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1.0    Introduction        and       Purpose

This report is intended to help the reader understand what Artificial
Neural Networks are, how to use them, and where they are currently being
used.  

Artificial Neural Networks are being touted as the wave of the future
in computing.  They are indeed self learning mechanisms which don't
require the traditional skills of a programmer.  But unfortunately,
misconceptions have arisen.  Writers have hyped that these neuron-inspired
processors can do almost anything.  These exaggerations have created
disappointments for some potential users who have tried, and failed, to solve
their problems with neural networks.  These application builders have often
come to the conclusion that neural nets are complicated and confusing.
Unfortunately, that confusion has come from the industry itself.  A n
avalanche of articles have appeared touting a large assortment of different
neural networks, all with unique claims and specific examples.  Currently,
only a few of these neuron-based structures, paradigms actually, are being
used commercially.  One particular structure, the feedforward, back-
propagation network, is by far and away the most popular.  Most of the other
neural network structures represent models for "thinking" that are still being
evolved in the laboratories.  Yet, all of these networks are simply tools and as
such the only real demand they make is that they require the network
architect to learn how to use them.  

This report is intended to help that process by explaining these
structures, right down to the rules on how to tweak the "nuts and bolts."
Also this report discusses what types of applications are currently utilizing the
different structures and how some structures lend themselves to specific
solutions.  

In reading this report, a reader who wants a general understanding of
neural networks should read sections 2, 3, 6, 7 and 8.  These sections provide
an understanding of neural networks (section 2), their history (section 3), how
they are currently being applied (section 6), the tools to apply them plus the
probable future of neural processing (section 7), and a summary of what it all
means (section 8).  A more serious reader is invited to delve into the inner
working of neural networks (section 4) and the various ways neural networks
can be structured (section 5).
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2.0       What        are        Artificial         Neural        Networks?   

Artificial Neural Networks are relatively crude electronic models based
on the neural structure of the brain.   The brain basically learns from
experience.  It is natural proof that some problems that are beyond the scope
of current computers are indeed solvable by small energy efficient packages.
This brain modeling also promises a less technical way to develop machine
solutions.   This new approach to computing also provides a more graceful
degradation during system overload than its more traditional counterparts.  

These biologically inspired methods of computing are thought to be the
next major advancement in the computing industry.  Even simple animal
brains are capable of functions that are currently impossible for computers.
Computers do rote things well, like keeping ledgers or performing complex
math.  But computers have trouble recognizing even simple patterns much
less generalizing those patterns of the past into actions of the future.  

Now, advances in biological research promise an initial understanding
of the natural thinking mechanism.   This research shows that brains store
information as patterns.  Some of these patterns are very complicated and
allow us the ability to recognize individual faces from many different angles.
This process of storing information as patterns, utilizing those patterns, and
then solving problems encompasses a new field in computing.  This field, as
mentioned before, does not utilize traditional programming but involves the
creation of massively parallel networks and the training of those networks to
solve specific problems.  This field also utilizes words very different from
traditional computing, words like behave, react, self-organize, learn,
generalize, and forget.

2.1 Analogy to the Brain

The exact workings of the human brain are still a mystery.  Yet, some
aspects of this amazing processor are known.  In particular, the most basic
element of the human brain is a specific type of cell which, unlike the rest of
the body, doesn't appear to regenerate.  Because this type of cell is the only
part of the body that isn't slowly replaced, it is assumed that these cells are
what provides us with our abilities to remember, think, and apply previous
experiences to our every action.  These cells, all 100 billion of them, are
known as neurons.  Each of these neurons can connect with up to 200,000
other neurons, although 1,000 to 10,000 is typical.   

The power of the human mind comes from the sheer numbers of these
basic components and the multiple connections between them.  It also comes
from genetic programming and learning.
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The individual neurons are complicated.  They have a myriad of parts,
sub-systems, and control mechanisms.  They convey information via a host
of electrochemical pathways.  There are over one hundred different classes of
neurons, depending on the classification method used.  Together these
neurons and their connections form a process which is not binary, not stable,
and not synchronous.  In short, it is nothing like the currently available
electronic computers, or even artificial neural networks.

These artificial neural networks try to replicate only the most basic
elements of this complicated, versatile, and powerful organism.  They do it i n
a primitive way.  But for the software engineer who is trying to solve
problems, neural computing was never about replicating human brains.  It is
about machines and a new way to solve problems.

2.2 Artificial Neurons and How They Work

The fundamental processing element of a neural network is a neuron.
This building block of human awareness encompasses a few general
capabilities.  Basically, a biological neuron receives inputs from other sources,
combines them in some way, performs a generally nonlinear operation on
the result, and then outputs the final result.  Figure 2.2.1 shows the
relationship of these four parts.

•

4 Parts of a
Typical Nerve Cell

Dendrites:  Accept inputs

Soma:  Process the inputs

Axon:  Turn the processed inputs
           into outputs

Synapses:  The electrochemical
                 contact between neurons

Figure 2.2.1 A Simple Neuron.
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Within humans there are many variations on this basic type of neuron,
further complicating man's attempts at electrically replicating the process of
thinking.  Yet, all natural neurons have the same four basic components.
These components are known by their biological names - dendrites, soma,
axon, and synapses.  Dendrites are hair-like extensions of the soma which act
like input channels.  These input channels receive their input through the
synapses of other neurons.  The soma then processes these incoming signals
over time.   The soma then turns that processed value into an output which
is sent out to other neurons through the axon and the synapses.  

Recent experimental data has provided further evidence that biological
neurons are structurally more complex than the simplistic explanation above.
They are significantly more complex than the existing artificial neurons that
are built into today's artificial neural networks.  As biology provides a better
understanding of neurons, and as technology advances, network designers
can continue to improve their systems by building upon man's
understanding of the biological brain.  

But currently, the goal of artificial neural networks is not the grandiose
recreation of the brain.  On the contrary, neural network researchers are
seeking an understanding of nature's capabilities for which people can
engineer solutions to problems that have not been solved by traditional
computing.

To do this, the basic unit of neural networks, the artificial neurons,
simulate the four basic functions of natural neurons.  Figure 2.2.2 shows a
fundamental representation of an artificial neuron.  

. 

•
•
•

•

•

•

x 0

w
0

w
2

wn
x

n

I = ∑

w i

x j Summation

Y = f(I) Transfer 

Output 
Path

Processing
Element

Sum Transfer

Inputs x n Weights 

w
n

x 2

x
1

w
1

Figure 2.2.2 A Basic Artificial Neuron.
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In Figure 2.2.2, various inputs to the network are represented by the
mathematical symbol, x(n).  Each of these inputs are multiplied by a
connection weight.  These weights are represented by w(n).    In the simplest
case, these products are simply summed, fed through a transfer function to
generate a result, and then output.  This process lends itself to physical
implementation on a large scale in a small package.  This electronic
implementation is still possible with other network structures which utilize
different summing functions as well as different transfer functions.  

Some applications require "black and white," or binary, answers.  These
applications include the recognition of text, the identification of speech, and
the image deciphering of scenes.  These applications are required to turn real-
world inputs into discrete values.  These potential values are limited to some
known set, like the ASCII characters or the most common 50,000 English
words.  Because of this limitation of output options, these applications don't
always utilize networks composed of neurons that simply sum up, and
thereby smooth, inputs.  These networks may utilize the binary properties of
ORing and ANDing of inputs.  These functions, and many others, can be built
into the summation and transfer functions of a network.

Other networks work on problems where the resolutions are not just
one of several known values.  These networks need to be capable of an
infinite number of responses.  Applications of this type include the
"intelligence" behind robotic movements.  This "intelligence" processes
inputs and then creates outputs which actually cause some device to move.
That movement can span an infinite number of very precise motions.  These
networks do indeed want to smooth their inputs which, due to limitations of
sensors, comes in non-continuous bursts, say thirty times a second.  To do
that, they might accept these inputs, sum that data, and then produce an
output by, for example, applying a hyperbolic tangent as a transfer function.
In this manner, output values from the network are continuous and satisfy
more real world interfaces.

Other applications might simply sum and compare to a threshold,
thereby producing one of two possible outputs, a zero or a one.  Other
functions scale the outputs to match the application, such as the values
minus one and one.  Some functions even integrate the input data over time,
creating time-dependent networks.  

2.3 Electronic Implementation of Artificial Neurons

In currently available software packages these artificial neurons are
called "processing elements" and have many more capabilities than the
simple artificial neuron described above.  Those capabilities will be discussed
later in this report.  Figure 2.2.3 is a more detailed schematic of this still
simplistic artificial neuron.
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Outputs

Learning Cycle

Figure 2.2.3 A Model of a "Processing Element".

In Figure 2.2.3, inputs enter into the processing element from the
upper left.  The first step is for each of these inputs to be multiplied by their
respective weighting factor (w(n)).  Then these modified inputs are fed into
the summing function, which usually just sums these products.  Yet, many
different types of operations can be selected.  These operations could produce
a number of different values which are then propagated forward; values such
as the average, the largest, the smallest, the ORed values, the ANDed values,
etc.  Furthermore, most commercial development products allow software
engineers to create their own summing functions via routines coded in a
higher level language (C is commonly supported).  Sometimes the summing
function is further complicated by the addition of an activation function
which enables the summing function to operate in a time sensitive way.

Either way, the output of the summing function is then sent into a
transfer function.  This function then turns this number into a real output
via some algorithm.  It is this algorithm that takes the input and turns it into
a zero or a one, a minus one or a one, or some other number.  The transfer
functions that are commonly supported are sigmoid, sine, hyperbolic tangent,
etc.  This transfer function also can scale the output or control its value via
thresholds.  The result of the transfer function is usually the direct output of
the processing element.  An example of how a transfer function works is
shown in Figure 2.2.4.

This sigmoid transfer function takes the value from the summation
function, called sum in the Figure 2.2.4, and turns it into a value between
zero and one.
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Figure 2.2.4 Sigmoid Transfer Function.

Finally, the processing element is ready to output the result of its
transfer function.  This output is then input into other processing elements,
or to an outside connection, as dictated by the structure of the network.

All artificial neural networks are constructed from this basic building
block - the processing element or the artificial neuron.  It is variety and the
fundamental differences in these building blocks which partially cause the
implementing of neural networks to be an "art."

2.4 Artificial Network Operations

The other part of the "art" of using neural networks revolve around
the myriad of ways these individual  neurons can be clustered together.  This
clustering occurs in the human mind in such a way that information can be
processed in a dynamic, interactive, and self-organizing way.  Biologically,
neural networks are constructed in a three-dimensional world from
microscopic components.  These neurons seem capable of nearly unrestricted
interconnections.  That is not true of any proposed, or existing, man-made
network.  Integrated circuits, using current technology, are two-dimensional
devices with a limited number of layers for interconnection.  This physical
reality restrains the types, and scope, of artificial neural networks that can be
implemented in silicon.

Currently, neural networks are the simple clustering of the primitive
artificial neurons.  This clustering occurs by creating layers which are then
connected to one another.  How these layers connect is the other part of the
"art" of engineering networks to resolve real world problems.
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HIDDEN
LAYER
(there may be several 
  hidden layers)

OUTPUT
LAYER

INPUT
LAYER

Figure 2.4.1 A Simple Neural Network Diagram.

Basically, all artificial neural networks have a similar structure or
topology as shown in Figure 2.4.1.  In that structure some of the neurons
interfaces to the real world to receive its inputs.  Other neurons provide the
real world with the network's outputs.  This output might be the particular
character that the network thinks that it has  scanned or the particular image
it thinks is being viewed.  All the rest of the neurons are hidden from view.  

But a neural network is more than a bunch of neurons.  Some early
researchers tried to simply connect neurons in a random manner, without
much success.  Now, it is known that even the brains of snails are structured
devices.  One of the easiest ways to design a structure is to create layers of
elements.  It is the grouping of these neurons into layers, the connections
between these layers, and the summation and transfer functions that
comprises a functioning neural network.  The general terms used to describe
these characteristics are common to all networks.

Although there are useful networks which contain only one layer, or
even one element, most applications require networks that contain at least
the three normal types of layers - input, hidden, and output.  The layer of
input neurons receive the data either from input files or directly from
electronic sensors in real-time applications.  The output layer sends
information directly to the outside world, to a secondary computer process, or
to other devices such as a mechanical control system. Between these two
layers can be many hidden layers.  These internal layers contain many of the
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neurons in various interconnected structures.  The inputs and outputs of
each of these hidden neurons simply go to other neurons.  

In most networks each neuron in a hidden layer receives the signals
from all of the neurons in a layer above it, typically an input layer.  After a
neuron performs its function it passes its output to all of the neurons in the
layer below it, providing a feedforward path to the output.  (Note: in section 5
the drawings are reversed, inputs come into the bottom and outputs come
out the top.)

These lines of communication from one neuron to another are
important aspects of neural networks.  They are the glue to the system.  They
are the connections which provide a variable strength to an input.  There are
two types of these connections.  One causes the summing mechanism of the
next neuron to add while the other causes it to subtract.  In more human
terms one excites while the other inhibits.  

Some networks want a neuron to inhibit the other neurons in the
same layer.  This is called lateral inhibition.  The most common use of this is
in the output layer.  For example in text recognition if the probability of a
character being a "P" is .85 and the probability of the character being an "F" is
.65, the network wants to choose the highest probability and inhibit all the
others.  It can do that with lateral inhibition.  This concept is also called
competition.

Another type of connection is feedback.  This is where the output of
one layer routes back to a previous layer.  An example of this is shown i n
Figure 2.4.2.

Inputs

Feedback

Outputs

Competition
(or inhibition)

Feedback

Figure 2.4.2
Simple Network with Feedback and Competition.
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The way that the neurons are connected to each other has a significant
impact on the operation of the network.  In the larger, more professional
software development packages the user is allowed to add, delete, and control
these connections at will.  By "tweaking" parameters these connections can be
made to either excite or inhibit.  

2.5 Training an Artificial Neural Network

Once a network has been structured for a particular application, that
network is ready to be trained.  To start this process the initial weights are
chosen randomly.  Then, the training, or learning, begins.

There are two approaches to training - supervised and unsupervised.
Supervised training involves a mechanism of providing the network with
the desired output either by manually "grading" the network's performance
or by providing the desired outputs with the inputs.  Unsupervised training
is where the network has to make sense of the inputs without outside help.

