.), Architecture Design and
Validation Methods, pp. 243{295. Springer-Verlag, 2000. 287

320. N. G. Leveson. Completeness in formal speci�cation language design for
process-control systems. In Formal Methods in Software Practice, pp. 75{87.
ACM Press, 2000. 20, 287

321. N. G. Leveson and J. D. Reese. SpecTRM: A toolset to support the safeware
methodology. In Proc. 16th Int. System Safety Conf., pp. 256{262, 1998. 287

322. N. G. Leveson, J. D. Reese, S. Koga, L. D. Pinnel, and S. D. Sandys. Analyzing
requirements speci�cations for mode confusion errors. In Proc. Workshop
on Human Error and System Development, Glasgow, Scotland, 20{22 March
1997. 8

323. T. Lindner. Task description. In C. Lewerentz and T. Lindner (eds.), For-
mal Development of Reactive Systems. Case Study “Production Cell”, Lecture
Notes in Computer Science, Vol. 891, pp. 9{21. Springer-Verlag, 1995.

Description of the Production Cell case study which has been derived from
a metal-processing plant in Karlsruhe. The book contains solutions of the
problem which use various formal methods. The book inspired work on an
ASM solution of the problem; see [120]. 187, 188, 189, 190, 193, 197, 355

324. A. Lisitsa and G. Osipov. Evolving algebras and labelled deductive systems
for the semantic network based reasoning. In Proc. Workshop on Applied
Semiotics, ECAI’96, pp. 5{12, August 1996.

ASMs are used to present the high-level semantics for MIR, an AI semantic
network system. Another formalization of MIR is given in terms of labeled
deduction systems, and the two formalizations are compared.

http://research.microsoft.com/Lampson

416 References

325. B. H. Lisko and S. N. Zilles. Speci�cation techniques for data abstraction.
IEEE Trans. Software Eng., SE-1, March 1975. 8, 353, 419

326. A. L�otzbeyer. Simulation of a steam boiler. In J.-R. Abrial, E. B�orger, and
H. Langmaack (eds.), Formal Methods for Industrial Applications. Specify-
ing and Programming the Steam-Boiler Control, Lecture Notes in Computer
Science, Vol. 1165, pp. 493{499. Springer-Verlag, 1996. 355

327. M. Maia and R. Bigonha. An ASM-Based Approach for Mobile Systems.
Technical Report LLP-12/99, Programming Language Laboratory, Computer
Science Department, Universidade Federal de Minas Gerais, Brasil, 1999.

Using the Interacting ASM techniques introduced in [328], the authors de-
scribe the use of ASMs to specify the semantics of active mobile objects.
Mobility is expressed by dynamic changes in the communication topology.
An earlier version appears as Technical Report LP 002/99 (same institution).
416

328. M. Maia, V. Iorio, and R. Bigonha. Interacting Abstract State Machines. In
U. Gl�asser and P. Schmitt (eds.), Proc. 5th Int. Workshop on Abstract State
Machines, pp. 37{49. Magdeburg University, 1998.

An extended abstract describing an extension to ASMs supporting the in-
teraction of independent ASM agents by means of message passing. The full
version appears as M. Maia and R. Bigonha, Formal Semantics for Interactive
Abstract State Machine Language, Technical Report RT 005/98, Universidade
Federal de Minas Gerais, Brazil, 1998. Continued in [327]. 352, 360, 403, 416

329. K. Mani Chandy and J. Misra. Parallel Program Design. A Foundation.
Addison Wesley, 1988. 293

330. W. May. Specifying complex and structured systems with evolving alge-
bras. In TAPSOFT’97: Theory and Practice of Software Development, 7th
Int. Joint Conf. CAAP/FASE, Lecture Notes in Computer Science, Vol. 1214,
pp. 535{549. Springer-Verlag, 1997.

An approach is presented for specifying structured systems with ASMs by
means of aggregation and composition. An earlier version appeared under
the title \Modeling Rule-Based and Structured Systems with Evolving Al-
gebras" as Technical Report, Freiburg, 1996. For some of the structuring
concepts de�ned here, simpler de�nitions are given in [134] which are geared
to their natural integration into the basic parallelism of multiple simultaneous
machine actions of ASMs. 364

331. P. J. McCann and G.-C. Roman. Programming abstractions for mobile com-
puting. IEEE Trans. Software Eng., 24(2):97{110, 1998. 293

332. L. Mearelli. Re�ning an ASM speci�cation of the production cell to C++
code. J. Universal Computer Science, 3(5):666{688, 1997.

Source code for the ASM speci�cation of the Production Cell described in
[120]. For the generation of this code see [391]. 188, 193, 340, 355, 380, 387

333. B. Meyer. Eiffel: The Language. Prentice-Hall, 1992. 17, 341

334. J. M.Morris. A theoretical basis for stepwise re�nement. Science of Computer
Programming, 9(3), 1987. 22, 134

335. M. Mohnen. A compiler correctness proof for the static link technique by
means of evolving algebras. Fundamenta Informatica, 29(3):257{303, 1997.

The static link technique is a common method used by stack-based imple-
mentations of imperative programming languages. The author uses ASMs to
prove the correctness of this well-known technique in a non-trivial subset of
Pascal. 358

References 417

336. E. F. Moore. The shortest path through a maze. In Proc. Int. Sympos. on
Theory of Switching, The Annals of the Computation Laboratory of Harvard
University, Vol. 30.II. Harvard University Press, 1959. 122

337. C. C. Morgan. Programming from Specifications. Prentice-Hall, 1990,21994.
22, 134

338. J. Morris. Algebraic Operational Semantics and Modula-2. PhD thesis, Uni-
versity of Michigan, Ann Arbor, Michigan, 1988.

Thesis supervised by Gurevich. The earliest ASM formalization of a pro-
gramming language. The semantical description is parse-tree directed, but
at. An extended abstract appeared as Y. Gurevich and J. Morris, \Alge-
braic Operational Semantics and Modula-2", in E. B�orger, H. Kleine B�uning
and M. M. Richter, eds., CSL’87, 1st Workshop on Computer Science Logic,
Lecture Notes in Computer Science, Vol. 329, pp. 81{101, Springer-Verlag,
1988. 345, 347

339. J. Morris and G. Pottinger. Ada-Ariel semantics. Odyssey Research Asso-
ciates, unpublished manuscript, July 1990.

340. Y. N. Moschovakis. What is an algorithm? In B. Engquist and W. Schmid
(eds.), Mathematics Unlimited – 2001 and beyond, pp. 919{936. Springer-
Verlag, 2001. 171, 376, 381

341. L. S. Moss and D. E. Johnson. Dynamic interpretations of constraint-based
grammar formalisms. J. Logic, Language, and Information, 4(1):61{79, 1995.

Extends the work of [297] to grammar formalisms based on Kasper{Rounds
logics. See [342]. 360, 413

342. L. S. Moss and D. E. Johnson. Evolving algebras and mathematical models of
language. In L. Polos and M. Masuch (eds.), Applied Logic: How, What, and
Why, Synthese Library, Vol. 626, pp. 143{175. Kluwer Academic Publishers,
1995.

Extends the work of [297] to several other grammar formalisms. 360, 413,
417

343. P. D. Mosses. Action Semantics. Cambridge University Press, Cambridge,
1992.

344. W. Mueller, R. D�omer, and A. Gerstlauer. The formal execution semantics
of SpecC. Technical Report TR ICS 01-59, Center for Embedded Computer
Systems at the University of California at Irvine, 2001.

Adapting the async ASM model of VHDL in [111, 112] and the work in [345],
an async ASM model for the semantics of SpecC is developed which covers
the execution of SpecC behaviors and their interaction with the simulation
kernel. This includes wait, waitfor, par, pipe, and try statements. 45, 350,
359

345. W. Mueller, J. Ruf, D. W. Ho�mann, J. Gerlach, T. Kropf, and W. Rosen-
stiehl. The simulation semantics of SystemC. In Proc. Design Automation
and Test in Europe (DATE 2001), pp. 64{70, IEEE CS Press, March 2001.

Adapting the distributed ASM model of VHDL in [111, 112], a distributed
ASM model for the semantics of SystemC is developed which covers method,
thread, clocked thread behavior, and their interaction with the simulation
kernel. Watching statements, signal assignment and wait statements are for-
malized for version V1.0 of SystemC. An extended version will appear in [346].
350, 359, 417, 418

418 References

346. W. Mueller, J. Ruf, and W. Rosenstiel. An ASM-based semantics of sys-
temC simulation. In W. Mueller, J. Ruf, and W. Rosenstiel (eds.), SystemC
- Methodologies and Applications. Kluwer Academic Publishers, 2003.

See [345]. 417

347. B. M�uller. Eine objektorientierte Prolog-Erweiterung zur Entwicklung wis-
sensbasierter Systeme. PhD thesis, University of Oldenburg, Germany, 1994.

