
CHAPTER 1

THE FUZZY WORLD

What’s the process of parallel parking a car?
First you line up your car next to the one in front of your space.

Then you angle the car back into the space, turning the steering wheel
slightly to adjust your angle as you get closer to the curb. Now turn the
wheel to back up straight and—nothing. Your rear tire’s wedged against
the curb.

OK. Go forward slowly, steering toward the curb until the rear
tire straightens out. Fine—except, you’re too far from the curb. Drive
back and forth again, using shallower angles.

Now straight forward. Good, but a little too close to the car
ahead. Back up a few inches. Thunk! Oops, that’s the bumper of the car
in back. Forward just a few inches. Stop! Perfect!! Congratulations.
You’ve just parallel-parked your car.

And you’ve just performed a series of fuzzy operations.

Not fuzzy in the sense of being confused. But fuzzy in the real-world
sense, like “going forward slowly” or “a bit hungry” or “partly cloudy”—the
distinctions that people use in decision-making all the time, but that comput-
ers and other advanced technology haven’t been able to handle.

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro
1

2Chapter 1: The Fuzzy World

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

What kind of problems? For one, waiting for an elevator at lunch
hour. How do you program elevators so that they pick up the most people
in the least amount of time? Or how do you program elevators to minimize
the waiting time for the most people?

Suppose you’re operating an automated subway system. How do you
program a train to start up and slow down at stations so smoothly that the
passengers hardly notice?

For that matter, how can you program a brake system on an automo-
bile so that it works efficiently, taking road and tire conditions into account?

Perhaps you have a manufacturing process that requires a very steady
temperature over a many hours. What’s the most efficient and reliable
method for achieving it?

Or, suppose you’re filming an unpredictable and fast-moving event
with your camcorder—say, a birthday party of 10 three-year-olds. What kind
of a camera lets you move with the action and still end up with a very
nonjerky image when you play it back?

Or, take a problem far from the realm of manufacturing and engineer-
ing, such as, how do you define the term family for the purposes of inclusion
in health insurance policy?

Do all these situations have something in common? For one thing,
they’re all complex and dynamic. Also, like parallel parking, they’re more
easily characterized by words and shades of meaning than by mathematics.

In this book you’ll be immersed in the fuzzy world, not an easy
process. You’ll meet the basics, manipulate the tools (simple and complex),
and use them to solve real-world problems. You can make your experience
interactive and hands on with a series of programs on the accompanying
disk. (See the Preface for an explanation of how to load it onto your hard
disk.) To make the trip easier, you’ll be following in the many footsteps of
our fuzzy field guide, Dr. Fuzzy. The good doctor will be on call through
Help menus and will show up in the book chapters with hints, further
information, and encouraging messages.

The real world is up and down, constantly moving and
changing, and full of surprises. In other words, fuzzy.

Fuzzy techniques let you successfully handle real-
world situations.

- -

E-MAIL
FROM
DR. FUZZY

- -

3Chapter 1: The Fuzzy World

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

APPLES, ORANGES, OR IN BETWEEN?

As the fiber-conscious Dr. Fuzzy has discovered, one of the easiest ways to
step into the fuzzy world is with a simple device found in most homes—a
bowl of fruit. Conventional computers and simple digital control systems
follow the either-or system. The digit’s either zero or one. The answer’s either
yes or no. And the fruit bowl (or database cell) contains either apples or
oranges.

Take Figure 1.1, for example. Is this a bowl of oranges? The answer is
No.

How about Figure 1.2? Is it a bowl of oranges? The answer in this case
is Yes.

This is an example of crisp logic, adequate for a situation in which the
bowl does contain either totally apples or totally oranges. But life is often more
complex. Take the case of the bowl in Figure 1.3. Someone has made a switch,

Figure 1.1: Is this a bowl of oranges?

Figure 1.2: Is this a bowl of oranges?

4Chapter 1: The Fuzzy World

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Figure 1.3: “Thinking fuzzy” about a bowl of oranges.

Figure 1.4: Fuzzy bowl of apples.

Figure 1.5: Fuzzy bowl of apples (continued).

swapping an orange for one of the apples in the Yes—Apple bowl. Is it a bowl
of oranges?

Suppose another apple disappears, only to be replaced by an orange
(Figure 1.4). The same thing happens again (Figure 1.5). And again (Figure
1.6). Is the bowl now a bowl of oranges? Suppose the process continues

5Chapter 1: The Fuzzy World

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Figure 1.6: Fuzzy bowl of apples (continued).

Figure 1.6: Fuzzy bowl of apples (continued).

6Chapter 1: The Fuzzy World

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

(Figure 1.7). At some point, can you say that the “next bowl” contains oranges
rather than apples?

This isn’t a situation where you’re unable to say Yes or No because
you need more information. You have all the information you need. The
situation itself makes either Yes or No inappropriate. In fact, if you had to say
Yes or No, your answer would be less precise that if you answered One, or
Some, or A Few, or Mostly—all of which are fuzzy answers, somewhere in
between Yes and No. They handle the actual ambiguity in descriptions or
presentations of reality.

Other ambiguities are possible. For example, if the apples were coated
with orange candy, in which case the answer might be Maybe. The complex-
ity of reality leads to truth being stranger than fiction. Fuzzy logic holds that
crisp (0/1) logic is often a fiction. Fuzzy logic actually contains crisp logic as
an extreme.

Really want to think fuzzy apples and oranges? They have
less distinct boundaries than you might think.

Both apples and oranges are spheres, and both are
about the same size. Both grow on trees that reproduce simi-
larly. You can make a tasty drink from each. They even go
to their rewards the same way, by being eaten and digested
by people, or by being composted by my relatives, near and
distant. If the apples are red, even the colors are related—

red + yellow = orange

And don’t neglect the bowl. Both fruits nestle the same way
in the same kind of bowl, and they leave similar amounts of
unoccupied space.

With fuzzy logic the answer is Maybe, and its value ranges anywhere
from 0 (No) to 1 (Yes).

- -

E-MAIL
FROM
DR. FUZZY

- -

7Chapter 1: The Fuzzy World

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Crisp sets handle only 0s and 1s.
Fuzzy sets handle all values between 0 and 1.

Crisp
No Yes

Fuzzy
No Slightly Somewhat SortOf A Few Mostly Yes, Absolutely

Looking at the fruit bowls again (Figure 1.8), you might assign these
fuzzy values to answer the question, Is this a bowl of oranges?

Characteristics of fuzziness:
• Word based, not number based. For instance, hot; not 85°.
• Nonlinear changeable.
• Analog (ambiguous), not digital (Yes/No).

If you really look at the way we make decisions, even the way we use
computers and other machines, it’s surprising that fuzziness isn’t considered
the ordinary way of functioning. Why isn’t it? It all started with Aristotle (and
his buddies).

IS THERE LIFE BEYOND MATH?

The either-apples-or-oranges system is known as “crisp” logic. It’s the logic
developed by the fourth century B.C. Greek philosopher Aristotle and is often
called Arisfotelian in his honor. Aristotle got his idea from the work of an
earlier Greek philosopher, Pythagoras, and his followers, who believed that
matter was essentially numerical and that the universe could be defined as
numerical relationships. Their work is traditionally credited with providing

E-MAIL
FROM
DR.
FUZZY

- -

- -

- -

E-MAIL
FROM
DR. FUZZY

- -

8Chapter 1: The Fuzzy World

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Figure 1.8: Fuzzy values.

9Chapter 1: The Fuzzy World

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

the foundation of geometry and Western music (through the mathematics of
tone relationships).

Aristotle extended the Pythagorean belief to the way people think and
make decisions by allying the precision of math with the search for truth. By
the tenth century A.D., Aristotelian logic was the basis of European and
Middle Eastern thought. It has persisted for two reasons—it simplifies think-
ing about problems and makes “certainty” (or “truth”) easier to prove and
accept.

Vague Is Better

In 1994 fuzziness is the state of the art, but the idea isn’t new by any means.
It’s gone under the name fuzzy for 25 years, but its roots go back 2,500 years.
Even Aristotle considered that there were degrees of true-false, particularly
in making statements about possible future events. Aristotle’s teacher, Plato,
had considered degrees of membership. In fact, the word Platonic embodies
his concept of an intellectual ideal—for instance, of a chair—that could be
realized only partially in human or physical terms. But Plato rejected the
notion.

Skip to eighteenth century Europe, when three of the leading philoso-
phers played around with the idea. The Irish philosopher and clergyman
George Berkeley and the Scot David Hume thought that each concept has a
concrete core, to which concepts that resemble it in some way are attracted.
Hume in particular believed in the logic of common sense—reasoning based
on the knowledge that ordinary people acquire by living in the world.

In Germany, Immanuel Kant considered that only mathematics could
provide clean definitions, and many contradictory principles could not be
resolved. For instance, matter could be divided infinitely, but at the same
time could not be infinitely divided.

That particularly American school of philosophy called pragmatism
was founded in the early years of this century by Charles Sanders Peirce, who
stated that an idea’s meaning is found in its consequences. Peirce was the
first to consider “vagueness,” rather than true-false, as a hallmark of how
the world and people function.

The idea that “crisp” logic produced unmanageable contradictions
was picked up and popularized at the beginning of the twentieth century by
the flamboyant English philosopher and mathematician, Bertrand Russell.

10Chapter 1: The Fuzzy World

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

He also studied the vagueness of language, as well as its precision, conclud-
ing that vagueness is a matter of degree.

Crisp logic has always had fuzzy edges in the form of para-
 doxes. One example is the apples-oranges question earlier
in the chapter. Here are some ancient Greek versions:
• How many individual grains of sand can you remove from
 a sandpile before it isn’t a pile any more (Zeno’s paradox)?
• How many individual hairs can fall from a man’s head
 before he becomes bald (Bertrand Russell’s paradox)?

In ancient, politically incorrect mainland Greece they
said, “All Cretans are liars. When a Cretan says that he’s ly-
 ing, is he telling the truth?” The logical problem: How sta-
ble is the idea of truth and falsity?

In the early twentieth century, Bertrand Russell (who
seemed to be amazingly interested in human fuzz) asked: A
man who’s a barber advertises “I shave all men and only
those who don’t shave themselves.” Who shaves the barber?

The down-home illustration involved this logical
question: Can a set contain itself?

The German philosopher Ludwig Wittgenstein studied the ways in
which a word can be used for several things that really have little in common,
such as a game, which can be competitive or noncompetitive.

The original (0 or 1) set theory was invented by the nineteenth century
German mathematician Georg Kantor. But this “crisp” set has the same
shortcomings as the logic it’s based on. The first logic of vagueness was
developed in 1920 by the Polish philosopher Jan Lukasiewicz. He devised
sets with possible membership values of 0, 1/2, and 1, later extending it by
allowing an infinite number of values between 0 and 1.

Later in the twentieth century, the nature of mathematics, real-life
events, and complexity all played roles in the examination of crispness. So
did the amazing discovery of physicists such as Albert Einstein (relativity)
and Werner Heisenberg (uncertainty). Einstein was quoted as saying, ”As far

E-MAIL
FROM
DR. FUZZY

- -

- -

11Chapter 1: The Fuzzy World

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

as the laws of mathematics refer to reality, they are not certain, and as far as
they are certain, they do not refer to reality.”

The next big step forward came in 1937, at Cornell University, where
Max Black considered the extent to which objects were members of a set, such
as a chairlike object in the set Chair. He measured membership in degrees of
usage and advocated a general theory of “vagueness.”

The work of these nineteenth and twentieth century thinkers pro-
vided the grist for the mental mill of the founder of fuzzy logic, an American
named Lotfi Zadeh.

Discovering Fuzziness

In the 1960s, Lotfi Zadeh invented fuzzy logic, which combines the concepts
of crisp logic and the Lukasiewicz sets by defining graded membership. One
of Zadeh’s main insights was that mathematics can be used to link language
and human intelligence. Many concepts are better defined by words than by
mathematics, and fuzzy logic and its expression in fuzzy sets provide a
discipline that can construct better models of reality.

Lotfi Zadeh says that fuzziness involves possibilities. For in-
stance, it’s possible that 6 is a large number, while it’s im-
possible that 1 or 2 are large numbers. In this case, a fuzzy
set of possible large numbers includes 3, 4, 5, and 6.

Daniel Schwartz, an American fuzzy logic researcher, organized
fuzzy words under several headings. Quantification terms include all, most,
many, about half, few, and no. Usuality includes always, frequently, often,
occasionally, seldom, and never. Likelihood terms are certain, likely, uncer-
tain, unlikely, and certainly not.

How do you think fuzzy” about a fuzzy word–also called a linguis-
tic variable–in contrast to “thinking crisp”? Dimiter Driankov and several
colleagues in Germany have pointed out three ways that highlight the
difference.

Suppose the variable is largeness. Someone gives you the number 6
and says, “6 is a large number. Do you agree or disagree?”

- -

E-MAIL
FROM
DR. FUZZY

- -

12Chapter 1: The Fuzzy World

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Figure 1.9: A threshold person either agrees or disagrees.

If you’re a threshold person, you will flatly state either “I agree” or “I
disagree.” This can be drawn as in Figure 1.9.

An estimator will take a different approach, saying “I agree partially”
(Figure 1.10). The answer may depend on the context in which the question
is asked. The person might partly agree that 6 is a large number if the next
number is 0.05. But if the next one is 50, then the person might disagree
partially or totally.

A conservative takes still another approach, possibly saying, “I agree,”
“I disagree,” or “I’m not sure.” Public opinion polls often use this method.
For instance, if the statement is “Are you willing to pay higher taxes to build
more playgrounds”? Someone might answer, “I am if the playgrounds will
help reduce juvenile crime.”

Are any of these answers fuzzy? The threshold person has given a
crisp answer–all or nothing. The other two people have given fuzzy ones.
The estimator’s answer involves a degree, so that there can be as many
different responses as there are people answering the question. The conser-
vative’s answer recognizes that some questions by their nature may always
have uncertain aspects or involve balancing tradeoffs.

Figure 1.10: An estimator may agree partially.

13Chapter 1: The Fuzzy World

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

THE USES OF FUZZY LOGIC

Fuzzy systems can be used for estimating, decision-making, and mechanical
control systems such as air conditioning, automobile controls, and even
“smart” houses, as well as industrial process controllers and a host of other
applications.

The main practical use of fuzzy logic has been in the myriad of
applications in Japan as process controllers. But the earliest fuzzy control
developments took place in Europe.

FUZZY CONTROL SYSTEMS

The British engineer Ebrahim Mamdani was the first to use fuzzy sets in a
practical control system, and it happened almost by accident. In the early
1970s, he was developing an automated control system for a steam engine
using the expertise of a human operator. His original plan was to create a
system based on Bayesian decision theory, a method of defining probabilities
in uncertain situations that considers events after the fact to modify predic-
tions about future outcomes.

The human operator adjusted the throttle and boiler heat as required
to maintain the steam engine’s speed and boiler pressure. Mamdani incorpo-
rated the operator’s response into an intelligent algorithm (mathematical
formula) that learned to control the engine. But as he soon discovered, the
algorithm performed poorly compared to the human operator. A better
method, he thought, might be to create an abstract description of machine
behavior.

He could have continued to improve the learning controller. Instead,
Mamdani and his colleagues decided to use an artificial intelligence method
called a rule-based expert system, which combined human expertise with a
series of logical rules for using the knowledge. While they were struggling
to write traditional rules using the computer language Lisp, they came upon
a new paper by Lotfi Zadeh on the use of fuzzy rules and algorithms for
analysis and decision-making in complex systems. Mamdani immediately
decided to try fuzziness, and within a “mere week” had read Zadeh’s paper
and produced a fuzzy controller. As Mamdani has written, “it was ‘surprising’

14Chapter 1: The Fuzzy World

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

how easy it was to design a rule-based controller” based on a combination
of linguistic and mathematical variables.

In the late 1970s, two Danish engineers, Lauritz Peter Holmblad and
Jens-Jurgen Ostergaard, developed the first commercial fuzzy control sys-
tem, for a cement kiln. They also created one for a lime kiln in Sweden, and
several others.

Other Commercial Fuzzy Systems

The most spectacular fuzzy system functioning today is the subway in the
Japanese city of Sendai. Since 1987, a fuzzy control system has kept the trains
rolling swiftly along the route, braking and accelerating gently, gliding into
stations, stopping precisely, without losing a second or jarring a passenger.

Japanese consumer product giants such as Matsushita and Nissan
have also climbed aboard the fuzzy bandwagon. Matsushita’s fuzzy vacuum
cleaner and washing machine are found in many Japanese homes. The
washing machine evaluates the load and adjusts itself to the amount of
detergent needed, the water temperature, and the type of wash cycle. Tens
of thousands of Matsushita’s fuzzy camcorders are producing clear pictures
by automatically recording the movements the lens is aimed at, not the
shakiness of the hand holding it.

Sony’s fuzzy TV set automatically adjusts contrast, brightness, sharp-
ness, and color.

Nissan’s fuzzy automatic transmission and fuzzy antilock brakes are
in its cars.

Mitsubishi Heavy Industries designed a fuzzy control system for
elevators, improving their efficiency at handling crowds all wanting to take
the elevator at the same time. This system in particular captured the imagi-
nation of companies elsewhere in the world. In the United States, the Otis
Elevator Company is developing its own fuzzy product for scheduling
elevators for time-varying demand.

Since the Creator of Crispness, Aristotle, had a few doubts about its
application to everything, it shouldn’t be a surprise that other methods of
dealing with instability also exist. Some of them are a couple of centuries old.

15Chapter 1: The Fuzzy World

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

THE VALUE OF FUZZY SYSTEMS

Writing 20 years later, Ebrahim Mamdani noted that the surprise he felt about
the success of the fuzzy controller was based on cultural biases in favor of
conventional control theory. Most controllers use what is called the propor-
tional-integral-derivative (PID) control law. This sophisticated mathematical
law assumes linear or uniform behavior by the system to be controlled.
Despite this simplification, PID controllers are popular because they main-
tain good performance by allowing only small errors, even when external
disturbances occur threaten to make the system unstable.

In fact, PID controllers were held in such high repute that any alter-
native control method would be expected to be equally sophisticated (mean-
ing complicated), what Mamdani calls the “cult of analyticity.”

One of the “drawbacks” of fuzzy logic is that it works with just a few
simple rules. In other words, it didn’t fit people’s expectations of what a
“good” controller should be. And it certainly shouldn’t be quick and easy to
produce.

Despite the culture shock, fuzzy control systems caught on–faster in
Japan than in the United States–because of two drawbacks of conventional
controllers. First, many processes aren’t linear, and they’re just too complex
to be modeled mathematically. Management, economic, and telecommuni-
cations systems are examples.

Second, even for the traditional industrial processes that use PID
controllers, it’s not easy to describe what the term stability means. As Mam-
dani has noted, the idea of requiring mathematical definition of stability has
been an academic view that hasn’t really been used in the workplace. There’s
no industry standard of “stability,” and the various methods of describing it
are recommendations, not requirements. In practical terms, the value of a
controller is shown by prototype tests rather than stability analysis. In fact,
Mamdani says, experience with fuzzy controllers has shown that they’re
often more robust and stable than PID controllers.

There are five types of systems where fuzziness is necessary or
beneficial:

• Complex systems that are difficult or impossible to model
• Systems controlled by human experts
• Systems with complex and continuous inputs and outputs

16Chapter 1: The Fuzzy World

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

• Systems that use human observation as inputs or as the basis
for rules

• Systems that are naturally vague, such as those in the behav-
ioral and social sciences

Advantages and Disadvantages

According to Datapro, the Japanese fuzzy logic industry is worth billions of
dollars, and the total revenue worldwide is projected at about $650 million
for 1993. By 1997, that figure is expected to rise to $6.1 billion. According to
other sources, Japan currently is spending $500 million a year on Fuzzy
Systems R&D. And it’s beginning to catch on in the United States, where it
all began.

Advantages of Fuzzy Logic for System Control

• Fewer values, rules, and decisions are required.
• More observed variables can be evaluated.
• Linguistic, not numerical, variables are used, making it simi-

lar to the way humans think.
• It relates output to input, without having to understand all

the variables, permitting the design of a system that may be
more accurate and stable than one with a conventional control
system.

• Simplicity allows the solution of perviously unsolved prob-
lems.

• Rapid prototyping is possible because a system designer
doesn’t have to know everything about the system before
starting work.

• They’re cheaper to make than conventional systems because
they’re easier to design.

• They have increased robustness.
• They simplify knowledge acquisition and representation.
• A few rules encompass great complexity.

17Chapter 1: The Fuzzy World

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Its Drawbacks

• It’s hard to develop a model from a fuzzy system.
• Though they’re easier to design and faster to prototype than

conventional control systems, fuzzy systems require more
simulation and fine tuning before they’re operational.

• Perhaps the biggest drawback is the cultural bias in the
United States in favor of mathematically precise or crisp sys-
tems and linear models for control systems.

FUZZY DECISION-MAKING

Fuzzy decision-making is a specialized, language oriented fuzzy system used
to make personal and business management decisions, such as purchasing
cars and appliances. It’s even been used to help resolve the ambiguities in
spouse selection!

On a more practical level, fuzzy decision-makers have been used to
optimize the purchase of cars and VCRs. The Fuji Bank has developed a fuzzy
decision-support system for securities trading.

FUZZINESS AND ASIAN NATIONS

If the names Nissan, Matsushita, and Fuji Bank jumped out at you, there’s a
reason. As they indicate, Japan is the world’s leading producer of fuzzy-
based commercial applications. Japanese scientists and engineers were
among the earliest supporters of Lotfi Zadeh’s work and, by the late 1960s,
had introduced fuzziness in that country. In addition, research on fuzzy
concepts and products is enthusiastically pursued in China. According to one
survey, there are more fuzzy-oriented scientists and engineers there than in
any other country.

Why has fuzzy logic caught on so easily in Asian nations, while
struggling for commercial success in the United States and elsewhere in the
West? There are two possibilities.

18Chapter 1: The Fuzzy World

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

One answer is found in the different traditional cultures. As you saw
earlier, one of the hallmarks of Western culture is the Aristotelian either-or
approach to thought and action. Individual competitiveness and a separation
of human actions from the forces of nature have helped foster the early
development of technology in Europe and the United States.

The culture of China and Japan developed with different priorities.
Strength and success were accomplished through consensus and accommo-
dation among groups. This traditional attitude, so perplexing to Americans,
is basic to Japanese business transactions today, from the smallest firm to the
largest high-tech company. In addition, the forces of nature were tradition-
ally expected to be balanced between complementary extremes—the Yin-
Yang of Zen is an example. Fuzzy logic is much more compatible with these
tenets than with the mathematically oriented Western concepts.

Or it may be that the research-oriented government-industry estab-
lishment in Japan is simply more open to new ideas and approaches than in
management- and bottom line-oriented Western firms.

FUZZY SYSTEMS AND UNCERTAINTY

Two broad categories of uncertainty methods are currently in use—prob-
abilistic and nonprobabilistic. Probabilistic and statistical techniques are
generally applied throughout the natural and social sciences and are used
extensively in artificial intelligence. Several nonprobabilistic methods have
been devised for problem solving, particularly “intelligent,” computerized
solutions to real-world problems. In addition to fuzzy logic, they include
default logic, the Dempster-Shafer theory of evidence, endorsement-based
systems, and qualitative reasoning.

These other methods of dealing with uncertainty provide in-
teresting context. But you don’t have to understand them
thoroughly to understand fuzziness.

- -

E-MAIL
FROM
DR. FUZZY

- -

19Chapter 1: The Fuzzy World

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Probability and Bayesian Methods

Probability theory is a formal examination of the likelihood (chance) that an
event will occur, measured in terms of the ratio of the number of expected
occurrences to the total number of possible occurrences. Probabilistic or
stochastic methods describe a process in which imprecise or random events
affect the values of variables, so that results can be given only in terms of
probabilities.

For example, if you flip a normal coin, you have a 50-50 chance that
it will come up heads. This is also the basis for various games of chance, such
as craps (involving two six-sided dice) and the card game 21 or blackjack. On
a more scholarly level it’s used in computerized Monte Carlo methods.

Bayes’s rule or Bayesian decision theory is a widely used variation of
probability theory that analyzes past uncertain situations and determines the
probability that a certain event caused the known outcome. This analysis is
then used to predict future outcomes. An example is predicting the accuracy
of medical diagnosis, the causes of a group of symptoms, based on past
experience. The rule itself was developed in the mid-eighteenth century by
Thomas Bayes, but not popularized until the 1960s. It works best when large
amounts of data are available.

Bayes’s rule considers the probability of two future events both
happening. Then, supposing that the first event occurs, takes the ratio of the
probabilities of the two events as the probability of both occurring. In other
words, the greater the confidence in the truth about a past fact or future
occurrence, the more likely the fact is to be true or the event to occur.

Nonprobabilistic Methods

In addition to fuzzy logic, several extensions of crisp logic have been devel-
oped to deal with uncertainty.

Default Logic

In this system, the only true statements are the ones that contain what is
known about the world (context or area of interest). This includes many
commonsense assumptions and beliefs. For example, assume that traffic

20Chapter 1: The Fuzzy World

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

keeps to the right unless otherwise proven. This is the logic behind the
computer language Prolog.

Default logic also lets the user add new statements as more knowl-
edge is obtained, as long as they’re based on previously accepted statements.
For example, a system reasoning about the planet Mars might include the
belief that it has no life, even though there’s no direct proof.

Default reasoning and logic were developed by the Canadian Ray-
mond Reiter in the late 1970s.

The Dempster-Shafer Theory of Evidence

The theory of evidence involves determining the weight of evidence and
assigning degrees of belief to statements based on them. It was developed by
the Americans Arthur Dempster in the 1960s and Glenn Shafer in the 1970s.
But it’s a generalization of a theory proposed by Johann Heinrich Lambert in
1764. For a given situation, the theory takes various bodies of evidence, uses
a rule of combination that computes the sum of several belief functions, and
creates a new belief function. The method can be adapted to fuzziness.

Endorsement

Endorsement involves identifying and naming the factors of certainty and
uncertainty to justify beliefs and disbeliefs. The method, invented by the
American Paul Cohen in the early 1980s, allows nonmathematical prioritiz-
ing of alternatives according to how likely each one is to succeed or how
suitable it is for use. It also specifies how the sources interact and gives rules
for ranking combinations of sources. For example, they can be sorted into
likely and unlikely alternatives. Useful, for example, in prioritizing tasks by
suitability or by likelihood of succeeding.

Endorsements are objects representing specific reasons for believing
(positive endorsement) and disbelieving (negative endorsements) their asso-
ciated evidence, which consists of logical propositions. Endorsement is the
process of identifying factors related to certainty in a given situation. For
example, in predicting tomorrow’s weather, the conclusion that the weather
is going to be fair, based on satellite weather pictures, is probably better

21Chapter 1: The Fuzzy World

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

endorsed than the conclusion that it is going to rain tomorrow, because that’s
when the Weather Service is having its office picnic.

Qualitative Reasoning

Qualitative reasoning is another commonsense-based method of deep rea-
soning about uncertainty that uses mainly linguistic, as well as numerical,
data models to describe a problem and predict behavior. Qualitative reason-
ing has been used to study problems in physics, engineering, medicine, and
computer science.

FUZZY SYSTEMS AND NEURAL NETWORKS

Today, fuzzy logic is being incorporated into crisp systems and teamed with
other advanced techniques, such as neural networks, to produce enhanced
results with less effort.

A neural network, also called parallel distributed processing, is the type
of information processing modeled on processing by the human brain. Neu-
ral networks are increasingly being teamed with fuzzy logic to perform more
effectively than either format can alone.

A neural network is a single- or multilayer network of nodes (com-
putational elements) and weighted links (arcs) used for pattern matching,
classification, and other nonnumeric problems. A network achieves “intelli-
gent” results through many parallel computations without employing rules
or other logical structures.

As in the brain, many nodes or neurons receive signals, process them,
and “fire” other neurons. Each node receives many signals and, after proc-
essing them, sends signals to many nodes. A network is “trained” to recog-
nize a pattern by strengthening signals (adjusting arc weights) that most
efficiently lead to the desired result and weakening incorrect or inefficient
signals. The network “remembers” this pattern and uses it when processing
new data. Most networks are software, though some hardware has been
developed.

Researchers are using neural networks to produce fuzzy rules. For
fuzzy control systems, neural networks are used to determine which of the

22Chapter 1: The Fuzzy World

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

rules are the most effective for the process involved. The networks can
perform this task more quickly and efficiently than can an evaluation of the
control system. And turning the tables, fuzzy techniques are being used to
design neural networks.

Are neuro-fuzzy systems practical?
In Germany, a home washing machine now on the

market learns to base its water use on the habits of the
householder. A fuzzy system controls the machine’s action,
and a neural network fine-tunes the fuzzy system to make it
as efficient as possible.

As you’ve seen from this overview, three major constructions are used
in creating fuzzy systems—logical rules, sets, and cognitive maps. You’ll
meet all of them in greater detail in Chapter 2.

- -

- -

E-MAIL
FROM
DR. FUZZY

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

CHAPTER 2

FUZZY NUMBERS AND
LOGIC

Scene: a deli counter.
“I want a couple of pounds of sliced cheeses. Give me about a

half-pound each of swiss, cheddar, smoked gouda, and provolone.”
The clerk works at the machine for a while and comes back with

four mounds. “I went a little overboard on the swiss. Is 9 oz. OK? There’s
9 oz. of the cheddar too, and a tad under 8 oz. of the provolone. We only
had about 7 oz. of the gouda. Is that close enough?”

“That’s fine,” the customer says.

Somewhere early in life, we all learned that

2 + 2 = 4

at least in school and cash transactions. With flash cards, Cuisenaire rods, or
by rote, we also absorbed the messages that

23

24Chapter 2: Fuzzy Numbers and Logic

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

2 – 2 = 0
2 x 2 = 4
2 / 2 = 1

There’s nothing wrong with these precise—or crisp—numerical val-
ues. But as the scene in the deli shows, they’re not always necessary or
appropriate. Sometimes fuzzy numbers are better. At the cheese counter,
“about half a pound” turned out to be anywhere from 7 oz. to 9 oz. and the
service was quicker than if the clerk had laboriously cut exactly 8 oz. of each
type of cheese. With the gouda, in fact, exactly 8 oz. would have been
impossible to produce. All in all, the customer ended up with “a couple of
pounds,” as planned.

In this chapter, you’ll delve more deeply into fuzziness, beginning
with some basic concepts. The first of these is fuzzy numbers and fuzzy
arithmetic operations. You’ll also learn the fine art of creating fuzzy sets and
performing fuzzy logical operations on them. And you’ll discover how fuzzy
sets, fuzzy rules of inference, and fuzzy operations differ from crisp ones.
Finally, you’ll begin learning the use of As-Do and As-Then problem-solving
rules (the fuzzy equivalents of If-Then rules).

As always, Dr. Fuzzy will be available with more information and
encouragement.

Why learn the inner workings of fuzzy sets and rules?
They’re the power behind most fuzzy systems out here in

the real world.

Throughout the chapter, you can make use of the doctor’s own series
of fuzzy calculators, contained on the disk that accompanies this book. Each
calculator is fully operational. You can compute the examples in the book,
use your own examples, or press the e button to automatically load random
numbers. The Introduction to the book contains instructions for using the
disk programs with Windows 3.1 or above. Portions of the text that are
related to calculator operations are marked with Dr. Fuzzy’s cartouche. The
doctor also provides context-sensitive help on request from the calculator
screen.

- -

E-MAIL
FROM
DR. FUZZY

- -

25Chapter 2: Fuzzy Numbers and Logic

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Figure 2.1: A crisp 8.

As they say in Dr. Fuzzy’s family, you have to crawl before you can
fly, so we’re going to ease into the doctor’s Fuzzy World Tour with some very
elementary fuzzy arithmetic.

Fortunately, the doctor likes to make tracks on wheels. Open the first
calculator, FuzNum Calc by clicking on the Trike icon, and let’s get rolling.

FUZZY NUMBERS

Back at the deli, a crisp “half pound” (8 oz.) registers on the scale as shown
in Figure 2.1. Deli’s don’t have fuzzy scales (the Dept. of Weights and
Measures would frown). But if they did, “about a half pound” might register
like the representation in Figure 2.2.

Now try your own hand at fuzzy arithmetic with FuzNum Calc.

Figure 2.2: A fuzzy 8.

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Chapter 2: Fuzzy Numbers and Logic 26

Meet FuzNum Calc

The fuzzy number calculator (Figure 2.3) has lots in common with the crisp
calculator you probably have nearby. It has two Setup keys—Setup A and
Setup B—that let you enter two numbers from the keypad. The minus (-) key
allows negative numbers. Use the operation keys to perform addition
(C=A+B), subtraction (C=A-B), multiplication (C=AxB), and division
(C=A/B). It also has a Clear Entry (CE) key.

The numbers you enter, ranging from –9 to +9, appear on the
calculator’s screen. After you click the operation button, the screen displays
the results on a scale from –100 to +100. The scale shifts automatically to
display the numbers you enter and the results calculated. You can perform
calculations on fuzzy numbers exclusively, crisp numbers exclusively, or

Figure 2.3: Opening screen of the FuzNum Calc.

27Chapter 2: Fuzzy Numbers and Logic

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

combine fuzzy and crisp numbers in one operation. You can also move the
scale yourself, using the slide bar just below the screen.

Performing Fuzzy Arithmetic

Each fuzzy number is represented by a triangle, with the apex above the
number itself and the base extending across the numerical range of fuzziness.
For instance—back to the cheese counter—fuzzy 8 rested on a base extending
from 7 to 9.

Enter that fuzzy 8 into the calculator by clicking on the key labeled
Setup A and clicking on the keypad numbers 7, 8, and 9. Positive numbers
must be entered sequentially, from smallest to largest.

The triangle representing fuzzy 8 is shown in Figure 2.4. To think of
the crisp number 8 in fuzzy terms, the range of the base is 8 and the apex is
also 8. Enter it by clicking on Setup B and then clicking on the number 8 three
times. The result is a vertical line superimposed on the fuzzy 8 (Figure 2.5).

Figure 2.4: Fuzzy 8 triangle on the FuzNum Calc.

28Chapter 2: Fuzzy Numbers and Logic

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Figure 2.5: Crisp 8 and fuzzy 8 on the FuzNum Calc.

There’s just one way you can represent any crisp number: crisp 8 is
crisp 8. But a fuzzy number has any number of possible triangular shapes.
The fuzzy number 8, with a base range of 7 to 9 forms an isosceles (symmet-
rical) triangle.

Try another triangular shape by clicking on Setup A and then the
numbers 6, 8, and 9. This fuzzy number 8 has a different triangular repre-
sentation—an asymmetric triangle (Figure 2.6).

For simplicity, FuzNum Calc presents the results as a symmetrical
triangle. A more sophisticated computer would be able to represent results
as asymmetrical triangles, as well.

Figure 2.6: Two alternative fuzzy 8s on the FuzNum Calc.

29Chapter 2: Fuzzy Numbers and Logic

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

(a)

(b)

(c)

(d)

Figure 2.7: Arithmetic operations on the two fuzzy 8s: (a) addition, (b)
subtraction, (c) multiplication, and (d) division.

30Chapter 2: Fuzzy Numbers and Logic

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

TABLE 2.1: Crisp and fuzzy arithmetic operations

Crisp Fuzzy

a = 3 a = –2, 3, 8
b = 2 b = –1, 2, 7

Addition: a + b
 3 + 2 = 5 (–2, 3, 8) + (–1, 2, 7) = (–4, 5, 14)

Subtraction: a – b
3 – 2 = 1 (–2, 3, 8) – (–1, 2, 7) = (–8, 1, 10)

Multiplication: a × b
3 × 2 = 6 (–2, 3, 8) × (–1, 2, 7) = (–3, 6, 15)

Division: a / b
3 / 2 = 1.5 (–2, 3, 8) / (–1, 2, 7) = (–7.5, 1.5, 10.5)

Now perform each of the four arithmetic functions on the two differ-
ent fuzzy 8s by clicking on the appropriate operation button (Figure 2.7).
Table 2.1 provides another set of examples to play with. Their results are even
more dramatic.

Always enter numbers into FuzNum Calc from left to right
as they appear on the scale.

Behind the Scenes With FuzNum Calc

Wonder how FuzNum Calc works? Here’s Dr. Fuzzy’s explanation. Each
operation requires several steps, because the apex and the base are handled
differently.

 This example adds the fuzzy numbers (–1, 2, 5) and (3, 5, 7).

- -

E-MAIL
FROM
DR. FUZZY

- -

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Chapter 2: Fuzzy Numbers and Logic 31

The actual arithmetic operations are performed only on the apex
numbers, so that, for example, 2 + 5 = 7.

The base width is always handled the same way, regardless of the
apex operation:

• The base ranges of the two fuzzy numbers are added to-
gether, forming the base of the arithmetic result. For instance,
the base of fuzzy 2 ranges from –1 to +5,

or 6. The base of fuzzy ranges from +3 to +7,

or 4. So 6 + 4 = 10.
• The sum is divided by 2. In the example, 10/2 yields a prod-

uct of 5.
• Subtract this product from the result of the arithmetic opera-

tion on the apex number. For instance,

7 – 5 = 2

So 2 becomes the left-hand limit of the base.
• Add the product to the result of the arithmetic operation; for

example,

7 + 5 = 12

making 12 the right-hand limit of the base.

The fuzzy result is (2, 7, 12).
Verify this by performing the operation on the fuzzy calculator. When

you’ve finished with FuzNum Calc, press the OFF button to return to the main
calculator menu. Once you’ve got fuzzy numbers cold, it’s a short step to
fuzzy sets.

-2 -1 0 1 2 3 4 5 6 7 8

-2 -1 0 1 2 3 4 5 6 7 8

32Chapter 2: Fuzzy Numbers and Logic

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

- -

E-MAIL
FROM
DR. FUZZY

- -

Figure 2.8: An example of fuzzy set of Eightness with a triangular
membership function.

- -

E-MAIL
FROM
DR. FUZZY

- -

You can turn off any of the fuzzy calculators by clicking on
 its OFF button.

FUZZY SETS

As the fuzzy calculator showed, any fuzzy number can be represented by a
triangle. If you think of the calculator’s linear scale as the horizontal line
(abscissa) of a graph, you can easily convert the diagram to the repesentation
of a fuzzy set by adding a vertical scale (Figure 2.8):

The values in this set—7, 8, and 9—have various degrees of member-
ship in the set of Eightness. For instance, 7 and 9 have the least degree of
membership, while 8 has the greatest degree of membership. You might
represent these degrees of membership as shown in Table 2.2.

A triangular fuzzy set’s apex has a membership value of 1.
The base numbers have membership values of close to 0.

33Chapter 2: Fuzzy Numbers and Logic

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

TABLE 2.2: The Set of “Eightness” with a Triangular Membership Func-
tion.

Degree of
Member Membership

7 .0
7.5 .5
8 1
8.5 .5
9 .0

The triangular membership function is the most frequently used
function and the most practical, but other shapes are also used. One is the
trapezoid, as shown in Figure 2.9. The trapezoid contains more information
than the triangle.

A fuzzy set can also be represented by a quadratic equation (involving
squares, n2, or numbers to the second power), which produces a continuous
curve. Three shapes are possible, named for their appearance—the S func-
tion, the pi function, and the Z function (Figure 2.10).

Like other types of sets, fuzzy sets can be made to interact with each
other to produce a usable result.

Most people have been exposed to classical set theory in school. In
the world of fuzziness, classical set theory is called crisp set theory, in which
set membership is limited to 0 or 1.

Figure 2.9: A fuzzy set of Eightness with a trapezoidal membershlp
function.

34Chapter 2: Fuzzy Numbers and Logic

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Figure 2.10: Graphs of the S function, the pi function, and the Z
function.

Set Theory

The basic purpose of a set is to single out its elements from those in its domain
or “universe of discourse” (Figure 2. 11a). The relationship between two sets
has two possibilities. Either they’re partners merged in a larger entity or the
relationship consists of the elements that they have in common.

Sets as partners (see Figure 2.11b) is called a disjunction (for single-
element, or atomic, sets), using the symbol ∨, or a union (for multielement
sets), using the symbol <. The disjunction or union of two sets means that
any element belonging to either of the sets is included in the partnership. In
the fuzzy world, this partnership expresses the maximum value for the two
fuzzy sets involved.

35Chapter 2: Fuzzy Numbers and Logic

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Figure 2.11: Crisp set operations: (a) Set A in a domain, (b) disjunctionor
union of Set A and Set B, (c) conjunction or intersection of Set A and Set
B, (d) complement of Set A and Set Not-A in its domain, and (e)
difference of Set A and Set B.

36Chapter 2: Fuzzy Numbers and Logic

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Figure 2.12: Fuzzy Set Operations: (a) fuzzy Set A in a domain, (b)
disjunction or union (MAX) of fuzzy Set A and fuzzy Set B, (c) conjunction
or intersection (MIN) of fuzzy Set A and fuzzy Set B, (d) complement of
fuzzy Set A and Set Not-A in its domain, and (e) difference of fuzzy Set
A and fuzzy Set B.

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Chapter 2: Fuzzy Numbers and Logic 37

Set elements in common (Figure 2.11c) is called a conjunction (for
single-element sets) or intersection > (for multielement sets). A conjunction
or intersection makes use of only those aspects of Set A and Set B that appear
in both sets. In the fuzzy world, this partnership expresses the minimum
value for the two fuzzy sets involved.

The part of the domain not in a set can also be characterized (Figure
2.11d)—what’s called not-A (AC). Not-A can also be written ~A or ≠A.

Set theory is closely linked to an operation in logic—the use of
mathematics to find truth or correctness—called implication. (There’s more
on logical operations later in the chapter.) Implication is a statement that if
the first of two expressions is true, then the second one is true also. For
example, given the expressions A and B, if A is true, then B is also true. In
other words,

A implies B

This can also be written

A → B

As you’ve already experienced, fuzziness provides a great variety of
ways for sets to interact—much more so than crispness. Looked at in this
way, fuzzy sets are the more general way of approaching sets, and crisp sets
are a special case of that generality. Figure 2.12 represents fuzzy versions of
the principal set operations.

Set theory, fuzzy and crisp, can be better understood through use of
another of the fuzzy calculators, the one named UniCalc. It calculates opera-
tions on single element sets. Change vehicles—or calculators—by clicking on
the Bicycle icon to open UniCalc.

Touring UniCalc

UniCalc (Figure 2.13) provides a numeric / decimal keypad, the set operators
conjunction (`), disjunction (∨), not–A (~A), not–B (~B), and implication (the
arrow key). To enter single-element values for Set A, click on the box by A
and then on the desired keypad numbers. Follow the same procedure for Set
B. You can enter any value between 0 and 1.

38Chapter 2: Fuzzy Numbers and Logic

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Figure 2.13: Opening screen of the UniCalc.

For example, click on the Set A box, then click on the value .3. Next, click
on the B box and then on the value .8. Now click on the conjunction (∨)
key. The Result box shows the calculation (Figure 2.14), here .3, representing the
minimum of .8 and .3. Clicking on the disjunction (∨) key gives the result .8, the
maximum value.

To see how the operations work for crisp sets, give set A the value 1
and set B the value 0. Then perform disjunction and conjunction (Figure 2.15).

To calculate complementation, enter a fuzzy value for set A, such as
.7, and click on the ~A key. The value for ~A, which is .3 (1 – .7), appears in
the A box (Figure 2.16).

You can demonstrate implication by entering values for A and B, then
pressing the arrow key. (The implication method used here is the simplest:
“contained within.” There are many others.) If A implies B, YES appear in

39Chapter 2: Fuzzy Numbers and Logic

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Figure 2.15: Crisp conjuction operation of UniCalc.

Figure 2.14: Fuzzy conjunction operatlon on UniCalc.

40Chapter 2: Fuzzy Numbers and Logic

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Figure 2.16: Complementation on UniCalc.

Firgure 2.17: Implication on UniCalc.

41Chapter 2: Fuzzy Numbers and Logic

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Figure 2.18: Opening screen of MultiCalc.

the Implication Box. If A doesn’t imply B, NO appears in the Implication Box
(Figure 2.17). For example, enter .7 as the A value and .6 as the B value. Since
.7 is greater than .6, it implies .6, so the Implication Box displays YES. If you
change B to .8 and click on the implication button, the Implication Box
displays NO.

When you’re finished with Unicalc, click on the OFF button. The next
step in set theory involves sets with more than one element.

Multielement Sets

Now that you’ve warmed up by performing disjunction and conjunction on
single element sets, Dr. Fuzzy will lead you to the next level of difficulty–
multielement sets and additional set operations.

42Chapter 2: Fuzzy Numbers and Logic

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

- -

E-MAIL
FROM
DR. FUZZY

- -

Click on the Convertible icon to open MultiCalc (Figure 2.18). Multi-
Calc is an advanced version of UniCalc. It allows as many as 25 elements per
set, with the comparable elements from each set calculated individually.
MultiCalc also performs more operations. Three you’ve already experi-
enced—union (A<B), intersection (A>B), and implication (A,B). It also
calculates difference (A\B) and complement (AC).