The vast bulk of networks utilize supervised training.  Unsupervised
training is used to perform some initial characterization on inputs.  However,
in the full blown sense of being truly self learning, it is still just a shining
promise that is not fully understood, does not completely work, and thus is
relegated to the lab.

2.5.1 Supervised Training.

In supervised training, both the inputs and the outputs are provided.
The network then processes the inputs and compares its resulting outputs
against the desired outputs.  Errors are then propagated back through the
system, causing the system to adjust the weights which control the network.
This process occurs over and over as the weights are continually tweaked.
The set of data which enables the training is called the "training set."  During
the training of a network the same set of data is processed many times as the
connection weights are ever refined.

The current commercial network development packages provide tools
to monitor how well an artificial neural network is converging on the ability
to predict the right answer.  These tools allow the training process to go on for
days, stopping only when the system reaches some statistically desired point,
or accuracy.  However, some networks never learn.  This could be because the
input data does not contain the specific information from which the desired
output is derived.  Networks also don't converge if there is not enough data
to enable complete learning.  Ideally, there should be enough data so that part
of the data can be held back as a test.  Many layered networks with multiple
nodes are capable of memorizing data.  To monitor the network to determine
if the system is simply memorizing its data in some nonsignificant way,
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supervised training needs to hold back a set of data to be used to test the
system after it has undergone its training.  (Note: memorization is avoided by
not having too many processing elements.)

If a network simply can't solve the problem, the designer then has to
review the input and outputs, the number of layers, the number of elements
per layer, the connections between the layers, the summation, transfer, and
training functions, and even the initial weights themselves.  Those changes
required to create a successful network constitute a process wherein the "art"
of neural networking occurs.

Another part of the designer's creativity governs the rules of training.
There are many laws (algorithms) used to implement the adaptive feedback
required to adjust the weights during training.  The most common technique
is backward-error propagation, more commonly known as back-propagation.
These various learning techniques are explored in greater depth later in this
report.  

Yet, training is not just a technique.  It involves a "feel," and conscious
analysis, to insure that the network is not overtrained.  Initially, an artificial
neural network configures itself with the general statistical trends of the data.
Later, it continues to "learn" about other aspects of the data which may be
spurious from a general viewpoint.  

When finally the system has been correctly trained, and no further
learning is needed, the weights can, if desired, be "frozen."  In some systems
this finalized network is then turned into hardware so that it can be fast.
Other systems don't lock themselves in but continue to learn while i n
production use.

2.5.2 Unsupervised, or Adaptive Training.

The other type of training is called unsupervised training.  In
unsupervised training, the network is provided with inputs but not with
desired outputs.  The system itself must then decide what features it will use
to group the input data.  This is often referred to as self-organization or
adaption.

At the present time, unsupervised learning is not well understood.
This adaption to the environment is the promise which would enable science
fiction types of robots to continually learn on their own as they encounter
new situations and new environments.  Life is filled with situations where
exact training sets do not exist.  Some of these situations involve military
action where new combat techniques and new weapons might be
encountered.  Because of this unexpected aspect to life and the human desire
to be prepared, there continues to be research into, and hope for, this field.
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Yet, at the present time, the vast bulk of neural network work is in systems
with supervised learning.  Supervised learning is achieving results.

One of the leading researchers into unsupervised learning is Tuevo
Kohonen, an electrical engineer at the Helsinki University of Technology.  He
has developed a self-organizing network, sometimes called an auto-
associator, that learns without the benefit of knowing the right answer.  It is
an unusual looking network in that it contains one single layer with many
connections.  The weights for those connections have to be initialized and the
inputs have to be normalized.  The neurons are set up to compete in a
winner-take-all fashion.

Kohonen continues his research into networks that are structured
differently than standard, feedforward, back-propagation approaches.
Kohonen's work deals with the grouping of neurons into fields.  Neurons
within a field are "topologically ordered."  Topology is a branch of
mathematics that studies how to map from one space to another without
changing the geometric configuration.  The three-dimensional groupings
often found in mammalian brains are an example of topological ordering.

Kohonen has pointed out that the lack of topology in neural network
models make today's neural networks just simple abstractions of the real
neural networks within the brain.  As this research continues, more powerful
self learning networks may become possible.  But currently, this field remains
one that is still in the laboratory.

2.6 How Neural Networks Differ from Traditional Computing and 
Expert Systems

Neural networks offer a different way to analyze data, and to recognize
patterns within that data, than traditional computing methods.  However,
they are not a solution for all computing problems.  Traditional computing
methods work well for problems that can be well characterized.  Balancing
checkbooks, keeping ledgers, and keeping tabs of inventory are well defined
and do not require the special characteristics of neural networks.  Table 2.6.1
identifies the basic differences between the two computing approaches.

Traditional computers are ideal for many applications.  They can
process data, track inventories, network results, and protect equipment.
These applications do not need the special characteristics of neural networks.

Expert systems are an extension of traditional computing and are
sometimes called the fifth generation of computing.  (First generation
computing used switches and wires.  The second generation occurred because
of the development of the transistor.  The third generation involved solid-
state technology, the use of integrated circuits, and higher level languages like
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COBOL, Fortran, and "C".  End user tools, "code generators," are known as the
fourth generation.)  The fifth generation involves artificial intelligence.

CHARACTERISTICS TRADITIONAL
COMPUTING

(including Expert
Systems)

ARTIFICIAL NEURAL
NETWORKS

Processing style Sequential Parallel
Functions Logically (left brained)

via
Rules
Concepts
Calculations

Gestault  (right brained)
via

Images
Pictures

    Controls
Learning Method by rules (didactically) by example

(Socratically)
Applications Accounting, word

processing, math,
inventory, digital
communications

Sensor processing,
speech recognition,
pattern recognition, text
recognition

Table 2.6.1 Comparison of Computing Approaches.

Typically, an expert system consists of two parts, an inference engine and a
knowledge base.  The inference engine is generic.  It handles the user
interface, external files, program access, and scheduling.  The knowledge base
contains the information that is specific to a particular problem.  This
knowledge base allows an expert to define the rules which govern a process.
This expert does not have to understand traditional programming.  That
person simply has to understand both what he wants a computer to do and
how the mechanism of the expert system shell works.  It is this shell, part of
the inference engine, that actually tells the computer how to implement the
expert's desires.  This implementation occurs by the expert system generating
the computer's programming itself, it does that through "programming" of
its own.  This programming is needed to establish the rules for a particular
application.  This method of establishing rules is also complex and does
require a detail oriented person.

Efforts to make expert systems general have run into a number of
problems.  As the complexity of the system increases, the system simply
demands too much computing resources and becomes too slow.  Expert
systems have been found to be feasible only when narrowly confined.

Artificial neural networks offer a completely different approach to
problem solving and they are sometimes called the sixth generation of
computing.  They try to provide a tool that both programs itself and learns on
its own.  Neural networks are structured to provide the capability to solve
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problems without the benefits of an expert and without the need of
programming.  They can seek patterns in data that no one knows are there.

A comparison of artificial intelligence's expert systems and neural
networks is contained in Table 2.6.2.

Characteristics Von Neumann
Architecture Used for

Expert Systems

Artificial Neural
Networks

Processors VLSI (traditional
processors)

Artificial Neural
Networks; variety of
technologies; hardware
development is on
going

Memory Separate The same
Processing Approach Processes problem one

rule at a time;
sequential

Multiple,
simultaneously

Connections Externally
programmable

Dynamically self
programming

Self learning Only algorithmic
parameters modified

Continuously adaptable

Fault tolerance None without special
processors

Significant in the very
nature of the
interconnected neurons

Use of Neurobiology in
design

None Moderate

Programming Through a rule based
shell; complicated

Self-programming; but
network must be
properly set up

Ability to be fast Requires big processors Requires multiple
custom-built chips

Table 2.6.2 Comparisons of Expert Systems and Neural Networks.

Expert systems have enjoyed significant successes.  However, artificial
intelligence has encountered problems in areas such as vision, continuous
speech recognition and synthesis, and machine learning.  Artificial
intelligence also is hostage to the speed of the processor that it runs on.
Ultimately, it is restricted to the theoretical limit of a single processor.
Artificial intelligence is also burdened by the fact that experts don't always
speak in rules.

Yet, despite the advantages of neural networks over both expert
systems and more traditional computing in these specific areas, neural nets
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are not complete solutions.  They offer a capability that is not ironclad, such as
a debugged accounting system.  They learn, and as such, they do continue to
make "mistakes."  Furthermore, even when a network has been developed,
there is no way to ensure that the network is the optimal network.   

Neural systems do exact their own demands.  They do require their
implementor to meet a number of conditions.  These conditions include:

- a data set which includes the information which can characterize the
problem.

- an adequately sized data set to both train and test the network.

- an understanding of the basic nature of the problem to be solved so
that basic first-cut decision on creating the network can be made.
These decisions include the activization and transfer functions, and
the learning methods.

- an understanding of the development tools.

- adequate processing power (some applications demand real-time
processing that exceeds what is available in the standard, sequential
processing hardware.  The development of hardware is the key to the
future of neural networks).

Once these conditions are met, neural networks offer the opportunity
of solving problems in an arena where traditional processors lack both the
processing power and a step-by-step methodology.  A number of very
complicated problems cannot be solved in the traditional computing
environments.  For example, speech is something that all people can easily
parse and understand.  A person can understand a southern drawl, a Bronx
accent, and the slurred words of a baby.  Without the massively paralleled
processing power of a neural network, this process is virtually impossible for
a computer.  Image recognition is another task that a human can easily do but
which stymies even the biggest of computers.  A person can recognize a plane
as it turns, flies overhead, and disappears into a dot.  A traditional computer
might try to compare the changing images to a number of very different
stored patterns.

This new way of computing requires skills beyond traditional
computing.  It is a natural evolution.  Initially, computing was only hardware
and engineers made it work.  Then, there were software specialists -
programmers, systems engineers, data base specialists, and designers.  Now,
there are also neural architects.  This new professional needs to be skilled
different than his predecessors of the past.  For instance, he will need to know
statistics in order to choose and evaluate training and testing situations.  This
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skill of making neural networks work is one that will stress the logical
thinking of current software engineers.

In summary, neural networks offer a unique way to solve some
problems while making their own demands.  The biggest demand is that the
process is not simply logic.  It involves an empirical skill, an intuitive feel as
to how a network might be created.
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3.0      History       of        Neural         Networks

The study of the human brain is thousands of years old.  With the
advent of modern electronics, it was only natural to try to harness this
thinking process.  The first step toward artificial neural networks came i n
1943 when Warren McCulloch, a neurophysiologist, and a young
mathematician, Walter Pitts, wrote a paper on how neurons might work.
They modeled a simple neural network with electrical circuits.

Reinforcing this concept of neurons and how they work was a book
written by Donald Hebb.  The Organization of Behavior  was written in 1949.
It pointed out that neural pathways are strengthened each time that they are
used.

As computers advanced into their infancy of the 1950s, it became
possible to begin to model the rudiments of these theories concerning human
thought.  Nathanial Rochester from the IBM research laboratories led the first
effort to simulate a neural network.  That first attempt failed.  But later
attempts were successful.  It was during this time that traditional computing
began to flower and, as it did, the emphasis in computing left the neural
research in the background.

Yet, throughout this time, advocates of "thinking machines"
continued to argue their cases.  In 1956 the Dartmouth Summer Research
Project on Artificial Intelligence provided a boost to both artificial intelligence
and neural networks.  One of the outcomes of this process was to stimulate
research in both the intelligent side, AI, as it is known throughout the
industry, and in the much lower level neural processing part of the brain.

In the years following the Dartmouth Project, John von Neumann
suggested imitating simple neuron functions by using telegraph relays or
vacuum tubes.  Also, Frank Rosenblatt, a neuro-biologist  of Cornell, began
work on the Perceptron.  He was intrigued with the operation of the eye of a
fly.  Much of the processing which tells a fly to flee is done in its eye.  The
Perceptron, which resulted from this research, was built in hardware and is
the oldest neural network still in use today.  A single-layer perceptron was
found to be useful in classifying a continuous-valued set of inputs into one of
two classes.  The perceptron computes a weighted sum of the inputs, subtracts
a threshold, and passes one of two possible values out as the result.
Unfortunately, the perceptron is limited and was proven as such during the
"disillusioned years" in Marvin Minsky and Seymour Papert's 1969 book
Perceptrons.

In 1959, Bernard Widrow and Marcian Hoff of Stanford developed
models they called ADALINE and MADALINE.  These models were named
for their use of Multiple ADAptive LINear Elements.  MADALINE was the



18

first neural network to be applied to a real world problem.  It is an adaptive
filter which eliminates echoes on phone lines.  This neural network is still i n
commercial use.

Unfortunately, these earlier successes caused people to exaggerate the
potential of neural networks, particularly in light of the limitation in the
electronics then available.  This excessive hype, which flowed out of the
academic and technical worlds, infected the general literature of the time.
Disappointment set in as promises were unfilled.  Also, a fear set in as writers
began to ponder what effect "thinking machines" would have on man.
Asimov's series on robots revealed the effects on man's morals and values
when machines where capable of doing all of mankind's work.  Other writers
created more sinister computers, such as HAL from the movie 2001.

These fears, combined with unfulfilled, outrageous claims, caused
respected voices to critique the neural network research.  The result was to
halt much of the funding.  This period of stunted growth lasted through 1981.

In 1982 several events caused a renewed interest.  John Hopfield of
Caltech presented a paper to the national Academy of Sciences.  Hopfield's
approach was not to simply model brains but to create useful devices.  With
clarity and mathematical analysis, he showed how such networks could work
and what they could do.  Yet, Hopfield's biggest asset was his charisma.  He
was articulate, likeable, and a champion of a dormant technology.

At the same time, another event occurred.  A conference was held i n
Kyoto, Japan.  This conference was the US-Japan Joint Conference on
Cooperative/Competitive Neural Networks.  Japan subsequently announced
their Fifth Generation effort.  US periodicals picked up that story, generating a
worry that the US could be left behind.  Soon funding was flowing once again.

By 1985 the American Institute of Physics began what has become an
annual meeting - Neural Networks for Computing.  By 1987, the Institute of
Electrical and Electronic Engineer's (IEEE) first International Conference on
Neural Networks drew more than 1,800 attendees.

By 1989 at the Neural Networks for Defense meeting Bernard Widrow
told his audience that they were engaged in World War IV, "World War III
never happened," where the battlefields are world trade and manufacturing.
The 1990 US Department of Defense Small Business Innovation Research
Program named 16 topics which specifically targeted neural networks with an
additional 13 mentioning the possible use of neural networks.