Thesis supervised by Appelrath and B�orger. De�nes an object-oriented exten-
sion of Prolog to be applied for the development of knowledge based systems.
The semantics is de�ned (in Chap. 5) as an extension of B�orger’s Prolog
model [75]. 346, 364, 418

348. B. M�uller. A semantics for hybrid object-oriented Prolog systems. In
B. Pehrson and I. Simon (eds.), IFIP 13th World Computer Congress, Vol. I:
Technology/Foundations, pp. 428{433, Elsevier, Amsterdam, 1994.

On B�orger’s suggestion this work extends the rules given in [75] for the user-
de�ned core of Prolog to de�ne the semantics of a hybrid object-oriented
Prolog system. The de�nition covers the central object-oriented features of
object creation and deletion, data encapsulation, inheritance, messages, poly-
morphism and dynamic binding. See [347]. 346, 364, 419

349. W. M�uller. Executable Graphics for VHDL-Based Systems Design. PhD
thesis, University of Paderborn, Germany, 1996.

Uses ASMs to de�ne the behavioral semantics of PHDL, a pictorial extension
of VHDL’93. The ASMs for VHDL de�ned in [111, 112] are reused. 350, 359

350. M. M�uller-Olm. Modular Compiler Verification. A Refinement-Algebraic Ap-
proach Advocating Stepwise Abstraction, Lecture Notes in Computer Science,
Vol. 1283. Springer-Verlag, 1997.

The author’s PhD thesis. The considered language is a sublanguage of Oc-
cam with real-time features. See also the PROCOS II Esprit Basic Research
7071 Report MMO 12/3 (1996), University of Kiel: Structuring Code Gen-
erator Correctness Proofs by Stepwise Abstracting the Machine Language’s
Semantics. 350

351. Z. N�emeth. De�nition of a parallel execution model with Abstract State
Machines. Acta Cybernetica, 15(3):417{455, 2002.

Two ASMs are de�ned and related by a re�nement correctness proof, as
preparation for designing and verifying a distributed parallel Prolog execution
model. 347

352. Z. N�emeth and V. Sunderam. A formal framework for de�ning grid systems.
In Proc. Int. Sympos. on Cluster Computing and the Grid (CCGrid2002), pp.
202{211, Berlin, 21{24 May 2002. IEEE Computer Society Press.

ASMs are used to de�ne a model for grid systems. 360

353. M. Nicolosi-Asmundo and E. Riccobene. Consistent integration for sequential
Abstract State Machines. In E. B�orger, A. Gargantini, and E. Riccobene
(eds.), Abstract State Machines 2003–Advances in Theory and Applications,
Lecture Notes in Computer Science, Vol. 2589, pp. 324{340. Springer-Verlag,
2003.

Two operations to compose basic ASMs are de�ned and illustrated by two
case studies. 188

354. A. Nowack. Deciding the veri�cation problem for Abstract State Machines. In
E. B�orger, A. Gargantini, and E. Riccobene (eds.), Abstract State Machines
2003–Advances in Theory and Applications, Lecture Notes in Computer Sci-
ence, Vol. 2589, pp. 341{355. Springer-Verlag, 2003. 362

References 419

355. I. Ober. More meaningful UML models. In Proc. TOOLS, pp. 146{157,
Sydney, Australia, 20{23 November 2000. IEEE Computer Society Press.

ASMs are used to de�ne an executable semantics for UML which covers real-
time aspects. The work is inspired by the ASM model for SDL in [222] and
uses the ASM Workbench [170]. 341, 364, 394

356. I. Ober. An ASM semantics for UML derived from the meta-model and
incorporating actions. In E. B�orger, A. Gargantini, and E. Riccobene (eds.),
Abstract State Machines 2003–Advances in Theory and Applications, Lecture
Notes in Computer Science, Vol. 2589, pp. 356{371. Springer-Verlag, 2003.
364

357. M. Odersky. Programming with variable functions. In ICFP’98, Proc. 3rd
ACM SIGPLAN Int. Conf. on Functional Programming, ACM SIGPLAN
Notices, Vol. 34 (1), pp. 105{116, January 1999.

The use of \variable functions" (functions which can be updated at speci�ed
points in their domains) is proposed as a method for deriving e�cient imper-
ative programs from functional programs. The notion of a variable function
is drawn from the dynamic functions of ASMs.

358. C. Pahl. Towards an action re�nement calculus for Abstract State Machines.
In Y. Gurevich, P. Kutter, M. Odersky, and L. Thiele (eds.), Abstract State
Machines – ASM 2000, Int. Workshop on Abstract State Machines, Monte
Verita, Switzerland, Local Proceedings, TIK-Report, No. 87, pp. 326{340.
Swiss Federal Institute of Technology (ETH) Zurich, March 2000.

A re�nement calculus for (a reformulation of) ASMs is presented.

359. C. Pair. Types Abstraits et S�emantique Alg�ebrique des Langages de Program-
mation. Technical Report TR 80-R-011, Centre de Recherche en Informatique
de Nancy, France, 1980.

Often refered to as the �rst publication where the idea is formulated that
the most general notion of state of computing systems is Tarski’s notion
of structures. See [210]. The similarity between data types and algebras is
however already observed in [325, 265]. 8, 353, 401

360. D. L. Parnas and J. Madey. Functional documents for computer systems. Sci.
of Comput. Program., 25:41{62, 1995. 198, 294

361. B. Pehrson and I. Simon. I: Technology/foundations. In IFIP 13th World
Computer Congress 94, Elsevier, Amsterdam, 1994.

Stream C (Evolving Algebras) (pp. 377{441), organized by Gurevich, contains
short versions of the talks presented to the �rst international ASM workshop;
see [39, 56, 76, 97, 107, 118, 228, 246, 348, 365, 376]. 348, 361

362. C. N. Plonka. Model Checking for the Design with Abstract State Machines.
Diplom thesis, CS Department of University of Ulm, Germany, January 2000.

A feasibility study, carried out upon B�orger’s suggestion at Siemens Research,
of model checking ASMs for two industrial case studies: the Production Cell
[120] and a statistical multiplexing unit. An error was detected in [120] con-
cerning a re�nement step for the deposit belt, due to an erroneous (easily re-
paired) symmetry assumption made during the speci�cation for the unloading
actions of feedbelt, press and deposit belt. Due to additional scheduling as-
sumptions, made for the model checking of the Production Cell ASM in [424]
to guarantee maximal performance of the model, the mistake had remained
undiscovered there. 188, 195, 355, 387, 428

420 References

363. A. Poetzsch-He�ter. Interprocedural data ow analysis based on temporal
speci�cations. Technical Report 93-1397, Cornell University, Ithaca, New
York, 1993.

Investigates the speci�cation of data ow problems by temporal logic formulas
and proves �xpoint analyses correct. Temporal formulas are interpreted with
respect to programming language semantics given in the framework of ASMs.
365

364. A. Poetzsch-He�ter. Comparing action semantics and evolving algebra based
speci�cations with respect to applications. In Proc. 1st Int. Workshop on
Action Semantics, pp. 43{47, 1994.

Action semantics is compared to ASM based language speci�cations. In par-
ticular, di�erent aspects relevant to language documentation and program-
ming tool development are discussed.

365. A. Poetzsch-He�ter. Deriving partial correctness logics from evolving alge-
bras. In B. Pehrson and I. Simon (eds.), IFIP 13th World Computer Congress,
Vol. I: Technology/Foundations, pp. 434{439, Elsevier, Amsterdam, 1994.

A proposal for deriving partial correctness logics from simple ASM models
of programming languages. A basic axiom (schema) is derived from an ASM
and is used to obtain more convenient logics. See [405]. 323, 365, 419, 425

366. A. Poetzsch-He�ter. Prototyping realistic programming languages based on
formal speci�cations. Acta Informatica, 34:737{772, 1997.

A tool supporting the generation of language-speci�c software from speci�ca-
tions is presented, enabling in particular the generation and re�nement of in-
terpreters based on formal language speci�cations. Static semantics is de�ned
by an attribution technique (e.g. for the speci�cation of ow graphs). The
dynamic semantics is de�ned by ASMs. As an example, an object-oriented
programming language with parallelism is speci�ed. Part of this work has ap-
peared as Report TR 93-1396, Cornell University and in 1994 as Developing
Efficient Interpreters based on Formal Language Specifications in P. Fritzson
(ed.): Compiler Construction, Lecture Notes in Computer Science, Vol. 786,
pp. 233{247, Springer-Verlag, 1994. 363, 364

367. A. Prinz. Formal Semantics for SDL. Definition and Implementation. Habil-
itationsschrift, Humboldt University of Berlin, Germany, 2000.