Select the number of set elements by clicking on the up and down
arrows below the Build button to scroll through the numbers. Once the
number you want appears in the window next to the arrows, click on the
Build button. The number of elements you selected will be displayed at the
top of the calculator.

If you choose more than 10 elements, you can display them by using
the horizontal scroll bar.

The number of elements in a set is called its cardinality.

Select the number of set elements with the up and down arrows and
Build. Next, enter values for the elements by clicking on each space, such as
the Set A-Xl cell, then clicking on the desired values. For example, build
three-element sets and enter the following values:

Xl X2 X3 . . . X25
SetA .8 .2 .7
SetB 1 .3 .4
Result

Union, Intersection, and Implication

Begin by reviewing the three fuzzy set operations you’ve already practiced–
union (aka disjunction), intersection (conjunction), and implication. Before
you actually use MultiCalc, take a mental self-test, then go electronic to see
if you were successful.

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Chapter 2: Fuzzy Numbers and Logic 43

When you click on the union operator

Union A ø B

the calculator responds with

Result 1.0 .3 .7

Clicking on

Intersection A > B

displays

Result .8 .2 .4

Finally, click on

Implication B , A

The Implication row will display

No No Yes

The set values are now

SetA .8 .2 .7
SetB .1 .3 .4

Difference

Logical difference (A\B) is set A minus the portion of it that is also in set B
(see Figures 2.10e and 2.11e).

Clicking on

Difference A\B

gives

44Chapter 2: Fuzzy Numbers and Logic

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Result 0 0 .3

If you click on the BITs button, the sets become crisp,

SetA 1 0 1
SetB 1 0 0

When you’re finished with MultiCalc, click on the OFF button.

Complement

The set operation complement behaves differently in crisp and fuzzy sets. To
explore it, Dr. Fuzzy provides CompCalc (Figure 2.19), which is very similar to

Figure 2.19: Opening screen of CompCalc.

45Chapter 2: Fuzzy Numbers and Logic

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

- -

E-MAIL
FROM
DR. FUZZY

- -

MultiCalc, except that Set AC replaces Set B. The same operations performed
on MultiCalc’s sets A and B can be performed on CompCalc’s sets A and AC.
Open CompCalc by clicking on the Hatchback icon.

In the crisp world, the union

A ø AC

by definition includes the entire domain, as Figures 2.10b and 2.10d show.
The crisp intersection

A > AC

is impossible, because the two are mutually exclusive (see Figures 2.11c and
2.11d).

In the “all or nothing” crisp world, A ø AC is “all” and A > AC is
“nothing.” The fuzzy world presents other possibilities.

Crisp A ø AC is also known as the law of excluded middle.
Crisp A > AC is also called the law of contradiction.

For starters, enter the fuzzy values

Set A .8 .2 .7

Now click on

Complement AC

This changes Set A to its complement

.2 .8 .3

and Set AC, in turn, becomes

.8 .2 .7

46Chapter 2: Fuzzy Numbers and Logic

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Now perform fuzzy union by clicking on

Union A ø AC

Rather than being the entire domain, as in crisp logic, the fuzzy union is the
maximum for each pair of elements,

.8 .8 .7

When you perform fuzzy intersection by clicking on

Intersection A > AC

Rather than being mutually exclusive, as in crisp logic, the fuzzy intersection
is the minimum for each pair of elements,

.2 .2 .3

This dramatic difference between crisp and fuzzy operations becomes
even more vivid in the next section, on fuzzy logical rules.

CRISP AND FUZZY LOGIC

Set theory is closely related to the truth-finding logical statements called the
rules of inference. As with sets, fuzzy rules of inference were devised a few
decades ago, based on the much older crisp rules. And as with sets, the fuzzy
rules are generalizations and the crisp rules are a special case within them.

Fuzzy logic shows that truth itself is fuzzy.

Rules of Inference

Rules of inference are rules for deriving truths from stated or proven truths.
You’ve already met one of these rules disguised as the set operation called
implication, in the form

47Chapter 2: Fuzzy Numbers and Logic

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

A → B

In logic, the same rule goes by the Latin name modus ponens, meaning
affirmative mode, stated:

Given that A is true and A implies B, then B is also true.

This means that A implies B (or B is inferred from A), but B does not
necessarily imply A. Modus ponens may also be stated in the form If-Then:

If A is true, Then B is also true

Crisp modus ponens can also be written

If A
And A → B
Then B

A related rule, called modus tollens, meaning denial mode, can
be written several ways:

Given that B is false and A implies B, then A is also false.

or

If B
And A → B
Then A

Another way to present modus tollens is

A → B means B → A

which is also called contraposition.
Here’s how these two rules work together. For example, according to

modus ponens,

48Chapter 2: Fuzzy Numbers and Logic

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

If the apple is red
And a red apple is a ripe apple
Then the apple is ripe

Modus tollens states,

If the apple is not ripe
And a red apple is a ripe apple
Then the apple is not red

As a crisp situation, apple ripeness is simple to state. Either the apple
is red and therefore ripe, or it’s not ripe and therefore not red. Unfortunately,
redness can be interpreted many ways. It includes many shades of color and
an apple may be partly red. In the real world, an apple’s redness and its
ripeness constitute—you guessed it—a fuzzy situation.

Fortunately, a generalized modus ponens exists to handle the logic of
fuzzy situations.

As the apple is very red
And a red apple is a ripe apple
Then the apple is very ripe

A second fuzzy rule, called the compositional rule of inference, involves
an explicit relationship:

As Apple #1 is very ripe
And Apple #2 is not quite as ripe as Apple #1
Then Apple #2 is more or less ripe

Logical Statements

The set operators union and intersection also have counterparts in crisp logic.
The most common way of representing them is with quantifiers in a type of
statement structure called predicate calculus. The or of a union is represented
by an existential quantifier, using the symbol ', read as “there exists.” It states
that there is at least one instance in which the statement is true. For example,

('x) [ripe (apple)]

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Chapter 2: Fuzzy Numbers and Logic 49

translated as “there exists one example of a ripe apple.”
The and of an intersection is represented by a universal quantifier, using

the symbol ;, read as “for all.” It states that the statement is true in all
instances, such as

(;x) [apple (x) → ripeness (x)]

meaning all apples are ripe.
Is either statement logically true? It depends on the domain in-

volved—the bowl on the table, the entire earth, or whatever.
Fuzzy logic encompasses “there exists” and “for all” and also pro-

vides intermediate statements between the two extremes.
The fuzzy logician, R. R. Yager, has shown that the word few is a less

extreme form of or (“there exists”). Where the crisp statement says that a
single instance of a ripe apple exists in the domain, few means that it might
be Apple #1 or Apple #2 or . . .

The word most is a less extreme form of “for all.” Rather than stating
that all apples are ripe, most means that Apple #1 and Apple #2 and Apple
#3 . . . in the domain are ripe.

The As-Then format is so handy in fuzzy thinking that it’s used in the
sets of word-based rules that control fuzzy systems.

AS-THEN AND AS-DO RULES—A SNEAK PREVIEW

Traditional or crisp rules are expressed in precise terms, such as:

If the room temperature is less than 62 degrees,
Then set the thermostat for 68 degrees

Even though most home thermostats are marked in degrees, that’s not
the way most people use them. “Turn up the heat a little,” someone will say.
Or “nudge the thermostat.” In other words, home heating is really a fuzzy
situation.

Fuzzy logic also uses If-Then-style rules, expressed by the form
As-Then (the general form) or As-Do (the control form), instead. A fuzzy
thermostat rule might read:

50Chapter 2: Fuzzy Numbers and Logic

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

E-MAIL
FROM
DR. FUZZY

- -

As the room temperature is cool,
Do turn on the heater to High

There could be fuzzy rules for parallel parking a car, the fuzzy
situation first explored in Chapter 1. A flowchart of parallel parking might
look like the one in Figure 2.20. The fuzzy rules might be

As your car is lined up next to the one in front of your space,
Then angle the car back into the space.

As you’re approaching the curb,
Then turn the steering wheel slightly to adjust your angle.

As you’re quite close to the curb,
Then turn the wheel so you can back up straight.

- -
To recap set representations:

• Sets as partners

disjunction ∨
union ø
or
maximum (MAX)
existential quantifier (“there exists”) '

• Fuzzy in-between quantifiers (examples)

most
few

• Set elements in common

conjunction ∨

intersection ù
and
minimum (MIN)
universal quantifier (“for all”) ;

51Chapter 2: Fuzzy Numbers and Logic

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Figure 2.20: Parallel parking flowchart.

52Chapter 2: Fuzzy Numbers and Logic

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

As you back up and the car doesn’t move,
And as the rear tire’s wedged against the curb,
Then go forward slowly, steering toward the curb until the
 rear tire straightens out.

As you’re too far from the curb,
Then drive back and forth again, using shallower angles.

As you’re close enough to the curb,
Then drive straight forward.

As you’re a little too close to the car ahead,
Then back up a few inches.

As you’ve thunked into the bumper of the car in back,
Then drive forward a couple of inches.

As the car is positioned OK,
Then turn off the engine.

The use of fuzzy rules in a variety of real-world systems will be
explored more deeply beginning in Chapter 3.

QUANTIFYING WORD-BASED RULES

Hedges—words that modify existing rules—played a large role in fuzzy
programming in the olden days, when computers were slower and memory
was scarcer than in the mid-1990s. Hedges include quantifiers such as more
or less, almost, higher than, often, and roughly.

Today it’s easier to write a new set of rules from scratch. Still, the
concept of hedges remains available as a tool. And they’re helpful in explain-
ing the relationship between fuzzy words and crisp arithmetic. Fuzzy sys-
tems use what’s called fuzzification (changing input values into fuzzy terms)
and defuzzification (changing fuzzy output back into numerical values for
system action).

TextCalc is Dr. Fuzzy’s way for you to get acquainted with the
process, using If-Then rules.

53Chapter 2: Fuzzy Numbers and Logic

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Open TextCalc (Figure 2.21) by clicking on the Van icon. The If-Then
rule can accommodate as many as four ands, though you don’t have to use
all of them. The doctor provides several ways to modify this basic conjunc-
tion. You can change any and to an or, allowing disjunction. You can add
negation (not). The hedges are very (quantified as the square of the original
value) and slightly (the square root of the original value.) Crisp is also
available as a hedge.

You can enter any value between 0 and 1. Value’ displays the result
of a hedge applied to that Value.

You can change a set name to any eight-letter phrase.
If you prefer As-Do to If-Then, clicking on the Alternate Prepositions

button will make the change. In this calculator, clicking on the implication

Figure 2.21: Opening screen of TextCalc.

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Chapter 2: Fuzzy Numbers and Logic 54

(arrow) key performs the operation. Use the Clear button to remove all
values.

Start with a simple If-And-Then set operation—the equivalent of a
series of conjunctions–entering a value of .7 for Event A, .2 for Event B, .3
for Event C, .1 for Event D, and .6 for Event E. Now click on the arrow key.
The Result Value is displayed as .1 (Figure 2.22).

Now double-click on Event A’s Negation column, displaying not and
recalculate. This time, the Value of Event A changes to .3. The Result remains
.1, and the minimum value is .5 (Figure 2.23).

Again double-click on Event A’s Negation cell to remove the not. Now
double-click on Event D’s Hedge column until greatly appears, and click on the
arrow. The hedged value—the square of the Value—appears in the Value’
column and a new Result is displayed (Figure 2.24).

- -

- -

E-MAIL
FROM
DR. FUZZY

In TextCalc,

VERY = VALUE2

SLIGHTLY= VALUE

Figure 2.22: Simple and rule operation on TextCalc.

55Chapter 2: Fuzzy Numbers and Logic

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Figure 2.23: Negation operation on TextCalc.

Figure 2.24: TextCalc operation using the hedge very.

Double-click on the Hedge column again until slightly is displayed
and Recalculate, to see the effect of the value’s square root.

To perform a disjunction, click on each Event’s and, changing it to or,
remove the hedge, and recalculate. Figure 2.25 shows the result.

To see the difference between fuzzy and crisp operations, first click
on C to remove all the values, then double-click on each Event’s Hedge
column until crisp is displayed. Now set the Value of Event A at 1, the Value
of Event B at 0, and the others at either 0 or 1, and perform the various
operations again.

56Chapter 2: Fuzzy Numbers and Logic

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Figure 2.25: Simple or rule operation on TextCalc.

Dr. Fuzzy has now provided the means for hands-on experience with
most of the basics of fuzziness. Chapter 3 begins an exploration of their use
in real-world systems. Don’t be surprised if the doctor shows up with some
timely assistance.

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

cHAPTER 3

FUZZY SYSTEMS ON THE
JOB

Today practical fuzzy systems are on the job in consumer products (washing
machines, electric razors), industrial controllers (elevators), big public sys-
tems (a municipal subway), medical devices (cardiac pacemakers), and the
business world (bond-rating systems). All these systems are solving some
kind of problem, whether it’s analyzing the past or predicting the future.

To understand better what fuzzy systems can do, Dr. Fuzzy says it’s
useful to take a look at the kinds of problem solving they’re best at in the real
world. If it’s good enough for Dr. Fuzzy, it’s gospel to us, so that’ll be the
first order of business in this chapter.

Next on the agenda is to take out the good doctor’s fuzzy system
blueprint and (verbally) construct one from the ground up, with the help of
some of the doctor’s nifty visual aids. Along the way, Dr. F. will point out
some of the existing systems and reveal some of their inner secrets.

All this will be in preparation for the construction of a real comput-
erized system—to come in Chapter 4.

57

58

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Chapter 3: Fuzzy systems on the Job

FUZZY TOOLS

There are three basic types of fuzzy tools for problem solving. Almost all
commercial fuzzy problem solvers are expert systems, descended from the
control model developed by Ebrahim Mamdani. Another tool makes deci-
sions—a model developed by Michael 0’Hagan (Fuzzy Logic, Inc.). The final
fuzzy tool, which describes how complex systems work, is called a fuzzy
cognitive map, developed by Bart Kosko (University of Southern California).
In this book you’ll learn the anatomy and behavior of all three of these types
of fuzzy systems, using modified versions of commercial software (on the
accompanying disk).

Fuzzy Knowledge BuilderTM for a Fuzzy Expert System

A fuzzy expert system (or fuzzy knowledge-based system) is a rule-based system
composed of two modules—a knowledge base, mostly As-Then or As-Do
rules, and an inference engine, which makes the rules work in response to
system inputs.

The Fuzzy Knowledge BuilderTM is a tool for creating the knowledge
base. The job requires a partnership of two specialties, one for designing
fuzzy systems and the other for expertise in the domain in question, such as
engines, manufacturing processes, and other control systems. Almost all
commercial fuzzy systems today are used for control.

One of the primary tasks of the designer is to learn how the expert
works in the domain. For instance, how does an engine operator control the
engine so it runs at maximum efficiency? Such learning isn’t as easy as you
might think.

True expertise is used intuitively, rather than thought through step
by step. For instance, when you become an expert car driver or tennis player,
you perform without consciously thinking about it.

When the designer does a good job, the computerized fuzzy knowl-
edge-based system contains such intuitive expertise, then uses it to control a
machine as close as possible to the way the human expert would.

A designer can use the Fuzzy Knowledge BuilderTM to capture such
expertise and put it in a knowledge base. It can be used in domains where
the range of inputs and outputs are known ahead of time and don’t change.

59

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Chapter 3: Fuzzy systems on the Job

Its user is likely to be an engineer or designer. Later in this chapter you’ll see
how a simple fuzzy expert system is designed. You’ll work with the Fuzzy
Knowledge BuilderTM in Chapter 4.

Fuzzy Decision-MakerTM

The Fuzzy Decision-MakerTM, which you’ll meet in Chapter 5, is just that—a
way to decide something, in business or in personal life, for example. It works
on problems where the inputs are known and limited, and makes the best
decision possible under the circumstances.

Fuzzy Thought AmplifierTM

The Fuzzy Thought AmplifierTM (Chapter 6) is used to describe complex
dynamic systems and it’s intensely feedback driven. It’s purpose is to model
complex scenarios with more real-world confusion than other kinds of mod-
els can handle. For instance, it can be used to show the contributions of
interacting conditions to a political or social system—such as apartheid in
South Africa, a city’s public health system, or war in the Middle East—and
how changes can lead to stabilization or destabilization. A social scientist will
find this tool valuable.

In a way, though, we all have to be engineers, social scientists, and
business people. For example, the same problem situation can be examined
differently with each tool.

FUZZY SYSTEMS

Most commercial fuzzy products are rule-based systems that control the
operation of a mechanical or other device. The fuzzy controller receives
current information fed back from the device as it operates. As Figure 3.1
shows, crisp information from the device is converted into fuzzy values that
are processed by the fuzzy knowledge base. The fuzzy output is defuzzified
(converted to crisp values) that change the device’s operating conditions,
such as slowing down motor speed or reducing operating temperature.

60

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Chapter 3: Fuzzy systems on the Job

E-MAIL
FROM
DR. FUZZY

- -
Business and management experts divide problems and prob-
lem-solving into several categories:

Prescriptive

Prescriptive problems require a specific decision. For exam-
ple, a fast-food restaurant owner might need to find out how
many customers she has at different times of day. With this
information, she can determine how many employees she
needs on duty at different times. This type of problem can be
solved with the Fuzzy Decision Maker.

Descriptive

Here the need is to identify the problem. For instance, the
fast-food restaurant owner may want to understand why cus-
tomers have to stand in long lines at lunchtime. By describing
how work is done in the restaurant, she may determine that
the bottleneck is at the sandwich assembly station.

Electrical engineers will recognize this as a problem
queueing theory, in which plant identification describes the
model. In queueing theory, one rule of thumb is that if the system
is operating at 50% of capacity, it will cease to function effectively
and become chaotic. Hungry burger lovers will know the feeling!

This problem is an early phase of decision-making, so the
Fuzzy Decision MakerTM will be useful for dealing with it and for
the rest of the solution—how to deal with the bottleneck.

Optimizer

An optimizer establishes performance criteria, such as how
many customers should be served per hour. It identifies the
conditions or actions that allow the system to meet the criteria.
Because it requires expert knowledge, it’s a problem for the
Fuzzy Knowledge Builder.

Satisficing

A satisficing problem solver determines how to be “least
worst”—how to maximize operations within already-

- -

61

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Chapter 3: Fuzzy systems on the Job

E-MAIL
FROM
DR. FUZZY

established restrictions. The restaurant owner, for instance,
might need to determine the maximum number of customers
that can be served per hour, given a specified number of
employees and the maximum number of burgers that can be
cooked at once.

This type of problem would be suited to either the
Fuzzy Decision Maker or the Fuzzy Knowledge BuilderTM.

Predictive

A predictive problem solver uses past results and projects
them into the future (extrapolation). For example, the restau-
rant owner may analyze how many customers ate at the res-
taurant on the day after Thanksgiving last year, then use that
information to predict the crowd on that same day this year.
Predictive problems can be solved with the Fuzzy Knowledge
BuilderTM or the Fuzzy Thought AmplifierTM.

Figure 3.1: Diagram of a fuzzy controller.

- -

62

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Chapter 3: Fuzzy systems on the Job

A modern fuzzy control system isn’t much different from the first one
devised by Ebrahim Mamdani in the 1970s, an automated control system for
the speed of a steam engine. Mamdani’s fuzzy system had two inputs and
two outputs and incorporated the expertise of a human machine operator
with a set of fuzzy rules. The fuzzy system received two inputs from the
steam engine as it operated, the engine speed and boiler pressure. It proc-
essed the information through the knowledge base and produced two out-
puts, the degree of throttle (the valve that controls how much steam enters
the engine) and the boiler temperature.

CREATING A FUZZY CONTROL SYSTEM

The standard method of creating a fuzzy control system involves identifying
and naming the fuzzy inputs and outputs, creating the fuzzy membership
function for each, constructing the rule base, and deciding how the action
will be carried out.

The early parts of any fuzzy control design are drawn from the intuitive
experience of an expert. For instance, suppose you want to create a fuzzy system
that uses the way a bicycle rider determines how and when to put on the brake
for a stop sign. Dr. Fuzzy has found a bike-riding expert (who modestly wants
to be known only as BikeRider) for a down-to-the-basics system with two inputs
and one output. Dr. Fuzzy calls this system BikeBraker.

Identify and Name Fuzzy Inputs

As any bike rider might guess, the two inputs are speed and distance. The next
step is to identify the fuzzy ranges of each.

Speed

BikeRider, a city dweller, pedals along streets posted from 35 mph to 50 mph.
The particular block in question is posted at 35 mph. Naturally, the BikeRider
is a law-abiding citizen, but occasionally gets carried away, and so identifies
four fuzzy speed ranges: Stopped, Slow, Pretty Fast, and Real Fast (see Table 3.1).

63

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Chapter 3: Fuzzy systems on the Job

TABLE 3.1: Names and Ranges for BikeBraker Speed Input.

Name Range (mph)

Stopped 0–2
Slow 1–10
Pretty Fast 5–30
Real Fast 25–50

Distance

Let’s say that a city block is about 660 feet long, and that all consideration of
braking comes within a quarter-block (about 165 feet) of the stop sign.
BikeRider gives the system five fuzzy distance from stop sign ranges: At, Real
Close, Near, Pretty Far, and Real Far (see Table 3.2).

In most control systems, the majority of the action is in the lower
ranges. This is the case in the BikeRider’s fuzzy speed and distance.

TABLE 3.2: Names and Ranges for BikeBraker Distance Input.

Name Range (feet)

At 0–5
Real Close 0–40
Near 20–0
Pretty Far 60–120
Real Far 100–165

Identify and Name Fuzzy Output

There’s just one output for BikeBraker, Brake Pressure, measured in percent-
age of total braking capacity—in this case the maximum squeeze of the
calipers on the tire. BikeRider’s fuzzy braking ranges are None, Light, Medium,
and Squeeze Hard (see Table 3.3). As with the inputs, most control system
outputs are in the lower ranges.

64

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Chapter 3: Fuzzy systems on the Job

TABLE 3.3: Names and Ranges for BikeBraker Braking Output.

Name Range (%)

None 0–1
Light 1–30
Medium 25–75
Squeeze Hard 65–100

Create the Fuzzy Membership Functions

Fuzzy control systems are “expert” systems, meaning they’re modeled on the
expert experience of real people. The next step is to incorporate such experi-
ence in defining the fuzzy membership functions for each input and output
(Figure 3.2).

Figure 3.2: Fuzzy membership functions for inputs and outputs: (a)
speed input, (b) distance input, and (c) braking output.

65

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Chapter 3: Fuzzy systems on the Job

Construct the Rule Base

Now we write the rules that will translate the inputs into the actual outputs.
The first thing to do is to make a matrix—a spreadsheet—of the inputs. The
BikeBraker matrix places Speed along the horizontal and Distance along the
vertical (Figure 3.3).

Designing the Interactions

The matrix provides one empty cell for each Distance-Speed combination. What
goes in the cells? Each cell can contain a fuzzy output action, though they don’t
all need to be filled in. Dr. Fuzzy likes to be thorough, so the matrix is filled with
an action or no action to each Speed-Distance combo (Figure 3.4).

The actions are those designed into the output membership functions
(Figure 3.2). One purpose of the matrix is to look at the input-output

Figure 3.3: Input matrix.

66

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Chapter 3: Fuzzy systems on the Job

Figure 3.4: Matrix with actions.

relationship as a whole to see if it accounts for both normal operation and
abnormal events. At this point, the control system designer can refine the
inputs and outputs and add additional membership functions, if necessary.

Writing the Rules

Next, the system designer uses the matrix as the basis for the actual rules,
one for each matrix cell. Table 3.4 displays the 20 As–Then rules, each of
which is an and rule.

67

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Chapter 3: Fuzzy systems on the Job

TABLE 3.4: BikeBraker Rules.

As you are At the stop sign and you are Stopped
Then brake pressure is None

As you are Real Close to the stop sign and you are Stopped
Then brake pressure is None

As you are Near the stop sign and you are Stopped
Then brake pressure is None

As you are Pretty Far from the stop sign and you are Stopped
Then brake pressure is None

As you are Real Far from the stop sign and you are Stopped
Then brake pressure is None

As you are At the stop sign and you are going Slow
Then brake pressure is Medium

As you are Real Close to the stop sign and you are going Slow
Then brake pressure is Light

As you are Near the stop sign and you are going Slow
Then brake pressure is Light

As you are Pretty Far from the stop sign and you are going Slow
Then brake pressure is None

As you are Real Far from the stop sign and you are going Slow
Then brake pressure is None

As you are At the stop sign and you are going Pretty Fast
Then brake pressure is Squeeze Hard

As you are Real Close to the stop sign and you are going Pretty Fast
Then brake pressure is Squeeze Hard

As you are Near the stop sign and you are going Pretty Fast
Then brake pressure is Squeeze Hard

As you are Pretty Far from the stop sign and you are going Pretty Fast
Then brake pressure is Medium

As you are Real Far from the stop sign and you are going Pretty Fast
Then brake pressure is Light

As you are At the stop sign and you are going Real Fast
Then brake pressure is Squeeze Hard

As you are Real Close to the stop sign and you are going Real Fast
Then brake pressure is Squeeze Hard (continued)

68

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Chapter 3: Fuzzy systems on the Job

TABLE 3.4: BikeBraker Rules (continued).

As you are Near the stop sign and you are going Real Fast
Then brake pressure is Squeeze Hard

As you are Pretty Far from the stop sign and you are going Real Fast
Then brake pressure is Medium

As you are Real Far from the stop sign and you are going Real Fast
Then brake pressure is Light

Making the Rules “Work Fuzzy”

When you last saw the rules matrix (Figure 3.4), it didn’t look very fuzzy.
How does it become fuzzy? To find out, it’s helpful to begin with a “what if”:
What if the rules and matrix were crisp?

Here’s how the system would work. When BikeBraker operated, the
combination of Speed and Distance would apply to just one matrix cell. The
rule written in that cell would fire. The rest of the rules wouldn’t fire.

Figure 3.5: Example of a crisp rule matrix.

69

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Chapter 3: Fuzzy systems on the Job

In other words, as you’ve seen with Dr. Fuzzy’s calculators, the input
membership function for each Speed and Distance value would be either 1
or 0 (Figure 3.5).

As the membership function for Speed is 1 (as Speed is 15, for instance)
And the membership function for Distance is 1 (as Distance is 20),
Then the rule in the matrix cell (15–20) will fire. No other rule fires.

Since BikeBraker is fuzzy, there are degrees of membership function,
and any crisp input falls in several membership fuzzy sets. Also, fuzzy rules
“fire fuzzy.” The degree of membership determines the degree to which the
rule fires. Because several sets are involved, several rules fire.

For instance, suppose BikeRider is going 7 mph and is about 25 feet
from the stop sign. The speed of 7 mph falls into two fuzzy Speed sets,

Slow: 1–10 mph and Pretty Fast: 5–30 mph

The distance of 25 feet also falls into two fuzzy Distance sets,

Near: 20–80 feet Real Close: 0–40 feet

This means that four matrix cells are involved will fire, as Figure 3.6 shows
(x is a membership value between 0 and 1).

• As the membership function for SLOW Speed is x
And the membership function for NEAR Distance is x,
Then the rule in the Slow–Near matrix cell fires partially

• As the membership function for Slow Speed is x
And the membership function for Real Close Distance is x,
Then the rule in the Slow–Real Close matrix cell fires partially

• As the membership function for Pretty Fast Speed is x
And the membership function for Near Distance is x,
Then the rule in the Pretty Fast–Near matrix cell fires partially

• As the membership function for Pretty Fast Speed is x
And the membership function for Real Close Distance is x,
Then the rule in the Pretty Fast–Real Close matrix cell fires
 partially.

70

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Chapter 3: Fuzzy systems on the Job

Figure 3.6: Example of fuzzy rules firing.

Decide How to Execute the Actions

How do you calculate the degree to which each rule fires? The first step is to
ask another question: If the inputs are in the vertical and horizontal dimen-
sions, what dimension is the output? One way to answer that question is to

71

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Chapter 3: Fuzzy systems on the Job

give the matrix a third dimension, depth. This is the dimension that turns a
square into a cube. How do you create this third dimension?

Here’s one way to really put your whole self into the project. Stand
up and point your right foot at a 45° to the right and your left foot at a 45° to
the left. You can think of your feet as standing on the vertical and horizontal
dimensions. Your body is the depth dimension. You can label the horizontal
dimension x, the vertical dimension y, and the depth dimension z.

Three-dimensional space is also known as Cartesian space,
with each dimension called an axis—the x, y, and z axes.

Another way to think about the three dimensions is to imagine the
process of setting up a tent with poles and canvas. First, place the poles

E-MAIL
FROM
DR. FUZZY

Figure 3.7: Tent raising: (a) tent poles and 2-D canvas, and (b) 3-D tent.

- -

- -

72

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Chapter 3: Fuzzy systems on the Job

upright (Figure 3.7a). Now raise the canvas from the ground (the x and y
dimensions) so that some of it is supported by the tops of the poles (z
dimension), as Figure 3.7b.

Suppose instead of a tent, you want to erect a canopy over a given
space—for instance, to shade the table at a backyard picnic. You’ll probably
have four poles of the same length, one at each corner, with the canvas
secured to the tops of the poles. If the ground is level, the canopy will be more
or less level, too (Figure 3.8).

But suppose you’re raising the canopy for another purpose and you
don’t want it to be level. Maybe you want it to represent something that’s
happening on the ground—some kind of an interaction between the vertical
and horizontal dimensions. In this case, you might want to erect lots of
different-length poles that are spaced evenly. Once you have the poles
placed, you attach the canvas to the top of each pole. What does this canopy
look like? Instead of being more or less flat, the canopy’s surface looks hilly,
with peaks and valleys determined by the heights of the poles (Figure 3.9).

In this scenario, the “ground” represents the fuzzy input matrix, the
poles represent the interaction of the two inputs, and the canopy is the output
or the degree to which the defuzzied rules fire. Dr. Fuzzy calls the hilly
“canopy” a fuzzy action surface, because it’s actually where the action is. The
fuzzy action surface (also called a fuzzy estimation surface) performs the same
action of reacting to the fuzzy inputs with appropriate outputs. In other
words, it performs the action or judgment as the human expert under the
same circumstances: It estimates, interpolates, extrapolates, transforms, de-
cides, categorizes, extracts features, controls, simplifies, or anticipates!

The original way of creating a fuzzy action surface was with
what’s called a fuzzy associative memory (FAM). FAMs are math
and theory intensive but not too practical. Somewhere
along the way, someone discovered that the triangular mem-
bership functions do the same work and are much easier to
work with.

Learn more about FAMs in Appendix A.

- -

E-MAIL
FROM
DR. FUZZY

- -

73

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Chapter 3: Fuzzy systems on the Job

Figure 3.8: A level canopy.

Figure 3.9: A "hilly" canopy.

74

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Chapter 3: Fuzzy systems on the Job

How is the output determined? Fuzzy logic is applied to the fuzzy
rules. For instance, suppose the first of the four (previous) matrix cells is
given the following input values:

As the membership function for Slow Speed is .7
And the membership function for Near Distance is .5,

This is an and rule, meaning that the then portion is a conjunction or minimum
of the input values:

.7 ` .5

or

.5

resulting in:

Then the rule in the Slow-Near matrix cell fires at a strength of .5

Conjunctions are performed on each of the four cells so that, say, the
then values are

.5 .3 .7 .8

Two methods of translating the rule firings into crisp output values
are the fuzzy Or and the centroid.

Fuzzy Or

To determine the output value, perform a disjunction (or or maximum) opera-
tion on them,

.5 ~ .3 ~ .7 ~ .8

resulting in
.8

75

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Chapter 3: Fuzzy systems on the Job

This means that the crisp output value would be .8 of the maximum braking
power.

Centroid

The centroid is the center of the output membership function adjusted to the
degree of rule firing. It works like this.

• First, modify each affected output membership function so
it’s cut off at the strength indicated by the rule firing. For in-
stance, if the rule involving a membership function fires at .5,
the curve covers the membership function area from 0 to .5,
rather than 0 to 1. The area between .5 and 1 is lopped off,
turning a triangle into a trapezoid shape (Figure 3.10).

• Next, calculate the centroid—the center of activity—of each
modified output membership curve.

• Take a weighted sum of the centroids; this becomes the crisp
output number.

Figure 3.10: A triangular membership function modified to a trapeziod.

76

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Chapter 3: Fuzzy systems on the Job

- -

E-MAIL
FROM
DR. FUZZY

- -

Here’s a recap of the five-step process of creating a rule-based
fuzzy system.

1. Identify the inputs and their ranges and name
them.

2. Identify the output and their ranges and name
them.

3. Create the degree of fuzzy membership function
 for each input and output.

4. Construct the rule base that the system will op-
 erate under.

5. Decide how the action will be executed by assign–
ing strengths to the rules and defuzzification.

For the knowledge base, the expert defines the input
and output observation (the descriptive words) and the range
(the fuzzy number range). The expert also defines the conse-
quent output for each input (the rule). The designer defines
the membership functions for inputs and outputs.

The knowledge base is then put into action in an infer-
ence engine–a computer program that can take actual inputs,
let them fire the rules, and export outputs to the domain system.

FUZZY BUSINESS SYSTEMS

Bond Rating

Hiroyuki Okada of Fujitsu Laboratories Ltd. and colleagues have developed
a neuro-fuzzy system for rating the investment safety of bonds, a prescriptive
problem. The research system works through the firing of a set of 10 fuzzy
rules. The fuzzy membership functions or the rules are adjusted or modified
in a neural network.

The basic rules cover the inputs and the financial condition of the
company issuing the bonds: ordinary profit (with membership functions for
large, medium, small), owned capital (large, small), interest coverage ratio

77

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Chapter 3: Fuzzy systems on the Job

(high, low), long-term loan ratio (low, high), and owned capital ratio (low).
Outputs are high, medium, and low; they’re based on the bond ratings
according to the Japan Bond Research Institute—AAA (the highest rating),
AA, A, BBB, BB, and B.

The system uses two classes of rules. The basic rules, which receive
an initial weighting of 1, are related to ordinary profits. Auxiliary rules cover
the other inputs and receive an initial weighting of 0.2. The weightings
change after learning takes place in a multilayered neural network.

The basic rules are these:

1. As ordinary profit is large, then rating is high. After learning,
the weight increased from 1 to about 2.5.

2. As ordinary profit is medium, then rating is medium. After
learning, the weight decreased from 1 to about .7.

3. As ordinary profit is small, then rating is low. After learning,
the weight decreased from 1 to about .6.

The auxiliary rules are these:

4. As owned capital is large, then rating is high. After learning,
the weight increased from .2 to about .8.

5. As owned capital is small, then rating is low. After learning,
the weight increased from .2 to about 2.2.

6. As interest coverage ratio is high, then rating is high. After
learning, the weight increased from .2 to about .7.

7. As interest coverage ratio is low, then rating is low. After
learning, the weight decreased from .2 to about –.2.

8. As long-term loan ratio is low, then rating is high. After learn-
ing, the weight decreased from .2 to about 0.

9. As long-term loan ratio is high, then rating is low. After learn-
ing, the weight decreased from .2 to about –.1.

10. As owned capital ratio is low, then rating is low. After learning,
the weight increased from .2 to about 2.2.

78

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Chapter 3: Fuzzy systems on the Job

Creditworthiness Based on Data Analysis

C. von Altrock and B. Krause, at the German software company INFORM,
developed a method of data analysis that can be used for a variety of
purposes–it’s being used by Mercedes-Benz in the design of automobile and
truck parts–and determining creditworthiness. Rather than MIN/MAX op-
erators, the system uses an intermediate gamma operator.

The analysis for this optimizing problem takes a several-step reduc-
tion of multiple fuzzy inputs to a single input, which is evaluated for output.
For instance, the initial creditworthiness inputs are Property and Other net
property, which are reduced to Security; Income and Continuity (Liquidity);
Potential and Motivation (Potential); and Economic Thinking and Conform-
ity (Business Behavior). Next, the four intermediate variables are reduced:
Security and Liquidity become Financial Basis; Potential and Business Behav-
ior become Personality. Finally, Financial Basis and Personality are reduced
to Creditworthiness.

INDUSTRIAL FUZZY SYSTEMS

Oil Recovery

An extremely complex fuzzy system was designed by W. J. Parkinson and K.
H. Duerre at Los Alamos Scientific Laboratory as an experiment to determine
the best techniques for improving the recovery of oil from the ground, an
optimizing problem. The purpose is to extract more of the estimated two-
thirds of known oil that cannot be removed with conventional pumping and
other existing technology.

The four categories of alternative methods are uses of chemicals, such
as polymers, surfactants (detergents), and alkalines; injection of gases, in-
cluding hydrocarbons, carbon dioxide, and nitrogen and flue gas; heat, either
combustion or steam flooding; and the use of microbes.

Input membership functions (such as preferred, fair, possible, poor)
for various characteristics of the oil formation were written for each recovery
method. The characteristics included gravity, viscosity, carbon composition,
salinity, oil saturation, type of rock formation, thickness of the formation,
average permeability, well depth, temperature, and porosity.

79

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Chapter 3: Fuzzy systems on the Job

The single output was a score for the best recovery method, whose
membership functions were not feasible, verypoor, poor, possible, fair, good,
medium good, and preferred. Crisp values were calculated by the centroid
method.

FUZZY–NEURO SEWAGE PUMPING STATION

Chinese scientist Hong Chen and colleagues at Osaka Electro-Communica-
tion University have designed an automated combined storm-sewage pump-
ing station for Shanghai, China. This optimizing probem solver uses
fuzzy-neural network system to regulate six pumps–three that control the
flow of sewage and three for storm runoff—so the combined flow doesn’t
overwhelm the treatment facility and let untreated sewage back up, an
extremely nonlinear problem. The system has been run in simulation and
may be installed in the Shanghai treatment plant.

The difficulty with crisp pump controllers is that they often start too
late to prevent backflow, run too long, or stop too soon. The fuzzy system
was designed to correct these deficiencies by determining when the pumps
should be started and stopped for various conditions.

The fuzzy controller’s two-dimensional rules matrix governs when
the pumps are started and stopped. One dimension is the water level in an
inlet storage well, defined in meters. Its fuzzy membership sets are very
small, rather small middle, rather large, and very large. The other dimension
is the change in the water level, in meters per minute. Its sets are negative
big, negative small, zero, positive small and positive big. Membership
functions are adjusted according to the weather–sunny, rainy, and stormy.

FUZZY INSULIN INFUSION SYSTEM FOR DIABETICS

Shigeru Kageyama and colleagues at Jikei University School of Medicine
have developed an experimental fuzzy method that optimizes the timing and
amount of insulin that diabetic patients receive through an insulin pump.
People with insulin-dependent diabetes can’t metabolize sugar successfully
because their bodies produce too little or none of the hormone insulin.

80

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Chapter 3: Fuzzy systems on the Job

Normally, when someone eats a meal, the body’s level of glucose rises. To
control this, the body also increases its insulin production. The most natural
way to control insulin-dependent diabetics’ deficiency is by infusion of
insulin through a small pump system that’s time released to imitate the
natural method.

Conventional infusion methods are based on the level of glucose
(simple sugar) in the blood. But this doesn’t work as well as it should, because
there’s a time lag between eating a meal and the increase in the glucose level
in the blood. This allows greater-than-normal swings in glucose levels in the
patient’s blood.

The fuzzy method takes the timing of the meal into account, as well
as the blood glucose level. This way, the pump begins infusing insulin sooner
than the standard pump method. As a result, the blood glucose level doesn’t
increase above that in nondiabetic people.

FUZZY CONSUMER PRODUCTS

Vacuum Cleaner

The American company NeuraLogix has drawn up a three input-four output
fuzzy system for optimally controlling a vacuum cleaner. Inputs are vacuum
pressure (very low, low, medium, high, very high), quantity of dirt (low,
medium low, medium, medium high, high), texture of floor (smooth, me-
dium, rough). Outputs are vacuum control, beater brush height, beater brush
speed, cleanness indicator, and change bag indicator.

Washing Machine

Bert Hellenthal, from the German company INFORM, has developed a
neuro-fuzzy washing machine that’s now on sale in Europe. Based on the
characteristics of the wash load during initial agitation, the system calculates
the speed, water level, and time required for optimal execution of washing,
the rinse cycle, and the number of rinse cycles.

81

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Chapter 3: Fuzzy systems on the Job

The neural network is used to develop fuzzy rules and allow learning
to take place. In addition, the user can override the system at any time,
providing the system with interactive learning.

Fuzzy Air Conditioner

Mitsubishi Electric Corp. has developed a room air-conditioning system
that’s now on sale in Japan. An ordinary crisp thermostat takes a temperature
setting, such as 68°, then keeps the temperature within several degrees of the
setting. The cooling system is either ON or OFF. The thermostat is designed
to keep the temperature with a range of 3° on either side of the setting of
68–between 65° and 68°.

Mitsubishi’s fuzzy temperature controller allows any degree of op-
eration from ON to OFF for optimal air-conditioning. It is said to improve the
room’s temperature consistency, it’s three times as stable as a crisp system,
and it provides a 24% power savings.

Every Japanese air conditioner contains a heat sensor, so can detect
whether the room is occupied. It can then direct the air upward if people are
present or downward if the room’s empty. Mitsubishi’s fuzzy air conditioner
also can learn the room’s characteristics and fine-tune its own operation.

.

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Chapter 4

FUZZY KNOWLEDGE
BUILDER

In Chapter 3 you became acquainted with the idea of a fuzzy expert system
and its two parts, a knowledge base and an inference engine. In this chapter,
you’ll learn how to create practical, useful fuzzy knowledge bases, try them
out in a simple inference engine, and learn how to format a knowledge base
for use in several commercially available inference environments.

To construct a knowledge base, you’ll use a special version of the
commercial product, Fuzzy Knowledge Builder. The commercial product
has been used for projects ranging from improving the efficiency of a work
vehicle to analyzing the quality of electrical power produced by an industrial
supply system.

You’ll “build along with Dr. Fuzzy,” creating knowledge bases from
two real-world scenarios—one for a graphics-display lunar lander and one
for a personnel detection system. When the construction process is done, you
can save each knowledge base in a format to run in an inference engine.

Dr. Fuzzy has provided three “plain wrap” inference engines—two
written in QBASIC and one (provided by Motorola) in 68HC05 assembly

83

84

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Chapter 4: Fuzzy Knowledge Builder

language—along with test files for all of them. And you’ll learn how to use
the scenario’s knowledge-base files in the QBASIC engines.

- -
There are two schools of thought about the connection of a
fuzzy expert system’s knowledge base and its inference en-
gine. Some developers like the knowledge base to be imbed-
 ded in the inference engine, so the code-writing is more
efficient. A Fuzz-C (Bytecraft, Inc.) C language imbedded in-
ference engine is included on the disk.

 Others prefer to have the two separate for increased
flexibility. For instance, the Fuzzy Knowledge Builder lets
you develop the knowledge base independently, determine
which inference engine it’ll be used in, then save it in a for-
mat for the specific engine. A C language inference engine
on the disk depicts this form. Also see Appendix D.

- -

KNOWLEDGE BUILDER’S DESIGN

Creating a knowledge base with the Fuzzy Knowledge Builder follows the
five-step design you are familiar with from Chapter 3:

1. Identify the inputs and their ranges and name them.
2. Identify the output and its ranges and name it.
3. Create the fuzzy membership function for each input and output.
4. Translate the interaction of the inputs and outputs into As–

Then rules. If all are and rules, this interaction can be repre-
sented as a matrix. (The Fuzzy Knowledge Builder was the
first product to use a graphical matrix representation of the
rules.) If and and or rules are allowed, fewer rules are required,
but the clarity of matrix representation is lost.

5. Decide on the inference engine that will act on the specific inputs
and the knowledge base to produce the specific defuzzified output.

E-MAIL
FROM
DR. FUZZY

85

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Chapter 4: Fuzzy Knowledge Builder

Program Organization

The program has six sections:

• A Naming menu for Steps 1–3,
• A rules Matrix Builder for Steps 4–5,
• Tools for fine-tuning the knowledge base, including a Set

Shaper for adjusting one or more fuzzy membership func-
tions, the ability to change one or more rules on the action ma-
trix, a variety of ways to display the information on the
screen, and a cellular automata tool for smoothing the matrix
cell boundaries or interpolating between rules,

• A set of Viewers that let you examine the action surface from
various angles—3-D Viewer, Gradient Viewer, and Profile
Viewer,

• An Action Tester for trying out various inputs, observing the
output, and deciding whether set or rule editing is required,

• A knowledge base File Generator, creating a file that’s compat-
ible with QBASIC, C, or Motorola 68HC05 assembly language.

The book version of the Fuzzy Knowledge Builder allows
a maximum of two input dimensions and one output dimen-
sion. The commercial version allows additional dimensions
for both input and output.

Program File Structure

The Fuzzy Knowledge Builder stores each knowledge-base project in two
files. One, with the extension .rul, contains the rules. The other, with an .fam
extension, contains everything else. For example, the knowledge base named
TEST, which is on the disk, is stored in the files TEST.RUL and TEST.FAM.
The .fam files are listed in the Open window, but each .fam’s .rul file must
also be present for the program to work.