Today, neural networks discussions are occurring everywhere.  Their
promise seems very bright as nature itself is the proof that this kind of thing
works.  Yet, its future, indeed the very key to the whole technology, lies i n
hardware development.  Currently most neural network development is
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simply proving that the principal works.  This research is developing neural
networks that, due to processing limitations, take weeks to learn.  To take
these prototypes out of the lab and put them into use requires specialized
chips.  Companies are working on three types of neuro chips - digital, analog,
and optical.  Some companies are working on creating a "silicon compiler" to
generate a neural network Application Specific Integrated Circuit (ASIC).
These ASICs and neuron-like digital chips appear to be the wave of the near
future.  Ultimately, optical chips look very promising.  Yet, it may be years
before optical chips see the light of day in commercial applications.
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4.0      Detailed        Description       of        Neural       Network       Components        and         How        They   
      Work

Now that there is a general understanding of artificial neural networks,
it is appropriate to explore them in greater detail.  But before jumping into
the various networks, a more complete understanding of the inner workings
of an neural network is needed.  As stated earlier, artificial neural networks
are a large class of parallel processing architectures which are useful in specific
types of complex problems.  These architectures should not be confused with
common parallel processing configurations which apply many sequential
processing units to standard computing topologies.  Instead, neural networks
are radically different than conventional Von Neumann computers in that
they crudely mimic the fundamental properties of man's brain.

As mentioned earlier, artificial neural networks are loosely based on
biology.  Current research into the brain's physiology has unlocked only a
limited understanding of how neurons work or even what constitutes
intelligence in general.  Researchers are working in both the biological and
engineering fields to further decipher the key mechanisms for how man
learns and reacts to everyday experiences.  Improved knowledge in neural
processing helps create better, more succinct artificial networks.  It also creates
a cornucopia of new, and ever evolving, architectures.  Kunihiko
Fukushima, a senior research scientist in Japan, describes the give and take of
building a neural network model; "We try to follow physiological evidence as
faithfully as possible.  For parts not yet clear, however, we construct a
hypothesis and build a model that follows that hypothesis.  We then analyze
or simulate the behavior of the model and compare it with that of the brain.
If we find any discrepancy in the behavior between the model and the brain,
we change the initial hypothesis and modify the model.  We repeat this
procedure until the model behaves in the same way as the brain."  This
common process has created thousands of network topologies.
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Figure 4.0.1 Processing Element.

Neural computing is about machines, not brains.  It is the process of
trying to build processing systems that draw upon the highly successful
designs naturally occuring in biology. This linkage with biology is the reason
that there is a common architectural thread throughout today's artificial
neural networks.  Figure 4.0.1 shows a model of an artificial neuron, or
processing element, which embodies a wide variety of network architectures.
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This figure is adapted from NeuralWare's simulation model used i n
NeuralWorks Profession II/Plus.  NeuralWare sells a  artificial neural
network design and development software package.  Their processing
element model shows that networks designed for prediction can be very
similar to networks designed for classification or any other network category.
Prediction, classification and other network categories will be discussed later.
The point here is that all artificial neural processing elements have common
components.

4.1       Major        Components        of      an         Artificial        Neuron   

This section describes the seven major components which make up an
artificial neuron.  These components are valid whether the neuron is used
for input, output, or is in one of the hidden layers.  

Component 1.  Weighting Factors:  A neuron usually receives many
simultaneous inputs.  Each input has its own relative weight which gives the
input the impact that it needs on the processing element's summation
function.  These weights perform the same type of function as do the the
varying synaptic strengths of biological neurons.  In both cases, some inputs
are made more important than others so that they have a greater effect on the
processing element as they combine to produce a neural response.  

Weights are adaptive coefficients within the network that determine
the intensity of the input signal as registered by the artificial neuron.  They
are a measure of an input's connection strength.  These strengths can be
modified in response to various training sets and according to a network’s
specific topology or through its learning rules.

Component 2.  Summation Function:  The first step in a processing
element's operation is to compute the weighted sum of all of the inputs.
Mathematically, the inputs and the corresponding weights are vectors which
can be represented as (i1, i2 . . . in) and (w1, w2 . . . wn).  The total input signal
is the dot, or inner, product of these two vectors.  This simplistic summation
function is found by muliplying each component of the i vector by the
corresponding component of the w vector and then adding up all the
products.  Input1 = i1 * w1, input2 = i2 * w2, etc., are added as input1 + input2
+ . . . + inputn.  The result is a single number, not a multi-element vector.  

Geometrically, the inner product of two vectors can be considered a
measure of their similarity.  If the vectors point in the same direction, the
inner product is maximum; if the vectors point in opposite direction (180
degrees out of phase), their inner product is minimum.

The summation function can be more complex than just the simple
input and weight sum of products.  The input and weighting coefficients can
be combined in many different ways before passing on to the transfer
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function.  In addition to a simple product summing, the summation function
can select the minimum, maximum, majority, product, or several
normalizing algorithms.  The specific algorithm for combining neural inputs
is determined by the chosen network architecture and paradigm.

 Some summation functions have an additional process applied to the
result before it is passed on to the transfer function.  This process is
sometimes called the activation function.  The purpose of utilizing an
activation function is to allow the summation output to vary with respect to
time.  Activation functions currently are pretty much confined to research.
Most of the current network implementations use an "identity" activation
function, which is equivalent to not having one.  Additionally, such a
function is likely to be a component of the network as a whole rather than of
each individual processing element component.

Component 3.  Transfer Function:  The result of the summation
function, almost always the weighted sum, is transformed to a working
output through an algorithmic process known as the transfer function.  In the
transfer function the summation total can be compared with some threshold
to determine the neural output.  If the sum is greater than the threshold
value, the processing element generates a signal.  If the sum of the input and
weight products is less than the threshold, no signal (or some inhibitory
signal) is generated.  Both types of response are significant.

The threshold, or transfer function, is generally non-linear.  Linear
(straight-line) functions are limited because the output is simply proportional
to the input.  Linear functions are not very useful.  That was the problem i n
the earliest network models as noted in Minsky and Papert's book
Perceptrons.

The transfer function could be something as simple as depending upon
whether the result of the summation function is positive or negative.  The
network could output zero and one, one and minus one, or other numeric
combinations.  The transfer function would then be a "hard limiter" or step
function.  See Figure 4.1.1 for sample transfer functions.  
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Figure 4.1.1
Sample Transfer Functions.

Another type of transfer function, the threshold or ramping function, could
mirror the input within a given range and still act as a hard limiter outside
that range.  It is a linear function that has been clipped to minimum and
maximum values, making it non-linear.  Yet another option would be a
sigmoid or S-shaped curve.  That curve approaches a minimum and
maximum value at the asymptotes.  It is common for this curve to be called a
sigmoid when it ranges between 0 and 1, and a hyperbolic tangent when it
ranges between -1 and 1.  Mathematically, the exciting feature of these curves
is that both the function and its derivatives are continuous.  This option
works fairly well and is often the transfer function of choice.  Other transfer
functions are dedicated to specific network architectures and will be discussed
later.

Prior to applying the transfer function, uniformly distributed random
noise may be added.  The source and amount of this noise is determined by
the learning mode of a given network paradigm.  This noise is normally
referred to as "temperature" of the artificial neurons.  The name,
temperature, is derived from the physical phenomenon that as people
become too hot or cold their ability to think is affected.  Electronically, this
process is simulated by adding noise.  Indeed, by adding different levels of
noise to the summation result, more brain-like transfer functions are
realized.  To more closely mimic nature's characteristics, some experimenters
are using a gaussian noise source.  Gaussian noise is similar to uniformly
distributed noise except that the distribution of random numbers within the
temperature range is along a bell curve.  The use of temperature is an
ongoing research area and is not being applied to many engineering
applications.
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NASA just announced a network topology which uses what it calls a
temperature coefficient in a new feed-forward, back-propagation learning
function.  But this temperature coefficient is a global term which is applied to
the gain of the transfer function.  It should not be confused with the more
common term, temperature, which is simple noise being added to individual
neurons. In contrast, the global temperature coefficient allows the transfer
function to have a learning variable much like the synaptic input weights.
This concept is claimed to create a network which has a significantly faster (by
several order of magnitudes) learning rate and provides more accurate results
than other feedforward, back-propagation networks.

Component 4.  Scaling and Limiting:  After the processing element's
transfer function, the result can pass through additional processes which scale
and limit.  This scaling simply multiplies a scale factor times the transfer
value, and then adds an offset.  Limiting is the mechanism which insures
that the scaled result does not exceed an upper or lower bound.  This limiting
is in addition to the hard limits that the original transfer function may have
performed.  

This type of scaling and limiting is mainly used in topologies to test
biological neuron models, such as James Anderson's brain-state-in-the-box.

Component 5.  Output Function (Competition):  Each processing
element is allowed one output signal which it may output to hundreds of
other neurons.  This is just like the biological neuron, where there are many
inputs and only one output action.  Normally, the output is directly
equivalent to the transfer function's result.  Some network topologies,
however, modify the transfer result to incorporate competition among
neighboring processing elements.  Neurons are allowed to compete with each
other, inhibiting processing elements unless they have great strength.
Competition can occur at one or both of two levels.  First, competition
determines which artificial neuron will be active, or provides an output.
Second, competitive inputs help determine which processing element will
participate in the learning or adaptation process.

Component 6.  Error Function and Back-Propagated Value:  In most
learning networks the difference between the current output and the desired
output is calculated.  This raw error is then transformed by the error function
to match a particular network architecture.  The most basic architectures use
this error directly, but some square the error while retaining its sign, some
cube the error, other paradigms modify the raw error to fit their specific
purposes.  The artificial neuron's error is then typically propagated into the
learning function of another processing element.  This error term is
sometimes called the current error.

The current error is typically propagated backwards to a previous layer.
Yet, this back-propagated value can be either the current error, the current
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error scaled in some manner (often by the derivative of the transfer function),
or some other desired output depending on the network type.  Normally, this
back-propagated value, after being scaled by the learning function, is
multiplied against each of the incoming connection weights to modify them
before the next learning cycle.

Component 7.  Learning Function:  The purpose of the learning
function is to modify the variable connection weights on the inputs of each
processing element according to some neural based algorithm.  This process
of changing the weights of the input connections to achieve some desired
result can also be called the adaption function, as well as the learning mode.
There are two types of learning: supervised and unsupervised.  Supervised
learning requires a teacher.  The teacher may be a training set of data or an
observer who grades the performance of the network results.  Either way,
having a teacher is learning by reinforcement.  When there is no external
teacher, the system must organize itself by some internal criteria designed
into the network.  This is learning by doing.

4.2     Teaching        an        Artificial        Neural           Network   

4.2.1 Supervised Learning.

The vast majority of artificial neural network solutions have been
trained with supervision.  In this mode, the actual output of a neural
network is compared to the desired output.  Weights, which are usually
randomly set to begin with, are then adjusted by the network so that the next
iteration, or cycle, will produce a closer match between the desired and the
actual output.  The learning method tries to minimize the current errors of
all processing elements.  This global error reduction is created over time by
continuously modifying the input weights until an acceptable network
accuracy is reached.

With supervised learning, the artificial neural network must be
trained before it becomes useful.  Training consists of presenting input and
output data to the network.  This data is often referred to as the training set.
That is, for each input set provided to the system, the corresponding desired
output set is provided as well.  In most applications, actual data must be used.
This training phase can consume a lot of time.  In prototype systems, with
inadequate processing power, learning can take weeks.  This training is
considered complete when the neural network reaches an user defined
performance level.  This level signifies that the network has achieved the
desired statistical accuracy as it produces the required outputs for a given
sequence of inputs.  When no further learning is necessary, the weights are
typically frozen for the application.  Some network types allow continual
training, at a much slower rate, while in operation.  This helps a network to
adapt to gradually changing conditions.
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Training sets need to be fairly large to contain all the needed
information if the network is to learn the features and relationships that are
important.  Not only do the sets have to be large but the training sessions
must include a wide variety of data.  If the network is trained just one
example at a time, all the weights set so meticulously for one fact could be
drastically altered in learning the next fact.  The previous facts could be
forgotten in learning something new.  As a result, the system has to learn
everything together, finding the best weight settings for the total set of facts.
For example, in teaching a system to recognize pixel patterns for the ten digits,
if there were twenty examples of each digit, all the examples of the digit seven
should not be presented at the same time.

How the input and output data is represented, or encoded, is a major
component to successfully instructing a network.  Artificial networks only
deal with numeric input data.  Therefore, the raw data must often be
converted from the external environment.  Additionally, it is usually
necessary to scale the data, or normalize it to the network's paradigm.  This
pre-processing of real-world stimuli, be they cameras or sensors, into machine
readable format is already common for standard computers.  Many
conditioning techniques which directly apply to artificial neural network
implementations are readily available.  It is then up to the network designer
to find the best data format and matching network architecture for a given
application.

After a supervised network performs well on the training data, then it
is important to see what it can do with data it has not seen before.  If a system
does not give reasonable outputs for this test set, the training period is not
over.  Indeed, this testing is critical to insure that the network has not simply
memorized a given set of data but has learned the general patterns involved
within an application.

4.2.2 Unsupervised Learning.

Unsupervised learning is the great promise of the future.  It shouts that
computers could someday learn on their own in a true robotic sense.
Currently, this learning method is limited to networks known as self-
organizing maps.  These kinds of networks are not in widespread use.  They
are basically an academic novelty.  Yet, they have shown they can provide a
solution in a few instances, proving that their promise is not groundless.
They have been proven to be more effective than many algorithmic
techniques for numerical aerodynamic flow calculations.  They are also being
used in the lab where they are split into a front-end network that recognizes
short, phoneme-like fragments of speech which are then passed on to a back-
end network.  The second artificial network recognizes these strings of
fragments as words.  
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This promising field of unsupervised learning is sometimes called self-
supervised learning.  These networks use no external influences to adjust
their weights.  Instead, they internally monitor their performance.  These
networks look for regularities or trends in the input signals, and makes
adaptations according to the function of the network.  Even without being
told whether it's right or wrong, the network still must have some
information about how to organize itself.  This information is built into the
network topology and learning rules.

An unsupervised learning algorithm might emphasize cooperation
among clusters of processing elements.  In such a scheme, the clusters would
work together.  If some external input activated any node in the cluster, the
cluster's activity as a whole could be increased.  Likewise, if external input to
nodes in the cluster was decreased, that could have an inhibitory effect on the
entire cluster.