Contains a complete de�nition and implementation of the static and dynamic
semantics of a characteristic sublanguage of SDL. 358, 403

368. A. Prinz and B. Thalheim. Operational semantics of transactions. In X. Zhou
and K.-D. Schewe (eds.), Proc. 14th Australian Database Conf. (ADC2003),
Australian Computer Science Commun., Vol. 25(2), pp. 169{179. Australian
Computer Society, 2003.

De�nes an ASM model for database transactions which is instantiated for
the in-private and the in-place setting and used to explain the constraint
enforcement used in SQL’99. 178, 360

369. C. Pusch. Veri�cation of compiler correctness for the WAM. In J. von Wright,
J. Grundy, and J. Harrison (eds.), Theorem Proving in Higher Order Logics
(TPHOLs’96), Lecture Notes in Computer Science, Vol. 1125, pp. 347{362.
Springer-Verlag, 1996.

See comment to [132]. 300, 357, 389, 424

370. H. Reichel. Unifying ADT and evolving algebra speci�cations. Bull. EATCS,
59:112{126, 1996.

References 421

Di-algebras, a notion unifying algebras and co-algebras, are used to combine
algebraic speci�cations of abstract data types with ASMs. A characterization
of ASMs as terminally constraint Di-algebras is introduced to justify the co-
induction proof principle for ASMs. Also a Di-algebra thesis is stated as the
algebraic counterpart of the ASM thesis. 365

371. W. Reisig. Petri nets in software engineering. In W. Brauer, W. Reisig,
and G. Rozenberg (eds.), Petri Nets: Applications and Relationships to other
Models of Concurrency, Lecture Notes in Computer Science, Vol. 255, pp.
63{96. Springer-Verlag, 1987. 62

372. W. Reisig. Elements of Distributed Algorithms. Springer-Verlag, 1998. 210,
216, 241, 271, 297

373. G. R. Renardel de Lavalette. A logic of modi�cation and creation. In C. Con-
doravdi and G. R. Renardel de Lavalette (eds.), Logical Perspectives on Lan-
guage and Information. CSLI publications, Stanford, CA, 2001. 328

374. E. Riccobene. A formal computational model for PANDORA. Technical
Report CSTR-92-16 and ACRC-92-15, University of Bristol, Department of
Computer Science, 1992.

The ASM model for Parlog developed in [123] is extended by the don’t-know
non-determinism of Pandora. 282, 348, 388, 421

375. E. Riccobene. Modelli Matematici per Linguaggi Logici. PhD thesis, Univer-
sity of Catania, Sicily, Italy, Academic year 1991/92.

Systematic treatment of ASM models for G�odel [124], Parlog [123], Pandora
[374], Concurrent Prolog [122], GHC. Thesis supervised by B�orger. 282, 348

376. D. Rosenzweig. Distributed computations: Evolving algebra approach. In
B. Pehrson and I. Simon (eds.), IFIP 13th World Computer Congress, Vol. I:
Technology/Foundations, pp. 440{441, Elsevier, Amsterdam, 1994.

Remarks on some ASM models of concurrent and parallel computation. 419

377. D. Rosenzweig, D. Runje, and N. Slani. Privacy, abstract encryption and pro-
tocols: an ASM model{part I. In E. B�orger, A. Gargantini, and E. Riccobene
(eds.), Abstract State Machines 2003–Advances in Theory and Applications,
Lecture Notes in Computer Science, Vol. 2589, pp. 372{390. Springer-Verlag,
2003.

Provides an AsmL executable model of abstract encryption. 361

378. H. Rust. Hybrid Abstract State Machines: Using the hyperreals for describing
continuous changes in a discrete notation. In Y. Gurevich, P. Kutter, M. Oder-
sky, and L. Thiele (eds.), Abstract State Machines – ASM 2000, International
Workshop on Abstract State Machines, Monte Verita, Switzerland, Local Pro-
ceedings, TIK-Report, No. 87, pp. 341{356. ETH Z�urich, March 2000.

A hybrid version of ASMs, incorporating the hyperreals for continuously
changing quantities, is described.

379. H. Rust. A non-standard approach to operational semantics for timed systems.
Habilitation thesis, BTU Cottbus, Germany, 2002.

Time moments are de�ned as multiples of some arbitrary, but �xed in�nites-
imal, allowing us to model real-time system behavior with in�nitesimal ex-
actness and re�nements of actions. ASMs are used to model hybrid systems,
adding interleaving to the synchronous parallel execution model. 31, 180,
198

422 References

380. H. Sasaki. A formal semantics for Verilog-VHDL simulation interoperability
by Abstract State Machines. In Proc. IEEE Conf. DATE’99 (Design, Au-
tomation and Test in Europe), ICM Munich, Germany, pp. 353{357, 9{12
March 1999.

Based upon the VHDL models developed in [111, 112], a formal semantics
for Verilog-HDL and VHDL focusing on the simulation model (with signal
scheduling and time control) is de�ned. The semantics presented is faithful to
the language reference manual and is proposed as a �rst step towards semantic
interoperability analysis on multi-semantic domains such as Verilog-AMS and
VHDL-AMS. Extended in [381]. 350, 359, 385, 422

381. H. Sasaki. A formal semantics on net delay in Verilog-HDL. In Proc. Asia Pa-
cific Conf. on Chip Design Languages (APCHDL’99), pp. 100{106, Fukuoka,
Japan, 6{8 October 1999.

An extension of [380] giving semantics for net delays in Verilog-HDL using
ASMs. 350, 359, 422

382. H. Sasaki. A new dynamic equation scheduling to extend VHDL-AMS. In
Proc. Asia Pacific Conf. on Chip Design Languages (APCHDL’99), pp. 47{
52, Fukuoka, Japan, 6{8 October 1999.

An extension to VHDL-AMS for dynamic equation scheduling is proposed.
The semantics of the extension is given in terms of the ASM model for VHDL-
AMS presented in [383]. 350, 359, 422

383. H. Sasaki, K. Mizushima, and T. Sasaki. Semantic validation of VHDL-
AMS by an Abstract State Machine. In Proc. BMAS’97 (IEEE/VIUF Int.
Workshop on Behavioral Modeling and Simulation), pp. 61{68, Arlington, VA,
20{21 October 1997.

An extension of the ASM model de�ned for VHDL in [111, 112] to provide
a rigorous de�nition of VHDL-AMS, following the IEEE Language Reference
Manual for the analog extension of VHDL. For an extension see [384]. See
also [381, 382, 380]. 350, 359, 385, 422

384. T. Sasaki, H. Sasaki, and K. Mizushima. Semantic analysis of VHDL-ASM
by attribute grammar. In Proc. FDL’98 (Forum on Design Languages), Lau-
sanne, Switzerland, pp. 123{131, 6{10 September 1998.

An extension of [383] to provide a formal semantics of the VHDL Analog
Mixed Signal extension by means of attribute grammars. The formulation
treats both the static and the dynamic aspects of semantics and permits one
to show the equality of process behavior. 350, 359, 422

385. J. Sauer. Wissensbasiertes Lösen von Ablaufsplanungsproblemen durch ex-
plizite Heuristiken. PhD thesis, Universit�at Oldenburg, Germany, 1993.

Published in: Dissertationen zur K�unstlichen Intelligenz, Vol. 37, In�x-Verlag,
Dr. Ekkehardt Hundt, St. Augustin, 1993. Uses ASMs to de�ne the semantics
for the HERA language (and its implementation in Prolog), a special-purpose
programming language for the representation and manipulation of scheduling
knowledge on the basis of heuristics, tailored to program e�cient and reusable
scheduling algorithms for production planning and control. See also J. Sauer,
\Evolving Algebras for the Description of a Meta-Scheduling System", in
H. Kleine B�uning, ed., Workshop der GI-Fachgruppe Logik in der Informatik,
Technical Report TR-RI-94-146, Universit�at Paderborn, 1994. 88, 346

386. G. Schellhorn. Verifikation abstrakter Zustandsmaschinen. PhD thesis, Uni-
versit�at Ulm, Germany, 1999.

References 423

ASMs are embedded into dynamic logic. Two re�nement notions are extracted
from typical ASM re�nements and formalized in dynamic logic. A general
modularisation theorem is proved for schemes to prove the correctness of
re�nements. An improved version of this theorem appears in [387]. The KIV
system is enhanced to apply those proof techniques for a KIV veri�cation
of the WAM correctness proof in [132]. An English version of the thesis is
available at Schellhorn’s web site. 300, 357, 423, 424

387. G. Schellhorn. Veri�cation of ASM re�nements using generalized forward
simulation. J. Universal Computer Science, 7(11):952{979, 2001.

See [386]. 112, 133, 134, 156, 357, 378, 381, 384, 423, 424

388. G. Schellhorn and W. Ahrendt. Reasoning about Abstract State Machines:
The WAM case study. J. Universal Computer Science, 3(4):377{413, 1997.