- -

E-MAIL
FROM
DR. FUZZY

- -

86

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Chapter 4: Fuzzy Knowledge Builder

If you have files in a directory other than the one containing
the Knowledge Builder or on another disk drive, don’t try to
access them from within the Knowledge Builder. Instead,
copy them to the Knowledge Builder directory, from the
DOS prompt or in Windows.

Be sure to copy both the .rul and .fam file for each
project.

The program allows manual control of information entry or a semi-
automated “follow along” process.

As you saw in Chapter 3, before you start creating the knowledge
base, you need the complete expert body of knowledge. For your introduc-
tion to the Fuzzy Knowledge Builder, you’ll use the scenario of creating an
action graphic of a lunar lander with two Cartesian (xyz or length–width–
depth) axes of motion. The lander can move up and down perpendicular to
the surface. It also moves back and forth parallel to the moon’s surface. This
requires two separate knowledge bases that use the same input and output
dimensions, but have different set values.

When you open the Fuzzy Knowledge Builder, you’ll face a blank
screen with two menus—File and Help (Figure 4.1).

E-MAIL
FROM
DR. FUZZY

- -

- -

Figure 4.1: Opening screen.

87

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Chapter 4: Fuzzy Knowledge Builder

- -

E-MAIL
FROM
DR. FUZZY

- --

The Fuzzy Knowledge BuilderTM has a comprehensive hy-
pertext Help system. You can click on the Help menu at any
time, and get a complete listing of Help information. In addi-
tion, wherever you are in the program, you can get context-
specific help.

After you click on File, your main choices are New and Open. Since
this is a new project, click on New, which presents the full menu and, just
below it, the icon toolbar (Figure 4.2). The icons are defined in Table 4.1.

At any time after you’ve named your project, you can save
it by clicking on the Save icon, then closing the program in
the usual Windows manner. To work on your file again,
open the Fuzzy Knowledge Builder, click on File and
Open, then double-click on your project’s filename. All file-
names in the Open window have the extension .fam.

Dr. Fuzzy believes in hands-on learning, so in the rest of this chapter
you’ll use the Fuzzy Knowledge Builder to create knowledge bases for two
“real-world” projects, a lunar lander and a personnel detection system. Then
you’ll have the opportunity to test them in an inference engine.

- -

E-MAIL
FROM
DR. FUZZY

- --

Figure 4.2: Full menu after a project has been defined.

88

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Chapter 4: Fuzzy Knowledge Builder

TABLE 4.1: Icon Definitions

Save file Open file

Display rule matrix Control appearance

Display rule box None

Select axis Hidden select

Copy edit Paste edit

Fuzzy set styles Control appearance

Open Action Tester Recalculate view

Build 3-D Viewer Control appearance

Build Gradient Viewer Control appearance

Build Profile Viewer Control appearance

Build formatted file View formatted file

Open all Edit windows Close all windows

Tile windows horizontal Tile Vertical

Click

Definition

Double Click

89

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Chapter 4: Fuzzy Knowledge Builder

LUNAR LANDER

A lunar lander is a spacecraft designed to descend from a space ship to the
moon’s surface (and to return to the ship) and to fly across it. This means that
the ship has two distinct movement axes, Vertical for descent and Horizontal
for flying. This lander was meant as a computer simulation, not for an actual
propulsion system. But it incorporates the physical features of an actual
vehicle and also the moon’s atmosphere and gravitational characteristics. For
instance, the moon’s gravity is a force on the lander, and the lander’s propul-
sion system produces a counterforce against the lunar gravity.

The Vertical knowledge base will be the first order of business. (Defini-
tions for the Horizontal axis will be an adaptation of those for the Vertical.)

This lunar lander graphics scenario was created by Thomas
Baker, formerly of TRW, and has been slightly modified for
this book.

Lunar Lander’s Vertical Axis

The lunar lander has two input dimensions and one output dimension for
the Vertical axis and the same number for the Horizontal. The first step in
knowledge base creation is naming and defining the dimensions. The input
dimensions are Distance, measured in meters, and Velocity, measured in
meters per second. The output dimension is Thrust, a force that’s measured
in meters per second.

Defining the System

Click on File and New from the opening menu. You’ll be presented with a
dialog box named New Fuzzy Node (Figure 4.3), which asks you to name the
project. Type in the title lunar_v.

- -

E-MAIL
FROM
DR. FUZZY

- -

90

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Chapter 4: Fuzzy Knowledge Builder

You now have two options—open the definition screens one at a time
or allow the Fuzzy Knowledge Builder. We’ll take the automatic route here,
so click on the Build Project button.

First, name and describe the Input dimensions. The screen now dis-
plays the Input Dimension dialog box (Figure 4.4). Lunar-v requires two
input dimensions, the maximum available with this version of Fuzzy Knowl-
edge Builder. Click on the radio button control on the left edge, which
defines the number of input dimensions.

The next step is to fill in the basics about each dimension. Enter the
information in Table 4.2, tabbing from field to field. If you need to return to
a field, point and click with the mouse.

When you’ve finished, store these values and definitions by clicking
on the OK button.

Figure 4.3: New Fuzzy Node dialog box.

91

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Chapter 4: Fuzzy Knowledge Builder

- -

E-MAIL
FROM
DR. FUZZY

- -

Figure 4.4: Input dimension Names and Descriptions dialog box.

To open the screens individually instead, press Enter after
you enter lunar_v. This returns you to the main screen.
Now click on the Naming menu and select the individual
items one at a time, starting at the top.

TABLE 4.2: Input Dimensions Data

Name Description Units Name Min Max

dis Distance meters –300 +300
vel Velocity m/sec –20 +20

92

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Chapter 4: Fuzzy Knowledge Builder

For graphics purposes,

 -

Next, you must define the fuzzy membership functions (fuzzy sets) for each
dimension. The screen displayed in Figure 4.5 is the Input Fuzzy Sets Names
and Descriptions dialog box.

- -
E-MAIL
FROM
DR. FUZZY 1 meter = 1 pixel

Figure 4.5: Input Fuzzy Sets Names and Descriptions dialog box.

93

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Chapter 4: Fuzzy Knowledge Builder

TABLE 4.3: Lunar Lander Fuzzy Set Names and Descriptions

Name Description

LN Large negative
N Negative
SN Small negative
Z zero
SP Small positive
P Positive
LP Large positive

We want to define the Input dimensions. At the top are the name and
description of the first input dimension, Distance. At the right, it’s designated
Input 1.

The next task is to define the number of fuzzy sets in this dimension,
which is seven. Click on the button next to 7 in the right-hand column. Now
enter the set names and descriptions as listed in Table 4.3.

All input and output dimensions in the lunar lander sce-
narlo have the same seven fuzzy set names, as given in
Table 4.3. However, each dimension’s sets have different
numerical values.

- -

E-MAIL
FROM
DR. FUZZY

- -

Figure 4.6: Output dimension Names and Descriptions dialog box.

94

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Chapter 4: Fuzzy Knowledge Builder

 -
E-MAIL
FROM
DR. FUZZY

- -

When you’ve finished entering the data for this dimension, click on
the Assign button, to register what has just been entered. The number 2 input
dimension box will be displayed. Fill it in with the same list of set names and
descriptions. When you’ve finished, click on the Assign and OK buttons.

Assigning values does not save your data to the disk. You can
save the file at any time by clicking on the Save icon.

The Output dimension and fuzzy set must also be named and de-
scribed. The next screen displays the Output dimension dialog box (Figure
4.6). Follow the same procedure as with the Input dimension, entering the
information in Table 4.4. When you are finished, click on OK. Fill in the next
screen, Output Fuzzy Set Names and Descriptions, just as you did for the
Input sets, using the data in Table 4.3. When you’ve finished, click on the OK
and Assign buttons. The screen will then display a dialog box notifying you
that RESIZING RULE MATRIX WILL INITIALIZE RULES! Click OK on this box and
then on Assign.

TABLE 4.4: Output Dimension Data

Name Description Units Name Min Max

thr Thrust m/sec2 –20 +20

CAUTION. Setting up the Input fuzzy sets defines the size of
the rules matrix. If you decide to change the number of
fuzzy sets after this point, you’ll lose any work you’ve done
 on the rules matrix and have to do it all over again.

Changing the shape or values of fuzzy sets doesn’t
destroy the rules matrix.

- -

- -

E-MAIL
FROM
DR. FUZZY

95

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Chapter 4: Fuzzy Knowledge Builder

Congratulations! You’ve named and defined your dimensions and
fuzzy sets. Now’s a good time to save what you’ve done so far.

To take a look at the sets and rules matrix, click on the Display All
Windows icon, which displays them in vertical format (Figure 4.7). To
display them in horizontal format (Figure 4.8), click on the Tiles icon.

Defining the Rules

The next task involves the details of knowledge base design—defining the
rules and associated fuzzy sets. The Fuzzy Knowledge Builder produces
an evenly spaced series of fuzzy sets for each dimension. It generates the
rules to match the fuzzy sets. You can adjust both the fuzzy sets and the
matrix to meet the needs of your project.

Because each Input dimension has seven fuzzy sets, the rules matrix
consists of 49 rules. Table 4.5 contains the scenario-defined list of rules.

Figure 4.7: All windows open, vertical format.

96

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Chapter 4: Fuzzy Knowledge Builder

E-MAIL
FROM
DR. FUZZY

- -

You can customize the appearance, the color, or both of vir-
tually every aspect of the matrix and set displays. Double-
click on the Matrix icon to display the matrix dialog box
(Figure 4.9). Clock on Set Shape Style (Figure 4.10a) and
Shaper Display (Figure 4.10b) in the sets menu for the set
dialog boxes.

Generating the Rules Matrix and Rule Box

To begin the customization of the knowledge base rules matrix and rule box,
generate each of them. Editing the rules involves the interaction of the Rules
Matrix and the Rule Box.

Figure 4.8: All windows open, horizontal format.

- -

97

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Chapter 4: Fuzzy Knowledge Builder

TABLE 4.5: Scenario-Defined Rules for Lunar_v.

As Distance is Large Negative and Velocity is Large Negative, then Thrust is Zero

As Distance is Large Negative and Velocity is Negative, then Thrust is Zero

As Distance is Large Negative and Velocity is Small Negative, then Thrust is Zero

As Distance is Large Negative and Velocity is Zero, then Thrust is Zero

As Distance is Large Negative and Velocity is Small Positive, then Thrust is Zero

As Distance is Large Negative and Velocity is Positive, then Thrust is Zero

As Distance is Large Negative and Velocity is Large Positive, then Thrust is Zero

As Distance is Negative and Velocity is Large Negative, then Thrust is Zero

As Distance is Negative and Velocity is Negative, then Thrust is Zero

As Distance is Negative and Velocity is Small Negative, then Thrust is Zero

As Distance is Negative and Velocity is Zero, then Thrust is Zero

As Distance is Negative and Velocity is Small Positive, then Thrust is Zero

As Distance is Negative and Velocity is Positive, then Thrust is Zero

As Distance is Negative and Velocity is Large Positive, then Thrust is Zero

As Distance is Small Negative and Velocity is Large Negative, then Thrust is Zero

As Distance is Small Negative and Velocity is Negative, then Thrust is Zero

As Distance is Small Negative and Velocity is Small Negative, then Thrust is Zero

As Distance is Small Negative and Velocity is Zero, then Thrust is Zero

As Distance is Small Negative and Velocity is Small Positive, then Thrust is Zero

As Distance is Small Negative and Velocity is Positive, then Thrust is Zero

As Distance is Small Negative and Velocity is Large Positive, then Thrust is Zero

As Distance is Zero and Velocity is Large Negative, then Thrust is Zero

As Distance is Zero and Velocity is Negative, then Thrust is Zero

As Distance is Zero and Velocity is Small Negative, then Thrust is Zero

As Distance is Zero and Velocity is Zero, then Thrust is Small Positive

As Distance is Zero and Velocity is Small Positive, then Thrust is Small Positive

As Distance is Zero and Velocity is Positive, then Thrust is Zero

As Distance is Zero and Velocity is Large Positive, then Thrust is Zero (continued)

98

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Chapter 4: Fuzzy Knowledge Builder

TABLE 4.5: Scenario-Defined Rules for Lunar_v (continued).

As Distance is Small Positive and Velocity is Large Negative, then Thrust is Zero

As Distance is Small Positive and Velocity is Negative, then Thrust is Zero

As Distance is Small Positive and Velocity is Small Negative, then Thrust is Zero

As Distance is Small Positive and Velocity is Zero, then Thrust is Small Positive

As Distance is Small Positive and Velocity is Small Positive, then Thrust is Small Positive

As Distance is Small Positive and Velocity is Positive, then Thrust is Small Positive

As Distance is Small Positive and Velocity is Large Positive, then Thrust is Zero

As Distance is Positive and Velocity is Large Negative, then Thrust is Zero

As Distance is Positive and Velocity is Negative, then Thrust is Zero

As Distance is Positive and Velocity is Small Negative, then Thrust is Zero

As Distance is Positive and Velocity is Zero, then Thrust is Positive

As Distance is Positive and Velocity is Small Positive, then Thrust is Positive

As Distance is Positive and Velocity is Positive, then Thrust is Positive

As Distance is Positive and Velocity is Large Positive, then Thrust is Small Positive

As Distance is Large Positive and Velocity is Large Negative, then Thrust is Zero

As Distance is Large Positive and Velocity is Negative, then Thrust is Zero

As Distance is Large Positive and Velocity is Small Negative, then Thrust is Zero

As Distance is Large Positive and Velocity is Zero, then Thrust is Large Positive

As Distance is Large Positive and Velocity is Small Positive, then Thrust is Positive

As Distance is Large Positive and Velocity is Positive, then Thrust is Positive

As Distance is Large Positive and Velocity is Large Positive, then Thrust is Positive

Click on the Rules Matrix item in the toolbar to generate the rules
matrix, then click on the Rule Box item of the Display submenu of the Rules
menu bar to generate the Rule Box. After you’ve generated them, you can
display them with their toolbar icons.

Display the Rules Matrix (Figure 4.11) by clicking on its icon. Place
the cursor on any rule (cell). Then you can display its rule in full by clicking

99

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Chapter 4: Fuzzy Knowledge Builder

Figure 4.9: Rules Matrix Display Style box.

on the Display rule box icon. The Rule Box is movable—just point and drag
it with the mouse.

Notice that putting the mouse cursor over a cell highlighted it, turning
the cell characters red, the associated fuzzy set name blue, and the associated
vertical fuzzy set name green. Pressing the Shift key while moving the mouse
will stop the highlighting changes.

To move the cursor from the matrix to the rule, select a cell and press the
Shift key. The cursor will jump to the rule box.

100

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Chapter 4: Fuzzy Knowledge Builder

Figure 4.10: Fuzzy Set Display dialog box.

101

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Chapter 4: Fuzzy Knowledge Builder

Figure 4.11: Rules Matrix and Rule Box.

Where should you start your editing? Think of it in terms of
coarse or big-change editing and fine-tune editing. To make
big modifications in a few steps, adjust the rules. For fine-
tuning, adjust the numerical values of the membership func-
tions (fuzzy sets).

Using the Rules Matrix and Rule Box

The end goal of any rule change is to provide an improved output value from
the interaction of input values with the rules matrix. To change a rule in the
Rules Matrix, place the cursor over the selected cell and click with the left
mouse button. This will change the rule to the next one in the list—that is, to
the next fuzzy Output set to the right. For instance, if the cell is LN, it will
change to Z.

Clicking on a cell with the right mouse button will change it to the
previous one in the list—to the next Output fuzzy set to the left. For example,
if the cell is SP, it will change to P.

- -

E-MAIL
FROM
DR. FUZZY

- -

102

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Chapter 4: Fuzzy Knowledge Builder

You can also change the rule directly, in the Rule Box. Move the cursor
over the then portion of the desired rule. Click on it with the left mouse button
to move to the next Output fuzzy set; click with the right mouse button to
move to the previous one.

When you’ve adjusted the rules to the requirements of the scenario,
save your work. Next, you should fine-tune your project by editing the fuzzy
membership functions (sets) directly.

Editing the Fuzzy Sets

The next step in the design of the fuzzy action surface is to define the fuzzy
sets or membership functions for the application. Table 4.6 contains the
scenario’s values for the Vertical axis’s fuzzy sets.

Display the fuzzy sets by clicking on the Display All Windows icon.
For horizontal display, click on the Tile icon. To enlarge one of the sets, click
on the UP button in its upper right-hand corner. Or choose the Input sets
(Input Set Shapers) or Output set (Output Set Shapers) from the Sets menu.

Move the cursor close to the segment end point of interest. Then press
and hold the left mouse button. The cursor will move to the end point if close
enough. Continue to hold the button while moving the cursor. The end point
will follow the cursor. The end point will stay at its last location when the
button is released. Movement is contrained to the high or low lines.

Sometimes an end point is hard to select because it occupies the same
place as another end point. To make selection easier, hold down the Shift key
while pressing the left mouse button.

If you want to move an entire fuzzy set on the universe of discourse,
press Ctrl when selecting one of its end points.

Be sure to save your work frequently.

Examining the Knowledge Base

The Fuzzy Knowledge Builder provides several methods for statically
testing and viewing the action surface you have designed—an Action Tester,
a 3-D Viewer, a Gradient Viewer, and a Profile Viewer.

The static testing tool is called the Action Tester. It accepts crisp values
over the input dimensions and processes them through the action surface.

103

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Chapter 4: Fuzzy Knowledge Builder

TABLE 4.6: Scenario-Supplied Values for the Vertical Fuzzy Sets

Left Center Right

Velocity:
LN -20 -10 -5
N -7 -4 -1
SN -2 -1 0
Z -.5 0 .5
SP 0 1 2
P 1 4 7
LP 5 10 20

Distance:
LN -300 -200 -100
N -140 -80 -20
SN -40 -20 0
Z -10 0 10
SP 0 20 20
P 20 80 140
LP 100 200 300

Thrust:
LN -20 -10 -2
N -6 -2 -1
SN -2 -1 0
Z -1 0 1
SP 0 1 2
P 1 2 6
LP 2 10 20

You can use this tool at any time to test a knowledge base that you’re
building.

Click on the Action Tester or in the Tools submenu or in the toolbar.
The Action Tester dialog will appear with the dimensions and scaling as
defined for the Open design (Figure 4.12).

Each input dimension is represented by a scroll bar. The crisp input
value may be set by positioning the scroll thumb with the mouse cursor (press
left button over thumb, move cursor dragging thumb, release button to leave
thumb in new position).

104

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Chapter 4: Fuzzy Knowledge Builder

Figure 4.12: Action Tester.

The scaled crisp value of where the thumb is along the input dimen-
sion appears immediately right of the scroll bar. Normal keyboard com-
mands will position the thumb, as well.

Enter all values for all active dimensions. If the Dynamic check box is
not checked, click on the Map button. In a short time the Output scrollbar
thumbs will be positioned as the Knowledge Builder passes your Input
values through the action surface.

The top scrollbar provides the crisp Output.
The 3-D Viewer provides a 3-D look at the Output plotted against

Input dimensions (see Figure 4.13).
Figure 4.14 provides the perspective of the Gradient Viewer showing

Output plotted against Input dimensions.
Figure 4.15 provides the perspective of the Profile Viewer showing

Output plotted against Input dimensions.

105

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Chapter 4: Fuzzy Knowledge Builder

Figure 4.13: A 3-D view of the Input-Output plot.

Now you’ve been through the entire process of creating a knowledge
base for the lunar lander’s Vertical axis. You can create a knowledge base for
the Horizontal axis by adapting the work that you’ve just done.

Lunar Lander’s Horizontal Axis

Begin creating the Horizontal axis’s knowledge base by saving the lu-
nar_v.fam file as lunar_h.fam. Click on File and SaveAs.

Next, adjust the rules according to the rules listed in Table 4.7. You
can do this on the Rules Matrix or in the Rule Box. When you’ve finished,
save your work.

Now look at the fuzzy sets. You can adjust them so they have the
values in Table 4.8.

Finally, test and review the knowledge base with the Tools described
in the last section.

106

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Chapter 4: Fuzzy Knowledge Builder

Figure 4.14: A gradient view of the Input-Output plot.

Figure 4.15: A profile of the Input-Output plot.

107

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Chapter 4: Fuzzy Knowledge Builder

TABLE 4.7: Scenario-Defined Rules for Lunar_h.

As Distance is Large Negative and Velocity is Large Negative, then Thrust is Zero

As Distance is Large Negative and Velocity is Negative, then Thrust is Small Negative

As Distance is Large Negative and Velocity is Small Negative, then Thrust is Negative

As Distance is Large Negative and Velocity is Zero, then Thrust is Negative

As Distance is Large Negative and Velocity is Small Positive, then Thrust is Negative

As Distance is Large Negative and Velocity is Positive, then Thrust is Large Negative

As Distance is Large Negative and Velocity is Large Positive, then Thrust is Large Negative

As Distance is Negative and Velocity is Large Negative, then Thrust is Small Positive

As Distance is Negative and Velocity is Negative, then Thrust is Zero

As Distance is Negative and Velocity is Small Negative, then Thrust is Small Negative

As Distance is Negative and Velocity is Zero, then Thrust is Small Negative

As Distance is Negative and Velocity is Small Positive, then Thrust is Negative

As Distance is Negative and Velocity is Positive, then Thrust is Negative

As Distance is Negative and Velocity is Large Positive, then Thrust is Large Negative

As Distance is Small Negative and Velocity is Large Negative, then Thrust is Small Positive

As Distance is Small Negative and Velocity is Negative, then Thrust is Small Positive

As Distance is Small Negative and Velocity is Small Negative, then Thrust is Small Positive

As Distance is Small Negative and Velocity is Zero, then Thrust is Small Negative

As Distance is Small Negative and Velocity is Small Positive, then Thrust is Small Negative

As Distance is Small Negative and Velocity is Positive, then Thrust is Negative

As Distance is Small Negative and Velocity is Large Positive, then Thrust is Negative

As Distance is Zero and Velocity is Large Negative, then Thrust is Positive

As Distance is Zero and Velocity is Negative, then Thrust is Small Positive

As Distance is Zero and Velocity is Small Negative, then Thrust is Small Positive

As Distance is Zero and Velocity is Zero, then Thrust is Zero

As Distance is Zero and Velocity is Small Positive, then Thrust is Small Negative

As Distance is Zero and Velocity is Positive, then Thrust is Small Negative

As Distance is Zero and Velocity is Large Positive, then Thrust is Negative (continued)

108

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Chapter 4: Fuzzy Knowledge Builder

TABLE 4.7: Scenario-Defined Rules for Lunar_h (continued).

As Distance is Small Positive and Velocity is Large Negative, then Thrust is Positive

As Distance is Small Positive and Velocity is Negative, then Thrust is Positive

As Distance is Small Positive and Velocity is Small Negative, then Thrust is Small Positive

As Distance is Small Positive and Velocity is Zero, then Thrust is Small Positive

As Distance is Small Positive and Velocity is Small Positive, then Thrust is Zero

As Distance is Small Positive and Velocity is Positive, then Thrust is Small Negative

As Distance is Small Positive and Velocity is Large Positive, then Thrust is Small Negative

As Distance is Positive and Velocity is Large Negative, then Thrust is Large Positive

As Distance is Positive and Velocity is Negative, then Thrust is Positive

As Distance is Positive and Velocity is Small Negative, then Thrust is Positive

As Distance is Positive and Velocity is Zero, then Thrust is Small Positive

As Distance is Positive and Velocity is Small Positive, then Thrust is Small Positive

As Distance is Positive and Velocity is Positive, then Thrust is Zero

As Distance is Positive and Velocity is Large Positive, then Thrust is Small Negative

As Distance is Large Positive and Velocity is Large Negative, then Thrust is Large Positive

As Distance is Large Positive and Velocity is Negative, then Thrust is Large Positive

As Distance is Large Positive and Velocity is Small Negative, then Thrust is Positive

As Distance is Large Positive and Velocity is Zero, then Thrust is Positive

As Distance is Large Positive and Velocity is Small Positive, then Thrust is Positive

As Distance is Large Positive and Velocity is Positive, then Thrust is Small Positive

As Distance is Large Positive and Velocity is Large Positive, then Thrust is Zero

Printing Your Graphics Displays

The Fuzzy Knowledge Builder lets you print any graphics window that’s
displayed on the screen. The printer will reproduce what’s on the screen, so
make it the desired size before beginning the printing process.

109

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Chapter 4: Fuzzy Knowledge Builder

TABLE 4.8: Scenario-Supplied Values for the Horizontal Fuzzy Sets

Left Center Right

Velocity:
LN -20 -12 -6
N -8.4 -4.8 -1.2
SN -2.4 -1.2 0
Z -.6 0 .6
SP 0 1.2 2.4
P 1.2 4.8 8.4
LP 6 12 20

Distance:
LN -300 -200 -100
N -140 -80 -20
SN -40 -20 0
Z -10 0 10
SP 0 20 40
P 20 80 140
LP 100 200 300

Thrust:
LN -20 -8 -4
N -8 -4.8 -.8
SN -1.6 -.8 0
Z -.4 0 .4
SP 0 .8 1.6
P .8 4.8 8
LP 4 8 20

Click on the File menu and then on Print. The dialog box in Figure
4.16 will appear on the screen. Select the set or matrix by clicking on its button
and then on OK.

Another way to print your graphic is to place it in the Windows
clipboard by pressing Print Screen (for the entire screen) or Alt-Print Screen
(for the just active window). You can then paste the graphic into Write, Word,
or other document editor.

110

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Chapter 4: Fuzzy Knowledge Builder

Figure 4.16: Print Window Select dialog box.

Is someone in the building or not? This is a question that automated person-
nel detection systems are designed to answer. In office buildings, ware-
houses, and military installations, human security guards are augmented by
infrared, sound, photoelectric, and other kinds of sensors. In the opinion of
many experts, existing sensor systems aren’t particularly accurate. Dr. Paul
Sayka, of Los Alamos National Laboratory, has proposed a superior system
using fuzzy logic. Because the system has two input dimensions and one
output, it’s an excellent example for knowledge base construction by the
Fuzzy Knowledge Builder .

PERSONNEL DETECTION SYSTEM

111

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Chapter 4: Fuzzy Knowledge Builder

Begin by selecting New from the File menu. Name the project Sensors, then
begin defining the input and output sets through the Naming menu, using
the data in Table 4.9. One input dimension is an optical sensor whose fuzzy
sets are named Slow, Medium, and Fast. It is measured in miles per hour from
0 to 9.

The other input dimension is an infrared sensor, with fuzzy sets
named Very Low, Low, Medium, High, and Very High. Its units are tempera-
tures from 94° to 108° Fahrenheit.

The output dimension is an audible signal with adjustable-length
sound pulses. Its fuzzy sets are named Very Low, Low, Medium, and Very High,
measured in milliseconds from 500 to 2000.

Tables 4.10 and 4.11 contain the data to be entered in the name-and-
description tables.

Make any necessary adjustments to the membership functions, which
can be displayed by clicking on the Open All Windows icon or selecting Set
Shapers from the Sets menu. To display one set at a time for editing, double-
click on the Fuzzy Set Display icon, click on the Single Fuzzy Set button, and
choose the set number (1 is the leftmost set). Then click on Assign and OK.

The rule matrix should look like the one in in Table 4.12.

TABLE 4.9: Sensors Dimensions Data.*

Name Description Units Name Min Max

Input:
opt Optical sensor MPH 0 9
ir Infrared DegreesF 900 1050

Output:
sgn Audible signal Milliseconds 500 2000

* Data from Paul Sayka, “A Fuzzy Logic Rule-Based System for Personnel Detection,” in Fuzzy Logic and
Controls: Software and Hardware Applications, Jamshidi/Vadiee/Ross, eds., © 1993, pp. 227–229. Re-

 printed by permission of Prentice Hall, Englewood Cliffs, New Jersey.

Naming and Defining the Dimensions and Sets

112

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Chapter 4: Fuzzy Knowledge Builder

TABLE 4.10: Input fuzzy Sets' Data*

Values

Name Description Left Center Right

Optical:
slo Slow 0 1.5 3
med Medium 2 4 6
fast Fast 5 7 9

Infrared:
vlo Very Low 94 96 98
low Low 95 97 99
med Medium 98 100 102
high High 101 103 105
vhi Very High 104 106 108

TABLE 4.11: Audible Signal (Output) Fuzzy Set Names and Descriptions.

Name Description

vlo Very low
low Low
med Medium
high High

TABLE 4.12: Personnel Detection Rules Matrix.

Infrared VLO LOW MED HIGH VHI

O SLO VLO LOW VLO LOW VLO
p
t
i MED LOW MED LOW MED LOW
c
a
l FAST MED HIGH MED LOW VLO

* Data for Tables 4.10–4.12 from Paul Sayka, “A Fuzzy Logic Rule-Based System for Personnel Detec-
tion,” in Fuzzy Logic and Controls: Software and Hardware Applications, Jamshidi/Vadiee/Ross, eds.,
1993, pp. 227–229. Reprinted by permission of Prentice Hall, Englewood Cliffs, New Jersey.

113

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Chapter 4: Fuzzy Knowledge Builder

- -

- -

Put yourself in the expert’s place. Examine the sets with the viewers and try
them out in the Tester. Are the output signals what you want in your
personnel detection system? How do you tell a “good” action surface from
a “not so good” one?

The best surface is one that flows the most smoothly from one area to
another—it has the smoothest gradient. That’s what all the viewers can tell
you.

Want to see what a really “unsmooth” matrix gradient looks
like? Open the 3-D Viewer and select Random. You’ll think
you’ve been transported to the Alps.

 The slogan here is “random in, random out.” You
want your matrix to be as unrandom as possible.

You may want to adjust the rules matrix directly by clicking on
individual matrix cells. You can also use the Knowledge Builder’s automatic
correction tools, collected as the Knowledge Wizard (Figure 4.17). They are
available from the Rules menu.

Improving the Matrix's Operation

E-MAIL
FROM
DR. FUZZY

Figure 4.17: Knowledge Wizard menu.

114

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Chapter 4: Fuzzy Knowledge Builder

Automata

The major Wizard tool is called Automata, a team of small programs called
cellular automata (CAs) that make the matrix cell boundaries fuzzier and
smoother by either inserting (interpolating) rules between existing ones or
smoothing (annealing) the overall surface. This produces an action surface
that’s closer to the ideal one that you want for your system’s outputs.

You have the option of designating amy existing matrix rule as Fixed
(nonadjustable). Just hold down the Control key while clicking on the rule.

The Manifold Automata selection box (Figure 4.18) lets you choose
the mathematical formula (algorithm) that will control the CA actions. The
Limit Cycles button lets you choose the number of cycles that the CAs will
undergo while improving the rules.

Figure 4.18: Automata selection box.

115

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Chapter 4: Fuzzy Knowledge Builder

The Global Constraint area lets you enter a “fudge factor” in the form
of either a globally applied linear offset or a gain (scaling) of the effect that
adjacent state changes have on a particular rule.

If you click on the Mix button, the output values are automatically
randomized over all the rules or over those rules that haven’t been desig-
nated as Fixed.

The Fix feature is also available directly from the Wizard menu. It also
lets you designate a rule as “don’t care,” meaning it doesn’t matter whether
it is Fixed or Not Fixed.

- -
Each cellular automaton, or CA, is a “machine” that changes
its state (such as ON or OFF) according to a set of rules that
affect it and its neighbors.

For instance, a CA rule may state that if three of a
CA’s neighbors are ON, it will be ON. Another rule may state
that if four of its neighbors are ON, the CA will be OFF. The
rules apply equally to each CA in the matrix. This means
each CA’s state is determined by its neighbors’ states and
that its own state partially determines the state of each of its
neighbors.

The Fuzzy Knowledge Builder™’s CAs have as many
states as there are output sets. You can choose which of a se-
ries of algorithms will be used to perform the state changes
in the Automata selection box (Figure 4.18).

Click for Help, and the equations will be displayed.
- -

Other Wizard Tools

Other tools are also available through the Rules menu’s Manifold Wizard
item. Grade provides automatic generation of gradients (hills) in the rules
matrix. The dialog box lets you choose whether the slope is positive or
negative. The To area lets you choose the slope of the gradient. If you want
a flat (“city block”) measurement of distances, click on the Flat style. For a

E-MAIL
FROM
DR. FUZZY

116

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Chapter 4: Fuzzy Knowledge Builder

curved gradiant, select either RMS (root mean square) or SMR (square mean
root).

FORMATTING THE KNOWLEDGE BASE FOR
AN INFERENCE ENGINE

Now that you’ve constructed, tested, and tweaked your knowledge base, you
can use the Build menu to format it for an inference engine (Figure 4.19). The
book version of the Fuzzy Knowledge Builder provides four formats:
analog devices, C language, Motorola 68HC05 processor, and Scripts (for
QBASIC).

For instance, you can build the Sensors knowledge base into a Scripts
file (Figure 4.20) and a C language file (Figure 4.21).

To create a Scripts file, select Scripts from the Build menu, displaying
the Data File Style box (Figure 4.22).

Click on OK to select the default values, and the Fuzzy Knowledge
Builder will produce a Scripts file with the name of your project plus the
extension .FDT. You can display the file immediately by selecting View Built
File from the Build menu, or read it through Windows Write, the Notepad,
or another text editor or word processor that you select in the Naming menu’s

Figure 4.19: Build menu item of menu bar.

117

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Chapter 4: Fuzzy Knowledge Builder

Figure 4.20: Portion of a Scripts formatting of the Sensors knowledge
base.

Figure 4.21: Portion of a C language formatting of the Sensors knowledge
base.

118

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Chapter 4: Fuzzy Knowledge Builder

Figure 4.22. Data File Style box.

Options dialog box. You can also copy it in Windows and paste it into any
other document. Or double-click on the View Knowledge Base icon to display
it.

Depending on your project’s requirements, you may want to select
another system or variable resolution. For example, the dialog box for C
language files allows choices of variable resolution for inputs and outputs,
Fuzzy One, and variable type.

For more on inference engines that run these knowledge base files,
see Appendix D.

USING A KNOWLEDGE BASE IN AN INFERENCE ENGINE

Dr. Fuzzy has provided two extremely simple, but functional, DOS-based
inference engines written in QBASIC named fuzzy1.bas and fuzzy2.bas. They
both support triangular and trapezoidal membership functions. Fuzzy1 tests
all rules. Fuzzy2 is slightly faster, because it tests only active rules.

119

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Chapter 4: Fuzzy Knowledge Builder

Before running your own knowledge base through either of the
inference engines, you may want to test drive fuzzy1 with a file named
(appropriately) test.fdt. Return to a DOS command line and copy QBASIC
into the same directory as the knowledge base files.

Then at the command prompt, type

qbasic /run fuzzy1.bas

and Enter. (Or use fuzzy2 instead.)
From the opening menu, press R, so that the test.fdt knowledge base

is read into the inference engine. You’ll see it whiz across the screen in the
process.

Next, press I, and enter input values between 0 and 255 for Input One
and Input Two, such as

Input One: 50

and Enter, then

Input Two: 120

and Enter. Then press Y to return to the opening menu.
Now perform the actual inference operation by typing F. The screen

will display the output value, which is 75 for the input values you entered.
Pressing Y returns to the opening menu, and you can press Q to exit the
inference engine.

You can see the anatomy of the inference process in two ways. If
you’re a QBASIC programmer or a wannabee, you can turn to Appendix D
and examine the printouts of the fuzzy1 and fuzzy2 code. You can also return
to the Fuzzy Knowledge Builder, load the file test.fam, and examine the
inputs 50 and 120 in the Action Tester. You’ll see that the output value agrees
closely with that provided by fuzzy1 or fuzzy2. By opening the rules matrix
and the rule box, you can see which rules are active and their text.

Now that you’ve driven the inference engine around the block, you
can put it to work on another file, such as the Sensors file.

Fuzzy1 and fuzzy2 have the filename test.fdt written into the code, so
you have two choices. You can change the name of your own file to test.fdt.
Or you can go into the inference engine and change those lines. For instance,
change test.fdt to sensors.fdt. Three places in either engine require editing.

120

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Chapter 4: Fuzzy Knowledge Builder

The Appendix D printouts display those lines in bold type, to make the task
easier.

Intrigued by inference engines? Appendix D offers other in-
ference engines and test files for you to play with.

- -

E-MAIL
FROM
DR. FUZZY

- -

This completes the coverage of fuzzy expert systems. But other Fuzzy
tools await. The next chapter introduces the Fuzzy Decision Maker.

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

CHAPTER 5

DESIGNING A FUZZY
DECISION

Decisions! We make them all the time. Should I buy a house or rent an
apartment? What’s the best deal—buying a new car, buying a used one, or
leasing one? Should I take a better-paying job in another state or stay put?
Should I marry the person I’m dating? Will we be happy together? Which
college should I go to? Should I buy stocks or bonds? Should I buy a new
computer or get my present one upgraded? What’s the most effective strat-
egy for selling our new product?

We make personal and business decisions all the time. What they have
in common is the process we go through. The answer’s hardly ever cut and
dried or a clear Yes or No. When you really examine it, even the “simplest”
decision can turn out to be quite complex. In other words, the situations are
fuzzy, and so is the way we make our choices.

Unlike the fuzzy expert system, fuzzy decision making is just starting
to be used in the real world. As people are beginning to learn, it’s a useful
tool. The Fuzzy Decision Maker™ is the first commercial fuzzy decision-mak-
ing application.

121

122Chapter 5: Designing a Fuzzy Decision

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

- -

E-MAIL
FROM
DR. FUZZY

- -

The Fuzzy Decision Maker™ uses a decision method devel-
oped by Dr. Micheal O'Hagan and Nadja K. O'Hagan
(Fuzzy Logic, Inc.), based on prior work by Ronald K.
Yager,TThomas L. Saaty, and other researchers. It has been
used by the U.S. Department of the Army for the National
Gaurd. (The theory is discussed in the 1993 paper by O,Ha-
gan and O'Hagan listed in the Bibliography.)

The Fuzzy Decision Maker™ implementation of this
theory is described in the last section of this chapter.

In this chapter, you’ll use the Fuzzy Decision Maker™ on three deci-
sion scenarios. One involves selecting a college. A second one is government
oriented, choosing the best way to optimize a regional traffic system. Finally,
you’ll adapt the decision process to evaluate the pros and cons of a proposed
merger—in this case, marriage.

THE DECISION PROCESS

Three kinds of information go into the decision process—Goals, Constraints,
and Alternatives. Goals are what we want out of the process, such as an
affordable home, a reliable way to get to work, a satisfying job, a long-lasting
relationship, a memorable college education. Constraints are limiting factors,
such as the amount of money we have to spend, the geographical area we
prefer, or spouse’s preferences. Alternafives are the available choice, pri-
vate college or public, private car or mass transit, salary or commission.

The Fuzzy Knowledge Builder™ transforms continuous variables into
other continuous variables. The Fuzzy Decision Maker™ transforms discrete
concepts into other discrete concepts. For instance, it uses unconnected goals
and constraints with unconnected alternatives to determine the most valu-
able alternative.

There are several recognized methods of handling Goals, Constraints,
and Alternatives in a decision-making system. Such a system is designed to
produce the decision (choose the Alternative) that best meets the Goals,
within the bounds of the Constraints. The Fuzzy Decision Maker™’s method

123Chapter 5: Designing a Fuzzy Decision

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

gives ranked Goals and ranked Constraints the same importance in the
decision process. The decision is arrived at by the process of aggregation, in
which the ranked Goals and Constraints are reduced to a single number.

INTRODUCING THE FUZZY DECISION MAKER™

The Fuzzy Decision Maker™ is designed to help a person make a decision
that resembles a “do-it-myself” decision process. It even requires the person
to recognize his or her unique preconceptions or unconscious biases and
incorporate them in the decision process in an apparent and open way. As in
noncomputerized real life, calculations are based on a whole series of little
decisions about importances and satisfactions.

Each Goal Constraint, and Alternative is weighed against the others
somewhat in isolation. This includes their importance to you, their relative
importances, and the degree to which each Alternative satisfies the Goals and
Constraints. It breaks the decision scenario down into small parts that you
can focus on and easily enter into the program. Then a special-form of
aggregation, based on the user’s personal optimism-pessimism bias, is em-
ployed to rank the Alternatives.

The book version of the Fuzzy Decision Maker™ allows a
maximum of four Goals, four Constraints, and four Alterna-
tives. The commercial version allows many more of each
category.

First, you must analyze the problem so that you can clearly state the
Goals and Constraints, then rank the group of Goals and the group of
Constraints along a comparative scale of importance of 1 (least) to 9 (most).
The rank is based on your analysis of the problem and your educated or gut
opinion of the relative importance of each factor.

Next you measure each of your Alternatives against each of the Goals
and Constraints, asking yourself the question, How well does this Alternative
meet this Goal– Constraint? This question is also answered on a scale of 1 to 9.

- -

E-MAIL
FROM
DR. FUZZY

- -

124Chapter 5: Designing a Fuzzy Decision

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

If you have files in a directory other than the one containing
the Decision Maker, copy them from the Knowledge Builder
directory, from the DOS prompt or in Windows.

The Decision Maker has one more way for you to customize the
decision process. Are you an optimist or a pessamist? You rate your own bias
(optimism-pessimism level) and enter it into the decision-making process.

Now you’re ready to tell the program to decide. The results are
displayed on a bar chart and can be translated into a text report. All the
elements that went into the decision are included.

Each project is saved in a single file with the extension .dec.
The opening screen presents the File menu, for starting a new project

or opening an existing one, and a Help menu. Context-sensitive help in
hypertext format is always available within the program.

DECIDING WHICH COLLEGE TO ATTEND

If you’ve been to college, you know that deciding which school to attend is
difficult. If college is in your future, you may already have discovered that
there are lots of things to consider. Which schools am I qualified to attend?
Which ones are in my price range? Do I want a big university or a small
college? Do I want to go away from home or remain here? Which schools
offer the courses I’m interested in? What kinds of part-time work are avail-
able on campus or nearby? What do they do for fun?

What follows is a way of organizing this information for a student-
to-be named Pat Press (a relative of Dr. Fuzzy).

Start out by double-clicking on the Fuzzy Decision Maker™ icon, to
load the program. Next, click on New in the File menu. A dialog box (Figure
5.1) asks you to name the project. Type in the name college and click on OK.

You will automatically be presented with a series of spreadsheet
boxes in which you will type in the short names and the fuller descriptions
of the Goals, Constraints, and Alternatives. If you wish to skip one of the
boxes, simply click on OK. Be sure to return to the box later and fill it in.

- -

E-MAIL
FROM
DR. FUZZY

- -

125Chapter 5: Designing a Fuzzy Decision

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

- -

E-MAIL
FROM
DR. FUZZy

- -

Figure 5.1: Project Name dialog box.

You can close the program at any time by using the stand-
ard Windows close item or by clicking in the upper left-
hand corner of the screen.

When all windows are closed, the Decision Maker’s screen
will display the full program menu and, just below it, the
icon toolbar (Figure 5.2). The icons are defined in Table 5.1.

The upper line to the right of the toolbar names the function
of the icon under the cursor. The lower line states the active
Importances, Satisfactions, and inference method options, as
checked in the Names menu’s Options box.

To save what you’ve done, click on the Save icon, or select
Save from the File menu.

Figure 5.2: Full Decision Maker menu and toolbar.

126Chapter 5: Designing a Fuzzy Decision

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

TABLE 5.1: Icon Definitions.

 Icon Definition

Open file

Save file

Start new project

Name goals

Name constraints

Name alternatives

Define importances

Define satisfactions

Decision process

Close windows

The Fuzzy Decision Maker™ also allows manual entry of
this (and all other) information, so you can choose a specific
screen to work on, such as Name Alternatives.

- -

E-MAIL
FROM
DR. FUZZY

- -

127Chapter 5: Designing a Fuzzy Decision

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Figure 5.3: Goals Names dialog box.

Naming Your Goals

The first dialog box to be displayed is Goals Names (Figure 5.3).

For manual presentation of this dialog box, click on the
Goals icon in the toolbar or select Name Goals from the
Names menu.

 Pat’s college decision involves four Goals. First comes

Prestige—school should have high prestige.

Type Prestige in the Names box, press your keyboard’s right-arrow key to
move the cursor the Description box, and type school should have high prestige.

- -

E-MAIL
FROM
DR. FUZZY

- -

128Chapter 5: Designing a Fuzzy Decision

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Figure 5.4: Name Constraints dialog box.

Use the four arrow keys to maneuver around the spreadsheet. Each
name can have a maximum of eight letters. Each description can be about 40
characters long.

Pat also wants the school to have high professional ratings. This is the
second Goal.

Prfslism—high professional ratings.

Where should the school be located? Pat’s decided that it would be
good to fly far from the nest. The third Goal is

LongDist—a long distance from home.

Finally, Pat’s a laid-back person, who prefers that the school have
medium living expenses and living standards. The fourth Goal is

Med_buck—med.expenses–living stds.

129Chapter 5: Designing a Fuzzy Decision

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

When you’ve entered all the Goals, click on OK. The Name Goals box
will close and the Name Constraints box (Figure 5.4) will automatically
appear.