Competition between processing elements could also form a basis for
learning.  Training of competitive clusters could amplify the responses of
specific groups to specific stimuli.  As such, it would associate those groups
with each other and with a specific appropriate response.  Normally, when
competition for learning is in effect, only the weights belonging to the
winning processing element will be updated.

At the present state of the art, unsupervised learning is not well
understood and is still the subject of research.  This research is currently of
interest to the government because military situations often do not have a
data set available to train a network until a conflict arises.

4.2.3 Learning Rates.

The rate at which ANNs learn depends upon several controllable
factors.  In selecting the approach there are many trade-offs to consider.
Obviously, a slower rate means a lot more time is spent in accomplishing the
off-line learning to produce an adequately trained system.  With the faster
learning rates, however, the network may not be able to make the fine
discriminations possible with a system that learns more slowly.  Researchers
are working on producing the best of both worlds.

Generally, several factors besides time have to be considered when
discussing the off-line training task, which is often described as "tiresome."
Network complexity, size, paradigm selection, architecture, type of learning
rule or rules employed, and desired accuracy must all be considered.  These
factors play a significant role in determining how long it will take to train a
network.  Changing any one of these factors may either extend the training
time to an unreasonable length or even result in an unacceptable accuracy.
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Most learning functions have some provision for a learning rate, or
learning constant.  Usually this term is positive and between zero and one.  If
the learning rate is greater than one, it is easy for the learning algorithm to
overshoot in correcting the weights, and the network will oscillate.  Small
values of the learning rate will not correct the current error as quickly, but if
small steps are taken in correcting errors, there is a good chance of arriving at
the best minimum convergence.

4.2.4 Learning Laws.

Many learning laws are in common use.  Most of these laws are some
sort of variation of the best known and oldest learning law, Hebb's Rule.
Research into different learning functions continues as new ideas routinely
show up in trade publications.  Some researchers have the modeling of
biological learning as their main objective.  Others are experimenting with
adaptations of their perceptions of how nature handles learning.  Either way,
man's understanding of how neural processing actually works is very
limited.  Learning is certainly more complex than the simplifications
represented by the learning laws currently developed.  A few of the major
laws are presented as examples.

Hebb's Rule:  The first, and undoubtedly the best known, learning rule
was introduced by Donald Hebb.  The description appeared in his book T h e
Organization of Behavior  in 1949.  His basic rule is:  If a neuron receives an
input from another neuron, and if both are highly active (mathematically
have the same sign), the weight between the neurons should be strengthened.

Hopfield Law:  It is similar to Hebb's rule with the exception that it
specifies the magnitude of the strengthening or weakening.  It states, "if the
desired output and the input are both active or both inactive, increment the
connection weight by the learning rate, otherwise decrement the weight by
the learning rate."

The Delta Rule:  This rule is a further variation of Hebb's Rule.  It is
one of the most commonly used.  This rule is based on the simple idea of
continuously modifying the strengths of the input connections to reduce the
difference (the delta) between the desired output value and the actual output
of a processing element.  This rule changes the synaptic weights in the way
that minimizes the mean squared error of the network.  This rule is also
referred to as the Widrow-Hoff Learning Rule and the Least Mean Square
(LMS) Learning Rule.  

The way that the Delta Rule works is that the delta error in the output
layer is transformed by the derivative of the transfer function and is then
used in the previous neural layer to adjust input connection weights.  In
other words, this error is back-propagated into previous layers one layer at a
time.  The process of back-propagating the network errors continues until the
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first layer is reached.  The network type called Feedforward, Back-propagation
derives its name from this method of computing the error term.

When using the delta rule, it is important to ensure that the input data
set is well randomized.  Well ordered or structured presentation of the
training set can lead to a network which can not converge to the desired
accuracy.  If that happens, then the network is incapable of learning the
problem.

The Gradient Descent Rule:  This rule is similar to the Delta Rule i n
that the derivative of the transfer function is still used to modify the delta
error before it is applied to the connection weights.  Here, however, an
additional proportional constant tied to the learning rate is appended to the
final modifying factor acting upon the weight.  This rule is commonly used,
even though it converges to a point of stability very slowly.

It has been shown that different learning rates for different layers of a
network help the learning process converge faster.  In these tests, the learning
rates for those layers close to the output were set lower than those layers near
the input.  This is especially important for applications where the input data
is not derived from a strong underlying model.

Kohonen's Learning Law:  This procedure, developed by Teuvo
Kohonen, was inspired by learning in biological systems.  In this procedure,
the processing elements compete for the opportunity to learn, or update their
weights.  The processing element with the largest output is declared the
winner and has the capability of inhibiting its competitors as well as exciting
its neighbors.  Only the winner is permitted an output, and only the winner
plus its neighbors are allowed to adjust their connection weights.

Further, the size of the neighborhood can vary during the training
period.  The usual paradigm is to start with a larger definition of the
neighborhood, and narrow in as the training process proceeds.  Because the
winning element is defined as the one that has the closest match to the input
pattern, Kohonen networks model the distribution of the inputs.  This is
good for statistical or topological modeling of the data and is sometimes
referred to as self-organizing maps or self-organizing topologies.
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5.0       Network        Selection    

Because all artificial neural networks are based on the concept of
neurons, connections, and transfer functions, there is a similarity between the
different structures, or architectures, of neural networks.  The majority of the
variations stems from the various learning rules and how those rules modify
a network's typical topology.  The following sections outline some of the
most common artificial neural networks.  They are organized in very rough
categories of application.  These categories are not meant to be exclusive, they
are merely meant to separate out some of the confusion over network
architectures and their best matches to specific applications.

Basically, most applications of neural networks fall into the following
five categories:

- prediction
- classification
- data association
- data conceptualization
- data filtering

Network type Networks Use for network
Prediction - Back-propagation

- Delta Bar Delta
- Extended delta bar delta
- Directed random search
- Higher order Neural Networks
- Self Organizing Map into Back-

propagation

Use input values to predict some
output (e.g. pick the best stocks in
the stock market, predict the
weather, identify people with
cancer risks)

Classification - Learning vector quantization
- Counter-propagation
-Probabalistic neural network

Use input values to determine the
classification (e.g. is the input the
letter A, is the blob of video data a
plane and what kind of plane is it)

Data association - Hopfield
- Boltzmann Machine
- Hamming network
- Bidirectional associative

memory
-Spatio-temporal pattern

recognition

Like classification but it also
recognizes data that contains
errors (e.g. not only identify the
characters that were scanned but
also identify when the scanner
wasn't working properly)

Data conceptualization - Adaptive resonance Network
- Self organizing map

Analyze the inputs so that
grouping relationships can be
inferred (e.g. extract from a data
base the names of those most likely
to buy a particular product)

Data filtering - Recirculation Smooth an input signal (e.g. take
the noise out of a telephone signal)

Table 5.0.1 Network Selector Table.

Table 5.0.1 shows the differences between these network categories and shows
which of the more common network topologies belong to which primary
category.  This chart is intended as a guide and is not meant to be all
inclusive.  While there are many other network derivations, this chart only
includes the architectures explained within this section of this report.  Some
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of these networks, which have been grouped by application, have been used
to solve more than one type of problem.  Feedforward back-propagation i n
particular has been used to solve almost all types of problems and indeed is
the most popular for the first four categories.  The next five subsections
describe these five network types.

5.1       Networks      for       Prediction    

The most common use for neural networks is to project what will
most likely happen.  There are many applications where prediction can help
in setting priorities.  For example, the emergency room at a hospital can be a
hectic place.  To know who needs the most time critical help can enable a
more successful operation.  Basically, all organizations must establish
priorities which govern the allocation of their resources.  This projection of
the future is what drove the creation of networks of prediction.

5.1.1 Feedforward, Back-Propagation.

The feedforward, back-propagation architecture was developed in the
early 1970's by several independent sources (Werbor; Parker; Rumelhart,
Hinton and Williams).  This independent co-development was the result of a
proliferation of articles and talks at various conferences which stimulated the
entire industry.  Currently, this synergistically developed back-propagation
architecture is the most popular, effective, and easy to learn model for
complex, multi-layered networks.  This network is used more than all others
combined.  It is used in many different types of applications.  This architecture
has spawned a large class of network types with many different topologies and
training methods.  Its greatest strength is in non-linear solutions to ill-
defined problems.  

The typical back-propagation network has an input layer, an output
layer, and at least one hidden layer.  There is no theoretical limit on the
number of hidden layers but typically there is just one or two.  Some work
has been done which indicates that a maximum of four layers (three hidden
layers plus an output layer) are required to solve problems of any complexity.
Each layer is fully connected to the succeeding layer, as shown in Figure 5.0.1.
(Note: all of the drawings of networks in section 5 are from NeuralWare's
NeuralWorks Professional II/Plus artificial neural network development
tool.)

The in and out layers indicate the flow of information during recall.
Recall is the process of putting input data into a trained network and
receiving the answer.  Back-propagation is not used during recall, but only
when the network is learning a training set.
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Figure 5.0.1 An Example Feedforward Back-propagation Network.

The number of layers and the number of processing elements per layer
are important decisions.  These parameters to a feedforward, back-propagation
topology are also the most ethereal.  They are the "art" of the network
designer.  There is no quantifiable, best answer to the layout of the network
for any particular application.  There are only general rules picked up over
time and followed by most researchers and engineers applying this
architecture to their problems.

Rule One:  As the complexity in the relationship between the
input data and the desired output increases, then the number of the
processing elements in the hidden layer should also increase.

Rule Two:  If the process being modeled is separable into
multiple stages, then additional hidden layer(s) may be required.  If
the process is not separable into stages, then additional layers may
simply enable memorization and not a true general solution.

Rule Three:  The amount of training data available sets an
upper bound for the number of processing elements in the hidden
layer(s).  To calculate this upper bound, use the number of input-
output pair examples in the training set and divide that number by
the total number of input and output processing elements in the
network.  Then divide that result again by a scaling factor between
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five and ten.  Larger scaling factors are used for relatively noisy data.
Extremely noisy data may require a factor of twenty or even fifty,
while very clean input data with an exact relationship to the output
might drop the factor to around two.  It is important that the hidden
layers have few processing elements.  Too many artificial neurons
and the training set will be memorized.  If that happens then no
generalization of the data trends will occur, making the network
useless on new data sets.

Once the above rules have been used to create a network, the process of
teaching begins.  This teaching process for a feedforward network normally
uses some variant of the Delta Rule, which starts with the calculated
difference between the actual outputs and the desired outputs.  Using this
error, connection weights are increased in proportion to the error times a
scaling factor for global accuracy.  Doing this for an individual node means
that the inputs, the output, and the desired output all have to be present at
the same processing element.  The complex part of this learning mechanism
is for the system to determine which input contributed the most to an
incorrect output and how does that element get changed to correct the error.
An inactive node would not contribute to the error and would have no need
to change its weights.

To solve this problem, training inputs are applied to the input layer of
the network, and desired outputs are compared at the output layer.  During
the learning process, a forward sweep is made through the network, and the
output of each element is computed layer by layer. The difference between the
output of the final layer and the desired output is back-propagated to the
previous layer(s), usually modified by the derivative of the transfer function,
and the connection weights are normally adjusted using the Delta Rule.  This
process proceeds for the previous layer(s) until the input layer is reached.

There are many variations to the learning rules for back-propagation
networks.  Different error functions, transfer functions, and even the
modifying method of the derivative of the transfer function can be used.  The
concept of "momentum error" was introduced to allow for more prompt
learning while minimizing unstable behavior.  Here, the error function, or
delta weight equation, is modified so that a portion of the previous delta
weight is fed through to the current delta weight.  This acts, in engineering
terms, as a low-pass filter on the delta weight terms since general trends are
reinforced whereas oscillatory behavior is cancelled out.  This allows a low,
normally slower, learning coefficient to be used, but creates faster learning.

Another technique that has an effect on convergence speed is to only
update the weights after many pairs of inputs and their desired outputs are
presented to the network, rather than after every presentation.  This is
referred to as cumulative back-propagation because the delta weights are not
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accumulated until the complete set of pairs is presented.  The number of
input-output pairs that are presented during the accumulation is referred to
as an "epoch."  This epoch may correspond either to the complete set of
training pairs or to a subset.

There are limitations to the feedforward, back-propagation architecture.
Back-propagation requires lots of supervised training, with lots of input-
output examples.  Additionally, the internal mapping procedures are not well
understood, and there is no guarantee that the system will converge to an
acceptable solution.  At times, the learning gets stuck in a local minima,
limiting the best solution.  This occurs when the network system finds an
error that is lower than the surrounding possibilities but does not finally get
to the smallest possible error.  Many learning applications add a term to the
computations to bump or jog the weights past shallow barriers and find the
actual minimum rather than a temporary error pocket.

Typical feedforward, back-propagation applications include speech
synthesis from text, robot arms, evaluation of bank loans, image processing,
knowledge representation, forecasting and prediction, and multi-target
tracking.  Each month more back-propagation solutions are announced in the
trade journals.

5.1.2 Delta Bar Delta.

The delta bar delta network utilizes the same architecture as a back-
propagation network.  The difference of delta bar delta lies in its unique
algorithmic method of learning.  Delta bar delta was developed by Robert
Jacobs to improve the learning rate of standard feedforward, back-propagation
networks.  

As outlined above, the back-propagation procedure is based on a
steepest descent approach which minimizes the network's prediction error
during the process where the connection weights to each artificial neuron are
changed.  The standard learning rates are applied on a layer by layer basis and
the momentum term is usually assigned globally.  Some back-propagation
approaches allow the learning rates to gradually decrease as large quantities of
training sets pass through the network.  Although this method is successful
in solving many applications, the convergence rate of the procedure is still
too slow to be used on some practical problems.

The delta bar delta paradigm uses a learning method where each
weight has its own self-adapting learning coefficient.  It also does not use the
momentum factor of the back-propagation architecture.  The remaining
operations of the network, such as feedforward recall, are identical to the
normal back-propagation architecture.  Delta bar delta is a "heuristic"
approach to training artificial networks.  What that means is that past error
values can be used to infer future calculated error values.  Knowing the
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probable errors enables the system to take intelligent steps in adjusting the
weights.  However, this process is complicated in that empirical evidence
suggests that each weight may have quite different effects on the overall error.
Jacobs then suggested the common sense notion that back-propagation
learning rules should account for these variations in the effect on the overall
error.  In other words, every connection weight of a network should have its
own learning rate.  The claim is that the step size appropriate for one
connection weight may not be appropriate for all weights in that layer.
Further, these learning rates should be allowed to vary over time.  By
assigning a learning rate to each connection and permitting this learning rate
to change continuously over time, more degrees of freedom are introduced to
reduce the time to convergence.