The Karlsruhe Interactive Veri�er (KIV system) is applied to mechanically
verify the proof of correctness of the Prolog to WAM transformation described
in [132]. The starting point was the Diplom Thesis Von Prolog zur WAM.
Verifikation der Prozedurübersetzung mit KIV of W. Ahrendt, Universit�at
Karlsruhe (Germany) 1995. See comment to [132] and [389, 386]. 134, 300,
357, 380, 389, 423, 424

389. G. Schellhorn and W. Ahrendt. The WAM case study: Verifying compiler cor-
rectness for Prolog with KIV. In W. Bibel and P. Schmitt (eds.), Automated
Deduction – A Basis for Applications, Vol. III: Applications, pp. 165{194.
Kluwer Academic Publishers, 1998.

Continuation of [388]. 134, 300, 423

390. J. Schmid. Executing ASM speci�cations with AsmGofer. Web pages at
http://www.tydo.de/AsmGofer.

The web site for the machine to execute, equipped with graphical user
interface, ASMs which are enhanced with the structuring and composi-
tion concepts de�ned in [134]. AsmGofer executes the Light Control ASM
http://www.tydo.de/AsmGofer/light de�ned in [125] and all the ASMs de-
�ned in [406]. In [152] AsmGofer has been used to build a simulator for UML
state diagrams. 173, 185, 230, 240, 341, 359, 364, 388, 390, 393

391. J. Schmid. Compiling Abstract State Machines to C++. J. Universal Com-
puter Science, 7(11):1069{1088, 2001.

Introduces a scheme for compiling ASMs from the syntax of the ASM Work-
bench [170] to C++, coding algebraic types, pattern matching, functional
expressions, dynamic functions and simultaneous updates in such a way that
e�cient C++ code is obtained without losing the structure of the origi-
nal ASM speci�cation. The compiler has been successfully applied in the
FALKO project at Siemens [121]. In an early application C++ code was
generated from a translation of the Production Cell ASM in [120] to the
ASM Workbench format ASM-SL [170]. An HTML version is available at
http://www.tydo.de/ProductionCell/. 193, 341, 355, 357, 384, 416, 423

392. J. Schmid. Refinement and Implementation Techniques for Abstract State
Machines. PhD thesis, University of Ulm, Germany, 2002.

Thesis supervised by B�orger and located at Siemens Corporate Research in
M�unchen from August 1998 to July 2000. The thesis enriches ASMs by struc-
turing and composition concepts [134] and their implementation in the As-
mGofer system, developed for executing ASMs in an environment with a
graphical user interface. The concepts have been successfully applied in a
middle-sized software development project at Siemens [121, 391], in the Light

http://www.tydo.de/AsmGofer
http://www.tydo.de/AsmGofer/light
http://www.tydo.de/ProductionCell/

424 References

Control Case Study [125], in an industrial ASIC design and veri�cation project
(including a compiler from ASM to VHDL), and for the modeling and im-
plementation of Java and the JVM in [406]. Electronic version available at
http://www.tydo.org/files/papers/dissJS.pdf. 341, 357, 359

393. P. Schmitt. Proving WAM compiler correctness. Technical Report 33/94,
Universit�at Karlsruhe, Fakult�at f�ur Informatik, Germany, 1994.

Feasibility analysis of B�orger’s proposal to the DFG project \Deduktion"
to mechanize the Prolog-to-WAM compiler correctness proof in [132]. See
[388, 387, 386, 369]. 357

394. A. Sch�onegge. Extending dynamic logic for reasoning about evolving alge-
bras. Technical Report 49/95, Universit�at Karlsruhe, Fakult�at f�ur Informatik,
Germany, 1995.

EDL, an extension of dynamic logic, is presented, which permits one to di-
rectly represent statements about ASMs. Such a logic lays the foundation for
extending KIV (Karlsruhe Interactive Veri�er) to reason about ASMs directly.
See [405]. 322, 365, 425

395. W. Sch�onfeld. Interacting Abstract State Machines. In U. Gl�asser and
P. Schmitt (eds.), Proc. 5th Int. Workshop on Abstract State Machines, pp.
22{36. Magdeburg University, 1998.

An extension to ASMs which permits one to specify forced synchronization
of agent moves (�a la Petri nets) is proposed and explored on some examples.
360, 403

396. A. Sch�onhage. Storage modi�cation machines. SIAM J. Comp., 9:490{508,
1980.

Shown in [177] to be equivalent to a class of unary sequential ASMs. 344

397. M. Schre and G. Kappel. Cooperation contracts. In T. J. Teorey (ed.), Proc.
10th Int. Conf. on the Entity Relationship Approach (ER’91), pp. 285{307,
San Mateo, California, 23{25 October 1991. Entity Relationship Institute.

The authors introduce the concept of cooperative message handling where
multiple objects can establish cooperation contracts governing their answers
to jointly received messages. An ASM rule is de�ned (Fig. 9, p. 304) to for-
malize the run-time search of the most speci�c cooperation contract which
implements a cooperative message. See [232]. 347, 404

398. D. Scott. De�nitional suggestions for automata theory. J. Computer and
System Sciences, 1:187{212, 1967. 290

399. M. Shaw and D. Garlan. Formulations and formalisms in software archi-
tecture. In J. van Leeuwen (ed.), Computer Science Today: Recent Trends
and Developments, Lecture Notes in Computer Science, Vol. 1000. Springer-
Verlag, 1995. 5

400. I. Soloviev. Exploration and Experimental Implementation of Recursive Pat-
terns and Functions Embedding Into Prolog Language Syntactical Environ-
ment. PhD thesis, St. Petersburg University, Russia, 1995.

In Russian. A functional extension of Prolog with a specialized uni�cation
algorithm is proposed. ASMs are used to de�ne the operational semantics of
the language.

401. M. Spielmann. Automatic veri�cation of Abstract State Machines. In N. Halb-
wachs and D. A. Peled (eds.), Proc. 11th Int. Conf. on Computer-Aided Verifi-
cation (CAV ’99), Lecture Notes in Computer Science, Vol. 1633, pp. 431{442.
Springer-Verlag, 1999.

http://www.tydo.org/files/papers/dissJS.pdf

References 425

A class of restricted ASM programs is introduced, along with a PSPACE
algorithm for verifying the correctness of certain CTL*-like temporal-logic
properties of such programs. The limits on the veri�ability of generalizations
of this class are discussed. 362, 425

402. M. Spielmann. Abstract State Machines: Verification Problems and Complex-
ity. PhD thesis, University of Aachen, Germany, 2000.

Investigation of the complexity of decision problems for certain classes of
ASMs. Most of the results appear in [401, 404, 403]. The second part of the
thesis relates to the work in [62]. A restricted ASM model to capture log-space
computable functions on structures is de�ned; see also[235]. 361, 405

403. M. Spielmann. Model checking Abstract State Machines and beyond. In
Y. Gurevich, P. Kutter, M. Odersky, and L. Thiele (eds.), Abstract State
Machines: Theory and Applications, Lecture Notes in Computer Science,
Vol. 1912, pp. 323{340. Springer-Verlag, 2000.

Decision problems for ASMs are investigated, i.e. problems to decide, for
an ASM M of a given class and for a property P of a given form, whether
M satis�es P . For particular classes of machines and of property describing
formulae, the computational complexity of such problems is studied for the
following two cases: (a) given M , P and input I , decide whether P holds dur-
ing all M -computations over I (called model-checking problem); (b) given M
and P , decide whether for every input I , P holds during all M -computations
over I (called the veri�cation problem). Appeared also as TIK-Report No. 87,
pp. 357{375, ETH Z�urich, March 2000. 362, 425

404. M. Spielmann. Veri�cation of relational transducers for electronic commerce.
In Proc. 19th ACM Sympos. Principles of Database Systems (PODS 2000),
pp. 92{103, Dallas, Texas, 2000. ACM Press.

An investigation into decision problems for certain transaction protocols
specifying the interaction of multiple parties, each equipped with an active
database. Inspired by the relational transducers in [1], ASM-transducers are
de�ned and shown to have various solvable decision problems. 360, 369, 425

405. R. F. St�ark and S. Nanchen. A logic for Abstract State Machines. J. Universal
Computer Science, 7(11):981{1006, 2001.

A new logic for sequential, non-distributed ASMs is presented which is based
on an atomic predicate for function updates and on a de�nedness predicate for
the termination of the evaluation of ASM rules. The logic allows for sequential
and hierarchical recursive submachine composition as de�ned in [134]. It is
proven complete for hierarchical non-recursive ASMs. This logic provides a
unifying view of the logics for ASMs developed in [238, 394, 365, 207]. A
preliminary version appeared in L. Fribourg (ed.): Computer Science Logic
(CSL 2001), Lecture Notes in Computer Science, Vol. 2142, pp. 217{231,
Springer-Verlag, 2001. 185, 313, 328, 365, 384, 405, 420, 424

406. R. F. St�ark, J. Schmid, and E. B�orger. Java and the Java Virtual Machine:
Definition, Verification, Validation. Springer-Verlag, 2001.