For manual presentation of this dialog box, click on the Con-
straints icon in the toolbar or select Name Constraints from
the Names menu.

Name Your Constraints

Pat’s goals are limited by some personal preferences and needs. Enter these
Constraints just as you did the Goals.

To begin with, Pat is quite interested in languages, so the first Con-
straint is

Lang_mjr—school must offer lang. major.

Pat is serious about getting an education, but in no way is looking for an ivory
tower. So the second Constraint is,

PartySch—the more partying the better.

The last two Constraints involve money. Pat lacks the resources to
pay for college completely right now and needs help. So the third and fourth
Constraints are

Low Tuit—tuition should be low.

and

FinanAid—schl shd give financial aid.

When you’ve finished entering the Constraints, click on OK. The next
dialog box is for the Alternatives (Figure 5.5).

- -

E-MAIL
FROM
DR. FUZZY

- -

130Chapter 5: Designing a Fuzzy Decision

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Figure 5.5: Name Alternatives dialog box.

Name Your Alternatives

After long hours at the library pouring over catalogs, Pat has narrowed the
potential- college list to four quite different schools.

For manual presentation of this dialog box, click on the Al-
ternatives icon in the toolbar or select Name Alternatives
 from the Names menu.

The first school is a large private one, named

IvyCvr_U—Ivy Covered University.

Second on the list is

- -

E-MAIL
FROM
DR. FUZZY

- -

131Chapter 5: Designing a Fuzzy Decision

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Home_St_U—Home State University.

The third possibility is a small religious school,

St_Al_U—St. Algorithm University.

And fourth is

XtwnColl—Crosstown Community College.

You’ve now completed entering Pat’s basic information. The decision
process is about to begin. The next screen lets Pat rank the Goals and
Constraints according to their importance (Figure 5.6).

Figure 5.6: Goals and Constraints Importances screen.

132Chapter 5: Designing a Fuzzy Decision

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

- -

E-MAIL
FROM
DR. FUZZY

- -

For manual presentation of this dialog box, click on the Im-
portances icon in the toolbar or select Graphics Importance
from the Importance menu.

Rank the Importances of Your Goals and Constraints

The Importances screen presents a board with nine categories on which Pat
ranks the Goals and Constraints. These are stacked neatly at the left of the
board, the Goals on yellow icons and the Constraints on green ones. There
are also three command icons, which are defined in Table 5.2.

Place each Goal and Constraint by dragging it to the appropriate
board, as listed in Table 5.3. The Importances range from Most, at the top, to
Least, at the bottom. You can rearrange them as much as you want. The
graphics screen provides snap-to guides, so it’s easy to align the items on
each board.

When you’ve finished ranking the Goals and Constraints, save your
work by clicking on the Save icon. Then click on the Close Window icon. The
Importances screen will be replaced by the Satisfactions screen (Figure 5.7).

TABLE 5.2: Importances Screen Icons.

 Icon Definition

Importances (click on for Help)

Save file

Close window

133Chapter 5: Designing a Fuzzy Decision

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

TABLE 5.3: Importances of Goals and Constraints.

Goal or Constraint Importance Level

Goals:
Prestige Small
Prfslism Great
LongDist Most
Med_buck Less

Constraints:
Lang_mjr Most
PartySch Strong
Low_Tuit Least
FinanAid More

Figure 5.7: Satisfactions screen, Alternatives for an individual Goal or
Constraint.

134Chapter 5: Designing a Fuzzy Decision

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

- -

E-MAIL
FROM
DR. FUZZy

- -

The Importances rankings are also called the Judgment Scale.
The values are

 Ranking Numeric value

Most 9
Great 8
Strong 7
More 6
Moderate 5
Less 4
Weak 3
Small 2
Least 1

How Well Do the Alternatives Satisfy the Goals?

A Satisfaction screen is set up much like the Importances screen. The cyan-
colored Alternatives are stacked to the left of the red-shaded boards. The
name of the Goal (yellow) or Constraint (green) is shown above the boards,
to the left of the word Satisfactions. The Save and Close Windows icons are
at the left of the screen.

A separate screen will appear for each Goal or Constraint, so that the
Alternatives can be ranked on each one. After completing the ranking on the
first screen, click on the name of the Goal or Constraint and the next Satisfac-
tions screen will automatically be displayed. For instance, after ranking the
Alternatives on Prestige screen, click on the word Prestige. The screen for
Prfslism will automatically be displayed.

Use the rankings in Table 5.4 to complete Pat’s Satisfactions screens
for each Goal and Constraint.

When you’ve completed the series of eight Satisfactions screens (one
each for a Goal and Constraint), click on the Save icon and then on the Close
Window icon.

The screen will automatically display a graph of the decision process
(Figure 5.8). As you can see, Ivy Covered University is the school that best
fits Pat’s needs, followed closely by Home State University.

If Pat wants to see a text version of the graph, this is the procedure:

135Chapter 5: Designing a Fuzzy Decision

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

TABLE 5.4: Satisfactions Rankings for Each Alternative.

Alternative

Goal or Constraint IvyCvr_U Home_St_U St_Al_U XtwnColl

Goals:
Prestige Most Less More Least
Prfslism More Less Most Least
LongDist Most Moderate Great Least
Med_buck More Most Moderate Least

Constraints:
Lang_mjr Most Less Small Great
PartySch Weak Less Strong Moderate
Low_Tuit Most Less More Weak
FinanAid Most Small Moderate Weak

Figure 5.8: The college choices based on Pat's information.

136Chapter 5: Designing a Fuzzy Decision

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

- -

E-MAIL
FROM
DR. FUZZY

- -

While the graph remains displayed, select Build Report from the File
menu. Click on OK in the File Info dialog box.

Then select View from the File menu. Click on the No Conversion
button in the next dialog box. In a moment, the text report will be displayed
on the screen.

The bar chart can be printed from the screen. Just select
Print from the File menu. It lasts on the screen only as long
as it’s displayed. It’s gone when you click the Close Win-
dow screen.

If you want to retain it in a file, you can Cut or Copy
it to the Clip Board and then Paste it into another document
or into a graphics program.

You can build a report only as long as the bar chart is
displayed. If you want to build a report at a later time, you
 must first regenerate a bar chart by clicking on the Decision
icon. Then Select Build Report from the File menu.

The report is built and saved as a text (or ASCII) file
college. rep. It can can later be printed out or pasted into an-
other document. To list the report files in the File Window,
select Open from the File menu, click on the File Name win-
dow, type .rep, and press Enter.

If you want to save the report instead in Write format,
click on the Convert file button in the View dialog box.

Need help remembering which color on the bar chart represents?
Select Color Palette from the Windows menu. The palette (Figure 5.9) will be
displayed on top of the bar chart. It’s moveable, so you can place it wherever
convenient on the screen.

You can also display the bars as solids. Select Options from the File
menu and click to remove the X from the Show Contributing Parts button.

137Chapter 5: Designing a Fuzzy Decision

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Figure 5.9: Color palette for Goals and Constraints.

REGIONAL TRANSPORTATION SYSTEM

A region’s transportation system—its roads, streets, throughways, bus
routes, commuter trains, freight trains, ferry boats, cargo ships, harbors,
rivers—doesn’t exist in isolation. It’s part of a dynamic system of people,
their homes, the places they go (work, school, leisure areas), how they spend
their time, and where and how they earn their money and spend it. If a
metropolitan area is a living system, its transportation system is its limbs,
arteries, and veins.

These interactions are complex in several ways. First, each of us tries
to maximize from the resources that we have and the choices available to
us—the land uses and the activity systems that meet our needs. In other
words, our lifestyles.

138Chapter 5: Designing a Fuzzy Decision

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Second, the mix of places where we assemble our lifestyles aren’t all
in one place. Each person in a metropolitan area has a different mix of
housing location, job location, shopping location, school, recreation, and
other places to spend resources. How do they do this?

Mobility and transportation are two factors. Either bring the goods
and services to the people or bring the people to the goods and services. Like
a region’s mix of lifestyles, its mobility is complex, or “real murky,” as one
traffic expert puts it. In other words, fuzzy.

Experts use several kinds of models to understand how transporta-
tion systems function and predict the effects on them of the region’s future
growth, development, and change—land use models and human activity
models, based on census and other demographic data; economic models; and
air quality models, since air pollution is a product of auto traffic.

This scenario was suggested by Larry Wright, Ebasco Infra-
 structure Div., Ebasco Corp.

Concepts included in a regional transportation model include System
Activity System Distribution, a combination of land-use and socioeconomic
data; System Capacity, the number of trips the system was designed to
handle; System Availability, the percentage of the region’s population who
are within easy access of the system (such as one block from a bus line or two
miles from a commuter train); Level of Service, which is graded like a school
report card, from A (free flow of traffic) to F (gridlock). Transportation
experts are always looking for ways to analyze the existing system more
realistically and use them in deciding how the system should evolve in the
future.

This background is the basis for a project using the Fuzzy Decision
Maker™. What changes should be made in the existing system? What social,
economic, and governmental constraints limit the kinds of possible changes?
What strategies should be used to achieve the desired goals?

Begin by opening a New file in the Fuzzy Decision Maker™ and name
the project Traffic.

- -

E-MAIL
FROM
DR. FUZZY

- -

139Chapter 5: Designing a Fuzzy Decision

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Because this project requires close consideration of the goals-con-
straints-alternatives relationships, the Decision Maker’s Manual system will
used for determining Importances and Satisfactions.

To activate the manual feature, Select Options from the Names menu
and click on the Importance Manual radio button and on the Satisfaction
Manual button. Click on OK. The same screens you’ve already used for entry
of Goals, Constraints, and Alternatives will be presented.

Goals

Four goals have been selected for this example for deciding how to improve
a transportation system, shown in Table 5.5.

Constraints

Enter the Constraints listed in Table 5.6.

TABLE 5.5: Transportation System Goals

Name Description

levserv Level of svce with some excess capacity
reduauto Reduce the number of auto trips
redairp Reduce air pollution
incnonau Increase nonauto travel

TABLE 5.6: Transportation System Constraints.

Name Description

actdis Area socioec and land use patterns
syscap Capacity of the system
cost Of maintenance, construction, other
sysaval System availability—pcent pple served

140Chapter 5: Designing a Fuzzy Decision

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Alternatives

The Alternatives are strategies based on a list of individual options that can
be mixed and matched:

 • telecommuting
 • van pooling
 • work staggering
 • reducing the number of single-occupancy vehicles
 • car pooling
 • constructing new highways and roadways for autos
 • increasing public transit
 • urban goods scheduling
 • constructing new operations facilities to better control the ex-
 isting system

For instance, you can increase existing highway capacity through
traffic operations, such as monitoring traffic and metering entrance to high-
use throughways. Or you can do it by affecting the way land uses and activity
uses affect the system, for instance, encouraging large companies to stagger
their work hours.

If you want to even out the demand on the system, you might want
to include work staggering, telecommuting, urban goods scheduling, im-
provement of mass transit, and car and van pooling. If you want to emphasize
increasing the efficiency of the existing system, you might want to construct
new operations facilities, as well as promoting van and car pooling, and some
of the other options.

Each of the four Alternatives used in this project includes a selection
of the options.

TABLE 5.7: Transportation System Alternatives

 Name Description

roadcap Increase road capacity
masscap Increase public transit capacity
reddmnd Reduce and shift the demand
opseff Increase system operating efficiency

141Chapter 5: Designing a Fuzzy Decision

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Enter the Alternatives listed in Table 5.7.
So far, you’ve used the same screens for the Manual method that you

did with the Graphic. Now the process actually becomes hands on, as you
determine the Importances and Satisfactions.

Importances

To use the Manual method, select Manual Importance from the Importance
menu, which displays a dialog box titled Manual Entry of Goals and Con-
straints Importance (Figure 5.10).

Each possible pairing of Goal and Constraint is presented in the top
part of the box, giving you the opportunity to decide which one is more
important. For instance, if the Goal–Constraint in the left-hand box is more
important, click on radio button 1. If the Goal–Constraint in the right-hand
box is more important click on radio button 2. To enter the number of times
one or the other is more important, use the up–down arrow keys until the

Figure 5.10: Manual Entry of Goals and Constraints Importance dialog
box.

142Chapter 5: Designing a Fuzzy Decision

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

desired number—from 1 to 9—appears in the box. Or select the box and enter
the number from the keyboard.

If you decide they are equal, click on that radio button. When you
have finished with one pair, click on the Assign button to register the values.
The next pairing will appear in the boxes. Perform similar routines until you
have compared all the pairings.

Notice that the program automatically displays the number of rankings
still to be made (above the names) and tells you whether the process is Finished
or Unfinished (lower left-hand corner). Be sure to continue until Finished is
displayed (a bell will sound). Otherwise, the decision process won’t work.

Enter the Importances from the information in Table 5.8, making the
italicized goal or constraint the more important in the pairing. When you’re
done, close the dialog box.

There are two Manual methods of determining the Satisfac-
 tions—serial and parallel. In the serial method, the Goal-
Constraint and Alternative pairs are presented one at a
time. In the parallel method, all the Goals-Constraints are
presented together for each Alternative (Manual 1) or else
all the Alternatives are presented together for each Goal-
Constraint (Manual 2).

To use the serial method, select Manual Serial Goals and
Manual Serial Constraints from the Satisfaction menu. Fig-
ure 5.11 is an example of a dialog box for this method.

To use the Manual 1 method, select Manual Parallel Goals 1
and Manual Parallel Constraints 1 from the Satisfaction
menu. To use the Manual 2 method, select Manual Parallel
Goals 2 and Manual Parallel Constraints 2 from the Satisfac-
tion menu.

Satisfactions

The Transportation project will use the Parallel Manual method 1. It presents
all the Alternatives for each Goal or Constraint.

- -

E-MAIL
FROM
DR. FUZZY

- -

143Chapter 5: Designing a Fuzzy Decision

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

TABLE 5.8: Transportation Project Importances.

 Goal–Constraint 1 Goal–Constraint 2 Value

levserv redairp equal
reduauto redairp 2 times
levserv incnonau 4 times
reduauto incnonau equal
redairp incnonau equal

levserv actdist 6 times
reduauto actdist 7 times
redairp actdist 4 times
incnonau actdist 8 times
levserv syscap 2 times

redauto syscap 3 times
redairp syscap equal
incnonau syscap 5 times
actdist syscap 2 times
levserv costs 2 times

reduauto costs equal
redairp costs 3 times
incnonau costs 2 times
actdist costs 5 times
syscap costs 2 times

levserv sysaval 2 times
redauto sysaval equal
redairp sysaval 2 times
incnonau sysaval 4 times
actdist sysaval equal

syscap sysaval 2 times
costs sysaval 2 times
levserv redauto 4 times

For the Goals’ Satisfactions, select Manual Parallel Goals 1 from the
Satisfactions menu, displaying the dialog box in Figure 5.12. For the Con-
straints’ Satisfactions, select Manual Parallel Constraints 1 from the Satisfac-
tions menu, displaying the dialog box in Figure 5.13. The Alternatives are

144Chapter 5: Designing a Fuzzy Decision

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Figure 5.11: Manual Entry of Alternative Satisfaction by Goal dialog
box, for serial manual entry.

listed on the spreadsheet, and a the name of a Goal or Constraint is listed in
the box.

Enter the information from Table 5.9. When you’ve completed the
first Goals spreadsheet, click on Assign. The next Goals sheet will appear.
When you’ve finished all the Goals Satisfactions, click on OK.

145Chapter 5: Designing a Fuzzy Decision

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Figure 5.12: Alternatives Satisfactions by Goal dialog box for the Paral-
lel 1 method.

Figure 5.13: Alternatives Satisfactions by Constraint dialog box for the
Parallel 1 method.

146Chapter 5: Designing a Fuzzy Decision

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

TABLE 5.9: Percentage Values for Transportation Satisfactions.

 Goal or Constraint Alternative Percentage

Goals:
levserv roadcap 40

masscap 50
reddmnd 90

 opseff 80

reduauto roadcap 0
masscap 40
reddmnd 20
opseff 30

redairp roadcap 0
masscap 90
reddmnd 60
opseff 50

incnonau roadcap 0
masscap 95
reddmnd 30
opseff 60

Constraints:
actdist roadcap 40

masscap 60
reddmnd 50
opseff 70

syscap roadcap 50
masscap 40
reddmnd 80
opseff 20

costs roadcap 95
masscap 95
reddmnd 20
opseff 50

sysaval roadcap 90
masscap 80

 reddmnd 20
 opseff 20

147Chapter 5: Designing a Fuzzy Decision

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

For the Constraints’ Satisfactions, select Manual Parallel Constraints
1 from the Satisfactions menu and enter the data as you did with the Goals
spreadsheets.

When you’re done, Save your work.

The Decision Process

Now you’re ready to make the decision. Click on the Decision icon and the
bar chart will be displayed. Since a governmental agency usually has many
different people involved in a decision, you will probably want to consider
the decision with various biases. Table 5.10 summarizes the bar charts at
biases 0, –50 (medium-pessimistic), and +50 (medium-optimistic).

To change the biases, select Options from the Names menu and
change the bias number.

You can also display the results with Satisfactions only, ignoring the
Importances. In the Options dialog box, click on the Satisfactions Only box
and then click on OK.

MERGING INTERESTS

Many kinds of decisions involve merging the interests of two individuals or
groups. Politicians do it all the time. A bipartisan foreign policy in the United
States, for instance, might involve the business-oriented policies of the Re-
publicans with the human-rights propensities of the Democrats. When two

TABLE 5.10: Transportation Bar Charts Summary.

 Satisfactions with Importances Without Importances

 0 -50 +50

roadcap 36.86 11.13 67.88 39.38
masscap 68.32 48.04 86.58 68.75
reddmnd 51.07 31.61 71.27 46.25
opseff 52.68 37.98 66.67 47.50

148Chapter 5: Designing a Fuzzy Decision

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

businesses decide to merge, they must be sure that differing priorities or
points of views don’t outweigh the goals and other aspects that they have in
common. This is also the case in personal mergers, such as marriage.

Dr. Fuzzy doesn’t promise eternal bliss, but the Fuzzy Decision
Maker™ can be a useful tool for potential mergees who want to evaluate their
chance of success. How? It’s a three-step process:

1. The potential partners work out together what the goals, con-
straints, and alternatives are.

2. Each potential partner uses the Fuzzy Decision Maker™ pri-
vately to rank the goals and constraints, assign importances and
satisfactions, and have the program reach a decision.

3. The partners then compare their results. How closely do their
importances and satisfactions agree? Did the partners’ actions
result in selection of the same alternative?

Here’s an example from real life.

The Scenario

Not wanting to get in trouble with friends and acquaintances, Dr. Fuzzy
decided to look at some real lives out of the past—in this case, George and
Martha Washington. The lives of the first First Family offer an instructive
case study.

The Story So Far

George Washington and Martha Dandridge Custis met in their native Vir-
ginia when they were in their mid-twenties, in the year 1758. George was a
former surveyor of the uncharted western lands, a decorated war hero
(French and Indian War), and a not very rich, but eligible bachelor. Martha
was a recent widow, extremely rich, with two small children, and was very
likely to get married again soon. George wanted to settle down with someone
appropriate—“marry up,” if possible—make some money from agriculture,
and go into politics. He was carrying the torch for a neighbor, a married
woman named Sally Carey Fairfax.

149Chapter 5: Designing a Fuzzy Decision

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Today’s Episode

Can George and Martha find happiness together? Or should they break up
and keep looking for someone else. Of course they did decide to marry. Dr.
Fuzzy likes to think this is the decision process they used. Compute along
with Martha and George in the Fuzzy Decision Maker™.

The Alternatives

In some kinds of decision making, as you’ve already seen, setting the goals
and constraints is the first order of business. Here’s a case where determining
the alternatives is the best way to begin.

Select New from the Decision Maker’s File menu and name this
project marry_yn. Because George and Martha wanted to enter the Alterna-
tives first, when the Goals screen is automatically presented, simply close it
by clicking Cancel.

George and Martha’s alternatives are simple and straightforward:

marry—Get married to each other.
no_marry—Don’t get married to each other.

Click on the Name Alternatives icon (or select Names Alternatives
from the Names menu), enter the alternatives information, and click on OK.

Next, Martha and George can turn their attention to the goals and
constraints.

The Goals

Determining the goals is more difficult, because any merger-related goal will
be important to the individual and to a potential partner. However, fullest
achievement of even a mutually agreed upon goal may not necessarily
involve this potential partner.

Click on the Name Goals icon and enter the goals information that
follows. Martha and George can probably set the first goal quickly:

50_years—Be satisfactorily married for many years.

150Chapter 5: Designing a Fuzzy Decision

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Agriculture was the main economy in colonial Virginia, and George
and Martha were both born into the plantation-owning socioeconomic class
and both consider it their way of life. So the second goal is

ProfFarm—Operate a profitable plantation.

Both of them are conventional in attitude toward families, and fond
of children, so it’s likely that another goal will be

HaveKids—Have children with a spouse.

Finally, Martha and George both like to have a good time, so the last
goal is

SoclLife—Have an active social life.

When you’re done on this screen, click on OK. Be sure to save your
file by clicking on the Save icon.

The Constraints

Click on the Name Constraints icon and enter the names, as follows.
The constraints reflect the potential for conflicts between the partners.

Take Martha and George, for instance. First of all

GSoldier—George is a career soldier.

He’s newly retired to the civilian sector, but George has a strong sense
of duty. So in any new war he’ll be likely to get back into uniform and turn
away from the country life that Martha loves. Even without a war, a man of
action like George might get tired of the country life and want to return to
active service. Either case will leave Martha alone to manage the plantation
business, as well as bring up the children. Maybe this isn’t much different
from being a widow.

Next,

M2kids—Martha has two children from her previos marriage.

151Chapter 5: Designing a Fuzzy Decision

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Will she have conflicting loyalties and priorities between her new
husband and her children?

Then there’s

G_Torch—George’s old flame, Sally.

Sally and her husband own the plantation next door to George’s. Will
George be able to focus on marriage with Martha, with the old flame living
just down the road?

Finally, there’s the wealth differential.

GPorMRch—George is strapped for cash to fix up his
plantation, Mt. Vernon, and Martha is very rich.

Martha has inherited several plantations from her husband. In fact,
she’s the richest woman in Virginia. Will she be able to hack it in more modest
surroundings? Will George be jealous of his wife’s vast wealth? Will he
expect her to subsidize his plantation?

When you’ve entered the constraints, click on OK and Save the file.
So far, George and Martha have worked together to develop the

alternatives, goals, and constraints. Now’s the time for them to take these
same basics and work on them separately. Martha will do her importances
and satisfactions, and set her bias. George will do his.

Perform two Save As operations on the existing program, naming one
G_ Marage and the other M_Marage.

This is really a role-playing exercise. It works best if you carry
one character at a time all the way through the process. (Un-
less you enjoy morphing from one personality to another!)

George’s Version

Open G_Marage.dec and select Graphics Importance from the Importance
menu. George ranked the goals and constraints as listed in Table 5.11.

- -

E-MAIL
FROM
DR. FUZZY

- -

152Chapter 5: Designing a Fuzzy Decision

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

TABLE 5.11: George’s Importances of Goals and Constraints.

 Goal or Constraint Importance

Goal:
50_years Moderate
ProfFarm Most
HaveKids Least
SoclLife Less

Constraint:
GSoldier Weak
M2Kids Less
G_Torch Most
GPorMRch Least

TABLE 5.12: George’s Satisfactions Rankings for the Alternatives.

Goal or Constraint Marry No_Marry

 Goal:
50_years Strong Least
ProfFarm Great Great
HaveKids Moderate Least
SoclLife Strong Great

Constraint:
GSoldier Moderate Great
M2Kids Moderate Least
G_Torch Less Strong
GPorMRch Great Least

He next decided how much each goal and constraint satisfied the
alternatives. George’s Satisfactions are listed in Table 5.12.

Finally George determined his Bias setting in the Names menu’s
Options item. He decided that he was reasonably optimistic and selected a
setting of +30.

When he pressed the Decision icon, George’s graph looked like the
one in Figure 5.14. To create a text report of the decision, select Build Report

153Chapter 5: Designing a Fuzzy Decision

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Figure 5.14: George’s decision graph.

from the File menu, then view it by Selecting View Report from the File menu
(Figure 5.15).

Martha’s Version

Meanwhile, Martha was working on her own decision process. She decided
to use a different way of representing the graphics, called Graph 2, rather
than the default Graph 1. Graph 2 presents a Satisfaction screen for each
Alternative. The user then ranks all the Goals and Constraints for each
Alternative.

Open M_Marage.dec and select Options from the File menu. Next, click
on the radio button next to Graph 2 in the Options screen’s Satisfactions box
and click on OK.

Now click on the Define Importance icon (or choose Graphic Impor-
tance from the Importance menu) to display the first Satisfactions screen. As
with the Graph 1 method, when you’ve placed all the Goal–Constraint icons

154Chapter 5: Designing a Fuzzy Decision

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

on the first screen’s board, click on the Alternative name (colored cyan). The
next screen will automatically appear. Because there are just two Alterna-
tives, when you’re finished the second one, save your values and click on the
Close Window icon.

As before, rank the goals and constraints as listed in Table 5.13.
Martha’s satisfactions are listed in Table 5.14. Enter those in her

program’s Satisfactions box.

 The Graph 2 method also allows entry of numerical Satisfac-
 tions values in spreadsheet format.

Martha’s final task was to set her Bias. Her more confident optimism
led her to choose a setting of +50.

- -

E-MAIL
FROM
DR. FUZZY

- -

155Chapter 5: Designing a Fuzzy Decision

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

TABLE 5.13: Martha’s Importances of Goals and Constraints.

 Goal or Constraint Importance

Goal:
50_years Most
ProfFarm Strong
HaveKids Least
SoclLife Great

Constraint:
GSoldier Most
M2Kids Least
G Torch Strong
GPorMRch Moderate

TABLE 5.14: Martha’s Satisfactions Rankings for the Alternatives

 Goal or Constraint Marry No Marry

Goal:
50_years Most Least
ProfFarm Strong Small
HaveKids Moderate Least
SoclLife Great Great

Constraints:
GSoldier Less Least
M2Kids Moderate Moderate
G_Torch More Least
GPorMRch Moderate Small

Martha’s decision graph is shown in Figure 5.16 and her text report
in Figure 5.17.

156Chapter 5: Designing a Fuzzy Decision

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Figure 5.16: Martha’s decision graph.

Figure 5.17: Report of Martha's decision.

157Chapter 5: Designing a Fuzzy Decision

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Comparing the Two Versions

When Martha and George compared notes, they decided they were pretty
compatible and soon got married. As this example shows, using the Fuzzy
Decision Maker™ this way lets each potential partner clarify his or her own
values and bias and provides a basis for them to jointly evalute areas of

George of course did make Mt. Vernon pay off and he did
go into Virginia politics. He also went back into uniform in
1776 and left Martha to run the plantation for all the years
of the Revolutionary War. They had no children of their
own, but raised Martha’s children and later adopted two of
her young grandchildren after her son died during the war.
They lived contentedly ever after, until George’s death in
1799.

INSIDE THE FUZZY DECISION MAKER

How does the Fuzzy Decision Maker™ do its work? The Decision menu lets
you see some of the inner workings, including the relationships of the
Importances and the Satisfactions. These are implementations of the O’Ha-
gan methodology and using the O’Hagan terminology.

Importances

The Importance Levels (which O’Hagan calls Alpha Levels) are the Impor-
tances assigned to the Goals and Constraints using the Graphic option
(Figure 5.18). For instance, the Goal ProfFarm was placed on the Most board,
and so was assigned the value of 9 on the Judgment Scale.

- -

E-MAIL
FROM
DR. FUZZY

- -

158Chapter 5: Designing a Fuzzy Decision

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Figure 5.18: Importance Levels.

Figure 5.19: Importance Matrix.

159Chapter 5: Designing a Fuzzy Decision

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

The fuzzy choices that the user makes in determining the Importances
of Goals and Constraints are calculated along with a weighting method
developed by Thomas L. Saaty. The results of this calculation—in a notation
called matrix algebra—are displayed in the Importance Matrix (Figure 5.19).

The final stage in the calculation is of the Importance Factors, which
are derived from the matrix values. If you select the satisfactions only,
ignoring the Importances, all the Importance Factors are forced to 1.

If you select the Manual option, the program performs a direct calcu-
lation of the Importance Factors.

Satisfactions

The Graphic Satisfactions are also calculated in a multistage process. The
Satisfaction Levels spreadsheet (Figure 5.20) shows the results of ranking the
Goals–Constraints with the Alternatives. Again, Most equals 9 and Least
equals 1.

Figure 5.20: Satisfaction Levels.

Figure 5.21: BMatrix.

160Chapter 5: Designing a Fuzzy Decision

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

As with the Importances, the Satisfactions are manipulated mathe-
matically, producing the Satisfactions Matrix. Further calculations produce
what O’Hagan calls the BMatrix (Figure 5.21). If you use the Manual option,
the program calculates the BMatrix directly.

The Decision

The final phase of the Decision process is running the BMatrix plus the Bias
through the program’s inference engine. As the Option box indicates, two
inference methods are available. The Yager method (the default) was designed
by Ronald R. Yager for fuzzy problems in which goals and constraints are
ranked in importance. It’s nonlinear in character and involves aggregation
operations. It uses the Importance Factor as a exponent for each value in the
BMatrix. The Perron method is simpler and linear. It multiplies the Impor-
tance Factor by each value in the BMatrix.

You can think of the extreme optimism bias as use of the
MAX (fuzzy Or) operator for combining sets—a wide-open
method designed to incorporate as much as possible. The ex-
treme pessimism bias uses the much more restrictive MIN
(fuzzy And). The rest of the bias range falls somewhere be-
tween MAX and MIN.

 In decision making, the aggregation method takes the
 rankings and combines them using an operator somewhere
between MAX and MIN operator.

The book version of the Fuzzy Decision Maker™ uses
an aggregation technique developed by Michael O’Hagan
called ME-OWA (maximum entropy order weighted average).
The commercial version also provides other aggregation
techniques.

The BMatrix and the Bias are processed through the inference engine,
producing the Decision Factors (Figure 5.22). This box shows the same values
that are represented by the bar chart heights.

- -

E-MAIL
FROM
DR. FUZZY

- -

161Chapter 5: Designing a Fuzzy Decision

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Figure 5.22: Decision Factors.

Figure 5.23: Decision Pieces.

162Chapter 5: Designing a Fuzzy Decision

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

The Decision Pieces box (Figure 5.23) shows the contributing parts of
the Decision Factors. Unlike the colored sections of the bar chart, these values
are not normalized.

You’ve now completed your introduction to fuzzy decision-making.
How else can fuzziness be used in the practical world? Chapter 6 provides
the third tool, the Fuzzy Thought Amplifier™.

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

CHAPTER 6

FUZZY THOUGHT
AMPLIFIERΤΜ FOR COMPLEX
SITUATIONS

In this book so far you’ve investigated two kinds of fuzzy situations, those
that need a person’s expertise to control or resolve and those requiring a
decision. Other fuzzy situations are also found in the world around us,
situations that are both extremely complex and extremely dynamic. The
ecosystem of a forest, lake, or prairie is one example. So is a sociopolitical
system, such as the Apartheid that until the early 1990s governed South
Africa. The effect of bad weather on freeway driving, conflicts in the Middle
East, behavior of the stock market, the health care system, international drug
trafficking, and even hunger in the human body.

Do these complex and dynamic situations have anything in common?
Yes, says Dr. Fuzzy. Each one consists of a group of variable concepts that
effect each other. To remain functionally dynamic, the system requires a
balance of their interactions. If one of the concepts is greatly changed or
removed entirely, the entire system may grind to a halt, flail around end-

163

164Chapter 6: Fuzzy Thought AmplifierTM for Complex Situations

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

lessly, or become extremely chaotic and useless. To model this form of fuzzy
situation, Dr. Kosko invented cognitive maps.

DYNAMIC COMPLEXITIES IN EVERYDAY LIFE

Take your morning commute on the expressway, as originally envisioned by
Bart Kosko. In this case, the concepts include the bad weather itself, express-
way congestion, auto accidents, frequency of police patrols, your own aver-
sion to risky driving, and your own driving speed. The concepts affect each
other, either directly or indirectly and either positively or negatively. For
instance, bad weather always leads to congestion of the roadway and it
usually leads to auto accidents. The greater is the congestion, the greater the
number of accidents, and unfortunately, the greater is the number of acci-
dents, the greater the congestion. Roadway congestion has a strong negative
effect on your driving speed—the greater the congestion, the slower your
speed. As the frequency of police patrols increases, the number of auto
accidents goes down a little. The number of accidents doesn’t directly affect
your own driving speed, but if the number increases, your own sense of risk
aversion will also go up a little. And as your risk aversion goes up, you tend
to slow down a little. And so on.

International drug trafficking (a scenario developed by Rod Taber,
formerly of the University of Alabama, Huntsville) involves the concepts of
drug availability, drug cartels, street gangs, drug usage, profits, corruption,
police action, the price of cocaine, and others. Here again, the interdepend-
ence can be direct or indirect and positive or negative.

Each of these scenarios can be represented on paper or in a computer
as a special type of graph called a fuzzy cognitive map. The variable concepts
are represented by the nodes, which can also be called conceptual states, and
the interactions by the edges, or causal events.

As the scenarios suggest, in human events the fuzzy cognitive map
naturally represents a human way of thinking. Taber has noted that other
methods of depicting the cyclic nature of this causal knowledge either ignore
the cycles or ignore the importance of real time. The cognitive map allows for
both. Because the fuzzy cognitive map organizes dynamic information in such
a humanlike way, we call our version of it the Fuzzy Thought AmplifierTM.

165Chapter 6: Fuzzy Thought AmplifierTM for Complex Situations

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

A graph is a way of representing data. It consists of nodes
(also called vertexes) and their connectors (called edges or
arcs). In the Fuzzy Thought AmpliferTM, nodes are called con-
ceptual states.

In some graphs, the connections are directional,
meaning that the action is from one node to another and rep-
resented by an arrow. This type of graph is called a directed
graph or digraph. In the Fuzzy Thought AmpliferTM, the ar-
rows are called causal events.

If the type of action is represented as positive or
negative, the graph is called signed.

A cognitive map is a signed, directed graph and can be
either crisp or fuzzy.

ORIGINS OF COGNITIVE MAPS

Cognitive maps were formally introduced by Robert Axelrod, a political
scientist, in his 1976 book, Structure of Decision: the Cognitive Maps of Political
Elites. His work represented the map as a crisp matrix.

Crisp Cognitive Maps

The logical structure of crisp cognitive maps allow each state to have a value
of either 0 or 1. The connection between two states can have one of three
weights (values):

• +1, meaning that the originating or causing state results in an
 ncrease in the target or affected state;
• −1, meaning that the causing state results in a decrease in the
 affected state;
• 0, meaning that the causing state does not change the affected
 state.

- -

E-MAIL
FROM
DR. FUZZY

- -

166Chapter 6: Fuzzy Thought AmplifierTM for Complex Situations

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Figure 6.1: Example of o crisp cognitive map.

For instance, the three states (Figure 6.1) in a crisp cognitive map
might have these values:

State 1: 1
State 2: 0
State 3: 1

and these connections:

State 1: — +1→ State 2
State 2: — −1 → State 3
State 3: — 0 → State 1
State 3: — +1→ State 2

The event matrix is shown in Table 6.1.
Because the connection has both direction and a value, it can be

considered a vector that changes the value of the target state. This new value

167Chapter 6: Fuzzy Thought AmplifierTM for Complex Situations

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

TABLE 6.1: Matrix for an Example Crisp Cognitive Map.

 Affected State

Causing State State 1 State 2 State 3

 State 1 0 +1 0
 State 2 0 0 –1
 State 3 0 +1 0

is then enlarged or made smaller (“squashed”) through a step function at 0
(greater than 0 equals 1; 0 or less equals 0). This form of limiting function is
equivalent to the logistic function with a very large gain.

The cognitive map has many features in common with the arti-
ficial neural network. In fact, Kosko refers to a cognitive map
as an associative memory, as neural networks are also called.

A networklike use of a fuzzy cognitive map will be
presented later in the chapter.

Fuzzy Cognitive Maps

The fuzzy cognitive map, which is the generalization of the crisp cognitive
map, was formally introduced by Bart Kosko in 1987. As you might expect,
the geometric pattern is identical to the crisp, but states may take on any
value over the range {0, 1}. Weights may be limited to the range between +1
and − 1 or they may be unlimited. After the connections are made, the new
state value is “squashed” through the logistic function. This is the squashing
method used throughout the chapter. The “gain” of the function is normally
1.0 though it may vary over anything that is pragmatic.

Any state may also have a feedback loop, allowing it to produce its
own causal event. Like other connections, the feedback loop may have a
value between +1 and −1.

- -

E-MAIL
FROM
DR. FUZZY

- -

168Chapter 6: Fuzzy Thought AmplifierTM for Complex Situations

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Figure 6.2: A fuzzy cognitive map with three states, one with a
feedback loop.

The three states of a fuzzy cognitive map (Figure 6.2) might have these
values.

State 1: .5
State 2: .3
State 3: .9

and these connections:

State 1: — + .8 → State 2
State 2: — − .2 → State 3
State 2: — +.1 → State 2
State 3: — 0 → State 1
State 3: — +1 → State 2

Its matrix is shown in Table 6.2

169Chapter 6: Fuzzy Thought AmplifierTM for Complex Situations

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

The states in fuzzy cognitive maps are a type of small com-
puter program called a state machine, which was developed
more than 50 years ago by Alan Turing, one of the founders
of computer science. A state machine, like a mechanical ma-
chine, receives something (material, energy, or information)
from the outside, uses it (“works”), changes, and perhaps
“exports” a product. A state machine may have the ability
to change between two states or among a limited or unlim-
ited number of states.

Individual states machines can be linked in various ar-
 chitectures. As a group of cellular automata (used in the Fuzzy
Knowledge BuilderTM, for instance), all the state machines are
 subject to the same set of rules for state changes and outputs
and all changes occur more or less simultaneously.

In cognitive maps, state machines are linked in a
graph, each one receiving unique inputs from other states,
changing as a result, and possibly affecting some or all of
the other states. Time is a component of this architecture, be-
cause dynamic action continues as long as one state is able
to effect a change in another one.

Appendix E describes other architectures for using
state machines in fuzzy, time-dependent situations.

Kosko has also demonstrated that, if one fuzzy cognitive map repre-
sents the knowledge of one expert, several maps, each representing a differ-
ent expert, can be combined or superimposed on each other, to produce a
consensus representation.

TABLE 6.2: Matrix for an Example Fuzzy Cognitive Map.

- -

E-MAIL
FROM
DR. FUZZY

- -

 Affected State

Causing State State 1 State 2 State 3

 State 1 0 +.8 0
 State 2 0 +.1 -.2
 State 3 0 +1 0

170Chapter 6: Fuzzy Thought AmplifierTM for Complex Situations

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Fuzzy cognitive maps are just beginning to enjoy some rec-
 ognition outside of the inner circle of developers. To the

 best of our knowledge, only one person is using them com-
 mercially, Dr. Derek Stubbs, of Vicksburg, Michigan, who
 has developed a stock market analysis program.

Now it’s time to examine the basics of cognitive maps by working
with the Fuzzy Thought AmplifierTM.

FUZZY THOUGHT AMPLFIERTM

The book version of this program allows you to take a real-life scenario and
design a cognitive map for it with as many as six states and events going from
each state to each of the other ones. (The commercial version provides a
maximum of 25 states per map.) Any state can also have a feedback event
loop, providing the state’s own output as input. In addition, any specific state
can have a “bias,” a phantom state whose event acts only on the specific state.
In addition, you can create a crisp map as well as a fuzzy one.

With this tool, you’ll learn how to construct a fuzzy cognitive map
from a scenario, customize it for graphic purposes, and create a history of its
dynamic behavior. The Fuzzy Thought AmplifierTM runs in two basic modes,
normal and trained.

Normal Operation

For normal operation, you can set the initial value of each state and the initial
weight for each event, then run the map to see how it behaves dynamically.
You’ll start by examining the three possible dynamic endings of cognitive
maps—stability, oscillation, or chaos. In a scenario-based map, the way it
concludes after running may give you some insight into the real world
situation it’s modeled on.

Next, you’ll build two maps that explain the present by reconstructing
the past. In one, an animal exhales carbon dioxide, a green plant uses the

- -

E-MAIL
FROM
DR. FUZZY

- -

171Chapter 6: Fuzzy Thought AmplifierTM for Complex Situations

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

carbon dioxide and gives off oxygen, which the animal then breathes. You can
run the map, and then make it more complex by adding bias and new states.

The second scenario is more complex—an attempt to understand how
a national health care system works. (Everyone else is working on it, so Dr.
Fuzzy decided to join in.)

“Trained” Operation

The Fuzzy Thought AmplifierTM also provides a neural network-like training
function. For this, you assign conditional beginning weights, run sets of
historical state values through the map, freeze the “trained” event weights,
add new state information, and run the map to predict the future.

Finally, you’ll use the past to create and “train” a thought amplifier
that will predict the future, in this case the behavior of a stock market.

What’s the difference between normal running of a cogni-
tive map and training one? Here’s a simple rule: Running a
map uses fixed weights to change state activations. Training
uses sets of state values to change (“train”) causal weights
until they’re correct.

Dr. Fuzzy suggests beginning by examining some very simple, but
dynamic cognitive maps.

SIMPLE FUZZY THOUGHT AMPLIFIERSTM

To see how simple but dynamic cognitive maps work, open the Fuzzy
Thought AmplifierTM. From the opening screen, select Open from the File
menu,then double click on the file example.fcm.The screen now displays three
simple cognitive maps(Figure6.3).

- - - - - - - - - - - - - - -

E-MAIL
FROM
DR. FUZZY

- -

172Chapter 6: Fuzzy Thought AmplifierTM for Complex Situations

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Figure 6.3: Simple cognitive maps.

The icons in the toolbar above the map window have the functions
listed in Table 6.3. The upper microhelp line names the icon being pointed to
with the cursor.

The lower microhelp line displays the squashing function (or gain)
that determines the high and low values of a cycle and can affect the map’s
operation. The higher the gain is, the more exaggerated the cycle. You can
see a graph of the squashing function and change its value (Figure 6.4), if
desired, by selecting Squasher from the Run menu.

The three simple cognitive maps were put in the same file because of
the limitations of disk capacity. Dr. Fuzzy wants you to examine each one
individually, so you can begin learning your way around the Thought
Amplifier by separating the maps, starting with one that is stable or static.

173Chapter 6: Fuzzy Thought AmplifierTM for Complex Situations

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

TABLE 6.3: Icon Definitions.

Icon Definition

Open file

Save file

Add a new state

Delete a state

Display the list of states

Name a State

Add a new event

Delete an event

Name an event

Display the event matrix

Run one map cycle(step foward)

Stable Map

Start by saving this file under a different name. Select Save As from the File
menu, then in the box above the filename window delete the asterisk and
type in the name exmpstat and press Return.

The next step is to delete the states that aren’t required for the stable
map—States 1, 2, and 4. Begin by clicking on the Delete State icon in the icon

174Chapter 6: Fuzzy Thought AmplifierTM for Complex Situations

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Figure 6.4: Inferencing Sigmoid Shape (squashiny function) dialog box.

toolbar. A dialog box will tell you to click on the state that you want to delete.
Click OK on this dialog box.

Now click on State 1. It and its causal events will be wiped from the
screen.

Perform the same operation for States 2 and 4. When you’ve finished,
only State 3 will remain.

Save the file by clicking on the Save icon.
Now you’re ready to see whether the map is dynamic. Click once on

the Step Forward icon. You’ll see that the state hasn’t changed. The value
remains at .97. Click on Step Forward again to try another cycle. Again
nothing happens. No matter how many times you perform this operation,
the state value stays the same, even though it is sending itself a feedback
message. The map was created stable and does not change.

In fact, it’s so stable that even when you change the value of the state
and Step Forward, it returns to the same stable state.

To make the state values easier to see, you can display a box contain-
ing a list of state characteristics. Click on the List States icon. When the box
is displayed, use your mouse to drag it to a blank place on the screen where
it won’t obstruct the map. Now you’re ready to observe the dynamic oscilla-

175Chapter 6: Fuzzy Thought AmplifierTM for Complex Situations

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

tions of the state. Note that the initial state value is .97 on the state itself and
97 in the List Box. The two values are really the same, with the decimal point
changed in the List Box for computational purposes.

Double-click on the value in the List Box and change it to 80. Now
click on the Assign button to register it in the map. Click on the Step Forward
icon three times, and note that by the second step the state value will return
to 97. It will remain there, no matter how many more steps you take.

When you’re finished, close this file by selecting Close from the File
menu.

Oscillation

The next map to examine isn’t stable. Instead, it ends up toggling between
two values as successive cycles are run.

Open the example.fcm file again, this time saving it as exmposcl This
time, delete States 1, 2, and 3, so that only State 4 remains on the screen. Save
the file.