Rules which directly apply to this algorithm are straight forward and
easy to implement.  Each connection weight has its own learning rate.  These
learning rates are varied based on the current error information found with
standard back-propagation.    When the connection weight changes, if the
local error has the same sign for several consecutive time steps, the learning
rate for that connection is linearly increased.  Incrementing linearly prevents
the learning rates from becoming too large too fast.  When the local error
changes signs frequently, the learning rate is decreased geometrically.
Decrementing geometrically ensures that the connection learning rates are
always positive.  Further, they can be decreased more rapidly in regions where
the change in error is large.

By permitting different learning rates for each connection weight in a
network, a steepest descent search (in the direction of the negative gradient) is
no longer being preformed.  Instead, the connection weights are updated on
the basis of the partial derivatives of the error with respect to the weight itself.
It is also based on an estimate of the "curvature of the error surface" in the
vicinity of the current point weight value.  Additionally, the weight changes
satisfy the locality constraint, that is, they require information only from the
processing elements to which they are connected.

5.1.3 Extended Delta Bar Delta.

Ali Minai and Ron Williams developed the extended delta bar delta
algorithm as a natural outgrowth from Jacob's work.  Here, they enhance the
delta bar delta by applying an exponential decay to the learning rate increase,
add the momentum component back in, and put a cap on the learning rate
and momentum coefficient.  As discussed in the section on back-propagation,
momentum is a factor used to smooth the learning rate.  It is a term added to
the standard weight change which is proportional to the previous weight
change.  In this way, good general trends are reinforced, and oscillations are
dampened.
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The learning rate and the momentum rate for each weight have
separate constants controlling their increase and decrease.  Once again, the
sign of the current error is used to indicate whether an increase or decrease is
appropriate.  The adjustment for decrease is identical in form to that of Delta
Bar Delta.  However, the learning rate and momentum rate increases are
modified to be exponentially decreasing functions of the magnitude of the
weighted gradient components.  Thus, greater increases will be applied i n
areas of small slope or curvature than in areas of high curvature.  This is a
partial solution to the jump problem of delta bar delta.

To take a step further to prevent wild jumps and oscillations in the
weights, ceilings are placed on the individual connection learning rates and
momentum rates.  And finally, a memory with a recovery feature is built into
the algorithm.  When in use, after each epoch presentation of the training
data, the accumulated error is evaluated.  If the error is less than the previous
minimum error, the weights are saved in memory as the current best.  A
tolerance parameter controls the recovery phase.  Specifically, if the current
error exceeds the minimum previous error, modified by the tolerance
parameter, than all connection weight values revert stochastically to the
stored best set of weights in memory.  Furthermore, the learning and
momentum rates are decreased to begin the recovery process.

5.1.4 Directed Random Search.

The previous architectures were all based on learning rules, or
paradigms, which are based on calculus.  Those paradigms use a gradient
descent technique to adjust each of the weights.  The architecture of the
directed random search, however, uses a standard feedforward recall structure
which is not based on back-propagation.  Instead, the directed random search
adjusts the weights randomly.  To provide some order to this process a
direction component is added to the random step which insures that the
weights tend toward a previously successful search direction.  All processing
elements are influenced individually.

This random search paradigm has several important features.
Basically, it is fast and easy to use if the problem is well understood and
relatively small.  The reason that the problem has to be well understood is
that the best results occur when the initial weights, the first guesses, are
within close proximity to the best weights.  It is fast because the algorithm
cycles through its training much more quickly than calculus-bases techniques
(i.e., the delta rule and its variations), since no error terms are computed for
the intermediate processing elements.  Only the output error is calculated.
This learning rule is easy to use because there are only two key parameters
associated with it.  But the problem needs to result in a small network because
if the number of connections becomes high, then the training process
becomes long and cumbersome.
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To facilitate keeping the weights within the compact region where the
algorithm works best, an upper bound is required on the weight's magnitude.
Yet, by setting the weight's bounds reasonably high, the network is still
allowed to seek what is not exactly known - the true global optimum.  The
second key parameter to this learning rule involves the initial variance of the
random distribution of the weights.  In most of the commercial packages
there is a vendor recommended number for this initial variance parameter.
Yet, the setting of this number is not all that important as the self-adjusting
feature of the directed random search has proven to be robust over a wide
range of initial variances.  

There are four key components to a random search network.  They are
the random step, the reversal step, a directed component, and a self-adjusting
variance.

Random Step:  A random value is added to each weight.
Then, the entire training set is run through the network,
producing a "prediction error."  If this new total training set
error is less than the previous best prediction error, the
current weight values (which include the random step)
becomes the new set of "best" weights.  The current
prediction error is then saved as the new, best prediction
error.

Reversal Step:  If the random step's results are worse than
the previous best, then the same random value is
subtracted from the original weight value.  This produces a
set of weights that is in the opposite direction to the
previous random step.  If the total "prediction error" is less
than the previous best error, the current weight values of
the reversal step are stored as the best weights.  The current
prediction error is also saved as the new, best prediction
error.  If both the forward and reverse steps fail, a
completely new set of random values are added to the best
weights and the process is then begun again.

Directed Component:  To add in convergence a set of
directed components is created, based on the outcomes of
the forward and reversal steps.  These directed components
reflect the history of success or failure for the previous
random steps.  The directed components, which are
initialized to zero, are added to the random components at
each step in the procedure.  Directed components provide a
"common sense, let's go this way" element to the search.  It
has been found that the addition of these directed
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components provide a dramatic performance improvement
to convergence.

Self-adjusting Variance:  An initial variance parameter is
specified to control the initial size (or length) of the random
steps which are added to the weights.  An adaptive
mechanism changes the variance parameter based on the
current relative success rate or failure rate.  The learning
rule assumes that the current size of the steps for the
weights is in the right direction if it records several
consecutive successes, and it then expands to try even larger
steps.  Conversely, if it detects several consecutive failures it
contracts the variance to reduce the step size.

For small to moderately sized networks, a directed random search
produces good solutions in a reasonable amount of time.  The training is
automatic, requiring little, if any, user interaction.  The number of connection
weights imposes a practical limit on the size of a problem that this learning
algorithm can effectively solve.  If a network has more than 200 connection
weights, a directed random search can require a relatively long training time
and still end up yielding an acceptable solution.

5.1.5 Higher-order Neural Network or Functional-link Network.

Either name is given to neural networks which expand the standard
feedforward, back-propagation architecture to include nodes at the input layer
which provide the network with a more complete understanding of the
input.  Basically, the inputs are transformed in a well understood
mathematical way so that the network does not have to learn some basic
math functions.  These functions do enhance the network's understanding of
a given problem.  These mathematical functions transform the inputs via
higher-order functions such as squares, cubes, or sines.  It is from the very
name of these functions, higher-order or functionally linked mappings, that
the two names for this same concept were derived.  

This technique has been shown to dramatically improve the learning
rates of some applications.  An additional advantage to this extension of back-
propagation is that these higher order functions can be applied to other
derivations - delta bar delta, extended delta bar delta, or any other enhanced
feedforward, back-propagation networks.

There are two basic ways of adding additional input nodes.  First, the
cross-products of the input terms can be added into the model.  This is also
called the output product or tensor model, where each component of the
input pattern multiplies the entire input pattern vector.  A reasonable way to
do this is to add all interaction terms between input values.  For example, for
a back-propagation network with three inputs (A, B and C), the cross-products
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would include: AA, BB, CC, AB, AC, and BC.  This example adds second-order
terms to the input structure of the network.  Third-order terms, such as ABC,
could also be added.

The second method for adding additional input nodes is the functional
expansion of the base inputs.  Thus, a back-propagation model with A, B and
C might be transformed into a higher-order neural network model with
inputs: A, B, C, SIN(A), COS(B), LOG(C), MAX(A,B,C), etc.  In this model,
input variables are individually acted upon by appropriate functions.  Many
different functions can be used.  The overall effect is to provide the network
with an enhanced representation of the input.  It is even possible to combine
the tensor and functional expansion models together.

No new information is added, but the representation of the inputs is
enhanced.  Higher-order representation of the input data can make the
network easier to train.  The joint or functional activations become directly
available to the model.  In some cases, a hidden layer is no longer needed.
However, there are limitations to the network model.  Many more input
nodes must be processed to use the transformations of the original inputs.
With higher-order systems, the problem is exacerbated.  Yet, because of the
finite processing time of computers, it is important that the inputs are not
expanded more than is needed to get an accurate solution.  

Functional-link networks were developed by Yoh-Han Pao and are
documented in his book, Adaptive Pattern Recognition and Neural
Networks .  Pao draws a distinction between truly adding higher order terms
in the sense that some of these terms represent joint activations versus
functional expansion which increases the dimension of the representation
space without adding joint activations.  While most developers recognize the
difference, researchers typically treat these two aspects in the same way.  Pao
has been awarded a patent for the functional-link network, so its commercial
use may require royalty licensing.

5.1.6 Self-Organizing Map into Back-Propagation.

A hybrid network uses a self-organizing map to conceptually separate
the data before that data is used in the normal back-propagation manner.
This map helps to visualize topologies and hierarchical structures of higher-
order input spaces before they are entered into the feedforward, back-
propagation network.  The change to the input is similar to having an
automatic functional-link input structure.  This self-organizing map trains i n
an unsupervised manner.  The rest of the network goes through its normal
supervised training.

The self-organizing map, and its unique approach to learning, is
described in section 5.4.2
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5.2       Networks for Classification   

The previous section describes networks that attempt to make
projections of the future.  But understanding trends and what impacts those
trends might have is only one of several types of applications.  The second
class of applications is classification.  A network that can classify could be used
in the medical industry to process both lab results and doctor-recorded
patience symptoms to determine the most likely disease.  Other applications
can separate the "tire kicker" inquiries from the requests for information
from real buyers.  

5.2.1 Learning Vector Quantization.

 This network topology was originally suggested by Tuevo Kohonen i n
the mid 80's, well after his original work in self-organizing maps.  Both this
network and self-organizing maps are based on the Kohonen layer, which is
capable of sorting items into appropriate categories of similar objects.
Specifically, Learning Vector Quantization is a artificial neural network
model used both for classification and image segmentation problems.

Topologically, the network contains an input layer, a single Kohonen
layer and an output layer.  An example network is shown in Figure 5.2.1.  The
output layer has as many processing elements as there are distinct categories,
or classes.  The Kohonen layer has a number of processing elements grouped
for each of these classes.  The number of processing elements per class
depends upon the complexity of the input-output relationship.  Usually, each
class will have the same number of elements throughout the layer.  It is the
Kohonen layer that learns and performs relational classifications with the aid
of a training set.  This network uses supervised learning rules.  However,
these rules vary significantly from the back-propagation rules.  To optimize
the learning and recall functions, the input layer should contain only one
processing element for each separable input parameter.  Higher-order input
structures could also be used.

Learning Vector Quantization classifies its input data into groupings
that it determines.  Essentially, it maps an n-dimensional space into an m-
dimensional space.  That is it takes n inputs and produces m outputs.  The
networks can be trained to classify inputs while preserving the inherent
topology of the training set.  Topology preserving maps preserve nearest
neighbor relationships in the training set such that input patterns which
have not been previously learned will be categorized by their nearest
neighbors in the training data.
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Figure 5.2.1.  An Example Learning Vector Quantization Network.

In the training mode, this supervised network uses the Kohonen layer
such that the distance of a training vector to each processing element is
computed and the nearest processing element is declared the winner.  There
is only one winner for the whole layer.  The winner will enable only one
output processing element to fire, announcing the class or category the input
vector belonged to.  If the winning element is in the expected class of the
training vector, it is reinforced toward the training vector.  If the winning
element is not in the class of the training vector, the connection weights
entering the processing element are moved away from the training vector.
This later operation is referred to as repulsion.  During this training process,
individual processing elements assigned to a particular class migrate to the
region associated with their specific class.

During the recall  mode, the distance of an input vector to each
processing element is computed and again the nearest element is declared the
winner.  That in turn generates one output, signifying a particular class found
by the network.

There are some shortcomings with the Learning Vector Quantization
architecture.  Obviously, for complex classification problems with similar
objects or input vectors, the network requires a large Kohonen layer with
many processing elements per class.  This can be overcome with selectively
better choices for, or higher-order representation of, the input parameters.
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The learning mechanisms has some weaknesses which have been
addressed by variants to the paradigm.  Normally these variants are applied at
different phases of the learning process.  They imbue a conscience
mechanism, a boundary adjustment algorithm, and an attraction function at
different points while training the network.

The simple form of the Learning Vector Quantization network suffers
from the defect that some processing elements tend to win too often while
others, in effect, do nothing.  This particularly happens when the processing
elements begin far from the training vectors.  Here, some elements are drawn
in close very quickly and the others remain permanently far away.  To
alleviate this problem, a conscience mechanism is added so that a processing
element which wins too often develops a "guilty conscience" and is
penalized.  The actual conscience mechanism is a distance bias which is added
to each processing element.  This distance bias is proportional to the
difference between the win frequency of an element and the average
processing element win frequency.  As the network progresses along its
learning curve, this bias proportionality factors needs to be decreased.

The boundary adjustment algorithm is used to refine a solution once a
relatively good solution has been found.  This algorithm effects the cases
when the winning processing element is in the wrong class and the second
best processing element is in the right class.  A further limitation is that the
training vector must be near the midpoint of space joining these two
processing elements.  The winning wrong processing element is moved away
from the training vector and the second place element is moved toward the
training vector.  This procedure refines the boundary between regions where
poor classifications commonly occur.

In the early training of the Learning Vector Quantization network, it is
some times desirable to turn off the repulsion.  The winning processing
element is only moved toward the training vector if the training vector and
the winning processing element are in the same class.  This option is
particularly helpful when a processing element must move across a region
having a different class in order to reach the region where it is needed.