A high-level description, together with a mathematical and an experimental
analysis (veri�cation and validation), of Java and of the Java Virtual Machine
(JVM), including a standard compiler of Java programs to JVM code and
the security-critical bytecode veri�er component of the JVM. Includes an
executable ASM speci�cation written for AsmGofer. For an evaluation see
[272, Sect. 6.2]; for more information see http://www.inf.ethz.ch/~jbook/.
2, 10, 23, 42, 48, 49, 60, 87, 88, 109, 112, 156, 163, 169, 193, 298, 324, 325,
341, 359, 364, 366, 378, 380, 381, 389, 390, 391, 409, 423, 424, 428

http://www.inf.ethz.ch/~jbook/

426 References

407. M. M. Stegm�uller. Formale Verifikation des DLX RISC-Prozessors: Eine Fall-
studie basierend auf abstrakten Zustandsmaschinen. Diplom thesis, University
of Ulm, Germany, 1998.

PVS is used for the formal veri�cation of the parallelization of the ASM
speci�cation for the serial DLX architecture, the �rst step of the re�nement
to its parallel version with �ve-stage pipelining in [119]. 137, 148, 156, 359,
386

408. K. Stenzel. Veri�cation of JavaCard programs. Technical report 2001-5,
Institut f�ur Informatik, Universit�at Augsburg, Germany, Germany, 2001.

Available at http://www.Informatik.Uni-Augsburg.DE/swt/fmg/papers/.
The report is about the formal veri�cation of JavaCard or sequential Java
programs (i.e. without synchronized statements). A calculus in dynamic logic
is de�ned and implemented in KIV. KIV parses the original JavaCard or
Java program, resolves names and types in the same manner as a normal
Java compiler, and produces an annotated abstract syntax tree that is the
input for the veri�cation. All sequential Java statements are supported, in-
cluding exceptions, breaks, static initialization, objects, dynamic method
lookup and arrays. The abstract syntax of Java programs, the proof rules,
and the underlying algebraic speci�cations for the object store and the prim-
itive data types, and a formal semantic is described in detail. An example
proof and a list of validation programs conclude the report. For informa-
tion on preliminary work on formalizing ASM models for Java in KIV see
http://www.informatik.uni-augsburg.de/swt/fmg/applications/. 364

409. K. Stroetmann. The constrained shortest path problem: A case study in using
ASMs. J. Universal Computer Science, 3(4):304{319, 1997.

Upon B�orger’s suggestion, an abstract, non-deterministic form of the con-
strained shortest path problem is de�ned as an ASM and proven correct, and
then re�ned to the level of implementation. 117, 122, 361, 380

410. A. S�unb�ul. Architectural Design of Evolutionary Software Systems in Con-
tinuous Software Engineering. PhD thesis, TU Berlin, Germany, 2001.

Taking up a suggestion in [86, Sect. 4] this dissertation develops a language
for specifying software systems by linking components via connectors. Com-
ponents are abstractly characterized by the services they import and export
which are de�ned by high-level speci�cations (possibly depending on given
views) and have to satisfy certain constraints on well-formedness and on the
ordering of usage (called use structure). For connectors, which connect ser-
vices required in one component to services o�ered by other components, a
re�nement concept is de�ned. ASM rules are provided to check the consis-
tency of software architectures developed in that language, namely checking
componentwise (a) for each imported service its correct connection to a cor-
responding exported service (with respect to signature and speci�cation), (b)
for each exported service that the imported services it uses satisfy the con-
straints of the used components, and (c) that the (optional) re�nement is
correct with respect to the system constituents (types, views, components,
connectors). The proposed machine has been made executable in XASM. Ex-
tended abstracts of some of the ideas in the thesis have been published by M.
Anlau� and A. S�unb�ul as Software Architecture Based Composition of Com-
ponents (Gesellschaft f�ur Informatik, Sicherheit und Zuverl�assigkeit software-
basierter Systeme, May 1999), Component Based Software Engineering for
Telecommunication Software (Proc. SCI/ISAS Conf., Orlando, Florida 1999),
Domain-Specific Languages in Software Architecture (Proc. Integrated Design
and Process Technology IDPT99, June 1999). 105, 108, 360

http://www.Informatik.Uni-Augsburg.DE/swt/fmg/papers/
http://www.informatik.uni-augsburg.de/swt/fmg/applications/

References 427

411. J. Teich. Project Buildabong at University of Paderborn. http://www-date.
upb.de/RESEARCH/BUILDABONG/buildabong.html, 2001.

The project, led by Teich at the University of Paderborn, uses ASMs to pro-
vide behavioral and structural descriptions of application-speci�c instruction
set processors, from which (using XASM [15] and Gem-Mex [18]) bit-true
and cycle-accurate simulators and debuggers are derived. See the paper \De-
sign Space Characterization for Architecture/Compiler Co-Exploration" by
D. Fischer, J. Teich, R. Weper, U. Kastens, M. Thies in: Proc. ACM Conf.
CASES’01, 16{17 November, 2001, Atlanta, Georgia, USA. 137, 157, 360,
427

412. J. Teich, P. Kutter, and R. Weper. Description and simulation of microproces-
sor instruction sets using ASMs. In Y. Gurevich, P. Kutter, M. Odersky, and
L. Thiele (eds.), Abstract State Machines: Theory and Applications, Lecture
Notes in Computer Science, Vol. 1912, pp. 266{286. Springer-Verlag, 2000.

A method for transforming register transfer descriptions of microprocessors
into executable ASM speci�cations is described and illustrated using the ASM
model developed in [286] for the ARM2 RISC processor. The description
exploits the natural correspondence between the simultaneous execution of all
guarded update rules of an ASM and a single-clock hardware step executing a
set of Leuper’s guarded register transfer patterns. XASM [15] is used together
with the Gem-Mex tool [18] which generates a graphical simulator for the
given architecture. See also [413]. Also appears in TIK-Report No. 87, pp. 376{
397, ETH Z�urich, March 2000. 157, 359, 386, 411, 427

413. J. Teich, R. Weper, D. Fischer, and S. Trinkert. A joint architecture/compiler
design environment for ASIPs. In Proc. Int. Conf. on Compilers, Architectures
and Synthesis for Embedded Systems (CASES2000), pp. 26{33, San Jose, CA,
USA, November 2000. ACM Press.

An ASM model is developed for a VLIW digital signal processor of the Texas
Instruments TMS320 C6200 family to illustrate the Buildabong method [411].
See also [412]. 359, 427

414. H. Tonino. A Theory of Many-sorted Evolving Algebras. PhD thesis, Delft
University of Technology, Netherlands, 1997.

Based on a two-valued many-sorted logic of partial functions (with a com-
plete and sound Fitch-style axiomatization), a structural operational and a
Hoare-style axiomatic semantics is given for many-sorted non-distributed de-
terministic ASMs. The SOS semantics is de�ned in two levels, one for the
sequential and one for the parallel ASM constructs. Two (sound but not
complete) Hoare-style descriptions are given, one for partial and one for total
correctness. A �rst part appeared under the title \A Formalization of Many-
sorted Evolving Algebras" as Report TR 93-115 at TU Delft. An extended
abstract appeared under the title A Sound and Complete SOS-Semantics for
Non-Distributed Deterministic Abstract State Machines in [226, pp. 91{110].
365, 403

415. H. Tonino and J. Visser. Stepwise re�nement of an Abstract State Machine for
WHNF-reduction of λ-terms. Technical Report 96{154, Faculty of Technical
Mathematics and Informatics, Delft University of Technology, Netherlands,
1996.

A series of ASMs for �nding the weak head normal form (WHNF) of an
arbitrary term of the λ-calculus is presented.

416. K. J. Turner (ed.). Using Formal Description Techniques. An Introduction to
Estelle, LOTOS and SDL. John Wiley, New York, 1993. 49, 50, 52

http://www-date.upb.de/RESEARCH/BUILDABONG/buildabong.html
http://www-date.upb.de/RESEARCH/BUILDABONG/buildabong.html

428 References

417. M. Vale. The evolving algebra semantics of COBOL. Part I: Programs and
control. Technical Report CSE-TR-162-93, EECS Dept., University of Michi-
gan, 1993.

An ASM for the control constructs of COBOL. A description of a plan for a
series of ASMs for all of COBOL is sketched (but not carried out). Missing
constructs concern source text manipulations, report writer, communication,
debug, and segmentation modules. 347

418. J. Visser. Evolving Algebras. Master’s thesis, Faculty of Technical Mathe-
matics and Informatics, Delft University of Technology, Delft, Netherlands,
1996.