Notice how small State 4 is—so small that you can’t read the informa-
tion it contains. There’s a reason for this, a program option called dynamic
sizing. When the value of a state is small, you can have the state itself
displayed in very small size. As the value increases, the size of the state also
increases.

Display the List Box to make the numbers easier to read.

You can graphically represent the value of states and the
weight of events in several dynamic ways—size; the color
characteristics of hue, saturation, or luminance; or a combi-
nation of size and color.

Click on the Step icon, and watch how the state’s value changes to .44.
As this happens, it’s reflected in the dramatic increase in the state’s size. Click
on the Step icon several more times, and observe how the state changes from
small to large and back to small again, as its value oscillates to .03, then .44,
back to .03, and so on.

- -

E-MAIL
FROM
DR. FUZZY

- -

176Chapter 6: Fuzzy Thought AmplifierTM for Complex Situations

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Will the oscillation occur if you change the value of the state? Try it
and see.

In the List Box, change the state’s value from 3 to 10 and click on
Assign. Now perform a series of steps. It’ll take a while, but beginning on the
10th step, you’ll see that the value begins an oscillation between 3 and 44.

If you wish, try it again with a state value of your own choosing. When
you’re finished, close the file.

Chaos

Once more open example.fcm, this time saving it as exmpchao and then delete
states 3 and 4. Save the file.

This map is designed to be chaotic, meaning the states will have
different values with each cycle. Displaying the List box will help you see the
differences, but you may want to compile a complete record of the cognitive
map’s dynamic behavior by setting up a history file.

- -
To compile a record, you must set up a history file before
you start running the cycles.
First, select Initialize History from the Run menu.
After you run the cycles, you can see the record by selecting
View History from the Run menu. This creates a text file
that can be read while the file is on the screen. Simply click
on the dialog box’s No Conversion button. The values (to
three decimal places) are listed in the report.

This history file is saved with the file name and the
extension .hst. You can format and print it from any word
processing program or load it into another document.

- -

Now begin running a series of cycles. As you’ll see, the state values
will be those shown in Table 6.4. If you continue beyond seven steps, the
values will continue to be chaotic, and no pattern will ever appear.

To verify the generally chaotic character of this map, you can change
the value of one of the states and both of them, then run the map. For instance,

E-MAIL
FROM
DR. FUZZY

177Chapter 6: Fuzzy Thought AmplifierTM for Complex Situations

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

TABLE 6.4: Chaotic State with the Original Values.

 State 1 State 2

Original value .07 .25
Step 1 .52 .44
Step 2 .10 .12
Step 3 .41 .56
Step 4 .20 .08
Step 5 .26 .52
Step 7 .38 .13

change the value of State 1 from 7 to 50, assign it, and perform a series of
steps. As you’ll see, no pattern emerges. The conclusion is still chaotic.

Now return State 1 to its original value of 7. This time change State 2
from 25 to 70, assign it, and step. Again, chaos.

Finally, change both values—State 1 to 80 and State 2 to 40. Assign
the new values, then Step Forward. The result is chaos, once again. When
you’re finished, close this file.

A fourth kind of simple fuzzy cognitive map process is called a limit
cycle. One may arise as an emergent global phenomenon, like “the wave” at
a sporting event, or it may arise from round-off effects in the inference
process. Limit cycles are supported in the commercial version of the product.

In chaos theory, this map is what is called a single-point at-
tractor.

The fuzzy cognitive maps you’ve worked with so far have been
operating in normal mode. Now you’ll see how a map can be trained with
past data so that it can predict the future—or so they say.

Now that you’ve seen the basic operation of dynamic fuzzy cognitive
maps, Dr. Fuzzy will show you how to create one from scratch—really—by
deriving a map from the natural environmental interaction between an
oxygen-breathing cat and a carbon dioxide-breathing plant. The good doctor
calls it CatPlant.

- -

E-MAIL
FROM
DR. FUZZY

- -

178Chapter 6: Fuzzy Thought AmplifierTM for Complex Situations

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Figure 6.5: New Fuzzy Cognitive Map dialog box.

CATPLANT

The earth’s ecological history is greatly shaped by the way plants and animals
use two atmospheric gases, oxygen (O2) and carbon dioxide (CO2). Animals
breathe in oxygen and exhale carbon dioxide, while plants take in carbon
dioxide and give off oxygen. Dr. Fuzzy has used this interaction as the basis
for a two-state fuzzy cognitive map.

To begin a new map, select New from the File menu. In the New
Fuzzy Cognitive Map dialog box that appears (Figure 6.5), place the cursor
in the Map Project Name box (top left) and type in catplant. Below this is the
Concept State Count window. Set this at 2 by clicking on the up-down arrows
or typing in the number.

In the Event Initialization box, click on the None radio button. When
you’re finished, click on the dialog box’s OK.

You’re now ready to name and determine the values of the states.

179Chapter 6: Fuzzy Thought AmplifierTM for Complex Situations

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

TABLE 6.5: CatPlant States.

 Name Description

 cat Cat that gives off carbon dioxide plant
plant Plant that gives off oxygen

Naming and Defining the States

Begin by selecting Descriptions from the State menu. Type in the name and
description of each state, as shown in Table 6.5. When you’re finished, click
on OK. Now save your work by clicking on the Save icon.

Notice that on the map, each state has already been given the default
value of .50. This means that the state begins with 50% of its potential, which
is fine for beginning CatPlant.

The next step is to create two events.

Creating Events

To begin, select Add from the Event menu. The Create Event dialog box asks
you to click on the starting state, on up to four intermediate points, and the
ending state. This is similar to the process of creating a line in a drawing
program. Click on OK.

Dr. Fuzzy likes curved event arrows for CatPlant. To create the Cat-to-
Plant event, first click on the Cat state. Next click on two or three points in a
right-hand arc toward the Plant state. Finally, click on the Plant state itself. A
nicely curved event will appear, with the arrowhead at the Plant state.

Now perform a similar operation from Plant to Cat, with the event
arrow arcing in the opposite direction. Be sure to save your work.

Event Values and Names

Dr. Fuzzy has determined that the Cat’s carbon dioxide exhalation affects the
Plant to the extent of 55%, while Plant’s oxygen release affects Cat to the
extent of 35%. These will be the weights (or values) of the events.

180Chapter 6: Fuzzy Thought AmplifierTM for Complex Situations

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

To add these values to the map and display them, select Options from
the Run menu (Figure 6.6. Click on the Show Event Names box, and then click
on OK.

Defining the Cat-to-Plant Event

To define the Cat-to-Plant event, select Name from the Event menu. The Name
and Weight Causal Event dialog box (Figure 6.7) will appear on the screen. In
the Causal Event Name box, type in C02. In the Causal Event Weight box, insert
the value 55. (For calculation purposes, values are multiplied by 100. The
program will automatically convert it to .55.) Now click on OK.

The Name Event dialog box appears, telling you to click on the
arrowhead of the event to be named. Click OK on this box, then click on the
arrowhead at the Plant state.

Figure 6.6: Options dialog box.

181Chapter 6: Fuzzy Thought AmplifierTM for Complex Situations

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Figure 6.7: Name and Weight Causal Event dialog box.

An Event Move dialog box will then appear, instructing you to click
on the map location where you want the event name and value to appear.
Click on OK. Then click on a blank space near the arrowhead. The value will
appear.

Defining the Plant-to-Cat Event

Perform the same procedure for the Plant-to-Cat event, using the Event
Name 02 and the Event Weight 35.

Place the information near the Plant-to-Cat arrowhead. Your map
should now resemble the one in Figure 6.8. Be sure to save your work.

182Chapter 6: Fuzzy Thought AmplifierTM for Complex Situations

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Figure 6.8: Completed two-state CatPlant map.

Figure 6.9: State Color dialog box.

183Chapter 6: Fuzzy Thought AmplifierTM for Complex Situations

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

You can now start running your map, but first, the Dynamic Dr. Fuzzy
suggests that you make the states and events in your map more dynamic by
adding color.

Adding Dynamic Graphics

Just as the states in the simple example maps had dynamic sizes, states and
events can also have dynamic coloring linked to their values. (Dynamic color
and size can be combined, as well.) You can select a color for the state borders
and text, and also the width of the borders, so the color is as prominent as
you desire.

Colors for States

To add dynamic color to the CatPlant states, select Color from the State menu.
Click on the Dynamic button in the resulting dialog box (Figure 6.9).

You can choose one of three color characteristics:

• hue is the spectrum color,
• saturation is the degree of color, for instance from pale blue to

navy blue, or
• luminance is the “shininess” of the color, from dull to glossy.

Hue is the default and will be used here.
Now click on the State Border Color button, displaying the color

palette. The actual color possibilities that you have depends on the capabili-
ties of your computer and monitor. The color you choose will be assigned to
the state value of 100. The Windows environment then assigns other colors
to the various other values. Dr. Fuzzy wants to select Red as the state color.
Click on the red palette sample, and notice that a black border now appears
around it, showing that it has been selected. Now click on OK.

You can also select a border size. To make the color more prominent,
change this value to 12. Now click on OK.

184Chapter 6: Fuzzy Thought AmplifierTM for Complex Situations

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Figure 6.10: Event Color dialog box.

Colors for Events

In a similar process, you can make the Event colors dynamic, too, if your
Windows driver supports higher gradations in color. Select Color from the
Event menu and enter values in the Event Color dialog box (Figure 6.10).

In the Color dialog box, click on the Dynamic box. Make the arrow
wider by changing the width value to 6.

Click on the Event Label button, then select a color, such as orange,
from the palette and click on OK. Finally, click on OK in the Event Color
dialog box. Be sure to save the file.

One last thing before running the map: Be sure to initialize the history
function (from the Run menu), so a record of the cycles will be saved.

Running Cycles

At last, you can run the cycles of your map. Display the List box if you wish.

185Chapter 6: Fuzzy Thought AmplifierTM for Complex Situations

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

From beginning values of 50 for Cat and Plant, click on the Step
Forward icon. The values will now be 54 and 57. When you step again, they
will change to 55 and 58. Step once more and see what happens—the values
remain 55 and 58, showing that the map has stabilized.

You can expand CatPlant’s complexity by adding a bias.

Adding Bias

A bias is a dynamic, ongoing, but unchanging causal event to a particular
state. For example, the Cat uses the ground as its sandbox, releasing nutrients
that flow to the Plant. Dr. Fuzzy has decided to give Plant a bias weight of
.39. Enter this value in the List box as 39 (Figure 6.11). To register it, click on
Assign.

To have the bias value appear on the map, select Options from the
Run menu and click on the box labeled Include bias weight, then click on OK.
Save your work.

Figure 6.11: CatPlant List box, showing Plant bias.

186Chapter 6: Fuzzy Thought AmplifierTM for Complex Situations

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Figure 6.12: Initialize Conceptual State dialog box.

Running Cycles with the Added Bias

From your current state values of 55 for Cat and 58 for Plant, press the Step
Forward icon. The values now read 55 and 67. step again, registering 56 and
67. When you step one more time, you’ll see that these are stable values.

Want to make CatPlant still more complex? You can add two more
states.

Adding Additional States

Dr. Fuzzy believes in good nutrition for mammals, green plants, and other
living things. One way to assure this in CatPlant is by supplying food. For
instance, you can add a state named Feed and link it by an event to Cat. You
can also add a state named Fertilizer and link it to Plant.

Dr. Fuzzy begins by adding a state near the Cat state, then naming it
Feed, representing cat food.

187Chapter 6: Fuzzy Thought AmplifierTM for Complex Situations

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Creating and Naming a State

To add a state, click on the Add State icon. The resulting dialog box will tell
you to click on the location of the new state. Click on OK, then click on a blank
spot near the Cat state.

Now click on the Name state icon, displaying the Name and Initialize
Conceptual State dialog box (Figure 6.12).

In the Name box, type Catfood then give it an activation value of 100.
Click on OK.

Repeat this process and create another new state near Plant. Name it
Fertilizer and give it a value of 100. Now click on OK.

Creating and Labeling an Event

The next step is creating an event between each new state and its target state.
Click on the Add Event icon. Follow the instructions in the Create Event
dialog box, clicking on OK and creating the event path. Click first on the Feed
state, then on a few points along the way to the Cat state, and finally on Cat.
The arrow will appear on the map, its arrowhead near Cat.

Now click on the Name Event icon. In the Causal Event Name box, type
Feed and give it a Causal Event weight of 31. Click on OK. Another dialog box
will tell you to click on the arrowhead to be named. After you click on the
arrowhead near Cat, a dialogbox will ask you where the label should be placed.
As before, click on a place near the event arrowhead, and the label will appear.

Repeat this sequence to create a Cat-to-Plant event. Name it Nourish
and give it a weight of 59. Save your work.

Running the Augmented CatPlant

When you step the cycles, you will see one change to values of 60 for Cat and
73 for Plant and that they are stable.

You can experiment with this map, adjusting initial state values, event
weights, and the bias, to see how they affect the map’s dynamics. Because
you have a historical record of your actions, you can re-create any stage in
the map’s operations and experiment from that time forward, as well.

When you’re finished, close the file.

188Chapter 6: Fuzzy Thought AmplifierTM for Complex Situations

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Bart Kosko has said that you can take any well-written newspaper or
magazine article and translate its substance into a fuzzy cognitive map. He
based one of his most famous maps, of South Africa’s former apartheid
system, on a newspaper article by the syndicated columnist Walter E. Wil-
liams. This map uses nine conceptual states. Most real-world scenarios
require at least that number.

However, it is possible to take a first step toward modeling a situation
with the six states available in this version of the Fuzzy Thought AmplifierTM.
As an example, Dr. Fuzzy shows how to begin considering the United States’s
health care system.

HEALTH CARE SYSTEM

In the mid-1990s, vast amounts of material were presented to the Ameri-
can public on the subject of health care. With just a few of the many published
articles, you can quickly compile a long list of states and ponder the events
that connect them. What follows is a first-stage consideration of the problem
from one point of view, that of a perhaps typical individual consumer. It’s
not meant to be the last word, or even the next word on the subject, but it
shows how a fuzzy cognitive map can help clarify someone’s thinking about
a real-world issue.

Start with a long list of possible states, including how the individual
person views the state of his or her health care; the nation’s level of health;
how much actual health care is dispensed for the money spent; how much of
the health care money is spent on things other than actual delivery of health
services, such as the insurance industry, legal fees, and bureaucracy; whether
there are enough physicians to meet the population’s needs; and the relative
financial contributions to the health care system by individuals, employers,
state government, and local government.

The States

Dr. Fuzzy combined some considerations, weeded out others, and finished
with six that represented major health care issues and met the criteria for
being conceptual states—states that can be changed by means of causal

189Chapter 6: Fuzzy Thought AmplifierTM for Complex Situations

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

events received from other states in the cognitive map and, in turn, are
capable of affecting themselves and other conceptual states through outgoing
causal events. The conceptual states decided on are described in Table 6.6.

Naming the States

Open a new file in the Fuzzy Thought AmplifierTM and, in the new project
dialog box, name it hlthcare. The map requires six states. Also, in the Event
Initialization box, click on All.

Select Descriptions from the State menu, then enter the names and
descriptions listed in Table 6.6.

You’ll be doing some rearranging of the states on the map to accom-
modate the causal events. To make rearranging easier and redrawing of the
screen quicker, select Options from the Run menu and make sure that the
box for Draw Causal Events is not checked. Click OK. (You can turn the
function on after the states are arranged.)

Determining State Values

Each state’s value must fall within the range from 0 to 1 (or 0 to 100 in the
List box). First, the map builder should decide what each state’s values
represent. Dr. Fuzzy decided on these criteria for the six states in this map:

• myhealth is measured by how cared-for by the system the indi-
 vidual feels, on a scale from 0 (poorly cared-for) to 1 (well

TABLE 6.6: Health Care States and Descriptions.

Name Description

myhealth One’s own perceived health care coverage
pophlth Health of the population
efficsys Efficiency of the system
rspnstim Response time when one needs care
nonmed Paramedical infrastructure
noofdocs No. of doctors per unit of population

190Chapter 6: Fuzzy Thought AmplifierTM for Complex Situations

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Figure 6.13: The Arranger.

 cared-for). In Dr. Fuzzy’s case, the value is .1 (or 10 in the List
 box).
• pophlth is an estimation of the overall health of the public,
 based on such factors as longevity, infant mortality, the sick
 homeless, and other standard measurements of health. This
 state received a value of .7 (or 70).
• efficsys, an overall evaluation of how much care someone re-
 ceives for the money involved, received a value of .3 (or 30).
• rspnstim measures the length of time between the need for
 care and receiving it, with short = 1 and long = 0. The as-
 signed value here is .5 (or 50).
• nonmed measures the size of the health care system’s para-

medical infrastructure, with large = 1 and small = 0. The
value assigned is .4 (or 40).

• noofdocs is a measure of the number of doctors per unit popu-
lation, based on perception of the situation in Dr. Fuzzy’s

191Chapter 6: Fuzzy Thought AmplifierTM for Complex Situations

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

value is .7 (or 70).

These values can be entered in the List box. Be sure to save the file at this point.

Rearranging the States

The states are arranged on the map in circular formation, which is the default.
The health care map is constructed from the point of view of the

individual, so the states should be rearranged with the myhealth state sur-
rounded by the other five states, as shown in Figure 6.15.

To move a state, place the cursor within it and hold down the left
mouse button until the cursor changes to the “drag” rectangle. Then drag the
state to the desired position.

When the states are rearranged, save the file.

Figure 6.14: Sizing dialog box.

192Chapter 6: Fuzzy Thought AmplifierTM for Complex Situations

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Figure 6.15: State arrangement in the health care cognitive map.

- -
You can specify the placement of the states or change it
through the Arranger. Select Arranger from the Wizard
menu. As the box shows (Figure 6.13), states can be arranged
in a circle (the default) or in a matrix. You can rotate their posi-
tions by specifying a value between 0 and 90. You can also
change the size of the map itself—the amount of space be-
tween states—by selecting a value between 0 and 100. Or you
can arrange the states in from one to six columns.

You can even change the size of the map window
itself by selecting sizing from the Window menu (Figure
6.14). You can also choose the size of the states and their
text, make them dynamic, and choose the size of the event
labels.

E-MAIL
FROM
DR. FUZZY

- -

193Chapter 6: Fuzzy Thought AmplifierTM for Complex Situations

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

The Events

Now that the states are placed, you can turn on the Draw Causal Events in
the Run menu’s Options box. Although you won’t be using all of the events
drawn, in this map it’s easier to turn off the unneeded ones than to individu-
ally add the 20 events the map requires.

Deleting Events

You can delete an event by clicking on the Delete Event icon. The resulting
dialog box will direct you to click on the arrowhead that you want removed.
Delete the arrowheads for the events listed in Table 6.7. When you’re fin-
ished, save the file.

Define Events

The weight of an event is the degree to which one state affects another one,
either negatively or positively. For example, the size of the non-medical

TABLE 6.7: Events to be Removed from Health Care Map.

Causing State Affected (arrowhead) State

 myhealth efficsys
 myhealth rspnstim
 myhealth nonmed
 myhealth noofdocs

 pophlth noofdocs

 rspnstim nonmed
 rspnstim noofdocs

 nonmed pophlth
 nonmed rspnstim
 nonmed noofdocs

 noofdocs nonmed

194Chapter 6: Fuzzy Thought AmplifierTM for Complex Situations

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

TABLE 6.8: Healthcare Event Weights.

Causing state Affected (arrowhead) State Weight

myhealth pophlth 30

pophlth myhealth 70
pophlth efficsys 10
pophlth rspnstime 80
pophlt’h nonmed -50

efficsys myhealth 60
efficsys rspnstim 90
efficsys nonmed -50
efficsys noofdocs -20

rspnstim myhealth -50
rspnstim pophlth 80
rspnstim efficsys 30

nonmed myhealth -70
nonmed efficsys -70

noofdocs myhealth 80
noofdocs pophlth 30
noofdocs rspnstim 60

infrastructure (State 5) might negatively affect the individual’s perceived
health care coverage (state 1) with a weight of .7 (or 70).

Dr. Fuzzy has decided that the event weights for this map as shown
in Table 6.8. Because there are so many states, the easiest way to enter them
in the map is through the Event Matrix.

Click on the Event Matrix icon, which displays the map’s matrix
(Figure 6.16). Notice that the state names are listed down the left-hand side
and across the top. The names on the left-hand side are the causing states;
those across the top are the affected states.

The map’s events are indicated by a red check mark. Fill in the blank
cell below each of these events with the values in Table 6.8. When you’re
finished, click on Assign. The finished matrix should look like the one in
Figure 6.17.

195Chapter 6: Fuzzy Thought AmplifierTM for Complex Situations

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Figure 6.16: Blank Healthcare Event Matrix.

Figure 6.17: Filled-in Healthcare Event Matrix.

196Chapter 6: Fuzzy Thought AmplifierTM for Complex Situations

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Figure 6.18: Healthcare map displaying event labels.

Drag the matrix to the bottom of the screen so that you can see the
map itself. You’ll see the weights displayed next to the event arrows (Figure
6.18.)

Before running the map, initialize the history function so you’ll have
a record of the cycles.

Running the Healthcare Map Cycles

Instead of seeing the state values change in the List box, you can observe
them with greater ease in the Observer.

Select Observe from the Wizard menu and click on the Enable Ob-
server box. The map’s calculations may be performed in integer (whole
number) arithmetic or in double-precision floating point arithmetic (to 16
decimal places). Double-precision floating point is the default.

197Chapter 6: Fuzzy Thought AmplifierTM for Complex Situations

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

To run the cycles until no more changes occur, click on the Start
button. Watch the Error window to see the changes become smaller, until the
value to 16 decimal places is 0.

Importance of the Healthcare Map

When the cycles stop at 0, the map has reached stability. This has shown one
way to understand how the health care system works. Take a look at the final
state values as recorded in the historical record. Are they meaningful in terms
of this map? Are they meaningful to you?

There are no correct answers to these questions. So Dr. Fuzzy invites
you to work with this map by changing state values and event weights,
creating or deleting events, and otherwise personalizing the map until it is
meaningful for you.

TRAINING A MAP TO PREDICT THE FUTURE

Its ability to be trained shows a similarity between fuzzy cognitive maps and
neural networks. What kind of futures do people want to predict? Money
making is high on the list. Of course, this has a long and respectable history
within computer science. Two of the early computer pioneers, Charles Bab-
bage and his assistant Augusta Ada, Countess of Lovelace, were strongly
motivated in their work by the thought of discovering a foolproof system for
winning at the race track!

Dr. Fuzzy doesn’t guarantee any results for trained cognitive
maps. But some trained maps are being used as tools for stock market traders.

The Scenario

Numerous indexes of stock values for various stock exchanges are published
in newspapers every day. Many of these indexes play large roles in the
buying and selling behavior of stock traders. Other influential information
includes the money supply, the prime lending rate, and the consumer price
index.

198Chapter 6: Fuzzy Thought AmplifierTM for Complex Situations

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

- -

E-MAIL
FROM
DR. FUZZY

- -

TABLE 6.9: Names and Descriptions of Stock Market Map.

 Name Description

MoneySup Money supply
PrimeRte Prime rate
TodaysAv Today’s 30 stock average
CnsmrPI Consumer Price Index
TmorwsAv Tomorrow’s 30 stock average

What follows is the good doctor’s implementation of a map that uses
this type of information to predict tomorrow’s value of a theoretical index of
30 industrial stocks.

The States

A states of a trained map are set up the same way as those of a normal map.
Open a new Fuzzy Thought Amplifier ™ ” map, naming it 30stkavg and

equip it with five states. Define the states from the information in Table 6.9.
Arrange the states in the shape shown in Figure 6.19.

The Events

Create events as shown in Table 6.10.

A reminder: Predetermined state values train the event
weights. When the map is run, the weights are fixed and se-
lected state values change.

In some situations, the map maker doesn’t know what the initial event
weights should be. You can select random values, or create some other type
of distribution. For the stock market map, Dr. Fuzzy has employed an equal

199Chapter 6: Fuzzy Thought AmplifierTM for Complex Situations

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Figure 6.19: States for the stock market cognitive map.

TABLE 6.10: Events for Stock Market Map.

Causing state Affected state

1 2
1 3
1 4
1 5

2 1
2 3
2 4
2 5

3 1
3 5

4 1
4 2
4 3
4 5

200Chapter 6: Fuzzy Thought AmplifierTM for Complex Situations

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

TABLE 6.11: Beginning Weights for Stock Market Map.

Event Weight

1 → 2 -100
1 → 3 -85
1 → 4 -70
1 → 5 -55

2 → 1 -39
2 → 3 -24
2 → 4 -8
2 → 5 8

3 → 1 24
3 → 5 39

4 → 1 55
4 → 2 70
4 → 3 85
4 → 5 100

distribution of values between –1 and +1 (or –100 and +100). Enter the
beginning weights listed in Table 6.11 into the Event Matrix.

Training the Map

Training a fuzzy cognitive map involves compiling sets of historical data that
are run through the map one at a time. Each set is cycled until no more
changes (“error”) occur in the weights or until the last three decimal places
oscillate. The Fuzzy Thought Amplifier TM can use a maximum of 25 training
sets.

The time interval between training sets determines the time interval
of the prediction. For instance, if you use daily training sets, the prediction
will also be one day. If you use monthly sets, the prediction interval will also
be one month.

To begin the training process, select Training Sets from the Wizard
 menu. Enter the values in Table 6.12 into the spreadsheet.

201Chapter 6: Fuzzy Thought AmplifierTM for Complex Situations

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

When you’ve completed entering the training sets, click on the Save
to File button. The file can then be retrieved for training or for modification
if necessary.

To use the training sets, select Train from the Wizard menu. The
Training of Causal Events dialog box will appear on the screen. First, click

TABLE 6.12: Training Sets for the Stock Average Map.

States

Set No. MoneySup PrimeRte TodaysAv CnsmrPI TmorwsAv

1 50 64 33 24 35

2 51 62 35 21 37
3 49 63 37 23 38
4 48 62 38 24 39
5 49 63 39 25 38

6 50 61 38 26 40
7 51 63 40 24 41
8 53 67 41 22 45
9 54 64 45 21 46
10 56 62 46 22 47

11 57 67 47 23 48
12 55 68 48 25 48
13 53 69 48 24 49
14 54 70 49 23 50
15 56 71 50 22 50

16 48 75 50 22 52
17 48 75 52 21 54
18 46 78 54 24 56
19 43 81 56 23 58
20 42 83 58 21 59

21 43 82 59 22 61
22 42 81 61 23 63
23 42 83 63 25 66
24 41 82 66 27 67
25 42 82 67 28 62

202Chapter 6: Fuzzy Thought AmplifierTM for Complex Situations

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

on the button that reads Load training set file (lower left corner), which
makes the training sets available for the process.

Next, be sure that the window to the right of the Use this file button
reads 1. If not, use the up-down arrows to set it to 1. Click on the Use this
training set button.

Click on the start-stop button (upper right). This will send the first
training set through the map. You can see the error diminish to 0, at which
time the cycles will stop. If the three right-hand values oscillate, click the
start-Stop button again to stop the cycles.

Now click on the Use next training set button. The value in the
window will advance to 2. Again click on the start-stop button until the error
diminishes.

Continue the process until all 25 sets have been used to train the map.
Then click on OK.

Now you can use your trained map. But first, take a look at the Event
Matrix. You’ll see that the weights have changed considerably from the initial
values.

Predicting the Future

The key to predicting the future with this map is your next operations in the
List box, which you should display. Your final training set was from “yester-
day.”

First, fix the values for the MoneySup, PrimeRate, and CnsmrPI by
clicking on their Fix boxes. Red check marks will appear.

Now change the TodaysAv value from “yesterday’s” 67 to “today’s”
62. Fix that value.

Now click on the step Forward icon. The cycle will change the
TomrwsAv value to 61. That means that the fuzzy cognitive map predicts
that the final value tomorrow of the 30-stock average will be 61.

What can you do with the information? Dr. Fuzzy says, “It’s up to
you!”

Now that you’ve seen this hypothetical map in action, feel free to use
it with real information from the financial pages. But Dr. Fuzzy doesn’t
guarantee anything!

203Chapter 6: Fuzzy Thought AmplifierTM for Complex Situations

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

HOW THE FUZZY THOUGHT AMPLIFIERTM WORKS

The Fuzzy Thought AmplifierTM provides two computational methods, Defi-
nition and Incremental.

Definition Method

The Definition method has been described by Bart Kosko and others. Each
state’s value is completely defined anew during each forward step (cycle) as
long as the map is dynamic. Each state’s value is the result of taking all the
causal event weights pointing into the state, multiplying each weight by the
weight of the event’s causing state, and adding up all the results of these
multiplications. The results are then squashed so that the result is between 0
and 1 (or 0 and 100%).

This multiply-and-sum process is a linear operation. The result lies
between the range –StateCount to +StateCount, where StateCount is the
number of states in the map.

The squashing operation itself is nonlinear, calculated from a mathe-
matically defined “logistic function.” This function symmetrically around 0
on the input side and around .5 on the output converts the input of –State-
Count to +StateCount to the output of 0 to 1. The equation is

Activation = 1
1 + e– (Summation x Gain)

Incremental Method

The incremental method draws on cellular automata techniques. Each state
value is a modification from the previous value during each forward step of
the dynamic map. Each state’s value is the result of taking all the event
weights that affect the state, multiplying each by the causing state’s value,
summing all the results of these multiplications, incrementing the previous
presquashed value by a fraction of this summation result, and then squashing
the results of the incrementation so that it is between 0 and 1 (0 and 100%).

204Chapter 6: Fuzzy Thought AmplifierTM for Complex Situations

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Training Function

The training function works by taking each incoming event to a state from a
Causing State and multiplying it by the Causal Weight. This produces the
Vector Sum.

The state Sum is the sum of ALL of the Causing States that direct
events to one state, which is what the state value would be. The difference
between that and what the value really is an Error. The cycling continues
until the error is gradua:lly corrected.

The value of each Causing State divided by the state Sum is the
normalizing process. Multiply the normalized value by the error, which is
they added to the incoming weight.

This process is repeated for each state until the error goes to 0.

CONCLUDING THOUGHTS

You have now had in-depth adventures with the three principal fuzzy
architectures.

The fuzzy expert system has a secure and growing place in the
commercial world for control and other applications. The Fuzzy Knowledge
BuilderTM is a tool you can use to put a fuzzy expert system to work for your
own purposes.

Decision making is an intuitive process we’ve all used since infancy
for matters great and small. The Fuzzy Decisio:n MakerTM is a tool for organ-
izing your personal or work-related decision process. This is the first time a
fuzzy decision maker has been presented to a general audience, and we (and
Dr. Fuzzy) hope you will find innovative ways to use it.

The fuzzy cognitive map is a tool in search of practical use. With the
Fuzzy Thought AmplifierTM, we present the first implementation for a gen-
eral audience and invite you to experiment with it.

To round out the picture, Appendix E describes the two other fuzzy
architectures that we know of. FLOPS is a fuzzy extension of a rule-based
environment called OPS5, which is well known in artificial intelligence
circles.

205Chapter 6: Fuzzy Thought AmplifierTM for Complex Situations

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Fuzzy state machines are attracting increased research interest for
time-dependent problem solving. Dr. Fuzzy hasn’t implemented this archi-
tecture—yet.

 I hope you’ll generalize your view of world from the crisp
to the far more realistic fuzzy mode and continue with this
 adventure.

Best wishes!

- -

E-MAIL
FROM
DR. FUZZY

- -

.

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

APPENDIX A

FUZZY ASSOCIATIVE
MEMORY (FAM)

Most fuzzy systems (see Chapter 3) represent inputs and outputs as mem-
bership functions whose interactions are the bases for rules and a fuzzy
action surface. Inference involves the firing of individual rules.

There’s another way to create an action surface for multiple inputs
and multiple outputs. Called the compositional method, it was actually the
original method. The fuzzy input and desired output ranges are based on
fuzzy set values and used to create a matrix called a fuzzy associative memory
(FAM). When actual input values enter the system, the associative memory
becomes the fuzzy action surface. The entire memory fires at once, producing
multiple outputs.

Prepared for all situations, Dr. Fuzzy has created a calculator for the
compositional method, FAMCalc. To open FAMCalc, click on the Convert-
ible icon.

207

208Appendix A: Fuzzy Associative Memory (FAM)

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

- -

E-MAIL
FROM
DR. FUZZY

- -

When would you want a multiple-input system that pro-
duces multiple outputs? Here’s an example.

 Suppose you have a graphics enhancement problem
involving the gray scale. In this case, you could have four
one-pixel inputs whose gray scale values you want to auto-
 matically change. By putting them through the FAM, the
output is a revised gray hue for each of the four pixels.

Figure A.1: FAMCalc opening screen

209Appendix A: Fuzzy Associative Memory (FAM)

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

FAMCALC

The heart of FAMCalc (Figure A.1) is the blank matrix with room for as many
as 10 inputs in the left-hand column (A1 through A10) and 10 outputs on the
top row (B1 through B10). Each input and output represents a fuzzy set and
can have any value between 0 and 1.

Three operator keys are on the lower left side of the calculator. The
Compose Memory key constructs the FAM after you have entered the input
and output values. B’ is the output of passing A through the FAM, which is
initiated with the Compose B’ button. The B’ values appear in the yellow row.
The final function is Compose A’, which is the result of passing B backwards
through the FAM, a feedback mechanism that may be useful in some situ-
ations. A’ is displayed in the magenta column.

In the lower right-hand corner is the calculator keypad with numbers
0–9, Clear and Clear Entry buttons, and an Example button. The Fuzzy
Associative Memory (FAM) button is for fuzzy calculations and Binary
Associative Memory (BAM) is for crisp ones.

Use the button with up- and down-arrow keys to choose the number
of inputs and outputs (they must be the same), then click on the Build button
to configure the matrix.

COMPOSING A MEMORY

To see how FAMCalc works, create a four-by-four matrix with the arrow keys
and Build. Once the matrix is reconstructed, enter these input (A) and output
(B) values:

A A’ B1 B2 B3 B4
B .2 .4 .7 .9
B’
A1 .1
A2 .3
A3 .6
A4 .8

210Appendix A: Fuzzy Associative Memory (FAM)

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Figure A.2: Composing the FAMCALC matrix.

Now click on the Compose Memory key, producing the matrix shown
in Figure A.2.

To use the FAM, click the Compose B’ key. The results for the actual
output values are very close to the design output:

B .2 .4 .7 .9
B’ .2 .4 .7 .8

When you feed back the B values through the FAM by clicking on the
Compose A’ key, you’ll find that A’ is identical with A.

To see how crisp values fare in an associative memory, click on the
Binary Associative Memory button and watch the input values change to 0s
and 1s. The same thing will happen to the memory itself and to B’ and A’
when you click on their operator keys. The results are shown in Figure A.3.

You can change the values from fuzzy to crisp by clicking
on the BAM button. But you can’t change the crisp values
back to fuzzy (because there are too many fuzzy options for
each crisp 0 or 1).

- -

E-MAIL
FROM
DR. FUZZY

- -

211Appendix A: Fuzzy Associative Memory (FAM)

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

If you want to experiment with some preset fuzzy inputs and outputs,
click on the Example button. You can use it with any size matrix.

Try this. After composing the memory, change several input values
and click on Compose B’. Notice the difference between B’ and the design
outputs in B. Now click on Compose A’ and see more differences.

CREATING A MEMORY

There’s a second way to use FAMCalc—by entering the associative memory
values, then entering the inputs and having the FAM produce the outputs.
For instance, enter the matrix values in the first example, then enter the
inputs.

Just click on each blank FAM cell, then enter the values from the
calculator keypad or by hand. The results should look like those in Figure
A.4. Now press Compose B’. As you can see, the results are the same as in
the original example.

When you’re finished with FAMCalc, click on the OFF button in the
lower left-hand corner.

Figure A.3: FAMCalc in the crisp mode.

212Appendix A: Fuzzy Associative Memory (FAM)

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Figure A.4: A hand-entered matrix.

HOW FAMCalc WORKS

How does FAMCalc do its job? Dr. Fuzzy reveals the two-step method:

Step 1

Look again at the values in Figure A.4. Compare the value of A1 with each
memory value in the same row:

A1 .1 | .1 .1 .1 .1

Take the minimum in each pairing in a row, giving you these pairwise minima:

.1 .1 .1 .1

That one was almost too easy. What would be the pairwise minima
for the next row,

A2 .3 | .2 .3 .3 .3

213Appendix A: Fuzzy Associative Memory (FAM)

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Again, it’s an easy answer:

.2 .3 .3 .3

Now find the pairwise minima for the last two rows,

A3 .6 | .2 .6 .6 .6
A4 .8 | .2 .4 .7 .8

The results are

.2 .6 .6 .6

.2 .4. .7 .8

So all the pairwise minima are:

.1 .1 .1 .1

.2 .3 .3 .3

.2 .6 .6 .6

.2 .4. .7 .8

Step 2

Take the maximum of each column in the pairwise minima, producing

.2 .6 .7 .8

These maxima are B′, the outputs.

.

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

APPENDIX B

FUZZY SETS AS HYPERCUBE
poINTS

SETS AS POINTS

You’ve already seen how fuzzy sets can be represented by membership
functions. There’s another way to consider them—as points in a theoretical
structure called a hypercube. This idea was invented and proven by fuzzy
logic theoretician Bart Kosko.

A hypercube can have any number of dimensions, but for practical
purposes here, Dr. Fuzzy recommends thinking about the 2-D hypercube—a
square.

Take a 2-D hypercube—a square (a “hypocube”?)—and place a point
at each node or vertex and one in the center (Figure B.l). You can think of the
square as a set of all fuzzy sets—a superset. The square is like a graph with
an x axis and a y axis. This means you can locate any point in it with two
coordinates. So a point in a 2-D hypercube is the location of a set represented
by a two-valued membership function.

215

216Appendix B: Fuzzy Sets as Hypercube Points

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

A hypercube is a geometric shape of n dimensions with
identical edges. For example, a two-dimensional hypercube
is a square, whose arms of equal length. The places where
the arms meet are called nodes or vertexes.

A three-dimensional hypercube (a cube) adds an edge
the length of the square’s arm into the third dimension from
each vertex.

The next dimension can only be seen in the mind’s eye.
Try to visualize the 4-D hypercube as a 3-D cube with an-
other cube added at each vertex.

The purpose of talking about hypercubes is to let you
think of the maximum generalization of fuzziness.

In fuzzy logic, a hypercube has as many dimensions as the
set has values. A set with 2 values has a 2-D hypercube. A 20-
value set has a 20-D hypercube. An n-valued set has an n-D
hypercube.

The vertex points represent crispness—coordinates must be either 0 or
1. Each side of the square represents a fuzzy range between 0 and 1. You can
also move along diagonals from crisp 0 or 1 through the square to another
crisp 0 or 1.

What does this mean? The square is a device for visualizing the
relationship of the fuzzy set A to its complement AC, as defined in Chapter 2
for either their intersection (A < AC), or their union (A > AC). The center point
represents a set with maximum fuzziness—the place where, as you saw in
Chapter 2, A = AC.

Dr. Fuzzy was at a carnival recently and noticed how much one of the
gameboards on the midway resembled a fuzzy 2-D hypercube. The players
have to slide a disk so that it stops somewhere on the board. If the disk lands
on one of the corners, the lucky player wins a big prize. If it lands in the
center, the prize is kind of puny. If it lands somewhere in between, the size
of the prize depends on how close the disk is to one of the vertexes—the closer
the disk is, the bigger the prize. The Good Doctor immediately dubbed the
game Fuzzy Shuffleboard.

How to determine the set’s fuzziness? The games master needed help.
Always willing to assist an entrepreneur, Dr. Fuzzy immediately hot-footed

- -

E-MAIL
FROM
DR. FUZZY

- -

217Appendix B: Fuzzy Sets as Hypercube Points

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

it home and invented a calculator to solve sets-as-points problems. The
doctor named it KoskoCalc, in honor of Bart Kosko. Open KoskoCalc by
clicking on the racing car icon.

USING KOSKOCALC

KoskoCalc (Figure B.2) has a blank matrix with room for as many as 25 values
for each of two sets, A and B. In this case, the hypercube will be 25-D. Ten
values are displayed on the opening screen. If you want more (or fewer) than
10, use the Build system at the center bottom. Click on the up or down arrows
until the desired number of values appears. Then click on Build to remake
the matrix. If you Build more than 10 values, a horizontal scroll bar below
the matrix lets you display all of them.

You can enter your own values, or click on the Random button on the
lower right corner for Dr. Fuzzy’s selections. The operator keys are on the
lower left side of the calculator.

Figure B.1: A 2-D hypercube.

218Appendix B: Fuzzy Sets as Hypercube Points

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Figure B.2: KoskoCalc opening screen.

INTERACTION OF A SET AND ITS COMPLEMENT

Now you can mark the location of a different fuzzy set in the hypercube
(Figure B.3). Its degree-of-fuzziness values are .3 and .8.

You can enter this set’s values in KoskoCalc. To begin, Build a matrix
with two values by clicking on the up-down arrows until the number Z
appears. Then click on Build.

Next, enter these values (from Figure B.4) in the matrix:

219Appendix B: Fuzzy Sets as Hypercube Points

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

X1 X2
Set A .3 .8

(We’ll get to Set B later.)

The hypercube’s vertexes have what’s called minimum en-
tropy and its center has maximum entropy. The term entropy
comes from the field of thermodynamics, where it means
the amount of disorder in a system.

It’s also used in information science to mean the
amount of information in a message. The greatest uncer-
tainty (meaning the least information) means the maximum
entropy. The least uncertainty and most information is the
minimum entropy.

The “information” meaning of entropy is also used in
fuzzy logic. Kosko says that fuzzy entropy is the measure of
fuzziness.

The entropy of a set named Set A can be calculated by
clicking on the E(A) button on KoskoCalc. The E(B) button
calculates the entropy for another set named Set B. The re-
sult is displayed in the box next to the button.

Figure B.3: One fuzzy set in the 2-D hypercube.

- -

E-MAIL
FROM
DR. FUZZY

- -

220Appendix B: Fuzzy Sets as Hypercube Points

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Figure B.4: Set A and its complement, together with their overlap and
underlap.

Once you’ve identified a set’s degree of fuzziness (as in Figure B.4),
you can determine the complement AC, their intersection (A > AC), which is
also called overlap, and their union (A < AC), called underlap. You can also
calculate the set’s distance from the nearest and farthest crisp vertexes.
The complement of Set A is

AC = (.7 .2)

To determine Set A’s overlap (A > AC), click on the OLA button.
(When you have a Set B, calculate its overlap (B > BC) by clicking on the OLB
button.) The answer appears in the Results column of the matrix:

A > AC = (.3 .2)

To calculate the underlap of Set A (A < AC), click on the ULA button.
The answer appears in the Results column of the matrix. To calculate the
underlap of a Set B (B < BC), click on the ULB button. The answer is

A < AC = (.7 .8)

These operations are plotted on Figure B.4.

221Appendix B: Fuzzy Sets as Hypercube Points

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

FAR CRISP AND NEAR CRISP

To determine the precise location of a set, you can calculate its distance from
the farthest crisp vertex and from the nearest one. These calculations look
easy in 2-D, but if you’re working with a 20-D hypercube, for example, you
need major help.

To determine Set A’s farthest crisp vertex, click on the A button. For
the nearest crisp vertex, click on A. The answer appears in the Results column
of the matrix. (If you have a Set B, you can calculate the same values for it by
clicking on the B button and then the B.)

How are the calculations performed? Think of each value individu-
ally. For instance, Set A’s Xl value of .3 is located vertically between the crisp
0 and crisp 1 vertexes (Figure B.5). Xl’s farthest crisp vertex is 1 and its nearest
crisp vertex is 0.

The X2 value of .8 is located horizontally between crisp 0 and crisp 1
vertexes (Figure B.6).

So X2’s farthest crisp vertex is 0 and its nearest crisp vertex is 1.

MEASURING A SET’S SIZE

The size (cardinality) of the fuzzy set as point is its distance from its vertex
of origin, 0 0 (see Figure B.7). It has several other names. It’s called M or the

fuzzy entropy =
overlap
underlap

The formal equation for the entropy of Set A is

 E A() =
M A ∩ AC()
M A ∪ AC()

M stands for measure.

- -

E-MAIL
FROM
DR. FUZZY

- -

222Appendix B: Fuzzy Sets as Hypercube Points

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Figure B.5: Position of Set A’s Xl value.

Figure B.6: Position of Set A’s X2 value.

measure of A, M(A). It’s also known as the sigma (S) count or the Hamming
norm (,1).

This Harnming or “city block” method is the preferred way to meas-
ure, rather than the alternative, which would be the direct diagonal from the
originating vertex (0 0) to Set A’s point.

223Appendix B: Fuzzy Sets as Hypercube Points

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

- -

E-MAIL
FROM
DR. FUZZY

- -

To calculate Set A’s sigma count, click on the ΣA button. The result is
shown in the box next to the button. (For Set B’s sigma count, click on ΣB.)

Here’s another way to think of it.

INTERACTION OF TWO FUZZY SETS

You can also perform operations on several sets within a hypercube. Kosko-
Calc provides for two sets. You can enter the following values for Set B:

X1 X2
Set B .9 .4

Figure B.7: The measure of Set A or its sigma count.