5.2.2 Counter-propagation Network.

Robert Hecht-Nielsen developed the counter-propagation network as a
means to combine an unsupervised Kohonen layer with a teachable output
layer.  This is yet another topology to synthesize complex classification
problems, while trying to minimize the number of processing elements and
training time.  The operation for the counter-propagation network is similar
to that of the Learning Vector Quantization network in that the middle
Kohonen layer acts as an adaptive look-up table, finding the closest fit to an
input stimulus and outputting its equivalent mapping.
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The first counter-propagation network consisted of a bi-directional
mapping between the input and output layers.  In essence, while data is
presented to the input layer to generate a classification pattern on the output
layer, the output layer in turn would accept an additional input vector and
generate an output classification on the network's input layer.  The network
got its name from this counter-posing flow of information through its
structure.  Most developers use a uni-flow variant of this formal
representation of counter-propagation.  In other words. there is only one
feedforward path from input layer to output layer.

An example network is shown in Figure 5.2.2.  The uni-directional
counter-propagation network has three layers.  If the inputs are not already
normalized before they enter the network., a fourth layer is sometimes added.
The main layers include an input buffer layer, a self-organizing Kohonen
layer, and an output layer which uses the Delta Rule to modify its incoming
connection weights.  Sometimes this layer is called a Grossberg Outstar layer.

Figure 5.2.2.  An Example Counter-propagation Network.
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The size of the input layer depends upon how many separable
parameters define the problem.  With too few, the network may not
generalize sufficiently.  With too many, the processing time takes too long.

For the network to operate properly, the input vector must be
normalized.  This means that for every combination of input values, the total
"length" of the input vector must add up to one.  This can be done with a
preprocessor, before the data is entered into the counter-propagation network.
Or, a normalization layer can be added between the input and Kohonen
layers.  The normalization layer requires one processing element for each
input, plus one more for a balancing element.  This layer modifies the input
set before going to the Kohonen layer to guarantee that all input sets combine
to the same total.

Normalization of the inputs is necessary to insure that the Kohonen
layer finds the correct class for the problem.  Without normalization, larger
input vectors bias many of the Kohonen processing elements such that
weaker value input sets cannot be properly classified.  Because of the
competitive nature of the Kohonen layer, the larger value input vectors
overpower the smaller vectors.  Counter-propagation uses a standard
Kohonen paradigm which self-organizes the input sets into classification
zones.  It follows the classical Kohonen learning law described in section 4.2
of this report.  This layer acts as a nearest neighbor classifier in that the
processing elements in the competitive layer autonomously adjust their
connection weights to divide up the input vector space in approximate
correspondence to the frequency with which the inputs occur.  There needs to
be at least as many processing elements in the Kohonen layer as output
classes.  The Kohonen layer usually has many more elements than classes
simply because additional processing elements provide a finer resolution
between similar objects.

The output layer for counter-propagation is basically made up of
processing elements which learn to produce an output when a particular
input is applied.  Since the Kohonen layer includes competition, only a single
output is produced for a given input vector.  This layer provides a way of
decoding that input to a meaningful output class.  It uses the Delta Rule to
back-propagate the error between the desired output class and the actual
output generated with the training set.  The errors only adjust the connection
weights coming into the output layer.  The Kohonen layer is not effected.

Since only one output from the competitive Kohonen layer is active at
a time and all other elements are zero, the only weight adjusted for the
output processing elements are the ones connected to the winning element in
the competitive layer.  In this way the output layer learns to reproduce a
certain pattern for each active processing element in the competitive layer.  If
several competitive elements belong to the same class, that output processing
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element will evolve weights in response to those competitive processing
elements and zero for all others.

There is a problem which could arise with this architecture.  The
competitive Kohonen layer learns without any supervision.  It does not
know what class it is responding to.  This means that it is possible for a
processing element in the Kohonen layer to learn to take responsibility for
two or more training inputs which belong to different classes.  When this
happens, the output of the network will be ambiguous for any inputs which
activate this processing element.  To alleviate this problem, the processing
elements in the Kohonen layer could be pre-conditioned to learn only about a
particular class.

5.2.3 Probabilistic Neural Network.

The probabilistic neural network was developed by Donald Specht.  His
network architecture was first presented in two papers, Probabilistic Neural
Networks for Classification, Mapping or Associative Memory and
Probabilistic Neural Networks , released in 1988 and 1990, respectively.  This
network provides a general solution to pattern classification problems by
following an approach developed in statistics, called Bayesian classifiers.
Bayes theory, developed in the 1950's, takes into account the relative
likelihood of events and uses a priori information to improve prediction.
The network paradigm also uses Parzen Estimators which were developed to
construct the probability density functions required by Bayes theory.

The probabilistic neural network uses a supervised training set to
develop distribution functions within a pattern layer.  These functions, in the
recall mode, are used to estimate the likelihood of an input feature vector
being part of a learned category, or class.  The learned patterns can also be
combined, or weighted, with the a priori probability, also called the relative
frequency, of each category to determine the most likely class for a given
input vector.  If the relative frequency of the categories is unknown, then all
categories can be assumed to be equally likely and the determination of
category is solely based on the closeness of the input feature vector to the
distribution function of a class.

An example of a probabilistic neural network is shown in Figure 5.2.3.
This network has three layers.  The network contains an input layer which
has as many elements as there are separable parameters needed to describe the
objects to be classified.  It has a pattern layer, which organizes the training set
such that each input vector is represented by an individual processing
element.  And finally, the network contains an output layer, called the
summation layer, which has as many processing elements as there are classes
to be recognized.  Each element in this layer combines via processing
elements within the pattern layer which relate to the same class and prepares
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that category for output.  Sometimes a fourth layer is added to normalize the
input vector, if the inputs are not already normalized before they enter the
network.  As with the counter-propagation network, the input vector must be
normalized to provided proper object separation in the pattern layer.

Figure 5.2.3.  A Probabilistic Neural Network Example.

As mentioned earlier, the pattern layer represents a neural
implementation of a version of a Bayes classifier, where the class dependent
probability density functions are approximated using a Parzen estimator.  This
approach provides an optimum pattern classifier in terms of minimizing the
expected risk of wrongly classifying an object.  With the estimator, the
approach gets closer to the true underlying class density functions as the
number of training samples increases, so long as the training set is an
adequate representation of the class distinctions.

In the pattern layer, there is a processing element for each input vector
in the training set.  Normally, there are equal amounts of processing
elements for each output class.  Otherwise, one or more classes may be
skewed incorrectly and the network will generate poor results.  Each
processing element in the pattern layer is trained once.  An element is trained
to generate a high output value when an input vector matches the training
vector.  The training function may include a global smoothing factor to better
generalize classification results.  In any case, the training vectors do not have
to be in any special order in the training set, since the category of a particular
vector is specified by the desired output of the input.  The learning function
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simply selects the first untrained processing element in the correct output
class and modifies its weights to match the training vector.

The pattern layer operates competitively, where only the highest match
to an input vector wins and generates an output.  In this way, only one
classification category is generated for any given input vector.  If the input
does not relate well to any patterns programmed into the pattern layer, no
output is generated.

The Parzen estimation can be added to the pattern layer to fine tune the
classification of objects,  This is done by adding the frequency of occurrence for
each training pattern built into a processing element.  Basically, the
probability distribution of occurrence for each example in a class is multiplied
into its respective training node.  In this way, a more accurate expectation of
an object is added to the features which make it recognizable as a class
member.

Training of the probabilistic neural network is much simpler than with
back-propagation.  However, the pattern layer can be quite huge if the
distinction between categories is varied and at the same time quite similar is
special areas.  There are many proponents for this type of network, since the
groundwork for optimization is founded in well known, classical
mathematics.

5.3       Networks for Data Association   

The previous class of networks, classification, is related to networks for
data association.  In data association, classification is still done.  For example,
a character reader will classify each of its scanned inputs.  However, an
additional element exists for most applications.  That element is the fact that
some data is simply erroneous.  Credit card applications might have been
rendered unreadable by water stains.  The scanner might have lost its light
source.  The card itself might have been filled out by a five year old.
Networks for data association recognize these occurrances as simply bad data
and they recognize that this bad data can span all classifications.

5.3.1 Hopfield Network.

John Hopfield first presented his cross-bar associative network in 1982
at the National Academy of Sciences.  In honor of Hopfield's success and his
championing of neural networks in general, this network paradigm is usually
referred to as a Hopfield Network.  The network can be conceptualized i n
terms of its energy and the physics of dynamic systems.  A processing element
in the Hopfield layer, will change state only if the overall "energy" of the state
space is reduced.  In other words, the state of a processing element will vary
depending whether the change will reduce the overall "frustration level" of
the network.  Primary applications for this sort of network have included
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associative, or content-addressable, memories and a whole set of optimization
problems, such as the combinatoric best route for a traveling salesman.

The Figure 5.3.1 outlines a basic Hopfield network.  The original
network had each processing element operate in a binary format.  This is
where the elements compute the weighted sum of the inputs and quantize
the output to a zero or one.  These restrictions were later relaxed, in that the
paradigm can use a sigmoid based transfer function for finer class distinction.
Hopfield himself showed that the resulting network is equivalent to the
original network designed in 1982.

Figure 5.3.1.  A Hopfield Network Example.

The Hopfield network uses three layers; an input buffer, a Hopfield
layer, and an output layer.  Each layer has the same number of processing
elements.  The inputs of the Hopfield layer are connected to the outputs of
the corresponding processing elements in the input buffer layer through
variable connection weights.  The outputs of the Hopfield layer are connected
back to the inputs of every other processing element except itself.  They are
also connected to the corresponding elements in the output layer.  In normal
recall operation, the network applies the data from the input layer through
the learned connection weights to the Hopfield layer.  The Hopfield layer
oscillates until some fixed number of cycles have been completed, and the
current state of that layer is passed on to the output layer.  This state matches
a pattern already programmed into the network.

The learning of a Hopfield network requires that a training pattern be
impressed on both the input and output layers simultaneously.  The
recursive nature of the Hopfield layer provides a means of adjusting all of the
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connection weights.  The learning rule is the Hopfield Law, where
connections are increased when both the input and output of an Hopfield
element are the same and the connection weights are decreased if the output
does not match the input.  Obviously, any non-binary implementation of the
network must have a threshold mechanism in the transfer function, or
matching input-output pairs could be too rare to train the network properly.

The Hopfield network has two major limitations when used as a
content addressable memory.  First, the number of patterns that can be stored
and accurately recalled is severely limited.  If too many patterns are stored, the
network may converge to a novel spurious pattern different from all
programmed patterns.  Or, it may not converge at all.  The storage capacity
limit for the network is approximately fifteen percent of the number of
processing elements in the Hopfield layer.  The second limitation of the
paradigm is that the Hopfield layer may become unstable if the common
patterns it shares are too similar.  Here an example pattern is considered
unstable if it is applied at time zero and the network converges to some other
pattern from the training set.  This problem can be minimized by modifying
the pattern set to be more orthogonal with each other.

5.3.2 Boltzmann Machine.

The Boltzmann machine is similar in function and operation to the
Hopfield network with the addition of using a simulated annealing technique
when determining the original pattern.  The Boltzmann machine
incorporates the concept of simulated annealing to search the pattern layer's
state space for a global minimum.  Because of this, the machine will gravitate
to an improved set of values over time as data iterates through the system.

Ackley, Hinton, and Sejnowski developed the Boltzmann learning
rule in 1985.  Like the Hopfield network, the Boltzmann machine has an
associated state space energy based upon the connection weights in the pattern
layer.  The processes of learning a training set full of patterns involves the
minimization of this state space energy.  Because of this, the machine will
gravitate to an improved set of values for the connection weights while data
iterates through the system.

The Boltzmann machine requires a simulated annealing schedule,
which is added to the learning process of the network.  Just as in physical
annealing, temperatures start at higher values and decreases over time.  The
increased temperature adds an increased noise factor into each processing
element in the pattern layer.  Typically, the final temperature is zero.  If the
network fails to settle properly, adding more iterations at lower temperatures
may help to get to a optimum solution.

A Boltzmann machine learning at high temperature behaves much
like a random model and at low temperatures it behaves like a deterministic
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model.  Because of the random component in annealed learning, a processing
element can sometimes assume a new state value that increases rather than
decreases the overall energy of the system.  This mimics physical annealing
and is helpful in escaping local minima and moving toward a global
minimum.

As with the Hopfield network, once a set of patterns are learned, a
partial pattern can be presented to the network and it will complete the
missing information.  The limitation on the number of classes, being less
than fifteen percent of the total processing elements in the pattern layer, still
applies.

5.3.3 Hamming Network.

The Hamming network is an extension of the Hopfield network in that
it adds a maximum likelihood classifier to the frond end.  This network was
developed by Richard Lippman in the mid 1980's.  The Hamming network
implements a classifier based upon least error for binary input vectors, where
the error is defined by the Hamming distance.  The Hamming distance is
defined as the number of bits which differ between two corresponding, fixed-
length input vectors.  One input vector is the noiseless example pattern, the
other is a pattern corrupted by real-world events.  In this network
architecture, the output categories are defined by a noiseless, pattern-filled
training set.  In the recall mode any incoming input vectors are then assigned
to the category for which the distance between the example input vectors and
the current input vector is minimum.

The Hamming network has three layers.  There is an example network
shown in Figure 5.3.2.  The network uses an input layer with as many nodes
as there are separate binary features.  It has a category layer, which is the
Hopfield layer, with as many nodes as there are categories, or classes.  This
differs significantly from the formal Hopfield architecture, which has as many
nodes in the middle layer as there are input nodes.  And finally, there is an
output layer which matches the number of nodes in the category layer.

The network is a simple feedforward architecture with the input layer
fully connected to the category layer.  Each processing element in the category
layer is connected back to every other element in that same layer, as well as to
a direct connection to the output processing element.  The output from the
category layer to the output layer is done through competition.
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Figure 5.3.2.  A Hamming Network Example.

The learning of a Hamming network is similar to the Hopfield
methodology in that it requires a single-pass training set.  However, in this
supervised paradigm, the desired training pattern is impressed upon the
input layer while the desired class to which the vector belongs is impressed
upon the output layer.  Here the output contains only the category output to
which the input vector belongs.  Again, the recursive nature of the Hopfield
layer provides a means of adjusting all connection weights.