The monad programming method is used to write a compiler/run-analyzer
for ASMs in Gofer. Static functions can be supplied to the ASMs by means
of Gofer functions.

419. F. von Henke. Putting software technology to work. In K. Duncan and
K. Krueger (eds.), IFIP 13th World Computer Congress 1994, pp. 345{350.
Elsevier, 1994. 299

420. C. Wallace. The semantics of the C++ programming language. In E. B�orger
(ed.), Specification and Validation Methods, pp. 131{164. Oxford University
Press, 1995.

The description in [251] of the semantics of C is extended to C++. 88, 347,
349, 379, 407

421. C. Wallace. The semantics of the Java programming language: Preliminary
version. Technical Report CSE-TR-355-97, EECS Dept., University of Michi-
gan, December 1997.

A speci�cation of the static and dynamic semantics of Java, using ASMs and
Montages. This work showed the shortcomings of the original formulation
of Montages [311] and led to its state machine based reformulation in [19].
See [309] and the independent earlier Java modeling work [138] which was
continued in [137, 139, 140, 141] and [406]. See also [23]. 371, 391, 409, 414

422. C. Wallace, G. Tremblay, and J. N. Amaral. An Abstract State Machine
speci�cation and veri�cation of the location consistency memory model and
cache protocol. J. Universal Computer Science, 7(11):1089{1113, 2001.

423. P. Wegner. Why interaction is more powerful than algorithms. Commun.
ACM, 40:80{91, 1997. 291

424. K. Winter. Model checking for Abstract State Machines. J. Universal Com-
puter Science, 3(5):689{701, 1997.

Inspired by B�orger’s lectures on ASMs in Freiburg in the Fall of 1994, Winter
develops a framework for using a model checker to verify ASM speci�cations.
It is applied to the production cell control model described in [120]. See [362]
for an interesting problem with re�ning abstractions for model checking pur-
poses. For an extension see [175, 425, 426, 427]. 188, 300, 355, 380, 387, 395,
419, 428, 429

425. K. Winter. Towards a methodology for model checking ASM: Lessons learned
from the ash case study. In Y. Gurevich, P. Kutter, M. Odersky, and
L. Thiele (eds.), Abstract State Machines: Theory and Applications, Lecture
Notes in Computer Science, Vol. 1912, pp. 341{360. Springer-Verlag, 2000.

A general discussion of applying model checking to ASMs. Following a sugges-
tion by B�orger, the ASM speci�cation of the FLASH cache coherence protocol
[189] is checked using SMV as a case study. An extension of [175, 424]. Also

References 429

appears in TIK-Report No. 87, pp. 398{425, ETH Z�urich, March 2000. 300,
361, 395, 397, 428, 429

426. K. Winter. Model Checking Abstract State Machines. PhD thesis, Technical
University of Berlin, Germany, 2001.

Based upon [424, 175, 425, 427], a transformation of ASMs to FSMs and
abstraction mechanisms in the context of model checking large ASMs are
investigated and implemented. The underlying tools are the ASM Workbench
[170], SMV and Multiway Decision Graphs (for the latter see also [427]). 338,
364, 395, 428

427. K. Winter. Model checking with abstract types. In S. D. Stoller and W. Visser
(eds.), Workshop on Software Model Checking, Electronic Notes in Theoretical
Computer Science, Vol. 55 (3), Paris, France, July 23 2001. Elsevier Science
B.V.

Investigates an interface from ASMs to Multiway Decision Graphs. See also
the Report TR 01-16, Software Veri�cation Research Center, The University
of Queensland, November 2001. 428, 429

428. K. Winter. Automated checking of control tables. E-mail to E. B�orger,
December 24, 2001.

Case study for automated checking of Control Tables, used by the Software
Veri�cation Research Centre at the University of Queensland, Australia, to
specify railway interlocking systems. The control tables are formalized as
ASMs and then transformed by the algorithm described in [175] to become
input for the SMV model checker. 300, 362

429. N. Wirth. Program development by stepwise re�nement. Commun. ACM,
14(4), 1971. 9, 21, 24

430. J. Woodcock and M. Loomes. Software Engineering Mathematics. Pitman,
1988. 100

431. J. C. P. Woodcock and J. Davies. Using Z: Specification, Refinement, and
Proof. Prentice-Hall, 1996. 156, 295

432. A. Zamulin. Algebraic speci�cation of dynamic objects. In Proc. LMO’97
(Acte du Colloque Langage et Modeles a Objets), pp. 111{127, Paris, 22{24
October 1997. Edition Hermes.

A model for describing the behavior of dynamic objects is presented, using
a state-transition system with the same semantics as (though not explicitly
identi�ed as) ASMs. 364

433. A. Zamulin. Speci�cation of an Oberon compiler by means of a typed Gure-
vich machine. Technical Report 589.3945009.00007-01, Institute of Informat-
ics Systems of the Siberian Division of the Russian Academy of Sciences,
Novosibirsk, Russia, 1997.

A Typed Gurevich Machine [434] is used to de�ne a compiler for Oberon to
an algebraically-speci�ed abstract target machine. 364, 430

434. A. Zamulin. Typed Gurevich machines revisited. Joint CS & IIS Bulletin,
Computer Science, 7:95{122, 1997.

An approach to combining type-structured algebraic speci�cations and ASMs
is proposed. A preliminary version appeared in 1996 as preprint 36 of the
Institute of Informatics Systems, Novosibirsk. 364, 429

435. A. Zamulin. Object-oriented Abstract State Machines. In U. Gl�asser and
P. Schmitt (eds.), Proc. 5th Int. Workshop on Abstract State Machines, pp.
1{21. Otto-von-Guericke-Universit�at Magedeburg, 1998.

Proposes an extension of ASMs to include objects. 364, 403, 430

430 References

436. A. Zamulin. Speci�cation of dynamic systems by typed Gurevich machines.
In Z. Bubnicki and A. Grzech (eds.), Proc. 13th Int. Conf. on System Science,
pp. 160{167, Wroclaw, Poland, 15{18 September 1998.

A combination of many-sorted algebraic speci�cations for states and ASM-
rules for transitions is proposed as an approach for dynamic system speci�-
cation. The approach is used in [433] to specify an Oberon compiler. 364,
430

437. A. Zamulin. Generic facilities in object-oriented ASMs. In Y. Gurevich,
P. Kutter, M. Odersky, and L. Thiele (eds.), Abstract State Machines – ASM
2000, Int. Workshop on Abstract State Machines, Monte Verita, Switzerland,
Local Proceedings, TIK-Report, No. 87, pp. 426{446. ETH Z�urich, March
2000.

The object-oriented ASM framework introduced in [435] is extended to allow
the de�nition of generic object types, type categories, functions, and proce-
dures. Examples from the C++ Standard Template Library (STL) are pro-
vided. Previously appeared in Preprint 60, Institute of Informatics Systems,
Siberian Division of the Russian Academy of Sciences, Novosibirsk, 1999. 364

438. A. Zamulin. Speci�cations in-the-large by typed ASMs. In Y. Gurevich,
P. Kutter, M. Odersky, and L. Thiele (eds.), Abstract State Machines – ASM
2000, Int. Workshop on Abstract State Machines, Monte Verita, Switzerland,
Local Proceedings, TIK-Report, No. 87, pp. 447{461. ETH Z�urich, March
2000.

A discussion of combining typed ASMs (as proposed in [436]) to produce
larger ASMs. 364

439. W. Zimmerman and T. Gaul. On the construction of correct compiler back-
ends: An ASM approach. J. Universal Computer Science, 3(5):504{567, 1997.

The authors use ASMs to construct provably correct compiler back-ends based
on realistic intermediate languages (and check the correctness of their proofs
using PVS). 112, 300, 358, 380, 397

440. W. Zimmermann and A. Dold. A framework for modeling the semantics of
expression evaluation with Abstract State Machines. In E. B�orger, A. Gar-
gantini, and E. Riccobene (eds.), Abstract State Machines 2003–Advances in
Theory and Applications, Lecture Notes in Computer Science, Vol. 2589, pp.
391{406. Springer-Verlag, 2003.