224Appendix B: Fuzzy Sets as Hypercube Points

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Among the operations you can perform on them is to measure their
distance from each other (useful if two people are playing Fuzzy Shuffle-
board) and the extent to which each set is a subset of the other. Set A and Set
B are graphed in Figure B.8.

In other words, you can stick to the sidewalks or cut catty-
corner across the grass.

In math terms, the sidewalks around the block meas-
urement is called , l, which is actually the

Xl + X2 + ...

If you had n values and an n-D hypercube, it would be

Xl + X2 + ... + Xn

or more formally

X11 + X21 + X n11

The catty-corner method is called , 2. For an n-D hy-
percube, the math representation is

X12 + X22 + X n22

If this strikes a high school geometry chord, it may
be because this is really the Pythagorean theorem. The di-
agonal measurement is like the hypoteneuse of a right trian-
gle, and the relationship is considered a generalization of
the (crisp) Pythagorean theory.

Other ways to measure are possible. For instance, the , 3

method is the cube root of the sum of the cubes of Xl, X2, ...

- -

E-MAIL
FROM
DR. FUZZY

- -

225Appendix B: Fuzzy Sets as Hypercube Points

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Distance

The distance between Set A and Set B can be measured in much the same way
as a set’s sigma count. The sets’ “city block” distance (Figure B.9) is called
the Hamming distance or , P1 (the equivalent of , 1)

To perform this operation, click on KoskoCalc’s LPI button. The
result appears in the box next to the button.

You can also measure the between-sets distance by the “catty corner”
method, or , P2 (the equivalent of , 2 (Figure B.10). Click on the calculator’s
LP2 button to perform this measurement.

Subsethood

Each set may be a subset of the other. How? If there’s a region where the two
sets intersect: A B. The point of intersection is subset B* of Set B and subset
A* of Set A (Figure B.ll).

In general, the degree to which Set A is a subset of Set B is

the size of the intersectionof SetA and Set B
the sizeof Set A

Figure B.8: Sets A and B:

226Appendix B: Fuzzy Sets as Hypercube Points

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Figure B.9: Measuring the fuzzy sets’ distance by , Pl (“city block”)

Figure B.l0: Measuring the fuzzy sets’ distance by , P2 (diagonal
method).

The formal formula is

S A,B() =
M A ∩ B()

M A()

227Appendix B: Fuzzy Sets as Hypercube Points

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Kosko has demonstrated the similarity between this formula
and one for Bayesian probability theory. First he shows that

M A ∩ B()

implies

M B()S B,A()

He then shows that the full fuzzy equation

S A,B() =
M A ∩ B()

M A()

implies the Bayesian

S A,B() =
M B()S B,A()

M A()

Figure B.11: Subsethood, Sets A and B.

- -

E-MAIL
FROM
DR. FUZZY

- -

228Appendix B: Fuzzy Sets as Hypercube Points

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

The degree to which Set B is a subset of Set A is

the size of the intersectionof SetA and Set B
the size of Set B

or

S A,B() =
M B∩ A()

M A()

Calculate the subsethood of (A, B) and (B, A) by clicking on the appro-
priate buttons S(A, B) or S(B, A). The result appears in the box next to the
button.

Figure B.10 shows the results of calculations for Set A’s overlap, sigma
count, and entropy, the LPI calculation for Distance AB, and the subsethood
S(A, B).

When you’re finished with KoskoCalc, click on the OFF button to
return to the main calculator menu.

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

APPENDIX C

DISK fiLES AND
DESCRIPTIONS

This appendix contains an annotated list of the files on the accompanying
disk.

LIBRARY FILES

Five run-time libraries for .exe files are included. They are installed automat-
ically in the Windows\system directory.

• tbpro1w.dll
• tbpro2w.dll
• tbpro3w.dll
• tbpro5w.dll
• ctl3dv2.dll

229

230Appendix C: Disk Files and Descriptions

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

DR. FUZZY'S CALCULATORS

All of the calculators are in a single executable file:

fuzzcalc.exe

The on-line help system is in the file fcalchlp.hlp.

FUZZY KNOWLEDGE BUILDER™ FILE5

The book version of the Fuzzy Knowledge Builder™ application, described
in Chapter 4, is in the executable file

fuzzykb.exe

The application’s run-time library is

buildint.exe

The Fuzzy Knowledge Builder™ on line help system is contained in the file

fkbhlp.hlp

Example Knowledge Base

An example knowledge base in the application’s data script for the BASIC
inference engines is contained in the file

test.fdt

Example Inference Engines

Examples of inference engines in several languages are provided.

231Appendix C: Disk Files and Descriptions

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Motorola 68HC05 Assembly Language

A simple inference engine in Motorola 68HC05 assembly language is in the
file

ie05.asm

Basic

Two inference engines written in Basic are provided. They run in DOS
QuickBasic. The Simple engine is

fuzzyl.bas

The Fast engine is

fuzzy2.bas

Test files for use with the Basic inference engines are in the files

• test.fam
• test.rul

C Language

The file

cie.c

contains C language code fragments of a C inference engine and an example
of the use of the ieTag structure.

The file

testie.fic

contains an example of cie.c code fragments.
The file

232Appendix C: Disk Files and Descriptions

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

trktrl.c

is an example inference engine with an embedded knowledge base from
Fuzz-C (Bytecraft, Inc.).

The file

trktrl.fuz

is a Fuzz-C example from the Fuzzy Knowledge Builder™.

Example Problems

Several examples that supplement those in Chapter 4 are in disk files. Those
with the extension .fam contain the structure and those ending in .rul contain
the rules.

Multiplication

A simple example of using the Fuzzy Knowledge Builder™ is that of multi-
plication. The files are

• multiply.fam
• multiply.rul

Truck Backing Up

A classic fuzzy expert system problem, first devised and solved by Bart
Kosko, is how to back up and park a large tractor-trailer. The Fuzzy Knowl-
edge Builder™ implementation is contained in the files

• truck.fam
• truck.rul

The file

233Appendix C: Disk Files and Descriptions

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

trktrlt.f05

contains a related example knowledge base in Motorola 68HC05 assembly
language for the ie05.asm inference engine.

The file

trktrlt.fdt

contains a related input data script knowledge base.

Random Example

A random example is contained in the files

• random.fam
• random.rul

FUZZY DECISION MAKER™

The executable file for the book version of the Fuzzy Decision Maker™ is

fuzzydm.exe

On-line help is in the file

fdmhlp.hlp

Several example problems solved with the Fuzzy Decision Maker™
are provided on the disk.

Choosing a College

The college selection scenario, discussed in Chapter 5, is in the file

234Appendix C: Disk Files and Descriptions

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

college.dec

In addition, the following examples are provided in files.

Legal Problem

An example of solving a legal problem is in the file

legalde.dec

Unemployment

Making a decision about findi ng a new job is explored in

employ.dec

Financial Planning

An aspect of financial planning is contained in the file

finplan.dec

Changing Residence

The criteria that might go into the decision to change your residence is
 explored in

move.dec

235Appendix C: Disk Files and Descriptions

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

FUZZY THOUGHT AMPLIFIER™

The executable file for the book version of the Fuzzy Thought Amplifier™
(Chapter 6) is in the file

fuzzyta.exe

The on-line help system is in

fcmhlp.hlp

Two cognitive maps discussed in Chapter 6 are provided on the disk.
The three simple maps showing end behaviors are in the file

example .fcm

The Cat-and-Plant environmental system is in the file

catplant.fcm

This same map, but in color and dynamic state sizes, is in

catplnt2.fcm

README FILE

The list of disk files is in

readme.txt

.

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

APPENDIX D

INFERENcE EnGInE
PROGRAmS

This appendix contains examples of inference engines written in QBASIC, C
language, Fuzz-C (Bytecraft, Inc.), and the Motorola 68HC05 assembly lan-
guage. The QBASIC engines (written by Martin McNeill) are those used in
Chapter 4 and can be further investigated on any MS-DOS machine, since
QBASIC is a part of all versions of DOS 5 and DOS 6.

QUICKBASIC SIMPLE INFERENCE ENGINE

This inference engine is fuzzy1 .bas, and can be tested with the file test.fdt that’s
on the disk, or with any file you name test.fdt. You can also substitute any
other file name with the .fdt extension. In that case, you should change the
file references in fuzzy1.bas. These are in bold type in the program listing.

237

238Appendix D: Inference Engine Programs

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Fuzzy1.bas can handle triangular and trapezoidal membership func-
tions. It’s called simple because it’s a “no frills” program and tests all the
rules, active or not.

The code for fuzzy1.bas follows. (To accommodate the printed page,
long lines that must carry over are broken with a double slash, / /.)

'Fuzzy Exersizer
'Reads TEST . FDT
'Allows
DECLARE SUB ShowOutput ()
DECLARE SUB ReadknowledgeBase ()
DECLARE SUB FuzzyMap ()
DECLARE SUB GetInput ()
DECLARE SUB DisplayOutput ()
COMMON Rule() AS INTEGER
'Global. From XXXX.FDT.
'The rule array size is defined at knowledge base read time.
DIM SHARED NumInputs AS INTEGER
'Global. From XXXX.FDT.
'The Number of Inputs or input dimensions(1 to 5)
DIM SHARED NumOutputs AS INTEGER
'The Number of Outputs (1 to 2) Each output implies a separate estimation
'surface. The input permutations are the same.
DIM SHARED Credibility AS INTEGER
'Ignore Credibility now. The inference engine does not use it.
DIM SHARED NumRules AS INTEGER
'Global. From XXXX.FDT.
'The number of rules to be read in. DIM SHARED NumFS(6) AS INTEGER
'Global. From XXXX.FDT.
'The number of fuzzy sets on each input (0 to 4) and each output (5 to 6)
'This may vary from 1 to 11 on each input or output.
'Used to control readin and inference engine.
DIM SHARED PWFS(6, 10, 3, 1) AS INTEGER
'Global. From XXXX.FDT.
'The piecewise fuzzy sets are stored here:
'0 to 6: The input and output indicies, same as NumFS(6)
'0 to 10: The fuzzy set index on each input or output dimension.
' The maximum value is the same as stored in NumFS(6).
'0 to 3: The number of points on each fuzzy set in each dimension.

' The values may be: 1 = Singleton, 3 = Triangle, 4 = trapezoid.

' Same as value stored in SHAPE(6).
'0 to 1: The number of values needed to define each vertex point of the
' fuzzy sets. 1 = Singleton, 2 = Other.
DIM SHARED FInValue(4) AS INTEGER
'Global.
'Values into the inference engine. From GetInput sub or from
' your application.
DIM SHARED FOutValue(l) AS INTEGER

239Appendix D: Inference Engine Programs

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

'Global.
'Values from the inference engine. To ShowOutput sub or to
' your application.
DIM SHARED SHAPE(6) AS INTEGER
'Global. From XXXX.FDT.
' The values may be: 1 = Singleton, 3 = Triangle, 4 = trapezoid.
DEFINT A-Z

DO
CLS
PRINT "Fuzzy Work": PRINT
COLOR 15, 0: PRINT " R"; : COLOR 7, 0: PRINT 'ead Knowledge Base"
COLOR 15, 0: PRINT " F"; : COLOR 7, 0: PRINT "uzzy Map"
COLOR 15, 0: PRINT " I"; : COLOR 7, 0: PRINT "nput Values"
COLOR 15, 0: PRINT " S"; : COLOR 7, 0: PRINT "how Output Values"
COLOR 15, 0: PRINT " Q"; : COLOR 7, 0: PRINT "uit"
PRINT : PRINT "Select: "

' Get valid key
DO

Q$ = UCASE$(INPUT$(1))
LOOP WHILE INSTR("BRFISQ", Q$) = 0

' Take action based on key
CLS
SELECT CASE Q$

CASE IS = "R"
PRINT "Reading . . . "

OPEN "TEST.FDT" FOR INPUT As #1
DO UNTIL EOF(l)

INPUT #1, FileString$
SELECT CASE FileString$
CASE "NUM_INPUTS"

INPUT #1, Count$
NumInputs = VAL(Count$)

CASE "CREDIBILITY"
INPUT #1, Count$
Credibility = VAL(Count$)

CASE "INPUT1"
INPUT #1, Count$
NumFS(0) = VAL(Count$)

CASE "INPUT2"
INPUT #1, Count$
NumFS(l) = VAL(Count$)

CASE "INPUT3"
INPUT #1, Count$
NumFS(2) = VAL(Count$)

CASE "INPUT4"
INPUT #1,Count$
NumFS(3) = Val(count$)

240Appendix D: Inference Engine Programs

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

CASE "INPUT5"
INPUT #1, Count$
NumFS(4) = VAL(Count$)

CASE "NUM_OUTPUTS"
INPUT #1, Count$
NumOutputs = VAL(Count$)

CASE "OUTPUT1"
INPUT #1, Count$
NumFS(5) = VAL(Count$)

CASE "OUTPUT2"
INPUT #1, Count$
NumFS(6) = VAL(Count$)

CASE "NUM_RULES"
INPUT #1, Count$
NumRules = VAL(Count$)

CASE ELSE

END SELECT
LOOP
CLOSE #1
REDIM SHARED Rule(NumFS(0), NumFS(1), NumFS(2), NumFS(3),//

NumFS(4)) AS INTEGER
ReadKnowledgeBase PRINT "Fuzzy Mapping . . ."

CASE IS = "F"
PRINT "Fuzzy Mapping . . ."
FuzzyMap
ShowOutput

CASE IS = "I"
PRINT "Inputing . . ."
GetInput

CASE IS = "S"
PRINT "Outputing . . ."
ShowOutput

CASE ELSE
END SELECT

LOOP UNTIL Q$ = "Q"
END

'Display the inferred outputs previously calculated.
SUB DisplayOutput

SCREEN 0, 0 ' Set text screen.
DO ' Input titles.

CLS
LOCATE 7, 1
PRINT "Output 1: "; FOutValue(0)
IF NumInputs > 1 THEN
PRINT "Output 2: "; FOutValue(1)
END IF
PRINT "OK (Y to continue, N to change)? ";
LOCATE , , 1

241Appendix D: Inference Engine Programs

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

OK$ = UCASE$(INPUT$(1))
LOOP UNTIL OK$ = Y"

END SUB

'Inference Engine.
'Up to 5 inputs and 1 output supported
'The crisp input value on each input dimension is tested for nonzero value.
'If a nonzero value occurs, it's value and which fuzzy set it is in is
'registered.
'Then all the rules with all nonzero fuzzy sets are "fired" to provide
'the associated output fuzzy set and the minimum input hit value is used to
'truncate the output fuzzy set. The truncated output fuzzy sets areas are
'summed and the center of gravity of each of the primative pieces times
'the primative area(first moment) is summed.
'Primative areas are triangles and rectangles.
'Then the area sumation results is divided into the first moment summation
'to give the overall center of gravity. This is the crisp output of
'inference process.
SUB FuzzyMap
DIM GrndArea AS LONG, GrndFirstMom AS LONG
'Local.
'Accumulation variables for output pieces.
DIM FuzSum AS LONG
'Local.
'The minimum nonzero membership value of a rule that has fired.
DIM MFHIT(0 TO 4, 0 TO 10) AS LONG
'Local.
'The membership values of the crisp inputs in each fuzzy set in each input
'dimension. Most are zero.
DIM Consequent AS LONG
'Local.
'The rule conseguent for the particular rule that is firing.
'Firing means all fuzzified inputs are nonzero on this rule.
DIM Area1 AS LONG, FirstMoment1 AS LONG
'Local.
'Left hand triangle shape area of output truncated trapezoid.
'This shape area times the Center of Gravity (First Moment) of this shape.
DIM Area2 AS LONG, FirstMoment2 AS LONG
'Local.
'Center rectangle shape area of output truncated trapezoid.
'This shape area times the Center of Gravity (First Moment) of this shape.
DIM Area4 AS LONG, FirstMoment4 AS LONG
'Local.
'Right hand triangle shape area of output truncated trapezoid.
'This shape times the Center of Gravity (First Moment) of this shape.
DIM Area AS LONG, FirstMom AS LONG
'Local.
'Intermediate sumation variables. May not be needed.
DIM Inter1 AS LONG, Inter2 AS LONG

242Appendix D: Inference Engine Programs

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

'Local.
'Used in the defuzzification process. Stores the two output dimension values
' of the trapezoidal peak after truncation. (Triangles turn into trapezoids
' after truncation.
DIM HitsonDim(4) AS LONG
'Local.
'Used to register the number of nonzero input hits in each input dimension.
DIM FSHit(4, 10) AS LONG
'Local.
'Used to register the input dimension and fuzzy set in which the fuzzified
'input is nonzero.

' COMPUTE Hit Values on memberships */

FOR x = 0 TO NumInputs - 1
IF (SHAPE(x) = 3) THEN 'Trangles

FOR y = 0 TO NumFS(x) — 1
IF (FInValue(x) <= PWFS(x, y, 0, 0) OR FInValue(x) //

>= PWFS(x, y, 2, 0)) THEN
MFHIT(x, y) = 0 'Missed fuzzy set entirely

ELSEIF (FInValue(x) //
<= PWFS(x, y, 1, 0) AND PWFS(x, y, 0, 1) = 255) THEN

MFHIT(x, y) = 255 'Hit high left end
ELSEIF (FInValue(x) >= PWFS(x, y, 1, 0) AND //

PWFS(x, y, 2, 1) = 255) THEN
MFHIT(x, y) = 255 'Hit high right end

ELSEIF (FInValue(x) <= PWFS(x, y, 1, 0)) THEN
MFHIT(x, y) = ((FInValue(x) — PWFS(x, y, 0, 0)) //

* 2556) / (PWFS(x, y, 1, 0) — PWFS(x, y, 0, 0))
'Hit is on left slope and between 0 and 255

ELSE
MFHIT(x, y) = ((PWFS(x, y, 2, 0) — //

FInValue(x)) * 255&) / (PWFS(x, y, 2, 0) — PWFS(x, y, 1, 0))
'Hit is on right slope and between 0 and 255

END IF
NEXT y

ELSEIF (SHAPE(x) = 4) THEN 'Trapezoid
 FOR y = 0 TO NumFS(x) — 1

IF (FInValue(x) <= PWFS(x, y, 0, 0) OR FInValue(x) //
>= PWFS(x, y, 3, 0)) THEN

MFHIT(x, y) = 0
ELSEIF (FInValue(x) //

<= PWFS(x, y, 1, 0) AND PWFS(x, y, 0, 1) = 255) THEN
MFHIT(x, y) = 255

ELSEIF (FInValue(x) >= PWFS(x, y, 1, 0) AND //
PWFS(x, y, 3, 1) = 255) THEN

MFHIT(x, y) = 255
ELSEIF (FInValue(x) <= PWFS(x, y, 1, 0)) THEN

MFHIT(x, y) = ((FInValue(x) — PWFS(x, y, 0, 0)) * //
255&) / (PWFS(x, y, 1, 0) — PWFS(x, y, 0, 0))

243Appendix D: Inference Engine Programs

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

ELSEIF (FInValue(x) <= PWFS(x, y, 2, 0)) THEN
MFHIT(x, y) = 255

ELSE
MFHIT(x, y) = ((PWFS(x, y, 3, 0) — //

FInValue(x)) * 255&) / (PWFS(x, y, 3, 0) — PWFS(x, y, 2, 0))
END IF NEXT y

END IF
NEXT x
GrndArea = 0
GrndFirstMom = 0
e = 0
DO

d = 0
DO

c = 0
DO

b = 0
DO

a = 0
DO

FuzSum = 255
IF (MFHIT(4, e) < FuzSum AND NumInputs > 4) THEN

FuzSum = MFHIT(4, e)
END IF
IF (MFHIT(3, d) < FuzSum AND NumInputs > 3) THEN

FuzSum = MFHIT(3, d)
END IF
IF (MFHIT(2, c) < FuzSum AND NumInputs > 2) THEN

FuzSum = MFHIT(2, c)
END IF
IF (HFHIT(l, b) < FuzSum AND NumInputs > 1) THEN

FuzSum = MFHIT(l, b)
END IF
IF (MFHIT(0, a) < FuzSum) THEN

FuzSum = MFHIT(0, a)
END IF
IF (FuzSum <> 0) THEN

Consequent = Rule(a, b, c, d, e)
IF (Consequent = -1) THEN

GOTO Skip
END IF 'Don't care rule
FOR I = 0 TO NumOutputs — 1

IF (SHAPE(I + 5) = 1) THEN 'Output is a singleton
GrndArea = GrndArea + FuzSum
GrndFirstMom = GrndFirstMom + FuzSum //

* PWFS(5, Consequent, 0, 0)
ELSEIF (SHAPE(I + 5) = 3) THEN 'Output is a triangle

Inter1 = PWFS(5, Consequent, 0, 0) //
+ (FuzSum * (PWFS(5, Consequent, 1, 0) — PWFS(5, Consequent, 0, 0))) / 255&

Inter2 = PWFS(5, Consequent, 2, 0) //

244Appendix D: Inference Engine Programs

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

— (FuzSum * (PWFS(5, Consequent, 2, 0) — PWFS(5, Consequent, 1, 0))) / 255&
IF (PWFS(5, Consequent, 0, 1) = 255) THEN

Area1 = FuzSum * Inter1
FirstMoment1 = (Area1 * Inter1) / 2
Area2 = FuzSum * (Inter2 — Inter1)
FirstMoment2 = Area2 //

* (Inter2 — (Inter2—Interl) / 2)
ELSE

Areal = FuzSum //
* (Inter1 — PWFS(5, Consequent, 0, 0)) / 2

FirstMoment1 = Area1 //
* (Inter1 — ((Inter1 — PWFS(5, Consequent, 0, 0)) / 3))

Area2 = FuzSum * (Inter2—Inter1)
FirstMoment2 = Area2 //

* (Inter1 + (Inter2—Inter1) / 2)
END IF

IF (PWFS(5, Consequent, 2, 1) = 255) THEN
Area4 = FuzSum //

* (PWFS(5, Consequent, 2, 0) — Inter2)
FirstMoment4 = Area4 //

* (Inter2 + ((PWFS(5, Consequent, 2, 0) — Inter2) / 2))
ELSE

Area4 = FuzSum //
* (PWFS(5, Consequent, 2, 0) — Inter2) / 2

FirstMoment4 = Area4 //
* (Inter2 + ((PWFS(5, Consequent, 2, 0) — Inter2) / 3))

END IF
Area = Area1 + Area2 + Area4

FirstMom = FirstMoment1 + FirstMoment2 + FirstMoment4
GrndArea = GrndArea + Area
GrndFirstMom = GrndFirstMom + FirstMom

ELSEIF (SHAPE(I + 5) = 4) THEN 'Is a trapezoid
Inter1 = PWFS(5, Consequent, 0, 0) //

+ (FuzSum * (PWFS(5, Consequent, 1, 0) — PWFS(5, Consequent, 0, 0))) / 255
Inter2 = PWFS(5, Consequent, 3, 0) //

— (FuzSum * (PWFS(5, Consequent, 3, 0) — PWFS(5, Consequent, 2, 0))) / 255
IF (PWFS(5, Consequent, 0, 1) = 255) THEN

Area1 = FuzSum * Inter1
FirstMoment1 = (Area1 * Inter1) / 2
Area2 = FuzSum * (Inter2 — Inter1)
FirstMoment2 = Area2 //

* (Inter2 — (Inter2—Inter1) / 2)
ELSE

Area1 = (FuzSum * (Inter1 //
— PWFS(5, Consequent, 0, 0))) / 2

FirstMoment1 = Area1 //
* (Inter1 — (Inter1 — PWFS(5, Consequent, 0, 0)) / 3)

Area2 = FuzSum * (Inter2 — Inter1)

245Appendix D: Inference Engine Programs

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

FirstMoment2 = Area2 //
* (Inter1 + (Inter2 — Inter1) / 2)

END IF
IF (PWFS(5, Consequent, 3, 1) = 255) THEN
Area4 = FuzSum * (PWFS(5, NumFS(5) — 1, 3, 0) — Inter2)

FirstMoment4 = Area4 //
* ((PWFS(5, NumFS(5) — 1, 3, 0) — Inter2) / 2)

ELSE
Area4 = FuzSum //

* (PWFS(5, Consequent, 3, 0) — Inter2) / 2
FirstMoment4 = Area4 //

* (Inter2 + (PWFS(5, Consequent, 3, 0) — Inter2) / 3)
END IF
Area = Area1 + Area2 + Area4
FirstMom = FirstMoment1 + FirstMoment2 + FirstMoment4
'Summation of pieces of each output shape
GrndArea = GrndArea + Area
'Summation of different output shapes.
GrndFirstMom = GrndFirstMom + FirstMom

END IF
NEXT I

Skip:
END IF

a = a + 1
LOOP WHILE (a < NumFS(0))
b = b + 1

LOOP WHILE (b < NumFS(1) AND NumInputs > 1)
c = c + 1

LOOP WHILE (c < NumFS(2) AND NumInputs > 2)
d = d + 1

LOOP WHILE (d < NumFS(3) AND NumInputs > 3)
e = e + 1

LOOP WHILE (e < NumFS(4) AND NumInputs > 4)
IF (GrndArea <> 0) THEN

FOutValue(0) = (GrndFirstMom / GrndArea) 'Defuzzify output
ELSE

FOutValue(0) = 0 'Meaningless output
END IF
END SUB

'Enters data int FInValue(4) as needed by the knowledge base
'NumInputs is input dimension from knowledge base
SUB GetInput

SCREEN 0, 0 ' Set text screen.
DO ' Input titles.

CLS
INPUT "Enter Input One: ", FInValue(0)
IF NumInputs > 1 THEN

INPUT "Enter Input Two: ", FInValue(1)
END IF

246Appendix D: Inference Engine Programs

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

IF NumInputs > 2 THEN
INPUT "Enter Input Three: ", FInValue(2)

END IF
IF NumInputs > 3 THEN

INPUT "Enter Input Four: ", FInValue(3)
END IF
IF NumInputs > 4 THEN

INPUT "Enter Input Five: ", FInValue(4)
END IF

'Check to see if titles are OK:
LOCATE 7, 1
PRINT "OK (Y to continue, N to change)? ";
LOCATE , , 1
OK$ = UCASE$(INPUT$(l))

LOOP UNTIL OK$ = "Y"

END SUB

'Read in knowledge base put out by the Manifold Editor
'Variables are discussed at program start. The variables are global.
SUB ReadKnowledgeBase STATIC

OPEN "TEST.FDT" FOR INPUT AS #l
SEEK #1, 1
DO UNTIL EOF(1)

INPUT #1, FileString$
SELECT CASE FileString$
CASE "NUM_INPUTS"

INPUT #1, Count$
NumInputs = VAL(Count$)

CASE "CREDIBILITY"
INPUT #1, Count$
Credibility = VAL(Count$)

CASE "INPUT1"
INPUT #1, Count$
NumFS(0) = VAL(Count$)

CASE "INPUT2"
INPUT #1, Count$
NumFS(1) = VAL(Count$)

CASE "INPUT3"
INPUT #1, Count$
NumFS(2) = VAL(Count$)

CASE INPUT4"
INPUT #1, Count$
NumFS(3) = VAL(Count$)

CASE "INPUT5"
INPUT #1, Count$
NumFS(4) = VAL(Count$)

CASE "NUM_OUTPUTS"

247Appendix D: Inference Engine Programs

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

INPUT #1, Count$
NumOutputs = VAL(Count$)

CASE "OUTPUT1"
INPUT #1, Count$
NumFS(5) = VAL(Count$)

CASE "OUTPUT2"
INPUT #1, Count$
NumFS(6) = VAL(Count$)

CASE "NUM_RULES"
INPUT #1, Count$
NumRules = VAL(Count$)
PRINT NumRules

CASE "INPUTS FUZZY SETS"
FOR I = 0 TO NumInputs — 1

DO
INPUT #1, FileString$
SELECT CASE FileString$
CASE "INPUT"

INPUT #1, Count$
M = 0

CASE "COUNT"
INPUT #1, Count$
IF NumFS(I) <> VAL(Count$) THEN

END
END IF

CASE "SHAPE"
INPUT #1, Count$
SHAPE(I) = VAL(Count$)

CASE "START"
FOR J = 0 TO NumFS(I) — 1

FOR K = 0 TO SHAPE(I) — 1
INPUT #1, Count$
PRINT Count$
PWFS(I, J, K, 0) = VAL(Count$)
PRINT PWFS(I, J, R, 0)
INPUT #1, Count$
PRINT Count$
PWFS(I, J, K, 1) = VAL(Count$)
PRINT PWFS(I, J, K, 1)

NEXT K
NEXT J

END SELECT
LOOP WHILE FileString$ <> "END$"

NEXT I
CASE "OUTPUTS FUZZY SETS"

FOR I = 0 TO NumOutputs — 1
DO
INPUT #1, FileString$
SELECT CASE FileString$
CASE "OUTPUT"

248Appendix D: Inference Engine Programs

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

INPUT #1, Count$
M = 5

CASE "COUNT"
INPUT #1, Count$
IF NumFS(I + M) <> VAL(Count$) THEN

END
END IF

CASE " SHAPE"
INPUT #1, Count$
SHAPE(I + M) = VAL(Count$)

CASE "START"
FOR J = 0 TO NumFS(I + M) — 1

FOR K = 0 TO SHAPE(I + M) — 1
INPUT #1, Count$
PRINT Count$
PWFS(I + M, J, K, 0) = VAL(Count$)
IF (SHAPE(I + M) > 1) THEN

INPUT #1, Count$
PRINT Count$
PWFS(I + M, J, K, 1) = VAL(Count$)

END IF
NEXT K

NEXT J
'CASE "END$"
'CASE ELSE

END SELECT
LOOP WHILE FileString$ <> "END$"

NEXT I
CASE "RULES"

FOR H = 0 TO 4
IF NumFS(H) = 0 THEN Temp(H) = 0 ELSE Temp(H) = NumFS(H) — 1

NEXT H
FOR I = 0 TO Temp(0)

FOR J = 0 TO Temp(1)
FOR K = 0 TO Temp(2)

FOR L = 0 TO Temp(3)
FOR M = 0 TO Temp(4)

INPUT #1, Rule(I, J, K, L, M)
PRINT Rule(I, J, K, L, M)

NEXT M
NEXT L

NEXT K
NEXT J

NEXT I
CASE ELSE

END SELECT
LOOP CLOSE #1
END SUB3

249Appendix D: Inference Engine Programs

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

SUB ShowOutput
SCREEN 0, 0 ' Set text screen.
DO ' Input titles.

CLS
PRINT "Output One: "; FOutValue(0)
IF NumOutputs > 1 THEN PRINT "Output Two: "; FOutValue(1)
LOCATE 7, 1
PRINT "OK (Y to continue)? ";
LOCATE , , 1
OK$ = UCASE$(INPUT$(1))

LOOP UNTIL OK$ = "Y"
END SUB

QUICKBASIC FAST INFERENCE ENGINE

This inference engine is fuzzy2.bas, and can also be be tested with the file
test.fdt that’s on the disk or with any file you name test.fdt. You can also
substitute any other file name with the .fdt extension. In that case, you should
change the references in fuzzy2.bas. These are in bold type in the program
listing.

Like fuzzyl.fdt, fuzzy2.bas can handle triangular and trapezoidal
membership functions. It’s faster because tests only the active rules.

The code for fuzzy2.bas follows. (To accommodate the printed page,
long lines that must carry over are broken with a double slash, / /.)

'Fuzzy Exersizer
'Reads TEST.FDT
'Allows
DECLARE SUB ShowOutput ()
DECLARE SUB ReadknowledgeBase ()
DECLARE SUB PuzzyMap ()
DECLARE SUB GetInput ()
DECLARE SUB DisplayOutput ()
COMMON Rule() AS INTEGER
'Global. From XXXX.FDT.
'The rule array size is defined at knowledge base read time.
DIM SHARED NumInputs AS INTEGER
'Global. From XXXX.FDT.
'The Number of Inputs or input dimensions(1 to 5)
DIM SHARED NumOutputs AS INTEGER
'The Number of Outputs (1 to 2) Each output implies a separate estimation
'surface. The input permutations are the same.

250Appendix D: Inference Engine Programs

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

DIM SHARED Credibility AS INTEGER
'Ignore Credibility now. The inference engine does not use it.
DIM SHARED NumRules AS INTEGER
'Global. From XXXX.FDT.
'The number of rules to be read in.
DIM SHARED NumFS(6) AS INTEGER
'Global. From XXXX.FDT.
'The number of fuzzy sets on each input (0 to 4) and each output (5 to 6)
'This may vary from 1 to 11 on each input or output.
'Used to control readin and inference engine.
DIM SHARED PWFS(6, 10, 3, 1) AS INTEGER
'Global. From XXXX.FDT.
'The piecewise fuzzy sets are stored here:
'0 to 6: The input and output indicies, same as NumFS(6)
'0 to 10: The fuzzy set index on each input or output dimension.
' The maximum value is the same as stored in NumFS(6). '0 to 3: The num-
ber of points on each fuzzy set in each dimension.
' The values may be: 1 = Singleton, 3 = Triangle, 4 = trapezoid.
' Same as value stored in SHAPE(6).
'0 to 1: The number of values needed to define each vertex point of the
' fuzzy sets. 1 = Singleton, 2 = Other.
DIM SHARED FInValue(4) AS INTEGER
'Global.
'Values into the inference engine. From GetInput sub or from
' your application.
DIM SHARED FOutValue(1) AS INTEGER
'Global.
'Values from the inference engine. To ShowOutput sub or to
' your application.
DIM SHARED SHAPE(6) AS INTEGER
'Global. From XXXX.FDT.
' The values may be: 1 = Singleton, 3 = Triangle, 4 = trapezoid.
DEFINT A-Z

DO
CLS
PRINT "Fuzzy Work": PRINT
COLOR 15, 0: PRINT " R"; : COLOR 7, 0: PRINT "ead Knowledge Base"
COLOR 15, 0: PRINT " F"; : COLOR 7, 0: PRINT "uzzy Map"
COLOR 15, 0: PRINT " I"; : COLOR 7, 0: PRINT "nput Values"
COLOR 15, 0: PRINT " S"; : COLOR 7, 0: PRINT "how Output Values"
COLOR 15, 0: PRINT " Q"; : COLOR 7, 0: PRINT "uit"
PRINT : PRINT "Select: "

'Get valid key
DO

Q$ = UCASE$(INPUT$(1))
LOOP WHILE INSTR("BRFISQ", Q$) = 0

' Take acton based on key

251Appendix D: Inference Engine Programs

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

CLS
SELECT CASE Q$

CASE IS = "R"
 PRINT "Reading . . ."
OPEN "TEST.FDT" FOR INPUT AS #1
DO UNTIL EOF(1)

INPUT #1, FileStringS
SELECT CASE FileString$
CASE "NUM_INPUTS"

INPUT #1, Count$
NumInputs = VAL(Count$)

CASE "CREDIBILITY"
INPUT #1, Count$
Credibility = VAL(Count$)

CASE "INPUT1"
INPUT #1, Count$
NumFS(0) = VAL(Count$)

CASE "INPUT2"
INPUT #1, Count$
NumFS(1) = VAL(Count$)

CASE "INPUT3"
INPUT #1, Count$
NumFS(2) = VAL(Count$)

CASE "INPUT4"
INPUT #1, Count$
NumFS(3) = VAL(Count$)

CASE "INPUT5"
INPUT #1, Count$
NumFS(4) = VAL(Count$)

CASE "NUM_OUTPUTS"
INPUT #1, Count$
NumOutputs = VAL(Count$)

CASE "OUTPUT1"
INPUT #1, Count$
NumFS(5) = VAL(Count$)

CASE "OUTPUT2"
INPUT #1, Count$
NumFS(6) = VAL(Count$)

CASE "NUM_RULES"
INPUT #1, Count$
NumRules = VAL(Count$)

CASE ELSE

END SELECT
LOOP
CLOSE #1
REDIM SHARED Rule(NumFS(0), NumFS(1), NumFS(2), NumFS(3), //

NumFS(4)) AS INTEGER
 ReadKnowledgeBase
 PRINT "Fuzzy Mapping . . ."

252Appendix D: Inference Engine Programs

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

CASE IS = "F"
 PRINT "Fuzzy Mapping . . ."
FuzzyMap
ShowOutput

CASE IS = "I"
PRINT "Inputing . . ."
GetInput

CASE IS = "S"
PRINT "Outputing . . ."
ShowOutput CASE ELSE

END SELECT
LOOP UNTIL Q$ = "Q"
END

'Display the inferred outputs previously calculated.
SUB DisplayOutput

SCREEN 0, 0 ' Set text screen.
DO ' Input titles.

CLS
LOCATE 7, 1
PRINT "Output 1: " ; FOutValue(0)
IF NumInputs > 1 THEN

PRINT "Output 2: "; FOutValue(l)
END IF
PRINT "OK (Y to continue, N to change)? ";
LOCATE , , 1
OK$ = UCASE$(INPUT$(1))

LOOP UNTIL OK$ = "y"

END SUB

'Inference Engine.
'Up to 5 inputs and 1 output supported
'The crisp input value on each input dimension is tested for nonzero value.
'If a nonzero value occurs, it's value and which fuzzy set it is in is
'registered.
'Then all the rules with all nonzero fuzzy sets are "fired" to provide
'the associated output fuzzy set and the minimum input hit value is used to
'truncate the output fuzzy set. The truncated output fuzzy sets areas are
'summed and the center of gravity of each of the primative pieces times
'the primative area(first moment) is summed.
'Primative areas are triangles and rectangles.
'Then the area sumation results is divided into the first moment summation
'to give the overall center of gravity. This is the crisp output of
'inference process.
SUB FuzzyMap
DIM GrndArea AS LONG, GrndFirstMom AS LONG
'Local.
'Accumulation variables for output pieces.
DIM FuzSum AS LONG

253Appendix D: Inference Engine Programs

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

'Local. 'The minimum nonzero membership value of a rule that has fired.
DIM MFHIT(0 TO 4, 0 TO 10) AS LONG
'Local.
'The membership values of the crisp inputs in each fuzzy set in each input
'dimension. Most are zero.
DIM Consequent AS LONG
'Local.
'The rule conseguent for the particular rule that is firing.
'Firing means all fuzzified inputs are nonzero on this rule.
DIM Areal AS LONG, FirstMoment1 AS LONG
'Local.
'Left hand triangle shape area of output truncated trapezoid.
'This shape area times the Center of Gravity (First Moment) of this shape.
DIM Area2 AS LONG, FirstMoment2 AS LONG
'Local.
'Center rectangle shape area of output truncated trapezoid.
'This shape area times the Center of Gravity (First Moment) of this shape.
DIM Area4 AS LONG, FirstMoment4 AS LONG
'Local.
'Right hand triangle shape area of output truncated trapezoid.
'This shape times the Center of Gravity (First Moment) of this shape.
DIM Area AS LONG, FirstMom AS LONG
'Local.
'Intermediate sumation variables. May not be needed.
DIM Inter1 AS LONG, Inter2 AS LONG
'Local.
'Used in the defuzzification process. Stores the two output dimension values
of the trapezoidal peak after truncation. (Triangles turn into trapezoids
'after truncation.
DIM HitsonDim(4) AS LONG
'Local.
'Used to register the number of nonzero input hits in each input dimension.
DIM Tmp(4) AS LONG
'Local.
'Used to setup the FOR loop indicies on the number of nonzero
'input hits in each input dimension.
DIM FSHit(4, 10) AS LONG
'Local.
'Used to register the input dimension and fuzzy set in which the fuzzified
'input is nonzero.

' COMPUTE Hit Values on memberships */ FOR H = 0 TO 4
 HitsonDim(H) = 0 'Start out with all hit count = 0

NEXT H

FOR x = 0 TO NumInputs — 1
 IF (SHAPE(x) = 3) THEN 'Trangles

z = 0
FOR y = 0 TO NumFS(x) — 1

IF (FInValue(x) <= PWFS~x, y, 0, 0) OR FInValue(x) //

254Appendix D: Inference Engine Programs

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

>= PWFS(x, y, 2, 0)) THEN
‘MFHIT(x, y) = 0 ‘Missed fuzzy set entirely

ELSEIF (FInValue(x) <= PWFS(x, 0, 1, 0) AND //
PWFS(x, 0, 0, 1) = 255) THEN

HitsonDim(x) = HitsonDim(x) + 1
FSHit(x, z) = y
MFHIT(x, z) = 255 ‘Hit high left end
z = z + 1

ELSEIF (FInValue(x) >= PWFS(x, NumFS(x) – 1, 1, 0) //
AND PWFS(x, NumFS(x) – 1, 2, 1) = 255) THEN

HitsonDim(x) = HitsonDim(x) + 1
FSHit(x, z) = y
MFHIT(x, z) = 255 ‘Hit high right end
z = z + 1

ELSEIF (FInValue(x) <= PWFS(x, y, 1, 0)) THEN
HitsonDim(x) = HitsonDim(x) + 1
FSHit(x, z) = y
MFHIT(x, z) = ((FInValue(x) – PWFS(x, y, 0, 0)) * 255&)

/ (PWFS(x, y, 1, 0) – PWFS(x, y, 0, 0))
‘Hit is on left slope and between 0 and 255
z = z + 1

ELSEIF (FInValue(x) > PWFS(x, y, 1, 0)) THEN
HitsonDim(x) = HitsonDim(x) + 1
FSHit(x, z) = y
MFHIT(x, z) = ((PWFS(x, y, 2, 0) //

– FInValue(x)) * 255&) / (PWFS(x, y, 2, 0) – PWFS(x, y, 1, 0))
‘Hit is on right slope and between 0 and 255
z = z + 1

END IF
NEXT y

ELSEIF (SHAPE(x) = 4) THEN ‘Trapezoid
z = 0
FOR y = 0 TO NumFS(x) – 1

IF (FInValue(x) <= PWFS(x, y, 0, 0) OR FInValue(x) //

>= PWFS(x, y, 3, 0)) THEN
MFHIT(x, y) = 0

ELSEIF (FInValue(x) <= PWFS(x, 0, 1, 0) //
AND PWFS(x, 0, 0, 1) = 255) THEN

HitsonDim(x) = HitsonDim(x) + 1
FSHit(x, z) = y
MFHIT(x, z) = 255 z = z + 1

ELSEIF (FinValue (x) >= PWFS(x, NumFS(x) - 1, 1, 0) //
AND PWFS(x, NumFS(x) - 1, 3, 1) = 255) THEN

HitsonDim(x) = HitsonDim(x) + 1
FSHit(x, z) = y
MFHIT(x, z) = 255
z = z + 1

ELSEIF (FInValue(x) <= PWFS(x, y, 1, 0)) THEN
HitsonDim(x) = HitsonDim(x) + 1
FSHit(x, z) = y

255Appendix D: Inference Engine Programs

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

MFHIT(x, z) = ((FInValue(x) — PWFS(x, y, 0, 0)) //
* 255&) / (PWFS(x, y, 1, 0) — PWFS(x, y, 0, 0))

z = z + 1
ELSEIF (FInValue(x) <= PWFS(x, y, 2, 0)) THEN

HitsonDim(x) = HitsonDim(x) + 1
FSHit(x, z) = y
MFHIT(x, z) = 255
z = z + 1

ELSE
HitsonDim(x) = HitsonDim(x) + 1
FSHit(x, z) = y
MFHIT(x, z) = ((PWFS(x, y, 3, 0) //

— FInValue(x)) * 255&) / (PWFS(x, y, 3, 0) — PWFS(x, y, 2, 0))
z = z + 1

END IF
NEXT y

END IF
NEXT x
GrndArea = 0
GrndFirstMom = 0
FOR H = 0 TO 4

IF HitsonDim(H) = 0 THEN Tmp(H) = 0 ELSE Tmp(H) = HitsonDim(H) — 1
NEXT H
FOR e = 0 TO Tmp(4)

FOR d = 0 TO Tmp(3)
FOR c = 0 TO Tmp(2)

FOR b = 0 TO Tmp(1)
FOR a = 0 TO Tmp(0)

FuzSum = 255
IF (MFHIT(4, e) < FuzSum AND HitsonDim(4) > 0) THEN

FuzSum = MFHIT(4, e)
END IF
IF (MFHIT(3, d) < FuzSum AND HitsonDim(3) > 0) THEN

FuzSum = MFHIT(3, d)
END IF
IF (MFHIT(2, c) < FuzSum AND HitsonDim(2) > 0) THEN

FuzSum = MFHIT(2, c)
BND IF
IF (MFHIT(1, b) < FuzSum AND HitsonDim(1) > 0) THEN

FuzSum = MFHIT(1, b)
END IF
IF (MFHIT(0, a) < FuzSum AND HitsonDim(0) > 0) THEN

FuzSum = MFHIT(0, a)
END IF
Consequent = Rule(FSHit(0, a), FSHit(l, b), FSHit(2, c), //

FSHit(3, d), FSHit(4, e))
IF (Consequent = —1) THEN

GOTO Skip 'Don't care rule
END IF

IF (SHAPE(I + 5) = 1) THEN 'Output is a singleton

256Appendix D: Inference Engine Programs

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

GrndArea = GrndArea + FuzSum
GrndFirstMom = GrndFirstMom + FuzSum //

* PWFS(5, Consequent, 0, 0)
ELSEIF (SHAPE(I + 5) = 3) THEN 'Output is a triangle

Inter1 = PWFS(5, Consequent, 0, 0) + (FuzSum //
* (PWFS(5, Conseguent, L, 0) — PWFS(5, Consequent, 0, 0))) / 255&

Inter2 = PWFS(5, Consequent, 2, 0) — (FuzSum //
* (PWFS(5, Consequent, 2, 0) — PWFS(5, Consequent, 1, 0))) / 255&

IF (PWFS(5, Consequent, 0, 1) = 255) THEN
Areal = FuzSum * Inter1
FirstMoment1 = (Area1 * Inter1) / 2
Area2 = FuzSum * (Inter2—Inter1)
FirstMoment2 = Area2 * (Inter2 — (Inter2—Inter1) / 2)

ELSE
Areal = FuzSum * (Inter1 — PWFS(5, Consequent, 0, 0)) //

/ 2
FirstMoment1 = Areal * (Inter1 — (Inter1 //

— PWFS(5, Consequent, 0, 0)) / 3)
Area2 = FuzSum * (Inter2—Inter1)
FirstMoment2 = Area2 * (Inter1 + (Inter2 — Inter1) / 2)

END IF
IF (PWFS(5, Consequent, 2, 1) = 255) THEN

Area4 = FuzSum * (PWFS(5, Consequent, 2, 0) — Inter2)
FirstMoment4 = Area4 * (Inter2 //

+ (PWFS(5, Consequent, 2, 0) — Inter2) / 2)
ELSE

Area4 = FuzSum * (PWFS(5, Consequent, 2, 0) //
— Inter2) / 2

FirstMoment4 = Area4 * (Inter2 //
+ (PWFS(5, Consequent, 2, 0) — Inter2) / 3)

END IF
Area = Areal + Area2 + Area4
FirstMom = FirstMoment1 + FirstMoment2 + FirstMoment4

GrndArea = GrndArea + Area
GrndFirstMom = GrndFirstMom + FirstMom

ELSEIF (SHAPE(I + 5) = 4) THEN 'Is a trapezoid
Inter1 = PWFS(5, Consequent, 0, 0) + (FuzSum //

* (PWFS(5, Consequent, 1, 0) — PWFS(5, Consequent, 0, 0))) / 255
Inter2 = PWFS(5, Consequent, 3, 0) — (FuzSum //

* (PWFS(5, Consequent, 3, 0) — PWFS(5, Consequent, 2, 0))) / 255
IF (PWFS(5, Consequent, 0, 1) = 255) THEN

Areal = FuzSum * Inter1
FirstMoment1 = (Areal * Inter1) / 2
Area2 = FuzSum * (Inter2—Inter1)
FirstMoment2 = Area2 * (Inter2 — (Inter2—Inter1) / 2)

ELSE
Area1 = (FuzSum * (Inter1 //

— PWFS(5, Consequent, 0, 0))) / 2
FirstMoment1 = Area1 * (Inter1 //

257Appendix D: Inference Engine Programs

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

— (Inter1 — PWFS(5, Consequent, 0, 0)) / 3)
Area2 = FuzSum * (Inter2 — Inter1)
FirstMoment2 = Area2 * (Inter1 + (Inter2 — Inter1) / 2)

END IF
IF (PWFS(5, Consequent, 3, 1) = 255) THEN

Area4 = FuzSum * (PWFS(5, NumFS(5) — 1, 3, 0) — Inter2)
FirstMoment4 = Area4 //

* ((PWFS(5, Consequent, 3, 0) — Inter2) / 2)
ELSE

Area4 = FuzSum //
* (PWFS(5, Consequent, 3, 0) — Inter2) / 2

FirstMoment4 = Area4 //
* (Inter2 + (PWFS(5, Consequent, 3, 0) — Inter2) / 3)

END IF

Area = Area1 + Area2 + Area4
FirstMom = FirstMoment1 + FirstMoment2 + FirstMoment4
'Summation of pieces of each output shape
GrndArea = GrndArea + Area
'Summation of different output shapes.
GrndFirstMom = GrndFirstMom + FirstMom

END IF
Skip:

NEXT a
NEXT b

NEXT c
NEXT d

NEXT e
IF (GrndArea <> 0) THEN

FOutValue(0) = (GrndFirstMom / GrndArea) 'Defuzzify output
ELSE FOutValue(0) = 0 'Meaningless output
END IF
END SUB

'Enters data int FInValue(4) as needed by the knowledge base
'NumInputs is input dimension from knowledge base
SUB GetInput

SCREEN 0, 0 ' Set text screen.
DO ' Input titles.