The connection weights are first set in the input to category layer such
that the matching scores generated by the outputs of the category processing
elements are equal to the number of input nodes minus the Hamming
distances to the example input vectors.  These matching scores range from
zero to the total number of input elements and are highest for those input
vectors which best match the learned patterns.  The category layer's recursive
connection weights are trained in the same manner as in the Hopfield
network.  In normal feedforward operation an input vector is applied to the
input layer and must be presented long enough to allow the matching score
outputs of the lower input to category subnet to settle.  This will initialize the
input to the Hopfield function in the category layer and allow that portion of
the subnet to find the closest class to which the input vector belongs.  This
layer is competitive, so only one output is enabled at a time.

The Hamming network has a number of advantages over the Hopfield
network.  It implements the optimum minimum error classifier when input
bit errors are random and independent.  So, the Hopfield with its random set
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up nature can only be as good a solution as the Hamming, or it can be worse.
Fewer processing elements are required for the Hamming solution, since the
middle layer only requires one element per category, instead of an element
for each input node.  And finally, the Hamming network does not suffer
from spurious classifications which may occur in the Hopfield network.  All
in all, the Hamming network is both faster and more accurate than the
Hopfield network.

5.3.4 Bi-directional Associative Memory.

This network model was developed by Bart Kosko and again
generalizes the Hopfield model.  A set of paired patterns are learned with the
patterns represented as bipolar vectors.  Like the Hopfield, when a noisy
version of one pattern is presented, the closest pattern associated with it is
determined.

Figure 5.3.4.  Bi-directional Associative Memory Example.

A diagram of an example bi-directional associative memory is shown
in Figure 5.3.4.  It has as many inputs as output processing nodes.  The two
hidden layers are made up of two separate associated memories and represent
the size of two input vectors.  The two lengths need not be the same,
although this examples shows identical input vector lengths of four each.
The middle layers are fully connected to each other.  The input and output
layers are for implementation purposes the means to enter and retrieve
information from the network.  Kosko original work targeted the bi-
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directional associative memory layers for optical processing, which would not
need formal input and output structures.

The middle layers are designed to store associated pairs of vectors.
When a noisy pattern vector is impressed upon the input, the middle layers
oscillate back and forth until a stable equilibrium state is reached.  This state,
providing the network is not over trained, corresponds to the closest learned
association and will generate the original training pattern on the output.  Like
the Hopfield network, the bi-directional associative memory network is
susceptible to incorrectly finding a trained pattern when complements of the
training set are used as the unknown input vector.

5.3.5 Spatio-Temporal Pattern Recognition (Avalanche).

This network as shown in Figure 5.3.5 came out of Stephen Grossberg's
work in the early 1970's.  It basically was developed to explain certain
cognitive processes for recognizing time varying sequences of events.  In his
work at the time he called this network paradigm an "Avalanche" network.
Robert Hecht-Nielsen became interested in how this network could be
applied to engineering applications.  The outcome was the spatio-temporal
pattern recognition network.  Here, specific patterns, for example audio
signals, are memorized and then used as a basis to classify incoming
repetitive signals.  This network has parameters which allow tuning to
accommodate detection of time varying signals.

There is a global bias term attached to each processing element.  This
term is used to normalize the overall activity in the network.  It sets a
variable threshold against which processing elements must compete, and
insures that the best match wins.  The learning paradigm for the network
uses a variant of the Kohonen rule and adds a time varying component to the
learning function, called the attack function.  This function is also used in the
recall mode, to provide a latency to the history of signals passing through the
network.

The primary application of spatio-temporal pattern networks appears
to be in the area of recognizing repetitive audio signals.  One group i n
General Dynamics has applied this network to classify types of ships based on
the sounds their propellers make.  Another characteristic of the network is
that because of the slow decay of the attack function, even though the
periodicity of the input signal varied by as much as a factor of two, the
network was still able to correctly classify the propeller signals.
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Figure 5.3.5.  A Spatio-temporal Pattern Network Example.

5.4       Networks for Data Conceptualization    

Another network type is data conceptualization.  In many applications
data is not just classified, for not all applications involve data that can fit
within a class, not all applications read characters or identify diseases.  Some
applications need to group data that may, or may not be, clearly definable.  A n
example of this is in the processing of a data base for a mailing list of potential
customers.  Customers might exist within all classifications, yet they might be
concentrated within a certain age group and certain income levels.  Also, i n
real life, other information might stretch and twist the region which contains
the vast majority of potential buyers.  This process is data conceptualization.
It simply tries to identify a group as best as it can.
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5.4.1 Adaptive Resonance Network.

Developed by Stephen Grossberg in the mid 1970's, the network creates
categories of input data based on adaptive resonance.  The topology is
biologically plausible and uses an unsupervised learning function.  It analyses
behaviorally significant input data and detects possible features or classifies
patterns in the input vector.

This network was the basis for many other network paradigms, such as
counter-propagation and bi-directional associative memory networks.  The
heart of the adaptive resonance network consists of two highly
interconnected layers of processing elements located between an input and
output layer.  Each input pattern to the lower resonance layer will induce an
expected pattern to be sent from the upper layer to the lower layer to
influence the next input.  This creates a "resonance" between the lower and
upper layers to facilitate network adaption of patterns.

The network is normally used in biological modelling, however, some
engineering applications do exist.  The major limitation to the network
architecture is its noise susceptibility.  Even a small amount of noise on the
input vector confuses the pattern matching capabilities of a trained network.
The adaptive resonance theory network topology is protected by a patent held
by the University of Boston.

5.4.2 Self-Organizing Map.

Developed by Teuvo Kohonen in the early 1980's, the input data is
projected to a two-dimensional layer which preserves order, compacts sparce
data, and spreads out dense data.  In other words, if two input vectors are
close, they will be mapped to processing elements that are close together i n
the two-dimensional Kohonen layer that represents the features or clusters of
the input data.  Here, the processing elements represent a two-dimensional
map of the input data.

The primary use of the self-organizing map is to visualize topologies
and hierarchical structures of higher-order dimensional input spaces.  The
self-organizing network has been used to create area-filled curves in two-
dimensional space created by the Kohonen layer.  The Kohonen layer can also
be used for optimization problems by allowing the connection weights to
settle out into a minimum energy pattern.

A key difference between this network and many other networks is
that the self-organizing map learns without supervision.  However, when the
topology is combined with other neural layers for prediction or
categorization, the network first learns in an unsupervised manner and then
switches to a supervised mode for the trained network to which it is attached.
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An example self-organizing map network is shown in Figure 5.4.2.
The self-organizing map has typically two layers.  The input layer is fully
connected to a two-dimensional Kohonen layer.  The output layer shown
here is used in a categorization problem and represents three classes to which
the input vector can belong.  This output layer typically learns using the delta
rule and is similar in operation to the counter-propagation paradigm.

Figure 5.4.2.  An Example Self-organizing Map Network.

The Kohonen layer processing elements each measure the Euclidean
distance of its weights from the incoming input values.  During recall, the
Kohonen element with the minimum distance is the winner and outputs a
one to the output layer, if any.  This is a competitive win, so all other
processing elements are forced to zero for that input vector.  Thus the
winning processing element is, in a measurable way, the closest to the input
value and thus represents the input value in the Kohonen two-dimensional
map.  So the input data, which may have many dimensions, comes to be
represented by a two-dimensional vector which preserves the order of the
higher dimensional input data.  This can be thought of as an order-perserving
projection of the input space onto the two-dimensional Kohonen layer.
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During training, the Kohonen processing element with the smallest
distance adjusts its weight to be closer to the values of the input data.  The
neighbors of the winning element also adjust their weights to be closer to the
same input data vector.  The adjustment of neighboring processing elements
is instrumental in preserving the order of the input space.  Training is done
with the competitive Kohonen learning law described in counter-
propagation.

The problem of having one processing element take over for a region
and representing too much input data exists in this paradigm.  As with
counter-propagation, this problem is solved by a conscience mechanism built
into the learning function.  The conscience rule depends on keeping a record
of how often each Kohonen processing element wins and this information is
then used during training to bias the distance measurement.  This conscience
mechanism helps the Kohonen layer achieve its strongest benefit.  The
processing elements naturally represent approximately equal information
about the input data set.  Where the input space has sparse data, the
representation is compacted in the Kohonen space, or map. Where the input
space has high density, the representative Kohonen elements spread out to
allow finer discrimination.  In this way the Kohonen layer is thought to
mimic the knowledge representation of biological systems.

5.5       Networks for Data Filtering    

The last major type of network is data filtering.  An early network, the
MADALINE, belongs in this category.  The MADALINE removed the echoes
from a phone line through a dynamic echo cancellation circuit.  More recent
work has enabled modems to work reliably at 4800 and 9600 baud through
dynamic equalization techniques.  Both of these applications utilize neural
networks which were incorporated into special purpose chips.

5.5.1 Recirculation.

Recirculation networks were introduced by Geoffrey Hinton and James
McClelland as a biologically plausible alternative to back-propagation
networks.  In a back-propagation network, errors are passed backwards
through the same connections that are used in the feedforward mechanism
with an additional scaling by the derivative of the feedforward transfer
function.  This makes the back-propagation algorithm difficult to implement
in electronic hardware.

In a recirculation network, data is processed in one direction only and
learning is done using only local knowledge.  In particular, the knowledge
comes from the state of the processing element and the input value on the
particular connection to be adapted.  Recirculation networks use
unsupervised learning so no desired output vector is required to be presented
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at the output layer.  The network is auto-associative, where there are the
same number of outputs as inputs.

This network has two layers between the input and output layers,
called the visible and hidden layers.  The purpose of the learning rule is to
construct in the hidden layer an internal representation of the data presented
at the visible layer.  An important case of this is to compress the input data by
using fewer processing elements in the hidden layer.  In this case, the hidden
representation can be considered a compressed version of the visible
representation.  The visible and hidden layers are fully connected to each
other in both directions.  Also, each element in both the hidden and visible
layers are connected to a bias element.  These connections have variable
weights which learn in the same manner as the other variable weights in the
network.

Figure 5.5.1.  An Example Recirculation Network.

The learning process for this network is similar to the bi-directional
associative memory technique.  Here, the input data is presented to the
visible layer and passed on to the hidden layer.  The hidden layer passes the
incoming data back to the visible, which in turn passes the results back to the
hidden layer and beyond to the output layer.  It is the second pass through the
hidden layer where learning occurs.  In this manner the input data is
recirculated through the network architecture.

During training, the output of the hidden layer at the first pass is the
encoded version of the input vector.  The output of the visible layer on the
next pass is the reconstruction of the original input vector from the encoded
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vector on the hidden layer.  The aim of the learning is to reduce the error
between the reconstructed vector and the input vector.  This error is also
reflected in the difference between the outputs of the hidden layer at the first
and final passes since a good reconstruction will mean that the same values
are passed to the hidden layer both times around.  Learning seeks to reduce
the reconstruction error at the hidden layer also.

In most applications of the network, an input data signal is smoothed
by compressing then reconstructing the input vector on the output layer.  The
network acts as a low bandpass filter whose transition point is controlled by
the number of hidden nodes.
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6.0       How Artificial Neural Networks Are Being Used   

Artificial neural networks are undergoing the change that occurs when
a concept leaves the academic environment and is thrown into the harsher
world of users who simply want to get a job done.  Many of the networks now
being designed are statistically quite accurate but they still leave a bad taste
with users who expect computers to solve their problems absolutely.  These
networks might be 85% to 90% accurate.  Unfortunately, few applications
tolerate that level of error.

While researchers continue to work on improving the accuracy of their
"creations," some explorers are finding uses for the current technology.  

In reviewing this state of the art, it is hard not to be overcome by the
bright promises or tainted by the unachieved realities.  Currently, neural
networks are not the user interface which translates spoken works into
instructions for a machine, but some day they will.  Someday, VCRs, home
security systems, CD players, and word processors will simply be activated by
voice.  Touch screen and voice editing will replace the word processors of
today while bringing spreadsheets and data bases to a level of usability
pleasing to most everyone.  But for now, neural networks are simply entering
the marketplace in niches where their statistical accuracy is valuable as they
await what will surely come.

Many of these niches indeed involve applications where answers are
nebulous.  Loan approval is one.  Financial institutions make more money by
having the lowest bad loan rate they can achieve.  Systems that are "90%
accurate" might be an improvement over the current selection process.
Indeed, some banks have proven that the failure rate on loans approved by
neural networks is lower than those approved by some of their best
traditional methods.  Also, some credit card companies are using neural
networks in their application screening process.

This newest method of seeking the future by analyzing past experiences
has generated its own unique problems.  One of those problems is to provide
a reason behind the computer-generated answer, say as to why a particular
loan application was denied.  As mentioned throughout this report, the inner
workings of neural networks are "black boxes."  Some people have even
called the use of neural networks "voodoo engineering."  To explain how a
network learned and why it recommends a particular decision has been
difficult.  To facilitate this process of justification, several neural network tool
makers have provided programs which explain which input through which
node dominates the decision making process.  From that information, experts
in the application should be able to infer the reason that a particular piece of
data is important.
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Besides this filling of niches, neural network work is progressing i n
other more promising application areas.  The next section of this report goes
through some of these areas and briefly details the current work.  This is done
to help stimulate within the reader the various possibilities where neural
networks might offer solutions, possibilities such as language processing,
character recognition, image compression, pattern recognition among others.

6.1 Language Processing

Language processing encompasses a wide variety of applications.  These
applications include text-to-speech conversion, auditory input for machines,
automatic language translation, secure voice keyed locks, automatic
transcription, aids for the deaf, aids for the physically disabled which respond
to voice commands, and natural language processing.

Many companies and universities are researching how a computer, via
ANNs, could be programmed to respond to spoken commands.  The
potential economic rewards are a proverbial gold mine.  If this capability
could be shrunk to a chip, that chip could become part of almost any
electronic device sold today.  Literally hundreds of millions of these chips
could be sold.

This magic-like capability needs to be able to understand the 50,000
most commonly spoken words.  Currently, according to the academic
journals, most of the hearing-capable neural networks are trained to only one
talker.  These one-talker, isolated-word recognizers can recognize a few
hundred words.  Within the context of speech, with pauses between each
word, they can recognize up to 20,000 words.

Some researchers are touting even greater capabilities, but due to the
potential reward the true progress, and methods involved, are being closely
held.  The most highly touted, and demonstrated, speech-parsing system
comes from the Apple Corporation.  This network, according to an April 1992
Wall Street Journal article, can recognize most any person's speech through a
limited vocabulary.  

This works continues in Corporate America (particularly venture
capital land), in the universities, and in Japan.