An ASM framework is de�ned for a uniform characterization of expression
evaluation tactics used in programming languages like Fortran, ADA95, C,
C++, Java, and C#. 300

List of Problems

1 Abstract performance evaluation models . 33
2 Alternating choose/forall classification . 41
3 Framework for architecture description languages 88
4 Framework for security models . 88
5 Modeling business rules . 98
6 Internet telephony protocols . 103
7 ASM synthesis from use cases . 104
8 Modeling middleware techniques . 105
9 Framework for communication models . 116
10 ASM refinement theory . 134
11 Cost evaluation of hardware links . 155
12 Abstract analysis of out-of-order pipelining . 155
13 Abstract analysis of superscalar pipelining . 155
14 Analysis of turbo control state ASM networks 164
15 Definition of the notion of transactions . 178
16 Analysis of ASP runs . 185
17 ASP refinement techniques . 185
18 ASP verification techniques . 185
19 ASP implementation . 185
20 Patterns of component hierarchies . 227
21 Framework for deployment structures . 261
22 Analysis techniques for async ASMs . 271
23 Modeling and analyzing a real-life operating system 282
24 Mobile ASM framework . 293
25 Linear time lower bounds . 310
26 Computational complexity with respect to abstract data types . . . 310
27 Framework for synchronous languages . 310
28 Mechanical verification of Java-to-JVM compilation and bytecode

verification . 325
29 Implement a model checker for ASMs . 339
30 Implement ASM refinement techniques . 342
31 Implement asynchronous ASMs . 342

List of Figures

2.1 The ASM refinement scheme . 24
2.2 Models and methods in the development process 26
2.3 Integrating ASMs into the V-scheme . 27
2.4 Classification of ASM functions, relations, locations 33
2.5 Control state ASMs . 45
2.6 Control state ASMs: alternative definition . 45
2.7 Control state ASM for SpecC pipe statements 46
2.8 Opposite conditions in control state ASMs . 46
2.9 Switch machine . 47
2.10 Multiple thread Java machine execJavaThread. 48
2.11 Decomposing JVM into trustfulVM and verifyVM 49
2.12 Decomposing verifyVM into propagateVMs and checks 49
2.13 Daemon game ASM . 51
2.14 Lift ground model . 55
2.15 Lift exception handling model . 60

3.1 UseCaseAtm model . 93
3.2 RefinedAtm use case model . 98
3.3 PasswordChange use case model . 99
3.4 Character inputting machine . 99
3.5 (1,n)-refinement of control state ASMs . 100
3.6 TelephoneExchange use case ASM . 101
3.7 Debugger control state ASM. 104
3.8 ShortestPath1 . 118
3.9 ShortestPath2 . 119
3.10 ShiftFrontierToNeighb(u) . 120
3.11 ShortestPath3 . 120
3.12 DbRecovery ASM . 125
3.13 Components of ASM refinement diagrams . 133
3.14 The serial DLX model DLX

seq . 139

5.1 Production cell plant . 189
5.2 TransportBelt ground model . 190
5.3 Durative version of DeliverPiece . 190
5.4 ElevRotTable ground model . 191

434 List of Figures

5.5 Robot ground model . 192
5.6 Press ground model . 193
5.7 Parnas’ four-variable model . 199
5.8 Neural abstract machine model . 199

6.1 Global state and partial views in an async ASM 211
6.2 Basic MultipleReadOneWrite ASM (act=Read,Write) 212
6.3 Basic ASM of MasterSlaveAgreement agents 213
6.4 Basic ASM of Consensus agents . 214
6.5 Basic ASM of LoadBalance agents . 216
6.6 Basic ASM of LeaderElection agents . 217
6.7 Basic ASM of Echo agents (Initator/OtherAgent rules) 219
6.8 Basic ASM of PhaseSync agents . 221
6.9 Alternating bit sender ASM . 243
6.10 Phases in AlternatingBit runs . 246
6.11 SlidingWindowReceiver ASM . 250
6.12 Phases in SlidingWindow runs . 251
6.13 Fault tolerance life cycle of processors . 254
6.14 Control state ASM BakeryCustomerScheme 262
6.15 Control state ASM BakeryReader . 263
6.16 Real-time intervals between atomic customer moves 265
6.17 Real-time intervals between durative customer moves 270
6.18 Sequential UML nodes . 275
6.19 UML concurrent nodes . 279
6.20 Semantics of Occam: activity diagram ASM 281

7.1 Mealy automata rules . 286
7.2 Normal and inverted Parnas tables . 295
7.3 Parnas decision tables . 295
7.4 Register machine rules . 300

List of Tables

2.1 The semantics of formulas . 70
2.2 Inductive definition of the semantics of ASM rules 74
2.3 The semantics of ASMs with a reserve . 77
2.4 Variations of the syntax of ASMs . 83

3.1 The macros for DLX
seq and DLX

par . 141
3.2 The result locations for DLX instructions . 144
3.3 The critical stages for usage of locations in DLX 145
3.4 Domain of definition of DLX instruction parameters 150

4.1 Inductive definition of the semantics of Xasm rule calls 174
4.2 Partial evaluation of turbo ASM rules . 175
4.3 Operations on PAR/SEQ trees for hidden turbo ASM steps 176
4.4 Inductive definition of the semantics of standard ASP rules 181
4.5 Semantics of interleaving and selective synchronization 183
4.6 Syntactic variations of some ASP constructs 184

5.1 Robot macros . 192
5.2 Refining robot waiting/moving . 196

8.1 The semantics of modal formulas and basic predicates 316
8.2 Axioms for definedness . 316
8.3 Axioms for updates . 316

Index

= (equal) 69
6= (not equal) 69
¬ (negation) 69
∧ (conjunction) 69
∨ (disjunction) 69
→ (implication) 69
↔ (equivalence) 69
∀ (for all) 69
∃ (exists) 69
ζ, η (environment) 68
ϕ,ψ (formula) 69
f , g (function name) 63
l (location) 65
M (machine) 72
r (rule name) 72
Σ (signature) 63
s, t (term) 68
P ,Q ,R (transition rule) 71
x , y , z (variable) 68
[R]ϕ 315
def(R) 315
upd(R, f , x , y) 315
Con(R) 317
inv(R, f , x) 317
[[t]]Aζ 68

[[ϕ]]Aζ 70

[[P]]Aζ 73
Ψ |=M ϕ 317
Ψ `M ϕ 320
ζ[x 7→ a] 68
A,B (state) 63
B− A 66
A + U 65
An 162, 334
A |= ϕ 71
Res(A) 77
|A| 63
t s

x
68

ϕ t
x

70
U ,V ,W (update set) 65

El(U) 77
Loc(T)A 86
Loc(U) 86
U \Updates(F) 86
U ⊕V 67
U � Loc 86
εx (P(x)) 86
ιx (P(x)) 86
f ◦ g 85
Rn 162
ran(ζ) 68
range(x , ϕ,A, ζ) 70, 78
l ← R(a) 170
X ∗ 86
yields(P ,A, ζ,U) 73

abstraction
{ freedom of 5, 22, 209
ActionNode 276
AlarmClock 110
algorithm
{ bounded parallel 302
{ sequential 302
{ sequential-time 302
Alternate(R,S) 39
AlternatingBit 242
AlternatingBitReceiver 243
AlternatingBitSender 243
AlternatingTm 290
architecture
{ model driven 7, 16
arity 63
ASM 32, 72
{ async 208
{ basic 28
{ B�ohm{Jacopini 164
{ control state 44, 92
{ ground model 14, 16, 19
{ hierarchical 328
{ Mealy 287
{ method 5, 8, 13

438 Index

{ modules 36
{ move 75
{ real-time 198
{ real-time controller 200
{ seq 161
{ submachine 168
{ sync 187
{ turbo 160
{ turbo with return value 170
AsmGenFsm 123
AspHandshaking 185
AsyncInterruptExit 280
automata
{ co-design 287
{ Mealy 285
{ Moore 285
{ pushdown 288
{ RSM 20, 287
{ stream-processing 287
{ timed 287
{ two-way 286

Backtrack 114
BakeryGround 263
BakeryHigh 265
base set 64
BasicStopWatch 273
BranchNode 276

CheckConnectSpec 107
CheckConstraints 108
choice
{ operator 86
{ premature 115
Clock 37
coincidence 68, 71, 73
COLD 294
ColdUse 294
communication in Occam 134
Communicator 108
ComponentConsistencyCheck

107
Consensus 214
constants 63
ConsumeEvent 274
content 65
contract 4, 5
{ software 14, 17
CycleThru 39

DaemonGame 51
DbRecovery 125
Debugger 104
DecisionTable 295

design-for-change 6, 14, 15, 23, 61,
230, 346

diagram
{ (m,n) 25
{ activity 275
DifferentWords 41
DiningPhilosopher 211
DistrLocationServ 224
DLX

data 148
DLX

par 142
DLX

seq 140

EarlyChoice 116
Echo 219
element
{ of location 65
{ of state 64
{ of update set 77
EnterActivity 277
environment 68
equation 69
event 272
ExecJavaThread 48
extension
{ conservative 59

fairness 209
true 63
FctCompo 165
FeedBelt 190
FlipFlop 47
formula 69
{ �rst-order 317
{ pure 317
{ range of 70, 78
{ static 317
frame problem 21, 30, 160, 291, 294,