CLS
INPUT "Enter Input One: , FInValue(0)
IF NumInputs > 1 THEN

INPUT "Enter Input Two: ", FInValue(1)
END IF
IF NumInputs > 2 THEN

INPUT "Enter Input Three: ", FInValue(2)
END IF
IF NumInputs > 3 THEN

INPUT "Enter Input Four: ", FInValue(3)
END IF

258Appendix D: Inference Engine Programs

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

IF NumInputs > 4 THEN
INPUT "Enter Input Five: ", FInValue(4)

END IF

'Check to see if titles are OK:
LOCATE 7, 1
PRINT "OK (Y to continue, N to change)? ";
LOCATE , , 1
OKS = UCASE$(INPUTS(1))

LOOP UNTIL OK$ = "Y"

END SUB

'Read in knowledge base put out by the Manifold Editor
'Variables are discussed at program start. The variables are global.
SUB ReadKnowledgeBase STATIC

OPEN "TEST.FDT" FOR INPUT AS #1
SEEK #1, 1
DO UNTIL EOF(l)

INPUT #1, FileString$
SELECT CASE FileString$
CASE "NUM INPUTS"

INPUT #1, Count$
NumInputs = VAL(Count$)

CASE "CREDIBILITY"
INPUT #1, Count$
Credibility = VAL(Count$)

CASE "INPUT #1" INPUT #1, Count$
NumFS(0) = VAL(Count$)

CASE "INPUT2"
INPUT #1, Count$
NumFS(1) = VAL(Count$)

CASE "INPUT3"
INPUT #1, Count$
NumFS(2) = VAL(Count$)

CASE "INPUT4"
INPUT #1, Count$
NumFS(3) = VAL(Count$)

CASE "INPUT5"
INPUT #1, Count$
NumFS(4) = VAL(Count$)

CASE "NUM_OUTPUTS"
INPUT #1, Count$
NumOutputs = VAL(Count$)

CASE "OUTPUT1"
INPUT #1, Count$
NumFS(5) = VAL(Count$)

CASE "OUTPUT2"
INPUT #1, Count$

259Appendix D: Inference Engine Programs

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

NumFS(6) = VAL(Count$)
CASE "NUM_RULES"

INPUT #1, Count$
NumRules = VAL(Count$)
PRINT NumRules

CASE "INPUTS FUZZY SETS"
FOR I = 0 TO NumInputs – 1

DO
INPUT #1, PileString$
SELECT CASE FileString$
CASE "INPUT"

INPUT #1, Count$
M = 0

CASE "COUNT"
INPUT #1, Count$
IF NumFS(I) <> VAL(Count$) THEN

END
END IF

CASE "SHAPE"
INPUT #1, Count$
SHAPE(I) = VAL(Count$)

CASE "START"
FOR J = 0 TO NumFS(I) — 1

FOR K = 0 TO SHAPE(I) — 1
INPUT #1, Count$
PRINT Count$
PWFS(I, J, K, 0) = VAL(Count$)
INPUT #1, Count$
PRINT Count$
PWFS(I, J, K, 1) = VAL(Count$)

NEXT K
NEXT J

END SELECT
LOOP WHILE FileString$ <> "END$"

NEXT I
CASE "OUTPUTS FUZZY SETS"

FOR I = 0 TO NumOutputs — 1
DO
INPUT #1, FileString$
SELECT CASE FileString$
CASE "OUTPUT"

INPUT #1, Count$
M = 5

CASE "COUNT"
INPUT #1, Count$
IF NumFS(I + M) <> VAL(Count$) THEN

END
END IF

CASE "SHAPE"
INPUT #1, Count$

260Appendix D: Inference Engine Programs

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

SHAPE(I + M) = VAL(Count$)
CASE "START"

FOR J = 0 TO NumFS(I + M) — 1
FOR K = 0 TO SHAPE(I + M) — 1

INPUT #1, Count$
PRINT Count$
PWFS(I + M, J, K, 0) = VAL(Count$)
IF (SHAPE(I + M) > 1) THEN

INPUT #1, Count$
PRINT Count$
PWFS(I + M, J, K, 1) = VAL(Count$)

END IF
NEXT K

NEXT J
'CASE "END$"
'CASE ELSE

END SELECT
LOOP WHILE FileString$ <> "END$"

NEXT I
CASE "RULES"

FOR H = 0 TO 4
IF NumFS(H) = 0 THEN Temp(H) = 0 ELSE Temp(H) = NumFS(H) — 1

NEXT H
FOR I = 0 TO Temp(0)

FOR J = 0 TO Temp(1) FOR K = 0 TO Temp(2)
FOR L = 0 TO Temp(3)

FOR M = 0 TO Temp(4)
INPUT #1, Rule(I, J, K, L, M)
PRINT Rule(I, J, K, L, M)

NEXT M
NEXT L

NEXT K
NEXT J

NEXT I
CASE ELSE

END SELECT
LOOP
CLOSE #l
END SUB

SUB ShowOutput
SCREEN 0, 0 ' Set text screen.
DO ' Input titles.

CLS
PRINT "Output One: "; FOutValue(0)
IF NumOutputs > 1 THEN PRINT "Output Two: "; FOutValue(1)
LOCATE 7, 1
PRINT "OK (Y to continue)? ";

261Appendix D: Inference Engine Programs

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

LOCATE , , 1
oK$ = UCASE$(INPUT$(1))

LOOP UNTIL oK$ = "Y"
END SUB

C LANGUAGE INFERENCE ENGINE

The disk file cie.c contains code fragments of a general purpose inference
engine written in C language. The knowledge base file produced for it by the
Fuzzy Knowledge BuilderTM”, also on the disk, is named testie.fic. The files are
included as clues for those interested in writing a C inference engine.

This inference engine is identical to Fuzzy1, except that it won’t
handle trapezoidal membership functions. It’s a general purpose engine
because the switching code included in the fragments quickly switches the
specific knowledge base into the general variables used in the inference
engine. The inference engine can quickly be switched among knowledge
bases.

In the case of testie.fic, the general structure is named IETag and the
specific structure is TESTIEInfo.

The most important part of the code follows. (Line irregularities are
due to printed page requirements.)
// This is a good general purpose inference engine. It is simple and very
slow.
// It will only handle triangular shaped fuzzy sets.
BOOL BLD_FuzzyMapUDCFunc(HWND hWnd,UINT message,WPARAM wParam,LPARAM lParam)

{
int a, b, c, d, e, f, g, h, i, j, k, x, y;

double dbGrndArea;
double dbGrndFirstMom;
double dbFuzSum;
double dbMFHit[ll][ll];
DWORD dwConsequent;
double dbArea, dbFirstMom;
double dbArea_1, dbArea_2, dbArea_3, dbArea_4;
double dbFirstMoment_l, dbFirstMoment_2, dbFirstMoment_3,

dbFirstMoment_4;
double dblnter_l, dblnter_2;
DWORD dwA[12];
DWORD iOffset;

/* COMPUTE input membership */
for (x = 0; x <= fie.iFamInDimMax; x++){

262Appendix D: Inference Engine Programs

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

for (y = 0; y <= fie.iFamSecMax[x];y++){
if (dbIEIn[x] <= dbPWMF[x][y][0][0]

|| dbIEIn[x] >= dbPWMF[x][y][2][0]){
dbMFHit[x][y] = 0.;
}

 else {
if (dbIEIn[x] <= dbPWMF[x][y][1][0]) {

dbMFHit[x][y] = ((dbIEIn[x] — dbPWMF[x][y][0][0]))
/(dbPWMF[x][y][1][0] —

dbPWMF[x][y][0][0]);
}

 else {
dbMFHit[x][y] = ((dbPWMF[x][y][2][0] — dbIEIn[x]))

/(dbPWMF[x][y][2][0] —
dbPWMF[x][y][l][0]);

}
}

}
if (dbIEIn[x] <= dbPWMF[x][0][1][0]

&& dbPWMF[x][0][0][1] == 1.){
 dbMFHit[x][0] = 1.;
}

if (dbIEIn[x] >= dbPWMF[x][fie.iFamSecMax[x]][1][0]
&& dbPWMF[x][fie.iFamSecMax[x]][2][1] == 1.){

dbMFHit[x][fie.iFamSecMax[x]] = 1.;
}

}

/* Rules */
for (x = 0; x < MAXINDIM; x++)

dwA[x] = 0;
dwA[fie.iFamInDimMax] = 1;
for (x = fie.iFamInDimMax – l; x >= 0; x-)

{
dwA[x] = dwA[x + 1] * (DWORD)(fie.iFamSecMax[x + 1] + 1);
}

dbGrndArea = 0.;
dbGrndFirstMom = 0.;

k = 0;
do

{
j = 0;
do

{
i = 0;
do

{
h = 0;
do

{

263Appendix D: Inference Engine Programs

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

g = 0;
do

{
f = 0;
do

{ e = 0;
do

{
d = 0;
do

{
c = 0;
do

{
b = 0;
do

{
a = 0;
do

{
dbFuzSum = min(dbMFHit[0][a],GRIDYMAX);
if (fie.iFamInDimMax > 0) dbFuzSum =

min(dbMFHit[l][b],dbFuzSum);
if (fie.iFamInDimMax > 1) dbFuzSum =

min(dbMFHit[2][c],dbFuzSum);
if (fie.iFamInDimMax > 2) dbFuzSum =

min(dbMFHit[3][d],dbFuzSum);
if (fie.iFamInDimMax > 3) dbFuzSum =

min(dbMFHit[4][e],dbFuzSum);
if (fie.iFamInDimMax > 4) dbFuzSum =

min(dbMFHit[5][f],dbFuzSum);
if (fie.iFamInDimMax > 5) dbFuzSum =

min(dbMFHit[6][g],dbFuzSum);
if (fie.iFamInDimMax > 6) dbFuzSum =

min(dbMFHit[7][h],dbFuzSum);
if (fie.iFamInDimMax > 7) dbFuzSum =

min(dbMFHit[8][i],dbFuzSum);
if (fie.iFamInDimMax > 8) dbFuzSum =

min(dbMFHit[9][j],dbFuzSum);
if (fie.iFamInDimMax > 9) dbFuzSum =

min(dbMFHit[10][k],dbFuzSum);
if (dbFuzSum l= 0){

iOffset = (((DWORD)k * dwA[10]) +
((DWORD)j * dwA[9]) +
((DWORD)i * dwA[8]) +
((DWORD)h * dwA[7]) +
((DWORD)g * dwA[6]) +
((DWORD)f * dwA[5]) +
((DWORD)e * dwA[4]) +
((DWORD)d * dwA[3]) +

264Appendix D: Inference Engine Programs

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

((DWORD)c * dwA[2]) +
((DWORD)b * dwA[l]) +
((DWORD)a * dwA[0]));

dwConsequent = (DWORD)(int)*(gaiRules + iOffset);
dbInter_l = dbPWMF[ll][dwConsequent][0][0]

+ (dbFuzSum *
(dbPWMF[ll][dwConsequent][1][0]
— dbPWMF[ll][dwConsequent][0][0]));

dbInter_2 = dbPWMF[ll][dwConsequent][2][0]
— (dbFuzSum *

(dbPWMF[ll][dwConsequent][2][0]
— dbPWMF[ll][dwConsequent][1][0]));

if (dbPWMF[ll][dwConsequent][0][1] == 1.){
dbArea_l = dbFuzSum * (dblnter_l – fie.dbFamDimUnitMin[ll]);

dbFirstMoment_l = dbArea_l * (dbInter_l —
fie.dbFamDimUnitMin[ll])/2;

dbArea_2 = dbFuzSum * (dbInter_2 – dbInter_1 —
fie.dbFamDimUnitMin[11]);

dbFirstMoment_2 = dbArea_2
* (dbInter_2—fie.dbFamDimUnitMin[11]
— (dbInter_2—dbInter_1)/2);

}
 else {

dbArea_1 = (dbFuzSum * (dbInter_1 —
dbPWMF[ll][dwConsequent][0][0]))/2;

dbFirstMoment_1 = dbArea_l
* (dbInter_1—fie.dbFamDimUnitMin[11]

— (dbInter_1 —
dbPWMF[ll][dwConsequent][0][0])/3);

dbArea_2 = dbFuzSum * (dbInter_2—dbInter_1);
dbFirstMoment_2 = dbArea_2 * (dbInter_l —

fie.dbFamDimUnitMin[11] + (dbInter_2—dbInter_1)/2);
}

if (dbPWMF[ll][dwConsequent][2][1] == 1.){
dbArea_4 = dbFuzSum * (fie.dbFamDimUnitMax[ll] — dbInter_2);

dbFirstMoment_4 = dbArea_4 * (fie.dbFamDimU-
nitMax[ll] — ((fie.dbFamDimUnitMax[11] — dbInter_2)/2));

}
 else { dbArea_4 =

dbFuzSum * (dbPWMF[ll][dwConsequent][2][0] — dbInter_2)/2;
dbFirstMoment_4 = dbArea_4 * (dbInter_2 –

fie.dbFamDimUnitMin[11] + (dbPWMF[ll][dwConsequent][2][0] — dbInter_2)/3);
}

dbArea = dbArea_1
+ dbArea_2
+ dbArea_4;

dbFirstMom = dbFirstMoment_1
+ dbFirstMoment_2
+ dbFirstMoment_4;

265Appendix D: Inference Engine Programs

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

dbGrndArea += dbArea;
dbGrndFirstMom += dbFirstMom;
}

}
while (++a <= fie.iFamSecMax[0]) ;
}

while (++b <= fie.iFamSecMax[1]) ;
}

while (++c <= fie.iFamSecMax[2]) ;
}

while (++d <= fie.iFamSecMax[3]) ;
}

while (++e <= fie.iFamSecMax[4]) ;
}

while (++f <= fie.iFamSecMax[5]) ;
}

while (++g <= fie.iFamSecMax[6]) ;
}

while (++h <= fie.iFamSecMax[7]) ;
}

while (++i <= fie.iFamSecMax[8]) ;
}

while (++j <= fie.iFamSecMax[9]) ;
}

while (++k <= fie.iFamSecMax[10]) ;

if (dbGrndArea != 0) {
dbIEOut[0] = (int)(dbGrndFirstMom/dbGrndArea);
bIndet[0] = FALSE;
}

 else {
dbIEOut[0] = 0;
bIndet[0] = TRUE;
}

return TRUE;
}

FUZZ-C INFERENCE ENGINE

Fuzz-C (Bytecraft, Inc.) differs from the other knowledge-base-inference-en-
gine systems you’ve seen here. In Fuzz-C, the knowledge base is embedded
in the inference engine—it’s an integral part of it. The disk contains a file
trktrl.fuz that was built by the commercial version of Fuzzy Knowledge

266Appendix D: Inference Engine Programs

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

BuilderTM and has three input dimensions. The file is formatted for embed-
ding in a Fuzz-C inference engine using the Fuzz-C inference engine builder.

The file trktrl.c, also on the disk, is the inference engine with trktrl.fuz
embedded in it.

MOTOROLA 68HC05 ASSEMBLY SIMPLE INFERENCE ENGINE

This engine is written in assembly language for the Motorola 68HC05 proc-
essor, and is in file ieO5.asm on the disk. This engine performs functions
similar to those in the C language engine described earlier in the appendix,
but without that engine’s context switching ability.

You can test it with test file trktrlt.fO5, which was built by the com-
mercial version of Fuzzy Knowledge BuilderTM from the truck-parking
knowledge base mentioned previously. The defined constants are at the end
of trktrlt.f05. You can also test it with other .f05 files you may have.

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

APPENDIX E

OTHER FUZZY
ARCHITECTURE

In addition to the three fuzzy architectures detailed and implemented in this
book, others exist. This appendix discusses two of them—a fuzzy generali-
zation of the artificial intelligence language OPS5, called FLOPS, and fuzzy
state machines.

FLOPS

FLOPS (Fuzzy logic production system) is an inference engine for a rule-
based expert system written in the mid-1980s by William Siler and Douglas
Tucker (Kemp-Carraway Heart Institute). It uses fuzziness in three ways:

• Data types. FLOPS uses a combination of crisp and fuzzy data
types. Crisp data types include integers and floating point

267

268Appendix E Other Fuzzy Architecture

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

numbers. The fuzzy types include numbers, sets, and cer-
tainty factors, which represent the degree of truth involved.

• Fuzzy logic.
• Ability to learn. Because the rules aren’t absolute, the program

is able to “learn” and “change its mind” when it retraces its
steps through earlier rule searches.

FLOPS is a generalized extension of OPS5, a well-known crisp infer-
ence engine developed at Carnegie-Mellon University in the 1970s. It also
has similarities to the computer language Prolog. The sequential version
(which finds and fires one rule at a time) uses forward chaining and emulates
backward chaining. A parallel version (which allows firing several rules at
once) can also use backward chaining. FLOPS can be used in crisp mode, so
that it works like OPS5.

OPS5 (Official Production System version 5) is the best-
known of an OPS series. It features If-Then rules that are
searched by a method known as forward chaining, in which
appropriate rules are linked or chained, so that they solve a
problem or otherwise lead to a conclusion.

Prolog (programming in logic) is a programming language,
developed in the 1970s, that uses logic rules to prove rela-
tionships among objects by backward chaining. In this
method of rule chaining, the program develops a hypothe-
sis, then tests it by working backward through the rules, If
the hypothesis holds up when the rule search is concluded,
it is considered to be true.

- -

E-MAIL
FROM
DR. FUZZY

- -

- -

E-MAIL
FROM
DR. FUZZY

- -

269Appendix E Other Fuzzy Architecture

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

How FLOPS Works

FLOPS is a production system, meaning that its rules can be written in any
order because all rules are searched before any are selected to be fired. The
data in the expert system’s knowledge base determines which rules are
candidates for being fired. Then FLOPS uses a conflict-resolution algorithm
that determines which rules it has the most confidence in. These rules are
fired.

When no more rules are available to be fired, FLOPS backtracks
through them, remembering what it learned, making the process more effi-
cient. FLOPS also has a set of metarules, which are used to create rules from
an expert knowledge base.

BADGER—AN ANIMAL GUESSING GAME

As an example, FLOPS includes a guess-the-animal game in which it asks the
user to think of an animal and provide clues to its identity when asked by
the program. Using this information and its knowledge base of animal
characteristics, the program creates a hypothesis, then asks the user of the
hypothesis is correct.

For instance, BADGER categorizes animals in fuzzy sets such as
Teeny, Small, and Medium. When it asks the user to specify the mystery
animal’s weight in kilograms, the program then determines confidence levels
by making a fuzzy comparison with fuzzy numbers. If this information falls
in the set Medium, the program might ask the user whether the animal is a
Dog. If the user responds Yes, the game is over. If the response is No,
BADGER tries another animal.

As BADGER backtracks in searching for the correct answer, its re-
members the user’s previous responses and the pathways it has already
searched. Fuzziness in the rules involves, for instance, comparing the weight
in crisp kilograms to the fuzzy set (.01, 0, .5) that encompasses the size Teeny.
When backtracking, the program’s crisp logic stores the size with the most
likely value. So if the user enters a crisp weight that falls within that fuzzy
set, the program will guess

Your animal is possibly Teeny

270Appendix E Other Fuzzy Architecture

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

The size Small governs the fuzzy set (1, 0, .5), and so on.
Other responses from the user are inherently crisp, such as number

of legs, type of food, and charisteristics of the skin.

Parallel FLOPS

For parallel operation, FLOPS stores rules in blocks and all rules in a block
fire at once. For instance, a response from the user that falls within the
categories of Small and Medium causes rules covering both the Small fuzzy
set and the Medium fuzzy set to fire at the same time.

If two rules with the identical then action try to fire, the program uses
logic to determine which rules has the higher confidence level. It then causes
that rule to fire.

STATE MACHINES

State machines, which you met in Chapter 6, can also be used as control
structures. For example, a state machine can be coupled with a rule base to
determine which rules will be fired and in which sequence. If a state machine
is capable of being in one of three states, each state can govern a different
group of rules or even a different rule base.

Crisp State Machine

A crisp state machine is in one state at a time. If three states—say, A, B, and
C—are available, the crisp state machine is in state A or state B or state C.
The transition from one state to another is triggered by an incoming crisp
event, so that the new state depends on the interaction of the old state and
the event, such as,

Event + State A results in State B
Event + State B results in State C
Event + State C results in State A

271Appendix E Other Fuzzy Architecture

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Differing events might also result in different new states, for instance,

Event A + State A results in State B
Event B + State A results in State C

Event A or Event B + State C results in State A

and so on.
In a control system, each state may be linked to an action, so that

Event A + State A results in State B, which causes Action B
Event B + State A results in State C, which causes Action C

Event A or Event B + State C results in State A, which causes Action A

Fuzzy State Machine

If you generalize to a fuzzy state machine, the machine can have degrees of
membership in the current state. This is similar to membership in a fuzzy set.
As with fuzzy set membership, just because the state machine is partially in
a state, it isn’t necessarily partially in another state. In addition, the events
are also fuzzy.

In orthodox fuzzy operations, such a system would ultimately de-
grade, because the degree of membership in a new state can never be greater
than the degree of membership in the previous state. And it isn’t possible for
an event to simply strengthen or weaken the existing state, rather than
change the state. There are several ways to get around this problem:

• Ignore the strength of the transition event. Make the degree of
membership in the new state depend only on the degree of
membership in the existing state.

• Ignore the value of existing state. Make the degree of member-
ship in the new state depend only on the causal event’s de-
gree of membership. This allows the event to strengthen or
weaken the existing state.

• Require the degree of membership in the new state to equal 1.
• Make the degree of membership in the new state dependent

on a disjunction (∨): the degree of membership in the existing
state or the degree of membership in the event. This allows

272Appendix E Other Fuzzy Architecture

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

only the strengthening of the current state (but not its weaken-
ing).

• Make the degree of membership in the new state dependent
on the conjunction (`): the degree of membership in the cur-
rent state AND the degree of membership in the triggering
event. This is the solution recommended by fuzzy logic expert
David L. Brubaker (Huntington Advanced Technology).

Putting a Fuzzy State Machine into Operation

Implementing a fuzzy state machine is a five-step procedure.

Identify the States

In a control system, there are typically three types of states: those in which
the system operates during startup, the states that are typical of normal
operation, and the states that exist during abnormal operation. Unlike an
expert system, where fuzzy sets overlap, a fuzzy state machine can be in only
one state at a time.

Instead of input speeds, such as Fast or Slow, the fuzzy state machine
might have states named Stopped, Accelerating, Decelerating, and Constant
Velocity.

Create Membership Functions for Each State

The degree of membership can be a function of the action represented by the
state. For example, in a state named Accelerating, the degree of membership
might be a function of the rate of acceleration.

Determine the Actions for Each State

If the control system is rule-based, each action is the result of rules firing.
Since this is a fuzzy system, the degree to which any rules are fired can be
related to the degree of membership in the existing state.

273Appendix E Other Fuzzy Architecture

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Identify the Triggering Events

All inputs to the system should be examined for their ability to cause state
transitions.

Determine the Membership Function for the Next State

Events, too, may be fuzzy. If the recommended conjunction of fuzzy event
and fuzzy state is used, the next state’s degree of membership must be
determined as a function of the degree of membership of the event and the
degree of membership in the existing state.

The Rules and the Inference Method

If the system is small and the rule base is relatively simple, forward chaining
can be used to search the entire base each time to select the rules to be fired.
In a more complex system, each state may have a series of rules linked to it,
and only these are searched during the inference process.

Going in the opposite direction, the rule firing itself may actually be
the event that triggers the state transition.

.

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

BiBLIOGRAPHY

ARTICLES

Brubaker, David I. (Huntington Advanced Technology). Fuzzy-Logic Basics:
Intuitive Rules Replace Complex Math. EDN, June 18, 1992, p. 111.

Brubaker, David I. (Huntington Advanced Technology). Huntington Techni-
cal Brief, monthly newsletter, Aug. 1990–Aug. 1993.

Kosko, Bart. Fuzzy Logic. Scientific American, July 1993, p. 76.

New York Times. “To Be Precise,” editorial. Aug. 26, 1993, p. A14.

O’Hagan, Michael. A Fuzzy Decision Maker. Proc. Fuzzy Logic ‘93 (Computer
Design Magazine), p. M313.

O’Hagan, Michael. Fuzzy Decision Aids. Proc. 21st Annual Asilomar Conf. on
Signals, Systems, and Computers (IEEE and Maple Press, Pacific Grove, CA),
2, p. 624.

275

276Bibliography

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

O’Hagan, Michael. Aggregating Template or Rule Antecedents in Real-Time
Expert Systems with Fuzzy Logic. Proc. 22nd Annual Asilomar Conf. on Signals,
Systems, and Computers (IEEE and Maple Press, Pacific Grove, CA), 2, p. 681.

O’Hagan, N.K., and O‘Hagan, M. Decision-making with a Fuzzy Logic
Inference Engine. Proc. Applications of Fuzzy Logic Technology, Sept. 1993,
Society of Photo-Optical Instrumentation Engineers, p. 320.

Pinder, Jeanne B. “Fuzzy Thinking Has Merits When It Comes to Elevators,”
New York Times, Sept. 22, 1993, p. C1.

Schwartz, Daniel and George J. Klir. Fuzzy Logic Flowers In Japan. IEEE
Spectrum, July 1992, p. 32.

Self, Kevin. Designing With Fuzzy Logic. IEEE Spectrum, November 1990, p.
42.

Stubbs, Derek. Sixth Generation Systems, monthly newsletter. P.O. Box 155,
Vicksburg, MI 49097.

Williams, Tom.Fuzzy Logic Is Anything But Fuzzy. Computer Design, April
1992, p. 113.

BOOKS

Axelrod, Robert. Structure of Decision: the Cognitive Maps of Political Elites.
Princeton, NJ: Princeton University Press, 1976.

Bezdek, James C., and Sankar K. Pal, eds. Fuzzy Models For Pattern Recognition.
New York: IEEE Press, 1992.

Brubaker, David I. (Huntington Advanced Technology). Introduction to Fuzzy
Logic Systems. The Huntington Group, 883 Santa Cruz Ave., Suite 27, Menlo
Park, CA 94025-4669. 415/325-7554.

Cognizer Co. (Lake Oswego, OR). Neural Network Alamanac 1990–1991.

Craig, J.J. Introduction to Robotics: Mechanics and Control, 2nd ed. Reading, MA:
Addison-Wesley, 1989.

277Bibliography

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Driankov, Dimiter, Hans Hellendoorn, and Michael Reinfrank. An Introduc-
tion to Fuzzy Control. New York: Springer-Verlag, 1993.

Jamshidi, Mohammad, Nader Vadiee, and Timothy J. Ross, eds.Fuzzy Logic
and Control. Software and Hardware Applications. Englewood Cliffs, NJ: PTR
Prentice-Hall, 1993.

Klir, George J., and Tina A. Folger. Fuzzy Sets, Uncertainty, and Information.
Englewood Cliffs, NJ: Prentice-Hall, 1988.

Kosko, Bart. Neural Networks and Fuzzy Systems. A Dynamical Systems Ap-
proach to Machine Intelligence. Englewood Cliffs, NJ: Prentice-Hall, 1992.

Kosko, Bart. Fuzzy Thinking. The New Science of Fuzzy Logic. New York:
Hyperion, 1993.

Leigh, William E., and Michael E. Doherty. Decision Support and Expert
Systems. Cincinnati: South-Western Publishing Co., 1986.

McNeill, Daniel and Paul Freiberger. Fuzzy Logic. The Discovery of A Revolu-
tionary Computer Technology—and How It Is Changing Our World. New York:
Simon & Schuster, 1993.

Siler, William and Douglas Tucker. FLOPS User’s Manual. Birmingham, AL:
Kemp-Carraway Heart Institute (1600 North 26th St.), 1986.

Thro, Ellen. The Artificial Intelligence Dictionary. San Marcos, CA: Microtrend
Books, 1991.

Yager, R.R., S. Ovchinnikov, R.M. Tong, and H.T. Nguyen, eds. Fuzzy Sets
and Applications: Selected Papers by L.A. Zadeh. New York: John Wiley & Sons,
1987.

Zadeh, Lotfi and Janusz Kacprzyk, eds. Fuzzy Logic for the Management of
Uncertainty. New York: John Wiley & Sons, Inc. 1992.

Zimmermann, Hans-J. Fuzzy Sets, Decision Making, and Expert Systems. Bos-
ton: Kluwer Academic Publishers, 1987.

278Bibliography

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

CONFERENCE PROCEEDINGS

Computer Design Magazine. Proc. Fuzzy Logic ‘93.

Fuzzy Logic Systems Institute, Inc. Proc. 2nd International Conference on Fuzzy
Logic and Neural Networks [IIZUKA ‘92], 2 vols. New York: Fuzzy Logic
Systems Institute, 1992.

IEEE Neural Networks Council.Proc. Second IEEE International Conference on
Fuzzy Systems, Mar. 28-Apr. 1, 1993. (FUZZ-IEEE 93), 2 vols.

Kyusu Institute of Technology. Proc. International Conf. on Fuzzy Logic and
Neural Networks [IIZUKA ‘90]. Especially:

E. Akaiwa et al. Hardware and Software of Fuzzy Logic Controlled Cardiac
Pacemaker, p. 549.

J.L. Castro et al. On the Semantic of Implication, p. 719.
M. Delgado et al. The Generalized “Modus Ponens” with Linguistics Labels,

p. 725.
T. Hakata and J. Masuda. Fuzzy Control of Cooling System Utilizing Heat

Storage, p. 77.
S. Kageyama et al. Blood Glucose Control By a Fuzzy Control System, p.

557.
R. Lopez de Mantaras et al. Connective Operator Elicitation For Linguistic

Term Sets, p. 729.
E.H. Ruspini. Similarity-Based Interpretations of Fuzzy Logic Concepts, p.

735.
L. Valverde and L. Godo. On the Functional Approach to Approximate

Reasoning Models, p. 739.
T. Watanabe et al. “AI and Fuzzy”-Based Tunnel Ventilation Control Sys-

tem, p. 72.

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

with FuzNum Calc, 26–31
AS-DO rules, 24, 49, 54, 58

see also AS-THEN rules
see also Control systems, fuzzy
see also IF-THEN rules

Assembly language, Motorola
see Motorola 68HC05 assembly language

Associative memory, 211
binary or crisp (BAM), 209, 210
fuzzy (FAM), 208–213

see also Fuzzy associative memory
AS-THEN rules, 24, 48, 49, 58, 67–68, 69, 74,

77–78, 84, 97–98, 107–108
AND rules represented as a matrix, 84
see also AS-DO rules
see also Compositional rule of inference
see also Generalized modus ponens
see also IF-THEN rules

Automated fuzzy-neuro storm-sewage
pumping station for Shanghai,
China, 79

Automobile and truck parts, designed with
fuzzy data analysis system, 78

Automobile antilock brakes, fuzzy controlled, 14
Automobile transmission, fuzzy controlled, 14
Axelrod, Robert, and invention of cognitive

maps, 165

30stkavg.fac, with stock market scenario, 198

— A —

Action surface, fuzzy, 207
membership functions, as representation of

inputs and outputs, 207
Ada, Countess of Lovelace, and system for

predicting the future, 199
Affirmative mode (modus ponens), 47–48
Air conditioner, use of fuzzy logic in, 81
Alternatives, in decision process, 122, 130–133,

140–141, 149
Altrock, C. v., and development of fuzzy data

analysis system, 78
Ambiguity and fuzziness, 3
Analog devices, knowledge base format for, in

Fuzzy Knowledge BuilderTM, 116
AND statement, 74

see also Conjunction
see also Intersection
see also Logic, fuzzy
see also Universal quantifier

Aristotle, and foundations of logic, 7, 15
see also Logic, crisp

Arithmetic operations, fuzzy, 23–24

INDEX

279

280Index

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

MultiCalc, 41–44
TextCalc, 52–56
UniCalc, 37-38

Camcorder, fuzzy controlled, 14
Cardinality (size) of a fuzzy set as point in a

hypercube, 231
see also Hamming norm (, 1)
see also Sigma count

Carnegie-Mellon University, and development
of OPS5, 268

Cartesian space, and fuzzy estimation surface,
71–72

Cartesian axes of motion, in Fuzzy Knowledge
BuilderTM, 86

Cat-and-plant (ecological) scenario, in Fuzzy
Thought AmplifierTM, 178–188

catplant.fcm and catplnt2.fcm, 235
catplant.fcm, with cat-and-plant ecological

scenario for Fuzzy Thought
AmplifierTM, 178, 235

catplnt2.fcm, cat-and-plant environment system
for Fuzzy Thought AmplifierTM, 235

"Catty corner” (, P2) distance between sets in a
hypercube, 225–226

“Catty corner” method of measuring size of a
fuzzy set in a hypercube (, 2), 224

Causal events, in Fuzzy Thought AmplifierTM,
164

relationship to conceptual states, 164
value represented dynamically by size and

color, 175
C language, in an inference engine for Fuzzy

Knowledge BuilderTM, 85, 116, 119
Cellular automata

as linked state machines, 169
defined, 169–177
tool, in Fuzzy Knowledge BuilderTM, 85,

114–115
Center point of a hypercube, representing

maximum fuzziness, 216
Centroid, of a membership function, defined, 75
Chaos

represented as a fuzzy cognitive map, in
Fuzzy Thought AmplifierTM, 176

defined as a single-point attractor, 177
theory, 177

Chen, Hong, and development of an automated
fuzzy-neuro storm-sewage pumping
station for Shanghai, China, 79

China, and fuzzy systems, 14, 79

— B —

Babbage, Charles, and system for predicting the
future, 197

Backward chaining
see Rule, chaining

BAM
see Binary associative memory

BASIC language
see QBASIC language

Bayesian decision theory
for dealing with uncertainty, 19
and subsethood in a hypercube, 228

Bayes’ Rule
see Bayesian decision theory

Bayes, Thomas, and Bayesian decision theory, 19
Berkeley, George, and historical foundations of

fuzzy logic, 9
see also Logic, fuzzy

Bias (optimism level)
defined for Fuzzy Thought AmplifierTM, 185
in decision process, 154, 156

BikeBraker, example fuzzy control system,
62-69

Binary associative memory (BAM), 209, 210
Black, Max, and general theory of vagueness, 11
Bond-rating neuro-fuzzy system, 76-77
Brubaker, David L., and fuzzy state machines,

272
buildint.exe, Fuzzy Knowledge BuilderTM

run-time library, 230
Business systems, use of fuzzy logic in, 76–77

bond-rating system, 76–77
creditworthiness based on data analysis, 78
design of automobile and truck parts based

on data analysis, 78

— C —

Calculators, fuzzy, 24-25, 32
CompCalc, 44-45
FAMCalc, 209-213
FuzNum Calc, 25-31
fuzzcalc.exe, 230
KoskoCalc, 217-228

281Index

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

cie.c, C language inference engine for Fuzzy
Knowledge BuilderTM, 232, 261–265

“City block” measurement of distance in Fuzzy
Knowledge BuilderTM, 115–116

“City block” (Hamming distance, , P1) distance
between sets in a hypercube, 225

“City block” method of measuring size of a
fuzzy set in a hypercube, 222–223

see also “Catty corner” method (, 2)
see also Hamming norm (, 1)

C language
example of ieTag structure, 232
inference engine for Fuzzy Knowledge

BuilderTM, 261–265
test program (tesTie.fic) for, 261

Cognitive map
crisp, 165–167
fuzzy, 167–169
history of, 165, 169
similarity to neural network, 167

see also Fuzzy Cognitive MapTM

see also Fuzzy Thought AmplifierTM

Cohen, Paul, and endorsement-based systems,
20

college.dec, college selection scenario for Fuzzy
Decision MakerTM, 233

College scenario, in Fuzzy Decision MakerTM,
124–137

with college.dec, 233
Commercial use of fuzzy cognitive maps, stock

market analysis, 170
CompCalc, set operations with, 44–45
Complementation (AC), 216

defined, 37
of a set in a hypercube, 220–221
performed with CompCalc, 44–46

Complexity, relationship to fuzziness, 10
Compositional method of creating a fuzzy

action surface with multiple inputs
and outputs, 207

Compositional rule of inference, 48
Computer language

C, used in Fuzzy Knowledge Builder
inference engine, 231–233

Motorola 68HC05 assembly language, 231
Prolog, similarity to OPS5, 268
QBASIC, used in Fuzzy Knowledge

BuilderTM inference engines, 230
Conceptual states

in Fuzzy Thought Amplifier, 164

relationship to causal events, 164
value represented dynamically by size and

color, 175
Conjunction (`), 74

defined, 37
in a fuzzy state machine, 272
performed with UniCalc, 37
performed with TextCalc, 53–56

Constraints, in decision process, 122, 129–130,
139, 150–151

Consumer products, use of fuzzy logic in
vacuum cleaner, 80
washing machine, 80–81
air-conditioner, 81

Contradiction, Law of, 45
see also Complementation
see also Logical Operations

Contraposition (modus tollens), 47–48
Control systems, use of fuzzy logic in, 13–15, 58,

62–70
air-conditioner, 81
automobile antilock brakes, 14
automobile transmission, 14
camcorder, 14
elevators, 14
example program BikeBraker, 62–70
first use by Ebrahim Mamdani, 13
first commercial use by Lauritz Peter and

Jens-Jurgen Østergaard, 14
and neural networks, 21–22
steps in creation of, 62–76

identify and name inputs, 62–63., 76
identify and name outputs, 63, 76
create fuzzy membership functions, 64, 76
construct the rule base, 65–69, 76
decide how to execute the actions, 70–76

subway system, Sendai, Japan, 14
television set, 14
use of fuzzy state machines in, 272
vacuum cleaner, 14
washing machine, 14, 22

Creditworthiness, determined with fuzzy data
analysis system, 78

Crispness
defined, 2
represented by vertex points in a hypercube,

216
Crisp numbers, 24
ctl3dv2.dll, run-time library for .exe files, 229

282Index

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

“Cult of analycity” in Western culture, favoring
crisp logic, 15

— D —

Datapro, and financial statistics on fuzziness, 16
Decision-making, fuzzy, 17, 121–160

and Fuji Bank, 17
Decision process and the Fuzzy Decision

MakerTM, 122, 134, 147, 152, 155
alternatives in, 122, 131–136, 140–141, 149
bias (optimism level) in, 152, 154
constraints in, 122, 129–130, 139, 150–151
defined, 160
goals in, 124, 127–129, 139, 149–150
importances in, 132-133, 141–144, 151–152,

155
O’Hagan method, 157–159
optimism level in, 152, 154
Perron method, 160
satisfactions in, 134–136, 142–146, 154–155
Yager method, 159

Default logic, for dealing with uncertainty, 18,
20

Defuzzification, defined, 53
see also Fuzzification

Dempster, Arthur, and Dempster-Shafer theory
of evidence, 20

Dempster-Shafer theory of evidence, for dealing
with uncertainty, 13, 20

Denial mode (modus tollens), 47–48
Denmark, and fuzzy systems, 14
Descriptive problem-solving, 60
Difference, logical (A\B)

defined, 43
performed with MultiCalc, 43–44

Digraph
see Graph

Directed graph
see Graph

Disjunction (~), 74
defined, 34
in a fuzzy state machine, 271
performed with UniCalc, 34
performed with TextCalc, 53-56

Disk files, list of, readme.txt, 235

Duerre, K.J., and development of fuzzy oil
recovery system, 78

Dynamic, complex situations and the Fuzzy
Thought AmplifierTM, 164–165

expressway commuting scenario, 164
international drug trafficking scenario, 164
representation as a fuzzy cognitive map, 164

— E—

Ecological (cat-and-plant) scenario, in Fuzzy
Thought AmplifierTM, 178–187

Einstein, Albert, relationship to fuzziness, 10
Either/or

see Logic, crisp
Elevators, fuzzy controlled, 14
employ.dec, job-hunting scenario for Fuzzy

Decision MakerTM, 234
employment scenario for Fuzzy Decision

MakerTM, employ.dec, 234
Endorsement-based systems, for dealing with

uncertainty, 18, 20–21
Entropy

in fuzzy logic, 219
in a hypercube, defined as

overlap/underlap, 220–221
as information and measure of uncertainty,

219
maximum, 219
as measure of fuzziness, 219
minimum, 219

example.fcm, containing simple cognitive maps,
171, 175, 176, 235

Excluded Middle, Law of, 45
see also Complementation
see also Logical Operations

Executable (.exe) files
fuzzcalc.exe, fuzzy calculators, 230
fuzzydm.exe, Fuzzy Decision MakerTM

application, 233
fuzzykb.exe, Fuzzy Knowledge BuilderTM

application, 230
fuzzyta.exe, Fuzzy Thought AmplifierTM

application, 234
buildint.exe, Fuzzy Knowledge BuilderTM

run-time library, 230

283Index

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Existential quantifier (')
crisp, 48–49, 50
fuzzy generalization of, 49