6.2 Character Recognition

Character recognition is another area in which neural networks are
providing solutions.  Some of these solutions are beyond simply academic
curiosities.  HNC Inc., according to a HNC spokesman, markets a neural
network based product that can recognize hand printed characters through a
scanner.  This product can take cards, like a credit card application form, and
put those recognized characters into a data base.  This product has been out for
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two and a half years.  It is 98% to 99% accurate for numbers, a little less for
alphabetical characters.  Currently, the system is built to highlight characters
below a certain percent probability of being right so that a user can manually
fill in what the computer could not.  This product is in use by banks, financial
institutions, and credit card companies.  

Odin Corp., according to a press release in the November 4, 1991
Electronic Engineering Times, has also proved capable of recognizing
characters, including cursive.  This capability utilizes Odin's propriatory
Quantum Neural Network software package called, QNspec.  It has proven
uncannily successful in analyzing reasonably good handwriting.  It actually
benefits from the cursive stroking.

The largest amount of research in the field of character recognition is
aimed at scanning oriental characters into a computer.  Currently, these
characters requires four or five keystrokes each.  This complicated process
elongates the task of keying a page of text into hours of drudgery.  Several
vendors are saying they are close to commercial products that can scan pages.

6.3 Image (data) Compression

A number of studies have been done proving that neural networks can
do real-time compression and decompression of data.  These networks are
auto associative in that they can reduce eight bits of data to three and then
reverse that process upon restructuring to eight bits again.  However, they are
not lossless.  Because of this losing of bits they do not favorably compete with
more traditional methods.

6.4 Pattern Recognition

Recently, a number of pattern recognition applications have been
written about in the general press.  The Wall Street Journal has featured a
system that can detect bombs in luggage at airports by identifying, from small
variances, patterns from within specialized sensor's outputs.  Another article
reported on how a physician had trained a back-propagation neural network
on data collected in emergency rooms from people who felt that they were
experiencing a heart attack to provide a probability of a real heart attack
versus a false alarm.  His system is touted as being a very good discriminator
in an arena where priority decisions have to be made all the time.  

Another application involves the grading of rare coins.  Digitized
images from an electronic camera are fed into a neural network.  These
images include several angles of the front and back.  These images are then
compared against known patterns which represent the various grades for a
coin.  This system has enabled a quick evaluation for about $15 as opposed to
the standard three-person evaluation which costs $200.  The results have



64

shown that the neural network recommendations are as accurate as the
people-intensive grading method.

Yet, by far the biggest use of neural networks as a recognizer of patterns
is within the field known as quality control.  A number of automated quality
applications are now in use.  These applications are designed to find that one
in a hundred or one in a thousand part that is defective.  Human inspectors
become fatigued or distracted.  Systems now evaluate solder joints, welds,
cuttings, and glue applications.  One car manufacturer is now even
prototyping a system which evaluates the color of paints.  This system
digitizes pictures of new batches of paint to determine if they are the right
shades.

Another major area where neural networks are being built into pattern
recognition systems is as processors for sensors.  Sensors can provide so much
data that the few meaningful pieces of information can become lost.  People
can lose interest as they stare at screens looking for "the needle in the
haystack."  Many of these sensor-processing applications exist within the
defense industry.  These neural network systems have been shown successful
at recognizing targets.  These sensor processors take data from cameras, sonar
systems, seismic recorders, and infrared sensors.  That data is then used to
identify probable phenomenon.

Another field related to defense sensor processing is the recognition of
patterns within the sensor data of the medical industry.  A neural network is
now being used in the scanning of PAP smears.  This network is trying to do a
better job at reading the smears than can the average lab technician.  Missed
diagnoses is a too common problem throughout this industry.  In many cases,
a professional must perceive patterns from noise, such as identifying a
fracture from an X-ray or cancer from a X-ray "shadow."  Neural networks
promise, particularly when faster hardware becomes available, help in many
areas of the medical profession where data is hard to read.

6.5 Signal Processing

Neural networks' promise for signal processing has resulted in a
number of experiments in various university labs.  Neural networks have
proven capable of filtering out noise.  Widrow's MADALINE was the first
network applied to a real-world problem.  It eliminates noise from phone
lines.

Another application is a system that can detect engine misfire simply
from the noise.  This system, developed by Odin Corp, works on engines up
to 10,000 RPMS.  The Odin system satisfies the California Air Resources
Board's mandate that by 1994 new automobiles will have to detect misfire i n
real time.  Misfires are suspected of being a leading cause of pollution.  The
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Odin solution requires 3 kbytes of software running on a Motorola 68030
microprocessor.

6.6 Financial

Neural networks are making big inroads into the financial worlds.
Banking, credit card companies, and lending institutions deal with decisions
that are not clear cut.  They involve learning and statistical trends.  

The loan approval process involves filling out forms which hopefully
can enable a loan officer to make a decision.  The data from these forms is
now being used by neural networks which have been trained on the data
from past decisions.  Indeed, to meet government requirements as to why
applications are being denied, these packages are providing information on
what input, or combination of inputs, weighed heaviest on the decision.

Credit card companies are also using similar back-propagation
networks to aid in establishing credit risks and credit limits.

In the world of direct marketing, neural networks are being applied to
data bases so that these phone peddlers can achieve higher ordering rates
from those annoying calls that most of us receive at dinner time. (A probably
more lucrative business opportunity awaits the person who can devise a
system which will tailor all of the data bases in the world so that certain
phone numbers are never selected.)

Neural networks are being used in all of the financial markets - stock,
bonds, international currency, and commodities.  Some users are cackling
that these systems just make them "see green," money that is.  Indeed, neural
networks are reported to be highly successful in the Japanese financial
markets.  Daiichi Kangyo Bank has reported that for government bond
transactions, neural networks have boosted their hit rate from 60% to 75%.
Daiwa research Institute has reported a neural net system which has scored
20% better than the Nikkei average.  Daiwa Securities' stock prediction system
has boosted the companies hit rate from 70% to 80%.

6.7 Servo Control

Controlling complicated systems is one of the more promising areas of
neural networks.  Most conventional control systems model the operation of
all the system's processes with one set of formulas.  To customize a system for
a specific process, those formulas must be manually tuned.  It is an intensive
process which involves the tweaking of parameters until a combination is
found that produces the desired results.  Neural networks offer two
advantages.  First, the statistical model of neural networks is more complex
that a simple set of formulas, enabling it to handle a wider variety of
operating conditions without having to be retuned.  Second, because neural
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networks learn on their own, they don't require control system's experts, just
simply enough historical data so that they can adequately train themselves.

Within the oil industry a neural network has been applied to the
refinery process.  The network controls the flow of materials and is touted to
do that in a more vigilant fashion than distractible humans.

NASA is working on a system to control the shuttle during in-flight
maneuvers.  This system is known as Martingale's Parametric Avalanche (a
spatio-temporal pattern recognition network as explained in section 5.3.5).
Another prototype application is known as ALVINN, for Autonomous Land
Vehicle in a Neural Network.  This project has mounted a camera and a laser
range finder on the roof of a vehicle which is being taught to stay in the
middle of a winding road.

British Columbia Hydroelectric funded a prototype network to control
operations of a power-distribution substation that was so successful at
optimizing four large synchronous condensors that it refused to let its
supplier, Neural Systems, take it out.

6.8 How to Determine if an Application is a Neural Network Candidate

As seen by the sections above, neural networks are being successfully
applied in a number of areas.  Each of these applications can be grouped into
two broad categories.  These categories offer a test for anyone who is
considering using neural networks.  Basically, a potential application should
be examined for the following two criteria:

- Can a neural network replace existing technologies in an area where
small improvements in performance can result in a major economic
impact?  Examples of applications which meet this criteria are:

- loan approvals

- credit card approvals

- financial market predictions

- potential customer analysis for the creation of mailing lists

- Can a neural network be used in an area where current technologies
have proven inadequate to making a system viable?  Examples of
applications which meet this criteria are:

- speech recognition

- text recognition
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- target analysis

(Another example where other technologies failed was in explosive
detection at airports.  Previous systems could not achieve the FAA
mandated level of performance, but by adding a neural network the
system not only exceeded the performance, it allowed the
replacement of a $200,000 component.)

The most successful applications have been focused on a single
problem in a high value, high volume, or a strategically important
application.

The easiest implementation of neural networks occur in solutions
where they can be made to be "plug compatible" with existing systems.  To
simply replace an existing element of a system with a neural network eases an
installation.  It also increases the likelihood of success.  These "plug
compatible" solutions might be at the front end of many systems where
neural networks can recognize patterns and classify data.
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7.0 Emerging Technologies

If the 21st Century is to be the age of intelligent machines, then
artificial neural networks will become an integral part of life.  

In order that software engineers can lead us to this "promised life" they
must begin by utilizing the emerging technology of Neural Networks.  To do
that they must optimize their time by using already implemented hardware
and commercial software packages while anticipating what is still to come.
To accomplish this understanding, this section is broken into two pieces -
what currently exists and what implementors think the next developments
will be.

7.1 What Currently Exists

Currently, a number of vendors exist within the marketplace.  These
vendors are each seeking a share of the neural network business.  Some of
them do that by hitching their wagon to other packages within the industry.
Neural network products exist which are simply add-ons to the popular data
bases and spreadsheets.  Other products are geared for particular operating
systems on particular machines.  There are vendors of neural network
development tools for most machines.  The most popular tools work on
either Apple's Macintosh or the IBM PC standard.

Some of these packages are geared toward particular applications such
as image processing.  Others are general but lack good data routing
capabilities.  Each of these companies are identifying their weaknesses and are
working on them.  It is an exciting time for them, with both the rewards and
risks high.

In choosing a development tool a software engineer needs to beware of
this emerging field.  Most products are not evolved into the user friendly
routines that draw raves.  This is a young field. Its very volatility has created a
confusing set of offerings, and features within offerings, which will
ultimately be relegated to the trash.

7.1.1 Development Systems.

Good development systems allow an user to prototype a network, train
it, tweak it, and use it.  These systems run on the standard range of
computers.  These packages usually don't run on specialized hardware,
although some vendors have packaged fast RISC processors into special
neural processing boards.  Usually, these packages are simply tools which
create networks that prove concepts but may be way too slow to run.  One of
the more complete lists of these vendors is published in the November 1991
issue of Personal Engineering & Instrumentation News.
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7.1.2 Hardware Accelerators.

The key to the continued evolution of neural networking lies in the
hardware.  Traditional hardware does not enable the massive parallelism that
is required by neural networks.  There are several approaches that are being
worked on.  One is to develop a processor which is specifically tailored to
performing the tasks of individual artificial neurons.  Another approach is to
package fast processors, primarily RISCs, onto a hardware accelerator.  These
processors can be packed many to a board to facilitate the parallel nature of
neural networks.  Other accelerator boards simply provide more horsepower
for sequential processing.

Accelerator board products are being developed both independently
and by the makers of neural network development systems.  Each have
specific characteristics that lend themselves to particular resolutions.

 7.1.3 Dedicated Neural Processors.

Dedicated neural processors are processors with specific capabilities that
enable their use in neural networks.  Several of the large chip manufacturers
have developed neural processors.  Some of these processors were created
specifically for the development system vendors.  Some of these chips
package a number of simplistic neurons onto one chip.  Others incorporate
proprietary concepts, such as creating a specific type of fuzzy neuron.  These
chips come in many broad technologies - analog, digital, hybrid, and optical.
There is no clear winner to date.

7.2  What the Next Developments Will Be

The vendors within the industry predict that migration from tools to
applications will continue.  In particular, the trend is to move toward hybrid
systems.  These systems will encompass other types of processes, such as fuzzy
logic, expert systems, and kinetic algorithms.  Indeed, several manufactures
are working on "fuzzy neurons."

The greatest interest is on merging fuzzy logic with neural networks.
Fuzzy logic incorporates the inexactness of life into mathematics.  In life most
pieces of data do not exactly fit into certain categories.  For instance, a person
is not just short or tall.  He can be kinda short, pretty tall, a little above
average, or very tall.  Fuzzy logic takes these real-world variations into
account.  In potential application of neural networks, in systems which solve
real problems, this fuzziness is a large part of the problem.  In automating a
car, to stop is not to slam on the brakes, to speed up is not to "burn rubber."
To help neural networks accomodate this fuzziness of life, some researchers
are developing fuzzy neurons.  These neurons do not simply give yes/no
answers.  They provide a more fuzzy answer.
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Systems built with fuzzy neurons may be initialized to what an expert
thinks are the rules and the weights for a given application.  This merging of
expert systems and fuzzy logic with neural networks utilizes the strength of
all three disciplines to provide a better system than either can provide
themselves.  Expert systems have the problem that most experts don't exactly
understand all of the nuances of an application and, therefore, are unable to
clearly  state rules which define the entire problem to someone else.  But the
neural network doesn't care that the rules are not exact, for neural networks
can then learn, and then correct, the expert's rules.  It can add nodes for
concepts that the expert might not understand.  It can tailor the fuzzy logic
which defines states like tall, short, fast, or slow.  It can tweak itself until it can
meet the user identified state of being a workable tool.  In short, hybrid
systems are the future.
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8.0     Summary    

In summary, artificial neural networks are one of the promises for the
future in computing.  They offer an ability to perform tasks outside the scope
of traditional processors.  They can recognize patterns within vast data sets
and then generalize those patterns into recommended courses of action.
Neural networks learn, they are not programmed.

Yet, even though they are not traditionally programmed, the designing
of neural networks does require a skill.  It requires an "art."  This art involves
the understanding of the various network topologies, current hardware,
current software tools, the application to be solved, and a strategy to acquire
the necessary data to train the network.  This art further involves the
selection of learning rules, transfer functions, summation functions, and how
to connect the neurons within the network.

Then, the art of neural networking requires a lot of hard work as data is
fed into the system, performances are monitored, processes tweaked,
connections added, rules modified, and on and on until the network achieves
the desired results.

These desired results are statistical in nature.  The network is not
always right.  It is for that reason that neural networks are finding themselves
in applications where humans are also unable to always be right.  Neural
networks can now pick stocks, cull marketing prospects, approve loans, deny
credit cards, tweak control systems, grade coins, and inspect work.

Yet, the future holds even more promises.  Neural networks
need faster hardware.  They need to become part of hybrid systems
which also utilize fuzzy logic and expert systems.  It is then that
these systems will be able to hear speech, read handwriting, and
formulate actions.  They will be able to become the intelligence
behind robots who never tire nor become distracted.  It is then that
they will become the leading edge in an age of "intelligent"
machines.
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