299
Fsm 47, 285
function
{ ASM-computable 164
{ choice 35, 327
{ computable 292
{ controlled 34
{ derived 35
{ domain 64
{ dynamic 34, 63
{ external 35
{ in 34
{ interaction 34
{ local 169
{ monitored 34
{ out 35

Index 439

{ partial 64
{ shared 34
{ static 34, 63
{ strict 162
{ total 64

GameOfLife 40
ground model 3, 5, 14, 16, 19
GroupMember 255
guard 29

Handshaking 135
homomorphism 66

InertialSignalAssign 43
Initialize 163
InitializeRec 168
interpreter of Occam 280
InterruptExit 278
InterruptStorage 39
InvertedTable 295
Invoice 88
isomorphism 66
iterate R 162

KermitTemplate 242

LateChoice 116
LeaderElection 217
Lift 57
LoadBalance 216
LocalSeqSchedule 184
location 4, 29, 65
{ content of 65
{ elements of 65
LowerUpbd 121

Markov 292
MasterSlaveAgreement 213
MealyAsm 287
MealyFsm 286
Merge 173, 325
Mergesort 173
method
{ ASM 5, 8, 13
{ formal 6, 17
{ ground model 87
{ re�nement 87
MinPathToLeader 218
Msort 325
MultipleReadOneWrite 212
MuOperator 166

Neural Abstract Machine 298

NeuralAM 199
NeuralKernelStep 298
next(R) 162
NormalExitActivity 278
NormalTable 294

Occam 42
{ communication 134
{ interpreter 280
{ subprocess creation 42
OccamChannel 135
OccamCommunication 135
OccamParSpawn 43

ParLift 60
Parnas Four-Variable Model 198
Parnas table 29
Partition 179
Petri net 297
PetriTransition 297
PhaseSync 221
PosBasedRouting 223
PrimitiveRecursion 166
process
{ abstract state 180
{ interleaving 182
{ standard abstract state 180
{ synchronization 182
PushDownAutomaton 44, 288

Quicksort 172

RailCrossCtl 202, 205
recursion 171
RefineDiligentVM 48
re�nement 20, 24
{ (m,n) 25, 112
{ complete 111
{ correct 111
{ procedural 112
{ pure data 113
{ scheme 25
{ submachine 112
relation 64
Reserve 77
reserve 36
{ condition 77
reuse 1, 6, 7, 9, 14, 19, 23, 24, 31, 228,

241, 347, 359, 363, 410, 418
RingBuffer 228
Robot 192
RobotActionGuards 192
RobotRefined 195
robustness 109

440 Index

RoundRobin 41
rule
{ declaration 72
{ main rule name 72
{ scheme 73
run 30, 75
{ async 208
{ distributed 209
{ interactive 76
{ internal 76
{ real-time controller 200
{ terminating 30

Scheduling 42
scope 70, 72
ScottMachine 291
sentence 70
separation
{ environment-controller 198, 208
{ of concerns 14, 32
sequel 65
ShortestPath 118, 119, 120
signature 63
SIP 103
SlidingWindow 249
SpecCPipe 45
state 29, 63
{ control 44
{ elements of 64
{ external 36
{ internal 36
{ isomorphic 66
{ next 36
{ next internal 36
StopWatchWithReset 273
StreamProcessingFsm 44, 286, 287
submachine
{ turbo 168
substitution 68, 69, 70, 71, 74
superuniverse 63
Sustain 38
Swap 40
SwapSort 40
Switch 46

table
{ decision 295
{ inverted 294
{ normal 294
{ notation for ASMs 31
{ Parnas 294
TelephoneExchange 101
term 67

{ ground 68
{ static 68
testing
{ dynamic 18
{ static 18
ThueSystem 292
TimedAutomata 44
TimedAutomaton 288
trace 21
transition rule 28
true 63
TurboMicroStep 177
TuringInteractive 291
TuringLikeMachine 289
TuringMachine 289
TwoWayFsm 286, 289

UML 9, 274
{ activity diagram 47
UmlFork 279
UmlJoin 280
undef 63
UNITY 293
UnitySystem 293
universe 64
update 29, 65
{ external 36
{ internal 36
{ trivial 65
update set 65
{ consistent 30, 65
UseCaseAtm 93

validation 15, 18
variable
{ bound 70
{ free 70
{ history 25
{ prophecy 25, 116
variable assignment 68
veri�cation 15, 17, 313
verifyVM 48
VhdlSelectedAssign 39

XMachine 291

	Introduction
	Goals of the Book and Contours of its Method
	Stepwise Refinable Abstract Operational Modeling
	Abstract Virtual Machine Notation
	Practical Benefits
	Harness Pseudo-Code by Abstraction and Refinement
	Adding Abstraction and Rigor to UML Models

	Synopsis of the Book

	ASM Design and Analysis Method
	Principles of Hierarchical System Design
	Ground Model Construction (Requirements Capture)
	Stepwise Refinement (Incremental Design)
	Integration into Software Practice

	Working Definition
	Basic ASMs
	Definition
	Classification of Locations and Updates
	ASM Modules
	Illustration by Small Examples
	Control State ASMs
	Exercises

	Explanation by Example: Correct Lift Control
	Exercises

	Detailed Definition (Math. Foundation)
	Abstract States and Update Sets
	Mathematical Logic
	Transition Rules and Runs of ASMs
	The Reserve of ASMs
	Exercises

	Notational Conventions

	Basic ASMs
	Requirements Capture by Ground Models
	Fundamental Questions to be Asked
	Illustration by Small Use Case Models
	Exercises

	Incremental Design by Refinements
	Refinement Scheme and its Specializations
	Two Refinement Verification Case Studies
	Decomposing Refinement Verifications
	Exercises

	Microprocessor Design Case Study
	Ground Model DLXseq
	Parallel Model DLXpar Resolving Structural Hazards
	Verifying Resolution of Structural Hazards (DLXpar)
	Resolving Data Hazards (Refinement DLXdata)
	Exercises

	Structured ASMs (Composition Techniques)
	Turbo ASMs (seq, iterate, submachines, recursion)
	Seq and Iterate (Structured Programming)
	Submachines and Recursion (Encapsulation and Hiding)
	Analysis of Turbo ASM Steps
	Exercises

	Abstract State Processes (Interleaving)

	Synchronous Multi-Agent ASMs
	Robot Controller Case Study
	Production Cell Ground Model
	Refinement of the Production Cell Component ASMs
	Exercises

	Real-Time Controller (Railroad Crossing Case Study)
	Real-Time Process Control Systems
	Railroad Crossing Case Study
	Exercises

	Asynchronous Multi-Agent ASMs
	Async ASMs: Definition and Network Examples
	Mutual Exclusion
	Master--Slave Agreement
	Network Consensus
	Load Balance
	Leader Election and Shortest Path
	Broadcast Acknowledgment (Echo)
	Phase Synchronization
	Routing Layer Protocol for Mobile Ad Hoc Networks
	Exercises

	Embedded System Case Study
	Light Control Ground Model
	Signature (Agents and Their State)
	User Interaction (Manual Control)
	Automatic Control
	Failure and Service
	Component Structure
	Exercises

	Time--Constrained Async ASMs
	Kermit Case Study (Alternating Bit/Sliding Window)
	Processor-Group-Membership Protocol Case Study
	Exercises

	Async ASMs with Durative Actions
	Protocol Verification using Atomic Actions
	Refining Atomic to Durative Actions
	Exercises

	Event--Driven ASMs
	UML Diagrams for Dynamics
	Exercises

	Universal Design and Computation Model
	Integrating Computation and Specification Models
	Classical Computation Models
	System Design Models
	Exercises

	Sequential ASM Thesis (A Proof from Postulates)
	Gurevich's Postulates for Sequential Algorithms
	Bounded-Choice Non-Determinism
	Critical Terms for ASMs
	Exercises

	Tool Support for ASMs
	Verification of ASMs
	Logic for ASMs
	Formalizing the Consistency of ASMs
	Basic Axioms and Proof Rules of the Logic
	Why Deterministic Transition Rules?
	Completeness for Hierarchical ASMs
	The Henkin Model Construction
	An Extension with Explicit Step Information
	Exercises

	Model Checking of ASMs
	Execution of ASMs

	History and Survey of ASM Research
	The Idea of Sharpening Turing's Thesis
	Recognizing the Practical Relevance of ASMs
	Testing the Practicability of ASMs
	Architecture Design and Virtual Machines
	Protocols
	Why use ASMs for Hw/Sw Engineering?

	Making ASMs Fit for their Industrial Deployment
	Practical Case Studies
	Industrial Pilot Projects and Further Applications
	Tool Integration

	Conclusion and Outlook

	References
	List of Problems
	List of Figures
	List of Tables
	Index