Expert system, fuzzy, 58
Fuzzy Knowledge BuilderTM knowledge

base, 230–233
rule-based, 267
see also Inference engine
see also Knowledge base

— F —

FAM
see Fuzzy associative memory

FAMCalc, for composing and operating a fuzzy
action surface, 209–213

fcmhlp.hlp, Fuzzy Thought Amplifier on-line
help file, 235

fdmhlp.hlp, Fuzzy Decision Maker on-line
help file, 233

financial planning scenario for Fuzzy Decision
MakerTM, finplan.dec, 234

finplan.dec, financial planning scenario for
Fuzzy Decision Maker, 234

fkbhlp.hlp, Fuzzy Knowledge Builder on-line
help file, 230

FLOPS (Fuzzy LOgic Production System), 204
backtracking in rule search, 269
rule firing in

parallel, 268, 270
sequential, 268

use as inference engine, 267–270
use of conflict-resolution algorithm to

determine confidence level in
rule, 269

“For all” logical statements
see Universal quantifier

Forward chaining
see Rule, chaining

Fuji Bank, and fuzzy decision-support system
for securities trading, 17

Fujitsu Laboratories Ltd., and neuro-fuzzy
bond-rating system, 76–77

Future, prediction of
history, 197
using Fuzzy Thought AmplifierTM, 197–202

FuzNum Calc, arithmetic operations with, 25–31
Fuzz-C (Bytecraft, Inc.) inference engine

system, 229, 265
Fuzz-C files

trktrl.c, example inference engine with
embedded knowledge base, 232

trktrl.fuz, input example from Fuzzy
Knowledge BuilderTM, 232

fuzzcalc.exe, fuzzy calculators, 230
Fuzzification, defined, 53

see also Defuzzification
Fuzziness, 23–24

defined, 1–2
entropy, as a measurment of, 218–219
maximum, represented by center point of a

hypercube, 219
types of systems where it is necessary or

beneficial, 16
fuzzyl.bas, QBASIC Simple inference engine

for Fuzzy Knowledge BuilderTM,
118–119, 231, 238–249

fuzzy2.bas, QBASIC Fast inference engine for
Fuzzy Knowledge BuilderTM,
118–119, 231, 249–260

Fuzzy action surface, for control
inputs-outputs, 72, 207

membership functions, as representation of
inputs and outputs, 207

see also Fuzzy associative memory
see also Fuzzy estimation surface

Fuzzy architectures
cognitive map, 204
decision-making, 204
expert system, 204
rule-based environment (FLOPS), 204
state machines, 205

Fuzzy arithmetic operations, 23-24
with FuzNum Calc, 26–31

Fuzzy associative memory (FAM), 72, 209–213
and fuzzy action surface, 72
relationship to triangular membership

function, 72
see also FAMCalc

Fuzzy calculators, 24–25, 32
CompCalc, 44–45
FuzNum Calc, 25-31
MultiCalc, 41–44
TextCalc, 52–56
UniCalc, 37–38

Fuzzy cognitive map, 58

284Index

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

as a signed, directed graph, 165
causal events, 164, 165

relationship to conceptual states, 167–168
commercial use of, in stock market analysis,

170
conceptual states, 165

characteristics, 167–168
defined, 165, 167
see also Cognitive map
see also Fuzzy Thought Amplifier

Fuzzy Decision MakerTM, 59, 60, 61, 121–160,
233–234

alternatives in, 131–136, 140–141, 149
application, fuzzydm.exe, 233
college selection scenario, college.dec, 233
constraints in, 129–130, 139, 150–151
decision process, 134, 147, 152, 155

bias (optimism level) in, 152, 154
financial planning scenario, finplan.dec, 234
goals in, 127–129, 139, 149–150
importances of goals and constraints,

132–133, 141–144, 151–152, 155
job-hunting scenario, employ.dec, 234
legal problem-solving scenario, legalde.dec,

234
on-line help, fdmhlp.hlp, 233
residence-changing scenario, move.dec, 234
satisfactions in alternatives, 134–136,

142–146, 154–155
Fuzzy decision-making, 17, 121–160

and Fuji Bank, 17
fuzzydm.exe, Fuzzy Decision MakerTM

application, 233
Fuzzy estimation surface, for control

inputs-outputs, 72–73
fuzzykb.exe, Fuzzy Knowledge BuilderTM

application, 230
Fuzzy knowledge-based system

see Expert system, fuzzy
Fuzzy Knowledge Builder, 58–59, 60, 61,

83–120, 230–233
Action Tester, 85, 103–104
application, fuzzykb.exe, 230
Cartesian axes of motion in, 86
cellular automata tool, 85, 114–115
“city block” measurement of distance in, 115
creating a knowledge base with, 85
example knowledge base for BASIC

inference engines, test.fdt, 230
example problems

multiplication, multiply.fam and
multiply.rul, 232

random example, random.fam and
random.rul, 233

truck backing up and parking, truck.fam
and truck.rul, 232

executable file, fuzzykb.exe, 230
fuzzy sets in, 102–103, 109, 112
inference engines for, 83–84

analog devices, 116
C language, 116, 119, 261–265

cie.c, 231–232
Motorola 68HC05 assembly language,

83-84, 85, 119–120, 266
ieO5.asm, 231, 232
QBASIC language, 83, 85, 118–119,

238–260
fuzzyl.bas, Simple, 231
fuzzy2.bas, Fast, 231

Knowledge Base File Generator, 85
knowledge base, formatting for an inference

engine, 116–119
knowledge base, using in an inference

engine, 119–121
Lunar Lander scenario, 89–110
on-line help file, fkbhlp.hlp, 230
organization of program, 85
Personnel Detection scenario, 110–116
printing graphics displays, 109–110
program file structure, 85–89
Rules Matrix Builder, 85, 101–102, 111–112
run-time library, buildint.exe, 230
Set Shaper, for adjusting fuzzy membership

functions, 85
Viewers for action surface, 85

3D, 85, 105–106
Gradient, 85, 105–106
Profile, 85, 106

see also Fuzzy expert system
Fuzzy logic

contrasted with crisp logic, 3–7
invented by Lotfi Zadeh, 11
see also Logic, fuzzy

Fuzzy logical operations, 24
see also Logic, fuzzy

Fuzzy Logic, Inc., 58
Fuzzy membership functions, in Fuzzy

Knowledge BuilderTM, 85
Fuzzy numbers, 23–24
Fuzzy rules of inference

285Index

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Compositional rule of inference, 48
generalized modus ponens, 48

Fuzzy set, 24, 31, 32–36, 209, 269
as hypercube points, 215–228
maximum, in a hypercube, 219
membership function as representation of,

215
operations, 37–46

see also Set operations
represented by membership function, 33,

238, 249
represented by quadratic equation, 33
values, 209
see also Set, fuzzy

Fuzzy state machine
see State machine, fuzzy

fuzzyta.exe, Fuzzy Thought AmplifierTM

application, 234
Fuzzy Thought AmplifierTM, 59, 61, 163-205,

234-235
adding additional states, 186–187
bias, 185–186

defined, 185
cat-and-plant (ecological scenario), 178–187
causal event, 175, 179–180, 180–182, 193–196,

198–200
conceptual state, 175, 179, 188–191, 198
dynamic graphics, adding, 183–184
ecological (cat-and-plant) scenario, 178–188
example scenarios

cat-and-plant environmental system, 235
simple maps showing end behaviors,

example.fcm, 235
executable file, fuzzyta.exe, 234
future, prediction of, 197–202
gain (squashing function) as cycle limiter,

defined, 173–174
health care system scenario, 188–197
normal operation, 170–171
on-line help file, fcmhlp.hlp, 235
operation, 203–204

definition method, 203
incremental method, 203
training function, 204

running cycles
in normal mode, 184–185, 186, 187,

196–197
in "trained" mode, 202

simple cognitive maps, 171–177
chaos map, 175–177

in example.fcm, 171
limit cycle, 177
oscillation map, 175–176
stable map, 174–175

squashing function (gain) as cycle limiter,
defined, 173–174

stock market prediction scenario, 197–202
"trained" operation

relationship to neural networks, 171
stock market scenario for, 197–202

see also Fuzzy cognitive maps

— G —

Gain (squashing function) as cycle limiter, in
Fuzzy Thought AmplifierTM, 173

Gamma (intermediate) operator, 78
Generalized modus ponens (fuzzy), 48
George and Martha Washington marriage

scenario, in Fuzzy Decision
MakerTM, 147–160

Germany, and fuzzy systems, 22, 78, 80
Goals, in decision process, 122, 127–129, 139,

149–150
Graph, signed, directed, defined, 165
Gray scale, 208

— H —

Hamming distance (, Pl) (City block”) between
sets in a hypercube, 225

Hamming norm (, 1), as measure of a fuzzy set
in a hypercube, 222–224

see also "City block" method
Health care system scenario, in Fuzzy Thought

AmplifierTM, 188–197
Hedges, for fuzzy rule modification

defined, 52–55
examples with TextCalc, 53–55

Heisenberg, Werner, and relationship to
fuzziness, 10

Hellenthal, Bert, and development of
neuro-fuzzy washing machine, 80

286Index

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

hlthcare.fcm, with health care system scenario,
189

Hume, David, and historical foundations of
fuzzy logic, 9

and logic of common sense, 9
see also Logic, fuzzy

Huntington Group, The, and fuzzy state
machines, 272

Hypercube
as representation of fuzzy sets, 216, 218–219

values in, 219–220
center point of, representing maximum

fuzziness, 216
defined, 216
dimensions, 215–216
maximum fuzzy set in, 216
structure, nodes and vertexes, 216

— I —

ieO5.asm, Motorola 68HC05 assembly language
inference engine for use with Fuzzy
Knowledge BuilderTM, 230, 266

IF-THEN rules, 24, 46–48., 50, 53
see also AS-DO rules
see also AS-THEN rules
see also modus ponens
see also modus tollens

Implication
defined, 37
in logical operations, 46–48
in logical statements, 49
in set operation, 37, 43

Importances, in decision process, 132–133,
141–144, 151–152, 155

defined, 157–158
Industrial fuzzy systems, 78–79

oil recovery, 78–79
Inference engine

for an expert system, 58
crisp, with OPS5, 267
fuzzy, with FLOPS, 267–268
see also Expert system

for Fuzzy Knowledge BuilderTM, 83–84
C language, 85, 116–117, 119, 231–232,

261–265

Motorola, 68HC05 assembly language,
83–84, 85, 116, 230, 266

QBASIC language, 83–84, 85, 116, 231,
237–260

fuzzy2.bas, 231, 249–260
see also Expert system

Inference, rules of, 24, 46–48
crisp, 24

see also IF-THEN rules
fuzzy, 24

see also AS-DO rules
see also AS-THEN rules

INFORM
and fuzzy data analysis, 78
and neuro-fuzzy washing machine, 78

Insulin infusion system for diabetics, use of
fuzzy logic in, 79–80

Intermediate (gamma) operator, 78
Intersection (>), 49

defined, 37
of a set in a hypercube and its complement

(overlap), 220-221
of sets in a hypercube, 225
see also Universal quantifier

— J —

Japan
cultural practices and fuzzy logic, 17–18
early supporter of Lotfi Zadeh’s work, 17–18
and fuzzy systems, 76–77, 79., 79–80, 81
leading producer of fuzzy-based commercial

applications, 17
Japan Bond Research Institute, ratings used in

neuro-fuzzy bond-rating system, 77
Jikei University School of Medicine, and

development of fuzzy infusion
system for diabetics, 79–80

Job-hunting scenario for Fuzzy Decision
MakerTM, employ.dec, 234

287Index

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

— K —

Kageyama, Shigeru, and development of fuzzy
infusion system for diabetics, 79–80

Kant, Immanuel, and historical foundations of
fuzzy logic, 9

see also Logic, fuzzy
Kantor, Georg, and set theory, 10
Kemp-Carraway Heart Institute, and

development of FLOPS inference
engine, 267

Knowledge-based system
see Expert system

Knowledge base
creation with Fuzzy Knowledge BuilderTM, 85
example knowledge base for Fuzzy

Knowledge Builder’s BASIC
inference engines, test.fdt, 230

in expert system, 58, 269
see also Expert system

Kosko, Bart
and Apartheid scenario, 188
and definition method of computation for

fuzzy cognitive map, 203
and development of fuzzy cognitive map,

58, 167, 169, 188
and expressway commuting scenario, 164
as inventor of hypercube points as fuzzy

sets, 215, 227
KoskoCalc, for performing hypercube set

operations, 217–228
Krause, B., and development of fuzzy data

analysis system, 78

— L —

, 1 method of measuring size of a fuzzy set in a
hypercube, 222–224

see also Hamming norm
see also “City block method

, 2 method of measuring size of a fuzzy set in a
hypercube, 224–225

see also "Catty corner” method
, 3 method of measuring size of a fuzzy set in a

hypercube, 224

, P1 (“City block” or Hamming distance)
distance between sets in a
hypercube, 225

see also “Catty corner” (, P2) distance
, P2 (“catty corner”) distance between sets in a

hypercube, 226
see also Hamming distance (, Pl)

Lambert, Johann Heinrich, and precursor to
Dempster-Shafer theory of
evidence, 20

Law of Contradiction, 45
see also Complementation
see also Logical Operations

Law of Excluded Middle, 45
see also Complementation
see also Logical Operations

Learning, in FLOPS inference engine, 268, 269
legalde.dec, legal problem-solving scenario for

Fuzzy Decision MakerTM, 234
legal problem-solving scenario for Fuzzy

Decision MakerTM’, legalde.dec, 234
Limit cycle, represented as a fuzzy cognitive

map, in Fuzzy Thought AmplifierTM,
177

Linguistics, fuzziness inherent in, 10, 11, 11–13
Linguistic variables, used in fuzzy logic, 16
Logic

Aristotelian
see Logic, crisp

crisp, 2, 7, 9
Western cultural bias in favor of, 15–17

differences between fuzzy and crisp, 3–7
entropy in, 219
fuzzy, 6

affinity with Eastern cultural practices,
17–18

AND statement, 74
first use in commercial control system by

Lauritz Peter and Jens-Jurgen
stergaard, 14

first use in control system by Ebrahim
Mamdani, 13

in FLOPS inference engine, 268
historical foundations, 9–11
OR statement, 74
practical uses around the world, 13
use in control systems, 13–15

of common sense, 9
paradoxes in, 10

Logical operations, fuzzy, 24

288Index

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Logical paradoxes, 10
fuzzy aspects, 10

Logical statements, 48–49
Los Alamos Scientific Laboratory, and

development of fuzzy oil recovery
system, 78–79

Lukasiewicz, Jan
and logic of vagueness, 10
and multivalued sets, 10–11, 11

Lunar Lander scenario, for Fuzzy Knowledge
Builder, 85–110

— M —

Mamdani, Ebrahim, and development of fuzzy
control systems, 13, 15–16, 58, 62

Manufacturing and fuzziness, 1
Marriage decision scenario, in Fuzzy Decision

MakerTM, 147–160
Matrix, compositional, for FAM, 207, 209, 210
Matsushita, and fuzzy logic-controlled

equipment, 14–17
MAXIMUM operator, 74, 78, 213
Medical fuzzy system, 79–80
Membership function

in fuzzy associative memory, 207
in Fuzzy Knowledge BuilderTM, 72, 75, 85
for representing fuzzy sets, trapezoidal and

triangular, 33, 215
Mercedes-Benz, use of fuzzy data analysis

system for design of automobile and
truck parts, 78

Merging interests scenario, in Fuzzy Decision
MakerTM, 147–160

MINIMUM operator, 74, 78, 212
Mitsubishi Electric Corp., and development of

fuzzy-controlled air conditioner, 81
Mitsubishi Heavy Industries, and fuzzy

logic-controlled equipment, 14
Modus ponens (affirmative mode), crisp and

fuzzy, 47–48
see also Implication

Modus tollens (denial mode), 47–48
see also Implication

“Monte Carlo” methods of determining random
outcomes, 19

Motorola 68HC05 assembly language, in an
inference engine for Fuzzy
Knowledge BuilderTM, 83–84, 116,
231, 232, 266

Moving scenario for Fuzzy Decision MakerTM,
move.dec, 234

move.dec, residence-changing scenario for
Fuzzy Decision MakerTM, 234

MultiCalc, multielement set operations with,
41-44

multiply.fam and multiply.rul, example Basic
language multiplication problem for
Fuzzy Knowledge BuilderTM, 232

— N —

Neural network
and fuzzy systems, 21–22
similarity to cognitive map, 167
similarity to trained mode of Fuzzy

Thought AmplifierTM, 171
NeuraLogix, and development of

fuzzy-controlled vacuum cleaner, 80
Nissan, and fuzzy logic-controlled equipment,

14, 17
Nodes, of a hypercube, 216
Nonprobabilistic methods of dealing with

uncertainty, 18
default logic, 18, 20
dempster-Shafer theory of evidence, 18, 20
endorsement-based systems, 18, 20–21
qualitative reasoning, 18, 21

Numbers
crisp, 23–24
fuzzy, 23–24

— O —

0’Hagan, Michael (Fuzzy Logic, Inc.), and
fuzzy decision-making, 58, 122,
157–159

289Index

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

O’Hagan, Nadja (Fuzzy Logic, Inc.), and fuzzy
decision-making, 122, 157–159

Oil recovery system, use of fuzzy logic in, 78–79
Okada, Hiroyuki, and neuro-fuzzy bond-rating

system, 76–77
OPS5 inference engine, 267, 269
Optimizer problem-solving, 60, 78, 78–79,

80–81, 81
Operations

see Arithmetic operations
see Logical operations

OPS5, as basis for FLOPS, 204
Optimism level (bias), in decision process, 152,

154
OR statement, 74–75

see also Disjunction
see also Existential quantifier
see also Logic, fuzzy
see also Union

Osaka Electro-Cummunication University, and
development of an automated
fuzzy-neuro storm-sewage pumping
station for Shanghai China, 79

Oscillation, represented as a fuzzy cognitive
map, in Fuzzy Thought AmplifierTM,
175–176

Østergaard, Jens-Jurgen and development of
first commercial fuzzy control
system, 14

Otis Elevator Co., and fuzzy logic-controlled
equipment, 14

Overlap (intersection of a set in a hypercube
and its complement), 220–221, 228

see also Entropy

— p —

Paradoxes, logical, 10
fuzzy aspects, 10

Parkinson, W.J., and development of fuzzy oil
recovery system, 78–79

Personnel Detection scenario, for Fuzzy
Knowledge BuilderTM, 110–116

Predictive problem-solving, 61
Prescriptive problem-solving, 60, 76
Peirce, Charles Sanders

and Vagueness, 9

see also Logic, fuzzy
Peter, Lauritz, and development of first

commercial fuzzy control system, 14
PID control law

see Proportional-Integral-Derivative (PID)
control law

Pi function of a quadratic equation representing
fuzzy sets, 33–34

Possibility, and fuzziness, 11
Probabilistic (statistical, stochastic, Bayesian)

methods for dealing with
uncertainty, 19

Problem-solving
categories of

descriptive, 60
optimizer, 60, 78, 78–79, 79, 80–81, 81
predictive, 61
prescriptive, 60, 76
satisficing, 60–61

rules
crisp, IF-THEN, 24, 46–48, 49
fuzzy
 AS-DO, 24, 49–50
 AS-THEN, 24, 48, 49–52

Prolog language, 268
similarity to OPS5, 268

Proportional-Integral-Derivative (PID) control
law, and crisp logic, 15

Public-works fuzzy systems, 79
automated storm-sewage pumping station,

79
Pythagoras, and foundations of logic, 7

see also Logic, crisp
Pythagorean theorem

crisp, 224
fuzzy generalization, 224

— Q—

QBASIC language, in an inference engine for
Fuzzy Knowledge BuilderTM, 83, 116,
238-260

Quadratic equation, for representing fuzzy sets,
33-34

Qualitative reasoning, for dealing with
uncertainty, 18, 21

290Index

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

—R—

random.fam and random.rul, example Basic
language random problem for
Fuzzy Knowledge BuilderTM, 233

readme.txt, list of disk files, 235
Regional transportation scenario, in Fuzzy

Decision MakerTM, 137-147
Reiter, Raymond, and default logic, 20
Reliability and fuzzy systems, 2
Residence-changing scenario for Fuzzy

Decision MakerTM, move.dec, 234
RMS (root mean square) for “city block

measurement in Fuzzy Knowledge
BuilderTM’, 115-116

Rule linkage in a state machine rule base, 273
Rule-base

for state machine, 270
in expert system, 267
see also Expert system
see also State machine

Rule-firing, 207
in a state machine, 268, 270, 272, 273

Rules of inference, 24, 46–48
crisp, 24

see also IF-THEN rules
fuzzy, 24

AS-DO, 58
AS-THEN, 58, 67–68, 69, 74, 77
compositional rule of inference, 48
generalized modus ponens, 48
see also AS-DO rules
see also AS-THEN rules

Rules, word-based, 52–56
Run-time libraries for executable (.exe) files, 229
Russell, Bertrand, and historical foundations of

fuzzy logic, 9–10
see also Logic, fuzzy

— S —

Saaty, Thomas L., and fuzzy decision-making,
122

Satisfactions, in decision process, 134–136,
142–146, 154–155

defined, 159-160
Satisficing problem-solving, 60–61
Schwartz, Daniel, and linguistic fuzziness, 11
Securities trading, Fuji Bank’s fuzzy

decision-support system for, 17
Sendai, Japan, and fuzzy-controlled subway

system, 14
Sensors, used with Fuzzy Knowledge BuilderTM,

110–116
Set, fuzzy, 209

degree of membership, creation of, for initial
state, 272

degree of membership in current state of a
state machine, 271

degree of membership in new state of a state
machine, 272

as hypercube points, 216–228
maximum, in a hypercube, 216
membership function as representation of,

216
Set operations

complementation, 37, 44–45, 216, 220, 228
conjunction, 37

in a fuzzy state machine, 272
difference, 43–44
disjunction, 34, 37

in a fuzzy state machine, 271
fuzzy

multielement, with MultiCalc, 41–44
single-element, with UniCalc, 38

implication, 37, 43
intersection, 37, 43, 216, 220, 225–226, 228
union, 34, 42–43, 216, 220

Set representations, table of, 50
Set theory, 34–37

based on crisp logic, 10
generalized to logic of vagueness, 10

Sets
crisp, 10
fuzzy, 10, 12, 24, 31-46

represented by membership function
triangular, 33
trapezoidal, 33

represented by quadratic equation, 33
Sewage pumping station, use of fuzzy logic in

design of, 79
S function of a quadratic equation representing

fuzzy sets, 33–34
Shafer, Glenn, and Dempster-Shafer theory of

evidence, 20

291Index

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Sigma (S) count, as measure of a fuzzy set in a
hypercube, 222–224, 228

Siler, William, and development of FLOPS
inference engine, 267

Simple cognitive maps, in Fuzzy Thought
AmplifierTM, 174–177

Single-point attractor in chaos theory, and
Fuzzy Thought AmplifierTM, 177

Size of a fuzzy set in a hypercube
see Cardinality

SMR (square mean root) for "city block”
measurement in Fuzzy Knowledge
BuilderTM, 115-116

Sony, and fuzzy logic-controlled equipment, 14
Squashing function (gain) as cycle limiter, in

Fuzzy Thought AmplifierTM, 174
Stability

in control systems, lack of definition of, 16
represented as a fuzzy cognitive map, in

Fuzzy Thought AmplifierTM,
174–175

State machine, 270–273
as a fuzzy architecture, 205
crisp, 270–271
fuzzy, 267, 271–273

causal event, 271
inference method used in, 273
membership, degree of, in current state,

271
membership, degree of, in new state, 272
membership function, creation of, for

initial state, 272
rule base for, 270, 273
rule firing in, 270, 272, 273
rules, linked, 273
transition event, 271, 273
use of, in control systems, 272–273

linked as cellular automata, 169
see also Cognitive map, states

Statistical (stochastic, probabilistic) methods for
dealing with uncertainty, 19

Stochastic, (probabilistic, statistical) methods
for dealing with uncertainty, 19

Stock market analysis as a commercial use of
fuzzy cognitive maps, 170

Stock market prediction scenario, for Fuzzy
Thought AmplifierTM, 197-202

history, 197
Stubbs, Derek, and commercial use of fuzzy

cognitive maps, 170

Subsethood in a hypercube, 225–227, 228
Subway system, Sendai, Japan,

fuzzy-controlled, 14
Sweden, and fuzzy systems, 14

—T—

Taber, Rod, and international drug trafficking
scenario, 164

tbprolw.dll, run-time library for .exe files, 229
tbpro2w.dll, run-time library for .exe files, 229
tbpro3w.dll, run-time library for .exe files, 229
tbpro5w.dll, run-time library for .exe files, 229
Television set, fuzzy controlled, 14
test.fam and test.rul, Fuzzy Knowledge

BuilderTMtest file for QBASIC
language inference engines, 85,
118–119, 231

test.fdt, example knowledge base for Fuzzy
Knowledge Builder’s BASIC
inference engines, 230, 237

testie.fic, test program for C language inference
engine, 232, 261

TextCalc, for modifying AS-DO rules II: 18–20
“There exists” logical statements

see Existential quantifier
Trained” mode of Fuzzy Thought AmplifierTM,

200-202
Transportation, regional, scenario, in Fuzzy

Decision MakerTM, 137-147
Trapezoidal membership function

see Membership function, trapezoidal
Triangular membership function

see Membership function, triangular
trktrl.c, example Fuzz-C inference engine with

embedded knowledge base, 232
trktrl.fuz, input Fuzz-C example from Fuzzy

Knowledge BuilderTM, 232
trktrlt.fO5, example truck backing up problem

for Fuzzy Knowledge BuilderTM in
Motorola 68HC05 assembly
language, 232

trktrlt.fdt, example truck backing up problem
for Fuzzy Knowledge BuilderTM in
Motorola 68HC05 assembly
language, 232–233

292Index

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

truck.fam and truck.rul, example truck backing
up problem for Fuzzy Knowledge
BuilderTM in Basic language, 232

True / false
see Logic, crisp

Truth, logical
and backward chaining, 268

Tucker, Douglas, and development of FLOPS
inference engine, 268

Turing, Alan, and development of state
machine, 169

— U —

Uncertainty, methods for dealing with, 18–21
nonprobabilistic

Default logic, 18, 20
Dempster-Shafer theory of evidence, 18,

20
Endorsement-based systems, 18, 20–21
Qualitative reasoning, 18, 21

probabilistic (statistical, stochastic,
Bayesian), 19

Underlap (union of a set and its complement),
220

see also Entropy
Unemployment scenario for Fuzzy Decision

MakerTM, employ.dec, 234
UniCalc, single-element set operations with,

37–38
Union (<), 50, 216

defined, 34
performed with MultiCalc, 42–43
of a set and its complement (underlap),

220-221
see also Existential quantifier

United Kingdom, and fuzzy systems, 13
U.S. Army National Guard (ARNG), and fuzzy

decision-making, 122
United States of America, and fuzzy logic, 14, 80
University of Southern California, and Bart

Kosko, 58
Universal quantifier (;)

crisp, 49
fuzzy generalization of, 49

— v —

Vacuum cleaner, fuzzy controlled, 14, 80
Vagueness

defined, 9
logic of, 10
see also Fuzziness
see also Logic, fuzzy

Vertexes, of hypercube, 216
Vertex points in a hypercube, representing

crispness, 215
far crisp, 221
near crisp, 221
of origin, 221, 222

— W —

Washing machine, fuzzy controlled, 14, 16,
80–81

Washington, George and Martha, marriage
scenario, in Fuzzy Decision
Maker, 147–160

Williams, Walter E., and basis for fuzzy
cognitive map Apartheid scenario,
188

Wittgenstein, Ludwig, and historical
foundations of fuzzy logic, 10

and linguistic fuzziness, 10
Word-based rules, 52–56

— y —

Yager, Ronald R., 49, 122, 160
Yin-Yang, compatibility with fuzzy logic, 17–18

— Z —

Zadeh, Lotfi
and foundation of fuzzy logic, 49
work supported in Japan, 17

Z function of a quadratic equation representing
fuzzy sets, 33–34

FUZZY LOGIC
A PRACTICAL APPROACH

LIMITED WARRANTY AND DISCLAIMER OF LIABILITY

ACADEMIC PRESS, INC. (“AP”) AND ANYONE ELSE WHO HAS BEEN INVOLVED IN THE
CREATION OR PRODUCTION OF THE ACCOMPANYING CODE (“THE PRODUCT”) CAN-
NOT AND DO NOT WARRANT THE PERFORMANCE OR RESULTS THAT MAY BE
OBTAINED BY USING THE PRODUCT. THE PRODUCT IS SOLD “AS IS’, WITHOUT WAR-
RANTY OF ANY KIND (EXCEPT AS HEREAFTER DESCRIBED), EITHER EXPRESSED OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, ANY WARRANTY OF PERFORMANCE OR
ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICU-
LAR PURPOSE. AP WARRANTS ONLY THAT THE MAGNETIC DISKETTE(S) ON WHICH
THE CODE IS RECORDED IS FREE FROM DEFECTS IN MATERIAL AND FAULTY WORK-
MANSHIP UNDER THE NORMAL USE AND SERVICE FOR A PERIOD OF NINETY (90)
DAYS FROM THE DATE THE PRODUCT IS DELIVERED. THE PURCHASER’S SOLE AND
EXCLUSIVE REMEDY IN THE EVENT OF A DEFECT IS EXPRESSLY LIMITED TO EITHER
REPLACEMENT OF THE DISKETTE(S) OR REFUND OF THE PURCHASE PRICE, AT AP’S
SOLE DISCRETION.

IN NO EVENT, WHETHER AS A RESULT OF BREACH OF CONTRACT, WARRANTY OR
TORT (INCLUDING NEGLIGENCE), WILL AP OR ANYONE WHO HAS BEEN INVOLVED
IN THE CREATION OR PRODUCTION OF THE PRODUCT BE LIABLE TO PURCHASER
FOR ANY DAMAGES, INCLUDING ANY LOST PROFITS, LOST SAVINGS OR OTHER
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILI-
TY TO USE THE PRODUCT OR ANY MODIFICATIONS THEREOF, OR DUE TO THE CON-
TENTS OF THE CODE, EVEN IF AP HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY.

Any request for replacement of a defective diskette must be postage prepaid and must be
accompanied by the original defective diskette, your mailing address and telephone number,
and proof of date of purchase and purchase price. Send such requests, stating the nature of the
problem, to Academic Press Customer Service, 6277 Sea Harbor Drive, Orlando, FL 32887, 1-
800-321-5068. APP shall have no obligation to refund the purchase price or to replace a
diskette based on claims of defects in the nature or operation of the Product.

Some states do not allow limitation on how long an implied warranty lasts, nor exclusions or
limitations of incidental or consequential damage, so the above limitations and exclusions may
not apply to you. This Warranty gives you specific legal rights, and you may also have other
rights which vary from jurisdiction to jurisdiction.

THE RE-EXPORT OF UNITED STATES ORIGIN SOFTWARE IS SUBJECT TO THE UNITED
STATES LAWS UNDER THE EXPORT ADMINISTRATION ACT OF 1969 AS AMENDED.
ANY FURTHER SALE OF THE PRODUCT SHALL BE IN COMPLIANCE WITH THE UNITED
STATES DEPARTMENT OF COMMERCE ADMINISTRATION REGULATIONS. COMPLI-
ANCE WITH SUCH REGULATIONS IS YOUR RESPONSIBILITY AND NOT THE RESPON-
SIBILITY OF AP.

FUZZY LOGIC
A PRACTICAL APPROACH

F. Martin McNeill
Ellen Thro

AP PROFESSIONAL
Boston San Diego New York

London Sydney Tokyo Toronto

This book is printed on acid-free paper. ∞

Copyright © 1994 by Academic Press, Inc.
All rights reserved.
No part of this publication may be reproduced or
transmitted in any form or by any means, electronic
or mechanical, including photocopy, recording, or
any information storage and retrieval system, without
permission in writing from the publisher.

All brand names and product names mentioned in this book
are trademarks or registered trademarks of their respective companies.

AP PROFESSIONAL
1300 Boylston Street, Chestnut Hill, MA 02167

An Imprint of ACADEMIC PRESS, INC.
A Division of HARCOURT BRACE & COMPANY

United Kingdom Edition published by
ACADEMIC PRESS LIMITED
24-28 Oval Road, London NWI 7DX

Library of Congress Cataloging-in-Publication Data
McNeill, F. Martin, date.

Fuzzy logic: a practical approach / F. Martin McNeill, Ellen
Thro .

p. cm.
Includes bibliographical references and index.
ISBN 0-12-485965-8 (acid-free paper)
1. Automatic control. 2. Expert systems (Computer science)

3. Fuzzy logic. I. Thro, Ellen. II. Title.
TJ213.M355 1994 94-30787
006.3’3—dc20 CIP

Printed in the United States of America
94 95 96 97 98 IP 9 8 7 6 5 4 3 2 1

Dedication of this book is to the memory of Merrill Meeks Flood, Ph.D. To
the extent that the fact of existence is magic, he personified that magic.

—FMM

Acknowledgments for support go to the following:

Valerio Aisa, Merloni Eletrodomestica spa, Viale Aristide Merloni 45,
60044 Fabriano (AN) Italy.

and

 David Brubaker—the Huntington Group
 David Crumpton—the Motorola Semiconductors, Inc.
 Dr. Michael O’Hagan—Fuzzy Logic, Inc.
 Derek Stubbs—Advanced Forecasting Technologies

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

CONTENTS

Foreword by Dr. Ronald Yager . xv

Chapter 1. The FuzzyWorld . 1
APPLES, ORANGES, OR IN BETWEEN .. 3
IS THERE LIFE BEYOND MATH? .. 7

Vague Is Better ... 9
Discovering Fuzziness .. 11

THE USES OF FUZZY LOGIC .. 13
FUZZY CONTROL SYSTEMS .. 13

Other Commercial Fuzzy Systems .. 14
THE VALUE OF FUZZY SYSTEMS ... 15

Advantages and Disadvantages .. 16
FUZZY DECISION-MAKING .. 17
FUZZINESS AND ASIAN NATIONS... 17
FUZZY SYSTEMS AND UNCERTAINTY .. 18

Probability and Bayesian Methods ... 19
Nonprobabilistic Methods.. 19

FUZZY SYSTEMS AND NEURAL NETWORKS ... 21

vii

viiiContents

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Chapter 2. Fuzzy Numbers and Logic 23
FUZZY NUMBERS .. 25

Meet FuzNum Calc ... 26
Performing Fuzzy Arithmetic .. 27
Behind the Scenes With FuzNum Calc ... 30

FUZZY SETS ... 32
Set Theory ... 34
Touring UniCalc ... 37
Multielement Sets .. 41
Union, Intersection, and Implication .. 42
Difference .. 43
Complement ... 44

CRISP AND FUZZY LOGIC ... 46
Rules of Inference .. 46
Logical Statements ... 48

AS-THEN AND AS-DO RULES—A SNEAK PREVIEW 49
QUANTIFYING WORD-BASED RULES ... 52

Chapter 3. Fuzzy Systems on the Job 57
FUZZY TOOLS... 58

Fuzzy Knowledge Builder™ for a Fuzzy Expert System 58
Fuzzy Decision-Maker™ .. 59
Fuzzy Thought Amplifier™ ... 59

FUZZY SYSTEMS .. 59
CREATING A FUZZY CONTROL SYSTEM ... 62

Identify and Name Fuzzy Inputs .. 62
Identify and Name Fuzzy Output... 63
Create the Fuzzy Membership Functions .. 64
Construct the Rule Base .. 65
Decide How to Execute the Actions.. 70

FUZZY BUSINESS SYSTEMS .. 76
INDUSTRIAL FUZZY SYSTEMS .. 78
FUZZY-NEURO SEWAGE PUMPING STATION ... 79
FUZZY INSULIN INFUSION SYSTEM FOR DIABETICS 79
FUZZY CONSUMER PRODUCTS .. 80

ixContents

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Chapter 4. Fuzzy Knowledge Builder™ 83
KNOWLEDGE BUILDER’S DESIGN ... 84

Program Organization .. 85
Program File Structure .. 85

LUNAR LANDER .. 89
Lunar Lander’s Vertical Axis ... 89
Lunar Lander’s Horizontal Axis ... 105
Printing Your Graphics Displays ... 108

PERSONNEL DETECTION SYSTEM ... 110
Naming and Defining the Dimensions and Sets 111
Improving the Matrix’s Operation .. 113

FORMATTING THE KNOWLEDGE BASE FOR
AN INFERENCE ENGINE ... 116
USING A KNOWLEDGE BASE IN AN INFERENCE ENGINE.............. 118

Chapter 5. Designing a Fuzzy Decision 121
THE DECISION PROCESS ... 122
INTRODUCING THE FUZZY DECISION MAKER™ 123
DECIDING WHICH COLLEGE TO ATTEND .. 124

Naming Your Goals ... 127
Name Your Constraints .. 129
Name Your Alternatives ... 130
Rank the Importances of Your Goals and Constraints 132
How Well Do the Alternatives Satisfy the Goals? 134

REGIONAL TRANSPORTATION SYSTEM ... 137
Goals .. 139
Constraints .. 139
Alternatives .. 140
Importances .. 141

xContents

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Satisfactions .. 142
The Decision Process ... 147

MERGING INTERESTS .. 147
The Scenario ... 148
The Alternatives ... 149
The Goals .. 149
The Constraints .. 150
George’s Version .. 151
Martha’s Version .. 153
Comparing the Two Versions ... 157

INSIDE THE FUZZY DECISION MAKER .. 157
Importances .. 157
Satisfactions .. 159
The Decision ... 160

Chapter 6. Fuzzy Thought Amplifier™
for Complex Situations . 163
DYNAMIC COMPLEXITIES IN EVERYDAY LIFE. 164
ORIGINS OF COGNITIVE MAPS .. 165

Crisp Cognitive Maps ... 165
Fuzzy Cognitive Maps .. 167

FUZZY THOUGHT AMPLIFIER™ ... 170
Normal Operation ... 170
“Trained” Operation ... 171

SIMPLE FUZZY THOUGHT AMPLFIERS™ .. 171
Stable Map .. 173
Oscillation ... 175
Chaos ... 176

CATPLANT .. 178
Naming and Defining the States ... 179
Creating Events .. 179
Event Values and Names .. 179
Adding Dynamic Graphics .. 183
Running Cycles .. 184
Adding Bias .. 185
Running Cycles with the Added Bias ... 186

xiContents

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Adding Additional States ... 186
Running the Augmented CatPlant.. 187

HEALTH CARE SYSTEM .. 188
The States .. 188
The Events .. 193
Running the Healthcare Map Cycles .. 196
Importance of the Healthcare Map ... 197

TRAINING A MAP TO PREDICT THE FUTURE 197
The Scenario ... 197
The States .. 198
The Events .. 198
Training the Map ... 200
Predicting the Future .. 202

HOW THE FUZZY THOUGHT AMPLIFIER™ WORKS.......................... 203
Definition Method ... 203
Incremental Method .. 203
Training Function .. 204

CONCLUDING THOUGHTS .. 204

Appendix A. Fuzzy Associative Memory (FAM) 207
FAMCALC... 209
COMPOSING A MEMORY .. 209
CREATING A MEMORY ... 211
HOW FAMCALC WORKS .. 212

Step 1 ... 212
Step 2 ... 213

Appendix B. Fuzzy Sets as Hypercube Points 215
SETS AS POINTS .. 215
USING KOSKOCALC .. 217
INTERACTION OP A SET AND ITS COMPLEMENT............................. 218
FAR CRISP AND NEAR CRISP ... 221
MEASURING A SET’S SIZE. .. 221
INTERACTION OF TWO FUZZY SETS... 223

xiiContents

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Distance ... 225
Subsethood ... 225

Appendix C. Disk Files and Descriptions 229
LIBRARY FILES ... 229
DR. FUZZY’S CALCULATORS .. 230
FUZZY KNOWLEDGE BUILDER™ FILES.. 230

Example Knowledge Base .. 230
Example Inference Engines .. 230
Example Problems ... 232

FUZZY DECISION MAKER™ ... 233
Choosing a College .. 233
Legal Problem .. 234
Unemployment .. 234
Financial Planning ... 234
Changing Residence .. 234

FUZZY THOUGHT AMPLFIER™ ... 235
README FILE ... 235

Appendix D. Inference Engine Programs 237
QUICKBASIC SIMPLE INFERENCE ENGINE .. 237
QUICKBASIC FAST INFERENCE ENGINE ... 249
C LANGUAGE INFERENCE ENGINE ... 261
FUZZ-C INFERENCE ENGINE .. 265
MOTOROLA 68HC05 ASSEMBLY SIMPLE INFERENCE ENGINE 266

Appendix E. Other Fuzzy Architecture 267
FLOPS .. 267

How FLOPS Works.. 269
BADGER—AN ANIMAL GUESSING GAME.. 269

Parallel FLOPS ... 270
STATE MACHINES... 270

Crisp State Machine .. 270
Fuzzy State Machine ... 271

xiiiContents

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

Putting a Fuzzy State Machine into Operation ... 272
The Rules and the Inference Method .. 273

Bibliography . 275
ARTICLES ... 275
BOOKS .. 276
CONFERENCE PROCEEDINGS.. 278

Index . 279

FOREWORD

The last decade has seen a large interest in technologies that have as their
motivation some aspect of human function. Some of these, like artificial
intelligence, can be seen to be rooted in the psychological domain. Others,
like neural networks, genetic algorithms, and evolutionary programming,
are inspired by reconsiderations of biological processes. Common to all these
so-called “intelligent technologies” is a need to represent knowledge in a
manner that is both faithful to the human style of processing information as
well as a form amenable to computer manipulation.

Fuzzy sets were originally introduced in 1965; the related discipline
of fuzzy logic is proving itself as the most appropriate medium to accomplish
this task. At one level, fuzzy logic can be viewed as a language that allows
one to translate sophisticated statements from natural language into a mathe-
matical formalism. Once we have this mathematical form of knowledge, we
are able to draw upon hundreds of years of recent history in technology to
manipulate this knowledge.

While the original motivation was to help manage the pervasive
imprecision in the world, the early practitioners of fuzzy logic dealt primarily
with theoretical issues. Many early papers were devoted to basic foundations
and to “potential” applications. This early phase was also marked by a strong
need to distinguish fuzzy logic from probability theory. As is well under-
stood now, fuzzy set theory and probability theory are directed at different
types of uncertainty. The next phase of the development of the discipline was

xv

xviContents

Fuzzy Logic A Practical Approach by F. Martin McNeill and Ellen Thro

driven by the success, particularly in Japan, of using fuzzy logic to design
simple controllers. This success has sparked a worldwide interest in using
this technology for the construction of complex systems models in engineer-
ing disciplines.

With the publication of this book we are beginning to see the emer-
gence of the next phase of fuzzy logic. During this phase we will see the
opening of the power of this methodology to middle-level “technocrats.” In
addition, the focus of this book, rather than being strictly on engineering
problems, provides a number of broader applications. The authors are to be
complimented on providing a book that will be very useful to those who
desire to use fuzzy logic to solve their problems. The book has many examples
and complementary software to help the novice.

I look forward to a future in which the techniques of fuzzy logic will
become as pervasive on desktop computers as spreadsheets and databases.
The authors of this book have taken an important step in helping realize this
future.

Ronald R. Yager
New York
June 1994

FILE INSTALLATIon PROCEDURE

The files are in compressed form on the disk and will be
expanded automatically during the installation pr ocedure.

1. With Windows active, click on the instalit.exe file.

2. A Dialog box will ask you if you want to proceed with the installation.
Click on OK.

3. A dialog box will ask whether the default directory is Ok. Click on
OK.

4. Installation will proceed, placing the files in the fuztools program
group.

5. Open any file by double- clicking on its icon.

	COVER
	WARRANTY
	DEDICATION
	ACKNOWLEDGMENT
	COPYRIGHT PAGE
	CONTENTS
	FORWARD
	1 THE FUZZY WORLD
	2 FUZZY NUMBERS AND LOGIC
	3 FUZZY SYSTEMS ON THE JOB
	4 FUZZY KNOWLEDGE BUILDER
	5 DESIGNING A FUZZY DECISION
	6 FUZZY THOUGHT AMPLIFIER FOR COMPLEX SITUATIONS
	APPENDIX A FUZZY ASSOCIATIVE MEMORY (FAM)
	APPENDIX B FUZZY SETS AS HYPERCUBE POINTS
	APPENDIX C DISK FILES AND DESCRIPTIONS
	APPENDIX D INFERENCE ENGINE PROGRAMS
	APPENDIX E OTHER FUZZY ARCHITECTURE
	BIBLIOGRAPHY
	INDEX
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z

	FILE INSTALLATION

